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In smart and connected communities (S&CCs), energy, transportation, water, public safety, 

and all other services need to be managed efficiently to support smooth operation while 

providing a clean, economical, and safe environment for citizens. The power system 

infrastructure is the most important part of S&CCs that affects the functionality of all 

components. Over the past two decades, power systems have witnessed significant changes 

in the use of renewable and distributed energy resources, energy control technologies, and 

technical advances in communication and computation, which has led to the development 

of smart grids. Smart grids provide sustainable power grids with the capabilities of self-

healing and automatic execution in an isolated mode, but the operation and control 

planning of smart grids are challenging procedures. The main challenges arise from energy 

load scheduling of customers using interruption load management (ILM) and load shifting 

strategies; communication between customers and utility companies or third-party 

aggregators to increase customer satisfaction and decrease costs; and the need to provide 

reliable and high-quality energy to customers. In this doctoral study, novel simulation and 

optimization approaches for demand side management (DSM) in smart grids are introduced 

to address the main challenges in the operation and control planning of smart grids. To this 

end, this study investigates efficient DSM programs for smart grids and addresses the 

primary challenges in two broad frameworks: (1) a deterministic optimization framework 



 

 

for load shifting in smart grids, which can obtain optimal scheduling for time-shiftable 

energy loads using an advanced -constraint optimization method, and (2) a stochastic and 

dynamic simulation optimization framework for DSM programs in smart grids that finds 

near-optimal solutions for ILM with uncertain loads. These two frameworks provide a 

simulation and optimization tool for utility companies or third-party aggregators to provide 

day-ahead energy load scheduling based on desirable DSM strategies. The proposed 

frameworks are applied in two synthetic smart grid case studies. The results of the case 

studies show that the proposed frameworks are able to meet the desired energy load curves 

while resulting in better objective functions. This doctoral research reveals that both 

deterministic and stochastic DSM programs are promising tools to optimize and boost the 

implementation of DSM programs and attain several benefits.  
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Chapter 1 

Introduction 

In future smart and connected communities (S&CCs), energy, transportation, water, 

public safety, and all other services should be managed to support smooth operation while 

providing a clean, economic, and safe environment for citizens. Electricity is the most 

versatile and widely used form of energy, and global demand for it is continuously 

growing. Smart grids can improve the reliability of electricity services for customers in 

future smart cities by identifying and resolving faults on the power grid, better managing 

voltage, and self-healing. A smart grid is an evolved energy grid system that manages 

electricity in a sustainable, resilient, and economic manner, built on an advanced cluster of 

distributed generation units, renewable energies, energy storage, equipment, and circuits 

for generating, transmitting, transforming, and distributing energy. Although smart grids 

provide several advantages over traditional power grids, smart cities rely heavily on a 

reliable flow of electricity, and power outage is still a major challenge. New types of energy 

loads such as plug-in hybrid electric vehicles (PHEVs), which can potentially double 

residential customer consumption, have especially caused energy providers to need reliable 

and flawless energy supply planning. In power networks that include smart grids, the total 

power supplied from traditional and renewable energy sources must be greater or equal to 

customer demand. However, there are times when power generation may not sufficiently 

satisfy demand, which can be significantly higher than its predicted value. During these 

times, the power network is at risk due to severe voltage oscillations that may cause minor 

or major (even permanent) failures. To prevent such failures, utilities commonly plan for 

their total installed electricity generation capacity to satisfy the forecasted peak demand, 
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considering a margin of error. Most power systems are also supported by contingency 

energy sources in an idle state in the grid but ready to be used in case of power outages. 

These systems are typically managed in a way such that demand is satisfied at a minimum 

possible cost with the least expensive generation sources being utilized first, followed by 

other more expensive sources. In order to increase reliability in smart grids and decrease 

blackout and brownout periods, demand side management (DSM) is used to control and 

reduce peak demand. Demand side management programs are mainly used to avoid 

potential instabilities in power networks, providing economic benefits by utilizing only the 

least-expensive sources of generation and eliminating the need for constructing additional 

power plants to satisfy increasing peak demand [1-5]. Demand side management has 

become a significant function in energy management due to its potential to reduce the cost 

of peak demand satisfaction [6-8]. In energy management literature, there are six main 

groups of DSM: 1) peak clipping, which reduces peak load demand by using time-based 

incentives for interrupted customers; (2) load shifting, which shifts loads from on-peak to 

off-peak time periods; (3) valley filling, which shifts peak demand usage to low demand 

periods, but the term can refer to any program or strategy aimed at filling the usage valley 

between peak uasage times; (4) flexible load shape, which provides control over customers 

during critical periods in exchange for various incentives; (5) strategic conservation, which 

reduces energy demands directly on customers’ premises; and (6) strategic load building 

(load growth), which optimizes daily response in case of large demand [1-9]. Load shifting 

and peak clipping, also known as interruption load management (ILM), are the most 

popular DSM programs due to their ease of application and efficiency. This doctoral 

dissertation investigates the effectiveness of DSM programs, including load shifting and 
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ILM, on future smart grids using two main frameworks: F1) a deterministic optimization 

framework for DSM programs in smart grids and F2) a stochastic and dynamic simulation 

optimization framework for DSM programs in smart grids. Details and contributions of the 

proposed frameworks are provided in the following subsections.   

1.1. A Deterministic Multi-Objective Optimization Framework for DSM in Smart 

Grids (F1) 

Increasing populations, growing electrical energy consumption, and the integration of 

renewable energy sources into electricity grids over the last few decades has made 

maintaining grid power balance a major challenge for energy providers [10]. Due to the 

deployment of renewable energies and the need for high reliability, traditional power grids 

will move toward becoming intelligent modern power grids known as smart grids in the 

near future [11]. Smart grids play a critical role in transforming the traditional power grid 

system into one that provides a user-oriented service and guarantees high security, quality, 

and economic efficiency. However, to maintain sustainability in smart grids, the total 

capacity of installed generation in the system must be larger than the maximum load 

demand to ensure the security of supply in the face of uncertainty (e.g. generation 

breakdowns and interruptions to primary fuel sources) and variations in energy supply due 

to adverse weather [9]. DSM programs have been proposed as a major dimension of future 

power supply and control to prevent blackouts and brownouts during load variation and 

uncertain energy generation. DSM programs are typically a set of programs that harmonize 

the activities of energy providers and consumers to control energy consumption. These 

programs monitor and influence load profiles during peak load demand and are used to 

avoid installing new generation infrastructure. 
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Despite the progress achieved in the field of DSM, a simultaneous consideration of cost 

minimization and customer satisfaction maximization has not yet been addressed. The 

proposed deterministic multi-objective optimization framework for DSM in this 

dissertation attempts to minimize cost and greenhouse gas (GHG) emissions while 

maximizing customer satisfaction. Fig. 1 represents the proposed mixed-integer multi-

objective optimization framework for implementing load shifting and ILM programs in 

smart grids to satisfy desired demand.  

Fig. 1: Proposed multi-objective optimization DSM framework 

The proposed framework includes four main components: (1) a forecasting model that 

creates a 24-hour-ahead load profile using historical data about renewable energy sources 

in smart grids, (2) a mathematical model of the load shifting and ILM problem and 

implementation of a piecewise linear approximation method to achieve the mixed-integer 

multi-objective optimization model, (3) an advanced -constraint model for the mixed-
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integer multi-objective optimization problem that acquires Pareto frontier solutions with a 

higher number of non-dominated solutions and less computational time, and (4) 

mathematical scheduling for load profile construction based on the results of the 

framework. This proposed framework is implemented for a small case study of smart grids 

for efficiency and effectiveness purposes.  

1.2. A Stochastic and Dynamic Simulation Optimization Framework for DSM in 

Smart Grids with Uncertain Loads (F2) 

Implementation of DSM programs have been heavily studied in context of 

deterministic device loads; however, less attention has been paid to variations in device 

loads. The consideration of load variation can affect all DSM strategies to produce 

solutions that might violate the required energy curtailment (infeasible solutions) [3, 12]. 

The assumption of constant energy consumption is critical for DSM programs’ practicality 

and realism, but as in the real world, the hourly energy load consumption of electrical 

devices can be altered by several factors (e.g. a device’s selected program; different modes 

such as on, off, and standby; etc.). This portion of this doctoral research is novel in its 

consideration of device load variation in the ILM problem, and variation in device load is 

incorporated as an additive variation factor and addressed via the conduct of extensive 

simulation experiments to generate loads, considering the normal load distribution for each 

device. To illustrate this, imagine a device with a base load  that ranges from 1 to 

1. A traditional deterministic DSM strategy may generate a solution that does not 

interrupt this device in a specific time period assuming that its load is . Further, assume 

that in this time period, when applying the deterministic solution, the total demand is 

exactly equal to the desired power generation. In the case that this device’s load becomes 
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1 then the solution automatically becomes infeasible. The proposed evolutionary 

simulation optimization framework for ILM is composed of three major components: 1) a 

genetic algorithm that progressively discovers new solutions for the scheduling of 

interruptible loads, 2) a simulation model that acquires the performance of different 

interruption scenarios, and 3) a complete ranking optimal computing budget allocation 

(OCBA) that optimizes the allocation of the number of replications dedicated to each 

simulation scenario and identifies the top -best solutions for the genetic algorithm (Fig. 

2).  

Fig. 2: Proposed simulation optimization framework for ILM 

1.3. Summary of Proposed Contributions 

The main contributions of this research may be categorized as the contributions of the 

deterministic multi-objective optimization framework for DSM in smart grids (F1) and the 

contributions of the stochastic and dynamic simulation optimization framework for DSM 

in smart grids with uncertain loads (F2). These contributions are summarized below: 
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 F1-Contribution 1: This framework is the first to simultaneously consider cost

minimization, emission minimization, and customer satisfaction for a load shifting

strategy. Furthermore, the proposed framework is converted to mixed-integer linear

programming (MILP) for higher accuracy and lower computational time.

 F1-Contribution 2: This study develops a novel multi-objective optimization method

to more efficiently find a Pareto frontier solution set. The proposed methodology,

“advanced -constraint multi-objective optimization,” has the ability to obtain a

Pareto frontier solution set with more than 12 times the non-dominated solutions as

a traditional -constraint method.

 F2-Contribution 1: This study introduces a novel simulation optimization framework

for scheduling interruptible loads that considers load variation. The proposed

framework presents great potential for IL planning in future smart grids with energy

consumption controllers (ECCs), which enable utility companies and third-party

aggregators to receive and control the energy consumption of each device

automatically. Furthermore, this doctoral research is the first study to utilize

simulation, optimization, and simulation design-ranking algorithms in an integrated

framework to offer robust ILM scheduling for the smart grids in detail (at the device

level).

 F2-Contribution 2: The proposed simulation optimization framework is formulated

as an optimization problem to minimize the total cost imposed on the system by ILM

while satisfying the desired load curve in all time periods. F2 is compared to relaxed

deterministic optimization, random search, and simulated annealing (SA) algorithms
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for performance evaluation and gives quite promising results in terms of feasibility 

and the cost of resultant scheduling.  

 F1 & F2-Contribution: The combination of F1 and F2 provides a comprehensive tool

for energy providers to implement ILM and load shifting strategies in smart grids.

These two frameworks also have the ability to consider both deterministic and

uncertain cases, based on user preference.
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Chapter 2 

Background and Literature Review  

A smart grid is an autonomous electricity environment able to deliver electricity in a 

controlled, smart way from points of generation to consumers. These consumers are 

considered an integral part of a smart grid because they can alter their purchasing patterns 

and behaviors based on received information, incentives, and disincentives (two-way 

communication) [13]. Smart grids are capable of improving reliability performance, 

customers’ responsiveness, and encouraging greater efficiency decisions by the customers 

and the utility provider [14]. Smart grids play a critical role in transforming the traditional 

power grid system into a user-oriented service that provides high-security, high-quality, 

and efficient energy grids. Despite the significant advantages of smart grids, maintaining 

their sustainability requires the total capacity of installed generation in the system to be 

larger than the maximum load demand; this ensures the security of supply in the face of 

uncertainty (e.g. generation breakdowns and interruptions to primary fuel sources) and 

variations in demand due to adverse weather [15]. In the literature of energy management, 

DSM is found to be an efficient way to increase power grid reliability. Demand side 

management refers to a modification of normal consumption patterns of electrical usage 

by end-use customers in response to changes in the price of energy or to customer pay 

incentives in order to reduce electricity price and usage in periods with a high wholesale 

market price or lack of energy supply [16-18].The complete integration of DSM and smart 

grids requires communication systems and sensors, automated metering, intelligent 

devices, and specialized processors. DSM has great potential for energy grid reliability, in 

particular because of the invention of ECCs, that enables the energy providers to monitor 

the energy consumption of each device. By promoting customer interaction and 
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responsiveness, DSM determines short-term impacts on electricity markets, leading to 

economic benefits for both the clients and the service provider. Furthermore, DSM reduces 

overall plant and capital cost investments and postpones the need for network upgrades by 

improving the reliability of the power system [19, 20]. In response to customer 

participation in DSM programs, electricity consumption can change in three possible ways: 

(1) reduction of energy consumption through load curtailment strategies, (2) a partial shift 

in energy consumption to a different time period, and (3) utilization of backup energy 

generators such as diesel generators to limit dependence on the main grid [17]. Load 

curtailment can be attained by dimming lighting levels, decreasing the temperature set 

points of air conditioners, etc. On the other hand, shifting power consumption can be 

achieved by commercial and residential customers by pre-cooling facilities and shifting 

loads from higher- to lower-cost time periods [21].  

Different DSM programs, shown in Fig. 3, can be divided into two main categories: 

incentive-based programs (IBPs) and price-based programs (PBPs) [22, 23]. Classical IBPs 

can either be direct load control (DLC) programs or interruptible/curtailable load programs. 

Market-based IBPs include emergency demand response (DR) programs, demand bidding, 

the capacity market, and the ancillary services market. In a classical IBP, which forms the 

core of this doctoral research, participating customers receive participation payments, 

usually as a bill credit or discount rate, for their involvement. In DLC programs, utilities 

can remotely shut down participant equipment on short notice. Typical remotely controlled 

equipment includes air conditioners and water heaters. This kind of program is of interest 

mainly to residential customers and small commercial customers. 
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Fig. 3: Classification of demand response programs 

C. W. Gellings has classified DSM (and primarily DLC) programs into six broad 

categories, as shown in Fig. 4 and explained below.  

(1) Peak Clipping: Peak clipping is the reduction of peak load using DLC [1] and is mostly 

used in direct utility control of customers’ appliances. In smart grids, load or appliance 

power can be altered via remotely controllable switches due to the high level of control. 

While DLC is known as a means to reduce peak capacity during peak periods and days, it 

also can be used to reduce operating costs and dependence on critical fuels [23].   

(2) Valley Filling: In valley filling, low demand periods are filled by building off-peak 

capacities. This form of load management can be achieved using different types of energy 

storage such as water heating or space heating that can replace fossil fuel loads [22].    

(3) Load Shifting: A standardized load shifting program shifts energy usage from peak 

periods to off-peak periods on a recurring basis, often by storing energy produced during 

off-peak hours and using this energy during peak hours to support loads [2].    
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(4) Strategic Conservation: This method aims to achieve load shape optimization by 

applying demand reduction methods directly on customer premises. The distribution 

management system considers this for longer-term implications of demand reduction on 

network planning and operation [24]. 

(5) Strategic Load Growth: This method optimizes daily response in case of significant 

demand beyond the valley filling technique. It is based on increasing the market share of 

loads supported by energy conversion and storage systems or distributed energy resources. 

A strategic load growth program is a planning method to balance increasing demand with 

processes for constructing necessary infrastructure that accompanies load growth. The 

future smart grid has to provide the necessary infrastructure for strategic load growth [9].  

(6) Flexible Load Shape: Flexible load shaping is mainly related to the reliability of the 

smart grid. Smart grid management systems identify customers with flexible loads who are 

willing to be controlled during critical periods in exchange for various incentives. 

Fig. 4: The main DSM programs in energy management literature [1-9] 

Of these DSM programs, peak clipping (also known as ILM) and load shifting have 

become a focus of attention due to their ease of application and high efficiency. Previous 
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studies about ILM and load shifting and their benefits and drawbacks are summarized in 

Tables 1 and 2.    

Table 1: Selected ILM studies in the literature of energy management 

Table 2: Selected load shifting studies in the literature of energy management 

Method Main Idea Benefits Drawbacks 

Single-objective 
optimization model for 
ILM using optimal power 
flow analysis [25] 

Minimization of power 
generation cost and 
interruption cost for customers 
using optimization model 

Ease of application and 
deterministic model 

Not applicable to 
large problems and 
is a single-objective 
function 

Optimization model for 
ILM in secondary reserve 
using ancillary service 
market [26] 

24-hour-ahead ILM to 
minimize the cost 

Considers dynamic price 
change as follows: 

, , 1  

Requires high 
computation time 
due to multiple 
constraints; 
only considers 
minimization of cost

Model Reference Adaptive 
Control (MRAC) strategy 
using fuzzy dynamic 
programming [27] 

Minimization of interruption 
cost using optimization model;
fuzzy dynamic programming 
for interrupted loads 

DLC optimization model to 
acquire optimal solutions; 
considers customer 
satisfaction using fuzzy set 

Applies to small 
ILM problems and 
requires high 
computation time 

Scheduling of interruptible 
loads using particle swarm 
optimization (PSO) [28] 

Binary particle swarm 
optimization (BPSO) to 
schedule ILs (16h) 

Metaheuristic algorithm 
acquires near-optimal 
solutions using ILM; 
applicable to large 
problems 

Considers 
deterministic load 
demands and has 
only been tested on 
small problems 

Minimization of cost for 
ILM and IL scheduling [29] 

Optimization model with 
second-order polynomial 
model 

Application of advanced 
ILM on industrial scale 

Considers only 
industrial customers 
and only minimizes 
operational cost 

Method Main Idea Benefits Drawbacks 

Genetic algorithm 
(GA) for scheduling 
time-shiftable loads in 
smart grids [9] 

Finding the near-optimal 
scheduling of time-
shiftable loads on a 
device level  

Considers smart grids with 
smart meters for mutual 
communication;  
tested on a smart grid case 
study 

Only considers the 
minimization of cost as 
an objective function;  
GA does not guarantee 
the optimal solution  

Incentive-based 
optimization model for 
DSM of PHEVs [30] 

Optimization of PHEV 
fleet to minimize costs 
for energy supplier 

Considers three-step 
framework for DSM 
including aggregation, 
optimization, and control; 
able to find scheduling for 
PHEVs 

Proposed dynamic 
programming for PHEVs 
is not applicable to large-
scale problems; 
limited to scheduling of 
PHEVs 
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In the literature of energy management, load shifting and ILM programs have been 

studied from several perspectives. Two critical assumptions have been considered in the 

literature of Energy load management: deterministic and uncertain energy load 

management. Despite the progress achieved in deterministic DSM literature, to the best of 

the author’s knowledge, there is no study that considers both the energy provider’s and 

customer’s side. Furthermore, energy providers attempt to satisfy the desired load demand 

curve with minimal operational costs; however, less attention has been paid to customer 

satisfaction and emissions. Building on the contributions of the studies summarized in 

Tables 1 and 2, this doctoral research has two main sections: (1) a deterministic DSM 

framework that is responsible for load shifting and ILM programs considering 

deterministic loads for buildings and (2) a stochastic and dynamic simulation optimization 

ILM framework that investigates uncertainty in device loads. Investigation of robust DSM 

reveals that variations in different devices’ energy consumption have not yet been 

considered. The assumption of constant energy consumption is critical for the DSM 

program’s practicality and realism, but as in the real world, the hourly energy load 

Simulation model to 
use water heat pump 
and thermal energy 
storage (TES) for load 
shifting [31] 

Heat-pump heating 
systems demonstrate 
ability to have active role 
in DSM programs 

TES and water heat pump are 
more efficient ways to store 
energy than backup energy 
generators 

Limited to thermal 
storage and satisfies 
energy storage planning 

Load shifting in smart 
grids using glowworm 
PSO [32] 

Utilizing load shifting 
strategy with the 
objective functions of 
annual energy loss 
minimization and fuel 
cost consumption 
minimization 

One of the few studies that 
considers energy loss 
minimization as an objective 
function 

Does not consider load 
shifting costs and only 
minimizes fuel cost 

Simulation 
optimization model for 
load shifting in 
residential smart grid 
[33] 

Utilizing micro-combined 
heat and power (CHP) for 
load shifting strategy in 
microgrid   

Considers -CHP as a 
powerful tool for storing 
energy and implementing 
load shifting strategy 

Uses single-objective 
function (cost) and 
deterministic values for 
device loads  
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consumption of electrical devices can be altered by several factors (e.g., a device’s selected 

program; different modes such as on, off, and standby; etc.). The second framework of this 

doctoral research (FII) incorporates the variation of device load as an additive variation 

factor and addresses it via extensive simulation experiments to generate loads, considering 

the normal load distribution for each device. The details of the proposed methodology are 

provided in the following chapter.        
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Chapter 3 

A Dynamic Data-Driven Optimization Model for DSM in Operation Planning of 
Smart Grids  

The efficient utilization of distributed generation resources (DGs) and DSM in large-

scale power systems plays a crucial role in satisfying and controlling electricity demand in 

an economically viable and environmentally friendly way. However, uncertainties about 

electricity generation from DGs, variations in load demand, and conflicts in objectives 

(emissions, cost, etc.) pose significant challenges in determining the optimal operation 

planning of smart grids. In this chapter, a dynamic data-driven multi-objective optimization 

model for day-ahead operation planning for smart grids is provided to illustrate simulation 

and optimization for energy management and DSM implementation. The proposed 

approach in this chapter considers total cost and emissions as objective functions, with the 

integration of ILM as a DSM program, to find the best load scheduling for interruptible 

loads. A key goal of this chapter is to deliver a simulation and optimization approach as an 

essential basis for frameworks I and II.   

The proposed simulation and optimization approach includes three modules that 

interact with each other: (1) a simulation module that captures the behaviors of operating 

components such as solar panels and wind turbines and provides the data for the 

optimization model; (2) an optimization module that determines the optimal operational 

plan, which includes the utilization of diesel generators, purchased electricity from a utility, 

and interrupted load, and considers the cost and emissions objective functions using the -

constraint method; and (3) a rule-based, real-time decision-making module that adapts the 

operation plan from the optimization model based on dynamic data from the smart grid and 

sends the revised plan back to it. A schematic interaction of data and modules is illustrated 
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in Fig. 5. The proposed dynamic data-driven, multi-objective optimization model is 

explained briefly in the three following sections.  

Fig. 5: Proposed dynamic data-driven multi-objective optimization for the smart grid 

3.1. Simulation Module  

The simulation module creates a valuable imitation of the operation of different 

components of smart grids while capturing uncertainty associated with these components, 

such as the intermittency of wind turbine energy generation. In this study, load demand, 

solar energy production, wind power generation, and hourly electricity prices are simulated 

as the smart grid operating components, as outlined below. Since other components, 

including diesel generators and the ILM program, are controllable components, they are 

taken into account only in the optimization model.  

- Load demand: In this chapter, the demand data of smart gird buildings are assumed to 

follow the smart grid system in [34]. Notably, the forecasted hourly demand of each 

building ( ) is a function of peak demand ( ) and the power factor ( ) of 

building	 . Power factors are also determined based on customer type; values are 
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collected from [35] for residential customers and from [34] for commercial and 

industrial customers. Gaussian distribution is assumed in modeling demand uncertainty 

with 5% standard deviation as used in [36]. It is worthy to mention that the monthly 

power factors are utilized to differentiate the energy demand of each building monthly. 

The calculation of load demand for each hour and building is shown in (1).   

~ , 	 ∑ 0.05   (1) 

- Solar energy production: The power generation from solar panels depends on panel 

characteristics, solar irradiance, and ambient temperature as shown in (2-4). In these 

equations, the hourly solar generation ( ) is a function of fill factor ( ), which is a 

constant related to panel characteristics, voltage ( ), and current ( ). Voltage and 

current are associated with attributes of the solar panel and cell temperature ( ) 

calculated by the term 
.

∙  where  is ambient temperature,  is nominal

cell temperature, and SI is solar irradiance.   

∙ ∙   (2) 

25   (3) 

∙ 25    (4) 

- Wind power generation: The power generation of wind turbines is calculated by a 

piecewise function that is dependent on the wind speed ( ) at the site and the 

parameters of the power performance curve, which are rated power ( ), cut-in speed 

( ), cut-off speed ( ), and rated speed ( ). Total output power generated from the 

wind turbine ( ) is computed as follows in (5) [37].   
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0

	
0

(5)

- Hourly electricity prices: The price of electricity from the main grid is modeled using 

historical data from [38]. In this study, it is assumed that hourly electricity prices for 

an entire month follow a similar pattern. In the calculation of prices, the data for the 

entire month are taken into account for each hour, and the best distribution is found 

using Bayesian Information Criteria [39, 40] among several distributions, including 

Weibull and Gamma. After this study’s analysis, an Inverse Gaussian distribution is 

determined to be the best-fit distribution to explain hourly prices. The probability 

density function of the Inverse Gaussian distribution is given in (6). 

; 	 ,
/

  (6)

3.2. Multi-Objective Optimization Module  

After obtaining the load demand for each building, solar and wind power generation, 

and hourly electricity prices in the simulation module, the optimization module minimizes 

the cost and emission by determining the use of diesel generators, the amount of electricity 

purchased from the utility, and the schedule of interruptible loads under the ILM. As an 

incentive-based DSM program, ILM attempts to decrease the energy consumption of 

buildings during peak demand; however, energy providers must pay the interruption costs 

to consumers to encourage them to participate in this program. In this study, a bi-objective 

optimization model is formulated to minimize the cost and emission. It is important to point 

out that quadratic cost and emission functions of diesel generators are linearized using an 
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upper piecewise linear approximation method [41]; further explanation is provided in 

Chapter 4. While the cost function can be represented with one linear curve, the emission 

function can be converted into two linear curves called segments. The notations used in the 

model are shown in Table 3, and the model is represented by (7-20).  

Table 3: Notations used in bi-objective optimization model 

Indices
 Building number ∈ 1,… ,   
 Hours ∈ 1,… ,24} 
 Diesel generators ∈ 1,… ,  
 Segments ∈ 1, 2} 

Parameters  
 Forecasted load of building  at time  
  Desired demand at time  (based on load demand, solar and wind generation) 

 Minimum amount of electricity that can be generated by generation unit  
 Interruption rate ($/kW) (dependent on type of customer) 
 Slope of cost function for generation unit  
 Intercept of cost function for generation unit  

 Slope of emission function for generation unit  at segment   
 Emission value for   
 Reference for energy generation where ∈ 1,… , 1  

   Minimum amount that can be bought from utility 
  Maximum amount that can be bought from utility 

  Energy rate (price) from utility  
Variables  

 Energy produced by diesel generator g at time t and segment  

 Binary variable for the intercept of generation unit  at time  and segment  
 Amount of interruption of building  at time  

  Amount of electricity bought from utility  
  Binary variable for electricity from utility 

Objective functions:  

	 ∑ ∑ 	 ∑ ∑ 	 	

  
(7) 

	 	∑ ∑ ∑   (8) 

Subject to:  
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∑ 	   (9) 

∑ 	 		∑ ∑   ∀  (10)

	   ∀ ,  and 1 (11)

	 where 1 (12)

	 1 ∀ ,  and 1 (13)

		0.3 ⋅ ∀ ,  (14)

∑ 		0.02	 ∑ 	 ∀  (15)

⋅   (17)

⋅   (18)

, ,  ∈ 0, 1  (19)

, , , 0  (20)

The first objective function (7) minimizes the total cost, including the interruption cost 

(∑ ∑ 	 ), linearized form of diesel generator cost (∑ ∑ 	 	 ), 

and electricity cost (∑ 	 	 	 ) bought from the utility. Equation (8) 

minimizes the CO2 emission of diesel generators. Equation (9) defines the desired demand 

at time , which is the summation over time of forecasted loads minus generated energy 

from wind and solar at time . Equation (10) prevents the model from exceeding the desired 

demand at time . Since the linearized form of the emission function includes two 

segments, (11)–(13) ensure that the model does not assign any value to the second segment 

before fulfilling the first segment. Equations (14) and (15) ensure that the amount of 

interruption for each building satisfies hourly and daily regulations for ILM. A user can 

modify the parameters for the interruptible loads. Equations (17) and (18) show the upper 
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and lower limit, respectively, of the energy that can be bought from the utility. Finally, (19) 

and (20) are sign constraints. In this chapter, the -constraint method is used to obtain the 

Pareto frontier for the proposed mathematical model.         

3.2.1. Multi-Objective Optimization via -Constraint Method  

In this section, the -constraint method, first proposed by [42], is used to solve the bi-

objective optimization model. In order to implement the -constraint method in the 

abovementioned optimization problem, the problem is first solved for each objective 

function separately to find the minimum and maximum value for each objective function 

(payoff table). Next, the secondary objective function is added to the optimization model 

as a constraint in order to formulate the optimization problem as a single-objective 

optimization (based on the primary objective). In this work, the cost and emissions 

objective functions are considered primary and secondary, respectively. Based on the 

payoff table, the range of the secondary objective function is divided into  equal intervals. 

Then, the new optimization problem that minimizes the cost is solved for  different right-

hand side and left-hand side values of a constrained emission function in order to obtain  

Pareto frontier solutions (Fig. 6). 

Fig. 6: Traditional -constraint method for bi-objective optimization 

. . .

1

Cost function (main objective)

2 3
Emission function range
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 3.3. Real-Time Decision-Making Module 

Load demand and generation from solar panels and wind turbines cannot be forecasted 

precisely, so the optimal solution based on simulation results requires modifications to 

adapt the solution to real-time data gathered from the smart grid. However, these 

modifications should satisfy the constraints without harming the optimal solution 

significantly. In this section, a rule-based real-time decision-making module (RTDM) is 

proposed to make precise decisions based on the real-time data from a smart grid, 

considering both cost and emission as it steps through time. The proposed rule-based 

RTDM is responsible for decisions regarding utilization of diesel generators, ILM and the 

amount of electricity bought from the main grid (Fig. 7). It should be noted that the 

algorithm is terminated if ∆ 0 at any checkpoints. 

Fig. 7: Rule-based real-time decision-making module for smart grid operational planning 

3.4. Experiments and Results 

In order to present the capabilities and performance of the proposed approach, a case 

study of a synthetic smart grid was carried out. The smart grid analyzed in this chapter 

included 50 buildings composed of 35 residential, 10 commercial, and 5 industrial types of 

load profiles; solar panels that have a total capacity of 10 MW; three wind turbines; and 

seven diesel generators from four different types of thermal generators. The characteristics 

of the solar panels and wind turbines used in this study are shown in Table 4. Moreover, 
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the values for diesel generators were obtained based on the results of a piecewise linear 

approximation method; they are shown in Table 5. 

Table 4: Attributes of wind turbines and solar panels [43] 

Solar Panel Wind Turbine 
Attribute Value Attribute Value
Open circuit voltage 21.98 V Turbine capacity 3000 kW 
Short circuit current 5.32 A Cut-in speed 4 (m/s) 
Voltage temperature 
coefficient 

14.4 
mV/oC 

Cut-out speed 25 (m/s) 

Current temperature 
coefficient 

1.22 mA/
oC 

Rated speed 16 (m/s) 

Nominal cell operating 
temperature 

43 oC - - 

Fill factor 0.17 - - 

Table 5: Attributes of diesel generators 

Thermal Generators 
Attribute Gen. 

Type I 
Gen. 

Type II 
Gen. 

Type III 
Gen. 

Type IV 
Number of generators 2 2 1 2 
Minimum power generation (MW) 50 40 30 20 
Maximum power generation (MW) 300 250 175 120 
Fixed cost ($) 16.52 12.02 9.89 7.47 
Variable cost coefficient 0.0224 0.0229 0.0235 0.0223 
Emission value for minimum power 
generation 

0.88 0.76 1.01 0.66 

Emission coefficient for segment I  0.0277 0.0214 0.0277 0.0195 
Emission coefficient for segment II  0.0599 0.0432 0.0459 0.0364 

As mentioned earlier, due to weather changes and variations in customer load profiles, the 

operation plans are different on any day of the year. However, it is commonly believed that 

changes within a season have minimal impact. Therefore, this study presents results of the 

proposed approach for the two best representative days of each season, which are July 15 

in the summer and January 15 in the winter. First, the simulation model determined the 

hourly forecasted demand for each building and hourly solar and wind generation 
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according to the data shown in Tables 4 and 5. It should be noted that weather data were 

obtained from the Florida Automated Weather Network (FAWN) subsidiary of the 

University of Florida [44], and winter and summer electricity prices were determined using 

an Inverse Gaussian distribution where parameters are estimated based on historical data. 

Then the simulation results were sent to the bi-objective optimization model, which was 

solved for each objective function to construct the payoff table shown in Table 6. 

Table 6: Resulting payoff table for bi-objective optimization model 

Summer Cost Emission Winter Cost Emission 

Cost $1,320.59 6.71 kg Cost $1,077.07 5.39 kg 
Emission $2,597.00 4.78 kg Emission $2,218.76 3.51 kg 

In this study, the cost function has been selected as the primary objective function. The 

emission function is embedded in the model as a constraint as shown in (21). 

∑ ∑ ∑ 	    (21) 

In order to use the ϵ-constraint method, the emission function range ([4.78, 6.71] for 

summer and [3.51, 5.39] for winter) was divided into 100 intervals, and the optimization 

problem for minimizing the cost was solved for every interval by using A Mathematical 

Programming Language (AMPL) software on a computer with an i7 processor and 16 GB 

RAM. Based on the results of the optimization problem, the Pareto frontier was obtained 

in less than a minute and is represented in Fig. 8. Then, the best compromise solution was 

selected by determining the knee solutions, which are the preferred trade-off solutions in 

the Pareto frontier [45]. Since the primary objective here is to minimize cost, the knee 

solutions with a better total cost were chosen as the best compromise solutions for winter 

and summer.  
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(a) Summer (b) Winter 

Fig. 8: Resulting Pareto frontier from multi-objective optimization model 

Based on the selected solutions, the optimal operation plans for summer and winter are 

shown in Fig. 9. It should be noticed that in both cases, there is unused generator capacity, 

showing that the smart grid has enough resources for electricity generation. In fact, even 

during peak hours in the summer, use of generator type I, which has the highest capacity, 

does not exceed a total of 60%. From Fig. 9 it can be understood that in the winter, the 

smart grid does not need electricity from the main grid, while in the summer, the smart grid 

buys electricity from the main grid for four hours a day. However, during these hours, the 

smart grid can produce its own energy. This study also demonstrates that the total amount 

of interrupted electricity is tiny for both seasons, meaning that the smart grid can satisfy 

customers regarding their electricity production. Finally, although generation from 

renewable energy sources in summer is almost twice the generation from renewable energy 

sources in winter, the higher demand in the summer leads to a higher cost and more 

emissions than in the winter.    
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(a) Winter (b) Summer 

Fig. 9: Resulting operation planning of the best compromise solutions 

     In the next step, dynamic data-driven multi-objective module (DDD-MOM) collects 

real-time data from the smart grid, and the RTDM adapts the best compromise solution 

from the optimization module based on these data. In this study, real-time smart grid data 

were simulated using slightly different parameters from those used in the simulation 

module. The results of the RTDM can be seen in Fig. 10, which shows that the changes in 

the cost function value between the optimization module solution and the RTDM solution 

reach, at most, a level of 0.9% in the summer and 0.6% in the winter. The differences in 

the emission values obtained from the optimization model and actual case are less than 

0.4% in the winter and 0.6% in the summer. Hence, it can be concluded that the results 

obtained from the optimization model are robust regarding cost and emission objectives 

against uncertainties of power generation from renewable energy resources and load 

demand in real-time operation.  

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
h

an
ge

  i
n

 ‰

Hours

Cost Emission



28 

 

(a) Winter 

(b) Summer 

Fig. 10: Results of RTDM model 
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Chapter 4 

Deterministic Multi-Objective Optimization Problem for DSM (F1)  

Demand side management is a superior tool for maintaining the sustainability and 

security of power systems during capacity shortage and emergency situations. It includes 

intentional modifications to electricity consumption patterns of end-use customers to alter 

the level of demand and timing of consumption. In addition to maintaining system 

sustainability, energy providers primarily need to minimize total cost and maximize 

customer satisfaction to encourage participation in DSM programs. This chapter proposes 

a multi-objective optimization model for load shifting and ILM with three objective 

functions. The first objective function minimizes the total cost of energy systems including 

costs of load shifting (or interruption) and thermal generators; the second objective 

function maximizes customer satisfaction (utility); and the third objective function 

minimizes the GHG emission of thermal generators. The components of the proposed 

framework are described in detail in the sections below. 

4.1. 24-hour-ahead Energy Load Forecasting 

Electricity load forecasting is one of the most important requirements for energy 

management and operation planning in the electrical sector. While several load forecasting 

methods have been developed in the literature of energy management, none can be 

generalized as the most efficient tool for all demand patterns [46-51]. In order to obtain a 

forecasted day-ahead load profile for buildings, we collected a large set of residential, 

commercial, and industrial electrical devices based on historical data. The forecasted 

hourly demand of each building ( ) is a function of the peak demand ( ) and power 

factor ( ) of building , and building load demand was obtained using the information 
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provided in Chapter 3. The calculation of load demand for each hour and building is shown 

in (22). 

~ , 						 						 ∑ ⋅ 0.05 ⋅   (22)

Furthermore, historical data about device electricity usage was used to capture actual 

customer energy consumption. The resulting datasets were used to obtain the day-ahead 

load forecasting generated by the simulation of historical data. The prediction method 

based on historical device data enables a user to identify devices with a possibility for load 

shifting and create a day-ahead load profile.            

4.2. Mathematical Formulation of the Extended Operation Planning Problem 

This chapter proposes a multi-objective optimization framework for operation planning 

problems that use the load shifting program in smart grids. The framework has three 

objectives: (1) minimization of total cost of energy systems, including costs of the load 

shifting program and thermal generators; (2) maximization of customer satisfaction 

(utility); and (3) minimization of GHG emissions from thermal generators. Notations used 

in the proposed model are shown in Table 7. 

Table 7: Summary of notations and formulations used in the proposed deterministic DSM 

Indices

Buildings ∈ 1,… ,   
Generation units ∈ 1,… ,  
Segments ∈ 1, 2, 3} 
Hours ∈ 1,… ,24} 

  Diesel generators ( 1,… , )  
  Customer types ∈ {industrial, commercial, residential}  

Parameters

, ,  Variable cost parameters of thermal generator  
 Slope of cost function for generation unit  

 Intercept of cost function for generation unit  

  Desired demand at time   
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 Slope of emission function for generation unit  at segment   

 Emission value for   

 Forecasted load for building  at time  
 Reference for energy generation where ∈ 1,… , 1  

L Maximum allowed time for shifting  

 Minimum produced energy for generation unit  

 Shifting rate ($/kW) 
  Diesel generator rate at time t  ($/kW) 

  Fixed cost of thermal generator  
 Intercept of utility function for building   
 Reference for utility function where ∈ 1,… , 1  

 Slope of utility function for building  at segment   

, , , , 
 

Emission parameters of thermal generator  

Variables  

 Produced energy by diesel generator g at time t 

 Produced energy by diesel generator g at time t and segment  

 Energy generated in diesel generator  at time  

   Shifted percentage of building  at segment  

 Shifted amount of load in building  from time  to time  

  Total percentage of shifted load in customer type   
 Binary variable for the intercept of generation unit  at time  

 Binary variable for the intercept of generation unit  at time  and segment  

 Binary variable for the intercept of utility function building  at segment  

The first objective function for load shifting is composed of two different sources of 

costs: (1) cost to the system from using a load shifting DSM program and (2) the energy 

costs of diesel generators (fuel costs and startup costs). Hence, the first objective function 

can be written as (23).  

	 	 ∑ ∑ ⋅∈ ,…, ∑ ∑

      
(23)

To obtain the load shifting cost, we consider both forward and backward load shifting 

using summation over , , and  for  and . The second part of (1) measures 
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the amount of cost for energy generation in thermal generators, which is composed of fuel 

cost ( ) and setup cost ( ). 

The second objective function minimizes the environmental GHG emission caused by 

thermal generators. The total tonnage of emissions per hour can be calculated as (24). 

Parameters , , , , and  are emission coefficients that are different for each 

type of diesel generator. It should be noted that emission function can be converted to a 

cost function by using the emission tax rate; however, cost imposed to the system is not 

the only aspect of GHG emission in this study.  

	 	 ∑ ∑ 10 ψ   (24)

The third objective function represents customer satisfaction via utility function. [52] 

has shown that the marginal benefit for energy customers follows (25), in which  and  

are customer parameters.  

,   (25) 

Fig. 11(a) illustrates the marginal benefit for risk seeker and risk averse customer types 

( , 1, 0.5,1). As can be seen, more energy consumption for customers results in 

more satisfaction.     
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(a) (b) 

Fig. 11: (a) Customer benefit vs energy consumption, (b) Utility function 

Since power plants provide incentives for load shifting programs, customers are more 

willing to participate. Incentives increase customer satisfaction (utility function) up to a 

specific percentage of the shifted load (red and blue points in Fig. 11[b]); however, if the 

amount of shifted load exceeds that point, customer satisfaction (utility function) starts 

decreasing. After preliminary experiments, (26) is obtained as the customer utility function, 

and the utility function is shown in Fig. 11(b). In equation (26),  represents the total 

percentage of shifted load in customer type  that can be acquired via summation over 

shifted loads ( ) during a 24-hour time period for each customer type 

(∑ ∑ ∑ ∈ ,…,∈ ).     

Max	 ⋅ 1 ⋅   (26)

In order to satisfy the desired demand in all time periods, (27) ensures that the energy 

load at time  is lower than desired load demand and backup energy generation. In order to 

find the total load at time , the shifted load from time  (∑ ) is subtracted from the 

forecasted load, and then the shifted load is added to time  (∑ ). The load at time  

must be lower than the available energy that includes desired demand and backup energy 
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generation (energy produced by diesel generators = ∑ ). This constraint is 

written as (27).  

∑ 	∑ 	∑ ∑ ∀   (27)

In this problem, we assume that loads cannot be shifted forward or backward more than 

 time periods (where  indicates the maximum number of hours a customer is willing to 

shift his or her energy consumption). The constraint can be written as (28).    

| | 	   (28)

The power output of each diesel generator must not exceed its lower boundary or its 

higher boundary. The related constraint can be written as (29).  

  (29) 

Lastly, (30) ensures a positive value for the variables of the model.  

, 	 0  (30)

 4.3. Piecewise Linear Approximation Method 

Linear programming is the most suitable modeling tool to solve complex problems, and 

it provides a fast and efficient way to obtain results. However, as stated previously, the 

second and third objective functions of the proposed deterministic framework are in 

nonlinear forms. Nonlinear functions are often encountered in power system optimization. 

In this doctoral study, an effective piecewise linear (PWL) approximation technique is used 

to linearize the nonlinear objective functions. Piecewise linear approximation for the 

linearization of nonlinear equations is widely used in several fields of science [39-41]. 

PWL functions allow arbitrary functions to be represented to any accuracy by increasing 

the number of segments until the desired accuracy is met. The extensive use of PWL 

approximation is due to this method’s advantage in linearizing nonlinear equations in 
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different regions efficiently (with a low computational burden) and its ability to decide on 

the size of the subspaces [53]. This study linearizes convex and concave nonlinear 

functions differently. A function f:	
∆
→  is called convex if ∀ , ∈ , and ∀ ∈ 0,1 ,

1 1   

The PWL approximation of convex objective functions and constraints is shown in Fig. 

12(a). It is important to point out that the linear estimation of the emission function is 

always a conservative overestimation to consider the worst possible scenario for 

minimization. As seen in Fig. 12(a), GHG emission is converted to three linear sub-

functions for three different ranges of energy generation (ranging from  to ).   

Emission Function (Convex) Utility Function (Concave) 

Fig. 12: Linear forms of the (a) emission function and (b) utility function 

The PWL approximation for concave nonlinear objective functions is shown in Fig. 

12(b). The linear approximations of utility functions are underestimated (below the 

nonlinear utility function curve) to ensure the maximization of utility. As can be seen in 
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Fig. 12, the utility function is divided into three linear functions, which means that the 

utility function can be rewritten as three linear functions for three shifted load ranges.  

4.3.1. Linearized Form of the Extended Operation Planning Problem   

After the implementation of the PWL approximation on the proposed deterministic 

multi-objective optimization for the load shifting problem, the linearized form of the 

optimization model can be written as (31-43). The notations used in the linearized model 

are provided in Table 7, and the MILP formulation of the multi-objective DSM problem is 

as follows: 

Objective Functions:  

	 		 ∑ ∑ ∑ ⋅∈ ,…, ∑ ∑ 	 ⋅

   
(31) 

	 		∑ ∑ ∑ ⋅ ⋅   (32) 

	 		∑ ∑ ⋅   (33) 

Subject to: 

∑ 	∑ ∈ ,…, ∑ ∈ ,…, ∑ ,  ∀	  (34) 

∑ ⋅ 	 , ∀ and  (35) 

⋅ 	   (36) 

	 			where	 ∈ 1,2   (37) 

∑ 3   (38) 

∑ ∑ ∈ ,…, ∑ ⋅ ∑ (39) 

⋅   (40) 
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	 			where	 ∈ 1,2   (41) 

, , ∈ 0, 1   (42) 

, , , , 0  (43) 

Equation (31) is the linearized form of (23), which is composed of two parts. The total 

cost of the shifting program (∑ ∑ ∑ .∈ ,…, ) remains as in (23) 

since it is in a linear form; the second part is the linearized form of the cost function of 

energy generation from diesel generators obtained by PWL approximation 

(∑ ∑ 	 	 ). In order to linearize the diesel generator costs, two variables 

(  as a binary variable and  as generated energy) and two parameters (  for the 

intercept and for the slope of the linear form of energy generation cost) are defined. 

Similar to (31), (32) is the linearized form of the emission objective function obtained by 

using two parameters for slope and intercept of each segment (  and , respectively) 

and two variables (  and ). The utility function is linearized in three segments as 

shown in (33) using the slope and intercept of each linearized segment. It should be noted 

that the utility (satisfaction) of customers is calculated using the percentage of shifted 

energy ( . Equation (34) ensures that the energy load is lower than the desired demand 

and backup energy for all hours ( 1,… ,24) and each load cannot be shifted more than 

 time periods. Equation (35) attempts to obtain energy generation for thermal generator  

( ), and it also ensures that energy generation is above the minimum amount ( ). 

Equation (36) guarantees that diesel generator  generates equal to or less than the 

maximum capacity. Equation (37) ensures that diesel generator  does not proceed to the 

next linear segment before fulfilling the current segment. Similarly, (38) ensures that diesel 
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generator  does not exceed the maximum energy generation capacity. Equation (39) 

defines the percentage of the shifted load for each hour in each building ( ). Similar to 

(36), (40) prevents the utility function from reaching a value higher than the upper limit in 

each segment. Equation (41) prevents the next segment of the utility function from getting 

a value before fulfilling the current utility function. Equations (42) and (43) are constraints 

for non-negativity and the integrality of variables.  

4. 4. An Advanced Augmented -constraint for Multi-Objective Optimization 

This doctoral dissertation proposes a novel multi-objective optimization method, which 

is an advanced version of the augmented -constraint method first developed by [42]. In 

the context of multi-objective optimization, -constraint and weighting methods are among 

the most useful methods. The -constraint method has several advantages over the 

weighting method: (1) The weighting method considers the original feasible region and 

results in extreme solutions (linear problems), while the -constraint method alters the 

feasible region and is able to generate non-extreme efficient solutions; (2) in the weighting 

method, the assigned weights of objective functions have a strong effect on the obtained 

result, while in the -constraint method, there is only need to identify the objective function 

with the highest priority; and (3) in the -constraint method, the number of generated 

solutions can be controlled by adjusting the number of grid points. This section first 

provides a brief explanation of the conventional -constraint method and then discusses 

the details of the improved -constraint method. Let (44) denote the multi-objective 

mathematical programming problem. 

max	 , , … ,   

st: 
(44) 
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∈      

In the optimization problem,  represents the vector of decision variables,  shows the 

solution space, and  represents the  objective. It is assumed that the  objective 

has the highest priority among all objectives. In the augmented -constraint method, the 

multi-objective optimization problem is transformed into a single-objective problem by 

setting up the  objective, which has the highest priority as an objective function, 

converting other objectives to constraints, and adding these constraints to the original 

constraint set. The new optimization problem is shown in (45).  

max	   

st: 

	     ∈ 1,… , 1, 1, … ,  

	 ∈         

(45) 

In Equation (45),  represents the right-hand-side value for the constraint associated 

with the  objective. It should be noted that the value of each new constraint shows the 

value of its corresponding objective function. After the new optimization problem is 

obtained using the augmented -constraint method, the  values for each constraint are 

updated to obtain the Pareto frontier. Here, as a first step, the range of , ∀ ∈

1, … , \  (the minimum and maximum value of each objective function) is calculated 

by optimizing the problem with each objective function (constructing a payoff table). To 

this end, (45) is optimized for each objective function separately, and the values of each 

objective function are stored in a payoff table (see Table 8).  
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Table 8: Payoff table for objective functions 

   …   …  

max  st: ∈      ∗     …    …

max  st: ∈        ∗  …   …

max  st: ∈          …   …

… … … … … … … …

max  st: ∈          …   … ∗

In Table 8, each row shows the values of each objective corresponding to the given 

optimization problem. In addition,  denotes the value of the  objective when the 

objective is optimized with respect to original constraint set.  

After obtaining the range of each objective function in the payoff table, the augmented 

-constraint method uses a greedy approach to obtain the Pareto frontier, where the range 

of the  objective function is divided into  equal intervals by using ( 1) intermediate 

equidistant grid points. As a result, ∏ ∈ … \  optimization problems have to be solved 

to find the Pareto optimal set, which requires high computational time to find the Pareto 

frontier set. In addition, this greedy approach can result in dominated solutions in 

∏ ∈ … \  runs. Additionally, the performance of the -constraint method depends 

on the selection of equidistant intervals. Larger intervals might result in a smaller number 

of Pareto frontier solutions, while smaller intervals increase the number of non-dominated 

solutions and the computational burden. In order to address these issues, this study 

proposes an advanced -constraint method, which updates the  values of constraints that 

correspond to objectives by using sensitivity analysis. After obtaining the payoff table and 

the main objective function (the objective function with the highest priority), this proposed 

method differs from the augmented -constraint method proposed by [42] for updating the 

 values of constraints associated with objectives. In this thesis, the idea is that instead of 



41 

 

using predefined  values, the  values of binding constraints are updated using sensitivity 

analysis to obtain the exact points that result in different solutions for the Pareto solution 

set. In linear programming, changing the right-hand side of a constraint by ∆ does not affect 

the basic solution. For instance, this study wants to obtain the Pareto frontier solution set 

for a multi-objective optimization problem with three objective functions. In this case, the 

range of objective functions in the payoff table is used as constraints. Using the -constraint 

model, the range of each constraint is divided into 1 intervals, using  equidistant 

points. However, obtaining a high number of dominated solutions is the main problem of 

the -constraint method. In order to overcome this problem using this thesis’s proposed 

method, gridding for each constraint can be implemented by using ∆ values obtained from 

the sensitivity analysis (see Fig. 13). This gridding ensures that by changing the right-hand 

side (RHS) of each constraint in the range of [ , ∆), the optimal solution does not 

change. However, changing the RHS to ∆ 	 0  results in different non-

dominated Pareto solutions, where  is a sufficiently small number to avoid obtaining the 

same solution. Accordingly, by changing the RHS of other constraints (transformed from 

objective functions) using ∆ values and solving the main problem (31) iteratively, the 

Pareto solutions can be obtained. Sensitivity analysis can easily be implemented via 

optimization software such as AMPL or General Algebraic Modeling System (GAMS 

)without requiring high computational resources.      
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Fig. 13: ϵ-constraint method vs. proposed improved ϵ-constraint method 

Fig. 14 illustrates the proposed optimization method in a flowchart. The proposed 

algorithm starts with constructing a payoff table by separately solving the optimization 

problem for each objective. Based on the obtained payoff table, the range for each objective 

function can be acquired. In the next step, considering the 1 objective functions as 

constraints, ∆ for each constraint is obtained by conducting a sensitivity analysis in any 

optimization software. As can be seen in Fig. 14, ∆ s is calculated for each constraint 

until the value of the acquired ∆ becomes greater than the upper bound ( ). The algorithmic 

steps of the proposed methodology are shown in Fig. 15. 
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Fig. 14: Flowchart of the proposed 
improved -constraint method 

Fig. 15: Advanced -constraint algorithm for 
multi(3)-objective optimization  

4.5. Experiments and Results  

In order to demonstrate the performance and capabilities of the proposed framework, a 

case study of a synthetic smart grid with 50 buildings, including 35 residential, 10 

commercial, and 5 industrial buildings, was used. Forecasted loads and desired demands 

based on historical data for the considered smart grid are shown in Fig. 10. Fig. 16 shows 

that, on a typical day, forecasted loads are higher than desired demand between 10:00 A.M. 

and 8:00 P.M. Thus, the extra loads must be covered either by the load shifting program to 

alter final energy consumption close to the objective load curve or by the energy generation 

from diesel generators to satisfy the extra loads.    

[Step 1]: Input data 

(1) Defining parameters of the problem F  
(forecasted load in department  at time ), D  
(desired demand at time ),	RS , , 

(shifting, backup, and interruption rates), 
and  (maximum allowed shifting time) 

(2) Reading  and  from excel (text) file 
[Step 2]: Acquiring payoff table 

(1) Calculation of optimal solution of the problem 
with each objective function separately and 
acquiring ∗, ∗, and ∗.  

(2) Finding the range of objective functions.  

[Step 3]: Finding the Pareto frontier solutions 
While 	repeat [1-5] 

(1) Optimizing the problem with  and  as 
constraints   

  While 	repeat step [2-3] 

(2) Finding ∆  and ∆  using sensitivity analysis 
(3) Set  LHS 	← LHS 	∆  
(4) Set  LHS ← LHS ∆  
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Fig. 16: Load demand vs. desired demand for 24 hours 

In this study, four types of diesel generators (two of type I, two type II, one type III, 

and two type IV) were considered, and the characteristics of the utilized diesel generators 

are provided in Table 9. It should be noted that the emission coefficient for the linearized 

form of the emission function ( ) is provided in the last three rows of Table 9.  

Table 9: Attributes of diesel generators 

Thermal Generators 
Attribute Gen. 

Type I 
Gen. 

Type II 
Gen. 

Type III 
Gen. Type 

IV 
Number of generators 2 2 1 2 
Minimum power generation 50 40 30 20 
Maximum power generation 300 250 175 120 
Fixed cost 16.52 12.02 9.89 7.47 
Variable cost coefficient 0.0224 0.0229 0.0235 0.0223 
Emission value for minimum 
power generation 

0.88 0.76 1.01 0.66 

Emission coefficient for segment 
I ( ) 

0.164 0.0283 0.0184 0.022 

Emission coefficient for segment 
II ( ) 

0.0273 0.0465 0.0314 0.0417 

Emission coefficient for segment 
III ( ) 

0.0398 0.0465 0.0477 0.647 
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The proposed model attempts to satisfy the forecasted load when considering three 

objectives: cost minimization, GHG emission minimization, and customer utility 

maximization. As explained in Section 4.4, an advanced -constraint method is used to 

solve the multi-objective optimization. As a first step, the multi-objective model was 

solved for each objective function to create a payoff table. The payoff table for the 

optimization model is provided in Table 10. 

Table 10: payoff table for the proposed problem 

 Solution time (s) 
Min Cost 548.59 5718.71 -0.17 0.99 
Min Emission 939.64 214.96 -2.46 0.81 
Max Utility 4446.92 35342.16 0.10 0.16 

As discussed in Section 4.4, each column shows the value of the objective function 

value for each objective with respect to the single-objective problem shown in Table 6. It 

should be noted that the values for utility function (fourth column) were obtained without 

fixed values (  in equation [26]), which is why negative values occurred without affecting 

the optimal solution. Then, the obtained results were used in the proposed advanced -

constraint to obtain the Pareto frontier solutions. The proposed method was implemented 

using AMPL software, and the results are illustrated in Fig. 17. In order to compare the 

quality of solutions, Pareto frontier solutions obtained from the proposed advanced -

constraint are compared to those from classical -constraint method results in Fig. 17. 
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(a) 

(b) 

Fig. 17: Pareto frontier solutions for the (a) classical -constraint method and (b) 

advanced -constraint method  

As can be seen in Fig. 17, the proposed advanced -constraint method resulted in a 

significantly higher number of non-dominated solutions, while most of the solutions 

obtained using the classical -constraint method were dominated solutions. In order to 

obtain the Pareto frontier solutions using the classical -constraint method, considering 
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cost as the main objective function, the obtained ranges of emission and utility functions 

(from the payoff table) were divided into 25 and 30 equidistant intervals, respectively. 

Thus, in total, there were 750 (25*30) optimization problems to solve. Since gridding is 

based on equidistant intervals, the solution for each interval can result in dominated 

solutions (see the vertical consecutive red points in Fig. 17(b)). On the other hand, the 

proposed -constraint method determines intervals based on a sensitivity analysis, which 

results in new non-dominated solutions. As a result, the advanced -constraint method 

resulted in 78.62% non-dominated solutions, while the classical -constraint method 

resulted in 5.6% non-dominated solutions. Here, further analysis indicated that the alternate 

optima in the solution space can cause the dominated solutions in the Pareto frontier 

obtained from our proposed method. In addition to a higher number of non-dominated 

solutions resulting from the proposed method, the average and total computational times 

were lower than in the classical -constraint (Table 11 and Fig. 18). The solutions obtained 

from these two methods are provided in Appendix II.  

Fig. 18: Comparison of computational time 

Table 11: Time comparison of solutions

-constraint 
Proposed 
method 

Total Time (seconds) 473.87 407.641 

Average Time 0.6146 0.5280 

Number of Non-
dominated Solutions 

42 out of 750 
607 out of

772 

% of Non-dominated 
Solutions 

5.6% 78.62% 

Fig. 19 illustrates the resulting load curve obtained from the proposed operation 

planning framework using the advanced -constraint method. The blue line represents the 

results of the best compromising solution obtained from the proposed method (out of 607 

non-dominated solutions). The comparison of the load profile before and after 
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implementing the proposed load shifting framework reveals that the proposed program 

managed to decrease thermal energy generation in the time periods of 10:00 A.M.–3:00 

P.M. and 9:00–10:00 P.M. by shifting loads to earlier or later time periods. It is important 

to point out that limitations on the load shifting range ( 3) did not allow the model to 

shift loads to the time period of 12:00–5:00 A.M., and this is the reason to have spare 

capacity during these hours. Since satisfying the required curtailment improves grid 

sustainability and reduces the need to construct under-utilized energy facilities with 

enormous costs, and the amount of thermal energy generation is decreased significantly, 

the proposed multi-objective operation planning framework successfully reduces the peak 

load demand of the smart grid. 

Fig. 19: Comparison of forecasted load profile, desired demand, and load profile after 

implementing the proposed framework 
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Chapter 5 

Simulation and Optimization Framework for ILM in Smart Grids with Uncertain 
Loads (F2) 

This chapter of the doctoral dissertation proposes a novel evolutionary simulation and 

optimization framework for ILM in smart grids with uncertain loads in order to find (near-

)optimal schedules for ILs, given device loads with uncertainty. Scheduling ILs with load 

uncertainty is a complex, single-objective stochastic optimization problem. Here, the goal 

is to minimize the total cost of interruption as in (46), while satisfying the hourly required 

load curtailment as in (47). Equation (48) satisfies the limitation of the number of 

interruptions, and (49) ensures that the number of ILs is equal to or less than the number 

of working devices. The considered problem is formulated as an integer program involving 

uncertain parameters ( ), where the required curtailment for each hour is formulated as a 

soft constraint. The notations and mathematical formulations for the scheduling of the 

interruptible loads problem (SILP) are shown in Table 12 and (46-50), respectively. 

Table 12: Summary of notations for SILP [14] 

Indexes Description 

 Device type where ∈ , and ∈ 1,… ,  
t Hour where ∈  , and ∈ 1,2, … ,24  

Parameters Description 

 Interruption cost of device type  ($/device)  
 device load of type  
 Desired demand at time  
 Number of devices of type  

 Maximum off-time for device type  

 
Number of working devices of type  at time  according to 
forecasting values  

Binary variables Description 

 
Number of interrupted devices of type  at time  where ∈  
and ∈  
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Objective function: 

	 ∑ ∑ 	. 		.		   (46)

St.: 

∑ ⋅ for ∀ ∈     (47)

∑ 	 	 off 	.    (48)

	 for all  and  (49)

	 ∈ 	 for all  and  (50)

The objective function of SILP (24) minimizes the total cost of the interruption of 

devices, where the superscript " "	denotes the considered additive variation for each 

device. Equation (47) ensures that the necessary load curtailment is satisfied at each time 

period  (hour). Equation (48) prevents the model from frequently interrupting a specific 

device due to low interruption costs (i.e., having a low interruption price during all shortage 

periods). Equation (49) prevents the model from interrupting non-working devices, and 

(50) ensures integer values for the variables of this problem. This chapter first provides an 

overview of the proposed framework, and Section 5.2 explains the proposed simulation 

optimization framework and its components in detail. 

5.1. Overview of the Simulation-Optimization Framework 

The proposed evolutionary simulation and optimization framework for ILM is 

composed of three main elements: 1) a genetic algorithm that progressively discovers new 

solutions for the scheduling of ILs, 2) a simulation model that determines the performance 

of different interruption scenarios, and 3) a complete ranking OCBA that optimizes the 

allocation of the number of replications dedicated to each simulation scenario and identifies 

the top -best solutions for the genetic algorithm. The framework is initiated by a set of 
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initial n random solutions obtained by the genetic algorithm. These solutions represent a 

schedule of devices that need to be interrupted in pre-specified time periods. Then, the 

simulation model evaluates these solutions for a predetermined initial number of 

replications to acquire a mean and variance for the performance of each individual solution. 

Here, a solution’s performance is different in every replication due to energy consumption 

variation. Using the computed mean and variance performances of each solution, the 

OCBA algorithm returns the optimal number of additional simulation replications that need 

to be allocated to each solution. This procedure is repeated until the total budget (i.e., the 

number of the maximum allowed replications) is reached. Then, the complete ranking of 

these solutions is acquired by the OCBA and is provided to the genetic algorithm. In each 

iteration, the genetic algorithm keeps the best  solutions and produces a new set of 

solutions using its crossover and mutation operators until the population is fulfilled. In the 

next step, the simulation and OCBA cooperate to determine a complete ranking of these 

solutions using the minimum number of replications. This procedure continues until a 

predetermined number of iterations is reached. In the following section, the proposed 

framework and its components are described in detail. 

5.2. Components of the Simulation Optimization Framework 

The elements of the proposed simulation and optimization framework are described in 

detail as the following: 

- Genetic Algorithm for SILP: Inspired by the Darwinian evolutionary theory, the genetic 

algorithm is a population-based metaheuristic algorithm widely used in various 

combinatorial problems [54]. The proposed evolutionary simulation and optimization 

framework for ILM is initialized by generating a set of feasible solutions with the 
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genetic algorithm for the predefined SILP (GASILP). Here, an individual composed of 

genes denotes a particular solution for a given problem, and the performance function 

is used to evaluate the efficiency of solutions (i.e., a value of fitness). The GASILP starts 

with an initial population that evolves into better solutions through its subsequent 

generations. The evolution process in this study’s genetic algorithm has four steps: 1) 

a selection step that chooses solutions with superior performance value; 2) a 

diversification step, which ensures that the generated solutions are disparate in order to 

avoid local optimal solutions; 3) a crossover operator that recombines more than two 

individuals to form a new population; and 4) a mutation operator that alters the 

individuals to maintain diversity in the population. Due to the uncertainty of the load 

among different devices, a range is needed to define the performance function of each 

solution, and a constant load value is not adequate. 

Since SILP is a constrained optimization problem with uncertain parameters, the 

proposed GASILP improves the feasibility of solutions. Here, (49) is satisfied with 

crossover and mutation operators. However, these operators may not satisfy (47) and 

(48). Controlling the feasibility of the required curtailment constraint is another 

challenging task when using analytical operators due to the load uncertainties. In order 

to address these two issues simultaneously, a performance (fitness) function is built to 

consider not only the objective function of the problem but also penalty costs for 

infeasible constraints as shown below. 

∑ ∑ ⋅  ⋅ ∑ max ∑ ⋅ , 0  

⋅ max ∑ ,0   

(51) 
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Equation (51) calculates the performance function (  of each interruption schedule. 

The first term of the equation, ∑ ∑ ⋅ , is the objective function of the 

problem. The second term, ⋅ ∑ max ∑ ⋅ , 0 , 

gradually penalizes infeasible schedules when they do not satisfy the required load 

curtailment constraint. The more the load deviates from the desired curve, the more the 

infeasible solution is penalized. The last term, ⋅ max ∑ ,0 , 

calculates the penalty for solutions that violate the maximum number of off-times.  

and  are the user-defined penalty parameters with large values used to discard 

infeasible solutions for the next replication of GASILP.  

In order to evaluate the fitness functions of the GASILP’s solutions in each iteration, a 

complete ranking OCBA is used to rank all solutions and assign simulation replications 

for each design in an efficient manner, as described in the next subsection. Once a full 

ranking of the solutions is obtained, the top  best-ranked solutions are kept for the 

next iteration of the genetic algorithm. Furthermore, additional  random solutions are 

added to diversify the new solution set (and avoid local optima). As a result, 2  

solutions, including the top  ranked solutions from the previous step and  random 

solutions from the current step, are kept. Next, in order to fill the solution set,  

solutions are generated by applying crossover and mutation operators over the stored 

2  solutions.  

In the GASILP, solutions are stored in matrices with 24 columns (representing a 24-hour 

period) and  rows (representing the  different types of devices). While traditionally, 

a binary string is used to represent the solutions, higher cardinality representations can 

also be used [55], where each entry in a representation matrix can take values 
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in	 0, 1, … , . This representation offers the capability of developing problem-

specific crossover and mutation operators. Here, a crossover operator is defined as one 

that takes a convex combination of parent matrices (  and ) and rounds it to the nearest 

integer to generate the new solutions ( ‖ 1 ‖, where  is the new 

solution and  is a random number between 0 and 1, as shown in Fig. 20). 

Fig. 20: Proposed crossover function 

- Simulation and Design Ranking Algorithm for ILM: Recent advances in simulation and 

computing power area make it possible to solve complex stochastic systems previously 

thought impossible. The proposed simulation and optimization framework in this 

doctoral research was built using Java-based software (Anylogic 7) that is responsible 

for evaluating the different interruption scenarios. Every type of device is modeled as 

a simulation agent that requires a specific amount of power to operate. These agents 

can be turned on and off depending on the interruptive scheduling that is fed into the 

simulation from the GA component. Additionally, there is an agent for the utility 

company that supplies power to the device agents. At the end of the specified time 

period (24 hours), the utility agent calculates the performance function of the given 
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interruptive schedule. However, there is uncertainty on the device loads, and as a result, 

every scenario (solution fed from the genetic algorithm to the simulation) needs to be 

simulated several times to obtain a performance with a high confidence level. A 

screenshot of the Anylogic model designed for this simulation and optimization model 

is shown in Fig. 21.  

Fig. 21: Screenshot of proposed simulation and optimization framework in Anylogic 
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To accelerate the computational time of the simulation optimization process and improve 

the efficiency of the simulation, several simulation design-ranking and selection 

procedures have been applied in past studies [56-62]. [58, 59] introduce the ranking and 

selection methods by using multiple statistical comparisons among the simulation 

designs. These methods can only be applied to small-scale problems with finite designs, 

but they planted the seeds for further research. Later, [57] proposes the OCBA method, 

which obtains results from a simulation model that evaluates the performance of 

alternative designs and allocates further replications for each design based on the mean 

and variance of the performance values [56]. OCBA has been the focus for several 

researchers and has been applied to several different problems. Recently, [62] has 

extended the OCBA method by proposing an efficient simulation OCBA procedure to 

rank all simulation designs (alternatives). Following the footsteps of [62], this 

dissertation incorporates the OCBA for complete ranking into a genetic algorithm to 

increase the efficiency of the selection process.  

In this proposed simulation and optimization framework, genetic solutions’ fitness 

functions are ranked. Fig. 22 illustrates the procedure of a complete ranking OCBA 

algorithm, considering , … ,  as a proportion of the total budget to be allocated 

to each design (chromosome) with ∑ 1 and 	 ∑ ⁄  as the

sample mean fitness value for solution  where  represents the total number of solutions 

at each iteration (generation population).    
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Fig. 22: Complete ranking OCBA algorithm 

5.3. Experiments and Results  

In order to demonstrate the effectiveness of the proposed framework, a case study of a 

synthetic smart grid was conducted using a real set of data. The set of data for devices, 

including their types, capacities, the maximum number of interruptions, interruption rates, 

and the possibility of interruption, is presented in Table 13. Aiming to develop an 

interruption schedule for uncertain loads without interrupting a specific device or set of 

devices frequently, this study limited the number of interruptions for each device in the 

mathematical model by adding an appropriate constraint. The considered interruptible 

devices were grouped into three major categories: residential, commercial, and industrial. 

Devices in the residential area have small loads and short durations, while industrial 

[Step 1]: Input data 

(3) Define k (number of alternative designs), T (total simulation budget),	∆ (available budget for 
one iteration of the algorithm), n 	(initial replications for each design), and l (current iteration 
in OCBA) 

(4) Set  l	 ← 0; 
(5) Set  n 	n ⋯ 	n 	 n  

While ∑ 	  repeat Steps [2]-[3] 
[Step 2]: Additional budget calculation 

(3) Increase computing budget by ∆ using new budget using asymptotically optimal allocation 
(AOA):  

∑ 1,  

for any  the allocation from AOA is such that:  

min
	

∗ 	 ∗ 	 ,
	

∗ 	 ∗

min
	

∗ 	 ∗ 	 ,
	

∗ 	 ∗

(4) Additional budget for each design can be obtained by using 
∗ ∗, ∗, … , ∗ :  

	 ∗	. ∑ 	∆   

[Step 3]: Simulation 

(5) Perform additional max n n , 0  simulation replications for all design k 
(6) Set  l	 ← l 1. 
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devices have significantly larger capacities and longer durations. Commercial devices have 

slightly larger capacities and lower operational durations than those of residential devices. 

It should be noted that the last column of Table 13 shows whether a device type is 

interruptible. Non-interruptible devices such as dryers and washing machines are not used 

in the GASILP.  

The results of the proposed simulation optimization framework are described in detail 

in the following subsection. 

5.3.1. Results and Discussion of GASILP 

Variation in devices’ energy consumption may lead to different solutions for the proposed 

SILP. To overcome the issue of day-ahead scheduling of ILs, the proposed simulation and 

optimization framework was used to schedule uncertain ILs. In order to increase the 

solution quality and computational efficiency, the parameter values for the experiment 

(mutation rate, GASILP iterations, etc.) were obtained after preliminary experiments using 

the framework. During these experiments, an initial population of 210 feasible solutions 

was generated to start the genetic algorithm (GASILP). Solution performances were then 

evaluated based on the GASILP’s performance function, depending on the simulated 

capacities and results of the complete ranking OCBA. 



59 

 

Table 13: Summary of devices and load information for simulation and optimization 
framework 

Device Types 
Number of 

Devices 
Max. 

Interruption 
Base Device 
loads  E( ) 

Interruptible or 
not 

Residential devices  
Dryer 189 - 1.2 No
Dishwasher 288 58 0.7 Yes
Washing 
Machine 

268 - 0.5 No

Oven 279 56 1.3 Yes
Iron 340 68 1 Yes
Vacuum 
Cleaner 

158 32 0.4 Yes

Fan 288 58 0.2 Yes
Lights 406 82 0.2 No
Water Heater 48 10 0.48 Yes 
Desktop 
Computer 

59 11 0.4 Yes

Hair Dryer 58 - 1.5 No 
Sink Waste 
Disposal 

66 15 0.45 Yes

Frying Pan 101 - 1.1 No 
Coffee Maker 56 17 0.8 Yes 
Total 2604 - - -
Commercial Devices  
Water 
Dispenser  

156 30 2.5 Yes

Dryer 117 - 3.5 No
Kettle 123 24 3 Yes
Oven 77 15 5 Yes
Coffee Maker 99 20 2 Yes 
Fan/AC 93 19 3.5 Yes
Air Conditioner 56 11 4 Yes 
Lights 87 17 2 No
Total 808 - - -
Industrial Devices  
Water Heater 39 8 12.5 Yes 
Welding 
Machine 

35 7 25 Yes

Fan/AC 16 3 30 Yes
Arc Furnace 8 - 50 No 
Induction Motor 5 1 100 Yes 
DC Motor 6 - 150 No 
Total 109 - - -
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Here, device energy consumption was generated via normal distributions with mean 

(μ) equal to the expected value of device capacities (Table 13), and variance ( ) equal 

to /6. The initial number of replications, additional replication budget, and total 

replication budget were set to 10 ( ), 200 (∆ , and 10,000 ( ), respectively. Once 

solutions were ranked, the top  (10) solutions were kept for the next iteration of the 

GASILP. In order to obtain 200 210 10  new solutions, 10 feasible solutions were 

generated randomly to add diversification to the solutions and avoid local optima. The 

remaining 190 solutions were generated by applying the crossover operator over all pairs 

of the 10 top-ranked solutions and 10 random solutions ( 190). The mutation 

operator for the considered problem ( ) was set as 0.1 after assessing the initial 

experiments. Finally, the framework stopped operations with 200 generations of the GASILP 

(200 iterations). The convergence plot of the GASILP is illustrated in Fig. 23. The 

performances of the obtained solutions changed minimally after 60 iterations and seemed 

to be very close to each other. Consequently, variation in device energy consumption is the 

only source of variation among the solutions’ performance after 60 iterations. 

Fig. 23: Convergence plot of GASILP 
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5.3.2. Performance Evaluation of the Proposed Framework  

This subsection describes the conducted comparison of the proposed simulation and 

optimization framework with relaxed deterministic optimization, random search, simulated 

annealing (SA), and the optimal case, which is unrealistic due to the predictive nature of 

day-ahead DR programs. In order to evaluate the efficiency of the obtained solutions 

compared to the relaxed deterministic optimization method, the SILP was relaxed using 

the expected value of  ( ) and optimized with an optimization approach. In 

other words, the SILP was optimized considering deterministic values for device loads 

( ) for device loads). The relaxed forms of (52) and (53) can be written as:  

min min ∑ ∑ . . ≡

min 	∑ ∑ 	. 		.		   

(52) 

∑ ⋅ ≡ ∑ ⋅   (53) 

After obtaining the optimal schedule of the relaxed deterministic optimization problem, 

heuristic-based algorithms such as random search and SA were further optimized to find a 

near-optimal solution. These were compared to the proposed simulation optimization 

framework for efficiency purposes.   

To compare the resulting scheduling of the proposed framework with the above 

algorithms, the energy load of each device was simulated with two different distributions, 

( (E( ), ( /3) and (E( ), ( /6), in 200 iterations for each distribution. The 

schedules obtained from the proposed framework were benchmarked against those 

obtained from the relaxed deterministic optimization, random search, and SA in terms of 

feasibility and average cost (200 device capacities for each), as summarized in Table 10.  
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The scheduling from the proposed simulation and optimization framework resulted in 

80.5% and 64.5% feasible solutions for ( (E( ), ( /3) and (E( ), ( /6); 

resulted in 21% and 12.5% feasible solutions in the relaxed deterministic optimization, 

55% and 25% in the random search, and 25.5% and 17.5% in the SA algorithms. As 

mentioned previously, a feasible solution is a solution that does not exceed the desired load 

curve at any point. The comparison in Table 10 of the percentage of feasible solutions 

among the different algorithms reveals that the proposed framework reaches the highest 

percentage of feasibility with at least 30% more feasibility than the second-best algorithm 

(random search). Although the average total cost in relaxed deterministic optimization is 

lower than the proposed framework, it is important to point out that 52% and 59.5% higher 

feasibility was obtained in the proposed simulation and optimization framework (compared 

to the relaxed deterministic approach) by increasing the average cost slightly by 6.9% and 

9.09%. Furthermore, high rates of infeasibility and unsatisfied demand in the relaxed 

deterministic optimization results may lead to a quite high cost in the case of energy 

instability or blackout in the considered system. Table 10 also indicates that there is a 

negative correlation between variance and feasibility percentage, where increasing the 

variance from /6 to /3 decreases the feasibility percentage and increases the 

cost.   

Demand side management programs are commonly implemented a day ahead of 

time, and advance notices are used to notify participants. In this case, it is impossible to 

forecast the exact energy consumption of devices. However, at the end of a 24-hour period, 

the energy consumption of each device is known and can be used to evaluate the efficiency 

of the proposed framework. In the last row of Table 14, the results of the proposed 
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framework are compared to optimal scheduling for 200 sets of simulated demands. The 

average cost in the proposed framework has a quite promising performance with 88.21% 

and 88.47% of optimal costs for different variances. As mentioned previously, in a day-

ahead DR with uncertain device loads, an optimal solution cannot be reached because of 

uncertain demands. As a result, device loads were only assumed to be known (called an 

optimal case) where optimal solutions and the ILM framework were compared to show the 

efficiency of the proposed framework.    

Table 14: Comparison of the proposed ILM framework with relaxed deterministic 
optimization, random search, simulated annealing, and optimal case 

Demand 
mean ( ) 

Demand 

Variance ( ) 

% of feasible 
solutions 

Average of 
total cost 

Proposed framework  
/6 80.5% (161/200) 125,595 

/3 64.5% (129/200) 123,995 

Relaxed deterministic 
optimization 

 
/6 21% (42/200) 115,123 

/3 12.5% (25/200) 115,949 

Random search  
/6 55% (110/200) 127,333 

/3 25% (50/200) 124,213 

Simulated annealing  
/6 25.5% (51/200) 129,776 

/3 17.5% (35/200) 124,505 

Optimal case 
(unrealistic) 

 
/6 - 112,603

/3 - 112,518

5.3.3. Final Scheduling of ILs 

Fig. 24 illustrates the resulting load curve obtained as a result of the schedule produced 

by the proposed ILM framework compared to that obtained from the deterministic 

optimization; optimal loads for the 6 hours with highest demand are also shown. In Fig. 

24, values of 4 and 10 on the time axis represent 10:00 A.M. and 4:00 P.M., respectively. 

The comparison of the desired demand (gray line) and the average ILM framework load 

(orange line) reveals that the proposed framework manages to satisfy the required 

curtailment for all 6-hour periods, while the average loads in the deterministic optimization 
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approach exceeds the desired demand for 2 hours, including during the 11:00 A.M.–1:00 

P.M. time period. Since satisfaction of the required curtailment improves grid sustainability 

and reduces the need to construct under-utilized energy facilities with enormous costs, the 

proposed ILM framework succeeds in reducing the peak load demand of the smart grid. 

Fig. 24: Desired demand, deterministic optimization, and proposed ILM framework load 
curves 
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Chapter 6 

Conclusions and Future Work 

This study has proposed two simulation and optimization frameworks (F1 & F2) to 

determine (near-)optimal 24-hour-ahead load scheduling for loads and buildings in smart 

grids. This doctoral research provides simulation and optimization tools for energy 

providers and third-party aggregators to schedule energy loads in smart grids to satisfy 

desired load demand. The main capability of the proposed frameworks is the consideration 

of deterministic and stochastic loads in two separate frameworks to provide flexibility for 

users. The aim of this research was to examine how the invention of smart meters (ECCs) 

and integration of multiple renewable energies can satisfy customer loads in day-ahead 

scheduling.  

In particular, the first part of this study proposed a DDD-MOM for the operation 

planning of smart grids with simplified assumptions. This DDD-MOM served as an 

introductory effort to proposing the simulation and optimization frameworks (F1 & F2) for 

DSM implementation in smart grids. The proposed model consisted of three main modules: 

data simulation, bi-objective optimization, and RTDM. First, the simulation module took 

historical data and mimicked the behavior of components of the smart grid, considering 

uncertainties associated with power generation from distributed energy resources and load 

demand. In the next step, the results of the simulation and linearized form of the quadratic 

cost and emission functions of diesel generators were imported into the bi-objective 

optimization model. Then, the bi-objective optimization model was solved using an -

constraint method to obtain the best compromise solution. In the last module, the rule-

based RTDM modified the solution obtained from the optimization module to finalize the 
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operation plan based on dynamic data from the smart grid to satisfy all operational 

constraints. The performance of the proposed approach was demonstrated through a 

synthetic smart grid that included solar panels, wind turbines, and four types of diesel 

generators. The results show that a DDD-MOM can provide a real-time hourly operation 

plan for a smart grid without harming the feasibility and optimal solution obtained from an 

optimization model. The DDD-MOM proposed in this study was designed in a generic 

manner and illustrates how renewable energies can be utilized in smart grids.           

In the second part of this study, a deterministic multi-objective optimization framework 

for load shifting in smart grids is proposed, which considers three objective functions: cost 

and emission minimization and customer satisfaction. The proposed multi-objective 

optimization framework was composed of four main components: (1) a forecasting model 

to obtain a 24-hour-ahead energy load, (2) a load shifting DSM program to reduce the 

energy load during peak demand, (3) a PWL approximation method to linearize the non-

linear objective functions and constraints, and (4) an advanced -constraint multi-objective 

optimization method to efficiently acquire Pareto frontier solutions. This study also 

presents an advanced -constraint method to acquire a Pareto frontier solution set with a 

higher percentage of non-dominated solutions (72% more) in less computational time than 

the traditional -constraint. The novelty of this part of the research lies in the consideration 

of different stakeholders’ objectives and the improvement of the traditional -constraint by 

proposing an advanced -constraint method.    

Finally, the third part of this study proposed an evolutionary simulation optimization 

framework for ILM in smart grids that attempts to minimize the total interruption cost 

while considering uncertainty among devices’ energy consumption. The proposed ILM 
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framework comprises three integrated components: a genetic algorithm that progressively 

improves existing scenarios or discovers new scenarios for interruption, a simulation model 

that simulates the performance of selected scenarios, and a simulation design-ranking 

algorithm that optimizes the allocation of simulation replications and identifies the top  

best scenarios. The results from a smart grid case study reveal that scheduling ILs with 

noisy device loads using the ILM framework leads to substantially more feasible solutions 

than the deterministic approach, random search, and SA. Moreover, the proposed 

simulation optimization framework generates schedules with accuracies of 88.21% and 

88.47% in two datasets compared to optimal solutions.

Future avenues for this work include conducting a dynamic data-driven DSM for the 

resilient operation of smart grids. With the rise of the smart city concept using information 

and communication technologies (ICTs) for communication between citizens and 

suppliers, DSM programs can reduce power outages in an efficient manner. While smart 

grids and DSM programs promise great advantages, an electric power grid is made up of 

many geographically dispersed components, and natural disasters such as hurricanes or 

storms pose major challenges for reliable energy supply. Such disasters can happen with 

little or no warning, leaving hundreds or even thousands of people without electrical 

coverage, medical services, potable water, sanitation, and communications for up to several 

weeks. For instance, the 2004 hurricane season ravaged the state of Florida with four major 

hurricanes in a 6-week timeframe. In emergency conditions, using a fast-response DSM 

program that has the flexibility to update data based on the most recent weather forecast, 

energy generation, and load demand information is essential. Therefore, future efforts will 

be made to present a dynamic data-driven DSM framework to determine (near-)optimal 
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scheduling of energy loads to prevent energy shortages during emergency conditions. The 

future study is inspired by the dynamic data-driven application systems (DDDAS) 

paradigm established by [63, 64] that has the ability to create a symbiotic feedback loop 

for the incorporation of dynamic data in an application system (i.e., the load scheduling 

optimization model in this study) and the ability to steer the measurement process of the 

real system (i.e., the response of the real system in this study). A schematic figure of the 

considered framework in case of emergency is shown in Fig. 25.   

Fig. 25: DDDAS-based framework for DSM during emergency conditions 

Once a framework for the resilient operation of a smart grid is created, future studies may 

extend the scope of the load shifting program to integrate ILM and load shifting 

simultaneously. Furthermore, the optimization and simulation modules can be integrated 

and operated in the Anylogic software for ease of application.    
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Appendix I: Multi-objective Optimization AMPL Code  

option solver cplexamp; 

option display_round 6; 

model "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad Bastani\DSM-
Optimization\Code-Final\code_v7.txt"; 

table bbb IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\hourbaseddata.xls": 

HOUR <- [HOUR], D, RS; 
read table bbb; 

table forecast IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 
2015\Mehrad Bastani\DSM-Optimization\Code-Final\fdata.xls": 

BUILD <- [i ~ BUILD], {j in HOUR} <F[i,j] ~ (j)> ; 
read table forecast; 

table aaa IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\param1.xls": 

GEN <- [GEN], PGmin, CS, CI, EI; 
read table aaa; 

table f IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\param2.xls": 

BUILD <- [i ~ BUILD], UI; 
read table f; 

table bb IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\param2.xls": 

SEG <- [k ~ SEG], {j in GEN} <ES[j, k] ~ (j)> ; 
read table bb; 

table ccc IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\param2.xls": 

[i ~ BUILD], {k in SEG} < US[i,k] ~ (k) >; 
read table ccc; 

table ddd IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\param2.xls": 

[j ~ GEN], {r in 1..4} < GR[j,r] ~ (r) >; 
read table ddd; 

table eee IN "ODBC" "C:\Users\mehradba\Desktop\Mehrad Backup Oct- 2015\Mehrad 
Bastani\DSM-Optimization\Code-Final\param2.xls": 

[i ~ BUILD], {r in 1..4} < UR[i,r] ~ (r) >; 
read table eee; 
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option solver_msg 0; 

# Primary Objective # 

problem initial1: Total_Cost, Required_Curtailment, generation_limit, utility_st, 
shifting_ps, gen_seg, utility_seg, seg, seg1, s, sp, g, gs, u, us, v; 

solve initial1; 

# Primary Objective # 

problem initial2: emission, Required_Curtailment, generation_limit, utility_st, shifting_ps, 
gen_seg, utility_seg, seg, seg1, s, sp, g, gs, u, us, v; 

solve initial2; 

# Primary Objective # 

problem initial3: utility, Required_Curtailment, generation_limit, utility_st, shifting_ps, 
gen_seg, utility_seg, seg, seg1, s, sp, g, gs, u, us, v; 

solve initial3; 

# CONSTRUCTING PAYOFF TABLE # 

param tempRHS2; 

param tempLHS3; 

param tempLHS2; 

let TC:=0; 

printf "------------------------------\n" > out_DSM.txt; 

printf "Payoff Table\n" > out_DSM.txt ; 

printf "O/O  \t obj1 \t \t obj2 \t \t obj3 \n" > out_DSM.txt; 

# Primary Objective # 

problem initial1: Total_Cost, Required_Curtailment, generation_limit, shifting_ps, 
gen_seg, gen_seg2, utility_seg, seg, seg1, seg2, shift_cap, s, sp, g, gs, us, v, obj2_lb, 
obj3_lb; 

solve initial1; 
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printf "obj1 \t %5.2f \t %6.2f \t %6.2f \t %6.2f \n", Total_Cost, obj2_lb.body, obj3_lb.body, 
_solve_elapsed_time > out_DSM.txt; 

let tempRHS2:=obj2_lb.body; 

let tempLHS3:=obj3_lb.body; 

# Second Objective # 

problem initial2: emission, Required_Curtailment, generation_limit, shifting_ps, gen_seg,  

gen_seg2, utility_seg, seg, seg1, seg2, shift_cap, s, sp, g, gs, us, v, obj2_lb, obj3_lb; 

solve initial2; 

printf "obj2 \t %5.2f \t %6.2f \t %6.2f \t %6.2f \n", obj1_lb.body, emission, obj3_lb.body, 
_solve_elapsed_time > out_DSM.txt; 

let LHS2:=emission; 

let tempLHS2:=emission; 

let tempLHS3:=min(tempLHS3, obj3_lb.body) ; 

# Third Objective # 

problem initial3: utility, Required_Curtailment, generation_limit, shifting_ps, gen_seg,  

gen_seg2, utility_seg, seg, seg1, seg2, shift_cap, s, sp, g, gs, us, v, obj2_lb, obj3_lb; 

solve initial3; 

printf "obj3 \t %5.2f \t %6.2f \t %6.2f \t %6.2f \n", obj1_lb.body, obj2_lb.body, utility, 
_solve_elapsed_time  > out_DSM.txt ; 

let RHS3:=utility; 

let tempRHS2:=max(tempRHS2, obj2_lb.body) ; 

printf "------------------------------\n" > out_DSM.txt; 

display LHS2, tempRHS2, tempLHS3, RHS3; 

let LHS3:=tempLHS3; 

let RHS2:=tempRHS2; 
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param beta; 

param terminate; 

param iteration1; 

param iteration2; 

param delta1; 

param delta2; 

let beta:=1; 

let terminate:=0; 

let iteration1:=0; 

let iteration2:=0; 

let delta1:=351.2; 

let delta2:=0.025; 

option cplex_options 'sensitivity'; 

problem main: Total_Cost, Required_Curtailment, generation_limit, shifting_ps, gen_seg, 

gen_seg2, utility_seg, seg, seg1, seg2, shift_cap, s, sp, g, gs, us, v, obj2_ub, obj3_lb, 
obj2_lb, obj3_ub; 

problem uproblem: utility, Required_Curtailment, generation_limit, shifting_ps, gen_seg,  

gen_seg2, utility_seg, seg, seg1, seg2, shift_cap, s, sp, g, gs, us, v, obj1_lb, obj2_ub, 
obj2_lb; 

problem eproblem: emission, Required_Curtailment, generation_limit, shifting_ps, 
gen_seg, gen_seg2, utility_seg, seg, seg1, seg2, shift_cap, s, sp, g, gs, us, v, obj1_lb; 

#suffix down OUT; 

#suffix current OUT; 

#suffix up OUT; 
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##---Calculating first interval-- 

solve main; 

display obj2_ub.body; 

if obj2_ub.dual=0 then { 

 let TC:=Total_Cost; 

 solve eproblem; 

 let RHS2:=emission; 

} 

else let RHS2:=obj2_ub.body; 

printf "-------------------\n"> out_DSM.txt; 

repeat while iteration1<100 { 

let LHS2:=tempLHS2+(iteration1 * delta1); 

let RHS2:=tempLHS2+((iteration1+1) * delta1); 

display LHS2, RHS2; 

repeat while iteration2<100 { 

let LHS3:=tempLHS3+iteration2*delta2; 

let RHS3:=tempLHS3+(iteration2+1)*delta2; 

display LHS3, RHS3; 

solve main; 

/*if solve_result <> "infeasible" then break;*/  

display Total_Cost, obj2_lb.body, obj3_lb.body; 

printf "solution %d \t %.8f \t %0.8f \t %0.8f \t %0.8f \n", iteration1, 
Total_Cost, obj2_lb.body, obj3_lb.body, _solve_elapsed_time > out_DSM.txt; 

let iteration2:= iteration2+1; 

} 
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 let iteration1:=iteration1+1; 

 }; 

 solve main; 

 let LHS2:=obj2_ub.down; 

display LHS2, RHS2; 

if obj3_lb.dual=0 then { 

 let iteration:=iteration+1; 

 let TC:=Total_Cost; 

 solve uproblem; 

printf "solution %d \t %.8f \t %0.8f \t %0.8f \t %0.8f \n", iteration, obj1_lb.body, 
obj2_ub.body, utility, _solve_elapsed_time > out_DSM.txt; 

if obj1_lb.dual<>0 then { 

 let iteration:=iteration+1; 

display LHS2, RHS2; 

 let TC:=10000000; 

 solve uproblem; 

printf "solution %d \t %.8f \t %0.8f \t %0.8f \t %0.8f \n", iteration, obj1_lb.body, 
obj2_ub.body, utility, _solve_elapsed_time > out_DSM.txt; 

 } 

else printf "solution %d \t %.8f \t %0.8f \t %0.8f \t %0.8f \n", iteration, Total_Cost, 
obj2_ub.body, obj3_lb.body, _solve_elapsed_time > out_DSM.txt; 

 } 

 let RHS2:=LHS2-beta; 

 let LHS2:=tempLHS2; 

if iteration>3000 then break; 

if RHS2<tempLHS2 then break; 
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 let iteration:=iteration+1; 

 }; 

printf "-------------------\n" > out_DSM.txt;*/ 
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Appendix II: Comparison of Pareto Frontier Solutions  

Pareto frontier solutions set obtained by traditional -constraint method 
Solution 
Number 

Cost Emission Customer 
Satisfaction

Solution 
Number

Cost Emission Customer 
Satisfaction

1 548.59 5718.71 0.0157 22 555.65 1793.33 0.0157 
2 549.37 4809.67 0.0157 23 556.57 1635.28 0.0157 
3 549.39 5541.17 0.0443 24 556.66 1812.82 0.0443 
4 550.02 5363.63 0.0443 25 556.82 5363.63 0.0730 
5 550.08 4653.47 0.0157 26 557.33 5032.07 0.0730 
6 550.48 4831.01 0.0443 27 557.55 4465.80 0.0730 
7 550.59 3804.17 0.0157 28 558.55 4026.57 0.0773 
8 550.77 3765.77 0.0157 29 559.45 769.28 0.0157 
9 550.82 5186.09 0.0443 30 559.66 1457.74 0.0443 

10 550.87 4475.93 0.0443 31 560.20 747.58 0.0157 
11 551.51 4298.39 0.0443 32 560.46 1280.20 0.0443 
12 551.57 3588.23 0.0157 33 560.60 3021.14 0.0730 
13 552.05 3997.65 0.0443 34 560.93 962.73 0.0443 
14 552.36 3410.69 0.0157 35 562.81 2345.45 0.0730 
15 552.64 2798.74 0.0157 36 563.61 2015.73 0.0750 
16 553.08 2700.53 0.0157 37 566.45 1457.74 0.0730 
17 553.21 3233.15 0.0443 38 567.25 1280.20 0.0730 
18 553.88 2522.99 0.0157 39 567.56 999.75 0.0730 
19 554.10 2992.22 0.0197 40 599.36 570.04 -0.0704 
20 554.10 2992.22 0.0443 41 664.35 392.50 -0.1565 
21 555.44 2345.45 0.0157 
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Pareto frontier solutions set obtained by advanced -constraint method 
Solution 
Number  

Cost Emission Customer 
Satisfaction 

Solution 
Number

Cost Emission Customer 
Satisfaction

1 548.59 5718.71 0.062 305 712.47 325.29 -0.188 
2 548.59 5717.71 0.062 306 713.50 324.20 -0.189 
3 548.87 5657.04 0.062 307 714.56 323.13 -0.190 
4 549.37 4809.67 0.062 308 715.72 321.98 -0.191 
5 549.38 4808.67 0.062 309 716.81 320.89 -0.192 
6 549.65 4748.00 0.062 310 717.85 319.86 -0.193 
7 550.59 3804.17 0.062 311 718.94 318.76 -0.194 
8 550.60 3803.17 0.062 312 720.00 317.73 -0.195 
9 551.79 3538.71 0.062 313 721.73 315.98 -0.189 
10 552.06 3478.04 0.062 314 722.66 314.97 -0.190 
11 552.64 2798.74 0.062 315 723.58 313.88 -0.234 
12 552.64 2797.74 0.062 316 724.27 312.88 -0.238 
13 553.66 2572.79 0.062 317 725.01 311.82 -0.243 
14 553.93 2512.13 0.062 318 725.76 310.74 -0.248 
15 553.94 2510.29 0.062 319 726.46 309.73 -0.253 
16 553.95 2508.66 0.062 320 727.18 308.70 -0.258 
17 553.97 2506.85 0.062 321 727.93 307.69 -0.262 
18 553.98 2505.21 0.062 322 729.00 306.52 -0.262 
19 554.00 2501.90 0.062 323 729.98 305.46 -0.263 
20 554.04 2495.21 0.061 324 730.95 304.40 -0.264 
21 554.07 2490.54 0.061 325 731.97 303.31 -0.264 
22 554.11 2484.57 0.061 326 733.02 302.26 -0.267 
23 554.14 2480.40 0.061 327 734.49 300.79 -0.272 
24 554.17 2475.68 0.061 328 735.59 299.69 -0.276 
25 554.20 2470.88 0.061 329 736.63 298.66 -0.279 
26 554.22 2468.51 0.061 330 737.72 297.57 -0.283 
27 554.23 2466.51 0.061 331 738.82 296.50 -0.287 
28 554.25 2463.63 0.061 332 740.00 295.37 -0.264 
29 554.27 2461.26 0.061 333 741.02 294.21 -0.265 
30 554.28 2458.84 0.061 334 742.17 293.06 -0.269 
31 554.30 2455.79 0.060 335 746.21 289.20 -0.286 
32 554.32 2454.24 0.060 336 747.26 288.19 -0.291 
33 554.35 2449.64 0.060 337 748.44 287.06 -0.296 
34 554.38 2444.06 0.060 338 751.53 283.29 -0.271 
35 554.40 2441.97 0.060 339 752.63 282.23 -0.276 
36 554.41 2439.78 0.060 340 761.25 273.98 -0.314 
37 554.42 2438.05 0.060 341 762.45 272.84 -0.322 
38 554.43 2436.41 0.060 342 763.74 271.60 -0.332 
39 554.44 2435.34 0.060 343 764.93 270.47 -0.341 
40 554.46 2433.05 0.060 344 766.03 269.41 -0.350 
41 554.47 2430.81 0.060 345 769.97 265.74 -0.373 
42 554.48 2428.95 0.060 346 771.17 264.70 -0.375 
43 554.52 2424.10 0.060 347 772.93 263.20 -0.383 
44 554.54 2420.72 0.060 348 774.20 262.12 -0.389 
45 554.55 2418.35 0.060 349 775.52 260.99 -0.398 
46 554.56 2416.65 0.059 350 776.08 418.25 -0.009 
47 554.59 2413.62 0.059 351 776.81 259.89 -0.407 
48 554.60 2410.84 0.059 352 777.35 417.15 -0.010 
49 554.63 2406.97 0.059 353 778.86 258.14 -0.423 
50 554.66 2402.26 0.059 354 779.28 429.62 0.000 
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51 554.68 2399.76 0.059 355 780.76 439.48 0.008 
52 554.72 2393.12 0.059 356 781.73 424.77 -0.004 
53 554.74 2390.73 0.059 357 781.80 411.15 -0.015 
54 554.75 2388.86 0.059 358 782.11 438.39 0.007 
55 554.76 2386.94 0.059 359 782.55 437.36 0.006 
56 554.78 2383.99 0.059 360 782.75 410.11 -0.015 
57 554.80 2381.34 0.059 361 783.60 409.00 -0.016 
58 554.82 2378.53 0.058 362 783.61 454.62 0.018 
59 554.83 2377.06 0.058 363 783.70 423.68 -0.005 
60 554.85 2373.65 0.058 364 783.71 256.26 -0.391 
61 554.87 2370.06 0.058 365 783.95 436.26 0.005 
62 554.90 2368.08 0.058 366 784.37 407.07 -0.018 
63 555.00 2364.07 0.058 367 784.98 421.77 -0.006 
64 555.16 2357.41 0.058 368 785.01 255.19 -0.399 
65 555.26 2352.94 0.058 369 785.14 453.33 0.017 
66 555.39 2347.40 0.058 370 785.35 420.70 -0.007 
67 555.46 2344.46 0.058 371 785.61 434.45 0.004 
68 555.65 1793.33 0.061 372 785.94 403.84 -0.021 
69 555.66 1792.33 0.061 373 786.14 254.19 -0.408 
70 555.80 1761.97 0.061 374 786.17 419.67 -0.008 
71 555.83 1753.40 0.061 375 786.36 452.23 0.017 
72 555.86 1748.81 0.061 376 786.40 405.14 -0.020 
73 555.89 1741.67 0.061 377 786.57 433.41 0.003 
74 555.90 1738.48 0.061 378 786.74 352.00 -0.068 
75 555.93 1731.66 0.061 379 787.05 401.34 -0.023 
76 555.94 1730.50 0.061 380 787.19 402.61 -0.022 
77 555.95 1729.01 0.061 381 787.45 253.07 -0.417 
78 555.96 1727.44 0.061 382 787.56 432.33 0.002 
79 555.97 1725.64 0.061 383 787.82 350.98 -0.069 
80 556.01 1720.34 0.061 384 787.86 450.94 0.016 
81 556.02 1718.70 0.061 385 788.54 349.71 -0.070 
82 556.04 1715.63 0.060 386 788.76 251.96 -0.436 
83 556.08 1709.51 0.060 387 788.81 399.55 -0.024 
84 556.11 1704.62 0.060 388 788.94 430.82 0.001 
85 556.13 1701.49 0.060 389 789.10 348.71 -0.071 
86 556.15 1699.43 0.060 390 789.11 548.63 0.075 
87 556.18 1694.42 0.060 391 789.19 449.84 0.015 
88 556.20 1690.94 0.060 392 789.70 547.27 0.075 
89 556.22 1688.77 0.060 393 789.72 448.61 0.014 
90 556.24 1686.14 0.060 394 789.85 347.39 -0.073 
91 556.26 1682.02 0.060 395 790.15 398.41 -0.025 
92 556.29 1677.75 0.060 396 790.23 546.08 0.074 
93 556.30 1676.31 0.059 397 791.18 543.91 0.073 
94 556.33 1672.37 0.059 398 791.34 447.38 0.013 
95 556.34 1670.79 0.059 399 792.30 446.33 0.012 
96 556.35 1668.63 0.059 400 792.35 393.53 -0.030 
97 556.36 1667.50 0.059 401 792.74 250.86 -0.390 
98 556.40 1662.09 0.059 402 793.32 443.92 0.010 
99 556.43 1657.24 0.059 403 793.52 392.50 -0.030 
100 556.45 1653.66 0.059 404 793.93 249.84 -0.398 
101 556.48 1650.26 0.059 405 794.74 464.71 0.025 
102 556.48 1649.20 0.059 406 795.09 390.64 -0.032 
103 556.49 1647.26 0.059 407 795.16 248.79 -0.407 
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104 556.53 1641.53 0.059 408 795.55 533.95 0.068 
105 556.56 1636.97 0.058 409 795.97 532.77 0.067 
106 556.58 1634.31 0.058 410 796.03 372.53 -0.048 
107 556.59 1632.84 0.058 411 796.16 463.48 0.024 
108 556.63 1626.92 0.058 412 796.48 247.67 -0.416 
109 556.65 1624.04 0.058 413 796.54 531.72 0.067 
110 556.68 1619.06 0.058 414 796.80 389.17 -0.033 
111 556.69 1617.68 0.058 415 796.98 530.70 0.066 
112 556.73 1612.55 0.058 416 797.20 388.07 -0.034 
113 556.73 1611.24 0.058 417 797.24 371.33 -0.049 
114 556.75 1608.47 0.058 418 797.30 529.66 0.066 
115 556.79 1603.34 0.058 419 797.65 528.64 0.065 
116 556.83 1597.40 0.057 420 797.71 246.62 -0.432 
117 556.85 1593.42 0.057 421 797.76 462.14 0.024 
118 556.86 1591.85 0.057 422 797.81 370.32 -0.050 
119 556.91 1587.62 0.057 423 798.33 527.64 0.065 
120 557.00 1583.61 0.057 424 798.40 369.29 -0.051 
121 557.16 1576.95 0.057 425 798.54 526.61 0.064 
122 557.27 1572.47 0.057 426 798.72 460.91 0.023 
123 557.37 1566.94 0.055 427 798.76 574.04 0.087 
124 557.48 1548.74 0.055 428 798.97 575.32 0.088 
125 557.66 1542.04 0.055 429 799.02 368.20 -0.052 
126 557.88 1534.30 0.055 430 799.15 525.59 0.064 
127 558.03 1528.74 0.055 431 799.25 459.26 0.021 
128 558.23 1521.34 0.055 432 799.27 385.78 -0.036 
129 558.71 1504.13 0.055 433 799.57 480.30 0.036 
130 558.76 1502.32 0.055 434 799.68 524.58 0.063 
131 559.45 769.28 0.054 435 799.87 366.69 -0.054 
132 559.49 768.28 0.054 436 800.12 523.56 0.062 
133 559.65 763.62 0.052 437 800.13 386.81 -0.035 
134 559.69 762.58 0.052 438 800.40 384.72 -0.037 
135 559.73 761.31 0.051 439 800.56 522.53 0.062 
136 559.80 759.37 0.051 440 800.73 479.26 0.035 
137 560.09 750.79 0.048 441 800.77 365.12 -0.055 
138 560.13 749.69 0.047 442 801.35 332.28 -0.090 
139 560.24 746.53 0.046 443 801.37 364.06 -0.056 
140 560.29 745.10 0.045 444 801.60 519.65 0.060 
141 560.55 737.51 0.042 445 801.77 516.07 0.058 
142 560.74 735.73 0.042 446 801.94 363.06 -0.057 
143 561.07 734.37 0.042 447 801.99 331.14 -0.091 
144 561.41 733.06 0.048 448 802.24 245.40 -0.395 
145 561.46 731.61 0.048 449 802.29 382.75 -0.039 
146 561.77 722.73 0.044 450 802.40 362.05 -0.058 
147 562.14 715.77 0.042 451 802.57 360.94 -0.059 
148 562.44 714.55 0.042 452 802.73 359.88 -0.060 
149 562.72 713.55 0.041 453 802.89 358.88 -0.061 
150 563.00 712.51 0.041 454 802.95 512.22 0.056 
151 563.26 711.48 0.048 455 803.04 357.85 -0.062 
152 563.72 697.98 0.043 456 803.10 329.94 -0.092 
153 564.08 694.47 0.042 457 803.16 381.54 -0.040 
154 564.38 693.37 0.041 458 803.19 569.07 0.085 
155 564.67 692.30 0.041 459 803.21 356.75 -0.063 
156 564.95 691.27 0.041 460 803.45 511.04 0.055 
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157 571.85 665.80 0.032 461 803.48 244.34 -0.403 
158 572.13 664.76 0.031 462 803.94 570.20 0.086 
159 577.10 646.47 0.025 463 803.99 509.76 0.055 
160 577.85 643.86 0.024 464 804.09 380.54 -0.041 
161 581.69 630.61 0.019 465 804.52 508.51 0.054 
162 582.09 629.23 0.019 466 804.66 243.33 -0.412 
163 586.39 614.37 0.013 467 804.67 328.53 -0.094 
164 586.68 613.36 0.013 468 804.94 507.50 0.053 
165 587.68 609.89 0.012 469 805.22 379.30 -0.042 
166 587.98 608.86 0.011 470 805.42 506.37 0.053 
167 589.95 602.06 0.009 471 805.86 327.46 -0.096 
168 590.27 600.94 0.008 472 805.88 505.28 0.052 
169 590.60 599.82 0.008 473 805.88 242.29 -0.421 
170 595.35 583.39 0.002 474 806.26 378.16 -0.043 
171 595.72 582.11 0.002 475 806.34 504.19 0.051 
172 596.12 580.74 0.001 476 806.83 503.01 0.050 
173 597.41 576.50 -0.001 477 807.16 326.30 -0.097 
174 597.83 575.32 -0.001 478 807.24 241.25 -0.443 
175 598.25 574.04 -0.019 479 807.27 501.96 0.050 
176 599.31 570.20 -0.020 480 807.33 377.00 -0.044 
177 599.64 569.07 -0.020 481 807.71 500.93 0.049 
178 605.56 548.63 -0.028 482 808.29 325.29 -0.099 
179 605.95 547.27 -0.028 483 808.47 375.76 -0.045 
180 606.29 546.08 -0.029 484 808.62 498.76 0.048 
181 606.92 543.91 -0.030 485 809.15 497.51 0.047 
182 609.87 533.95 -0.034 486 809.51 324.20 -0.100 
183 610.29 532.77 -0.034 487 809.63 374.68 -0.046 
184 610.67 531.72 -0.035 488 810.44 580.74 0.090 
185 611.03 530.70 -0.035 489 810.44 340.17 -0.080 
186 611.40 529.66 -0.036 490 810.50 373.66 -0.047 
187 611.76 528.64 -0.037 491 810.70 323.13 -0.101 
188 612.12 527.64 -0.037 492 810.76 495.08 0.046 
189 612.49 526.61 -0.038 493 811.07 339.08 -0.081 
190 612.86 525.59 -0.038 494 811.22 582.11 0.091 
191 613.21 524.58 -0.039 495 811.56 583.39 0.091 
192 613.58 523.56 -0.040 496 811.59 338.01 -0.082 
193 613.95 522.53 -0.040 497 811.99 321.98 -0.103 
194 614.97 519.65 -0.042 498 812.51 240.25 -0.412 
195 616.17 516.07 -0.032 499 812.95 336.61 -0.084 
196 617.36 512.22 -0.033 500 813.21 320.89 -0.104 
197 617.78 511.04 -0.033 501 813.94 239.12 -0.428 
198 618.24 509.76 -0.034 502 814.18 335.51 -0.085 
199 618.68 508.51 -0.035 503 814.36 319.86 -0.106 
200 619.04 507.50 -0.036 504 814.85 608.86 0.102 
201 619.45 506.37 -0.036 505 815.38 334.44 -0.087 
202 619.84 505.28 -0.037 506 815.58 318.76 -0.107 
203 620.23 504.19 -0.037 507 815.76 576.50 0.088 
204 620.65 503.01 -0.038 508 816.56 333.38 -0.088 
205 621.02 501.96 -0.039 509 816.63 238.09 -0.444 
206 621.39 500.93 -0.039 510 816.73 317.73 -0.109 
207 622.17 498.76 -0.041 511 818.69 315.98 -0.111 
208 622.61 497.51 -0.041 512 819.82 314.97 -0.112 
209 623.48 495.08 -0.043 513 820.95 485.75 0.040 
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210 626.82 485.75 -0.048 514 821.04 313.88 -0.114 
211 627.26 484.58 -0.049 515 821.54 484.58 0.039 
212 628.86 480.30 -0.051 516 822.15 312.88 -0.115 
213 629.24 479.26 -0.052 517 822.18 236.69 -0.451 
214 634.67 464.71 -0.060 518 823.34 311.82 -0.117 
215 635.13 463.48 -0.061 519 823.61 235.58 -0.419 
216 635.63 462.14 -0.061 520 824.54 310.74 -0.118 
217 636.09 460.91 -0.062 521 824.91 234.49 -0.441 
218 636.71 459.26 -0.063 522 825.67 309.73 -0.120 
219 638.44 454.62 -0.066 523 826.82 233.47 -0.455 
220 638.92 453.33 -0.066 524 826.83 308.70 -0.121 
221 639.38 452.23 -0.067 525 827.86 307.69 -0.122 
222 639.95 450.94 -0.068 526 828.37 232.46 -0.457 
223 640.44 449.84 -0.068 527 828.78 295.37 -0.141 
224 640.97 448.61 -0.069 528 828.99 306.52 -0.124 
225 641.52 447.38 -0.070 529 829.68 600.94 0.099 
226 641.98 446.33 -0.070 530 829.91 294.21 -0.143 
227 642.93 443.92 -0.059 531 830.02 305.46 -0.126 
228 644.59 439.48 -0.062 532 830.74 599.82 0.099 
229 645.00 438.39 -0.063 533 831.02 293.06 -0.145 
230 645.38 437.36 -0.063 534 831.03 304.40 -0.127 
231 645.79 436.26 -0.064 535 832.09 303.31 -0.129 
232 646.47 434.45 -0.065 536 832.83 289.20 -0.150 
233 646.90 433.41 -0.065 537 833.11 302.26 -0.131 
234 647.38 432.33 -0.066 538 833.31 288.19 -0.152 
235 648.04 430.82 -0.067 539 833.36 231.46 -0.454 
236 648.57 429.62 -0.068 540 833.96 602.06 0.100 
237 650.70 424.77 -0.070 541 834.53 300.79 -0.133 
238 651.18 423.68 -0.071 542 834.86 230.45 -0.456 
239 652.05 421.77 -0.072 543 835.12 287.06 -0.154 
240 652.66 420.70 -0.073 544 835.59 299.69 -0.135 
241 653.24 419.67 -0.074 545 836.09 273.98 -0.174 
242 654.05 418.25 -0.075 546 836.22 263.20 -0.190 
243 654.67 417.15 -0.076 547 836.41 229.44 -0.458 
244 657.13 411.15 -0.112 548 836.59 298.66 -0.136 
245 657.64 410.11 -0.112 549 836.67 262.12 -0.192 
246 658.20 409.00 -0.100 550 837.65 297.57 -0.138 
247 658.92 407.07 -0.101 551 837.77 260.99 -0.194 
248 659.64 405.14 -0.102 552 837.78 258.14 -0.199 
249 660.12 403.84 -0.103 553 837.88 272.84 -0.175 
250 660.58 402.61 -0.104 554 838.49 271.60 -0.177 
251 661.06 401.34 -0.104 555 838.60 269.41 -0.181 
252 661.72 399.55 -0.105 556 838.68 296.50 -0.139 
253 662.15 398.41 -0.106 557 838.76 283.29 -0.159 
254 663.97 393.53 -0.109 558 839.49 270.47 -0.179 
255 664.36 392.50 -0.110 559 839.78 282.23 -0.161 
256 665.35 390.64 -0.111 560 840.42 259.89 -0.196 
257 666.36 389.17 -0.112 561 842.02 228.44 -0.462 
258 667.12 388.07 -0.113 562 843.37 265.74 -0.186 
259 667.98 386.81 -0.114 563 843.52 256.26 -0.203 
260 668.69 385.78 -0.114 564 844.76 226.55 -0.465 
261 669.42 384.72 -0.115 565 845.19 264.70 -0.188 
262 670.77 382.75 -0.117 566 846.35 225.50 -0.467 
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263 671.60 381.54 -0.118 567 848.54 224.49 -0.469 
264 672.28 380.54 -0.109 568 850.28 253.07 -0.210 
265 672.74 379.30 -0.109 569 850.66 255.19 -0.206 
266 673.16 378.16 -0.110 570 853.96 251.96 -0.213 
267 673.77 377.00 -0.110 571 853.99 223.46 -0.469 
268 674.60 375.76 -0.111 572 855.26 254.19 -0.208 
269 675.34 374.68 -0.112 573 859.22 221.95 -0.498 
270 676.04 373.66 -0.112 574 861.49 220.94 -0.475 
271 676.82 372.53 -0.113 575 862.26 250.86 -0.216 
272 677.64 371.33 -0.114 576 864.62 219.09 -0.479 
273 678.34 370.32 -0.115 577 865.77 246.62 -0.228 
274 679.04 369.29 -0.116 578 865.82 249.84 -0.218 
275 679.79 368.20 -0.116 579 866.94 217.85 -0.491 
276 680.83 366.69 -0.118 580 868.07 217.85 -0.475 
277 681.93 365.12 -0.119 581 872.17 245.40 -0.231 
278 682.66 364.06 -0.121 582 873.38 219.09 -0.447 
279 683.35 363.06 -0.122 583 873.69 226.55 -0.356 
280 684.06 362.05 -0.127 584 873.97 248.79 -0.221 
281 684.83 360.94 -0.131 585 874.84 247.67 -0.223 
282 685.56 359.88 -0.136 586 875.24 225.50 -0.364 
283 686.26 358.88 -0.141 587 877.46 243.33 -0.240 
284 686.97 357.85 -0.146 588 877.54 244.34 -0.234 
285 687.76 356.75 -0.150 589 878.28 224.49 -0.372 
286 691.40 352.00 -0.154 590 879.37 240.25 -0.254 
287 692.18 350.98 -0.155 591 879.52 216.71 -0.587 
288 693.15 349.71 -0.156 592 880.59 241.25 -0.248 
289 693.92 348.71 -0.157 593 882.11 221.95 -0.404 
290 694.93 347.39 -0.159 594 882.27 223.46 -0.384 
291 700.49 340.17 -0.175 595 882.28 242.29 -0.243 
292 701.33 339.08 -0.176 596 885.49 220.94 -0.418 
293 702.15 338.01 -0.177 597 885.63 228.44 -0.337 
294 703.22 336.61 -0.179 598 886.12 239.12 -0.262 
295 704.06 335.51 -0.180 599 887.58 216.71 -0.559 
296 704.89 334.44 -0.181 600 888.45 238.09 -0.268 
297 705.69 333.38 -0.182 601 888.69 236.69 -0.278 
298 706.54 332.28 -0.183 602 888.77 235.58 -0.286 
299 707.45 331.14 -0.182 603 889.71 229.44 -0.329 
300 708.33 329.94 -0.185 604 890.36 234.49 -0.293 
301 709.49 328.53 -0.186 605 892.61 233.47 -0.300 
302 710.47 327.46 -0.187 606 892.96 232.46 -0.307 
303 711.53 326.30 -0.187 607 893.39 230.45 -0.322 
304 548.59 5718.71 0.062 
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Appendix III: Energy Consumption of Synthetic Smart Grid Buildings for FII 

Building
Number  

H 1 H 2 H 3 H 4 H 5 H 6 H7 H 8 H 9 H 10

B 1 1.13 1.14 1.13 0.96 0.83 0.95 1.00 1.43 1.24 1.54 
B 2 1.30 1.12 1.12 0.95 0.97 1.16 1.34 1.64 1.38 1.64 
B 3 0.62 0.69 0.82 0.63 0.79 0.76 0.94 0.69 0.95 0.93 
B 4 1.13 1.06 0.87 1.10 1.04 1.02 1.15 1.16 1.12 1.44 
B 5 1.02 0.94 0.93 0.86 0.85 1.26 1.27 1.17 1.13 1.28 
B 6 0.81 0.82 0.85 0.87 0.72 0.95 0.98 0.95 1.07 1.16 
B 7  1.00 0.84 0.87 0.86 0.84 1.09 0.92 1.00 1.11 1.15 
B 8  1.09 0.88 0.87 0.87 0.91 0.97 1.10 0.79 1.24 1.58 
B 9  1.33 1.29 1.52 0.95 1.54 1.36 1.58 1.25 1.60 1.80 
B 10 1.30 1.23 1.29 1.23 1.23 1.40 1.48 1.44 1.49 1.62 
B 11 0.91 0.90 0.87 0.73 0.84 0.85 0.99 1.00 1.18 1.16 
B 12 1.20 1.24 0.95 1.32 1.13 1.11 1.34 1.23 1.63 1.67 
B 13 1.18 1.08 0.92 0.80 1.18 0.98 1.15 1.25 1.36 1.33 
B 14 1.04 0.88 0.90 0.93 0.75 1.07 1.31 1.20 1.21 1.41 
B 15 1.07 1.11 1.02 1.02 0.85 0.94 1.08 1.19 1.49 1.42 
B 16 1.00 0.95 0.97 0.90 1.07 0.98 1.22 1.00 1.29 1.30 
B 17  1.00 1.12 0.88 0.95 0.91 0.77 0.94 1.15 1.23 1.19 
B 18  1.12 1.21 1.15 1.05 1.13 1.16 1.10 1.36 1.34 1.47 
B 19  1.36 1.04 0.98 0.85 1.16 1.20 1.20 1.37 1.46 1.60 
B 20 1.36 1.25 0.92 0.79 1.16 0.91 1.22 1.26 1.75 1.54 
B 21 1.19 1.00 1.09 1.03 0.97 0.95 1.01 1.14 1.28 1.39 
B 22 0.86 0.91 0.93 0.67 0.90 0.98 0.93 1.14 1.12 1.05 
B 23 1.01 0.97 1.08 0.98 1.03 1.13 1.15 1.25 1.43 1.63 
B 24 1.02 1.16 1.17 1.08 1.18 1.36 1.34 1.32 1.55 1.65 
B 25 0.84 0.90 0.88 0.84 0.81 1.05 0.93 1.17 1.42 1.43 
B 26 1.06 0.93 0.96 1.03 1.04 1.00 1.26 1.29 1.47 1.44 
B 27  1.07 1.09 0.90 1.00 1.00 1.18 1.11 1.17 1.19 1.26 
B 28  0.84 0.95 0.86 0.85 0.78 1.02 1.07 1.06 1.34 1.20 
B 29  0.93 0.86 0.86 0.91 0.92 1.19 1.03 1.11 1.09 1.33 
B 30 0.81 0.72 0.89 0.87 0.86 0.94 1.08 1.11 1.09 1.35 
B 31 1.00 0.92 1.06 1.26 1.08 0.98 1.25 1.06 1.17 1.59 
B 32 0.94 0.83 0.77 0.76 0.89 0.70 0.92 1.00 1.04 1.26 
B 33 0.99 0.85 0.85 0.86 0.82 0.91 0.83 1.09 1.01 0.99 
B 34 0.81 0.70 0.80 0.85 0.93 0.90 0.86 1.04 1.02 1.13 
B 35 0.90 0.75 0.67 0.58 0.58 0.72 0.86 0.65 0.84 0.95 
B 36 1.17 1.24 1.07 0.93 0.97 1.09 1.19 1.15 1.46 1.75 
B 37  4.93 3.62 4.13 3.56 3.02 3.65 5.89 6.60 8.58 12.01 
B 38  4.51 4.21 3.55 3.52 3.56 4.65 4.67 8.99 11.42 12.09 
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B 39  5.61 4.97 4.46 4.23 5.02 4.41 5.02 9.73 11.82 12.50 
B 40 6.69 4.93 5.49 4.40 4.11 4.80 7.25 8.70 11.49 16.28 
B 41 4.63 4.38 3.92 4.09 4.30 3.57 5.56 6.46 11.63 14.09 
B 42 5.44 6.07 4.29 4.12 4.30 5.19 6.47 9.35 12.57 13.35 
B 43 5.80 4.47 5.20 3.93 3.54 3.97 5.35 7.23 11.28 15.16 
B 44 6.22 6.01 5.77 3.85 3.58 4.23 6.58 8.53 14.02 12.71 
B 45 5.06 4.28 4.49 3.26 3.20 4.54 6.09 7.82 10.42 11.22 
B 46 5.08 5.06 4.41 4.09 3.90 5.08 6.23 9.55 8.92 12.82 
B 47  64.8 50.7 59.2 43.2 44.4 49.0 73.2 95.8 130.1 202.9 
B 48  68.6 57.1 54.8 44.0 42.8 54.2 69.8 94.5 135.1 153.3 
B 49  65.6 69.9 63.1 66.4 49.9 46.2 91.8 121.9 138.7 180.7 
B 50 77.1 67.8 62.2 46.3 44.4 60.2 75.9 122.1 167.3 166.7 

Building
Number  

H 11 H 12 H 13 H 14 H 15 H 16 H 17 H 18 H 19 H 20

B 1 1.58 2.06 1.85 1.80 1.87 2.32 2.24 2.16 2.39 2.08 
B 2 1.80 1.71 2.15 1.93 2.66 2.26 2.58 2.34 2.42 2.14 
B 3 1.53 1.50 1.67 1.38 1.53 1.58 1.86 1.58 1.65 1.18 
B 4 1.53 1.76 1.83 2.04 1.80 2.49 2.47 2.27 2.15 1.92 
B 5 1.55 2.00 1.70 1.57 1.83 2.23 2.32 2.26 2.02 2.02 
B 6 1.29 1.56 1.66 1.87 2.08 1.91 1.84 1.93 1.76 1.50 
B 7 1.44 1.67 2.10 1.85 1.77 2.33 2.32 1.96 1.61 1.76 
B 8 1.42 2.03 2.03 2.05 2.18 1.83 2.21 2.51 2.08 2.00 
B 9 2.17 2.03 2.70 2.37 2.83 3.03 3.03 3.15 2.97 2.44 
B 10 2.19 1.92 2.42 2.04 2.92 2.91 2.76 2.66 1.91 2.60 
B 11 1.31 1.71 1.29 1.63 1.57 1.74 1.99 1.96 1.54 1.58 
B 12 2.43 2.60 1.86 2.70 2.32 2.66 2.86 2.93 2.52 2.90 
B 13 1.57 1.90 2.34 1.95 2.40 2.32 2.26 2.01 2.07 2.04 
B 14 1.37 2.12 2.07 2.13 1.88 2.15 2.03 2.02 1.86 1.71 
B 15 1.85 2.01 2.28 2.16 2.08 1.91 2.35 2.43 2.07 1.95 
B 16 1.59 1.86 1.45 1.69 1.74 2.13 2.43 1.98 2.10 1.99 
B 17 1.42 1.81 1.69 2.15 1.92 2.44 1.90 2.11 1.66 1.76 
B 18 1.79 2.00 2.15 2.42 2.63 2.36 2.56 2.35 2.34 2.31 
B 19 1.77 2.13 2.19 2.90 2.09 1.95 2.18 2.13 2.17 2.16 
B 20 1.66 2.09 2.22 2.28 2.22 2.10 2.54 2.07 2.03 2.49 
B 21 1.80 1.86 2.26 2.01 2.43 2.12 2.35 2.45 2.03 1.96 
B 22 1.05 1.52 1.79 1.80 1.90 1.74 1.93 1.54 1.61 1.55 
B 23 1.72 2.19 2.04 2.12 2.60 2.13 2.31 2.45 2.16 2.35 
B 24 1.55 2.00 2.48 2.30 2.55 2.19 2.53 2.58 2.00 2.31 
B 25 1.62 1.81 1.70 2.07 2.38 2.58 2.17 1.84 2.12 2.09 
B 26 1.87 2.11 2.62 2.43 2.55 2.32 2.08 2.23 2.03 2.00 
B 27 1.70 1.87 2.14 1.94 2.65 2.27 2.56 2.20 2.10 2.20 
B 28 1.55 1.80 1.91 1.79 2.08 1.93 1.91 1.79 2.13 1.71 
B 29 1.37 1.85 2.12 2.13 1.98 1.80 2.55 2.60 2.07 1.78 
B 30 1.44 1.57 1.54 1.95 1.84 1.94 1.83 1.63 1.86 1.76 
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B 31 1.54 2.01 2.36 2.25 2.47 1.91 2.51 2.77 2.28 1.77 
B 32 1.35 1.44 1.71 1.71 1.76 1.72 1.92 1.51 1.69 1.61 
B 33 1.56 1.59 1.77 1.71 1.66 1.30 2.05 1.82 1.74 1.79 
B 34 1.32 1.44 1.70 1.66 1.85 1.84 1.90 1.83 2.05 1.87 
B 35 0.87 1.37 1.29 1.67 1.41 1.54 1.35 1.39 1.24 1.41 
B 36 1.71 2.01 1.70 2.10 2.04 2.30 2.60 2.76 2.68 2.17 
B 37  15.69 13.09 12.12 11.83 15.25 12.56 12.38 8.86 8.86 7.46 
B 38  12.81 12.29 12.88 12.29 12.60 13.66 12.41 10.80 8.67 6.97 
B 39  18.74 15.67 13.76 13.70 13.27 11.62 12.80 9.97 9.89 7.91 
B 40 16.42 17.76 14.89 17.61 12.75 17.04 18.29 14.19 11.69 9.20 
B 41 11.44 16.39 11.01 14.03 15.23 13.23 15.18 13.12 8.69 6.11 
B 42 16.08 14.96 12.63 16.40 15.52 14.37 14.28 12.70 10.01 8.64 
B 43 15.30 15.77 14.83 10.90 14.29 14.29 14.01 9.48 8.17 8.62 
B 44 13.65 16.87 16.65 15.20 14.43 15.47 12.44 12.42 11.18 9.29 
B 45 14.23 12.15 12.61 13.62 14.76 12.05 12.68 10.72 7.53 7.40 
B 46 15.27 13.67 11.71 15.83 15.83 14.58 13.95 10.21 8.86 8.11 
B 47 163.1 173.2 198.7 154.1 183.7 147.6 172.8 134.8 115.9 93.09
B 48 213.3 169.5 200.1 181.0 160.8 167.6 185.1 156.0 119.4 106.4
B 49 211.6 203.9 189.0 194.1 195.6 188.2 162.7 168.2 122.8 115.4
B 50 213.8 224.1 182.6 228.5 217.5 190.8 192.5 150.3 117.8 112.0

Building 
Number  

H 21 H 22 H 23 H 24 

B 1 1.95 1.90 1.30 1.41 
B 2 2.25 1.98 1.86 1.45 
B 3 1.35 1.10 0.87 1.02 
B 4 2.17 1.67 1.35 1.54 
B 5 1.78 1.74 1.19 1.35 
B 6 1.73 1.39 1.18 1.14 
B 7  1.71 1.53 1.25 1.25 
B 8  1.74 1.60 1.42 1.35 
B 9  2.53 1.91 1.58 1.86 
B 10 1.81 1.53 1.72 1.45 
B 11 1.59 1.31 1.19 1.13 
B 12 2.25 2.09 1.86 1.65 
B 13 1.66 1.70 1.32 1.33 
B 14 1.64 1.51 1.10 1.32 
B 15 1.88 1.48 1.36 1.32 
B 16 1.59 1.58 1.21 1.41 
B 17  1.69 1.60 1.45 1.27 
B 18  1.96 1.84 1.63 1.45 
B 19  2.02 1.87 1.59 1.54 
B 20 1.98 1.75 1.67 1.39 
B 21 2.32 1.82 1.37 1.42 
B 22 1.68 1.37 1.04 1.10 



92 

 

B 23 2.15 1.71 1.32 1.42 
B 24 2.07 1.64 1.55 1.18 
B 25 1.86 1.44 1.69 1.00 
B 26 2.11 1.62 1.35 1.33 
B 27  2.05 1.48 1.22 1.20 
B 28  1.73 1.33 1.26 0.82 
B 29  2.09 1.51 1.31 1.40 
B 30 1.87 1.55 1.36 1.07 
B 31 1.94 1.61 1.51 1.42 
B 32 1.46 1.47 1.10 1.17 
B 33 1.39 1.29 1.33 1.19 
B 34 1.68 1.22 1.03 0.92 
B 35 1.45 1.03 0.99 0.84 
B 36 2.01 1.92 1.61 1.54 
B 37  5.78 5.90 4.99 4.95 
B 38  6.27 6.42 4.93 5.54 
B 39  8.74 7.69 6.04 5.41 
B 40 8.73 7.90 6.92 5.89 
B 41 6.61 5.65 5.07 4.57 
B 42 7.92 6.97 5.69 6.24 
B 43 7.18 6.90 5.25 4.56 
B 44 6.69 7.04 6.41 7.32 
B 45 7.68 6.03 5.13 5.19 
B 46 6.94 6.93 7.38 5.32 
B 47  89.19 89.89 53.80 54.63
B 48  100.02 72.31 70.88 57.64
B 49  89.80 78.87 77.84 71.78
B 50 1.95 1.90 1.30 1.41 
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