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Abstract 

The inland waterway system in the United States allows for the transportation of 

commodities, and interruptions to the system can have remarkable economic consequences. This 

research estimates statistical models of commodity flow as a function of lock usage and lock 

unavailability to discover relationships between system disruption and economic penalties. 

Findings specifically complement a portfolio of research conducted by the Maritime 

Transportation Research & Education Center (MarTREC) for the United States Army Corps of 

Engineers (USACE) to aid in decision making and resource planning for lock maintenance. 
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Introduction 

The General Survey Act of 1824 made navigation the earliest civil works mission of the 

United States Army Corps of Engineers (USACE) by authorizing and funding USACE to 

improve safety on the Mississippi and Ohio rivers (“Improving Transportation,” n.d.). To this 

day, USACE seeks to provide efficient, environmentally sustainable, reliable, and safe channels, 

harbors, and waterways in the United States (“Navigation,” n.d.). They work to operate and 

maintain this system of 239 locks on 25,000 miles of waterways which directly serve and support 

commerce in 41 states and more than 500,000 jobs (“2017 Infrastructure Report Card,” 2018). 

Each year, approximately 600 million tons of commodities are transported along the 

inland waterway system, making up 14% of all domestic freight. The commodities delivered via 

waterway in 2015 were worth $229 billion. The U.S. agriculture industry and energy sectors are 

especially reliant on inland waterway transport which is the most fuel-efficient mode of ground 

transportation. Sixty percent of grain exports, 22% of domestic petroleum and 20% of coal are 

transported along inland waterways (“2017 Infrastructure Report Card,” 2018). 

USACE is responsible for making maintenance decisions concerning waterway 

infrastructure, with the intention of minimizing delays caused by scheduled and unscheduled 

lock and dam closures. To maintain the current level of delays on the inland waterway system, 

USACE estimates an investment need of $4.9 billion over the next 20 years (“2017 Infrastructure 

Report Card,” 2018). For this reason, the American Society of Civil Engineers reported, “the 

greatest threats to the performance of the inland waterway system are the scheduled and 

unscheduled delays caused by insufficient funding for operation and maintenance needs of locks 

governing the traffic flow on the nation’s inland system” (“Failure to Act,” n.d.). Without 

adequate maintenance, vessel delays will increase, causing the economic attractiveness of inland 
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waterway transport, as seen by shippers, to decline, and force shippers to seek more expensive 

but more reliable modes of transportation. This cost increase will be transferred to the end 

customer, potentially making U.S. shippers less competitive globally and impacting the nation’s 

economy negatively.   

Lock use, performance, and characteristics data are collected by USACE and published 

by the Navigation Data Center each year. The data include variables describing lock and dam 

use, commodity type, and tonnage transported (“Lock Use, Performance, and Characteristics,” 

2016). These data can be organized and analyzed to estimate the economic impact of inland 

waterway system delays or unavailability via its relationship to tonnage transported or 

commodity flow. This thesis describes modeling commodity flow as a statistical function of lock 

unavailability and usage, motivated by the goal to help USACE make better operations and 

maintenance decisions.  

Background 

To successfully maneuver boats, ships, and barges across the country, the inland 

waterway system utilizes locks and dams to facilitate smooth transportation along varying water 

levels. As displayed in Figure 1, a vessel first enters a lock chamber. Once the vessel is 

completely within the lock chamber, the rear gate closes. Then, a valve is opened to adjust the 

water level underneath the vessel as well as the water level of the following lock. Once a balance 

is reached, the gate separating the two locks will open and allow the vessel to travel into the 

subsequent lock. This process continues until the vessel reaches the end of the lock and dam 

system where it can continue traveling at the new water level (Lyng, Field, Lander, Cooper, & 

Carlson, 2008). 
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Figure 1 –  Locks and dams facilitate transportation along varying water levels  

(Lyng, Field, Lander, Cooper, & Carlson, 2008). 

Data 

We estimated statistical models based on the lock use, performance, and characteristics 

data from 1993 to 2015 concerning 42 total locks located on the Arkansas (15 locks), Illinois (7 

locks), and Ohio (20 locks) waterways which appear in Figure 2 (“Lock Use, Performance, and 

Characteristics,” 2016).  
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Figure 2 – The inland waterways studied include the Arkansas, Illinois, and Ohio waterways 

(“Navigable Inland Waterways,” 2009). 

The datasets were made up of 28 variables (See Appendix). Of those, we included 12 in 

our initial regression analysis. After considering vessels, flotillas, and lockages are physically 

related, we chose to include the variables related to vessels and disregard the variables 

concerning flotillas and lockages as vessels make up a fleet and more than one fleet (flotillas) 

make up a lockage. 

Our analysis also included one newly created variable, Total Commodity Flow. As 

commodities travel on the inland waterway system, they are characterized by one of seven 

commodity types (See Appendix). Total Commodity Flow results from the summation of the 

seven different commodity types. Previous research analyzed tonnage of each commodity type 

rather than total tonnage as we did here (Chimka, 2016; Chimka, Fernandez De Luis, & McGee, 

2018). 

When working with the data, we noticed many blank cells which fell under Scheduled 

Unavailabilities (SU) and Unscheduled Unavailabilities (UU). To handle this, we assumed if SU 
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was blank and UU was not blank for the corresponding lock, SU equaled zero. Similarly, if UU 

was blank and SU was not blank for the corresponding lock, UU equaled zero. However, if both 

SU and UU were blank for the same lock, they both remained blank. 

Overview of Models 

We classified the variables detailing delays as unavailability variables which include 

Scheduled Unavailabilities (SU), Scheduled Unavailable Time (SUT), Unscheduled 

Unavailabilities (UU), and Unscheduled Unavailable Time (UUT). The remaining variables are 

considered usage variables: Average Delay, Average Processing Time, Barges Empty, Barges 

Loaded, Commercial Vessels, Non-Commercial Vessels, Percent Vessels Delayed, and 

Recreational Vessels. Usage variables were thought of as controls and included in every initial 

model. Unavailability variables were treated separately from one another because they are 

interdependent and relatively important to this study as we hypothesized the unavailability 

variables would show a statistical correlation to the response variable, Total Commodity Flow.  

For each of the three waterways (Arkansas, Illinois, and Ohio), we began by estimating 

four main effects multiple linear regression models. Each of the four models included a different 

unavailability variable and evaluated Total Commodity Flow versus unavailability and usage 

variables. 

The resulting R-squared values are shown in Table 1. The R-squared values indicate there 

is a strong linear relationship between the observations of total commodity flow and expectations 

for total commodity flow based on the regression models. Since models across waterway are 

based on different sample sizes we include adjusted R-squared values in Table 2, and to indicate 

how well these models may predict new observations of the response we include predicted R-

squared values in Table 3.  
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Table 1 – R-squared values associated with initial main effects models 

R-squared Scheduled 

Unavailabilities 

Scheduled 

Unavailable Time 

Unscheduled 

Unavailabilities 

Unscheduled 

Unavailable Time 

Arkansas 0.8392 0.8394 0.8392 0.8392 

Ohio 0.9799 0.9782 0.9805 0.9799 

Illinois 0.9943 0.9946 0.9947 0.9942 

Table 2 – Adjusted R-squared values associated with initial main effects models 

Adjusted 

R-squared 

Scheduled 

Unavailabilities 

Scheduled 

Unavailable Time 

Unscheduled 

Unavailabilities 

Unscheduled 

Unavailable Time 

Arkansas 0.8334 0.8336 0.8333 0.8334 

Ohio 0.9795 0.9775 0.9801 0.9795 

Illinois 0.9940 0.9943 0.9944 0.9939 

Table 3 – Predicted R-squared values associated with initial main effects models 

Predicted 

R-squared 

Scheduled 

Unavailabilities 

Scheduled 

Unavailable Time 

Unscheduled 

Unavailabilities 

Unscheduled 

Unavailable Time 

Arkansas 0.8169 0.8171 0.8166 0.8161 

Ohio 0.9790 0.9764 0.9795 0.9789 

Illinois 0.9928 0.9934 0.9932 0.9921 

Interdependence 

While we separated unavailability variables due to their interdependence or 

multicollinearity, we were also proactive about identifying interdependence among usage 

variables by considering each variable’s Variance Inflation Factor (VIF) which quantifies to what 

extent an independent variable is a linear function of other independent variables. A VIF of one 

(1) indicates correlation between the predictor variable and remaining variables does not exist. 

However, a VIF greater than four (4) may indicate interdependence (“Detecting Multicollinearity 

Using Variance Inflation Factors,” n.d.). The variables with a VIF greater than four, to be 

addressed, are shown in Table 4.  
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Table 4 – The table reflects variables with VIF values greater than 4 from each regression 

analysis.  

 Scheduled 

Unavailabilities 

Scheduled 

Unavailable Time 

Unscheduled 

Unavailabilities 

Unscheduled 

Unavailable Time 

Arkansas Barges Loaded Barges Loaded Barges Loaded Barges Loaded 

Ohio 

Barges Empty 

Barges Loaded 

Comm. Vessels 

Barges Empty 

Barges Loaded 

Comm. Vessels 

Barges Empty 

Barges Loaded 

Comm. Vessels 

Barges Empty 

Barges Loaded 

Comm. Vessels 

Illinois 
Barges Empty 

Barges Loaded 

Barges Empty 

Barges Loaded 

Barges Empty 

Barges Loaded 

Barges Empty 

Barges Loaded 

To address interdependence, we excluded the variable with the highest VIF for each 

waterway as shown in Table 5. For each waterway, the variable with the highest VIF was 

consistent across all four models: Scheduled Unavailabilities, Scheduled Unavailable Time, 

Unscheduled Unavailabilities, and Unscheduled Unavailable Time. We then performed a 

multiple linear regression analysis for the four models of the three waterways again, and they all 

resulted with every remaining variable having a VIF less than four.  

Table 5 – For each waterway, one variable was excluded to reduce variance of the regression 

coefficients.  

Waterway Exclusion 

Arkansas Barges Loaded 

Ohio Barges Empty 

Illinois Barges Empty 

Table 6 shows each waterway and its corresponding predictors for further modeling. The 

table does not include the unavailability variables (SU, SUT, UU, UUT), but each model will 

include one unavailability variable as a predictor and be the only difference among the four 

models concerning a waterway. For example, an Arkansas waterway model is a function of 

Average Delay, Average Processing Time, Barges Empty, Commercial Vessels, Non-Commercial 

Vessels, Percent Vessels Delayed, and Recreational Vessels along with Scheduled 
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Unavailabilities, Scheduled Unavailable Time, Unscheduled Unavailabilities, or Unscheduled 

Unavailable Time. 

Table 6 – After addressing VIF, regression analysis continued for each waterway using the 

corresponding predictors listed. 

 Arkansas Ohio Illinois 

Average Delay x x x 

Average Processing Time x x x 

Barges Empty x   

Barges Loaded  x x 

Commercial Vessels x x x 

Non-Commercial Vessels x x x 

Percent Vessels Delayed x x x 

Recreational Vessels x x x 

Interaction 

Looking at the twelve (12) main effects models, all with VIF values less than 4, we 

identified the insignificant variables for each model. In the regression analysis, our null 

hypothesis assumes each variable is insignificant and therefore unrelated to the response variable 

(Total Commodity Flow), controlling for other variables in the model. However, if the variable’s 

p-value is less than 0.05, we reject the null hypothesis and conclude the variable is statistically 

significant. Conversely, a p-value greater than 0.05 indicates failure to reject the null hypothesis, 

and the variable is insignificant. The resulting insignificant variables are shown in Table 7.  
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Table 7 – Each model contained multiple insignificant variables. 

 Scheduled 

Unavailabilities 

Scheduled 

Unavailable Time 

Unscheduled 

Unavailabilities 

Unscheduled 

Unavailable Time 

Arkansas * Non-Commercial 

Vessels 

* Scheduled 

Unavailabilities 

* Non-Commercial 

Vessels 

* Scheduled 

Unavailable Time 

* Non-Commercial 

Vessels 

* Unscheduled 

Unavailabilities 

* Non-Commercial 

Vessels 

* Unscheduled 

Unavailable Time 

Ohio * Commercial 

Vessels 

* Non-Commercial 

Vessels 

* Scheduled 

Unavailabilities 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 

* Scheduled 

Unavailable Time 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 

 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 

* Unscheduled 

Unavailable Time 

Illinois * Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

* Scheduled 

Unavailabilities 

* Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

 

* Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

 

* Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

* Unscheduled 

Unavailable Time 

After identifying the insignificant main effects in each of the twelve models above, we 

estimated full second order models, and highlighted interactions involving insignificant main 

effects. If a variable proved insignificant in the main effects model and did not participate in 

significant interaction in the full second order model, the variable was deleted from the main 

effects. Table 8 is an iteration of Table 7 showing the deleted main effects in bold text. The three 

shaded cells within Table 8 are the only models with one variable which proved insignificant in 

the main effects model but participated in significant interaction in the full second order model.  
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Table 8 – Bolded variables proved insignificant in both the main effects model and full second 

order model. 

 
Scheduled 

Unavailabilities 

Scheduled 

Unavailable Time 

Unscheduled 

Unavailabilities 

Unscheduled 

Unavailable Time 

Arkansas 

* Non-Commercial 

Vessels 

* Scheduled 

Unavailabilities 

* Non-Commercial 

Vessels 

* Scheduled 

Unavailable Time 

* Non-Commercial 

Vessels 

* Unscheduled 

Unavailabilities 

* Non-Commercial 

Vessels 

* Unscheduled 

Unavailable Time 

Ohio 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 
* Scheduled 

Unavailabilities 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 

* Scheduled 

Unavailable Time 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 

 

* Commercial 

Vessels 

* Non-Commercial 

Vessels 

* Unscheduled 

Unavailable Time 

Illinois 

* Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

* Scheduled 

Unavailabilities 

* Average Delay 

* Non-Commercial 

Vessels 
* Percent Vessels 

Delayed 

 

* Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

 

* Average Delay 

* Non-Commercial 

Vessels 

* Percent Vessels 

Delayed 

* Unscheduled 

Unavailable Time 

As displayed in Table 8, Average Delay participated in significant interaction in the full 

second order model for Illinois’ SU model. Because we are justified in dropping the most 

variables using the Illinois SU model, we chose to move forward by directing our focus to the 

model. 

Within the Illinois SU model, Average Delay, Non-Commercial Vessels, Percent Vessels 

Delayed, and Scheduled Unavailabilities proved insignificant in the main effects model. In the 

following full second order model, Average Delay significantly interacted with Barges Loaded 

and Commercial Vessels while Non-Commercial Vessels, Percent Vessels Delayed, and 

Scheduled Unavailabilities did not participate in any significant interaction, confirming the 

variables’ insignificance and eligibility to be excluded from the Illinois SU model. We 

reevaluated the Illinois SU main effects model, including only Average Delay, Average 

Processing Time, Barges Loaded, Commercial Vessels, and Recreational Vessels. The result 
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proved Average Delay to, again, be insignificant. Following our process, we ran a full second 

order model which revealed significant interaction between Average Delay and Barges Loaded.  

This result caused us to further analyze the effect Barges Loaded has on Average Delay. We 

classified the Barges Loaded data as one of two groups: low level of Barges Loaded and high 

level of Barges Loaded. Using K-means clustering, the cutoff point between low level and high 

level was calculated to be 15,400. Therefore, all data points with Barges Loaded less than 15,400 

were classified as low level of Barges Loaded and all data points with Barges Loaded greater 

than or equal to 15,400 were classified as high level of Barges Loaded. Using this information, 

we can refit two main effects models for Illinois SU: one using the low Barges Loaded dataset 

and one using the high Barges Loaded dataset.  

Illinois and Scheduled Unavailabilities 

A new main effects model was estimated with Illinois’ remaining SU variables (Average 

Delay, Average Processing Time, Barges Loaded, Commercial Vessels, and Recreational 

Vessels), using only low level of Barges Loaded data points, a sample size of 129. The resulting 

model contained one insignificant variable, Average Delay. Continuing with another full second 

order model, all Average Delay interactions proved insignificant. Omitting Average Delay and 

creating another main effects model resulted in a model with only significant variables. This 

indicates the stopping point, as there are no more insignificant variables to address. The normal 

probability plot of the residuals confirmed our assumption of normally distributed data (Shapiro-

Wilk W test for normal data p-value = 0.301). 

Using the same process, we analyzed high level of Barges Loaded which included 32 

observations. The resulting main effects model showed Average Delay and Commercial Vessels 

to be insignificant. Estimating a full second order model indicated the model is significant, but 
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the p-value for every independent variable indicated insignificance. This inconsistency seems 

likely caused by interdependence. Returning to the main effects model, Commercial Vessels has 

the greatest VIF value at 3.10. We decided to omit Commercial Vessels and estimate another 

main effects model. The model showed Average Delay as the only insignificant variable. The 

following full second order model, again, indicated the model contained significance, but the p-

value for every interaction indicated insignificance. Returning to the main effects model to omit 

the variable with the now highest VIF, we omitted Average Delay with a VIF of 1.32. The 

following main effects model, now only a function of Average Processing Time, Barges Loaded, 

and Recreational Vessels, showed only significant variables, indicating our stopping point. The 

normal probability plot of the results confirmed our assumption of normally distributed data 

(Shapiro-Wilk W test for normal data p-value = 0.558). 

As shown in Table 9, the resulting coefficients for both the low barges loaded main 

effects model and the high barges loaded main effects model coincide in direction for Average 

Processing Time, Barges Loaded, and Recreational Vessels. Average Processing Time and 

Recreational Vessels have an inverse relationship with Total Commodity Flow, indicating an 

increased Average Processing Time and an increased number of Recreational Vessels will slow 

commodity flow through a lock. Commercial Vessels, in the low Barges Loaded model, also has 

a negatively correlated relationship with Total Commodity Flow. Barges Loaded has a direct 

relationship with Total Commodity Flow, indicating the more Barges Loaded passing through a 

lock, the more Total Commodity Flow passing through the lock. By studying the magnitude of 

each variable’s coefficient, we can understand which variables have the greatest impact on Total 

Commodity Flow. In the low Barges Loaded model, Average Processing Time has the greatest 
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influence with a factor of 107,096, signifying decreasing Average Processing Time should be the 

top priority when trying to increase Total Commodity Flow. 

Table 9 – Displayed are the coefficients in the final models of commodity flow. 

Term Barges loaded < 15400 Barges loaded > 15400 

Constant 2,037,876 5,112,708 

Average Processing Time -107,096 -22,042.31 

Barges Loaded 1671.3 1375.3 

Commercial Vessels -546  

Recreational Vessels -315.4 -278.7 

Finally, it is interesting to note how our results differ from those in Table 10, for the full 

range of barges loaded, returned by automatic procedures in Minitab statistical software 

(backward, forward and stepwise). 

Table 10 – Displayed are the coefficients in the model returned by automatic procedures in 

Minitab. 

Term Full range of barges loaded 

Constant 2,150,520 

Average Processing Time -42,400 

Barges Empty -279.4 

Barges Loaded 1674.7 

Percent Vessels Delayed -7527 

Recreational Vessels -343.4 

Scheduled Unavailabilities -4736 

Conclusions and Future Work 

Our resulting equations allow us to better understand the relationships between variables 

and Total Commodity Flow and identify the key players which USACE should pay close 

attention to when aiming to increase commodity flow with limited maintenance funding. Our 



McGee 

18 
 

methods and procedures can be used to identify important factors concerning commodity flow on 

specific waterways.   

Further research concerning this topic should refer to Table 8 and follow the same 

procedure as described above for each of the eleven other models. By eliminating insignificant 

variables and clustering when needed, more relationships between variables and Total 

Commodity Flow will be revealed. Researchers should investigate the similarities across 

unavailability variables for each waterway, to understand which variables commonly influence 

the waterway of study, regardless of unavailability variable. 

 Automatic procedures like stepwise regression produce different results compared to our 

methods that address interaction and can create subsets of the data (see Tables 9 and 10). It 

would be interesting to investigate these differences and better understand tradeoffs between the 

two modeling philosophies. Also, there are alternatives to addressing interdependence by 

deleting variables (e.g., partial least squares regression). 

While this research studied the Arkansas, Ohio, and Illinois waterways, future work 

should expand into other waterways, potentially by focusing on the waterways needing most 

maintenance attention according to USACE. Continuing this work will only lead to more insights 

into the inland waterway transportation system, hopefully aiding the USACE in maintenance 

decision making. 
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Appendix 

Definitions of Provided Variables 

Average Delay 

(Hours) 
The average delay time, expressed in hours, for vessels which 

passed through a lock chamber 

Average Processing Time 

(Hours) 
The average time, expressed in hours, to completely process all 

vessels through a chamber 

Barges Empty  

(#) 
The total number of barges with no commodities which have 

passed through a lock chamber 

Barges Loaded  

(#) 
The total number of barges containing commodities passing 

through a lock chamber 

Commercial Flotillas 

(#) 

The total number of commercial flotillas (tows with barges or 

self-propelled vessels carrying commodity) passing through a 

lock chamber  

Commercial Vessels 

(#) 
The total number of commercial vessels (includes tows, cargo 

carrying vessels, commercial fishing boats, lightboats – tows 

without barges, ferries) passing through a lock chamber 

Commercial Lockages  

(#) 

The total number of lockages involving commercial vessels 

[A lockage is a transfer of a vessel(s) through a chamber in a 

single direction.] 

For flotillas entering a smaller lock, where a chamber is too 

narrow to fit the vessel and its barges through, the flotilla is 

separated in to several trips through the lock, with each carrying 

a portion of the total barges; each of these trips is called a cut. 

Non-Commercial Vessels  

(#)  

The total number of non-commercial vessels (including U.S. 

government vessels) passing through a lock chamber 

Non-Commercial Flotillas  

(#) 

The total number of non-commercial flotillas passing through a 

lock chamber 

Non-Commercial Lockages  

(#)  
The total number of lockages involving non-commercial vessels  

[A lockage is a transfer of a vessel(s) through a chamber in a 

single direction.] 

Percent Vessels Delayed  

(%) 
The percentage of all vessels experiencing a delay between the 

arrival point and start of lockage 

Recreational Lockages  

(#) 
The total number of lockages involving recreational vessels 
[A lockage is a transfer of a vessel(s) through a chamber in a 

single direction.] 

Recreational Vessels 

(#) 
The total number of recreational vessels passing through a lock 

chamber 

Total Lockages  

(#) 
The total number of lockages for all vessels (commercial, 

recreational and "other") passing through a lock 

chamber 

Total Vessels  

(#) 
The total number of vessels of all types (commercial, 

recreational and "other") passing through a lock chamber 
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Scheduled Unavailabilities  

(#) 

The number of unavailabilities that are scheduled in advance 

[Generally, these appear in Notices to Navigation Interests 

published by USACE districts.] 

Scheduled  

Unavailable Time 

(Hours) 

The amount of scheduled unavailability time, expressed in 

hours, at a lock 

Unscheduled 

Unavailabilities  

(#) 

The number of unavailabilities that are not scheduled in advance 

Unscheduled  

Unavailable Time 

(Hours) 

The amount of unscheduled unavailability time, expressed in 

hours, at a lock 

Unavailabilities  

(#) 

The sum of scheduled and unscheduled unavailabilities 

Unavailable Time 

(Hours) 
The sum of scheduled and unscheduled unavailable time 

10 

(tonnage) 
The commodity type associated with all coal, lignite, and coal 

coke commodities 

20 

(tonnage) 
The commodity type associated with all petroleum and 

petroleum products 

30 

(tonnage) 

The commodity type associated with all chemicals and related 

products 

40 

(tonnage) 

The commodity type associated with all crude materials, 

inedible, except fuels 

50 

(tonnage) 

The commodity type associated with all primary manufactured 

goods 

60 

(tonnage) 
The commodity type associated with all food and farm products 

 

70 

(tonnage) 
The commodity type associated with all manufactured 

equipment & machinery 

(“Definition of Terms,” n.d.; “Navigation-Locks Definitions,” n.d.) 
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