

Tag Recommendation for Short Arabic Text by

Using Latent Semantic Analysis of Wikipedia

تحليل امدخباستاقتراح أوسمة للنصوص العربية القصيرة

 العربية ويكيبيديالعلى االدلالات الكامنة

Yousef K. Abu Samra

Supervised By:

Dr. Iyad M. Alagha

Assistant Professor of Computer Science

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Information Technology

April/2017

 زةـــــغ – ةـــلاميـالإس ةـامعـــالج

 العليــا والدراســـات العلمــي البحث شئــــون

 المعلـومـــــــــات تكنــولــوجيـــــــا كليــــــــة

 المعلـومــــــــات تكنــولــوجيـــا مـــــاجستير

 Islamic University – Gaza

Deanery of Post Graduate Studies

Faculty of information technology

Master of Information Technology

II

 إقــــــــــــــرار

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Tag Recommendation for Short Arabic Text by Using

Latent Semantic Analysis of Wikipedia

تحليل الدلالات الكامنة استخدامباقتراح أوسمة للنصوص العربية القصيرة

 ويكيبيديا العربيةلعلى ا

أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وأن هذه

أو بحثية عليميةلنيل درجة أو لقب علمي أو بحثي لدى أي مؤسسة ت الاخرين الرسالة ككل أو أي جزء منها لم يقدم من قبل

 أخرى.

Declaration

I understand the nature of plagiarism, and I am aware of the University’s policy on

this.

The work provided in this thesis, unless otherwise referenced, is the researcher's own

work, and has not been submitted by others elsewhere for any other degree or

qualification.

 :Student's name يوسف خميس أبو سمرة اسم الطالب:

 :Signature التوقيع:

 :Date التاريخ:

III

Abstract

Social media sites enable users to share items, such as texts and images, and

annotate them with freely chosen keywords called tags. However, freedom comes at a

cost: uncontrolled vocabulary can result in tag redundancy, ambiguity, sparsity, miss-

spilling, and idiosyncrasy, thus impeding more effective organization/retrieval of

resources in tagging systems.

This work proposes an Arabic Language tag recommender system that exploits

the Arabic Wikipedia as background knowledge. Latent semantic analysis was

employed to discover hidden semantics between the short text and Wikipedia articles.

Apache Spark was used to handle the massive content of Wikipedia and the complex

computations of latent semantic analysis which is used to analyze Wikipedia articles

into three matrices. Given an Arabic short text as input, the system compares it to the

body of the articles and scores them according to their relevance to the short text.

Candidate tags are determined from top-scored articles by exploiting articles' titles and

categories.

The proposed system was assessed over a dataset of 100 tweets covering three

different domains. Generated tags were rated by two human experts in each domain.

Our system achieved 84.39% mean average precision and 96.53% mean reciprocal

rank, revealing the system adequacy and accuracy for tagging Arabic short texts while

still has difficulties regarding Arabic language, and affected by frequencies of rare

terms. A thorough analysis and discussion of the evaluation results are also presented

to address the limitations and strengths as well as the recommendations for future

improvements.

Keywords: Short text, tag recommender, Arabic Language, Wikipedia, Latent

Semantic Analysis, Spark

IV

 الملخص

تتيح المواقع الاجتماعية للمستخدمين مشاركة المواد كالنصوص والصور، وتتيح حرية إضافة كلمات

رئيسية لها تسمى أوسمة. ولكنَّ الحرية لها مساوئ منها: التكرار الناتج عن عدم ضبط الكلمات، الغموض، التشتت،

 انات في هذه الأنظمة. الأخطاء الإملائية، والتفرّد، مما يعيق عمليات تنظيم واسترجاع البي

يا القصيرة بالاستفادة من الويكيبيدالعربية نهدف في هذا العمل إلى عرض نظام اقتراح أوسمة للنصوص

صير التشابه بين النص الق لاكتشاف الكامنة الدلالات تحليل للمعلومات، بحيث يتم توظيف العربية كمصدر

ومقالات الويكيبيديا. وقد استخدم "أباتشي سبارك" للتعامل مع الحجم الضخم لمحتويات الويكيبيديا والعمليات

عند و ،صفوفاتم تحليل محتوى مقالات الويكيبيديا إلى ثلاثلالمستخدم الحسابية المعقدة لتحليل الدلالات الكامنة

ابهها حسب علاقتها وتش وزنا مقالات ويعطي كل مقالة الالنظام بمقارنته مع محتوى قصير، يقوم عربي إدخال نص

 بالنص. امع النص المدخل، ثم يتم اختيار الأوسمة المرشحة من عناوين وتصنيفات المقالات الأكثر شبه

نص قصير تم جمعها من موقع تويترفي ثلاث 100على مجموعة من عتمادا اتم تقييم النظام المقترح

 %84.39مجالات مختلفة و قام خبيران في كل مجال بتقييم الأوسمة التي أنتجها النظام. وقد حقق النظام المقترح

mean average precision 96.53و% mean reciprocal rankلتوسيم ودقته النظام هر مناسبةظ، مما ي

ما تم عرض ك .ه صعوبات تتعلق باللغة العربية وبتكرارات الكلمات النادرةجفي حين أنه يوا العربية النصوص

تطوير العمل ل إلى توصيات تحليل دقيق ومناقشة لنتائج التقييم تتناول نقاط القوة والقصور في النظام إضافة

 مستقبلا .

 كالعربية، ويكيبيديا، تحليل الدلالات الكامنة، سبارنصوص قصيرة، اقتراح أوسمة، اللغة : كلمات مفتاحية

V

Epigraph Page

ِ ٱلرهحۡمَٰنِ ٱلرهحِيمِ بِسۡمِ ٱللَّه

ٓۖٓ إنِهكَ قَالوُاْ سُبۡحََٰنَكَ لََ عِلۡمَ لََآَ إلَِه مَا عَلهمۡتَنَا
نتَ ٱلۡعَليِمُ ٱلَۡۡكِيمُ

َ
 ٣٢أ

 (32)ة رَ قَ الَ ةُ ورَ سُ

VI

Dedication

To my dear mother and father who have given me all their love and support over the

years, and for their unwavering commitment through good times and hard times.

To my wonderful, brilliant and supportive wife, Niveen, for her patience, forbearance

and sustenance through my studying and preparing of this thesis. To my elegant sons

Sary and Tameem, and my sweet daughter Yumna, whom I do all of this for them.

To my brothers and sister for their love and care.

To the spirit of martyr, my brother Sary.

To my father-in-law and mother-in-low for their encouragement and believing in me.

To my best friends Ashraf Qahman and Murad abu Jarad for their support and

encouragement.

To all my friends and colleagues who supported me.

VII

Acknowledgement

At the very outset, my thankfulness are to Allah the almighty who provided me with

the needed strength to successfully accomplish this work, and to be surrounded by

great and helpful people.

I would like to express my deepest gratitude to my advisor, Dr. Iyad Mohammed Al

Agha, for his constant guidance, challenging discussions and advices, enthusiasm, and

knowledge. He motivated me to think more deeply about my work. He also made great

effort to build the structure and refine every detail of my work. I am grateful to him

for working with me. I learned so much, it has been an honor. My Allah reword him

on my behalf.

My everlasting gratitude to my parents who encouraged me to be the best I can be and

to have high expectations and for their continuous prayer for the sake of my success.

Special thanks to my loving wife and children, who have been a constant source of

support and encouragement during the challenges of graduate and life. Words cannot

express how grateful I am to have you in my life.

Also, I am thankful for my whole family and friends for encouragement and support.

My sincere thanks also go to the department of information technology for facilitating

needed means to accomplish this work.

VIII

Table of Contents

DECLARATION ... II

ABSTRACT... III

 IV ... الملخص

EPIGRAPH PAGE .. V

DEDICATION .. VI

ACKNOWLEDGEMENT ... VII

LIST OF TABLES ... X

LIST OF FIGURES .. XI

LIST OF ABBREVIATIONS ... XII

CHAPTER 1 INTRODUCTION ... 1

1.3.1 Main Objective .. 5
1.3.2 Specific objectives ... 5

1.5.1 Scope: .. 6
1.5.2 Limitations: ... 6

CHAPTER 2 LITERATURE REVIEW ... 10

2.2.1 Apache Spark... 11
2.2.2 Latent Semantic Analysis (LSA) .. 12
2.2.3 Arabic Wikipedia ... 17

2.3.1 Short text tagging: ... 18
2.3.2 Text tagging: ... 21
2.3.3 Tagging with LSA .. 21

CHAPTER 3 METHODOLOGY ... 24

3.2.1 Parsing and information extraction from Arabic Wikipedia XML Dump 25
3.2.2 Text Preprocessing .. 26

3.3.1 Computing the Tf-idfs .. 30
3.3.2 Vectorization ... 31
3.3.3 Singular Value Decomposition .. 31

IX

3.4.1 Text Preprocessing .. 34
3.4.2 Vectorization ... 35
3.4.3 Selecting the top N Similar articles ... 35
3.4.4 Selecting Tags ... 36

CHAPTER 4 RESULTS AND DISCUSSION ... 46

4.4.1 Experiment 1: Determining the top N articles ... 48
4.4.2 Experiment 2: evaluation of the system ... 52

CHAPTER 5 CONCLUSIONS ... 63

REFERENCES .. 67

X

List of Tables

Table (2.1): Term occurrences in documents ... 13

Table (2.2): Terms and documents in a concept.. 15

Table (3.1): Information about the downloaded dump and the contained information 25

Table (3.2): Deleted texts and terms ... 26

Table (3.3): Results of Arabic stemmers' comparison .. 27

Table (3.4): Precision and time efficiency for NLP tools ... 28

Table (3.5): Statistics about the knowledge base .. 30

Table (3.6): Categories intersections of the similar articles .. 38

Table (3.7): The top 7 articles for the tweet ... 41

Table (3.8): Categories selected by the system ... 41

Table (3.9): Titles selected by the system .. 42

Table (3.10): Suggested tags for the tweet ... 42

Table (4.1): A snapshot of the gathered dataset .. 46

Table (4.2): Master node specifications ... 47

Table (4.3): Worker nodes specifications .. 48

Table (4.4): Correct and incorrect tags of a tweet ... 49

Table (4.5): Result of experiment on 10 tweets with different number of top articles 50

Table (4.6): New tags at 18 top articles for example in Table (4.4) 52

Table (4.7): Tags of a tweet evaluated by experts ... 53

Table (4.8): A short text, resulted tags, expert evaluation and measures calculations 55

Table (4.9): Evaluation metrics of the system .. 55

Table (4.10): Results across different subjects.. 56

XI

List of Figures

Figure (1.1): The system described in simple steps ... 3

Figure (2.1): The form of the singular-value decomposition .. 14

Figure (3.1): The tag recommender system .. 24

Figure (3.2): Result of SVD for a 5 documents 7 terms matrix 32

Figure (3.3): calculating the cosine similarity .. 33

Figure (3.4): Preprocessing of the short text .. 39

Figure (3.5): Short text as a vector ... 40

Figure (4.1): Results for 10 tweets on different number of top articles 51

Figure (4.2): AP(1-100)@k(1-10) ... 57

XII

List of Abbreviations

API Application Programming Interface

LSA Latent Semantic Analysis

MAP Mean Average Precision

MRR Mean Reciprocal Rank

NLP Natural Language Processing

P@K Precision @ position K

PoS Part-of-Speech

RDD Resilient Distributed Dataset

SVD Singular Value Decomposition

Tf-idf Term Frequency Inverse Document Frequency

URL Unified Resource Locator

XML Extensible Markup Language

Chapter 1

Introduction

1

1 Chapter 1

Introduction

 Introduction

With the massive daily increase of data on the internet, especially text, automatic

tagging recommendation that detects and adds informative, and descriptive tags to

documents becomes an important necessity for information aggregation and sharing

services(Oliveira et al., 2012).

Tagging is the practice of creating and managing labels called tags that

categorize or describe the content using simple keywords. It's not a new concept.

Journals, conference proceedings, and even dissertations have required keywords from

authors to improve their information retrieval performances for years. (Jeong, 2009).

Tagging is considered as the way to organize the stuff you don’t have time to

organize(Fallows, 2007).

Social activities on Twitter, Facebook, Flicker, personal blogs etc. are becoming

very popular among users who want to share local or global news, their knowledge or

opinions (Kywe, Hoang, Lim, & Zhu, 2012). Lately, users are also using these services

to search for information. Therefore, some services include tag or category information

to better facilitate search. However, these tags are typically free-form in nature with

users permitted to adopt their own conventions and interests without restriction, which

can make the set of tags noisy and sparse. Moreover, many works have addressed

tagging documents, whereas short texts are peculiar regarding length, composition and

formality(Garcia Esparza, O'Mahony, & Smyth, 2010).

A solution to the above problem is to recommend tags (Garcia Esparza et al.,

2010) or categorizations to users to enrich and clarify the content, facilitate retrieval,

and perform less cognitive effort. Which, in one hand, if done properly, will improve

text retrieval, linking, classification, clustering, recommendation, simplify archiving,

and also will give the user or the application insight to the content and facilitate seeing

the data (information) from different dimensions and enrich the context of the tagged

text. On the other hand manual tags or metadata creation is costly in terms of time and

2

effort and users are unwilling to provide an adequate number of tags which is called

tag sparsity.

Many works have addressed the tag recommendation problem, but the special

characteristics of short texts has made the tag recommendation a new and even more

challenging dilemma. It is statistically shown that social texts are extremely short,

poorly composed, and tend to be more informal (Guo, Li, Ji, & Diab, 2013). So the

application of conventional statistical techniques becomes impractical due to these

special characteristics.

When we search for a text, what we really want is to look for the meaning behind

the words of the text not the exact terms. Latent Semantic Analysis (LSA) has the

ability over other techniques to discover these meanings depending on a powerful

linear algebra technique called the Singular Value Decomposition (SVD) (Ryza,

Laserson, Owen, & Wills, 2015). SVD can describe the intensities of relations between

the components of an input matrix, e.g. Documents and terms, which reveals different

relations between the components, such as the relation from: term to term, term to

document or document to document (Turney, 2001). This property gives LSA the

advantage over techniques like Natural language processing (NLP) (Guo et al., 2013;

Laclavik, Šeleng, Ciglan, & Hluchý, 2012) or machine learning techniques (Allahyari

& Kochut, 2016a; Tang, Hong, Li, & Liang, 2006) that lack semantics, because it goes

deeper than comparing terms, to comparing the meanings behind these terms (Ryza et

al., 2015).

LSA was used on data sets other than the Arabic Wikipedia, since Arabic

language may pose additional problems because few (or less reliable) resources are

available to extract the needed data from the text. While the Arabic Wikipedia is

recently used in fields other than tagging, this filed remains unexplored especially for

short texts.

Our work aims to recommend tags for short Arabic text, e.g. tweets, depending

on Arabic Wikipedia Articles and categories, in an effort to select proper tags such as

the title and the categories of the articles that are pertinent to the text by utilizing LSA

and dimensionality reduction heavy computations. In order to do that, we need to

3

handle a massive collection of data (Arabic Wikipedia) which contains over a million

Articles and a seven million terms, that no single accessible computer we have can

deal with, leading to our need to use Apache Spark cluster (Zaharia, Chowdhury,

Franklin, Shenker, & Stoica, 2010).

The choice of Arabic Wikipedia as a source of tags is motivated by its large

coverage of different knowledge areas, a thing that makes it adequate for

recommending tags in any domain of knowledge. Given an Arabic short text, the

system suggests ranked tags to that text. These tags are selected from the titles and

categories of the Arabic Wikipedia. (Figure 1.1) presents the system as simple steps,

details will be discussed later in Chapter 3.

Figure (1.1): The system described in simple steps

 First the system constructs the term document matrix by employing the term

frequency-inverse document frequency (Tf-idf) weighting schema on the body of the

articles after segmentation and lemmatization. Then the latent semantic analysis LSA

is applied on that matrix by performing the singular value decomposition. This step

allows the system to discover hidden semantics between the input short text and the

Wikipedia articles by calculating cosine similarity. Tags are selected from the titles

and categories of the articles that are most similar to the short text. Furthermore, the

selected tags are ranked in order to present the best tags first.

4

As far as we aware of, this is the first effort that aims to offer tag suggestion of

Arabic text using Wikipedia. While the English version of Wikipedia has been widely

utilized in several research areas related to information retrieval and Natural Language

Processing. Not all researchers and developers have the computational resources to

process such a volume of information and there has been little efforts to utilize the

Arabic Wikipedia for similar research. The proposed system is expected to act as a

baseline for the research tackling Wikipedia-based tagging of Arabic text.

The tag recommender was assessed over a dataset of 100 short texts gathered

randomly from Twitter in three domains: Sports, Technology, and News. The tags

generated by the system where examined and judged by two human experts in each

field. Our recommender achieved (84.38%) mean average precision and (96.53%)

mean reciprocal rank.

 Statement of the problem

The main problem addressed by this research is how to recommend semantically

related tags to Arabic short text by exploiting Arabic Wikipedia. No effort, to our

knowledge, has explored the use of Arabic version of Wikipedia for tagging Arabic

texts.

Besides, tags generated by existing techniques mostly relied on statistical

approaches while they lacked semantics. They were also restricted to English

Language or were applicable on long documents only. In addition, many of existing

approaches were domain specific, had limited coverage of knowledge areas, and did

not often suit extremely short, poorly composed, and informal short texts.

 Objectives

In this section, we present both main and specific objectives of the research

work.

5

1.3.1 Main Objective

The main objective of this research is to design and implement an automatic

semantic tag recommender for short Arabic texts that is accurate and reliable, by

exploiting the Arabic Wikipedia.

1.3.2 Specific objectives

The specific objectives of the proposal are:

1. Explore how the massive content of the Wikipedia can be processed effectively.

2. Explore the best processing and NLP techniques for Arabic language Lemmatizing

and segmenting, compare them, and select the most suitable to our work in order to

access, preprocess, clean and filter the content of Arabic Wikipedia.

3. Investigate the implementation of LSA and how to identify most relevant and

similar documents.

4. Provide a novel technique for tagging Arabic short texts from the titles and

categories of the relevant Wikipedia articles.

5. Assess the performance of our system by annotating short texts obtained from social

networks (Twitter). The performance will be evaluated by a number of experts in

different fields and evaluation metrics.

 Importance of Research

1. Recommend semantically related tags for Arabic short texts which give insight and

enrich the text. Since tags are becoming more significant to improve search and text

retrieval, simplify archiving, linking, classification, clustering, recommendation,

and provide consistency among users.

2. Due to the scarcity of works that are oriented towards Arabic language in the field

of automatic tag recommendation, this work could advance first step in the field of

Arabic tag recommendation. While our technique still general but the test is limited

to Arabic short text.

3. Extend the coverage of our tagger by exploiting Arabic Wikipedia with its massive

content as a background knowledge. This will provide a system that is more general

than domain specific taggers.

6

 Scope and limitations of the project

1.5.1 Scope:

 This work utilizes only the Arabic Wikipedia.

 Our work is limited to short Arabic texts. But the process is easily applicable for

any language.

 Our technique considered standard Arabic language as well as non-standard

Arabic language texts published by common people.

 The evaluation of the system was done using a specific dataset gathered from posts

on twitter in the fields of Sports, Technology, and News, similar to the fields of

our experts. It was not possible to conduct a comparative study due to the lack of

similar tagging approaches of Arabic text

 Apache Spark was used as parallel framework to process the content of Wikipedia

and build the LSA based system.

1.5.2 Limitations:

1. Low efficiency of the existing Arabic segmenters and stemmers affects the

quality of results.

2. Some of the Arabic Wikipedia pages have misspellings and incomplete content.

3. Tweets used for testing contain words of daily dialect (slang), and misspellings,

which have a negative influence on the results.

4. Non-Arabic names sometimes are written differently in Arabic (e.g. people,

places, scientific experiments, compounds) which affect the quality and

accuracy of the results. Also, the system excludes terms written in Latin

characters.

5. The terms of input short text that are not found in Wikipedia was excluded from

the short text.

6. Comparing a short text with a long one could increase the computation on the

system.

7

 Research contribution

The work in this thesis has the following research contributions:

1. A comparison was conducted between some NLP for Arabic language to

select the best one based on the suitability of outcome for our work and

regardless of the execution time.

2. Implement (LSA) on the whole Arabic Wikipedia. Because, as we recall,

LSA is used mostly to tackle the English version not the Arabic version.

3. Present a novel system that we can consider it as a guideline for the future

efforts in utilizing Arabic Wikipedia structure in real life applications.

4. It proposes an in-depth evaluation of our tagging system and explored the

potential shortcomings and strengths. This detailed evaluation can inform

Arab research community with the various design options, challenges and

recommendations when designing similar approaches.

5. This is the first work, as far as we know, that explores the tagging of short

Arabic text by exploiting Arabic Wikipedia content and LSA. Arabic

Wikipedia has been exploited recently by the Arab researchers and few

efforts have tried to interface to the Arabic version of Wikipedia for different

purposes distant from tagging.

6. Generate a standard dataset for Arabic short-texts and tags.

 Structure of Thesis

The thesis consists of five chapters. The chapters are organized in general as

follows:

Chapter 1: Introduction: this chapter is an overview of the problem, work done in

the field, and focuses on the proposed solution. It also discusses the challenges and

difficulties of using Arabic text and Arabic Wikipedia.

Chapter 2: Literature Review: this chapter focuses on related works that employed

Wikipedia or LSA as well as the works on the tagging field.

8

Chapter 3: Methodology: This chapter explains the detailed steps of the tagging

system. And present a scenario of the system and the results of each phase.

Chapter 4: Results and Discussion: this chapter explains the assessing process of our

system, test dataset, evaluation metrics, and discusses the results focusing on the

sources of strengths and weaknesses.

Chapter 5: Conclusions: this chapter presents a conclusion of the thesis and possible

future works.

9

Chapter 2

Literature Review

10

2 Chapter 2

Literature Review

 State of the Art

The world-wide-web has become the largest ever free-access information

repository with billions of web pages (Abdeen & Tolba, 2010). With the massive daily

increase of data, especially text, novel approaches are needed to mine such data

efficiently and effectively. One way to improve efficiency is to provide proper tags.

Some recent works employ tags in retrieval (Ionescu et al., 2015),clustering (Bernotas,

Karklius, Laurutis, & Slotkienė, 2015), classification (Dafney & Mary, 2014) etc.

Plenty of state-of-the-art have addressed the issues of tagging(Allahyari &

Kochut, 2016a; Garcia Esparza et al., 2010; Hassan, Karray, & Kamel, 2012; Otsuka,

Wallace, & Chiu, 2014), keywording (HaCohen-Kerner, 2003; Hulth, 2003; Laclavik

et al., 2012; O'Neil & Sangiovanni-Vincentelli, 2014; Tang et al., 2006; Tonella,

Ricca, Pianta, & Girardi, 2003; Turney, 2000; Yih, Goodman, & Carvalho, 2006), and

summarizing text (Gong & Liu, 2001; Yeh, Ke, Yang, & Meng, 2005), which all, one

way or another, are aiming to acquire important and meaningful tags (words, phrases,

or sentences) that describe the content and the soul of the text.

Our work aims to recommend tags for short Arabic text, e.g. tweets, depending

on Arabic Wikipedia Articles and categories, in an effort to select proper tags such as

the title and the categories of the articles that are pertinent to the text by utilizing LSA

and dimensionality reduction heavy computations. In order to do that, we need to

handle a massive collection of data (Arabic Wikipedia) which contains over a million

Articles and a seven million terms, that no single accessible computer we have can

deal with, leading to our need to use Apache Spark cluster (Zaharia et al., 2010).

The following section presents a brief background about Apache Spark, Latent

semantic analysis, Singular Value Decomposition and Arabic Wikipedia.

11

 Background

2.2.1 Apache Spark

Apache Spark is an open source big data processing framework built around

speed, ease of use, and sophisticated analytics. It was originally developed in 2009 in

UC Berkeley’s AMPLab, and open sourced in 2010 as an Apache project (Zaharia et

al., 2010).

We restrict our attention to Spark, because it provides a highly-optimized

machine learning library called MLlib (Meng et al., 2016) which has several features

that are particularly attractive for matrix computations (Bosagh Zadeh et al., 2016;

Zadeh et al., 2015):

1. Resilient Distributed Datasets (RDDs) is essentially a distributed fault-tolerant

vector that can perform operation as in local mode(Gittens et al., 2016).

2. RDDs allow user-defined data partitioning, and the execution engine can exploit

this to co-partition RDDs.

3. And co-schedule tasks to avoid data movement.

4. Spark logs the history of operations used to build an RDD, enabling

reconstruction of lost partitions upon failures.

5. Spark provides a high-level API in Java that can be easily extended. Which lead

to creating a coherent API for matrix computations.

Hadoop (Zikopoulos, 2011) is another big data processing framework that is a

software library and a framework which allows for distributed processing of large data

sets (big data) across computer clusters using simple programming models. But Spark

is favorable to us because (Spark, 2014) first: its ease of use compared to Hadoop and

allows writing applications in Java and other languages. Second: Spark runs programs

up to 100 times faster than Hadoop. Third: Spark powers a stack of libraries including

MLib for machine learning which is essential to our work and also provid near real

time analysis that is suitable for machine learning.

Many works have used Spark and MLib for data analysis purposes (Agnihotri,

Mojarad, Lewkow, & Essa, 2016; Moss, Shaw, Piper, Hawthorne, & Kinsella, 2016),

12

stating the adequacy for processing terabytes/petabytes of data, which are

commonplace in modern day society where both machines and humans generate

petabytes of data every day.

2.2.2 Latent Semantic Analysis (LSA)

Latent Semantic Analysis, as the name indicates is the analysis of hidden

semantics in a corpora of text. Any collection of documents can be represented as a

huge term-document matrix and other things like how close two documents are, how

close a document is to a query etc. can be deduced by cosine similarity. However, such

models have two drawbacks that are common in many languages: polysemy and

synonymy (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990) where

polysemy is a word that have different meanings in different contexts and synonymy

is a concept having multiple forms of representation i.e. two or more words denoting

the same concept.

LSA transforms the original data into a different space so that two (or more)

documents/words about the same concept are grouped together (so that they are most

similar to each other). LSA achieves this by Singular Value Decomposition (SVD) of

term-document matrix.

2.2.2.1 How Latent Semantic Analysis Works

When we try to find relevant document to search words, the problem arose

because what we really want is to compare the meanings or concepts behind the words.

LSA attempts to solve this problem by mapping both words and document into a

concept space and doing comparisons in that space (Deerwester et al., 1990).

In order to make this problem solvable, LSA introduces some dramatic

simplifications.

1. Documents are represented as "bags of words", where the order of the words in a

document, sentence structure, and negation are not important, only the number of

the word occurrences in the document matters.

13

2. Concepts are represented as patterns of words that usually appear together in

documents. For example "اندلع" ,"حريق", and "إطفاء" (fire, flare, and firefighting,

respectively) might usually appear in documents about "حريق" (Conflagration).

3. Words are assumed to have only one meaning. This is clearly not the case ("جدول"

could be a table "صفوف وأعمدة", schedule "الفعل: جدول" or a spring "ينبوع") but it

makes the problem tractable.

To build the term-document matrix words are usually pre-processed by means

of tokenization, stop-words removal and stemming (Sarwar, Karypis, Konstan, &

Riedl, 2001). Then each token is assigned a weight which is proportional to its

frequency normalized using various schemes, the most known is the Term frequency-

Inverse Document Frequency Tf-idf scheme (Han, Pei, & Kamber, 2011) ,where

))df/(log1()tf1(logw 10,10, tdt N
dt

 (2.1)

Tf-idf is a numerical statistic that is intended to reflect how important a word is

to a document in a collection or corpus. In this matrix each column represents a

document and each row in the column represents a term frequency in that document.

We apply Tf-idf weighting because it negates the effect of high frequency words in

determining the importance of a document. And we use log to the base 10, to diminish

the values of the results, since we are dealing with huge number of documents and

terms. As a simple example we present (Table 2.1) below, which shows each term

occurrences in every document that we depend on in calculating the Tf-Idf for each

term-document.

Table (2.1): Term occurrences in documents

 D1 D2 D3 D4 D5

t1 1 0 3 0 0

t2 1 1 0 0 0

t3 0 1 0 3 1

t4 1 1 0 1 0

t5 0 0 0 0 2

For example to calculate the Tf-Idf for the term t1 in the document D3:

First: Tft1,d3 =
)tf1(log 3,110 dt

 = log(1+ occurrences of t1 in D3) = log (1+3) = 0.6

https://en.wikipedia.org/wiki/Text_corpus

14

Second: Idf t1,d3 =
)df/(log1 10 tN
 = log(No of all documents/No of documents that

. contain t1)

 = 1+log(5/2) = 1.398

Finally: Tf-Idf t1,d3 = 0.6 * 1.398= 0.8388

And this is performed for every term in each document.

In LSA, matrix approximation performed by singular value decomposition that

can relate documents and terms into concepts. Documents and terms in each concept

are all semantically related which make it superior to frequency based approaches.

SVD effectively “splits” a term-document matrix M(m × n) into three new matrices,

U, S, and V(Ryza et al., 2015).(Figure 2.1) shows the SVD form. Where m is the

number of documents and n is the number of terms.

Figure (2.1): The form of the singular-value decomposition

A numerical example of SVD and dimensionality reduction is introduced below.

Example: Let M be a (5 documents) × matrix (7 terms), which has the shown

values. The number reflects term counts in documents for simplicity. We need to

perform the SVD on the matrix, then perform the dimensionality reduction setting k=2,

where 2 in the number of concepts to map the documents into.

15

M=

The Result after performing SVD and dimensionality reduction with k=2 will be

as below:

Where the shaded values in U represent the documents related to the shaded

concept in S, and the terms related to the same concept are the ones shaded in VT.

An example to the terms and documents that can be found in a concept are shown

in (Table 2.2).

Table (2.2): Terms and documents in a concept

Documents Terms

 familyعائلة Lepidopteraحرشفيات الأجنحة

 Orchidaceaeسحلبية Orchidزهرة الأوركيد

 beetleخنفساء Crustaceansقشريات

 zoneمنطقة biologyعلم الأحياء

 mothعث Insectsمملكة الحشرات

 hawkmothفراشة typica-speciesنوع نمطي

 speciesأجناس

 genusنوع

16

We notice that the presented documents in the concept have a thematic

coherence with each other and with the terms related to the same concept. And also

the terms are semantically related to each other.

2.2.2.2 Querying and scoring with the low dimensional representation

The Tf-idf composed matrix presents a shallow knowledge about the relationship

between entries, depending on the simple frequency count. LSA has the ability to base

scores (similarities) on a deeper understanding of the corpus. For example: if the term

Samsung (سامسونج) appears in the article of smartphone (ذكي هاتف), which frequently

mentions Apple (أبل), the LSA representation may be able to recover the relation

between Samsung and Apple based on the co-occurrence of them in other documents.

Now, consider the task of finding the most relevant document to a particular

document. The naïve approach requires computing the dot product between the row

vector of the document, and every other row vector in the term-document matrix.

Where the number of multiplications is proportional to the number of documents times

the number of terms. LSA can achieve this by a number of multiplication proportional

to the number of document times the number of concepts. So rather than calculating

the similarities on the low rank matrix (Tf-idf matrix), some linear algebra

manipulations show that the cosine similarity between two rows in the reconstructed

matrix is exactly equal to the cosine similarity between the corresponding rows in US

matrix. Finding the cosine similarity between the document and all other documents

is equivalent to multiplying US to the corresponding row resulting in (US)ud.

What about new documents? Simply, the same. But, instead of finding the row

of the document in the matrix, we need to create it. It can be done by setting the value

of each term in the query (the new short text) to its inverse document frequency to

maintain the weighting scheme used in the original term-document matrix(Ryza et al.,

2015). Before the comparison and after forming the short text vector, it is multiplied

by the matrix VT to compute the concept space vector of the short text.

17

2.2.3 Arabic Wikipedia

Wikipedia in general has been adopted in many works, specially, text processing.

Works in the field of this thesis (Allahyari & Kochut, 2016a; Hassan et al., 2012; Mei

& Zhang, 2008; Schönhofen, 2009; Singhal & Srivastava, 2013) and other fields

(Gabrilovich & Markovitch, 2006; Shapira, Ofek, & Makarenkov, 2015; Wang, Hu,

Zeng, & Chen, 2009) have used Wikipedia as a training data or test data.

Wikipedia is currently the most popular free-content, online encyclopedia,

which surpasses in scope many conventional encyclopedias and provides a cornucopia

of world knowledge(Gabrilovich & Markovitch, 2006). Arabic Wikipedia is one of the

popular Wikipedia projects, to date it is ranked 19th. It contains 1,238,570 pages with

435672 actual articles and 267580 categories with average 10 edits each. Also, it has

a base of about 1,288,144 registered users and written collaboratively by largely

anonymous internet volunteers. There are about 4,438 active contributors working on

the articles(Wikipedia, 2016). Thus the knowledge presented in the articles over

Wikipedia in general are convinced upon by editors of similar interest. It covers most

of the technical and non-technical topics, events that have happened, topics related to

most of the domain areas (Ramudu & Murty, 2012).

It is essential to note that we are not only using Arabic Wikipedia to simply

increase the amount of the data. Rather, we use the knowledge distilled from the

encyclopedia to enrich the representation of tags, by better matching the short text to

the articles. Since we believe that Arabic Wikipedia has several advantages over other

Arabic corpora:

First: its articles are much cleaner, mostly qualify as standard written Arabic,

heavily revised and edited. Second: the categories assigned to an article cover the

perspectives and interests of large number of editors. Third: categories and articles

(content and title) are continually updated and checked. Forth: High coverage for

many domains, including medicine, News, Sports, Technology, etc. Finally: Arabic

Wikipedia represents massive amounts of world knowledge (Milicevic, Nanopoulos,

& Ivanovic, 2010).

18

Although Arabic Wikipedia structure is fairly shallow, and we propose to treat

Arabic Wikipedia categories as having essentially no hierarchy. This way, mapping

documents to relevant Wikipedia concepts yields truly better tag selection.

 Related Works

Recently, automatic semantic tagging and annotation of documents have

attracted a great deal of attention, since it can add significant benefits to many text

mining tasks(Allahyari & Kochut, 2016a) , as information retrieval(Shapira et al.,

2015), and text classification(Wang et al., 2009), text clustering and cluster labeling

(Tonella et al., 2003) although, many attempts have been conducted to address this

issue. In the field of our work, several efforts employed different techniques and

knowledge bases, some of them targeted documents, and others targeted short texts. In

the following sections we review short and long text tagging in association with the

works that applied LSA in their approaches.

2.3.1 Short text tagging:

Several previous studies have addressed the problem of tagging of short text such

as social snippets(Li, Zhou, Juan, & Han, 2010; Singhal & Srivastava, 2013) and

abstracts of research papers (Bhowmik, 2008; HaCohen-Kerner, 2003; Hulth, 2003),

topics (Bhowmik, 2008; HaCohen-Kerner, 2003), and micro-blog posts (Garcia

Esparza et al., 2010; Kywe et al., 2012; Otsuka et al., 2014).

 Depending on the title and the abstract of scientific papers, Bhowmik

(Bhowmik, 2008) utilized a set of keywords that are pre-weighted, to weight and

extract keywords and sentences according to their importance and position. His work

is domain specific, and depends on a set of keywords that needs to be updated. Also it

cannot enrich very short texts. likewise, Hulth (Hulth, 2003) built a supervised rule

induction classifier that uses the abstract of the paper to generate tags, before she added

linguistics knowledge to the representation, therefore each word has Part-of-Speech as

a new feature that improved the results. In addition, HaCohen-Kerner (HaCohen-

Kerner, 2003) used the frequency of words and phrases to create a weight matrix from

abstracts then sorted these weights and chose the highest as tags. All previous works

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rekha%20Bhowmik.QT.&newsearch=true

19

consider only the occurrences of the words, and the resulting tags are included in the

original text and may lack semantics, but in our work we consider semantic relations

and the generated tags mostly are not contained in the original text.

Singhal and Srivastava (Singhal & Srivastava, 2013) proposed a technique for

automatically tagging documents by concepts and named entities using only “short

text” information from the documents, such as a document title, or a news article head

line. In their work they employ the knowledge bases of Wikipedia, DBpedia, Freebase

and Yago to generate semantically relevant tags for the document. They used a search

engine to enrich the text with author name, snippets and/or URL. Then find word

frequencies in the snippets. After that all short texts are clustered, pruned, and finally

the remaining concepts and named entities are returned as tags. This work has a

number of drawbacks. One is that it needs a collection of short texts to perform

clustering which have to be pre-prepared so the model may not handle the variety of

the new entries. The other is its need to use a search engine which may provide shallow

or wrong information. Otherwise, the search engine results may depend on the whole

document which converts the assumption of short text tagging.

Li and others (Li et al., 2010) worked on social snippets. First they calculated a

set of features for each word such as Tf-Idf, PoS, position in the text, text length, etc.

They trained a classification model based on the labeled keywords of social snippets.

And finally the keyword candidates with highest scores through the classification

model are returned. But the training data in this model is manually prepared to meet

the experiment, indication insufficiency for new snippets, and may generate redundant

tags.

 Based on the output of a topic model that was run on a collection of short

documents, a framework for topical keyphrase generation and ranking was proposed

by O'Neil and Sangiovanni (O'Neil & Sangiovanni-Vincentelli, 2014). By means of

clustering the words of the short texts into topics using Latent Dirichlet Allocation, the

authors were able to generate and rank candidate keyphrases according to word topic

assignment. The system has high performance. However, they need multiple short

20

texts as input, and topics have to be informative for good clustering results indicating

the insufficiency to handle very short texts, and in ability to handle new entries.

 Other works attempted to model users’ interests based on their historical

tagging behaviors, and recommend tags to the user from other similar users (Bogers &

Van den Bosch, 2008; Golder & Huberman, 2006). In Bogers and Van work (Bogers

& Van den Bosch, 2008) the social reference management website CiteULike was

used for recommending scientific articles to users, based on their reference library.

Their work depends mainly on collaborative filtering algorithm, and uses a relatively

small collection of documents. Golder and Huberman (Golder & Huberman, 2006)

presented a dynamical model of collaborative tagging that predicts stable patterns in

user activity and tag frequencies then relates them to recommendations and shared

knowledge, both of the above works are user-centered while we focus on documents,

and they are affected by the user's perspective and interests.

Several attempts have addressed micro-blogs posts tagging. for example Otsuka

and others (Otsuka et al., 2014) rely on compiling a large number of tweets to construct

Tf-Idf matrix, that allows to measure the similarity between tweets, and recommend

tags that are associated with the most similar tweets. also Esparza and his colleagues

(Garcia Esparza et al., 2010) aim to categorize and recommend tags for tweets and

other short messages in order to meet the different tagging conventions of users and to

facilitate search. They used Tf-idf term weighting and a kNN classifier with k =1. Tfidf

is considered naïve compared to LSA in a way that results in an undesirable matches

and lack semantics. While Kywe and authors (Kywe et al., 2012) consider both user

preferences and tweet content in selecting hashtags to be recommended. The system

depends mainly on collaborative filtering and their method recommends hashtags

found in the previous month's data which is biased by the user concerns and is

inefficient for suggesting new tags. Also, Mei and Zhang (Mei & Zhang, 2008)

recommends tags for short text utilizing highly weighted words and titles of Wikipedia

articles, performing all the work using a probabilistic model. Despite being similar to

our work, the last mentioned techniques use old tweets to tag new tweets, while we

use revised, rectified, and widely sparse Arabic Wikipedia documents.

21

2.3.2 Text tagging:

In recent time, several attempts have been made to annotate documents and web

pages, for example; Tang et al.(Tang et al., 2006) were concerned of semantic

annotation on hierarchically dependent data, where targeted instances can have

hierarchical dependencies with each other. Ontea (Laclavik et al., 2012) is a platform

for automated semantic annotation or semantic tagging, its implementation based on

regular expression patterns was presented while the test was carried out on job offers

as documents with evaluation of results. Both of the above works use linguistic

techniques to address annotation of the documents, and differ from our work in a way

that they are primarily focused on specific entities mentioned in the documents,

whereas we take all the words in consideration.

Other works similar to ours include Schönhofen's (Schönhofen, 2009) where he

used Wikipedia articles titles and categories to tag documents. In his method, he first

finds all the Wikipedia articles related to a document by matching their titles with the

words of the document. Then, they select categories assigned to these articles and rank

them, and finally choose the categories with the highest weights as the topics of the

document. Our work is not restricted to titles and categories, but exploits the whole

content Wikipedia articles in LSA to determine articles related to short Arabic text.

Also Hassan and others (Hassan et al., 2012) used Wikipedia text and hierarchical

ontology to tag documents by constructing a category term matrix C, and then term-

document matrix D for the document. They eventually, find document-category

similarity S=DCT. Allahyari and Kochut (Allahyari & Kochut, 2016b) as well, used a

probabilistic model. The authors incorporate DBpedia knowledge into the topic model

for tagging web pages and online documents. Our work is similar to both Allahyari's

and Hassan's (Allahyari & Kochut, 2016b; Hassan et al., 2012) in terms of using

Wikipedia, but ours explores the use of Arabic Wikipedia instead, while our technique

remains general.

2.3.3 Tagging with LSA

All the mentioned works are similar to ours in terms of the objective of text

tagging, other works are similar in technique, where we employ LSA to generate

22

features before matching new documents. LSA was used by Symeonidis et al.

(Symeonidis, Nanopoulos, & Manolopoulos, 2010) and utilized to select tags for

biomedical abstracts by finding similar documents in the MEDLINE database. The

system then uses a ranking schema to select candidate tags drawn from the most similar

documents. While this work is domain specific as it is restricted to 2000 abstracts from

the MEDLINE database, our work is generic as it builds the LSA based system from

the whole content of Wikipedia, and employs parallelization to handle the huge size

of data.

 Gong and Liu(Gong & Liu, 2001) performed SVD on m×n term-sentence

matrix (m: number of terms ≥ n: number of sentences where each column represents a

document and each row in the column represents a sentence frequency in that

document). They used a couple hundreds of CNN news in order to obtain the singular

value matrix S, and the right singular vector matrix VT, then select the kth right singular

vector from matrix VT. And finally, select the sentence which has the largest index

value with the kth right singular vector, and include it in the summary. Likewise, the

term-sentence matrix was used by Yeh and others (Yeh et al., 2005) accompanied with

modified corpus-based approach to select the best sentences that summarize one

hundred political articles from New Taiwan Weekly. Both works are analogous to

ours, except we construct a term-document matrix instead of term-sentence matrix.

Also we tag with titles and categories, and deal with enormous number of documents

whereas they use hundreds. Finally, we use short texts instead of long documents.

The algorithm proposed by Symeonidis et al. (Symeonidis, Nanopoulos, &

Manolopoulos, 2008) performed latent semantic analysis and dimensionality reduction

using the higher order singular value decomposition technique. This algorithm was

tested on two data sets from Last.fm and BibSonomy. They stated the results showed

substantial improvements in terms of effectiveness measured through recall.

All the works that exploited LSA have been used to tag a document using other

documents in the same corpus, while in our work we use the Wikipedia as a corpus to

tag new short texts that are not in the corpus.

23

Chapter 3

Methodology

24

3 Chapter 3

Methodology

 Introduction

This chapter presents the system of a tag recommender system that utilizes

Latent Semantic Analysis on the Arabic Wikipedia. It clarifies the detailed steps of the

tagging System which include: configuring Arabic Wikipedia and preprocessing of the

text. Second, computing Tf-idf and SVD dimensionality reduction. Third, preprocess

the short text to be tagged. Forth, the tag selection procedure exploiting titles and

categories of the articles. And finally, a case study is presented to view the functional

steps of the tagging process.

 Configuring Arabic Wikipedia

This section briefly explains the configuration needed for our tagging system.

The description of the system is depicted in (Figure 3.1).

Figure (3.1): The tag recommender system

25

This configuration includes parsing and preprocessing of Arabic Wikipedia to

enable fast information access and retrieval. Note that all the configuration settings are

performed only once. (Figure 3.1) shows the complete system processes from

preparation until tag selection. The solid arrows are for the system preparation, the

dashed arrows are for the tagging process. Detailed description is provided below.

Code, data set and results can be found at

https://github.com/YousefSamra/ShortTextTagging

3.2.1 Parsing and information extraction from Arabic Wikipedia XML Dump

In this section we briefly explain the steps we have taken to gather the content

that is essential to our work. We selected the most recent XML Dump file of the Arabic

Wikipedia, 1st January 2017(Wikipedia, 2017), which contains a large number of

revised, reviewed and verified articles. The Arabic Wikipedia contains 1,238,570

pages including 435,672 actual articles, 267,580 categories and has a hierarchical

depth of 217. All this data is available in the XML dump file. After downloading the

dump file. It was parsed to extract only the main content of Wikipedia articles. This

content includes the article content, title, and associated categories, that are valuable

information to our work, because we need to match the input short text to the articles

body and need the categories and titles of Wikipedia articles to select tags. Other pages

e.g. disambiguation, redirect, template, etc. are not needed in our work, so we

neglected them. (Table 3.1) presents some information about the file, and the

information it contains.

Table (3.1): Information about the downloaded dump and the contained information

XML Dump File Size 3.42 GB

Number of Categories 267580

Number of All Pages 1238570

Number of Redirect Pages 437726

Number of Disambiguation Pages 10473

Number of Template Pages 345759

Number of Discussion Pages 181

Number of Empty Body Pages 8756

No Category Pages 3

Articles needed for our work 435672

26

After removing all pages listed in the previous table, the relevant remaining

435672 articles that we used in our system were stored in a text file after being

preprocessed, in order to be distributed among the working nodes of Spark cluster

lately. All other pages were swiftly investigated for any miss enumerated ones, and

there wasn't any.

3.2.2 Text Preprocessing

In order to better match the terms of the input text with the Arabic Wikipedia

terms, it is important to perform some text preprocessing on both of them. The steps

we undertook includes cleansing, tokenizing, stemming, and stop-word removal,

performed only on the body of the articles, titles and categories remains untouched.

As these steps are significant to our work, they are also tricky because it requires a lot

of investigation and comparisons between some of the available tools along with our

precious time.

Cleansing:

This step is meant to remove all texts that increases the size of the corpus, and

not affecting the performance of the system, but the contrary. These include all the

Latin alphabets, special characters, numbers and punctuations on one hand. On the

other hand we found some terms that are repeated in most of the articles and are not

adding any information related to the context but in some cases may cause

performance deviations. These terms mostly found at the end of many articles and used

for redirections or external links. (Table 3.2) presents texts that require deletion.

Table (3.2): Deleted texts and terms

Latin alphabets e.g. A-Z, a-z

Special characters e.g. !@#$% ɛ ā é

Punctuations e.g. ; : , .

Numbers 0-9

Repeated terms ،شاهد أيضا، ،الإنكليزية باللغة باللغة العربية

 طالع، أيضا اقرأ، المصادر، المراجع، ملاحظات

 خارجية وصلات، أيضا أنظر، أيضا

After this step the corpus has a pure Arabic language content. Latin characters

are mostly refer to names of persons, locations, etc. that are also written in Arabic such

27

as "Twitter" is written "تويتر". While punctuations are common in most languages, they

can make words differ for example "عربي", "Arabic" is not equal to ".عربي" with a

period, "Arabic.". This step is vital because it is not performed in the subsequent steps.

Tokenization and stemming:

Tokenization is the process of breaking a stream of text up into words, phrases,

symbols, or other meaningful elements called tokens, while stemming is the process

of reducing inflected or sometimes derived words to their word stem, base

or root form. Tokenization and stemming (also called lemmatization) are crucial to our

system, because the generated terms are the input to Latent Semantic Analysis.

Different term formation, may influence the system ability to match terms. To optimize

this step we carried out a comparison between four commonly known Arabic

Language processors, two stemmers Al-khoja(Khoja, 2001) and

SnowBall(snowballstem, 2016), and two segmenters Stanford(CoreNLP, 2016) and

Farasa (QCRI, 2016). To perform the experiment we have randomly selected 5 articles

and applied each tool to their terms after removing all stop words and repetitions. The

final set consists of 751 unique terms. (Table 3.3) shows out a snippet of the results.

The complete set of results can be found on

https://github.com/YousefSamra/ShortTextTagging

Table (3.3): Results of Arabic stemmers' comparison

Original

term

Al-khoja SnowBall Sanford Farasa

 الاردن الأردن

 اردن الاردن الارد

 لبن لبنان

 لبنان لبن بنان

 لبن لبناني

 لبناني لبن لبنا

 لوب ليبي

 ليبي لوب ليب

 نسل بنسلين

 نسل نسل نسل

 ثول الإيثيلين

 ايثيلين ثول ايثيل

 موه مياه

 مياه موه ميا

 موه تمويه

 تمويه موه تمو

 مور مارتن

 مارتن مور مار

 أرث ماراثون

 ماراثون أرث ماراث

 جور جار

 جار جور جار

 سمي سماء

 سماء سمي سماء

 سول سوائل

 سوائل سول سوايل

 سول تسول

 تسول سول تسول

 درس المدرسة

 مدرس درس مدرس

28

Original

term

Al-khoja SnowBall Sanford Farasa

 سطح المسطحات

 مسطح سطح مسطح

 زوج زوجين

 زوج زوج زوجين

 نوع نوعان

 نوع نوع نوعان

 ضيف ضيف

 ضيف ضيف ضيف

 ضيف ضفة

 ضف ضيف ضف

 ضيف يضيف

 يضيف ضيف يضيف

 صبأ مصب

 مصب صبأ مصب

 قوس قياس

 قياس قوس قياس

 سوس أساس

 اساس سوس اساس

 كلف كلفن

 كلفن كلف كلف

 كيميائي

 كيميائي

 كيميائي كيميائي يمياء

 فيزيائي

 فيزيائي

 فيزيائي فيزيائي يزياء

 برغوث رغث رغوث رغث برغوث

Also, we have calculated the precision and time efficiency for each tool. Results

were judged according to correctness and suitability for our work but execution time

is out of scope. Besides this step is one time execution, meaning that it will be done

only once before the system runs. The only need for preprocessing after that is for

constructing the input vector. Results in (Table 3.4) shows that Farasa has the best

measures, and all tools out performed Stanford segmenter in both precision and

execution time. This is because Stanford did not remove "ال" from the beginning of

most terms that contain it, such as the first term in (Table 3.3). This is why we consider

it inappropriate.

Table (3.4): Precision and time efficiency for NLP tools

Tool Precision Time

Farasa 89.88% 4.4 sec

Snowball 87.47% 0.6 sec

Stanford 73.90% 3.3 sec

Alkhoja 84.63% 13.14 sec

While investigating the results, we noticed that both Al-Khoja and Stanford are

unifying Arabic terms that have different meanings in the context or generate wrong

roots. For example, "ضفة""bank/shore","ضيف""guest" and "يضيف""add" all became

 renounce" where the""صبأ" estuary" was wrongly rooted to""مصب" while ,"ضيف"

correct root is "صبب". Both also result in errors in the course of dealing with terms

29

containing "Hamza" "ئ" ,"ؤ".In addition, they work badly on both Arabic and non-

Arabic names such as "تمويه" "camouflage", "مياه""waters", "ماراثون" "Marathon" and

 Martin". This last fault was produced by SnowBall stemmer too. On the ""مارتن"

contrary Farasa segmenter works well on Arabic terms as well as on non-Arabic

names, besides it does not completely root the Arabic terms which helps our system to

distinguish between them. While still has the ability to take out the Arabic Additive

letters and pronouns, which make it the algorithm of choice. We have chosen Farasa

over snowball despite the difference in execution time because we are concerned in

correctness of the results more than efficiency. Besides Wikipedia will be processed

once by Farasa only when the system is built. We will call Farasa a stemmer because

it help partially stem terms by removing the attached letters and additive pronouns.

As an example of Farasa " موقعة قويةّ بين تشيلسي ومانشستر سيتي وليفربول يترصّداليوم ",

"A Strong match between Chelsea and Manchester City and Liverpool awaits"

the output of the algorithm was " سيتي و ليفربول يترصدلسي ومانشستر يموقع قوي بين تشال يوم "

while Al-khoja resulted in " مون سيأ ربل رصد تشيلسييوم وقع قوا بين ", Snowball resulted

in "يوم موقع قو بين تشيلس مان سيت يفربول يترصد". Other examples provided in (Table 3.3).

Stop-words removal:

Stop-words are commonly used words that are frequently appear in a corpus.

Such words increase the size of the text and removing them doesn’t affect the

retrieving efficiency(Al-Shalabi, Kanaan, Jaam, Hasnah, & Hilat, 2004). We applied

a stop-word removal algorithm to reduce the size of the corpus and improve the

retrieving efficiency. Since our text is already cleansed and stemmed, the algorithm

just iterates over the text and remove all the listed 266 words if found. For example,

the previous text "ال يوم موقع قوي بين تشيلسي ومانشستر سيتي و ليفربول يترصد", "A Strong

match between Chelsea and Manchester City, and Liverpool awaits" the output

of the algorithm will be "موقع قوي تشيلسي مانشستر سيتي ليفربول يترصد" after removing

 ."and" "و" between" and" "بين" ,"today" "يوم" ,"the" "ال"

After this step each Arabic Wikipedia article will be presented as a title, a List

of tokens (cleansed, stemmed, and stop-words removed), and a List of categories the

30

article associated with. These articles are now ready in a file to be distributed among

the working nodes of a standalone Spark cluster.

At this point, our knowledge source contains only Arabic Wikipedia articles and

each article body is presented as a list of tokenized and partially stemmed tokens.

(Table 3.5) shows some information about our base knowledge.

Table (3.5): Statistics about the knowledge base

Our Work Needed Articles 435672

Number Unique Terms 662205

Number of Categories 267580

 Tag Recommendation system

After preparing the data, it is now ready to go through the system. In the

following steps we generate the singular value decomposition matrices to be searched

for the most similar articles to the input short text, but first we need to calculate term

frequencies Tf-idf, then convert document representation into vectors.

3.3.1 Computing the Tf-idfs

At this point all the articles are presented as Arrays of terms, each corresponding

to a document. The next step is to compute the frequencies of each term in the

document Tf, and for each term within the entire corpus DF. We apply Tf-idf

weighting because it negates the effect of high frequency terms in determining the

importance of a document. And we use log to the base 10, to diminish the values of

the results, since we are dealing with huge number of documents and terms.

Tf-idf is a well-known numerical statistic that is intended to reflect how

important a term is to a document in a collection or corpus (Han et al., 2011). And we

employ it to gain statistics about our corpus as follows:

))df/(log1()tf1(logw 10,10, tdt N
dt

 (3.1)

31

Where tft,d is the number of the term appearances in the document, N the total number

of documents in the corpus, and dft is the number of documents in the corpus that

contain the term.

3.3.2 Vectorization

With the Tf-idf matrix in hand, we can perform the singular value

decomposition, but first we need to convert the Tf-idf into sparse vectors for two

reasons. The first reason is that it is essential to perform the singular value

decomposition. The second reason depends on the nature of our data which contains

mostly zeros for each document. A sparse vector implementation would be more space

efficient since it only stores the indices of the terms and its non-zero values neglecting

all terms with zero values which makes it a space efficient technique and help speed

up calculations.

3.3.3 Singular Value Decomposition

Finally, we can proceed to the dimensionality reduction. MLib the machine

learning library in Apache Spark contains an implementation of the singular value

decomposition (SVD) that can handle enormous matrices. The singular value

decomposition takes an m x n matrix and returns three matrices that approximately

equal it when multiplied together

M(m x n) = U(m x k) S(k x k) V
T

(k x n) (3.2)

Where m, n, k are the number of document, number to terms and the number of

concepts respectively. It is important to know that S is a k x k diagonal matrix that

holds singular values. Each diagonal element in S correspond to a single concept or

topic, which relates to a column in U and column in V and its magnitude correspond

to the importance of this concept for the corpus. A key insight of LSA is that only

small number of concepts are important to representing the data(Ryza et al., 2015). On

the ground of that we chose k to be 1000 concepts, which is more than enough to

represent the Arabic Wikipedia.

32

To make this as simple as possible, consider the example presented in chapter 2.

After performing the SVD on Tf-idf matrix of 5 articles that contain 7 unique terms,

the resulted 3 matrices will be theoretically as shown in (Figure 3.2) taking the number

of concepts k=2.

Figure (3.2): Result of SVD for a 5 documents 7 terms matrix

U is an m*k matrix whose columns form a basis for the article space. S is a k*k

diagonal matrix, each of its entries correspond to the strength of a concept. V is a k*n

matrix whose columns are basis of the term space.

It obvious from the values of S that the first concept is the most important in

representing the corpus (5 documents) because it holds the largest value 12.4. This

concept is related to the first column in U which holds 3 articles and also related to the

first row in V which holds 4 terms. Let's be clear that the article "معاهدة أوسلو" in U is

the most important to the first concept with value (0.58) while the article "الدولة المدنية"

is the least important to the concept with value (0.15). Furthermore, the term "الدولة" in

VT is the most important to the same concept with value (0.56). As well, the first three

documents in U and the first 4 terms in V contribute in the first concept but not the

second since there values that correspond to the second concept are zeros. In other

words, the first column in U and the first row in VT are mapped to the first concept.

At this stage, we can refer to a concept as the main topic that describes the articles it

contains. But concepts are not names, they are just concepts. However, we can simplify

things by naming them. For example, we can name the first concept "Policy""سياسة" or

33

"International affairs" "شؤون دولية" and we can name the second concept "Sports"

 ."كرة قدم" "or "Football "رياضة"

A key insight of LSA is that only a small number of concepts are important to

representing the data, e.g. two are sufficient in the example. So the corpus of the

example basically talks about policy and football.

The system now is ready to receive the input short text and select the appropriate

tags.

 Tag Selection

After performing the SVD on the Arabic Wikipedia we can select tags for the

input short text. The input text has to pass through the preprocessing steps. Then select

the top similar articles. The preprocessing of the short text is vital because it allows us

to map the terms of the short text to the terms of the Wikipedia. Note that the terms of

the Wikipedia had gone through preprocessing in earlier steps. This allows two terms

in both the short text and the Wikipedia article to be identified as equal and

consequently the short text and the article are identified as similar.

It's clear now that the first two matrices U and S are the article space and the

concept space respectively. Having a new preprocessed input of short text, we can

compute the cosine similarity between itself and every other article simply by

multiplying vectors and divide the result by their lengths (Sidorov, Gelbukh, Gómez-

Adorno, & Pinto, 2014). (Figure 3.3) shows this part of the system, and Equation 3.3

represents the cosine similarity between vectors.

Figure (3.3): calculating the cosine similarity

34

b a

 b . a
 cos(q) (3.3)

The first vector in equation 3.3 is the short text, and the second is the rows of the

US matrix each at a time. The result is a list of numbers each number is the similarity

(score) between the input vector and an article vector of Wikipedia. These scores are

sorted and the articles with the top scores are returned.

The cosine similarity is employed because: it is simple, very efficient to evaluate

especially for sparse vectors and gives the value in between [0, 1]. But also we state

two points (Baxla, 2014):

1. We need to match vectors of document in both magnitude and direction. Two

document vectors compared to the input vector could have the same magnitude,

but not equal. The direction can decide which vector is most similar to the input.

This is a benefit of cosine similarity over Euclidian distance, Murkowski distance

and Manhattan distance.

2. Compared to Jaccard similarity, adjusted based similarity and correlation based

similarity these metrics used to calculate how much similar all the items are to

each other in the matrix. Cosine and Jaccard similarities take less execution time

and the cosine similarity performs excellent on huge matrices.

It is also worth mentioning that comparing two long vectors with small number

of term is time inefficient, but the representation of the document and the tweet is done

using sparse vector. A sparse vector keeps only the indices of the terms that has value

other than zero. This help speed up computations and also increase space efficiency.

But it may increase the creation time of the vector of the input tweet.

3.4.1 Text Preprocessing

The short input test goes through all text processing procedure as Wikipedia

articles did.

35

Cleansing:

As discussed before all Latin characters, special characters, and punctuations,

which presented in (Table 3.2), are removed.

Tokenization and stemming:

Separating all Arabic Language additive pronouns from terms, then partially

stem these terms with the help of Farasa stemmer.

Stop-Word Removal

Removing all Arabic Language stop-words, including the generated additive

letters and pronouns that was separated in the previous step.

3.4.2 Vectorization

The previous preprocessing will produce clean terms of the short text. These

terms have to be formed as a vector to be compared to the Wikipedia articles in the

concept space resulted from the SVD. As a matter of fact, these terms may contain

some terms that are not in the Wikipedia, because of a miss-spilling for example. These

terms has to be remove before creating the short text vector. The remaining terms are

used to create the query vector by setting the value of the term to its inverse document

frequency to maintain the weighting scheme used in the original term-document matrix

(the input of the SVD) and compare it to the articles in the next step. Before the

comparison and after forming the short text vector, it is multiplied by the matrix VT to

compute the concept space vector of the short text.

3.4.3 Selecting the top N Similar articles

Selecting the similar articles depends mainly of computing the cosine similarity

between the vector of the short text and the rows of the US matrix. As explained

previously, it is exactly as comparing document in the concept space, the only

difference is that we compare a new document (short text) presented as a vector, then

return the documents with the highest scores. This enables LSA to discover hidden

semantics between the short text and documents.

36

The number 7 that we have chosen for our top articles to be retrieved has been

determined through an experiment. We have processed 10 short texts and recorded

the results of the experiment. We have carried out the test for 13 different number of

top articles ranging from 2 to 20. After investigating the results we have decided 7 to

be the number of the selected top articles. More details on the results are available on

the next chapter. This test has to be carried out early in order to lighten the burden on

expert while examining the results.

To give more insight into the importance of this step we report that experiment

based on only the 10 short texts which resulted in around 2000 different tags. Imagine

the number of tags that a 100 short texts would produce.

3.4.4 Selecting Tags

In Wikipedia, each article is assigned to a number of categories. Each category

groups a number of Wikipedia articles together. The articles of a category are similar

to each other. If we look closely to these articles we will find that they describe the

name of the category they belong to or vice versa. Meaning if we consider the category

name is a title of a book, each article is considered a chapter in that book. Any chapter

in an English grammar book can be tagged "English grammar". Also an article can

belong to a number of categories, consider the chapter "Introduction" that is found in

many books.

In our system, tags are meant to be categories and titles of some of the 7 top

articles similar to the short text. Because the tweet is similar to these top articles, the

categories that contains some of them also can include the input tweet. In other words,

this category- the one contains some of the 7 articles- describes the content of the tweet

in a general way and can be used as a tag for it. Accordingly, because the tweet is

similar to the content of these articles, their titles may be suitable as tags for the tweet.

We consider a title to be appropriate if it contains some terms of the tweet. Titles that

satisfy this condition are more specific than Wikipedia categories. Speculating in the

example of (Figure 3.2) the short text " الاسرائيلية معاهدة السلام الفلسطينية " "Palestinian

Israeli peace treaty" may result in similarities with the first two articles that share the

category "الصراع العربي الإسرائيلي" "Arab Israeli conflict" which considered an

37

appropriate tag in a broad manner. This presents selecting 'categories as tags' discussed

below. Furthermore, the title of the first article contains the term "معاهدة""treaty"

which exists in the short text. This allows it to be elected as a tag. So it is given a higher

score letting the title "معاهدة أوسلو" "Oslo treaty" appear in the top tag suggestions.

This tag describes the tweet in particular. This stage has two steps; obtaining the

categories of the 7 articles with the highest scores, note that we treat categories as if

they have no hierarchy. Then adding analogous titles of the 7 articles as follows:

Categories as tags

It is obvious that if two articles are similar to each other, there is a chance to be

partners in a category. We can refer to it as category, subject, topic, division, class,

tag, etc. but let us call it category as it is in the Wikipedia. This means that it can be

suggested as a tag. But our articles, which has been compared to the short text in the

concept space, are assigned to variant types of categories, and we are concerned with

the categories that involve some or all of them preferably. One simple way to identify

these categories -or tags- is to pick out intersection between the categories of the

articles. These tags are assigned a weight or a score equals the number of intersections.

The highest the score of the tag, the most appropriate it would be. It is worth

mentioning that categories cover the general aspects of the short text. We can describe

the procedure as follows:

For example, " وليفربول يترصّدموقعة قويةّ بين تشيلسي ومان سيتي " "A Strong match

between Chelsea and Manchester City while Liverpool awaits" the articles with

the highest scores to this short text are shown in (Table 3.6).

Procesure1: selecting tags from categories of top articles

Let D={d1,d2,.., d7} be the set of documents similar to a short test based on SVD.

Let Cdi = {Cd1, Cd2,..., Cdj} be the set of categories for document di

We compute the importance of each category by using the following equation:

Importance of C = ∑ ∑ |𝑑𝑖 ∩ 𝑑𝑗|
𝑗,𝑖≠𝑗
𝑖

𝑖
1

38

Table (3.6): Categories intersections of the similar articles

Titles of top articles Categories

 مانشستر سيتي
 أندية الدوري الإنجليزي الممتاز

 الأوروبية الأندية رابطة أندية

 أندية الدوري الإنجليزي الممتاز نادي ليفربول

 تشيلسي
 أندية الدوري الإنجليزي الممتاز

 الأوروبية الأندية رابطة أندية

The categories "أندية الدوري الإنجليزي الممتاز" "English Premier League clubs"

has 3 intersections, indicating that it is a category for three of the similar articles, and

this make it appear first in the suggestions. While " الأوروبية أندية رابطة الأندية "

"European Club Association" appears last as less relevant because it has only 2

intersections.

Titles as Tags

This is the second part of the tag selection procedure, after selecting the

categories, the system moves on to check out the titles of the most similar articles. It

is simply selects the title that contains a term of the short text. This is very efficient

when the terms refer to names of persons, locations, etc. The title that suffice this

criteria is likely to be a most relevant tag. Consequently, we set its score as the

maximum category intersection +1. If the title contains more than one term, its score

is incremented by the number of terms it contains. We can describe the procedure as

follows:

For example, referring to the example in (Table 3.6)" موقعة قويةّ بين تشيلسي ومان

 the titles of the selected articles that contains a term of the short "سيتي وليفربول يترصّد

text are "تشيلسي" " Chelsea", " شيستر سيتينما " "Manchester City", and "ليفربول"

"Liverpool", and they are more relevant and appropriate as tags than categories. So,

Procedure2: selecting tags from titles of top articles

Let T={t1, t2, …, tn} be the terms of the tweet

Let MaxCatScore be the maximum score of categories

Let Li={l1,l2,…,l7} be the set of the titles of the 7 top articles

We compute the importance of the title as follows:

For i=7 to 1

 IF li contains terms in T THEN

 Set score of li = MaxCatScore + number of terms it contains

39

they are assigned a higher weight. Each title has a score 4 which equals 3+1. Checking

the titles is carried in reverse order as the procedure suggests. This means that we

examine the titles with the least scores before the ones with high scores. It keeps the

order of the selected titles unless one contains more than one term. In the example

above the order of titles will be as presented in (Table 3.6) even they has the same

score. Titles cover the specific aspects of the short text unlike categories that are

broader. The criteria we adopted let title tags appear at the top in the suggestions, while

categories appear last.

 Case study

In the following case study, we illustrate a full scenario of the short text tag

suggestion, showing how the short text is processed, until the suggestion of tags. At

this point our system is started, Wikipedia formed into three matrices, and these

matrices are stored in the memory in a distributed fashion, ready for any input.

Suppose a user posting " يكالجراف الفرق بين المبرمج ومصمم " "Programmer vs

graphic designer" on a social media website, for example. Our system grabs the

text of the post and suggest tags for it as follows:

1. Preprocessing

The input text is first processed by cleansing all non-Arabic letters, punctuations,

and special characters. Afterwards, the text is tokenized and segmented. Finally, stop-

word removal is applied, as (Figure 3.4) shows.

Figure (3.4): Preprocessing of the short text

40

2. Vectorization

The terms of the short text is ready to be formed as a vector. This is done by

setting the value of the term to its inverse document frequency to maintain the

weighting schema of the original matrix. (Figure 3.5) shows the text as vector. Then

the vector is multiplied by the matrix VT to compute the concept space vector of the

short text.

Figure (3.5): Short text as a vector

In the Tf-idf matrix of the Wikipedia articles, each column represents an article

where each row in that column in the importance of a term in that article. We can refer

to this column as the vector of the article

We treat the tweet as an ordinary article in Wikipedia, and that its Tf-idf score

is calculated with reference to Wikipedia as a corpus. Tf-idf is calculated by first

calculating the frequency of terms in the tweet but we consider it as if appears once in

the short text in our case while if it appears twice or more it will has a negligible effect

compared to Wikipedia. Then, the inverse document frequency is calculated by

dividing the total number of Wikipedia articles by the number of articles containing

the term, and then taking the logarithm of that quotient. This formula is presented in

equation 3.2.

The aim of vectorizing the tweet with reference to Wikipedia as a corpus is make

its Tf-idf representation comparable to the Tf-idf representation of other Wiki articles,

and thus the application of the similarity measure (cosine measure) becomes possible

using Equation 3.3.

41

3. Select 7 most similar articles:

The vector generated in the previous step is now compared to the rows of the US

matrix, which denotes the Wikipedia articles. The dot product between the tweet vector

and each row of the US matrix results in the cosine similarities between them. Then

articles are sorted according to that similarity and the 7 top articles are retrieved. (Table

3.7) shows the 7 articles with the highest scores that are similar to the short text in this

case study.

Table (3.7): The top 7 articles for the tweet

 تصميم الجرافيك

 مبرمج

 فريق العمل لإنتاج برمجيات الوسائط المتعددة

 علم الحاسوب

 مصمم جرافيك

 رسوميات

 تصميم المعلومات

4. Tag selection

With the articles in hand, the system looks for intersections between the

categories of the top articles, setting the number of the intersections as score of the

category (tag). It is performed according procedure 1. (Table 3.8) shows the categories

and their scores. In this case the first category has score=3 indicating better suitability

than the other two. But the list will be updated in the next step.

Table (3.8): Categories selected by the system

Category Weight

 3 (Computer science) الحاسوب علم

 2 (Graphic design) الجرافيك تصميم

 2 (Computer occupations) الحاسوب مهن

After finding all the category intersections, the system looks for titles that

contain terms of the input short text. If found, the system sets the weight of the title to

the maximum category score incremented by the number of terms in the short text it

contains according to procedure 2. (Table 3.9) show the titles selected by the system.

42

Table (3.9): Titles selected by the system

Title Weight

 5 (Graphic designerجرافيك) مصمم

 4 (Graphic designالجرافيك) تصميم

 4 (Programmerمبرمج)

 4 (Multimedia development teamالمتعددة) الوسائط برمجيات لإنتاج العمل فريق

 4 (Information designالمعلومات) تصميم

The first title contain two term of the short text "مصمم" and "جرافيك". The score

is set to 3+2 terms =5, while the other contain only one term each, so the weight is set

to 3+1=4.

All titles in the (Table 3.9) are more appropriate than categories in (Table 3.8)

as tags. Tags in both tables are presented to the user in a descending order showing the

tag with the highest score at the top of the list. The categories are replaced by the titles

that equals them such as the category "Graphic design" " الجرافيك تصميم ". The full list

of the tags are presented in (Table 3.10). Luckily, all the tags in both tables considered

suitable except for " المعلوماتتصميم " "Information design". Also, one can notice that

titles with the same scores are presented in their same order of relevance (refer to

(Table 3.7)

Table (3.10): Suggested tags for the tweet

Suggested tags

 (Graphic designerجرافيك) مصمم

 (Graphic designالجرافيك) تصميم

 (Programmerمبرمج)

المتعددة الوسائط برمجيات لإنتاج العمل فريق

(Multimedia development team) تصميم (المعلوماتInformation design)

 (Computer science) الحاسوب علم

 (Jobsمهن الحاسوب)

 Tools

 Wikixmlj

Wikixmlj is a Java API for parsing Wikipedia XML dumps (wikixmlj, 2016). It

is part of the larger WikiSense project aimed at understanding Wikipedia for semantic

annotation of texts. It provides easy access to Wikipedia XML dumps, and have been

43

used in different works(Santoso, Nugraha, Yuniarno, & Hariadi, 2015). Wikixmlj is

available on (Github, Wikixmlj 2016).

 Farasa Segmenter

Farasa is a fast and accurate text processing toolkit for Arabic text. Farasa

consists of the segmentation/tokenization module, POS tagger, Arabic text Diacritizer,

and Dependency Parser. It have been used in recent works(Abdelali, Darwish, Durrani,

& Mubarak, 2016). Farasa is available on(QCRI, 2016).

 Apache Spark

Apache Spark (Sprak, 2016) is an open source big data processing framework

built around speed, ease of use, and sophisticated analytics. It was originally developed

in 2009 in UC Berkeley’s AMPLab, and open sourced in 2010 as an Apache

project(Zaharia et al., 2010).

It provides a highly-optimized machine learning library called MLlib (Meng et

al., 2016) which has several features that are particularly attractive for matrix

computations (Bosagh Zadeh et al., 2016; Zadeh et al., 2015). Spark enables us to

maintain the huge data in memory in a distributed manner.

 Summary

This chapter presents the methodology we followed to construct our tag

suggestion system. First, the XML dumb was parsed for complete articles; body, titles

and categories and stored in a text file to be distributed among working nodes. Then

the tagging process begins by preparing the system. Text preprocessing is applied to

the bodies of the articles, cleansing, segmenting and stop-word removal in order. The

third step is constructing the Tf-idf matrix then the Singular Value Decomposition.

The system is now ready to receive any input which is the fourth step. The input is

preprocessed, vectored, and compared the articles in the concept space to find the most

similar ones. The final step is to generate tags from the titles and the categories of these

articles. The category selection is based on the intersection, while the title selection

depends on containing a term of the input text.

44

A detailed example was discussed as a case study. The proposed system

thoroughly capable of suggesting probable and suitable tags for any short text.

45

Chapter 4

Results and Discussion

46

4 Chapter 4

Results and Discussion

 Introduction

This chapter presents the system we utilized to assess and evaluate our tag

recommender system. The main objective of the evaluation is to assess the reliability

of the tag recommendation system: we aim to explore the extent to which the proposed

system can accurately suggest suitable and correct tags to the input tweet from relevant

Arabic Wikipedia articles.

Similar approaches from the state of the art have been evaluated by being

compared to other approaches (Hassan et al., 2012; Otsuka et al., 2014). However, we

are not aware of any similar approach that utilizes the Arabic version of Wikipedia for

the tagging of short texts to compare with. Therefore, we opted to assess our system

by experts' evaluation of the results.

 Dataset

The dataset is a set of 100 tweets selected randomly from three different

domains: Sports, Technology, and News mainly Palestinian news. The tweets were

divided according to the subjects as follows: Sports; 36 tweet, Technology; 41 tweets,

and News; 23 tweets. The aim is to assess how the generated recommendations are

affected by changing the domain of knowledge. In addition, we emphasize that the

selected 100 tweets were used only for the evaluation step, and were not used

beforehand to tune or test the system during the design and implementation. (Table

4.1) shows a snapshot of the dataset. The complete dataset can be downloaded from

https://github.com/YousefSamra/ShortTextTagging.

Table (4.1): A snapshot of the gathered dataset

Subject Tweet

Sports يترصّد وليفربول سيتي ومان تشيلسي بين قويةّ موقعة

Technology الأندرويد رومات تطوير رائدة مود سيانوجين

News هاينةالص بسجون الطعام عن إضرابه يواصل القيق محمد الصحفي: المحتلة فلسطين

47

 Experiment settings

Some sizes of data cannot be processed on a single machine. Operations on data

may require memory spaces that could not be located in one machine. Performing the

singular value decomposition on the Arabic Wikipedia requires tens of gigabytes of

memory to make it doable. Besides, this heavy computations needs an efficient

environment to handle it in a reasonable time, regardless that we are not concerned of

time efficiency in our experiment. Those reasons lead us to utilize Apache Spark in

the experiment. We restrict our attention to Spark, because it provides a highly-

optimized machine learning library called MLlib (Meng et al., 2016) which has several

features that are particularly attractive for matrix computations. Spark cluster parallel

environment provides us with a sufficient memory space that is distributed among the

nodes of the of a standalone cluster.

The experiment were carried out in a computer lab. It consists of 20 identical

laptops which we used as a Spark cluster. The settings of the experiment was as

follows:

1. Master node: it is the computer that executes the code of the system and

organize the communications with other worker nodes, collects and saves the

results. The specifications of this machine is depicted in (Table 4.2).

Table (4.2): Master node specifications

Machine HP laptop

CPU Core i5 2.6 GHz

RAM 6 GB

OS Windows 10, 64bit

2. Worker nodes: are 20 computers that are connected to the master node. Each

node provide CPU and memory space for the tasks assigned by the master

node. Nodes sends results to the master node when needed. (Table 4.3)

depicts the specifications for worker nodes.

48

Table (4.3): Worker nodes specifications

Machine Dell laptop

CPU Intel Core i3 2.53GHz

RAM 4 GB

OS Windows 10, 64bit

Worker assigned CPU cores 4 cores

Worker Assigned Memory 2.8 GB

The experiment settings provided us with 80 CPU cores and around 56GB of memory

that were sufficient to complete our tests.

Our data which is the Arabic Wikipedia articles that are cleaned, tokenized, and

segmented were transferred manually to every worker node. Data is needed on worker

nodes to lighten the load of communications and data transfer among the cluster. Also,

we had to deploy Apache spark on worker nodes. Worker nodes had to be started

manually because there is no way to start them automatically.

After starting the master and the worker nodes, we can run our code on the cluster and

record the results to be evaluated.

 Evaluation Process

The evaluation process had two experiments. First experiment aimed to

determine the number of the top articles the system has to utilize in order to result in a

qualified and considerable number of tags. The second experiment was for the

assessment of our system. We ran the tag recommender on the dataset and recorded

the results which are an ordered set of titles and categories of top articles (as tags) for

each tweet. In the next sections we discuss in details the two experiments and their

results.

4.4.1 Experiment 1: Determining the top N articles

As explained in Section 3.4.3 in Chapter 3, the tweet, will be compared with

Wikipedia articles by using the cosine similarity measure. Then, top similar articles

will be used to identify the recommended tags by exploiting their titles and categories

(refer to Section 3.4.4) Therefore, we aim at this stage to explore how the accuracy, in

49

terms of the correctness of generated tags, is affected by changing the number of top

articles used for tag recommendation. We also aim to optimize our system by

identifying the best number of articles that should be used to give the best possible

recommendations.

We tested our recommendation system with only 10 tweets while varying the

number of top similar articles from 2 to 20. For example, the first trial used only the

top 2 Wikipedia articles to recommend tags, while the last trial used 20 articles. Tags

generated from each trial were validated by six human experts, two in each field, who

marked each tag as "Correct" or "Incorrect". A tag was considered correct if it

highlighted the meaning of the tag, or it can be used to categorize the tweet. (Table

4.4) shows a tweet and a sample of the resulted tags. The first column presents the

tweet. The second and the third columns present correct tags. Tags in the first column

highlights the meaning of the tweet while tags in the third column are considered

categorization of the tweet which describes the topic (subject) the tweet belongs to.

The last column presents incorrect results that experts considered inappropriate as tags.

Table (4.4): Correct and incorrect tags of a tweet

Tweet
Correct tag

(Highlighting tag)

Correct tag

(Categorizing tag)
Incorrect tag

قوات الاحتلال
 مدينة تقتحم شمال
 الخليل

 2015نزاعات في فلسطين محافظة الخليل

 مدن محافظة رام الله والبيرة القضية الفلسطينية الخليل

 هجمات إسرائيلية ضد قطاع غزة إرهاب صهيوني

It is important to notice that the total number of generated tags from all trials

was 2007. This large number of tags that needed to be validated by the experts explains

why we limited the number of tweets for this experiment to 10 tweets only rather than

100 tweets.

(Table 4.5) illustrates the results of changing the number of similar documents.

The first column shows the changing number of articles for the ten tweets. The second

column shows the average number of recommended tags that are correct for each

number of articles for all tweets. The third column shows the average number of

incorrect tags for all tweets. The final column shows the accuracy for each trial. Notice

50

that the total number of recommended tweets increases as the number of articles

increases.

Table (4.5): Result of experiment on 10 tweets with different number of top articles

Number

of top

articles

Correct

tags for 10

tweets

Incorrect

tags for 10

tweets
Accuracy

2 15 6 71.43%

4 29 16 64.44%

6 51 29 63.75%

7 66 32 67.35%

8 72 39 64.86%

9 82 45 64.57%

10 96 50 65.75%

11 102 55 64.97%

12 110 63 63.58%

14 119 88 57.49%

16 128 112 53.33%

18 140 136 50.72%

20 155 171 47.55%

During early investigation of the results applying a step of 2 for the number of

top articles, we noticed a small peak of accuracy (65.8%) at 10 top articles. Testing

other values for top articles before and after this peak was required. Therefore, we

recorded results for 7, 9, and 11 top articles as presented in (Table 4.5).

(Figure 4.1) shows how the accuracy, number of correct tags and number of

incorrect tags change for different number of top articles judged by human experts.

The x-axis presents the number of selected top articles (N), and the y-axis presents the

number of generated tags.

51

Figure (4.1): Results for 10 tweets on different number of top articles

 (Figure 4.1) shows that at low number of articles the accuracy looks high, but

the number of tags are very small. For example at 2 articles the average accuracy was

71.4% but the number of tags was (1-2) tags on average for each tweet which is very

small and sometimes not related to the short text. Some texts had 100% accuracy while

some had 0%. While at 18 articles, the incorrect tags began to exceed the correct ones

causing accuracy to drop to 50.7%. The system resulted in (8 to 24) correct tags, and

around the same number of incorrect ones for each tweet.

Using bigger number (N) for top articles to have more tags will also increase the

number of wrong ones. comparing the results when N=20 and N=18 the system added

6 more correct tags but also introduced 19 more incorrect at N=20, which decreases

accuracy and increases tag ambiguity. Besides, using bigger number of top articles

increases the number of correct tags, but the majority of these new tags are general or

broad which categorize the tweet rather than highlighting the meaning of it. For

example, (Table 4.6) shows results at N=18 for the tweet in the previous example in

(Table 4.4), all of the new tags are general and similar to the tags in the third column.

But no specific or highlighting tags were added.

52

Table (4.6): New tags at 18 top articles for example in Table (4.4)

Tweet Correct tags

(categorizing tags)

قوات الاحتلال تقتحم شمال
 مدينة الخليل

 قرى فلسطين

 بلديات فلسطين

 مدن مقدسة

 مدن الكتاب المقدس

 كنعانيةمدن

The best number of selected top articles (N) that the experiment suggests is tend

to be 7 articles, which preserve balance between the number of correct tags (5-10) for

each tweet and an acceptable accuracy of 67.4% at this experiment. On the other hand

7 articles will generate a reasonable number of tags for experts to conceive. There will

be 10 resulted tags for tweets. Accordingly, 7 top articles is the N that we chose for

our system, avoiding our experts the burden of fruitlessly investigating an immense

number of tags, leaving other choices for future work. However, restricting the

experiment on only 10 tweets is a limitations, since repeating the experiment on a

different 10 tweets may result in selecting different number of top articles.

Investigating results for a second experiment costs the experts time and effort. But we

believe that the selected number of top articles will remain around 7 based on the

structure of Wikipedia.

4.4.2 Experiment 2: evaluation of the system

For the assessment of our system we ran the tag recommender on the dataset and

recorded the results which are an ordered set of tags for each tweet. Tweets with their

corresponding generated tags were divided into 3 groups according to subject domains.

Then each group was handed to two human experts in each domain to examine the

tags and mark the suitable ones. Since two human experts validated the tags, we

considered only the tags that both experts agreed upon to be correct. (Table 4.7) shows

how each tweets and its recommended tags are presented to the expert for validation.

The expert was asked to mark each tag as "1" if it is correct or "0" if it is incorrect.

Counting only the 10 top ranked tags that all experts agreed upon, there were

658 appropriate tags from 933 resulted tags yield in 70.35 average accuracy .The

correct tags were divided as follows; Sports; 227, Technology; 276, and News; 155

53

correct tags. These results were used to evaluate our system. The full results collected

from the experts can be downloaded from

https://github.com/YousefSamra/ShortTextTagging.

One should also notice that the order of recommended tags was preserved and

considered in the evaluation. A good recommender approach should order

recommendations so that most relevant ones come first.

Table (4.7): Tags of a tweet evaluated by experts

 : توقف خدمة واتس اب عن العمل على بعض الهواتف اكتشف ان كان هاتفك من القائمة2017واتساب

 واتسآب 1

 سناب شات 0

 تراسل فوري 1

 برمجيات آي أو إس 1

 برمجيات أندرويد 1

 برمجيات متعددة المنصات 1

 برمجيات اتصال 1

 مراسلة فورية 1

 برمجيات بلاك بيري 0

 برمجيات سيمبيان 0

 Evaluation Metrics

Most state of the art works have adopted precision(Gong & Liu, 2001),

recall(Otsuka et al., 2014) and f-measure (Hassan et al., 2012) to evaluate the

performance of their approaches. While being simple and descriptive, recall and

consequently F-measure, requires a pre-knowledge of all possible correct tags for each

short text, which is infeasible in our case.

 Therefore, what is appropriate for our tag recommender is to take into

account the rank of the items. In recommender systems, the most important result for

a final user is to receive an ordered list of recommendations, from best to worst. So,

we adopted Precision at position K (P@K) where k from 1 to 10, Mean Average

Precision (MAP), and Mean Reciprocal Rank (MRR). Works, such as (Allahyari &

Kochut, 2016a; Bogers & Van den Bosch, 2008) had applied these metrics.

54

 The first two metrics emphasize on the quality of the top K tags, while the

MRR focuses on a practical goal, “how deep the user has to go down a ranked list to

find one useful tag?” (Sun, Chen, & Rudnicky, 2017).

The metrics are defined as follows(Liu, 2009):

To define MAP, one needs to define Precision at position k (P@k) first,

k

 positions}k topin the documents{relevant #
 P@k(q)

K in our system denotes the number of recommended tags for each tweet. For

example, P@5 corresponds to the number of relevant tags for a tweet from the first 5

results. We aim to explore how the precision is affect when changing the number of

tags to be examined.

Then, the Average Precision (AP) is defined below:

Documents}{relevant #

)(@
 AP(q) 1

m

k
qkP

Where m is the total number of documents associated with query q. The mean value

of AP over all the test queries is named MAP.

))((MAP
1

n

q
qAPAvg

Where n is the number of queries.

Mean reciprocal rank (MRR): For query q, the rank position of its first relevant

document is denoted as r(q). Then 1/r(q) is defined as MRR for query q. It is clear that

documents ranked below r(q) are not considered in MRR.

r(q)

 1
 MRR

Based on the above definitions, the metrics in our experiment are calculated as

follows:

55

k

 positions}k topin the tags{relevant #
 P@k(q) (4.1)

))((MAP
100

1

q
qAPAvg (4.2)

)
r(q)

 1
(MRR

100

1

q
Avg (4.3)

Also we have calculated precision for more evaluation using the following equation

 tagsresulted all ofnumber

gs correct ta all ofnumber
precision (4.4)

Recommended tags for each tweet were first assessed by human experts. The

above evaluation metrics were calculated based on the expert's evaluation of tags.

(Table 4.8) depicts a sample short text, ordered tag results, expert evaluation, and the

calculations of P@k, AP@k, and reciprocal rank where maximum k=10.

Table (4.8): A short text, resulted tags, expert evaluation and measures calculations

RR AP@K P@K
Experts

judgement
: توقف خدمة واتس اب عن العمل على 2017واتساب

 بعض الهواتف اكتشف ان كان هاتفك من القائمة

 1 واتسآب 1 1 0.82602 1

 2 سناب شات 0 0.5

 3 تراسل فوري 1 0.666667

 4 برمجيات آي أو إس 1 0.75

 5 برمجيات أندرويد 1 0.8

 6 متعددة المنصاتبرمجيات 1 0.833333

 7 برمجيات اتصال 1 0.857143

 8 مراسلة فورية 1 0.875

 9 برمجيات بلاك بيري 0 0.777778

 10 برمجيات سيمبيان 0 0.7

 Results and Discussion

(Table 4.9) presents the evaluation metrics of the tag recommender.

Table (4.9): Evaluation metrics of the system

Number of generated tags @ k=10 933

Number of correct tags 658

Mean Average Precision 84.39%

Mean reciprocal Rank 96.53%

Precision 70.35%

56

The results depicted in (Table 4.9) have been calculated for 100 tweets in three

different domain subjects processed through the system and then judged by experts -

in each subject- for tag suitability and relevance. We have expected around a thousand

tags, ten for each tweet on average according to experiment 1. We had 933 tags because

some of the tweets had less than 10 tags. Their top articles belong to different

categories. It is possible to have such number of tags based on the top articles. Top

articles that are related to each other share categories more than weakly related top

articles. Shared categories are suggested as tags.

Inspection of the results revealed that the system achieved a good performance

by 84.39% mean average precision, which as we think and the results suggest are

adequate for a tag recommendation system. Also the system achieved a considerable

mean reciprocal rank of 96.53% which means that the user will find a suitable tag as

the first or mostly the second result that proofs the effectiveness of our simple rank

algorithm. But this was not the case with all input tweets, we have recorded a few

where a suitable tag did not appear neither first nor second. As an example, the tweet

" الأسكتلندي بالدوري الثاني المركز في موقعه يعزز أبردين " had only one proper tag at k=6

resulting in AP@k =16.67% and reciprocal rank = 16.67% too. Detailed discussion is

provided in the next section.

We were also interested in examining the differences across different subject

domains. Results for each subject domain is depicted in (Table 4.10). Results from the

table below shows that MAP and MRR are close for the three subject domains,

suggesting the adequacy for other different subjects.

Table (4.10): Results across different subjects

Subject
NO

tweets
MAP MRR

Sports 36 80.81% 95.46%

Technology 41 85.85% 96.83%

News 23 87.12% 97.83%

57

 While applying more investigation into the results we noticed that the precision

is higher at the top of the list. Meaning, as we encounter new results from the list of

recommendations, the precision drops down indicating weak relatedness of the tags at

the rear of the list. (Figure 4.2) shows average precision for the results of the 100 tweets

at k=1 to 10. This result is consistent to a large extent with most web search and

information retrieval systems since it introduces more relevant tags at the top of the

list than on the bottom of the list.

Figure (4.2): AP(1-100)@k(1-10)

To further explain our results, we inspected the results thoroughly to identify the main

sources of strengths and weaknesses. Strengths can be stated in the following points:

1. Comparison in the concept space: this is mainly the job of singular value

decomposition. Classifying articles into concepts before comparing them with the

input tweet gives higher scores to the articles in the concept that the tweet belongs to.

Leading to better matches to the input. For example the term "زيدان" could be the

philosopher " زيدان يوسف ", the actor " زيدان أيمن ", or the media figure "بدر آل زيدان", but

comparison in the concept of the tweet " مجددا مدريدريال يسقط أن أخشى: زيدان " resulted in

" زيدان الدين زين " and "محمد زيدان" as the second and the third similar articles, where both

of them are football players. This technique allows the tags to be semantically related

to the concept the tweet belongs to.

95.00%

83.00%
78.00%76.17%74.75%74.63%73.59%73.75%73.02%71.94%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

p
er

ce
n

ta
ge

AP@K

.

58

2. Tag selection procedure: as discussed in Chapter 3, the tag selection covers two

parts; the categories then the titles of the top articles, giving the titles higher priority.

This allows the tags suggested by the system to cover specific followed by general

aspects of the tweet. For example the tweet " يواصل القيق محمد الصحفي: المحتلة فلسطين

الصهاينة بسجون الطعام عن إضرابه " has a specific tag "محمد القيق" and general tags such as

" ,Also ."القضية الفلسطينية" and "أسرى ومعتقلون فلسطينيون" وصحفي وقاص روائي: كنفاني غسان

الصهيوني الموساد يد على اغتياله تم فلسطيني " has a specific tag "غسان كنفاني" and general ones

" فلسطين وكتاب أدباء " and " الإسرائيلي العربي الصراع ". Specific tags are suggested from titles

while general tags are suggested from categories.

No human work is perfect. This work has some weaknesses that can be classified into

the following categories based on the source of weakness:

1. Polysemy: is a word that have different meanings in different contexts. In Arabic

most words have different vowelization. Although, vowelization mostly not applied

which contributes into polysemy. Moreover, in order to compute the Tf-idf matrix, our

system needs to remove all form-adjustment of terms if existed. Polysemy causes the

system to miss-interpret the term with another. For example, the term "بيت، شعر، تراث"

"residence, hair, heritage" in الف ٦٠ل تتسع بمساحة شعر بيت شكل على قطر في قدم_كرة ملعب"

"ثراثنا من مستوحاة تصميمات ٢٠١٨ عام ينتهي are related to a concept not related to the

context of the whole sentence. Our system suggested tags not related to the context

such as:")إيقاع شعري","شعر)أدب", and " يةفاق ". On the other hand, more related suggested

tags such as" قطر في قدم كرة ملاعب " got low ranks.

2. Synonymy: is a concept having multiple forms of representation. Arabic language

is full of synonymy. It is a common drawback in models like LSA. In addition,

Arabaization introduces synonyms that is written in Arabic alphabets but their

pronunciation sounds foreign such as computer "حاسوب" ,"كمبيوتر", mobile "جوال",

 These new ."سوفت وير" ,"تطبيق" ,"برنامج" and software ,"محمول" ,"هاتف" ,"موبايل"

synonyms introduce more complications to LSA. Wikipedia tries to manage the

synonymy and polysemy problems by introducing page redirections. Redirections

allow users to search for terms while Wikipedia takes care of the synonyms. But this

is not the case in LSA. For example, the term "حاسوب" is found much more than the

59

term "كمبيوتر" in Wikipedia articles. Because articles such as "حاسوب" " شخصي حاسوب "

have redirect pages from "كمبيوتر" and " الشخصي الكمبيوتر " respectively. While the

Articles contains only the term "حاسوب".

 Consider, the tweet " كمبيوتر وبرامج واندرويد ايفون وبرامج مواقع ةبرمج تتعلم حاب اذا انت

"شارب سي اسمها وحده ةبرمج بلغة متوفره كلها contains the term "كمبيوتر" while the suggested

tags was not influenced by the term "كمبيوتر" allowing other tags like " ذكية هواتف "," آي

 that are more related to the rest of the terms to appear. We refer that "أندرويد" and "فون

to existence of the term "حاسوب" rather than "كمبيوتر" in the relevant articles. Since

most terms in Arabic Wikipedia that means computer is written "حاسوب".

On the contrary, the term computer "حاسوب" in the tweet" كميين حاسوبين بين مواجهة أول "

resulted in more adequate tags such as "حاسوب", " الحاسوب معمارية " and " كمومي حاسوب ".

The term "حاسوب" was found in number of articles that are three times the articles

contain the term "كمبيوتر". The term distribution over many articles offers a better

chance to be combined with other terms of the tweet in the same concept, leading to

better tag selection.

3. Different ways for writing a foreign term: foreign terms that have been Arabized

could be written in different ways. It could be introduced as polysemy or miss-spilling.

However, the change either includes one letter of the term such as English "إنجليزي",

 or adding a space to "إنستقرام" ,"إنستغرام" ,"إنستجرام" and Instagram ,"إنغليزي" ,"إنكليزي"

split the terms such as iPhone "آيفون", " فون آي " and Hard disk "هارديسك", " ديسك هارد ".

Such writing if does not match with a similar term, affects the tags to be biased to the

other terms of the input text. This writing differences was the major contributor in

failure of extracting the expected tags. For example, the tweet " طريقة تثبيت ويندوز من

 where there is no such term in the whole "هاردسك" contains the term "خلال الهاردسك نفسه

Arabic Wikipedia and the system could not find relevant articles to it. Therefore, only

three suitable tags were introduced "ويندوز", " ويندوز مايكروسوفت ", and " تشغيل أنظمة ".

While the bitter truth is that the term in different writing " ديسك هارد " is found in 9

articles 4 of them combined with the term "ويندوز" which if written properly, may lead

to electing other suitable tags.

60

Also, the tweet " يونايتد أمام لأرسنال التعادل ينتزع جيرو هدف " contains a name of a football

player "جيرو". But the system could not find resemblance with the article "أوليفيه جيرو"

because the name is written "غيرو" in the body of the article. Unfortunately, this title

of the article was not suggested as a tag.

Another tweet " الجافا لغة مخترع جوسلينج جيمس " contains "جوسلينج", Java inventor's name,

but no relevance to the article " غوسلينغ جيمس " was found because it is written "جوسلنج"

in the body of the article, accordingly was not selected as a tag.

4. Terms written in English: some of tweets has terms that are written using Latin

characters, these term are deleted in the prepressing step of the tweet. Therefore, they

have no effect on the results. For example, in the tweet" لاستيرده في ووردبريسXML file

تقسيم طريقة " the terms "XML file" was deleted. So the tags focus on other terms

resulting in suggesting "ووردبريس", and " التدوين برمجيات " as tags, while not mentioning

XML files.

5. Distinguishing names: we refer to distinguishing terms as the terms that are found

in a few articles such as names of persons, places, etc. in a concept. Which cause the

articles containing these terms to be highly relevant to the input tweet and gain high

scores while being weakly related to the context of the tweet. And since relevant

articles are used to select tags, the resulted tags tend to be not descriptive or irrelevant.

 For example, the term "موغيريني" is a name of one person that no one else shares

the same name in the whole Wikipedia, and it is found in only 37 articles. This

distinguishing term in " موغيريني نتائج زيارة في تبحثان وكوسوفو صربيا " lead to a scattered

set of top articles with high scores. The top articles gave 11 irrelevant tags out of 14

such as " تونس في النار بإطلاق قتلوا أشخاص ", " سياح على هجمات ", and " تونس في إرهاب ".

Fortunately, the first result was "صربيا" which is relevant to the tweet.

6. Title contains a tweet term: to select a title of a top article as a tag, the title must

contain a term of the tweet. These titles (as tags) are given higher scores. This

technique guarantees two things. First; the article is one of the top 7 candidate articles

that are most similar to the input tweet. Second; the title itself is also similar to the

61

input tweet by containing a term of it. Unluckily, some terms in the tweet lead to the

selection of unsuitable tags.

 For example, the title " الممتاز العراقي الدوري " appeared as the forth suggested tag

for " المحترفين_دوري من التاسع الأسبوع ضمن هدف، مقابل بهدفين الهلال بفوز تنهي الرائد_الهلال مباراة "

because it contains the term "دوري". Also, "معرض إيفا برلين" was suggested as the second

tag for " المعلومات_تكنولوجيا مجال في دبي في الاحداث اكبر احد جايتكس معرض " since it contains

the term "معرض". This type of weakness also drops the mean average precision because

these tags appear at the top of the suggested list of tags.

7. Title does not contain a term: this is similar to the previous point, but instead of

containing a term, a title that is suitable as a tag has not been selected because it did

not contain any term of the input tweet. For example, the title "دارك نت" which is a

descriptive tag for " توصلها صعب مواقع مجموعة هي! المظلم أوالإنترنت العميقة الشبكة ويب يعني ديب

عميقة يسمونها كذا عشان و " was not selected since it does not contain any term of the

tweet.

8. Other causes: may include miss-spilling, and we can define miss-spilling as

wrongly written terms or missed spaces between terms that combines them. Luckily,

our dataset does not contain any.

 Summary

This chapter presented the evaluation of the system. And also discussed the

results besides the strengths and weaknesses of the system.

We claim that there is no previous effort in short text tagging using Wikipedia

in Arabic Language domain. We have formulated a dataset of 100 short texts to assess

the system. Results were judged by human subjects' opinion. The results indicated that

our system achieved a high relevant measures with 84.39 mean average precision and

96.53 Mean reciprocal rank.

62

Chapter 5

Conclusions

63

5 Chapter 5

Conclusions

In this work, we have developed a tag recommender system for short Arabic

texts by exploiting Arabic Wikipedia as a base knowledge. Given a short Arabic text,

the system compares it to the Wikipedia articles in the concept space to find the most

relevant and articles then uses these articles to suggest ranked tags from their titles and

categories.

The system process consists of the following steps: First, configuring Arabic

Wikipedia: in this step the XML dumb is parsed for complete articles; body, titles and

categories. Then text preprocessing is applied including, cleansing, segmenting and

stop-word removal. Second, preparing the system: this step constructs the Tf-idf

matrix then the Singular Value Decomposition. Third, in this step the system compares

the input to the articles in the concept space to find the most similar ones. Forth,

electing tags: this step is to select tags from the titles and the categories of relevant

articles. The category selection is based on the intersection, while the title selection

depends on containing a term of the input text, these tags are ranked using a simple

ranking procedure.

 The tag recommender system is evaluated over 100 short texts from online

Arabic tweets in three different subject. The results of the system were evaluated by

experts' subject opinion. Then the system is assessed based on the evaluation metrics

of mean average precision, mean reciprocal rank. Results indicated that the system

achieved high relevance measures with 83.39 mean average precision and 96.53 mean

reciprocal rank.

This work has the following research contributions:

 To our knowledge, this is the first work to explore the Arabic short text tagging

using Arabic Wikipedia. Arabic Wikipedia has only been exploited recently by the

Arab computer researchers and few efforts from the literature have tried to extend to

the Arabic version of Wikipedia for different purposes such as determining relations

64

between topics (Kanan et al., 2015) and named entity recognition(Althobaiti,

Kruschwitz, & Poesio, 2014) but not the tag recommendation.

Our work proposed a simple ranking procedure that is especially designed for

ranking results in our case. This is different from other ranking algorithms, but in our

humble opinion the system can be used in other application such as suggesting links

in "Read More" section that offers documents similar to the current document in the

same website. Also, the system, as it is, can be employed for auto categorization of

Wikipedia articles.

Our system, is one of few works that utilize latent semantic analysis to non-Latin

languages compared to Latin languages. These works, including ours, proof the

possibility of employing LSA to achieve high performances.

As far as we know, most works utilize LSA to summarize documents or to find

similarities between existing documents. This work is one of a scarce to confirm the

applicability of introducing new document to the system.

The results show that the system help mapping poorly composed short texts into

real life concepts that can help improve other information retrieval processes. Also it

helps unifying tags among users which can improve classification and linking by

providing more insight to the content and the meaning (purpose) of the short text.

We proposed an in-depth evaluation of our tag recommender and explored the

potential shortcomings and strengths of each involved process. This detailed

evaluation can inform Arab researchers with the various options and recommendations

for designing similar approaches.

For the uniqueness of this work, we have some aims for the future:

1. Evaluate the system in the field of question answering. Dealing with Arabic

Wikipedia as the source knowledge and the question as a short text, the

system must provide one article, at best, that contains the answer of the

question.

65

2. Exploit the latent semantic analysis of Arabic Wikipedia for other

applications such as finding similarity between Arabic documents or

recommender systems.

3. Explore solutions for the weakness points discussed in Section 4.6. For

example, results can be improved by unifying the way of writing foreign

words in Arabic.

4. Proof the generality of the tag recommender by Appling it to the English

Wikipedia.

66

References

67

6 References

Abdeen, M., & Tolba, M. F. (2010). Challenges and design issues of an Arabic web

crawler. Computer Engineering and Systems (ICCES), 2010 International

Conference on, 4(1), 203-206.

Abdelali, A., Darwish, K., Durrani, N., & Mubarak, H. (2016). Farasa: A fast and

furious segmenter for arabic. Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics:

Demonstrations, 11-16.

Agnihotri, L., Mojarad, S., Lewkow, N., & Essa, A. (2016). Educational data mining

with Python and Apache spark: a hands-on tutorial. Proceedings of the Sixth

International Conference on Learning Analytics & Knowledge, 507-508.

Al-Shalabi, R., Kanaan, G., Jaam, J. M., Hasnah, A., & Hilat, E. (2004). Stop-word

removal algorithm for Arabic language. Proceedings of 1st International

Conference on Information and Communication Technologies: From Theory to

Applications, CTTA, 4, 19-23.

Allahyari, M., & Kochut, K. (2016a). Semantic Tagging Using Topic Models

Exploiting Wikipedia Category Network. 2016 IEEE Tenth International

Conference on Semantic Computing (ICSC), 63-70.

Allahyari, M., & Kochut, K. (2016b). Semantic Tagging Using Topic Models

Exploiting Wikipedia Category Network. Paper presented at the 2016 IEEE Tenth

International Conference on Semantic Computing (ICSC).

Althobaiti, M., Kruschwitz, U., & Poesio, M. (2014). Automatic Creation of Arabic

Named Entity Annotated Corpus Using Wikipedia. 106-115.

Baxla, M. A. (2014). Comparative study of similarity measures for item based top n

recommendation. National Institute of Technology Rourkela.

Bernotas, M., Karklius, K., Laurutis, R., & Slotkienė, A. (2015). The peculiarities of

the text document representation, using ontology and tagging-based clustering

technique. Information Technology And Control, 36(2).

Bhowmik, R. (2008). Keyword extraction from abstracts and titles. IEEE

SoutheastCon 2008, 610-617.

Bogers, T., & Van den Bosch, A. (2008). Recommending scientific articles using

citeulike. Proceedings of the 2008 ACM conference on Recommender systems,

287-290.

68

Bosagh Zadeh, R., Meng, X., Ulanov, A., Yavuz, B., Pu, L., Venkataraman, S., . . .

Zaharia, M. (2016). Matrix Computations and Optimization in Apache Spark.

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 31-38.

CoreNLP, S. (2016, Dec 23, 2016). Stanford CoreNLP. Retrieved February 4th,

2017, 2017, from http://nlp.stanford.edu/software/stanford-arabic-corenlp-2016-

10-31-models.jar

Dafney, J. A. J., & Mary, A. L. (2014). Semantic Analysis of tags for the Social

Classification of Resources in Tagging Systems. International Journal, 4(3), 105-

111.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.

(1990). Indexing by latent semantic analysis. Journal of the American society for

information science, 41(6), 391-407.

Fallows, J. (2007). Tag teams. The Atlantic, Jan/Feb: 163-165.

Gabrilovich, E., & Markovitch, S. (2006). Overcoming the brittleness bottleneck

using Wikipedia: Enhancing text categorization with encyclopedic knowledge.

AAAI, 6, 1301-1306.

Garcia Esparza, S., O'Mahony, M. P., & Smyth, B. (2010). Towards tagging and

categorization for micro-blogs. Paper presented at the 21st National Conference

on Artificial Intelligence and Cognitive Science (AICS 2010), Galway, Ireland, 30

August-1 September, 2010.

Github. (Wikixmlj 2016, Seb 5, 2016). wikixmlj wikiParser. Retrieved Feb 9, 2017,

2017, from https://github.com/delip/wikixmlj

Gittens, A., Devarakonda, A., Racah, E., Ringenburg, M., Gerhardt, L., Kottaalam, J.,

. . . Chhugani, J. (2016). Matrix Factorization at Scale: a Comparison of Scientific

Data Analytics in Spark and C+ MPI Using Three Case Studies. arXiv preprint

arXiv:1607.01335, 1-26.

Golder, S. A., & Huberman, B. A. (2006). The structure of collaborative tagging

system. Journal of information science, 32(2), 198-208.

Gong, Y., & Liu, X. (2001). Generic text summarization using relevance measure and

latent semantic analysis. Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval, 19-25.

Guo, W., Li, H., Ji, H., & Diab, M. T. (2013). Linking Tweets to News: A Framework

to Enrich Short Text Data in Social Media. ACL (1), 239-249.

http://nlp.stanford.edu/software/stanford-arabic-corenlp-2016-10-31-models.jar
http://nlp.stanford.edu/software/stanford-arabic-corenlp-2016-10-31-models.jar

69

HaCohen-Kerner, Y. (2003). Automatic extraction of keywords from abstracts.

International Conference on Knowledge-Based and Intelligent Information and

Engineering Systems, 843-849.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques:

Elsevier.

Hassan, M. M., Karray, F., & Kamel, M. S. (2012). Automatic document topic

identification using wikipedia hierarchical ontology. Information Science, Signal

Processing and their Applications (ISSPA), 2012 11th International Conference

on, 237-242.

Hulth, A. (2003). Improved automatic keyword extraction given more linguistic

knowledge. Proceedings of the 2003 conference on Empirical methods in natural

language processing, 216-223.

Ionescu, B., Popescu, A., Lupu, M., Gînscă, A. L., Boteanu, B., & Müller, H. (2015).

Div150cred: A social image retrieval result diversification with user tagging

credibility dataset. Proceedings of the 6th ACM Multimedia Systems Conference,

207-212.

Jeong, W. (2009). Is tagging effective?–overlapping ratios with other metadata fields.

International Conference on Dublin Core and Metadata Applications, 31-39.

Kanan, T., Ayoub, S., Saif, E., Kanaan, G., Chandrasekarar, P., & Fox, E. A. (2015).

Extracting Named Entities Using Named Entity Recognizer and Generating

Topics Using Latent Dirichlet Allocation Algorithm for Arabic News Articles (pp.

1-22): Department of Computer Science, Virginia Polytechnic Institute & State

University.

Khoja, S. (2001). Arabic Stemmer. Retrieved january. 4th, 2017, from

http://zeus.cs.pacificu.edu/shereen/ArabicStemmerCode.zip

Kywe, S. M., Hoang, T.-A., Lim, E.-P., & Zhu, F. (2012). On recommending hashtags

in twitter networks. International Conference on Social Informatics, 337–350.

Laclavik, M., Šeleng, M., Ciglan, M., & Hluchý, L. (2012). Ontea: Platform for

pattern based automated semantic annotation. Computing and Informatics, 28(4),

555–579.

Li, Z., Zhou, D., Juan, Y.-F., & Han, J. (2010). Keyword extraction for social snippets.

Proceedings of the 19th international conference on World wide web, 1143-1144.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and

Trends® in Information Retrieval, 3(3), 225-331.

http://zeus.cs.pacificu.edu/shereen/ArabicStemmerCode.zip

70

Mei, Q., & Zhang, Y. (2008). Automatic web tagging and person tagging using

language models. International Conference on Advanced Data Mining and

Applications, 741-748.

Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., . . . Owen,

S. (2016). Mllib: Machine learning in apache spark. JMLR, 17(34), 1-7.

Milicevic, A. K., Nanopoulos, A., & Ivanovic, M. (2010). Social tagging in

recommender systems: a survey of the state-of-the-art and possible extensions.

Artificial Intelligence Review, 33(3), 187-209.

Moss, L., Shaw, M., Piper, I., Hawthorne, C., & Kinsella, J. (2016). Apache Spark for

the Analysis of High Frequency Neurointensive Care Unit Data: Preliminary

Comparison of Scala vs. R.

O'Neil, T., & Sangiovanni-Vincentelli, A. L. (2014). Automatic construction and

ranking of topical keyphrases on collections of short documents. 398-406.

Oliveira, V., Gomes, G., Belém, F., Brandao, W., Almeida, J., Ziviani, N., &

Gonçalves, M. (2012). Automatic query expansion based on tag recommendation.

Proceedings of the 21st ACM international conference on Information and

knowledge management, 1985-1989.

Otsuka, E., Wallace, S. A., & Chiu, D. (2014). Design and evaluation of a twitter

hashtag recommendation system. Proceedings of the 18th International Database

Engineering & Applications Symposium, 330-333.

QCRI. (2016, 2016). Farase Arabic Segmenter. Retrieved Feb 9, 2017, from

http://alt.qcri.org/farasa/segmenter.html

Ramudu, B., & Murty, M. N. (2012). Topic based semantic clustering using

Wikipedia knowledge. Data Science & Engineering (ICDSE), 2012 International

Conference on, 1-7.

Ryza, S., Laserson, U., Owen, S., & Wills, J. (2015). Advanced Analytics with Spark:

Patterns for Learning from Data at Scale: " O'Reilly Media, Inc.".

Santoso, J., Nugraha, J. N., Yuniarno, E. M., & Hariadi, M. (2015). Noun ontology

generation from Wikipedia article using Map Reduce with pattern based approach.

Intelligent Technology and Its Applications (ISITIA), 2015 International Seminar

on, 373-378.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative

filtering recommendation algorithms. Proceedings of the 10th international

conference on World Wide Web, 285-295.

http://alt.qcri.org/farasa/segmenter.html

71

Schönhofen, P. (2009). Identifying document topics using the Wikipedia category

network. Web Intelligence and Agent Systems: An International Journal, 7(2),

195-207.

Shapira, B., Ofek, N., & Makarenkov, V. (2015). Exploiting wikipedia for

information retrieval tasks. Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval, 1137-1140.

Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft similarity and

soft cosine measure: Similarity of features in vector space model. Computación y

Sistemas, 18(3), 491-504.

Singhal, A., & Srivastava, J. (2013). SEMANTIC TAGGING FOR DOCUMENTS

USING ‘SHORT TEXT’INFORMATION. 337-350.

snowballstem. (2016, Jan 27, 2016). SnowBall Stemmer. Retrieved February 4th,

2017, 2017, from

https://github.com/snowballstem/snowball/tree/master/algorithms

Sprak, A. (2016). Apache Spark (Version 2.0.0): Apache. Retrieved from

http://spark.apache.org/

Sun, M., Chen, Y.-N., & Rudnicky, A. I. (2017). HELPR: A framework to break the

barrier across domains in spoken dialog systems Dialogues with Social Robots

(pp. 257-269): Springer.

Symeonidis, P., Nanopoulos, A., & Manolopoulos, Y. (2008). Tag recommendations

based on tensor dimensionality reduction. Proceedings of the 2008 ACM

conference on Recommender systems, 43-50.

Symeonidis, P., Nanopoulos, A., & Manolopoulos, Y. (2010). A unified framework

for providing recommendations in social tagging systems based on ternary

semantic analysis. IEEE Transactions on Knowledge and Data Engineering,

22(2), 179-192.

Tang, J., Hong, M., Li, J., & Liang, B. (2006). Tree-structured conditional random

fields for semantic annotation. International Semantic Web Conference, 640-653.

Tonella, P., Ricca, F., Pianta, E., & Girardi, C. (2003). Using keyword extraction for

web site clustering. Web Site Evolution, 2003. Theme: Architecture. Proceedings.

Fifth IEEE International Workshop on, 41-48.

Turney, P. D. (2000). Learning algorithms for keyphrase extraction. Information

retrieval, 2(4), 303-336.

Turney, P. D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL.

European Conference on Machine Learning, 491-502.

http://spark.apache.org/

72

Wang, P., Hu, J., Zeng, H.-J., & Chen, Z. (2009). Using Wikipedia knowledge to

improve text classification. Knowledge and Information Systems, 19(3), 265-281.

Wikipedia. (2016, 2016 August 2nd). Statistics. Retrieved September 30th, 2016,

from

https://meta.wikimedia.org/w/index.php?title=List_of_Wikipedias/ar&uselang=a

r

Wikipedia. (2017, 2017-01-01). arwiki dump progress on 20170101. Retrieved

january. 1st, 2017, from https://dumps.wikimedia.org/arwiki/20170101/

wikixmlj. (2016, sep 5, 2016). wikixmlj wikiParser WikiSense project. Retrieved

Feb 9,2017, 2017

Yeh, J.-Y., Ke, H.-R., Yang, W.-P., & Meng, I.-H. (2005). Text summarization using

a trainable summarizer and latent semantic analysis. Information processing &

management, 41(1), 75-95.

Yih, W.-t., Goodman, J., & Carvalho, V. R. (2006). Finding advertising keywords on

web pages. Proceedings of the 15th international conference on World Wide Web,

213-222.

Zadeh, R. B., Meng, X., Yavuz, B., Staple, A., Pu, L., Venkataraman, S., . . . Zaharia,

M. (2015). linalg: Matrix computations in apache spark. arXiv preprint

arXiv:1509.02256, 1-14.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark:

cluster computing with working sets. HotCloud, 10, 10-10.

