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Abstract 

Social media sites enable users to share items, such as texts and images, and 

annotate them with freely chosen keywords called tags. However, freedom comes at a 

cost: uncontrolled vocabulary can result in tag redundancy, ambiguity, sparsity, miss-

spilling, and idiosyncrasy, thus impeding more effective organization/retrieval of 

resources in tagging systems. 

This work proposes an Arabic Language tag recommender system that exploits 

the Arabic Wikipedia as background knowledge. Latent semantic analysis was 

employed to discover hidden semantics between the short text and Wikipedia articles. 

Apache Spark was used to handle the massive content of Wikipedia and the complex 

computations of latent semantic analysis which is used to analyze Wikipedia articles 

into three matrices. Given an Arabic short text as input, the system compares it to the 

body of the articles and scores them according to their relevance to the short text. 

Candidate tags are determined from top-scored articles by exploiting articles' titles and 

categories. 

The proposed system was assessed over a dataset of 100 tweets covering three 

different domains. Generated tags were rated by two human experts in each domain. 

Our system achieved 84.39% mean average precision and 96.53% mean reciprocal 

rank, revealing the system adequacy and accuracy for tagging Arabic short texts while 

still has difficulties regarding Arabic language, and affected by frequencies of rare 

terms. A thorough analysis and discussion of the evaluation results are also presented 

to address the limitations and strengths as well as the recommendations for future 

improvements.  

Keywords: Short text, tag recommender, Arabic Language, Wikipedia, Latent 

Semantic Analysis, Spark 
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 الملخص

تتيح المواقع الاجتماعية للمستخدمين مشاركة المواد كالنصوص والصور، وتتيح حرية إضافة كلمات 

رئيسية لها تسمى أوسمة. ولكنَّ الحرية لها مساوئ منها: التكرار الناتج عن عدم ضبط الكلمات، الغموض، التشتت، 

 انات في هذه الأنظمة. الأخطاء الإملائية، والتفرّد، مما يعيق عمليات تنظيم واسترجاع البي

يا القصيرة بالاستفادة من الويكيبيدالعربية نهدف في هذا العمل إلى عرض نظام اقتراح أوسمة للنصوص 

صير التشابه بين النص الق لاكتشاف   الكامنة   الدلالات   تحليل   للمعلومات، بحيث يتم توظيف   العربية كمصدر  

ومقالات الويكيبيديا. وقد استخدم "أباتشي سبارك" للتعامل مع الحجم الضخم لمحتويات الويكيبيديا والعمليات 

عند و ،صفوفاتم تحليل محتوى مقالات الويكيبيديا إلى ثلاثلالمستخدم  الحسابية المعقدة لتحليل الدلالات الكامنة

ابهها حسب علاقتها وتش وزنا   مقالات ويعطي كل مقالة  الالنظام بمقارنته مع محتوى قصير، يقوم  عربي إدخال نص

  بالنص. امع النص المدخل، ثم يتم اختيار الأوسمة المرشحة من عناوين وتصنيفات المقالات الأكثر شبه  

نص قصير تم جمعها من موقع تويترفي ثلاث  100على مجموعة من  عتمادا  اتم تقييم النظام المقترح 

 %84.39مجالات مختلفة و قام خبيران في كل مجال بتقييم الأوسمة التي أنتجها النظام. وقد حقق النظام المقترح 

mean average precision  96.53و% mean reciprocal rankلتوسيم  ودقته النظام هر مناسبةظ، مما ي

ما تم عرض ك .ه صعوبات تتعلق باللغة العربية وبتكرارات الكلمات النادرةجفي حين أنه يوا العربية النصوص

تطوير العمل ل إلى توصيات  تحليل  دقيق  ومناقشة  لنتائج التقييم تتناول نقاط القوة والقصور في النظام إضافة  

 مستقبلا .

 كالعربية، ويكيبيديا، تحليل الدلالات الكامنة، سبارنصوص قصيرة، اقتراح أوسمة، اللغة : كلمات مفتاحية
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1    Chapter 1  

Introduction 

 Introduction  

With the massive daily increase of data on the internet, especially text, automatic 

tagging recommendation that detects and adds informative, and descriptive tags to 

documents becomes an important necessity for information aggregation and sharing 

services(Oliveira et al., 2012). 

Tagging is the practice of creating and managing labels called tags that 

categorize or describe the content using simple keywords. It's not a new concept. 

Journals, conference proceedings, and even dissertations have required keywords from 

authors to improve their information retrieval performances for years. (Jeong, 2009). 

Tagging is considered as the way to organize the stuff you don’t have time to 

organize(Fallows, 2007). 

Social activities on Twitter, Facebook, Flicker, personal blogs etc. are becoming 

very popular among users who want to share local or global news, their knowledge or 

opinions (Kywe, Hoang, Lim, & Zhu, 2012). Lately, users are also using these services 

to search for information. Therefore, some services include tag or category information 

to better facilitate search. However, these tags are typically free-form in nature with 

users permitted to adopt their own conventions and interests without restriction, which 

can make the set of tags noisy and sparse. Moreover, many works have addressed 

tagging documents, whereas short texts are peculiar regarding length, composition and 

formality(Garcia Esparza, O'Mahony, & Smyth, 2010). 

A solution to the above problem is to recommend tags (Garcia Esparza et al., 

2010) or categorizations to users to enrich and clarify the content, facilitate retrieval, 

and perform less cognitive effort. Which, in one hand, if done properly, will improve 

text retrieval, linking, classification, clustering, recommendation, simplify archiving, 

and also will give the user or the application insight to the content and facilitate seeing 

the data (information) from different dimensions and enrich the context of the tagged 

text. On the other hand manual tags or metadata creation is costly in terms of time and 
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effort and users are unwilling to provide an adequate number of tags which is called 

tag sparsity.  

Many works have addressed the tag recommendation problem, but the special 

characteristics of short texts has made the tag recommendation a new and even more 

challenging dilemma. It is statistically shown that social texts are extremely short, 

poorly composed, and tend to be more informal (Guo, Li, Ji, & Diab, 2013). So the 

application of conventional statistical techniques becomes impractical due to these 

special characteristics. 

When we search for a text, what we really want is to look for the meaning behind 

the words of the text not the exact terms. Latent Semantic Analysis (LSA) has the 

ability over other techniques to discover these meanings depending on a powerful 

linear algebra technique called the Singular Value Decomposition (SVD) (Ryza, 

Laserson, Owen, & Wills, 2015). SVD can describe the intensities of relations between 

the components of an input matrix, e.g. Documents and terms, which reveals different 

relations between the components, such as the relation from: term to term, term to 

document or document to document (Turney, 2001). This property gives LSA the 

advantage over techniques like Natural language processing (NLP) (Guo et al., 2013; 

Laclavik, Šeleng, Ciglan, & Hluchý, 2012) or machine learning techniques (Allahyari 

& Kochut, 2016a; Tang, Hong, Li, & Liang, 2006) that lack semantics, because it goes 

deeper than comparing terms, to comparing the meanings behind these terms (Ryza et 

al., 2015).  

LSA was used on data sets other than the Arabic Wikipedia, since Arabic 

language may pose additional problems because few (or less reliable) resources are 

available to extract the needed data from the text. While the Arabic Wikipedia is 

recently used in fields other than tagging, this filed remains unexplored especially for 

short texts. 

Our work aims to recommend tags for short Arabic text, e.g. tweets, depending 

on Arabic Wikipedia Articles and categories, in an effort to select proper tags such as 

the title and the categories of the articles that are pertinent to the text by utilizing LSA 

and dimensionality reduction heavy computations. In order to do that, we need to 
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handle a massive collection of data (Arabic Wikipedia) which contains over a million 

Articles and a seven million terms, that no single accessible computer we have can 

deal with, leading to our need to use Apache Spark cluster (Zaharia, Chowdhury, 

Franklin, Shenker, & Stoica, 2010). 

The choice of Arabic Wikipedia as a source of tags is motivated by its large 

coverage of different knowledge areas, a thing that makes it adequate for 

recommending tags in any domain of knowledge. Given an Arabic short text, the 

system suggests ranked tags to that text. These tags are selected from the titles and 

categories of the Arabic Wikipedia. (Figure 1.1) presents the system as simple steps, 

details will be discussed later in Chapter 3.   

 

Figure (1.1): The system described in simple steps 

 First the system constructs the term document matrix by employing the term 

frequency-inverse document frequency (Tf-idf) weighting schema on the body of the 

articles after segmentation and lemmatization. Then the latent semantic analysis LSA 

is applied on that matrix by performing the singular value decomposition. This step 

allows the system to discover hidden semantics between the input short text and the 

Wikipedia articles by calculating cosine similarity. Tags are selected from the titles 

and categories of the articles that are most similar to the short text. Furthermore, the 

selected tags are ranked in order to present the best tags first. 
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As far as we aware of, this is the first effort that aims to offer tag suggestion of 

Arabic text using Wikipedia. While the English version of Wikipedia has been widely 

utilized in several research areas related to information retrieval and Natural Language 

Processing. Not all researchers and developers have the computational resources to 

process such a volume of information and there has been little efforts to utilize the 

Arabic Wikipedia for similar research. The proposed system is expected to act as a 

baseline for the research tackling Wikipedia-based tagging of Arabic text.  

The tag recommender was assessed over a dataset of 100 short texts gathered 

randomly from Twitter in three domains: Sports, Technology, and News. The tags 

generated by the system where examined and judged by two human experts in each 

field. Our recommender achieved (84.38%) mean average precision and (96.53%) 

mean reciprocal rank. 

 Statement of the problem 

The main problem addressed by this research is how to recommend semantically 

related tags to Arabic short text by exploiting Arabic Wikipedia. No effort, to our 

knowledge, has explored the use of Arabic version of Wikipedia for tagging Arabic 

texts.  

Besides, tags generated by existing techniques mostly relied on statistical 

approaches while they lacked semantics. They were also restricted to English 

Language or were applicable on long documents only. In addition, many of existing 

approaches were domain specific, had limited coverage of knowledge areas, and did 

not often suit extremely short, poorly composed, and informal short texts. 

 Objectives 

In this section, we present both main and specific objectives of the research 

work.  



5 

 

1.3.1 Main Objective 

The main objective of this research is to design and implement an automatic 

semantic tag recommender for short Arabic texts that is accurate and reliable, by 

exploiting the Arabic Wikipedia. 

1.3.2 Specific objectives 

The specific objectives of the proposal are: 

1. Explore how the massive content of the Wikipedia can be processed effectively. 

2. Explore the best processing and NLP techniques for Arabic language Lemmatizing 

and segmenting, compare them, and select the most suitable to our work in order to 

access, preprocess, clean and filter the content of Arabic Wikipedia. 

3. Investigate the implementation of LSA and how to identify most relevant and 

similar documents. 

4. Provide a novel technique for tagging Arabic short texts from the titles and 

categories of the relevant Wikipedia articles.   

5. Assess the performance of our system by annotating short texts obtained from social 

networks (Twitter). The performance will be evaluated by a number of experts in 

different fields and evaluation metrics. 

 Importance of Research 
 

1. Recommend semantically related tags for Arabic short texts which give insight and 

enrich the text. Since tags are becoming more significant to improve search and text 

retrieval, simplify archiving, linking, classification, clustering, recommendation, 

and provide consistency among users. 

2. Due to the scarcity of works that are oriented towards Arabic language in the field 

of automatic tag recommendation, this work could advance first step in the field of 

Arabic tag recommendation. While our technique still general but the test is limited 

to Arabic short text. 

3. Extend the coverage of our tagger by exploiting Arabic Wikipedia with its massive 

content as a background knowledge. This will provide a system that is more general 

than domain specific taggers. 
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 Scope and limitations of the project 

1.5.1 Scope: 

 This work utilizes only the Arabic Wikipedia. 

 Our work is limited to short Arabic texts. But the process is easily applicable for 

any language. 

 Our technique considered standard Arabic language as well as non-standard 

Arabic language texts published by common people. 

 The evaluation of the system was done using a specific dataset gathered from posts 

on twitter in the fields of Sports, Technology, and News, similar to the fields of 

our experts. It was not possible to conduct a comparative study due to the lack of 

similar tagging approaches of Arabic text 

 Apache Spark was used as parallel framework to process the content of Wikipedia 

and build the LSA based system. 

1.5.2 Limitations: 

1. Low efficiency of the existing Arabic segmenters and stemmers affects the 

quality of results. 

2. Some of the Arabic Wikipedia pages have misspellings and incomplete content. 

3. Tweets used for testing contain words of daily dialect (slang), and misspellings, 

which have a negative influence on the results. 

4. Non-Arabic names sometimes are written differently in Arabic (e.g. people, 

places, scientific experiments, compounds) which affect the quality and 

accuracy of the results. Also, the system excludes terms written in Latin 

characters. 

5. The terms of input short text that are not found in Wikipedia was excluded from 

the short text. 

6. Comparing a short text with a long one could increase the computation on the 

system.  
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 Research contribution 

The work in this thesis has the following research contributions:  

1. A comparison was conducted between some NLP for Arabic language to 

select the best one based on the suitability of outcome for our work and 

regardless of the execution time. 

2. Implement (LSA) on the whole Arabic Wikipedia. Because, as we recall, 

LSA is used mostly to tackle the English version not the Arabic version. 

3. Present a novel system that we can consider it as a guideline for the future 

efforts in utilizing Arabic Wikipedia structure in real life applications. 

4. It proposes an in-depth evaluation of our tagging system and explored the 

potential shortcomings and strengths. This detailed evaluation can inform 

Arab research community with the various design options, challenges and 

recommendations when designing similar approaches. 

5. This is the first work, as far as we know, that explores the tagging of short 

Arabic text by exploiting Arabic Wikipedia content and LSA. Arabic 

Wikipedia has been exploited recently by the Arab researchers and few 

efforts have tried to interface to the Arabic version of Wikipedia for different 

purposes distant from tagging. 

6. Generate a standard dataset for Arabic short-texts and tags. 

 Structure of Thesis 

The thesis consists of five chapters. The chapters are organized in general as 

follows: 

Chapter 1: Introduction: this chapter is an overview of the problem, work done in 

the field, and focuses on the proposed solution. It also discusses the challenges and 

difficulties of using Arabic text and Arabic Wikipedia. 

Chapter 2: Literature Review: this chapter focuses on related works that employed 

Wikipedia or LSA as well as the works on the tagging field.  
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Chapter 3: Methodology: This chapter explains the detailed steps of the tagging 

system. And present a scenario of the system and the results of each phase. 

Chapter 4: Results and Discussion: this chapter explains the assessing process of our 

system, test dataset, evaluation metrics, and discusses the results focusing on the 

sources of strengths and weaknesses. 

Chapter 5: Conclusions: this chapter presents a conclusion of the thesis and possible 

future works. 
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2 Chapter 2  

Literature Review 

 State of the Art 

The world-wide-web has become the largest ever free-access information 

repository with billions of web pages (Abdeen & Tolba, 2010). With the massive daily 

increase of data, especially text, novel approaches are needed to mine such data 

efficiently and effectively. One way to improve efficiency is to provide proper tags. 

Some recent works employ tags in retrieval (Ionescu et al., 2015),clustering (Bernotas, 

Karklius, Laurutis, & Slotkienė, 2015), classification (Dafney & Mary, 2014) etc. 

Plenty of state-of-the-art have addressed the issues of tagging(Allahyari & 

Kochut, 2016a; Garcia Esparza et al., 2010; Hassan, Karray, & Kamel, 2012; Otsuka, 

Wallace, & Chiu, 2014), keywording (HaCohen-Kerner, 2003; Hulth, 2003; Laclavik 

et al., 2012; O'Neil & Sangiovanni-Vincentelli, 2014; Tang et al., 2006; Tonella, 

Ricca, Pianta, & Girardi, 2003; Turney, 2000; Yih, Goodman, & Carvalho, 2006), and 

summarizing text (Gong & Liu, 2001; Yeh, Ke, Yang, & Meng, 2005), which all, one 

way or another, are aiming to acquire important and meaningful tags (words, phrases, 

or sentences) that describe the content and the soul of the text. 

Our work aims to recommend tags for short Arabic text, e.g. tweets, depending 

on Arabic Wikipedia Articles and categories, in an effort to select proper tags such as 

the title and the categories of the articles that are pertinent to the text by utilizing LSA 

and dimensionality reduction heavy computations. In order to do that, we need to 

handle a massive collection of data (Arabic Wikipedia) which contains over a million 

Articles and a seven million terms, that no single accessible computer we have can 

deal with, leading to our need to use Apache Spark cluster (Zaharia et al., 2010). 

The following section presents a brief background about Apache Spark, Latent 

semantic analysis, Singular Value Decomposition and Arabic Wikipedia. 
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 Background 

2.2.1 Apache Spark 

Apache Spark is an open source big data processing framework built around 

speed, ease of use, and sophisticated analytics. It was originally developed in 2009 in 

UC Berkeley’s AMPLab, and open sourced in 2010 as an Apache project (Zaharia et 

al., 2010). 

We restrict our attention to Spark, because it  provides a highly-optimized 

machine learning library called MLlib (Meng et al., 2016) which has several features 

that are particularly attractive for matrix computations (Bosagh Zadeh et al., 2016; 

Zadeh et al., 2015): 

1. Resilient Distributed Datasets (RDDs) is essentially a distributed fault-tolerant 

vector that can perform operation as in local mode(Gittens et al., 2016). 

2. RDDs allow user-defined data partitioning, and the execution engine can exploit 

this to co-partition RDDs. 

3. And co-schedule tasks to avoid data movement. 

4. Spark logs the history of operations used to build an RDD, enabling 

reconstruction of lost partitions upon failures.  

5. Spark provides a high-level API in Java that can be easily extended. Which lead 

to creating a coherent API for matrix computations. 

Hadoop (Zikopoulos, 2011) is another big data processing framework that is a 

software library and a framework which allows for distributed processing of large data 

sets (big data) across computer clusters using simple programming models. But Spark 

is favorable to us because (Spark, 2014) first: its ease of use compared to Hadoop and 

allows writing applications in Java and other languages. Second: Spark runs programs 

up to 100 times faster than Hadoop. Third: Spark powers a stack of libraries including 

MLib for machine learning which is essential to our work and also provid near real 

time analysis that is suitable for machine learning. 

Many works  have used Spark and MLib for data analysis purposes (Agnihotri, 

Mojarad, Lewkow, & Essa, 2016; Moss, Shaw, Piper, Hawthorne, & Kinsella, 2016), 
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stating the adequacy for processing terabytes/petabytes of data, which are 

commonplace in modern day society where both machines and humans generate 

petabytes of data every day. 

2.2.2 Latent Semantic Analysis (LSA)  

Latent Semantic Analysis, as the name indicates is the analysis of hidden 

semantics in a corpora of text. Any collection of documents can be represented as a 

huge term-document matrix and other things like how close two documents are, how 

close a document is to a query etc. can be deduced by cosine similarity. However, such 

models have two drawbacks that are common in many languages: polysemy and 

synonymy (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990) where 

polysemy is a word that have different meanings in different contexts and synonymy 

is a concept having multiple forms of representation i.e. two or more words denoting 

the same concept. 

LSA transforms the original data into a different space so that two (or more) 

documents/words about the same concept are grouped together (so that they are most 

similar to each other). LSA achieves this by Singular Value Decomposition (SVD) of 

term-document matrix. 

2.2.2.1 How Latent Semantic Analysis Works 

When we try to find relevant document to search words, the problem arose 

because what we really want is to compare the meanings or concepts behind the words. 

LSA attempts to solve this problem by mapping both words and document into a 

concept space and doing comparisons in that space (Deerwester et al., 1990). 

In order to make this problem solvable, LSA introduces some dramatic 

simplifications. 

1. Documents are represented as "bags of words", where the order of the words in a 

document, sentence structure, and negation are not important, only the number of 

the word occurrences in the document matters. 
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2. Concepts are represented as patterns of words that usually appear together in 

documents. For example "اندلع" ,"حريق", and "إطفاء" (fire, flare, and firefighting, 

respectively) might usually appear in documents about "حريق" (Conflagration). 

3. Words are assumed to have only one meaning. This is clearly not the case ("جدول" 

could be a table "صفوف وأعمدة", schedule "الفعل: جدول" or a spring "ينبوع") but it 

makes the problem tractable. 

To build the term-document matrix words are usually pre-processed by means 

of tokenization, stop-words removal and stemming (Sarwar, Karypis, Konstan, & 

Riedl, 2001). Then each token is assigned a weight which is proportional to its 

frequency normalized using various schemes, the most known is the Term frequency-

Inverse Document Frequency Tf-idf scheme (Han, Pei, & Kamber, 2011) ,where 

))df/( log1()tf1( logw 10,10, tdt N
dt

                                (2.1) 

Tf-idf is a numerical statistic that is intended to reflect how important a word is 

to a document in a collection or corpus. In this matrix each column represents a 

document and each row in the column represents a term frequency in that document. 

We apply Tf-idf weighting because it negates the effect of high frequency words in 

determining the importance of a document. And we use log to the base 10, to diminish 

the values of the results, since we are dealing with huge number of documents and 

terms. As a simple example we present (Table 2.1) below, which shows each term 

occurrences in every document that we depend on in calculating the Tf-Idf for each 

term-document. 

Table (2.1): Term occurrences in documents 

 D1 D2 D3 D4 D5 

t1 1 0 3 0 0 

t2 1 1 0 0 0 

t3 0 1 0 3 1 

t4 1 1 0 1 0 

t5 0 0 0 0 2 

 

For example to calculate the Tf-Idf for the term t1 in the document D3:  

First: Tft1,d3 = 
)tf1(log 3,110 dt

 = log(1+ occurrences of t1 in D3) = log (1+3) = 0.6 

https://en.wikipedia.org/wiki/Text_corpus
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Second: Idf t1,d3 = 
)df/(log1 10 tN
 = log(No of all documents/No of documents that           

.                                                              contain t1) 

         = 1+log(5/2) = 1.398 

Finally: Tf-Idf t1,d3 = 0.6 * 1.398= 0.8388 

And this is performed for every term in each document. 

In LSA, matrix approximation performed by singular value decomposition that 

can relate documents and terms into concepts. Documents and terms in each concept 

are all semantically related which make it superior to frequency based approaches. 

SVD effectively “splits” a term-document matrix M(m × n) into three new matrices, 

U, S, and V(Ryza et al., 2015).(Figure 2.1) shows the SVD form. Where m is the 

number of documents and n is the number of terms.  

 
Figure (2.1): The form of the singular-value decomposition 

A numerical example of SVD and dimensionality reduction is introduced below. 

Example: Let M be a (5 documents) × matrix (7 terms), which has the shown 

values. The number reflects term counts in documents for simplicity. We need to 

perform the SVD on the matrix, then perform the dimensionality reduction setting k=2, 

where 2 in the number of concepts to map the documents into. 
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The Result after performing SVD and dimensionality reduction with k=2 will be 

as below: 

 

Where the shaded values in U represent the documents related to the shaded 

concept in S, and the terms related to the same concept are the ones shaded in VT. 

An example to the terms and documents that can be found in a concept are shown 

in (Table 2.2). 

Table (2.2): Terms and documents in a concept 

Documents Terms 

  familyعائلة  Lepidopteraحرشفيات الأجنحة 

   Orchidaceaeسحلبية    Orchidزهرة الأوركيد 

 beetleخنفساء  Crustaceansقشريات 

 zoneمنطقة   biologyعلم الأحياء 

 mothعث     Insectsمملكة الحشرات 

  hawkmothفراشة                typica-speciesنوع نمطي 

 speciesأجناس  

 genusنوع  
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We notice that the presented documents in the concept have a thematic 

coherence with each other and with the terms related to the same concept. And also 

the terms are semantically related to each other. 

2.2.2.2 Querying and scoring with the low dimensional representation 

The Tf-idf composed matrix presents a shallow knowledge about the relationship 

between entries, depending on the simple frequency count. LSA has the ability to base 

scores (similarities) on a deeper understanding of the corpus. For example: if the term 

Samsung (سامسونج) appears in the article of smartphone ( ذكي هاتف ), which frequently 

mentions Apple (أبل), the LSA representation may be able to recover the relation 

between Samsung and Apple based on the co-occurrence of them in other documents.  

Now, consider the task of finding the most relevant document to a particular 

document. The naïve approach requires computing the dot product between the row 

vector of the document, and every other row vector in the term-document matrix. 

Where the number of multiplications is proportional to the number of documents times 

the number of terms. LSA can achieve this by a number of multiplication proportional 

to the number of document times the number of concepts. So rather than calculating 

the similarities on the low rank matrix (Tf-idf matrix), some linear algebra 

manipulations show that the cosine similarity between two rows in the reconstructed 

matrix is exactly equal to the cosine similarity between the corresponding rows in US 

matrix. Finding the cosine similarity between the document and all other documents 

is equivalent to multiplying US to the corresponding row resulting in (US)ud. 

What about new documents? Simply, the same. But, instead of finding the row 

of the document in the matrix, we need to create it. It can be done by setting the value 

of each term in the query (the new short text) to its inverse document frequency to 

maintain the weighting scheme used in the original term-document matrix(Ryza et al., 

2015). Before the comparison and after forming the short text vector, it is multiplied 

by the matrix VT to compute the concept space vector of the short text.  
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2.2.3 Arabic Wikipedia 

Wikipedia in general has been adopted in many works, specially, text processing. 

Works in the field of this thesis (Allahyari & Kochut, 2016a; Hassan et al., 2012; Mei 

& Zhang, 2008; Schönhofen, 2009; Singhal & Srivastava, 2013) and other fields 

(Gabrilovich & Markovitch, 2006; Shapira, Ofek, & Makarenkov, 2015; Wang, Hu, 

Zeng, & Chen, 2009) have used Wikipedia as a training data or test data. 

Wikipedia is currently the most popular free-content, online encyclopedia, 

which surpasses in scope many conventional encyclopedias and provides a cornucopia 

of world knowledge(Gabrilovich & Markovitch, 2006). Arabic Wikipedia is one of the 

popular Wikipedia projects, to date it is ranked 19th. It contains 1,238,570 pages with 

435672 actual articles and 267580 categories with average 10 edits each. Also, it has 

a base of about 1,288,144 registered users and written collaboratively by largely 

anonymous internet volunteers. There are about 4,438 active contributors working on 

the articles(Wikipedia, 2016). Thus the knowledge presented in the articles over 

Wikipedia in general are convinced upon by editors of similar interest. It covers most 

of the technical and non-technical topics, events that have happened, topics related to 

most of the domain areas (Ramudu & Murty, 2012). 

It is essential to note that we are not only using Arabic Wikipedia to simply 

increase the amount of the data. Rather, we use the knowledge distilled from the 

encyclopedia to enrich the representation of tags, by better matching the short text to 

the articles. Since we believe that Arabic Wikipedia has several advantages over other 

Arabic corpora:  

First: its articles are much cleaner, mostly qualify as standard written Arabic, 

heavily revised and edited. Second: the categories assigned to an article cover the 

perspectives and interests of large number of editors. Third: categories and articles 

(content and title) are continually updated and checked. Forth: High coverage for 

many domains, including medicine, News, Sports, Technology, etc. Finally: Arabic 

Wikipedia represents massive amounts of world knowledge (Milicevic, Nanopoulos, 

& Ivanovic, 2010).  
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Although Arabic Wikipedia structure is fairly shallow, and we propose to treat 

Arabic Wikipedia categories as having essentially no hierarchy. This way, mapping 

documents to relevant Wikipedia concepts yields truly better tag selection.  

 Related Works 

Recently, automatic semantic tagging and annotation of documents have 

attracted a great deal of attention, since it can add significant benefits to many text 

mining tasks(Allahyari & Kochut, 2016a) , as information retrieval(Shapira et al., 

2015), and text classification(Wang et al., 2009), text clustering and cluster labeling 

(Tonella et al., 2003) although, many attempts have been conducted to address this 

issue. In the field of our work, several efforts employed different techniques and 

knowledge bases, some of them targeted documents, and others targeted short texts. In 

the following sections we review short and long text tagging in association with the 

works that applied LSA in their approaches. 

2.3.1 Short text tagging: 

Several previous studies have addressed the problem of tagging of short text such 

as social snippets(Li, Zhou, Juan, & Han, 2010; Singhal & Srivastava, 2013) and 

abstracts of research papers (Bhowmik, 2008; HaCohen-Kerner, 2003; Hulth, 2003), 

topics (Bhowmik, 2008; HaCohen-Kerner, 2003), and micro-blog posts (Garcia 

Esparza et al., 2010; Kywe et al., 2012; Otsuka et al., 2014). 

 Depending on the title and the abstract of scientific papers, Bhowmik 

(Bhowmik, 2008) utilized a set of keywords that are pre-weighted, to weight and 

extract keywords and sentences according to their importance and position. His work 

is domain specific, and depends on a set of keywords that needs to be updated. Also it 

cannot enrich very short texts. likewise, Hulth (Hulth, 2003) built a supervised rule 

induction classifier that uses the abstract of the paper to generate tags, before she added 

linguistics knowledge to the representation, therefore each word has Part-of-Speech as 

a new feature that improved the results. In addition, HaCohen-Kerner (HaCohen-

Kerner, 2003)  used the frequency of words and phrases to create a weight matrix from 

abstracts then sorted these weights and chose the highest as tags. All previous works 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rekha%20Bhowmik.QT.&newsearch=true
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consider only the occurrences of the words, and the resulting tags are included in the 

original text and may lack semantics, but in our work we consider semantic relations 

and the generated tags mostly are not contained in the original text. 

Singhal and Srivastava (Singhal & Srivastava, 2013) proposed a technique for 

automatically tagging documents by concepts and named entities using only “short 

text” information from the documents, such as a document title, or a news article head 

line. In their work they employ the knowledge bases of Wikipedia, DBpedia, Freebase 

and Yago to generate semantically relevant tags for the document. They used a search 

engine to enrich the text with author name, snippets and/or URL. Then find word 

frequencies in the snippets. After that all short texts are clustered, pruned, and finally 

the remaining concepts and named entities are returned as tags. This work has a 

number of drawbacks. One is that it needs a collection of short texts to perform 

clustering which have to be pre-prepared so the model may not handle the variety of 

the new entries. The other is its need to use a search engine which may provide shallow 

or wrong information. Otherwise, the search engine results may depend on the whole 

document which converts the assumption of short text tagging.  

Li and others (Li et al., 2010) worked on social snippets. First they calculated a 

set of features for each word such as Tf-Idf, PoS, position in the text, text length, etc. 

They trained a classification model based on the labeled keywords of social snippets. 

And finally the keyword candidates with highest scores through the classification 

model are returned. But the training data in this model is manually prepared to meet 

the experiment, indication insufficiency for new snippets, and may generate redundant 

tags. 

 Based on the output of a topic model that was run on a collection of short 

documents, a framework for topical keyphrase generation and ranking was proposed 

by O'Neil and Sangiovanni (O'Neil & Sangiovanni-Vincentelli, 2014). By means of 

clustering the words of the short texts into topics using Latent Dirichlet Allocation, the 

authors were able to generate and rank candidate keyphrases according to word topic 

assignment. The system has high performance. However, they need multiple short 
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texts as input, and topics have to be informative for good clustering results indicating 

the insufficiency to handle very short texts, and in ability to handle new entries. 

 Other works  attempted to model users’ interests based on their historical 

tagging behaviors, and recommend tags to the user from other similar users (Bogers & 

Van den Bosch, 2008; Golder & Huberman, 2006). In Bogers and Van work (Bogers 

& Van den Bosch, 2008) the social reference management website CiteULike was 

used for recommending scientific articles to users, based on their reference library. 

Their work depends mainly on collaborative filtering algorithm, and uses a relatively 

small collection of documents. Golder and Huberman (Golder & Huberman, 2006) 

presented a dynamical model of collaborative tagging that predicts stable patterns in 

user activity and tag frequencies then relates them to recommendations and shared 

knowledge, both of the above works are user-centered while we focus on documents, 

and they are affected by the user's perspective and interests. 

Several attempts have addressed micro-blogs posts tagging. for example Otsuka 

and others (Otsuka et al., 2014) rely on compiling a large number of tweets to construct 

Tf-Idf matrix, that allows to measure the similarity between tweets, and recommend 

tags that are associated with the most similar tweets. also Esparza and his colleagues 

(Garcia Esparza et al., 2010) aim to categorize and recommend tags for tweets and 

other short messages in order to meet the different tagging conventions of users and to 

facilitate search. They used Tf-idf term weighting and a kNN classifier with k =1. Tfidf 

is considered naïve compared to LSA in a way that results in an undesirable matches 

and lack semantics. While Kywe and authors (Kywe et al., 2012) consider both user 

preferences and tweet content in selecting hashtags to be recommended. The system 

depends mainly on collaborative filtering and their method recommends hashtags 

found in the previous month's data which is biased by the user concerns and is 

inefficient for suggesting new tags. Also, Mei and Zhang (Mei & Zhang, 2008) 

recommends tags for short text utilizing highly weighted words and titles of  Wikipedia 

articles, performing all the work using a probabilistic model. Despite being similar to 

our work, the last mentioned techniques use old tweets to tag new tweets, while we 

use revised, rectified, and widely sparse Arabic Wikipedia documents. 
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2.3.2 Text tagging: 

In recent time, several attempts have been made to annotate documents and web 

pages, for example; Tang et al.(Tang et al., 2006) were concerned of semantic 

annotation on hierarchically dependent data, where targeted instances can have 

hierarchical dependencies with each other. Ontea (Laclavik et al., 2012) is a platform 

for automated semantic annotation or semantic tagging, its implementation based on 

regular expression patterns was presented while the test was carried out on job offers 

as documents with evaluation of results. Both of the above works use linguistic 

techniques to address annotation of the documents, and differ from our work in a way 

that they are primarily focused on specific entities mentioned in the documents, 

whereas we take all the words in consideration.  

Other works similar to ours include Schönhofen's (Schönhofen, 2009) where he 

used Wikipedia articles titles and categories to tag documents. In his method, he first 

finds all the Wikipedia articles related to a document by matching their titles with the 

words of the document. Then, they select categories assigned to these articles and rank 

them, and finally choose the categories with the highest weights as the topics of the 

document. Our work is not restricted to titles and categories, but exploits the whole 

content Wikipedia articles in LSA to determine articles related to short Arabic text. 

Also Hassan and others (Hassan et al., 2012) used Wikipedia text and hierarchical 

ontology to tag documents by constructing a category term matrix C, and then term-

document matrix D for the document. They eventually, find document-category 

similarity S=DCT. Allahyari and Kochut  (Allahyari & Kochut, 2016b) as well, used a 

probabilistic model. The authors incorporate DBpedia knowledge into the topic model 

for tagging web pages and online documents. Our work is similar to both Allahyari's 

and Hassan's (Allahyari & Kochut, 2016b; Hassan et al., 2012) in terms of using 

Wikipedia, but ours explores the use of Arabic Wikipedia instead, while our technique 

remains general. 

2.3.3 Tagging with LSA  

All the mentioned works are similar to ours in terms of the objective of text 

tagging, other works are similar in technique, where we employ LSA to generate 
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features before matching new documents. LSA was used by Symeonidis et al. 

(Symeonidis, Nanopoulos, & Manolopoulos, 2010) and utilized to select tags for 

biomedical abstracts by finding similar documents in the MEDLINE database. The 

system then uses a ranking schema to select candidate tags drawn from the most similar 

documents. While this work is domain specific as it is restricted to 2000 abstracts from 

the MEDLINE database, our work is generic as it builds the LSA based system from 

the whole content of Wikipedia, and employs parallelization to handle the huge size 

of data.  

 Gong and Liu(Gong & Liu, 2001) performed SVD on m×n term-sentence 

matrix (m: number of terms ≥ n: number of sentences where each column represents a 

document and each row in the column represents a sentence frequency in that 

document). They used a couple hundreds of CNN news in order to obtain the singular 

value matrix S, and the right singular vector matrix VT, then select the kth right singular 

vector from matrix VT. And finally, select the sentence which has the largest index 

value with the kth right singular vector, and include it in the summary. Likewise, the 

term-sentence matrix was used by Yeh and others (Yeh et al., 2005) accompanied with 

modified corpus-based approach to select the best sentences that summarize one 

hundred political articles from New Taiwan Weekly. Both works are analogous to 

ours, except we construct a term-document matrix instead of term-sentence matrix. 

Also we tag with titles and categories, and deal with enormous number of documents 

whereas they use hundreds. Finally, we use short texts instead of long documents. 

The algorithm proposed by Symeonidis et al. (Symeonidis, Nanopoulos, & 

Manolopoulos, 2008) performed latent semantic analysis and dimensionality reduction 

using the higher order singular value decomposition technique. This algorithm was 

tested on two data sets from Last.fm and BibSonomy. They stated the results showed 

substantial improvements in terms of effectiveness measured through recall.  

All the works that exploited LSA have been used to tag a document using other 

documents in the same corpus, while in our work we use the Wikipedia as a corpus to 

tag new short texts that are not in the corpus. 
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3 Chapter 3 

Methodology 

 Introduction 

This chapter presents the system of a tag recommender system that utilizes 

Latent Semantic Analysis on the Arabic Wikipedia. It clarifies the detailed steps of the 

tagging System which include: configuring Arabic Wikipedia and preprocessing of the 

text. Second, computing Tf-idf and SVD dimensionality reduction. Third, preprocess 

the short text to be tagged. Forth, the tag selection procedure exploiting titles and 

categories of the articles. And finally, a case study is presented to view the functional 

steps of the tagging process.  

 Configuring Arabic Wikipedia 

This section briefly explains the configuration needed for our tagging system. 

The description of the system is depicted in (Figure 3.1).  

 
Figure (3.1): The tag recommender system 
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This configuration includes parsing and preprocessing of Arabic Wikipedia to 

enable fast information access and retrieval. Note that all the configuration settings are 

performed only once. (Figure 3.1) shows the complete system processes from 

preparation until tag selection. The solid arrows are for the system preparation, the 

dashed arrows are for the tagging process. Detailed description is provided below. 

Code, data set and results can be found at 

https://github.com/YousefSamra/ShortTextTagging 

3.2.1 Parsing and information extraction from Arabic Wikipedia XML Dump 

In this section we briefly explain the steps we have taken to gather the content 

that is essential to our work. We selected the most recent XML Dump file of the Arabic 

Wikipedia, 1st January 2017(Wikipedia, 2017), which contains a large number of 

revised, reviewed and verified articles. The Arabic Wikipedia contains 1,238,570 

pages including 435,672 actual articles, 267,580 categories and has a hierarchical 

depth of 217. All this data is available in the XML dump file. After downloading the 

dump file. It was parsed to extract only the main content of Wikipedia articles. This 

content includes the article content, title, and associated categories, that are valuable 

information to our work, because we need to match the input short text to the articles 

body and need the categories and titles of Wikipedia articles to select tags. Other pages 

e.g. disambiguation, redirect, template, etc. are not needed in our work, so we 

neglected them. (Table 3.1) presents some information about the file, and the 

information it contains. 

Table (3.1): Information about the downloaded dump and the contained information 

XML Dump File Size 3.42 GB 

Number of Categories 267580 

Number of All Pages 1238570 

Number of Redirect Pages 437726 

Number of Disambiguation Pages 10473 

Number of Template Pages 345759 

Number of Discussion Pages 181 

Number of Empty Body Pages 8756 

No Category Pages 3 

Articles needed for our work 435672 
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After removing all pages listed in the previous table, the relevant remaining 

435672 articles that we used in our system were stored in a text file after being 

preprocessed, in order to be distributed among the working nodes of Spark cluster 

lately. All other pages were swiftly investigated for any miss enumerated ones, and 

there wasn't any. 

3.2.2 Text Preprocessing 

In order to better match the terms of the input text with the Arabic Wikipedia 

terms, it is important to perform some text preprocessing on both of them. The steps 

we undertook includes cleansing, tokenizing, stemming, and stop-word removal, 

performed only on the body of the articles, titles and categories remains untouched. 

As these steps are significant to our work, they are also tricky because it requires a lot 

of investigation and comparisons between some of the available tools along with our 

precious time. 

Cleansing: 

This step is meant to remove all texts that increases the size of the corpus, and 

not affecting the performance of the system, but the contrary. These include all the 

Latin alphabets, special characters, numbers and punctuations on one hand. On the 

other hand we found some terms that are repeated in most of the articles and are not 

adding any information related to the context but in some cases may cause 

performance deviations. These terms mostly found at the end of many articles and used 

for redirections or external links. (Table 3.2) presents texts that require deletion. 

Table (3.2): Deleted texts and terms 

Latin alphabets e.g. A-Z, a-z  

Special characters e.g.    !@#$% ɛ ā  é 

Punctuations  e.g. ;  :  , .  

Numbers 0-9 

Repeated terms  ،شاهد أيضا،  ،الإنكليزية باللغة باللغة العربية

 طالع، أيضا   اقرأ، المصادر، المراجع، ملاحظات

 خارجية وصلات، أيضا أنظر، أيضا

After this step the corpus has a pure Arabic language content. Latin characters 

are mostly refer to names of persons, locations, etc. that are also written in Arabic such 
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as "Twitter" is written "تويتر". While punctuations are common in most languages, they 

can make words differ for example "عربي", "Arabic" is not equal to ".عربي" with a 

period, "Arabic.". This step is vital because it is not performed in the subsequent steps. 

Tokenization and stemming: 

Tokenization is the process of breaking a stream of text up into words, phrases, 

symbols, or other meaningful elements called tokens, while  stemming is the process 

of reducing inflected or sometimes derived words to their word stem, base 

or root form. Tokenization and stemming (also called lemmatization) are crucial to our 

system, because the generated terms are the input to Latent Semantic Analysis. 

Different term formation, may influence the system ability to match terms. To optimize 

this step we carried out a comparison between four commonly known Arabic 

Language processors, two stemmers Al-khoja(Khoja, 2001) and 

SnowBall(snowballstem, 2016), and two segmenters Stanford(CoreNLP, 2016) and 

Farasa (QCRI, 2016). To perform the experiment we have randomly selected 5 articles 

and applied each tool to their terms after removing all stop words and repetitions. The 

final set consists of 751 unique terms. (Table 3.3) shows out a snippet of the results. 

The complete set of results can be found on 

https://github.com/YousefSamra/ShortTextTagging 

Table (3.3): Results of Arabic stemmers' comparison 

Original 

term 

Al-khoja SnowBall Sanford Farasa 

 الاردن الأردن

 

 اردن الاردن الارد

 
 لبن لبنان

 

 لبنان لبن بنان

 
 لبن لبناني

 

 لبناني لبن لبنا

 
 لوب ليبي

 

 ليبي لوب ليب

 
 نسل بنسلين

 

 نسل نسل نسل

 
 ثول الإيثيلين

 

 ايثيلين ثول ايثيل

 
 موه مياه

 

 مياه موه ميا

 
 موه تمويه

 

 تمويه موه تمو

 
 مور مارتن

 

 مارتن مور مار

 
 أرث ماراثون

 

 ماراثون أرث ماراث

 
 جور جار

 

 

 جار جور جار

 
 سمي سماء

 

 سماء سمي سماء

 
 سول سوائل

 

 سوائل سول سوايل

 
 سول تسول

 

 تسول سول تسول

 
 درس المدرسة

 

 مدرس درس مدرس
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Original 

term 

Al-khoja SnowBall Sanford Farasa 

 سطح المسطحات

 

 مسطح سطح مسطح

 
 زوج زوجين

 

 زوج زوج زوجين

 
 نوع نوعان

 

 نوع نوع نوعان

 
 ضيف ضيف

 

 ضيف ضيف ضيف

 
 ضيف ضفة
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 فيزيائي فيزيائي يزياء

 
 برغوث رغث رغوث رغث برغوث

Also, we have calculated the precision and time efficiency for each tool. Results 

were judged according to correctness and suitability for our work but execution time 

is out of scope. Besides this step is one time execution, meaning that it will be done 

only once before the system runs. The only need for preprocessing after that is for 

constructing the input vector. Results in (Table 3.4) shows that Farasa has the best 

measures, and all tools out performed Stanford segmenter in both precision and 

execution time. This is because Stanford did not remove "ال" from the beginning of 

most terms that contain it, such as the first term in (Table 3.3). This is why we consider 

it inappropriate. 

Table (3.4): Precision and time efficiency for NLP tools 

Tool Precision Time 

Farasa 89.88% 4.4 sec 

Snowball 87.47% 0.6 sec 

Stanford 73.90% 3.3 sec 

Alkhoja 84.63% 13.14 sec 

 

While investigating the results, we noticed that both Al-Khoja and Stanford are 

unifying Arabic terms that have different meanings in the context or generate wrong 

roots. For example, "ضفة""bank/shore","ضيف""guest" and "يضيف""add" all became 

 renounce" where the""صبأ" estuary" was wrongly rooted to""مصب" while ,"ضيف"

correct root is "صبب". Both also result in errors in the course of dealing with terms 
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containing "Hamza" "ئ" ,"ؤ".In addition, they work badly on both Arabic and non-

Arabic names such as "تمويه" "camouflage", "مياه""waters", "ماراثون" "Marathon" and 

 Martin". This last fault was produced by SnowBall stemmer too. On the ""مارتن"

contrary Farasa segmenter works well on Arabic terms as well as on non-Arabic 

names, besides it does not completely root the Arabic terms which helps our system to 

distinguish between them. While still has the ability to take out the Arabic Additive 

letters and pronouns, which make it the algorithm of choice. We have chosen Farasa 

over snowball despite the difference in execution time because we are concerned in 

correctness of the results more than efficiency. Besides Wikipedia will be processed 

once by Farasa only when the system is built. We will call Farasa a stemmer because 

it help partially stem terms by removing the attached letters and additive pronouns.   

As an example of Farasa " موقعة قويةّ بين تشيلسي ومانشستر سيتي وليفربول يترصّداليوم  ", 

"A Strong match between Chelsea and Manchester City and Liverpool awaits" 

the output of the algorithm was " سيتي و ليفربول يترصدلسي ومانشستر يموقع قوي بين تشال يوم  " 

while Al-khoja resulted in " مون سيأ ربل رصد تشيلسييوم وقع قوا بين   ", Snowball resulted 

in "يوم موقع قو بين تشيلس مان سيت يفربول يترصد". Other examples provided in (Table 3.3). 

 

Stop-words removal: 

Stop-words are commonly used words that are frequently appear in a corpus. 

Such words increase the size of the text and removing them doesn’t affect the 

retrieving efficiency(Al-Shalabi, Kanaan, Jaam, Hasnah, & Hilat, 2004). We applied 

a stop-word removal algorithm to reduce the size of the corpus and improve the 

retrieving efficiency. Since our text is already cleansed and stemmed, the algorithm 

just iterates over the text and remove all the listed 266 words if found. For example, 

the previous text "ال يوم موقع قوي بين تشيلسي ومانشستر سيتي و ليفربول يترصد", "A Strong 

match between Chelsea and Manchester City, and Liverpool awaits" the output 

of the algorithm will be "موقع قوي تشيلسي مانشستر سيتي ليفربول يترصد"  after removing 

 ."and" "و" between" and" "بين" ,"today" "يوم" ,"the" "ال"

After this step each Arabic Wikipedia article will be presented as a title, a List 

of tokens (cleansed, stemmed, and stop-words removed), and a List of categories the 
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article associated with. These articles are now ready in a file to be distributed among 

the working nodes of a standalone Spark cluster. 

At this point, our knowledge source contains only Arabic Wikipedia articles and 

each article body is presented as a list of tokenized and partially stemmed tokens. 

(Table 3.5) shows some information about our base knowledge. 

Table (3.5): Statistics about the knowledge base 

Our Work Needed Articles 435672 

Number Unique Terms 662205 

Number of Categories 267580 

 Tag Recommendation system  

After preparing the data, it is now ready to go through the system. In the 

following steps we generate the singular value decomposition matrices to be searched 

for the most similar articles to the input short text, but first we need to calculate term 

frequencies Tf-idf, then convert document representation into vectors. 

3.3.1 Computing the Tf-idfs 

At this point all the articles are presented as Arrays of terms, each corresponding 

to a document. The next step is to compute the frequencies of each term in the 

document Tf, and for each term within the entire corpus DF. We apply Tf-idf 

weighting because it negates the effect of high frequency terms in determining the 

importance of a document. And we use log to the base 10, to diminish the values of 

the results, since we are dealing with huge number of documents and terms.  

Tf-idf is a well-known numerical statistic that is intended to reflect how 

important a term is to a document in a collection or corpus (Han et al., 2011). And we 

employ it to gain statistics about our corpus as follows: 

))df/( log1()tf1( logw 10,10, tdt N
dt

                                   (3.1) 
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Where tft,d is the number of the term appearances in the document, N the total number 

of documents in the corpus, and dft is the number of documents in the corpus that 

contain the term. 

3.3.2 Vectorization 

With the Tf-idf matrix in hand, we can perform the singular value 

decomposition, but first we need to convert the Tf-idf into sparse vectors for two 

reasons. The first reason is that it is essential to perform the singular value 

decomposition. The second reason depends on the nature of our data which contains 

mostly zeros for each document. A sparse vector implementation would be more space 

efficient since it only stores the indices of the terms and its non-zero values neglecting 

all terms with zero values which makes it a space efficient technique and help speed 

up calculations. 

3.3.3 Singular Value Decomposition 

Finally, we can proceed to the dimensionality reduction. MLib the machine 

learning library in Apache Spark contains an implementation of the singular value 

decomposition (SVD) that can handle enormous matrices. The singular value 

decomposition takes an m x n matrix and returns three matrices that approximately 

equal it when multiplied together  

M(m x n) = U(m x k) S(k x k) V
T

(k x n)                                   (3.2) 

Where m, n, k are the number of document, number to terms and the number of 

concepts respectively. It is important to know that S is a k x k diagonal matrix that 

holds singular values. Each diagonal element in S correspond to a single concept or 

topic, which relates to a column in U and column in V and its magnitude correspond 

to the importance of this concept for the corpus. A key insight of LSA is that only 

small number of concepts are important to representing the data(Ryza et al., 2015). On 

the ground of that we chose k to be 1000 concepts, which is more than enough to 

represent the Arabic Wikipedia. 
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To make this as simple as possible, consider the example presented in chapter 2. 

After performing the SVD on Tf-idf matrix of 5 articles that contain 7 unique terms, 

the resulted 3 matrices will be theoretically as shown in (Figure 3.2) taking the number 

of concepts k=2.  

 

Figure (3.2): Result of SVD for a 5 documents 7 terms matrix 

U is an m*k matrix whose columns form a basis for the article space. S is a k*k 

diagonal matrix, each of its entries correspond to the strength of a concept. V is a k*n 

matrix whose columns are basis of the term space. 

It obvious from the values of S that the first concept is the most important in 

representing the corpus (5 documents) because it holds the largest value 12.4. This 

concept is related to the first column in U which holds 3 articles and also related to the 

first row in V which holds 4 terms. Let's be clear that the article "معاهدة أوسلو" in U is 

the most important to the first concept with value (0.58) while the article "الدولة المدنية" 

is the least important to the concept with value (0.15). Furthermore, the term "الدولة" in 

VT is the most important to the same concept with value (0.56). As well, the first three 

documents in U and the first 4 terms in V contribute in the first concept but not the 

second since there values that correspond to the second concept are zeros. In other 

words, the first column in U and the first row in VT are mapped to the first concept.  

At this stage, we can refer to a concept as the main topic that describes the articles it 

contains. But concepts are not names, they are just concepts. However, we can simplify 

things by naming them. For example, we can name the first concept "Policy""سياسة" or 
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"International affairs" "شؤون دولية" and we can name the second concept "Sports" 

 ."كرة قدم" "or "Football "رياضة"

A key insight of LSA is that only a small number of concepts are important to 

representing the data, e.g. two are sufficient in the example. So the corpus of the 

example basically talks about policy and football. 

The system now is ready to receive the input short text and select the appropriate 

tags. 

 Tag Selection 

After performing the SVD on the Arabic Wikipedia we can select tags for the 

input short text. The input text has to pass through the preprocessing steps. Then select 

the top similar articles. The preprocessing of the short text is vital because it allows us 

to map the terms of the short text to the terms of the Wikipedia. Note that the terms of 

the Wikipedia had gone through preprocessing in earlier steps. This allows two terms 

in both the short text and the Wikipedia article to be identified as equal and 

consequently the short text and the article are identified as similar. 

It's clear now that the first two matrices U and S are the article space and the 

concept space respectively. Having a new preprocessed input of short text, we can 

compute the cosine similarity between itself and every other article simply by 

multiplying vectors and divide the result by their lengths (Sidorov, Gelbukh, Gómez-

Adorno, & Pinto, 2014). (Figure 3.3) shows this part of the system, and Equation 3.3 

represents the cosine similarity between vectors. 

 

Figure (3.3): calculating the cosine similarity 
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b a

   b . a  
 cos(q)                                          (3.3) 

The first vector in equation 3.3 is the short text, and the second is the rows of the 

US matrix each at a time. The result is a list of numbers each number is the similarity 

(score) between the input vector and an article vector of Wikipedia. These scores are 

sorted and the articles with the top scores are returned.  

The cosine similarity is employed because: it is simple, very efficient to evaluate 

especially for sparse vectors and gives the value in between [0, 1]. But also we state 

two points (Baxla, 2014): 

1. We need to match vectors of document in both magnitude and direction. Two 

document vectors compared to the input vector could have the same magnitude, 

but not equal. The direction can decide which vector is most similar to the input. 

This is a benefit of cosine similarity over Euclidian distance, Murkowski distance 

and Manhattan distance.  

2. Compared to Jaccard similarity, adjusted based similarity and correlation based 

similarity these metrics used to calculate how much similar all the items are to 

each other in the matrix. Cosine and Jaccard similarities take less execution time 

and the cosine similarity performs excellent on huge matrices.  

It is also worth mentioning that comparing two long vectors with small number 

of term is time inefficient, but the representation of the document and the tweet is done 

using sparse vector. A sparse vector keeps only the indices of the terms that has value 

other than zero. This help speed up computations and also increase space efficiency. 

But it may increase the creation time of the vector of the input tweet.  

3.4.1 Text Preprocessing 

The short input test goes through all text processing procedure as Wikipedia 

articles did.  
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Cleansing: 

As discussed before all Latin characters, special characters, and punctuations, 

which presented in (Table 3.2), are removed.  

Tokenization and stemming: 

Separating all Arabic Language additive pronouns from terms, then partially 

stem these terms with the help of Farasa stemmer. 

Stop-Word Removal 

Removing all Arabic Language stop-words, including the generated additive 

letters and pronouns that was separated in the previous step. 

3.4.2 Vectorization 

The previous preprocessing will produce clean terms of the short text. These 

terms have to be formed as a vector to be compared to the Wikipedia articles in the 

concept space resulted from the SVD. As a matter of fact, these terms may contain 

some terms that are not in the Wikipedia, because of a miss-spilling for example. These 

terms has to be remove before creating the short text vector. The remaining terms are 

used to create the query vector by setting the value of the term to its inverse document 

frequency to maintain the weighting scheme used in the original term-document matrix 

(the input of the SVD) and compare it to the articles in the next step. Before the 

comparison and after forming the short text vector, it is multiplied by the matrix VT to 

compute the concept space vector of the short text. 

3.4.3 Selecting the top N Similar articles 

Selecting the similar articles depends mainly of computing the cosine similarity 

between the vector of the short text and the rows of the US matrix. As explained 

previously, it is exactly as comparing document in the concept space, the only 

difference is that we compare a new document (short text) presented as a vector, then 

return the documents with the highest scores. This enables LSA to discover hidden 

semantics between the short text and documents.   
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The number 7 that we have chosen for our top articles to be retrieved has been 

determined through an experiment.  We have processed 10 short texts and recorded 

the results of the experiment. We have carried out the test for 13 different number of 

top articles ranging from 2 to 20. After investigating the results we have decided 7 to 

be the number of the selected top articles. More details on the results are available on 

the next chapter. This test has to be carried out early in order to lighten the burden on 

expert while examining the results. 

To give more insight into the importance of this step we report that experiment 

based on only the 10 short texts which resulted in around 2000 different tags. Imagine 

the number of tags that a 100 short texts would produce.  

3.4.4 Selecting Tags 

In Wikipedia, each article is assigned to a number of categories. Each category 

groups a number of Wikipedia articles together. The articles of a category are similar 

to each other. If we look closely to these articles we will find that they describe the 

name of the category they belong to or vice versa. Meaning if we consider the category 

name is a title of a book, each article is considered a chapter in that book. Any chapter 

in an English grammar book can be tagged "English grammar". Also an article can 

belong to a number of categories, consider the chapter "Introduction" that is found in 

many books. 

In our system, tags are meant to be categories and titles of some of the 7 top 

articles similar to the short text. Because the tweet is similar to these top articles, the 

categories that contains some of them also can include the input tweet. In other words, 

this category- the one contains some of the 7 articles- describes the content of the tweet 

in a general way and can be used as a tag for it. Accordingly, because the tweet is 

similar to the content of these articles, their titles may be suitable as tags for the tweet. 

We consider a title to be appropriate if it contains some terms of the tweet. Titles that 

satisfy this condition are more specific than Wikipedia categories. Speculating in the 

example of (Figure 3.2) the short text " الاسرائيلية معاهدة السلام الفلسطينية " "Palestinian 

Israeli peace treaty" may result in similarities with the first two articles that share the 

category "الصراع العربي الإسرائيلي" "Arab Israeli conflict" which considered an 
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appropriate tag in a broad manner. This presents selecting 'categories as tags' discussed 

below. Furthermore, the title of the first article contains the term "معاهدة""treaty" 

which exists in the short text. This allows it to be elected as a tag. So it is given a higher 

score letting the title "معاهدة أوسلو" "Oslo treaty" appear in the top tag suggestions. 

This tag describes the tweet in particular. This stage has two steps; obtaining the 

categories of the 7 articles with the highest scores, note that we treat categories as if 

they have no hierarchy. Then adding analogous titles of the 7 articles as follows: 

Categories as tags 

It is obvious that if two articles are similar to each other, there is a chance to be 

partners in a category. We can refer to it as category, subject, topic, division, class, 

tag, etc. but let us call it category as it is in the Wikipedia. This means that it can be 

suggested as a tag. But our articles, which has been compared to the short text in the 

concept space, are assigned to variant types of categories, and we are concerned with 

the categories that involve some or all of them preferably. One simple way to identify 

these categories -or tags- is to pick out intersection between the categories of the 

articles. These tags are assigned a weight or a score equals the number of intersections. 

The highest the score of the tag, the most appropriate it would be. It is worth 

mentioning that categories cover the general aspects of the short text. We can describe 

the procedure as follows: 

 

For example, " وليفربول يترصّدموقعة قويةّ بين تشيلسي ومان سيتي  " "A Strong match 

between Chelsea and Manchester City while Liverpool awaits" the articles with 

the highest scores to this short text are shown in (Table 3.6). 

Procesure1: selecting tags from categories of top articles 

Let D={d1,d2,.., d7} be the set of documents similar to a short test based on SVD. 

Let Cdi = {Cd1, Cd2,..., Cdj} be the set of categories for document di 

We compute the importance of each category by using the following equation: 

Importance of C = ∑ ∑ |𝑑𝑖 ∩ 𝑑𝑗|
𝑗,𝑖≠𝑗
𝑖

𝑖
1  
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Table (3.6): Categories intersections of the similar articles 

Titles of top articles Categories 

 مانشستر سيتي
 أندية الدوري الإنجليزي الممتاز 

 الأوروبية الأندية رابطة أندية 

 أندية الدوري الإنجليزي الممتاز  نادي ليفربول

 تشيلسي
 أندية الدوري الإنجليزي الممتاز 

 الأوروبية الأندية رابطة أندية 

 

The categories "أندية الدوري الإنجليزي الممتاز" "English Premier League clubs" 

has 3 intersections, indicating that it is a category for three of the similar articles, and 

this make it appear first in the suggestions. While " الأوروبية أندية رابطة الأندية " 

"European Club Association" appears last as less relevant because it has only 2 

intersections.  

Titles as Tags 

This is the second part of the tag selection procedure, after selecting the 

categories, the system moves on to check out the titles of the most similar articles. It 

is simply selects the title that contains a term of the short text. This is very efficient 

when the terms refer to names of persons, locations, etc.  The title that suffice this 

criteria is likely to be a most relevant tag. Consequently, we set its score as the 

maximum category intersection +1. If the title contains more than one term, its score 

is incremented by the number of terms it contains. We can describe the procedure as 

follows: 

For example, referring to the example in (Table 3.6)" موقعة قويةّ بين تشيلسي ومان

 the titles of the selected articles that contains a term of the short "سيتي وليفربول يترصّد

text are "تشيلسي" " Chelsea", " شيستر سيتينما " "Manchester City", and "ليفربول" 

"Liverpool", and they are more relevant and appropriate as tags than categories. So, 

Procedure2: selecting tags from titles of top articles 

Let T={t1, t2, …, tn} be the terms of the tweet 

Let MaxCatScore be the maximum score of categories 

Let Li={l1,l2,…,l7} be the set of the titles of the 7 top articles 

We compute the importance of the title as follows: 

For i=7 to 1 

 IF li contains terms in T THEN 

  Set score of li = MaxCatScore + number of terms it contains 
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they are assigned a higher weight. Each title has a score 4 which equals 3+1. Checking 

the titles is carried in reverse order as the procedure suggests. This means that we 

examine the titles with the least scores before the ones with high scores. It keeps the 

order of the selected titles unless one contains more than one term. In the example 

above the order of titles will be as presented in (Table 3.6) even they has the same 

score. Titles cover the specific aspects of the short text unlike categories that are 

broader. The criteria we adopted let title tags appear at the top in the suggestions, while 

categories appear last.  

 Case study 

In the following case study, we illustrate a full scenario of the short text tag 

suggestion, showing how the short text is processed, until the suggestion of tags. At 

this point our system is started, Wikipedia formed into three matrices, and these 

matrices are stored in the memory in a distributed fashion, ready for any input.  

Suppose a user posting " يكالجراف الفرق بين المبرمج ومصمم " "Programmer vs 

graphic designer" on a social media website, for example. Our system grabs the 

text of the post and suggest tags for it as follows:  

1. Preprocessing 

The input text is first processed by cleansing all non-Arabic letters, punctuations, 

and special characters. Afterwards, the text is tokenized and segmented. Finally, stop-

word removal is applied, as (Figure 3.4) shows.    

 

Figure (3.4): Preprocessing of the short text 
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2. Vectorization 

The terms of the short text is ready to be formed as a vector. This is done by 

setting the value of the term to its inverse document frequency to maintain the 

weighting schema of the original matrix. (Figure 3.5) shows the text as vector. Then 

the vector is multiplied by the matrix VT to compute the concept space vector of the 

short text. 

 

Figure (3.5): Short text as a vector 

In the Tf-idf matrix of the Wikipedia articles, each column represents an article 

where each row in that column in the importance of a term in that article. We can refer 

to this column as the vector of the article   

We treat the tweet as an ordinary article in Wikipedia, and that its Tf-idf score 

is calculated with reference to Wikipedia as a corpus. Tf-idf is calculated by first 

calculating the frequency of terms in the tweet but we consider it as if appears once in 

the short text in our case while if it appears twice or more it will has a negligible effect 

compared to Wikipedia. Then, the inverse document frequency is calculated by 

dividing the total number of Wikipedia articles by the number of articles containing 

the term, and then taking the logarithm of that quotient. This formula is presented in 

equation 3.2. 

The aim of vectorizing the tweet with reference to Wikipedia as a corpus is make 

its Tf-idf representation comparable to the Tf-idf representation of other Wiki articles, 

and thus the application of the similarity measure (cosine measure) becomes possible 

using Equation 3.3. 
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3. Select 7 most similar articles: 

The vector generated in the previous step is now compared to the rows of the US 

matrix, which denotes the Wikipedia articles. The dot product between the tweet vector 

and each row of the US matrix results in the cosine similarities between them. Then 

articles are sorted according to that similarity and the 7 top articles are retrieved. (Table 

3.7) shows the 7 articles with the highest scores that are similar to the short text in this 

case study. 

Table (3.7): The top 7 articles for the tweet 

 تصميم الجرافيك 

 مبرمج

 فريق العمل لإنتاج برمجيات الوسائط المتعددة

 علم الحاسوب 

 مصمم جرافيك 

 رسوميات 

 تصميم المعلومات 

 

4. Tag selection 

With the articles in hand, the system looks for intersections between the 

categories of the top articles, setting the number of the intersections as score of the 

category (tag). It is performed according procedure 1. (Table 3.8) shows the categories 

and their scores. In this case the first category has score=3 indicating better suitability 

than the other two. But the list will be updated in the next step. 

Table (3.8): Categories selected by the system 

Category Weight 

 3  (Computer science) الحاسوب علم

 2 (Graphic design) الجرافيك تصميم

 2 (Computer occupations) الحاسوب مهن

After finding all the category intersections, the system looks for titles that 

contain terms of the input short text. If found, the system sets the weight of the title to 

the maximum category score incremented by the number of terms in the short text it 

contains according to procedure 2. (Table 3.9) show the titles selected by the system. 
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Table (3.9): Titles selected by the system 

Title Weight 

 5 (Graphic designerجرافيك ) مصمم

 4 (Graphic designالجرافيك ) تصميم

 4 (Programmerمبرمج )

 4 (Multimedia development teamالمتعددة ) الوسائط برمجيات لإنتاج العمل فريق

 4 (Information designالمعلومات ) تصميم

The first title contain two term of the short text "مصمم" and "جرافيك". The score 

is set to 3+2 terms =5, while the other contain only one term each, so the weight is set 

to 3+1=4. 

All titles in the (Table 3.9) are more appropriate than categories in (Table 3.8) 

as tags. Tags in both tables are presented to the user in a descending order showing the 

tag with the highest score at the top of the list. The categories are replaced by the titles 

that equals them such as the category "Graphic design" " الجرافيك  تصميم ". The full list 

of the tags are presented in (Table 3.10). Luckily, all the tags in both tables considered 

suitable except for " المعلوماتتصميم  " "Information design". Also, one can notice that 

titles with the same scores are presented in their same order of relevance (refer to 

(Table 3.7) 

Table (3.10): Suggested tags for the tweet 

Suggested tags 

 (Graphic designerجرافيك ) مصمم

 (Graphic designالجرافيك ) تصميم

 (Programmerمبرمج )

المتعددة  الوسائط برمجيات لإنتاج العمل فريق

(Multimedia development team) تصميم ( المعلوماتInformation design) 

  (Computer science) الحاسوب علم

 (Jobsمهن الحاسوب )

 Tools 

 Wikixmlj 

Wikixmlj is a Java API for parsing Wikipedia XML dumps (wikixmlj, 2016). It 

is part of the larger WikiSense project aimed at understanding Wikipedia for semantic 

annotation of texts. It provides easy access to Wikipedia XML dumps, and have been 
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used in different works(Santoso, Nugraha, Yuniarno, & Hariadi, 2015). Wikixmlj is 

available on (Github, Wikixmlj  2016). 

 Farasa Segmenter 

Farasa is a fast and accurate text processing toolkit for Arabic text. Farasa 

consists of the segmentation/tokenization module, POS tagger, Arabic text Diacritizer, 

and Dependency Parser. It have been used in recent works(Abdelali, Darwish, Durrani, 

& Mubarak, 2016). Farasa is available on(QCRI, 2016). 

 Apache Spark 

Apache Spark (Sprak, 2016) is an open source big data processing framework 

built around speed, ease of use, and sophisticated analytics. It was originally developed 

in 2009 in UC Berkeley’s AMPLab, and open sourced in 2010 as an Apache 

project(Zaharia et al., 2010). 

It  provides a highly-optimized machine learning library called MLlib (Meng et 

al., 2016) which has several features that are particularly attractive for matrix 

computations (Bosagh Zadeh et al., 2016; Zadeh et al., 2015). Spark enables us to 

maintain the huge data in memory in a distributed manner. 

 Summary 

This chapter presents the methodology we followed to construct our tag 

suggestion system. First, the XML dumb was parsed for complete articles; body, titles 

and categories and stored in a text file to be distributed among working nodes. Then 

the tagging process begins by preparing the system. Text preprocessing is applied to 

the bodies of the articles, cleansing, segmenting and stop-word removal in order. The 

third step is constructing the Tf-idf matrix then the Singular Value Decomposition. 

The system is now ready to receive any input which is the fourth step. The input is 

preprocessed, vectored, and compared the articles in the concept space to find the most 

similar ones. The final step is to generate tags from the titles and the categories of these 

articles. The category selection is based on the intersection, while the title selection 

depends on containing a term of the input text. 
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A detailed example was discussed as a case study. The proposed system 

thoroughly capable of suggesting probable and suitable tags for any short text.  
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4 Chapter 4 

Results and Discussion 

 

 Introduction 

This chapter presents the system we utilized to assess and evaluate our tag 

recommender system. The main objective of the evaluation is to assess the reliability 

of the tag recommendation system: we aim to explore the extent to which the proposed 

system can accurately suggest suitable and correct tags to the input tweet from relevant 

Arabic Wikipedia articles. 

Similar approaches from the state of the art have been evaluated by being 

compared to other approaches (Hassan et al., 2012; Otsuka et al., 2014). However, we 

are not aware of any similar approach that utilizes the Arabic version of Wikipedia for 

the tagging of short texts to compare with. Therefore, we opted to assess our system 

by experts' evaluation of the results. 

 Dataset 

The dataset is a set of 100 tweets selected randomly from three different 

domains: Sports, Technology, and News mainly Palestinian news. The tweets were 

divided according to the subjects as follows: Sports; 36 tweet, Technology; 41 tweets, 

and News; 23 tweets. The aim is to assess how the generated recommendations are 

affected by changing the domain of knowledge. In addition, we emphasize that the 

selected 100 tweets were used only for the evaluation step, and were not used 

beforehand to tune or test the system during the design and implementation. (Table 

4.1) shows a snapshot of the dataset. The complete dataset can be downloaded from 

https://github.com/YousefSamra/ShortTextTagging.  

Table (4.1): A snapshot of the gathered dataset 

Subject Tweet 

Sports يترصّد وليفربول سيتي ومان تشيلسي بين قويةّ موقعة 

Technology الأندرويد رومات تطوير رائدة مود سيانوجين 

News هاينةالص بسجون الطعام عن إضرابه يواصل القيق محمد الصحفي: المحتلة فلسطين 
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 Experiment settings  

Some sizes of data cannot be processed on a single machine. Operations on data 

may require memory spaces that could not be located in one machine. Performing the 

singular value decomposition on the Arabic Wikipedia requires tens of gigabytes of 

memory to make it doable. Besides, this heavy computations needs an efficient 

environment to handle it in a reasonable time, regardless that we are not concerned of 

time efficiency in our experiment. Those reasons lead us to utilize Apache Spark in 

the experiment. We restrict our attention to Spark, because it  provides a highly-

optimized machine learning library called MLlib (Meng et al., 2016) which has several 

features that are particularly attractive for matrix computations. Spark cluster parallel 

environment provides us with a sufficient memory space that is distributed among the 

nodes of the of a standalone cluster.  

The experiment were carried out in a computer lab. It consists of 20 identical 

laptops which we used as a Spark cluster. The settings of the experiment was as 

follows: 

1. Master node: it is the computer that executes the code of the system and 

organize the communications with other worker nodes, collects and saves the 

results. The specifications of this machine is depicted in (Table 4.2).  

Table (4.2): Master node specifications 

Machine HP laptop  

CPU  Core i5  2.6 GHz 

RAM 6 GB 

OS Windows 10, 64bit 

2. Worker nodes: are 20 computers that are connected to the master node. Each 

node provide CPU and memory space for the tasks assigned by the master 

node. Nodes sends results to the master node when needed. (Table 4.3) 

depicts the specifications for worker nodes. 
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Table (4.3): Worker nodes specifications 

Machine Dell laptop 

CPU Intel Core i3 2.53GHz 

RAM 4 GB 

OS Windows 10, 64bit  

Worker assigned CPU cores 4 cores 

Worker Assigned Memory 2.8 GB 

The experiment settings provided us with 80 CPU cores and around 56GB of memory 

that were sufficient to complete our tests. 

Our data which is the Arabic Wikipedia articles that are cleaned, tokenized, and 

segmented were transferred manually to every worker node. Data is needed on worker 

nodes to lighten the load of communications and data transfer among the cluster. Also, 

we had to deploy Apache spark on worker nodes. Worker nodes had to be started 

manually because there is no way to start them automatically. 

After starting the master and the worker nodes, we can run our code on the cluster and 

record the results to be evaluated.  

 Evaluation Process 

The evaluation process had two experiments. First experiment aimed to 

determine the number of the top articles the system has to utilize in order to result in a 

qualified and considerable number of tags. The second experiment was for the 

assessment of our system. We ran the tag recommender on the dataset and recorded 

the results which are an ordered set of titles and categories of top articles (as tags) for 

each tweet. In the next sections we discuss in details the two experiments and their 

results.  

4.4.1 Experiment 1: Determining the top N articles 

As explained in Section 3.4.3 in Chapter 3, the tweet, will be compared with 

Wikipedia articles by using the cosine similarity measure. Then, top similar articles 

will be used to identify the recommended tags by exploiting their titles and categories 

(refer to Section 3.4.4) Therefore, we aim at this stage to explore how the accuracy, in 



49 

 

terms of the correctness of generated tags, is affected by changing the number of top 

articles used for tag recommendation. We also aim to optimize our system by 

identifying the best number of articles that should be used to give the best possible 

recommendations.   

We tested our recommendation system with only 10 tweets while varying the 

number of top similar articles from 2 to 20. For example, the first trial used only the 

top 2 Wikipedia articles to recommend tags, while the last trial used 20 articles. Tags 

generated from each trial were validated by six human experts, two in each field, who 

marked each tag as "Correct" or "Incorrect". A tag was considered correct if it 

highlighted the meaning of the tag, or it can be used to categorize the tweet. (Table 

4.4) shows a tweet and a sample of the resulted tags. The first column presents the 

tweet. The second and the third columns present correct tags. Tags in the first column 

highlights the meaning of the tweet while tags in the third column are considered 

categorization of the tweet which describes the topic (subject) the tweet belongs to. 

The last column presents incorrect results that experts considered inappropriate as tags.  

Table (4.4): Correct and incorrect tags of a tweet 

Tweet 
Correct  tag 

(Highlighting tag) 

Correct tag 

(Categorizing tag) 
Incorrect tag 

قوات الاحتلال 
 مدينة تقتحم شمال
 الخليل

 2015نزاعات في  فلسطين محافظة الخليل

 مدن محافظة رام الله والبيرة القضية الفلسطينية الخليل

 هجمات إسرائيلية ضد قطاع غزة إرهاب صهيوني  

It is important to notice that the total number of generated tags from all trials 

was 2007. This large number of tags that needed to be validated by the experts explains 

why we limited the number of tweets for this experiment to 10 tweets only rather than 

100 tweets. 

(Table 4.5) illustrates the results of changing the number of similar documents. 

The first column shows the changing number of articles for the ten tweets. The second 

column shows the average number of recommended tags that are correct for each 

number of articles for all tweets. The third column shows the average number of 

incorrect tags for all tweets. The final column shows the accuracy for each trial.  Notice 
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that the total number of recommended tweets increases as the number of articles 

increases. 

Table (4.5): Result of experiment on 10 tweets with different number of top articles 

Number 

of top 

articles 

Correct 

tags for 10 

tweets 

Incorrect 

tags for 10 

tweets 
Accuracy 

2 15 6 71.43% 

4 29 16 64.44% 

6 51 29 63.75% 

7 66 32 67.35% 

8 72 39 64.86% 

9 82 45 64.57% 

10 96 50 65.75% 

11 102 55 64.97% 

12 110 63 63.58% 

14 119 88 57.49% 

16 128 112 53.33% 

18 140 136 50.72% 

20 155 171 47.55% 

During early investigation of the results applying a step of 2 for the number of 

top articles, we noticed a small peak of accuracy (65.8%) at 10 top articles. Testing 

other values for top articles before and after this peak was required. Therefore, we 

recorded results for 7, 9, and 11 top articles as presented in (Table 4.5).      

(Figure 4.1) shows how the accuracy, number of correct tags and number of 

incorrect tags change for different number of top articles judged by human experts. 

The x-axis presents the number of selected top articles (N), and the y-axis presents the 

number of generated tags. 
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Figure (4.1): Results for 10 tweets on different number of top articles 

   (Figure 4.1) shows that at low number of articles the accuracy looks high, but 

the number of tags are very small. For example at 2 articles the average accuracy was 

71.4% but the number of tags was (1-2) tags on average for each tweet which is very 

small and sometimes not related to the short text. Some texts had 100% accuracy while 

some had 0%. While at 18 articles, the incorrect tags began to exceed the correct ones 

causing accuracy to drop to 50.7%. The system resulted in (8 to 24) correct tags, and 

around the same number of incorrect ones for each tweet. 

Using bigger number (N) for top articles to have more tags will also increase the 

number of wrong ones. comparing the results when N=20 and N=18 the system added 

6 more correct tags but also introduced 19 more incorrect at N=20, which decreases 

accuracy and increases tag ambiguity. Besides, using bigger number of top articles 

increases the number of correct tags, but the majority of these new tags are general or 

broad which categorize the tweet rather than highlighting the meaning of it. For 

example, (Table 4.6) shows results at N=18 for the tweet in the previous example in 

(Table 4.4), all of the new tags are general and similar to the tags in the third column. 

But no specific or highlighting tags were added.  
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Table (4.6): New tags at 18 top articles for example in Table (4.4) 

Tweet Correct tags 

(categorizing tags) 

قوات الاحتلال تقتحم شمال 
 مدينة الخليل

 قرى فلسطين

 بلديات فلسطين

 مدن مقدسة

 مدن الكتاب المقدس

 كنعانيةمدن 

The best number of selected top articles (N) that the experiment suggests is tend 

to be 7 articles, which preserve balance between the number of correct tags (5-10) for 

each tweet and an acceptable accuracy of 67.4% at this experiment. On the other hand 

7 articles will generate a reasonable number of tags for experts to conceive. There will 

be 10 resulted tags for tweets. Accordingly, 7 top articles is the N that we chose for 

our system, avoiding our experts the burden of fruitlessly investigating an immense 

number of tags, leaving other choices for future work. However, restricting the 

experiment on only 10 tweets is a limitations, since repeating the experiment on a 

different 10 tweets may result in selecting different number of top articles. 

Investigating results for a second experiment costs the experts time and effort. But we 

believe that the selected number of top articles will remain around 7 based on the 

structure of Wikipedia. 

4.4.2 Experiment 2: evaluation of the system  

For the assessment of our system we ran the tag recommender on the dataset and 

recorded the results which are an ordered set of tags for each tweet.  Tweets with their 

corresponding generated tags were divided into 3 groups according to subject domains. 

Then each group was handed to two human experts in each domain to examine the 

tags and mark the suitable ones. Since two human experts validated the tags, we 

considered only the tags that both experts agreed upon to be correct. (Table 4.7) shows 

how each tweets and its recommended tags are presented to the expert for validation. 

The expert was asked to mark each tag as "1" if it is correct or "0" if it is incorrect. 

Counting only the 10 top ranked tags that all experts agreed upon, there were 

658 appropriate tags from 933 resulted tags yield in 70.35 average accuracy .The 

correct tags were divided as follows; Sports; 227, Technology; 276, and News; 155 
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correct tags. These results were used to evaluate our system. The full results collected 

from the experts can be downloaded from 

https://github.com/YousefSamra/ShortTextTagging. 

One should also notice that the order of recommended tags was preserved and 

considered in the evaluation. A good recommender approach should order 

recommendations so that most relevant ones come first. 

Table (4.7): Tags of a tweet evaluated by experts 

 : توقف خدمة واتس اب عن العمل على بعض الهواتف اكتشف ان كان هاتفك من القائمة2017واتساب 

 واتسآب 1

 سناب شات 0

 تراسل فوري 1

 برمجيات آي أو إس 1

 برمجيات أندرويد 1

 برمجيات متعددة المنصات 1

 برمجيات اتصال 1

 مراسلة فورية 1

 برمجيات بلاك بيري 0

 برمجيات سيمبيان 0

 Evaluation Metrics 

Most state of the art works have adopted precision(Gong & Liu, 2001), 

recall(Otsuka et al., 2014) and f-measure (Hassan et al., 2012) to evaluate the 

performance of their approaches. While being simple and descriptive, recall and 

consequently F-measure, requires a pre-knowledge of all possible correct tags for each 

short text, which is infeasible in our case. 

 Therefore, what is appropriate for our tag recommender is to take into 

account the rank of the items. In recommender systems, the most important result for 

a final user is to receive an ordered list of recommendations, from best to worst. So, 

we adopted Precision at position K (P@K) where k from 1 to 10, Mean Average 

Precision (MAP), and Mean Reciprocal Rank (MRR).  Works, such as (Allahyari & 

Kochut, 2016a; Bogers & Van den Bosch, 2008) had applied these metrics. 
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 The first two metrics emphasize on the quality of the top K tags, while the 

MRR focuses on a practical goal, “how deep the user has to go down a ranked list to 

find one useful tag?” (Sun, Chen, & Rudnicky, 2017). 

The metrics are defined as follows(Liu, 2009):  

To define MAP, one needs to define Precision at position k (P@k) first,  

k

 positions}k   topin the documents{relevant #
 P@k(q)  

K in our system denotes the number of recommended tags for each tweet. For 

example, P@5 corresponds to the number of relevant tags for a tweet from the first 5 

results. We aim to explore how the precision is affect when changing the number of 

tags to be examined. 

Then, the Average Precision (AP) is defined below: 

Documents}{relevant #

 )(@
 AP(q) 1 

m

k
qkP

 

Where m is the total number of documents associated with query q. The mean value 

of AP over all the test queries is named MAP. 

))(( MAP
1 


n

q
qAPAvg  

Where n is the number of queries. 

Mean reciprocal rank (MRR): For query q, the rank position of its first relevant 

document is denoted as r(q). Then 1/r(q) is defined as MRR for query q. It is clear that 

documents ranked below r(q) are not considered in MRR. 

r(q)

 1
 MRR  

Based on the above definitions, the metrics in our experiment are calculated as 

follows: 
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k

 positions}k   topin the tags{relevant #
 P@k(q)                               (4.1) 

))(( MAP
100
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q
qAPAvg                                                                    (4.2) 
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( MRR

100

1 


q
Avg                                                                         (4.3) 

Also we have calculated precision for more evaluation using the following equation  

 tagsresulted all ofnumber 

gs correct ta all ofnumber 
precision                                                            (4.4) 

Recommended tags for each tweet were first assessed by human experts. The 

above evaluation metrics were calculated based on the expert's evaluation of tags. 

(Table 4.8) depicts a sample short text, ordered tag results, expert evaluation, and the 

calculations of P@k, AP@k, and reciprocal rank where maximum k=10. 

Table (4.8): A short text, resulted tags, expert evaluation and measures calculations 

RR AP@K P@K 
Experts 

judgement 
: توقف خدمة واتس اب عن العمل على 2017واتساب 

 بعض الهواتف اكتشف ان كان هاتفك من القائمة

 1 واتسآب 1 1 0.82602 1

 2 سناب شات 0 0.5    

 3 تراسل فوري 1 0.666667    

 4 برمجيات آي أو إس 1 0.75    

 5 برمجيات أندرويد 1 0.8    

 6 متعددة المنصاتبرمجيات  1 0.833333    

 7 برمجيات اتصال 1 0.857143    

 8 مراسلة فورية 1 0.875    

 9 برمجيات بلاك بيري 0 0.777778    

 10 برمجيات سيمبيان 0 0.7    

 Results and Discussion 

(Table 4.9) presents the evaluation metrics of the tag recommender. 

Table (4.9): Evaluation metrics of the system 

Number of generated tags @ k=10 933 

Number of correct tags 658 

Mean Average Precision 84.39% 

Mean reciprocal Rank 96.53% 

Precision  70.35% 
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The results depicted in (Table 4.9) have been calculated for 100 tweets in three 

different domain subjects processed through the system and then judged by experts -

in each subject- for tag suitability and relevance. We have expected around a thousand 

tags, ten for each tweet on average according to experiment 1. We had 933 tags because 

some of the tweets had less than 10 tags. Their top articles belong to different 

categories. It is possible to have such number of tags based on the top articles. Top 

articles that are related to each other share categories more than weakly related top 

articles. Shared categories are suggested as tags. 

Inspection of the results revealed that the system achieved a good performance 

by 84.39% mean average precision, which as we think and the results suggest are 

adequate for a tag recommendation system. Also the system achieved a considerable 

mean reciprocal rank of 96.53% which means that the user will find a suitable tag as 

the first or mostly the second result that proofs the effectiveness of our simple rank 

algorithm. But this was not the case with all input tweets, we have recorded a few 

where a suitable tag did not appear neither first nor second. As an example, the tweet 

" الأسكتلندي بالدوري الثاني المركز في موقعه يعزز أبردين " had only one proper tag at k=6 

resulting in AP@k =16.67% and reciprocal rank = 16.67% too. Detailed discussion is 

provided in the next section. 

We were also interested in examining the differences across different subject 

domains. Results for each subject domain is depicted in (Table 4.10). Results from the 

table below shows that MAP and MRR are close for the three subject domains, 

suggesting the adequacy for other different subjects.  

Table (4.10): Results across different subjects 

Subject 
NO 

tweets 
MAP MRR 

Sports 36 80.81% 95.46% 

Technology 41 85.85% 96.83% 

News 23 87.12% 97.83% 
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 While applying more investigation into the results we noticed that the precision 

is higher at the top of the list. Meaning, as we encounter new results from the list of 

recommendations, the precision drops down indicating weak relatedness of the tags at 

the rear of the list. (Figure 4.2) shows average precision for the results of the 100 tweets 

at k=1 to 10. This result is consistent to a large extent with most web search and 

information retrieval systems since it introduces more relevant tags at the top of the 

list than on the bottom of the list.  

 
Figure (4.2): AP(1-100)@k(1-10) 

To further explain our results, we inspected the results thoroughly to identify the main 

sources of strengths and weaknesses. Strengths can be stated in the following points: 

1. Comparison in the concept space: this is mainly the job of singular value 

decomposition. Classifying articles into concepts before comparing them with the 

input tweet gives higher scores to the articles in the concept that the tweet belongs to. 

Leading to better matches to the input. For example the term "زيدان" could be the 

philosopher " زيدان يوسف ", the actor " زيدان أيمن ", or the media figure "بدر آل زيدان", but 

comparison in the concept of the tweet " مجددا مدريدريال  يسقط أن أخشى: زيدان " resulted in 

" زيدان الدين زين " and "محمد زيدان" as the second and the third similar articles, where both 

of them are football players. This technique allows the tags to be semantically related 

to the concept the tweet belongs to.  
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2. Tag selection procedure: as discussed in Chapter 3, the tag selection covers two 

parts; the categories then the titles of the top articles, giving the titles higher priority. 

This allows the tags suggested by the system to cover specific followed by general 

aspects of the tweet. For example the tweet "  يواصل القيق محمد الصحفي: المحتلة فلسطين 

الصهاينة بسجون الطعام عن إضرابه " has a specific tag "محمد القيق" and general tags such as 

" ,Also ."القضية الفلسطينية" and "أسرى ومعتقلون فلسطينيون"  وصحفي وقاص روائي: كنفاني غسان 

الصهيوني الموساد يد على اغتياله تم فلسطيني " has a specific tag "غسان كنفاني" and general ones 

" فلسطين وكتاب أدباء " and " الإسرائيلي العربي الصراع ". Specific tags are suggested from titles 

while general tags are suggested from categories. 

No human work is perfect. This work has some weaknesses that can be classified into 

the following categories based on the source of weakness: 

1. Polysemy: is a word that have different meanings in different contexts. In Arabic 

most words have different vowelization. Although, vowelization mostly not applied 

which contributes into polysemy. Moreover, in order to compute the Tf-idf matrix, our 

system needs to remove all form-adjustment of terms if existed. Polysemy causes the 

system to miss-interpret the term with another. For example, the term "بيت، شعر، تراث" 

"residence, hair, heritage" in  الف ٦٠ل تتسع بمساحة شعر بيت شكل على قطر في قدم_كرة ملعب" 

"ثراثنا من مستوحاة تصميمات ٢٠١٨ عام ينتهي  are related to a concept not related to the 

context of the whole sentence. Our system suggested tags not related to the context 

such as:")إيقاع شعري","شعر )أدب", and " يةفاق ". On the other hand, more related suggested 

tags such as" قطر في قدم كرة ملاعب " got low ranks. 

2. Synonymy: is a concept having multiple forms of representation. Arabic language 

is full of synonymy. It is a common drawback in models like LSA. In addition, 

Arabaization introduces synonyms that is written in Arabic alphabets but their 

pronunciation sounds foreign such as computer "حاسوب" ,"كمبيوتر", mobile "جوال", 

 These new ."سوفت وير" ,"تطبيق" ,"برنامج" and software ,"محمول" ,"هاتف" ,"موبايل"

synonyms introduce more complications to LSA. Wikipedia tries to manage the 

synonymy and polysemy problems by introducing page redirections. Redirections 

allow users to search for terms while Wikipedia takes care of the synonyms. But this 

is not the case in LSA. For example, the term "حاسوب" is found much more than the 



59 

 

term "كمبيوتر" in Wikipedia articles. Because articles such as "حاسوب" " شخصي حاسوب " 

have redirect pages from "كمبيوتر" and " الشخصي الكمبيوتر " respectively. While the 

Articles contains only the term "حاسوب".  

  Consider, the tweet " كمبيوتر وبرامج واندرويد ايفون وبرامج مواقع ةبرمج تتعلم حاب اذا انت 

"شارب سي اسمها وحده ةبرمج بلغة متوفره كلها  contains the term "كمبيوتر" while the suggested 

tags was not influenced by the term "كمبيوتر" allowing other tags like " ذكية هواتف ","  آي

 that are more related to the rest of the terms to appear. We refer that "أندرويد" and "فون

to existence of the term "حاسوب" rather than "كمبيوتر" in the relevant articles. Since 

most terms in Arabic Wikipedia that means computer is written "حاسوب". 

On the contrary, the term computer "حاسوب" in the tweet" كميين حاسوبين بين مواجهة أول " 

resulted in more adequate tags such as "حاسوب", " الحاسوب معمارية " and " كمومي حاسوب ". 

The term "حاسوب" was found in number of articles that are three times the articles 

contain the term "كمبيوتر". The term distribution over many articles offers a better 

chance to be combined with other terms of the tweet in the same concept, leading to 

better tag selection. 

3. Different ways for writing a foreign term: foreign terms that have been Arabized 

could be written in different ways. It could be introduced as polysemy or miss-spilling. 

However, the change either includes one letter of the term such as English "إنجليزي", 

 or adding a space to "إنستقرام" ,"إنستغرام" ,"إنستجرام" and Instagram ,"إنغليزي" ,"إنكليزي"

split the terms such as iPhone "آيفون", " فون آي " and Hard disk "هارديسك", " ديسك هارد ". 

Such writing if does not match with a similar term, affects the tags to be biased to the 

other terms of the input text. This writing differences was the major contributor in 

failure of extracting the expected tags. For example, the tweet " طريقة تثبيت ويندوز من

 where there is no such term in the whole "هاردسك" contains the term "خلال الهاردسك نفسه

Arabic Wikipedia and the system could not find relevant articles to it. Therefore, only 

three suitable tags were introduced "ويندوز", " ويندوز مايكروسوفت ", and " تشغيل أنظمة ". 

While the bitter truth is that the term in different writing " ديسك هارد " is found in 9 

articles 4 of them combined with the term "ويندوز" which if written properly, may lead 

to electing other suitable tags.   
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Also, the tweet " يونايتد أمام لأرسنال التعادل ينتزع جيرو هدف " contains a name of a football 

player "جيرو". But the system could not find resemblance with the article "أوليفيه جيرو" 

because the name is written "غيرو" in the body of the article. Unfortunately, this title 

of the article was not suggested as a tag. 

Another tweet " الجافا لغة مخترع جوسلينج جيمس " contains "جوسلينج", Java inventor's name, 

but no relevance to the article " غوسلينغ جيمس " was found because it is written "جوسلنج" 

in the body of the article, accordingly was not selected as a tag. 

4. Terms written in English: some of tweets has terms that are written using Latin 

characters, these term are deleted in the prepressing step of the tweet. Therefore, they 

have no effect on the results. For example, in the tweet" لاستيرده في ووردبريسXML file 

تقسيم طريقة " the terms "XML file" was deleted. So the tags focus on other terms 

resulting in suggesting "ووردبريس", and " التدوين برمجيات " as tags, while not mentioning 

XML files. 

5. Distinguishing names: we refer to distinguishing terms as the terms that are found 

in a few articles such as names of persons, places, etc. in a concept. Which cause the 

articles containing these terms to be highly relevant to the input tweet and gain high 

scores while being weakly related to the context of the tweet. And since relevant 

articles are used to select tags, the resulted tags tend to be not descriptive or irrelevant.  

  For example, the term "موغيريني" is a name of one person that no one else shares 

the same name in the whole Wikipedia, and it is found in only 37 articles. This 

distinguishing term in " موغيريني نتائج زيارة في تبحثان وكوسوفو صربيا " lead to a scattered 

set of top articles with high scores. The top articles gave 11 irrelevant tags out of 14 

such as " تونس في النار بإطلاق قتلوا أشخاص ", " سياح على هجمات ", and " تونس في إرهاب ". 

Fortunately, the first result was "صربيا" which is relevant to the tweet. 

6. Title contains a tweet term: to select a title of a top article as a tag, the title must 

contain a term of the tweet. These titles (as tags) are given higher scores. This 

technique guarantees two things. First; the article is one of the top 7 candidate articles 

that are most similar to the input tweet. Second; the title itself is also similar to the 
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input tweet by containing a term of it. Unluckily, some terms in the tweet lead to the 

selection of unsuitable tags.  

  For example, the title " الممتاز العراقي الدوري " appeared as the forth suggested tag 

for " المحترفين_دوري من التاسع الأسبوع ضمن هدف، مقابل بهدفين الهلال بفوز تنهي الرائد_الهلال مباراة " 

because it contains the term "دوري". Also, "معرض إيفا برلين" was suggested as the second 

tag for " المعلومات_تكنولوجيا مجال في دبي في الاحداث اكبر احد جايتكس معرض " since it contains 

the term "معرض". This type of weakness also drops the mean average precision because 

these tags appear at the top of the suggested list of tags. 

7. Title does not contain a term: this is similar to the previous point, but instead of 

containing a term, a title that is suitable as a tag has not been selected because it did 

not contain any term of the input tweet. For example, the title "دارك نت" which is a 

descriptive tag for "  توصلها صعب مواقع مجموعة هي! المظلم أوالإنترنت العميقة الشبكة ويب يعني ديب

عميقة يسمونها كذا عشان و  " was not selected since it does not contain any term of the 

tweet.  

8. Other causes: may include miss-spilling, and we can define miss-spilling as 

wrongly written terms or missed spaces between terms that combines them. Luckily, 

our dataset does not contain any. 

 Summary 

This chapter presented the evaluation of the system. And also discussed the 

results besides the strengths and weaknesses of the system. 

We claim that there is no previous effort in short text tagging using Wikipedia 

in Arabic Language domain. We have formulated a dataset of 100 short texts to assess 

the system. Results were judged by human subjects' opinion. The results indicated that 

our system achieved a high relevant measures with 84.39 mean average precision and 

96.53 Mean reciprocal rank.  

  



62 

 

 

 

 

 

 

 

Chapter 5 

Conclusions 
 



63 

 

5 Chapter 5 

Conclusions 

 

In this work, we have developed a tag recommender system for short Arabic 

texts by exploiting Arabic Wikipedia as a base knowledge. Given a short Arabic text, 

the system compares it to the Wikipedia articles in the concept space to find the most 

relevant and articles then uses these articles to suggest ranked tags from their titles and 

categories. 

The system process consists of the following steps: First, configuring Arabic 

Wikipedia: in this step the XML dumb is parsed for complete articles; body, titles and 

categories. Then text preprocessing is applied including, cleansing, segmenting and 

stop-word removal. Second, preparing the system: this step constructs the Tf-idf 

matrix then the Singular Value Decomposition. Third, in this step the system compares 

the input to the articles in the concept space to find the most similar ones. Forth, 

electing tags: this step is to select tags from the titles and the categories of relevant 

articles. The category selection is based on the intersection, while the title selection 

depends on containing a term of the input text, these tags are ranked using a simple 

ranking procedure. 

 The tag recommender system is evaluated over 100 short texts from online 

Arabic tweets in three different subject. The results of the system were evaluated by 

experts' subject opinion. Then the system is assessed based on the evaluation metrics 

of mean average precision, mean reciprocal rank. Results indicated that the system 

achieved high relevance measures with 83.39 mean average precision and 96.53 mean 

reciprocal rank. 

This work has the following research contributions: 

 To our knowledge, this is the first work to explore the Arabic short text tagging 

using Arabic Wikipedia. Arabic Wikipedia has only been exploited recently by the 

Arab computer researchers and few efforts from the literature have tried to extend to 

the Arabic version of Wikipedia for different purposes such as determining relations 
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between topics (Kanan et al., 2015) and named entity recognition(Althobaiti, 

Kruschwitz, & Poesio, 2014) but not the tag recommendation. 

Our work proposed a simple ranking procedure that is especially designed for 

ranking results in our case. This is different from other ranking algorithms, but in our 

humble opinion the system can be used in other application such as suggesting links 

in "Read More" section that offers documents similar to the current document in the 

same website. Also, the system, as it is, can be employed for auto categorization of 

Wikipedia articles. 

Our system, is one of few works that utilize latent semantic analysis to non-Latin 

languages compared to Latin languages. These works, including ours, proof the 

possibility of employing LSA to achieve high performances. 

As far as we know, most works utilize LSA to summarize documents or to find 

similarities between existing documents. This work is one of a scarce to confirm the 

applicability of introducing new document to the system. 

The results show that the system help mapping poorly composed short texts into 

real life concepts that can help improve other information retrieval processes. Also it 

helps unifying tags among users which can improve classification and linking by 

providing more insight to the content and the meaning (purpose) of the short text.    

We proposed an in-depth evaluation of our tag recommender and explored the 

potential shortcomings and strengths of each involved process. This detailed 

evaluation can inform Arab researchers with the various options and recommendations 

for designing similar approaches.  

For the uniqueness of this work, we have some aims for the future: 

1. Evaluate the system in the field of question answering. Dealing with Arabic 

Wikipedia as the source knowledge and the question as a short text, the 

system must provide one article, at best, that contains the answer of the 

question. 
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2. Exploit the latent semantic analysis of Arabic Wikipedia for other 

applications such as finding similarity between Arabic documents or 

recommender systems.  

3. Explore solutions for the weakness points discussed in Section 4.6. For 

example, results can be improved by unifying the way of writing foreign 

words in Arabic.  

4. Proof the generality of the tag recommender by Appling it to the English 

Wikipedia.  
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