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We have studied integrated electric utility networks in terms of long-term electric 

utility resource planning, short-term environmental economic load dispatch, and the 

optimal deployment of distributed generation sources within the electric network.  In 

order to conduct these analyses, the development of a continuous-discrete modular 

simulation and optimization framework and a particle filtering based multi-objective 

optimization framework has been done.  The continuous-discrete modular simulation 

includes the integration of discrete decisions and events with continuous processes within 

the same simulation environment and the modular integration of different resources into 

the simulation.  The multi-objective optimization framework includes the development of 

a sequential importance sampling mechanism for multi-objective optimization, 

leveraging the information contained within the non-dominated set of solutions to 

increase the thoroughness of the generated solution and ensure that the algorithm does 

not converge to local optimums. The evaluation of energy capacity plans include the use 

of conventional energy generation sources, renewable energy generation sources, energy 

storage alternatives and the evaluation of environmental policies (in terms of their effect 

on energy capacity plans and their effectiveness in incentivizing environmentally friendly 



 
 

 
 
 

energy generation sources).  The optimization of the environmental load dispatch is 

achieved leveraging Bayesian particle filtering to evaluate the state of the load dispatch at 

each generation unit, and the Newton-Raphson method to ensure that power balance 

constraints are met.  The optimization of different levels of penetration of distributed 

generation has been evaluated in terms of minimal cost, power loss and environmental 

impact. 
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Chapter 1: Introduction 

 
Over the last 60 years, the consumption of energy in the U.S. has averaged an annual 

increase of 1.8% taking it from 34.62 Quadrillion Btu in 1950 to an estimated 98.00 

Quadrillion Btu in 2010, as shown in Figure 1 (EIA, 2011).  The energy used in electric 

power generation in the U.S. constitutes 40% of the total energy consumed, while  92% 

of the energy produced with coal is destined for energy power generation. Electric power 

generation is driven from coal (48%), nuclear energy (21%), natural gas (19%), 

renewable energy (10%) and oil (1%) (EIA, 2010).  Furthermore, electricity production is 

the major source of most emissions of carbon dioxide (CO2), sulfur oxides (SOx), and 

nitrogen oxides (NOx) (Intergovernmental Panel on Climate Change, 2010; Likens et al. 

1996; Goddard Institute for Space Studies, 2010). 

 

 
Figure 1: Total energy consumption in the U.S. by Source 
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This continued increase has occurred due to the fact that efficient and reliable 

electricity plays an essential role in a wide range of today’s lives. It is essential to 

medical care, economic development, national security, education, communications, food 

and water supply, heating, cooling and lighting, among others.  With this large span of 

electricity usage, expectations have risen for an uninterrupted electrical flow to be 

available whenever and wherever needed.  Disruptions to the electric flow may occur due 

to short circuits in electrical lines caused by  lightning storms or accidentally damaged 

wires, and may cause small electric outages.  These small outages occur on a relatively 

common basis and last for short periods in locally restricted areas.  On the other hand, the 

larger counterparts to these small outages might occur where large areas are affected due 

to a series of cascading events.  An instance of such events happened in August 2003 

where widespread outages occurred across the north eastern U.S. quite unexpectedly.  A 

power line (the Eastlake 5) tripped because of some overgrown trees and automatically 

shut down.  When this power line went offline, it went unnoticed due to a computer 

failure, and triggered a series of events that led to the worst electricity blackout in the 

history of U.S.; affecting an estimate of more than 50 million people (CBC, 2003).  In 

order for the electricity network to respond to these types of disruptions promptly, it has 

to rely on a robust decision making mechanism that enables the system to respond 

quickly and effectively maintain a reliable electrical flow.  Providing efficient and 

reliable electricity is an extremely complex technical challenge that involves real-time 

assessment, control and coordination of production at thousands of generators, 

transportation across an interconnected network of transmission lines, and delivery of 
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electricity to millions of customers by means of a distribution network (U.S.-Canada 

Power System Outage Task Force, 2004). 

In this dissertation we propose to evaluate the integrated electric utility network in 

terms of three different aspects.  The first aspect to analyze is the long-term electric 

utility resource planning, which is defined as the selection of power generation and 

conservation (i.e., storage systems) resources that will enable the network to meet 

customer demands for electricity over a multi-decade time horizon (Hobbs, 1995). The 

second aspect to evaluate is related to the short-term environmental economic load 

dispatch, which involves the short term implications of using a specific utility resource 

plan.  The environmental economic load dispatch is defined as the operation of 

generation facilities to produce electricity at the lowest cost to reliably serve customers, 

recognizing any operational limits of generation and transmission lines (EPAct, 2005) 

taking into account the environmental effects of such endeavor.  The third aspect to 

evaluate is associated with the optimal deployment of distributed generation sources 

within the electric network. Distributed generation is the term for energy cogeneration 

and small scale power production that is performed by some entities within the electric 

network independently from the central generating units. The optimal deployment of 

distributed generation aims to minimize the operational cost and power loss of the 

integrated electric network after deploying sources of distributed generation. 
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1.1. Long-term Electric Resource Planning 
 

Conventionally, the long-term planning of electric power systems focuses on the 

determination of the operational capacities of only fossil fuel based energy generation 

systems.  However, estimates are that conventional sources of energy can only meet our 

energy demands for another fifty to seventy years.  Therefore, in an effort to find 

alternative forms of energy, the world has turned to hybrid conventional-renewable 

energy sources (e.g., solar, hydro, wind, geothermal, ocean and biomass) as a solution.  

Today, the majority of the citizens of the world are uniting to support the increasing role 

of renewable energy in our lives, and the stakeholders of electric utility planning seek 

optimum ways to actively involve the renewable energy (which was once viewed as an 

'alternative' source of energy) in satisfying our energy needs in the upcoming decades.   

Electricity production, primarily from burning coal, is the major source of most 

emissions of carbon dioxide (CO2), which contributes to global warming by trapping 

heat in the earth's atmosphere; sulfur oxides (SOx), which are the main cause of acid rain 

that can make lakes and rivers too acidic for plant and animal life, and damage crops and 

buildings; and nitrogen oxides (NOx), which are combined with other chemicals to form 

ground-level ozone (smog) in the presence of the sunlight (Intergovernmental Panel on 

Climate Change, 2010; Likens et al. 1996;  Goddard Institute for Space Studies, 2010).  

Renewable energy has a much lower environmental impact than conventional sources of 

energy and can significantly reduce the emission of greenhouse gases.  Furthermore, 

renewable energy sources are free, (no associated operational or purchasing costs for the 

source), and are sustainable (hence these sources never run out).  Other advantages of 

utilizing renewable sources of energy include a stimulated economy and an increased 



5 

 
 

number of job opportunities, improved national security and independence from foreign 

oil suppliers.  In contrast, the use of fossil fuels makes the U.S. vulnerable to political 

instabilities, trade disputes, embargoes and a variety of other impacts, since more than 

53% of U.S.’s oil has been imported as of 2003 (WORC, 2003).  Due to these advantages 

and needs, the involvement of renewable sources in our electric power generation at the 

utility scale is inevitable and hence capacities of various kinds of renewable energy 

generation (e.g., wind and solar) as well as storage systems (e.g., compress air energy 

storage systems, batteries, and super-capacitors) should be considered in line with 

capacities of the conventional fossil fuel based means of energy generation for the long 

term survival of the utilities while incurring optimum multicriteria objectives (e.g. 

investment and operational costs, environmental impact) given increased market 

competition. 

On the other hand, there are several challenges against the implementation of an 

effective capacity planning at the utility scale.  First, power systems are very large scale 

and complex due to their uncertain, interactive and dynamic features.  Second, the 

consequences (economic, reliability, or environmental) of alternative strategic resource 

planning scenarios should be evaluated at an integrated manner for various players (e.g., 

consumers, suppliers, government).  Third, the planning process is further complicated by 

the growing uncertainty due to future load growth, resource availability (i.e., utilization, 

lifespan, and performances of power plants), construction (i.e., times, costs, and 

performances of newly introduced resources), regulatory and economic environment in 

which utilities operate, and raising environmental concerns such as global warming.  

Lastly, the long term planning of the power industry is considerably affected by the 
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competition in various sectors of the market including generation, transmission and 

distribution. 

In this study, in terms long-term electric resource planning, we propose a 

continuous-discrete modular simulation and optimization framework (CoDiMoSO) in 

order to accurately estimate the capacity requirements of electric power generation and 

storage, involving conventional as well as renewable sources of energy generation.  The 

framework developed in this work enables various stakeholders of electric utility 

resource planning to devise the best possible capacity plans, detailing the rated capacity 

for each energy generation and storage alternative included in the capacity plan, while 

saving from computational resources and costs.  The goal of the optimization model is to 

minimize the financial investment of building, and operational cost of maintaining the 

combined renewable and fossil fuel based energy generation systems as well as 

minimizing the environmental impact (measured through the amount of greenhouse gases 

produced) while meeting the requested commercial, industrial, residential and 

transportation demand. 

The CoDiMoSO decision making framework proposed in this research is 

composed of four modules for evaluation, and another one for optimization.  The 

generation module (Module G) captures the functional details and characteristics of 

energy generation at the utility scale and includes renewable (solar and wind farms), and 

fossil fuel-based (coal, oil, and natural gas) energy sources.  The storage module (Module 

S) encapsulates the attributes of various energy storage components that amass the excess 

production of energy such as NaS and Pb-Acid types of batteries, and compressed air 

energy storage systems (CAES).  The transmission and distribution grid elements such as 
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the step-up and step-down substations and inverters are included in the transmission 

module (Module T), and variable demand arising from industrial, commercial, 

transportation, and residential customers as well as their seasonal and daily fluctuation is 

captured in the demand module (Module D).  Finally, the optimization module (Module 

O) helps utilities determine the best possible combination of investment options that will 

result in minimized cost and environmental damage.  Continuous-discrete modeling 

methodologies are used in the modeling of Module G, Module S, Module T, and Module 

D depending on the nature of the sub-system; and meta-heuristics are utilized for the 

solution mechanism of Module O.  Because the literature on resource planning of electric 

utility systems that incorporates real data at this scale and scope is infrequent, the 

acquisition of realistic data has been an additional challenge.   Here, the necessary data 

has been collected from various reliable sources such as the National Renewable Energy 

Laboratory (NREL) for solar irradiation profiles; the Energy Information Administration 

(EIA) and the Florida Public Service Commission (FPSC) for electricity consumption; 

EIA for fossil fuel energy production; EIA, Sharp, Mitsubishi and SunPower for cost and 

operational characteristics of PV panels; EIA, Siemens, GE, and Mitsubishi for cost and 

operational characteristics of Wind Turbines; and EIA for cost and operational 

characteristics of CAES.  The constructed CoDiMoSO tool is used to 1) test impacts of 

several factors such as different conflicting objectives (e.g., minimum investment and 

operational cost, and minimum environmental hazard); future demand growth; 

efficiencies in PV panels, wind turbines, fossil fuel operating power plants, CAES, and 

batteries; and losses in transmission lines; on the total cost of the integrated generation 

and storage system and 2) to find an optimal investment policy of renewable and fuel-
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based generation, as well as storage capacity.  At this level, the proposed tool has been 

demonstrated for the sunshine state of Florida; however, the proposed CoDiMoSO 

framework is built with a generic approach so that it can be adopted for various other 

utilities in different states, or different countries. 

 

 

1.2. Short-term Electric Load Dispatch 
 

Short-term electric load dispatching involves the short term implications of using a 

specific utility resource plan.  The economic load dispatch (ELD) is defined as the 

operation of generation facilities to produce electricity at the lowest cost to reliably serve 

customers, recognizing any operational limits of generation and transmission lines 

(EPAct, 2005).  Factors that have an impact on achieving minimum dispatch costs 

include geographic factors such as the area, generation and transmission resources 

included in planning and economic load dispatch; and implementation factors including 

the frequency at which dispatch is performed, the quality of communication between the 

economic dispatch planners and the operators, the adequacy of the software tools for 

dispatch, and the coordination of dispatch across regions.  In this study, we focus on the 

planning of the current, as well as future, load dispatch problem considering both 

geographic and implementation factors in a timely basis.  Current dispatch involves load 

monitoring to ensure the balance of electric supply and electric load, while maintaining 

the system frequency, ensuring the appropriate reaction to changes in loads and 

maintaining the scheduled tie-line capacities; and monitoring flows on the transmission 

system to keep flows within admissible levels, keeping voltage levels within reliability 
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ranges.  Planning for future dispatch involves scheduling generating units for each hour 

of the next day based on demand forecasts considering availability and ramp rates of 

generating units, minimum and maximum generating levels, the minimum time that a 

generator must run once it has been turned on, or stay idle once it has been turned off.  It 

also involves the associated generation costs including efficiency, fuel and non-fuel 

operating costs, environmental compliance costs and start-up costs, and reliability 

assessments to ensure that the scheduled generation dispatch is also part of future 

dispatch planning (FERC, 2005). 

 Environmental economic load dispatching (EELD) problem is an extension of the 

ELD problem where environmental considerations are also taken into account.  The 

objective of the EELD problem is not only to fulfill the demand reliably at the lowest 

possible cost, but also to minimize emissions and other environmentally adverse effects 

of electrical generation, transportation and distribution.  Earlier literature on EELD 

considering the conflicting objectives of minimization of cost and pollution present 

simplified structures where constraints such as the power loss are not included in the 

analysis (Zahavi and Eisenberg, 1975; Nanda et al., 1988).  The EELD problem also 

shares the inherent challenges of the ELD problem as in both cases the considered 

dynamic system is operating under uncertainty, is very large scale, and highly complex.  

The uncertainty in the system comes mainly from the variability in the load demand and 

the output from renewable energy sources which are mostly driven by changing weather 

conditions (e.g. temperature, humidity, wind speeds, and cloud cover).  The scale of the 

problem is evidenced by facts such as the large amounts of generating capacity, 

emissions, the number of customers and revenues generated within the system.  In 
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Florida alone there is a generating capacity of more than 55,000 MW, with emissions of 

more than 270 tons of sulfur dioxide, 170 tons of nitrogen oxide, and 121,000 tons of 

carbon dioxide; the state has more than 9.6 million customers with total electricity sales 

of more than $24 billion (EIA, 2010).  The system has multiple characteristics that make 

it very complex: constraints to the system are quite intricate and include the ramp rates 

for the generators, thermal constraints on transmission lines, and bus voltage and angle 

constraints among many others; while most of the subsystems that interact are not linear, 

such as the energy output and the fuel inputs (Chakrabarti and Halder, 2010).   

 In order to address the challenges listed above, in this study, we propose a novel 

two-stage economic and environmental load dispatching framework.  In the first stage, a 

demand forecasting algorithm is presented based on the wavelet transform adaptive 

method that forecasts the electricity demand for each demanding node within an 

interconnected bus system.  In the second stage, a load dispatching algorithm is presented 

leveraging Bayesian particle filtering and Newton-Raphson methods for the economic 

and environmental load dispatching and power balancing, respectively.  The framework 

performs the electricity dispatch by scheduling the generating capacity for each of the 

energy generation alternatives while ensuring that demand is always met and there is an 

adequate response to any abnormality; making the electricity generation, transmission 

and distribution network as robust and reliable as possible.  In terms of short-term load 

dispatch, the proposed approach has been successfully demonstrated at a scale of western 

Virginia, where the performance of the proposed decision making framework has been 

demonstrated in a realistic setting using the IEEE 30 bus test system. 
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1.3. Distributed Generation Deployment 
 

Distributed generation is the way in which energy requirements (heating, cooling, 

lighting, etc.) were met during the original stages of the electric power industry.  

Technological advances and economies of scale in energy production, transmission and 

distribution, as well as the increasing role of electricity in people’s lives, have gradually 

enabled the development of the current electric network. In the current electric network 

most of the distributed generation has been replaced by gigawatt scale plants, located 

away from urban centers and connected through high-voltage transmission and low-

voltage distribution lines linking virtually every building in the country.  However, some 

entities (particularly industrial facilities) found it economically beneficial to have their 

own electric and heating generation systems independently from the central generation 

units.  Furthermore, entities such as hospitals and telecommunication centers, which need 

highly reliable power, often installed their own generation units as a backup for 

emergencies. Even though these sources of distributed generation are usually are not 

controlled by the electric utilities, the overall electric network may also benefit from them 

as investments that would have been needed to supply these agents may be diverted to 

fulfill other needs of the network. 

Nowadays, technological advances in microturbines, solar panels, reciprocating 

engines, digital controls and remote monitoring devices (among various others) have 

increased the opportunities and applications for “next generation” distributed generation, 

and given customers great flexibility to tailor energy systems to their specific needs.  At 

the same time, electric utility companies are exploring the possibilities that distributed 



12 

 
 

generation may help address some of the requirements of the electric system, promoting 

greater energy security, economic competitiveness and environmental protection.  

However, increasing the penetration of distributed generation may increase security risks 

and cause crashes in the energy system, such that extreme conditions where there are 

maximum and minimum loads in the network determine the maximum amount of 

distributed generation that can be connected given the current network management and 

technical limitations of the system (Benitez-Rios et al. 2011) as well as issues with 

voltage violations, power losses, power quality, and reliability (Ackermann and 

Knyazkin, 2002). In terms of voltage violations, the presence of distributed generation 

may help to reduce variations. In terms of power losses, the deployment of distributed 

generation will generally decrease the amounts of power lost in the system. In terms of 

power quality, the presence of distributed generation may impact voltage flicker and 

harmonics. While in terms of reliability, the presence of distributed generation may 

enhance reliability if used to provide backup power or hinder the overall reliability of the 

grid if it is not properly interfaced with the network. Taking these factors into account, in 

this study, a novel multi-objective optimization framework based on particle filtering is 

proposed to evaluate the most beneficial penetration level of distributed generation, 

minimizing the total operational cost and the total power loss of the system, without 

posing security risks to the energy network. 

In terms of distributed generation deployment, the main contribution in this work 

may be summarized as the introduction of a proposed particle filtering framework for 

multi-objective optimization, and the evaluation of the economic and power loss impacts 

of the deployment of distributed generation. Multi-objective optimization has been 
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classically addressed through combination or normalization methods that transform the 

problem to a single-objective optimization problem (Das and Dennis, 1998); or through 

the use of different versions of evolutionary algorithms (Fonseca and Fleming 1995, 

Zitzler and Thiele 1999, Deb, Patrap, Agrawal and Meyarivan 2002). The applications of 

the deployment of distributed generation have been addressed in various works from a 

single-objective perspective, that include maximizing the levels of distributed generation 

penetration after solving effects for voltage profiles (Koutroumpezis and Safigianni, 

2009), the effect on the forecasted future base on different penetration scenarios (Foote et 

al., 2005) and the stability and control of the power networks (Benitez-Rios et al., 2011), 

among others. Building on these earlier works the proposed study aims at addressing the 

deployment of distributed generation from a multi-objective viewpoint. 

 In this work, a particle filtering framework has been presented for multi-objective 

optimization by adapting the state space model in two distinct ways.  First, state vectors 

are expanded into matrices so that the different dimensions of each of the objectives that 

are to be optimized are taken into account.  Second, in order to increase the accuracy of 

estimation, we use the non-dominated solution set generated in the sampling stages to 

update the resampling distributions.  This way, as the iterations progress, the algorithm 

converges to the Pareto front of the sample space.  Leveraging this framework, the 

optimization of distributed generation is evaluated in terms of the total power loss in the 

system and in terms of the operational costs of such deployment.  In terms of deployment 

of distributed generation, the proposed framework has been demonstrated using the 

IEEE-30 bus test system.  However, it has been constructed in a generic manner so that it 

can be employed by any networked bus system by inputting its characteristics into the 
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model, and specifying the number of sources of distributed generation that need to be 

deployed (or letting the framework suggest the optimal number of sources to use). 

 

 

1.4. Summary of Proposed Contributions 
 

The main contributions of this research may be categorized as theoretical and practical 

contributions to the integrated electric utility planning and deployment problem.  The 

theoretical contributions mainly reside within the area of simulation based optimization 

and are directed towards the improvement of a continuous-discrete simulation framework 

and to the implementation of a particle filtering framework to multi-objective 

optimization. These contributions may be summarized by the following: 

 Contribution 1: A particle filtering based multi-objective optimization framework. 

Here the development of a novel multi-objective optimization framework based 

on particle filtering that expands a single-objective optimization framework into a 

multi-objective environment is introduced. The framework includes the 

development of a sequential importance sampling mechanism for multi-objective 

optimization problems. These sampling mechanisms leverage the information 

contained within the non-dominated set of solutions generated by the framework 

to increase the thoroughness of the generated solution set, and use the non-

dominated set’s extreme points and the closest extreme points in the search space 

to ensure that the algorithm does not converge to local optimums.  
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 Contribution 2: A continuous-discrete modular simulation and optimization 

framework 

The continuous-discrete modular simulation includes the integration of discrete 

decisions and events with continuous processes within the same simulation 

environment, where the different spatiotemporal granularities from the discrete 

and continuous parts of the simulation have to be harmonized. It also includes the 

modular integration of different resources into the simulation, where different 

resources may be included or excluded from the simulation environment to 

accurately represent the available alternatives that are being considered within a 

specific simulation. 

 The practical contributions of this study are related to the evaluation of electric 

utility capacity plans, the operation of electric utility resources to serve demand in an 

economic and environmentally friendly manner, and the location of distributed 

generation resources within an electric networked system. These contributions may be 

summarized as follows: 

 Contribution 3: The evaluation of energy capacity plans including environmental 

policies. 

The evaluation of energy capacity plans includes the use of conventional energy 

generation sources, renewable energy generation sources and energy storage 

alternatives and the evaluation of environmental policies in terms of their effect 

on energy capacity plans, and their effectiveness in incentivizing environmentally 

friendly energy generation sources.   
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 Contribution 4: The optimization of the environmental load dispatch. 

The optimization of the environmental load dispatch is achieved leveraging 

Bayesian particle filtering to evaluate the state of the load dispatch at each 

generation unit, and the Newton-Raphson method to ensure that power balance 

constraints are met. 

 Contribution 5: The optimization of different distributed generation technologies 

in terms of minimal cost, power loss and environmental impact. 

The optimization of different distributed generation technologies in terms of 

minimal cost, and power loss, has been achieved using the developed particle 

filtering based multi-objective optimization framework, so that specific different 

levels of penetration of distributed generation may be evaluated, or the framework 

may be used to suggest the optimal number of sources of distributed generation to 

deploy. 
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Chapter 2: Literature Review 
 
 
Previous works presented in the literature are summarized depending on their relationship 

to the study herein presented.  A survey of methods addressing multi-objective 

optimization is summarized in Section 2.1, and a survey of the Bayesian particle filtering 

techniques is presented in Section 2.2.  Section 2.3 presents a survey on long-term 

electric resource planning while Section 2.4 presents a survey on methods addressing the 

environmental economic dispatch problem. 

 

 

2.1. Literature on Multi-objective Optimization 

During the past few decades, many researchers have worked on algorithms to tackle 

multi-objective optimization problems.  Some of the employed strategies include the use 

of evolutionary algorithms (Deb et al., 2002; Zhang and Li, 2007; Tang and Wang, 

2012), multi-objective particle swarm optimization (Sun et al., 2008), multi-objective ant 

colony algorithms (López-Ibáñez and Stützle, 2012), and multiple trajectory search 

algorithms (Tseng and Chen, 2009), among others. 

Evolutionary algorithms are well suited for multi-objective optimization due to 

their abilities to perform a global search and seek for Pareto optimal solutions 

simultaneously.  The chronological development of some of the established evolutionary 

algorithms is depicted in Figure 2.  Further developments to evolutionary algorithms 

include Zhang and Li (2007), who present the use of decomposition in multi-objective 
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optimization.  Using decomposition, the authors develop a multi-objective optimization 

algorithm where a multi-objective optimization problem is decomposed into various 

scalar optimization sub-problems and optimized simultaneously.  In order to reduce the 

computational load, the optimization of each sub-problem is performed only using 

information from the neighboring sub-problems.  This algorithm has been benchmarked 

using a multi-objective 0-1 knapsack problem and has been found to perform at least as 

well as the NSGA-II algorithm (Deb et al., 2002).  Further developments on evolutionary 

algorithms come from Tang and Wang (2012) who present a hybrid multi-objective 

evolutionary algorithm that incorporates the ideas of personal and global best from 

particle swarm optimization, and use multiple crossover operators to update the 

population.  In their method, the population maintains a record of non-dominated 

personal best solutions, and uses this to perform an update that explores the region 

between one of the selected personal best solutions and one of the global best solutions.  

Chen et al. (2009) extend evolutionary algorithms in multi-objective optimization to 

include diversity in the solution set as an additional objective when solving the multi-

objective optimization problems.  Their algorithm is designed around the concept of 

individual diversity and presents satisfactory results in terms of overall convergence and 

diversity measures. 

Particle swarm optimization tries to mimic the social behavior of animals such as 

birds, through the use of different interacting particles.  These types of algorithms take 

advantage of both the global best solution and individual best solutions, to guide the 

particles.  Improvements to multi-objective particle swarm optimization methods are 

presented by Mostaghim and Teich (2003) and Sun et al. (2008), in order to enhance the 
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searching abilities of particles and ensure an adequate coverage of the search space. 

Mostaghim and Teich develop the Sigma method as a way to find the best local guides 

for each particle of the population.  This impacts the convergence and diversity of the 

solutions, especially in problems with a high number of objectives.  Sun et al. (2008) 

present a particle swarm optimizer with cross-over operation in external repository using 

proportional distributions.  This algorithm combines wide-ranged exploration with a 

cross-over operation, to maintain diversity of new found non-dominated solutions and 

enhance the solution searching abilities of particles.  Furthermore, to prevent solutions 

from falling to local optimums cluster and disturbance is introduced to examine 

representative non-dominated solutions from an external repository. 

 

 
Figure 2: Development of evolutionary algorithms for multi-objective optimization 

 

Ant colony optimization is inspired by the behavior of some ant species where a 

pheromone trail is laid and followed by the ants.  In this technique, solutions are built 
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based on the components (pheromones) that other solutions have used previously, as well 

as a random component.  Pheromones that are seldom used in the most successful 

solutions become less probable, while those pheromones that are used frequently have an 

increasing probability of being incorporated into new solutions.  López-Ibáñez and 

Stützle (2012) present a formulation of algorithmic components that is able to describe 

most of the multi-objective ant colony optimization algorithms in the literature.  Using 

this formulation the authors evaluate various multi-objective ant colony algorithms, and 

propose a new family of multi-objective ant colony algorithms where the framework is 

automatically configured.  In order to defy the main drawbacks of the original binary ant 

colony algorithm on multi-objective optimization (which are the (1) ease of falling at 

local optimums, and (2) difficulty in finding Pareto optimal solutions) Qing et al. (2010) 

present a multi-population binary colony algorithm with concrete behaviors.  This 

algorithm uses an environmental evaluation/reward model to reach the global optimum 

and improve searching efficiency.  

Multiple trajectory search algorithms search the solution space by the use of 

multiple agents.  Each entity performs a local search based on the appropriateness of 

multiple local search methods to the landscape of its neighborhood, in order to improve 

overall convergence.  Tseng and Chen (2009) present a multiple trajectory search 

algorithm and apply it to various constrained and unconstrained multi-objective 

optimization problems.  The presented algorithm generates a uniformly distributed set of 

solutions that are separated into foreground and background solutions.  Subsequently, it 

chooses and applies one of the three local search methods on the solutions iteratively.  

These local search methods begin their search in a very large neighborhood, and contract 
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the neighborhood step by step until reaching a stopping size.  An overall solution is 

obtained by repeating these local searches for different solutions. 

Other techniques to solve multi-objective optimization problems include those 

presented by Wang et al. (2011) and Ünveren and Acan (2007).  Wang et al. (2011) 

present an analysis of the advantages and disadvantages of Monte Carlo sampling, 

orthogonal Latin hypercube sampling and Hammerslet sequence sampling, and present a 

hybrid sampling technique that uses a 1-dimensional uniformity of orthogonal Latin 

hypercube sampling and multidimensional uniformity of Hammerslet sequence sampling.  

Based on the hybrid sampling technique, a multi-objective optimization method is 

developed.  In this method, each objective is solved sequentially using the remaining 

objectives as inequities to form a single objective optimization problem.  After the 

solutions of each individual problem are aggregated, a non-dominated set is generated.  

Ünveren and Acan (2007) propose a multi-objective optimization using the cross entropy 

method.  The cross entropy method is a stochastic learning algorithm that has been 

proved to be successful in the solution of difficult single objective optimization problems.  

The authors extend the cross entropy method to multi-objective optimization by adapting 

the parameters of the cross entropy model using the information collected from non-

dominated solutions on the Pareto front.  In order to improve the performance of their 

method via stochastic learning, they introduce the use of clustering into the non-

dominated solution set. 
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2.2. Literature on Particle Filtering 

Particle filtering is a sequential Monte Carlo technique that approximates the probability 

density function of a posterior target state of a system of interest, by producing  

particles for each time .  One particular advantage of particle filtering is that non-

Gaussian probability density functions can be modeled accurately.  Furthermore, non-

linear states and measurements may be modeled without using partial derivatives or 

linearization. 

Since the work of Gordon et al. (1993), particle filtering methods have come 

across wide application areas such as fault detection (Azimi-Sadjadi and Krishnaprasad, 

2004), chemical process estimation (Chen et al., 2004), image/signal processing and 

target recognition (Gordon et al., 1993; Doucet, et al., 2000; de Freitas, et al., 2000; 

Azimi-Sadjadi and Krishnaprasad, 2005), and state estimation of shop floors (Celik and 

Son, 2012). 

To leverage some of the advantages that arise from the use of particle filtering 

Celik and Son (2012) incorporate the use of Bayesian particle filtering into a real-time 

simulation.  Here, in order to determine the sources of abnormalities in the system, 

efficient inferences are made on the dynamic information from the system, as it becomes 

available.  With this, the simulation may adapt to changing system conditions while 

incorporating prior information into the analysis and performing reduced sampling on the 

data.  Moreover, significant savings in computational time are achieved by the use of 

prior information. 

Del Moral (2004) discusses interacting particle systems in great detail, while 

presenting several of their applications including molecular analysis, finance, genetic 
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algorithms, hidden Markov chains and filtering problems. One of the applications 

addressed is rare event simulation, which can be used to obtain a solution for knapsack 

type and other optimization problems. This book by Del Moral (2004) opens a great door 

for investigating particle filtering methodologies over optimization problems, both in 

single-objective and multi-objective applications. 

Lei (2002) introduces an adaptive random search for quasi-Monte Carlo 

optimization methods. The proposed approach implements ideas of population evolution 

from genetic algorithms, which enable the algorithm to adjust the search direction and 

steps according to the previous search result. The author proves that the algorithm has 

global convergence and proposes the design of hybrid quasi-Monte Carlo/genetic 

algorithms as a promising research endeavor. 

Míguez (2007) proposes cost-reference particle filters (CRPF) as a method for the 

estimation of a discrete-time dynamic system. The state estimation is performed through 

the dynamic optimization of a cost function, which does not necessarily have to be tied to 

the measurements taken from the system. The proposed method is presented with 

generalizations that enable the derivation of SIR and Boot-strap filter algorithms, as well 

as convergence analysis. The CRPF has been used on the Hartmann 3 optimization 

problem, where it has provided competitive performance with an accelerated random 

search technique. 

Particle filtering has been further used in optimization in the work of Hu et al. 

(2007) who introduce the model reference adaptive search for global optimization 

problems.  Their method employs a parameterized probabilistic model on the solution 

space to generate a group of candidate solutions for each iteration.  The candidate 
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solutions are then used to update the model’s parameters so that the search in the 

following iterations will be biased toward the region that contains the best solutions.  The 

authors prove the global convergence of the method in both continuous and combinatorial 

domains while adding numerical studies to illustrated the performance of the algorithm. 

Ji et al. (2008) propose a generalized framework to use particle filtering for 

optimization incorporating the swarm move method from particle swarm optimization.  

In their work, the particle swarm optimization update equation is treated as the system 

dynamic in the particle filtering state space model and the optimization objective function 

is designed as the measurement of the state.  Particle filtering is employed to track the 

movement of the particle swarm, which is presented as a novel stochastic optimization 

tool, where the ability of particle swarm optimization to search the optimal position is 

embedded into the particle filtering optimization method.  Benchmark problems are used 

to show that the proposed method provides a noticeable improvement on both 

convergence speed and final fitness in comparison with the particle swarm optimization 

algorithm. 

Zhou et al. (2008) present a particle filtering framework for optimization 

algorithms.  Here, the authors consider the problem of global maximization, assuming 

that the problem can be represented by a real valued function that has a unique optimum.  

The authors assume that the state corresponds to the unobserved optimal solution of the 

problem that does not change as time goes by, and that the observations are the optimal 

function values with some noise.  They present both a plain particle filter framework for 

optimization and a general particle filter for optimization, which is shown to be 

equivalent to the cross entropy method for optimization. 
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Míguez (2010) proposes Sequential Monte Carlo minimization procedures 

(SMCM) to recursively track the minima of a time evolving cost function. The presented 

SMCM procedures have a structure similar to particle filters, where paths for the state of 

the system are generated and the fittest paths are stochastically selected, and the surviving 

paths are ranked according to their cost. The paper presents an induction proof for the 

convergence of the SMCM algorithm to a sequence of minimizers of the cost function. 

Figure 3 summarizes the interaction of particle filtering and multi-objective 

optimization and different contributions from the literature in each of these fields. 

Contributions in particle filtering include literature on target recognition, fault detection, 

shop floor estimation and optimization. Contributions in multi-objective optimization 

include evolutionary algorithms, multi-objective particle swarm optimization, and ant 

colony algorithms among others.  

   
Figure 3: Overview of literature on multi-objective optimization and on particle filtering, 

including the proposed contribution 
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2.3. Literature on Long-term Electric Resource Planning 

 
The goal of electric utility generation expansion planning is to seek an optimal generation 

capacity expansion system to meet demand in the most economical manner, subject to 

reliability and environmental constraints (Stoll, 1989; Wang and McDonald, 1994; and 

Maricar, 2004).  The specific aim of electric utility integrated resource planning is to 

integrate supply-side and demand-side options in meeting customer energy-service needs 

and environmental improvements in a least-cost manner (Hobbs, 1995; and Maricar, 

2004). 

In the past three decades, the electric power system resource planning, including 

generation, demand, storage and distribution, has faced dramatic changes due to the 

development of more efficient resources, via the advances in technology and policy 

variations based on increased environmental awareness concerns.  These changes have 

created a variety of options in resource components (i.e., generation, demand, storage, 

transmission, and distribution) that need to be addressed considering different criteria and 

constraints that these options bring about.  To this end, researchers have attempted to 

address the aforementioned high-stakes problem of electric utility resource planning 

under uncertainty at different scales and scopes by proposing various techniques focusing 

on generation expansion planning and integrated resource planning of electric utilities.  

The solution attempts proposed in the literature can be classified into two major 

categories including economic-analytical approaches and simulation approaches.   

From the perspectives of economic and analytical approaches, Malik (2001) 

presents a technique to model demand-side management (DSM) programs into 

production costing analyses within the framework of equivalent load duration curve, and 
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frequency and duration method.  Also the importance of incorporating the cycling costs 

of power plants in the cost-effectiveness analysis of DSM programs is presented.  

Similarly, Hobbs and Nelson (1992) apply a bi-level nonlinear programming method to 

the electric utility industry.  At the upper level, the model seeks to minimize costs or 

maximize benefits while controlling electric rates and subsidizing energy conservation 

programs.  At the lower level customers puts their efforts to maximize their net benefit in 

electricity consumption and investing in conservation.  The model's solutions shed light 

on utility issues including whether there can be a practical difference between various 

objectives, including minimizing cost and maximizing net social welfare.  Regarding the 

analytical models, Gardner (2000) develops a modified z-substitutes method for the 

formulation of electric utility resource planning models so that they may be used in more 

general circumstances, expanding considerably its range of practical applications.  

Several other research works exploiting the multiattribute utility theory have also been 

proposed in the literature for particular problems of electric utility resource planning such 

as selecting portfolios for solar energy projects (Golabi et al., 1981), energy policy 

making (Jones et al., 1990), environmental impact assessment (McDaniels, 1996) and 

electric power system expansion planning (Voropai and Ivanova, 2002). 

One major limitation shadowing the efforts around the analytical approaches is 

their inability to capture the great complexity residing in different components and their 

interlinkages.  Therefore, the increased number of significant factors that need to be 

considered makes a theoretical model difficult to specify.  The analytical approaches 

commonly focus on one single component of the electricity power generation systems.  

Second, the system input data that needs to be considered in the construction, 
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initialization as well as the tuning of the models, involves high levels of uncertainty 

enforcing increased number of freedoms to be considered (e.g., demand, hourly 

temperature, irradiation data for solar generation systems, wind speed data for wind 

farms, the price volatility data for fossil fuel-based power plants).  As such, the 

variability of several different kinds of supply and demand for energy makes analytical 

modeling a prohibitive possibility, and the uncertainty of environmental factors, such as 

wind speed, makes a simulation incorporating uncertainty based on reliable past data 

more convenient than previous pure analytical concepts.  An additional drawback of 

some particular techniques such as dynamic programming, and mixed integer 

programming models is that of high computational complexities as these methods involve 

exhaustive search to find the optimal sequence of decisions (investment plans in this 

case) from the initial state to the least-cost final state. 

On the other extreme is the employment of simulations by means of physical 

emulators.  In these cases an actual physical prototype is built, however building one of a 

system as large as the power grid for testing purposes and for observing the effects 

changes in any of its components is unrealistic, and not affordable; considering the time, 

and effort that it would take.  Besides the enormous costs involved in adding actual 

additional capacity (e.g. solar panels, a different storage system), the underlying 

transmission network carrying the generated electricity from the supplier to the customer 

needs to be reliable and uninterrupted.  Additionally, since the process changes over time 

and depends on past states of the system, a significant amount of interdependence exists 

among the power grid variables.  All these factors make the power grid a complex and 

uncertain system.  Therefore, computer simulation rises as an effective tool to address 
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this type of problem as it allows us to evaluate feasible investment plans in a realistic 

environment.  As for the simulation models, Tekiner et al. (2010) uses Monte-Carlo 

simulation to generate numerous scenarios based on the component availabilities and 

anticipated demand for energy.  The problem is then formulated as a mixed integer linear 

program, and optimal solutions are found based on the simulated scenarios considering 

the multiple problem objectives.  More recently, Mazhari et al. (2011) develop a flexible 

tool to obtain an optimal capacity of an integrated photovoltaic system with storage units.  

Their proposed tool is based on hybrid (system dynamics model and agent-based model) 

simulation and meta-heuristic optimization with a goal of minimized investment and 

operational costs.  Additional works in the literature following this line of research are 

compared in Table 1. 

 

 

2.3.1. Prospects and Obstacles to the Development of Nuclear Energy 

Generation 

 
Critical factors and concerns to the development of nuclear energy generation have been 

studied in the literature including the work of Marcus (2000), Trehan and Saran (2003), 

Rashad (2006), Ichihara (2010), and Gudowski (2005).  The proposed framework relies 

on the feasibility of nuclear energy generation as a viable alternative within utility 

capacity planning.  The works in this subsection present the factors that enable nuclear 

energy generation as a viable alternative within utility capacity planning, and also present 

those factors that have been regarded as barriers, and which may need to be addressed. 
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Table 1: Comparison of selected works on electric utility capacity planning 
Authors/ 

Year 
Chowdhury et al.,

2003 
Gurgur and 
Jones, 2010 

Papandreou and 
Shang, 2008 

Mazhari et al.,  
2011 

Specific 
problem 

addressed 

to satisfy 
increasing 
customer demands 
of lower rates and 
higher service 
reliability in the 
competitive 
market 

to calculate 
wind 
generation 
capacity values

to identify the 
sustainable design 
of utility systems 
that satisfies both 
economic and 
environmental 
goals 

an optimal mixture 
of capacities from 
solar generation 
units as well as 
storage capacities  
 

Approach a probabilistic 
reliability based 
distribution 
system 
expansion and 
investment model 

a Monte Carlo 
simulation 
based on 
Markov chains 
as a function of 
system 
penetration 

a multiobjective 
optimization mixed 
integer linear 
programming 
model 

hybrid (system 
dynamics model 
and agent-based 
model) simulation 
and meta-heuristics 
based optimization 
algorithm 

Benefits  method 
identifies the best 
location for units 
in the local area 
and the minimum 
output 
requirements of 
the distributed 
generator(s) 
depending on the 
load  

 captures 
dominant 
factors of 
system 
uncertainty  
 is 
mathematically 
tractable 

 minimization of 
costs are combined 
with minimization 
of environmental 
impacts 
 most of the 
gaseous emissions 
are addressed 

  a top-down 
approach for 
capacity planning 
versus a bottom up 
approach for 
demand forecasting 
are coherently 
combined 

Limitations/ 
Areas of 

improvement 

 right generator 
size for the cost-
effectiveness of 
the additional 
generation should 
be analyzed using 
reliability 
techniques  

 estimation 
are sensitive to 
the choice of 
normal 
distributions 

 due limitations 
on available data 
availability only 
part of the 
sustainability 
indicators were 
investigated 

 validation with  
real consumption 
data of households 
is necessary 
 smart-grid, and 
other renewables 
such as wind can be 
included 

Scale of the 
system  

small/medium small small/moderate moderate 

Computational 
burden 

light moderate heavy moderate 

 

Marcus (2000) studies the barriers and opportunities for the inclusion of nuclear 

energy generation into capacity planning.  Here, the growth in energy demand and 
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increasing concerns related to climate change, are identified as key drivers to for the 

deployment of new nuclear power plants.  On the other hand, the major barriers are 

related to cost, nuclear proliferation, safety and nuclear waste management. In addition to 

this, Marcus (2000) also studies the U.S. DOE Nuclear Energy Research Initiative 

program and the Accelerator Transmutation of Waste program; these programs are 

presented as critical initiatives focusing on the removal of barriers to the expansion of 

nuclear energy generation. 

The work of Trehan and Saran (2003) proposes the resurgence for nuclear energy 

generation deployment based on advances in terms of reliability and cost, coupled with 

encouraging changes in the public and governmental opinion.  This paper states that 

because of the accidents at Chernobyl and Three Mile Island no new nuclear power plants 

have been licensed since 1979, but recommends that the deployment of nuclear energy be 

revived.  For this revival Trehan and Saran (2003) suggest the use of modular power 

plant construction, standardization, and one-step regulatory approval.  Finally, the paper 

states that the development of nuclear energy generation is encouraged by the Kyoto 

protocol as an alternative, renewable technology, to reduce greenhouse gases product of 

fossil fuel combustion. 

To create a common understanding on the direction that nuclear energy is taking, 

Ichihara (2010) addressed problems faced by both nuclear generation and the electric 

industry as a whole, including costs, energy supplies and environmental concerns.  

Further, Ichihara (2010) presents the state of the art of nuclear energy generation and 

future technologies, as well as strategies for their implementation. 
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Rashad (2006) states that innovation to reactor and fuel cycle technologies that 

ensure reduced nuclear waste, proliferation resistance and increased safety, is necessary 

for any major expansion in the deployment of nuclear energy generation.  However,  

further innovation is also needed to nuclear fuel and facilities, addressing the risk of 

sabotage, theft and terrorist attacks.  Rahsad (2006) also addresses other issues related to 

nuclear energy generation deployment, including economic competitiveness, safety waste 

management and environmental protection. This paper concludes that nuclear power may 

be considered as the only energy source that can provide electricity on a large scale with 

minimal environmental impact. 

One of the largest challenges to the deployment of nuclear energy generation is 

posed by nuclear waste management poses. Gudowski (2005) presents the status of 

nuclear waste management and proposes waste partitioning and transmutation as an 

alternative to address this challenge. According to Gudowski (2005), the requirements for 

deep geological repositories of nuclear waste may be reduced through the use of a nuclear 

waste partitioning and transmutation system, however for this system to be economically 

viable there needs to be a commitment to the deployment of nuclear energy generation. 

Another factor that presents both challenges and opportunities to nuclear energy 

generation is public policy. The enactment of legislation that hinders the development of 

other technologies such as taxes on emissions may incentivize nuclear energy generation; 

while, the enactment of legislation that restricts the management of nuclear waste, may 

disincentive the development of nuclear generation.  Our proposed framework evaluates 

the effect of deploying nuclear energy generation within an integrated utility capacity 

plan in terms of cost and emissions.  Based on this evaluation, the level for an emissions 
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tax that effectively incentivizes the deployment of nuclear energy generation may be 

established.  

The incentives for the deployment of nuclear energy generation from the Energy 

Policy Act of 2005 (EPAct) are studied by George (2007).  Here, George (2007) 

highlights the key features intended to incentivize the development, construction and 

operation of new nuclear power plants, within the EPAct. However, George (2007) 

cautions that because of the large financial barriers for new nuclear energy projects, the 

incentives from the EPAct may be insufficient to effectively lead to new nuclear energy 

projects.  This paper concludes that if the risk factors concerning financing of new 

nuclear projects are not adequately addressed, it is possible that the EPAct may only spur 

the construction of a very few projects, before the subsidies available through the 

program are exhausted. 

 

 

2.3.2. Utility Capacity Planning with Nuclear Energy Generation 

 
There are various approaches in the literature for the integration of nuclear energy 

generation into a comprehensive utility capacity plan, including the work of Dapkus and 

Bowe (1984), Garrity and Wilkins (1993), Sheu (2008), and Kessides (2010).  The work 

of Dapkus and Bowe (1984) uses stochastic dynamic programming to address the electric 

utility expansion planning problem.  The proposed approach is tested on several case 

studies, where uncertainty in demand and technological availability is evaluated.  Dapkus 

and Bowe (1984) consider that there is not a specific plan that is optimal under 
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uncertainty, and state that the amount of certainty for the adaptation of new technologies 

and the value of information regarding technological availability should be studied. 

Garrity and Wilkins (1993) present a study of the potential of nuclear power 

generation, using boiling water reactors, to meet the energy generation needs of the U.S. 

over a 15 year planning horizon.  In their analysis, Garrity and Wilkins (1993) determine 

the needs for additional energy generation for the regions of the North American Electric 

Reliability Council.  These needs are forecasted based on a the national energy 

consumption, regional energy generation, peak energy consumption and the commission 

and decommission of energy generation plants, among others.  Garrity and Wilkins 

(1993) perform the economic analysis based on an expansion planning model that 

calculates the optimal expansion for each region, and includes sensitivity analyses 

regarding both capital costs and fuel prices. 

Sheu (2008) addresses nuclear energy generation capacity through the use of a 

multi-objective optimization programming approach.  Building on the concepts of green 

supply chain management, Sheu (2008) formulates a linear multi-objective model to 

optimize the operations of both the nuclear power generation, and the corresponding 

induced-waste reverse logistics.  Sheu (2008) states that using the proposed approach, the 

induced environmental impact, including the corresponding costs and risks, may be 

improved by up to 37.8%. 

Kessides (2010) uses a cost-benefit analysis to evaluate the risks and uncertainties 

of nuclear energy generation, as well as other load base generating technologies.  

Furthermore, Kessides (2010) proposes the standardization of variables and parameters 

for nuclear power plant costing.  Finally, Kessides (2010) proposes Monte Carlo 
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simulation to capture the different risks of nuclear power, and states that the evaluation of 

small scale reactors should be assessed through the use of real options. 

 

 

2.4. Literature on Short-term Electric Load Dispatch 
 

The goal of environmental economic load dispatch is to determine how to allocate the 

electric load demand across the different energy generating alternatives so that the cost 

and emissions are minimized, while ensuring that the operational restrictions and other 

system limitations are met.  Among the main challenges regarding EELD are those 

regarding the relationship between power output and amount of each pollutant generated 

at each power plant, and those regarding the way to assign costs to the emitted pollution 

(Talaq et al., 1994). 

A summary of the techniques addressing the EELD has been presented by Talaq 

et al. (1994).  In their article, they classify the models into six categories depending on 

the strategy used.  The first strategy addresses the minimization of emissions problem 

while disregarding costs as leveraged by Gent and Lamont (1971) and by Cadogan and 

Eisenberg (1975).  The second strategy includes a maximum allowable cost on top of the 

first strategy.  The third strategy proposed by Finnigan and Foaud (1974) minimizes the 

costs while constraining the total emissions of the system.  Variations of these strategies 

lead to strategies four and five.  In strategy four, Sullivan (1972) and Sullivan and 

Hackett (1973) extend strategy one to include ground level emissions concentration.  

Strategy five is a variation of strategy three that seeks to minimize the fuel costs of 

generation.  Strategy six starts combining economic and environmental objectives, where 
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Lamont and Gent (1973) describe a method to minimize a tax on sulfur emissions, while 

Delson (1974) presents a method that assigns a price to the emissions and Zahavi and 

Eisenberg (1975) present the trade-off curve between emissions and costs.  Other 

approaches addressing the EELD problem include Particle Swarm optimization (PSO), 

Bacteria Foraging Algorithms (BFA), Simulated Annealing (SA), differential evolution 

(DE) and -constraint techniques. 

The -constraint technique used by Vahidinasab and Jadid (2010) takes one of the 

two objectives of the EELD as a preferred objective, namely to minimize costs, and the 

other objective, to minimize emissions, is taken as a constraint.  The constrained 

objective is limited by calculated maximum and minimum values.  The minimum value 

depends on the individual optimization of the system taking that particular constraint into 

consideration, while the maximum value depends on the performance of that objective 

when it is not considered and the preferred objective is optimized.  This range for the 

emissions objective is split into   intervals, and the cost is optimized while constraining 

emissions to by each of the intervals.  This way, the feasible solutions of these 

optimizations are Pareto-optimal.  This approach has been found to be more efficient than 

the Strength Pareto Evolutionary Algorithm presented by Abido (2003), and can be easily 

modified to include other objectives.  However the inclusion of these objectives increases 

the complexity of the algorithm exponentially.   

A simulated annealing technique for particle swarm optimization is used by Kuo 

(2005) to address the EELD with a large penetration of wind energy.  Here PSO is altered 

so that new velocities for the particles are accepted using the temperature parameter    of 

SA, therefore the velocities are not completely random as in the regular PSO.  This 
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feature makes the algorithm more efficient than the traditional PSO.  Along with this SA-

PSO technique, a method to choose between the different Pareto-optimal solutions 

generated (called interactive bi-objective programming with variable trade-off) is used.  

Here, an iterative method is developed for the decision makers to adjust the weights 

given to the different objectives, which in turn enables them to reach the desired levels 

for each objective within the Pareto-optimal set.  This method is similar to the goal-

attainment method, but the weights of each do not need to be evaluated along the entire 

Pareto-optimal front, which leads to better computational performance.  This method has 

been found to be more efficient than PSO and GA. 

Gong et al. (2010) present a hybrid optimization algorithm based on PSO and DE.  

The algorithm is designed so that a PSO with time variant acceleration coefficients is 

used to explore the entire search space, while DE is proposed to explore the sub-space 

with sparse solutions.  The proposed algorithm integrates various techniques including 

time variant acceleration coefficients, an external archive of elite particles, and a crowing 

distance-based approach.  Furthermore, the algorithm introduces a modification strategy 

for power balance constraints, to ensure that any generated solution may be modified 

until it meets the power balance constraints.  The proposed algorithm provides a diverse 

and well-distributed non-dominated set and is a viable alternative for solving the EELD. 

Wu et al. (2010) present a multi-objective DE algorithm to address the EELD.  In this 

version of the EELD, system power loss is treated as an extra objective for minimization 

and is included as a third objective.  The differential evolution algorithm is based on a 

crossover and a mutation operation to generate new solutions, and checks the proposed 

new vectors against those that generated them for dominance. In the case that the vectors 
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are non-dominated with respect to each other the one with the lees crowded vector, with 

respect to the crowding entropy diversity measure is kept to further generate solutions.  

The proposed algorithm uses an external archive to store the global non-dominated 

solution set that is built using all of the solutions that the algorithm has found so far, in 

order to ensure that no non-dominated solutions from a “more crowded” vector are lost.  

The proposed approach is found to be more effective than other multi-objective 

evolutionary algorithms. 
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Chapter 3: Continuous-Discrete Modular Simulation 

and Optimization for Electric Utility 
Resource Planning 

 
 
A continuous-discrete modular simulation and optimization (CoDiMoSO) framework is 

developed as the most reasonable method for assessing the different options for creating a 

real system with a magnitude and cost at the utility scale.  Through the proposed 

framework, the best combinations (capacities and portfolios) of different energy 

generation systems can be foreseen.  For instance, a solar farm can be quintupled quickly 

in the model and its impact can be observed instantly, while the same experiment would 

be costly, difficult, disruptive, and extremely time consuming when designed for real 

world prototypes.  The rearrangement of the relative locations and size of the city and 

different load profiles (i.e., number of industrial, commercial, residential and 

transportation customers) can be updated dynamically as new and more relevant 

information is available over time.  As such, modular simulation allows for a great deal 

of flexibility in modeling, costs significantly less than its emulator type counterparts.  

The proposed modular simulation was developed with a great emphasis on credibility, a 

credibility that resides in the applied analytical models and well-established literature.  

Via the visualization features (i.e., connection arcs between different modeling units), the 

simulation model exhibits clarity in the way the model works such as the flow of entities 

and the interdependency amongst variables. 
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Several challenges exist while modeling the power grid system using a 

continuous-discrete modular simulation optimization approach.  First, the best fitted 

distributions of the real data as well as their associated variability adjustment factors need 

to be defined in order to model the variability in demand, solar radiation, and wind speed 

with accuracy.  Research from credible data sources has to be conducted in order to 

obtain the correct parameters for greenhouse gas (GHG) emissions, energy generation 

efficiency, and cost.  The parameterization in the design, interactions and mechanics of 

an energy system such as the one studied in this work, is particularly important in these 

systems in order to reflect the changes that occur on a discrete basis and their interaction 

with the energy levels and other components of the system that are simulated on a 

continuous basis with accuracy.  In real energy systems, energy is produced continuously 

and instantly consumed, stored or grounded.  In our CoDiMoSO framework, this 

continuous production is simulated by entities created with fixed inter-arrival times, 

where each entity contains an amount of energy relative to the power output of the source 

over the inter-arrival time.  The entity is subsequently sent to the grid and either stored, 

consumed or grounded.  Limits for decision points have been determined in order to 

enable proper distribution of the energy and prevent some entities with higher energy 

levels than others from causing abrupt changes in the system.  By having significantly 

small inter-arrival times (as close to the continuity as possible) compared to the overall 

simulation run-time, the loss of precision in the approximation (and hence in the 

framework), is minimized while still gaining the advantages in computational 

performance from discretization (with less computational burden than that of circuit-level 

model). The stoichiometry associated with the fossil fuel plant inputs and the resulting 
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greenhouse gases (costs to the environment) is also demanding as it requires detailed 

knowledge gained from the combination of research and collaboration in various 

disciplines such as chemistry, and material sciences.  Figure 4 shows the overview of our 

proposed CoDiMoSO framework for the capacity planning of nuclear power generation.  

The proposed framework includes four major simulation modules for generation, storage, 

transport and demand; and one multi-objective optimization module, based on particle 

filtering.  These different modules include various sub-modules.  The module for energy 

generation is composed of sub-modules for fossil fuel, renewable and nuclear energy 

generation.  The module of energy storage has sub-modules for compressed air energy 

storage and for energy storage using batteries.  The module for energy transmission 

simulates the energy distribution grid, and includes a step-up and a step-down substation.  

The module for energy demand includes demand from residential, commercial, industrial 

and transportation sectors.  The multi-objective particle filtering optimization (PFO) 

module, samples the state of the system, using the operational level of the different 

subsystems as well as the amounts of grounded electricity and load shed, in order to 

elaborate a non-dominated set of capacity plans, in terms of cost and emissions. 

The modularity with which the framework has been built enables the framework 

adaptability to include the modules that are of particular interest, and exclude those that 

are not.  It allows to study a system or a subsystem on its own or together with its 

interconnected systems.  For instance, we can study a system in particular that has all of 

the submodules for generation in Module G, storage in Module S and demand in Module 

D, or a system that only has renewable energy generation from Module G, CAES from 

Module S, and residential demand from Module D.  This modular approach provides a 
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useful way to investigate the large scale effects of very specific details within each 

component of the considered systems and enables the incorporation of different scenarios 

within each component of the systems without compromising the complete framework.  

Modularity is achieved using standardized connection points throughout the model where 

the different submodules link into the framework.  It is because of this that, when an 

entity reaches Module T, it is always handled similarly regardless of its origin; it is 

indifferent for Module T if an entity comes from Module G or from Module S, since its 

attributes are standardized.  The standardized modular connection points are used to 

connect entities leaving each of the submodules in Module G to Module T, entities 

leaving each of the submodules in Module S to Module T, entities leaving submodule T 

to each of the submodules in Module S, and entities leaving submodule T entering each 

of the submodules of Module D. 

 

 
Figure 4: Overview of the major components of our proposed CoDiMoSO framework 
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The proposed CoDiMoSO framework operates by evaluating the cost and 

emissions of the different energy capacity plans that may be implemented, and is very 

useful to evaluate the implications of different public policy scenarios dictating 

regulations to the emissions resulting from energy generation.  The non-dominated 

solution sets from the CoDiMoSO framework show what costs are incurred by achieving 

different levels of greenhouse gas emissions. 

In order to obtain the non-dominated solution sets the CoDiMoSO framework 

loads the details and restrictions regarding each of the specific operational components of 

the different energy generating sources into a database.  The database then sends the 

historical data to the CoDiMoSO.  The database also sends these initial parameters to the 

PFO module as the initial state of the system, which are used to construct the prior 

probability density function for the system. 

The PFO module updates the weights of the different energy sources and 

estimates the posterior state on the system.  This is achieved by recording the state of the 

system, in terms of the energy demand and the net energy generation from each of the 

generation sources when the amount of energy produced by the integrated system is 

inadequate.  The amount of energy produced by the system is considered inadequate in 

two cases. The first case includes moments when there is not enough energy to meet the 

demand and loads have to be shed, and the second case includes times when there is 

excess energy and it has to be grounded.  As a result of this, the PFO module generates a 

new importance function in terms of the capacity of each energy generation alternative, 

whose goal is to minimize the number of times when the demand is unmet and when 
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excess energy has to be grounded.  This function is then used to generate a new proposed 

capacity plan which is sent to the hybrid simulation module for evaluation. 

The CoDiMoSO evaluates the performance of the proposed capacity plan.  The 

PFO module tracks the state of the system throughout the length of the simulation.  Based 

on the performance of the capacity plans and the updated state of the system, the particle 

filtering module recalculates the weights of the parameters in the simulation and 

iteratively elaborates new importance functions.  This process continues until the 

expected mean performance newly proposed capacity plans is such that there are no 

benefits in terms of cost or emissions, compared to those achieved by the capacity plans 

in the current non-dominated set.  At this stage the capacity plans that are part of the non-

dominated solution set are considered the Pareto optimal for the predetermined scenario.  

After different scenarios have been evaluated a comprehensive plan with the optimal 

strategy to respond to each scenario is built.  Figure 5 shows our proposed simulation 

optimization algorithm based on particle filtering. 
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Figure 5: Overview of the particle filtering based optimization module 

 

 

3.1. Energy Generation Module (G) 

The module for energy generation, Module G, allows us to represent different types of 

energy generating system with precision, without impacting the rest of the systems in the 

model.  Within Module G, Submodule 1 represents solar energy generation involving its 

capacity, efficiency, and the solar irradiance.  Submodule 2 represents wind energy 

generation involving its capacity, efficiency, and the wind speed.  Submodule 3 

represents coal fired energy generation considering its capacity, GHG emissions, and 

specifics regarding its efficiency (e.g. effects of the furnace and the steam cycle).  
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Submodule 4 provides the details of natural gas fired energy generation involving a 

combined cycle; while submodule 5 represents oil fired energy generation.  Finally, 

submodule 6 represents nuclear energy generation. Details of these submodules depicted 

in Figures 6 and 7 (using Arena 13.5 simulation package) are provided below. 

 

 
Figure 6: Energy generation from renewable and nonrenewable sources 

 

 

3.1.1. Renewable Energy Generation 

The renewable energy generation has been incorporated to Module G in order to 

represent the technologies that use renewable resources (e.g., sunshine, wind, hydro 

power) without a depletion concerns.  While renewable energy generation has a low 

impact on the environment, it depend on resources that are very often location specific 

(e.g. wind energy generating plants can only be placed in locations where the wind meets 

certain requirements, and hydroelectric power plants can only be placed on bodies of 

water that meet some specific conditions).  The energy generating systems included in 
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this study are presented below with the inclusion of other advantages and disadvantages 

specific to each system, and their applicability to the case of Florida. 

 

 
Figure 7: Nuclear energy generation sub-module (Turkey Point 3) 

 

 

3.1.1.1. Solar Energy Generation 

The generation of electricity from solar energy is renewable, as it harnesses the power 

from the sun; clean, as its generation does not emit any air pollutants into the 

environment; and silent, as solar farms do not cause any audible contamination to their 

surroundings.  Furthermore, photovoltaic (PV) devices are based on a modular 

technology that can be expanded and applied to almost any landscape and at various 
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different scales (Kobayashi, 2003). Typical solar systems (PV cells that are grouped into 

panels and arrays of panels in a photovoltaic solar farm) are well-known for little 

maintenance required by them (Ho et al., 2009).  The panels are made of tempered glass 

and are tested against extreme weather conditions. Most commercially available solar 

panels have a 25-year performance warranty with additional warranties up to 10-years for 

inverters and other system components.  Solar energy also avoids the risks associated 

with disruptions in fuel supply and its associated price instability since there is no use of 

fossil fuels (Suna et al., 2008). 

On the other hand, PV solar generation heavily depends on the solar irradiation 

that arrives at the Earth's surface.  This solar irradiation is not constant and depends on 

the specific location, time of the day, season of the year, and weather conditions; 

affecting the amount of energy that can be produced regardless of the demand requested.  

Therefore, solar energy systems give rise to the need for energy storage systems and for 

alternate energy generation systems in order to ensure that the demand is met at all times 

(Dinçer, 2011).  Another drawback of PV energy generation as of today is that its cost 

significantly exceeds that of traditional energy generating systems, even though this cost 

relationship is expected to become more favorable towards PV generation as technology 

continues to advance (Erdogu, 2009). 

 Known as the Sunshine State, Florida is the second largest solar energy 

generating state in the U.S.  The 25MW, DeSoto Next Generation Solar Energy Center, 

located in DeSoto County, is the largest PV plant in the country.  With more than 90,500 

solar panels, its annual generation is enough to serve about 3,000 homes while preventing 

the emission of more than 575,000 tons of greenhouse gases over the project duration, 
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something equivalent to removing more than 4,500 cars from the road every year.  The 

Space Coast Next Generation Solar Energy Center, located at Kennedy Space Center, has 

an estimated annual generation of 10MW (FPL, 2010).  Furthermore, Florida has plans to 

construct additional PV farms such as the Babcock Ranch Solar Center in Charlotte 

County, the Florida Heartland Solar Center in Glades County and the Manatee Next 

Generation Solar Energy Center in Manatee County, as well as a farm in Hendry County.  

Extensive actions (including abundant proposals for new PV facilities) taken by the state 

of Florida to make a green state have led us to select it for our case study, and in order to 

preserve its validity, the continuous-discrete modular simulation and optimization 

framework described in this study is built considering the realistic environmental 

conditions.  Furthermore, our decision making framework incorporates the characteristics 

of the PV panels that are currently being used and/or planned to be used in the future 

solar farms, especially in the ones in Florida. 

Table 2 shows the electrical characteristics of selected PV panels that have been 

used in real-world industry size energy generating facilities with capacities of more than 

1MW, including the SunPower modules used in the DeSoto Solar Energy Center and in 

the Space Coast Solar Energy Center, collected from various reliable sources including 

BP Solar, GoGreen Solar, Neco, Solar Home, SunPower and SunTech.  Modules from 

Mitsubishi Electric have also been included into the comparison, even though these 

specific models are generally deployed in generating facilities of less than 1MW.  Among 

the characteristics of these solar panels, the two most significant ones (namely cost and 

efficiency), are conflicting with each other such that a panel with a low cost commonly 

does not have a high efficiency. 



50 

 
 

 



51 

 
 

In some solar farms, solar arrays may be connected to sun tracking devices in 

order to maximize the irradiance on the panels, and thus maximize their electric output.  

Table 3 shows the maximum number of solar modules that can be placed in a hectare, the 

maximum number of panels that can be connected into a single tracker block, and the 

maximum number of these tracker blocks that can be installed within a hectare focusing 

on the two PV panel types considered in this study. 

 

Table 3: Characteristics of the PV panels selected for the case study of this research 

Manufacturer Module 
# of 
Cel
ls 

Width 
( ) 

Length 
( ) 

Panel Area 
( ) 

Area 
( ) 

* 

Max. 
Panel/

Max. Panel 
Output ( ) 

Max. Panels/ 
Tracker 

Block ** 

Tracker 
Blocks/  

Suntech 
(Lowest price) 

STP280-
24/Vd 

72 992 1956 1.941 3.881 2577 238 105 24.5 

SunPower 
(HighestEfficie

ncy) 
E19/318 96 1046 1559 1.631 3.261 3066 318 79 39 

* Using Ground Coverage Ratio of a Sun Power T0 Tracker of 0.5 

** Using Sun Power T0 maximum tracker block power of 25kW, and rounded up 

(Suntech 2010; SunPower 2010) 

 

PV devices are employed to convert solar energy into electricity. The 

photoelectric effect is the emission of electrons from the surface of a metal when exposed 

to sunlight, as shown in Figure 8.  Once this physical process is applied to millions of 

electrons, sunlight is converted to electricity. The PV cells placed on solar arrays can be 

connected in series or parallel, and are used to obtain the required direct current (DC) 

output for an inverter that converts the current to alternating current (AC). 

A solar cell’s (or module’s) maximum electrical power ( ) is defined as a 

function of its electrical efficiency ( ), its area ( ) and the solar irradiance ( ) as in Eq. 

(1) under standard test conditions (Skoplaki and Palyvos, 2009; and Dagdougui et al., 

2010).  Standard testing conditions are defined as 1000 W/m  solar flux conforming to 
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the standard reference AM 1.5G spectrum, and temperature of 25°C.  The use of this flux 

value is quite convenient, as the efficiency in percent is numerically equal to the power 

output in mW/m  (Markvart, 2000). 

 

 
Figure 8: Generation of electricity from sunlight using a PV solar cell 

 

The functionality of the PV devices explained above is incorporated into the 

proposed CoDiMoSO framework via Eq. (1). In this submodule (shown on Figure 6), 

entities are assigned with a value for solar irradiance using a schedule which assigns 

irradiation corresponding to the radiation of the particular hour of the year that is being 

simulated.  The entities then enter a Visual Basic Application (VBA) element to assign a 

level to radiation, after which the energy as well as its cost are calculated using a variable 

that specifies the area of PV panels and the efficiency of these panels.  The overnight 

costs of $6,171 per kW and annual fixed costs of $11.94 per kW, and a modular 

efficiency of 19.5% are employed in our framework based on the Energy Information 

Administration report (EIA, 2011), and SunPower PV panels, respectively.  The solar 

radiation was calculated using the data collected from the pyranometer located at the 

University of Miami (UM) and the National Solar Radiation Database (NSRDB) of the 

National Renewable Energy Laboratory (NREL) as detailed in the next section. 

   

	

	 -e

+hole

 
-e

+hole

 

 

-e

+hole

	

Sunlight 
Current 



53 

 
 

 	  Eq. (1) 

 

3.1.1.2. Data for Solar Irradiance 

For accurate estimation of the solar energy generation via PV technology, accurate input 

of solar irradiation is critical.  However solar radiation data is rarely available in weather 

records, since its precise measurement requires steadily maintained fragile devices, such 

as pyranometers (Bois et al., 2008).  None the less, recent advances in remote sensing and 

image analysis make it possible to retrieve global daily solar radiation from satellite data 

(Solanki et al., 2005) leaving spatial variations of solar irradiation provided by terrain 

slope and aspect unaddressed.  In this study, in order to estimate the solar irradiation 

accurately, we combine satellite-sensed data with the data obtained from a locally 

positioned pyranometer, capturing spatial and temporal variability of solar radiation 

specific to the Miami area.  The satellite-sensed data is obtained from NREL’s NSRDB.  

NREL collects solar irradiance data at both the Miami International Airport and at the 

Kendall-Tamiami Executive Airport, among many other sites.  These two sites are both 

approximately ten miles from the University of Miami; the Miami International Airport is 

positioned to the north of the university, while the Kendall-Tamiami Executive Airport is 

to the southwest.  The spatial and temporal variability data is obtained from UM-

Industrial Assessment Center’s Kipp and Zonen CMP-11 pyranometer which is located 

on the roof of engineering building at the University of Miami (see Figure 9).  The CMP-

11 is a fast response pyranometer, with latency of less than five seconds, capable of 

collecting radiation data of up to 4000 / designed for PV panel and thermal collector 
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testing.  It has a sensitivity of 8.74 / / and it has been programmed to record solar 

irradiance data with intervals of one minute. 

 
Figure 9: The University of Miami’s Kipp and Zonen CMP-11 pyranometer 

 
 

For this study, the irradiation with the spatial and temporal variability collected 

using the University of Miami’s CMP-11 pyranometer, is used in conjunction with the 

built-in features of the Minitab software package, to determine the distribution that fits 

the best to the data (with the highest  value); the best fitted distribution is shown in Eq. 

(2).  Solar irradiation data obtained from NREL’s NSRDB at the Miami International 

Airport and the Kendall-Tamiami Executive Airport, has also been fitted the best to the 

equation given by Eq. (3).  In Eqs. (2) and (3),   is the solar irradiance in watt-

hour per square meter, 	is the independent hour of the day, and  is the 

solar irradiance. 

 WHr 	 	681.846	e . 	∗	 	–	 .   Eq. (2) 

 WHr 	 		557.157	e . 	∗	 	 	 .  Eq. (3) 

 Diff 	 	130.634e . 	∗	 	 	 . 	   Eq. (4) 

 WHr ∗ n 	 	WHr n 	 	Diff           Eq. (5) 
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The data collected with the University of Miami’s pyranometer has been 

compared to the data from NREL’s NSRDB.   We have found a latency in the data 

collected by NREL’s NSRDB when comparing it to the data collected at the University 

of Miami.  The comparison of the average radiation for the month of December shows 

that for the data collected at the UM, the maximum is at 12:00 PM, while for the data 

collected by NREL’s NSRDB the maximum radiation is at 1:00 PM.  This phenomenon 

can also be seen in the radiation when the sun rises such that in the data from the 

University of Miami, sunrise is evidenced at 6:00 AM while in the data from NREL’s 

NSRDB it is at 7:00 AM.  The same situation occurs with the sunset which is evidenced 

at 5:00 PM and 6:00 PM in the two different data sets, respectively.  In order to mitigate 

the impact of this latency in our modeling framework, we have adjusted our comparison 

by one hour to match the data from these two data sources.  After the adjustment is made, 

the comparison which is formulated by  shows only a negligible amount of 

difference between the data sets obtained from NSRDB and the University of Miami’s 

pyranometer, as shown in Figure 10.  The distribution of the differences between the data 

collected at the University of Miami and the one obtained from NREL’s NSRDB has 

found to be as in Eq. (4) where  is the value predicted for  –	  with 

a  value of 98.0%. 

 



56 

 
 

 
Figure 10: Data fit for the adjusted difference between  and  

 
 

Figure 11 shows exemplary monthly fits for	  and , as well as the 

fitted line of the best fit function used as a predictor of the actual data.  The depicted data 

is comprised of the average solar irradiance values for each hour for the recorded periods 

of December 2010, and December 2000, 2001, 2002, 2003, 2004 and 2005 for  

and	 , respectively. 

In the proposed continuous-discrete simulation modeling framework for the 

electric utility planning, the solar irradiation is represented using the satellite sensed data 

and the aforementioned fitted distributions for the adjusted difference.  To this end, we 

first use the average of the satellite sensed data for each hour of the year using the data 

from 2000 through 2005, to generate the first phase of irradiation data; then, we combine 

this data with the distribution of the difference between the satellite sensed data and the 

pyranometer sensed data in order to include the spatial temporal variability using Eq. (5) 

where ∗  is the estimated solar irradiance for the n-th hour of the year and 

 is the average of the satellite sensed irradiance for the nth hour of the year. 
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This latter distribution is used in the simulation model as irradiation input, where entities 

are assigned energy according to 	 . 

 

Figure 11: Fitted distributions for solar irradiance data collected at the UM and NREL’s 
NSRDB 
 

 

 

3.1.1.3. Wind Energy Generation 

Wind energy is another widely recognized renewable source of energy.  Lifecycle carbon 

dioxide (CO2) emissions per unit of energy produced by a wind farm is estimated to be 

about 1% of that for coal plants and 2% of that for natural gas plants (Akpinar et al., 

2007).  Wind energy is also a sustainable source of energy that does not suffer from the 

risks associated to fuel shortages or price instability.   
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On the other hand, wind energy generation depends on wind availability, where 

the best locations often are remote to central places, and therefore transmission lines need 

to be built to connect wind farms to the grid.  Furthermore, since wind power is 

proportional to the third power of the wind speed, the effects of intermittency in the wind 

speeds sharply influence the performance of the turbines (Zahedi, 2011).  Due to this 

intermittent nature of wind power, its integration to a power grid poses threats to the 

grid’s performance, which raises the need for energy storage systems (Erdogu, 2009).  

Also, the turbine blades are criticized to cause significant noise pollution and to have an 

aesthetic impact on the landscape. 

Today, United States is the largest wind energy generating country in the world 

with a capacity to generate 40,180 MW (World Wind Energy Association, 2010).  Even 

though there are no wind farms in Florida currently, FPL, Florida’s largest utility 

company, is the parent of Next Era Energy Resources, the largest wind power generator 

of the United States.  Next Era operates more than 75 wind projects in 17 states, with a 

total generating capacity of 7,800MW (NextEra, 2010).  Within the state of Florida, FPL 

has proposed the St. Lucie wind energy project, which intends to build six wind turbines 

with a generating capacity of up to 13.8 MW, preventing the emission of more than 

17,000 tons of carbon dioxide every year (FPL, 2008).  Table 4 shows a comparison of 

characteristics of commercially used wind turbines that have been incorporated in the 

proposed CoDiMoSO framework including the turbine model manufactured by GE which 

is primarily considered for the St. Lucie wind energy project. 
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Table 4: Comparison of characteristics of commercially used wind turbines 
Manufacturer GE Vestas Siemens Mitsubishi Suzlon 

Model TC2 2.5-100 V90-3.0 SWT-3.0-101 MWT 95/2.4 S.88 – 2.1 MW 

Rated Power (MW) 2.5 3 3 2.4 2.1 

Cut-in Wind Speed (m/s) 3 3.5 3 3 4 

Cut-out Wind Speed (m/s) 25 25 25 25 25 

Rated Wind Speed (m/s) 12 15 12-13 12.5 14 

50 Years Gust Wind Speed (m/s) 59.5 59.5 70 59.5 59.5 

Hub Height (m) 85 / 100 65 - 105 79.5 80 79 

Rotational Speed (rpm) 14.1 8.6 - 18.4 6-16 9-16.9 15 - 17.6 
(Mitsubishi Heavy Industries 2011; Next Era, 2010; Siemens, 2011; Suzlon 2011) 

 

Wind turbine systems include blades connected to a driveshaft, which is in turn 

connected to a gearbox that drives an electric generator.  The kinetic energy is converted 

into electricity by using this electric generator.  The mechanical power extracted by a 

turbine system (including driveshaft, gearbox, and the electric generator) is given by Eq. 

(6), where  is the power generated by the turbine,  is the density of the air,  is the 

area swept by the blades,  is the upstream wind velocity at the entrance of the turbine, 

and  is the downstream wind velocity at the exit of the blades. 

 	  Eq. (6) 

The power coefficient	 , which is defined as  

	 1 ⁄ 1 ⁄ 2⁄   is the fraction of upstream wind power that is fed to 

the generator.  The theoretical maximum for 	is achieved as 0.59 when ⁄ 	1 3⁄ .  

A practical maximum for  can be assumed as one half so that the maximum power that 

a wind turbine can output is 	  (Patel, 2006).  The rated power output from 

the generator of modern turbines is achieved when the upstream wind velocity is higher 

than their rated wind speed.  For speeds lower to these, each model of turbine has its own 

power curve, and it is part of its specifications.  In submodule 2 of the proposed 
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CoDiMoSO decision making framework (see Figure 6), entities are assigned with a wind 

speed in accordance to the distribution of the wind speed for the particular simulation 

month, where the wind speeds are calculated using data collected by NREL as detailed in 

the next section.  Once an entity has been assigned a wind speed, the entity checks if its 

associated wind speed is sufficient to run the wind turbine at full capacity, at partial 

capacity or not at all.  In case the sufficient wind speed is acquired, the corresponding 

amount of energy is generated.  In the proposed initial setup, a rated and minimum 

operating wind speeds are assumed to be twelve meters per second and four meters per 

second, respectively.  Also, the corresponding practical maximum value for	  of 1/2 is 

adopted in this study. 

 

 

3.1.1.4. Data for Wind Speed 

In this study, in order to accurately estimate the wind speed, we used the wind speed data 

collected by NREL for the years 2004 to 2006.  In this dataset, the wind speed is recorded 

at ten-minute intervals (six readings per an hour) at NREL’s 5131 site in North Carolina 

(NREL, 2009).  This data is a part of a larger project for the development of a collection 

of wind integration datasets that provide a consistent set of wind profiles for both the 

eastern and the western United States, help increase the performance of wind integration 

studies, and estimate the power production from possible wind plants at these locations.  

NREL’s 5131 station has been chosen in our study since the monthly average wind speed 

at this location is very close to that reported by FPL at the St. Lucie Wind Project, with 
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only 14% difference on average; and it is the geographically closest location to the state 

of Florida. 

In this research, in order to estimate the typical wind speed, average wind speeds 

are obtained for each hour of each day of the year using six wind speed readings (with 

ten-minute intervals).  The data is then disaggregated into the different months of the year 

in order to capture seasonal effects such as the occurrences of higher wind speeds during 

the late winter (around February) and early spring (around March) than during the 

summer.  The disaggregated monthly data is fitted to the probability distributions shown 

in Table 5, which have been incorporated into the CoDiMoSO framework. 

Table 5: Fitted distributions for monthly wind speed data 
Month Fitted Distribution Sq. Error Plot Month Fitted Distribution Sq. Error Plot 

January 
2 + Gamm (0.8, 7.45) 

Mean: 7.96    
Var: 4.38 

0.004606

 

July 
Norm (6.16, 1.68) 

Mean: 6.16   
Var: 2.81 

0.001278 

 

February 
Norm (7.74, 2.03) 

Mean: 7.74    
Var: 4.12 

0.002476

 

August 
Norm (5.79, 1.64) 

Mean: 5.79    
Var: 2.68 

0.001109 

 

March 
1 + 14 Beta (5.58, 6.32) 

Mean: 7.58    
Var: 4.39 

0.001959

 

September
2 + Gamm (0.735, 6.76) 

Mean: 6.97   
Var: 3.37 

0.001688 

 

April 
Norm (8.44, 2.08) 

Mean: 8.44    
Var: 4.34 

0.001701

 

October 
2 + Weib (4.9, 3.22)	

Mean: 6.47    
Var: 2.51	

0.001375	

 

May 
2 + 10 Beta (3.27, 3.09) 

Mean: 7.10    
Var: 3.56 

0.000801

 

November
Norm (6.81, 1.87)	

Mean: 6.81    
Var: 3.51	

0.002399	

 

June 
Norm (6.38, 1.73) 

Mean: 6.38    
Var: 3.01 

0.002372

 

December
1 + Weib (6.58, 3.52) 

Mean: 7.08    
Var: 4.94 

0.002871 

 

 

 

3.1.2. Fossil Fuel Energy Generation 

Fossil fuels are considered non-renewable sources of energy due to the large amount of 

time required for their formation (millions of years), and their current rate of depletion.  
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Approximately 70% of the electricity generated in the United States comes from fossil 

fuels as of 2010 (EIA, 2010) in spite of the fact that the achieved efficiencies are quite 

low.  Energy can be harvested from three major forms of fossil fuels including coal, oil, 

and natural gas.   

Coal is the most commonly used fossil fuel in the U.S., and can be categorized as 

lignite, sub-bituminous, bituminous, and anthracite depending on the amount of carbon it 

contains.  Coal with the lower contents of carbon is almost exclusively used in electric 

generation, while coal with higher carbon contents is commonly used in space heating.  

Oil is a liquid composed of decayed organic matter that occurs naturally in underground 

reservoirs.  It is extracted as petroleum and sent to a refinery for separation into its 

various components.  The United States is the world’s largest oil consumer, as oil 

accounts for 97 percent of the fuel used by the United States’ transportation sector (Black 

and Veatch, 2009).  Natural gas is a mixture of hydrocarbons: methane (primarily), 

ethane, propane, nitrogen, water vapor, and carbon dioxide.  Natural gas may be extracted 

from reservoirs or gas streams, or it can be separated from other petroleum products such 

as crude oil during the refining process.  After being separated from its liquid 

components, the gas is refined to remove hydrogen sulfide and other sulfur compounds.  

Natural gas can be compressed into liquefied natural gas or compressed natural gas for 

transportation over long distances, even though it is used as fuel in the form of a gas. 

The models presented in the literature (Smrekar et al., 2009; Wu et al., 2006; 

Yang et al., 2010; Williams et al., 1994; and Borg 1982) as well as the generation Module 

G presented in this study rely on understanding the processes that drive fossil fuel energy 

generation. Fossil fuels in general and coal in particular are used to produce electricity 
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and heat through combustion.  Coal is usually pulverized and burned in a furnace with a 

boiler.  The water in the boiler is converted into steam.  The steam drives the turbines of a 

generator to produce electricity.  Energy from oil is produced using reciprocating engines 

that drive power generators.  Because of its ease of transportation, oil is typically used to 

run power stations that cannot or are very difficult to connect to a power grid, such as the 

ones on islands.  Natural gas is used in combustion turbines that use the gas instead of 

steam to turn the turbines that produce electricity.  There are also combined cycle power 

plants (e.g., those in Turkey Point and West County in Florida) that use the excess heat 

from the combustion of natural gas to heat water in a boiler and drive a steam-powered 

generator. 

The basic reaction that drives fossil fuel combustion converts fuel and oxygen 

into heat, carbon dioxide and water.  When the oxygen used in the reaction is obtained 

from the air, the reaction can be formulated as in Eq. (7), where the stoichiometric 

coefficients x and y depend on the fuel type.  If the temperature of the reaction is high 

enough, the nitrogen may stop being inert, with the bond between the nitrogen molecules 

breaking and nitrous oxides are produced according to Eq. (8).  Sulfur impurities in the 

fuel (mainly in coal) such as hydrogen sulfide  or hydrosulfide ions part of carbon 

chains  lead to the formation of sulfur dioxide, as shown in Eq. (9). 

 

	 3.76	 	 3.76	 	 	 Eq. (7) 

 	 	 	 	 	 	  Eq. (8)	

	 2	 	 	 	 	 	 	2  Eq. (9)	
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Figure 12: Process differences of energy generation from various types of fossil fuels 

 

Figure 12 shows the different processes used in fossil fuel generation.  The 

CoDiMoSO framework proposed in this study incorporates these processes as part of its 

energy generation Module G, in submodules 3, 4 and 5 as shown in Figure 6.  In 

submodule 3, entities enter the furnace where the amount of coal used as well as the 

products of combustion, CO2, NOx, SOx and heat are recorded.  The heat is then input to 

the steam turbine, which then is used in the electric generator to calculate the amount of 

energy generated.  In submodule 4 entities enter the turbine, where as a product of 

combustion CO2, NOx, SOx and heat are generated as well as the energy that turns the 

turbine.  The turbine’s output is used to calculate the energy produced by this process and 

the heat is used as input of a steam turbine.  The total energy of submodule 4 is calculated 

using the energy from both the electric generator from the gas turbine and the electric 

generator from the steam turbine.  Submodule 5 uses a process similar to the previous 

two plants, but the fuel is used in an oil motor that outputs the energy to move the electric 

generator, as well as the known products of combustion CO2, NOx, SOx and heat.  In 

addition to the input and output parameters of aforementioned processes, the proposed 

CoDiMoSO framework incorporates the parameters of efficiency and emissions related to 

these same processes in order to enhance its modeling validity and represent the system 
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as accurately as possible.  Here, because much of the fleet of coal-fired power plants 

operating in North America was built during the 1960s, efficiency performance has been 

largely unchanged over the last forty years. Also, the need to retrofit pollution control 

equipment has not favored efficiency improvements (IEA, 2010).  Therefore the average 

efficiency of coal power plants is assumed to be 35.1% based on the report by IEA 

(2007).  The average coal used is assumed to have a heat value of 9,902 Btu per pound 

(6.398 KWh per Kg) and a sulfur content of 1.01% by weight (EIA, 2010).  A newly 

commissioned combined cycle power plant is assumed to have an efficiency of 59% 

(Siemens, 2010), and the average heat value for the natural gas used in Florida is 

accepted as 1025 Btu per cubic foot (8.506 KWh per cubic meter) (EIA, 2010). 

 

 

3.1.3. Nuclear Fuel Energy Generation 

The main difference between a nuclear energy generation and fossil fuel energy 

generation is the method used to produce the heat required to run electric generators.  

Nuclear energy comes from the heat generated by the splitting of uranium atoms in 

nuclear fission.  This process occurs as the nucleus of an atom splits into smaller, lighter 

nuclei.  In nuclear reactors U-235 and U-238 are used, U-238 is the fuel while U-235, 

which is an unstable isotope, is used to start the nuclear reaction.  One fission reaction 

triggers others, which in turn trigger more, until there is a chain reaction and fission 

becomes self-sustaining.  Rods made from materials that absorb neutrons are inserted 

among the uranium fuel and control the nuclear reaction.  The control rods slow or 

accelerate the reaction as they are inserted or withdrawn to varying degrees.  In addition 
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to the control rods boron is dissolved in the core’s coolant to absorb neutrons and control 

the process. 

 The nuclear energy released by the fission heats the coolant in the reactor’s core; 

this refrigerates the reactor and transports the heat from the reactor to the steam 

generator.  In pressurized water reactors, there are two sets of piping.  The first set, the 

primary side, contains the core’s coolant; the second set, the secondary side, contains 

water that drives the steam generator.  In this type of reactors the fluids from these piping 

systems do not mix.  A pressurizer prevents the coolant from the primary side from 

boiling, while allowing it to reach temperatures of up to 600° Fahrenheit.  The heat is 

transferred to the secondary side in the steam generator, since the water from the 

secondary side is at a lower pressure it boils and becomes the steam that drives the 

generator.  The process is shown in Figure 13. 

 

 
Figure 13: Overview of a pressurized water nuclear reactor 

 

Cooling Water 
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The United States is the largest nuclear energy producer in the world with an 

installed capacity of more than 100,000 Million Kilowatts distributed among 104 

operable units across 31 states (EIA, 2011).  In the state of Florida there are 3 nuclear 

power plants, the Cristal River nuclear plant in Citrus County, the St Lucie nuclear plant 

in St Lucie County and the Turkey Point nuclear plant in Miami-Dade County.  The 

Cristal River nuclear power plant operates an 860 MW pressurized light water reactor 

that began operating on March 13, 1977 and is in the process of renewing its operational 

license, which is set to expire on December 2016.  The St Lucie nuclear plant operates 

two 839 MW pressurized light water reactors.  The first reactor began operating on 

December 21, 1976 and has a license to operate until March 2036; and the second reactor 

began operating on August 8, 1983 and has a license until April 2043.  The Turkey Point 

nuclear plant operates two 693 MW pressurized light water reactors.  The first reactor 

began operating on December 14, 1972 and has a license to operate until July 2032; while 

the second reactor began operating on September 7, 1973 and has a license to operate 

until April 2033.  As of 2009, the total nuclear capacity of 3,924 MW represented 6.64% 

of the state’s energy generation capacity; however with a generation of 29,117 GWHr 

nuclear energy generated 13.36% of Florida’s electricity (EIA, 2011).   

 Florida Power and Light, and Progress Energy, have submitted a combined 

license application to the Federal Energy Regulatory Commission for the construction 

and operation of two 2200MW nuclear power generation plants each, Turkey Point 6 and 

Turkey Point 7, and Levy County 1 and Levy County 2, respectively.  These units are 

based on a Westinghouse AP1000 light water reactor design.  Florida Power and Light’s 

plants will be located at Turkey Point, where there are five power plants already, two 
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natural gas/oil steam electric generating units (Turkey Point 1 and Turkey Point 2), two 

pressurized water reactor nuclear units (Turkey Point 3 and Turkey Point 4), and one 

natural gas combined cycle steam electric generating unit (Turkey Point 5).  Construction 

of Unit 6 is to be completed during 2021, and construction of Unit 7 is to be completed in 

2022. 

 The main characteristics of this type of plants include a net electrical power of 

1117 MW with a thermal power of 3415 MWt.  These plants are designed to accept step 

load changes (increases or decreases) of 10 percent, and ramp load changes of 5 percent 

per minute, when operating between 15 and 100 percent of capacity without insertion of 

the control rods or operation of the steam generator safety valves.  During load follow the 

plant is designed to make load changes of less than 10 percent at 2 percent per minute, 

when operating between 50 and 100 percent, in order to respond to grid frequency 

changes. 

 This type of plants is designed to achieve availability greater than 93 percent 

considering all outages, including a rate of reactor trips when the control rods are inserted 

to stop the nuclear reaction, of less than one per year.  The plants’ core is designed for an 

18 month fuel cycle, with a refueling process that may be conducted in less than 17 days.  

This type of plant is designed to operate for 60 years without replacement of the reactor 

vessel, under conservative assumptions.  The design of the plant’s major components 

(steam generators, reactor coolant pumps, reactor fuel, reactor turbines and reactor 

generator) is based on equipment that has already been deployed in existing power plants, 

so that these components may be replaced during the plant’s lifetime without shortening 

it. 



69 

 
 

 These plants are designed to be constructed and operated in such a way that the 

release of reactive materials to the environment meets all environmental regulations, 

while it alerts operators if limit levels are approached.  Redundancy and independence are 

implemented so that the failure of a single active safety system cannot prevent the 

required safety actions from taking place.  Adequate control is given so that containment 

is provided to completely enclose the reactor system, and so that any piping that may 

serve as a path for an uncontrolled release of radioactive materials is automatically 

isolated in the event of a threat of such a release. 

 The reactor core is made of 157, 14 foot, 17x17 fuel assemblies, and consists of 

three radial regions which have different fuel enrichments that range from 2.35 to 4.8 

percent.  Daily load follow is achieved through the use of reduced-worth control rods, 

which eliminate the need for changes in the boron concentration, and the equipment 

needed to process these changes.  Refueling operations in these plants is done in what has 

become the standard for these operations, the head of the reactor vessel is removed and 

the core is configured using a refueling machine that handles the fuel from above.  New 

fuel is stored in high density racks that can store up to 72 assemblies, while spent fuel is 

stored in racks with space for 619 fuel assemblies. 

The reactor vessel is cylindrical with hemispherical bottom head and removable 

top head, it is the high pressure containment boundary used to support and surround the 

reactor core.  The vessel is approximately 40 feet high and has an inner diameter of 

approximately 13 feet, it is clad in stainless steel and designed to withstand pressures of 

up to 17.1 MPa and temperatures of up to 650 °F.  The reactor core is located as low as 

possible within the vessel to reduce the reflood time in case of accidents. 
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The design of the steam generators is based on currently deployed equipment that 

is designed for direct attachment to the reactors coolant pumps.  The design of the nuclear 

reactor includes two steam generators that employ a steam separator area sludge trap with 

clean out provisions and thermally treated nickel-chromium-iron Alloy 690 tubes.  Each 

generator’s channel head attaches to two reactor coolant pumps, and is designed for 

manual and robotic access for inspection, sleeving, plugging and nozzle dam placement 

operations.  The reactor coolant pumps are designed with no seals to prevent seal failure 

loss of coolant accidents.  The pumps’ motor is located below the steam generator’s head 

to simplify the loop piping and to eliminate the possibility of fuel uncover during 

potential small loss of coolant accidents.  The pumps are designed so that they are not 

damaged due to the loss of all cooling water until a safety related pump trip occurs; this 

system provides the pump protection in the case of extended loss of coolant water.  The 

reactor coolant system has it piping configured in two main coolant loops that use a 31 

inch diameter hot leg pipe to transport reactor coolant to the steam generator.  Two 22 

inch cold leg pipes complete the circuit by transporting the reactor coolant back into the 

reactor vessel. 

Figure 6 shows how the different processes for nuclear electricity generation are 

included in the proposed HMS framework.  As entities arrive to the different nuclear 

plants they check if the plant is currently operational.  If the plant is not operating they 

are routed to a disposal block, if the plant is operating entities are routed to the nuclear 

core.  In the reactor core the amount of nuclear fuel is checked, if there is enough fuel for 

nuclear fission the entities enter the nuclear reactor and go through the nuclear fission 

process.  If there is not enough fuel for nuclear fission a nuclear refuel process is 
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triggered.  After entities go through nuclear fission they are duplicated so that one entity 

goes to the electricity generation and the other goes to the nuclear waste generation.  In 

the electricity generation based on the nuclear fission, the heat produced is calculated, 

after this the efficiency of both the primary and secondary sides is factored in, after which 

entities enter the nuclear steam turbine system.  The output from the nuclear turbine is 

used by the nuclear electric generator to assign each entity with the corresponding 

amount of energy that it is to deliver to the grid.  Entities that go to the nuclear waste 

generation go through two processes, a process for low level waste generation and a 

process for high level waste generation, after which they are sent to the nuclear disposal.  

In the case that a refueling process is activated the plant is shut down and processes for 

the replacement of the fuel rods within the nuclear core begin.  In the refueling process, 

entities enter a plant cool down stage; after cool down entities are sent to a reactor head 

removal process.  The reactor head removal process is followed by the fuel removal 

process.  Once this fuel removal process is completed there is a system reprogramming 

stage, followed by the actual reactor fueling process.  Finally the reactor is reassembled 

and a signal is sent that the plant may ramp up to operational status.  Entities that go 

through the refueling process are sent to the nuclear disposal once all of the processes are 

completed. 

 

 

3.2. Energy Storage Module (S) 

Energy storage systems are necessary to deal with 1) fluctuations in demand (e.g., grid 

system applications), 2) intermittency in generation from renewable sources, and 3) 
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reliability concerns in electricity distribution (Eyer et al., 2004).  Grid system 

applications of storage include arbitrage (buying electricity to charge the storage plant 

when price is low, so that it can be sold at a later time when the price is high), central 

generation capacity (the use of energy storage systems as an alternative to adding central 

generation capacity), ancillary services (support services required in energy transmission 

that ensure the integrity and reliability of the network, network stability, and voltage 

control), the reduction of transmission capacity requirements, transmission congestion 

relief  (by discharging stored energy during peak demand periods) and the deferral of 

transmission and distribution upgrades.  Utility customer applications of storage include 

time-of-use energy cost management, demand charge management, service reliability and 

service power quality.  The electric service reliability application entails use of energy 

storage to provide highly reliable electric service.  In the event of a complete power 

outage, the storage system provides energy to ride through outages of extended duration 

or to complete an orderly shutdown of processes or to transfer to on-site generation 

resources. 

These advantages may be achieved through the use of different energy storage 

systems such as pumped hydro storage (PSH), compressed air energy storage (CAES), 

batteries, hydrogen storage and supercapacitors, whose details are provided below and in 

Tables 6 and 7.  Table 6 shows the key characteristics of the main types of energy storage 

systems, while Table 7 summarizes their main advantages and disadvantages. 
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Table 6: Properties of energy storage systems 
Energy Storage 

System 
PHS CAES 

Lead-acid  
battery 

Sodium-sulfur 
battery 

Hydrogen  
fuel cell 

Supercapacitor

Rated Capacity ( ) 100 - 5000 5 - 300 0 - 20 0.05 - 8 0 - 50 0 - 0.3 

Discharge 
at Rated Capacity ( ) 

1 - 24 + 1 - 24 + 0.0027 - 2 + 0.0027 - 2 + 0.0027 - 24 + 2.7 10 1

Power Capacity 
Cost ($/	 ) 

5 – 100 2 – 50 50 – 400 300 – 500 425 – 725 
 

300 – 2000 

Response Time Minutes Minutes < 1/4 cycle < 1/4 cycle < 1/4 cycle < 1/4 cycle 

Cycle Efficiency (%) 71 - 85 70 - 89 70 - 90 75 - 90 20 - 66 84 - 95 

Cycle Life 
10,000 - 
30,000 

8,000 - 12,000 500 - 1,000 2,500 - 4,500 1000 + 100,000 + 

Space Requirements 
( 2/ ) 

0.02 0.01 0.058 0.019 0.003 - 0.006 0.04 

Life ( ) 40 - 60 20 - 40 5 - 15 10 - 15 5 - 20 8 - 20 

(DOE, 2011) 
 

 

Table 7: Main advantages and disadvantages of energy storage systems 
Energy Storage System Main Advantages Main Disadvantages 

PHS High Capacity, Low Cost Special Site For Reservoir Required 

CAES High Capacity, Low Cost, Underground Special Site Required, Needs Natural Gas 

Lead-acid battery Low Capital Cost Limited Life Cycle When Deeply Discharged

Sodium-sulfur battery 
High Power Density, High Efficiency, 

99% Recyclable 
Production Costs, Safety Concerns 

Hydrogen fuel cell Very Low Self Discharge High Capital Costs 

Supercapacitor Long Cycle Life, High Efficiency Low Energy Density 

 
 

Among various types of energy storage systems, PSH systems store potential 

energy from height differences in water levels by pumping water from a lower water 

level reservoir to an upper level reservoir.  It can provide relatively high efficiency, large 

power capacity, large storage capacity, and a long life, at a low cycle cost ($0.1– 1.4/

/ ) (Chen et al., 2009).  Hydrogen storage is composed of three separate 

processes: a hydrogen production process, a process for its storage, and a combustion 

process for its use. For production, an electrolyzer produces hydrogen and oxygen from 

water by introducing an electric current; while for use, a hydrogen fuel cell converts 
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hydrogen and oxygen back into water, releasing the stored energy.  Hydrogen storage has 

a more expensive capital cost than other systems and has a low storage conversion 

efficiency.  This type of storage may be an option for certain applications, such as when 

grid reinforcement is expensive, or when there are limiting environmental policies or 

concerns for other options. Supercapacitors store energy by means of an electrolyte 

solution between two solid conductors. They have a durability of 8 to 10 years with a 

very high efficiency.  They are capable of deep discharge/overcharge and have an 

extremely high power density (Hadjipaschalis et al., 2009).  However, supercapacitors 

have a high energy dissipation rate of between five and forty percent per day and their 

cost is quite high.  

CAES systems typically use an existing underground site (a salt dome, a rock 

cavern or an abandoned mine), and store gas at approximately 4–8MPa.  There are 

currently two operating CAES plants in the world, a 290 MW facility in Huntorf, 

Germany built in 1978, and a 110 MW plant in McIntosh, Alabama commissioned 1991. 

Along with PHS, CAES systems are the only technologies suitable for large scale power 

and high energy storage applications.  They share many of the same attractive qualities of 

PHS, such as high power capacity, large energy storage capacity, a quick start-up, a long 

storage period, and a relatively high efficiency (Beaudin et al., 2010).  Succar and 

Williams (2008) show that the electrical output of a turbine in a CAES system is given by 

the equation in Eq. (10), where  is the electrical output of the turbine, the integral is the 

work generated by the expansion of air and fuel in the turbine,  is the total 

mechanical work generated in the process,  is the air mass flow rate,   is the time 

requires to deplete a full reservoir at full power, 	is the mechanical efficiency of the 
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turbine and 	is the efficiency of the electric generator.  The work generated by the 

process is limited by the law of ideal gases	 , where	 	 ln ⁄ , 

where is the initial volume and is the final volume (Ter-Gazarian, 1994). A CAES 

system can use up to 67% less natural gas than a regular gas turbine generator (Gardner 

and Haynes, 2007). 

 	 	  Eq. (10) 

Batteries store energy through a reversible chemical reaction.  There are various 

types of batteries including Lead-Acid, Nickel-Cadmium, Sodium-Sulfur, Zinc-Bromine 

and Vanadium redox batteries.   Lead Acid batteries have been used for more than 130 

years, and still are the most common rechargeable electrochemical device for small to 

medium scale applications, and are most commonly found in vehicles.  Lead-acid 

batteries have a low-cost, high reliability, strong surge capabilities, high efficiency, and 

are usually good for uninterruptible power supply and power quality (Chen et al. 2009).  

Lead-acid batteries are rechargeable and have the reversible reaction given by Eq. (11). 

Sodium-Sulfur batteries are a very attractive emerging technology because they can be 

cycled 2500 times, have high power density (150– 240 / ), are efficient, and have a 

600% rated pulse power capability that can last 30  (Dufo-Lopez et al., 2009). Sodium-

Sulfur batteries are rechargeable and environmentally friendly since the batteries are 

sealed and allow no emissions during operation, and more than 99% of the overall 

materials of the battery, by weight, can be recycled. Sulfur batteries have the reaction 

equation given by Eq. (12). 

 

 	 	 	 	2 	2 	 	2  Eq. (11) 
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 2 	 	3 	  Eq. (12) 	

From the energy systems described above the proposed continuous-discrete 

modular simulation optimization framework models a CAES system which offers a large 

energy storage capacity and high power capability (submodule 7), and a combination of 

Lead-Acid and Sodium-Sulfur battery systems (submodules 8 and 9); where Lead-Acid 

batteries provide a low-cost energy storage system with high reliability, and Sodium-

Sulfur batteries offer a relatively longer operating life than Lead-Acid batteries and are 

more environmentally friendly.  In submodule 7 the amount of energy stored is 

determined via the level of air in the CAES cavern as well as the efficiency of the 

compressor that is used to store the air.  When demand is requested from the CAES 

system such that the system needs to switch to the gas expansion stage, natural gas and 

the pressurized air are used in order to run a high pressure and a low pressure turbine.  

The turbines turn an electric generator that delivers the energy, and the energy level in the 

CAES system is adjusted after taking into account the operational efficiencies of these 

mechanisms.   

 

 

3.3. Energy Transmission Module (T)  

In our proposed CoDiMoSO framework, generated energy usage and its distribution is 

carried out by both a step-up and a step-down substation sub-module.  The step-up 

substation records the total amount of energy generated and then decides the use of the 

energy from each entity between the different types of storage, the electrical grid or, if 

there is no capacity in these systems, grounding.  The energy from the entities may be 
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used to feed the grid directly, if the level in the grid falls below a certain threshold.  If the 

energy in the grid is above this threshold and there is available storage capacity, then the 

energy from the entities is stored.  In the event that there is no capacity for storage 

available, then the energy is grounded.  When energy is stored in the Sodium-Sulfur or 

the Lead-acid battery system, the storage system with the lowest amount of energy is 

used; consequently, when energy is being used from the battery systems, it is taken from 

the system with the highest energy amount.  The CAES system is used for storage only 

when the energy level in both the Sodium-Sulfur and the Lead-acid battery systems is 

above preset thresholds.  In the step-down substation sub-module, the entities use the 

energy from either the grid, the storage systems, or if the demand cannot be met they are 

disposed as load shed. 

When energy is stored in the CAES system, the framework attempts to reduce the 

utilization of the fossil fuel plants by reducing the current operational capacity by 10%.  

However, a minimum runtime value for each of the plants limits the scale down 

mechanism.  The minimum runtime value specifies the minimum frequency with which 

scale down operations may occur at each facility.  In the case that energy is grounded, the 

scale down mechanism is activated not only for the fossil fuel plants, but also for the 

nuclear power plants, subject to the same type of minimum runtime restriction. 

The load shed of an entity points out that the current operational capacity of the 

energy generation systems is not adequate.  When this happens the framework triggers a 

mechanism that increases the operating level of the power plants to full capacity.  This 

mechanism starts by increasing the capacities of the nuclear power plants, followed by 

that of the natural gas, oil and coal plants.  The scale up mechanism is limited by a 
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minimum downtime value, similar to the one that constraints the step up mechanism, that 

limits the frequency with which these step up operations may occur.  The minimum 

downtime and minimum runtime values are used to incorporate the fact that energy 

generating plants take time to adjust their operational levels and thus changes to the 

operational levels cannot be completed immediately. 

 

 

3.4. Energy Demand Module (D)  

The generated energy is demanded by four major sectors which are namely residential, 

commercial, industrial, and transportation.  The residential sector encompasses single or 

multifamily houses and mobile homes; the commercial sector includes firms not engaged 

in farming, manufacturing or transportation as well as public-street and highway lighting, 

interdepartmental electricity sales and electricity sales to public authorities; the industrial 

sector includes the goods-producing sector of the economy, including manufacturing, 

agriculture, construction, fisheries and forestry; and finally, the transportation sector 

demand includes electricity used for transportation as well as for railroads and railways 

(EIA, 2010).  In 2009, U.S. was the largest electricity consumer in the world with 3.741 

trillion kilowatt-hours energy consumed (EIA, 2010).  Here, the residential sector 

accounts for 36.43% of the energy consumed in the United States in 2009, the 

commercial sector for 35.36%, the industrial sector for 23.58% and the transportation 

sector for 0.21%.  Within U.S., Florida is the third largest electricity consuming state 

where its total consumption is equal to 6.2% of the national total (EIA, 2009).  Table 8 

shows the monthly average energy demand in Florida by sector and Table 9 shows the 
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energy consumption in Florida by sector; where residential, commercial, industrial and 

transportation demand respectively represent 51.59%, 34.05%, 10.77% and 3.59% of the 

total consumption on average.  The proposed CoDiMoSO framework as well as the 

demand forecasting algorithm developed as part of its demand Module D is based on this 

data collected from EIA.  The details of this demand estimation algorithm and the 

modeling of the Module D are provided in the next section. 

 

Table 8: Average Monthly Energy Consumption in Florida in MWHr 
Month Residential Commercial Industrial Transportation Total 

January 8,803,173 5,985,862 2,195,723 599,765 17,584,523 

February 8,058,046 5,453,321 1,836,417 586,655 15,934,439 

March 7,568,938 5,549,920 1,890,909 613,185 15,622,954 

April 7,709,337 5,765,914 1,924,423 617,393 16,017,067 

May 8,757,720 6,172,947 2,012,225 640,456 17,583,348 

June 10,732,322 6,745,917 2,075,317 690,803 20,244,358 

July 11,797,190 7,002,154 2,051,942 714,208 21,565,494 

August 12,176,168 6,974,548 2,103,445 711,388 21,965,549 

September 12,064,284 7,196,393 2,048,301 781,462 22,090,440 

October 10,453,153 6,706,603 2,007,966 699,078 19,866,799 

November 8,329,819 6,085,163 1,934,046 687,660 17,036,687 

December 8,177,016 6,017,060 1,850,992 631,230 16,676,299 

Total 114,627,166 75,655,802 23,931,706 7,973,283 222,187,955 
 

Table 9: Energy Consumption in Florida 2005 – 2009 in MWHr 

Year Residential Commercial Industrial Transportation Total 

2005 115,413,716 73,688,692 24,969,487 8,139,922 222,211,817 

2006 118,245,990 75,231,267 26,627,845 8,356,444 228,461,546 

2007 118,609,290 77,101,935 25,634,560 8,519,587 229,865,372 

2008 108,724,268 76,472,457 21,227,378 7,408,353 213,832,456 

2009 112,142,565 75,784,660 21,199,255 7,442,106 216,568,586 

Average 114,627,166 75,655,802 23,931,705 7,973,282 222,187,955 
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3.4.1. Algorithm for Estimating Electricity Demand  by Various Sectors 

The algorithm is developed to enable accurate estimation of electricity demand by 

various sectors in a timely manner, and is embedded into the Module D of the 

CoDiMoSO framework.  Here, the algorithm estimates the hourly energy consumption 

rate by various sectors by considering the monthly energy consumption reported by seven 

largest utility companies in the state of Florida (FPSC, 2009), the average daily 

temperature recorded at the Miami International Airport, and the daily peak energy 

demand information from FPL.  In addition to the temperature in each hour of the day, 

the algorithm also differentiates whether this day is a weekday, weekend, or a holiday, 

and whether or not the particular hour is flagged as a consumption peak or not while 

predicting the total hourly as well as monthly consumption.  It should be noted here that 

the hourly temperature values also encompass the weather as well as the climate affect.  

Exemplary plots representing the weekly energy demand by different sectors are 

provided in Figure 14 for reference. 

 

       

Figure 14: Exemplary plots representing the hourly energy demand by different sectors  

 

Algorithm 1 shows the operation of the algorithm where  is the index for the 

months of the year,  is the index for hours of the month,  is the index for the 

consumption sectors (residential, commercial, industrial, transportation),  is the index 

for weekdays and weekends,  is the index for holidays and non-holidays,   is the 
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energy consumption at a given hour ,  is the total energy consumption of the 

month to which hour t belongs,  is the consumption factor of hour , 	 is the 

temperature at a given hour t,  is the temperature at which electric heating begins 

operating,   is the temperature at which electric cooling begins operating,  is the 

temperature at which electric heating is set,  is the temperature at which electric 

cooling is set, 	 is the electric heating factor,  is the electric cooling factor,  is the 

occupancy factor,   is the holiday factor for holiday ,   is the month 

factor, and  is the month normalization factor. 

 

Load Monthly Consumption Data, Daily Temperature Data, Holidays,  Weekdays – Weekends; 
CF(t) = 1 
If (T(t) < Tl) CF(t) = CF(t) + FEH * (THS – T(t)) 
If (T(t) > Th) CF(t) = CF(t) + FEC * (T(t) ‐ TCS) 
A = Max (5000 Sin(t * π / 12 + 1.15) ‐4400 , 0 )  
If (y = Residential) {If (z = Weekday) {  

If (A > 0){FO = 200 + (800 + 250 Sin(0.1 +  5t * π)  + 160 Cos (t * π / 12 + 2.4) + 
A)} 

Else {FO = 200 + (800 + 250 Sin(0.1 +  5t * π)  + 350 Cos (t * π / 12 + 2.4))}} 
If (z  = Weekend) {   

FO = 140 + (560 + 200 Sin(0.1 +  5t * π)  + 300 Cos (t * π / 12 + 2.4 ))} 
CF(t) = CF(t) * FO} 

If (y = Commercial){If (Day = Weekday) {   
If(A > 0){FO = 200 + (600 + 80 Sin(1 +  5t * π)  + 60 Cos (t * π  + 2.3 ) + A)} 
Else {FO = 200 + (800 + 80 Sin(1 +  5t * π)  + 60 Cos (t * π  + 2.3))} 

If (z = Weekend) {   
FO = 140 + (420 + 80 Sin(1 +  5t * π)  + 60 Cos (t * π + 2.3))} 
CF(t) = CF(t) * FO} 

If (y = Industrial){If (z = Weekday) {   
FO = 200 + (2400 + 20 Sin(5t * π)  + 10 Cos (t * π + 2.5))} 
If (z = Weekend) {   

FO = 140 + (1680 + 25 Sin(5t * π)  + 5 Cos (t * π + 2))} 
CF(t) = CF(t) * FO}} 

If (w = Holiday) CF(t) = CF(t) * FHd(w) 
FM(m) = Sum (CF(t)) 
FMN(m)= CM(t)/ FM(m) 
CH(t) = CF(t) * FMN(m) 

Algorithm 1: Hourly energy demand allocation for the different sectors 
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The algorithm is used to distribute a month’s total energy consumption for each 

residential, commercial, industrial and transportation sector into each of the month’s 

hours based on the aforementioned factors.  The algorithm begins by assigning each hour 

of the month with an initial consumption factor ( ) of 1.  For hours whose 

temperature is lower than  the consumption factor is adjusted to	1 , 

for hours whose temperature is higher than the consumption factor is adjusted to	1

	.  Then, the parameters that take into account whether the hour is during 

a consumption peak ( ), and/or, whether it is part of a weekend ( ), are factored in, and 

each hour’s consumption factor is adjusted to	 .  Next, the impact of 

holidays is factored in and  for hours during holidays. Once all of 

the consumption factors have been calculated for all of the hours of the year, each 

month’s consumption and normalization factors are calculated as in ∑ ∈

 and .  The consumption of each individual hour within each 

sector is then calculated by distributing the month’s total consumption based on the 

consumption factors	 	 . 

Figure 15 shows the differences in the estimated energy consumption for a 

randomly selected winter day (January 31st) versus a randomly selected day in the middle 

of the summer (August 31st).  As depicted, the overall consumption for the summer day is 

larger than that of the winter day while the hours at which the peak demand occur varies 

by the different sectors. 
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Figure 15: Estimated energy consumption in Florida for a winter and a summer day by 
sector 

 

The algorithm has been implemented using Visual Basic and embedded into the 

simulation model via a VBA block to conduct estimation of the energy consumption for 

35,040 consecutive hours.  Implementation wise, using solely a VBA block for the 

CoDiMoSO framework involves running the algorithm every time an entity necessitating 

energy demand is created, and would require a considerable amount of computational 

resources.  On the other hand, using solely an Excel file to store the results from the 

algorithm and retrieving the information from that file via another VBA block means that 

the Excel file must be accessed every time an entity necessitating energy demand is 
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created.  In this case, even though it may not essentially require computational resources 

to run the algorithm, it does require them to link the CoDiMoSO framework with the 

Excel file.  Alternatively, we have created Arena schedule components to store the results 

obtained by the algorithm.  These schedule components enable us to export the model to 

an Access database.  Within the Access database the schedules are located and modified 

using the algorithm; once this modification was completed the updated CoDiMoSO 

framework was imported back into Arena from the Access database.  This way, 

considerable savings have been realized in the utilization of computational resources. 

The energy demand Module D incorporating the algorithm has been implemented 

in Arena as shown in Figure 16.  Here as entities arrive, they are assigned with an amount 

of energy to be consumed according to the results of the algorithm, and are routed to a 

step-down substation submodule.  In the step-down substation submodule, the energy 

demanding entities either use the energy from the grid (instantaneous utilization), from 

the storage systems, or they get disposed if the demand cannot be met.  Disposal of an 

entity for the last case indicates that the current usage level of the energy generating 

systems is not adequate and attempts to trigger a mechanism for increasing the operating 

level of the natural gas, oil and coal plants to full capacity.  The scale up mechanism is 

constrained with a minimum downtime value (similar to the one that constraints the step 

up mechanism in Module S) which restricts the frequency with which these operations 

may occur.  These minimum runtime and minimum downtime values are imposed to 

Module D and Module S in order to consider the fact that fossil fuel energy generating 

plants take time to adjust their operational levels and to be realized, hence cannot be 

made instantaneously. 
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Figure 16: Energy Demand Module D 

 

 

3.5. Optimization Module (O) 

In order to determine the optimal parameters for the integrated system in terms of 

minimized total cost and greenhouse gas emissions of the energy generation and storage 

systems, subject to the demand of the state of Florida we have developed a particle 

filtering optimization module.  The optimization module takes samples from the state of 

the system within the simulation and based on these samples proposes a new generation 

capacity for each of the different generation and storage systems that attempts to 

minimize cost and greenhouse gas emissions, while meeting operational restrictions 

regarding demand, and load shedding.  The simulation is then run again with the updated 

generation and storage capacities in an iterative process that stops once an indifference 

zone is reached and there is no significant improvement in terms of greenhouse gas 

emissions or cost. 
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 The formulation of the optimization problem is given in Eqs. (13) - (25).  The 

objective is to determine the rated capacity for energy generation and storage ( ) which 

minimizes the overall costs of meeting energy demand, as well as minimizes the emission 

of greenhouse gases generated as a consequence.  These objectives are optimized while 

keeping the rated capacity of energy generating storage facilities within predetermined 

ranges, as well as satisfying the electricity demand and keeping the energy balanced for 

all components of the system. 

 

 min∑ 	 ∑ ∑  Eq. (13) 

 min∑ ∑ ∑ 	 Eq. (14) 

Subject to 

 ∑ 	 ∑  ∀  Eq. (15) 

 	∑ ∑ 	 ∑  ∀  Eq. (16) 

  ∀  Eq. (17)	

 1000   Eq. (18) 

  ∀  Eq. (19) 

 432  Eq. (20) 

  ∀   Eq. (21) 

   ∀  Eq. (22) 

   ∀ ,   Eq. (23) 

  ∈ 7,9  Eq. (24) 

  ∈ 7,9 , ∀  Eq. (25) 
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The proposed formulation uses index  for the different energy generation and 

storage alternatives (nuclear, coal, natural gas, oil, solar, wind, CAES, lead-acid batteries 

and Sodium-Sulfur batteries),  for electricity demanding sectors (residential, industrial, 

commercial and transportation),  for the different greenhouse gases (CO2, NOx, SOx), 

and  for the time.  The total costs of meeting the electricity demand depend on the costs 

associated to energy generation and energy storage.  These costs have separate 

components that are time invariant and time variant respectively. 

The time variant component is based on the electricity generated by each facility 

at every point in time ( ) and by the fuel costs associated with the operation of these 

facilities ( ).  The time invariant component depends on the rated capacity of each 

facility ( ), the base cost of each of these facilities  and the fixed costs of operating 

facilities	 .  The energy in each storage system at any time is given by	 , while the 

efficiency of these storage systems is given by	 .  The amount of energy grounded is 

given by	 .  The amount of solar energy generated is given by	 , the amount of wind 

energy generated is given by , the solar irradiance is given by	 , the electrical 

efficiency of the solar panels is given by 	and the total area of the solar panels is given 

by	 .  The density of the air is	 , the area swept by the blades is  and the upstream 

wind velocity at the entrance of the turbine is	 . 

Greenhouse gas emission is a result of the use of fossil fuels.  In energy 

generation and storage facilities, the emission of pollutants depends on the amount of 

electricity generated at every point in time, and the amount of each pollutant that using 

this type of facility entails ( ).  In addition, the energy demanded by each sector during 

every time unit ( ) must be fulfilled by the energy generation and storage facilities, up 
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to a specified fulfillment factor ( ), so that the fraction of the total demand specified by 

this factor is fulfilled at all times.  The rated capacity of energy generation and storage 

facilities has lower and upper limits (  and	 ).  Finally, the operational capacity of 

these energy generation and storage facilities is bounded by their respective rated 

capacities. 

Algorithm 2 shows the operation of the PFO algorithm.  The algorithm begins by 

setting initial values for the capacity of all power generation and storage resources, 

ensuring that there is a large amount of excess capacity for each.  After this the 

simulation duration, maximum load shed and grounding frequencies are determined.  

Once these frequencies are established the algorithm enters into a loop, while the 

indifference region has not been reached and the capacity of each resource is updated.  

Inside this loop, the simulation begins and resets the clock, while the abnormality 

duration and sampling frequency and the system’s status are established.  After these 

parameters have been set, an initial temporal array is stored for the abnormality duration, 

the temporal array is then updated as time passes to include only the latest states of the 

system.  A permanent storage array then samples randomly from the system once for 

every window of the size given by the sampling frequency.  In the event that an 

abnormality (load shed or grounding) occurs the temporal storage array is saved into the 

corresponding abnormality array such that the time when the abnormality occurred is in 

the middle of the array.  Final abnormality arrays are then created by including the 

random sampling array to them.  If there has been an excess of either type of abnormality 

the particle filtering algorithm will sample from the corresponding abnormality array and 

propose a new capacity for each resource correspondingly.  If neither of the abnormality 
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metrics have been violated the particle filtering algorithm will sample from the random 

sampling array and propose decreased capacities based on the filters results.  The iterative 

process continues until a significantly better generation capacity plan cannot be 

generated. 

 

Set initial capacity for all power generation and storage resources 

Set: Simulation Duration TMAX, Maximum Load Shed Frequency LSMAX, Maximum Grounding Frequency GMAX 

Set Final Capacity = Initial Capacity  Set Capacity = 0 

While |Capacity – Final Capacity| > Indifference Threshold 

Capacity = Final Capacity 

While T < TMAX 

Determine abnormality duration, D = .5     // 30 Minutes 

Determine sampling frequency, F = 4     // 4 Hours 

Define the System_Status = (Nuclear_running_cap, Coal_running_cap, Gas_running_cap, Oil_running_cap, 

SolarCap, WindCap, Nuclear_KwH, Coal_KwH, Gas_KwH, Oil_KwH, Solar_KwH, Wind_KwH, CAES_Level, 

NaS_Battery_Level, PbA_Battery_Level, Grid_Level, Industrial_KwH, Commercial_KwH, Residential_KwH, 

Transportation_KwH, t%28800, Grounding, Load Shed) 

Record system status into temporal storage array on line T  // Save initial temporal array 

If T>D  // Update temporal array 

Randomly sample once every F time units 

Record abnormalities 

T = T+1          // Advance simulation time 

Create final load shed event array 

Create final grounding event array 

If Loadshed > LSMAX  //Update plant capacity based on load shed  Go To Filter (load shed array) 

If Grounding > GMAX  //Update plant capacity based on grounding  Go To Filter (grounding array) 

Filter (Array){               //Particle Filter 

     Sample from Array 

     Calculate total weights  

     Normalize weights 

     Estimate Generation Capacity // NuclearCap, CoalCap, GasCap, OilCap, SolarCap, WindCap  } 

If Loadshed > LSMAX      Increase current generation capacity based on Estimated Capacity 

If Grounding > GMAX      Decrease current generation capacity based on Estimated 

Capacity 

If Loadshed < LSMAX & Grounding < GMAX  Decrease current generation capacity based on Estimated 

Capacity 

Set Final Capacity based on current generation 

Algorithm 2: Generation of the optimal capacity of electric resources based on Particle 
Filtering 
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3.6. Evaluation of the Continuous-Discrete Modular Simulation and 

Optimization for Electric Utility Resource Planning 

A Visual basic Application (VBA) control form has been created to enable the users to 

select which modules to include into the simulation and the capacity of each of the 

energy generating resources (in the fossil fuel and renewable energy generation modules), 

and energy storage resources (in the energy storage module) that are to be included.  

Furthermore, the user control form is used to select which of the nuclear power reactors 

in the state of Florida (from the five that are operating, and the four proposed reactors) to 

include in the simulation, as well as the planning horizon for which the simulation is set 

to run.  The form is shown in Figure 17. 

 

 
Figure 17: Simulation parameter selection control form 

 

In order to illustrate the effectiveness of the proposed framework, we have 

designed a set of experiments with two main scenarios addressing the specifics of the 
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state of Florida.  The first scenario includes a capacity plan that uses the currently 

installed nuclear energy generation capacity, while the second scenario includes the 

proposed four new nuclear reactors, as part of the nuclear energy generation capacity.  In 

both of these scenarios annual demand increases according to the average for the next 20 

years from the Energy Outlook (EIA, 2011) are considered.  These increases in demand 

are estimated as 0.08% for residential demand, 1.08% for commercial demand, 0.82% for 

industrial demand, and 4.18% for transportation demand.  Both scenarios have been run 

over planning horizons starting from 3 years through 30 years. 

Tables 10 and 11 show the costs for commissioning and operating each of the 

proposed energy generation systems.  Here the base cost is incurred only once as the 

facility is built, these base costs are multiplied by an eventuality factor that includes 

provisions for unanticipated events that will drive up the projects costs that (even though 

they are unanticipated) typically happen in these types of projects.  The operation and 

maintenance costs have been split into fixed and variable costs; fixed costs are incurred 

occur annually and depend on the facility’s size, while variable costs are incurred as the 

facility operates and are mainly related to fuel consumption. 

 

Table 10: Costs of building and operating a power generating facility 

Energy Generation Technology 
Base Cost

($/kW) 
Eventuality

Factor 
Total Base

Cost ($/kW)

Operation and 
Maintenance 
Variable Cost 
($mills/kWh) 

Operations and 
Maintenance 

Fixed 
Cost ($/kW) 

Coal 2,625 1.07 2,809 4.20 29.31 
Gas/Oil Combined Cycle 917 1.08 991 3.07 14.44 

Combustion Turbine 626 1.05 658 6.90 10.77 
Nuclear 4,567 1.15 5,275 2.00 87.69 
Wind 2,251 1.07 2,409 0 27.73 

Photovoltaic 4,474 1.05 4,697 0 25.73 
(EIA 2011) 
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Table 11: Costs of building and operating an energy storage system 

Energy Storage Technology 
Base Cost

($/kW) 
Eventuality

Factor 
Total Base

Cost ($/kW)

Operations and 
Maintenance 
Variable Cost 
($mills/kWh) 

Operations and 
Maintenance 
Fixed Cost 

($/kW) 
CAES 890 1.05 935 4.92 19 

NaS Battery 389 1.07 416 0 35 
Pb Acid Battery 540 1.05 567 0 28 

(EIA 2011) 
 

Figure 18 shows the overall mapping of the interaction of the different modules in 

the simulation and the required parameters that are involved in the calculation of the total 

costs, emissions and nuclear waste generated by the system. 

 

 

3.6.1. Minimizing Total Cost with Installed Nuclear Capacity 

In the first case, we evaluate the total cost of fulfilling the electricity demand of Florida 

up to a fulfillment factor of 95%, planning for nuclear energy generation up to the current 

installed capacity in the state.  This is used as a baseline in order to understand the 

benefits or drawbacks of planning a nuclear expansion that includes four 1,100 MW 

AP1000 Nuclear plants. 
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Figure 18: Data mapping for the interaction between the different modules of the 
generation simulation 
 
 
 Figure 19 shows the different non-dominated solution sets generated for each of 

the 10 proposed time horizons, in terms of total costs and emissions, per year.  The figure 

shows how the non-dominated solution sets improve as the time horizon grows.  The 
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non-dominated solution set for a time horizon of 3 year has a solution of minimum cost 

of $16,372 million and emissions of 36.213 million tons of greenhouse gases, per year; 

while the minimum cost solution for a 30 year planning horizon has a cost of $ 4,628 

million, with emissions of 31.226 million tons of greenhouse gases, per year.  This 

implies an overall cost decrease of 71.73% with respect to the costs of a 3 year planning 

horizon.  In terms of minimum emissions the best solution from the non-dominated set 

for a planning horizon of 3 years has emissions of 10.346 million tons of greenhouse 

gases per year at an annual cost of $ 69,637 million, while the best solution from the non-

dominated set for a planning horizon of 30 years has emissions of 9.112 million tons of 

greenhouse gases with a cost of $ 11,936 million per year, which entails a decrease of 

11.92% annually with respect to the 3 year planning horizon.  It is important to highlight 

that the non-dominated solution set for any given planning horizon dominates those 

generated for all shorter planning horizons, thus showing the benefits of performing long 

term planning. 

 

 
Figure 19: Non-dominated solution sets generated for different planning horizons 
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The evolution of the capacity plan with the minimum cost is shown in Figure 20.  

The figure shows how as the planning horizon expands the total yearly cost decreases.  

This displays how the base construction costs become a less significant factor to the 

overall yearly cost and how the decrease in the total costs is smaller, as the planning 

horizon expands.  This effect can be confirmed when comparing the decrease in total cost 

from expanding the planning horizon from 18 years to 21 years, to that of expanding the 

planning horizon from 24 to 27 years, in the first case the reduction in cost is of 5.12% 

(from $ 5,328 million per year to $5,055 million per year) while in the latter case the 

reduction is of 2.31% (from $ 4,861 million per year to $4,749 million per year). 

 

 
Figure 20: Minimum cost capacity plan for different planning horizons 

 

Figure 21 shows the evolution of the minimum emissions capacity plan.  In this 

case, the figure shows that as the planning horizon with the minimum yearly emissions is 

the planning horizon of 18 years, with emissions of 8.699 million tons of greenhouse 

gases per year.  The figure shows that the yearly emissions decrease up to this point, 

starting with emissions of 10.346 million tons of greenhouse gases per year for a 

0

5000

10000

15000

20000

0 5 10 15 20 25 30 35

C
os

t 
p

er
 y

ea
r

($
 M

il
li

on
s)

Planning Horizon (Years)

Minimum Cost Plan



96 

 
 

planning horizon of 3 years.  Starting at this point the yearly emissions increase until they 

reach a level of 9.112 million tons of greenhouse gases per year with a planning horizon 

of 30 years. 

 

 
Figure 21: Minimum emissions capacity plan for different planning horizons 
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Table 12: Costs and capacity of the minimum cost solution 

Planning 
Horizon 

Annual 
Costs $ 
Millions 

Annual 
Emissions 
Millions 
of Tons 

Nuclear  
Generation 
Capacity 

MW 

Fossil Fuel  
Generation 
Capacity 

MW 

Renewable 
Generation 
Capacity 

MW 

Storage 
Capacity 

MW 

Total 
Generation 
Capacity 

3 16,371.67 36.213 3,924 20,048 0 765 23,972 
6 9,674.33 31.518 3,924 20,524 0 668 24,448 
9 7,455.00 30.399 3,924 20,694 0 882 24,618 

12 6,368.92 30.093 3,924 21,005 0 895 24,929 
15 5,733.93 29.377 3,924 20,497 0 2,802 24,421 
18 5,327.89 30.193 3,924 21,619 0 1,056 25,543 
21 5,055.24 30.499 3,924 21,999 0 1,056 25,923 
24 4,860.83 30.843 3,924 22,467 0 958 26,391 
27 4,748.52 31.431 3,924 23,077 0 984 27,001 
30 4,628.00 31.226 3,924 22,752 0 2,301 26,676 

 

Table 13 shows the total generation capacity for the minimum emissions capacity 

plan for each of the different planning horizons.  The table shows that renewable energy 

generation dominates these solutions, as it represents 88.45% of the total energy 

generation capacity, on average.  However, in these solutions fossil fuel energy 

generation represents 7.75% of the total generation capacity, on average.  The total 

energy generation capacity expands by 576 MW for each extra year added to the planning 

horizon, while the effect on the energy storage capacity is not very large and energy 

storage averages 3,295 MW.  It is important to note that comparing the minimum 

emissions capacity plan to the minimum cost capacity plan, the minimum emissions 

capacity plan has 78,819 MW more energy generation and storage capacity, as the total 

capacity is 310% larger on average, than that of the minimum cost capacity plan. 

Figure 22 shows the capacity breakdown for the different solutions on the non-

dominated solution set a planning horizon of 30 years, ranking them by their annual cost.  

The figure shows that in the solution with the lowest total cost nuclear energy generation 

represents 13.64% of the total generation and storage capacity, while in the solutions with 

the lowest emissions it represents 3.41% of the total generation and storage capacity.  As 
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the solutions on the non-dominated set increase in cost and decrease in emissions the 

share of fossil fuel energy generation decreases from 78.43% in the minimum cost 

solution to 7.63% in the minimum emissions solution, and the share of renewable energy 

generation increases from 0% to 85.93%, in the minimum cost and minimum emissions 

solutions respectively.  In these solutions the energy storage capacity ranges from 2.98% 

to 8.86% of the total energy generation and storage capacity. 

 

Table 13: Costs and capacity of the minimum emissions solution 

Planning 
Horizon 

Annual 
Costs $ 
Millions 

Annual 
Emissions 
Millions 
of Tons 

Nuclear  
Generation 
Capacity 

MW 

Fossil Fuel  
Generation 
Capacity 

MW 

Renewable 
Generation 
Capacity 

MW 

Storage 
Capacity 

MW 

Total 
Generation 
Capacity 

3 69,636.67 10.346 3,924 7,429 85,445 3,074 96,797 
6 37,386.67 9.187 3,924 7,578 87,162 3,136 98,664 
9 26,456.67 8.851 3,924 7,654 88,034 3,167 99,611 

12 21,194.17 8.733 3,924 7,808 89,805 3,231 101,537 
15 18,069.33 8.704 3,924 7,965 91,608 3,296 103,497 
18 15,930.56 8.699 3,924 8,076 92,891 3,342 104,891 
21 14,495.24 8.747 3,924 8,238 94,756 3,409 106,918 
24 13,309.58 9.028 3,924 8,532 95,341 3,357 107,797 
27 12,532.59 9.036 3,924 8,651 97,457 3,431 110,033 
30 11,936.33 9.112 3,924 8,842 99,601 3,507 112,367 

 

 

 
Figure 22: Composition of the non-dominated capacity plans for a planning horizon of 30 
years 
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3.6.2. Minimizing Total Cost with Expanded Nuclear Capacity 

In the second case we evaluate the total cost of fulfilling the electricity demand of Florida 

up to a fulfillment factor of 95%, planning for an expansion in the nuclear energy 

generation from the current installed capacity to include four new 1,100 MW AP1000 

Nuclear reactors.  This expansion implies an increase in the nuclear generation capacity 

of 112%, taking the total nuclear energy generation capacity from 3,924 MW to 8,324 

MW. 

Figure 23 shows the different non-dominated solution sets generated for each of 

the 10 proposed time horizons, in terms of total costs and emissions, per year.  The figure 

shows the same trends than in the first case, where the non-dominated solutions sets 

provide better annual costs and emissions, as the time horizon increases.  Here the 

solution of minimum cost for the 30 year planning horizon represents a 77.36% reduction 

in the overall cost compared to the 3 year planning horizon; $5,111 million per year, 

compared to $22,577 million per year.  The same phenomenon occurs with respect to the 

minimum emission solutions where the decrease from the 30 year planning horizon, 

compared to the 3 year planning horizon, is of 31.37% (a decrease from 0.102 million 

tons of greenhouse gases per year to 0.070 million tons of greenhouse gases per year).  In 

this case, as in the first, the non-dominated solution set for any given planning horizon 

dominates those generated for all shorter planning horizons. 
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Figure 23: Non-dominated solution sets generated for different planning horizons 
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Figure 24: Minimum cost capacity plan for different planning horizons 
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very important since these systems, in these minimum emissions solutions, average just 

0.0692% of the total energy generation capacity. 

 

 
Figure 25: Minimum emissions capacity plan for different planning horizons 
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fuel energy generation represents only 0.0692% of the total generation capacity, on 

average.  In this case, there is an average of 951 MW of energy generation capacity, and 

29 MW of energy storage capacity, added for each year that the planning horizon 

increases.  Comparing the minimum emissions capacity plan to the minimum cost 

capacity plan there is an increase in the total generation and storage capacity of 104,200 

MW, as the generation of the minimum emissions capacity plan is 410% larger than that 

of the minimum cost capacity plan, on average. 

 
Table 14: Costs and capacity of the minimum cost solution 

Planning 
Horizon 

Annual 
Costs $ 
Millions 

Annual 
Emissions 
Millions 
of Tons 

Nuclear  
Generation 
Capacity 

MW 

Fossil Fuel  
Generation 
Capacity 

MW 

Renewable 
Generation 
Capacity 

MW 

Storage 
Capacity 

MW 

Total 
Generation 
Capacity 

3 22,577.33 27.491 8,324 15,824 0 794 24,148 
6 12,670.33 24.370 8,324 16,149 0 668 24,473 
9 9,431.00 23.833 8,324 16,474 0 861 24,798 

12 7,811.17 23.663 8,324 16,758 0 895 25,082 
15 6,838.67 22.945 8,324 16,097 0 2,802 24,421 
18 6,238.89 23.366 8,324 16,625 0 2,661 24,949 
21 5,783.81 23.622 8,324 17,559 0 1,592 25,883 
24 5,474.58 23.987 8,324 17,993 0 1,543 26,317 
27 5,288.52 25.143 8,324 18,677 0 984 27,001 
30 5,111.00 25.122 8,324 18,352 0 2,301 26,676 

 

Table 15: Costs and capacity of the minimum emissions solution 

Planning 
Horizon 

Annual 
Costs $ 
Millions 

Annual 
Emissions 
Millions 
of Tons 

Nuclear  
Generation 
Capacity 

MW 

Fossil Fuel  
Generation 
Capacity 

MW 

Renewable 
Generation 
Capacity 

MW 

Storage 
Capacity 

MW 

Total 
Generation 
Capacity 

3 91,706.67 0.102 8,324 89 110,070 3,813 118,483 
6 48,595.00 0.092 8,324 92 111,727 3,870 120,142 
9 34,452.22 0.087 8,324 91 114,141 3,988 122,556 

12 27,565.00 0.083 8,324 90 117,281 4,143 125,695 
15 23,180.00 0.086 8,324 96 118,651 4,178 127,071 
18 20,478.33 0.074 8,324 84 121,515 4,205 129,924 
21 18,525.71 0.076 8,324 88 123,955 4,290 132,368 
24 17,201.25 0.073 8,324 87 127,491 4,329 135,903 
27 16,196.30 0.071 8,324 87 131,028 4,367 139,438 
30 15,539 0.070 8,324 88 135,758 4,588 144,170 
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Figure 26 shows the composition of the generation and storage capacity for the 

different solutions on the non-dominated solution set for the 30 year planning horizon.  

The figure shows that the solutions of lower costs are composed primarily of fossil fuel 

energy generation, which represents 68.8% of the total generation capacity of the 

minimum cost solution, while the solutions of minimum emissions are composed 

primarily of renewable energy generation, which represents 94.17% of the total 

generation capacity of the minimum emissions solution.  Nuclear energy generation 

represents 31.2% of the total energy generation capacity of the minimum cost solution 

and its share of the total generation capacity drops to 5.77% in the minimum emissions 

solution.  The total energy generation capacity increases from 26,676 MW in the 

minimum cost solution to 144,170 MW in the minimum emissions solution. 

 

 
Figure 26: Composition of the non-dominated capacity plans for a planning horizon of 30 
years 
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expansion of the nuclear energy generation capacity represents an increase in its 

participation of the total energy generation and storage capacity of 15.09% that is taken 

from the fossil fuel energy generation capacity, while the energy storage capacity is 

almost unaltered, as it changes from 7.93% to 7.94% of the total generation and storage 

capacity.  In this case there are no sources of renewable energy generation, for the cost of 

generating energy with these sources is higher than that of fossil fuel energy generation.  

Implementing the nuclear capacity expansion under a minimum cost scenario takes the 

annual costs from $4,628 million to $5,111 million which represents an increase in total 

costs of 10.44%, however this increase in total cost is compensated by a decrease in total 

emissions of 19.55%, as total yearly emissions decrease from 31.23 million tons of 

greenhouse gases to 25.12 million tons of greenhouse gases.  We can determine that in 

order to encourage shifting from a capacity plan that includes the current installed nuclear 

capacity to one that includes the expanded nuclear capacity, under a scenario of minimum 

total cost, a greenhouse gas emissions tax of at least $79.13 per ton is needed. 

 

 
Figure 27: Composition of the minimum cost capacity plans for a planning horizon of 30 
years 
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Figure 28 shows the comparison of the composition of the minimum emissions 

solution for the 30 year planning horizon for the cases with the current nuclear generation 

capacity and the expanded generation capacity.  The figure shows that with the expanded 

nuclear generation capacity there is an expansion in the share of renewable energy 

generation sources of 5.33%, from 85.93% to 91.26%, and a reduction of fossil fuel 

energy generation sources from 7.63% to 0.06%.  The composition of energy storage 

sources has little change, from 3.03% to 3.08%, while nuclear energy generation 

represents 3.41% of the total energy generation and storage capacity in the first case and 

5.60% in the second case.  It is important to mention that in terms of total capacity there 

is an increase in renewable energy generation from 99,601MW to 135,758 MW.  It is 

believed that this increase is permitted by the fast response times of the nuclear energy 

generation systems which enable the mitigation of the high intermittency of the 

renewable energy generation systems, without compromising the system’s security and 

ensuring that all the constraints are met.  The inclusion of the expanded nuclear capacity, 

enables the minimum emissions solution to reach a yearly emissions level of 0.07 million 

tons of greenhouse gases, compared to a level of 9.11 million tons of greenhouse gases, 

however the cost of reaching these levels is of $15,246.67 million per year and 

$11,936.33 million per year.  Nevertheless, in the case of minimizing total emissions, 

deploying a capacity plan with expanded nuclear capacity is favorable, since yearly 

emissions levels of 9.08 million tons per year, which are less than those achieved by the 

minimum emissions solution with no expanded nuclear capacity, can be obtained at a cost 

of $10,556 million tons per year.  Under a scenario of minimum emissions it is better to 

deploy a capacity plan with the expanded nuclear capacity, than to use one that has the 
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current nuclear capacity. It is important to highlight that issues concerning the security 

and cyber-security of nuclear energy generation as well as potential hazards that may 

arise when considering the management of nuclear waste have not been included in the 

present study and should be addressed in future research. 

 

 
Figure 28: Composition of the minimum emissions capacity plans for a planning horizon 
of 30 years 
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populate the non-dominated solution set, using information from the rest of the solutions 

that, at that point, are on the non-dominated solution set. 

 

 
Figure 29: Solutions generated by the multi-objective optimization algorithm based on 
particle filtering for a planning horizon of 3 years using the current nuclear generation 
capacity 
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expansion to the nuclear energy generation capacity as part of the comprehensive energy 

capacity plan.  The developed tool involves a modular modeling approach for the 

processes of different nature that exist within this complex system focusing on the details 

regarding nuclear energy generation, and will help the utility companies conduct resource 

planning using the developed particle filtering based optimization for multi-objective 

optimization in a realistic simulation environment. 
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Chapter 4: Multi-objective Optimization based on 

Particle Filtering 
 
 
In order to extend the employment of particle filtering to multi-objective optimization, 

we present a novel framework for multi-objective optimization using particle filtering.  

The proposed framework employs the information from the non-dominated solution set 

generated during each iteration in both the sequential importance sampling and the 

resampling stages. The use of these two sampling stages deals with potential problems 

that may arise from the use of a singular transition in the parameter vector, which 

commonly arise in simple sequential Monte Carlo algorithms.  In the sequential 

importance sampling stage the update of the posterior distribution is based only on the 

particles from the non-dominated solution set that has been constructed so far, in a 

fashion similar to the kernel smoothing of parameters proposed by Liu et al. (2007). The 

use of the sequential importance sampling stage lets the algorithm sample from an 

approximation to the problems optimal Pareto front, while the resampling stage is 

intended to help the algorithm to converge to the global optimal solutions efficiently. 

 

 

4.1. Overview of Particle Filtering 

A system may be described by the state-space model shown in Eqs. (26) and (27), where 

 is the state of the system at time , is the observation taken from the system, is 

the system noise, and  is the measurement noise. 
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 , , 1,2, … Eq. (26) 

 , , 0,1,… Eq. (27) 

 

 Using |  as the transition density function and |  as the 

likelihood density function, the particle filtering problem consists of estimating the 

posterior probability density function of the state given all of the observations, 

| : , where : , … , .  A prediction and an update step are involved in 

attaining the estimated posterior probability density function.  In the prediction step, the 

conditional probability | :  is estimated using the previous step’s updated 

conditional probability | :  and the Chapman-Kolmogorov equation (Doucet 

et al. 2000).  The relationship between these probabilities can be summarized such that 

the importance weights function is equal to the multiplication of the likelihood function 

and prior probability density function divided by the incremental likelihood.  Here, the 

prior probability density function is given by the prediction equation, the likelihood 

function is given by observation model, and the incremental likelihood is given by the 

denominator, as shown in Eq. (28). 

 

 
| 	 | :

| :
 Eq. (28) 

 

Since the integrals from the update and prediction steps given by the Chapman-

Kolmogorov equation are usually intractable, particle filtering represents the probabilities 

via a set of randomly selected weighted samples (Doucet et al. 2000).  The posterior 

density function is approximated as	∑ : : , by letting :  be a set of 
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particles for 1,… , 	 with associated normalized weights	∑ 1, where  denotes 

the Dirac delta function.   Furthermore, since taking samples directly from the posterior 

probability function is usually unfeasible, these samples are drawn from a different 

importance function	 | : .  An advantage to sampling from the importance 

function is that it can be chosen freely so long as the approximation from Eq. (29) holds.  

Additionally, if the importance function is chosen to factorize such as in Eq. (30), then 

particles from the 1 step ( : ) may be augmented by ∼ | : , :  to 

get the new particles	 : .  Weights are updated according to Eq. (31), and because of the 

way that the importance function is factorized, the posterior density may be approximated 

by ∑ , and there is no need to preserve the history of observations 

: , nor the trajectories of the samples : . 

 

 ∝ : :

: :
 Eq. (29) 

 : | : | : , : : | :  Eq. (30) 

 
: , :

 Eq. (31) 

 

 

4.2. Particle Filtering-based Optimization 

An optimization problem with  decision variables may be described as in Eqs. (32) and 

(33), where  is the decision vector, and it is assumed that there exists a unique optimal 

solution ∗. 
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 ∗ argmin  Eq. (32) 

 , , … , ∈  Eq. (33) 

 

Zhou et al. (2008) have shown that the optimization problem in Eqs. (32) and (33) 

may be formulated as a particle filtering problem by representing it with an appropriate 

state space model.  The appropriate state space model for this is defined in Eqs. (34) and 

(35), where  is the unobserved state,  is the observation,  is the observation noise 

(which is an independent identically distributed sequence with a probability density 

function φ ⋅  and assumed to be non-negative),  and the unobserved initial state 		is 

equal to ∗. 

 

 ,                         1,2, … Eq. (34) 

 , 0,1, … Eq. (35) 

 

 For this state-space model the transition density function is given in Eq. (36), 

where  is the Dirac delta function, and the likelihood function is given by Eq. (37). 

  

 |  Eq. (36) 

 | φ  Eq. (37) 

 

 The reasoning behind the model is that the optimal solution is generated by an 

unobserved stationary state, while it is only possible to observe the optimal function 

values with some noise ( ∗ ∗ ).  Furthermore, it is only possible to observe 

function values at least as large as the optimal ( ∗), since	 .  In this 
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case, the posterior probability function is given by Eq. (38).  It can be seen that with each 

iteration, the posterior probability density function is adjusted by the performance of the 

previous solution and generates a new posterior probability distribution. 

 

  Eq. (38) 

 

 It is expected that if  decreases in relation to	 , the posterior density  

will be getting closer to the density function of	 , as the Dirac delta function 

concentrates around	 ∗.  From an optimization point of view, this means that as  

increases, the density defined on the solution space ( ) becomes more concentrated on 

the optimal solution.  Finally, it should be noted that in order to solve the optimization 

problem from Eqs. (32) and (33),  has to be recursively estimated for the model in Eqs. 

(34) and (35), while constructing a decreasing sequence of observations . 

The presented formulation may be extended to multi-objective optimization 

problems by including  different objective functions and redefining 	  to	 	 	

1 , 2 , … , .  In this case now there is rarely a single solution ∗ that 

minimizes	 , ∀ , there is a set of solutions that may be considered non-dominated and 

part of the optimal solution set. 

Here, a solution vector  is said to dominate a solution vector  if and only if the 

conditions in Eqs. (38) and (40) are met.  Furthermore,  is said to cover  if and only if 

 dominates  or	  (Zitzler et al., 2000).  A solution vector ∗ is considered 

Pareto optimal if it is a non-dominated solution vector. 
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 ∀ ∈ 1,2, … , :	   Eq. (39) 

 ∃ ∈ 1,2, … , :  Eq. (40) 

 

Based on the extension of the formulation of the optimization problem presented 

in Eqs. (32) and (33) to a multi-objective setting, we propose a novel framework for 

multi-objective optimization based on particle filtering. 

 

 

4.3. Description of the Proposed Framework 

The proposed framework uses four stages, an initialization stage, a sequential importance 

sampling stage, a resampling stage and a stopping stage. In the initialization stage, the 

initial non-dominated set  is defined as an empty set, and the initial sampling 

distribution  is defined as a uniform distribution between the sampling space's maxima 

and minima, however, if the search space is unbounded, prior knowledge regarding the 

problem is to be used to establish appropriate bounds ( 	, ).  Furthermore, in 

problems where prior information indicates that a uniform distribution is not the most 

adequate, the prior sampling distribution may be adjusted to another distribution function 

that is more suitable to the specific application. Furthermore, in this initialization stage 

the number of particles for the sequential importance sampling stage ( ) and minimum 

number of sequential sampling iterations ( ) are defined, as well as the number of 

extreme points ( ) used and number of particles ( ) to sample for the resampling stage. 

Once the initialization stage has been completed, the sequential importance 

sampling stage is performed. In this stage samples are taken from the sampling 
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distribution, and are evaluated for performance and feasibility, based on the problem's 

objectives and constraints. At this point, a strategy to deal with the problem’s constraints 

and the samples that do not meet them must be implemented. Some possible strategies 

include, using only the particles which meet the problem’s constraints and removing 

those that do not meet these constraints, while another possible strategy involves the use 

of numerical methods to adjust the particles so that they meet the constraints. Because of 

the different constraints that different problems may impose on the optimization, it is not 

possible to propose one single strategy with which to address this potential feasibility 

problem that will satisfy every case. Once a set of feasible samples is obtained it is used 

to construct the non-dominated solution set, which is constructed through the evaluation 

of the objective functions for each of the samples, and the comparison of their 

performance. 

Based on the samples, the non-dominated solution set and the sampling 

distribution may be updated. In order to update the sampling distribution, the samples 

from the non-dominated solution set are sorted based on their performance on one of the 

problem’s objectives, which is selected arbitrarily. With the ordered sample set, weights 

may be updated so that they are proportional to the smallest component of the Minkowski 

distance of order 1 between each sample on the non-dominated solution set and it 

subsequent sample in the set.  We propose to use the smallest component of the 

Minkowski distance of order 1, so that more samples are drawn between consequent 

samples that are further away from each other, and less samples are drawn from sections 

of the non-dominated solution set that are more densely populated, however other orders 

of the Minkowski distance may be used if it is more suitable in the specific application of 
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the framework to have weights that are distributed differently. The particles from 

subsequent samplings are shown in Figure 30, where it may be seen how the non-

dominated solution set is populated with more members as the algorithm progresses, as 

more particles are drawn from what, so far, is our best approximation of the Pareto front. 

Sequential sampling is performed iteratively for a minimum of  iterations or until there 

is no change in the non-dominated set from one iteration to the next. 

 

  
Figure 30: Particles drawn from the sequential importance sampling stage 

 

In the resampling stage, a set  is constructed using all of the samples that have 

the best performance on each of the problem's objectives. A resampling distribution is 

created for each member of this set and their  closest extreme points in the sampling 

space, such that there is resampling from  distributions. However, if there is no 

information regarding the closest extreme points to the members of set	 ,  random 

points within the sampling space are used to create the resampling distributions. Once the 

resampling distributions have been built  random samples are evaluated so that the non-
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dominated solution set may be updated. The use of this resampling stage tries to avoid 

that the algorithm converges to local optimum Pareto fronts. 

Once the resampling stage is completed, the sequential importance sampling 

resumes. These iterative processes continue until a predetermined stopping criteria is 

reached, this may be when a preset number of iterations are performed, or when there are 

no changes in the non-dominated solution set for a predetermined number of iterations. 

Once this happens the final non-dominated solution set is presented as the solution to the 

multi-objective optimization problem. Algorithm 3 outlines the proposed framework for 

particle filtering based multi-objective optimization (MOPF). 

In Algorithm 3, the initialization stage is done in steps 1 through 4; the sequential 

importance sampling stage is performed in steps 5 through 10; and the resmpling stage is 

performed in steps 11 through 15. The stopping stage is evaluated in step 16. It is 

important to point out that in steps 8 and 14 an approximate method, like Parzen 

estimation is used to construct continuous approximations to the sampling functions so 

that the new samples are not drawn from the previous non-dominated solution set and its 

empirical weighted distribution, but include parts of the sampling space that were not 

previously considered. 
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1. Initialize the algorithm’s parameters: 
Prior sampling distribution ,  
Initial non-dominated set ∅ 
Number of particles to sample in the first sampling stage	  
Minimum number of iterations of the sequential importance sampling stage  
Number of extreme points used to construct the resampling distributions 	  
Number of particles to sample in the resampling stage	  
Iteration counter	 1 

2. Sample  from	 . 

3. Evaluate the problem’s constraints, choose and apply a strategy to adjust  to meet 
the constraints of the problem, if these are not met. 

4. Let  be the samples on the non-dominated set built comparing the performance of the 
samples from  and	 , according to Eqs. (39) and (40). 

5. Reset the sequential iterations counter	 	 	0. 
6. Order the samples according to their performance in one of the optimization's objectives.

7. Let	 ∑ 	 , where weights	 ∝ min
, ,

, , ,

1,2, … , 1. 

8. Construct a continuous approximation  from	  and Sample 

independently from	 . 
9. Evaluate the problem’s constraints, and apply a strategy to adjust  to meet the 

constraints of the problem, and let  be the samples on the non-dominated set. 
10. If 	 	  or , let 	 	 1, 	 	 1 and go to step 5; else go to step 

11. 
11. Generate a subset  from  which includes all of the samples that have the best 

performance for each of the individual objective functions. 
12. Find the  closest extreme points to each of the members of the set	 , in the absence of 

such information choose  random points within the sampling space. 
13. For each of the  points selected in step 11 let	 	 ∑ ∑ , 	, 

where weights	 , ∝ 1/ . 

14. Construct a continuous approximation  from	  and Sample 

independently from	 . 
15. Evaluate the problem’s constraints, and apply a strategy to adjust  to meet the 

constraints of the problem, and let  be the samples on the non-dominated set. 
16. If a stopping criterion is satisfied, then stop; else, 1 and go to step 5. 

Algorithm 3: Proposed particle filtering-based multi-objective optimization 
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4.4. Evaluation of the Proposed Framework for Multi-objective Optimization 

based on Particle Filtering 

In order to illustrate the validity of the proposed framework, we have used five well-

known benchmark functions from Zitzler, Deb and Thiele (ZDT) (Zitzler et al., 2000) as 

listed in Table 16, and have compared the results obtained by the proposed MOPF 

framework with the methods listed in Table 17. The comparison of the different 

algorithms has been performed based on the convergence metric (Khare et al., 2003), 

generational distance (Van Veldhuizen, 1999) and diversity metric (Deb et al., 2002). 

 

Table 16: Benchmark problems used in experiments

 
 



120 

 
 

Table 17: Algorithms used for comparison purposes 

Algorithm Acronym 

Fonseca and Fleming’s Algorithm (Fonseca and Fleming, 1995) FFGA 

Hajela and Lin’s weighted-sum based approach (Hajela and Lin, 1992) HLGA 

The Niched Pareto Genetic Algorithm (Horn et al., 1994) NPGA 

The Non-dominated Sorting Genetic Algorithm (Srinivas and Deb, 1994) NSGA 

The Non-dominated Sorting Genetic Algorithm II (Deb et al., 2002) NSGA2 
A single-objective evolutionary algorithm using weighted-sum aggregation (Zitzler et al., 
2000) SOEA 

The Strength Pareto Evolutionary Algorithm (Zitzler and Thiele, 1999) SPEA 
 

 

 The convergence metric (Khare et al., 2003) is designed to evaluate the distance 

between the non-dominated solution set that an algorithm has reached and the problem’s 

global Pareto front. The convergence metric (CM) is defined as in Eq. (41) where | | is 

the number of non-dominated solutions in the set	 , and  is the Euclidean distance 

between the solution	 ∈  and its nearest member of the Pareto front. In terms of the 

convergence metric, smaller values are preferable since a small value for the metric 

implies that there is a small distance between the non-dominated solution set and the 

Pareto front. The generational distance (GD) (Van Veldhuizen, 1999) is another metric 

designed to assess the distance between the non-dominated solution set that an algorithm 

has reached and the global Pareto front, and is defined as in Eq. (42). Similar to the case 

of the convergence metric, smaller values in the generational distance imply that there are 

smaller distances between the non-dominated solution set and the Pareto front, and hence 

are preferred. The diversity metric (DM) (Deb et al., 2002) is designed to evaluate the 

spread within the non-dominated solution set that an algorithm has reached. The diversity 

metric is defined as in Eq. (43), where  is the Euclidean distance between points  and 

1 in the non-dominated solution set , ̅ is the average of these distances; and  and 



121 

 
 

 represent the distance between the extreme points on the Pareto front and boundary 

solutions of . In this case, smaller values of the diversity metric imply a more even 

distribution of the members of the non-dominated solution set. 

 
∑| |

| |
 Eq. (41) 

 
∑| |

| |
	 Eq. (42) 

 
∑ | || |

| |
 Eq. (43) 

 

The methods compared to the MOPF framework have been evaluated using 250 

generations, a population size of 100, a crossover rate of 0.8, a mutation rate of 0.01, a 

niching parameter of 0.48862 and a domination pressure of 10. The selection of the 

parameters for the MOPF framework has been done based on the computational time and 

the performance, using particle set sizes ( ) ranging from 50 to 150 particles, and using 

the number of times resampling was performed as a stopping criterion, and varying this 

process between 10 to 50 times. 

The framework has been evaluated using problems ZDT3 and ZDT4.  ZDT3 has 

been selected since we have noticed that, because of the discontinuous nature of the 

Pareto front of this problem, the MOPF framework struggles to reach the optimal non-

dominated solution set.  The problem ZDT4 has been selected since it is a problem in 

which the algorithms that are being compared have not been able to reach the Pareto front 

under the proposed parameters (Zitzler et al., 2000). The performance has been evaluated 

in terms of CM; however there is a very strong relationship between the CM and the GD, 

in which we have found an	R  greater than 83% when preforming linear regression on the 
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CM predicted by the GD, and believe we could use either metric indistinctively for the 

analysis. 

When performing linear regression on the CM using the number of particles and 

the number of iterations as predictors, we have found that the number of iterations is a 

significant predictor and that the CM improves as the number of iterations increases.  

Furthermore, we have encountered that the same relationship occurs when preforming the 

linear regression on the GD; however we have found that the DM is independent from 

both the number of particles and iterations with p-values greater than 0.25.  In terms of 

computational time, both the number of particles and iterations have a direct impact on 

performance.  Table 18 shows the time used by the MOPF with the different particle set 

sizes and iteration numbers used for problem ZDT4, while Table 19 shows the CM under 

the same setting. 

 

Table 18: Computational time for problem ZDT4 
Particles 

50 75 100 125 150 

R
es

am
p

li
n

g 
S

ta
ge

s 

10 10.864 10.987 11.735 13.019 15.765 
15 14.571 17.055 18.500 18.847 20.172 
20 19.276 20.437 24.203 25.272 27.054 
25 25.221 26.173 28.501 31.518 32.614 
30 27.650 31.714 36.167 37.250 39.498 
35 32.933 38.703 38.597 43.182 46.510 
40 37.012 41.221 46.497 47.881 49.553 
45 42.591 45.986 48.347 55.812 54.840 
50 50.023 56.882 55.041 60.237 61.068 
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Table 19: Convergence Metric for problem ZDT4 
    Particles 

    50 75 100 125 150 

R
es

am
p

li
n

g 
S

ta
ge

s 

10 8.146 6.972 5.696 5.508 6.659 
15 4.458 3.025 3.677 5.292 5.827 
20 1.921 1.130 2.521 3.995 1.614 
25 0.961 1.183 3.154 1.950 4.434 
30 0.000 0.001 0.001 1.659 1.939 
35 0.508 0.529 0.515 0.520 2.718 
40 0.535 0.001 0.506 0.502 0.001 
45 0.491 0.489 0.517 0.001 0.001 
50 0.001 0.001 0.001 0.001 0.001 

 

Using these metrics, non-dominated solution sets have been developed for both 

the ZDT3 and ZDT4 problems; Figure 31 shows the non-dominated solution set for 

problem ZDT4, as an example.  Using the a fuzzy logic mechanism to select the best 

compromise solution (Abido, 2006), with linear membership functions the best 

compromise solution for problem ZDT3 is achieved with 100 particles for the sequential 

importance sampling stage and letting the algorithm use the resampling stage 15 times, 

while the best compromise solution for problem ZDT4 is achieved with 75 particles for 

the sequential importance sampling stage and letting the algorithm use the resampling 

stage 20 times.  When using a quadratic membership function for the CM objective, the 

best compromise solution for problem ZDT3 is achieved with 50 particles for the 

sequential importance sampling stage and using the resampling stage 35 times, while the 

same parameters, 75 particles for the sequential importance sampling stage and using the 

resampling stage 20 times, lead to the best compromise solution for problem ZDT4.  

Based on these results we have selected to evaluate the MOPF algorithm using 100 

particles in the sequential importance sampling stage, since this is the largest number of 

particles from the best compromise solutions, and since increasing the number of 
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particles does not increase computational time as significantly as increasing the number 

of iterations does (as can be seen in Table 18); and allowing the algorithm to use the 

resampling stage 25 times, which is between the parameters that lead to the best 

solutions.  Furthermore, we have used 3 extreme points ( ) to generate the resampling 

distributions and 30 particles ( ) in the each of the sampling distributions of the 

resampling stages. 

 

 
Figure 31: Non-dominated solution set for performance based on particle set size and 
iteration number 

 

We have performed 20 consecutive executions of each of the comparison methods 

in Table 17, as well as of the MOPF framework, for each of the benchmark problems.  

The presented results come from the best non-dominated front generated with each 

method.  Figure 32 shows an example of the evolution of the MOPF framework as the 

iterations progress, using problem ZDT4.  In the figure, we can see the effect of both 

sequential importance sampling and resampling, as most of the solutions from the oval 

labeled S1 come from the sequential importance sampling stage, while most of the 
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solutions from the rectangles S2-1 and S2-2 come from the sampling distributions of the 

resampling stage. 

 

 
Figure 32: Screenshot representation of the evolution of the MOPF framework 

 

 Figure 33 shows the non-dominated solution sets provided by the different 

algorithms for the problem ZDT1 (see Table 16).  Problem ZDT1 has a convex Pareto 

front that poses challenges to achieving a diverse non-dominated front, and leverages the 

fact that some implementations of multi-objective optimization algorithms give a higher 

importance to solutions that cover a larger number of solutions and “individual 

champion” solutions (solutions that are optimal for an individual objective function (Deb, 

1999)) are given less importance.  In the results, we can see that the non-dominated set 

from the MOPF framework clearly dominates those from the FFGA, HLGA, NPGA, 

NSGA, NSGA II and SOEA algorithms.  The non-dominated solution set from the 

MOPF framework dominates most of the solutions from the non-dominated set of the 

SPEA algorithm, while it is not dominated by any of them.  The figure also shows that 
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there is adequate diversity within the non-dominated set from the MOPF framework and 

although the solution set is not evenly distributed, it has solutions that are very close to 

Pareto solution generated with each of the “individual champion” solutions for each 

function.  In order to achieve this diversity, the MOPF framework’s resampling stage is 

critical for this problem. Since in the resampling stage the particles are taken from the 

extreme points of the non-dominated solution set and the closest extreme points in the 

sample space, the framework is able to improve diversity instead of extensively 

populating regions within the non-dominated solution’s extreme points. 

  

 
Figure 33: Pareto fronts for ZDT1 test problem 

 

Figure 34 shows the non-dominated solution sets provided by the different 

algorithms for the problem ZDT2 (see Table 16).  Problem ZDT2 is the nonconvex 

counterpart to problem ZDT1, and in this case diversity should not be a challenge as was 

the case in problem ZDT1.  Here, we can see in the results that the non-dominated sets 

from the FFGA, HLGA, NPGA, NSGA, NSGA II, SOEA and SPEA algorithms are all 

dominated by the non-dominated set from the MOPF framework.  Furthermore, the non-

dominated set from the MOPF framework has acceptable diversity and there are solutions 
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generated close to the extreme points of the Pareto front.  The sequential importance 

sampling stage of the MOPF framework becomes more important in achieving the 

diversity in this case.  This is due to the fact that in the sequential importance sampling 

stage, samples are taken proportionally to the smallest component of the Minkowski 

distance of order 1 between the solutions in the non-dominated solution set, more 

samples are drawn from regions in the non-dominated front that are less densely 

populated than from regions where the solutions are closer to each other. 

 

 
Figure 34: Pareto fronts for ZDT2 test problem 

 

Figure 35 shows the non-dominated solution sets provided by the different 

algorithms for the problem ZDT3 (see Table 16).  ZDT3 has a discontinuous Pareto front 

which leads to problems to many multi-objective optimization algorithms since 

competition among solutions within each sub-region of the non-dominated solution set 

may lead to the disappearance of solutions corresponding to some sub-regions.  Here, we 

can see in the results that the non-dominated set from the MOPF framework clearly 

dominates the non-dominated set from the FFGA, HLGA and NPGA algorithms.  When 

doing individual comparisons between the non-dominated solution set from the MOPF 
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framework with those from the NSGA and NSGA II algorithms, we can see that the 

solution space is almost equally divided between the parts that are dominated by MOPF 

framework and the parts that are dominated by NSGA and NSGA II algorithms, 

respectively.  Furthermore, we can see that the non-dominated solution sets from SOEA 

and SPEA algorithms dominate most of the solutions from the MOPF framework.  We 

can see how the discontinuity in the Pareto front poses challenges to the MOPF 

framework where in the non-dominated solution set with the best convergence metric, 

one of the sub-regions of the Pareto front is not corresponded by solutions on the non-

dominated front.  Furthermore, even with the use of the resampling stage, in the non-

dominated front with the best convergence metric, there is only one solution close to an 

“individual champion” solution and in the non-dominated solution set with the best 

generational distance there are no solutions close to the “individual champion” solutions.  

However, it should be noted that the algorithm’s sequential importance sampling stage is 

able to populate the sub-regions where the algorithm has found at least two different 

solutions. 

 

 
Figure 35: Pareto fronts for ZDT3 test problem 
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Figure 36 shows the non-dominated solution sets provided by the different 

algorithms for the problem ZDT4 (see Table 16).  Zitzler et al. (2000) have designed 

ZDT4 to test an algorithm’s ability to deal with multimodality since there are more than 

7.9 10  local Pareto fronts.  In this case, we can see in the results that the non-

dominated set from the MOPF framework clearly dominate the non-dominated solution 

sets from the FFGA, HLGA, NPGA, NSGA, NSGA II, SOEA and SPEA algorithms.  In 

order to address multimodality, the proposed MOPF framework relies on the resampling 

stage.  Here, as samples are taken from the non-dominated solutions set’s extreme points 

and the closest extreme points of the solution space, the algorithm has a better chance of 

improving from one local Pareto front to the global Pareto front.  Contrasting this, the 

sequential importance sampling stage should be very good at populating the achieved 

local optimum, since it draws samples from within the non-dominated solution set.  With 

multimodal functions such as this one, the number of iterations used in the algorithm has 

a substantial effect on the algorithm’s ability to converge to the optimal solution, while 

increasing the number of samples does not have such a significant impact.  This can be 

evidenced in Table 19, where the number of non-dominated solution sets produced with a 

convergence metric with a value lower than one increase as the number of times 

resampling is performed increases. 

Figure 37 shows the non-dominated solution sets provided by the different 

algorithms for the problem ZDT6 (see Table 16).  ZDT6 is designed to pose two distinct 

challenges to multi-objective optimization algorithms.  The first challenge comes from 

the fact that the Pareto front is biased for solutions where  is close to one, and the 

solutions are not uniformly distributed across the Pareto front.  The second challenge 
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arises from the fact that the feasible solutions are concentrated away from the Pareto front 

and few of the solutions are near the optimal.  Here, like in the cases of problem ZDT2 

and ZDT4, we can see that the non-dominated set from the MOPF framework clearly 

dominates the non-dominated solution sets from the FFGA, HLGA, NPGA, NSGA, 

NSGA II, SOEA and SPEA algorithms.  Out of the two challenges posed by the problem, 

the MOPF framework is weaker at dealing with the solution density problem.  This 

problem is addressed by the resampling stage, where directions different than those 

within the non-dominated solution set are explored. 

 

 
Figure 36: Pareto fronts for ZDT4 test problem 

 

Table 20 shows the performance of the non-dominated solution sets, and 

compares the convergence metric, generational distance and diversity metric from each of 

the different algorithms for problems ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6.  In terms 

of ZDT1, we can see that the convergence metric of the MOPF framework is almost one 

order of magnitude better than that from the SPEA algorithm, which in turn outperforms 

the rest of the compared algorithms.  In terms of the generational distance, the MOPF is 

still the best algorithm even though it does not outperform the rest of the algorithms by 
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such a wide margin.  In terms of diversity metric, NSGA II is the best rated algorithm 

while the MOPF framework is rated as the one with the lowest diversity.  We can see that 

for problem ZDT1, the MOPF framework can produce the non-dominated fronts closest 

to the Pareto front although they are the least evenly spread out. 

 

 
Figure 37: Pareto fronts for ZDT6 test problem 

 

Table 20: Performance Metrics 

 
  

Algorithm 
FFGA HLGA NPGA NSGA NSGA II SOEA SPEA MOPF

Z
D

T
1 CM 0.9775 0.6706 0.7683 0.2062 0.1263 0.0734 0.0290 0.0034 

GD 0.2036 0.1500 0.1707 0.0324 0.0150 0.0112 0.0034 0.0009 
DM 0.7405 0.7761 0.7438 0.6050 0.5115 0.7406 0.5195 0.7779 

Z
D

T
2 CM 1.0811 0.8044 0.8406 0.2777 0.1251 0.1786 0.0463 0.0008 

GD 0.3841 0.3151 0.2756 0.0609 0.0145 0.0436 0.0071 0.0001 
DM 0.7729 0.8702 0.7587 0.6332 0.5897 0.9383 0.7504 0.6966 

Z
D

T
3 CM 1.1156 0.6525 0.8324 0.1540 0.1779 0.0436 0.0130 0.1310 

GD 0.2299 0.1569 0.1540 0.0235 0.0201 0.0095 0.0017 0.0246 
DM 0.7880 0.7034 0.7663 0.7450 0.7973 0.9864 0.6796 0.8054 

Z
D

T
4 CM 43.0715 7.9685 8.5976 1.3908 11.1547 12.6337 1.8007 0.5042 

GD 14.5792 3.6630 4.3206 0.5062 1.1248 12.6337 0.1901 0.0507 
DM 0.7563 0.8455 0.8273 0.8599 0.9373 1.0000 0.8827 0.8628 

Z
D

T
6 CM 4.5347 2.4790 3.0166 1.5214 0.2561 0.8148 0.1365 0.2204 

GD 1.1805 0.6918 1.0414 0.5273 0.0285 0.3089 0.0681 0.0893 
DM 0.8828 0.8301 0.9018 0.8274 0.7590 0.9165 0.7372 0.9937 
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With respect to problem ZDT2, we can see in Table 20 that, similar to the results 

obtained for problem ZDT1, the convergence metric of the MOPF framework is 

significantly (almost sixty times) smaller than those obtained from the SPEA algorithm 

while outperforming the rest of the compared algorithms.  In terms of the generational 

distance, the MOPF algorithm reveals the best results with a metric that is almost two 

orders of magnitude better than the next algorithm, SPEA.  In terms of diversity metric, 

NSGA II is noted to perform the best, while the MOPF framework ranks third behind 

NSGA.  Here, we can see that for problem ZDT2, the MOPF framework can produce the 

non-dominated fronts closest to the Pareto front with a better than average diversity. 

In relation to problem ZDT3 we can see that, in terms of the convergence metric, 

the best rated algorithm is the SPEA algorithm, while the worst rated algorithm is the 

FFGA algorithm.  The MOPF framework ranks third, after the SOEA algorithm with a 

result that is ten times larger than that of the SPEA algorithm.  In terms of the 

generational distance, the MOPF framework ranks fifth after SPEA, SOEA, NSGA II and 

NSGA algorithms, with a metric that is more than fourteen times larger than that of 

SPEA.  In terms of diversity, SPEA is also the best ranked algorithm while the MOPF 

framework is next to last.  However, it should be noted in this case that the metric of the 

MOPF framework is just nineteen percent worse than that of SPEA.  Overall, it can be 

concluded that because of the discontinuous nature of its Pareto front, problem ZDT3 

poses serious challenges to the MOPF framework and that its performance is inferior to 

that of some of the compared algorithms. 

When analyzing the results from problem ZDT4 it is evidenced that the 

convergence metric of the MOPF framework is noticeably better than that of the 
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compared algorithms, and only the SPEA and NSGA algorithms are within one order of 

magnitude of the MOPF framework.  In terms of generational distance, the MOPF 

framework is also the best ranked while only the metrics from the SPEA and NSGA 

algorithms are within one order of magnitude.  In terms of the diversity metric, FFGA is 

the best rated algorithm while the MOPF framework is rated fifth, with a diversity that is 

still better than average.  For problem ZDT4, the MOPF framework produces the non-

dominated fronts that are closest to the Pareto front with a diversity that is slightly better 

than average. 

When looking at problem ZDT6 the convergence metric of the MOPF framework 

is ranked second after that of the SPEA algorithm with a metric that is more than sixty 

percent larger than that of that from the SPEA algorithm which is also eighty five percent 

smaller than the average.  In terms of generational distance, the MOPF framework is 

ranked third behind the NSGA II and SPEA algorithms.  In terms of the diversity metric, 

the best ranked algorithm is the SPEA algorithm while the MOPF framework is ranked 

last with a metric that is almost thirty five percent larger than that of the SPEA algorithm.  

For problem ZDT6, the MOPF framework can produce the non-dominated fronts that are 

closest to the Pareto front even though these are the least diverse.  Here, it is important to 

highlight the large effect that a few very distant solutions have on the generational 

distance metric.  In the case that these few solutions, with the highest values for  were 

removed from the non-dominated solution set, the generational distance that could be 

achieved with the MOPF framework is as low as 0.0149, which is almost half of the 

0.0285 from the NSGA II algorithm. 
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The presented approach promises suitability for both combinatorial and numerical 

optimization problems as it is able to sample from within a non-dominated solution set in 

sequential importance stage, and from the extreme points of the non-dominated solution 

set and the nearest extreme points of the sample space in the resampling stage. 

The performance of the proposed approach has been evaluated against that of well 

established algorithms in the literature.  Results have shown that the MOPF framework is 

able to perform better than its competitors in problem instances of convexity, non-

convexity, multimodality and non-uniformity; especially in terms of distance from the 

non-dominated solution set and the Pareto front.  In problems involving discrete Pareto 

fronts, the MOPF framework does not perform as well as its competitors and has room 

for improvement. 
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Chapter 5: Economic and Environmental Load 

Dispatching Framework using Particle 
Filtering 

 
 
The economic and environmental load dispatching framework developed in this study is 

comprised of two main stages (see Figure 19).  In the first stage, the demand forecasting 

algorithm incorporating linear regression estimates demand for every load bus (PQ) in the 

system and evaluates the state of energy generation for each energy generating bus (PV).   

This algorithm utilizes external as well as internal inputs from the system such as the 

temperature and weather conditions and the actual energy consumption.  Then, in the 

second stage, the forecasts obtained from stage one, as well as the raw consumption data, 

are fed into the load dispatching algorithm incorporating particle filtering and the 

Newton-Raphson method.  Next, this algorithm estimates the behavior of the energy load 

at all of the buses and across each of the lines between them.  The load dispatching 

algorithm then decides the energy that has to be fed into the grid so that the system 

remains balanced, demand is met, and none of the lines are overloaded while meeting the 

operational restrictions of each of the energy generating plants.  This estimation of the 

system is optimized using a simulation mechanism that takes advantage of the hidden 

Markov chain in the particle filter algorithm and is able to quickly evaluate the 

performance in terms of cost and environmental impact of the different dispatch 

alternatives.  Using these performance measures, the load dispatching algorithm using 

particle filtering can update the sampling distribution and establish a new dispatch policy.  
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This iterative process also enables us to introduce an optimization procedure to select the 

number of particles needed by the system in order to prevent the occurrences of 

degeneracy and loss of diversity while improving computational performance.  Another 

advantage given by this iterative process is that resampling rules can also be tuned to the 

problem in order to ensure that the thresholds controlling the permissible particle weights 

are adjusted in each iteration. 

 

 
Figure 38: Overview of the proposed economic and environmental load dispatching 

framework 
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5.1. Formulation of the EELD Problem 

The EELD problem has two distinct objectives; to minimize fuel costs and to minimize 

emissions while satisfying system constraints.  The formulation of the problem is 

presented in Eq. (44) through Eq. (53), where the decision variables are the real )( GP and 

reactive )( GQ  power generated at each generation bus.  Eq. (44) and Eq. (45) are the total 

cost of the electricity generated per hour and the total amount of emissions per hour, 

respectively.  The generation capacity constraint that warrants all energy generating 

plants operate within their operational limits is represented by Eq. (46).  The power 

balance constraints are represented by Eq. (47) through Eq. (50), and ensure that the load 

provided to the system meets the demand at all times while considering the energy losses 

during transmission.  The line flow constraints are represented by Eq. (51) through Eq. 

(53), and guarantee the secure operation of the power grid system. 

 

 	 	∑  Eq. (44) 

 	 	 ∑ 10  Eq. (45) 

 s.t.     Eq. (46) 

 ∑ 0 Eq. (47) 

 ∑ 0 Eq. (48) 

 ∑ 0  Eq. (49) 

 ∑  Eq. (50) 

            Eq. (51) 

 ∠ ∗                                      Eq. (52) 
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 ∠ ∠ ∠ ∠   Eq. (53) 

 

Here ia , ib  and ic  are the cost coefficients; GN represents the number of 

generating units; 
iGP is the real power generated at the thi bus; 

iGQ  is the reactive power 

generated at the thi  bus, i , i , i , i , and i are the coefficients of the thi  generator’s 

emissions characteristics; min

iG
P  is the minimum operating output of unit i ; max

iG
P  is the 

maximum operating output of unit i ; BN  is the number of buses; 
iDP is the real load at 

bus i ; 
iDQ  is the reactive load at the bus i ; iV  is the voltage magnitude at bus i ; ijG  is 

the transfer conductance between buses i  and j ; i is the voltage angle at bus i ; ijB is 

the transfer conductance and susceptance between bus i  and bus j ; kg is the 

conductance of the thk  line which connects buses i and j ; 
kl

S  is the apparent power flow 

through transmission line k ;  max

kl
S  is the upper limit for transmission line k ; 

ji
I is the 

current flow from bus i to bus j ; ijy  is the line admittance between buses i  and j ; and 

y  is the shunt susceptance of the line. 

 

 

5.2. Dynamic Load Dispatching Algorithm 

In the electricity power networks considered in this study, the observations of the 

generating (PV) buses are derived from the estimations of the real and reactive power at 

all buses except one using the Newton-Raphson method.  The observation of the last bus, 
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also called the slack bus, is calculated after the observations of the rest of the buses are 

estimated in order to assure that the system is balanced and the power loss of the energy 

dispatch plan is taken into consideration. 

The procedure to conduct the particle filter is shown in Figure 39.  The first step 

involves the initialization of the algorithm where the clock is set to 0, the sample set sizes 

are established, a parameter  is defined, a prior conditional density function is set and 

samples are taken from the conditional density function.  In the second step, the historical 

data for the loads at each of the buses, as well as the results of the demand forecasting 

algorithm, are obtained and used to update the forecasted loads.  During the same step, 

the information for the impedance of the distribution lines is obtained and the admittance 

of these lines is calculated.  Next, a confirmation check for sudden changes in the system 

is performed, this is done in intervals between five and fifteen minutes, since the output 

of renewable energy generation is not very reliable and makes the load changes occur 

with such frequencies.  If there are no changes, the dispatch from the previous state is 

sent to the system.  If changes have been detected in the system, the estimate for the state 

has to be updated and a new dispatch decision needs to be made.  In order to update the 

state of the system, a new set of particles is sampled from	 ∙ .  Once the sample has 

been taken, the total weight for each sample is assigned and these weights are 

normalized.  Once the normalized set of samples and weights has been established, 

evaluation of the measure of degeneracy is performed for this set.  If the level of 

degeneracy is inadmissible, the importance function ∙  is resampled and the process 

returns to earlier stage.  If there is no need to resample, the state estimation is performed 

for real and reactive power generation.   The estimates for the state as well as the data for 
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admittance are then inputted into the simulation, where the simulation evaluates the 

feasibility of the state and its measure of performance.  If the performance is 

unacceptable or the solution is infeasible, a new sample from the importance function 

∙ 	is resampled and the process returns to that stage.  Once the desired performance 

level is reached, the dispatch decision is sent to the real system and the time is updated 

for the next state. 

 
Figure 39: Flowchart of operations performed at dynamic load dispatching algorithm 

 

 

5.2.1. Power Balancing using Newton-Raphson Method 

In order to ensure that the constraints from the EELD problem are met when the load 

dispatching algorithm is employed, the Newton-Raphson method is used (Weber, 1997; 
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Grainger and Stevenson, 1994).  The Newton-Raphson method is a numerical analysis 

technique that approximates the roots of a function.  Based on the calculation of a 

function and its derivative at a given point; the method iterates by using estimates for the 

roots that are equal to the previous estimate minus the quotient of the function over its 

derivative, evaluated at that precious estimate.  The extension to  dimensions of this 

method uses the Jacobian matrix of partial derivatives.  In this case, the inverse of the 

Jacobian evaluated at the previous estimate is pre-multiplied to the negation of the 

function evaluated at the previous estimate.  This operation yields the difference between 

the new estimate for the root of the function and the prior estimate. 

For power balancing, this method is helpful in evaluating the values of the 

voltages and phase angles at each of the system’s buses, given a predefined amount of 

power generated at each, but one, of the energy generating buses.  The Newton-Raphson 

method is used to find the roots of the power balance equations (see Eqs. (48) and (49)) 

by solving Eqs. (54), (55) and (56) where the method usually uses voltages of 1 p.u. and 

angles of 0° at every bus as a starting point. 

 
Δ
Δ| |

Δ
Δ   Eq. (54) 

 Δ ∑ | || |  Eq. (55) 

 Δ ∑ | || |  Eq. (56) 

 

The Jacobian is composed of four separate parts: the partial derivative for the real 

power in terms of the angles, the partial derivative of the real power in terms of the 

voltages, the partial derivative for the reactive power in terms of the angles, and the 

partial derivative of the reactive power in terms of the voltages.  Using this method, the 
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voltages and angles for each bus are updated until a tolerance has been met and the 

precision in the estimates for the roots of the power balance equations is adequate.  The 

use of this method ensures that the values for the generation, proposed by the particle 

filtering algorithm, meet the power balance constraints in terms of real and reactive 

power, and are suitable as a candidate solution to the optimization of the EELD problem, 

as shown in Figure 40. 

 

 
Figure 40: Relationship of the particle filtering and the Newton-Raphson method in 

determination of the dispatch decision 
 

 

5.3. IEEE-30 Bus Test System 

In order to demonstrate the validity of the environmental and economic load dispatching 

framework proposed in this study, we used the IEEE-30 bus test system where the data 

regarding the characteristic of this system is obtained from the Power Systems Test Case 

Archive of the Department of Electrical Engineering at the University of Washington 

(University of Washington, 2011).  The IEEE-30 bus test system represents a portion of 

the American Electric Power System in the Midwestern US.  It is used in the literature 

(Hota et al., 2010; Panigrahi et al., 2011; Liao 2011; Bhagwan and Patvardhan, 1999) as a 

standard test case for power systems.  The system is shown in Figure 41 and consists of a 

total of 30 buses and 41 lines.  Out of these 30 buses, there are 6 buses that generate 

electricity, 22 buses that demand electricity and 5 buses that neither generate nor request 

electricity.  The load data for the 30 buses is shown in Table 21. 

Generation for 
the PV buses Particle 

Filtering  
Newton-Raphson 
Method 

Generation for the Slack bus, angles 
and voltages for every bus Real System 

Dispatching 
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In this work, the load and reactance for each particular bus at any given time is 

assumed to be normally distributed with a mean equal to the value reported in the IEEE-

30 data set and a variance such that the data is within 10% of the mean with a probability 

of 0.9.  Figure 42 shows the load and reactance information of each of the buses. 

 

 
Figure 41: IEEE-30 Bus Test System 
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Table 21: IEEE-30 Load Data 

Bus
Load 

Bus
Load 

MW MVAR MW MVAR
1 0 0 16 3.5 1.8
2 21.7 12.7 17 9 5.8
3 2.4 1.2 18 3.2 0.9
4 7.6 1.6 19 9.5 3.4
5 94.2 19 20 2.2 0.7
6 0 0 21 17.5 11.2
7 22.8 10.9 22 0 0
8 30 30 23 3.2 1.6
9 0 0 24 8.7 6.7

10 5.8 2 25 0 0
11 0 0 26 3.5 2.3
12 11.2 7.5 27 0 0
13 0 0 28 0 0
14 6.2 1.6 29 2.4 0.9
15 8.2 2.5 30 10.6 1.9

 
 

 
Figure 42: Load and reactance of the IEEE-30 buses 

 

 

During the initialization of the environmental and economic load dispatching 

framework developed in this work, the bus and the line data is downloaded from separate 

files so that the model is as generic as possible and can be easily modified and extended 

beyond the IEEE-30 bus test system.  Once the system data is loaded, the model 

identifies the number of PV and of PQ buses in the system, as well as the slack bus that 

will be used to balance the constraints.  This identification is vital for handling the 

different scenarios that each of these types of buses may be involved in.  For PV buses, 
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the generated power and voltage are given as an input to balance the power equations.  

However for PQ buses, the voltage magnitude has to be solved additionally while the 

power balance restrictions are met.  This implies that for the PV buses, the unknown for 

solving power balance equations is the voltage phase angle; while for the PQ buses, both 

the voltage magnitude and voltage phase angles are unknown.  Once the system identifies 

the different types of buses and the values for the operative level constraints, a maximum 

and minimum power generation is established for every PV bus.  Next, the state of the 

particle filtering algorithm is initialized, where the voltages and angles are originally 

assumed to be 1 p.u. and 0°.  Using this initial state, the data for the historical load of 

each bus, and the forecasted load for each bus, the particle filter model produces an 

estimate for the next states.  This estimation is fed into the Newton-Raphson method 

which takes the estimated state and uses it to determine if this state meets the power 

balance restrictions.  If the restrictions are fully met, the estimate may be evaluated to 

determine its performance in terms of both cost and emissions.  On the other hand, if the 

estimate does not meet the restrictions, the Newton-Raphson method is used to generate 

the real and reactive power of the slack bus so that the state converges to an adjusted state 

that complies with the restrictions and can be evaluated. 

 

5.4. Evaluation of the Economic and Environmental Load Dispatching 

Framework 

 In order to illustrate and demonstrate the validity of the proposed environmental and 

economic load dispatching framework, we first conduct experimentation on the load 

dispatching algorithm using particle filtering via synthetic functions. Once the 

performance of this main decision making algorithm is established via the use of 
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synthetic experimentation, the complete framework is tested using IEEE-30 bus test 

system incorporating actual data.  All of the algorithms presented in this section have 

been implemented using Matlab R2010b, with the use of object oriented programming 

technique which enables the framework to be generic and modular (i.e., modules can be 

shared with other applications for different problems). 

 
 

5.4.1. Experiments with Synthetic Functions 

The particle filtering algorithm is used to calculate the load dispatching for the IEEE-30 

bus system using the load data provided in the Power Systems Test Case Archive of the 

Department of Electrical Engineering at the University of Washington.  Here, we use two 

separate complex synthetic functions to update the states for the particle filter:	

cos 	and 	 2

cos	 , where  and  are parameters which are arbitrarily selected as 0.6 and 

0.8,  is the forecast for the state at time  and Γ ∙  is the gamma function.  The 

measurement functions are selected as  and , respectively.  Figure 

43 shows the results for the object oriented implementation of the first synthetic function 

used in the particle filtering algorithm for the IEEE-30 bus system. 

 

 
Figure 43: Overview of the results obtained using synthetic functions for particle filtering 
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Synthetic functions are used to update the state in order to ensure that the particle 

filtering algorithm tracks the state closely before it is embedded into the actual 

environmental and economic load dispatching system.  The use of smaller particle set 

sizes enables the algorithm to improve computational efficiency, while the use of larger 

particle set sizes tries to ensure that no degeneracy problems arise.  The use of smaller 

number of replications improves the computational efficiency of the algorithm, while the 

use of larger number of replications enables the algorithm more time steps to 

approximate the state function.  Table 22 shows the electricity dispatch decisions 

obtained using 30, 60, 90 and 120 replications, as well as using particle set sizes ranging 

from 50 to 300 particles, respectively for the first synthetic function.  It should be noted 

here that the dispatch with the lowest cost is achieved using a particle set size of 50 and 

120 replications while the dispatch with the lowest emissions is achieved using a particle 

set size of 300 with 60 replications or when using a particle set size of 250 with 90 

replications.   The average cost for the minimum cost dispatch is of $630.9592 per hour 

while the average emissions for the minimum emissions dispatch are of 0.1956 tons per 

hour. 

Table 23 shows the energy dispatch decisions obtained for the second synthetic 

function using 30, 60, 90 and 120 replications, as well as using particle set sizes ranging 

from 50 to 300 particles.  The dispatch with the lowest cost is achieved using a particle 

set size of 100 with 60 replications, while the dispatch with the lowest emissions is 

achieved using a particle set size of 50 with 60 replication.  The average cost for the 

minimum cost dispatch is of $649.4688 per hour while the average emissions for the 

minimum emissions dispatch are of 0.2011 tons per hour. 
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Table 22: Power generated using the first synthetic function 
Particle 

Set 
Size 

Average Dispatch (MW) Min 
Cost 
($/h) 

Min 
Emissions 

(ton/h) 

Average
Cost 
($/h) 

Average 
Emissions 

(ton/h) Bus 1 Bus 2 Bus 5 Bus 8 Bus 11 Bus 13 
30

 R
ep

li
ca

tio
ns

 50 79.4967 47.8236 44.1987 34.3384 40.3180 42.6417 635.9950 0.1963 766.5149 0.3114 
100 132.6257 29.2912 31.3735 33.9944 30.8025 31.8871 637.7783 0.1956 815.4137 0.2998 
150 111.4556 36.0541 35.2001 36.9207 34.2888 36.7829 630.7288 0.2006 860.4027 0.4396 
200 86.2904 42.0866 39.3278 38.4009 41.6373 40.9996 633.4816 0.1949 752.4709 0.2808 
250 71.3424 42.8289 42.5831 43.4909 44.1109 43.4819 630.2862 0.1949 701.9784 0.2435 
300 137.9166 30.4923 30.4160 30.4307 30.3125 30.6517 642.0610 0.1952 828.7271 0.3050 

60
 R

ep
li

ca
tio

ns
 50 61.8401 43.5275 45.3209 45.3586 46.2474 45.0339 627.9248 0.1948 681.8861 0.2261 

100 143.7564 22.3620 23.5086 33.6551 37.1821 30.1329 643.1946 0.1982 845.9040 0.3151 
150 131.5222 34.4291 30.6506 32.7782 29.8676 30.7503 636.8753 0.1956 812.6716 0.2886 
200 85.1087 40.6978 40.5167 40.0830 41.0316 40.8136 630.0669 0.1949 724.2452 0.2459 
250 79.7918 41.0291 41.0947 44.7877 41.4662 40.8867 627.2984 0.1951 771.1373 0.3361 
300 125.0701 29.1349 35.6924 32.2408 35.6467 32.6630 628.6959 0.1947 853.4169 0.3576 

90
 R

ep
li

ca
tio

ns
 50 71.2167 37.9090 38.7133 48.7023 46.6128 46.4432 626.1545 0.1961 790.7710 0.3873 

100 95.9582 39.1116 39.4447 36.3731 42.4015 35.8578 632.1887 0.1951 780.8389 0.2928 
150 116.8590 35.2005 36.6071 32.3642 33.4354 35.7527 630.7927 0.1951 837.4086 0.3505 
200 63.5817 42.4036 45.7798 48.2000 45.8401 42.1915 627.5485 0.1951 715.8214 0.2719 
250 98.1939 39.4238 37.3405 35.7742 40.1471 38.6564 632.2607 0.1947 797.5019 0.3149 
300 85.5663 37.3839 36.1194 48.7479 38.0523 43.0988 624.6552 0.1968 750.2018 0.2881 

12
0 

R
ep

li
ca

tio
ns

 50 61.1379 44.6466 46.2672 48.1079 42.3058 45.0753 623.6993 0.1954 686.1910 0.2301 
100 89.0592 38.6921 42.4764 45.1311 34.7842 38.3924 626.1876 0.1960 740.3991 0.2687 
150 55.7863 46.4897 46.5282 46.0758 45.1692 47.2951 629.6504 0.1949 676.6032 0.2213 
200 73.9178 42.0971 47.3027 44.8739 41.0765 38.6632 627.9751 0.1953 715.4426 0.2516 
250 98.8432 37.8181 37.7336 38.4936 37.7317 38.1251 630.2799 0.1951 749.9315 0.2569 
300 73.0859 40.3364 42.8355 43.8253 42.6326 45.3431 627.2417 0.1949 713.8045 0.2490 

 
 

Table 23: Power generated using the second synthetic function 
Particle 
Set Size 

Average Dispatch (MW) Min 
Cost 
($/h) 

Min 
Emissions 

(ton/h) 

Average
Cost 
($/h) 

Average 
Emissions 

(ton/h) Bus 1 Bus 2 Bus 5 Bus 8 Bus 11 Bus 13 

30
 R

ep
li

ca
tio

ns
 50 159.4439 26.5291 25.8886 26.2762 25.5302 27.7551 646.1840 0.1959 893.3113 0.3458 

100 145.3275 31.9843 28.5951 58.6040 32.0765 26.2794 638.3310 0.2084 984.0069 0.5513 
150 50.0004 47.4236 46.9896 46.6724 48.5329 47.9026 631.6021 0.1950 689.0434 0.2505 
200 110.0394 33.4511 38.4951 34.4810 36.2308 37.1197 629.3091 0.1950 816.1592 0.3386 
250 175.4047 22.2987 23.9575 24.3404 22.3052 24.1375 648.9307 0.1976 953.9672 0.3941 
300 164.1329 26.0403 25.9088 24.4574 26.6712 24.5585 649.6498 0.1960 916.4108 0.3636 

60
 R

ep
li

ca
tio

ns
 50 88.8126 38.6193 46.5182 33.5253 41.8541 39.1559 636.9771 0.1945 753.3595 0.2755 

100 87.2681 40.2766 40.3416 40.2605 39.1560 41.1356 629.2274 0.1950 751.1309 0.2744 
150 107.9415 35.1572 38.0637 36.0946 36.5304 35.9411 629.3216 0.1947 810.3746 0.3289 
200 101.6782 37.6143 37.9195 37.1715 36.6404 37.4049 643.4113 0.1973 731.8832 0.2410 
250 130.1668 48.0060 29.9490 34.7537 25.4812 23.5876 646.4778 0.2043 929.9791 0.5180 
300 185.4759 21.1280 21.6748 22.5100 21.9366 20.1712 829.8526 0.2856 978.4687 0.4005 

90
 R

ep
li

ca
ti

on
s 50 164.3216 28.8402 25.0570 24.6770 23.2134 25.5468 685.8877 0.2079 902.8238 0.3397 

100 178.9773 22.0451 22.4618 25.2444 21.2055 22.5868 653.6028 0.1983 955.5247 0.3832 
150 85.4937 40.0715 40.0926 40.6061 41.0346 41.0380 629.9737 0.1950 728.4668 0.2483 
200 79.4143 40.4767 44.6362 40.0019 43.3598 40.5218 633.4279 0.1947 737.0350 0.2799 
250 45.3538 48.4590 48.4515 48.0555 47.8887 48.9198 630.7127 0.1949 666.6917 0.2222 
300 105.8039 38.0881 36.6707 36.5690 36.1099 36.3703 630.8331 0.1948 800.0645 0.3120 

12
0 

R
ep

li
ca

tio
ns

 50 45.8828 46.4950 47.6084 46.7910 49.8499 50.3250 630.8966 0.1947 655.5919 0.2077 
100 156.6774 29.2009 26.1635 25.4668 27.0119 26.6232 659.6336 0.1981 876.3563 0.3195 
150 42.2600 50.1094 49.4594 49.8153 47.0118 49.1234 629.7296 0.1951 705.1828 0.2846 
200 103.9317 37.7144 35.0474 39.9386 37.4757 35.1237 627.5269 0.1955 773.3833 0.2826 
250 148.3708 30.2545 28.8187 27.2367 28.0781 27.8587 650.7094 0.1961 849.7375 0.3025 
300 183.6528 21.7099 22.4634 19.8058 24.7564 20.3992 665.0419 0.2011 974.8041 0.3940 
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5.4.2. Validation using the IEEE-30 Bus Test System 

After validating the performance of the particle filtering algorithm using synthetic 

experiments, we have used the realistic data from the IEEE-30 bus test system as shown 

in Table 21 as the constant load at each one of the buses.  The initial state of the particle 

filtering algorithm is determined via sampling from a normal distribution that is centered 

around the load for each bus and has a standard deviation equal to 10% of that load.  The 

state is updated using equal parts from the previous state and from a new sample. The 

measurement function is updated for each bus by using an arbitrary parameter multiplied 

by the previous state	 , where  varies for each one of the buses.  Table 24 

shows the minimum cost results obtained using the algorithm where the dispatch of the 

minimum cost is obtained using a particle set size of 100 particles with 60 replications. 

 

Table 24: Minimum cost power generation in IEEE-30 bust test system with constant 
load 

Particle Minimum Emissions Dispatch (MW) 
Cost ($/h) 

Emissions 
(ton/h) 

Power Loss 
(MW) Set Size Bus 1 Bus 2 Bus 5 Bus 8 Bus 11 Bus 13 

30
 R

ep
li

ca
tio

ns
 50 12.1930 46.1852 63.5223 63.1993 53.5018 47.3744 621.5204 0.2030 2.5760 

100 20.6470 34.6702 49.3785 68.3288 53.1593 60.1693 617.7467 0.2020 2.9530 
150 13.4270 46.8705 76.1749 55.8134 42.8540 50.6411 624.2119 0.2034 2.3810 
200 5.6850 36.1626 81.4110 63.3676 34.8883 64.4769 619.3329 0.2117 2.5920 
250 23.0040 25.6284 83.8177 64.4493 48.1351 40.6082 621.0327 0.2076 2.2430 
300 28.8690 34.8956 62.7295 65.9996 37.4090 56.2965 617.9351 0.2008 2.7990 

60
 R

ep
li

ca
tio

ns
 50 46.7880 28.7661 53.8430 68.5877 25.5930 63.1703 628.4812 0.2045 3.3480 

100 12.2400 45.8097 54.9720 69.3135 49.5956 54.1792 617.3068 0.2039 2.7100 
150 15.3290 62.8538 77.5912 48.9692 47.3441 33.5988 640.2227 0.2059 2.2870 
200 32.8860 27.5144 68.9873 68.5057 54.0593 33.9100 622.7716 0.2040 2.4620 
250 32.1480 33.7435 81.9195 64.8144 22.6733 50.6288 623.7635 0.2073 2.5270 
300 5.9150 53.4929 63.5690 63.9460 38.7584 60.5169 622.5653 0.2071 2.7980 

90
 R

ep
li

ca
tio

ns
 50 4.7350 34.7585 95.7642 57.5226 52.8276 39.9262 628.1567 0.2160 2.1340 

100 12.6050 47.9046 75.1850 68.9628 30.5961 50.6820 618.3937 0.2083 2.5360 
150 33.0260 32.4097 46.5837 61.8439 52.6887 60.0842 624.8872 0.1987 3.2370 
200 28.5270 41.2627 48.4913 69.8561 42.5282 55.7078 617.9088 0.2003 2.9730 
250 15.6230 32.2774 46.4358 68.6134 58.9469 64.6300 619.8845 0.2049 3.1270 
300 10.6380 27.8288 64.9902 69.1031 62.2446 51.0645 619.5332 0.2080 2.4700 

12
0 

R
ep

li
ca

tio
ns

 50 22.1290 31.4047 72.8362 59.4395 39.7014 60.4777 619.8647 0.2026 2.5890 
100 24.3690 49.1982 68.8513 63.4836 44.6781 35.2603 623.4985 0.2018 2.4410 
150 17.5360 65.3784 45.3685 68.9945 37.0571 52.3141 629.3896 0.2061 3.2480 
200 9.2770 33.0019 80.6950 62.1776 42.8298 57.8683 618.8052 0.2086 2.4500 
250 3.0920 48.9620 85.6296 68.3384 42.4744 37.1750 622.5074 0.2147 2.2720 
300 4.7970 35.4122 65.5475 68.3172 61.6989 50.0632 620.2377 0.2089 2.4360 
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Table 25 shows the minimum emissions results obtained using the load 

dispatching algorithm where the dispatch of the minimum emissions is obtained using a 

particle set size of 100 particles with 30 replications.  The solutions generated by the 

algorithm reveal that the best cost dispatching decisions are achieved keeping the output 

from the first generator relatively low compared to the other five, with generation at 

27.5% of the output of the second generator (which is also the second one with the 

smallest output).  In the best emissions output, the generation from the first generator 

increases to 79.7% of that of the second generator which is still the second one with the 

smallest output, but whose output varies very little between the best cost and best 

emissions solutions. 

 

Table 25: Minimum emissions power generation in IEEE-30 bust test system with 
constant load 

Particle Minimum Emissions Dispatch (MW) 
Cost ($/h) 

Emissions 
(ton/h) 

Power Loss 
(MW) Set Size Bus 1 Bus 2 Bus 5 Bus 8 Bus 11 Bus 13 

30
 R

ep
li

ca
tio

ns
 50 32.8830 42.2031 49.5917 54.0130 52.8888 56.8586 634.4592 0.1959 3.0380 

100 38.7760 47.2165 59.6570 34.6463 54.0439 51.8138 647.9090 0.1945 2.7540 
150 37.4400 51.9040 44.9132 42.4098 51.4194 58.5579 643.8847 0.1951 3.2450 
200 34.8700 52.2135 60.5084 36.5876 54.4651 47.4301 646.8489 0.1952 2.6750 
250 37.6380 55.0651 39.8619 45.3441 53.9327 54.9320 645.1479 0.1960 3.3730 
300 35.8880 45.5236 66.9632 43.0154 46.7961 47.7761 637.6172 0.1956 2.5620 

60
 R

ep
li

ca
tio

ns
 50 40.9500 35.9067 64.1400 48.2954 51.8370 44.8545 635.6105 0.1962 2.5830 

100 38.0840 57.1874 51.0916 51.8433 36.0175 52.3002 638.1542 0.1972 3.1240 
150 45.9030 47.9177 60.2762 31.1882 48.6460 52.3514 654.1897 0.1949 2.8820 
200 36.5380 48.6090 59.6859 35.8394 56.7741 48.6444 647.3434 0.1949 2.6910 
250 33.7320 40.7389 44.4777 62.9778 49.9668 54.7522 625.0769 0.1978 3.2450 
300 54.2900 44.7734 63.3561 22.1007 41.9312 60.0798 667.4594 0.1976 3.1310 

90
 R

ep
li

ca
tio

ns
 50 35.0210 56.6595 47.4034 50.0924 33.7240 63.8703 638.5252 0.1982 3.3710 

100 31.9200 56.8938 47.0236 30.7297 60.9524 58.9981 656.7956 0.1967 3.1180 
150 37.3420 47.6140 58.3466 46.9396 36.8522 59.2669 635.6449 0.1960 2.9610 
200 36.3890 45.9066 54.2839 46.1366 51.0066 52.5509 636.7392 0.1946 2.8730 
250 44.3140 35.5081 55.0544 22.6142 64.4530 64.4751 664.4666 0.1977 3.0190 
300 37.2960 40.4325 54.5185 43.4973 51.1821 59.4132 637.6726 0.1947 2.9400 

12
0 

R
ep

li
ca

tio
ns

 50 28.4180 44.4741 67.6899 37.4908 44.3083 63.7127 638.4668 0.1969 2.6940 
100 36.8840 53.0848 59.4462 52.1535 35.8630 48.8134 634.4786 0.1970 2.8450 
150 42.3690 53.8522 69.2422 30.5306 26.9450 63.5303 656.3823 0.1998 3.0690 
200 32.7710 52.8974 62.4178 37.6004 43.7098 56.7834 643.0019 0.1956 2.7800 
250 32.0960 39.3083 68.6554 37.9584 49.3653 58.5992 638.6664 0.1962 2.5820 
300 41.7710 38.0273 59.6132 28.8151 58.9456 59.0466 654.0938 0.1957 2.8190 

 

Figure 44 shows the Pareto optimal front for the solutions obtained using 300 

particles and 750 replications.  Within this Pareto optimal front the best compromise 



151 

 
 

solution is that which satisfies the different goals to the furthest extent simultaneously.  In 

this case, the best compromise solution has a cost of $621.38/h with emissions of 0.1983 

ton/h and generation of 27.537, 41.031, 58.569, 60.439, 41.809, and 56.858 for the six 

generators, respectively. 

Table 26 shows the comparison of the proposed environmental and economic load 

dispatching framework (PF-EELD) with other methods presented to solve the EELD 

problem.  The use of NSGA algorithm for the EELD problem is introduced by Abido 

(2003B), while the use of the NPGA for this same problem is introduced by Abido 

(2003C).  In our comparison, the performance of the SPEA algorithm is taken from 

Abido (2003A), while the performances for the NSGA, NPGA and MOBF algorithms, 

under the considered setting are taken from Panigrahi et al. (2011).  It should be noted 

that the results produced by the proposed PF-EELD framework are comparable in terms 

of emissions while significantly promising in terms of cost. 

 

 
Figure 44: Pareto optimal front 
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Table 26: Comparison of PF-EELD with other methods 

M
in

im
um

 E
m

is
si

on
s 

   PF-EELD SPEA NSGA NPGA MOBF 

P1 0.3878 0.4798 0.4403 0.4753 0.3980 
P2 0.4722 0.5287 0.4940 0.5162 0.4521 
P3 0.5966 0.6711 0.7509 0.6513 0.5516 
P4 0.3465 0.5317 0.5060 0.4363 0.4190 
P5 0.5404 0.5301 0.5364 0.5988 0.5091 
P6 0.5181 0.1257 0.1375 0.1896 0.5338 

Cost ($/h) 647.91 651.63 649.24 657.59 641.43 
Emissions (ton/h) 0.1945 0.2047 0.2048 0.2017 0.1942 

M
in

im
um

 C
os

t 

   PF-EELD SPEA NSGA NPGA MOBF 

P1 0.1224 0.1598 0.1358 0.1127 0.1763 
P2 0.4581 0.3534 0.3151 0.3747 0.3581 
P3 0.5497 0.7960 0.8418 0.8057 0.7429 
P4 0.6931 0.9718 1.0431 0.9031 0.5970 
P5 0.4960 0.4971 0.4664 0.1347 0.3861 
P6 0.5418 0.0868 0.0631 0.5331 0.5977 

Cost ($/h) 617.31 620.17 620.87 620.46 619.03 
Emissions (ton/h) 0.2039 0.2283 0.2368 0.2243 0.2177 

 

 

5.4.3. Validation using a Dynamic Version of the IEEE-30 Bus Test System 

In this section, in order to further extend the results obtained from this study and 

demonstrate the performance of the proposed framework under instantly changing 

environment, we have used a dynamic version of IEEE-30 bus test system with a 

dynamically updating load at each one of the buses.  The load data presented in the 

original IEEE-30 bus was assumed to be an average load.  Using temperature and 

humidity data for June 20 and June 21, 2011 for the city of Roanoke, Virginia; hourly 

real and reactive loads were simulated for each one of the 21 load demanding buses in the 

IEEE-30 system.  Table 27 shows the weather data collected each hour of June 21, while 

the tables with the real and reactive loads for each bus for each hour are provided in the 

Appendix.  The forecasting algorithm is updated after each hour’s load is captured and 

the system calculates the new dispatch for each of the buses. 



153 

 
 

In Table 27, the average temperature is 77.83 degrees with an average humidity of 

56.5% for June 20, and the average temperature is 73.5 degrees with an average humidity 

of 81.75% for June 21.  As a consequence of these conditions the simulated average 

consumption for the buses drops by 3.06% for June 21 compared to June 20.  Table 28 

shows the minimum cost results obtained using the load dispatching algorithm for the 

demand of June 21 using a particle set size of 50.  The dispatch of the minimum cost is 

obtained using 90 replications on 6 of the 24 different instances; while in 9 instances it is 

achieved using 60 replications, and in the other 9 instances the best cost is achieved using 

30 replications.  In the minimum cost results obtained using the load dispatching 

algorithm for the demand of June 21 using a particle set size of 150, the dispatch of the 

minimum cost is obtained using 90 replications on 12 of the 24 different instances, while 

in 7 instances it is achieved using 60 replications, and in the other 5 instances the best 

cost is achieved using 30 replications.  Table 29 shows the minimum cost results obtained 

using the load dispatching algorithm for the demand of June 21 using a particle set size of 

250.  Here, the dispatch of the minimum cost is obtained using 90 replications on 16 of 

the 24 different instances, while in 7 instances it is achieved using 60 replications, and in 

1 instance it is achieved with 30 replications.  Comparing the results obtained with the 

different particle set sizes we can see that out of the 24 dispatching decisions obtained 

with each set size, in 9 cases the lowest cost results are obtained with a set of 50 particles, 

in 6 cases the lowest cost results are obtained with a set of 150 particles, and in the other 

9 cases the lowest cost results are obtained with a set of 250 particles. 
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Table 27: Weather data for the city of Roanoke 
June 20 Temperature (F) Humidity (%) June 21 Temperature (F) Humidity (%)

0:00 73.9 73 0:00 72 87 
1:00 73 68 1:00 69.1 87 
2:00 73.9 64 2:00 70 90 
3:00 73.9 62 3:00 69.1 90 
4:00 73 64 4:00 68 90 
5:00 73 61 5:00 66.9 93 
6:00 73 64 6:00 66.2 94 
7:00 75 60 7:00 66.9 90 
8:00 75.9 60 8:00 68 90 
9:00 78.1 56 9:00 72 84 

10:00 80.6 51 10:00 75.9 71 
11:00 82.9 47 11:00 81 62 
12:00 87.1 44 12:00 84.2 62 
13:00 86 44 13:00 88 53 
14:00 86 44 14:00 88 55 
15:00 82.4 42 15:00 89.1 55 
16:00 82.9 41 16:00 73.9 79 
17:00 81 45 17:00 75.9 76 
18:00 80.1 48 18:00 71.6 88 
19:00 78.1 52 19:00 70 90 
20:00 75.9 58 20:00 71.1 90 
21:00 75 60 21:00 70 97 
22:00 75.2 61 22:00 69.1 93 
23:00 72 87 23:00 68 96 
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In terms of emissions, Table 30 shows the minimum emissions results obtained using the 

load dispatching algorithm for the demand of June 21 using a particle set size of 50.  We 

can see that the dispatch of the minimum cost is obtained using 90 replications on 11 of 

the 24 different instances; while in 6 instances it is achieved using 60 replications, and in 

the other 7 instances the best cost is achieved using 30 replications.  In the minimum 

emissions results obtained using the load dispatching algorithm for the demand of June 

21 using a particle set size of 150, we can see that the dispatch of the minimum cost is 

obtained using 90 replications on 12 of the 24 different instances, while in 4 instances it 

is achieved using 60 replications, and in the other 8 instances the best cost is achieved 

using 30 replications.  Table 31 shows the minimum emissions results obtained using the 

load dispatching algorithm for the demand of June 21 using a particle set size of 250.  We 

can see that the dispatch of the minimum cost is obtained using 90 replications on 21 of 

the 24 different instances, while in 3 instances it is achieved using 60 replications, and in 

1 instance it is achieved with 30 replications.  Comparing the results obtained with the 

different particle set sizes we can see that out of the 24 dispatching decisions obtained 

with each set size, in 11 cases the lowest cost results are obtained with a set of 50 

particles, in 7 cases the lowest cost results were obtained with a set of 150 particles, and 

in the other 6 cases the lowest cost results are obtained with a set of 250 particles. 
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5.5. Computational Performance of the Economic and Environmental Load 

Dispatching Framework 

Here the effectiveness of the particle filtering algorithm in tracking the states and 

producing acceptable solutions for the previously presented cases, is discussed.  Tables 

32 and 33 show the mean squared error for each of the measurements compared to the 

states for both synthetic function sets. 

 

Table 32: Measurement of mean squared error for the first synthetic zx   pair 
Particle Set Size 30 Replications 60 Replications 90 Replications 120 Replications 

50 4.2522 4.1573 4.1545 4.1376 
100 4.2196 4.1535 4.1918 4.1478 
150 4.2056 4.159 4.1331 4.1388 
200 4.2062 4.1442 4.1419 4.1333 
250 4.3585 4.1594 4.1371 4.1419 
300 4.3487 4.1856 4.1376 4.1794 

 

For the first pair of functions x  and z , as the number of replications increases the 

mean squared deviation decreases with the average dropping from 4.2657 for 30 

replications to 4.1646 with 120 replications, while the differences in particle set sizes 

does not have a significant impact on the results.  The effectiveness of the function z  to 

track the function x  depends on the number of replications more than the number of 

particles in the filter.  Table 13 reveals that for the second pair of functions x  and z , the 

mean squared deviation increases along with the number of replications with an average 

increasing from 0.7881 for 30 replications to 0.7993 with 120 replications.  Similar to the 

results obtained from the first set of functions, the differences in particle set sizes do not 

have a significant impact on the results. Overall, the effectiveness of the function  to 

track the function  depends on the number of replications more than the number of 

particles in the filter.  The first observation function converges to the state as the 
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replications increase while the second observation function diverges from the state as the 

number of replications increases.  The ability of the first measurement function to track 

the state in the first synthetic case is not as good as in the second case, however as the 

number of replications increases the parameters selected for the measurement functions 

make the function converge to the state in the first case, and diverge from the state in the 

second case, as the number of replications increases. 

 

Table 33: Measurement of mean squared error for the second synthetic zx   pair 
Particle Set Size 30 Replications 60 Replications 90 Replications 120 Replications 

50 0.7846 0.7929 0.7954 0.7965 
100 0.779 0.7951 0.7993 0.7976 
150 0.7801 0.7919 0.7956 0.7954 
200 0.7008 0.7928 0.7957 0.7959 
250 0.7821 0.796 0.7979 0.7962 
300 0.7784 0.792 0.7941 0.7968 

 

The results regarding computational performance of the proposed framework are 

presented in Figure 45.  The figure shows that as the number of particles increases the 

time that the algorithm takes also increases, this same effect can also be evidenced for the 

number of particles.  However, there is a linear relationship between the increase in 

computational time and the increase in replications, while the increase in computational 

time is exponential with respect to the increase in the particle set size.  It is important to 

highlight that all of the scenarios run quite fast, with computational times that range from 

6.1932 seconds to 124.0879 seconds.  The proposed research has been conducted 

leveraging the Virtual Computing Facilities (Cloud) at the Industrial Energy Assessment 

Center of University of Miami.  This virtual center has a configuration composed of 375 

Intel 2.66 GHz CPUs cores for a total computational power of 1THz, 1.5 TB RAM, 100 

TB online storage, 720 Gbps of wire-speed Ethernet switching, 1.2 Gbps firewall 
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throughput, and 60 TB backup tap library.  This facility also enables reduced 

compatibility testing and application troubleshooting. 

 

 
Figure 45: Computational time (in seconds) of the proposed framework 

 

We have developed a decision making framework involving particle filtering for 

load dispatching to solve the EELD problem.  The proposed method has been first 

validated using synthetic functions, and then benchmarked against the earlier works 

presented in literature via the use of IEEE-30 bus test system with constant and dynamic 

load points. 
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Chapter 6: Optimal Placement of Distributed 

Generation 
 
 
The power dispatch problem considered in this study involves two distinctive objectives 

for the implementation of distributed generation. The first objective involves the 

economic load dispatch for the network so that the resources are used in the most cost 

effective manner. The second objective involves the optimal placement of distributed 

generation for minimal power loss in the network. These two objectives have been faced 

using the multi-objective optimization algorithm described in Chapter 3, which has been 

adapted to this specific setting. 

 

 

6.1. Formulation of the Economic Load Dispatch Problem 

The economic load dispatch involves the determination of the output of electric resources 

to reliably meet the short-term system demand, while minimizing cost and power loss; 

ensuring that constraints of power balance and capacity limits in the system are met. The 

total cost of the generated electricity is provided by	∑ , where	 ,	 , and 

,are the cost coefficients of the  generator, and  represents the amount of the real 

power output obtained from the  generator. Here, the generator set includes  number 

of central generation facilities and  number of distributed generation units, presented as 

∈ , ,⋯ , , , , ⋯ , . The total power loss can be defined as 
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 ∑ ,  Eq. (54) 

 

where  represents the total power loss,  is the total number of buses and  is the 

real load at bus . 

 

The constraints that must be satisfied in the economic dispatch problem are 

  ∀ , Eq. (55) 

 ∑ 0 ∀ , Eq. (56) 

 ∑ 0 ∀ . Eq. (57) 

 The generation capacity constraints are shown in Eq. (55), where the real power 

output of each generator is restricted with minimum ( ) and maximum ( ) 

capacities. The power balance constraints shown in Eq. (56) and Eq. (57) ensure that the 

load provided to the system covers the total demand while considering the energy loss 

during transmission. Eq. (56) addresses the real power balance, where  is the voltage 

magnitude at bus ,  is the voltage angle at bus ,	  is the transfer conductance between 

buses  and , and	  denotes the transfer susceptance between buses  and . In Eq. (57), 

which addresses the reactive (imaginary) power balance,  is the reactive power 

generated at the th bus, and  is the reactive load at bus . 

 The transfer conductance and transfer susceptance are the real and imaginary 

elements of the bus admittance matrix . The bus admittance matrix represents the nodal 

admittance between the different buses of a power system and is a measure of how easily 

a current may flow between the buses. The admittance is defined as the inverse of the 



165 

 
 

impedance, which is a measure of the opposition that a circuit presents to the flow of 

current when a voltage is applied, and extends the concept of electrical resistance to 

alternating current circuits. 

 

 

6.2. Optimal Placement of Distributed Generation Problem 

 

The location of different sources of distributed generation may be considered optimal if it 

is such that the amount of power loss in the system is minimized. To this end, we specify 

the idea how the admittance matrix of the system and the equivalent resistance between 

slack bus and other buses is changed if the distributed power generation unit is added at 

one of the buses in the system in this section. According to Wang and Nehrir’s (2004) 

proposed framework, in a networked system of  buses, the admittance matrix  is 

defined in Eq. (58) where bus number one is assumed to be the slack bus. Adding 

distributed generation at bus  causes the admittance to change to	 .   is defined in Eq. 

(59) where	 2 ,	 	 2, … , 1 ,	

	 , … , 1), 	 	 2, … , 1) 

 Y
Y ⋯
⋮
Y ⋯

Y
⋮
Y

⋯ Y
⋮

⋯ Y
  Eq. (58) 

 Y
Y ⋯
⋮

Y ⋯

Y
⋮

Y

⋯ Y
⋮

⋯ Y
 Eq. (59) 

  

assuming that the original load on the system is given by	 , , ⋯ , , and the 

original generated power is given by	 , , ⋯ , . Once the distributed 
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generator is added at bus	 , the new load vector can be presented 

as	 , , ⋯ , , where	 ,	 0,	  for load buses and 

max	 , 0  for P-V buses. In this formulation, we assume that at bus 1 real 

and reactive power consumed by the load are supplied directly by the generation at that 

bus, whereas the reactive power load at P-V buses may be provided by the external power 

source at the bus. The power loss in the system after adding distributed generation at bus 

 is achieved by minimizing	 ∑ | | , where  is the equivalent 

resistance between bus  and bus 1, and is defined as 

 ER j
Real Z Z 2Z , i j

Real Z Z 2Z , i j
	. Eq. (60) 

 

Where  is the impedance matrix ( ), and it is important to note that	

0. 

 In order to add more than one source of distributed generation into the system, the 

admittance matrix may be updated sequentially so that all of the sources of distributed 

generation are accounted for. In a similar fashion, the equivalent resistance is to be 

updated sequentially to account for all of the sources of distributed generation. With this 

framework, there are two ways to ensure that the voltage at each of the buses is held 

within the acceptable range if the suggested optimal locations lead to the violation of this 

constraint. The first alternative is to relocate the source of distributed generation from the 

optimal suggested bus to other buses that are close to the optimal, until the voltage 

constraints are met. The second alternative to ensure that voltage constraints are not 
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violated is to decrease the amount of power generated by distributed generation and to 

optimize the system again. 

Figure 46 illustrates the adaptation of the particle filtering based optimization 

framework proposed to solve the multi-objective optimization problem. The framework 

begins by initializing the number of samples for the initial random sampling stage and for 

the resampling stages, defining the non-dominated set as an empty set, and defining the 

number of iterations to perform. Once initialization is completed; the data for buses, 

lines, and cost is read for the performance of the random sampling stage. The admittance 

matrix is then updated to reflect the distributed generation levels from the random 

dispatch, and used to calculate the resulting loads and the equivalent resistance. Once the 

admittance has been updated and the equivalent reactance has been calculated, the 

resultant power generation as well as the loss is evaluated at the swing bus to ensure the 

power balance constraints are met. 

Once power balance is ensured for all of the samples, the non-dominated solution 

set is calculated and sampling densities are generated. Three sampling densities are 

generated where the first one is generated within the samples of the non-dominated 

solution set and the other two are generated from the extreme points of the non-

dominated solution set and their closest extreme points of the sampling space. The next 

step is to perform sampling from each distribution. The new samples are then used to 

update the admittance matrix as the process iterates. Once the desired number of 

iterations is reached, the final non-dominated solution set is calculated. 
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Figure 46: Flowchart of operations performed at proposed particle filtering based 
optimization algorithm 
 

 

6.3. Evaluation of the Proposed Framework for Optimal Placement of 

Distributed Generation 

In order to establish the validity of the distributed generation penetration optimization 

framework proposed in this study, we use the IEEE-30 bus test system as an assessment 

case where the cost data for the generation capacities and parameters of both the central 

generation and distributed generation units are obtained from (Phonrattanasak, 2010). 

Synchronous generators (rotating energy conversion machines) from microturbine 

technology are considered as the sources of distributed generation, as they provide a 

reliable and easily controllable source of distributed generation and do not depend on 

environmental factors such as solar irradiation, cloud cover, or wind speed as the case in 

renewable sources of distributed generation. The modeling of different renewable sources 
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of the energy generation within the proposed framework will be addressed as part of the 

future venues of this work. 

 

 

6.3.1. Modified IEEE-30 Bus Test System for Distributed Generation 

Penetration 

IEEE-30 bus test system has been used in the literature and in practice as one of the 

standard test cases for power systems. The data with the characteristics of the IEEE-30 

bus test system has been obtained from the Power Systems Test Case Archive of the 

Department of Electrical Engineering at the University of Washington (2012). The IEEE-

30 bus system represents a part of the American Electric Power System in Midwestern 

U.S. The system consists of a total of 30 buses and 41 lines, where there are 6 generation 

buses, 19 load buses, and 5 buses that neither generate nor request electricity, as shown in 

Figure 47. 
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Figure 47: Modified IEEE-30 Bus Test System for Distributed Generation Penetration 

 

The cost parameters related to the power generation for the different central 

generation units, as well as for the distributed generation are shown in Table 34, where 

the capacity for central generation units ranges from 10 MW at buses 8 and 13 to 200 

MW at bus 1, while the distributed generation units have a capacity ranging between 0 

and 10 MW. 
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Table 34: IEEE-30 Cost Data 

Generation Unit Bus
Capacity  Cost 

Min Max  

1  1  50  200  2  2  0.00375 

2  2  20  80  1  1.75 0.00175 

3  5  15  50  3  1  0.00625 

4  8  10  35  1  1.25 0.00834 

5  11  12  40  1.5 3  0.025 

6  13  10  30  1  3  0.025 

DG  ‐  0  10  5  1  0 

(Phonrattanasak, 2010)
 

 

 

6.3.2. Optimization of Distributed Generation Penetration 

The particle filtering-based multi-objective optimization framework has been 

implemented using Matlab R2010b on an Intel Core2 Duo E8600 Computer having 4GB 

of RAM. In order to provide validation for the proposed framework, we have used the 

case presented by Wang (2004) where a source of 15MW of distributed generation is 

added to the IEEE-30 system. The results of these simulations are shown in Figure 48, 

where the minimal power loss is achieved when distributed generation is added at bus 5 

with a power loss of 15.482 MW, just as in the results presented by Wang (2004) 

providing validation to the framework's ability to find the best locations to introduce 

distributed generation to a networked system and minimize the resulting power loss of 

the electric dispatch. 
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Figure 48: Power loss from placing a 15MW source of distributed generation at different 
buses within the IEEE-30 system with central generation at buses 1 and 2. 

 
 

There are two factors that may affect the performance of the framework: the 

number of iterations performed and the size of the particle set used for sampling within 

each iteration. In order to evaluate these two factors, two separate sets of experiments 

have been performed. The results from these experiments let us to determine appropriate 

parameters, in terms of number of iterations and particle set sizes, to run the framework 

in the different proposed scenarios. 

To test the effect of the number of iterations on the obtained results, the 

framework has been evaluated using a fixed initial particle set and a total of 64 particles 

in the sampling stages. Independent runs with different number of iterations were 

performed under this setting as shown in Figure 49. The figure shows that as the number 

of iterations increases, the solutions with lower cost improve within each non-dominated 

solution set. Furthermore, there are no significant benefits in increasing the total number 

of iterations beyond 30, as the different non-dominated solution sets converge to the same 

solutions.  
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Figure 49: Comparison of different number of iterations. 

 

In order to evaluate the effect of the particle set sizes in the sampling stages, the 

framework has been evaluated using a fixed initial particle set and 15 iterations. 

Independent runs with different particle set sizes have been performed under these 

conditions as shown in Figure 31. In order to evidence the effect of the different particle 

set sizes clearly, a small number of iterations have been selected. Figure 50 depicts how 

an increase in the number of particle set sizes impacts (increases) the size of the non-

dominated solution set and generates a longer Pareto front with more alternatives. Having 

a particle set of 32 particles leads to only one non dominated solution with a cost of 

$664.76 per hour and a power loss of 3.467MW, while having a particle set of 192 

particles leads to solutions that range from $665.96 per hour with a power loss of 3.486 

MW to $604.53 per hour with a power loss of 4.681 MW. 
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Figure 50: Comparison of different particle set sizes. 

 

Based on these results we have conducted experiments using 25 iterations, 100 

particles in the initial random sampling stage, 100 particles for the first sampling stage, 

and 60 particles for the resampling stage. The experiments have been conducted over five 

different scenarios where the system is allowed to have “no distributed generation 

(DG)”, “at most one distinct source of DG”, “at most two distinct sources of DG”, “at 

most three distinct sources of DG”, and “non-predetermined number of sources of DG”, 

respectively. The results associated with each one of these scenarios are summarized 

below. 

 

 

6.3.3. Scenario 1: Predetermined Number of Sources of Distributed 

Generation 

In this scenario, we enable the framework to use a predetermined number of sources of 
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sources of distributed generation. Table 35 shows the minimum cost dispatch from the 

non-dominated solution sets generated with zero, one, two and three sources of 

distributed generation. 

Table 35: Minimum cost dispatch using predetermined number of sources of distributed 
generation. 

Sources of Distributed Generation 
0 1 2 3 

G
en

er
at

io
n 

(M
W

) 

Bus 1 100.504 92.078 80.381 85.255 
Bus 2 80 80 80 80 
Bus 5 50 50 50 50 
Bus 7 0 0 7.25 6.11 
Bus 8 35 35 35 7.35 
Bus 9 0 9.3 10 8.72 
Bus 11 13.305 12 12 12 
Bus 13 10 10 13.169 10.923 

Power Loss (MW) 5.409 4.978 4.4 4.608 
Cost ($/h) 596.0181 582.642 575.976 553.411 

 

When the system is not allowed to employ any distributed generation source and 

rather forced to utilize centralized generation units at all times, the non-dominated 

solution set achieves the best cost with a resulting power loss is of 5.409 MW at a cost of 

596.0181$/h. The non-dominated solution set for this number of sources of distributed 

generation is shown in Figure 51. In this figure, the results presented by Phonrattanasak 

(2010) for the economic and environmental dispatch problem are shown in red. In this set 

of results, the generation at buses 1, 2, 5, 8, 11, 13 is 113.919 MW, 67.425 MW, 26.671 

MW, 33.843 MW, 29.471 MW and 18.836 MW, respectively. The power loss for these 

generation parameters was calculated to be 5.971 MW at a cost of 667.186$/h. It can be 

seen in the figure that the solution from Phonrattanasak is clearly dominated by the non-

dominated set from the proposed framework. 
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Figure 51: Non-dominated solution set with no sources of distributed generation. 

 

It has been found that the best location for the deployment of one distributed 

generation unit is at bus 9, when the system is allowed to employ one source of 

distributed generation unit, since generation at this bus is part of all of the solutions of the 

non-dominated set. In this case, the non-dominated solution set achieves the best cost 

with a resulting power loss of 4.978 MW at a cost of 582.642$/h. The non-dominated 

solution set for one source of distributed generation is depicted in Figure 52. 

When the system is allowed to employ two sources of distributed generation 

units, the best locations for their deployment have been found to be buses 7 and 9, as 

generation at both of these buses is part of all of the solutions of the non-dominated set. 

Here, the best cost of 575.976$/h is achieved with a resulting power loss of 4.400 MW. 

Figure 53 shows the non-dominated solution set with two sources of distributed 

generation. 

The results from the proposed framework show that if there is an opportunity to 

locate three different sources of distributed generation, the optimal results are achieved 
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when locating distributed generation at buses 7 and 9, while not deploying a third source 

of distributed generation in the network. Here, the best cost of 553.411 $/h is reached 

with a resulting power loss of 4.608 MW.  

 

 
Figure 52: Non-dominated solution set with one source of distributed generation. 

 

 
Figure 53: Non-dominated solution set for Scenario 3 (two sources of distributed 
generation). 
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It may be seen that when the goal is to minimize the cost of the energy dispatch, 

the inclusion of one source, two sources, and three sources of 10 MW of distributed 

generation may lead to a cost reduction of 2.24%, 3.36% and 7.15% in the dispatch cost 

per hour, respectively. 

The minimum power loss dispatch, for the different number of sources of 

distributed generation is shown in Table 36. In this case, when the system is limited to 

central generation only, the minimum power loss of 3.607 MW is reached at a cost of 

666.949 $/h. When one source of distributed generation is used in the system, the 

minimum power loss dispatch achieves a power loss of 3.42 MW at a cost of 658.182 

$/h. In the case that the system is allowed to use two sources of distributed generation, a 

minimum power loss of 3.35 MW is reached with an associated cost of 643.657 $/h. 

Finally, in the case that three sources of distributed generation are used, the minimum 

power loss that can be achieved is of 3.318 MW with a cost of 628.045 $/h. It may be 

seen that when the goal is to minimize the power loss of the energy dispatch, the 

inclusion of one source, two sources, and three sources of 10 MW of distributed 

generation may lead to a cost reduction of 5.18%, 7.13% and 8.01% in the dispatch cost 

per hour, respectively. 
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Table 36: Minimum power loss dispatch using a predetermined number of sources of 
distributed generation. 

Sources of Distributed Generation 
0 1 2 3 

G
en

er
at

io
n 

(M
W

) 

Bus 1 52.007 50.615 49.741 44.871 
Bus 2 80 73.312 75.642 79.465 
Bus 5 50 50 50 50 
Bus 7 0 0 4.4 71 
Bus 8 35 35 35 35 
Bus 9 0 9.29 9.53 4.57 
Bus 11 40 40 40 35.796 
Bus 13 30 28.603 22.204 29.917 

Power Loss (MW) 3.607 3.42 3.35 3.318 
Cost ($/Hr) 666.949 658.182 643.657 628.045 

 

6.3.4. Scenario 2: Non-predetermined Number of Sources of Distributed 

Generation Units 

In the case that the system has no limit to the number of sources of distributed generation, 

the non-dominated solution set achieves the best cost with total central generation of 

163.81 MW and total distributed generation of 121.99 MW. Here, the resulting power 

loss is 2.400 MW at a cost of 547.514 $/h. Furthermore, the non-dominated solution set 

achieves the best power loss with total central generation of 165.665 MW and total 

distributed generation of 119.81 MW, where the resulting power loss is 2.075 MW at a 

cost of 578.170 $/h. This scenario’s non-dominated solution set is shown in Figure 54. 
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Figure 54: Non-dominated solution set for Scenario 2 (multiple sources of distributed 

generation). 
 

 The comparison of the different levels of distributed generation penetration is 

provided in Figure 55, where it can be seen that the addition of distributed generation is 

beneficial in terms of both operational cost and power loss reductions. It is also noted that 

the non-dominated sets generated with more sources of distributed generation dominate 

those generated with less distributed generation. 

We have developed a comprehensive framework to optimize the penetration level 

of distributed generation in an energy distribution network based on particle filtering. The 

developed framework is able to identify the best locations for any specified number of 

distributed generation sources in terms of their benefits for power loss reduction and 

operational costs. The proposed framework has been demonstrated on the IEEE-30 bus 

system, where it has been found that the best location for the deployment of one source of 

distributed generation is bus 9, while the best locations for the deployment of two sources 

of distributed generation are buses 7 and 9. Furthermore, it has been found that given the 
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solution set is generated using distributed generation only at buses 7 and 9 and the third 

source of distributed generation is not deployed. The results yield to power losses as low 

as 2.075 MW and operational costs as low as 547.51$/h when letting the framework use 

any number of sources of distributed generation. The developed framework has been 

implemented generically so that it may be implemented on any networked bus system 

and it may be used to optimize the deployment of any specific number of sources of 

distributed generation within a network. 

 

 

Figure 55: Comparison of non-dominated solution sets with different distributed 
generation sources. 
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Chapter 7: Conclusions 
 
 
We have evaluated the integrated electric utility network in terms of three different 

aspects, long-term electric utility resource planning, the short-term environmental 

economic load dispatch, and the optimal deployment of distributed generation sources 

within the electric network.  In order to conduct these analyses the development of two 

different frameworks have been developed a continuous-discrete modular simulation and 

optimization framework and a particle filtering based multi-objective optimization 

framework. 

 The presented continuous-discrete modular simulation includes the integration of 

discrete decisions and events with continuous processes into the same simulation 

environment, harmonizing the different spatiotemporal granularities from the discrete and 

continuous parts of the simulation.  The framework also includes the modular integration 

of different resources into the simulation, such that different resources may be included 

or excluded from the simulation environment to accurately represent the available 

alternatives considered for a specific simulation. 

 The developed particle filtering based multi-objective optimization framework 

includes the development of a sequential importance sampling stage and a resampling 

stage. The sequential importance sampling leverages the information contained within the 

non-dominated set of solutions generated by the framework to increase the thoroughness 

of the generated solution set, while the resampling mechanism uses the non-dominated 
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set’s extreme points and the closest extreme points in the search space to ensure that the 

algorithm does not converge to local optimums.  This framework promises suitability for 

both numerical and combinatorial multi-objective optimization problems. 

The performance of the proposed approach has been evaluated against that of 

well-established algorithms in the literature. Experimental results have shown that the 

developed particle filtering based multi-objective optimization framework is able to 

perform better than its competitors in problem instances of convexity, non-convexity, 

multimodality and non-uniformity; especially in terms of distance from the non-

dominated solution set and the Pareto front.  However, in problems involving discrete 

Pareto fronts, the developed framework does not perform as well as its competitors and 

has room for improvement. 

 

 

7.1.1. Electric Utility Resource Planning 

In terms of the long-term electric utility resource planning, using the two developed 

frameworks has enabled us to establish the best combination of resource investments for 

electric power generation and storage capacities and to evaluate the effectiveness of 

including an expansion to the nuclear energy generation capacity, as part of the 

comprehensive energy resource plan.  The developed tool involves a modular modeling 

approach for the processes of different nature that exist within this complex system, and 

will help the utility companies conduct resource planning using the developed particle 

filtering based optimization for multi-objective optimization in a realistic simulation 

environment. 
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The proposed approach has been successfully demonstrated for the electric utility 

resource planning at a scale of the state of Florida.  In this case, for a planning horizon of 

30 years, by including only the installed nuclear capacity of 3.924 GW, the energy 

demand may be met to a fulfillment of 95% at an minimum annual cost of $4.628 billion, 

with annual emissions of 31.226 million of tons of greenhouse gases, when including 

2,301 MW of energy storage capacity, and 22.752 GW of fossil fuel energy generation; 

alternatively the energy demand may be met to a fulfillment of 95% with minimum 

annual emissions of 9.112 million tons of greenhouse gases, with annual costs of $11.936 

billion, when including 3,507 MW of energy storage capacity, 8.842 GW of fossil fuel 

energy generation, and 99.601 GW of renewable generation.  The inclusion of an 

expansion in the nuclear energy generation capacity of by including four new 1,100 MW 

AP1000 Nuclear plants leads to an installed capacity of 8.324 GW, with this installed 

capacity the energy demand may be met to a fulfillment of 95% with minimum annual 

emissions of 0.070 million tons of greenhouse gases, with annual costs of $15.539 

billion, including 4,588 MW of energy storage capacity, 88 MW of fossil fuel energy 

generation, and 135.758 GW renewable energy generation; with minimum annual cost, 

the demand may be met to a fulfillment of 95% at an annual cost of $5.111 billion, with 

emissions of 25.122 million tons of greenhouse gases per year, with an energy storage 

capacity of 2,301 MW and fossil fuel energy generation capacity of 18.352 GW. 

The inclusion of the extra nuclear generation capacity leads to an increase in the 

minimum cost solution of $483 million per year, however there is a reduction of 6.1 

million tons of greenhouse gases per year.  This suggests that under a cost minimization 

scenario, an effective greenhouse gas emissions tax should account at least for this 
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difference and would only lead to a shift in the capacity plan if it is at least at this level of 

$79.14 per ton of greenhouse gas emissions.  If the goal of the capacity plan is to 

minimize emissions, the expanded nuclear capacity should be deployed since it offers 

solutions with lower emissions, at a lower cost, starting at an emissions level of 25.12 

million tons per year. 

 

 

7.1.2. Economic and Environmental Load Dispatching 

In terms of the short-term environmental economic load dispatch, our developed 

frameworks have been validated using synthetic functions, and benchmarked against 

earlier works from the literature, using the IEEE-30 bus test system with constant and 

dynamic load points.  Results obtained from the synthetic experiments have revealed that 

the proposed algorithm is able to track the system state quite closely with a mean squared 

error of up to 0.7993.  The proposed approach has been found to deliver good set of 

Pareto optimal solutions comparable to those found in the literature, and better in terms 

of costs. 

 

 

7.1.3. Optimal Placement of Distributed Generation 

In terms of the optimal placement of distributed generation, our developed frameworks 

have been used to identify the best locations for any specified number of distributed 

generation sources in terms of their benefits for power loss reduction and operational 

costs within an energy network. 
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The proposed method has been demonstrated on a modified version of the IEEE-

30 bus system, for which it has been found that the best location for the deployment of 

one source of distributed generation is bus 9, while the best locations for the deployment 

of two sources of distributed generation are buses 7 and 9. Furthermore, it has been found 

that given the possibility of using three sources of distributed generation the algorithm’s 

non-dominated solution set is generated using distributed generation only at buses 7 and 

9 and the third source of distributed generation is not deployed. The results yield to 

power losses as low as 2.075 MW and operational costs as low as 547.51$/h when letting 

the framework use any number of sources of distributed generation. The developed 

framework has been implemented generically so that it may be implemented on any 

networked bus system and it may be used to optimize the deployment of any specific 

number of sources of distributed generation within a network. 

 

 

7.2. Future Work 

 

There are various avenues for further research spawning from this work. Theoretical 

improvements to the particle filtering based multi-objective optimization framework 

include the use of clustering the solutions in the non-dominated solution set, so that 

resampling is performed using the samples on the extremes of each cluster. This may lead 

to better results in terms of convergence and enable the algorithm to handle problems 

with discontinuous Pareto fronts better.  In addition, further research may also be 

conducted in order to determine 1) the optimum number of particles that should be 

sampled in both the sequential sampling and resampling stages of the framework, and 2) 
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the optimum number of extreme points that should be used to construct the resampling 

distributions.  Finally, functional constraints that involve the interaction of the different 

decision variables could also be implemented into the particle filtering based multi-

objective optimization framework in order to increase the number of problems that can be 

solved using this approach. 

For the evaluation of the long-term electric utility resource planning, the used 

framework has been modeled as an independent network, therefore, its connection with 

the rest of the energy grid, including energy pricing policies and energy markets should 

be considered as part of the future work.  Additionally, the proposed framework has only 

focused on energy generation using nuclear energy, fossil fuels, and solar and wind 

energy generation; further venues of the framework may incorporate energy generation 

using other sources such as biofuels, or hydroelectric generation. Moreover, issues 

regarding security and cyber-security in nuclear energy generation, as well as nuclear 

waste management, when addressing long-term resource planning should be studied in 

further research.  Furthermore, this framework provides an aggregate capacity plan of 

electric resources, but the location and operation of the different energy generation 

resources, at a dispatch level should also be considered in further venues. 

In terms of the short-term environmental economic load dispatch problem, the 

proposed framework may be extended to problems with more objectives than just the 

minimization of the environmental impacts and operational cost of the dispatch, such that 

aspects like power losses, security and the resilience of the network may also be included. 

Regarding the optimal deployment of distributed generation sources within the 

electric network, future work includes the incorporation of the environmental 
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implications of deploying different sources of distributed generation into the distributed 

energy network. Furthermore, the framework may be extended to consider the 

characteristics of different types of distributed generation, location specifics (i.e., natural 

resource availabilities such as solar irradiation or wind speed for renewables), and 

operational policies and restrictions. 
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