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A practical cost and energy efficient model predictive control (MPC) strategy is 

proposed for HVAC load control under dynamic real-time electricity pricing. The MPC 

strategy is built based on a proposed model that jointly minimizes the total energy 

consumption and hence, cost of electricity for the user, and the deviation of the inside 

temperature from the consumer’s preference. An algorithm that assigns temperature set-

points (reference temperatures) to price ranges based on the consumer’s discomfort 

tolerance index is developed. A practical parameter prediction model is also designed for 

mapping between the HVAC load and the inside temperature. The prediction model and 

the produced temperature set-points are integrated as inputs into the MPC controller, 

which is then used to generate signal actions for the AC unit. To investigate and 

demonstrate the effectiveness of the proposed approach, a simulation based experimental 

analysis is presented using real-life pricing data. An actual prototype for the proposed 

HVAC load control strategy is then built and a series of prototype experiments are 

conducted similar to the simulation studies. The experiments reveal that the MPC 

strategy can lead to significant reductions in overall energy consumption and cost savings 

for the consumer. Results suggest that by providing an efficient response strategy for the 



 

 

consumers, the proposed MPC strategy can enable the utility providers to adopt efficient 

demand management policies using real-time pricing. Finally, a cost-benefit analysis is 

performed to display the economic feasibility of implementing such a controller as part of 

a building energy management system, and the payback period is identified considering 

cost of prototype build and cost savings to help the adoption of this controller in the 

building HVAC control industry. 
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CHAPTER 1: INTRODUCTION 

The U.S. consumed approximately 97.8 quads of energy in 2010 which represents 

19% of global energy consumption, making it the second largest share of world energy 

consumption by any country (U. S. DOE, 2011). In the United States, the buildings sector 

accounted for about 41% of primary energy consumption in 2010, compared to 30% for 

the industrial sector and 29% for the transportation sector (U. S. DOE, 2011). Figure 1-1 

below displays the distribution of global energy and the breakdown of energy 

consumption in the U.S and within the U.S. buildings sector in 2010. 

 

 

Figure 1-1 Distribution of global energy and the breakdown of energy consumption in the 
U.S. and within the U.S. buildings sector in 2010 (U. S. DOE, 2011) 

 

Primary energy consumption in U.S. buildings increased by 48% between 1980 and 

2009 (U. S. DOE, 2011). The Energy Information Administration (EIA) projects that 

total primary energy consumption will increase 17% over 2009 levels by 2035 (U. S. 

DOE, 2011). Figure 1-2 illustrates actual and projected primary energy consumption in 

the U.S. building sector.
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Figure 1-2 Actual and projected primary energy consumption in the U.S. building sector 
(U. S. DOE, 2011) 

 

According to the U.S. DOE Buildings Energy Data Book, heating, ventilation, and air 

conditioning (HVAC) systems generated about 50% total building energy consumption in 

2010 (U. S. DOE, 2011). Water heating, lighting, consumer electronics, kitchen 

appliances, and other end uses made up to the remainder (U. S. DOE, 2011). Figure 1-3 

shows buildings site energy consumption by end use in 2010. It should be noted that 

Figure 1-3 is generated according to delivered energy which does not include energy lost 

during production, transmission, or distribution to customers. 
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Figure 1-3 Buildings site energy consumption by end use in 2010 (U. S. DOE, 2011) 
 

Electricity represents the largest source of energy for heating, cooling and ventilation 

systems in buildings. Figure 1-4 presents the breakdown of buildings HVAC primary 

energy consumption by fuel type. In 2010, 59% of total HVAC energy consumption in 

buildings was electricity driven (U. S. DOE, 2011). Figure 1-5 displays buildings HVAC 

energy end-use expenditure splits by fuel type in 2010. As it can be seen in Figure 1-5, 

electricity accounted for 9.84 quads of energy in building HVAC systems in 2010 (U. S. 

DOE, 2011). 
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Figure 1-4 Buildings HVAC primary energy consumption by fuel type in 2010 

 

 

Figure 1-5 Buildings HVAC energy end-use expenditure splits by fuel type in 2010 
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Additionally, buildings are one of the major sources of carbon dioxide emissions. In 

2010, buildings were responsible for 40% of greenhouse gas emissions in the United 

States (U. S. DOE, 2011). Figure 1-6 illustrates the end-use breakdown of carbon dioxide 

emissions in buildings in 2010. As it can be seen from Figure 1-6, HVAC accounted for 

the largest percent (43%) of carbon dioxide emissions in buildings (U. S. DOE, 2011). 

 

 

Figure 1-6 Buildings carbon dioxide emissions by end use in 2010 
 

Electricity represents the largest source of carbon dioxide emissions for heating, 

cooling and ventilation systems in buildings. Figure 1-7 displays the breakdown of 

buildings HVAC carbon dioxide emissions by fuel type. In 2010, 61% of total HVAC 

carbon dioxide emissions in buildings were caused by electricity driven systems (U. S. 

DOE, 2011). Figure 1-8 displays buildings HVAC energy end-use carbon dioxide 

emissions splits by fuel type in 2010. As it can be seen in Figure 1-8, electricity 

accounted for 566.2 million metric tons of carbon dioxide emissions in building HVAC 

systems in 2010 (U. S. DOE, 2011). 
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Figure 1-7 Buildings HVAC carbon dioxide emissions by fuel type in 2010 

 

 

Figure 1-8 Buildings HVAC energy end-use carbon dioxide emissions splits by fuel type 
in 2010 
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From the statistics provided above, it can be concluded that it is both economically 

and environmentally significant to reduce HVAC energy consumption in buildings. The 

simplest and most effective way to reduce HVAC energy is to improve control strategies 

without having to replace existing equipment, which is often a slow process with 

considerable infrastructure investments (Dawson-Haggerty, Ortiz, Jiang, Hsu, Shankar, & 

Culler, 2010). According to a recent report from the Department of Energy’s Pacific 

Northwest National Laboratory (PNNL), commercial buildings can experience significant 

energy savings by implementing more efficient control strategies for HVAC systems 

(Wang, Katipamula, Huang, & Brambley, 2011). Figure 1-9 displays estimated cost 

saving ranges for U.S. commercial building HVACs with efficiency controls (Wang et. 

al, 2011). The results of the PNNL report show that commercial building owners could 

save an average of 38% on their HVAC bills just by installing a few new controls onto 

their HVAC systems (Wang et. al, 2011). Therefore, it is not only encouraging for 

researchers to develop more efficient HVAC control strategies, but also important for 

manufacturers to produce these advanced controllers. 
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Figure 1-9 Estimated cost saving ranges for U.S. commercial building HVACs with 
efficiency controls (Wang et. al, 2011) 
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Demand Response 

Regulating the use of energy has recently become critical for government and utility 

companies due to the concerns of the energy crisis with increasingly frequent power 

curtailment and scheduled blackouts during peak demand periods such as hot days of 

summer. While energy efficiency is the most prominent component of growing efforts to 

supply affordable, reliable, secure, and clean electric power, demand response is a key 

pillar of utility and regional resource plans, and its importance is growing. Figure 1-10 

shows linkages between the electricity value chains and their key features those are 

necessary for a robust technology framework and depicts energy efficiency and demand 

response as more of a continuum (Piette, 2009). 

 

 

Figure 1-10 Conceptual perspective of energy efficiency and demand response (Piette, 
2009) 

 



10 
 

 
 

The left side of the Figure 1-10 underlines that most hours of the year customers are 

concerned with continuous energy efficiency which focuses on optimizing each hour 

energy use relative to the energy services begin delivered (Piette, 2009). Looking to the 

right, few hours of the year are included and customers begin to reduce building service 

levels in demand response periods, likely requiring additional investment to execute real-

time or fast demand response options (Piette, 2009). The second bar in the Figure 1-10 

adds a level of describing control system granularity (Piette, 2009). The ability to provide 

fine grain controls into end-use building systems improves both energy management and 

demand responsiveness (Piette, 2009). 

Unlike gas, water or other substance; electricity cannot be stored economically on a 

large scale. It needs to be used right after it is generated and transmitted. As a result, 

supply and demand must remain in balance in real time. Electricity shortages occur when 

supply cannot meet demand. It is possible to avoid electricity shortages by offering more 

supply through constructing additional power generation systems or reducing the peak 

demand by managing the use of electricity. The investments in constructing new power 

plants and transmission lines to satisfy every possible supply and demand scenario cannot 

be covered easily by increasing the price of electricity because the critical peak demand 

occurs less than 1% of the time in a whole year (California Energy Commission, 2002). 

Additionally, environmental impact of that would be tremendous. Demand response (also 

known as load response) works from the other side of the equation – instead of increasing 

power generation to meet demand, it entails end-use electric customers reducing or 

shifting their electricity consumption during times of peak demand in response to changes 

in the price of electricity over time or to incentive payments designed to induce lower 
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electricity use when wholesale market prices are high or system reliability is in jeopardy. 

Utilities pay for demand response capacity because it is typically cheaper and easier to 

procure than traditional generation. 

 The ability to reduce electricity demand and shift peak loads during shortages 

through better demand-side management and optimal control on HVAC systems is the 

main approach to relieve the global energy crisis. It is estimated that a 5% lowering of 

demand would have resulted in a 50% price reduction during the peak hours of the 

California electricity crisis in 2000/2001 (International Energy Agency, 2003). According 

to California energy demand report, most of the peaks of electricity consumption in the 

summer are caused by the wide use of electricity-driven air conditioners and central air 

conditioner systems (California Energy Commission, 2000). This problem can be 

mitigated by methods of engaging customers in demand response efforts. This includes 

offering a retail electricity rate that reflects the time-varying nature of electricity costs 

and/or programs that provide incentives to reduce load at critical times (time-based rates) 

such as real-time electricity pricing and developing HVAC control mechanisms for utility 

customers to respond to those rates. Advanced metering infrastructure expands the range 

of time-based rate programs that can be offered to consumers and smart customer 

systems such as in-home displays or home-area-networks can make it easier for 

consumers to changes their behavior and reduce peak period consumption from 

information on their power consumption and costs. These programs also have the 

potential to help electricity providers save money through reductions in peak demand and 

the ability to defer construction of new  power plants and power delivery systems - 

specifically, those reserved for use during peak times. Many of the Recovery Act projects 
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involve deployment of enabling technologies and customer information/feedback systems 

to facilitate demand response. These include both information and control technologies 

such as in-home displays and programmable and communicating thermostats with 

corresponding demand response programs. A number of consumer behavior studies on 

the use of the installed equipment were performed in order to examine factors that 

influence the participation of consumers in dynamic pricing programs, as well as the 

influence of these programs and enabling technologies on customer response.  

According to information provided by respondents to The Federal Energy Regulatory 

Commission (FERC) 2012 Demand Response and Advanced Metering Survey (2012 

FERC Survey), significant progress was achieved in the past year for both wholesale and 

retail electricity demand response and advanced metering, supported by the actions of 

state regulators, federal regulators and federal funding under the American Recovery and 

Reinvestment Act, the development of interoperability standards, and efforts of industry 

and customers (Federal Energy Regulatory Commission, 2012). 2012 FERC Survey 

indicates that the potential demand response resource contribution from all U.S. demand 

response programs is estimated to be nearly 72,000 MW (MW), or about 9.2 percent of 

U.S. peak demand (Federal Energy Regulatory Commission, 2012). This is an increase of 

about 13,000 MW from the 2010 FERC Survey which represents a 25 percent increase in 

reported potential peak reductions from demand response (Federal Energy Regulatory 

Commission, 2012). Figure 1-11 illustrates a steady national increase in demand response 

capability (potential peak reduction) across all FERC survey years (Federal Energy 

Regulatory Commission, 2012).  
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Figure 1-11 Total reported potential peak reduction in the 2006 through 2012 FERC 
Surveys (Federal Energy Regulatory Commission, 2012) 

 

Additionally, advanced metering penetration (i.e., the fraction of all installed meters 

that are advanced meters) reached approximately 22.9 percent in 2011 in the United 

States, compared to approximately 8.7 percent in the 2010 FERC Survey (covering 

calendar year 2009) (Federal Energy Regulatory Commission, 2012). 

However, according to a Federal Energy Regulatory Commission (FERC or 

Commission) staff report – A National Assessment of Demand Response Potential 

(National Assessment), submitted to Congress in June 2009 – current demand response 

programs tap less than a quarter of the total market potential for demand response 

(Federal Energy Regulatory Commission, 2009). Figure 1-12 displays a comparison of 

the demand response estimates under four demand response scenarios (business-as-usual, 
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expanded BAU, achievable participation, full participation) illustrating the potential 

impact of demand response on peak demand over the analysis horizon (Federal Energy 

Regulatory Commission, 2009). Because current efforts have missed a significant portion 

of the cost-effective demand response potential, it is evident that action needs to be taken 

to either create new programs or expand existing ones where cost-effective. 

 

 

Figure 1-12 U.S. summer peak demand forecast by scenario (Federal Energy Regulatory 
Commission, 2009) 

 

Since most demand response programs in effect today are event-driven and designed 

primarily to curtail or shift load for short periods of time, customers tend to assume that 

demand response events occur for limited periods that are called by the grid operator. 

However, real-time electricity pricing programs also produce measurable reductions in 

customers’ total energy use and cost and are growing in prevalence and impact. 
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Real-Time Electricity Pricing 

The marginal costs for electricity provided during consumers’ actual consumptions 

vary continuously with the supply demand interaction affected by weather conditions and 

human activity. At present, many utility consumers are billed at a static average rate for 

the total amount of electricity consumed which does not correspond to the actual 

wholesale prices during the time of their actual consumption. Furthermore, the average 

hourly market price over a year is typically lower than the standard utility flat rates. 

Figure 1-13 is a snapshot of a random summer day that shows how the market-based 

“real-time” price of electricity shoots high above or dips far below the traditional utility 

fixed rate.  

 

 

Figure 1-13 Real-time vs. fixed-rate electricity prices on a summer day 
 

Under the traditional pricing policy, with a constant rate, consumers have no 

incentive to modify their electricity consumption behavior in response to the marginal 

cost. In recent years, utility companies have started to adopt dynamic pricing rates for 

end-consumers. Dynamic electricity pricing models help utility companies better 

distribute the price with respect to demand-supply interaction while encouraging 



16 
 

 
 

consumers to reduce their electricity consumption during peak times - when market 

power prices are at their highest - according to price variations in order to achieve 

financial benefits. Figure 1-14 presents the number of entities that reported offering real-

time pricing programs by region and entity type (Federal Energy Regulatory 

Commission, 2012). In 2012, twenty-eight entities reported offering real-time pricing, a 

slight increase from the 25 entities reporting in 2010 (Federal Energy Regulatory 

Commission, 2012). 

 

 

Figure 1-14 Number of entities reporting retail real-time pricing by region and entity type 
in 2010 and 2012 (Federal Energy Regulatory Commission, 2012) 

 

Moreover, according to a Federal Energy Regulatory Commission (FERC or 

Commission) staff report – A National Assessment of Demand Response Potential 

(National Assessment), submitted to Congress in June 2009 – the largest gains in demand 

response impacts can be made through pricing programs, particularly when offered with 

enabling technologies at the national level (Federal Energy Regulatory Commission, 

2009). Figure 1-15 below more pronounces this in the Full Participation scenario, where 
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roughly 70 percent of the impacts come from pricing programs (Federal Energy 

Regulatory Commission, 2009). 

 

 

Figure 1-15 U.S. demand response potential by program type (2019) (Federal Energy 
Regulatory Commission, 2009) 

 

Real-time pricing (RTP) is a dynamic pricing model where the retail price of energy 

is different for various hours of the day along with the different days and seasons. In 

RTP, upcoming hourly energy prices are announced to the end-consumers an hour or a 

day ahead. This allows end-consumers to be aware what the electricity is worth at 

different hours of the day. By providing accurate information about electricity rates real-

time pricing allows consumers to use that information to make decisions about electricity 

use. End-consumers, however, do not have the necessary knowledge about how to 

efficiently schedule the operation of their appliances in response to the hourly updated 
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pricing information they may receive from the utilities in an RTP program in order to 

achieve financial benefits. Moreover, building automation systems (BAS) are not fully 

adapted to coordinate with RTP models. Thus, the benefits of RTP are not fully utilized 

in current practice. 

The fact that the building envelope itself forms a thermal storage makes it possible to 

shift electricity demand of thermal appliances from high price to low price periods or 

from high loading to low loading periods respectively. As demand becomes increasingly 

price-responsive due to demand shifting through dynamic pricing, the spot electricity 

markets can also be expected to investigate different bidding strategies which may lead to 

lower wholesale electricity prices (International Energy Agency, 2003), (CooKE, 2011). 

The advantage of RTP would be best realized with automated controllers that can 

efficiently manage the HVAC load in response to price shifts. While such controllers 

should be advanced enough to execute efficient control mechanisms, they need to be 

designed for practical use by consumers. In this research, such a controller based on 

model predictive control (MPC) is proposed for HVAC usage in a retail electricity 

market with RTP. 

Model Predictive Control (MPC) 

MPC is a simple yet effective approach for constrained process control which was 

initially developed in the late seventies and early eighties in the process industries (oil 

refineries, chemical plants, etc.), and has been successfully applied in many areas both 

within the research community and in industry over the last decades (Morari & Lee, 

1999), (Maciejowski, 2002), (Fernandez-Camacho & Bordons-Alba, 1995), and (Mayne 

& Rawlings, 2009). In recent years it has also been used in power system balancing 
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models (Arnold & Andersson, 2011). Model predictive controllers make explicit use of a 

dynamic model of the process which is obtained by system identification, in order to 

generate the control signal by minimizing an objective function. The main advantage of 

MPC is that it takes future timeslots into account while optimizing the current timeslot. 

This is achieved by optimizing a finite time-horizon, but only implementing the current 

timeslot.  

The main idea of MPC is to utilize a mathematical model of the process to predict the 

future behavior of the system over a determined horizon (prediction horizon) and to 

compute control actions by optimizing a cost function depending on these predictions 

subject to some constraints. Only the first element of the open-loop control sequence is 

employed in the system, then the plant state is sampled again based on feedback from the 

previous period and current measurements. Calculations are then repeated starting from 

the now current state, yielding a new control and new predicted state path. The prediction 

horizon keeps being shifted forward and for this reason MPC is also called receding 

horizon control. The chosen length of the prediction horizon should be greater than the 

system settling time in order to account for behavior with significant dynamics. The 

methodology of MPC strategy is represented in Figure 1-16. 
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Figure 1-16 Basic principle of MPC 
 

One of the goals of the cost function to be optimized is to keep the process as close as 

possible to the reference trajectory (set-point). This criterion is usually represented as a 

quadratic function of the errors between the predicted output signal and the predicted 

reference trajectory in the cost function. 

Figure 1-17 shows the basic structure used to implement MPC strategy. The 

optimizer calculates the optimal future control actions taking into account the cost 

function as well as the constraints. Based on these actions and past and current values, 

future plant outputs are predicted using the prediction model. 
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Figure 1-17 Basic structure of MPC 
 

The process model plays a decisive role in the MPC controller. The chosen model 

must be able to capture the process dynamics to precisely predict the future outputs and 

while being simple to implement and understand. It may not be necessary to model all the 

physics, chemistry and internal behavior of the process in order to get a model that gives 

reliable prediction, and in fact all this detail should not be modeled if it is not required. 

Majority of applications use linear MPC approaches with the feedback mechanism of the 

MPC compensating for prediction errors due to structural mismatch between the model 

and the process. This simplifies the control problem to a series of direct matrix algebra 

calculations that are fast and robust. 
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In HVAC systems control, MPC is a well suited control methodology due to the 

following properties of HVAC systems: the plant is a multiple input, multiple output 

system and its inputs are constrained. Moreover, disturbances acting on the plant like 

varying outdoor air temperature are measurable. Furthermore, time constants are 

relatively large which makes it easy to perform the required optimization of the MPC 

strategy in time. The objective of MPC in HVAC systems is to design a control strategy 

that minimizes the HVAC energy consumption (or operational costs) while satisfying 

occupants’ thermal comfort. The achievements of MPC used for HVAC control are 

derived from efficient use of thermal mass or thermal storage of a building. 

Contributions of This Research 

In this research, real-time pricing is incorporated into the model predictive control 

strategy.  A practical cost and energy efficient strategy is proposed for HVAC load 

control with dynamic real-time electricity pricing. The proposed MPC strategy aims to 

reduce the total energy consumption and hence, cost of electricity for the user, while 

considering the thermal comfort of the consumers by concurrently minimizing the 

deviation of the inside temperatures from the consumer’s choice of reference 

temperatures. A mechanism that bolsters the energy efficiency and cost savings by 

coupling smart load shifting in response to changing prices with dynamically setting the 

temperature set-points based on consumer preferences is designed. The proposed system 

enforces effective and practical use of MPC by providing an efficient parameter 

prediction process and an algorithm for temperature set-point determination. The 

predicted input/output mapping and the produced temperature set-points serve as inputs 

for the proposed MPC controller, which eventually generates signal actions for the AC 
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unit according to the aforementioned objective. The signal action is composed of a duty 

cycle that represents the proportion of “on” time for the AC during any given time period. 

The parameter prediction model is built in linear form for the mapping between the 

signal action and the inside temperature. To determine the reference temperatures for the 

planning horizon (usually a day), an algorithm is developed for temperature set-point 

assignment. For this, a discomfort tolerance index that models the consumer’s attitude 

towards thermal comfort in reference to cost of comfort is first developed. Based on the 

index value, the algorithm assigns temperature set-points to price ranges constructed from 

the RTP data. 

To investigate and demonstrate the effectiveness of the proposed approach a 

simulation based experimental analysis is carried out using real-life pricing data. An 

actual prototype for the proposed HVAC load control strategy is then built and a series of 

prototype experiments is conducted similar to the simulation studies. In both cases the 

MPC process is compared to the conventional two-position control approach. The latter 

strategy is used as a benchmark since two-position control is very common in practice. 

The experiment is first conducted assuming fixed temperature set-points. This way, the 

impact of MPC on energy consumption and costs with only load shifting option can be 

singled out. It is observed that while the MPC process leads to energy reduction and cost 

savings for the consumer under this setting, in general, with only load shifting, the 

benefits are not too promising. The temperature set-point assignment algorithm is 

employed to determine the temperature set-points in the second part of the analysis where 

temperature set-points are treated as endogenous parameters. In this case, the experiments 

reveal that with the MPC strategy, reduction in energy consumption (both for total 
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electricity use and for peak time consumption) and cost savings significantly improve. 

The obtained results suggest that the proposed MPC strategy, when controlling both the 

load and the temperature set-points, allows the consumers effectively take advantage of 

the dynamic pricing and enjoy significant cost savings in electricity usage. As such, this 

strategy can be instrumental in facilitating an effective demand response framework, 

which enables the utility providers adopt efficient demand management policies using 

real-time pricing. 
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CHAPTER 2: REVIEW OF LITERATURE 

Temperature Regulation in Residential Buildings 

Many people spend most of their days indoor and each day they spend about half of 

the day in their residences. Therefore the thermal comfort of the residential building is 

very important and the control of the heating, ventilation and cooling (HVAC) system 

should satisfy the thermal comfort and energy efficiency requirements. It is also a very 

important issue to reduce and optimize the HVAC energy consumption in the residential 

sector in the context of the global warming effect, since HVAC is the largest contributor 

to a home’s energy bills and carbon emissions, accounting for 43% of residential energy 

consumption in the U.S. and 61% in Canada and U.K., which have colder climates 

(Energy Information Administration, 2009), (Energy, E. P. B. E. S., 1997) and (Rathouse 

& Young, 2004). Although most of the research and implementation of advanced control 

schemes for the HVAC systems are on the commercial buildings, laboratories or 

hospitals, there have been a number of researches conducted on the HVAC control 

systems for the residential buildings.  

Most residential buildings in the United States use a single-zone, two position HVAC 

control system which is simple and easy to manage. However, this control system has its 

disadvantage for its unsatisfactory thermal comfort and energy efficiency. Kulkarni & 

Hong presented a proportional control system for the residential building by setting up 

the dynamic simulation for the building and the control system (Kulkarni & Hong, 2004). 

They used the state-space method to model the building system and implemented the 

simulation code on MATLABTM, which makes the optimization of the controller 

possible (Kulkarni & Hong, 2004). They compared the thermal comfort and energy 
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efficiency under different proportional control scheme and traditional two-position 

control schemes (Kulkarni & Hong, 2004). Their results indicated that proportional 

control is advantageous to the two-position control for the thermal comfort while there is 

not much difference in energy consumption between two control schemes (Kulkarni & 

Hong, 2004). 

Chen et al. introduced an autonomous thermostat system, the Demand Response 

Electrical Appliance Manager (DREAM), to control residential HVAC systems aiming to 

improve price-based demand responsiveness in residences (Chen, Jang, Auslander, 

Peffer, & Arens, 2008). Using a disaggregated set of energy and environmental sensors, 

they implemented control strategies to optimize electricity cost and user’s comfort (Chen 

et al., 2008). To perform optimization, the system starts from default values and learns 

the dynamic behavior of a house and HVAC system (Chen et al., 2008). They used 

computer simulation, lab tests and field tests to validate the system infrastructure and 

control strategies (Chen et al., 2008). Their tests indicated that the DREAM responds 

automatically to price signals with appropriate energy saving behavior reducing 

electricity consumption during peak price hours without significantly decreasing thermal 

comfort (Chen et al., 2008). Figure 2-1 illustrates the DREAM concept schematic in a 

home. 
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Figure 2-1 Schematic of the Demand Response Electrical Appliance Manager (Chen et 
al., 2008) 

 

Lu et al. introduced the Smart Thermostat that uses simple sensing technology to 

automatically sense occupancy and sleep patterns in a home, and using these patterns 

saves energy by automatically turning off the home’s HVAC system (Lu, Sookoor, 

Srinivasan, Gao, Holben, Stankovic, Field, & Whitehouse, 2010). In order to evaluate 

this approach, they installed sensors in 8 homes and compared the expected energy usage 

of their algorithm against existing approaches (Lu et al., 2010). Their results shows that 

the Smart Thermostat can provide larger energy savings and more comfort than existing 

baseline solutions (Lu et al., 2010). They indicated that their approach will save 28% of 

residential HVAC energy consumption on average, at a cost of approximately $25 in 

sensors (Lu et al., 2010). 

Tiptipakorn et al. introduced a residential consumer-centered control strategy of air 

conditioner/heater and water heater in real-time electricity pricing environment 
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(Tiptipakorn & Lee, 2007) and (Tiptipakorn, Lee, & Wang, 2009). They demonstrated 

the results of their strategy in the MATLAB simulations using the pseudo real-time 

pricing of ERCOT and actual outdoor temperature data (Tiptipakorn & Lee, 2007). The 

performances of the proposed load control strategy show that it is effective compared to 

those from the optimization problems and no load control strategies, in a way that it can 

be applied in real-time while the optimization problems face the difficulty in acquiring 

the valid and accurate data of future time frames (Tiptipakorn & Lee, 2007). Figure 2-2 

illustrates the proposed real-time air conditioning load control strategy. 

Tiptipakorn et al. introduced a load control strategy in which “price naming” concept 

serves as a supporting tool for the developments of the residential consumer’s demand 

response (Tiptipakorn, Lee, Mao, & Lu, 2010). They simulated samples of hourly home 

appliance load profiles using the Market Clearing Price Energy (MCPE) of ERCOT as 

pseudo real-time prices (Tiptipakorn et al., 2010). 
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Figure 2-2 Real-time air conditioning load control strategy (Tiptipakorn & Lee, 2007) 
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Mohsenian-Rad & Leon-Garcia proposed an optimal and automatic residential energy 

consumption scheduling framework which attempts to achieve a desired trade-off 

between minimizing the electricity payment and minimizing the waiting time for the 

operation of each appliance in household based on the needs declared by the users 

(Mohsenian-Rad & Leon-Garcia, 2010). They considered a scenario where real-time 

pricing is combined with inclining block rates in order to have more balanced residential 

load with a low peak-to-average ratio (Mohsenian-Rad & Leon-Garcia, 2010). They also 

developed a weighted average electricity price predictor filter to the actual hourly-based 

price values used by the Illinois Power Company in order to effectively implement their 

residential load control strategy (Mohsenian-Rad & Leon-Garcia, 2010). They obtained 

the optimal choices of the coefficients for each day of the week to be used by the price 

predictor filter (Mohsenian-Rad & Leon-Garcia, 2010). They found that the combination 

of their proposed energy consumption scheduling design and the price predictor filter 

leads to significant reduction in both users’ payments and the resulting peak-to-average 

ratio in load demand for various load scenarios (Mohsenian-Rad & Leon-Garcia, 2010). 

Figure 2-3 illustrates smart meter operation and wireless home area network (WHAN) in 

the design proposed by Mohsenian-Rad & Leon-Garcia. 

 

 

Figure 2-3 Smart meter operation and wireless home area network (WHAN) (Mohsenian-
Rad & Leon-Garcia, 2010) 
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Space heating is a major factor in residential energy use. It uses more energy than any 

other residential energy expenditure including air conditioning, water heating, and 

appliances (Energy Information Administration, 2009). Scott et al. developed a system, 

PreHeat, to more efficiently heat homes by using occupancy sensing and occupancy 

prediction to automatically control home heating (Scott, Brush, Krumm, Meyers, Hazas, 

Hodges, & Villar, 2011). They applied their system in five homes in both US and UK and 

compared their prediction algorithm with a static program over an average 61 days per 

house, measuring actual gas consumption and occupancy (Scott et al., 2011). They 

indicated that their system both saved gas and reduced MissTime (the time that the house 

was occupied but not warm) while removing the need for users to program thermostat 

schedules (Scott et al., 2011). 

Boait & Rylatt proposed an approach to the user interface of home heating systems 

that simplifies the user interaction with the system (Boait, & Rylatt, 2010). They used 

electricity consumption and hot water use to automatically determine time settings (Boait, 

& Rylatt, 2010). They also provided a temperature set point that adapts to user activity 

levels and external temperature (Boait, & Rylatt, 2010). Their practical results from a 

prototype control system showed useful energy savings (Boait, & Rylatt, 2010). Figure 2-

4 shows the user interface of prototype control system. 
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Figure 2-4 User interface of prototype domestic energy management system (Boait, & 
Rylatt, 2010) 

 

Mozer et al. presented an adaptive controller, Neurothermostat, which learns to 

regulate indoor air temperature automatically in a residence by observing and detecting 

patterns in the occupants’ schedules and comfort preferences (Mozer, Vidmar, & Dodier, 

1997). Although they focused on the problem of air heating with a whole-house furnace, 

it is indicated that the same approach could be taken with alternative or multiple heating 

devices, as well as to the problems of cooling and ventilation (Mozer et al., 1997). They 

defined the task as an optimal control problem in which both comfort and energy costs 

are considered as part of the control objective, and used a hybrid neural net/look-up table 

to predict occupancy pattern (Mozer et al., 1997). The Neurothermostat searches for a 

decision sequence that minimizes the expected cost over a fixed planning horizon at each 

discrete time step (Mozer et al., 1997). They conducted simulations of the 

Neurothermostat using artificial occupancy data as well as occupancy data from an actual 



33 
 

 
 

residence, and compared the results against three conventional policies (Mozer et al., 

1997). The simulation results indicate that the Neurothermostat achieves reliably lower 

costs (Mozer et al., 1997). 

Providing effective feedback on residential electrical demand has shown the promise 

to reduce energy consumption. Parker et al. described a two year pilot evaluation of a low 

cost residential energy feedback system installed in twenty case study homes in Florida 

(Parker, Hoak, Cummings, & Center, 2010). Their study showed an average 7% 

reduction in energy use from feedback homes in the second year of monitoring after 

controlling for weather-related influences (Parker et al., 2010).   

Ilic et al. studied the potential benefits of implementing a simple load control scheme 

for residential air conditioning that allows consumers to shift demand from high priced 

hours to low priced hours during the day (Ilic, Black, & Watz, 2002). This is another 

example of smart use of air conditioning that can lead to great savings for residential 

consumers, without sacrificing comfort. They also examined the potential for multiple 

consumers implementing load control to reduce wholesale prices (Ilic et al., 2002). 

Herter investigated the effects of critical-peak pricing (CPP) with different usage and 

income levels, with the goal of informing policy makers who are considering the 

implementation of CPP tariffs in residential sector (Herter, 2007). She used a subset of 

data from the California Statewide Pricing Pilot of 2003-2004, and calculated average 

load change during summer events, annual percent bill change, and post-experiment 

satisfaction ratings across six customer segments, categorized by historical usage and 

income levels (Herter, 2007). She found that customers with high consumption respond 

significantly more in demand reduction than do the ones with low consumption, while 
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customers with low consumption save significantly more in percentage reduction of total 

electricity bills than do the ones with high consumption (Herter, 2007).    

Large-scale participation in dynamic pricing programs can cause undesirable 

consequences that will not be monitored in small-scale programs. Black & Tyagi 

investigated several potential negative consequences from large-scale participation in 

existing dynamic programs, including the rebound effect, coincident load 

shifting/shedding, and limitations of fixed, uniform pricing periods (Black & Tyagi 

2010). 

Temperature Regulation in Commercial Buildings 

It is common to have a single HVAC unit and controller to control multiple spaces or 

rooms in commercial buildings. The controller supplies heating or cooling to all rooms 

proportionally depending on the temperature reading it gets from one room, assuming 

that all rooms have the same load and temperature. Lin et al. developed a sensor feedback 

structure for multiple sensors with single HVAC system control (Lin, Federspiel, & 

Auslander, 2002). Their method can take advantage of all room temperature information 

while the traditional control method uses single sensor which can only measure one of the 

series rooms controlled by the same actuator (Lin et al., 2002). They developed a 

computer simulation program and used one year of real weather data and precise 

mathematical model with 48 states to verify the benefits of the method (Lin et al., 2002). 

Their results show that the feedback information system they developed can increase the 

number of comfort rooms reducing the percentage of occupancy discomfort, and save 

about 15% of energy at the same time (Lin et al., 2002). 
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Xu et al. presented a daily energy management formulation and the corresponding 

solution methodology for HVAC systems in facilities (e.g., hospitals, factories, malls, or 

schools) (Xu, Luh, Blankson, Jerdonek, & Shaikh, 2005). Their objective is to minimize 

the energy and demand costs through control of HVAC units while satisfying thermal 

comfort, system dynamics, load limit constraints, and other requirements (Xu et al., 

2005). They set HVAC set-points as control variables and used a method that combines 

Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics 

to predict system dynamics and uncontrollable load and to optimize the set-points (Xu et 

al., 2005). Their numerical testing and prototype implementation results show that their 

method can reduce total costs managing uncertainties and shedding the load in a 

computationally efficient manner (Xu et al., 2005). 

Thermal Storage 

The potential for thermal storage within the structure and furnishings of conventional 

commercial buildings is significant. The load requirements associated with maintaining 

thermal comfort may be shifted significantly through management of a building’s thermal 

storage. Practically, this load shifting is accomplished by properly adjusting the space 

temperature set-points throughout the course of the day. The building is cooled during 

off-peak periods when electricity is inexpensive and warmed during on-peak periods in 

order to reduce the load on the primary air conditioning equipment. There have been a 

number of studies that showed significant reductions of operating costs in buildings by 

proper precooling and discharge of building thermal storage. The savings result from 

both utility rate incentives and improvements in efficient operation due to night 

ventilation cooling and improved chiller performance. The potential for utilizing building 
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thermal mass for load shifting and peak demand reduction has been demonstrated in a 

number of simulation, laboratory, and field studies. 

Braun investigated the use of building thermal capacitance in order to reduce the 

operating costs associated with maintaining adequate thermal comfort conditions in 

buildings (Braun, 1990). His approach is to control the state of the building thermal 

storage through the zone temperature variations by shifting cooling loads from daytime to 

nighttime (Braun, 1990). Doing so, he targeted to reduce peak electrical demands, take 

advantage of low nighttime electrical rates, offset mechanical cooling with “free” cooling 

at night, and enhance equipment operation at more favorable part-load conditions (Braun, 

1990). His test results indicate that optimal control of the thermal storage within building 

structures can significantly reduce both energy costs and peak electrical use (Braun, 

1990).     

Braun et al. developed a tool to evaluate the strategies of thermal mass control 

comparing HVAC utility costs (Braun, Montgomery, & Chaturvedi, 2001). They used 

inverse models to represent the behavior of the building, cooling plant, and air 

distribution system (Braun et al., 2001). Their models use measured data to learn system 

behavior and provide performance predictions (Braun et al., 2001). The evaluation tool 

they developed predicts the total HVAC utility cost for a specified control strategy based 

on weather and solar inputs, as well as occupancy and internal gains schedules and utility 

rates (Braun et al., 2001). They then identified intelligent thermal mass control strategies 

in a simulation environment using this analysis tool (Braun et al., 2001). They validated 

the evaluation tool using data collected from a field site located near Chicago, Illinois 

(Braun et al., 2001). They used this tool to predict HVAC utility costs for a summer 
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month billing period (Braun et al., 2001). Using various thermal mass control strategies, 

they performed additional studies to examine the utility savings potential for summertime 

operations at the field site (Braun et al., 2001). The control strategy with the best results 

achieved an approximately 40% reduction in total cooling costs as compared with nigh 

setup control (Braun et al., 2001). Figure 2-5 shows the structure of the thermal mass 

simulation tool that was developed in this study. 

 

 

Figure 2-5 Overview of thermal mass simulation tool (Braun et al., 2001) 
  

Xu et al. demonstrated the potential for reducing peak-period electrical demand in 

moderate-weight commercial buildings by modifying the control of the HVAC system 

(Xu, Haves, & Piette, 2004). They conducted a case study in which zone temperature set-
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points were adjusted prior to and during occupancy in an 80,000 ft² office building with a 

medium-weight building structure and high window-to-wall ratio (Xu et al., 2004). They 

recorded HVAC performance data and zone temperatures using the building control 

system (Xu et al., 2004). They installed additional operative temperature sensors for 

selected zones and power meters for the chillers and AHU fans (Xu et al., 2004). They 

constructed an energy performance baseline from data collected during normal operation 

(Xu et al., 2004). They then programmed two strategies for demand shifting using the 

building thermal mass in the control system and implemented these strategies 

progressively over a period of one month (Xu et al., 2004). 

Their results show that a simple demand limiting strategy performed well in the 

building it is implemented (Xu et al., 2004). This strategy maintained zone temperatures 

at the lower end of the comfort region during the occupied period up until 2 pm (Xu et 

al., 2004). The zone temperatures were then allowed to float to the high end of the 

comfort region starting at 2 pm (Xu et al., 2004). This strategy helped the chiller power 

be reduced by 80-100% during normal peak hours from 2-5 pm, without causing any 

thermal comfort complaints (Xu et al., 2004).  

Liu & Henze introduced an approach to optimally control commercial building 

passive and active thermal storage inventory (Liu & Henze, 2006a) and (Liu & Henze, 

2006b). Their simulated reinforcement learning control approach is a hybrid control 

scheme that combines features of model based optimal control and model-free learning 

control (Liu & Henze, 2006a). They conducted an experimental study to analyze the 

performance of a hybrid controller installed in a full-scale laboratory facility (Liu & 

Henze, 2006a). The results show that the proposed control approach is feasible to be 
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implemented in a commercial building (Liu & Henze, 2006b). Figure 2-6 illustrates the 

hybrid control scheme proposed by Liu & Henze. 

 

 

Figure 2-6 Hybrid control scheme (Liu & Henze, 2006b) 
 

Henze et al. investigated the concurrent application of precooling and using active 

thermal energy storage systems such as ice storage in the context of optimal control in 

commercial buildings (Henze, Felsmann, & Knabe, 2004). Their objective was to 

minimize the total utility bill including the cost of heating and a time-of-use electricity 

rate without demand charges (Henze et al., 2004). Their analysis shows that the combined 

utilization leads to cost savings that are significantly greater than either storage (active or 

passive building thermal storage) but less than the sum of the individual savings (Henze 

et al., 2004). 
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Pre-cooling can be very effective if the building mass is relatively heavy. Xu & 

Zagreus studied the potential of pre-cooling and demand limiting in a heavy mass and a 

light mass commercial building in the Bay Area of California (Xu & Zagreus, 2009). 

They concluded that pre-cooling has the potential to improve the demand responsiveness 

of commercial buildings while maintaining acceptable comfort conditions (Xu & 

Zagreus, 2009). Their results indicated that, all other factors being equal, pre-cooling 

increases the depth (kW) and duration (kWh) of a given building (Xu & Zagreus, 2009).   

Yin et al. discussed how to optimize pre-cooling strategies for buildings in a hot 

California climate zone with a building energy simulation tool, namely the Demand 

Response Quick Assessment Tool (DRQAT) (Yin, Xu, Piette, & Kiliccote, 2010). Figure 

2-7 shows the general procedure for developing and calibrating the DRQAT simulation 

models for the field test buildings. They summarized the procedure used to develop and 

calibrate DRQAT simulation models, and applied this procedure to eleven field test 

buildings (Yin et al., 2010). They compared the results between the measured demand 

savings during the peak period and the savings predicted by the simulation model, and 

indicated that the predicted demand shed match well with measured data for the 

corresponding auto-demand response (Auto-DR) days (Yin et al., 2010). They also 

indicated that the accuracy of the simulation model is greatly improved after calibrating 

the initial models with measured data (Yin et al., 2010). They then compared the 

simulation results with field test data and confirmed that the optimal demand response 

strategies worked well for most of the buildings tested in this hot climate zone (Yin et al., 

2010). 
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Figure 2-7 Development and calibration of the simulation model by using DRQAT (Yin 
et al., 2010) 

 

Temperature Regulation using Model Predictive Control (MPC) 

MPC for HVAC systems control has been investigated by several researchers in 

recent years. Majority of the research in this area focus on increasing energy efficiency 

using the advantage of time-varying constraints such as allowed room temperature 

variations. 

Aswani et al. studied an electrical, single stage heat pump air conditioner (AC) that is 

common in homes and some offices (Aswani, Master, Taneja, Culler, & Tomlin, 2012a). 

They built a platform to actuate an AC unit that controls the room temperature of a 
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computer laboratory on the Berkeley campus that is actively used by students, while 

sensors record room temperature and AC energy consumption (Aswani et al., 2012a). 

Aswani et al. used semi-parametric regression to identify models, which are amenable 

to analysis and control system design, of HVAC systems (Aswani, Master, Taneja, 

Smith, Krioukov, Culler, & Tomlin, 2012b). Two testbeds that have been built on the 

Berkeley campus for modeling and efficient control of HVAC systems were utilized as 

case studies for system identification (Aswani et al., 2012b). They used semi-parametric 

regression that allowed for the estimation of the heating load from occupancy, equipment 

and solar heating using only temperature measurements (Aswani et al., 2012b). Figure 2-

8 illustrates the Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy 

Efficiency (BRITE). 

 

 

Figure 2-8 The Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy 
Efficiency (BRITE) (Aswani et al., 2012b) 

 

Aswani et al. implemented a control strategy that uses learning-based model 

predictive control (MPC) to learn and compensate for the amount of heating due to 
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occupancy as it varies throughout the day and year (Aswani et al., 2012a). Their 

techniques resulted in a 30-70% reduction in energy consumption as compared to two-

position control, while still maintaining a comfortable room temperature (Aswani et al., 

2012a). Their energy savings are due to their control scheme compensating for varying 

occupancy, while considering the transient and steady state electricity consumption of the 

AC (Aswani et al., 2012a). 

Oldewurtel et al. developed and analyzed a Stochastic Model Predictive Control 

(SMPC) strategy for building climate control that takes into account weather predictions 

to increase energy efficiency while respecting constraints resulting from desired occupant 

comfort (Oldewurtel, Parisio, Jones, Morari, Gyalistras, Gwerder, Stauch, Lehmann, & 

Wirth, 2010a). They investigated a bilinear model under stochastic uncertainty with 

probabilistic, time varying constraints (Oldewurtel et al., 2010a). They conducted a large-

scale simulation study to investigate the performance of the control strategy with 

different building variants and under different weather conditions (Oldewurtel et al., 

2010a). They analyzed the SMPC approach for selected cases in detail and showed that it 

significantly outperformed current both rule-based control (RBC) as well as a predictive 

non-stochastic controller (CE) (Oldewurtel et al., 2010a). Further benefits of SMPC are 

reported as easy tenability with a single tuning parameter describing the level of 

constraint violation as well as comparatively small diurnal temperature variations 

(Oldewurtel et al., 2010a). 

Oldewurtel et al. investigated a method to reduce peak electricity demand in building 

climate control by using real-time electricity pricing and applying model predictive 

control (Oldewurtel, Ulbig, Parisio, Andersson, & Morari, 2010b). They developed a 
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time-varying, hourly based electricity tariff for end-customers to use that would truly 

reflect marginal costs of electricity provision, based on spot market prices as well as on 

electricity grid load levels, and incorporated it into the MPC cost function (Oldewurtel et 

al., 2010b). In order to provide the MPC controller with the necessary time-varying costs 

for the whole prediction horizon, they forecasted the electricity tariff prices using least-

squares support vector machines (Oldewurtel et al., 2010b). Results show that peak 

electricity demand of buildings can be significantly reduced using proposed MPC setup 

(Oldewurtel et al., 2010b). 

Široký et al. investigated potential energy savings in a building heating system by 

applying MPC and using weather predictions (Široký, Oldewurtel, Cigler, & Prívara, 

2011). They tested proposed MPC strategy in a two months experiment performed on a 

real building in Prague, Czech Republic (Široký et al., 2011). Results show that the 

energy savings potential for using proposed MPC strategy with weather predictions for 

the investigated building heating system were between 15% and 28% depending on 

various factors, mainly insulation and outside temperature (Široký et al., 2011).  

Moroşan et al. proposed a distributed MPC method for thermal regulation in 

buildings which takes the advantages of both centralized and decentralized control 

structures (Moroşan, Bourdais, Dumur, & Buisson, 2010). The proposed MPC scheme 

incorporates the future occupation profile into the dynamic cost function (Moroşan et al., 

2010). Simulation results indicate that proposed strategy can achieve significant 

consumption reductions optimizing the transitions between inoccupation and occupation 

phases (Moroşan et al., 2010).  
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Moroşan et al. then proposed another distributed model predictive control (DMPC) 

algorithm based on Bender’s decomposition for multi-source multi-zone building 

temperature regulation (Moroşan, Bourdais, Dumur, & Buisson, 2011). Since the 

centralized computational time demand of the optimization problem grows exponentially 

with the number of subsystems; for large-scale buildings, the proposed DMPC strategy 

based on Bender’s decomposition allows the decrease of the computational demand by 

using a network of local controllers that are coordinated by a master controller (Moroşan 

et al., 2011). They illustrated the effectiveness of the proposed approach compared to the 

PI-based control in a simulation study (Moroşan et al., 2011). 

Chandan & Alleyne developed a methodology for the problem of thermal control of 

buildings from the perspective of partitioning them into clusters for decentralized control 

(Chandan & Alleyne, 2011). They presented a measure of deviation in control inputs 

between centralized and decentralized control in the MPC framework, referred to as the 

Optimality Loss Factor (OLF) (Chandan & Alleyne, 2011). They introduced another 

quantity called the Normalized Mean Cluster Size (NMCS) as an indicator of the 

robustness of any decentralized architecture to sensing and communication faults 

(Chandan & Alleyne, 2011). Next, they proposed an agglomerative clustering approach 

to determine the decentralized control architectures, which provide a satisfactory trade-

off between the underlying optimality and robustness objectives (Chandan & Alleyne, 

2011). They demonstrated the application of proposed partitioning methodology using 

simulation case studies on medium-scale buildings (Chandan & Alleyne, 2011). 

Bălan et al. proposed an MPC algorithm that can be applied to nonlinear systems and 

uses a limited number of control sequences for on-line simulation of future behavior of 
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the process (Bălan, Stan, & Lăpuşan, 2009). A predicted sequence of the output signal is 

generated by each control sequence used in simulation (Bălan et al., 2009). Then, using a 

set of rules, the optimal control signal is computed (Bălan et al., 2009). A process model 

along with the previous sequences of the input and output signals from the process is 

used to simulate the future behavior of the process (Bălan et al., 2009). The proposed 

algorithm is used for simulation of the temperature control in a house and compared with 

the usual algorithms of type PI (Bălan et al., 2009).  

Freire et al. studied indoor thermal comfort problem in a single-zone building 

equipped with an HVAC system, addressing the occupants’ thermal comfort sensation by 

the well-known comfort index known as PMV (predicted mean vote) and by a comfort 

zone defined in a psychrometric chart (Freire, Oliveira, & Mendes, 2008). In this context, 

they proposed different MPC-based strategies for the control algorithms by using an 

only-one-actuator system that can be associated to a cooling and/or heating system 

(Freire et al., 2008). Both strategies are to optimize room air conditions, where one 

focused on thermal comfort and the other one energy savings while maintaining the 

indoor thermal comfort criterion at an adequate level (Freire et al., 2008). Simulation 

results show that the proposed control algorithms can simultaneously provide thermal 

comfort and energy consumption reduction keeping the thermal conditions of the room in 

the comfort zone (Freire et al., 2008). 

Goyal et al. studied the use of occupancy information to reduce energy consumption 

while maintaining thermal comfort and indoor air quality in commercial buildings 

(Goyal, Ingley, & Barooah, 2012). They mainly focused on zone-level control, where the 

supply air flow rate and the amount of reheat are the two control inputs to be decided 
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(Goyal et al., 2012). They proposed three control algorithms with varying information 

requirements of long-horizon accurate prediction of occupancy and a model of the 

hydrothermal dynamics of the zone, only occupancy measurement and a dynamic model, 

and only occupancy measurement (Goyal et al., 2012). They used a model predictive 

control framework to compute the optimal control inputs on the first two strategies, and a 

pure feedback-based control strategy on the third one (Goyal et al., 2012). Their 

simulation results show that significant energy savings can be realized even with simple 

feedback-based algorithm with occupancy measurements (Goyal et al., 2012). Additional 

prediction capability (of dynamics or occupancy) results in even larger savings in energy 

consumption (Goyal et al., 2012). 

Ma et al. proposed an MPC strategy for the control of thermal energy storage in 

building cooling systems, where chillers are operated each night to recharge the storage 

tank in order to meet the buildings demand on the following day (Ma, Borrelli, Hencey, 

Packard, & Bortoff, 2009). They designed an MPC for the chillers operation in order to 

optimally store the thermal energy in the tank by using predictive knowledge of building 

loads and weather conditions (Ma et al., 2009). They used periodic invariant sets, moving 

block strategy and dual stage optimization to tackle complexity and feasibility issues of 

the resulting scheme (Ma et al., 2009). Preliminary results showed that 24.5% of the daily 

electric bill can be saved as compared to the heuristic manual control sequence (Ma et al., 

2009).  

Ma et al. built on their previous work (Ma et al., 2009), improved the oversimplified 

building load model, and presented experimental results in (Ma, Borrelli, Hencey, 

Coffey, Bengea, & Haves, 2010). The experiments at University of California, Merced 
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show that proposed MPC can achieve a $1,205 reduction in daily electricity bill and a 

%11.9 improvement of the plant Coefficient of Performance (COP) (Ma et al., 2010).  

In general, previous studies report that the predictive control strategies are more 

efficient than conventional, non-predictive ones for HVAC systems control of buildings. 
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CHAPTER 3: MPC-BASED HVAC LOAD CONTROL 

Model Settings for Energy Efficient Control of HVAC Systems 

In this section a description of the proposed model for control of HVAC systems is 

provided from the perspective of the consumer. The model has two conflicting goals: 1) 

minimizing the total energy consumption by the HVAC system and hence the associated 

costs for the consumer and in parallel, 2) minimizing the deviation of the indoor 

temperature from the consumer preference. These two goals are combined by a single 

objective via a weighted squared sum of energy consumption as a function of HVAC 

usage and the deviation between the indoor temperature and a reference temperature 

point. The reference temperature is set by the consumer based on his/her comfort level. 

Consequently, the proposed model aims to determine cost and energy efficient HVAC 

control policies that help consumers lower their energy costs while maintaining a 

comfortable building environment based on their preferences.  

The optimal HVAC control policies are developed by generating AC signals based on 

the model objective. The AC signals are composed of control actions that determine the 

on/off frequency of the AC unit. ݑሺݐሻ denotes such control action determined at time t.  

Typically, the operation of a single-state heat pump is based on two modes corresponding 

to the compressor being on or off. However, optimizing such hybrid system models is 

usually time-demanding, especially for control purposes. Therefore, a sampled control is 

considered in order to simplify the design of the controller. As such, a new control action 

is generated for each period t whose period length is denoted by ݈ሺݐሻ in the proposed 

MPC based model. It is noted that the length of a period should be no less than 10 to 15 

minutes since switching more frequently than once every 10 to 15 minutes can physically 
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damage the heat pump. Since this constraint requires applying control actions at discrete 

times, a pulse-width modulation (PWM) based approach is used to convert the discrete 

time control input, ݑሺݐሻ, into a continuous signal that turns the AC on or off. For this, a 

similar approach presented in (Burke & Auslander, 2009) is employed. Consequently, in 

the proposed model ݑሺݐሻ can also be interpreted as a duty cycle that represents the 

proportion of “on” time during time interval t. 

Clearly, the energy consumption during time interval t is a function of ݑሺݐሻ. At the 

same time, these control actions determine the inside temperatures for the building across 

the time horizon (e.g., throughout the day).  Hence, the resulting objective function of the 

proposed model can be written as follows: 

 

 

݉݅݊௨ሾ∙ሿ, ೝ்ሾ∙ሿ ൌ ෍ሺݍ ∗ ݈ሾݐሿ ∗ ሿሻଶݐሾݑ
ே

௧ୀଵ

൅෍൫ݓ ∗ ሺܶሾݐሿ െ ௥ܶሾݐሿሻ൯
ଶ

ே

௧ୀଵ

 

(1)

 

s.t.  ݑሾݐሿ ∈ ሾ0, 1ሿ																																									∀ݐ ∈ ሼ1. . ܰሽ 

ܶሾݐሿ ൌ ,ሿݐሾݑሺࡳ  ሿሻݐሾݔ

ܶሾݐሿ, ௥ܶሾݐሿ ∈ ሾ ௠ܶ௜௡, ௠ܶ௔௫ሿ																	∀ݐ ∈ ሼ1. . ܰሽ 

 

The first term in the objective function computes the squared sum of energy 

consumption by the AC over N time intervals. Basically, the energy consumption is a 

function of the AC’s energy usage per hour denoted here by q (usually in kW per hour). 
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As mentioned above, the control input ݑሾݐሿ is to be calculated for intervals of 15 minutes. 

Since the time interval length is assumed to be 15 minutes in this study, the hourly usage 

is divided by 4 in the objective function. Since ݑሾݐሿ is the proportion of “on” time for the 

AC, its value is constrained to be in [0,1]. 

The temperature deviations from the identified set-points are handled by the second 

term in the objective function. ܶሾݐሿ and ௥ܶሾݐሿ are the average inside temperature and the 

reference temperature set-point at time ݐ respectively. At a given time period, as indicated 

by the second constraint above, the inside temperature is a function of the AC usage 

 ሿሻ such as the insideݐሾݔ) ሿሻ and the collection of exogenous state parametersݐሾݑ)

temperature at the beginning of period t, average outside temperature during period t and 

various characteristics of the building related to its thermal storage capabilities. 

Unfortunately, the mapping between ݑሾݐሿ,  ሿ and the average inside temperature atݐሾݔ

period t is not straightforward in practice in that G(·) is often times a nonlinear function 

effected by noise. For practical use of the proposed control model, an easy to use 

prediction process is developed and integrated into the model, which will be discussed in 

the next section. The last constraint incorporates minimum and maximum values for both 

the inside temperatures and the temperature set-points.  

The subtraction given in the second part of the objective function gives the deviation 

between the inside and reference temperatures. By taking the square of these deviations, 

both positive and negative deviations from the reference set-points are penalized. The 

controller aims to keep inside temperature close to a reference temperature set-point by 

minimizing the deviation between the two. Most contemporary HVAC units function 

based on a reference temperature point set by the consumer. In conventional practice, the 
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AC unit runs based on a two-position thermostat control under a fixed thermostat set-

point around which the inside temperature fluctuates. The reference temperature is 

usually set by the occupant and it does not change frequently (if at all) throughout the day 

- often times, regardless of the price fluctuations. While the above model can 

accommodate such cases by simply employing the reference temperature values (i.e., 

௥ܶሾݐሿ) as fixed input parameters, it is mainly designed to deploy them as decision 

variables that are determined as response to the price fluctuations. Clearly, the advantages 

of dynamic electricity pricing from both the perspective of the consumer and the utility 

provider cannot be realized effectively with a fixed reference temperature set-point. The 

deployment of variable reference temperature set-points, on the other hand, achieves 

financial benefits of dynamic pricing while keeping the inside temperature within the 

occupants’ thermal comfort limits. Therefore, a methodology is proposed to determine 

cost-efficient reference temperature set-points for MPC controller within a range referred 

to as the comfort range, which are basically captured by the lower and upper bounds 

specified by the last constraint. 

The proposed MPC controller aims to minimize the weighted sum of the two terms in 

the above objective function by generating optimal AC signals ݑሾݐሿ and hence, average 

inside temperatures as well as determining the reference set-points for the AC in response 

to fluctuations in electricity prices throughout the day. When the reference temperature 

set-points are control variables, typically, a higher reference temperature set-point 

coupling with a higher-price period will result in lower energy consumption and hence 

lower energy cost for the consumer. On the other hand, a lower reference temperature set-

point coupling with a lower price period assures an improved cost efficient thermal 
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comfort for the occupant assuming that lower temperatures within a given range provides 

better thermal comfort. In all cases, reference temperature set-points are constrained by a 

comfort range specific to the occupant.  

The occupant’s thermal comfort preference is captured by the weight, w, in the 

objective function. Clearly, higher values of w represent cases where the energy cost 

savings and as such energy consumption are less important for the occupant. This value 

does not affect only the control action represented by ݑሾݐሿ but also the selection of 

reference temperature set-points. In general, higher w, expectedly leads to higher 

frequency of “on” times and lower temperature set-points within a given comfort range. 

However, the model can still provide savings for such consumers when it can control 

both the AC signals and the temperature set-points. With controllable temperature set-

points, the MPC controller has an additional degree for freedom to effectively manage the 

trade-off between the energy cost and the thermal comfort. 

In the next section, an MPC based solution procedure for the proposed model is 

discussed. Mainly, the solution approach is built in two folds. The first stage, responding 

to the fluctuations in daily electricity prices, generates temperature set-points based on 

the occupant’s attitude towards thermal comfort. The second stage develops a prediction 

model for the MPC controller that is eventually used to determine the control actions 

 .ሻݐሺݑ

Model Predictive Control (MPC) Process 

First, the algorithm for determining the temperature set-points for price ranges is 

presented. Later the MPC based prediction approach that is used to map the control 

action to the average inside temperatures is discussed. The outcomes of both stages are 
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then used as inputs for the MPC controller, which generates the vector of control actions 

over the planning time horizon. 

Algorithm for Determining Variable Reference Temperature Set-Points 

A simple yet effective algorithm is used to assign reference temperature set-points for 

each hour of the day based on the real-time price of electricity for that hour over a time 

horizon for which the price schedule is already announced and known. Since day ahead 

pricing (DAP) – a form of RTP where upcoming hourly energy prices are announced to 

the users one day ahead – is assumed in the proposed strategy, the reference temperature 

set-points for the next 24-hour period can be determined in advance of the day. As such, 

effectively, the algorithm generates price ranges based on the scheduled price fluctuations 

for a given day and assigns them to temperature set-points. It is assumed that within the 

predefined temperature range, the lower temperature provides a better thermal comfort 

for the consumers. Since the objective function in the model introduced in the first 

section of this chapter attempts to minimize the weighted squared summation of the total 

cost and the indoor temperature in hot climates, the AC is operated at lower bounds of the 

temperature range when the price of electricity is at lower values. On the other hand, the 

operation temperature of the AC is raised as the price of electricity increases. 

Consequently, the algorithm is designed to assign lower temperature set-points for lower 

price ranges and higher set-points for higher price ranges.   

The proposed algorithm first determines the maximum (݉ܽݔሺ݌௛ሻ) and minimum 

(݉݅݊ሺ݌௛ሻ) electricity pricing values for the next 24-hour period and from these it 

identifies a number of price ranges depending on the number of temperature set-point 

candidates. The temperature set-point candidates are the temperature values between any 
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given maximum and minimum allowed temperature set-points which can be pre-

determined by the users. In the end, each price range is coupled with a temperature set-

point. The temperature set-points are then assigned to each hour of the day based on the 

range in which the price of corresponding hour falls in. 

To model consumer choice on thermal comfort, a discomfort tolerance index, a, is 

defined which is used to capture the trade-off between thermal comfort and energy cost 

for the occupant. The value of a, in general, varies across individuals. Clearly, this value 

is a mapping from the weight w in the objective function given in (1) and inversely 

correlated with w. A high discomfort tolerance (i.e., ߙ ൐ 0) represents a consumer who 

has higher tolerance for higher indoor temperatures in return for cost savings. Such 

customers prefer that wider price ranges are assigned to higher temperatures. Whereas, 

low tolerance (ߙ ൏ 0) customers prefer the opposite as they are less willing to 

compromise comfort for savings. It is referred to the consumer with ߙ ൌ 0 as the neutral 

consumer who has a balanced preference between comfort and savings leading to 

uniform price ranges allocated to temperature set-points. Clearly, this value is a mapping 

from the weight w in the objective function given in (1) and inversely correlated with w. 

That is, higher values of a correspond to lower values of w in (1).  

The reference temperature set-points are subject to maximum (Tmax) and minimum 

(Tmin) allowable levels and the physical limits of the air conditioner. Maximum and 

minimum allowable reference temperature set-points can be determined by the users. In 

order to keep the thermal comfort level of the users at a reasonable range, it can be 

assumed that the AC is operated within the American Society of Heating, Refrigerating 

and Air-Conditioning Engineers (ASHRAE) zone (Standart, A. S. H. R. A. E., 1992). 
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Algorithm for Temperature Set-Point Assignment (TSA) 

Step 0: Initializeߙ 

Step 1:  

݊ ← ௠ܶ௔௫ െ ௠ܶ௜௡

݇
൅ 1 

ܧܩܰܣܴ ← ௛ሻ݌ሺݔܽ݉ െ ݉݅݊ሺ݌௛ሻ 

Set ݎ଴ ← ݉݅݊ሺ݌௛ሻ 

Ifߙ ൌ 0Go to Step 2 

Else Go to Step 3 

Step 2: For each set-point݆ሺ݆ ൌ  ሻ݊	݋ݐ	1

Set ݎ௝ ← ௝ିଵݎ ൅
ோ஺ேீா

௡
 

Go to Step 4 

Step 3: For each set-point݆ሺ݆ ൌ  ሻ݊	݋ݐ	1

Set ݎ௝ ← ௝ିଵݎ ൅ ܧܩܰܣܴ ∗ ଶ
ೌሺೕషభሻሺଵିଶೌሻ

ሺଵିଶೌ೙ሻ
 

Step 4: For each hour݄ ൌ  24	݋ݐ	1

 ௛ܶ
௦௘௧ ← :൛݆݊݅݉݃ݎܽൣ݇ ௛݌ ൑ ௝ൟݎ െ 1൧ ൅ ௠ܶ௜௡ 

        

Figure 3-1 Algorithm to assign reference temperature set-points 
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The temperature set-point assignment (TSA) algorithm is shown in Figure 3-1, where 

݇ is the temperature set-point interval used to calculate the total number of set-points, ݊, 

and ݎ௝ denotes the price range for the ݆th set-point. The proposed TSA algorithm assigns 

temperature set-points to price ranges based on consumer’s discomfort tolerance index 

(i.e., ߙ). 

As illustrated in Figure 3-2, the algorithm assigns lower temperature set-points to 

wider price ranges when the occupant’s discomfort tolerance index is low. The opposite 

is true when the index value is high. A neutral consumer (i.e., ߙ ൌ 0) generates equally 

sized price ranges for all temperature set-points. 

 

 

Figure 3-2 Assignment of temperature set-points to price intervals as a function of 
comfort intolerance. 

 

Prediction Model for the Inside Temperature 

Mathematical model identification is an important step towards implementing 

efficient predictive control schemes for dynamic systems. All MPC schemes inherently 
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require a nominal model for system optimization. In the case of building HVAC load 

control, it is essential to provide MPC controller with a model that describes the impact 

of inputs (outside temperature, AC operation, etc.) on the output (inside temperature of 

the building) at each control interval. 

Although the building thermal system is nonlinear in nature, it can be approximated 

by a linear model since the main physical effect is convective heat transfer and is 

described by Newton’s law of cooling which is a linear ordinary differential equation 

(ODE). Moreover, a nonlinear dynamic model used in an MPC controller will generally 

lead to a non-convex optimization which can be extremely difficult to solve. 

Consequently, to ensure usability and practical implementation of the proposed system, a 

linear model that accurately represents system dynamics with the least number of 

variables possible is developed. The approximation enables efficient optimization in 

terms of time and cost for the MPC controller. Consequently, the controlled variable 

(average inside temperature, ܶሾݐሿ) is defined as a function of a manipulated variable (AC 

signal, ݑሾݐሿ) and a measured disturbance (outside temperature, ݑොሾݐሿ). The advantage is 

that all variables can be easily measured via sensors and loggers and effectively 

transferred to the MPC controller in real-life application. The cooling process can be 

described by a linear model, represented in a discrete state space (with the sampling time 

τ) where state variables are used to describe the system by a set of first-order differential 

or difference equations, rather than by one or more ݊th-order differential or difference 

equations. 
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The discrete-time state-space model structure is often written in the following form: 

 

 ൜
ݐሺݔ ൅ ߬ሻ ൌ ሻݐሺݔܣ ൅ ሻݐሺݒܤ ൅ ሻݐሺ݁ܭ
ܶሺݐሻ ൌ ሻݐሺݔܥ ൅ ሻݐሺݒܦ ൅ ݁ሺݐሻ

(2)

 

where ݔሺݐሻ is the state vector at time ݒ ,ݐሺݐሻis the input vector composed of {ݑሾݐሿ,  {ሿݐොሾݑ

and ܶሺݐሻdenotes the inside temperature at time ݐ. Random component ݁ሺݐሻ represents the 

white-noise disturbance. The state-space matrices, ܣ, ,ܤ ,ܥ  are to be estimated ,ܭ and ܦ

from the physical data with respect to ௦ܶ. State variables ݔሺݐሻ can be reconstructed from 

the measured input-output data, but are not themselves measured during an experiment. 

The state-space model structure is a good choice for quick estimation because it 

requires only one user input, the model order. The model order is an integer equal to the 

dimension of ݔሺݐሻ and relates to, but is not necessarily equal to, the number of delayed 

inputs and outputs used in the corresponding linear difference equation. In order to 

identify the AC control signal input, ݑሺݐሻ, for each sampling interval τ, the concept of 

pulse width modulation is employed as described in the first section of this chapter. 

Based on collected measurements, a purely statistical approach based on multiple-

input single-output (MISO) discrete-time state-space model can be used for parameter 

identification. Several common tools similar to the System Identification Toolbox of 

MATLAB can be used for this purpose and embedded into the MPC controller. Such 

applications estimate model parameters by minimizing the error between the model 

output and the measured response.  
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The output ݕ௠௢ௗ௘௟ of the linear model is given by: 

 

ሻݐ௠௢ௗ௘௟ሺݕ ൌ  ,ሻݐሺݖߠ

 

where ߠ is a transfer function and ݖሺݐሻ is the input vector. To determine ߠ, the toolbox 

minimizes the difference between the model output ݕ௠௢ௗ௘௟ሺݐሻ and the measured output 

 ሻ, whereݐሺߣ ሻ. The minimization criterion is a weighted norm of the errorݐ௠௘௔௦ሺݕ

 

ሻݐሺߣ ൌ ሻݐ௠௘௔௦ሺݕ െ ሻݐ௠௢ௗ௘௟ሺݕ ൌ ሻݐ௠௘௔௦ሺݕ െ  ሻݐሺݖߠ

 

Here, ݕ௠௢ௗ௘௟ሺݐሻ is one of the following: 

 Simulated response of the model for a given input ݖሺݐሻ. 

 Predicted response of the model for a given input ݖሺݐሻ and past measurements of 

output ሺݕ௠௘௔௦ሺݐ െ 1ሻ, ݐ௠௘௔௦ሺݕ െ 2ሻ, … ሻ. 

Accordingly, the error ߣሺݐሻ is called simulation error or prediction error. The 

estimation algorithms adjust parameters in the model structure ߠ such that the norm of 

this error is as small as possible. 

Experiment for Parameter Identification 

To illustrate the use of the prediction model, an experimental validation that utilizes 

the above procedure is carried out. In the experiment, data needed for parameter 

identification is collected from a typical house in Coral Gables, Florida displayed in 

Figure 3-3. The house is around 2,000 square feet, and equipped with a single-stage heat 

pump air conditioner. Figure 3-4 shows the rear of the house and the air conditioner unit. 
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Figure 3-3 Experiment house in Coral Gables, Florida 

 

Figure 3-4 Rear of the experiment house and the air conditioner unit 
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Three outside temperature loggers are installed on different sides of the house, and 

averaged out the data for a better set of outside temperature data. Outside temperature 

loggers that are installed on the west side of the house are displayed in Figure 3-6. An 

inside temperature logger is also installed next to the current thermostat shown in Figure 

3-7. To capture the AC consumption data, a pair of data loggers is installed along with 

the current transformers for both phases of the electric disconnect. Figure 3-5 shows data 

loggers and current transformers installed in the air conditioner unit (details of data 

collection strategy can be found in Appendix A). This data is then converted to duty cycle 

(PWM) over 15 minute periods. To estimate and validate the model, data sets from two 

consecutive weekdays (June 25 and June 26, 2012) are used. 

 

 

Figure 3-5 Data loggers and current transformers installed in the AC unit 
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Figure 3-6 Outside temperature loggers installed on the west side of the house 

 

Figure 3-7 Inside temperature logger installed next to the current thermostat 
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It is important to note that the AC continues to cool the building for a few minutes 

even after it is turned off because of the dynamics of the heat pump. Specifically, it takes 

a while for the evaporator that cools the air to warm up, and so it keeps cooling the air for 

some time after the heat pump is turned off (Vargas & Parise, 1995). Therefore, there 

exists a “delay” in the system model. A discrete time model where each time period ሺ߬ሻ is 

15 minutes is considered. Thus, this delay can be included and realized in each time 

period where the AC is on and turned off but still cooling.  

The corresponding state-space matrices for the third-order discrete-time state-space 

model using real-life data from the first day with sampling time of 15 minutes are 

identified as 

 

ܣ ൌ ൥
0.9759 െ0.02625 0.002302
െ0.1922 0.4219 0.3488
0.06496 െ0.08368 0.231

൩ ܤ ൌ ൥
0.0009866 െ0.03179
0.05506 െ0.2371
െ0.125 െ0.08221

൩ 

 

ܥ ൌ ሾ26.13 1.775 െ0.004073ሿ ܦ ൌ ሾ0 0ሿ ܭ ൌ ൥
0.01643
0.0312
0.0936

൩ 

 

Typically, the quality of a model is evaluated by comparing the model response to the 

measured output for the same input signal. Figure 3-8 shows that the third order state 

space model with the parameters above fits reasonably well (Model Fit: %86.47) to the 

measured temperature data used to identify these parameters. 
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To further validate acquired model, a different set of experimental data from day 2 is 

employed to check if the model could reproduce the same system behavior (cross-

validation). This avoids the risk of over-fitting the data and assures that the identified 

model can be generalized for a reasonable time horizon. Therefore, the computed 

parameters were applied to the identified model with the physical output data measured 

on day 2 using the Simulink/MATLAB environment. The simulation procedure is as 

follows: The input data set (outside temperature and AC duty cycle) measured on day 2 

was employed in the identified model and the model response (inside temperature) was 

compared with measured inside temperature. The results presented in Figure 3-9 show a 

considerably good agreement (Model Fit: %84.16) between the identified model and the 

measured validation data. 

It is noted that due to changes in seasonal temperatures and possible modifications in 

the building settings the state vector may vary in time. As such the parameter values 

derived at certain point in time may not provide good fits in the long run. As such, the 

MPC controller should be able to rerun the parameter identification process periodically 

or on a condition-based fashion. Since the computational process is simplified thanks to 

the linear approximation, the parameters can be updated in reasonably short periods. 

Alternatively, the parameters can be updated when the model fit drops below a pre-set 

threshold (e.g., 80%). 

Experimental Analysis of the Proposed MPC Process 

A simulation based experimental analysis is carried out to investigate the impact of 

the proposed model and MPC based solution procedure on energy cost savings, peak time 

energy consumption and the occupant’s thermal comfort. The analysis is carried out in 
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two folds. First, the proposed MPC process is tested under a fixed temperature set-point. 

In this case, the temperature set-point is treated as an exogenous input parameter in the 

model given in (1). The MPC controller’s performance is compared to the conventional 

two-position control of the AC unit. Next, the case with endogenous temperature set-

points is considered, where the temperature set-points are determined by the procedure 

described in the first sub-section of the previous section. The TSA algorithm is applied to 

both the two-position control and the MPC process, and the results are compared.  

In order to set up the experiment under the simulation environment, a controller 

imitating the real-life interactions between the input and output parameters is identified 

and integrated into the simulation framework. The simulated controller is needed to 

generate feedback for the proposed MPC process. In real-life application, the actual 

inside temperature is to be measured through sensors and utilized by the MPC controller 

at each control interval. Subsequently, the collected data is fed back to the MPC 

controller for dynamic update. Without such a feedback from the system, the model 

predictive thermal control of the building may not be fully implemented. However, in a 

simulation study such data will not be available. On the other hand, the output data 

cannot be generated by the prediction model itself in the simulation study since the 

system output will be the same as the previously predicted one, which will make the 

comparisons pointless. To overcome this obstacle and to have an accurate assessment of 

the proposed approach, a more precise nonlinear model that is due to Hammerstein-

Wiener is employed for simulating the output generation. The nonlinear Hammerstein-

Wiener plant model is used to represent the real system in the simulation framework and 
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to update the MPC controller with the system output data (inside temperature) in each 

control step. 

The simulation based analysis for MPC implementation is developed and 

implemented using Simulink/MATLAB. The MPC controller block is built under the 

Model Predictive Control Toolbox of MATLAB and added to Simulink framework along 

with the nonlinear plant model block. Figure 3-10 depicts the simulation framework for 

the MPC control scheme. The experiment input data for outside temperature is sent to the 

MPC controller block. The MPC controller then generates the AC control input 

minimizing the objective function with respect to the reference temperature set-points, 

which are previously determined using the TSA algorithm presented in the previous 

section. Accordingly, the controller also produces the nonlinear plant model output, 

namely the inside temperature. The AC control input and the outside temperature data for 

the next time period are then sent to the nonlinear plant model to generate the inside 

temperature for the next time frame. To further discuss the process and relevant results, it 

first needs to be explained how the nonlinear plant operates in the simulation model. 

 

 

Figure 3-10 Simulink/MATLAB simulation framework for the MPC scheme 
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Plant Model 

In order to describe the dynamic building system accurately, a Hammerstein-Wiener 

model that decomposes the input-output relationship into two or more interconnected 

elements is employed. In this case, the dynamics are represented by a linear transfer 

function and the nonlinearities are captured using nonlinear functions of inputs and 

outputs of the linear system. The Hammerstein-Wiener model achieves this configuration 

as a serial connection of static nonlinear blocks with a dynamic block. These models are 

popular because they have a convenient block representation, transparent relationship to 

linear systems, and are easier to implement than heavy-duty nonlinear models (such as 

neural networks and Volterra models). 

Below is a block diagram that represents the structure of a Hammerstein-Wiener 

model: 

 

 

 

where: 

 

 ݓሺݐሻ ൌ  ,ሻ. Typicallyݐሺݑ ሻሻ is a nonlinear function transforming input dataݐሺݒሺܨ

 .ሻݐሺݑ ሻ has the same dimension asݐሺݓ

 ݔሺݐሻ ൌ ሺܤ ⁄ܨ ሻݓሺݐሻ is a linear transfer function. ݔሺݐሻ has the same dimension as 

 .are similar to polynomials in the linear Output-Error model ܨ and ܤ ሻ, andݐሺݕ
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 For ݊ݕ outputs and ݊ݒ inputs, the linear block is a transfer function matrix 

containing entries: 

 

ሻݍ௝,௜ሺܤ
ሻݍ௝,௜ሺܨ

 

  

where ݆ ൌ 1,2, … , ݅ and ݕ݊ ൌ 1,2, … ,  .ݒ݊

 ݕሺݐሻ ൌ ݄ሺݔሺݐሻሻ is a nonlinear function that maps the output of the linear block to 

the system output. 

 

Basically, ݓሺݐሻ and ݔሺݐሻ are internal variables that define the input and output of the 

linear block, respectively. 

Since ݂ performs on the input port of the linear block, this function is called the input 

nonlinearity. Similarly, since ݄ performs on the output port of the linear block, this 

function is called the output nonlinearity. If system contains several inputs and outputs, 

the functions ݂ and ݄ must be defined for each input and output signal. It should also be 

noted that both the input and output nonlinearity do not have to be included in the model 

structure.  

Using System Identification Toolbox of MATLAB, the nonlinear Hammerstein-

Wiener model for the plant is identified and validated in a similar way used in the 

experiment presented in the previous section. As expected, Figure 3-11 shows that the 

nonlinear Hammerstein-Wiener model fits very well (Model Fit: %93.57) to the 

measured temperature data. 
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Modeling the Two-Position Thermostat Control 

Most thermostats currently employ two-position control for the HVAC equipment in 

the buildings. For the purpose of comparing the energy consumption and the energy cost 

of different control strategies, it is useful to identify a simulation model of the two-

position control of the thermostat. In two-position control, the AC turns on when the 

inside temperature exceeds ௢ܶ௡ሺܶ ൅ ݇ሻ and turns off when the temperature reaches 

௢ܶ௙௙ሺܶ െ ݇ሻ. Figure 3-12 shows the model of two-position control of thermostat with a 

fixed thermostat set-point, ܶ, in Simulink/MATLAB environment. It should be noted that 

the nonlinear plant model is also used to generate outputs in the simulation study. 

 

 

Figure 3-12 The simulation framework for the two-position thermostat control 
 

Pricing and Outside Temperature Data 

Real-time electricity pricing data for the simulation study is acquired from a major 

utility company (PJM, 2012). The publicly available DAP (day ahead pricing) rates for 

selected days are used. In DAP, the electricity pricing data for the next 24-hour period is 

released ahead of time. Figure 3-13 illustrates the DAP on a hot summer day. Moreover, 

the outside temperature data given in Figure 3-14 is applied to the simulation study. 
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Experiment Results 

As mentioned earlier, the experiment is first run under a fixed temperature set-point. 

In this case, the set-point is fixed at a certain value throughout the day. In the 

implementation the case where the temperature set-point is fixed at 78Ԭ is considered. In 

the second part, the temperature set-points are treated as decision variables and 

determined using the TSA algorithm. The algorithm is employed to assign reference 

temperature set-points for each hour of the day, and these variable reference temperature 

set-points are utilized in the proposed MPC controller. In this case, a temperature range 

of 77Ԭ-79Ԭ is used for the temperature set-points. The performance of MPC controller 

is compared with two-position control in each case. Reference temperature set-points 

employed in MPC controller are used as thermostat set-points in two-position control. 

For both cases, a േ0.5Ԭ hysteresis band (݇ ൌ 0.5Ԭሻ is considered in the two-position 

control scheme, and the inside temperature is constrained between 75Ԭ and 80Ԭ for the 

MPC controller.  

In all computations, ݍ is assumed to be 3.95kW since a typical residential AC unit 

consumes on average 3.95kW per hour. Moreover, in the objective function given in (1) 

it is assumed that w =0.8. In what follows, results are displayed and discussed for each 

case. 

Comparison with Fixed Temperature Set-Points 

To analyze the performance of the proposed MPC controller with a fixed reference 

temperature set-point, the reference temperature set-point is fixed at 78Ԭ in the MPC 

controller and the results are compared with those of two position control with a 

thermostat setting of the same value. In this case, since the reference temperature is fixed 
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to a certain value, the objective function for the MPC is to minimize the total energy 

consumption while keeping the inside temperature as close to the fixed reference 

temperature as possible. Basically, the energy consumption, thereby the energy cost of 

the two control strategies are compared. Figure 3-15 shows the inside temperature 

fluctuation and the AC status for both cases. 

Simulation results show that MPC process leads to a non-uniform temperature 

fluctuation with more frequent AC operation compared to the two position control. In the 

experiment, it is observed that the two position control with a fixed thermostat setting of 

78Ԭ leads to a total energy consumption of 26.94 kWh with a total cost of $3.78. On the 

other hand, MPC control with a similar fixed reference temperature set-point consumes 

25.69 kWh with a cost of $3.61. According to the results, the MPC process yields 4.6% 

reduction in energy consumption and 4.5% savings in related costs. The energy 

consumption and energy cost during peak hours (2:00 – 6:00 PM) for the two-position 

control are 6.85 kWh and $2.01 respectively, whereas the MPC control strategy results 

with 6.45 kWh and $1.90. This implies a 5.8% and 5.5% reduction in energy 

consumption and cost respectively with the MPC process. In this case while the MPC 

controller reduces the energy usage, it ends with a somewhat higher inside temperature 

(78.31Ԭ vs. 78.05Ԭ). It is noted that lower inside temperatures can be obtained by 

increasing the weight (i.e., the value of w) of the temperature potentially in return for 

diminishing savings. Overall, the analysis indicates that with fixed temperature set-points 

the use of the MPC is in general more advantageous providing in the long run, however, 

the benefits due to reduction in energy consumption and cost savings may not be 

significant. Based on this result, it is conjectured that the real-time pricing does not  
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necessarily lead to significant reduction in energy cost savings through only load shifting 

under fixed temperature set-points. In order for the consumers and as well as the utility 

providers to enjoy the promising benefits of the real-time pricing, it is suspected that the 

determination of the temperature set-points should be the part of the control process. As 

such, the experimental analysis is extended to the case where the temperature set-points 

are treated as endogenous parameters by the control strategies. This case is discussed 

next. 

Comparison with Assigned Temperature Set-Points 

In this stage of the experiments the temperature set-points are determined by the 

proposed TSA algorithm based on given lower and upper temperature bounds. As in the 

previous case, the temperature set-point interval is set to 0.5Ԭ (݇ ൌ 0.5Ԭሻ and the 

minimum and maximum allowable temperature set-points are assumed to be 77Ԭ and 

79Ԭ, respectively. Therefore, the reference temperature set-point candidates are 

77Ԭ, 77.5Ԭ, 78Ԭ, 78.5Ԭ, and 79Ԭ. The experiment is carried out for three types of 

consumers with respect to their discomfort tolerance levels: low tolerance (ܽ ൌ െ1ሻ, 

neutral ሺܽ ൌ 0ሻ, and high tolerance ሺܽ ൌ 1ሻ. Figure 3-16 shows the assigned reference 

temperature set-points for all three discomfort tolerance indices generated by the TSA 

algorithm based on the pricing data of Figure 3-13. It is recalled that a consumer with low 

discomfort tolerance index is reluctant to accept higher temperature set-points in return 

for cost savings. As expected, the consumer with high discomfort tolerance index is 

willing to live with relatively higher set-points during the high price periods of the day. 
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To enhance the comparison analysis, the reference temperature assignments generated 

by the TSA algorithm are employed not only for the MPC process but also in the two-

position control strategy. Similar to the previous case, the performance of MPC is 

compared with the two-position control strategy under similar conditions. Figure 3-17 

depicts the change of inside temperature and the AC status for both control strategies for 

the neutral consumer ሺܽ ൌ 0ሻ. 

Simulation results show that, with a neutral discomfort tolerance index, two-position 

control with variable assigned temperature set-points consumes 29.71 kWh with a cost of 

$3.59, whereas the MPC control strategy results in 27.33 kWh and $3.12 in cost. In this 

case, the MPC strategy provides an 8% reduction in energy consumption with 13.1% 

savings in related costs. Two-position control strategy consumes 5.00 kWh with a cost of 

$1.50 during peak hours, while MPC control strategy results in 3.82 kWh with a cost of 

$1.14. This means 23.6% and 24% reduction in peak time energy consumption and cost 

respectively. The average daily temperatures for two position and MPC control strategies 

were recorded as 77.68Ԭ and 77.96Ԭ respectively. The results indicate that with a 

negligible compromise in average inside temperature, the consumer can enjoy significant 

cost savings under the MPC process with endogenous temperature set-points. 

Interestingly, it is observed that with the MPC process similar average temperatures can 

be achieved with considerably lower energy consumption. 
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Overall Comparison 

Table 3-1 presents the overall comparison between two-position and MPC control 

strategies for both fixed and variable temperature set-points. Based on the results given in 

the table, the MPC process can be compared with variable temperature set-points to the 

two-position control with fixed set-points. This comparison is insightful given the fact 

that the latter control strategy is common practice for AC control. It is interesting to 

observe that compared to the two-position control with fixed temperature set-points, 

while the MPC process with variable set-points results in a 1.4% increase in total energy 

consumption, it offers a 17.5% reduction in total energy cost due to AC usage. 

Furthermore, the MPC process with variable set-points is superior to the two-position 

control with fixed temperature set-points in both energy consumption and energy costs 

during the peak hours, resulting in 44.2% and 43.3% reductions respectively. These 

results suggest that the proposed MPC strategy would allow the consumers effectively 

take advantage of the dynamic pricing while facilitating an efficient demand response 

setting which enables the utility providers adopt effective demand management policies. 

 
Table 3-1 Summary of the results for both control strategies 

    Energy (kWh) Cost ($) Average 
Temp 
(°F)   Method 

Peak-
hours Total 

Peak-
hours Total 

Fixed Temperature 
Set-Point (78°F) 

Two-position control 6.85 26.94 2.01 3.78 78.05 
MPC 6.45 25.69 1.90 3.61 78.31 

Variable Temperature 
Set-Point (a=0) 

Two-position control 5.00 29.71 1.50 3.59 77.68 
MPC 3.82 27.33 1.14 3.12 77.96 
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Table 3-2 illustrates the results for MPC process with variable reference set-points 

under all three discomfort tolerance indices considered in the analysis. As pointed out by 

the results, it can be concluded that the total energy consumption and costs increase as 

discomfort tolerance index decreases, whereas average daily temperatures increase as 

expected. However, interestingly, energy consumption and costs during peak-hours in 

fact increase with discomfort tolerance index. At first look, this is a counter intuitive 

conclusion. To explain this result, it is first noted that for a consumer with low discomfort 

tolerance the inside temperature during any given period is no higher than that of a higher 

tolerance consumer. As such, cooler inside temperatures during the periods preceding the 

peak hours create a thermal storage for the building, which reduces the need for energy 

consumption for the low-index consumer during the peak hours.  

 
Table 3-2 Summary of results for the MPC process with variable temperature set-points 

across different discomfort tolerance indices 
 

  
Discomfort 

Tolerance Index 

Energy (kWh) Cost ($) Average 
Temp 
(°F)   

Peak-
hours Total 

Peak-
hours Total 

Model Predictive 
Control 

a= -1 3.29 28.32 0.97 3.23 77.64 
a=  0 3.82 27.33 1.14 3.12 77.96 
a=  1 4.68 25.03 1.39 3.03 78.46 
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CHAPTER 4: MPC CONTROLLER PROTOTYPE 

In this chapter, a prototype for the proposed HVAC load control strategy is developed 

to validate the simulation results through prototype experiments. A cost-benefit analysis 

is also conducted to identify the payback period considering cost of prototype 

development and cost savings.  

Although the performance of the proposed control strategy is confirmed through 

simulation studies in the previous chapter, building an actual prototype would not only 

further validate the simulation results but would also help in assessing the economic 

feasibility of introducing such a controller as part of a building energy management 

system. The low cost of build and ease of operation for the controller shown in this 

chapter will allow the adoption of this controller in the building HVAC control industry. 

The prototype development starts with the introduction of the necessary equipment 

followed by the stages of prototype assembly. Once the prototype build is complete, a 

series of prototype experiments is performed in order to validate its performance. The 

results of these experiments are then compared to the simulation results discussed in the 

previous chapter. It is expected that the results from the prototype experiments will be 

parallel with the simulation results. A cost-benefit analysis is then performed for the 

prototype build and the payback period is calculated using the experimental results. 

Prototype Equipment 

There is a certain number of equipment needed to develop the proposed controller. A 

microcontroller, Arduino Uno, is used as the main controller unit. A relay kit to adjust 

control inputs, four temperature sensors (two for indoor, two for outdoor), a breadboard, 

and several jumper cables are also utilized in the prototype. These specific pieces of 
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equipment are selected to build the prototype because of the following key 

considerations: 

 MATLAB Support Package for Arduino which makes it possible to use 

MATLAB or Simulink to communicate with the Arduino board over a USB 

cable. This package is based on a server program running on the board, which 

listens to commands arriving via serial port, executes the commands, and, if 

needed, returns a result. 

 Ease of use and reliability of the Arduino controller. 

 The cost and availability of these equipment in industry. 

Microcontroller (Arduino Uno) 

Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital 

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz 

ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button 

shown in Figure 4-1. Figure 4-2 shows the back side of Arduino Uno. 

The Arduino Uno can be powered via the USB connection or with an external power 

supply. External (non-USB) power can come either from an AC-to-DC adapter (wall-

wart) or battery. The board can operate on an external supply of 6 to 20 volts. If supplied 

with less than 7V, however, the 5V pin may supply less than five volts and the board may 

be unstable. If using more than 12V, the voltage regulator may overheat and damage the 

board. The recommended range is 7 to 12 volts. 
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Figure 4-1 Arduino Uno front side 

 

Figure 4-2 Arduino Uno back side 
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Summary 

Microcontroller   Atmega328 

Operating Voltage   5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits)  6-20V 

Digital I/O Pins   14 (of which 6 provide PWM output) 

Analog Input Pins   6 

DC Current per I/O Pin  40 mA 

DC Current for 3.3V Pin  50 mA 

Flash Memory  32 KB (Atmega328) of which 0.5 KB used by 
bootloader 

SRAM    2 KB (Atmega328) 

EEPROM    1 KB (Atmega328) 

Clock Speed   16 MHz 

Beefcake Relay Control Kit 

A relay must be used to switch the HVAC unit on and off. Microcontrollers are 

capable of this process, but only for very small devices such as mini LED lamps. 

Therefore, a beefcake relay control kit that enables to control the circuit by a low-power 

signal is selected to be utilized. The relay is controlled by 5V logic through a transistor, 

and an LED tells you when the relay is closed. The other elements of beefcake relay 

control kit include two 1k Ohm resistors, a 10k Ohm resistor, a diode small signal, a 

transistor, an LED, two screw terminals, and a relay control board. Figure 4-3 and Figure 

4-4 display the disassembled and assembled elements of the beefcake relay control kit 

respectively. Also displayed is the relay board schematic in Figure 4-5. 
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Figure 4-3 Disassembled beefcake relay control kit 

 

Figure 4-4 Assembled beefcake relay control kit 
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Figure 4-5 Relay board schematic 
 

Temperature Sensor 

Temperature sensors are employed to capture both indoor and outdoor temperatures 

which are then transferred to the controller. A total of four sensors are positioned for 

temperature feedback, two for indoor and two for outdoor environment. Figure 4-6 shows 

the temperature sensors used in the prototype. These temperature sensors require a 

ground and a 2.7 to 5.5 VDC. The sensors provide a voltage output that is linearly 

proportional to the Celsius temperature. The output voltage is read on the Vout pin and 

can be converted to temperature easily using the scale factor of 10 mV/°C. They also 

don’t require any external calibration to provide typical accuracies of ±1°C at +25°C and 

±2°C over the −40°C to +125°C temperature range.  
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Figure 4-6 Temperature sensor 
 

Breadbord 

A breadboard is the perfect base for electronics prototyping. It is solderless which 

makes it easy to create temporary prototypes and experiments with circuit design. It also 

simplifies the circuit design by reducing the number of jumper wires required. The 

breadboard selected is displayed in Figure 4-7. It has 2 power buses, 30 columns, and 10 

rows – a total of 400 tie in points. 

 

 

Figure 4-7 Breadboard 
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Jumper Wires 

Two types of jumper wires are used in the circuit design. These are 155mm long male 

to male and male to female jumpers. The left side of Figure 4-8 displays the male to male 

jumpers whereas the right side displays the male to female ones used.  

 

  

Figure 4-8 Male to male and male to female jumper wires 
 

Stages of Prototype Assembly 

1. Firstly all elements that go into developing the prototype are laid out as seen in Figure 

4-9. These include a microcontroller (Arduino Uno), two 1k Ohm resistors, a 10k 

Ohm resistor, a diode small signal, a transistor, an LED, two screw terminals, a relay 

control board, a breadboard, a number of male to male and male to female jumpers, 

and four temperature sensors.  
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Figure 4-9 Prototype elements 
 

2. The beefcake relay control kit comes disassembled and the elements of the kit must 

be soldered to the relay control board. This assembly can be seen in Figure 4-4. Once 

the beefcake relay kit has been assembled, it is then ready to be used in the prototype. 

3. The next step is to connect the Arduino microcontroller to the breadboard. The 

Arduino has a limited amount of digital and analog input/outputs. Therefore, the 

Arduino is connected to the breadboard in order to extend the capability of the 

microcontroller while simplifying the design by reducing the number of jumper wires 

needed. The breadboard is activated by connecting the 5V positive and the ground 

from the Arduino to the breadboard with two jumper wires. Figure 4-10 displays the 

connection as well as the red and the blue wires that connect the 5V positive and the 

ground respectively.   
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Figure 4-10 Arduino-breadboard connection 
 

4. Once this step is done, the temperature sensors can now be connected to the 

breadboard. In this case, four temperature sensors are employed in the system. Two of 

these temperature sensors will be placed on the inside of the test facility and two on 

the outside. Temperature sensors have three legs: one positive leg, one negative leg, 

and the middle leg that goes to an input port on the analog side of the Arduino. In 

Figure 4-11 below one can see that for each temperature sensor a yellow jumper wire 

is used to connect the positive side to the breadboard, a green jumper wire is used to 

connect the negative side to the breadboard, and a black jumper wire is used to 

connect the temperature sensor to the Arduino. In order to display this clearly the 

jumper wires connecting the temperature sensors are kept short, but in reality these 

cables can be extended as far as needed to capture temperatures in different locations. 
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Figure 4-11 Temperature sensor connection 
 

5. The next step in the process is to connect the beefcake relay to the breadboard and the 

Arduino. Through the three port terminal on the relay, the positive and the ground are 

connected to the breadboard using red and blue jumper wires respectively. A black 

jumper wire is then used to connect the controller terminal to the Arduino. In this case 

the relay must be connected to the output side of the Arduino. This whole process is 

shown in Figure 4-12 below. 
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Figure 4-12 Beefcake relay connection 
 

6. Once this is done, the circuit is completed by connecting the load terminal on the 

beefcake relay to the negative side of the power source (in this case a 5V battery) and 

the normally open terminal port to the HVAC unit to be controlled. The positive side 

of the battery is then connected to the HVAC unit to complete the circuits. Figure 4-

13 shows the final prototype. 
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Figure 4-13 Final prototype 
 

It should be noted that the goal of the prototype developed is to validate the 

simulation results of the proposed control strategy in a laboratory environment. A more 

compact and secure structure that combines the power source, relay, and controller 

should be introduced to perform the proposed control strategy in a building energy 

management system. In the next section, a series of prototype experiments is performed 

and the experimental results are compared with the ones acquired from the simulation 

studies in the previous chapter.  

Prototype Experiments 

A microcontroller is normally designed to take control actions by implementing the 

control algorithm that is embedded into the processor core. MATLAB Support Package 

for Arduino, however, enables to run any control algorithm developed in MATLAB or 
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Simulink on a desktop/laptop while communicating with the Arduino board over a USB 

cable to execute the commands and to receive feedback for control input decisions. In 

other words, the Arduino is used as a stepping stone (secondary relay) to transfer 

information back and forth from a desktop/laptop. One advantage of using this package is 

that it allows to skip uploading the control algorithm developed in MATLAB onto the 

Arduino board which first requires converting and transferring the MATLAB code to the 

compatible software, Arduino Software. Uploading large code files may also create 

memory issues depending on the memory capacity of the Arduino board. Furthermore, it 

is much more convenient and easy to troubleshoot any issue while controlling on the 

desktop/laptop as opposed to the Arduino board. Although a desktop/laptop is employed 

to run the control algorithms by communicating with the Arduino board in the prototype 

experiments, it should be noted that in real-life environment the microcontroller is 

expected to control the entire setup without the use of the desktop/laptop. 

In the experiments, a 10 gallon glass tank with a plastic lid on the top is utilized for 

the control environment. This does not only simplify the utilization of the HVAC unit to 

be controlled, but also makes it possible to use the short-wired temperature sensors for 

both indoor and outdoor environments on the same control board. For the HVAC unit, a 

typical desktop computer fan is employed. To place the HVAC unit (fan) on the setup, a 

portion of the glass is cut out on the top of the tank. Indoor temperature sensors are also 

extended into the tank from the controller setup. Figure 4-14 and Figure 4-15 display the 

entire prototype control setup. 
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Figure 4-14 Prototype control setup top view 

 

Figure 4-15 Prototype control setup side view 
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In order to compare the proposed MPC control strategy to the two-position control in 

the prototype setup, four separate experiments are performed: two experiments for MPC 

control (one for each fixed and variable temperature set-points) and two experiments for 

two-position control (one for each fixed and variable temperature set-points). For this 

purpose, four cool summer days with similar outside temperatures are selected and the 

control setup is set in a shaded outside area. Since the HVAC unit is just a computer fan 

for ventilation only (not an actual cooling unit), cooler days are chosen so that the HVAC 

unit would be able to make a considerable impact on indoor temperature in a shorter time 

span. This is more representative of an air conditioner operation in a real house less 

dependent of outside temperature. On a hot day, the HVAC unit would constantly be 

running but still not be able to cool down the glass tank. Also the controlled environment 

is placed in a shaded area in order to avoid direct sunlight which will have a much greater 

impact on indoor temperature compared to the case of a house because of the 

transparency of glass tank.  

The thermal dynamics of the prototype control environment under the given HVAC 

unit (fan), outside temperatures, and the insulation of the setup are different than the ones 

in the simulation studies. In order to identify the parameters of the discrete-time state-

space model to be utilized in the MPC controller during the prototype experiments, data 

on the fan energy consumption in PWM format and indoor and outdoor temperatures is 

first collected by manually operating the fan at various levels. Extra attention was paid to 

conduct both data collection and experiments under similar outdoor temperature 

conditions. This data collection took two days prior to the four-day experiment. The data 

collected in the first day was used to identify the parameters of the discrete-time state-
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space model to be utilized in the MPC controller. The second day data was used to 

validate these parameters. The same procedure further discussed in the previous chapter 

is followed for both parameter identification and validation. The results show a 

considerably good agreement between the identified model and the measured validation 

data. One should also note that there is no need to utilize a nonlinear model in the 

prototype experiments, and hence there is no need to identify the parameters of this 

model, because actual feedback can already be received from the real control 

environment through temperature sensors. 

Once the parameters of the discrete-time state-space model to be utilized in the MPC 

controller were identified, the four-day prototype experiments can be initiated. During 

experiments for both MPC and two-position control strategies, a laptop with MATLAB 

software installed is employed to run control algorithms communicating with the 

prototype developed. Figure 4-16 illustrates the outside temperature data on the four days 

chosen for the experiments: the two-position control with fixed temperature set-point, the 

MPC control with fixed temperature set-point, the two-position control with variable 

temperature set-points, and the MPC control with variable temperature set-points. The 

same real-time electricity pricing data used in the simulation studies in the previous 

chapter is also used for the each of the four prototype experiment days as illustrated in 

Figure 3-13. 
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Experiment Results 

The experiments are first performed under a fixed reference (thermostat for two-

position control case) temperature set-point of 78Ԭ. The experiments are then performed 

under variable temperature set-points where the TSA algorithm is employed to assign 

reference temperature set-points for each hour of the day. The performance of the MPC 

controller is compared with the two-position control in each case. Finally, an overall 

comparison is used to show the benefits of the MPC control strategy with variable 

temperature set-points over the conventional two-position control with fixed temperature 

set-point. 

Furthermore, a േ0.5Ԭ hysteresis band (݇ ൌ 0.5Ԭሻ is considered in the two-position 

control scheme, and the inside temperature is constrained between 75Ԭ and 80Ԭ for the 

MPC controller as it is done for the simulation studies. Although a computer fan is used 

in the prototype experiments, ݍ is assumed to be 3.95kWh for calculation purposes since 

a typical residential AC unit consumes on average 3.95kW per hour. This is also used for 

a more representative cost-benefit analysis. Moreover, w is assumed to be 0.8 in the MPC 

controller similar to the simulation studies. 

Comparison with Fixed Temperature Set-Points 

In the first two days, the experiments are performed by fixing the reference 

temperature set-point in the MPC controller and the thermostat settings in the two-

position control at 78Ԭ. Figure 4-17 shows the inside temperature fluctuation and the AC 

status for both cases. 
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Similar to the simulation studies, the prototype experiment results show that the two 

position control with a fixed thermostat setting of 78Ԭ leads to a total energy 

consumption of 12.36 kWh with a total cost of $3.04. On the other hand, MPC control 

with a similar fixed reference temperature set-point consumes 11.58 kWh with a cost of 

$2.82. This means that the MPC process provides 6.3% reduction in energy consumption 

and 7.2% savings in related costs over the two-position control. The energy consumption 

and energy cost during peak hours (2:00 – 6:00 PM) for the two-position control are 6.66 

kWh and $2.05 respectively, whereas the MPC control strategy results with 6.12 kWh 

and $1.88. This implies a 8.1% and 8.3% reduction in energy consumption and cost 

respectively with the MPC process. Average indoor temperature values for two-position 

and MPC control strategies are 77.37Ԭ and 77.48Ԭ respectively. Overall, the 

experimental analysis indicates that, with fixed temperature set-points, the MPC control 

strategy is in general more advantageous, but does not yield to significant benefits. This 

is strictly parallel to the results acquired from the simulation studies. Next, the case where 

variable temperature set-points are incorporated into the control strategies is analyzed. 

Comparison with Assigned Temperature Set-Points 

In the next two days of the prototype experiments, the reference/thermostat 

temperature set-points generated by the TSA algorithm are employed in the MPC and the 

two-position control strategies. Since the same real-time electricity pricing data used in 

the simulation studies is used, the reference temperature set-points to be used in the 

prototype experiments are also the same, and could be seen in Figure 3-16. One should 

note that the same temperature range, 77Ԭ-79Ԭ, and the same temperature set-point 

interval, 0.5Ԭ (݇ ൌ 0.5Ԭሻ, are also used for temperature set-point assignment in the  
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prototype experiments. For general comparison purposes, the assigned temperature set-

points with the neutral discomfort tolerance index are used in the experiments. Figure 4-

18 shows the change of inside temperature and the AC status for both control strategies 

for the neutral consumer ሺܽ ൌ 0ሻ. 

The results of the prototype experiments show that, with a neutral discomfort 

tolerance index, two-position control with variable assigned temperature set-points 

consumes 12.54 kWh with a cost of $2.72, whereas the MPC control strategy results in 

11.76 kWh and $2.58 in cost. In this case, the MPC strategy provides an 6.2% reduction 

in energy consumption with 5.1% savings in related costs. Two-position control strategy 

consumes 5.28 kWh with a cost of $1.62 during peak hours, while MPC control strategy 

results in 4.92 kWh with a cost of $1.51. This means 6.8% and 6.8% reduction in peak 

time energy consumption and cost respectively. The average daily temperatures for two 

position and MPC control strategies were recorded as 77.35Ԭ and 77.46Ԭ respectively. 

The experiment results draw a parallel conclusion to the simulation results discussed in 

the previous chapter. It is observed that, under the MPC control strategy with variable 

temperature set-points, significant cost savings could be achieved with a negligible 

compromise in average inside temperature. Similarly, the MPC process results in 

considerably lower energy consumption compared to the two position control with 

similar average temperatures realized.  
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Overall Comparison 

Table 4-1 summarizes the overall comparison between two-position and MPC control 

strategies for both fixed and variable temperature set-points. As it can be seen in Table 4-

1, the MPC process with variable set-points offers a 4.9% and 15.1% reductions in total 

energy consumption and energy costs respectively compared to the two-position control. 

The reductions in total energy consumption and energy costs during peak hours improve 

to 26.1% and 26.3% respectively. These results validate the performance of the proposed 

MPC controller, and are in line with the simulation results discussed in the previous 

chapter. 

 
Table 4-1 Summary of the results for both control strategies 

    Energy (kWh) Cost ($) Average 
Temp 
(°F)   Method 

Peak-
hours Total 

Peak-
hours Total 

Fixed Temperature 
Set-Point (78°F) 

Two-position control 6.66 12.36 2.05 3.04 77.37 
MPC 6.12 11.58 1.88 2.82 77.48 

Variable Temperature 
Set-Point (a=0) 

Two-position control 5.28 12.54 1.62 2.72 77.35 
MPC 4.92 11.76 1.51 2.58 77.46 

 

Cost-Benefit Analysis 

After validating the advantages of the proposed MPC control strategy through a series 

of prototype experiments, a cost-benefit analysis is conducted to display the economic 

feasibility of implementing such a controller as part of a building energy management 

system. For this purpose, the average cost savings achieved by implementing the 

proposed MPC control strategy compared to the two-position control strategy were first 

quantified. Next, the total implementation cost of the proposed MPC controller is 

quantified. This includes the total cost of equipment utilized in the controller build as 
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well as the cost of labor to assemble the controller. To conclude this section, the payback 

period is calculated considering cost of prototype build and cost savings.  

Cost Savings 

To quantify the average cost savings, the cost of the HVAC unit consumption 

acquired from the prototype experiment results for the following cases are compared: 1) 

the MPC control strategy under the variable temperature set-points 2) the two-position 

control strategy under the fixed temperature set-point. One should note that the two-

position control strategy under the fixed temperature set-point is the most common 

control strategy currently employed in the thermostats in the United States. According to 

the prototype experiments, the daily cost of the HVAC unit consumption under both 

control strategies are $2.58/day and $3.04/day respectively. Therefore, the daily cost 

savings that could be achieved by implementing the proposed MPC controller would be: 

$3.04 െ $2.58 ൌ  ݕܽ݀/$0.46

This corresponds to an average annual savings of: 

$0.46 ∗ 365 ൎ  ݎܽ݁ݕ/$168

Implementation Cost 

There are two separate costs that need to be considered while quantifying the total 

cost of implementing the proposed MPC controller. The first cost that needs to be 

calculated is the total cost of equipment utilized in the MPC controller build. To do so, 

the purchase price of each piece of equipment that was used in building the prototype is 

listed, as shown in Table 4-2. It is very conservative to consider the individual purchase 

price of each piece of equipment in the cost-benefit analysis, since it will cost much less 

to purchase this equipment in bulk for mass production. 
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Table 4-2 Cost of prototype equipment 

  Cost/unit Quantity Cost 

Arduino Uno $29.95 1 $29.95 

Beefcake Relay Control Kit $7.95 1 $7.95 

Breadboard $5.95 1 $5.95 

Jumper Wires $3.95 2 $7.90 

Temperature Sensor $1.50 4 $6.00 

TOTAL $57.75 

 

Secondly, the labor cost for the assembly of the proposed controller is quantified. The 

labor cost is conservatively estimated to be $40 for building the controller. Similar to the 

equipment cost, the labor will actually cost much less for mass production. 

The overall cost of implementing the proposed MPC controller in the actual building 

environment is the summation of the equipment cost and the labor cost, and is estimated 

to be approximately $100. 

Payback Period 

Finally, the period of time required for the return on the investment of developing the 

proposed MPC controller to repay the sum of the original investment is calculated. Using 

the average annual cost savings and the cost of implementation quantified above, the 

simple payback period is calculated as follows: 

 

݀݋݅ݎ݁݌	ܾ݇ܿܽݕܽܲ ൌ 	
ݐݏ݋ܥ	݊݋݅ݐܽݐ݈݊݁݉݁݌݉ܫ

ݏ݃݊݅ݒܽܵ	ݐݏ݋ܥ
ൌ

$100
ݎܽ݁ݕ/$168

≅ ݎܽ݁ݕ	0.6 ≅  ݏ݄ݐ݊݋7݉

 

One should note that the payback period calculated above is for reference purposes. It 

is quantified considering a decent size residential house with average HVAC load 

consumption behavior. In larger buildings where there is higher HVAC consumption, the 
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savings will increase and the payback period will decrease accordingly. Also as 

mentioned earlier, it will cost much less to implement the proposed MPC controller when 

produced in large quantities. 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 

Conclusion 

In this research, a practical cost and energy efficient model predictive HVAC load 

control (MPC) strategy is proposed for buildings facing dynamic real-time electricity 

pricing. The proposed MPC strategy aims to reduce the total energy consumption and 

hence, cost of electricity for the user, while considering the thermal comfort of the 

consumers by concurrently minimizing the deviation of the inside temperatures from the 

consumer’s choice of reference temperatures. To achieve this, the model assigns 

temperature set-points (reference temperatures) to price ranges based on the consumer’s 

discomfort tolerance index and accordingly generates efficient signal actions for each 

time period for the AC unit.  

The signal action is composed of a duty cycle that represents the proportion of “on” 

time for the AC during any given time period. A parameter prediction model is developed 

for the mapping between the signal action and the inside temperature. To ensure practical 

use of the overall strategy, the prediction model is tailored for a linear approximation of 

the mapping. To determine the reference temperatures for the planning horizon (usually a 

day), an algorithm is developed for temperature set-point assignment (TSA). A 

discomfort tolerance index is defined to capture the consumer’s attitude towards thermal 

comfort in reference to cost of comfort. The TSA algorithm assigns temperature set-

points to price ranges according to this index. Both the input/output mapping and the 

produced temperature set-points serve as inputs for the proposed MPC controller, which 

is used to generate signal actions for the AC unit. 
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To investigate and demonstrate the effectiveness of the proposed approach a 

simulation based experimental analysis is first carried out using real-life pricing data. 

Then, an actual prototype is built for the proposed HVAC load control strategy and a 

series of prototype experiments is conducted similar to the simulation studies to validate 

the simulation results. In both cases, the MPC process is first compared to the 

conventional two-position control approach under fixed temperature set-point. The latter 

strategy represents the common practice in real life where the reference temperature is 

usually kept at a fixed level throughout the planning horizon. The experimental results 

indicate that while the MPC process leads to energy reduction and cost savings for the 

consumer, in general, with only load shifting under fixed temperature set-points, the 

benefits are not too promising. In the second part of the analysis, the controller employs 

the TSA algorithm to control the temperature set-points. In this case, the experiments 

reveal that with the MPC strategy, reduction in energy consumption (both for total 

electricity use and for peak time consumption) and cost savings significantly improve. 

The obtained results suggest that the proposed MPC strategy, when controlling both the 

load and the temperature set-points, allows the consumers effectively take advantage of 

the dynamic pricing and enjoy significant cost savings in electricity usage. On the other 

hand this strategy can be instrumental in facilitating an effective demand response 

framework, which enables the utility providers adopt efficient demand management 

policies using real-time pricing. 
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The key findings of the simulation studies and prototype experiments can be 

summarized as follows: 

 Under a fixed temperature set-point; 

 Simulation studies show that compared to the two-position control the proposed 

MPC strategy results in 4.6% and 4.5% savings in energy consumption and 

energy cost respectively. Furthermore, the savings in energy consumption and 

energy cost with the proposed MPC strategy are 5.8% and 5.5% respectively 

during peak hours. 

 Prototype experiments show that compared to the two-position control the 

proposed MPC strategy results in 6.3% and 7.2% savings in energy consumption 

and energy cost respectively. Furthermore, the savings in energy consumption and 

energy cost with the proposed MPC strategy are 8.1% and 8.3% respectively 

during peak hours. 

 Under variable temperature set-points with a neutral discomfort tolerance index; 

 Simulation studies show that compared to the two-position control the proposed 

MPC strategy results in 8% and 13.1% savings in energy consumption and energy 

cost respectively. Furthermore, the savings in energy consumption and energy 

cost with the proposed MPC strategy are 23.6% and 24% respectively during peak 

hours. 

 Prototype experiments show that compared to the two-position control the 

proposed MPC strategy results in 6.2% and 5.1% savings in energy consumption 

and energy cost respectively. Furthermore, the savings in energy consumption and 
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energy cost with the proposed MPC strategy are 6.8% and 6.8% respectively 

during peak hours. 

 When compared the two-position control with a fixed temperature set-point to the 

proposed MPC strategy with variable temperature set-points; 

 Simulation studies show that the proposed MPC strategy results in a 1.4% 

increase in energy consumption and a 17.5% savings in energy cost. Furthermore, 

the proposed MPC strategy results in 44.2% and 43.3% savings in energy 

consumption and energy cost respectively during peak hours. 

 Prototype experiments show that the proposed MPC strategy results in 4.9% and 

15.1% savings in energy consumption and energy cost respectively. Furthermore, 

the savings in energy consumption and energy cost with the proposed MPC 

strategy are 26.1% and 26.3% respectively during peak hours. 

A cost-benefit analysis is also performed to display the economic feasibility of 

implementing such a controller as part of a building energy management system and the 

payback period is identified considering cost of prototype build and cost savings. This 

analysis also helps the adoption of the proposed controller in the building HVAC control 

industry. 

This research has also been recently published in (Avci, Erkoc, & Asfour, 2012) and 

(Avci, Erkoc, Rahmani, & Asfour, 2013). The proposed TSA algorithm is introduced and 

discussed in (Avci et al., 2012). The MPC strategy is proposed, and the findings are 

discussed in (Avci et al., 2013). 
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Future Research 

Since the proposed MPC strategy is tailored for the energy user, its benefits could be 

best realized when a component that can effectively capture the consumer’s discomfort 

tolerance index is introduced and integrated into the controller. Such a component would 

be able to deduce the tolerance index via direct input, past usage behavior or both for a 

particular user. An interesting research extension is to develop an effective and practical 

component that can accomplish this task. 

One should also note that the control strategy discussed in this research considers the 

problem from the perspective of a single user. Another interesting future extension is the 

macro analysis of demand response of multiple users and the impact of increasing 

number of “smart energy users”, who employ the MPC mechanism, on the peak-energy 

consumption and the utility companies’ pricing strategies. 

The fact that the user preference is incorporated into the proposed control strategy in 

the form of discomfort tolerance index provides some flexibility in the duration when the 

actual consumption occurs in a large scale implementation. However, the effect of 

utilizing different discomfort tolerance indices by multiple customers on the peak-

demand reduction needs to be further studied. More specifically, by utilizing various 

combinations of discomfort tolerance indices in a community, a methodology should be 

developed to regulate and/or limit the utilization of unique discomfort tolerance index for 

an effective demand response implementation. 

Another direction of future research is through further analysis for the effect of higher 

discomfort tolerance indices on the participation on the peak-demand as compared to 

utilizing lower discomfort tolerance indices by over-cooling/over-heating the building to 
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achieve financial benefits. In other words, customers with higher tolerance indices who 

are willing to benefit from low energy prices may excessively consume energy during 

low-price period, which may shift the peak-demand to the low-price period and 

eventually lead to higher peaks as compared to the customers with lower tolerance 

indices. 

Finally, parameter identification of linear state-space model proposed for MPC 

implementation needs to be repeated as the parameters lead to less accuracy in the model 

for the following days. The frequency of parameter identification will depend on many 

variables including temperature changes in the weather, occupancy pattern in the 

building, and unexpected thermal activities. The optimal thresholds for re-calculating the 

parameters of the dynamic model of the building thermal plant to employ in the MPC 

controller need to be determined. 
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APPENDIX A 

Data Collection and Analysis 

Data Logger Software (HOBOware) 

HOBOware software is used for launching, reading out, and plotting data, making it 

easy to analyze environmental conditions recorded with HOBO data loggers and wireless 

HOBO data nodes. HOBOware can be utilized to view data, create graphs, perform 

analysis, save projects for future use, among others. The data can also be exported to 

Microsoft Excel or other ASCII-compatible programs for additional analysis. 

 

 

HOBOware software CD, USB cable, and user interface
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Temperature/Relative Humidity Data Logger (HOBO U10-003) 

The HOBO U10-003 is a two-channel data logger that records temperature and 

relative humidity with its integrated sensors. It has a 10-bit resolution and capacity for 

52,000 measurements. The logger uses a direct USB interface for launching and data 

readout by a computer. HOBOware software is required for logger operation. 

 

 

HOBO U10 Temp/RH data logger 
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External Data Logger (HOBO U12-006) 

The HOBO U12 is a data logger with four-external channels that that accept a wide 

range of onset and third-party sensors/transducers with a 0-2.5 VDC output, including 

external temperature, AC current, pressure, air velocity, and kW sensors. It has a 12-bit 

resolution and can record up to 43,000 measurements or events. The logger uses a direct 

USB interface for launching and data readout by a computer. HOBOware software is 

required for logger operation. 

 

 

 

 

HOBO U12 External data logger 
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AC Current Sensor (Onset CTV-C) 

The split-core AC current sensor is responsive over the range of 0 to 100 amps AC 

for use with HOBO U12 data loggers with external input channels. With an input current 

of AC current, sine wave, single phase 50 Hz or 60 Hz, load power factor 0.5 to 1.0 lead 

or lag. 

 

 

Onset CTV-C AC Current Sensor 
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APPENDIX B 

System Identification Data and Graphs 
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n4s3 = 
Discrete-time state-space model: 
  x(t+Ts) = A x(t) + B u(t) + K e(t) 
     y(t) = C x(t) + D u(t) + e(t) 
  
A =  
                           x1                      x2                      x3 
   x1    0.9759 +/- 2.831e+11  -0.02625 +/- 3.214e+11  0.002302 +/- 6.859e+10 
   x2   -0.1922 +/- 5.168e+12    0.4219 +/- 2.176e+12    0.3488 +/- 1.084e+12 
   x3   0.06496 +/- 1.019e+13  -0.08368 +/-  1.06e+12     0.231 +/- 2.079e+12 
  
B =  
                   OutsideTemp                DutyCycle 
   x1  0.0009866 +/- 1.076e+10   -0.03179 +/- 1.298e+11 
   x2    0.05506 +/- 1.488e+11    -0.2371 +/- 1.144e+12 
   x3     -0.125 +/- 3.844e+11   -0.08221 +/- 1.707e+12 
  
C =  
                                    x1                       x2                       x3 
   InsideTemp      26.13 +/- 2.823e+13      1.775 +/- 1.178e+13  -0.004073 +/- 4.979e+12 
  
D =  
               OutsideTemp    DutyCycle 
   InsideTemp            0            0 
  
K =  
                  InsideTemp 
   x1  0.01643 +/-  3.73e+10 
   x2   0.0312 +/- 3.417e+11 
   x3   0.0936 +/- 5.169e+11 
  
Name: n4s3 
Sample time: 15 minutes 
  
Parameterization: 
   FREE form (all coefficients in A, B, C free). 
   Feedthrough: none 
   Disturbance component: estimate 
   Number of free coefficients: 21 
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties. 
 
Status:                                           
Estimated using N4SID on time domain data "ze".   
Fit to estimation data: 90.71% (prediction focus) 
FPE: 0.01882, MSE: 0.01223                        
More information in model's "Report" property. 
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Hammerstein-Wiener model with 1 output and 2 inputs 
Linear transfer function matrix corresponding to the orders: 
  nb = [2 2] 
  nf = [3 3] 
  nk = [2 2] 
Input nonlinearity estimators: 
  For input 1: pwlinear with 10 units 
  For input 2: pwlinear with 1 unit 
Output nonlinearity estimator: poly1d of degree 5 
Loss function: 0.0060491 
Sampling interval:  1 
Estimated by PEM 
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