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ABSTRACT 
 

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SELECTIVE LASER 

MELTED SUPERALLOY INCONEL 625 

Md Ashabul Anam 

July 10, 2018 

 

Selective Laser Melting (SLM), a powder based Additive Manufacturing (AM) 

process, has gained considerable attention in the aerospace, biomedical and automotive 

industries due to its many potential benefits, such as, capability of fabricating complex 

three-dimensional components, shortened design to product time, reduction in process 

steps, component mass reduction and material flexibility. This process uses metallic 

powder and is capable of fabricating complex structures with excellent microstructure 

which make SLM not only an improvement over other manufacturing processes but also 

innovative material processing technology. Inconel 625, a nickel-based super alloy is 

widely popular in aerospace, chemical and nuclear industries. This alloy is characterized 

by having high tensile, creep and rupture strength and is widely used because of its 

excellent fatigue and good oxidation resistance properties. However, excessive tool wear 

and low material removal rate make it difficult to manufacture by conventional 

machining methods at room temperature. Selective laser melting, therefore, becomes a 
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good solution for complex Inconel 625 parts. The formation of constituent phases of this 

alloy is a function of process parameters such as local temperature, hold time at 

temperature, local cooling rate and local compositions in the melt-pool. The effect of 

each process parameter on the resulting microstructure and mechanical properties must 

be understood in order to properly control the machines and predict the properties of the 

parts being fabricated. Therefore, the aim of the research work is to investigate the effect 

of key process variables of SLM systems (the EOS M270 Powder-bed system at The 

University of Louisville) on the melting response and solidification microstructure of 

Nickel based super-alloy Inconel 625.  

The effect of processing parameters on Inconel 625 was investigated on single 

track deposits and bulk deposits. Multiple combinations of laser power and scan speed 

were used to fabricate the deposits by selective laser melting (SLM). Surface morphology 

and dimensions of the single track deposits were characterized using optical and SEM 

microscopy. To evaluate the geometrical feature of the melt pool, the cross-section of the 

single track deposits was studied. The result was then utilized to develop a process 

parameter map which is insightful to identify the optimum parameters that produce high-

density parts. Beside laser power and scan speed, scan pattern plays an important role in 

controlling microstructural features. Therefore, a careful study of scan pattern is 

important to understand microstructural evolution during SLM. In this study, two types of 

scanning pattern (Alternating and Rotating) were used to build samples of Inconel 625. 

Microstructure differences due to different scan patterns in as-built Inconel 625 samples 

were then studied in detail. In both cases, the grains were observed to grow preferentially 

in the build direction, but there were also clear effects of grain orientation differences due 
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to scan direction effects. The tensile properties were compared with respect to laser 

scanning pattern, build orientation and post-processing heat treatment. Results show that 

although different scanning pattern produces distinctively different microstructures, its 

effect on the tensile property was not significant. However, tensile property anisotropy 

was observed with respect to the build orientation. The horizontally built samples showed 

relatively higher tensile strength as compared to the vertically built samples. Although 

the tensile strength decreased after heat-treatment, it was still comparable to the standard 

wrought processed ones. Fractography on the tensile tested samples showed ductile 

fracture characteristics. Investigation on fatigue behavior of Inconel 625 by SLM process 

was performed with respect to build orientation and post-manufacturing heat treatment. 

The study revealed the anisotropic behavior of Inconel 625 where horizontally built 

samples showed superior fatigue property than vertically built samples. The lower fatigue 

lives of vertical samples are primarily because of the presence of voids and un-melted 

particles located near the surface of the samples. In general, fatigue life of Inconel 625 by 

SLM improved after heat treatment. The improvement is attributed to the formation of 

coarser grains after heat treatment. The study provides a comprehensive understanding of 

the microstructure and mechanical properties of Inconel 625 manufactured by SLM 

process which fills an immediate need of the metal AM community.  
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CHAPTER 1 

RESEARCH MOTIVATION AND PROBLEM STATEMENT 
 

Over the past decade, Additive Manufacturing (AM) has been developed from 

Rapid Prototyping industry and is becoming accepted as a manufacturing option for a 

wide range of products. AM has gained considerable attention in the aerospace, 

biomedical and automotive industries due to its many potential benefits, such as, more 

geometric freedom, shortened design to product time, reduction in process steps, 

component mass reduction and material flexibility. More and more companies are 

showing their interest as the benefits of AM are hoped to be exploited. For this to happen 

there must be considerable research into microstructure and mechanical properties of 

engineering alloys from part production through to post-process treatment such as 

finishing procedure and heat treatment.   

When using metallic powder, Selective Laser Melting (SLM), an additive 

manufacturing process, is capable of fabricating complex structures with excellent 

microstructures which make SLM not only an improvement over other manufacturing 

processes, but also innovative material processing technology [1]. The process of SLM is 

similar to the Selective Laser Sintering (SLS) process developed in the 1980’s; but 

metallic powder is utilized instead of polymers. However, the high thermal conductivity, 

propensity to oxidize, high surface tension, and low absorptivity of metal powders make 

them significantly more difficult to process than polymers [2]. 
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Inconel 625, a nickel based super alloy is widely popular in aerospace, chemical 

and nuclear industries. This alloy is characterized by having high tensile, creep and 

rupture strength and is widely used because of its excellent fatigue and good oxidation 

resistance properties. However, excessive tool wear and low material removal rate make 

it difficult to manufacture by conventional machining methods at room temperature. 

Selective laser melting (SLM) therefore becomes a good solution for complex Inconel 

625 parts. SLM involves directional solidification concepts as well as novel prospects for 

microstructure control through the development of scanning strategies or related process 

variables such as local temperature, hold time at temperature, local cooling rate and local 

compositions in the melt-pool. These features produce solidification cooling rate and 

thermal gradient phenomena which contribute to microstructure and microstructural 

architecture development and resulting mechanical properties [3, 4].The effect of each 

process parameter on the resulting microstructure and mechanical properties must be 

understood in order to properly control the machines and predict the properties of the 

parts being fabricated. 

Therefore, the aim of the research work is to investigate the effect of key process 

variables and to establish an optimum processing condition of SLM systems (the EOS 

M270 Powder-bed system at The University of Louisville) for Nickel based super-alloy 

Inconel 625. The correlation between various process parameters and mechanical 

properties of Inconel 625 has not been studied clearly. Therefore, the aim is also to 

investigate the mechanical properties of Inconel 625 and to establish a process-

microstructure-property relationship. The study will fill an immediate need of the metal 

AM community by providing a better understanding on SLM processed Inconel 625.     



3 

 

 

 

 

CHAPTER 2 

LITERATURE REVIEW 
 

This chapter provides an introduction of superalloys and a description of Additive 

Manufacturing (AM).  In particular the laser processing of Inconel 625 and Selective 

Laser melting (SLM) process are discussed. The underlying physical processes of 

solidification during laser melting are explored. Microstructure evolution during SLM 

processing of Inconel 625 and resulting mechanical properties are discussed from the 

published literature.    

2.1 Superalloys  

2.1.1 Alloy systems  

The superalloys are a class of high-temperature materials that can maintain its 

structural integrity at elevated temperatures and are used in high temperature applications 

and in corrosive and harsh environments such as gas turbine engine [5]. The development 

of superalloys started in 1940s from the frequent failure of materials in gas turbine engine 

[6, 7]. The performance of gas turbine engine increases with the increase of Turbine 

Entry Temperature (TET). This required the development of special materials that can 

retain their mechanical strength at the elevated temperature.  

There are three categories of superalloys: Iron-bases, Cobalt-based and Nickel-based 

superallys. Iron-based superalloys were developed from advances in stainless steels, 

followed by high temperature Cobalt and Nickel based alloys. All of the superalloys have 
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a special feature that is they have a common face centered cubic (fcc) crystal structure 

[8]. Superalloys do not undergo phase transformations with changing temperature and so 

any limits to their high temperature properties can be attributed to incipient melting of 

secondary phases and the dissolution of strengthening phases such as precipitates. 

Superalloys are strengthened by at least one of the following strengthening mechanisms.  

• Solid solution strengthening  

• Precipitation hardening  

• Carbides precipitates  

Superalloys are the materials those have the ability to maintain their properties 

consistently with increasing temperature and are used in many engineering application 

where the temperature is in excess of 700°C. Three attributes are often used to define 

high temperature materials [5]. 

 

1. The material must withstand significant load at homologous temperatures of 0.6 

(0.6Tm) and even approaching its melting temperature. 

2. The material must resist mechanical degradation over time at elevated 

temperatures, i.e. thermally activated, inelastic creep. 

3. The material must tolerate severe environments such as hot gases, high sulfur 

levels (i.e. highly corrosive) and the intake of seawater which promotes oxidation at 

high temperatures. 

For moderate temperatures (up to approximately 700°C) application, Fe-Ni- based 

alloys are utilized because of their lower cost, for higher temperature application above 

700°C Ni-based alloys are more suitable. The preference of Nickel over other metals is 

due to its atomic/electronic structure. For the transition metals, the melting temperature is 
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a function of atomic number where the peak in melting temperature is in the middle of 

each row of transition metal elements (V, Mo and W) and increases moving down the 

rows from the 3d to the 5d elements. This is shown in Figure 2.1(a). Moving from left to 

right in the transition metals on the periodic table also reveals a change in crystal 

structure, from body centered cubic (bcc) to hexagonal close packed (hcp) to face 

centered cubic (fcc) (Figure 2.1(b)).  

 

 
(a) 

 

 

 
(b) 

Figure 2. 1 (a) Elements' melting temperature as a function of atomic number, (b) section 

of the periodic table showing crystal structures of transition metals from bcc to hcp to fcc 

[6]. 
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An fcc structure is desirable when a more ductile and tough material is required; 

this limits the number of suitable metals. The metals with fcc structure is also preferable 

as they have the property to retain mechanical property at elevated temperature. Nickel 

meets both of these criteria by having an fcc crystal structure and stable phase. The other 

crustal structures and metals such as hcp Co, Re, Ru etc. are available but very expensive 

than Ni therefore are discounted. Tc is radioactive and Os oxide is poisonous so they are 

discounted as well.    

 
2.1.2 Physical metallurgy  

Superalloys has a very complex alloy system often containing more than ten 

alloying additions. Superalloys, however, have been studied in great detail and the effect 

of these various alloying elements has become much known. Most of the superalloys 

contain Cr, Co, Al and Ti, with small addition of Zr, S and C. Figure 2.2 shows a periodic 

table containing the common alloying elements and their role in superalloys. For 

example, Zr, B and C generally partition to grain boundary where Al, Ti and Nb partition 

to secondary phases and form precipitates.  
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Figure 2. 2 Section of the periodic table of elements showing common metals used in 

superalloys and their partitioning characteristics [6]. 

 

Typical Superalloys are made up of an austenitic Ni matrix (γ) with the following 

additions: 

1. Co, Fe, Cr, Re and W have similar atomic radii to Ni and partition to the γ phase 

and have stabilizing effect. 

2. Al, Ti, Nb, and Ta have larger atomic radii and so promote the formation of 

ordered second phases such as γ', Ni3(Al, Ti, Ta) and γ", Ni3Nb. 

3. B, C and Zr have different atomic radii compared to Ni and segregate to the grain 

boundaries of the γ matrix. 

Element 

Partitions to γ    

Element 

Partitions to γ'  

Element Partitions 

to grain boundary 

Percent difference in atomic 

diameter from nickel 

Nv 
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4. Cr, Mo, W, Nb, Ta and Ti also form carbides when present in the right 

concentrations and after appropriate processing. 

5. Cr and Mo also form Borides 

6. Co, Cr, Mo, Ru and Re provide solid solution strengthening of the matrix 

 

The typical microstructure of Superalloys contains a combination of phases, including 

the following; 

1. A continuous, solid solution, fcc matrix (γ). 

2. A coherent, fcc, L12 precipitate (γ') which acts as a strengthening phase. 

3. In Fe-Ni alloys, and those rich in Nb, a body-centred tetragonal (bct), D022 

ordered precipitate is the strengthening phase (γ"). 

4. Grain boundary carbides and borides; at carbon levels of 0.2wt% MC-type 

carbides (M=Ti, Ta, Hi) are formed which can decompose in service to M23C6 and 

M6C (M=Cr, Mo, W). 

5. Topologically Closed Packed (TCP) phases such as µ (bct Ni2Ta), σ (btc 

CrMoxNiCoy) and Laves phases (hcp Fe2Ti,Mo Ni2Nb and fcc Co2Ta). These 

often form in the service-aged condition and are generally considered detrimental 

to mechanical properties, an alloy's composition is chosen to minimize the chance 

of forming these phases. 
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Figure 2. 3 Unit cells for various common phases on superalloys [8]. 

 

 

2.1.3 The metallurgy of Inconel 625 

2.1.3.1 Physical property  

The chemical composition and the properties of the alloy 625 are presented in 

Table 2.1 and Table 2.2 respectively. 

Table 2. 1: Chemical compositions of Inconel 625 (wt.%) [9]. 

Ni Cr Mo Nb Fe C Mn Si P S Al Ti Co 

58.0 

min 

20.0-

23.0 

8.0-

10.0 

3.15-

4.15 

5.0 

max 

0.1 

max 

0.5 

max 

0.5 

max 

0.015 

max 

0.015 

max 

0.4 

max 

0.4 

max 

1.0 

max 

 

Table 2. 2: Physical properties of Inconel 625 [10]. 

Property Value 

Density 8.44 g/cm3 

Melting Point 1350 oC 

Coefficient of expansion 12.8µm/m.oC (20-100 oC) 

Modulus of rigidity 79 KN/mm2 

Modulus of elasticity 205.8 KN/mm2 
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Inconel 625 is a non-magnetic nickel-based superalloy strengthened primarily by 

solid solution hardening of refractory metals such as Mo, Nb in the austenitic FCC 𝛾 

matrix. It is also possible for this alloy to be hardened by the precipitation of metastable 

𝛾′′ (Ni3Nb) phase when annealed in the temperature range of 550-580 oC for a long period 

of time [11, 12]. This alloy has excellent corrosion resistant property and can retain its 

mechanical strength at an elevated temperature [13]. Chromium and Nickel provides 

resistance against oxidizing environment while Molybdenum and Nickel provides 

resistance in non-oxidizing environment [11, 12]. Chromium forms Cr2O3 and passivates 

the external surface which is the main reason for resistance to corrosion. The high 

ductility of Inconel 625 is responsible for its ability to withstand solidification and 

contraction after welding thereby reducing the possibility of cracking [14]. Because of its 

high temperature and corrosion resistance properties Inconel 625 is a material of choice 

for aerospace, chemical petrochemical and seawater applications. Some specific 

applications are of making gas turbine ducting, furnace hardware, combustion lines, spray 

bars etc. [12].  

2.1.3.2 Dendritic γ phase  

The solidification reaction in Inconel 625 begins with the formation of austenitic 

FCC 𝛾 phase in dendritic form. The 𝛾 matrix is enriched with Ni, Cr and Fe. As the 

matrix forms elements with higher atomic mass such as Nb and M segregates in the 

interdendritic region.  Due to the enrichment of Nb in the interdendritic liquid, Nb rich 

Laves phase and NbC are formed during the final phase of the solidification [15, 16].   
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2.1.3.3 Laves and NbC carbide formation  

The formation of Nb rich Laves phase and NbC in Inconel 625 is largely 

dependent on the alloy composition. The solidification path and the resultant 

microstructures of this alloy can be described using a pseudo ternary equilibrium diagram 

shown in figure 2.4. The phase transformation in Inconel 625 can occur in three different 

paths. For path 1 when C/Nb ratio is high, 𝛾 + NbC forms. Path 2 represents a moderate 

C/Nb ratio which leads to the formation of 𝛾 + NbC at first. Later at the end of the 

solidification this transforms into Laves phase. At a very low C/Nb ratios, solidification 

follows path 3 where Laves phase forms directly with no NbC. The formation of Laves 

phase without NbC is very uncommon and happens when the C content In Inconel 625 is 

less than 0.01% [16].     

 

 

Figure 2. 4: An extract from the pseudo-equilibrium diagram for Alloy 718 showing the 

formation of Laves phase during solidification [16]. 
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The crystal structure of Laves phase is HCP and is irregular in shapes. This phase 

contains significant amount of other alloying elements and impurities such as Ni, Cr, Mo, 

Nb, Fe, Si etc [17]. Table 2.3 gives a chemical composition of Laves phase in three 

different product forms of Inconel 625.   

Table 2. 3: Chemical compositions of Laves phase particles (at. %) from different Alloy 

625 materials [16]. 

Element Banded plate stock 

Base plate heat 

treated 48hs at 

1600°F 

6 inch GTA 

weldment 

Ni 38 41 48 

Cr 17 20 22 

Mo 23 21 12 

Nb 19 6 11 

Fe 3 5 3 

Si 6 6 4 

 

The carbides form in the grain boundaries are also irregular in shape but mostly 

blocky and dendritic Chinese script morphology. Table 2.4 shows the chemical 

composition of Carbides presents in different types of Inconel 625 products.   

Table 2. 4: Composition of NbC phase (wt. %) in different Alloy 625 materials [16]. 

Element 

GTA welds 

625 bar 

Wrought 

625 900°C/ 

1hr 

Wrought 

625 900°C/ 

100hr 

Blocky 

NbC 

Dendritic 

NbC 

Ni 0.1-4.1 2.1-4.5 2.6 - 6.7 

Cr 1.3-7.4 4.1-8.6 1.2 3.6 3.6 

Mo 4.4-13.2 6.5-17.6 2.8 20.1 4.4 

Nb 65.0-82.6 60.0-73.4 89.3 79.7 79.7 

Fe 0-0.4 0.1-0.3 - - - 

Ti - - 4.0 - - 
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Beside Niobium and Carbon, other compositions have also some effect on the 

microstructure of Inconel 625, for example, the formation of Laves phase has been 

observed to increase with the increase of Fe and Si, and therefore, lowering this two 

elements in Inconel 625 alloy can lower the amount of Laves phase which benefits in 

increasing the ductility of the alloy [18]. There is no benefits of Laves phase in the alloy. 

Carbides, provides limited strengthening by stabilizing the grain boundaries against shear 

[19]. Although it is beneficial to have carbide precipitates the concentration should be 

control to avid forming excessive amount of localized concentration and to improve 

ductility and chemical stability.     

2.1.3.4 Other precipitate phases during thermal exposures  

Various precipitates which form in Inconel 625 alloy at different temperatures and 

compositions can be described by the time-temperature-transformation (T-T-T) diagram 

(figure 2.5).  

 

Figure 2. 5: An approximate time-temperature-transformation diagram for phases 

forming at higher temperatures in Alloy 625 [16]. 

M23C6 

𝛾" 
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 The precipitation of various carbides in the grain boundary is dependent on 

temperature. At higher temperature in the range of 1600-1900oF, precipitates are mainly 

MC and M6C. M in this case is Ni, C and Mo. Between 1300-1600oF M23C6 forms in the 

grain boundary where M is mainly Cr. The shape of M6C and M23C6 carbides are blocky, 

irregular shape and precipitates in the grain boundary as separate, discrete particles [16]. 

Prolonged thermal exposure beyond 48 hours can cause the formation of Laves and delta 

particles in the temperature range of 1300-1800oF. These particles starts to form in the 

grain boundaries which already contains carbide particles. Laves has similar morphology 

to M6C and M23C6 and is difficult to distinguish. However, delta particle can be easily 

identified by its acicular morphology. Both laves and delta particles reduce ductility this 

are detrimental to mechanical properties of Inconel 625. The precipitation of 𝛾" [Ni3(Nb 

> 0.05, Ti > 0.5, Al < 0.5)], although rear can still happen in the temperature range of 

1100-1400oF with prolong thermal exposure beyond 10 hrs. Unlike Inconel 718, this 

alloy is not designed as a precipitation hardened alloy therefore the formation of 𝛾" is 

highly unexpected. The precipitation can still happen with sufficient Nb+Ti+Al in its 

composition. 𝛾" is an ordered tetragonal structure typically having plate or disk shaped 

particles [17]. 

2.2 Fundamentals of solidification  

The solidification microstructure of alloys is controlled by cooling conditions i.e. 

local solidification conditions (cooling rate, temperature gradient and crystal growth 

velocity) and by alloy composition. The resulting microstructures can be one of two basic 

types; dendritic (single phase) and eutectic (polyphase). The most relevant to this study is 

dendritic growth. 
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2.2.1 Dendrites 

The solidification of metals and alloys can occur as a planar front or cells, 

however, when a stable front breaks down dendrites are formed [20]. Cells and planar 

fronts grow anti-parallel to the heat flux in the system, whereas dendrites grow 

preferentially along specific crystallographic directions due to anisotropy in surface 

tension and attachment kinetics, for example, in cubic materials such as Ni based 

superalloys, the preferred direction is along one of the six <001> directions. Figure 2.6 

shows examples of columnar and equiaxed dendrites. 

 

 
Figure 2. 6: (a) columnar and (b) equiaxed dendrites, arrows show the x-y <100> 

direction, the z axis is perpendicular to the page. After Wang et al. [21]. The four vertical 

trunks in (a) are primary dendrite arms and similarly in (b) the larger trunks forming an 

'x'. 

 

At low solidification velocities a planar solidification front is possible, i.e. a flat 

interface with uniform temperature [22]. As the solidification velocity increases the 

diffusion of solute atoms at the interface becomes localized, this causes a composition 
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gradient ahead of the advancing front and leads to the temperature of the liquid in this 

region falling below the liquidus temperature. This means that the liquid is 

constitutionally undercooled; in this region the planar front becomes unstable and 

perturbations develop and the advancing front becomes cellular, as the velocity further 

increases the cells become unstable and dendrites are formed. This is shown 

schematically in Figure 2.7. 

 

 
Figure 2. 7: Schematic illustration showing the change in growth morphology with 

increasing isotherm velocity (a) planar, (b) and (c) Cells, (d) and (e) dendrites [24]. 

 

Columnar dendrites are a result of ‘constrained’ growth, as is the case in 

directional solidification where a heat sink is present, this means that the rate of advance 

of isotherms constrains the growing dendrites to grow at a specific velocity and forces 

them to adopt the corresponding tip undercooling. In directional growth, dendrites are 

typically arranged with primary trunks parallel to each other. The space between these is 

known as the Primary Dendrite Arm Spacing (λ1) and is a function of the local 
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solidification conditions. Grain boundaries are parallel to primary dendrites with low 

angle grain boundaries present at dendrite interfaces. 

Initially, growth of a primary arm occurs followed by branching of secondary 

arms which are perpendicular along the other <001> directions and have a spacing, λ2 

(Secondary Dendrite Arm Spacing). Ternary branching perpendicular to the secondary 

arms also occurs close to the solidification front, but these are mostly consumed during 

the growth/coarsening of secondary arms. 

During directional solidification, isotherms move due to an imposed heat flux. 

Under these conditions, thin needle-like crystals are more likely to arise than a flat planar 

front as solute redistribution is more efficient, i.e. as solute is rejected from the solid there 

is a larger volume of liquid for it to diffuse into which leads to a smaller diffusion 

boundary layer compared to that of a planar interface. 

 

2.2.2 Solidification during laser processing and welding 

The melt pool geometry plays an important role in the development of micro- and 

macro structures in welding and melting processes as this influences the direction of heat 

flux. Fluid flow in the pool affects weld penetration and also influences the solidification 

conditions; this in turn influences microstructures, segregation and porosity [23]. The 

microstructures produced by processes such as welding are complicated and difficult to 

interpret and have a profound effect on mechanical properties. Important parameters in 

the development of such microstructures are similar to casting; temperature gradient, G, 

growth velocity, V, degree of undercooling and alloy composition. G and V are vital in 

the control of grain morphology and scale of the microstructure. In the solidification 

region or fusion zone (FZ) the temperature gradient and growth velocity vary along the 



18 

 

solidification front towards the rear of the pool [24] and influences the grain morphology 

as depicted in figure 2.8. 

 

 
Figure 2. 8: Schematic diagram showing change in morphology along the fusion zone 

during welding-type processes (Rs=grain growth rate, GL =thermal gradient in the liquid) 

[23]. 

 

Microstructures are commonly interpreted by classic nucleation and growth 

theory. In welding-type solidification, the formation of the solid phase in the melt pool by 

homogeneous nucleation can be ignored as epitaxy dominates [25]. During autogenous 

welding (that is welding which does not use a filler material such as laser and electron 

beam welding) the special case of heterogeneous nucleation known as epitaxy occurs 

with virtually no barrier to nucleation. During epitaxial solidification, growth occurs by 

addition of atoms from the liquid to the adjacent solid. The ease at which epitaxy occurs 

(i.e. the kinetics of the growth process) is controlled by the solid/liquid interface structure 

on the atomic scale. 
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Additive manufacturing processes, like welding and cladding, experience 

directional solidification as the substrate acts as a heat-sink; this makes directional 

growth of the microstructure favorable and leads to columnar and even the possibility of 

single crystal deposits. 

 
 
2.2.3 Solidification of Inconel 625 laser coatings  

Microstructure forming during SLM processing of Inconel 625 is very similar to 

laser coating. During the solidification of Inconel 625 laser coating, elongated γ dendrite 

forms. Mo and Nb deplete from the core of the γ dendrite and segregate in the 

interdendritic region. Due to this segregation the molten Inconel 625 alloy usually ends 

up with γ dendrite core and Laves particles in the interdendritic regions (equation 2.2.3.1) 

[15, 18]. NbC (MC) is also a common precipitated found in the interdendritic regions of 

laser coated Inconel 625 [26, 27]. The formation of MC carbide is due to the high 

temperature exposure during laser scanning. This generally occur at around 1250oC 

(equation 2.2.3.2) and the NbC is produced at a smaller amount.  

L= γ + Laves                       (2.2.3.1) 

L= γ + NbC                         (2.2.3.2) 

The amount of Laves and NbC phases are dependent on the C, Si and Fe contents. 

NbC is generally favored by C whereas the presence of Laves is promoted by the Si and 

Fe additions [18]. 
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2.3 Additive Manufacturing  

2.3.1 Overview 

Additive Manufacturing (AM) refers to a “process of joining materials to make 

objects from 3D model data, usually layer upon layer, as opposed to subtractive 

manufacturing methodologies.” This technology has distinct advantages over traditional 

manufacturing in its capability to manufacture freeform shapes without any use of molds. 

Its synonyms include: additive fabrication, additive processes, additive techniques, 

additive layer manufacturing, layer manufacturing, and freeform fabrication (ASTM 

F2792-12). The main driving force behind the growth of additive manufacturing in recent 

years is the transformation of these techniques from fabrication of prototypes to rapid 

tooling (RT) and rapid manufacturing (RM) of end-use components [28]. 

 

Figure 2. 9: The eight stages of the AM process [2]. 
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2.3.2 Classification 

Additive Manufacturing (AM) technologies have been improved, re-innovated 

and extended tremendously since the idea of layer-by-layer fabrication from a CAD 

model was first developed in the 1970s [2, 29]. There are seven major categories of AM 

technologies according to the ASTM classification as shown in table 2.5. The table also 

summarizes the materials that different AM technologies are able to process and 

examples of companies that produce AM machines worldwide. AM technologies are 

categorized mainly by the mechanism of processes and each classification has been 

divided into several other processes according to the materials and/or energy source. 

Metal and polymers (including photopolymers) are widely used materials in AM. As 

shown in table 2.5, AM is being utilized all over the world, with the United States and 

Europe as the main pioneers. 

Table 2. 5: The Seven AM Process Categories by ASTM F42 [30].  

 

Process Type Materials Brief Description 
Related 

Technologies 
Companies 

Powder Bed 

Fusion 

Metals, 

Polymers 

Thermal energy 

selectively fuses regions 

of a powder bed 

Electron beam 

melting (EBM), 

selective laser 

sintering (SLS), 

selective heat 

sintering (SHS), 

and direct metal 

laser sintering 

(DMLS) 

EOS 

(Germany), 

3D Systems 

(US), 

Arcam 

(Sweden) 

Directed 

Energy 

Deposition 

Metals 

(Powder/ 

Wire) 

Focused thermal energy 

is used to fuse materials 

by melting as the 

material is being 

deposited 

Laser metal 

deposition (LMD) 

Optomec 

(US), POM 

(US) 
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Material 

Extrusion 
Polymers 

Material is selectively 

dispensed through a 

nozzle or orifice 

Fused deposition 

modeling (FDM) 

Stratasys 

(Israel), Bits 

from Bytes 

(UK) 

Vat Photo-

polymerization 

Photopoly

mers 

Liquid photopolymer in a 

vat is selectively cured 

by light-activated 

polymerization 

Stereolithography 

(SLA), digital light 

processing (DLP) 

3D Systems 

(US), 

Envisiontec 

(Germany) 

Binder Jetting 

Polymers, 

Foundry 

Sand, 

Metals 

A liquid bonding agent is 

selectively deposited to 

join powder materials 

Powder bed and 

inkjet head (PBIH), 

plaster-based 3D 

printing (PP) 

3D Systems 

(US), 

ExOne (US) 

Material 

Jetting 

Polymers, 

Waxes 

Droplets of build 

material are selectively 

deposited 

Multi-jet modeling 

(MJM) 

Objet 

(Israel), 3D 

Systems 

(US) 

Sheet 

Lamination 

Paper, 

Metals 

Sheets of material are 

bonded to form an object 

Laminated object 

manufacturing 

(LOM), ultrasonic 

consolidation (UC) 

Fabrisonic 

(US), Mcor 

(Ireland) 

 

 

2.3.3 Metal-based AM 

Metal-based AM system can be broadly categorized in terms of the material feed 

stock: (i) powder bed systems, (ii) powder feed systems, and (iii) wire feed systems. 

Process description of each category can be found in table 2.5. The powder bed AM 

method is expensive but allows dimensionally more precise components to be produced. 

Laser beam powder bed AM is used for small parts with high precision, whereas the 

electron beam-powder bed AM is used for bigger and parts with rougher surface. 

However, Arc plus wire AM is an alternative cheaper technique that gives higher 

deposition rates. This technique is restricted to wider wall thicknesses and is more 

suitable for larger scale products which can be built out of chamber [31]. 
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Selective laser melting (SLM) a powder bed AM process, is the most relevant to 

this research thus requires detail analysis.  

  

2.4 Selective Laser Melting (SLM)  

As seen from table 2.5, Selective Laser Melting (SLM) is one of the processes 

under Powder Bed Fusion (PBF) and is the main interest of this research. SLM is a metal 

based PBF process and is similar to Selective Laser Sintering (SLS). A wide range of 

metals have been used in SLM, such as stainless steel alloy (e.g. PH 17-4), Titanium 

alloy (e.g. Ti-6Al-4V), Nickle based superalloy (e.g. Inconel 625, Inconel 718 etc.) etc. 

In SLM, a CAD volume model is sliced into layers of equal thickness. The SLM 

machine writes each layer onto a powder bed, where powder layers of equal thickness are 

spread by powder handling system. The laser beam gun melts specific areas that are equal 

to the cross section of the components in each section slice. Figure 2.10 shows a 

schematic representation of key components of the selective laser melting (SLM), or 

direct metal laser sintering (DMLS), process. As shown in Figure 2.10, the machine 

comprises a process chamber, an optical system with a Nd:YAG laser, and a process 

computer. The powder is spread on the retractable platform and then levelled using a 

powder wiper system. The optical system creates and positions the laser beam guided by 

an expanded fibre laser, scanner mirrors, and a focusing objective to fuse the metal 

powder by melting it locally. In such highly complex geometries can be created directly 

from 3D CAD data, fully automatically [32-35]. 
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Figure 2. 10: Schematic diagram of typical powder bed SLM system [32, 33]. 

 

If the sufficient power is applied, the powder melts and forms a liquid melt pool, 

which solidifies to room temperature rapidly and forms the final densified product. After 

the cross-section of each layer is fused by scanning, the build platform is lowered by an 

amount equal to the layer thickness of about 20 to 30 μm, and a new layer of powder is 

spread across the cross-section. This process is repeated until the final shape of the 

product is completed. The build chamber is evacuated and then filled with inert gases, 

such as argon, so that an atmosphere with low oxygen content can be maintained during 

the components building. This technique can produce parts with high accuracy with 
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better resolution, and surface quality than the Arcam electron beam machine. More 

details of the working principle of the SLM machine can be found in references [39-42]. 

2.4.1 Process parameters 

There are many different operator defined processing parameters in SLM 

processes and these vary from machine to machine and need to be adjusted according to 

many different criteria, for example the alloys being melted will have different material 

properties such as thermal conductivity and absorptivity, the part being produced could 

be thin walled or thick sectioned which will affect the resolution required and the final 

use of the part may be intolerant to porosity or certain microstructural features. 

Peng et al. [36] investigated the Direct Laser Fabrication (DLF) of nickel alloy 

samples using a blown powder system and reported the effect of laser power, beam 

velocity, powder feed rate and deposition track overlap on individual track geometry and 

part integrity. They used an orthogonal array experiment to test power, velocity and feed 

rate at three levels, however, they report their findings as a function of 'Specific Energy' 

(power/(velocity x beam diameter) in J/mm2 ). This misses the point of an orthogonal 

array which makes it possible to look at the interactions of parameters. Specific energy is 

reported often on the literature (for example by Kobryn et al. [37]) with regard to the heat 

input of a laser, the problem with this approach is that it does not account for the effect of 

different parameter combinations having the same value but notably different effects, this 

leads to a large degree of scatter in results. Peng et at. [36] showed that the specific 

energy has a positive effect on track height and width as more material is melted but also 

that there is a large increase in the remelted depth relative to the track height above the 

surface as specific energy increases which implies that with increasing power or 



26 

 

decreasing velocity there is a greater increase in penetration depth than track height for a 

given powder flow rate. They also showed that reducing specific energy below an 

optimum range of 100-200Jmm-2 causes a concave top surface of the deposit and 

conversely above this range the top surface is convex, this is undesirable as the process 

stability is linked to a flat working surface. These observations do not however take into 

account the different powder feed rates used across the experiment. 

Pinkerton et al. [38] showed that laser power has a more pronounced positive 

effect on mean layer width and powder flow rate has a larger positive effect on mean 

layer height after these two primary variables were investigated using a 2- factor, 2-level 

factorial experiment. They report that final wall height was accurate to within +/- 1mm 

along the wall. 

Work has been carried out by Zhang et al. [39] to establish how these control 

parameters affect the shape of the build; laser power, beam velocity, beam diameter, and 

powder feed rate were investigated to determine their effect on width and height of a 

simple line-build. The graphs in figure 2.11 show that increasing power, beam diameter 

and powder feed rate gives higher, wider tracks, whereas, increasing beam velocity gives 

narrow tracks which are not as high. The results of this study, while providing good 

insight into the effects of various processing parameters, do not consider the interactions 

of the different parameters. This is a fundamental problem with a 'one parameter at a 

time' approach, another is the number of tests required to gather sufficient information, 

making the experimentation process very inefficient and costly. 
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(a)                                                                     (b) 

 

   
 

 

(c),                                                                     (d) 

   
Figure 2. 11: Graphs showing the effect of beam velocity, V, laser power, P, beam 

diameter, D, and powder feed rate, Q, on deposition track height, (a) and (b), and width, 

(c) (d). [46]. 

 

2.4.2 Build quality  

Due to the use of gas atomized powder, porosity is a key defect associated with 

AM. Parts having residual porosity often incorporate the shielding gas during processing. 

It is easily avoided through control of process variables but does represent limits in 

processing window where fully dense parts are necessary, there are however potential 
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applications for porous material such as in bearings where pores act as reservoirs for 

lubricating fluid or in biomedical applications where bone- integration with prosthetics 

can be utilized. 

Kobryn et al. [40] reported varying levels of porosity in laser deposited Ti-6AI-

4V, two types of porosity were described; 'lack-of-fusion ' porosity caused by incomplete 

melting of a layer or poor bonding to adjacent and underlying material, and gas porosity, 

which is caused by entrapped gas from the delivery system or raw materials. Lack-of-

fusion pores are irregular shapes and often interconnected to form long voids 

corresponding to inter-track regions whereas gas porosity is spherical and can occur in 

any area of the deposit. According to the investigation increasing power and velocity 

resulted in less porosity; this was rationalized since lack-of-fusion pores tend to form 

when insufficient energy is available to melt the required amount of material so higher 

powers are capable of melting more material and higher velocity means that less material 

is delivered to the melt pool in a given time hence there is less material to absorb the 

incident energy for the laser. 

Wu et al. also reported that low laser powers result in increasing porosity [41], 

examples of the two types of porosity is shown in Figure 2.12. 
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Figure 2. 12: Laser deposited Ti-6-4 (a) lack-of-fusion porosity (b) entrapped gas 

porosity indicated by arrow. [48]. 

 

2.4.3 Microstructure of laser deposited Inconel 625 alloy  

 The microstructure of laser deposited Inconel 625 is significantly different than 

conventionally processed alloy. Laser deposition is characterized of having rapid cooling 

cycle which results in very fine columnar dendritic microstructure oriented in the build 

direction and the formation of non-equilibrium phases. There are numerous published 

articles on the laser coating of Inconel 625 but very few of them are on selective later 

melting of Inconel 625.   

 Dinda et al. [11] investigated on the effect of process parameters on the 

microstructural evolution of Inconel 625 during direct metal laser deposition. Their 

investigation on thin walled geometry revealed that the processing parameters strongly 

affect the geometry, microstructures and hardness of the deposited walls. They were able 

to produce crack-free walls in which the microstructure mostly consisted of columnar 

dendrites which grew epitaxially from the substrate as shown in figure 2.13. 
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Figure 2. 13: Transverse-section microstructures at different locations of an Inconel 625 

powder thin wall sample built using direct laser metal deposition technique [11]. 

 

 
Figure 2. 14: The microstructure of the horizontal section of an Inconel 625 thin wall 

sample built using direct laser metal deposition technique [11]. 

The columnar dendritic growth in the upper layer is determined by the 

microstructure of the previous layer. Partially melted grains in the previous layer acts as 
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pre-nuclei for the epitaxial growth of the cellular dendrites in the newly melted layer. A 

horizontal cross-sectional microstructure in figure 2.14 shows the typical 

equiaxed/cellulat dendrites. The authors observed the change in the dendrite orientation 

from vertical to horizontal near the top layer of the wall which they attributed to the 

change in heat flux direction in this region. 

Rombouts et al. [27] investigated on the microstructure of the laser metal 

deposited Inconel 625 and showed that the structural integrity is largely dependent on 

microstructure. They observed a very minimal amount of porosity which they identified 

were due to gas inclusion. A vertical and horizontal cross-sectional micrograph is shown 

in figure 2.15. Very fine cellular dendritic structure was observed which formed due to 

rapid solidification. 

 

 
Figure 2. 15: Cross-sections (a) perpendicular and (b) parallel to the build direction in the 

middle of Inconel 625 sample fabricated by laser metal deposition [27]. 

Mostly, other works on Inconel 625 powder laser melting focused on corrosion 

behavior investigations. In all the published works, the interdendritic regions of Inconel 

625 coatings are usually occupied by the precipitates which are rich in Mo and Nb. The 
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formation of these precipitates is due to the micro-segregation of these elements (of high 

atomic number) into interdendritic regions during the solidification of the molten alloy. 

2.4.4 Mechanical properties  

Inconel 625 is a solid-solution strengthened nickel-chromium-molybdenum alloy 

used for its high strength, fabricability (including joining), and corrosion resistance. 

Service temperatures range from cryogenic to 982°C (1800°F). The alloy is strengthening 

through the addition of niobium that acts with the molybdenum to stiffen the alloy 

matrix, and thereby, provide high strength without a precipitation strengthening heat 

treatment. The alloy resists a wide range of severely corrosive environments and is 

especially resistant to pitting and crevice corrosion. 

Literatures were found containing mechanical property data of additively 

manufactured Inconel 625. The AM processes included powder bed fusion (using lasers 

and electron beam energy sources) and directed energy deposition (using a laser energy 

source). The following is a review of these articles for the properties and conditions of 

the testing. The data is summarized and compared with conventional Inconel 625 

properties. There was no fatigue data presented in the literature for additively 

manufactured Inconel 625. 

Amato et al. presented mechanical properties for both EBM (Arcam) and SLM 

(EOS M270) of Inconel 625 [4]. The powder size was 22 μm for EBM and 20 μm for 

SLM and both were containing less than 0.4 wt% Fe. Nitrogen purge was used to inert 

the environment for SLM. EBM data was presented in both as fabricated and HIP 

condition for Z oriented bar. For SLM specimens were tested only in the hot isostatic 

pressure (HIP) condition in X, Y, and Z orientations. The HIP treatment was 4 hours at 
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1120°C under 100 MPa argon. Authors mentioned that the differences in microstructure 

constituents were likely due to the differences in processing temperature, where the EBM 

machine is preheated to 80% of the melting point, 1068°C, and the SLM machine is 

preheated to 90°C. The SLM process showed higher yield strength (YS) (SLM 0.36GPa, 

EBM 0.33GPa) and ultimate tensile strength (UTS) (SLM 0.88GPa, EBM 0.77GPa), and 

lower ductility (SLM 58%, EBM 69%) compared to EBM. The tensile properties of SLM 

material in X-Y plane were slightly superior than in the Z orientation.    

Murr et al. [42] produced nickel alloy 625 material using Electron beam melting 

(EBM) process (ARCAM S12). Individual cylinders, 20 mm in diameter and 80 mm in 

length, were produced and single tensile samples were machined from these cylinders, 

with the tensile axis in the z direction. For Z oriented bar, yield strength of 410 MPa and 

ultimate tensile strength of 750 MPa was reported. 44% of elongation was found. 

Whereas for X-Y orientation, YS of 300 MPa, UTS 590 MPa and 53% elongation was 

reported.  Essential processing conditions (energy, speed, path, preheat, environment, 

etc.) were not specified in this article; however, additional information is provided in 

Amato et al. [4] Powder and as-fabricated composition were reported. Notably, there was 

only 0.4 wt% Fe measured in the powder composition. The composition reported for the 

as-fabricated samples was measured by energy dispersive spectroscopy and does not 

agree well with the other values. Tensile samples were tested in the as-fabricated and the 

heat treated condition. The heat treatment was anneal followed by hot isostatic pressure 

(HIP). Porosity was observed in both the as-fabricated and heat treated. The yield 

strength of heat treated bar was noted 230 MPa and ultimate tensile strength of 610 MPa. 

70% of elongation was found. The measured strength properties in both the as-produced 
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and HIP’ed condition were below typical wrought properties, while ductility exceeded 

wrought minimums. 

Yadroitsev, et. al. produced Inconel 625 deposits from which tensile samples were 

obtained [43]. The SLM equipment was a Phenix PM 100 machine and used gas-

atomized Inconel 625 powder having a particle size less than 16 μm. Rectangular 

parallelepipeds were produced in two orientations to test the Z and X-Y properties of the 

deposited material. A ‘two-zone’ scanning method was used to produce each layer, where 

the first scan fuses the tracks, and the second scan melts the spaces between tracks 

(without adding additional material). The next layer of powder is applied, the scan 

direction rotated 90 degrees, and the two-zone method repeated. Tensile samples 

machined from these blocks were tested at room temperature. Z sample showed higher 

YS (800 MPa) compared to X-Y sample (720 MPa) but lower UTS (Z: 1030 MPa, X-Y: 

1070 MPa). Elongation were found similar for both orientations (9%).    

A NASA technical report by Betts in 2011 described a Inconel 625 duct that was 

produced using EOS DMLS Process [44]. Mechanical property testing was conducted, 

but details of this testing were not provided. Testing was conducted in the Z and 45° from 

Z orientation. The YS (Z: 384 MPa, Z-45: 376 MPa) was lower than AMS specifications 

(414 MPa) and significantly lower than the EOS reference properties (650 MPa). The 

fabricated duct was engine-tested seven times (537 seconds) and showed no signs of 

degradation.  

Xue et al. [45] described an laser direct energy deposition (LDED) 

(Accufusion/National Research Council, Canada) process used to produce Inconel 625 

mechanical test samples (geometries not specified). The powder composition is reported, 
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but not the iron content. The authors note the laser was modulated with an average power 

of 20 to 300 W. No indication of heat treatment is provided. Tensile samples were tested 

in both X-Y and Z orientation. The yield strengths (X-Y: 477 MPa, Z: 518 MPa) are 

significantly greater than AMS specified value (414 MPa) but UTS value (X-Y: 744 

MPa, Z: 797 MPa) are lower than AMS UTS value (827 MPa). 

Roumbouts, et. al. described the mechanical properties of LDED processed nickel 

alloy 625 for samples built from two different block geometries, testing either the Z or X-

Y properties [27, 46]. The Z tensile sample was 10×15×100 mm (lxwxh), and X-Y 

orientation geometry was 25×100×10 mm. The scan pattern is 0/90° for alternating 

layers. The tensile yield and ultimate strength are considerably lower and the elongation 

is larger for the samples built in Z orientation compared to those built in X-Y orientation 

(Z: YS 656 MPa, UTS 1000 MPa %Elon. 24; X-Y: YS 480 MPa, UTS 882 MPa %Elon. 

36) . The tensile properties are affected both by the tensile loading orientation relative to 

the build orientation and the difference in cooling rate for the two build geometries. The 

former effect is related to the anisotropic microstructure after processing. The impact of 

build geometry on the other hand results in a coarser microstructure and different phase 

constitution, including a larger amount of carbides, in the Z oriented samples due to the 

lower cooling rate during LDED compared to the X-Y oriented samples. 

There are examples of typical mechanical properties produced by SLM and 

LDED machines available from equipment vendors. EOS reports the typical minimum 

mechanical properties for SLM (EOS M270) in the as-built and stress-relieved condition 

[47]. Typical properties are provided in as-built and stress-relieved condition. The stress 

relief was annealed at 870°C for one hour and rapidly cooled. Optomec reports the LDED 
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(Optomec LENS) nickel alloy 625 [48]. Data is reported for the X-Y and Z properties in 

the as-deposited condition. Properties for Optomec LENS L-DED as-deposited nickel 

alloy 625 exceed AMS 5666 standards for annealed nickel alloy 625 bar. In a review of 

the LDED process, Dutta et al. [49] reported data for deposited Inconel 625 which along 

with other literature value are presented in the following table. 

Table 2. 6: Mechanical property data from literature.  
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1 Xue 2007 LDED AF X-Y 477 744 48 45 

1 Xue 2007 LDED AF Z 518 797 31 45 

2 EOS 2010 SLM AF X-Y 725 990 35 122 

2 EOS 2010 SLM AF Z 615 900 42 122 

3 Betts 2011 SLM AF X-Y 384 898 60 44 

3 Betts 2011 SLM AF Z 376 883 57 44 

4 Yadroitsev 2009 SLM AF X-Y 720 1070 9 50 

4 Yadroitsev 2009 SLM AF Z 800 1030 9 50 

5 Optomec 2012 LDED AF X-Y 694 1052 33 48 

5 Optomec 2012 LDED AF Z 490 829 43 48 

6 Murr 2011 EBM AF X-Y 300 590 53 42 

6 Murr 2011 EBM AF Z 410 750 44 42 

6 Murr 2011 EBM SA+HIP Z 330 770 69 42 

6 Murr 2011 EBM SA+HIP Z 230 610 70 42 

7 Rombouts 2012 LDED AF X-Y 480 882 36 27,46 

7 Rombouts 2012 LDED AF Z 656 1000 24 27,46 

8 Amato 2012 SLM SA+HIP X-Y 380 900 58 4 

8 Amato 2012 SLM SA+HIP Z 360 880 58 4 

9 EOS 2011 SLM SR X-Y 720 1040 35 47 

9 EOS 2011 SLM SR Z 650 930 44 47 

10 Dutta 2011 LDED - Z 598 795 14 49 

11 MMPDS   
AMS 

5666 
A Z 414 827 30 57 
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Figure 2. 16: Yield strength (0.2%) in as fabricated (AF) and heat treated (HT) condition. 

 
 

 
Figure 2. 17: Ultimate tensile strength (UTS) in as fabricated (AF) and heat treated (HT) 

condition. 
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Figure 2. 18: Elongation in as fabricated (AF) and heat treated (HT) condition. 

 

There is significant variation found in the property data of additively 

manufactured Inconel 625. In general as fabricated strength is significantly higher than 

heat treated strength and most of the cases data meets AMS 5666 typical minimum value. 

X-Y oriented samples have higher strength than Z oriented sample but is opposite for 

elongation. There is very limited amount of heat treated data available which shows that 

the ductility of the alloy can be improved by heat treatment.  
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CHAPTER 3  

OBJECTIVES AND SCOPE  
 

Based on the problem statement and research objectives stated in Chapter 1 and the 

work of others, as listed in Chapter 2, the following tasks are identified. 

(i) The study begins by identifying optimum process parameters. This is done by 

conducting a novel single bead experiment where single tracks are built on top 

of rectangular pads with varying processing parameters. Morphology of the 

single beads and meltpools are analyzed using optical microscopy (OM) and 

scanning electron microscopy (SEM). Rectangular test coupons are fabricated 

with the same processing conditions are analyzed for porosity and hardness.  

(ii) The detail microstructural study is conducted and the effect of scan pattern on 

microstructural evolution of Inconel 625 are investigated. Ideal combination 

of laser power and scan speed from single bead experiment are used to build 

samples with varying scan patterns. Microstructural characterization of the 

samples are carried out using optical microscopy (OM), scanning electron 

microscopy (SEM), and Transmission electron microscopy (TEM). The 

morphology of the precipitates are obtained by TEM and their 

crystallographic structures are derived from Selected Area Diffraction (SAD) 

patterns. 
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(iii) Tensile deformation behavior of Inconel 625 by SLM is then investigated. 

Solid cylindrical specimens made by SLM is investigated for various scan 

patterns, build orientations and post-processing. The results are then 

correlated with corresponding fracture behavior. 

(iv) The fatigue behavior of Inconel 625 solid cylindrical parts fabricated by SLM 

is investigated with respect to build orientation and post-fabrication heat 

treatment. Fatigue fractography are then analyzed and correlated with 

processing variation.  
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CHAPTER 4 

THE EFFECT OF PROCESSING PARAMETERS ON 

MICROSTRUCTURES AND PHYSICAL PROPERTIES OF 

SELECTIVE LASER MELTED SUPERALLOY INCONEL 625  
 

4.1 Introduction 

 

Selective Laser Melting (SLM), a metal based Additive Manufacturing (AM) 

process which uses a high-intensity laser beam to melt and solidify successive layers of 

metal powder on top of each other [50, 51]. SLM offers several advantages compared to 

conventional production techniques, such as ability to produce complex shape, a high 

level of flexibility, a near net shape production and a high material use efficiency [52]. 

Despite the benefits, SLM is a very complicated process where the quality of the parts 

depends on a large number of processing parameters. Mechanical properties of the parts 

manufactured by SLM depends on the microstructure of the part which are controlled by 

the processing parameters. Porous defects and their morphology also influence the 

properties of SLM parts, can be controlled by the processing parameters [53].   

Recent investigations have focused on understanding the effects of processing 

parameters on the evolution of microstructure and the porosity formation in SLM. The 

effect of process parameters on structure-property relationships for iron-based powder 

[54], steel alloys [53, 55], Titanium alloys [56], and Ni-based alloys [57-59] have been 
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reported and highlighted that even minor changes in processing parameters can have 

large effects on the final part properties.  

Inconel 625, a nickel-based super alloy is well known for its superior properties 

such as high tensile, creep and rupture strength, excellent fatigue and good oxidation 

resistance. However, due to excessive tool wear and low material removal rate, this 

material is difficult to process by conventional machining methods [58]. Selective laser 

melting, therefore, becomes a possible option for fabricating complex Inconel 625 parts. 

In SLM, process parameters are known to have a significant effect on the resulting 

microstructure and mechanical properties. Therefore it is essential to understand the 

process-microstructure-properly correlation of the parts. 

In SLM, the laser beam melts the powder and solidifies a thin track of material. 

When the track deposit is repeated with a well-defined overlap, a layer is formed.  Layer-

by-layer iteration leads to part fabrication. Therefore, studying single track deposit is 

cruesial as it leads to the deeper understanding of the SLM process. This study can also 

contribute to finding a process window for processing new alloys. 

The present study is focused on the fabrication of single track deposits using varying 

laser power and scan speed. The information was then used to create a process parameter 

map and finding an optimum process parameter window. In this study, instead of a mild 

steel base plate (usual substrate in SLM), single tracks were built on rectangular pads of 

the same material which is less costly and more appropriate for the study. Also, 

depending on the substrate, thermal history can be different which can change melt pool 

shape and size. The present study also investigates the effect of laser energy by varying 

process parameters on porosity, microstructure, and hardness in Inconel 625 cubes.  
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4.2 Experimental Procedure 

4.2.1 Material specifications 

The material used in the current investigation was gas atomized Inconel 625 

powder supplied by EOS GmbH. The morphology of the powder particles was 

characterized by a Zeiss Supra 35 Scanning Electron Microscope (SEM). Size 

distribution of the particles was analyzed using a Microtrac S3000 laser-based particle 

size analyzer. The particles have a spherical shape with a homogeneous size distribution 

between 15 μm and 50 μm. SEM image in figure 1 shows the gas atomized particles. A 

high magnification image shows the microdendritic structure of the particles (figure 1 

(b)). The chemical composition of the as-built Inconel 625 sample is listed in Table 1. 

  

Figure 4. 1: (a) Scanning electron micrograph of Inconel 625 powders (b) High 

magnification image showing dendritic features 
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Table 4. 1: Elemental composition analysis of the Inconel 625 as-built deposit carried out 

using optical emission spectroscopy.  

Element As-built IN625 (Wt. %) 
UNS-N-06625 IN625 

Requirements (Wt. %) 

Aluminum 0.31 0.40 Maximum 

Carbon 0.02 0.10 Maximum 

Columbium 4.09 3.15 - 4.15 

Chromium 21.49 20.0 - 23.0  

Iron 0.68 5.0 Maximum 

Manganese 0.05 0.50 Maximum 

Molybdenum 8.34 8.0 - 10.0 

Phosphorus < 0.005 0.015 Maximum 

Sulfur < 0.005 0.015 Maximum 

Silicon 0.10 0.50 Maximum 

Titanium 0.34 0.40 Maximum 

Cobalt 0.22 ---- 

Copper 0.01 ---- 

Tungsten 0.01 ---- 

Vanadium 0.01 ---- 

Nickel Remainder Remainder 

 

4.2.2 Processing parameters  

Single track and rectangular coupons were produced using the EOS M270 Direct 

Metal Laser Sintering (DMLS) system. The EOS M270 uses a Yb-fiber laser with a 

maximum power of 200 W and a beam diameter of 100µm. For a process with fixed layer 

thickness and laser optic characteristics, the laser power, scan speed and hatch spacing 
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are three influencing energy input factors that determine the melt pool and thus 

microstructure and physical properties.  

Table 4.2 shows the various levels of laser power and scan speed which were used 

to form single track deposites on substrate pad. A schematic of pad layout with single 

bead lines are shown in figure 4.2. A single pad contains six single beads of six different 

speed levels but same power level. For 7 power levels, 7 pads were built. Therefore, a 

total of 42 single track beads were made on these pads. The single line scans were placed 

at 5 mm apart from each other. A picture of the single track deposits made on the pads is 

shown in figure 4.3. The pads were built using the default parameter sets provided by 

EOS for Inconel 625. A layer thickness was 20 µm for all the SLM builds. The process 

chamber was purged with Argon gas to avoid oxidation. Operational temperature of the 

internal chamber was fixed at 80 °C 

Table 4. 2: Factors and levels of experimental design for single beads. 

Factor Level 

Laser Power (W) 50, 75, 100, 125, 150, 175, 195 

Scan Speed (mm/s) 200, 400, 600, 800, 1000, 1200 
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Figure 4. 2: Schematic showing pad layout with horizontal single bead lines and cross-

section of laser melted track. 

 

Figure 4. 3: Photograph of the single track deposits made on pad substrate. Arrows 

indicate single track deposits. 
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4.2.3 Process of building single track on rectangular pad 

In EOS M270 machine, minimum feature can be achieved by using the support 

structure which is not possible by using direct part. In case of a line support, laser only 

scan single pass thus the thickness of the line becomes one melt-pool thickness. Utilizing 

line support structure single bead can be produced.   

To ensure a flat surface with respect to scanning surface the rectangular pads were 

built up from the baseplate as a substrate for the single bead. The outer edge of the pad 

was supported by a solid support of height 4 mm and thickness 1.5 mm. The thickness of 

the pad is 3 mm on top of the support. The total system forms a rectangular box. The 

remaining overhanging surface of the pad was supported by conventional block support. 

Figure 4.4 (a) and (b) shows different views of rectangular pad and solid support.      

 

 

Figure 4. 4: (a) Top surface of the pad with solid support. (b) Bottom surface of the pad 

showing solid support of thickness 1.5 mm. 

 



48 

 

Rectangular thin walls of dimension 15mm x 0.1mm x 0.06mm were made using 

Magics software and placed on top of the pad (figure 4.5 (a)). These are the sacrificial 

parts and only used to make single line support structure beneath the surface of these thin 

wall. Figure 4.5 (b) shows a line support which was created under the thin wall. Figure 

4.5 (c) shows an array of line support. The overhanging surface of the pad were then 

filled with conventional block support (figure 4.5 (d)). 

  

  

Figure 4. 5: (a) Sacrificial thin walls were placed on top of the pad. (b) A single line 

support beneath the sacrificial thin walled part. (c) An array of line support beneath the 

sacrificial part. (d) Conventional block support supports the overhanging region. 

 

Once the line support has been created the thin walls on top of the pad were 

deleted or put to no exposure parameter. Appropriate parameters (laser power and scan 

speed) were applied to the line support. Upon laser scanning, the line support produces a 

thin wall of width one meltpool. Therefore, in each new layer there will be a single track 

(a) (b) 

(c) (d) 
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for each line support. During the final layer, the pad parameters were set to ‘no exposure’ 

thus only single beads were exposed in a single layer of power. 

4.2.4 Microstructural characterization and porosity measurements    

Top surface and cross-section of the pads were prepared for microstructural 

analysis of single track. Top surfaces of the tracks were examined in as-built condition 

under SEM to understand laser track morphology. Cross-sections after polishing were 

etched using Kalling’s reagent (CuCl2 5 gm, Ethanol 100 ml, HCl 100 ml) and examined 

under an optical microscope.  

A 7 x 6 test matrix of 10 x 10 x 10 mm³ cubes was built using the parameters 

listed in Table 2. These samples were used in porosity measurements per ASTM E-562. 

As built top surfaces of the cube samples were examined under SEM for laser track 

morphology. These samples were then polished and examined under optical microscopy 

for porosity analysis. Later, the cross-sections of the cube samples were polished and 

etched using Kalling’s reagent for melt pool morphology. 

4.2.5 Hardness measurement  

The hardness values were measured at five locations per cube and obtained using 

Vickers indenter on a micro-hardness machine (Shimadzu HMV-G) at a load of 500 gf 

and 15s dwell time. 
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4.3 Results and discussion 

4.3.1 Surface morphology of single track 

Laser energy density strongly influences the surface morphology of the single 

bead and thus the quality of the SLM part [60]. Energy density, E (J/mm³) in SLM which 

is a measure of the averaged applied energy per volume of material during the scanning 

of a layer, can be expressed by the equation (1), where P is laser power (W), v is the scan 

speed (mm/s), h is hatch spacing (mm) and t is layer thickness (mm) [34, 61]. 

𝐸 =
𝑃

𝑣∗ℎ∗𝑡
  (1) 

The combination of laser power and scan speed has a significant influence on 

meltpool stability of the scan track [53, 55, 62]. Higher laser power and lower scan speed 

generate higher energy density on the surface. Because of the lower scan speed the 

interaction time between laser beam and materials becomes longer. The excessive amount 

of energy absorbed by the materials during this time leads to increased peak surface 

temperature of the molten pool. Higher temperature gradient results in instability in the 

solid-liquid surface, hence obtaining a scan track with fluctuating profile and segregation 

[63]. In addition, due to very high power and slow scanning speed the material might get 

superheated which may cause evaporation and mass loss of material. On the contrary, 

lesser energy is absorbed by the materials at lower laser power and higher scan speed. At 

a given power, when the speed exceeds a critical value, the elongated molten pool 

becomes more unstable and could split into fragments to attain the equilibrium shape 

driven by Plateau-Rayleigh instability [64-66].  
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Figure 4. 6: SEM micrographs of the top surface of the single track deposits produced 

using various process parameters (laser power, scan speed). 

Figure 4.6 shows SEM micrographs of the top surface of the single track deposits 

produced using various process parameters (laser power, scan speed). Under low power 
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(50 W) and low speed (200 mm/s) with a moderate energy density (125 J/mm³), the scan 

track exhibits a continuous and uniform deposit. As the scan speed increases, the energy 

density decreases and the deposit become discontinuous due to the balling effect. For 50 

W power, the discontinuity begins from 400 mm/s (E. 63 J/mm³). At the scanning speed 

of 1000 mm/s and 1200 mm/s with the power of 50 W, the energy density (20-25 J/mm³) 

was too low to form a melted track. On the other hand, under high laser power and low 

scan speed, the high incident energy causes significant melting of powder resulting in the 

wider spread of the bead deposit. With an increase in the laser scanning speed, relative 

heat loss by conduction decreases, and, the absorbed laser energy goes directly into 

fusing the material. The resulting width of the tracks become comparable to the laser 

beam diameter [67]. With further increase in scan speed (e.g. speed > 600 mm/s for 

100W and speed > 800 mm/s for 125W), the bead surface is observed to have irregular, 

more rounded shape and bulging upwards, indicating that the surface tension forces of the 

melt region were dominant due to less melt volume as dwell time of the laser was short 

[67, 68].  

4.3.2 Melt pool characterization  

In SLM, depth of the melt pool is controlled by the applied energy input from the 

laser. When the laser interacts with the powder particles the skin of the particles absorbed 

the energy and gets melted. Due to surface tension of the molten material the melted 

particles then begin to consolidate [69]. The applied energy should be sufficient enough 

to melt the top layer of the powder as well as some part of the substrate in order to create 

a good bond between melted layer and the substrate. A good melt pool has a semicircular 

cross-section where the depth of penetration is about equal to its half-width [70]. Melt 
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pools where the depth of penetration is greater than the half width is characterized as 

keyhole melting. Keyhole is detrimental in this case as it may generate porosity in the 

lower region of the melt pool. The formation of porosity in the single track deposits is 

attributed to the collapse of the keyhole. Once the laser beam (heat source) moves farther, 

the molten metal in the upper part of the keyhole moves downward to fill the keyhole due 

to gravity and surface tension. During this process, some vapor is entrapped in the lower 

region of the keyhole, and cannot escape through the melt pool due to rapid solidification 

of the bead [71].  

Figure 4.7 shows the cross-section of single track deposits observed under optical 

microscopy. The melt pool morphology can be clearly observed from the micrograph. At 

lower power levels (e.g. 50W or 75W), even with slowest speed (200 mm/s), the melt 

pools were observed to have insufficient penetration depth and balling was prevalent. In 

this case, the laser was able to melt the powder but did not have sufficient energy to melt 

the underlying solid material to form a good bond. The melt pool depth was observed to 

increase significantly for higher power levels (100 to 195W) and lower speeds. Keyhole 

shape of the melt pool was observed in samples with the power levels 125W to 195 W 

and scan speed of 200 mm/s. This parameter range showed porosity in the lower regions 

of the melt pool (figure 4.8). As the scan speed was increased, the energy density was 

reduced, which led to lesser volumes of the melted material in the base pad.  

Two unusual melt pool profiles were observed for the parameter set 195W-

400mm/s and 195W-600mm/s where depth of penetration were less than expected. This 

may be due to the fluctuation of laser power during scanning at a high power level. The 

fluctuation is expected to get higher near the maximum power level of the system which 
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is 200W in this situation. A similar scenario was observed by Gong et al. for selective 

laser melting of titanium alloy [62]. It was mentioned that the melt pool fluid dynamics at 

higher energy density could cause instability which may also leads to the inconsistency in 

melt pools.   

 

Figure 4. 7: Optical micrographs of the cross-section of the single track deposits 

produced using various process parameters (laser power, scan speed). 
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The semicircular melt pool was observed for power levels 125W to 195 W for 

medium scan speeds (600 to 1000 mm/s). This shape corresponds to the optimum depth 

of melt pools. With sufficient overlap and melt pool depth, a process window can be 

derived. Single track deposit width and depth were measured and the results are plotted in 

figure 4.9.  

 

Figure 4. 8: Metallographic cross section of single track deposit showing keyhole melting 

(a) 150W laser power, 200mm/s scan speed, (b) 195W laser power, 200mm/s scan speed.  

Pore 
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Figure 4. 9: Width and penetration depth of the single beads versus scan speed of laser 

beam for different power levels. 

The relationships between the bead width and laser power to scan speed are 

plotted in figure 4.9 (a). The results indicate that, for constant power, an increase in speed 

leads to a decrease in width which is directly associated with the fact that less volume of 

the powder was melted per unit time. Laser power shows a significant effect on the bead 

width dimensions. An increase in laser power results in an increase in the width, because 

of the increase in the energy density. Under low power levels (e.g. 50, 75, 100 W), the 

limited energy density causes insufficient melting or balling. While at higher power level 

(a) 

(b) 
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(e.g. 125W and above for all speeds) consistent beads were observed. A bead width in 

between 120 to 160 µm was noticed to be suitable for the predefined hatch spacing of 

100 µm for well-defined overlap. 

A similar effect of parameters observed for melt pool depth is presented in figure 

4.9 (b). Both laser power and scan speed have a significant effect on depth. When the 

energy density is high (power≥125W, speed≤400mm/s), deeper penetration occurs, 

penetrating from 5 to 25 layers, and causes a keyhole mode of melting. As the speed 

increases, energy density decreases, and penetration depth become shallower.  

 

Figure 4. 10: Depth to width ratio as a function of processing parameters (laser power and 

scan speed)  

A process parameter map indicating the effect of laser power and scan speed on 

the single track depth to width ratio is shown in figure 4.10. This map can help to identify 
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optimum sets of parameters that can produce parts with minimum defect. For example, it 

may be desirable to keep a higher penetration depth to form a good bond with the 

substrate, however one should avoid forming keyhole melting. Depth to width ratio 

greater than 0.6 may produce keyhole effect and thus may result in excessive amount of 

porosities. For the ratios between 0.45 and 0.6, the depth of penetration spans 2-3 layer 

thickness, which ensures proper fusion with the substrate and minimum to zero porosity.     

4.3.3 Porosity 

     Porosity is a common defect in additive manufactured parts, and can often be 

minimized by optimizing the processing parameters [53]. Numerous studies have been 

performed to understand the effect of processing parameters on the porosity of additive 

manufactured parts [72-75] but very few were performed on Inconel 625. Yadroitsev et 

al. have analyzed the effect of hatch distance on the porosity of laser melted Inconel 625 

parts [76]. Dinda et al. used a direct metal deposition technique to fabricate a series of 

Inconel 625 samples and showed that parameters can be optimized to obtain defect-free, 

fully dense parts [11]. 

Cube samples produced using various process parameters were analyzed for 

porosity. Figure 4.11 shows the as-polished cross-sections of the as-built cubes along 

with their processing parameters (laser power and scan speed). Due to excessive balling 

in the cubes with parameter 100W-200mm/s, only 1 mm of height was achieved with the 

sample. Other cubes were built successfully.  
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Figure 4. 11: Optical micrographs of the polished cross-section of the cubes produced 

using various process parameters (laser power, scan speed). The input energy density 

values are mentioned on top of each micrograph. 
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Figure 4. 12: Porosity versus input energy density. 

 Figure 4. 13: Porosity for various processing parameters (Laser power, scan speed). 
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The effect of input energy density on porosity was determined from the cubes and 

is shown in figure 4.12. It is observed that lower level of energy density (<70 J/mm3) 

provides a higher level of porosity and it achieves maximum level (14.5%) at the lowest 

energy density (21 J/mm3). At this level, the pores are broadly dispersed, irregular in 

shape and interconnected (figure 4.14a). It was also noticed that there exist large cavities 

of size around 200 µm that are filled with loosely held particles (figure 4.14 b, c). It is 

also clear from the SEM micrograph that the laser tracks are not wide enough to overlap 

with each other and particles are entrapped in between the tracks. The entrapped particles 

come from un-melted and partially melted powder particles. This situation arises due to 

the low energy density that causes insufficient melting and balling.     

Increasing energy density from 70 J/mm3 significantly decreases porosity and at 

the energy density range of 90 – 125 J/mm3 the porosity was found to achieve minimum 

(< 0.1%) (Figure 4.15 a, b). When the energy density reaches at a significant level (>90 

J/mm3) sufficient amount of overlap occur in width and depth that decreases the chance 

of leaving un-melted particles hence part density increases. 

Increasing the energy density further from 125 J/mm3 results in porosity increase. 

At this level, the sample shows rounded porosity which is a result of the keyhole effect 

during the process (Figure 4.15 c, d). Low melting elements and contaminants such as 

oxides or moisture present on the powder particles can become the source of rounded 

porosity. These contaminants can vaporize due to higher energy density. The vaporized 

gas then become entrapped and leave behind the pores [77, 78]. Beside gaseous pores, 

micro shrinkage porosity can also present in melt pools formed with higher energy 
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density as larger melt pools are more susceptible to solidification micro shrinkage 

porosity [53].  

Porosity calculated from the cubes is plotted in figure 4.13. It is observed that for 

low scanning speed (<600 mm/s), porosity is higher. This is due to the keyhole effect. On 

the other hand, for moderate scanning speed (e.g. 600 and 800 mm/s), most of the cube 

samples show very low porosity. A further increase in scanning speed, porosity increases 

again. Higher scanning speed (>800 mm/s) with laser power less than 150W produce 

insufficient energy that in turn causes shallower and thinner laser tracks and leaves un-

melted and partially melted particles.   

 

Figure 4. 14: Micrograph showing porosity. Parameter: 50W-800mm/s, E. 31J/mm3 (a) 

OM of as polished un-etched cross-section, (b) polished and etched cross-section, (c) 

SEM of top surface  
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Figure 4. 15: Optical micrographs for porosity; (a & b) 195W-800mm/s, E. 122 J/mm3 (a) 

as polished cross-section, (b) polished and etched cross-section. (c & d) 175W-200mm/s, 

E. 438 J/mm3 (c) as polished un-etched cross-section, (d) polished and etched cross-

section. 

4.3.4 Hardness 

Microhardness was measured for 42 cube samples and the values are plotted in 

figure 4.16. The figure shows the hardness values for different energy densities. Hardness 

is low at low energy but increases with increase of energy density. A higher level of 

hardness (325 – 335 HV) was observed for the energy density range of 90 – 125 J/mm3. It 

is because this level of energy density provides parts with minimum porosity. Further 

increase in energy density display a reduction in material hardness. It is also important to 

notice the deviation of hardness values at different energy range. Higher deviation was 
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observed in both lower (<70 J/mm3) and higher (>150 J/mm3) energy level whereas 

medium (70 – 150 J/mm3) energy level shows less deviation. Lower hardness value was 

observed when indenter interferes with pores (figure 4.17), while higher hardness value 

was observed when the indenter is applied on the fully dense surface. In both lower and 

higher energy levels, porosity is higher and distributed uniformly. Therefore, when 

picked randomly, there is a higher possibility that the indenter can interfere with pores, 

which yields higher deviations. For medium energy levels, parts have lower porosity, 

therefore, exhibit less deviation. 

 

Figure 4. 16: Hardness (HV) vs input energy density (J/mm3) 
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Figure 4. 17: Change in hardness value due to the indenter’s interference with porosity 

(parameter: 195 W-1200 mm/s); (a) before indentation, surface with pore, (b) after 

indentation, less hardness value due to pore (285 HV).  

 

4.4 Conclusions 

In this work, a novel method was applied to fabricate single track deposit of 

Inconel 625 on top of rectangular pad using SLM. Multiple combinations of laser power 

and scan speed were used to fabricate the tracks and their effect on the morphology of the 

deposits was studied. The single track deposits depict more realistic melt pool 

morphology compared to a single track on build plate or on a layer of powder as the 

heating/cooling profile is similar to bulk samples. It was observed that for a constant laser 

power, as the scan speed increases the width of the track decreases and loses its 

continuity, eventually resulting in balling. On the other hand, when laser power is 

increased for a certain scan speed, energy density increases and resulting in wider 

deposits. Similar to the width, the depth also decreases with an increase of scan speed and 

increases as the power increases. A process parameter map was constructed using depth 
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to width ratio. This map can help to identify optimum sets of parameter that produce parts 

with minimum defect. Analysis on bulk deposits showed a direct correlation between 

applied energy density and porosity. It was observed that parameters with both low and 

high energy density produce a significant amount of porosity. Whereas for medium 

energy level of 90 – 125 J/mm3, porosity was found to be very low (≤0.1%). Direct 

correlation between energy density and hardness was found. Hardness was low for both 

low and high energy densities due to porosity whereas for medium energy levels when 

the sample was fully dense hardness was found to be very high.      
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CHAPTER 5 

EFFECT OF SCAN PATTERN ON THE MICROSTRUCTURAL 

EVOLUTION OF INCONEL 625 DURING SELECTIVE LASER 

MELTING 
 

5.1 Introduction 

 

Selective Laser Melting (SLM) is characterized by highly localized high heat 

input for very short periods of time, which has a profound impact on the microstructure. 

SLM provides a wide range of advantages over conventional manufacturing techniques, 

but high temperature gradients and rapid solidification cause high thermal stress build-up 

and the presence of non-equilibrium phases. Orientation of grains is largely controlled by 

the heat conduction direction, thus laser scanning strategy becomes a powerful tool for 

control of grain orientation, and hence the microstructural texture.  

This chapter focuses on the analysis of different scan strategies in order to obtain 

insight into the development of microstructural texture in Inconel 625 during SLM 

processing. It has been observed that SLM is a complicated process where the evolution 

of the microstructure depends on a large number of parameters such as laser power, scan 

speed, layer thickness, and scan strategy [58]. In this research, microstructure evolution 

during SLM processing of Inconel 625 are analyzed in detail. Different types of scanning 

strategies are also investigated to understand their effects on the microstructures of 

Inconel 625.  
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5.2 Scan patterns in SLM 

 

SLM machines typically utilize one of 2 basic scan strategies for the interior 

sections of parts. These strategies are rotating scan pattern and alternating scan pattern.  

 

Figure 5. 1: Schematic of a rotating scan pattern (left) and alternating scan pattern (right).  

A schematic of these two scan patterns are shown in figure 5.1. When using a 

rotating pattern, each layer is divided into a series of parallel stripes (red dashed line in 

figure 5.1) that run across the entire length of the cross-section of any closed contour 

within a layer. Within each stripe, raster scan vectors are used (blue arrow in figure 5.1). 

During every new layer, the stripes rotate counterclockwise by ~67° compared to the 

previous layer, creating a crosshatch pattern. For alternating pattern, the stripes rotate 90° 

instead of 67° creating a 0-90-0-90 stacking sequence. 

5.3 Experimental detail 

 

Cube Inconel 625 specimens (10 x 10 x 10mm) were built in an EOS M270 

machine using both rotating and alternating scan patterns. Process parameters used in this 

experiment are: 195 W laser power, 800 mm/s scan speed, 20 µm layer thickness.  

Horizontal and vertical cross-section of the samples were polished and etched using 

Kalling’s reagent and were examined in an Olympus Optical Microscope (OM) and in a 

Zeiss Supra 35 Scanning Electron Microscope (SEM). EBSD experiments were 
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performed at the nanofab facility at the University of Utah, Salt Lake City. EBSD studies 

were carried out on the longitudinal (vertical section) of the alternating and rotating scan 

patterns test coupons. The samples were ground, polished to 1 micron finish, and then 

final polishing was done using colloidal silica for 4 h. EBSD scans were carried out on 

the polished surfaces. 

For Transmission Electron Microscopy (TEM) sample preparation, the cube 

samples were sectioned using a low speed saw to a thickness of 0.6 mm to 0.8 mm. The 

foils were then polished using SiC wet emery papers to 100 micron in thickness. The 

samples were then cut in the form of 3mm disc using a disc punch and ultrasonically 

cleaned. Final polishing was done in an automatic twin-jet electropolisher which uses two 

jets direct electrolyte flow onto the specimen, which simultaneously thins and polishes 

both sides. As the specimen is thinned and finally forms a hole at the center of the 

specimen, light is transmitted to the sensor and indicates the completion of polishing by 

an alarm.  Transmission electron microscopy (TEM) was performed in FEI Tecnai F2 

operated at 200 kV. Several TEM-based techniques, including diffraction contrast 

imaging, high-resolution transmission electron microscopy (HRTEM) and selected area 

electron diffraction (SAED) were used to analyze these samples. In addition, elemental 

analysis was also carried out using TEM-based energy dispersive X-ray spectroscopy 

(EDAX Inc). 
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5.4. Result and discussion:  

 

 

Figure 5. 2: (a) Microstructural evidence of the rotating pattern from a horizontal (XY 

plane) cross-section. (b) Melt-pool arrangement as seen from a vertical cross-section (YZ 

plane) for a rotating pattern. 

  

Figure 5. 3: (a) Horizontal cross-section showing laser tracks for the alternating scan 

pattern. (b) Melt-pool arrangement in a vertical cross-section using the alternating scan 

strategy. 

Figure 5.2 (a) shows OM of a horizontal cross section of the sample where laser 

tracks are clearly distinguishable. Multiple layer can be observed in the same image. The 

angle between laser tracks of consecutive layers was found to be 67° as illustrated in 

67ᵒ 
 

 

(a) 

 (X) 

 (Y)  

 (Y) 

  (Z) 

(b) 

(a) (b) 

300 µm 300 µm 

90ᵒ 
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figure 5.2 (a). Two stripes in the same layer, as well as their overlap are visible in the top 

left corner of figure 5.2 (a). In figure 5.2 (b), the melt-pool arrangement in the vertical 

cross-section (YZ plane) is shown. It was observed that the shapes of the melt-pools are 

quite similar (Gaussian) but their sizes are different. This is because scan vectors from 

different layers are not parallel to each other and not perpendicular to the view plane as 

well. Thus, different oblique sections of the melt-pools show different sizes. Figure 5.3 

shows the etched horizontal and vertical cross section of a sample built using alternating 

pattern. Stripes rotate 90° in every new layer and creates an alternating hatch pattern. The 

melt-pool arrangement is clearly visible in figure 5.3 where the angle between laser 

tracks of two consecutive layers were 90°. 

SLM is characterized by highly localized heat input for a very short period of time 

leading to a rapid solidification as the melt pool undergoes liquid to solid 

transformations. This may result in formation of non-equilibrium phases and changes in 

general microstructural features. Finer cellular dendritic structures evolve due to high 

cooling rates compared to conventional manufacturing processes [3, 4, 32, 79-81]. In 

addition, cellular/dendritic structures, and thus grain structures, are also controlled by 

microstructures formed at the boundaries of previously solidified layers (figure 5.4). 

Although the mechanism of grain growth is highly complex and influenced by many 

variables, local heat conduction direction plays an important role in determining the 

orientation of grains. 

Temperature gradient is the highest along the midline of the scan track and at the 

back of the moving melt pool, and decreases radially [82]. Thus grains tend to grow in 

this direction (figure 5.4). However, due to overlap, major portions of laser tracks and 
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their grains remelt during subsequent scanning. Due to the fast cooling conditions, the 

grains grow epitaxially toward the center of the new melt pool [34, 83, 84]. Based upon 

these conditions, the orientation of grains is thus highly dependent on the scanning 

velocity and scanning strategy. Consequently, the scanning strategy can become a 

powerful tool to control the grain orientation, and hence the microstructural texture [34, 

50, 85, 86]. 

 

  

 

 

 

 

 

 

Figure 5. 4: (a) SEM image of a horizontal (XY) section showing cellular/dendritic 

growth (red arrows) towards the center of the scan track (white arrow), (b) vertical (YZ) 

section showing radial growth of cellular dendrites. Clear melt-pool boundaries are 

observed which has an effect on grain size and orientation. 

Thijs et al. [34] studied different scan strategies for Ti-6Al-4V and found that 

grains grow preferentially in the build direction (figure 5.5). They reported that elongated 

grains are parallel to each other and are tilted at an angle 19ᵒ away from building 

direction for unidirectional scan patterns, whereas for bidirectional scan patterns grains 

have a herringbone pattern. For a grid-like pattern, the grains were found to be equiaxed 

(figure 5.5 b). 

(b) (a) 
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Figure 5. 5: Orientation of elongated grains scanned with: (a) unidirectional scan vectors, 

and (b) alternating hatch scan vectors. View plane: Side view (YZ plane), Material: Ti-

6Al-4V [34] 

Similar phenomena were observed for Inconel 625. For a rotating scan strategy 

which rotates 67ᵒ for every new layer, more refinement of cellular/dendritic structures 

occurs due to maximum overlap in the melt, thus creating more equiaxed grains. Figure 

5.6 shows optical microscopy of equiaxed grains oriented in the build direction (Z). 

                                        

Figure 5. 6: Orientation of elongated equiaxed grains (dark and white regions) formed 

due to the rotating pattern, which grow preferentially in the build direction (z) indicated 

by arrows across multiple layers. 

Z 

(a) (b) 
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Despite epitaxial solidification, melt pools are still distinguishable due to the 

appearance of dark bands in optical microscopy (white bands in SEM) (figure 5.7). These 

dark bands are more noticeable when more energy is applied. The dark contrast which 

distinguishes these bands arises due to precipitation enhanced in Nb and Mo which is 

preferentially etched [3, 4, 12, 87, 88]. EDS analysis was done for this identification and 

is shown later in this chapter. 

 

  
 

  

Figure 5. 7: (a) Optical microscopy showing a vertical section of Inconel 625 where melt 

pools are distinguishable due to the appearance of dark bands. (b) Horizontal section 

showing dark band region. (c) SEM image showing the same section as ‘a’ but magnified 

to illustrate that SEM white regions represent optical microscopy dark bands. (d) High 
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magnification SEM image of a horizontal section showing the cross–section of a single 

dendrite where the white region is formed due to segregation of Nb and Mo.   

 

 

 

 

 

 

 

 

 

 

Figure 5. 8: SEM image showing vertical cross-section (YZ plane) of Inconel 625 sample 

built using (a) Rotating pattern and (b) Alternating pattern. Arrows in the right section in 

‘b’ show alternating scan directions. 

Figure 5.8 (a) shows a typical polished and etched SEM micrograph of the 

vertical cross-section of an Inconel 625 part built using a rotating pattern. It can be 

observed from the micrograph that the grains have grown epitaxially and there is grain 

continuity across multiple melt pools in the build direction. The columnar grains show 

cellular and dendritic sub-structure. It can also be observed that there is noticeable 

segregation (bright regions) within the intercellular and inter-dendritic arm spacing. 

Intercellular spacing is less than 1 μm (figure 5.9) which provides excellent strength and 

hardness that can be achieved both in the as processed and aged conditions. 

Z 

Melt-pool boundary Inter-meltpool coarse structure 
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Z 

b

. 

a. 

Melt-pool boundary 

Z 



76 

 

Figure 5.8 (b) shows a typical polished and etched SEM micrograph of the 

vertical cross-section of an Inconel 625 SLM sample using an alternating scan pattern. 

The microstructural features show epitaxial grain growth from the melt. The grains show 

columnar morphology with a cellular/dendritic sub-structure. The individual cell/dendrite 

boundaries are illuminated by segregation of elements during solidification into the inter 

cell/ dendritic arm spacing. There is also grain continuity across multiple melt pools, 

which is also common for multipass welds of this alloy.  For alternating scan patterns, the 

elongated columns were found to have shorter length compared to rotated stripe patterns.  

Another distinguishable feature is that regions of coarse columnar structure 

appear in between melt pools in figure 5.8 (b). These regions are less refined. Refinement 

in columnar structure is done by laser re-melting which is reported by several authors 

[32, 89]. Melt-pool depth for this experiment is approximately 60 μm, which influences 

three layers. Therefore, overlap and remelting become a common phenomenon in SLM 

processing. Alternating patterns leaves significant amount of inter-meltpool regions 

which are not overlapped and less heat affected, thus providing coarse cellular structures 

and orientation mismatch. For rotated stripe patterns, higher overlap and thus finer 

cellular structure is found.  
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Figure 5. 9: SEM image showing intercellular spacing less than 1 μm for a rotated stripe 

scan pattern in (a) vertical and (b) horizontal sections, which provide excellent strength 

and hardness. 

EBSD studies were carried out on the vertical and horizontal sections of the 

alternating and rotating scan patterns. Figure 5.10 represents a comparison of Inverse 

Pole Figure (IPF) map obtained from the vertical cross-section of rotating and alternating 

scan pattern. The result shows that columnar grains grow in the build direction for both 

scan pattern, however, for rotating pattern finer grains were observed.    

     

Figure 5. 10: IPF maps of the vertical cross-section of samples built using (a) alternating 

and (b) rotating scan pattern 

Z 

X 

Y 
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 Figure 5.11 shows the IPF map, IPF texture plot, grain boundary map and 

unique grain color map of the horizontal cross section of the alternating scan pattern 

sample. It can be observed that grain size and shape are not uniform and they a have very 

wide range of grain diameters. The IPF texture plot shows the {001} orientation of the 

majority of the grains. The grain boundary misorientation map reveals the fraction of 

high and low angle boundaries in the region of interest. Most of the grain boundaries 

were of low angle, 64%, and rest being high angle boundaries. The unique grain color 

map reveals the individual size and shape of the grains in the horizontal section. In this 

map each grain is assigned a unique color adjacent to the other grains. The grains are 

arranged in such a way that the laser scan tracks can also be observed in the 

microstructure of IPF maps, though not immediately apparent. The dotted lines on the 

IPF map indicate the laser scan paths during SLM. The width of the scan track was 

around 100 μm. 
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 IPF map       Grain boundary misorientation map  

          

 IPF texture plot    Unique grain color map 

 

Figure 5. 11: EBSD results on the alternating scan pattern horizontal cross section of the  

SLM processed Inconel 625 sample in an as-fabricated condition. 

Scan  

track 
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          IPF map               Grain boundary misorientation map 

      

 IPF texture plot    Unique grain color map 

 

Figure 5. 12: EBSD results on the rotating scan pattern horizontal cross section of the 

SLM processed Inconel 625 sample in an as-fabricated condition. 

 Figure 5.12 shows the IPF map, IPF texture plot, grain boundary map and 

unique grain color map of the horizontal cross section of the rotating scan pattern in as 

built condition. The EBSD results in the case of rotating scan pattern also shows the 

{100} orientation of grains. These results were similar to the observations made in the 

above case of horizontal cross-section of alternating scan pattern. Comparison of EBSD 
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micrograph in horizontal cross-section revealed the finer grain size for rotating scan 

pattern than alternating. Also, the misorientation for rotating scan pattern is found less 

compared to alternating scan pattern. 

TEM micrograph (low magnification and high magnification) in Figure 5.13 of 

the Inconel 625 sample shows a large number of fine carbide particles of the order of 50-

100 nm. These fine sized carbides were observed primarily in the inter-dendritic arm 

regions of the matrix. The carbides were observed to collate into longer sized particles. 

The dendritic arm width was in the range of 0.5 to 1 µm.  

 

   

Figure 5. 13: TEM micrograph showing coarse carbide particles precipitated in the inter-

dendritic regions of the SLM built sample. 
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Figure 5. 14:  TEM micrograph showing dislocation network in the matrix along with 

fine carbides. 

  

Figure 5. 15: TEM micrograph showing connected network of carbide particles. 

Corresponding SAD pattern showing diffraction spots from the carbide particles. 

TEM micrograph presented in Figure 5.14 shows matrix with dislocations and 

carbide particle. There was no evidence of the presence of strengthening precipitates in 
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the matrix. Figure 5.15 shows the network of collated carbides and corresponding SAD 

pattern (carbides). 

 
 

Figure 5. 16: STEM image of the matrix region with carbide particles and corresponding 

EDS analysis of a typical carbide particle. 

 

Chemical composition analysis of the microstructural constituents 

was investigated by the method of STEM–EDX (STEM, FEI Tecnai F20, FEGTEM) 

operating at 200 kV and equipped with an Energy Dispersive X-ray Analyzer. Fig. 5.16 

shows the EDS spectrum collected from the carbide particles. The carbides were found to 

be rich in Nb and Mo. These particles closely confirm NbC and MoC. 
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Figure 5. 17: BSE image of a vertical (YZ) cross-section at two different magnifications. 

The samples were also observed in the BSE mode in SEM. The BSE imaging 

mode gives the atomic number contrast of elements in the microstructure under 

observation. The BSE SEM micrograph of the vertical cross section further confirms the 

segregation of elements in the inter cell/dendritic arm regions (figure 5.17).  

 

5.5 Summary 

 

Two types of scan patterns were analyzed in detail using schematics as well as 

optical and SEM microscopy for Inconel 625 samples fabricated using selective laser 

melting. A rotating pattern which uses raster scan vectors and which rotates 67° for every 

new layer creates a crosshatch pattern. An alternating pattern, on the other hand, rotates 

90°, thus creating 0-90-0-90 alternating building blocks. 

In SLM, local thermal gradients inside the melt pool are the most important factor 

for determining microstructure. The heat conduction direction, based upon scan pattern, 

plays an important role in determining the orientation of grains. Solidification occurs in a 

cellular/dendritic fashion with the growth direction preferably oriented towards the center 

of the melt pool. However, due to overlap, major parts of each solidified track remelts 
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and the grains grow epitaxially towards the center of the new, adjacent melt pool. 

Microstructures of previously solidified layers also control the direction of 

cellular/dendritic growth.  

Noticeable amounts of segregation within the intercellular and interdendritic arms 

spacing were observed. Intercellular spacing is less than 1 μm, which contributes to the 

excellent strength and hardness that can be achieved both in as-processed and aged 

conditions. These cells are not individual grains but constitute a substructure inside one 

grain. 

Grains grow epitaxially and there is grain continuity across multiple melt pools in 

the build direction. However, for an alternating pattern, the elongated columns are found 

to have shorter length compared to a rotated stripe pattern. 

Difference in cellular structure were observed in alternating patterns. Inter-

meltpool regions are less overlapped and less heat affected, thus resulting in coarse 

cellular structures which may have an affect hardness and strength of SLM built Inconel 

625 part.  
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CHAPTER 6 

TENSILE PROPERTIES OF INCONEL 625 MANUFACTURED 

BY SELECTIVE LASER MELTING  
 

6.1 Introduction 

 

Inconel 625 is well known for its superior properties such as high tensile and 

rupture strength, excellent fatigue and oxidation resistance. However, this alloy is 

difficult and very costly to process by conventional manufacturing process due to 

excessive tool wear and low material removal rate [58, 90]. Furthermore, when the design 

of the part become very complex it become impossible to fabricate the part using the 

conventional manufacturing techniques. Selective laser melting (SLM) becomes a 

possible solution for fabricating complex metal part. SLM an additive manufacturing 

process which uses a high intensity laser to melt metal powder and build a part layer by 

layer directly from CAD model [50]. Though SLM offers many benefits over 

conventional manufacturing, such as the ability to produce complex shape, a high level of 

flexibility, near net shape production and a high material use efficiency, it still has some 

challenges to overcome [52]. SLM is characterized by highly localized heat input for a 

very short period of time which produce high thermal stress and the formation of non-

equilibrium phases and porosity [57]. The unique microstructure and porosity both have a 

significant effect on the resulting mechanical property of the parts. In addition to the 

microstructure, the “stair-case effect” and the “balling effect” are also reported to have 
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significant effect on mechanical properties[91]. Although numerous studies have been 

reported on mechanical properties of SLM processed Titanium [84, 92, 93] and 

Aluminum alloys [94-96], very few were performed on Inconel 625. Previous studies on 

the mechanical testing of as-built Inconel 625 parts made by SLM showed the influence 

of build direction on tensile properties [4]. The tensile strength of Inconel 625 part 

fabricated by SLM was reported to be higher than the strength of wrought product due to 

the elongated columnar grains. However, the ductility was lower [43]. In this chapter, the 

tensile deformation behavior of Inconel 625 are investigated. Solid cylindrical parts made 

by SLM are investigated for various scan patterns, build orientations and post-processing. 

The results are then correlated with corresponding fracture behavior.  

  

6.2 Experimental detail 

 

Inconel 625 gas atomized powder supplied by EOS GmbH was used in this study. 

Morphology of the powder was characterized using a Zeiss Supra 35 Scanning Electron 

Microscopy (SEM). Powder particle size distribution was carried out by a Microtrac 

S3000 laser-based particle analyzer. The particle was found to exhibit spherical shape 

with a homogeneous size distribution between 15 µm and 50 µm. However, SEM 

micrograph revealed some larger particles are having smaller satellite particles attached 

(figure 6.1). Higher magnification of the SEM shows the typical micro-dendritic structure 

of particles produced during atomization (figure 6.1 (b)). 
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Figure 6. 1: SEM micrographs of Inconel 625 powder particles. 

Direct metal laser sintering machine EOS M270 equipped with 200W Nd:YAG 

fiber laser with a was used to fabricate the test samples. Process parameters used for 

building the sample are laser power 195 W, scan speed 800 mm/s, layer thickness 20 µm 

and hatch spacing 100 µm. Two types of scan patterns, rotating and alternating, were 

used. The build chamber was maintained at a pressure of 35 mbar above atmosphere with 

a constant supply of high purity argon. Total 36 cylindrical tensile specimens were 

fabricated in three different orientations, horizontal (0°), vertical (90°) and inclined (45°). 

After removing from the support structure, half of the specimens were heat treated at 

1038°C for 1 hour in an argon-filled furnace for solutionizing followed by water quench. 

The details of the experimental design are given in table 6.1. The cylindrical samples 

were then machined in the gauge section to form the dog-bone shaped tensile specimens. 

The gauge sections of the specimens were then hand polished with 1200-grit sandpaper.   
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Figure 6. 2: CAD model and samples built for tensile testing in three different 

orientations. 

Z 
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Table 6. 1: Build plan for tensile test specimens 

Scan Pattern Post Process 
Build 

Orientation 
Replicates 

Rotating 

As built 

Horizontal 3 

45° Inclined 3 

Vertical 3 

Heat treated 

Horizontal 3 

45° Inclined 3 

Vertical 3 

Alternating 

As built 

Horizontal 3 

45° Inclined 3 

Vertical 3 

Heat treated 

Horizontal 3 

45° Inclined 3 

Vertical 3 

 

Tensile testing was carried out on an Instron 5569A test machine with a 50kN 

capacity following ASTM E8M standard. The tensile fracture surfaces were examined 

using a FEI Nova Nano-scanning electron microscope equipped with an energy 

dispersive spectroscope (EDS) analysis system. Metallographic samples were prepared 

from the specimens for optical micrography and SEM using standard metallographic 

sample preparation methods. The polished samples were etched with Kalling’s reagent. 

 

6.3 Results and discussion 

 

All of the 36 tensile tested samples (18 as-built and 18 heat treated samples) failed 

after a considerable amount of necking in the gauge length of the specimens. 

Representative stress-strain curves are shown in figure 6.3, and Table 6.2 summarizes the 

obtained results. Section 6.3.1 compares the effect of scan pattern where tensile samples 

built with rotating and alternating scan pattern in various build orientating are discussed. 
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Section 6.3.2 describes the effect of the build orientation and post-processing heat 

treatment on the tensile behavior of the specimens, respectively, and Section 6.3.3 

discusses the fracture characteristics of the samples.  

Table 6. 2: Summary of the tensile test result. 

Scan 

Pattern 

Post Process Build 

Orientation 

YS (MPa) 

[Offset 

0.2%] 

UTS 

(MPa) 

% Elongation 

Rotating As built Horizontal 915 ± 14 1250 ± 3 40.0 ± 1.2 

45° Inclined 930 ± 18 1225 ± 8 38.8 ± 2.3 

Vertical 845 ± 18 1121 ± 7 41.0 ± 0.4 

Heat treated Horizontal 695 ± 6 1140 ± 12 47.7 ± 0.7 

45° Inclined 740 ± 24 1150 ± 20 49.8 ± 1.9 

Vertical 615 ± 42 1030 ± 1 52.5 ± 1.1 

Alternating As built Horizontal 928 ± 10 1300 ± 6 41.2 ± 3.3 

45° Inclined 930 ± 18 1277 ± 11 38.5 ± 1.3 

Vertical 825 ± 5 1100 ± 2 41.7 ± 0.6 

Heat treated Horizontal 719 ± 6 1192 ± 6 46.7 ± 0.4 

45° Inclined 710 ± 19 1150 ± 37 49.2 ± 2.9 

Vertical 650 ± 2 1012 ± 4 51.0 ± 1.3 

 

 

Figure 6. 3: Stress-strain curve showing build orientation effect (left) and post-processing 

effect (right). 
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6.3.1 Scan patterns 

Inconel 625 samples built using the two types of scan pattern were etched and 

observed under optical microscope. Figure 6.4 shows a horizontal cross-section of the 

samples where the laser tracks in multiple layers are clearly distinguishable. The angle 

between the laser tracks of two consecutive layers were measured to be 67° for rotating, 

and 90° for alternating pattern respectively.     

 

Figure 6. 4: Micrographs showing laser tracks for rotating pattern (left) and alternating 

pattern (right). 

Microstructural change due to scan pattern variation can be observed in figure 6.5. 

From the vertical cross-section of the samples, the epitaxial growth of the elongated 

columnar structure can be observed, which continued across multiple melt pools in the 

build direction. For alternating scan pattern, the columnar structure was shorter in length 

compared to rotating pattern. Intercellular arm spacing was very fine (<1µm) for both 

cases which contribute to the excellent tensile strength. Another distinguishable feature is 

the presence of coarse structure in the inter-melt pool region for alternating scan pattern. 

This section is not overlapped and thus less refined [32, 97]. These inter-meltpool region 
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undergoes incipient melting and develops a network of undesirable interdendritic phase 

which may have a negative effect on material strength.      

 

Figure 6. 5: SEM image showing vertical cross-section (YZ plane) of Inconel 625 sample 

built using (a) rotated stripe pattern and (b) alternating block pattern. Arrows in the right 

section in ‘b’ show alternating scan directions. 

Tensile samples built with rotating and alternating patterns were tested and the 

results are plotted in figure 6.6 and 6.7. Figure 6.6 shows the YS and UTS of heat treated 

samples fabricated with alternating and rotating scan pattern. Figure 6.7 shows the 

percent elongation at failure data for alternating and rotating scan pattern both in as built 

and heat treated condition. Both as-built and heat treated samples were evaluated with 

respect to scan pattern variation. For as-built condition, the 0.2% yield strength (YS) and 

ultimate tensile strength (UTS) were high for all three orientations. This can be attribute 

to the extremely fine cellular/dendritic structure resulted from the very high cooling rate 

[98]. Both YS and UTS for all of the samples exceed the typical wrought product 

minimum values specified in AMS 5666 [99]. However, there is no statistically 
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significant difference in strength was found due to scan pattern variation in any of the 

build direction. The microstructural difference caused by the scan pattern variation may 

not significant enough to cause any noticeable change in strength in this small cross-

sectional area. The effect, however, may become significant for larger gauge cross-

sectional area. The geometrical effect is present in additively manufactured parts which is 

reported by other authors [100]. It may also possible to find statistical significance for a 

higher number of sample size by reducing standard deviation. For heat treated samples, 

although the strength reduced significantly, there was no significant difference due to 

scan pattern variation. All samples exhibited an elongation at failure greater than typical 

minimum values reported in AMS 5666 and ASTM F3056 [99, 101]. Similar to the 

strength data, no significant difference was found due to scan pattern variation in both as 

built and heat treated condition in any of the three build orientations.  

  

 

Figure 6. 6: Comparison of the tensile strength of samples fabricated with rotating and 

alternating scan pattern in different build orientations. The left figure shows results for 

as-built condition and the right figure for heat treated condition. 

As Built Heat Treated 
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Figure 6. 7: Comparison of elongation of samples fabricated with rotating and alternating 

scan pattern. 

6.3.2 Build orientation and post-processing 

Anisotropy of tensile property for SLM process has been investigated extensively 

in recent years. Previous investigations on anisotropic behavior for Titanium and 

Stainless steel alloys revealed that material tensile property varies depending on build 

orientation, where vertically built sample showed more ductile property than horizontally 

build sample [92, 100, 102-104]. Similar behavior was observed in this analysis. 

Cylindrical tensile samples were built in three orientations: horizontal (0°), inclined (45°) 

and vertical (90°) and the tensile test results are shown in figure 6.8. The results show a 

strong evidence of anisotropic tensile behavior in both as-built and heat treated samples. 

For horizontally (0°) built sample, highest level of yield strength (YS) and ultimate 

tensile strength (UTS) are observed. The strength reduces as the orientation angle 

increases. Although the vertical samples exhibit the lowest strength among the three 

orientations, the YS and UTS were still higher than the typical wrought Inconel 625 

minimum values found in AMS 5666 and in ASTM F3056 [99, 101]. Figure 6.8 also 
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shows the percentage elongation at failure. Significant differences in ductility were found 

among samples built in three different orientation for both as built and heat treated 

conditions. All of the samples exhibited elongation greater than the minimum value 

found in AMS 5666 and ASTM F3056. Vertical (90°) samples showed the most ductile 

behavior. After the heat treatment, the ductility increased for all of the samples. The 

anisotropy still exists after the heat treatment.      

 

                   

                                                                                                                     

Figure 6. 8: Tensile property of Inconel 625 processed by SLM at different build 

orientation.  
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Many of the researchers attributed the change of mechanical property to the 

porosity in additively manufactured parts. Two main types of pores exist within the SLM 

metal parts: gas entrapment pores which are generally rounded in shape and, the lack-of-

fusion pores which are linear and sharp-angled cracks between layers. The gas present in 

the powder bed may dissolve in the molten pool during the fusion process which may get 

entrapped because of the high cooling rate and forms the first type of pores. The lack of 

fusion pores occurs when the molten pool cannot fully encompass the spaces intended to 

be melted thus leaving a thin flat crack perpendicular to the build direction or between 

neighboring tracks. This type of pores was reported to have bigger sizes than the gas 

entrapped pores and more detrimental effect on the tensile properties [100]. In this study, 

the tensile sample built in vertical orientation has a higher number of layers than the 

horizontally built sample, thus can be expected to have a higher possibility of developing 

random lack of fusion pores. The tips of the pores introduce local stress concentrations 

during the loading and therefore result in early fracture of the parts especially for 

vertically build part [102]. Both types of porosity can be reduced by carefully selecting 

the process parameters. Proper laser power, scan speed, and scan pattern can be chosen to 

have a melt pool to melt at least 2-3 layers of the substrate to avoid the keyhole effect 

[57, 105].  

Optimum process parameters for Inconel 625 identified in the earlier work were 

used to build the test specimen. Samples were checked for porosity using Archimedes 

method and image processing. The results show that the samples have very low pore 

volume fraction of less than 0.01%. The pores were mainly formed by gas entrapment 

and exhibit very fine and round morphologies. Therefore, it could be concluded that the 
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underlying reason for anisotropic behavior in this study was mainly due to the anisotropic 

microstructure of Inconel 625 samples. Figure 6.9 shows a cross-sectional micrograph 

from EBSD under as-built condition where different grains are shown in different colors. 

It is observed that the grains are elongated and oriented towards the build direction. It is 

also noticed that some grains are large enough to traverse multiple melt-pools. The grain 

boundary and interdendritic arm spacing are reported to have a large amount of 

segregation with enhanced precipitation of Nb and Mo. The formation of these 

precipitates is due to the micro-segregation of these elements (of high atomic number) 

into interdendritic and grain boundary regions during the solidification of the molten 

alloy [3, 4, 12, 57, 105]. It is well documented that there are mainly two types of phases 

presents in grain boundary: the Laves phase (Ni, Cr, Fe)2 (Nb, Mo, Ti) and carbide 

particles (MC) [5, 15, 26, 81, 106]. These phases are less ductile compared to the γ 

matrix and tend to reduce elongation by providing a preferential site for crack initiation 

and propagation [16, 81, 106, 107].  

The build orientation dependency of elongation and strength can be understood by 

analyzing the relationships between the loading direction and the grain orientation. The 

fracture characteristics of differently oriented sample is described in figure 6.10. For a 

horizontally built sample, the grain boundary is perpendicular to the applied load and 

therefore, subjected to Mode I opening failure. A possible tensile fracture line drawn 

along the grain boundaries of the microstructure of the horizontal sample indicates that 

the fracture surface should be less corrugated, and the material should undergo relatively 

little plastic deformation. On the other hand for the vertically built sample, the grain 

boundaries are nearly parallel to the loading direction. In this case, a large portion of the 
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boundaries are not subjected to Mode I fracture failure. A possible fracture line indicating 

a more tortuous crack path and therefore, more corrugated fracture surface profiles. As a 

result, the sample are expeted to exhibit more ductility than horizontal sample. Analysis 

on fracture tensile surface is discussed in section 6.3.3. 

 

Figure 6. 9: Color grain map of a vertical cross-section of Inconel 625 sample fabricated 

by SLM process. Arrow indicates the build direction. 

 

Figure 6. 10: Schematic showing the direction of the tensile load relative to the grain 

orientation for samples built in three different orientations. 
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A comparison of microstructure between as-built and heat treated condition is 

shown in figure 6.11. In both micrographs, the build direction is vertical. The as-built 

microstructure in figure 6.11 (a) exhibits elongated cellular dendritic structure in which 

the melt pool boundaries are clearly observed. After the heat treatment, the 

microstructure become homogenized, which eliminated the melt-pool boundaries and 

dendritic structure (figure 6.11 (b)). The microstructure primarily consisted of NiCr grain 

structure with intergranular precipitates. The presence of laves particles is reported in the 

precipitates [4]. During the heat treatment, a large amount of Laves particles dissolved 

and formed needle-like δ (Ni3Nb) precipitates at the grain boundary [4]. The presence of 

δ precipitates in the grain boundary is beneficial for improving ductility [106]. The 

recrystallized microstructure retains some original elongated grains oriented in build 

direction. This is because of the low diffusivity of the large Nb atom which results in 

poor dissolution of Laves particle. However, an exposure to a very high temperature can 

increase the dissolution of Laves particles in this alloy [107].     

 

Figure 6. 11: Vertical cross-section of Inconel 625 samples, (a) microstructure in as-built 

condition, (b) microstructure after heat treatment. The arrow shows the build direction. 

(a) (b) 
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The effect of heat treatment can be clearly distinguished by the tensile test data 

presented in figure 6.8. It is observed that both YS and UTS reduce significantly after the 

heat treatment. This is because of the recrystallization of the columnar grains and the 

change of precipitates. However, the reduced YS and UTS values are still higher than the 

typical wrought Inconel 625 minimum values found in AMS 5666 and in ASTM F3056 

[99, 101]. Figure 6.8 also shows the comparison in ductility after heat treatment. It is 

observed that the loss of yield strength due to heat treatment involves an increase of 

ductility even though the anisotropy is maintained. The anisotropy is mainly due to the 

elongated grain that still presents after the heat treatment.      

  

6.3.3 Fractography 

The fracture surfaces of Inconel 625 tensile samples built in three different 

orientations were analyzed. Both as-built and heat-treated samples were considered. 

Examination of the fracture surfaces revealed the effect of microstructure on the tensile 

property of the alloy. Figure 6.12 shows the representative fractograph of an as-built 

horizontal (0°) sample. It is clear from the overall view of the fractograph that the sample 

exhibit comparatively flat and smooth fracture surface. Figure 6.12 (b) shows the 

presence of sharp and smooth cleavage fracture as well as the dimple ductile fracture 

indicating a mixed mode of ductile and brittle failure mechanism in the horizontally build 

sample. Microvoid can be seen in figure 6.12 (c). These voids coalesce due to the plastic 

deformation of the material between them [91]. For Inconel 625 the microvoids initiate 

from the Laves/matrix interface, and sometimes the Lavis particles can be found inside 
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the dimples [106, 107]. Figure 6.12 (d) shows the fine but shallow dimple structure which 

is an evidence of low ductility of horizontally built parts.  

The fractography of the vertically built sample tested in as-built condition is 

shown in figure 6.13. A rougher surface compared to horizontally built sample was 

observed, which illustrates the more tortuous fracture line described earlier. A large 

number of microvoids, as well as some grain boundary cracks, are noticeable in figure 

6.13 (b), which indicates the presence of the intergranular fracture mechanism. Some of 

the voids are found to be on the path of grain boundary crack. These voids likely acted as 

either crack initiation sites or faciliated crack propagation. A higher magnification of 

such crack initiator is shown in figure 6.13 (c). Fine dimple structure is observed (figure 

6.13 (d)), but unlike the horizontal sample,  the dimples are deeper which indicates a 

more ductile nature of the vertically built sample.      
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Figure 6. 12: Tensile fracture surface of horizontally (0°) built Inconel 625 sample tested 

in as-built condition, (a) overall view showing a smooth flat surface, (b) cleavage fracture 

with a ductile dimple structure, (c) magnified view showing microvoid, (d) fine and 

shallow dimple structure. 
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Figure 6. 13: Tensile fracture surface of vertically (90°) built Inconel 625 sample tested 

in as-built condition, (a) overall view showing a rough surface, (b) a ductile dimple 

structure with microvoids and grain boundary cracks, (c) magnified view showing 

microvoid, (d) fine dimple structure with microcracks. 

Figure 6.14 and 6.15 show the fractographs of the sample tested after heat 

treatment. A smooth and flat fracture surface morphology was observed for the horizontal 

(0°) heat treated sample (figure 6.14 (a), (b)) which is quite similar to the surface 

observed in as-built condition, except that fewer microvoids were noticed after heat 

treatment. Grain boundary  secondary cracks were noticeable in figure 6.14 (c). The high 

magnification image also shows very fine dimple structure indicating high ductility of the 
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heat treated sample. Fractographs of the heat treated vertical samples are shown in figure 

6.15. The sample has a ductile cup-and-cone feature similar to as-built sample. However, 

the sample is seen to exhibit less rough surface charactierstics as well as less number of 

voids compared to as-built sample, which is due to the recrystallization of the elongated 

grain structure that provides higher levels of ductility among the samples.    

 

Figure 6. 14: Tensile fracture surface of horizontally (0°) built Inconel 625 sample tested 

in heat treated condition, (a) overall view showing a smooth flat surface, (b) small 

number of microvoids can be seen, (c) magnified view showing grain boundary crack, (d) 

fine and shallow dimple structure. 
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Figure 6. 15: Tensile fracture surface of vertically (90°) built Inconel 625 sample tested 

in heat treated condition, (a) overall view showing a rough surface, (b) a ductile dimple 

structure with microvoids, (c) magnified view showing microcracks, (d) fine dimple 

structure. 

Fracture surfaces from samples built in inclined (45°) orientation are shown in 

figure 6.16. Figure (a), (b) and (c) are from a sample tested in as-built condition and (d), 

(e) and (f) are from a heat-treated sample. From the image, one distinguishable 

characteristics is the formation of shear lips which is inclined at an angle to the tensile 

loading direction (figure 6.16 (a), (d)). Elongated shear dimples were found in the shear 

lips (figure 6.17). This is due to the inclined orientation of the grain relative to loading 
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direction. Both as-built and heat-treated samples have relatively less rough surface and 

showed less ductility compared to the vertical (90°) sample. Microvoids and grain 

boundary cracks were seen in the as-built inclined sample (figure 6.16 (b)), which also 

reduce after the heat treatment (figure 6.16 (e)). In both cases, fine dimple fracture 

characteristic is present, (figure 6.16 (c) and 6.16 (f)) which indicates good ductility.     

 

Figure 6. 16:Tensile fracture surface Inconel 625 sample built in inclined (45°) 

orientation. (a), (b), and (c) are from a sample tested in as-built condition while (d), (e) 

and (f) are from a heat-treated sample. 
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Figure 6. 17: Elongated shear dimples were found in the share lips of as-built inclined 

tensile sample.   

6.4 Conclusion 

 

The following conclusions can be drawn from the current study: 

 

1. The tensile properties of SLM built Inconel 625 samples are comparable to or 

even better than wrought material. Microstructure analysis shows a very fine 

cellular structure which contributes to the excellent strength. Grains grow 

epitaxially and there is grain continuity across multiple melt pools in the build 

direction. For alternating pattern, the elongated columns are found to have shorter 

length compared to a rotating scan pattern. However, no statistical difference in 

tensile property was found due to scan pattern difference.   

2. The tensile properties are affected by the build orientation. The horizontal build 

orientation provides better tensile strength than the vertical or inclined tensile 

specimen. 

3. For all three orientations, tensile failure is a mix of ductile and brittle modes. 
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4. The ductility of the samples increases and strength decreases after heat treatment 

due to the recrystallization of the elongated grains. Brittle Lavis phase which acts 

as microvoid initiator dissolves after heat treatment and forms less brittle δ phase.     
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CHAPTER 7 

FATIGUE BEHAVIOR OF INCONEL 625 MANUFACTURED 

BY SELECTIVE LASER MELTING  
 

7.1 Introduction 

 

Selective Laser Melting (SLM) is an Additive Manufacturing (AM) process for 

fabricating metal parts [50, 90]. SLM is attracting considerable interest because of its 

ability to produce complex parts directly from CAD model. In this process, a thin layer of 

metal powders is scanned by a high-intensity laser beam. The scanned area of the powder 

gets melted and quickly solidifies. The powder is spread on top of the solidified layer and 

the melting process is repeated. In this way, successive layers of metal powder are melted 

until the parts are completed. The unmelted metal powder provides support to the parts. 

However, it is necessary to provide a solid support to attach the part with the rigid base in 

order to hold the part in place. The solid support also facilitates in dissipating heat thus 

reduce residual stress and distortion. SLM offers various advantages compared to 

conventional production techniques, such as the ability to produce complex shape, a high 

level of flexibility, a near net shape production and a high material use efficiency [52].  

Inconel 625, a nickel-based superalloy is well known for its superior properties 

such as high tensile, creep and rupture strength, excellent fatigue, and good oxidation 

resistance [81]. However, due to excessive tool wear and low material removal rate, this 
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material is difficult to process by conventional machining methods [58]. Selective laser 

melting, therefore, becomes a possible option for fabricating complex Inconel 625 parts.  

Though SLM offers many benefits over conventional manufacturing, it still has 

some challenges to overcome. SLM is characterized by highly localized heat input for a 

very short period of time, which has a profound impact on microstructure [57]. The high-

temperature gradients and rapid solidification cause high thermal stress build-up and the 

formation of non-equilibrium phases and porosity [91]. The unique microstructure and 

porosity both have a significant effect on the resulting mechanical property of the parts. 

Although superior tensile strength was observed compared to the wrought product, 

research on the tensile property of Inconel 625 by SLM showed the presence of 

anisotropy [108].  Horizontally built samples are reported to have higher tensile strength 

than vertically built samples [76]. The anisotropy is due to the formation of columnar 

grains and pores [109]. Although a significant amount of research has been done on the 

microstructure and the tensile property of Inconel 625, there is no study reported on their 

fatigue characteristics. On the other hand, fatigue data for wrought Inconel 625 is 

available in the Metallic Materials Properties Development and Standardization 

Handbook, (MMPDS) [110]. In the current study, the fatigue behavior of Inconel 625 

solid cylindrical parts fabricated by SLM is investigated. The experimental result is 

compared with MMPDS data. The effect of different build orientation and post-

fabrication heat treatment are studied with corresponding fracture behavior. 
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7.2 Material and experimental detail 

7.2.1. Material specifications: 

The material used in the current study was Inconel 625, a nickel-based superalloy 

in powder form. Table 1 below shows the chemical composition of the alloy. The 

morphology of the powder particles was characterized by a Zeiss Supra 35 Scanning 

Electron Microscope (SEM) and the size distribution was analyzed using a Microtrac 

S3000 laser-based particle size analyzer. The particles have a spherical shape with a 

homogeneous size distribution between 15 μm and 50 μm. Figure 1 shows the gas 

atomized powder particles. A high magnification image shows the microdendritic 

structure of the particles (figure 1 (b)). Some larger particles are seen to have satellite 

particle attached to them.  

Table 7. 1: Elemental composition analysis of the Inconel 625 as-built deposit carried out 

using optical emission spectroscopy. 

Al C Nb Cr Fe Mn Mo P S Si Ti Co Cu W V Ni 

0.31 

% 
0.02 4.09 21.49 0.68 0.05 8.34 <0.005 <0.005 0.10 0.34 0.22 0.01 0.01 0.01 Rest 

 

 

Figure 7. 1: (a) Scanning electron micrograph of Inconel 625 powders (b) High 

magnification image showing dendritic features. 
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7.2.2. Methods 

An EOS M270 direct metal laser sintering machine equipped with an Nd:YAG 

fiber laser with a maximum power of 200 W was used to fabricate the tensile and fatigue 

samples. Process parameters used for building the sample are laser power 195 W, scan 

speed 800 mm/s, layer thickness 20 µm, beam diameter 100 µm, and hatch spacing 100 

µm. The process chamber was purged with Argon gas to avoid oxidation. The operational 

temperature of the internal chamber was fixed at 80 °C.  

7.2.3. Test conditions 

For tensile, twelve cylindrical samples were fabricated in two different 

orientation; horizontal (XY) and vertical (Z – along build direction). Half of the samples 

were heat treated at 1038°C for 1 hour in an argon-filled furnace for stress relief and 

water quenched to room temperature. The gauge section of the samples was machined per 

the drawing is shown in figure 7.2 and polished with 1200-grit sandpaper. Tensile testing 

was carried out on an Instron 50 kN test machine (model: 5569A) and the tensile 

specimens were prepared as per ASTM E8M. 

 
Figure 7. 2: CAD of tensile test sample (unit: mm). 

 

For fatigue test, forty cylindrical bars were fabricated in horizontal (XY) and 

vertical (Z) direction. Similar heat treatment and machining procedure were followed as 

Z 
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tensile samples. The cylindrical bars were then machined in the gauge section to form the 

dog-bone shape of the fatigue specimen. The dimension of the fatigue sample is shown in 

Figure 7.3. Table 7.2 shows the experimental detail. The gauge sections were hand 

polished with 1200-grit sandpaper. Fatigue tests were conducted on an Instron 

ElectroPlus E10000 test machine per ASTM E466-07 at room temperature. A sinusoidal 

load with frequency 40 Hz was applied where the stress ratio was R = -1 and the 

maximum stress levels ranged between 350 to 750 MPa. Run-out of the fatigue testing 

was 107 cycles.  

The fatigue fracture surfaces were examined using a Zeiss Supra 35 scanning 

electron microscopes equipped with an EDS analysis system. Metallographic samples 

were prepared from the specimens for optical micrography and SEM using standard 

metallographic sample preparation methods.  

 

 
Figure 7. 3: CAD of fatigue test sample (unit: mm) 

 

Table 7. 2: Build plan for fatigue test specimens 

Post processing Build orientation Number of specimens 

As built 
Horizontal (XY) 10 

Vertical (Z) 10 

Heat treated 
Horizontal (XY) 10 

Vertical (Z) 10 
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7.3 Results and discussion 

 

Tensile test results of as-built and heat treated samples built in horizontally (XY) 

or vertically (Z) are presented in figure 7.4. The result indicates that build orientation and 

post-build heat treatment both have significant effect on tensile properties. Horizontal 

sample shows superior yield (YS) and ultimate tensile strength (UTS) compared to 

vertically built sample. After heat treatment, elongation increases while the YS and UTS 

value decreases.        

 

Figure 7. 4: Stress-strain curve of Inconel 625 samples with different orientations and 

post-processing 

Force-controlled high-cycle fatigue data are shown in Figure 7.5. The equivalent 

stress model (equation 1-2) was used to fit the data. Detail of the fit procedure can be 

found in MMPDS-02 section 9.6.1.4.  Figure 7.5 shows the comparison of fatigue 

performance between XY and Z samples in as-built and heat-treated conditions. The 

experimental data were also compared with wrought Inconel 625 data available in 
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MMPDS 07 [110]. The comparison shows that the majority of the tested data lies above 

the MMPDS value. The exception are some data from Z samples, which were tested at a 

higher stress level more than 550 MPa. Comparison between build orientations revealed a 

strong anisotropic behavior of SLMed Inconel 625. Superior fatigue performance of XY 

oriented sample was observed compared to the Z oriented sample in both as-built and 

heat treated conditions. This behavior is in-line with the tensile properties. In high cycle 

fatigue, resistance to crack formation and propagation is important. Material with higher 

yield strength has higher resistance to crack propagation and deformation, and thus 

provides superior fatigue properties. Higher yield strength of XY build samples therefore 

increases the fatigue performance over Z oriented samples.  

                                         log 𝑁𝑓 = 𝐴1 + 𝐴2 log(𝑆𝑒𝑞 − 𝐴4)           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

           𝑆𝑒𝑞 = 𝑆max (1 − 𝑅)𝐴3                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

Where, Nf = life of the sample, Smax = Maxium stress, Seq = equivalent stress, R = stress 

ratio, A1, A2, A3, A4 = constant. 
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Figure 7. 5: Plot of maximum stress versus cycles to failure for samples with different 

build orientations and post-processing. 

Factors such as level of porosity and orientation of the deposited layers with 

respect to loading axis play important role in the anisotropic fatigue behavior. Because of 

the higher number of layers, vertical sample, in general, has a higher chance of 

generating voids due to lack of fusion and gas entrapment. The number of layers is the 

most significant factors. It is reported by Wauthle et al. that porosity increases as the 

angle with the build direction increases. These voids act as a crack initiators and are 

responsible for premature fatigue failure. Anisotropy in fatigue performance also arises 

due to the orientation of the deposited layers with respect to the loading direction. The 

deposited layers in the vertical sample, therefore, the un-melted interlayer porosity is 

perpendicular to the loading axis. Whereas for a horizontal sample, the loading axis is 

R = -1 
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parallel to the interlayer porosity (schematically shown in figure 7.6). Thus the level of 

stress concentration, for a vertical sample is significantly higher compared to horizontal 

sample and are more likely to cause crack initiation. Consequently, horizontally built 

samples exhibit longer fatigue lives under uniaxial fatigue test. Similar phenomena were 

observed by Yadollahi at el. for additively manufactured 17-4 PH Stainless Steel [111].       

 

Figure 7. 6. Schematics representing the orientation of an un-melted region formed 

during fabrication of vertical and horizontal specimens with respect to the loading 

direction and the resultant stress concentrations [111]. 

  

Figure 7. 7: (b) SEM micrograph of a vertically built sample showing sharp angle 

porosity. (b) Interlayer sharp angle pore in fracture surface. 

10 µm 

a. b. 

30 µm 

Z 
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   A unique characteristic of additively manufactured Inconel 625 is the formation 

of elongated columnar grains along the build direction which is shown in the EBSD 

micrograph (figure 7.8). The orientation of the elongated columnar grains affect the crack 

propagation stage therefore it can be another reason for the anisotropic fatigue behavior 

of Inconel 625 [16]. The crack propagation mechanism is schematically shown in figure 

7.9. For a vertically build sample, the crack growth is perpendicular to the grain growth. 

In this case, the grain boundary spacing is very small and the crack path is tortuous. On 

the other hand, for horizontally build sample, the crack growth is parallel to the grain 

orientation. The crack growth resistance seems to be lower and a smoother crack surface 

should be observed. According to this mechanism, a fully dense vertical sample without 

any porosity should have higher fatigue life than a horizontally build sample. However, 

the test result showed in S-N curve in figure 7.5 is not in accordance with the mechanism. 

This may be due to the porosity and the defect present in vertically build sample which 

acted as the primary crack initiator which is shown in figure 7.7 and in the fractography, 

in figure 7.10. Therefore, the effect of porosity may significantly supersede the effect of 

columnar grains resulting the lower fatigue life of vertically built samples. 

 
 

Figure 7. 8: IPF map showing elongated columnar grains. 
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Figure 7. 9: Schematic showing expected crack propagation in vertical and horizontal 

sample.   

 

It is observed from the S-N curve in figure 7.5 that the heat treatment has a 

significant effect on fatigue life of Inconel 625. The XY samples tested after heat 

treatment showed improved fatigue lives compared to as-built samples. A better 

performance due to heat-treatment can be attributed to the change in microstructural 

features, grain size, and grain orientation which provides higher resistance to crack 

propagation [12].   

 

Figure 7. 10: Vertical cross-section of Inconel 625 samples, (a) microstructure in as-built 

condition, (b) microstructure after heat treatment. The arrow shows the build direction. 

a. b. 
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A comparison of microstructure between as-built and heat treated condition is 

shown in figure 7.10. The as-built microstructure in figure 7.10 (a) exhibits elongated 

cellular dendritic structure in which the melt pool boundaries are clearly observed. After 

the heat treatment, the microstructure becomes homogenized eliminating the melt-pool 

boundaries and dendritic structure (figure 7.10 b). The as-built microstructure primarily 

consisted of NiCr grain structure with intergranular precipitates (figure 7.11). It is well 

established that these precipitates contain Laves particles and carbides [15, 18, 26, 27]. 

During the heat treatment, a large amount of Laves particles dissolved and formed δ 

(Ni3Nb) precipitates at the grain boundary. The presence of δ phase in the grain boundary 

is beneficial for improving ductility [4, 106]. The formation of the coarser grains after 

heat treatment is responsible for improving the fatigue performance [4, 106, 112, 113]. In 

this case, the tip of a crack is oriented towards a large crystallographic grain boundary 

that acts as a barrier and hinders crack propagation [113]. This is why the XY samples 

showed improved fatigue lives after heat treatment.  

However, fatigue life of Z samples after heat treatment were found lower 

compared to as-built samples tested below 500 MPa. The samples in this region may 

contain defects which is responsible for shorter fatigue life. Thus, defect size and shape 

may play a more dominant role in fatigue life of vertically built samples than heat 

treatment.  
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Figure 7. 11: SEM micrographs of as-built sample: (a) vertical cross-section showing fine 

dendritic structure which provides excellent tensile and fatigue strength. (b) Horizontal 

cross-section showing dendritic structure and intercellular precipitates. 

7.4 Fractography 

 

Fracture surfaces of Inconel 625 can be generally divided by appearance into four 

areas. Figure 7.12 shows the overall appearance of an Inconel 625 fracture surface at 

different stage levels, with the initiation site marked by an arrow.  Area I is a relatively 

flat surface area at the initial stage. Area II is a distinctively rough area outside the initial 

flat area marked by dashed lines in figure 8. Area III is a wide fracture surface with radial 

stripes along the crack propagation direction, and Area IV is the final stage of failure 

where dimples were found due to overload. The four areas reflect the different stages 

during crack initiation and propagation [114, 115].  

a. b. 
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Figure 7. 12: Various areas of Inconel 625 fatigue fracture fabricated by SLM process. 

As-built XY, max stress 500 MPa failed at 1.98*106 cycles. 

 

Typically, in high cycle fatigue for Ni-based super alloys, crack initiates from the 

surface [116]. Microstructural defects such as un-melted particles, inclusions, pores etc. 

near the surface are the primary crack initiators for additively manufactured parts. These 

act as a region of stress concentration and localized plastic deformation for fracture [111, 

117]. Figure 7.13 shows two cases of Z oriented sample where low fatigue life was 

observed. In the first case, the fracture was governed by inclusions and un-melted 

particles (Figure 13.a.) whereas for the second case, fracture initiated due to pores or 

grooves (Figure 13.b.). 

 

500 µm 
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Figure 7. 13: Crack initiation in as-built vertically oriented sample: (a) Low fatigue life 

due to inclusion and un-melted particles (marked by dashed line), (As-built Z, failed at 

4.58*105 cycles); (b) Low fatigue life due to pore/groove (marked by dashed line),(As-

built Z, failed at 6.58*104 cycles). 

 

In the absence of defects, the crack can still initiate from the surface with the 

formation of micro-notches and micro-cracks due to the effect of persistent slip band 

(PSB) [116, 118]. When grains experience a state of stress/strain dislocation can move on 

the easy glide plane, resulting in the formation of thin lamellae which is called PSB. The 

profile of the grain becomes quite irregular, showing an alternation of extrusions and 

deep intrusion (figure 7.14). After the formation of PSBs, micro-cracks initiate within the 

fatigued crystal due to micro-stress concentration phenomena occurring either at the 

deepest intrusions or at the interface between the matrix and PSBs [119]. The cracks can 

propagate at an angle of approximately 45° to the applied stress and the surface [117]. A 

flat facet that can be identified as the narrow initiation zone is observed as well as a large 

fracture surface. For a sample failed in HCF the surface has wider initiation zone (figure 

7.15.b) on the other hand, a narrow initiation zone is observed for a sample with LCF 

(figure 7.15.a). In both cases the build orientation was horizontal (XY). 

50µm 20µm 

a. 
b. 
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Figure 7. 14: (a) TEM of as-built Inconel 625 showing dislocations. (b) A schematics 

showing possible micro-crack initiation sites due to PSBs [119]. 

 

    

Figure 7. 15: Crack initiation in the as-built horizontal sample (a) Narrow initiation zone 

(marked by dashed line) (As-built XY, failed at 2.40*105 cycles); (b) Wide initiation 

zone (marked by dashed line) (As-built XY, failed at 1.42*106 cycles). 

After the crack initiation in Area I, crack propagation starts at Area II at a right 

angle to the direction of tensile stress (figure 7.15.b). In this area, a cleavage-like fracture 

was found (figure 7.16.a). Area III is observed to have a quasi-cleavage fracture with fine 

striation marks (figure 7.16.b). During the propagation stage, the crack advances by a 

certain distance with each load cycle leaving a series of striations on the fracture surface. 

I 

I 

II 

I 

50µm 30µm 

a. b. 

a. b. 
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The profile of individual striation depends on the material as well as loading conditions 

[117, 118]. According to the crack propagation model proposed by C. Laird and G.C. 

Smith [120], the striations result from the successive opening and closing of the crack 

flanks. During opening, the crack advances, but during closing, the plastically deformed 

material at the crack tip is compressed with the formation of upsetting folds which form 

the striation pattern. The profile varies with the intensity of loading and with the ease of 

deformation of the material at the crack tip [117]. In the final stage of failure (Area IV), a 

quasi-cleavage fracture mode was observed where both cleavage and micro-voids were 

present (figure 7.17.a). Dimple ductile fracture was observed in the high magnification 

image of this region (figure 7.17.b).   

  
Figure 7. 16: (a) Cleavage-like fracture was observed in Area II at the early stage of crack 

propagation. (b) Striation pattern for Hi-cycle failure where fatigue failure propagated in 

a transcrystalline fashion with distinctive striations ( Propagation Stage). As-built XY, 

failed at 1.98*106 cycles). 

 

10µm 10µm 

a. b. 
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Figure 7. 17: (a) The final stage of fracture showing micro-void coalescence (arrow) and 

cleavage areas. (b) Higher magnified image shows dimple ductile fracture of the final 

fracture area. (As-built XY, failed at 1.42*106 cycles). 

 

The primary reason for shorter fatigue life of vertically built (Z) sample is the 

presence of pores and unmelted particles showed in figure 7.13. Pores and unmelted 

particles act as a site of stress concentration when the load is applied perpendicular to 

them. The shorter life of Z sample is indicated by the narrower crack propagation area 

compared to a wider propagation area in XY sample (figure 7.18). As a result, a smaller 

ratio of the crack propagation area to final failure area is observed for Z sample compared 

to XY sample. Another noticeable observation is that some Z samples showed multiple 

numbers of crack initiation sites which indicates the higher number of impurities presents 

in Z sample. Multiple cracks which initiated independently from the surface of the Z 

sample are seen to progress and coalesce into a single fracture plane (figure 7.18 (c) & 

(d)).   

10µm 2 µm 

a. b. 
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Figure 7. 18: comparison as-built XY vs as-built Z (propagation areas are marked by 

dotted line, crack initiation marked by arrow). (a & b) As-built XY, failed at 5.17*105 

cycles. (c & d) As-built Z, failed at 9.22*104 cycles. Maximum stress 550 MPa in both 

cases. 

 

Heat treatment does not eliminate porosity of the sample thus has little effect on 

fatigue property [121]. The slight improvement in fatigue life showed by heat treated 

sample is due to recrystallization and the removal of unmolten particles. In all of the 

samples, crack propagation happened primarily in transgranular cleavage fracture mode 

(figure 7.19). However, the rougher surface due to tortuous crack propagation in heat-

a. b. 

c. d. 
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treated samples indicates the presence of intergranular fracture mode thus the heat-treated 

surface showed a mixed mode of failure (figure 7.19. b). A comparison of the final 

fracture surfaces in as-built and heat treated conditions are shown in figure 7.20. In both 

cases, dimple ductile failure is observed. However, compared to as-built sample, the final 

fracture surface of the heat treated sample showed more ductile nature of failure as 

indicated by very fine dimple structure in figure 7.20.b. 

 

  
Figure 7. 19: A comparison of fracture surface from as-built and heat treated samples in 

propagation stage. (a) Transgranular cleavage fracture in as-built sample. (b) Mixed 

mode of failure in heat treated sample. 

 

   
 

Figure 7. 20: A comparison of fracture surface from as-built and heat treated samples in 

final failure stage, (a) as-built sample, (b) heat treated sample. 

a. b. 

a. b. 
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7.5 Conclusion 

 

The primary goal of this study is to investigate the fatigue behavior of Inconel 625 

fabricated by selective laser melting. The effect of build orientation and post-

manufacturing heat treatment were investigated. The following conclusion can be drawn 

based on the study: 

1. All Inconel 625 samples, regardless of build orientation and heat treatment 

showed superior fatigue property. Experimental data were compared with the 

wrought fatigue data presents in MMPDS-07. Except some Z oriented samples 

tested at higher stress level (greater than 600 MPa) all of the samples showed 

higher fatigue life than wrought Inconel 625. 

2. SLM fabricated Inconel 625 samples showed strong anisotropic behavior where 

horizontally (XY) built samples showed superior fatigue property than vertically 

(Z) built samples irrespective of post-fabrication heat treatment. The lower fatigue 

lives of Z samples is primarily because of the presence of voids and un-melted 

particles located near the surface of the samples.    

3. Heat treatment has a significant effect on fatigue property of Inconel 625. Fatigue 

life improved after heat treatment except for Z samples tested at lower stress level 

less than 500 MPa. The formation of coarser grains after heat treatment is 

responsible for improving the fatigue performance. In this case, the tip of a crack 

is oriented towards a large crystallographic grain boundary which acts as a barrier 

and hinders crack propagation. 
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4. Fractography showed that for all of the samples crack initiated from the surface. 

Un-melted particles, inclusions, and pores were observed to be the main reason 

for crack initiation. A single crack initiation site was observed for XY sample but 

for Z sample, cracks initiated from multiple zones and coalesce into a single 

fracture plane which indicates the higher number of impurities presents in Z 

sample.    

5. In as-built samples crack propagation happened in transgranular cleavage fracture 

mode. In heat-treated samples, however, a mixed mode was observed where 

cracks propagated in both transgranular and intergranular fashion. Final fracture 

area showed fine dimple ductile nature which is more pronounced in heat-treated 

samples compared to as-built samples.      
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK  
 

 Beside the main findings of the study which are summarized in the individual 

chapters, there are some other crucial observations that are summarized below. 

 Energy density is an important parameter which is often utilized to understand 

how much energy is transferred from laser beam to the metal powder to form a meltpool. 

In calculation of the energy density in single track analysis, a 20µm layer thickness was 

used. In this experiment, a maximum of 488 J/mm3 energy density was achieved using 

195W-800mm/s combination. The same level of energy density could not be achieved in 

case of a higher layer thickness. Therefore, an exact comparison using energy density 

may not be possible for a test condition with different layer thickness. However, 

researchers whose test conditions are different than this study can get valuable insights on 

meltpool dimensions, type and shape of porosity and other defects from this study.   

In the current work, detail microstructure analysis was done on as built condition. 

Although some research was done on heat treated condition it is not as exhaustive as the 

as-built condition. A thorough analysis on various heat treatment and the resultant 

microstructure must be explored for complete understanding. 

 The aging response of the SLM built Inconel 625 must be investigated. As 

mentioned in the literature review, aging Inconel 625 for a long period of time can cause 
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the formation of other precipitates such as γ” which may have significant effect on 

mechanical properties.  

 Microstructure analysis showed that elongated columnar grains with very fine 

dendritic structure grow epitaxially towards the build direction. Although, this fine 

elongated microstructure provides superior tensile property it causes anisotropy. The 

anisotropy could slightly be removed by post processing heat treatment through 

recrystallization of precipitates and eliminating dendritic structure. It could be interesting 

to investigate the possibility of in-process heat treatment and its effect on SLM part 

which could reduce anisotropic tensile behavior. The in-process heat treatment could as 

well reduce thermal stress of the parts.     

 In fatigue analysis in chapter 7, it was mentioned that the anisotropy in grain 

orientation could have an effect on fatigue property and a possible theory was explained. 

According to the theory vertically built sample should have superior fatigue property than 

horizontally built sample. However, it was observed that the vertically built samples 

contain some interlayer porosity and defects which act as a stress concentrator and crack 

initiator. Further analysis could be done on the microstructural effect and to verify if a 

defect free vertical sample can provide higher fatigue life than a horizontal sample. It is 

worth mentioning that characterizing the overall fatigue property of a material is a very 

complicated and a tedious process. SLM itself is a complicated process which involves a 

very high number of machine parameters (over 80 settings can be changed on an EOS 

M270 machine). Fatigue property can differ largely from one machine to another or even 

one setup to another on the same machine. Therefore, to gain a more in-depth 
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understanding and level of confidence in the overall fatigue property of SLM processed 

Inconel 625 further experiemtns with a higher number of specimen is recommended. 
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