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In the current era of Digital Information Technology Biometrics authentication is

massively used to protect user’s privacy by confirming the legitimacy of their iden-

tity. Biometric identifiers are the distinctive, measurable characteristics used to label

and describe individuals. Technology to verify a persons identity based on his/her

biometrics utilizes the information “someone who they are” instead of “something

they know” (passwords) or “something they possess”(ID card). Biometric identifiers

are usually categorized as physiological and behavioral characteristics. Physiological

characteristics are related to the shape of the body. Examples include, but are not

limited to face recognition, ear shape, fingerprint, DNA, palm print, hand geometry,

iris recognition, and retina. Behavioral characteristics refer to the pattern of behavior

of a person, including but not limited to typing rhythm, gait, and voice. Application

of Biometrics authentication can be found in various domains, starting from forensics

research, border security maintenance to securely access Bank ATMs and the web or

mobile applications.

Current growth trends in different biometrics applications present challenges to

researchers. To address these challenges, we need new data storage and retrieval tech-

niques to make the recognition process time efficient. We proposed a system for time

efficient 3D ear biometrics from a large biometrics database. The proposed system has



two components that are primarily responsible for: 1) automatic 3D ear segmentation

and 2) hierarchical categorization of the 3D ear database using shape information and

surface depth information, respectively. We use an active contour algorithm along

with a tree structured graph to segment the ear region from the 3D profile images.

The segmented 3D ear database is then categorized based on geometrical feature

values, computed from the ear shape, into oval, round, rectangular and triangular

categories. For the categorization based on the depth information, the feature space

is partitioned using tree-based indexing techniques. We used indexing techniques with

balanced split (KD tree) and unbalanced split (Pyramid tree) data structures to cate-

gorize the database separately, then compared their retrieval efficiency. Experiments

are conducted to compare the average computation time per query when performing

recognition through hierarchical categorization with the average computation time

when recognition is based on sequential search. Experimental results conducted on

the University of Notre Dame (UND) collection J2 dataset demonstrate that the

proposed approach outperforms state-of-the-art 3D ear biometric systems in both ac-

curacy and efficiency, explicitly the hierarchical clustering of the biometrics dataset

result in 5 times faster search/ query compared with the state-of-the-art technique

that uses sequential search.

Biometrics identification using multiple modalities has attracted the attention of

many researchers as it produces more robust and trustworthy results than single

modality biometrics. We proposed a novel multimodal recognition system that trains

a Deep Learning Network to automatically learn features after extracting multiple

biometric modalities from a single data source, i.e., facial video clips. Utilizing differ-

ent modalities, i.e., left ear, left profile face, frontal face, right profile face, and right



ear, present in the facial video clips, we train supervised denosing autoencoders to

automatically extract robust and non-redundant features. The automatically learned

features are then used to train modality specific sparse classifiers to perform the

multimodal recognition. The proposed system has three components that are respon-

sible for: 1) Automatically detecting images of different modalities present in the

facial video clips; 2) Training supervised denoising sparse autoencoders to capture

the modaliti specific discriminative representation while maintaining robustness to

the variations; and 3) Train modality specific Sparse classifier (SRC), then perform

score level fusion of the recognition results of all five modalities, or all the avail-

able modalities from the query video to obtain the multimodal recognition result.

Experiments conducted on the constrained facial video dataset (WVU) and the un-

constrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14%

rank-1 recognition rates, respectively. The multimodal recognition accuracy demon-

strates the superiority and robustness of the proposed approach irrespective of the

illumination, non-planar movement, and pose variations present in the video clips.

Biometric identification using Surveillance Video has attracted the attention of

many researchers as it can be applicable not only for robust identification but also

personalized activity monitoring. We present a novel multimodal recognition sys-

tem that extracts Frontal Gait and Low Resolution face images from frontal walking

surveillance video clips to perform efficient biometric recognition. The proposed study

addresses two important issues in surveillance video that did not receive appropri-

ate attention in the past. First, it consolidates the Model-Free and Model-Based

Gait feature extraction approaches to perform robust gait recognition only using the

frontal view. Second, it uses a low-resolution face recognition approach which can be



trained and tested using low-resolution face information. This eliminates the need

for obtaining high-resolution face images to create the gallery, which is required in

the majority of low-resolution face recognition techniques. Previous studies on frontal

gait recognition incorporate assumptions to approximate the average gait cycle. How-

ever, we quantify the gait cycle precisely for each subject using only the frontal gait

information. The approaches available in the literature use the high resolution im-

ages obtained in a controlled environment to train the recognition system. However,

in our proposed system we train the recognition algorithm using the low resolution

face images captured in the unconstrained environment. The proposed system has

two components, one is responsible for performing Frontal Gait recognition and one

is responsible for Low Resolution face recognition. Later, score level fusion is per-

formed to fuse the results of the Frontal Gait recognition and the Low Resolution

Face recognition. Experiments conducted on the Face and Ocular Challenge Series

(FOCS) dataset resulted in a 93.5% Rank-1 for Frontal Gait recognition and 82.92%

Rank-1 for Low Resolution face recognition, respectively. The score level multimodal

fusion resulted in 95.9% Rank-1 recognition, which demonstrates the superiority and

robustness of the proposed approach.
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CHAPTER 1

Introduction

There is an ever-growing need to automatically authenticate and identify individ-

uals. The most commonly used biometric systems for identification, e.g., fingerprint

and face recognition, have already been commercialized. Recently, 3D ear biometrics

received attention from the biometrics research community [1]. Ear possesses a num-

ber of inherent characteristics, e.g., its shape is not affected by facial expressions, and

it almost maintains its shape with aging, which makes its use advantageous [1, 2].

Several factors, e.g., changes in illumination and viewing direction affect the ac-

curacy and robustness of unimodal biometrics [3–6]. To overcome these limitations,

fusion of different modalities has been used to obtain robust and accurate recognition

results in the literature. Additionally, there are several motivations for building multi-

modal biometric systems that work on facial video clips where some of the modalities

are missing. Firstly, acquiring video clips of facial data is straight forward using

conventional video cameras, which are ubiquitous. Secondly, the nature of data col-

lection is non-intrusive and the ear, frontal, and profile face can appear in the same

video. Thirdly, in a multi-modal biometric identification system, it is expected to

encounter missing modalities when working with video data. Different modalities,

1
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e.g., left ear, right ear, left profile face, right profile face, and frontal face might exist

in the training video clips. If the test data does not contain all the modalities during

the classification, we should be able to perform multi-modal classification based on

the available modalities.

The importance of identifying and monitoring the activity of registered offenders

using video surveillance footage has been proven effective on several occasions, e.g.,

identifying the Boston bombing suspects, to lead the detectives in the right direction.

However, the quality of the video data acquired by the surveillance system poses

challenges. The primary causes of poor image quality recorded in most digital video

surveillance systems are low resolution, excessive quantization, and low frame rate.

Moreover, high-resolution video surveillance systems require excess storage space.

These factors result in low-resolution biometric data, e.g., face images, obtained from

the video surveillance clips collected using the existing video surveillance systems.

The objective of this dissertation is to introduce novel methods for 3D ear seg-

mentation and recognition, and using survillience video data for efficient multimodal

recognition. Majority of the available ear recognition techniques in the literature use

sequential search to find a match for the query template among all the gallery tem-

plates. Performance of sequential search is satisfactory when the gallery contains a

small number of subjects, but it is not adequate for large galleries due to its ineffi-

ciency. To perform time efficient recognition, we propose a hierarchical categorization

of the gallery. During recognition, we first determine the subcategory in which the

query image belongs and then only search the gallery templates in that subset. Hence,

the search space for a query image is reduced resulting in time efficient matching.
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We proposed a novel multimodal biometrics approach to efficiently recognize sub-

jects from facial video surveillance data irrespective of the illumination, non-planar

movement, and pose variations present in the face video clips. Unlike facial videos

recorded under a constrained environment, facial video clips collected in uncon-

strained environments contain significant head pose variations due to non-planar

movements. Moreover, detected frames of the same modality from unconstrained

facial video clips contain a high degree of non-planar rotation variabilities compared

with the constrained counterpart. This makes unconstrained facial video clips more

challenging to adequately extract information for efficient recognition.

We also proposed a novel automatic multimodal recognition framework for ac-

curate human identification from low-resolution video surveillance footages by com-

bining gait recognition and low resolution (LR) face recognition. We introduced an

efficient Gait recognition technique through a robust Gait Cycle detection using only

frontal Gait video clips. The approaches available in the literature for LR face recog-

nition use the high resolution images obtained in a controlled environment to train

the recognition system. However, in our proposed system we train the LR face recog-

nition algorithm using the low resolution face images captured in the unconstrained

environment.

In Chapter 2, we describe the proposed 3D ear segmentation technique. We use

an active contour algorithm along with a tree structured graph to segment the ear

region from the 3D profile images. Most of the proposed ear segmentation methods in

the literature find the smallest possible bounding box that contains the ear and later

use techniques like local surface matching to discard the outliers or nonear pixels,

the other way is to segment out only the ear region pixels. As per the best of our
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knowledge, the only paper available in the literature, used 3D ear segmentation is [7],

where coregistered 2D and 3D ear images are used to evaluate the ear shape. But the

segmentation accuracy is not empirically mentioned, they used the shape to perform

recognition. In the proposed approach, we perform segmentation through bounding

box detection. The reason of applying segmentation to make sure that the features

which will be extracted from that region only correspond to the ear.

In Chapter 3, we describe the 3D ear classification through Indexing. There

are few publications that incorporate categorization and indexing with biometrics

recognition. Among them only one study applied indexing on 3D ear gallery. To

the best of our knowledge, the proposed approach is the first study in automatic

3D ear recognition to perform time efficient matching through categorizing the 3D

ear gallery. The proposed technique uses a hierarchical categorization framework of

the 3D ear gallery based on 2D and 3D features, respectively, extracted from 3D ear

images.

The main contributions of our work are: 1) Time efficient recognition from 3D

ear database using both 2D features and 3D features extracted from 3D ear images.

We first categorize the 3D ear database in a hierarchical fashion using 2D and 3D

features, respectively, and later perform the recognition. 2) The 3D ear gallery is

indexed separately using two different indexing techniques, e.g., KD tree and Pyra-

mid technique, to compare their recognition accuracy and computation time. KD

tree uses balanced split data structure and Pyramid technique uses unbalanced split

data structure. Experimental results demonstrate that the efficiency of the proposed

system outperforms the current state-of-the-art algorithms.
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In Chapter 4, we propose a system which consists of three distinct components to

perform the task of efficient multimodal recognition from facial video clips even in the

presence of missing modalities. First, the object detection technique proposed by Vi-

ola and Jones [8], was adopted for the automatic detection of modality specific regions

from the video frames. Unconstrained facial video clips contain significant head pose

variations due to non-planar movements, and sudden changes in facial expressions.

This results in an uneven number of detected modality specific video frames for the

same subject in different video clips, and also a different number of modality specific

images for different subject. From the aspect of building a robust and accurate model,

it is always preferable to use the entire available training data. However, classification

through sparse representation (SRC) is vulnerable in the presence of uneven number

of modality specific training samples for different subjects. Thus, to overcome the

vulnerability of SRC whilst using all of the detected modality specific regions, in the

model building phase we train supervised denoising sparse autoencoder to construct

a mapping function. This mapping function is used to automatically extract the

discriminative features preserving the robustness to the possible variances using the

uneven number of detected modality specific regions. Therefore, by applying Deep

Learning Network as the second component in the pipeline results in an equal num-

ber of training sample features for the different subjects. Finally, using the modality

specific recognition results, score level multimodal fusion is performed to obtain the

multimodal recognition result.

Due to the unavailability of proper datasets for multimodal recognition studies [9],

often virtual multimodal databases are synthetically obtained by pairing modalities

of different subjects from different databases. To the best of our knowledge, the pro-
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posed approach is the first study where multiple modalities are extracted from a single

data source that belongs to the same subject. There are a very few studies in bio-

metrics recognition literature that deal with substantial head pose variation in facial

video clips. It may however be noted that most of the previous studies were aimed

to overcome the particular variabilities, e.g., expression, viewing angle, and illumi-

nation, in different facial images by applying individual transformations. The main

contributions of the proposed approach is the application of training a Deep Learning

Network for automatic feature learning in multimodal biometrics recognition using

a single source of biometrics i.e., facial video data, irrespective of the illumination,

non-planar movement, and pose variations present in the face video clips.

In Chapter 5, we propose a solution for accurate human identification from low-

resolution video surveillance footages by combining gait recognition and low resolution

(LR) face recognition. The proposed system is a fully automatic platform which

first extracts the frontal gait silhouettes and low resolution face images from the

frontal walking video surveillance clips. Then obtains the feature vectors from the

preprocessed frontal gait silhouettes, and the low resolution face images. Later the

feature vectors are used to train two separate classifiers to perform the frontal gait

recognition, and low resolution face recognition. Finally, the individual recognition

results are fused through score level fusion. Given a test surveillance video clip of

a subject walking towards the camera, first the gait features and LR face image

features are extracted, later Nearest neighbor classifiers are used to separately obtain

the Rank-1 frontal gait recognition and LR face recognition results. Finally, score

level fusion is performed to fuse the individual recognition results.
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Due to the unavailability of proper datasets for multimodal face and gait recogni-

tion, the proposed studies in the literature were evaluated only on databases with a

small set of subjects [10, 11]. Moreover, majority of the approaches in the literature

use lateral Gait view, or use camera calibration, or even require multiple cameras

for capturing multiple Gait views to perform Gait recognition. Gait cycle detection

is critical for Gait feature extraction and can be efficiently detected from the lateral

Gait view. Majority of the studies on Gait recognition [12,13] perform the Gait Cycle

detection using various heuristic approaches from biomechanics literature which is not

practical for large databases. In a practical situation, a system which estimates the

gait parameters from a single view, without depending on the subjects pose or on cam-

era calibration is more realistic. We propose an efficient Gait recognition technique

through a robust Gait Cycle detection using frontal Gait video clips. A consider-

able amount of literature has been published on low resolution face recognition. The

majority of these studies use High Resolution (HR) images/ video to synthetically

generate the corresponding low resolution counterpart. Then a mapping function is

obtained between the High and Low resolution image pair. In this study we only use

low resolution face information obtained from the video surveillance data to train and

later test the performance of the proposed low resolution face recognition algorithm.

To the best of our knowledge, the proposed approach is the first fully automatic mul-

timodal recognition framework using LR face images and frontal gait silhouettes from

Surveillance Video clips. Compared to other studies the performance is evaluated on

a relatively large dataset.
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1.1 Related Work

The remainder of this chapter provides a literary review of methods in 3D ear

recognition, application of indexing tree in Biometrics recognition, and multimodal

recognition. It is worth noting that direct comparison between the performances of

the existing systems is difficult and at times can be misleading. This is due to the

fact that biometrics datasets may be of different sizes, the image resolution and the

amount of occlusion contained within the region of interest may be different, and

some may utilize synthetically obtained dataset by pairing a subject from different

databases consists of different modalities.

1.1.1 3D Ear Biometrics

The earliest research publications on ear biometrics used only 2D ear images. In

recent years, researchers used either 3D ear or both 3D and co-registered 2D ear

images for ear biometrics. Since the proposed approach uses only 3D ear images, we

only consider 3D ear biometrics techniques for the literature review.

A two-step, off-line and online, ear detection technique [14] from 3D profile face

images is proposed by Chen and Bhanu. First, in an off-line model template building

step, a model template is built by averaging the shape index [15] histograms of mul-

tiple ear images. Later, in the on-line detection step, ears are detected from the 3D

profile face images through template matching. In [16], Chen and Bhanu proposed a

two-step iterative closest point (ICP) based approach to match 3D ear images. All

the ear regions were manually extracted from the 3D face profile images. In the first

step, the ICP algorithm is used to coarsely align the helix of the 3D test ear image
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with the model ear. Then, the ICP algorithm is iteratively used to obtain the best

possible final alignment between the two ear images. Chen and Bhanu proposed a

fully automatic 3D ear matching framework in [17], where they use 2D and 3D face

profile images to automatically localize the ear helix and anti-helix region. They use

two 3D shape representations of the ear, i.e., local surface patch (LSP) representa-

tion for the salient feature points and a helix/anti-helix representation from the ear

helix/anti-helix localization step. Later, a modified ICP algorithm is used to match

the probe and gallery ear images.

In [18] and [19], Yan and Bowyer present an experimental evaluation to compare

multiple ear recognition techniques, namely, eigen-ear method for 2D ear images, prin-

cipal component analysis (PCA) using 3D ear images, Hausdorff matching of depth

edge images obtained from 3D ear images, and ICP matching of 3D ear images.

Among these techniques, ICP based matching have the best recognition accuracy

and shows good scalability with the size of the gallery of ear images. In [20], Yan

and Bowyer proposed a multimodal biometrics approach by combining single bio-

metric recognition techniques in different combinations. Moreover, a fusion rule is

proposed, based on the interval distribution between the rank-1 and rank-2 recogni-

tion to achieve better recognition accuracy compared with any other simple fusion

rule. An ear biometrics system is proposed by Yan and Bowyer in [7], where co-

registered 2D and 3D face profile images are used to segment the ear region after

locating the the ear pit and nose tip. Later, using the segmented ear region, an ICP

based shape matching algorithm is used to perform 3D ear recognition.

In [21] and [22], Cadavid and Abdel-Mottaleb, proposed a 3D ear recognition

system using two different techniques, namely, structure from motion (SFM) and
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shape from shading (SFS) to reconstruct 3D ear models using frames in a video

sequence. Ear region segmentation was performed through locating the ridges and

ravines on the profile face image. Later, in the recognition step, the closest gallery

ear model is found using ICP shape matching algorithm where the similarity measure

is computed using an RMS. In [23] and [24], Zohu et al. proposed a generalized 3D

object recognition using local and holistic feature matching, and evaluated the system

using 3D ear recognition. First, a boundary box is detected around the ear region

on the 3D profile face image, then, 3D ear matching is performed separately using

extracted local and holistic features, respectively. Finally, the results of the local and

holistic matching are fused through matching score fusion.

In [25], a 3D ear recognition technique is proposed through aligning the probe and

gallery ear images using local 3D features computed around the salient points on the

ear surface. Finally, ICP based matching algorithm is used to perform recognition. A

coarse-to-fine 3D ear recognition technique based on ICP is proposed in [26], where

an Adaboost classifier was used for ear region detection on 2D ear images, and then

corresponding 3D ear regions are extracted from co-registered 3D face profile images.

Later, ICP based matching algorithm is used to perform recognition. In [27], a

rotation and scale invariant ear detection technique from 3D face profile images is

proposed using graph connected components obtained from the edges of the 3D ear

images. In [28] a two step 3D ear matching technique is proposed based on co-

registered 2D and 3D ear images. In the first step, salient points are detected from

2D images and used for aligning 3D ear images. Later, a Generalized Procrustes

Analysis and Iterative Closest Point (GPA-ICP) based matching technique is used

to compare the 3D ear images that were coarsely alligned in the first step. In [29],
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Zhang et al. proposed a 3D Ear recognition framework using sparse representation.

A template based ear detection technique is used to localize the ear contour, later,

local 3D PCA-based feature descriptor [30] is used to represent the 3D ear for sparse

classification.

1.1.2 Indexing in Biometrics Recognition

In [31], binary classification tree is utilized to build separate classes using voice

and facial images. Classification using decision trees is very instable and sensitive to

small changes in the data set which can result in different tree structures. To make the

decision tree structure more robust, a random forest algorithm is used in [32], which

has linear time complexity. However, in our proposed hierarchical categorization

approach, the search is performed using the divide and conquer fashion in logarithmic

time complexity.

To perform time efficient recognition of fingerprints, Henry [33] proposed a classi-

fication algorithm where fingerprints are indexed in a few classes based on geometric

features. Ratha et al. [34] proposed a real time finger print matching engine for

large fingerprint databases. Jiang et al. [35, 36] proposed a face biometrics database

classification system, where faces are categorized using landmark based features. A

few approaches in the literature were developed for efficient retrieval from databases

of hand geometry [37, 38], iris [39] and signature [37, 40] using indexing techniques.

In [41], KD tree is used to index a forty dimensional feature space populated from

a multi-modal biometrics database consisting of two dimensional ear, face, iris and

signature images. Gupta et al. [42] proposed an indexing method for two dimensional
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ear biometrics database using B+ tree. Chen et al. [40] indexed a 3D ear biometrics

database using KD tree.

In this section, we compare our approach with the ones disussed in the previous

section. In [41,42], the proposed techniques were evaluated only on a low dimensional

feature space, computed from databases with relatively few subjects. In our method,

we built a high dimensional feature space to compare the performance of different

indexing techniques using the largest available 3D ear database (UND Collection J2).

In [40], indexing is achieved based upon a lower dimensional feature space, later for

an extensive one to one matching SVM-rank learning algorithm is used. It has a time

complexity of O(n2), where n is the number of gallery templates. In our approach,

after retrieving a small list of gallery templates, we sequentially match the query image

with them, this results in a linear time complexity, O(n), where n is the number of

gallery templates retrieved after indexing. In our approach, the same feature vector

used for indexing is used later for the extensive sequential comparison.

1.1.3 Multimodal Recognition

Research in face recognition has been active for the past few decades [43–47]. Al-

though most of the work on face recognition is based on 2D images or 3D data, there

are few publications that address video-based face recognition [48–51]. In [48], face

images extracted from the training video clips are used to build a dictionary where

face images of the same subjects containing variations in viewing angle, illumination,

and facial expression, reside on the same nonlinear submanifold. Later, the learned

dictionary is used to recognize faces from query video clips. Lee et al. [49] proposed

probabilistic appearance manifolds, a spatio-temporal manifold model, which com-
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putes the transition probabilities between the subspaces. Given a query video, the

probabilistic appearance manifold algorithm locates the operating part of the mani-

fold to identify the subject. In [50], a view synthesis method is proposed to reconstruct

a 3D frontal face model from multiple non-frontal 2D face images obtained from train-

ing video frames. Later, the synthesized frontal face image is used to match against

the frontal face image extracted from the query video. In [51], decisions from multi-

ple face matchers are adaptively fused to improve the performance of face recognition

from facial video.

The ear, though a relatively new area of biometric research, possesses a number

of inherent characteristics, e.g., is not affected by facial expressions, and it almost

maintains its shape with aging, which makes its use advantageous [52]. Because of

these advantages, several researchers built multimodal ear and face biometric sys-

tems [53–55]. Pan et al. [55] proposed a feature fusion algorithm based on Kernel

Fisher discriminant analysis (KFDA), and applied it to multimodal recognition based

on two dimensional ear and profile face images. Kisku et al. [54] proposed a multi-

modal biometric system that fuses 2D face and ear biometrics using Dempster-Shafer

decision theory. Boodoo et al. [53] proposed a multimodal biometric recognition sys-

tem based on eigen ear and eigen face for two dimensional ear and profile face images.

In [9], a Sparse Representation based multimodal biometric system is proposed. It

fuses face and ear at the feature level, where the fusion weights are determined by

computing the reliability of each modality.
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1.1.4 Deep Learning in Biometrics

Recently, Deep Learning of Artificial Neural Networks has been used in several

biometric authentication research studies. Ngiam et al. [56] proposed a Deep Network

based unsupervised feature learning for audio-visual speech classification. The fea-

tures obtained from the audio and video data is used to learn the latent relationship of

the lip pose and motions in the video with the articulated phonemes in the audio. Dif-

ferent variants of Convolutional Neural Network [46,57,58] have been used to design

face verification systems. A Convolutional Neural Network based Siamese Network

is proposed in [58] for face verification. Taigman et al. [46] proposed a Convolutional

Neural Network based face verification system, which significantly outperforms the

existing systems on the Labeled Face in the Wild (LFW) database. The above-cited

research articles are proposed for face verification, whereas our proposed approach

deals with multimodal recognition in which, given a test video, it identifies the sub-

ject among many.

Gaurav et al. proposed MDLFace [59], a memorability based frame selection

algorithm that enables automatic selection of memorable frames for facial feature ex-

traction and matching, by using a deep learning algorithm. In [59], the deep learning

algorithm is trained to identify the memorable faces, certain faces that can be more

accurately remembered by human subjects as compared to other faces, to resemble the

human perception in face recognition. In [60], a deep learning based anti-spoofing al-

gorithm is proposed by using multimodal biometrics, e.g., Iris, Face, and Fingerprint.

In [61] a stacked supervised autoencoders-based Single Sample Face Recognition tech-
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nique is proposed which achieves significantly higher recognition accuracy compared

with other deep learning models, such as the deep Lambertian network.

1.1.5 Low Resolution Face Recognition

Even though research in face recognition has been active for the past few decades

[43–47], the topic of Low-resolution [62] face recognition has only recently received

much attention, for long distance surveillance applications, to recognize faces from

small size or poor quality images with varying pose, illumination, and expression.

Although the state-of-the-art face recognition accuracy using data collected in con-

strained environments is satisfactory, the recognition performance in real world appli-

cations such as video surveillance is still an open research problem, primarily due to

low-resolution (LR) images [63] and variations in pose, lighting conditions and facial

expressions.

The literature on low-resolution face recognition can be categorized into three

broad classes:

1) Mapping into unified feature space: In this approach the HR gallery images and

LR probe images are projected into a common space [64]. However, it is not straight

forward to find the optimal inter-resolution (IR) space. Computation of two bidi-

rectional transformations from both HR and LR to a Unified feature space usually

incorporate noise.

2) Super-resolution: Many researchers used up-scaling or interpolation techniques,

such as cubic interpolation on the LR images. Conventional up-scaling techniques

usually are not good for the images with relatively lower resolution. However, Super-

Resolution [65, 66] methods can be utilized to estimate HR versions of the LR ones
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to perform efficient matching.

3) Down-scaling: Down-sampling techniques [63] can be applied on the HR images

followed by comparison with the LR image. However, these techniques are poor in

performance for solving LR problem, primarily because the downsampling reduces

the high-frequency information which is crucial for recognition.

Due to the challenges and importance for real world applications, Low Resolution

(LR) Face Recognition has gradually become an active research area of Biometrics

in recent years. Ren et.al. [64] proposed a novel feature extraction method for face

recognition from LR images, i.e., coupled kernel embedding, where a unified ker-

nel matrix is constructed by concatenating two individual kernel matrices obtained

respectively from HR and LR images. Sumit et.al. [67], proposed an approach for

building multiple dictionaries of different resolutions and after identifying the resolu-

tion of the probe image a reconstruction error based classification is obtained. A very

low resolution (VLR) face recognition technique is proposed in [63] with a resolution

lower than 16× 16 by modeling the relationship between HR and VLR images using

a piecewise linear regression technique. A super-resolution based LR face recognition

technique is proposed by Jiangang et.al. [68], where an LR face image is split into

different regions based on facial features and the HR representation of each section

is learned separately. Jia et.al. [69] proposed a unified global and local tensor space

representation, to obtain the mapping functions to acquire the HR information from

the LR images to perform efficient LR face recognition.
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1.1.6 Gait Recognition

Gait recognition [70, 71] is a well proven biometric modality, which can be used

to identify a person remotely through inspecting their walking patterns. However,

Gait recognition has some subtle shortcomings: it can be affected by the dressing

attire, carrying large objects etc. Moreover, the physical state such as injuries can

also affect a persons walking pattern. Majority of the proposed gait recognition

techniques [72,73] employ multi-view gait recognition to overcome the viewing angle

transformation problem and to improve the recognition accuracy.

The first step of Gait Recognition is background subtraction. The feature extrac-

tion techniques in the literature [74] can be categorized broadly in two classes:

1) Model-Free approaches: In the Model-Free Gait representation [75], the features

are composed of a static component, i.e., size and shape of a person, and a dynamic

component, which portrays the actual movement. Examples of static features are

height, stride length and silhouette bounding box. Whereas dynamic features can

include frequency domain parameters like frequency and phase of the movements.

2) Model-Based approaches: In the Model-based Gait representation approaches [71,

76] we need to obtain a series of static or dynamic gait parameters via modeling

or tracking the entire body or individual parts such as limbs, legs, and arms. Gait

signatures formed using these model parameters are utilized to identify an individual.

Model-free approaches are usually insensitive to the segmentation quality and less

computationally expensive compared with the model-based approaches. However, the

model-based approaches are usually view-invariant and scale-independent compared

with the model-free counterpart.
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To obtain the gait signature utilizing a sequence of gait silhouettes, Davis et.al. [77]

proposed the motion-energy image (MEI) and motion-history image (MHI) which

transform the temporal sequence of silhouettes to a 2D template for Gait identifica-

tion. Later, Han and Bhanu [71] adopted the idea of motion-energy image (MEI) and

proposed the Gait Energy Image (GEI) for individual recognition using Gait images.

Frequency analysis of spatio-temporal Gait signals is used by researchers to model the

periodical gait cycles. Lee et. al. [75] proposed a Model-Free approach to first divide

the gait silhouette into seven regions and align them with ellipses, later apply Fourier

Transform on the fitted ellipses to extract the magnitude and phase components for

classification. Goffredo et.al. [78] proposed a k-nearest neighbor classifier (k-NN) for

front-view Gait recognition where the Gait signature is composed of shape features

extracted from sequential silhouettes.

1.1.7 Multimodal Face and Gait Recognition

The fusion of Face and Gait modalities have recently received significant attention

[79], mainly motivated by their impact on security related applications. The fusion of

the two modalities has been used in the literature to obtain more robust and accurate

identification. The fusion can be performed at the feature/ sensor level, the decision

level, or the matching score level.

In [80], features from high-resolution profile face images and features from gait

energy images are extracted separately and combined at the feature level, later the

fused feature vector is normalized and used for multimodal recognition. The experi-

mental results on a database of video sequences for 46 individuals demonstrate that

the integrated face and gait features result in a better performance than the perfor-
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mance obtained from the individual modalities. Shakhnarovich et. al. [10] proposed

a view normalized multimodal face and gait recognition algorithm and evaluated it

on a dataset of 26 subjects. First, the face and the gait features are extracted from

multiple views and transformed to the canonical pose frontal face and the profile gait

view, later the individual face and gait recognition results are combined at the score

level. In [11], a score level fusion of face and gait images from a single camera view is

proposed and tested on an outdoor gait and face dataset of 30 subjects. The results

of a view-invariant gait recognition algorithm, and a face recognition algorithm based

on sequential importance sampling are fused in a hierarchical and holistic fashion.

Geng et. al. [81] proposed a context-aware multi-biometric fusion of gait and face

which dynamically adapts the fusion rules to the real-time context and respond to

the changes in the environment.



CHAPTER 2

3D Ear Segmentation

Automatic segmentation without user intervention is one of the most challeng-

ing problems in image processing and computer vision. The primary problem with

ear segmentation is occlusion, which can occur because of long hair, over the ear

headphones, ear rings or other objects.

When computing feature vectors to model the ear, if majority of the pixels are

from non ear regions, the recognition accuracy is usually affected. Majority of the

proposed ear segmentation methods [16, 17, 23] find the smallest possible bounding

box that contains the ear. In this paper we aim to segment only the ear region pixels,

which is harder than finding the ear bounding box. The reason of applying ear region

segmentation, instead of bounding box detection, is to make sure that the extracted

features will only represent the ear, and hence minimize the amount of errors in the

ear description.

The proposed 3D ear segmentation approach [82] has two basic steps. The first

step localizes the ear in the 3D profile facial image and detects landmarks on the

curved ear boundary. Using these landmarks, a boundary box around the ear region

is obtained on the 3D profile facial image. Later, these salient landmarks are used as

20
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Figure 2.1: Two step 3D ear Segmentation results.

the initial starting points for an active contour model to segment the 3D ear region.

The entire pipeline of the two step 3D ear segmentation is shown in Figure 2.1.

The remainder of this chapter is organized as follows: Section 2.1 lists the prepro-

cessing steps performed in the 3D profile face images. Section 2.2 details the landmark

localization technique. Section 2.3 describes the automatic segmentation of the 3D

ear region from the profile range image. The perfromance evaluation of the proposed

segmentation technique analyzed in section 2.4. The procedure of computing the co-

occurrence relation and latent SVM modeling technique to detect the landmarks on

the ear helix of 3D profile images is explained in section 2.5.



22

2.1 Preprocessing

Before using the raw depth scans of the profile face, some preprocessing steps

are performed. The 3D data contains depth discontinuities which include spikes and

holes. To remove spikes from the depth scans we apply median filter and to fill the

holes we use cubic interpolation. Finally, to reduce noise and to smooth the 3D data,

Gaussian Filter is used.

2.2 Landmark Localization

Utilizing the flexible mixture model introduced in [83], an elegant approach for ear

landmark localization was proposed by Lei et al. [84,85]. In [84,85], the training was

performed on the 2D color images that are registered to the 3D profile images, then

the 2D ear detection results were applied to the 3D images. For the landmark local-

ization step in our proposed ear segmentation technique, the idea in [84] is adapted

with significant modifications. In our proposed approach, landmark localization is

performed on the 3D profile images, which makes our approach applicable to 3D ear

galleries that are collected without corresponding 2D images.

In [83], Yang et al. proposed a tree structured graph to represent the human body

structure using each body part as a rigid component. Later a flexible mixture model

is trained using latent Support Vector Machine (SVM) to capture the contextual

co-occurrence relations among the body parts, preserving the local rigidity. The

procedure of computing the cooccurrence relation and latent SVM modeling technique

to detect the landmarks on the ear helix of 3D profile images is explained in the later

scetions of this chapter.
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Figure 2.2: Tree Structured Graph

Ear helix along with helix rim and the anti-helix parts are the most easily recog-

nized and distinguishable parts of the ear from different viewing angles. Using this

structural advantage of the ear and incorporating the idea in [83], Lei et al. [84] im-

plemented a flexible mixture model of the ear by defining 17 landmark points on the

helix and anti-helix portions of the ear to find out the minimum bounding box area

that contains the ear. To adapt this technique for our automatic ear-region segmen-

tation, we positioned 13 landmarks only on the ear helix along with helix rim area,

shown in Figure 2.2. The chosen landmark positions can be grouped into two groups,

the first group (1, 2, 3, 10, 11, 12, 13) has fixed positions, while the second group (4,

5, 6, 7, 8, 9) has flexible positions. The anatomical nomenclature of the fixed posi-

tion points are 1- Crus of Helix, 2- Triangular Fossa, 3- Crus of AntiHelix, 10- Lobule

Tip, 11- Lobule, 12-Incisure Intertragica, 13- Tragus and the flexible landmarks 4-9
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Figure 2.3: Example of Ear Landmark localization

are distributed uniformly on the helix of the ear. The tree structured graph, shown

in Figure 2.2, is constructed with the 13 landmarks based on the flexible mixture

model [83] to represent the human ear. This tree structured graph consists of the

set of nodes that represent the landmarks, and the set of edges that connect them.

Figure 2.3 shows an example result of the automatic ear landmark detection.

2.3 Ear-region Segmentation

To segment the ear-region from the 3D profile face image, the well known active

contour algorithm, also known as snakes, proposed by Kass et al. [86] is used. Our
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goal is to find the edge of the ear and segment only the ear region by initializing the

snake contour near the boundary of the ear using the landmarks that were localized

in the previous step. Snakes [86], is an energy minimizing deformable spline guided

by external constraint forces and influenced by image forces that pull it towards the

contour of the object. Equation 2.1 represents the energy of a snake. This model was

further improved by Cohen et al. [87] by incorporating a balloon model to provide

more stable results when the image forces are instable. To apply this method, we need

to initialize the snake near the contour of the object in the image, then the energy

minimization steps will pull the snake to the contour in the rest of the iterations.

The different energy terms, i.e., Eint, Eext, are responsible for the expansion and

contraction of the spline. (l(s)) represents the location of the snake parametrically,

i.e., the closed curve from the initialization of the spline till the final spline formation,

expressed as (l(s)) = (x(s), y(s)).

Esnake =

∫ 1

0

Esnake(l(s))ds;

=

∫ 1

0

(Eint(l(s)) + Eext(l(s)))ds; (2.1)

where the internal spline energy can be formulated as proposed in [86]:

Eint =

∫ 1

0

1

2
(α|l′(s)|2 + β|l′′(s)|2); (2.2)

where α and β are the weights that control the snake’s tension and rigidity, respec-

tively. To attract the snake near the salient features in the image plane and lock

on the closest possible edge, the energy functional Eext, adapted from [86], can be

expressed as

Eext = Eimage + Econ; (2.3)
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Figure 2.4: Example of Segmentation

where Eimage is the total image energy and consists of different energy functionals

computed from the image as explained in equation 2.4:

Eimage = wline · Eline + wedge · Eedge + wterm · Eterm; (2.4)

where wline, wedge, and wterm are the weights corresponding to the energy functionals:

image intensity (Eline), the edge or image gradient (Eedge), and the terminations and

corners of line segments (Eterm), respectively, described in [86] and defined as follows:

Eline = F (x, y);

Eedge = −| 5 F (x, y)|2; (2.5)

Eterm =
CyyC

2
x − 2CxyCxCy + CxxC

2
y

(C2
x + C2

y )
3
2

;

where F (x, y) is the image intensity in the pixel location (x, y) on the image plane,

and C(x, y) = Gσ(x, y) ?F (x, y); represents a slightly smoothed version of the image,

where Gσ is a Gaussian mask with standard deviation σ. Another component of the

external energy functional, Econ, is the external constraint energy that generates a

pressure force which pushes the curve outward so that it does not shrink to a point
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or a line, explained in [88], and is described as

Econ = −k−→n (P );

−→n (Pi) =
|Pi−1 − Pi+1|

|Distance(Pi−1, Pi+1)|
; (2.6)

where Pi is the ith point on the spline.

The energy functionals computed from the 3D scans are depth (z-dimensional)

value (Edepth), shape index values (ESI ) [15], and curvature values (Ecurv) [15]. To

achieve the best possible 3D ear segmentation result, experiments are conducted using

these energy functionals in all possible combinations. The equal combination of the

three energy functionals provided the best possible segmentation compared to using

them separately or in any other combination. Thus in our application, Eimage in

equation 2.3 is replaced by E3D image, which can be represent as follows:

E3D image = wdepth · Edepth + wSI · ESI + wcurv · Ecurv; (2.7)

2.4 Evaluation of the Segmentation Results

To evaluate the performance of the proposed ear segmentation from 3D profile

images, manual segmentation was performed for every 3D ear image, as shown in

Figure 2.5. The pixels contained in the manual segmentation were used as reference

pixels. If the number of ear pixels obtained by automatic segmentation include 5%

or more pixels that are not in the reference pixel set, we label the image as over

segmented. Similarly, if the number of pixels obtained by automatic segmentation

exclude 5% or more pixels from those in the reference pixel set, we label the image
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Figure 2.5: Example of manual segmentation

as under segmented. The performance of automatic segmentation using the proposed

method on the 3D ear database of University of Notre Dame Collection J2 is shown

in the Table 2.1. We achieve a 96.44% segmentation accuracy with a 5% pixel error

rate. If we relax the pixel error rate up to 10%, the segmentation accuracy becomes

98.91%.

Comparison of the detection/segmentation accuracy of the proposed approach

with the state-of-the-art techniques is shown in Table 2.2. In [26] authors detected

a boundary box around the ear region with a detection accuracy of 99.9% using

co-registered 2D and 3D profile face images, and in [27] the accuracy of boundary

box detection is 99.38% using only 3D profile face images. Ear region segmenation is

performed in [7] using co-registered 2D and 3D profile face images but no segmentation

accuracy is reported. We should note that detecting a bounding box around the ear

is an easier task than segmenting the ear region.
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Table 2.1: Segmentation Accuracy

Total Dataset Images Well Segmented Over Segmented Under Segmented
1800 1745/1800 (96.44%) 30/1800 (1.67%) 25/1800 (1.39%)

Table 2.2: Comparison of Detection/Segmentation Accuracy

Method Mode of Detection Modality of
Images Used

Accuracy

Yan and Bowyer
[7]

Segmentation Co-registered
2D+3D

Not reported

Prakash and
Gupta [27]

Boundary Box detec-
tion

Only 3D 99.38%

Islam et al. [26] Boundary Box detec-
tion

Co-registered
2D+3D

99.9%

This work Boundary Box detec-
tion detection based
on the landmark de-
tection

Only 3D 100%

This work Segmentation Only 3D 96.44% (5% pixel
error rate) 98.91%
(10% pixel error
rate)

2.5 Computing the Co-occurrence Relation and La-

tent SVM Modeling Technique to Detect the

Landmarks on the Ear of 3D Profile Images

The mixture model described in [83] was used by Lei et al. [84] to capture contex-

tual co-occurrence relations between the appearance of landmarks on ear images. Let

T be the 3D ear image template, in which the pixel locations of the landmarks are

denoted as pi=T(xi,yi), where i=1,...,13. Based on the relative orientation of a land-

mark to its parent, it can be of different types, represented as ori, where i = 1, ..., K.

The score of a specific configuration of the flexible mixture model of the ear, utiliz-
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ing the landmark locations and their relative orientation types, is computed using

equation 2.8.

S(T, L,R) =
∑
iεV

λorii · f(T, pi) +
∑
i,jεE

µ
oriorj
ij · ϕ(pi, pj) +

∑
i,jεE

c
oriorj
ij ; (2.8)

The first term in equation 2.8 is an appearance model that controls image ap-

pearances at the landmarks, where f(T, pi) represent the feature extracted at the

center of landmark location pi, and λorii is a unary template for landmark pi adjusted

for orientation type ori. The second term in equation 2.8 is a deformation model

that evaluates the relative position of each landmark pairs, where ϕ(pi, pj) stands for

the squared offset of the Histogram of gradients (HOG) feature between two land-

mark locations pi, pj can be represented as ϕ(pi, pj) = [dx dx2 dy dy2], dx = xi − xj,

dy = yi − yj, and the weight parameter µ
oriorj
ij favors certain spatial placements.

The third term in equation 2.8 is a co-occurrence model which favors certain pairs

of orientations between landmarks, where c
oriorj
ij is the pairwise co-occurrence prior

between landmark pi with orientation type ori and landmark pj with orientation type

orj. The algorithms applied for inference and learning the parameters from training

data [83] are explained in the next two subsections.

2.5.1 Inference

Given the profile face image template T , the best scoring configuration of land-

marks is found using dynamic programming by maximizing S(T, L, R) in equation

2.8 over landmark locations L, and orientation types R. The score of a specific land-

mark configuration, the first term in equation 2.8, is computed using message passing
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technique by iterating over all landmarks starting from the leaf nodes and moving

upstream to the root node can be computed as mentioned in [83]:

scorei(pi, ori) = λorii · f(T, pi) +
∑

kεkids(i)

mk(pi, ori); (2.9)

where

mk(pi, ori) = max
ori

c
oriorj
ij +max

pi
score(pi, ori) + µ

oriorj
ij · ϕ(pi, pj); (2.10)

Here kids(i) are the set of children of landmark pi in the tree structured graph G, where

any landmark pi can have only one parent. The message passed by any landmark

pi to its parent landmark pj can be compute by using equation 2.9 and 2.10. After

all messages passed to the root landmark p1, score1(p1, or1) demonstrate the best

configuration for landmark locations and orientation types. By using a predefined

threshold score we can select the best landmark configuration results. Non-maximal

suppression method is used to fuse overlapping decisions. By keeping track of the

argmax indices, the final location of the landmarks on the ear contour is detected.

2.5.2 Learning

In order to train the model, we use a fully supervised training dataset, where we are

given {Te, Le, Re}, labeled positive images with landmark locations, and orientation

types, and negative images {Te} . Since the scoring function is linear in its parameters,

i.e., S(Te, γ) = ω · Ψ(Te, γ), where ω = (λ, µ, c), defined in equation 2.8, the model

can be learned using a structural SVM solver represented in equation 2.11 following
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the optimization procedure proposed in [83].

arg min
ω,ξi≥0

1

2
‖ω‖+ C

∑
e

ξe;

s.t.∀ nε pos , ω ·Ψ(Te, γe) ≥ 1− ξe

∀ nε neg , ∀γ , ω ·Ψ(Te, γe) ≤ −1 + ξe

(2.11)



CHAPTER 3

3D Ear Classification Through Indexing

Majority of the available ear recognition techniques in the literature use sequential

search to find a match for the query template among all the gallery templates. Perfor-

mance of sequential search is satisfactory when the gallery contains a small number of

subjects, but it is not adequate for large galleries due to its inefficiency. To perform

time efficient recognition, we propose a hierarchical categorization of the gallery [82].

During recognition, we first determine the sub-category in which the query image

belongs and then only search the gallery templates in that subset. Hence, the search

space for a query image is reduced resulting in time efficient matching.

Figure 3.1: Proposed categorical hierarchy

33
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In this chapter we present a categorization framework that consists of a hierarchy

as shown in Figure 3.1. Inspired by Iannarellis, ear shape classification [2], we classify

ears into four basic geometric shape categories, i.e., round, rectangular, triangular

and oval, using geometric shape index values of the segmented ear. These four cate-

gories are further sub-categorized using depth features from the 3D ear images. While

performing categorization based on the depth information, the feature space is parti-

tioned using tree-based indexing techniques. During identification, only a small list

of the gallery images that belong to the same class as the query image are retrieved.

The block diagram of our approach is shown in Figure 3.2.

The remainder of this chapter is organized as follows: Section 3.1 describes the

categorization of the 3D ear gallery based on shape. Section 3.2 presents the 3D

feature extraction technique. Categorization of the 3D ear gallery through indexing is

explained in Section 3.3. Section 3.4 provides the experimental results to demonstrate

the performance of the proposed framework in terms of search space reduction and

retrieval time compared with the traditional sequential search.

3.1 Shape Based Categorization

In addition to Iannarellis work on ear classification [2], Choars et al. [89,90] cate-

gorized ears based on their shape. We adapt the categories proposed by Iannarelli [2],

i.e., round, rectangular, triangular, and oval. To categorize 3D ears into the different

shape categories shown in Figure 3.3, moments are computed from the binary mask

of the ear obtained after ear-region segmentation, explained in the previous chapter.

Shape analysis is a complex problem due to presence of noise, and in certain

cases variations between shapes result in insignificant changes in the measured fea-



35

Figure 3.2: System block diagram: 3D ear classification
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Figure 3.3: Iannarellis classification based on the shape of ear helix

ture values. To recognize objects from their shape, features such as eccentricity, Euler

number, compactness and convexity are used in the literature [91]. Moments or cen-

tral moments are used as quantitative measures for shape description [92, 93]. The

translation, rotation, and scale invariant shape indexes such as circularity, rectan-

gularity, triangularity, and ellipticity [94–96] are computed from the moments and

their values lie within the range (0,1]. We used these shape descriptors to find the

similarity of the ear shape to the geometrical figures: round, rectangular, triangular,

and oval, respectively.

3.1.1 Circularity

For a given shape, S, the circularity measure [94] is defined as follows:

CirS =
1

2π

µ0,0(S)2

µ2,0(S) + µ0,2(S)
; (3.1)

where µ refers to the general two-dimensional (p + q)th order moments of a density

distribution function ρ(x, y) defined as

µp,q =

∫ ∫
S

xpyqdxdy; p, q = (0, 1, 2); (3.2)
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Figure 3.4: Shadowy region represent the calculation of ’R’ on left and of ’D’ on the right

where (x, y) represent the coordinates of the binary object ρ(x, y), and CirS ranges

over [0, 1]. For a circle, the ratio µ2,0(S)+µ0,2(S)

µ0,0(S)2
results into 1

2π
. Hence, for a perfect

circle the value CirS will peak at 1.

3.1.2 Rectangularity

The standard approach to measure rectangularity is to use the ratio of the area

of the region of interest to the area of its minimum bounding rectangle (MBR) [97].

To overcome the sensitivity of the orientation between the rectangle and region of

interest, a normalized rectangularity measurement proposed by Rosin [96] is defined

as follows:

RectD = 1− R +D

B
; (3.3)

where R is the difference between the rectangle and the region of interest, D is

the difference between the region of interest and the rectangle, B is the area of the

rectangle, and RectD ranges over [0, 1]. The calculation of R and D is shown in

Figure 3.4.
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3.1.3 Ellipticity and Triangularity

The measures of ellipticity and triangularity are proposed by Rosin in [95]. Affine

transformation of a circle result into an ellipse, and the affine moment invariants of

a circle can be represented as:

I1 =
µ2,0(S)µ0,2(S)− µ1,1(S)2

µ0,0(S)4
; (3.4)

where µ is described in equation 5.19, and ρ(x, y) is the characteristics function of

the binary object whose ellipticity to be measured. For a unit radius circle, the value

of I1 is 1
16π2 , the measure of ellipticity [95] is defined as follows:

ElpI =


16π2I1, if I1 ≤ 1

16π2 .

1
16π2I1

, otherwise.

; (3.5)

which ranges over [0, 1] and peaks at 1 for a perfect ellipse. A similar approach

can be used to characterize triangles by moment invariants. Any triangle can be

considered as a simple right triangle aligned with the axes after applying an affine

transformation [95]. The computation of the affine moment invariants for a right

triangle results in I1 = 1
108

. The triangularity measure proposed in [95] is as follows:

TriI =


108I1, if I1 ≤ 1

108
.

1
108I1

, otherwise.

; (3.6)

Based on the maximum value among the four shape measures, the shape of a

particular ear is determined. The 3D ear database of University of Notre Dame,

Collection J2, contains multiple images of the same subject taken at different points

in time under different illumination conditions. Table 3.1 contains the evaluation of

the categorization of 3D ear database based on the above measures.
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Table 3.1: Categorization evaluation

Shape Category No. of Subjects
with all train-
ing ears in same
shape category

No. of Subjects having ears in different shape
categories

Oval 179 7 (Rectangular,Round,Triangular)
Rectangular 118 3 (Oval,Round,Triangular)
Traingular 106 6 (Round)
Round 12 4 (Triangular)

If training ear images of a single subject are not classified in the same shape

category, we label it as overlap between the shape categories in which the ears are

distributed. The most overlap is found between rectangular and oval shaped ears

and between triangular and round shaped ears. The goal of the proposed approach

is to categorize the 3D ear gallery for quick retrieval. Thus, for a specific subject if

there is such an overlap during enrollment, we store the data of that subject in each

of the overlapped shape categories. This ensures that during recognition we do not

misclassify a subject that have a shape measure that falls between two categories.

For twenty subjects, out of a total of 415 subjects, their ear images were categorized

in more than one shape category. For each one of these subjects, we store all the

training ear images of that subject in each of the overlapping shape categories. Based

on this approach the number of subjects in each category turns out to be 186 oval,

121 rectangular, 112 triangular and 16 round.

3.2 3D Feature Extraction

In this section we explain the 3D feature extraction technique. At first, key

points which contain salient surface information are localized, then the Surface Patch
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Histogram of Indexed Shape (SPHIS) descriptors [23,24] of these key points are com-

puted to build the feature space. To reduce the redundancy and the dimensionality

of the feature vectors, we applied principal component analysis (PCA) [98]. Finally,

we apply indexing in the lower dimensional feature space using KD tree and pyra-

mid technique, separately. In the following subsections we explain the extracted 3D

features from the 3D ear images and the feature extraction technique.

3.2.1 Definition of Features

Surface curvature information is utilized as a prominent feature in 3D object

recognition. Some of the important features include: 1) maximum (kmax) and mini-

mum (kmin) principal curvatures, 2) Gaussian curvature (K) and 3) mean curvature

(H) proposed by Besl et al. [99]. Using these curvature measures, two of the most

prominent features in 3D object recognition, i.e., Shape Index and Curvedness [15],

are computed. Shape Index (SI) is a quantitative measure of the shape of a surface

at a vertex p and its value lies within the interval [0,1]. SI at every point on the 3D

surface can be computed as mentioned in [15]:

SI(p) =
1

2
− 1

π
arctan(

kmax(p) + kmin(p)

kmax(p)− kmin(p)
); (3.7)

where kmax and kmin are the principle curvatures of the surface point p defined as

kmax(p) = H(p) +
√
H2(p)−K(p);

kmin(p) = H(p)−
√
H2(p)−K(p); (3.8)

where kmax(p) > kmin(p)∀p, and H(p) and K(p) are, respectively, the mean and

Gaussian curvature at surface point p. The curvedness value [15] at a surface vertex

is both rotation and translation invariant. Curvedness is a measure of the intensity
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of the surface curvature, which describe how gently or strongly the surface is curved.

Mathematically, the curvedness at surface vertex p can be modeled as [15]:

Cv(p) =

√
k2
max(p) + k2

min(p)

2
; (3.9)

where kmax and kmin are the maximum and minimum principal curvature, respectively,

described in equation 4.9.

3.2.2 Key Point Selection

Inspired by [26], Zhou et al. [24] proposed a sophisticated key point detection

technique to select points with higher curvedness values compared with other points

within a small neighborhood; those points are highly distinctive and contain salient

surface information. A window of 1mm x 1mm is used to scan the segmented ear

region, then, the point with the highest curvedness measure value within each small

neighborhood region is selected as a key point. Local surface data around each key

point is cropped using a sphere centered at the key point. To discard the insignificant

key points chosen in the previous step, the data of the cropped neighborhood surface

of the selected key points are examined. If the neighborhood of the selected key points

contain any boundary points, it is discarded. To further reject the less discriminative

key points, PCA [98] is applied on the cropped neighborhood surface data, and the

eigenvalues and eigenvectors are computed to determine the discrimination power

associated with each key point. The key points are only retained if the largest and

the smallest eigen values satisfy the predefined thresholds in [24]. We adopt this key

point selection approach.
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3.2.3 Feature Extraction

The Surface Patch Histogram of Indexed Shape [24] (SPHIS) descriptor is cal-

culated for each of the selected key points. SPHIS descriptor is designed to encode

the shape information of the surface vertices based on the surrounding surface patch.

SPHIS descriptor computation technique is adopted from [24] with few refinements.

To compute the rotation and translation invariant SPHIS descriptor for a key point

on the surface, a surface patch is cropped using a sphere of radius r centered at the key

point, we use r = 14mm as proposed in [24]. Later, the points contained in the sphere

are further divided into four subsets using equally spaced concentric spheres with

radius ri = i×r
4

; i = 1, 2, 3, 4 centered at the key point. After forming the four sub-

surface patches, histograms are computed using the shape index and curvedness values

of the points within each sub-surface patch resulting in 64 dimensional descriptors.

Histograms computed for each sub-surface patch are then concatenated to generate a

256 dimensional SPHIS descriptor. To increase the discrimination potential, we add

both shape index (SI) and curvedness (curv) value of each key point along with the

SPHIS descriptor proposed in [24] resulting in a 258 dimensional descriptor.

The final key points chosen after the key point selection step are used to compute

the feature vector of the segmented 3D ear. Let kp be the number of selected key

points. Each of the key points is represented by a descriptor of 258 elements which

results in a 258Xkp dimensional feature space. Finally, the feature space dimension is

reduced using PCA [98]. Indexing techniques are then applied on this reduced feature

space.
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3.3 Categorization Through Indexing

In our approach, categorization through indexing is performed in the second hi-

erarchy level using the depth features, as shown in Figure 3.1. In this section we

describe the indexing techniques that we used for categorization.

3.3.1 Indexing Techniques

Indexing is extensively used in the literature [100–102] for efficient content based

retrieval from large databases. However, as the dimensionality of the feature space

and the size of the database increase, the query response time along with the retrieval

accuracy decrease. B-trees [103] and R-trees [104] are efficient for relatively low

dimensions. In Biometrics, the feature space can consist of hundreds of features. To

adopt an indexing technique that is suitable for indexing a large biometrics database,

it should be able to index a high dimensional feature space and can handle range

queries efficiently. Since we might need to enroll new subjects and if needed to delete

old subjects from the biometrics database, the indexing technique must be dynamic

and scalable. The indexing technique should be roughly height balanced or non-

skewed to ensure that the tree traversal time is approximately the same for different

queries.

The effect of indexing is to split the database to create an abstract ordering of

the data points. There are two different paradigms to split a feature space, one

is balanced and the other is unbalanced. Both methods have their advantages and

disadvantages. The indexing algorithms that use balanced split data structures are

computationally inexpensive compared to indexing algorithms that use unbalanced
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split data structures. In a balanced split data structure, the path from the root to

any leaf node has the same length. However, when using an unbalanced split data

structure to develop an efficient indexing technique, we need to use another data

structure to achieve a height balanced or non-skewed indexing tree. In case of indexing

algorithm that use balanced split structures, to solve the curse of dimensionality

[105] problem, the feature space is recursively split into regions containing equal

number of data points in log2n dimensions where n is the number of data points.

The pyramid indexing algorithm, which uses unbalanced split structure, partitions

the D dimensional feature space into 2D hyperpyramids, i.e., the number of the

hyperpyramids is double the dimension of the feature space. For comparison, we

selected one indexing tree technique which uses balanced split data structure and

another one which uses unbalanced split data structure and compared their matching

accuracy and retrieval performance.

3.3.2 KD Tree

We selected the KD tree [106], which is a balanced split data structure to index

a database. KD trees are abstractions of binary search trees for higher dimensional

databases. Unlike R-trees [104], R*-trees [107] and X-trees [108], KD trees [106] have

no overlap between nodes. A KD tree is formed by a recursive sub-division of the

feature space using a (D − 1) dimensional hyper-plane at every node, where D is

the dimension of the feature space. After performing the splitting operation at every

node, the points to the left of this hyperplane are represented by the left subtree of

that node and the points to the right of the hyperplane are represented by the right

subtree.
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Before indexing we reduce the dimensionality of the feature space using PCA [98].

While indexing, at first, the feature space is recursively split across the top log2n

dimensions. This results in a tree structure of depth log2n. After the formation of

the KD tree, range search is performed using the feature vector computed from the

query 3D ear image. The range query retrieves the list of the gallery images which

belong to the hyper rectangle that includes the query. This list of gallery images are

labeled as reduced gallery. The average complexity to perform a range search in a KD

tree consisting of N nodes in a D dimensional feature space is O(D ·N1− 1
D ). However,

if we need to add new data points in the KD tree when enrolling a new subject in the

database we need to traverse the tree, starting from the root and moving to either

the left or the right child depending on whether the point to be inserted is on the

’left’ or ’right’ side of the splitting plane.

3.3.3 Pyramid Technique

The pyramid technique was proposed by Berchtold et al. [109] to overcome the

limitations of high dimensional database indexing using unbalanced split data struc-

tures. Compared with indexing algorithms that use balanced split data structures,

the number of gallery images retrieved against a query image is much less when using

the pyramid technique. To split the feature space, the pyramid technique [109] incor-

porates a spatial hashing which maps every data point in the original D dimensional

feature space to a single dimension key. Later, using these single dimension keys,

the data points are indexed in a height balanced B+ tree data structure resulting

in efficient insert, delete and query operations. Before indexing with the pyramid

technique, we first, reduce the dimensionality of the feature space using PCA [98],
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Figure 3.5: Partitioning a two dimensional feature space in pyramids. (a) 2 dimensional normalized
feature space. (b) Pnth Pyramid

then normalize the feature space. The D dimensional feature space is partitioned

into 2D hyperpyramids [109], each having a base of (D−1) dimension, with the apex

of each hyperpyramid meeting at the center of the normalized feature space. An

example of partitioning a two dimensional feature space is shown in Figure 3.5 (a).

where the normalized feature space is split into 4 pyramids p0, p1, p2, and p3. In the

following subsections the key generation technique, and the technique for performing

range queries on the Pyramid tree are explained.

3.3.3.1 Key Generation

The key associated with each data point in the multidimensional feature space

is computed as the pyramid value of the point. The pyramid value consist of two

parameters, i.e., pyramidvalue = pyramidnumber + height. Computation of pyramid

value is explained in Algorithm 1, adopted from [109]. The pyramidnumber is the

number of the pyramid in which the data point belongs and the height is the distance

of the data point from the apex of the pyramid. In Figure 3.5 (b). the data point
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′v′ belongs to pyramid ′n′ and the height of the data point is shown at the left of the

figure. The pyramidnumber in which a data point belongs can be computed as [109]:

pyramidnumber =


dimmax, if dimmax < 0.5

dimmax +D, if dimmax ≥ 0.5

(3.10)

dimmax = dimi|(∀dimj, 0 ≤ (dimi, dimj) < D,

dimi 6= dimj : |0.5− dimi| ≥ |0.5− dimj|).

This transformation is not injective, i.e., two points v1 and v2 may have the same

pyramidvalue, which does not turn out to be an obstacle as we do not need the inverse

transformation. Using the pyramidvalue as the key, the D dimensional data point is

inserted into the B+ tree data structure.

Algorithm 1 Calculate the pyramid value, i.e., the key associated to each data point

Pyramid Value or Key (Point v)
dimmax = 0
height = |0.5− v[0]|
for i = 1→ D − 1 do

if height < |0.5− v[i]| then
dimmax = i
height = |0.5− v[i]|

end if
end for
if v[dimmax] < 0.5 then
j = dimmax

else
j = dimmax +D

end if
pyramidvalue = j + height
return pyramidvalue
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3.3.3.2 Processing Range Queries

Pyramid trees respond to all possible types of queries such as point queries,

range queries, and kNN queries. When querying, first the SPHIS descriptor is

computed for the query 3D ear image, then the feature dimension is reduced ap-

propriately using PCA [98]. The D dimensional interval used for the range query

[qr0min , qr0max ], ..., [qr(D−1)min , qr(D−1)max ] defines the hyper rectangular neighborhood

of the query image. The query will return the list of the gallery images within this

hyper rectangle. To perform the range query, first, the pyramids that intersect with

the query hyper rectangle need to be determined. Later, the search interval [hhigh to

hlow], i.e., the range to be traversed in the (D − 1) dimensions inside the intersected

pyramids, needs to be computed, shown in Figure 3.6. Hence, the D dimensional

range query is transformed into D one dimensional range queries, containing two

parameters, intersected pyramidvalue and the [hhigh to hlow] search intervals within

the intersected pyramids. An example of the range query transformation for a two

dimensional feature space is shown in Figure 3.6. The gray rectangle, in the two di-

mensional feature space, represents a range query that only intersects with pyramid

p0 and p1, shown in Figure 3.6 (a). Hence, other pyramids, p2 and p3, do not need

to be traversed while performing the range query. In Figure 3.6 (b)., the shaded

area represents the query traversal region obtained based on the search ranges for the

intersected pyramids.

3.3.4 Extended Pyramid Technique

In the Pyramid technique [109], the data partitioning approach is based on the

assumption that the data points are uniformly distributed in the feature space. Usu-
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Figure 3.6: Two dimensional range query transformation. (a) Search Range. (b) Query traversal
area.
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Figure 3.7: Extended pyramid technique.(a) Skewed distribution of data points. (b) Suboptimal
partitioning using pyramid technique. (c) Better adaptation using extended pyramid technique.

ally in real applications, the data distribution in the Euclidean space is not uniform

and might be skewed, as shown in Figure 3.7 (a). Therefore, partitioning the feature

space using the traditional pyramid technique will result into suboptimal partitioning

as shown in the Figure 3.7 (b). To overcome this shortcoming, in the extended pyra-

mid technique [109], the center point of the normalized feature space is readjusted.

Shifting the center point from (0.5, 0.5,··· , 0.5)D to the median of the D dimensional

feature space, the partitioning of the data points among 2D hyperpyramids will be

more uniform, as shown in the Figure 3.7 (c). To find the median of D dimensional

feature space we adapted the technique proposed in [110], which has linear complexity,

O(n), where n is the number of data points in the distribution.
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3.4 Experimental Results

Experiments are conducted on the University of Notre Dame Collection J2 dataset

with 1800 images of 415 subjects. Some of the subjects have only two face profile

images in the database. Therefore, to include all the available subjects in the 3D

ear database, we randomly select one image for training and another for testing. In

the training phase, the binary ear masks obtained after segmentation are used to

categorize the 3D ear gallery into four shape categories, results are shown in Table

3.2. Then, for each of these categories, separately, we build the feature space using

the SPHIS descriptor illustrated in section 3.2.3. Using the 3D key point selection

technique, mentioned in section 3.2.2, we computed the minimum number of robust

key points on the segmented ears for the entire gallery, which turns out to be 35

key points. As explained in section V each of the key points is represented by a

descriptor of 258 elements. Thus, the feature vector for every 3D ear image contains

258 × 35 = 9030 elements. To reduce the redundancy and the dimensionality of the

feature vector, we applied PCA [98] to reduce the feature vector of each ear image to

a 500 dimensional feature vector.

Table 3.2: Recognition accuracy at different search space reductions

Indexing
Algorithm

10% reduc-
tion

20% reduc-
tion

30% reduc-
tion

40% reduc-
tion

50% reduc-
tion

KD-tree 89.26% 86.74% 85.25% 82.71% 80.81%
Pyramid
technique

93.97% 92.77% 92.19% 91.5% 90.78%

Extended
Pyramid

91.1% 90.62% 90.00% 88.25% 87.91%

To evaluate the performance of indexing the biometrics database, using algorithms

based on balanced split and unbalanced split data structures, we used KD tree and the
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Table 3.3: Average Computation Time / Query (seconds) at different search space reductions

Indexing
Algorithm

10% reduc-
tion

20% reduc-
tion

30% reduc-
tion

40% reduc-
tion

50% reduc-
tion

KD-tree 0.0171 0.0165 0.0158 0.0142 0.0119
Pyramid
technique

0.0089 0.0087 0.0082 0.0072 0.0054

Extended
Pyramid

0.0065 0.0058 0.0051 0.0045 0.0039

Table 3.4: Comparison of time needed in recognition phase

Method Average computa-
tion time / Query
(seconds)

Ear Detection

Jindan et al. [24] .019 s Automatic
This Work .0039 s Automatic

Pyramid technique, separately, to index the 3D ear scans in the four shape categories.

The query image is first segmented, then the shape index values are calculated using

the image moments mentioned in the previous chapter. Based on the maximum shape

index value, the shape category is determined and the test image is used to perform

a range query on the index tree built for the same shape category. The indexing tree

returns a small list of 3D ear images in response to the query image, that we label

as reduced gallery. Euclidean distance in higher dimensional feature space (SPHIS

descriptors without dimensionality reduction) is used to perform a sequential search

on the reduced gallery of 3D ear images to find the best possible match. If the best

possible matched ear is of the same subject we consider it as a rank-1 recognition.

To evaluate the robustness of the retrieval performance using the proposed ap-

proach, we conducted the recognition without categorizing the database. The average

computation time to perform the recognition through sequential search of the entire

gallery templates is around 0.023 seconds. The results of recognition accuracy and
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computation time when performing recognition after indexing the database at differ-

ent amounts of search space reduction are given in Table 3.2 and 3.3 respectively.

The results show that the performance of the indexing technique with unbalanced

split data structure, i.e., Pyramid tree, is much better than that of the indexing

technique with balanced split data structure, i.e., KD tree, in both the recognition

accuracy and the computation time. The extended pyramid technique proves to

be superior over the traditional pyramid technique in time efficient search due to

its adaptability to any arbitrary distribution. In the recognition phase the average

computation time per query in the proposed approach is only 0.0039 seconds with a

50% search space reduction on a Windows R© 7 operating system with Intel R© CoreTM

i5 processor running a Matlab R© implementation. In [24], the comparison of 3D ear

probe-gallery matching time shows that the key point based matching technique [24]

is faster than the ICP-based shape registration and matching technique [7, 17]. To

compare the average computation time per query in our approach with the most

efficient technique in the state-of-the-art [24], we run the 3D ear recognition approach

proposed in [24] on the same platform. In Table 3.4 we compare the running time

of our approach with the running time needed for recognition in the state-of-the-art

3D ear biometric system based on the UND 3D ear database. The results in the

table demonstrate the superiority and robustness of our approach compared to the

state-of-the-art technique.

3.4.1 Comparison with Other Methods

Table VII shows a comparison between the identification performance achieved

by the proposed approach without any search space reduction and the recognition
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accuracy of the the state-of-the-art techniques on the UND, collection J2 database.

In [17] the authors experimented with the UND database Collection F, a subset of

Collection J2. The probe and gallery ear images used in [17] consist of a single 3D

ear model for each of the 302 subjects. Other works in Table VII employed UND,

collection J2 database to report their rank-one recognition accuracy. The proposed

3D ear biometric system achieves a rank-one recognition rate of 98.5% on the 415

subjects of UND collection J2 database.

Table 3.5: Comparison of Rank One Recognition accuracy

Method Rank One recognition
accuracy

Modality of Im-
ages Used

Chen and Bhanu.
[17]

96.4% Co-registered
2D +3D

Yan and Bowyer.
[7]

97.6% Co-registered
2D +3D

Jindan et al. [24] 98.0% Only 3D
Prakash and
Gupta. [28]

98.30% Co-registered
2D +3D

This Work 98.5% Only 3D

3.4.2 Recognition Accuracy Using Accurately Segmented Ears

The results in sections 3.2, 3.3, 3.4, and 3.5 use all the images of the 415 subjects in

the UND, collection J2, 3D ear database without any post segmentation processing.

Later, we performed an experiment to compute the recognition accuracy through

indexing by first manually correcting the over and under segmented 3D ear regions,

as defined in the previous chapter. By using the accurately segmented ear regions of

all the 415 subjects, those who have at least two ear images, the recognition results

obtained through indexing improved compared to using the segmented ears, without

correction, as shown in Table 3.6. We used both Pyramid tree and KD tree to compute
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the rank-one recognition accuracy with a 10% to 50% search space reduction with

a 10% step size. The best rank-one recognition accuracy increased to 96.87% when

using the Pyramid tree indexing technique with a 10% search space reduction.

Table 3.6: Recognition Accuracy Using Accurately Segmented Ears

Indexing
Algorithm

10% reduc-
tion

20% reduc-
tion

30% reduc-
tion

40% reduc-
tion

50% reduc-
tion

KD-tree 91.32% 90.60% 89.64% 88.43% 86.74%
Pyramid
technique

96.87% 96.14% 95.18% 94.12% 93.49%



CHAPTER 4

Multimodal Biometrics Recognition from
Facial Video via Deep Learning

Several factors, e.g., changes in illumination and viewing direction, affect the

accuracy and robustness of unimodal face biometrics [3–6]. To overcome these limi-

tations, fusion of different modalities has been used in the literature to obtain robust

and accurate recognition results.

There are several motivations for building multimodal biometric systems that

work on facial video clips where some of the modalities are missing. Firstly, acquiring

video clips of facial data is straight forward using conventional video cameras, which

are ubiquitous. Secondly, the nature of data collection is non-intrusive and the ear,

frontal, and profile face can appear in the same video. Thirdly, in a multi-modal

biometric identification system, it is expected to encounter missing modalities when

working with video data. Different modalities, e.g., left ear, right ear, left profile face,

right profile face, and frontal face might exist in the training video clips. If the test

data does not contain all the modalities during the classification, we should be able

to perform multi-modal classification based on the available modalities.

56
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Figure 4.1: System Block Diagram: Multimodal Biometrics Recognition from Facial Video

In this chapter [111, 112], we present a novel multimodal biometrics approach to

efficiently recognize subjects from facial video surveillance data irrespective of the il-

lumination, non-planar movement, and pose variations present in the face video clips.

Unlike facial videos recorded under a constrained environment, facial video clips col-

lected in unconstrained environments contain significant head pose variations due to

non-planar movements. Moreover, detected frames of the same modality from uncon-

strained facial video clips contain a high degree of non-planar rotation variabilities

compared with the constrained counterpart. This makes unconstrained facial video

clips more challenging to adequately extract information for efficient recognition.



58

The remainder of this chapter is organized as follows: Section 4.1 details the

modality specific frame detection from the facial video clips. Section 4.2 describes

the automatic feature learning using supervised denoising sparse autoencoder (deep-

learning). Section 4.3 presents the modality specific classification using sparse rep-

resentation and multimodal fusion. Section 4.4 provides the experimental results

on the constrained facial video dataset (WVU [113]) and the unconstrained facial

video dataset (HONDA/UCSD [114]) to demonstrate the performance of the pro-

posed framework.

4.1 Modality Specific Image Frame Detection

To perform multimodal biometric recognition, we first need to detect the images

of the different modalities from the facial video. The facial video clips in the con-

strained dataset are collected in a controlled environment, where the camera rotates

around the subject’s head. The video sequences start with the left profile of each

subject (0 degrees) and proceed to the right profile (180 degrees). Each of these video

sequences contains image frames of different modalities, e.g., left ear, left profile face,

frontal face, right profile face, and right ear, respectively. The video sequences in

the unconstrained dataset contains uncontrolled and nonuniform head rotations and

changing facial expressions. Thus, the appearance of a specific modality in a certain

frame of the unconstrained video clip is random compared with the constrained video

clips.

The algorithm was trained to detect the different modalities that appear in the

facial video clips. To automate the detection process of the modality specific image

frames, we adopt the Adaboost object detection technique, proposed by Viola and
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Table 4.1: Detection Accuracy for Unconstrained Video Clips

Modality Detection Accuracy (%)

Frontal Face 97.55
Left Profile Face 93.42
Right Profile Face 92.21
Left Ear 98.77
Right Ear 98.84

Jones [8]. The algorithm is trained to detect frontal and profile faces in the video

frames, respectively, using manually cropped frontal face images from color FERET

[115] database, and profile face images from the University of Notre Dame Collection

J2 database. Moreover, it is trained using cropped ear images from UND [116] color

ear database to detect ear images in the video frames. By using these modality

specific trained detectors, we can detect faces and ears in the video frames. The

modality specific trained detectors are applied to the entire video sequence to detect

the face and the ear regions in the video frames. Examples of detection results from

the constrained and unconstrained dataset are shown in Figure 4.2 and Figure 4.3.

The results of the modality specific detection for the constrained face video clip

is accurate. However, due to the uncontrolled head movements and non-planar rota-

tion present in the unconstrained dataset, the detection results are not as accurate

and there are few false positives. Table 5.1 shows the detection accuracies for the

unconstrained dataset.

Before using the detected modality specific regions from the video frames for

extracting features, some preprocessing steps are performed. The facial video clips

recorded in the unconstrained environment contain variations in illumination and low

contrast. Histogram equalization is performed to enhance the contrast of the images.
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(a) Automatic detection of image frames in WVU facial video clips using modality specific trained
cascade classifier

(b) Categorized detected regions from WVU facial video clips into modality specific groups from
a video sequence

Figure 4.2: Modality Specific Image Frame Detection for Constrained Face Video Clips
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(a) Automatic detection of image frames in HONDA/UCSD facial video clips using modality
specific trained cascade classifier

(b) Categorized detected regions from HONDA/UCSD facial video clips into modality specific
groups from a video sequence

Figure 4.3: Modality Specific Image Frame Detection for Unconstrained Face Video Clips
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Finally, all detected modality specific regions from the facial video clips were resized;

ear images were resized to 110 X 70 pixels and faces images (frontal and profile) were

resized to 128 X 128 pixels.

4.2 Automatic Feature Learning Using Deep Neu-

ral Network

Even though the modalitiy specific sparse classifiers result in relatively significant

recognition accuracy on the constrained face video clips, the accuracy suffers in case

of unconstrained video because the classifier is vulnerable to the bias in the number of

training images from different subjects. For example, subjects in the HONDA/UCSD

dataset [114] randomly change their head pose. This results in a nonuniform number

of detected modality specific video frames across different video clips, which is not

ideal to perform classification through sparse representation.

In the subsequent sections we first describe the gabor feature extraction technique.

Then, we describe the supervised denoising sparse autoencoders, which we use to

automatically learn equal number of feature vectors for each subject from the uneven

number of modality specific detected regions.

4.2.1 Feature Extraction

2D Gabor filters [117] are used in broad range of applications [118,119] to extract

scale and rotation invariant feature vectors. In our feature extraction step, uniform

down-sampled Gabor wavelets are computed for the detected regions using equation

5.18, as proposed in [120]:

ψµ,ν(z) =
||kµ,ν ||2

s2
e(
−||kµ,ν ||2||z||2

2s2
)[eikµ,νz − e

−s2
2 ], (4.1)
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where z = (x, y) represents each pixel in the 2D image, kµ,ν is the wave vector,

which can be defined as kµ,ν = kνe
iφµ , kν = kmax

fν
, kmax is the maximum frequency,

and f is the spacing factor between kernels in the frequency domain, φµ = πµ
2

, and

the value of s determines the ratio of the Gaussian window width to wavelength.

Using equation 5.18, Gabor kernels can be generated from one filter using different

scaling and rotation factors. In this paper, we used five scales, ν ∈ 0, ..., 4 and eight

orientations µ ∈ 0, ..., 7. The other parameter values used are s = 2π,kmax = π
2
, and

f =
√

2 as considered for other studies in same application.

Before computing the Gabor features, all detected ear regions are resized to the

average size of all the ear images, i.e., 110 × 70 pixels, and all face images (frontal

and profile) are resized to the average size of all the face images, i.e., 128×128 pixels.

Gabor features are computed by convolving each Gabor wavelet with the detected

2D region, as follows:

Cµ,ν(z) = T (z) ∗ ψµ,ν(z), (4.2)

where T (z) is the detected 2D region, and z = (x, y) represents the pixel location.

The feature vector is constructed out of Cµ,ν by concatenating its rows.

4.2.2 Classical Sparse Autoencoder

Deep Learning is a class of machine learning techniques, where multiple layers

of information processing stages in hierarchical architectures are utilized for pattern

analysis/classification. There are different Deep Learning architectures available in

the literature. The available Deep Learning architectures can be categorized broadly

into three major classes: Convolution Neural Network (CNN), Recurrent Neural Net-

work (RNN), and Deep auto-encoder (DNN). CNNs are Neural network with local
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Figure 4.4: Structure of an autoencoder

and global connectivity structure consist of multiple stages of feature extractors. Con-

volutional neural networks are used in various image/scene recognition, video content

analysis, Natural Language Processing applications etc. Recurrent Neural Network

contains feed-back connection, so the activations can flow round in a loop. That

enables the networks to do temporal processing and learn sequences, e.g., perform se-

quence recognition/reproduction or temporal association/prediction. Recurrent Neu-

ral Networks are used in speech recognition, video captioning, word prediction, trans-

lation applications etc. Thus we can see none of the Convolution Neural Network

(CNN) or Recurrent Neural Network (RNN) architectures are suitable for the auto-

matic feature extraction. However, in the Deep auto-encoder architecture the output

target is the data input itself, often pre-trained with Deep belief network or using

distorted training data to regularize the learning. In this subsection we describe the
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sparse autoencoder [121] learning algorithm, which is one approach to automatically

learn features from unlabeled data.

The application of neural networks to supervised learning [122] is well proven in

different applications including computer vision and speech recognition. An autoen-

coder neural network is an unsupervised learning algorithm, one of the commonly

used building blocks in deep neural networks, that applies backpropagation to set the

target values to be equal to the inputs. The reconstruction error between the input

and the output of the network is used to adjust the weights of each layer. As shown

in Figure 4.4, an autoencoder tries to learn a function xi = x̂i, where xi belongs to

unlabeled training examples set {x(1), x(2), x(3), ..., x(n)}, and xi ∈ Rn. In other words,

it is trying to learn an approximation to the identity function, to produce an output

x̂ that is similar to x, in two subsequent stages: (i) An encoder that maps the input x

to the hidden nodes through some deterministic mapping function f : h = f(x), then

(ii) A decoder that maps the hidden nodes back to the original input space through

another deterministic mapping function g : x̂ = g(h). For real-valued input, by mini-

mizing the reconstruction error ||x−g(f(x))||22, the parameters of encoder and decoder

can be learned. This simple autoencoder often resembles learning a low-dimensional

representation similar to PCA [98]. However, it has been proven in [123] that such

a nonlinear auto-encoder is different from PCA, also training an autoencoder results

in minimizing the reconstruction error and maximizing a lower bound on the mutual

information between the input and the learned representation.

In Figure 4.4, the number of hidden units can be increased, i.e., the number of

hidden nodes can be made even greater than the number of input nodes. In this case,

we can learn some inherent structure of the data by imposing a sparsity constraint on
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the network. In other words, if we think of a neuron as being “active” if its output

value is close to 1, or as being “inactive” if its output value is close to 0, we would like

to constrain the neurons to be inactive most of the time. Recent research progress

in biology reveals that the percentage of the activated neurons of human brain at

a specific time is around 1% to 4% [124]. Therefore the sparsity constraint on the

activation of the hidden layer is commonly used in the autoencoder based neural

networks. Results show that sparse autoencoder often achieves better performance

than that trained without the sparsity constraint [121].

4.2.3 Denoising Auto-encoder

Denoising Auto-encoder (DAE) [125], is a more generalized and robust version

of the classical autoencoder. Since it assumes that the input data contain noise, it

is suitable for learning features from noisy data. In other words, DAE is trained to

reconstruct a clean or repaired version of the input from a corrupted or noisy one. It

is proven that compared to ordinary autoencoders, denoising autoencoders are able

to learn Gabor-like edge detectors from natural image patches.

In [125], DAE is designed and effectively tested to address different real world

scenario where noise can corrupt the input data. The original input data x ∈ Rn can

be affected by; a) Additive isotropic Gaussian noise (x̃|x ∼ N (x, σ2I), b) Masking

noise, i.e., a fraction of randomly chosen x is forced to 0, and c) Salt-and-pepper

noise, i.e., a fraction of randomly chosen x is forced to 0 or 1. The corruped data x̃ is

used as the input of the encoder, i.e., the encoding of DAE is obtained by a nonlinear

transformation function:

h = fe(x̃) = fe(Wx̃+ be) (4.3)



67

where h ∈ Ry denotes the output of the hidden layer and can also be called feature

representation or code, y is the number of units in the hidden layer, W ∈ Ry×n is

the input-to-hidden weights, be denotes the bias, Wx̃+ be stands for the input of the

hidden layer, and fe is the activation function of the hidden layer. The decoding or

reconstruction of DAE is obtained by using a mapping function gd:

x̂ = gd(h) = gd(W
′h+ bd) (4.4)

where x̂ ∈ Rz is the output of DAE, which is also the robust reconstruction of

original corrupted data x̃. The output layer has the same number of nodes as the

input layer. W ′ = W T is referred to as tied weights. DAE aims to train the network

by requiring the output data x̂ to reconstruct the noisy input data x̃, which is also

called reconstruction-oriented training. Therefore, the reconstruction error should be

used as the objective function or cost function as follows:

min
W,W ′,be,bd

∑
xεX

L(x, x̂); (4.5)

where L is the reconstruction error, typically squared error L(x, x̂) = ||x−x̂||2 for real-

valued inputs, cross-entropy function is used when the values of input x range from 0

to 1. Quantitative experiments show that even when the fraction of corrupted pixels

,e.g., as corrupted by zero masking noises, reaches 55%, the recognition accuracy is

still better or comparable with that of a network trained without corruptions.

4.2.4 Supervised Stacked Denoising Auto-encoder

To learn features from modality specific image regions which are robust to illu-

mination, viewing angle, pose etc., we adopted the supervised autoencoder [61]. The

supervised autoencoder is trained with the gallery image features (normal illumination
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Figure 4.5: Stacked Denoising Auto-encoder network; stacked by two layers of Denoising Auto-
encoders

and direct pose) represented as xi, and the labelled probe image features (containing

varying illumination, viewing angle and pose) represented as x̂i. By minimizing the

objective criterion given in equation 4.6, s.t., modality-specific features corresponding

to the same person to be similar, the supervised autoencoders learn to capture the

modality specific robust representation.

min
W,be,bd

1

N

∑
i

(
‖(xi − g(f(x̂i))‖2

2 + λ‖(f(xi)− f(x̂i)‖2
2

)
; (4.6)

where h = f(x) = tanh(Wx+ be), g(h) = tanh(W Th+ bd), N is the total number

of training samples, and λ is the weight preservation term. The first term in equation

4.6 minimize the the reconstruction error, i.e., after passing through the encoder and

the decoder the variances of the unconstrained image regions will be repaired. The
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second term in equation 4.6 enforce simillarity preservation, leads to learn similar

modality specific features corresponding to the same person.

Stacking denoising autoencoders to initialize a deep network follows the procedure

of stacking Restricted Boltzman Machines (RBMs) in deep belief networks [126–128].

It is worth noting that the corrupted/ noisy input is only used for the initial denoising-

training of each individual layer so that it may learn useful feature extractors. After

training a first level denoising autoencoder, the learned encoding function fe1 can be

used on clean input for reconstruction. The resulting representation is used to train

a second level denoising autoencoder to learn a second level encoding function fe2.

This procedure can be repeated to stack the trained Denoising Auto-encoder layer by

layer to form a Stacked Denoising Auto-encoder (SDAE). Figure 4.5 shows a typical

instance of SDAE structure, which includes two encoding layers and two decoding

layers. In the encoding part, the output of the first encoding layer acts as the input

data of the second encoding layer.

After training a stack of encoders as explained in the previous section, its highest

level output representation can be used as input to a stand-alone supervised learning

algorithm. A logistic regression (LR) layer was added on top of the encoders as the

final output layer [129], which enable the deep neural network to perform supervised

learning. By performing gradient descent on a supervised cost function, the SDAE

automatically learned fine-tuned network weights. Thus, the parameters of the entire

SDAE network are fine-tuned to minimize the error in predicting the supervised

target ( e.g., class labels). It is worth noting that SDAE is unsupervised while LR

is supervised and only the data with labeled information can be used in LR stage.

The Supervised Stacked Denoising Auto-encoder network is illustrated in Figure 4.6,
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Figure 4.6: Supervised Stacked Denoising Auto-encoder

which shows a two-category classification problem. As per [129], we can see that the

decoding part of SDAE is removed and the encoding part of SDAE is retained to

produce the initial features. In addition, the output layer of the entire network (LR

layer), is added.

4.2.5 Training the Deep Learning Network

In this subsection we will describe the constraints we faced while training the

SDAE using the Layer-wise Greedy learning algorithm, and application of the super-

vised fine tuning to minimize the error of predicting the supervised target.

Empirically, deep networks were generally found to be not better, and often worse,

than neural networks with more than one or two hidden layers [125]. A reasonable

explanation is that gradient-based optimization often get stuck near poor solutions.
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An approach that has been explored and proved successful to train deep networks

with more than two hidden layers, is based on constructively adding layers [130],

using a supervised criterion at each stage. However, it requires having an extensive

training dataset to achieve generalization and avoid overfitting. In our application, the

technique of constructively adding layers did not perform well because of the relatively

small number of training samples. Moreover, we need to initialize the weights in a

region near a good local minima, to better generalize the internal representations of

the data.

Thus, we adopt the two stage training of the Deep Learning Network, where we

have a better initialization to begin with and a fine tuned network weights that lead

us to a more accurate high-level representation of the dataset. The steps of two stage

Deep Learning Network training are as follows:

Step1. Stacked Denoising Autoencoders are used to train the initial network weights

one layer at a time in a greedy fashion using Deep Belief Network (DBN).

Step2. The weights of the Deep learning network are initialized using the learned

parameters from DBN.

Step3. Labelled training data are used as input, and their predicted classification

labels obtained using the Logistic regression [125] layer along with the initial weights

of the network used as an objective function to fine tune the entire network .

Step4. Back propagation is applied on the network to optimize the objective function

(given in equation 4.5) , results in fine tune the weights and bias for the entire

network.

Step5. Finally, the learned network weights and bias are used to extract image
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features to train the sparse classifier.

In the next two subsections the detailed explanation of the two stage training of the

Deep Learning Network is provided.

4.2.5.1 Layer-wise Greedy Learning

Deep multi-layer artificial neural networks have multiple levels of non-linearities

associated with them for effectively represent the highly non-linear and highly-varying

functions in a compact higher level representation. However, until recently it was not

obvious how to efficiently train such deep networks since gradient-based optimization

starting from random initialization usually get stuck in local optima resulting in poor

solutions. Hinton et al. [131], recently introduced a greedy layer-wise unsupervised

learning algorithm for Deep Belief Networks (DBN), a generative model with many

layers of hidden causal variables. Later on, in [129], a variant of the greedy layer-

wise unsupervised learning is proposed to extend it to cases where the inputs are

continuous.

In a DBN, let x be the input, and gi be the hidden variables at layer i, then the

computation of probability and sampling can be represented by the joint distribution:

P (x, g1, g2, ..., gl) = P (x|g1)P (g1|g2)...αP (gl − 2|gl − 1)P (gl − 1, gl); (4.7)

where all the conditional layers P (gi|gi+1) are factorized conditional distributions. In

Hinton et al. [131] the hidden layer gi is used as a binary random vector with ni

elements of gij

P (gi|gi+1) =
ni∏
j=1

P (gij|gi+1); (4.8)
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where

P (gij = 1|gi+1) = sigm(bij +
ni+1∑
k=1

W i
kjg

i+1
k ); (4.9)

where sigm(t) = 1
1+e−t

, the bij are biases for unit j of layer i, and W i is the weight

matrix for layer i. If we set g0 = x, the generative model for the first layer P (x|g1)

will follow the equation 4.7.

A Deep Belief Network (DBN) can be used for generatively pre-training a Deep

Neural Network (DNN) by using the learned weights as the initial weights [131]. A

DBN can be efficiently trained in an unsupervised, layer-by-layer manner where the

layers are typically made of restricted Boltzmann machines (RBM) [132]. A RBM is a

generative stochastic artificial neural network that can learn a probability distribution

over the set of inputs.

It should be noted that 1-level DBN is equivalent to an RBM. The greedy layer-

wise strategy to add multiple layers in the DBN follows this same methodology. Train

the first layer as an RBM that models the raw input x = g0 as its visible layer. Then

use the first layer to obtain the mean activations P (g1 = 1|g0) of the input, which

will be used as input data for the second layer. Train the second layer as an RBM

P (g0, g1), taking the transformed data (mean activations) as input to the visible layer

of that RBM. Iterate the same steps to add the (l+ 1)th level, after training the top-

level RBM of a l level DBN, such that, the distribution P (gl−1, gl) from the RBM

associated with layers (l − 1) and l is kept as part of the DBN generative model. In

training a single RBM, weight updates are performed with gradient ascent via the

following equation:
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∆wij(t+ 1) = wij(t) + η
δlog(p(v))

δwij
; (4.10)

where η is the learning rate and p(v) is the probability of a visible vector, which

is given by:

p(v) =
1

Z

∑
h

e−E(v,h); (4.11)

In equation 4.11, Z is the partition function (used for normalizing) and E(v, h) =

−h′Wv − b′v − c′h is the energy function assigned to the state of the network. Here,

v stands for visible units and hidden layer activations h stands for hidden units.

Computation of stepwise weight updates is explained in Algorithm 1, where b is the

vector of biases for visible units and c is the vector of biases for the hidden units.

Algorithm 2 Stepwise weight update of the DBN

1. Initialize the visible units to a training vector.
2. Update the hidden units in parallel given the visible units: p(hj = 1|V ) =
sigm(bj +

∑
i viWij)

3. Update the visible units in parallel given the hidden units: p(vi = 1|H) =
sigm(ci +

∑
j hjWij) (“Reconstriction” step.)

4. Reupdate the hidden units in parallel given the reconstructed visible units
following the same equation as step 2.
5. Perform weight update by following: ∆wij ∝ 〈vjhj〉data − 〈vjhj〉reconstriction

4.2.5.2 Supervise Fine Tuning

Once all layers are pre-trained, the network goes through the second stage of

training called fine-tuning. This supervised fine-tuning is performed to minimize

the overall prediction error of the entire Deep Learning Network. To achieve this,

a logistic regression layer (or in generic scenario a soft-max regression classifier) is



75

added on top of the network. We then train the entire network as we would train a

multilayer perceptron, where the encoding parts of each auto-encoder are used. This

stage is supervised since now we use the target class during training.

The network is illustrated in Figure 4.6, which shows a two-category classification

problem (there are two output values). We can see that the decoding part of SDAE is

removed and the encoding part of SDAE is retained to produce the initial features. In

addition, the output layer of the whole network, which is also called logistic regression

layer, is added. The following sigmoid function is used as activation function of the

logistic regression layer:

h(x) =
1

e−Wx−b ; (4.12)

where x is the output of the last encoding layer yl, in other words the deep features

that are pretrained by SDAE network. The output of the sigmoid function is between

0 and 1, which denotes the classification results in case of two class classification

problem. Therefore, we can use the errors between the predicted classification results

and the true labels associated with the training data points to fine-tune the whole

network weights.The cost function is defined as the following cross-entropy function:

Cost = − 1

m

 m∑
i=1

l(i)log(h(x(i))) + (1− l(i))log(1− h(x(i)))

; (4.13)

where l(i) denotes the label of the sample x(i). By minimizing the cost function, we

update the network weights.
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4.3 Modality Specific and Multimodal Recognition

The modality specific sub-dictionaries are formed utilizing the feature vectors

generated by Deep Learning Network using the modality specific detected regions of

the training video sequence. Where, modality specific sub-dictionary is the learned

dictionary using the modality specific training data of an individual subject.

First the modality specific sub-dictionary d, and the coefficient matrix X0 are

obtained by linearly representing the training data Y ; i.e., Y = dX0. Then we

concatenate the modality specific learned sub-dictionaries dij to build the modality

specific dictionary Di, shown in equation 4.14.

Di = [di1; di2; ...; dij]; (4.14)

where, i represents the modality used in the multimodal recognition, i ∈ 1, 2, ..., 5;

and j stands for the total number of training video sequences. Where, modality

specific dictionary is the learned dictionary using the modality specific (such as left

ear, left profile face, frontal face, right profile face, and right ear) training data of all

the subjects in the entire database.

4.3.1 Sparse Representation For Classification

For each training video sequence, the modality specific sub-dictionaries dil ∈ Rp,

are formed using the feature vectors genertaed by Deep Learning Network utilizing

the modality specific detected regions of the lth training video sequence, and p is

the length of the feature vectors learned by Deep Learning Network. Similarly, the

feature vector learned by Deep Learning Network, yi ∈ Rp, using modality specific
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detected regions in the test video, is then represented as a linear combination of the

feature vectors learned from the training video sequences:

yi = di1 ∗ αi1 + di2 ∗ αi2 + ...+ dji ∗ αij. (4.15)

where αij’s are the coefficients corresponding to the training data of ith modality

in the jth training video sequence. Equation 4.15 can be represented by using the

concatenated modality specific dictionary Di, defined in equation 4.14, as:

yi = Dix ∈ Rp, (4.16)

where x is the coefficient vector, and the test data yi belongs to ith modality. In

our approach we used Smoothed l0 (SL0) [133] norm to solve equation 4.16. SL0

algorithm is utilized to obtain the sparsest solution of under determined systems of

linear equations by directly minimizing the l0 norm. SL0 has proven to be more

efficient than l0 and l1 in space and time complexity [133].

Using majority voting on the sparse classification coefficients obtained from the

individual sub-dictionaries for all the modality specific regions detected from a specific

test video, the modality specific classification decisions are made. Later, the final

classification of the subject present in the video sequence is made based upon the

score level fusion of the modality specific classification. Some of the modalities may

not be available in the video used for recognition, in these cases we make the final

decision based on the available modalities. In the experiments section, we tested the

algorithm when all the modalities are available during the recognition phase and also

all possible combinations of missing modalities, i.e., 1, 2 or 3 modalities are absent.
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4.3.2 Multimodal Recognition

The five modalities- left ear, left profile face, frontal face, right profile face, and

right ear- are combined at the score level. While performing fusion at the score level,

we have the flexibility to fuse the match scores from various modalities upon their

availability. The tanh [134] was used to transform the matching scores obtained from

the different matchers into a common domain. Later, the weighted sum technique was

used to fuse the results at the score level. The tanh-estimators score normalization

technique, used to make the match score from individual matchers comparable, is

defined as follows:

snj =
1

2

{
tanh(0.01(

sj − µGH
σGH

)) + 1

}
, (4.17)

where sj and snj are the match scores before and after normalization, respectively.

µGH and σGH are the mean and standard deviation estimates of the genuine score

distribution given by Hampel estimators [135], respectively. Hampel’s estimators are

based on the influence functions ψ which are odd functions and can be defined for

any x as follows:

ψ(x) =



x, 0 ≤ |x| < a,

a sign(x), a ≤ |x| ≤ b,

a(r−|x|)
r−b sign(x), b ≤ |x| ≤ r,

0, r ≤ x,

(4.18)

where

sign(x) =


+1, if x ≥ 0,

−1, otherwise,

(4.19)
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In equation 5.21, the value of a, b, and r in ψ, reduces the influence of the scores at the

tails of the distribution during the estimation of the location and scale parameters.

The normalized match scores are then fused using the weighted sum technique:

Sp =
M∑
i=1

wi ∗ sni ; (4.20)

where wi and sni are the weight and normalized match score of the ith modality

specific classifier, respectively, such that
M∑
i=1

wi = 1. In this study, the weights wi, i =

1, 2, 3, 4, 5; stands for the left ear, left profile face, frontal face, right profile face,

and right ear modalities, respectively. These weights can be obtained by exhaustive

search or based on the individual performance of the classifiers [134]. In our work, we

empirically chose the weights for modality specific classifiers to maximize the fused

multimodal recognition accuracy.

4.4 Experimental Results

In this section we describe the constrained, WVU dataset [113] and the uncon-

strained, HONDA/UCSD [114] dataset contents. Then, we demonstrate the results of

the set of modality specific and multi-modal recognition experiments on both datasets.

4.4.1 WVU Dataset

The WVU data set [113] contains video sequences obtained by a camera moving

in a semicircle around the face, starting from the extreme left profile of each subject

(0 degree) up-to the extreme right profile (180 degree), for a total of 402 subjects.

Video clips in the WVU database are collected at different times under the same

environmental constraints, e.g., illumination and distance from the camera. Three
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of the subjects had their left and right ears fully occluded, and therefore, they were

removed from the dataset. Fifty nine subjects have two or more video sequences

with widely varied appearance with and without facial hair, glasses, caps, and long

hair, which partially occluded the ear, while the remaining 340 subjects only have

one video sequence.

To perform the multimodal recognition, we trained the modality specific dictio-

naries for all the five modalities using the training video sequences. Despite the

situation of missing modalities in the test video, we are able to perform the multi-

modal recognition using the available modalities because of obtaining the modality

specific dictionaries using the training data. In order to evaluate our algorithm, we

prepared two instances of datasets from the available video sequences in the WVU

dataset.

4.4.1.1 Dataset-1

In dataset 1, we use one video sequence for each subject, which results into a

total of 399 video sequences. The detected modality specific regions from the video

sequence of each subject are separated for training and testing in a non-overlapping

fashion. Detection of the left ear and the left profile face is performed between 0 to

30 degree rotation of the camera in the video. The detected regions in the first 100

frames were used for training and the detected regions in the next 100 frames were

used for testing. Detection of frontal face is performed on frames between 75 to 105

degrees, where the detected regions in the first 100 frames were used for training and

the detected regions in the next 100 frames for testing. Detection of right ear and
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right profile face performed between 150 to 180 degrees, where the detected regions

in the last 100 frames were used for training and the preceding 100 frames for testing.

4.4.1.2 Dataset-2

In dataset 2, we use only those subjects who have more than one video sequence,

which results into a total of 121 video clips, with one subject having three video

sequences, one subject having four sequences, and the rest of the 57 subjects having

two video sequences. The detected different modality specific regions from one video

were used for training and from the others were used for testing in cross fold fashion.

Detection of the left ear and the left profile face is performed between 0 to 30 degree

where detected regions in the first 200 frames are used. Detection of the frontal face

is performed between 75 to 105 degree where detected regions in the first 200 frames

are used. Detection of the right ear and the right profile face is performed between

150 to 180 degree where detected regions in the last 200 frames are used.

To compute the multimodal rank-1 recognition result, score level fusion is per-

formed using majority voting of rank-1 recognition rate from the five different modal-

ities. The multimodal recognition accuracy of our approach is as follows: for dataset-1

we obtained 99.17% average rank-1 recognition rate, and for dataset-2, we obtained

96.49% average rank-1 recognition rate. The best rank-1 recognition rates, using ear,

frontal and profile face modalities for multimodal recognition, compared with the re-

sults reported in [53–55] is shown in Table 5.3. All the modality specific recognition

rates and the multimodal recognition rate of the proposed approach outperforms the

other multimodal recognition techniques that uses ear, frontal face and profile face.
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Table 4.2: Comparison of 2D multimodal (frontal face, profile face and ear) rank-1 recognition
accuracy with the state-of-the-art techniques

Approaches Modalities Fusion Per-
formed In

Best Reported Rank-1 accu-
racy

Kisku et
al. [54]

Ear and
Frontal Face

Decision Level Ear: 93.53%; Frontal Face:
91.96%; Profile Face: NA; Fu-
sion: 95.53%

Pan et al.
[55]

Ear and
Profile Face

Feature Level Ear: 91.77%; Frontal Face:
NA; Profile Face: 93.46%; Fu-
sion: 96.84%

Boodoo et
al. [53]

Ear and
Frontal Face

Decision Level Ear: 90.7%; Frontal Face:
94.7%; Profile Face: NA; Fu-
sion: 96%

This Work Ear ,
Frontal
and Profile
Face

Score Level Ear: 95.04%; Frontal
Face: 97.52%; Profile Face:
93.39%; Fusion: 99.17%

Later, we performed experiments when all the modalities were available during

the training and only some of the modalities were available during the testing. The

accuracy of the recognition results using all possible combinations of the different

modalities in the test video, for dataset-1 and dataset-2 are shown in Table 5.4 and 4.4,

respectively. The results indicate that, among all possible combinations of different

modalities, frontal face with ear, i.e. right and left ear modalities, have the best

recognition rate.

4.4.2 HONDA/UCSD Dataset

The publicly available HONDA/UCSD dataset [114], contains facial video clips

with non-planar head rotations (left-right and up-down directions) as well as various

facial expressions. The dataset has two parts, dataset-1 and dataset-2, that consist

of separate training and testing facial video clips of 20 and 15 unique subjects, re-
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Table 4.3: Recognition Result of Multimodal Recognition with all possible combinations of 2, 3 and
4 modalities using dataset-1(WVU). ‘Fr Fc’ stands for frontal face,‘Lf pr’ and ‘Rt pr’ stands for left
and right profile face respectively, and, ‘Lf ear’ and ‘Rt ear’ stands for left and right ear respectively.

Test Done with Rank-1 ac-
curacy

Test Done with Rank-1 ac-
curacy

Combining any two modali-
ties
Fr Fc+ Lf pr/ Rt pr 97.52% Fr Fc+ Lf ear/ Rt ear 98.35%
Lf ear/ Rt ear + Lf pr/
Rt pr

98.35%

Combining any three modal-
ities
Fr Fc+ Lf pr+ Lf ear 97.52% Fr Fc+ Lf pr+ Rt ear 97.52%
Fr Fc+ Rt pr+Rt ear 97.52% Lf pr+ Lf ear+Rt pr 94.21%
Fr Fc+ Lf pr+ Rt pr 97.52% Rt pr+ Rt ear+Lf pr 95.04%
Fr Fc+ Lf ear+ Rt ear 98.35% Rt pr+ Lf ear+Rt ear 98.35%
Fr Fc+ Rt pr+Lf ear 97.52% Lf pr+ Lf ear+Rt ear 98.35%
Combining any four modal-
ities
Fr Fc+ Rt ear+ Lf ear+
Lf pr

98.35% Fr Fc+ Rt ear+ Lf ear+
Rt pr

98.35%

Fr Fc+ Lf pr+
Rt pr+Lf ear

97.52% Fr Fc+ Lf pr+
Rt pr+Rt ear

98.35%

Rt ear+ Lf ear+ Lf pr+
Rt pr

98.35%
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Table 4.4: Recognition Result of Multimodal Recognition with all possible combinations of 2, 3 and
4 modalities using dataset-2 (WVU). ‘Fr Fc’ stands for frontal face,‘Lf pr’ and ‘Rt pr’ stands for left
and right profile face respectively, and, ‘Lf ear’ and ‘Rt ear’ stands for left and right ear respectively.

Test Done with Rank-1 ac-
curacy

Test Done with Rank-1 ac-
curacy

Combining any two modali-
ties
Fr Fc+ Lf pr/ Rt pr 91.23% Fr Fc+ Lf ear/ Rt ear 94.74%
Lf ear/ Rt ear+ Lf pr/
Rt pr

94.74%

Combining any three modal-
ities
Fr Fc+ Lf pr+ Lf ear 92.98% Fr Fc+ Lf pr+ Rt ear 91.23%
Fr Fc+ Rt pr+Rt ear 91.23% Lf pr+ Lf ear+Rt pr 89.47%
Fr Fc+ Lf pr+ Rt pr 91.23% Rt pr+ Rt ear+Lf pr 89.47%
Fr Fc+ Lf ear+ Rt ear 94.74% Rt pr+ Lf ear+Rt ear 94.74%
Fr Fc+ Rt pr+Lf ear 92.98% Lf pr+ Lf ear+Rt ear 94.74%
Combining any four modal-
ities
Fr Fc+ Rt ear+ Lf ear+
Lf pr

94.74% Fr Fc+ Rt ear+ Lf ear+
Rt pr

94.74%

Fr Fc+ Lf pr+
Rt pr+Lf ear

92.98% Fr Fc+ Lf pr+
Rt pr+Rt ear

91.23%

Rt ear+ Lf ear+ Lf pr+
Rt pr

94.74%
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spectively. HONDA/UCSD dataset contains a total of 89 facial video sequences of

35 unique subjects, where each subject has two or more video clips. In our experi-

ments, we used one facial video sequence for training and rest for testing in cross fold

approach.

The Adaboost detector results in a few false modality specific detection for the Left

and Right Profile Face, when applied on the HONDA/UCSD unconstrained dataset.

Thus, to quantify how the false detection affect the multimodal recognition accuracy

we manually selcted only the true positive detections. In Table-4.5 and 4.6 the result

of modality specific recognition on the HONDA/UCSD is given respectively for the

datset containing false positive dectection and the dataset which include only the true

positive detected regions. The multimodal recognition accuracy obtained including

false positive dectection is 97.14% (34 true positive out of 35 subjects), and 100%

using only true positive detected regions.

The feature vecorts automatically learned using the trained Deep Learning net-

work resulted in legth of 9600 for frontal and profile face; 4160 for ear. In order to

decrease the computational complexity and to find out most effective feature vector

length to maximize the recognition accuracy, the dimensionality of the feature vector

is reduced to a lower dimension using Principal Component Analysis (PCA) [47,98].

Using PCA, the number of features is reduced to 500 and 1000. In Table- 4.5 and

4.6 the modality specific recognition accuracy obtained for the original feature vector

and for the reduced feature vector of 1000, 500 is shown. Feature vectors of 1000

elements obtained the best multimodal recognition accuracy.
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Figure 4.7: Nonplanar movement In HONDA dataset compared with WVU. Left Profile, Frontal
and Right Profile
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Table 4.5: Modality Specific Recognition Accuracy using all detected regions

Gabor
Feature
Length

Frontal
face

Left pro-
file face

Right
profile
face

Left ear Right ear

No fea-
ture
reduction

91.43% 71.43% 71.43% 85.71% 85.71%

1000 91.43% 71.43% 74.29% 88.57% 88.57%
500 88.57% 68.57% 68.57% 85.71% 82.86%

Table 4.6: Modality Specific Recognition Accuracy using only accurately detected regions

Gabor
Feature
Length

Frontal
face

Left pro-
file face

Right
profile
face

Left ear Right ear

No fea-
ture
reduction

91.43% 80.00% 82.86% 94.29% 91.43%

1000 97.14% 82.86% 82.86% 94.29% 94.29%
500 91.43% 81.19% 80.00% 91.43% 91.43%

4.4.3 Comparison with Baseline Algorithms

Due to the unavailability of proper datasets for multimodal recognition studies [9],

often virtual multimodal databases are synthetically obtained by pairing a subject

from different databases consists of different modalities. To the best of our knowl-

edge, the proposed approach is the first study where multiple modalities are extracted

from a single data source and belongs to the same subject. Thus, we compare the

performance of the proposed techique of learning automatic robust features using

Deep Learning network and using sparse respresentation for classification with the

following Baseline Algorithms due to their close relationships. It is also worth noting
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that all the comparisons are based on the same training/test set.

1) Sparse Representation for Classification (SRC) [9] with extracted Gabor features.

2) KSVD [136] dictionary learning with extracted Gabor features. K-SVD is a dic-

tionary learning algorithm for creating a dictionary for sparse representations by

iteratively alternating between sparse coding the input data based on the current dic-

tionary, and updating the atoms in the dictionary to better fit the data. Therefore,

K-SVD is better suited than Sparse classifier to train models with varying number of

training samples for different classes.

In Table-4.7 the comparisons of multimodal recogntion accuracy of the baseline

techniques and the proposed method are provided for both WVU and HONDA/UCSD

datasets. The comparison shows that the proposed technique perform better on

both the constrained and unconstrained datasets compared with the other Baseline

Algorithms. However, we can see that performance of the two Baseline Algorithms

are relatively satisfactory while applying on the constrained (WVU) dataset, but

while applying on the unconstrained (HONDA/UCSD) dataset the performance of

the two Baseline Algorithms are very poor. The Sparse Classifier (SRC) is failing

due to a biased number of training samples for different subjects. Although KSVD

is performing better than SRC, due to the presence of nonplanar movements (shown

in Figure 4.7) in the unconstrained (HONDA/UCSD) dataset it cannot achieve a

satisfactory recognition accuracy.
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Table 4.7: Comparison of Multimodal Recognition with the Baseline Algorithms

Method WVU Honda/UCSD
Gabor+SRC 95.04% 45.71%
Gabor+KSVD 97.52% 68.57%
(Gabor+Deep Learn-
ing)+SRC

99.17% 97.14%

4.4.4 Parameter Selection for the Deep Neural Network

We have tested the performance of the proposed multimodal recognition frame-

work against different parameters of the Deep Neural Network. We varied the number

of hidden layers from three to seven. By using five hidden layers we achieved the best

performance. To incorporate the sparsity in the hidden layers, we also conducted

experiments by changing the number of hidden nodes from two to five times of the

input nodes. By using twice the hidden nodes of the input nodes in the five hidden

layers we obtain the best accuracy of the multimodal recognition system. The pre-

training learning rate of the DBN is used as 0.001 and the fine tuning learning rate

of the SADE is used as 0.1 to achieve the optimal performance. While training the

SADE network in a Core i7-2600K CPU clocked at 3.40GHz Windows R© PC using

Theano Library (Python Programming Language) pre-training of the DBN takes ap-

proximately 600 minutes and the fine-tuning of the SADE network converged within

48 epochs in 560.2 minutes.



CHAPTER 5

Multimodal Low Resolution Face and
Frontal Gait Recognition from
Surveillance Video

The importance of identifying and monitoring the activity of registered offenders

using video surveillance footage has been proven effective on several occasions, e.g.,

identifying the Boston bombing suspects, to lead the detectives in the right direction.

However, the quality of the video data acquired by the surveillance system poses

challenges. The primary causes of poor image quality recorded in most digital video

surveillance systems are low resolution, excessive quantization, and low frame rate.

Moreover, high-resolution video surveillance systems require excess storage space.

These factors result in low-resolution biometric data, e.g., face images, obtained from

the video surveillance clips collected using the existing video surveillance systems.

In this chapter [137] we propose a solution for accurate human identification from

low-resolution video surveillance footages by combining gait recognition and low res-

olution (LR) face recognition. The proposed system, shown in Figure 5.1, is a fully

automatic platform which first extracts the frontal gait silhouettes and low resolution

face images from the frontal walking video surveillance clips. Then obtains the fea-

ture vectors from the preprocessed frontal gait silhouettes, and the low resolution face

90
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Figure 5.1: System Block Diagram: Multimodal Biometrics Recognition from Video Survillience
Data

images. Later the feature vectors are used to train two separate classifiers to perform

the frontal gait recognition, and low resolution face recognition. Finally, the individ-

ual recognition results are fused through score level fusion. Given a test surveillance

video clip of a subject walking towards the camera, first the gait features and LR face

image features are extracted, later Nearest neighbor classifiers are used to separately

obtain the Rank-1 frontal gait recognition and LR face recognition results. Finally,

score level fusion is performed to fuse the individual recognition results.

The remainder of this chapter is organized as follows: Section 5.1 details the

segmentation of the frontal Gait silhouettes from the background, and detection of

the low resolution face images from the frontal walking video sequences. Section 5.2
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Figure 5.2: Gait and Low Resolution Face Extraction

describes the feature representations of the frontal Gait binary silhouettes. Section 5.3

presents the proposed low resolution face recognition technique. Section 5.4 provides

the experimental setup and results on the frontal Gait data and LR face images

obtained from the frontal walking video sequences to demonstrate the performance

of the proposed framework.

5.1 Gait Silhouette and Low Resolution Face Ex-

traction

To perform multimodal biometric recognition, we need to detect the face and

the gait silhouette from the surveillance video clips. The surveillance video clips are

captured by a static video camera which records the frontal view of a walking person.

The subjects start walking form a distance directly approaching the camera. We
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extract both the frontal gait silhouettes from the sequence of video frames and the

low resolution frontal face images, as explained below.

We adopted the fast object segmentation method proposed by Papazoglou et.al.

[138] for segmenting the foreground silhouette from the background. The fast object

segmentation is fast, fully automatic, and have minimal assumptions about the motion

of the foreground. Therefore, it performs efficiently in cases of unconstrained settings,

presence of rapidly moving objects, arbitrary object motion and appearance change,

and non-rigid deformations and articulations. The fast object segmentation technique

first produces a rough estimate of the pixels that are inside the object, based on motion

boundaries using optical flow obtained from pairs of subsequent frames [139,140]. In

the second step, a spatiotemporal extension of GrabCut [141,142] technique is used to

bootstrap an appearance model based on the initial foreground estimate, and refine it

by integrating information over the entire video sequence. An example of segmented

silhouettes from different frames, using fast object segmentation [138], is shown in Fig.

5.3, which shows accurate segmentation by isolating the silhouette from its reflection

on the shiny floor.

To automatically detect the low resolution frontal face images in the surveillance

video clips, we adopt the Adaboost object detection technique, proposed by Viola

and Jones [8]. The algorithm is trained to detect low resolution frontal faces using

manually cropped frontal face images from the color FERET [115] database. By

using the trained detector, we can detect low resolution faces in the video frames.

The trained detector is applied to the entire video sequence to detect the LR frontal

faces. An example of the detection results from a surveillance video clip is shown in

Figure 5.2.
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Figure 5.3: Frontal Gait Silhouette Segmentation

5.2 Gait Feature Representation

Existing studies in the literature [143,144] suggests that human periodic movement

speeds and patterns are similar in repeated trials of the same subject. We have in-

corporated both Model-free and Model-based feature representation of the segmented

silhouettes to obtain accurate and efficient gait recognition. Identification of the gait

cycle, using the frontal gait video, is proposed to compute average movement speed

for efficient model-free gait recognition. Moreover, model-based Gait energy image

(GEI) [71] features are also extracted to perform view-invariant and scale-independent

gait recognition.

In the following subsections, we described the proposed method of gait cycle iden-

tification to compute average movement speed and 3D moments from the Spatio-

temporal GEI shape feature, using the segmented silhouettes.
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Figure 5.4: Gait Cycle Definition

5.2.1 Gait Cycle Indentification using Frontal Gait

In this section, we first define the Gait Cycle and then describe the proposed

approach to identify Gait Cycle using only Frontal Gait information.

The Gait Cycle [143] can be defined as the time interval between two successive

occurrences of the repetitive phases while walking. The gait cycle involves two prin-

cipal stages: the stance phase and the swing phase. The stance phase occupies 60%

of the gait cycle, while the swing phase occupies only 40%, as explained in Figure 5.4.

The stance phase consists of Initial Contact, Loading Response, Midstance, Terminal

Stance, and Pre-swing. Whereas, the swing phase is composed of Initial Swing, Mid

Swing, and Terminal Swing. Stance phase begins with the heel strike – this is the

moment when the heel begins to touch the ground, but the toes did not yet touch.

We can see from Figure 5.4, during the Stance phase, in the Midstance position, the

difference between the lower points (or pixel locations) of the two limbs is maximized.

Similarly, in the Midswing position of the swing phase, in-between the Initial Swing

and the Heel Strike, the distance between the lower points of the two limbs is max-

imized. Whereas, during the Terminal-swing through Loading response stages, the

distance between the lowest white pixel of the two limbs is minimized.
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Following this specific attribute of the gait cycle, we can analyze gait cycle from

the frontal silhouette. In Figure 5.6, we can see that in the silhouette bounding box

of frame 138 and 152 the difference between the lowest white pixel of the two limbs is

maximum which indicates the successive events of the Midstance through Midswing

phase. Moreover, in the silhouettes of frame 144 and frame 158, the difference between

the lowest white pixel of the two limbs is minimum, which signifies the successive

events of Pre-swing through Terminal swing. Therefore, we can identify the entire

gait cycle from the sequence of frontal gait silhouettes starting from the Initial Contact

(frame 135) through Terminal swing (frame 158) in Figure 5.6.

Identifying the gait cycles from the gait video is usually the initial step in gait

analysis for separating the periodic occurrences of the walking sequence. Majority of

the techniques [71,145] in the literature perform the detection of the gait cycle using

profile gait view or multiple gait views due to the ease of discrimination of different

gait phases as described earlier. As per biological studies [146, 147] of the human

gait cyclic phases during walking, the body pose changes periodically and the upper

and lower limbs move symmetrically. Since the width and height of the bounding

box of the binary silhouette directly depends on the limbs fluctuation, we represent

the Gait fluctuation as a periodic function which depends on the silhouette’s width

and height over time. In a frontal gait video, as the subject is moving towards the

surveillance camera, the silhouettes height and width will be increasing in the later

frames compared with the earlier ones. To compensate for these scale variations, we

normalized [148] the width and height of the silhouette bounding box.
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Based on the theoretical premise of the gait cycle and the experimental obser-

vations using the frontal gait video clips, we propose a gait cycle identifier which

represents the periodic motion and cyclic phases as follows:

GCidentifier(ft) = 0.5 ∗ [Hnorm(ft) ∗Wnorm(ft) + {||lowest left limb pixel

−lowest right limb pixel||}/H(ft)]; (5.1)

where, GCidentifier(ft) is the variable that represents the gait cycle phase for the

t-th frame (ft), Hnorm(ft) and Wnorm(ft) are the silhouettes bounding box height and

width for the t-th frame after normalization to compensate for the scale variations.

The second term in equation 5.1 is the normalized difference between the lowest

white pixels of the two limbs. The multiplier 0.5 is used to normalize the value of the

Gait Cycle identifier variable. The plot of the GCidentifier(tf ) against the sequence of

frames is shown in Figure 5.5.

5.2.2 Three Dimensional Moments from the Spatio Temporal

Gait Energy Image

After the silhouettes are segmented from each of the video frames, their heights

are first normalized with respect to the frame height. The average silhouette image

or the Gait Energy Image (GEI) [71] represents the principal shape of the human

silhouette and its change over a sequence of frames in a gait cycle. A pixel with

higher intensity value in the GEI indicates that the human body was present more

frequently at this specific position. Equation 5.2 is used for obtaining the pixel values

of the GEI:
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Figure 5.5: Gait Cycle Plot Using GC identifier

G(x, y) =
1

F

F∑
t=1

Bt(x, y), (5.2)

where, t stands for the temporal frame number from which the silhouette is obtained,

F is the total number of frames in a complete gait cycle, Bt(x, y) stands for the binary

silhouette. Spatio-temporal GEI or the periodic gait volume V (x, y, n) is obtained

from the GEIs computed using the gait cycles in a gait video clip, where n represents

the gait cycle number.

Even though, GEI suffers from some information loss of the details, it has nu-

merous benefits compared with the representation of binary silhouettes as a temporal

sequence. Since GEI is the average of a sequence of silhouettes, it is not very sensi-



99

tive to errors in the silhouette segmentation in the individual frames. The robustness

of the GEI is improved by discarding pixels with the energy values lower than a

predefined threshold.

Shape analysis is a complex problem due to the presence of noise, and in certain

cases, variations between shapes result in significant changes in the measured feature

values. To recognize objects from their shape, features such as eccentricity, Moments,

Euler number, compactness, and convexity are widely used in the literature [92].

Moments or central moments are used as quantitative measures for shape description

[93]. Hu et. al. [93] derived a set of moment invariants for various geometric shapes.

Moments are widely used in various complex shape based object recognition [82] due

to the fact that they are invariant to orientation.

Three-dimensional raw moments for the Spatio-temporal GEI or periodic gait

volume for each gait cycle can be represented as:

3DMomentp1p2p3 =
∑
x∈x

∑
y∈y

∑
n∈n

xp1 · yp2 · np3 · V (x, y, n), (5.3)

where, O = p1 · p2 · p3 is the 3D moment’s order. For any translation, e.g., (a, b, c),

of the 3D coordinates of the center of mass of the object, the change in the three

dimensional moments 3DMomentp1p2p3 can be represented as:

3DMomentp1p2p3 =
∑
x∈x

∑
y∈y

∑
n∈n

(x+ a)p1 · (y + b)p2 · (n+ c)p3 · V (x, y, n), (5.4)

When the center of mass (x, y, n) is at the origin, the raw moments and the central

moments are the same. Thus, the central moment µp1p2p3 can be represented by

replacing a, b, c with the mean value of x, y, n respectively:

µp1p2p3 =
∑
x∈x

∑
y∈y

∑
n∈n

(x− x)p1 · (y − y)p2

·(n− n)p3 · V (x, y, n). (5.5)
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Figure 5.6: Gait Cycle Estimation

Here,

x =
m100

m000

; y =
m010

m000

; n =
m001

m000

, (5.6)

where, m000 is the zeroth spatial moment, and m100,m010, and m001 are the x, y, and

n componets of the first spatial moment, respectively. The pixel on the pereodic gait

volume, e.g., [xj(n), yj(n)], of V (x, y, n) is the jth point that belongs to the n-th gait

cylce. Hence, the 3D central moment of the Spatio-temporal GEI or the pereodic gait

volume can be represented as:

µGEIvolp1p2p3
=
∑
n∈n

P (n)∑
j=1

(xj(n)− x)p1 · (yj(n)− y)p2 · (n− n)p3 , (5.7)

where P (n) is the total number of pixels on the pereodic gait volume for gait cycle

n.
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Following the method mentioned in the previous two sections, we obtained the

scale and translation invariant three-dimensional moments of the periodic gait volume

(µGEIvolp1p2p3
). Additionally, the average number of frames in the gait cycles identified

using the frontal walking video clip is used as the average movement speed of the

subject. We used these two components together to obtain the gait signature used

for classifying the subjects through Gait recognition.

5.3 Low Resolution Face Feature Representation

In this section, we describe the proposed algorithm for Low Resolution face recog-

nition from surveillance video clips. The description of the components used in the

algorithm are detailed in the subsequent sections.

Algorithm 3 Low Resolution Face Recognition

1. Detect faces in the video surveillance frames.
2. Use a Super-resolution technique to obtain High-resolution from the Low-
resolution detected face images.
3. Perform illumination and pose normalization.
4. Register the preprocessed and normalized face regions, followed by synthesizing
them using Curvelet and Inverse Curvelet transformations.
5. Extract Local Binary Pattern (LBP) and Gabor Features from the synthesized
image.
6. Perform face Recognition using the extracted features.

5.3.1 Super-resolution

Super-resolution (SR) [149, 150] is a class of image processing algorithms, used

to enhance the resolution of low resolution images. SR algorithms can be used to

enhance the resolution of an image from single or multiple low resolution images.
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Interpolation techniques such as nearest neighbor, bilinear and cubic convolution are

widely used for SR processing of the LR images in the literature.

The two key components of a digital imaging system are the sensor and the lens,

those introduce two types of image degradation, specifically optical blur and limita-

tion on the highest spatial frequency that can be recorded. The sensor is constructed

from a finite number of discrete pixels which results in the presence of so-called aliased

components in the sensor output. These correspond to high spatial-frequency com-

ponents in the scene that are higher than frequencies that the sensor can handle

and should not normally be present in the output. These are the key components

used by the SR algorithms to obtain the HR representation. The available SR algo-

rithms can be categorized broadly into two major classes: reconstruction-based SR

and recognition-based SR. The reconstruction-based methods are suitable for syn-

thesizing local texture resulting in better visualization and do not incorporate any

specific prior information. However, recognition-based SR [149, 150] algorithms try

to detect or identify certain pre-configured patterns in the low resolution data.

The Recognition based SR algorithms [149] learn a mapping correspondence be-

tween low and high resolution image patches from the training LR and HR images,

which can be directly applied to a test LR image to construct the HR counterpart. In

the training phase densely overlapping patches are cropped from the low-resolution

and high-resolution image pair. Followed by jointly training two dictionaries for the

low- and high-resolution image patches by enforcing the similarity of sparse repre-

sentation for each image pair. Given the trained LR and HR dictionaries and a

test LR image, the algorithm obtains its HR representation in three steps. First,

densely overlapping patches are cropped from the LR input image and pre-processed
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(i.e., normalization). Second, the sparse coefficients obtained from the LR dictionary

for the LR test image patches are passed into the high-resolution dictionary for re-

constructing the high-resolution patches. Finally, the overlapped HR reconstructed

patches are aggregated (i.e., weighted averaging) to produce the final output.

Convolutional neural networks (CNN) [151] was developed several decades ago and

deep Conv Nets [152] have recently been popular among researchers primarily due to

its success in image classification. CNN is a specific artificial neural network topology,

that is inspired by biological visual cortex, formed by stacking multiple stages of

feature extractors. CNN have also been used successfully for other computer vision

applications, such as object detection, face recognition, and pedestrian detection.

Dong et. al. [150] proposed a CNN based SR algorithm, which directly learns

an end-to-end mapping between the low and high-resolution image pair. The three

components of the pipeline in the Recognition based SR algorithms are represented

as different layers of CNN, which efficiently optimize the entire SR implementation

through the CNN. The mapping is represented as a deep convolutional neural net-

work (CNN) that takes the low-resolution image as the input and outputs the high-

resolution one. The first step is patch extraction and representation. The Recognition

based SR algorithms [149] use the densely extracted patches and then represent them

by a set of pre-trained bases such as PCA, DCT and Haar. This is equivalent of

convolving the image by a set of filters, each of which is a basis. Thus, the first layer

of the CNN can be expressed as:

F1(Y ) = max(0,W1 ∗ Y +B1), (5.8)
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where W1 and B1 represent the filter weights and biases respectively, ‘∗’ denotes the

convolution operation. W1 is of size c × f1 × f1 × n1, corresponds to n1 filters of

spatial size f1× f1 and c stands for the number of channels in the image, that applies

n1 convolutions on the image. The output is composed of n1 feature maps. B1 is

an n1-dimensional bias vector, whose each element is associated with a filter. The

second component of the Recognition based SR algorithm pipeline can be represented

using the Non-linear mapping step of CNN. As shown in Equation 5.8, the first layer

extracts an n1-dimensional feature vector for each patch. In the second operation,

each of these n1-dimensional vectors is mapped into an n2-dimensional vetor. The

operation of the second layer can be represented as:

F2(Y ) = max(0,W2 ∗ F1(Y ) +B2), (5.9)

here W2 is of size n1×f2×f2×n2, corresponds to n2 filters of spatial size n1×f2×f2,

and B2 is n2-dimensional bias. Each of the output n2-dimensional vectors is a repre-

sentation of a high-resolution patch that will be used for SR reconstruction. Finally,

the reconstruction step in the Recognition based SR algorithm pipeline produces the

final HR image by averaging the overlapping high-resolution patches. The averaging

can be considered as a pre-defined filter on a set of feature maps, where each position

is the flattened vector form of a high-resolution patch.

F (Y ) = W3 ∗ F2(Y ) +B3, (5.10)

where W3 is of size n2×f3×f3×c, corresponds to c filters of a spatial size n2×f3×f3,

and B3 is a c-dimensional bias vector. The values of the parameters n1, n2, n3, f1, f2,

and f3 used in the experiements are detailed in the Experimental Result section 5.4.4.
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Figure 5.7: Super-resolution recovery of the LR face images

The Super-resolution pre-processing technique is used to obtain High-resolution

representation of the Low-resolution face images as shown in Figure 5.7. We can see

that the performance of the CNN based Super resolution recovery method face is

better than the performance of Sparse based Super resolution technique.

5.3.2 Illumination and Pose Invariance

In this section, we explain the preprocessing steps for normalizing the low resolu-

tion images with respect to illumination and pose variations.

5.3.2.1 Illumination Normalization

It has been proven in the literature, that illumination variations are among the pri-

mary problems in biometric authentication. We adopted the Self−quotient image(SQI)

[153] to normalize the illumination variations in the low resolution facial images. SQI

incorporates an edge-preserving filtering technique to minimize the spectral variations

present in the illumination.
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The Lambertian model can be factorized into two parts, the intrinsic part, and

the extrinsic part:

I(x, y) = ρ(x, y) n(x, y)T · s = F (x, y) · s, (5.11)

where ρ is the albedo and n is the surface normals. F = ρnTdepends on the albedo

and surface normal of an object and hence is an intrinsic factor, where F represents

the identity of a face. However, s is the illumination and is an extrinsic factor.

Separating the two factors and removing the extrinsic component is a key to achieve

a robust face recognition by normalizing the effect of varying illumination.

The SQI image Q of an image I can be represented as:

Q =
I

Î
=

I

P ∗ I
, (5.12)

where Î is the smoothed version of I, P is the smoothing kernel, and the division

is pixel-wise. SQI [153] achieves the removal of extrinsic component s in Eqn. 5.11

through a two-step process. First, an illumination estimation step: the extrinsic fac-

tor is estimated to generate a synthesized smooth image, which has same illumination

and shape as the input but a different albedo. Second, an illumination effect sub-

traction step: the illumination is normalized by computing the difference between the

logarithms of the albedo maps of the input and the synthesized images, (logρ0−logρ1).

5.3.2.2 Pose Correction

Pose variations present a major problem in real-world face recognition applica-

tions. Since the human face is approximately symmetric, if it is in the frontal pose

with no rotations, the matrix containing the face image (F ) will have the lowest
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rank. Employing the above-stated principle, Zhang et. al. [154] proposed transform

invariant low-rank textures (TILT) to normalize the pose of a rotated frontal face and

remove minor occlusions.

TILT [154] tries to find a transformation (Euclidean, affine, or projective) matrix

τ ,through modelling the face rotation using an error matrix E, s.t. F̂ ∗ τ = F +E ,

where F̂ represents the deformed and corrupted face and F is the corrected low-rank

face image, by optimizing the following equation:

min
F,E,τ

rank(F ) + γ||E||o s.t. F̂ ∗ τ = F + E (5.13)

where ||E||o is the l0-norm of the error matrix, i.e., number of non-zero elements. It

actually finds the corrected low-rank face image (F ) with the lowest possible rank

and the error with the lowest number of non-zero elements, which satisfy the above

condition. γ trades off the rank of the matrix and the sparsity of the error.

Optimizing the rank function and the l0-norm in the above equation is very chal-

lenging. Therefore, they are substituted by their convex surrogates. Since the rank of

a matrix is equivalent to the number of its non-zero singular values, we can substitute

the rank(F) by its nuclear norm ||F ||∗, which is the sum of its singular values. More-

over, l0-norm is substituted by l1-norm, which is the sum of the absolute values of the

elements of the matrix. Additionally, the constraint F̂ ∗ τ = F + E is non-linear,

by linearizing the constraint around its current estimate through an iterative process,

the optimization problem becomes as follows:

min
F,E,∆τ

||F ||∗ + γ||E||1 s.t. F̂ ∗ τ +∇F̂∆τ = F + E, (5.14)
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where ∇ represents the Jacobian. Finally, we train a binary classifier using local

features (Local Binary Pattern) to remove the false positive frames detected by the

Adaboost face detector.

5.3.3 Registration and Synthesizing Low Resolution Face Im-

ages

In this section we describe the image registration of the preprocessed and nor-

malized face regions, and synthesizing them using Curvelet and Inverse Curvelet

transformation.

5.3.3.1 Registration

We adopted the subspace-based holistic registration (SHR) method [155], which

was proposed to perform registration on low-resolution face images. The majority

of the automatic landmark-based registration methods can only perform accurate

registration on high resolution images. However, SHR is able to obtain a user in-

dependent face model using Procrustes transformation by incorporating the image

edges as feature vectors to register low-resolution face images. The best registra-

tion parameters are iteratively obtained through the downhill simplex optimization

technique by maximizing the similarity score between the probe and the gallery im-

age. The registration similarity is calculated using the probability that the probe and

gallery face images are correctly aligned in a face subspace by computing the residual

error in the dimensions perpendicular to the face subspace.

The first step of obtaining the subject independent face model to perform the

registration is to compute the edges in the low resolution facial image. Gaussian
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kernel derivatives of the LR face images are calculated in the x and y directions

respectively using Gx and Gy as follows:

Gx(x, y) =
−x

2πσ4
exp(−x

2 + y2

2σ2
),

Gy(x, y) =
−y

2πσ4
exp(−x

2 + y2

2σ2
),

(5.15)

The derivatives Hx and Hy of the images are obtained by convoluting the LR

face image with Gx and Gy resulting in the “edge images” used for the registration

purpose. Procrustes transformation is used to align the probe image to the gallery

image by correcting the variations of scale by a factor f , rotatation with an angle

α, and translation of u, while preserving the distance ratios. Given a pixel location

p = (x, y)T , the transformation Uθp on a pixel location can be represented as:

Uθp = fR(α)p + u, (5.16)

where, θ = {u, α, f} represent the registration parameters, and R(α) is the rotation

matrix. The transformation of the entire probe image to perform the registration

operation is obtained by applying Uθ on the computed “edge images” as follows:

TθH(p) = H(U−1
θ p). (5.17)

where, H =
√
H2
x +H2

y . Thus, a registered and aligned image, TθH(p), is obtained

through backward mapping and interpolation by utilizing the optimal registration

parameter θ found using simplex optimization technique.

5.3.3.2 Synthesizing

To enhance the spectral features for face recognition, image synthesizing methods

[156] are very popular in the literature. The synthesizing methods available in the
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literature can be broadly categorized into two classes, one performs the syhtnesis in

the spatial domain and the other in the frequency domain. In this paper, we adopted

the Curvelet-based image synthesis [157] which uses the Curvelet coefficients [158] to

represent the face.

Curvelet transform has improved directional capability, better ability to represent

edges and other singularities along curves as compared to other traditional multi-

scale transforms, e.g. wavelet transform. First, curvelet transforms are applied to the

sequence of registered face images. The smallest low-frequency components are repre-

sented by the coarse Curvelet coefficients and the largest high-frequency components

are represented by the fine Curvelet coefficients. For the image sequence I1, I2, ..., In

the Curvelet coefficients can be represented as CIi{j}{l}, where i = 1, 2, ..., n repre-

sent the image image sequence to be synthesized, and j, l, is the scale and direction

parameters, respectively. The components of the first scale where j = 1 represent the

low-frequency parts of the face images, and the components associated to other scales

(j > 1) represent the high-frequency parts. The minimum components between each

CIi{1}{l}, where scale j = 1, and (i = 1, 2, ..., n), and the maximum components

between each CIi{j}{l}, where (j = 2, ..., 5), and i = 1, 2, ..., n are retained for the

synthesized Curvet coefficients. Inverse Curvelet transformation of the synthesized

Curvelet feature vector generates the synthesized image used for feature extraction.

5.3.4 Feature Extraction

We obtain LBP and Gabor features from the fused image and compare their

performance for recognition. In the subsequent sections, we describe the LBP and

Gabor feature extraction techniques.
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Figure 5.8: LBP feature, circular (8,1) neighborhood

5.3.4.1 LBP

The original LBP operator, introduced by Ojala et. al. [159], is a powerful method

for texture description. The operator labels the pixels of an image by thresholding

the 3x3-neighbourhood of each pixel with the center value and considering the result

as a binary number. Then, the histogram of the labels can be used as a texture

descriptor. See Figure 5.8 for an illustration of the basic LBP operator.

Later the operator was extended to use neighbourhoods of different sizes. Using

circular neighborhoods and bilinearly interpolating the pixel values allow any radius

and number of pixels in the neighborhood. For neighborhoods we use the notation

(P, R) which means P sampling points on a circle of radius of R. Figure 5.9 shows an

example of the circular neighborhood (8,2). Another extension to the original operator

uses what is called uniform patterns. A Local Binary Pattern is called uniform if it

contains at most two bitwise transitions from 0 to 1 or vice versa when the binary

string is considered circular. For example, 00000000, 00011110 and 10000011 are

uniform patterns. Ojala et. al. [159] noticed that in their experiments with texture

images, uniform patterns account for a bit less than 90% of all patterns when using

the (8,1) neighborhood and for around 70% in the (16,2) neighborhood.
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An extension of LBP-based face description method is proposed by Ahonen et.

al. [160]. The facial image is divided into local regions (k × k window) and LBP

texture descriptors are extracted from each region independently. The descriptors

are then concatenated to form a global description of the face that describes the

facial image in a high dimensional feature space. Window sizes used for experiment

purposes are k = 3, 5, 7.

5.3.4.2 Gabor

2D Gabor filters [117] are used in a broad range of applications [119] to extract

scale and rotation invariant feature vectors. In our feature extraction step, uniform

down-sampled Gabor wavelets are computed for the detected regions using equation

5.18, as proposed in [120]:

ψµ,ν(z) =
||kµ,ν ||2

s2
e(
−||kµ,ν ||2||z||2

2s2
)[eikµ,νz − e

−s2
2 ], (5.18)

where z = (x, y) represents each pixel in the 2D image, kµ,ν is the wave vector, which

can be defined as kµ,ν = kνe
iφµ , kν = kmax

fν
, kmax is the maximum frequency, and

f is the spacing factor between kernels in the frequency domain, φµ = πµ
2

, and the

value of s determines the ratio of the Gaussian window width to wavelength. Using

equation 5.18, Gabor kernels are generated from one filter using different scaling and

rotation factors. In this paper, we used five scales, ν ∈ 0, ..., 4 and eight orientations

µ ∈ 0, ..., 7. The other parameter values used are s = 2π, kmax = π
2
, and f =

√
2.

Gabor features are computed by convolving each Gabor wavelet with the synthe-

sized Super Resolution preprocessed LR face images, as follows:

Cµ,ν(z) = T (z) ∗ ψµ,ν(z), (5.19)
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Figure 5.9: Circular (8,2) neigbourhood.

where T (z) is the face image, and z = (x, y) represents the pixel location. The feature

vector is constructed out of Cµ,ν by concatenating its rows.

5.4 Experimental Results

In this section, we first describe the Face and Ocular Challenge Series (FOCS)

[161] dataset. Then, we demonstrate the experiments and results of the frontal gait

recognition and low resolution face recognition followed by the score level fusion to

obtain the multi-modal recognition.

5.4.1 FOCS Dataset

The video challenge dataset, Face and Ocular Challenge Series (FOCS) [161],

contains video sequences of individuals, acquired on different days. Students from

The University of Texas at Dallas, between the age group of 18 and 25, volunteered

for the data collection. The FOCS dataset is collected in two sessions, where in the

second duplicate session of data collection the subjects have a different hairstyle,

different clothing, and may be otherwise different in appearance.
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The FOCS database contains a variety of still images and videos of a large number

of individuals taken in a variety of contexts. For our experiments, we used the frontal

walking video sequences. In the frontal walking video sequences, the subject walks

parallel to the line of sight of the camera, approaching the camera, but veering off to

the left while reaching in front of the camera. These frontal walking video sequences

capture the subject from the start point until he/she goes out of view. Thus, the

time varies somewhat for each subject due to their walking speed, but on average it is

approximately 10 seconds. The FOCS frontal walking video sequences contain videos

that are acquired from 136 unique subjects. The number of samples per subject varies.

Out of 136 subjects, 123 subjects have at least 2 videos. We used data from these

123 subjects for our experiments, where one of the video clips is randomly chosen for

training and the other is used for testing.

5.4.2 Experimental Setup

To perform the multimodal recognition, we first segment the frontal Gait silhou-

ette from the background and detect the low resolution face images from the frontal

walking video sequences as described in section 5.1. In order to evaluate the proposed

algorithm, we perform the frontal gait recognition and the low resolution face recog-

nition experiments as two seperate components. Later, we use the match score level

fusion scheme to fuse the individual recognition results.

5.4.2.1 Frontal Gait Recognition

Once the binary gait silhouette is acquired, we obtained the scale and translation

invariant 3D moments of the Spatio-temporal GEI or the periodic Gait volume, and
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the average number of frames in the identified gait cycles in the frontal walking video

clips to prepare a high dimensional feature vector as described in section 5.2. The

frontal gait features were classified using a k-nearest neighbor classifier (k-NN), where

a test gait feature vector belongs to the class that minimizes the similarity distance

between the gallery and the probe gait feature vector.

We performed quantitative experiments using different moment orders O = p1 ·

p2 · p3. The best recognition performance was obtained when p1 = p2 = p3 = 10.

The results of frontal gait recognition are presented in Table 5.1. We can see that the

recognition performance when using the 3D moments of periodic gait volume is better

than the performance when using the average movement speed feature representation.

However, concatenating the feature vectors together improved the gait recognition

performance. Table 5.2 shows a comparsion between the frontal gait recognition

performance achieved by the proposed approach and the recognition accuracy of the

state-of-the techniques on the FOCS dataset. The proposed frontal gait recognition

system achieves a rank-one recognition rate of 93.5% on the 123 subjects of FOCS

dataset.

5.4.2.2 Low Resolution Face Recognition

The first step of LR face recognition is to detect the low resolution faces using the

Adaboost detector from the video surveillance frames as described in section 5.1. The

proposed LR face recognition Algorithm 3 is described in section 5.3. After employing

the CNN based Super resolution technique to obtain the High Resolution equivalent

of the LR faces, we perform the illumination and pose normalization steps. The sizes

of the pre-processed face images varies between 40×40 pixels and 180×180 pixels. To
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effectively leverage the high-frequency information present in the pre-processed face

images we separate the face images into two classes. The face images of size less than

96×96 pixels are labeled as Class−1 and those that are greater than 96×96 pixels are

labeled as Class−2. We use the face image of size 72×72 pixel in Class−1 as the base

or template image to apply the SHR registration technique [155], described in Section

5.3.3.1, to register all the face images that belong to Class−1 after rescaling them to

72×72 pixels. Similarly, the face image of size 120×120 pixels in Class−2 is used as

the base or template image to apply the SHR registration technique [155] to register

all the face images that belong to Class− 2 after rescaling them to 120× 120 pixel.

After performing the image synthesis using the Curvelet coefficients as described in

Section 5.3.3.2 of the face images in Class − 1 and Class − 2 separately we obtain

two synthesized face images for each surveillance video clip. We extract the LBP and

Gabor feature vectors, as mentioned in section 5.3.4, from the two synthesized face

images and perform feature concatenation to obtain the composed LBP and Gabor

features, which represent the LR face in the surveillance video clip. The obtained

LBP and Gabor feature vectors are used separately to compare their performance in

LR face recognition. For each of the 123 subjects used in the performance evaluation,

the feature vector obtained from one randomly chosen surveillance video clip is used

to build the model and the one obtained from the other video is used for testing.

We compare the performance of the proposed LR face recognition technique using

the CNN based Super resolution [150] with the following baseline algorithms. It is

worth noting that all the comparisons are based on the same training/test set.

1) LR face recognition without any Super Resolution preprocessing technique.

2) LR face recognition using Bicubic Interploation Super Resolution preprocessing
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technique.

3) LR face recognition using Sparse Super Resolution [149] preprocessing technique.

The obtained LR face features were classified using a k-nearest neighbor classifier

(k-NN), where a test LR facial feature vector belongs to the class that minimizes

the similarity distance between the gallery and the probe feature vector. The result

of Low Resolution Face Recognition is presented in Table 5.3. We can see that the

performance when using the local feature representation LBP is better than the per-

formance when using global feature representation or Gabor features. Moreover, by

employing the CNN based Super resolution technique the LR face recognition perfor-

mance is increased to 82.91% compared with 72.36% without any SR pre-processing

of the LR face images.

5.4.3 Multimodal Recognition Accuracy

Score level fusion techniques are very popular in multimodal biometrics applica-

tions specifically in the application of fusing Face and Gait [11,79]. In our experiment,

results from the different classifiers were combined directly using the Sum, Max, and

Product rules.

To prepare for fusion, the matching scores obtained from the different matchers

are transformed into a common domain using a score normalization technique. Later,

the score fusion methods are applied. We have adopted the Tanh score normalization

technique [134], which is both robust and efficient, defined as follows:

snj =
1

2

{
tanh(0.01(

sj − µGH
σGH

)) + 1

}
, (5.20)

where sj and snj are the match scores before and after normalization, respectively.

µGH and σGH are the mean and standard deviation estimates of the actual score



118

distribution given by Hampel estimators [135], respectively. Hampel’s estimators are

based on the influence functions ψ which are odd functions and can be defined for

any x (matching score, sj, in this paper) as follows:

ψ(x) =



x, 0 ≤ |x| < a,

a sign(x), a ≤ |x| ≤ b,

a(r−|x|)
r−b sign(x), b ≤ |x| ≤ r,

0, r ≤ |x|,

(5.21)

where

sign(x) =


+1, if x ≥ 0,

−1, otherwise,

(5.22)

In equation 5.21, the values of a, b, and r in ψ, reduce the influence of the scores at

the tails of the distribution during the estimation of the location and scale parameters

, i.e., µGH and σGH in equation 5.23. The normalized match scores of synthesized

face images of the gallery and probe and the normalized match scores of gaits of the

gallery and probe from the same video clips are fused based on different match score

fusion techniques. Let, snjF and snjG be the normalized match scores obtained from

a specific video clip for the face and gait, respectively. The unknown test subject is

classified to class C if the fused match score corresponding to the class C is maximum

compared to all other classes in the gallery:

FR{snCF , snCG} = max FR{snjF , snjG}; j ∈ (1, 2, ..., N) (5.23)

where, FR{, } represents the fusion rule, and N represents the number of enrolled

indivuduals in the gallery. In this paper, we use Sum, Max, and Product rules.
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Table 5.1: Frontal Gait Recognition

Feature Vectors Used Rank-1 accuracy
3D Moments 88.62% (109 out of 123)
Average movement speed 69.11% (85 out of 123)
3D Moments and Aver-
age movement speed

93.5% (115 out of 123)

Table 5.2: Comaprison of Frontal Gait Recognition Accuracy

Method Rank-1 Frontal Gait Recog-
nition Accuracy

Wang et al. [12] 69.11%
Chen et al. [13] 89.43%
Goffredo et al. [78] 91.06%
This Work 93.50%

The result of the fused multimodal recognition are presented in Table 5.4. We

can see that the fusion based on the Sum rule of the Frontal Gait and the LR Face

results in the best recognition accuracy.

5.4.4 Parameter Selection for the CNN Super Resolution

We tested the performance of the proposed LR face recognition with different

parameters of the Convolution Neural Network. The number of layers in the CNN

Table 5.3: Low Resolution Face Recognition

Features Used Super Resolution Tech-
nique

Rank-1 accuracy

LBP None 72.36% (89 out of 123)
Gabor None 70.73% (87 out of 123)
LBP Bicubic 73.98% (91 out of 123)
Gabor Bicubic 71.54% (88 out of 123)
LBP Sparse 75.61% (93 out of 123)
Gabor Sparse 72.36% (89 out of 123)
LBP SRCNN 82.92% (102 out of 123)
Gabor SRCNN 79.67% (98 out of 123)
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Table 5.4: Comparison of Multimodal Recognition Fusion Scheme

Fusion Rule Rank-1 accuracy
Sum Rule 95.9% (118 out of 123)
Max Rule 94.3% (116 out of 123)
Product Rule 93.5% (115 out of 123)

network is varied between 3 and 5, where the best performance was obtained when

using 3 layer architecture. The Reognition based Super Resolution algorithm has

three distinct steps, which signifies the optimal performnace of the CNN with 3

layers. Experiments are conducted by varying the numbers of filters n1 and n2 (refer

to equations 5.9 and 5.10) of the CNN architecture. Three sets of network parameters

were used for experimental purposes (n1 = 32 and n2 = 16), (n1 = 64 and n2 = 32),

and (n1 = 128 and n2 = 64). The best performance was achieved with the parameters

(n1 = 128 and n2 = 64). The Super resolution restoration speed decreases with the

increase of the size of the filters. To obtain a reasonable trade off we set the number

of the filters n1 and n2 to 128 and 64, respectively. Moreover, the size of filters f1,

f2, and f3 (refer to equations 5.8, 5.9, and 5.10) are varied between (9, 1, 5), (9, 3, 5),

and (9, 5, 5). The best accuracy and performance trade off was obtained using the

parameter values of f1 = 9, f2 = 3, and f3 = 5. With the above mentioned pararmeter

settings 8× 108 iterations of backpropagations were needed to achieve convergance.



CHAPTER 6

Conclusion and Future Work

In this dissertation, we have presented a series of novel biometric methods for

uni-modal 3D ear and multi-modal ear and face recognition using facial video clips.

The motivating factors underlying to use of the proposed biometric systems are the

high availability of 3D scanners, the nature of data collection is non-intrusive, and

the close physical proximity of the different modalities to each other.

In Chapter 2 we presented a fully automated system for 3D ear segmentation.

Utilizing the tree-structured graph model and active contour segmentation we pro-

posed the first fully automated 3D ear-region segmentation algorithm from the range

scan of the face profile. The uniqueness of this study exists in the fact that instead

of only finding the smallest possible bounding box that contains the ear, we perform

accurate segmentation of ear through bounding box detection. To demonstrate the

potential of this approach and its suitability for the application, we applied our al-

gorithm to the largest available 3D ear database (UND database collection J2). The

accuracy of the proposed segmentation approach outperforms the state-of-the-art 3D

ear segmentation techniques.
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In Chapter 3 we described a fully automatic 3D ear classification through In-

dexing. The segmented 3D ear region is used for hierarchical categorization of the

gallery based on the shape information and surface depth information, respectively.

To prove the efficacy of the algorithm for time efficient recognition, we tested the pro-

posed approach on the largest available 3D ear database (UND database collection

J2). Compared with the results reported in the literature, the rank-one recognition

accuracy obtained by the proposed approach is the highest on the UND database

collection J2 and is faster than other automatic 3D ear recognition systems in the

literature. The contribution of this study is obvious as the proposed hierarchical cat-

egorization of the gallery can be applied to any biometric modality for time efficient

recognition. Future extensions of this work may include the use of categorization for

every modality in multi-modal biometrics along with fusion at the decision level.

In Chapter 4 we proposed a system for multimodal recognition using a single bio-

metrics data source i.e., facial video clips acquired in constrained or unconstrained

environment. Using the Adaboost detector we automatically detect the modality

specific regions. We used Gabor filters to extract feature vectors from the detected

regions and automatically learn robust and non-redundant features by training a Su-

pervised Stacked Denoising Auto-encoder (Deep Learning) network. The Deep Neural

Network with 5 hidden layers and hidden layer neurons double of the input layer re-

sults in best recognition performance. Classification through sparse representation

is used for modality specific recognition. Then, the multimodal recognition accu-

racy is obtained through the fusion of the modality specific recognition. We trained

the algorithm using all modalities and tested the system when all the modalities are

available, and in the presence of missing modalities, i.e., only some of the modalities
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are available during classification. The results, in this case, indicate that among all

possible combinations of different modalities frontal face and ear, i.e., right and left

ear modalities, together produce the best recognition rate. Feature vectors of 1000

elements obtained the best recognition accuracy while testing for effective feature

vector length.

In Chapter 5 we introduced a system for highly accurate multimodal human iden-

tification from low resolution video surveillance footage through LR face and Frontal

Gait recognition using a single biometric data source, i.e., frontal walking Surveil-

lance Video. Using the trained Adaboost detector, we automatically detect the LR

face images. The frontal gait binary silhouettes are segmented using the Fast Ob-

ject Segmentation algorithm. We proposed an approach for accurate identification of

the gait cycles in the entire gait video clip using only frontal Gait information, then

we extract the average movement speed and the shape feature. The detected LR

face images are preprocessed using Super Resolution techniques to obtain the high

resolution representation. This is followed by illumination and pose normalization,

and image synthesis through registration. Finally, Gabor and LBP features are ex-

tracted from the synthesized face images. The Nearest neighbor classifier is used to

obtain modality specific rank-1 recognition for each modality. Then, the individual

recognition results are fused through the score level fusion. The results indicate that

combining the LR face and the Frontal Gait modalities produce the best recognition

Rank-1 accuracy compared to the performance of each modality.
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