
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2018

Multi self-adapting particle swarm optimization
algorithm (MSAPSO).
Gerhard Koch
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Artificial Intelligence and Robotics Commons, Computational Engineering
Commons, Dynamical Systems Commons, Industrial Engineering Commons, Statistics and
Probability Commons, and the Theory and Algorithms Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Koch, Gerhard, "Multi self-adapting particle swarm optimization algorithm (MSAPSO)." (2018). Electronic Theses and Dissertations.
Paper 3000.
https://doi.org/10.18297/etd/3000

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/179?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.library.louisville.edu%2Fetd%2F3000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3000
mailto:thinkir@louisville.edu

A MULTI SELF-ADAPTING PARTICLE SWARM OPTIMIZATION ALGORITHM

(MSAPSO)

By

Gerhard Koch

Diplom-Ingenieur (FH), Technische Informatik, Albstadt-Ebingen, 1993

Diplom-Wirtschaftsingenieur (FH), Fernhochschule Hamburg, 2006

A Dissertation

Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville

In fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Industrial Engineering

Department of Industrial Engineering

Speed School of Engineering

University of Louisville

Louisville, Kentucky

May 2018

Copyright 2017 by Gerhard Koch

All rights preserved

ii

A MULTI SELF-ADAPTING PARTICLE SWARM OPTIMIZATION ALGORITHM

(MSAPSO)

By

Gerhard Koch

Diplom-Ingenieur (FH), Technische Informatik, Albstadt-Ebingen, 1993

Diplom-Wirtschaftsingenieur (FH), Fernhochschule Hamburg, 2006

A Dissertation Proposal approved on

December 18th, 2017

by the following Dissertation Committee:

Dissertation Director, Dr. Gail W. Depuy, I.E.

Dr. Suraj Alexander, I.E.

Dr. John Usher, I.E.

Dr. Roman V. Yampolskiy, CECS

iii

DEDICATION

The dissertation dedicates to my wonderful life partner.

Since March 2014, when I started writing my PhD thesis she always believed in what I was

doing during my intense studies around my PhD thesis. I want to say thank you for her

great patience, understanding and commitment during this time.

In addition, I would like to thank you my family, who finally put me in a position to reach

the goal of achieving academic excellence expressed by this PhD thesis.

I am also very much obliged to my actual employer Daimler AG, especially my team, who

released me one day per week from my regular work to finalize this PhD thesis.

iv

ACKNOWLEDGEMENTS

The structure and content of the doctoral thesis was strongly supported by my dissertation

advisor Prof. Dr. Gail Depuy. She supported and advised me a lot on the organizational

aspects as well as the overall consistency of the PhD thesis. Prof. Dr. Thomas Riedel from

the mathematics department of the University of Louisville educated me on various aspects

of the MSAPSO convergence analysis relevant and essential for the presented PhD work.

To the other members of my dissertation committee I would like to express my most

profound thanks: Dr. John Usher and Dr. Yampolskiy, who have generously supported me

with their mathematical and computer science expertise. This knowhow further improved

the quality of this work. I really appreciated their continuous contribution in their field of

expertise. Also, it is a great pleasure for me that Dr. Suraj Alexander as an experienced

reviewer is member of the professors PhD panel.

My special thanks and appreciation to Prof. Dr. Joachim Gerlach from the University of

Applied Science in Albstadt-Ebingen, (Germany) for his very good support on the

algorithmic modelling part of the MSAPSO. He was a student colleague when I studied

computer science during the 90’s and now he acts as a professor for technical computer

science at the same university. To all supporters above, I want to express my deepest

appreciation.

v

ABSTRACT

A MULTI SELF-ADAPTING PARTICLE SWARM OPTIMIZATION ALGORITHM

(MSAPSO)

 Gerhard Koch
December 18, 2017

The performance and stability of the Particle Swarm Optimization algorithm depends on

parameters that are typically tuned manually or adapted based on knowledge from

empirical parameter studies. Such parameter selection is ineffectual when faced with a

broad range of problem types, which often hinders the adoption of PSO to real world

problems.

This dissertation develops a dynamic self-optimization approach for the respective

parameters (inertia weight, social and cognition). The effects of self-adaption for the

optimal balance between superior performance (convergence) and the robustness

(divergence) of the algorithm with regard to both simple and complex benchmark functions

is investigated. This work creates a swarm variant which is parameter-less, which means

that it is virtually independent of the underlying examined problem type. As PSO variants

always have the issue, that they can be stuck-in-local-optima, as second main topic the

MSAPSO algorithm do have a highly flexible escape-lmin-strategy embedded, which

works dimension-less.

vi

The MSAPSO algorithm outperforms other PSO variants and also other swarm inspired

approaches such as Memetic Firefly algorithm with these two major algorithmic elements

(parameter-less approach, dimension-less escape-lmin-strategy).

The average performance increase in two dimensions is at least fifteen percent with regard

to the compared swarm variants. In higher dimensions (≥ 250) the performance gain

accumulates to about fifty percent in average. At the same time the error-proneness of

MSAPSO is in average similar or even significant better when converging to the respective

global optima’s.

vii

TABLE OF CONTENTS

DEDICATION.. ... iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF FIGURES

...xii

LIST OF EQUATIONS ...xviii

1

INTRODUCTION

..

1

1.1

Background PSO ..

2

1.2

Present state of research ... 8

1.3

Problem statement .. 15

1.4

Research contribution

... 16

1.5

Scope of PhD work ..

21

viii

2 LITERATURE REVIEW ... 23

2.1 Traditional research branches PSO .. 25

2.1.1 Base Model - Standard Particle Swarm Algorithm (SPSO) 25

2.1.2 Parameter optimized PSO’s .. 30

2.1.3 Information optimized PSO’s ... 39

2.1.4 Operator optimized PSO’s .. 43

2.2 Self-Optimization as new PSO research branch .. 49

2.2.1 Principles of Self-Organizing Systems ... 49

2.2.2 Self-Optimizing PSO’s ... 52

2.2.3 Self-Optimization in alternate bio-inspired algorithm’s 70

2.2.4 Dynamics in Social Systems - Bandura’s Learning Theory 77

2.3 Summary of Findings ... 78

3 CONVERGENCE FRAMEWORK OF THE MSAPSO ... 80

3.1 Self-Adaptive behavior of MSAPSO ... 81

3.2 General convergence analysis PSO and considerations 82

3.3 Assumptions for convergence analysis .. 83

ix

3.4 Order-1 convergence analysis – Difference & Matrix Model............................ 85

3.4.1 Final order-1 convergence room of MSAPSO.. 92

3.4.2 Visualization of order-1 convergence ... 93

3.4.3 Harmonic oscillation curve order-1 convergence 94

3.5 Order-2 convergence Analysis based on Martinez approach 97

3.5.1 Visualization of the order-2 convergence system 112

3.5.2 Harmonic oscillation curve order-2 convergence 113

3.5.3 Mathematical proof of order-1 order-2 convergence zone collapse 115

3.5.4 Application of convergence study to MSAPSO 116

3.5.5 Final order-2 convergence room of MSAPSO.. 123

3.6 MSAPSO Stability Line for a universal stable convergence 123

3.6.1 Regression analysis of the stability property of MSAPSO 126

3.6.2 Mathematical proof of the MSAPSO stability curve 127

4 DESIGN OF MSAPSO ALGORITHM ... 129

4.1 Self-Adaptiveness of MSAPSO ... 130

4.2 MSAPSO Stability Line Formula .. 131

4.3 Variation options of MSAPSO Stability Line .. 132

x

4.3.1 Variation with success-based inertia-weight strategy 137

4.4 Reasoning of chosen MSAPSO probability distributions 138

4.5 Start values of MSAPSO .. 140

4.5.1 Reasoning of MSAPSO start inertia weight ... 140

4.5.2 Swarm size in different dimensions .. 141

4.6 Success definition of the MSAPSO ... 142

4.6.1 Swarm success per iteration .. 142

4.6.2 Swarm success in consecutive iterations .. 147

4.7 Escape Local Minima Strategy .. 148

4.7.1 Definition of stuck-into-local-optima ... 149

4.7.2 Concept of the Hyper-Middle-Point in the search space 149

4.7.3 Gathering information about Gbest-position without vector calculation . 152

4.7.4 Detecting swarm radius to size the local search hyper cube 153

4.7.5 Detecting the global search hyper cubes ... 154

4.7.6 HMP centric search cube .. 156

4.7.7 Final escape strategy for 2D to N-dimensions .. 157

4.8 Dynamic inertia weight strategy .. 157

xi

4.8.1 Search Space characterization unimodal and multimodal 158

4.8.2 Sliding concept around optimal inertia weight ... 159

5 EVALUATION MODEL & RESULTS .. 160

5.1 Performance view of changes in convergence and stability zone 161

5.1.1 Performance influence of inertia weight variation 162

5.1.2 Performance influence of probability distributions variation 165

5.1.3 Performance and stability influence of variation of social and cognition 168

5.2 Testing method of MSAPSO against benchmark functions............................. 171

5.2.1 Start and convergence settings for MSAPSO algorithm........................... 174

5.2.2 Description of test method .. 175

5.2.3 List of benchmarks and their characteristics ... 176

5.3 Test results MSAPSO versus comparative algorithms 177

5.3.1 Short description of comparative algorithms .. 177

5.3.2 Preconditions for the long run test .. 182

5.3.3 Benchmarks and Minimum Tests ... 184

5.3.4 Benchmarks and Maximum Tests ... 194

5.4 Comparison MSAPSO & MFFA with and without ELM 204

xii

5.4.1 Sphere Function without ELM.. 204

5.4.2 Sphere Function with ELM ... 205

5.4.3 Referenced Function comparison MSAPSO versus MFFA 206

5.5 Summary Evaluations Results .. 208

6 RESEARCH CONTRIBUTION OF MSAPSO ... 211

7 FUTURE RESEARCH .. 214

REFERENCES ... 216
LIST OF ABBREVIATIONS ... 223

APPENDIX A – MINIMUM BENCHMARK FUNCTIONS 225

APPENDIX B – MSAPSO STRUCTURAL DIAGRAM .. 233

CURRICULUM VITAE ... 235

xiii

LIST OF FIGURES

Figure 1: Categorization of Natural Computation .. 8

Figure 2: Proposed Classes of PSO Research Branches ... 12

Figure 3: Ideal convergence behavior of a particle with self-optimization 20

Figure 4: Visualized PSO velocity and position update of particle i 28

Figure 5: CLPSO – dimension surfing based velocity updating of a particle 46

Figure 6: PSO optimal particle’s neighborhood structure .. 54

Figure 7: MSAPSO order-1 (µw, µφ) convergence room .. 93

Figure 8: Harmonic oscillation area around equilibrium point ... 96

Figure 9: Set of order-2 convergence curves .. 112

Figure 10: Same Order-1, Order-2 harmonic oscillation curve 114

Figure 11: 2D view - order-2 convergence limits and μφ, μw of real algorithm runs ... 121

Figure 12: 3D view - order-2 convergence curves and MSAPSO stability curve 122

Figure 13: Visualization of set of convergence curves – Stability property MSAPSO .. 124

xiv

Figure 14: Regression curves to proof MSAPSO stability property hypothesis 127

Figure 15: Variation options of MSAPSO Stability Line ... 132

Figure 16: Lowered convergence and stability curve with N(0.5,0.475) 134

Figure 17: Raised convergence and stability curve with N(0.5,0.075) 136

Figure 18: Balanced convergence and stability curve with N(0.5,0.288675),UNIF ... 137

Figure 19: MSAPSO – Graphical Visualization of the “success” of a particle 143

Figure 20: MSAPSO - State transition diagram of particle i – Minimum Problem 146

Figure 21: HMP in the 2D search space with particles close to Gbest 150

Figure 22: HMP in the 3D search space with particles close to Gbest 151

Figure 23: Defining local search hyper cube around actual Gbest 153

Figure 24: Defining one of the four possible global search hyper cubes........................ 154

Figure 25: Defining centric hyper cube around HMP .. 156

Figure 26: Dynamic inertia weight with increments variation along MSF 163

Figure 27: Variation of standard deviation in normal distribution along MSF 166

Figure 28: Variation of social and cognition at optimal inertia along MSF 169

Figure 29: List of benchmarks and their general characteristics 176

xv

Figure 30: List of benchmarks MIN-TEST in respective dimensions 184

Figure 31: Min 2D Long runs with minimum error over all algorithms 186

Figure 32: Min 2D Long MSAPSO compared to other algorithms 187

Figure 33: Min 5D Long runs with minimum error over all algorithms 188

Figure 34: Min 5D Long MSAPSO compared to other algorithms 188

Figure 35: Min 10D Long runs with minimum error over all algorithms 189

Figure 36: Min 10D Long MSAPSO compared to other algorithms 190

Figure 37: Min 30D Long runs with minimum error over all algorithms 191

Figure 38: Min 30D Long MSAPSO compared to other algorithms 191

Figure 39: Min 100D Long runs with minimum error over all algorithms 192

Figure 40: Min 100D Long MSAPSO compared to other algorithms 192

Figure 41: Min 250D Long runs with minimum error over all algorithms 192

Figure 42: Min 250D Long MSAPSO compared to other algorithms 193

Figure 43: Min 500D Long runs with minimum error over all algorithms 193

Figure 44: Min 500D Long MSAPSO compared to other algorithms 193

Figure 45: List of benchmarks MAX-TEST in respective dimensions 194

Figure 46: Max 2D Long runs with minimum error over all algorithms 196

xvi

Figure 47: Max 2D Long MSAPSO compared to other algorithms 197

Figure 48: Max 5D Long runs with minimum error over all algorithms 198

Figure 49: Max 5D Long MSAPSO compared to other algorithms 198

Figure 50: Max 10D Long runs with minimum error over all algorithms 199

Figure 51: Max 10D Long MSAPSO compared to other algorithms 200

Figure 52: Max 30D Long runs with minimum error over all algorithms 201

Figure 53: Max 30D Long MSAPSO compared to other algorithms 201

Figure 54: Max 100D Long runs with minimum error over all algorithms 202

Figure 55: Max 100D Long MSAPSO compared to other algorithms 202

Figure 56: Max 250D Long runs with minimum error over all algorithms 203

Figure 57: Max 250D Long MSAPSO compared to other algorithms 203

Figure 58: Max 500D Long runs with minimum error over all algorithms 203

Figure 59: Max 500D Long MSAPSO compared to other algorithms 204

Figure 60: Min 2D-500D Long runs with Sphere Function comparison wo ELM 204

Figure 61: Min 2D-500D Min error with Sphere Function comparison wo ELM 205

Figure 62: Min 2D-500D Long runs with Sphere Function comparison with ELM 205

Figure 63: Min 2D-500D Min error with Sphere Function comparison with ELM 206

xvii

Figure 64: Official Performance Data from Yang compared to MSAPSO tests 207

Figure 64: MSAPSO Structural Diagram ... 224

Figure 65: MSAPSO Escape Local Optima Mode ... 225

xviii

LIST OF EQUATIONS

Equation 1: SPSO – Particles velocity .. 28

Equation 2: SPSO – Particles position .. 28

Equation 3: SPSO – Weighted average position of the two bests 29

Equation 4: SPSO – Velocity clamping .. 30

Equation 5: UPSO – Global PSO variant formula .. 34

Equation 6: UPSO – Local PSO variant formula.. 34

Equation 7: UPSO – Unified Velocity Update of the particle .. 34

Equation 8: UPSO – Unified Position Update of the particle ... 34

Equation 9: UPSO – Linear increase of unification factor ... 36

Equation 10: UPSO – Modular increase unification factor .. 36

Equation 11: UPSO – Exponentially increased unification factor.................................... 36

Equation 12: UPSO – Sigmoid modulation of the unification factor 37

Equation 13: E-MPSO – Entropy Measures of best positions with regard to particle i ... 41

ixx

Equation 14: E-MPSO – Contribution of f(x) of best pos. of particle i to all best pos. 41

Equation 15: CLPSO – Changed velocity update equation .. 44

Equation 16: EVPSO – Escape Velocity term for particle ... 47

Equation 17: APSO – Cognitive factor adaption .. 58

Equation 18: APSO – Social factor adaption in APSO .. 58

Equation 19: APSO – Step width when calculating c1, c2 ... 58

Equation 20: ALPSO I – Velocity update of particle i of the own (best) position 60

Equation 21: ALPSO I – Velocity update of particle i related to Pbest closest neighbor 61

Equation 22: ALPSO I – Position of particle i ... 61

Equation 23: ALPSO I – Velocity update of particle i related to Gbest position 61

Equation 24: SLPSO I – Assigned logarithmic weight to particle 65

Equation 25: SLPSO I – Temporal execution probability of strategy j 66

Equation 26: SLPSO I – Relative execution probability of strategy j 66

Equation 27: SLPSO I – Accumulated importance of strategy j over all particles 66

Equation 28: BAT Algorithm – Frequency update of bat at position xi 72

Equation 29: BAT Algorithm – Velocity update of bat at iteration t+1 72

Equation 30: BAT Algorithm – Position update of bat at iteration t+1 72

xx

Equation 31: MFFA – Relation Light Intensity and distance r from source 74

Equation 32: MFFA – Light intensity varied by distance r .. 74

Equation 33: MFFA – Attractiveness from beholders view varied by distance r 74

Equation 34: MFFA – Euclidian distance between a pair of fireflies 75

Equation 35: MFFA – Final update equation of a firefly i ... 75

Equation 36: MFFA – Genotype of a firefly i as a base for self-adaption 76

Equation 37: Stagnation condition of the MSAPSO... 82

Equation 38: Base MSAPSO equations for convergence analysis 85

Equation 39: Base MSAPSO recursive equations .. 86

Equation 40: Simplified terms of the recursive order-1 equation 87

Equation 41: Expectation values of MSAPSO particles position 87

Equation 42: Dynamical Form of the MSAPSO order-1 convergence............................. 87

Equation 43: Expectation values µw, µφ of the dynamical order-1 convergence 89

Equation 44: µw, µφ based form of the dynamical order-1 convergence 89

Equation 45: Characteristic Polynomial of the MSAPSO dynamical system 90

Equation 46: Determinant of the order-1 MSAPSO dynamical system 90

Equation 47: Eigenvalues of the order-1 MSAPSO dynamical system 91

xxi

Equation 48: Order-1 convergence limit MSAPSO dynamical system 93

Equation 49: Discriminant of the order-1 MSAPSO dynamical system 94

Equation 50: Equilibrium point of particles.. 94

Equation 51: Harmonic oscillation curve around equilibrium point 95

Equation 52: Recalled difference equation MSAPSO for order-1/order-2 convergence . 98

Equation 53: Dynamical Form of the MSAPSO order-2 convergence........................... 100

Equation 54: Expectation Values of the order-2 iteration matrix 101

Equation 55: Cubic Eigenvalues equations of the order-2 MSAPSO dynamical system 103

Equation 56: Eigenvalues of the order-2 MSAPSO dynamical system 103

Equation 57: Order-2 convergence system for generic probability distributions 111

Equation 58: Discriminant of the order-2 MSAPSO dynamical system 113

Equation 59: Order-2 convergence system for MSAPSO with uniform distribution 118

Equation 60: Order-2 convergence system for MSAPSO with normal distribution 120

Equation 61: Final convergence room MSAPSO with uniform, normal distribution 123

Equation 62: MSAPSO Stability Line (MSL) hypothesis .. 125

Equation 63: Most optimal inertia weight values ... 140

Equation 64: MSAPSO – 2-View Perspective - Success of a particle i 145

xxii

Equation 65: Search space characterization - unimodal and multimodal areas 158

Equation 66: Base equations of XPSO ... 179

Equation 67: Dynamical system of XPSO .. 180

Equation 68: Constriction factor of XPSO ... 181

Equation 69: Motion equations of XPSO ... 181

1

1 INTRODUCTION

The different variants of Particle Swarm Optimization (PSO) invented over the last couple

of years have solved many problems and they were quite successful. However, there is still

a significant gap to reach the ultimate goal of a self-parametrizing and intelligent

optimization algorithm, with the capability to adapt to different benchmark problem

surfaces automatically. For example, in the area of highly specialized PSO algorithms the

issue is, that there is still a lot of knowledge (empirical studies, researchers experience, etc.)

needed about the parameterization of the specialized PSO variants. Also in the field of

hybrid algorithms, it is still hard to determine what part of the algorithm is responsible for

what positive or negative effect when applied to a set of benchmark problems. In case the

problem context changes, a priori parameter assumptions on some previous problem might

work not very well anymore. Whatever if it is a specialized PSO or a hybrid algorithm,

there is still the central problem, based on what method and/or criteria(s) the overall

algorithm need to change or adapt to respond to varying mathematical problem surfaces

without using a static algorithmic strategy.

In Yang et al. (2013, p. 11), they describe this problem as “the search for the magic

formulas of optimization”, in other words, what an optimal algorithm should bring along.

The ideal algorithm from the authors believe, should start with an initial guess for the

solution and then get to the optimum in one single step. As the benchmark problem surface

2

and starting conditions of a problem do vary, they also discuss the principle of self-adaption

as an embedded principle of such an ideal algorithm.

1.1 Background PSO

Dr. Kennedy and Dr. Eberhart first introduced the Particle Swarm Optimization (PSO)

approach in 1995. The basic nature of the PSO is a population based optimization approach,

which is able to solve very complex discrete, continuous and noisy optimization problems.

The first roots of the PSO approach appeared based on research of (Reeves, 1983), where

he suggested in the field of computer graphics to model objects with particle systems,

because he found out that complex objects could not be easily simulated by polygons and

surfaces. A second important source of inspiration came from the field of social research,

where the PSO algorithm itself used various principles from former social psychology

research. Indicatory works was coming from (Reynolds, 1987), where he modeled the

collective behavior of a flock of birds. (Heppner & Grenander, 1990) did further work in

order to simulate the behavior of animals.

Other important influences were coming from the area of social psychology research were

most significant contributions was brought in from (Novak, Latane, & Vallacher, 1994),

where they discussed basic concepts of dynamical systems in social psychology and

provided also computer modeling of social processes.

All these models led then to a set of rules on swarm intelligence, which strongly influenced

the initial PSO approach suggested by (Kennedy & Eberhard, 1995).

3

In the meantime, many new PSO variants appeared in the research community since the

original introduction in 1996 in his standard form. In this context, the following

categorization into two main directions of research is possible.

The first category is the development of algorithms, which combines e.g. existing variants

of PSO with concepts of other optimization approaches (hybrid algorithms), in order to

combine the benefits of different algorithmic approaches. One example could be the

synergy of a population-based PSO algorithm with e.g. evolutionary algorithms (EA’s).

Many other hybrid examples exist for leveraging synergies between different optimization

techniques for the purpose of solving complex optimization problems.

In any case, the intent of the first direction is to broaden the applicability of such combined

algorithms by using “best of both worlds” and then apply it to a broader set of mathematical

problem types and benchmark problems.

The second direction is to research highly specialized algorithms of PSO, which just refer

to one specific and/or a limited problem space. The main goal in the area of highly

specialized PSO algorithms targets to improve the settings for PSO parameterization for a

particular problem set and by that obtain superior performance and stability when solving

these optimization problems.

Clearly, there are drawbacks with both approaches. Either there is the choice to perform

very well on a small set of problems with a certain PSO variant or to combine

characteristics from other optimization approaches such as Genetic Algorithms (GA’s) into

4

the PSO algorithm, which may work more stable on a broader set of problems, but may

perform not as well as a specialized PSO version. In addition, it is still difficult to determine

in the area of hybrid algorithms, which effect comes from what piece of algorithmic

combination.

The intent of this dissertation is to get into a third direction, where the purpose of this new

direction is to work out an approach which works on the principle of self-adaption. The

exact definition of self-adaption still need to be detailed, but in general it could range from

dynamic adaption of PSO parameters to automatic adaption of PSO formulas up to the

probabilistic invocation of different PSO variants or combinations of the beforehand

mentioned options. All these self-adaption options will have the focus to improve the

search methodology and the ability to adapt the PSO algorithm to the changing conditions

of the actual examined problem surface. In addition, also the adaption of the social and

cognitive learning behavior of the PSO algorithms as a core concept is a valid option in

this context.

The described algorithm names Multi Self-Adapting Particle Swarm Optimization

(MSAPSO) from now on.

Today the existing PSO variants employ two basic principles, which are:

• Particle Swarm Exploration (Diversification) - detection of the most promising

regions in the search space, based on locally available information collected by the

particle(s).

5

• Particle Swarm Exploitation (Intensification) - convergence of particles towards the

best solutions, based on globally available information.

These two combined principles are the elementary concept of PSO and it works quite well

on a lot of benchmark functions to find global optima’s, but the model still have issues,

when the PSO algorithm works on a broader set of benchmark problems or when within

one benchmark problem there is a frequent change between unimodal and multimodal areas.

The challenges are, that in the exploitation phase the PSO algorithm may end up in

premature convergence and in the exploration case there is a chance to see time delay

during the convergence when searching for an optimum. In reality, there is a fine and

granular line between both phases and one of the key issues of a well performing, stable

and self-adaptive algorithm is to meet this optimal balance point independent of the

underlying evaluated optimization problem.

Indeed, the No-Free-Lunch Theorem (NFL) seems to play a significant role here, which

says that a specific algorithm may perform well on one specific problem but may not

perform at all on a slightly varied problem. It seems obvious that there is further research

needed to “solve” the above described problem scope of self-adaption of algorithms (e.g.

dynamically chosen parameter sets).

As this balance point of exploration and exploitation is flexible by nature (todays

researchers try to detect the right parameter sets empirically), there is a need to better

understand the underlying principles (e.g. convergence of the overall PSO system when

selecting dynamic PSO parameter sets). Self-adaption of PSO parameters is then one way

to react to the “dynamics of the balance points”. It can be anticipated that the PSO system,

6

is influenced by various factors such as the structure of the benchmark problem, used

probability distributions, stochastic processes of the system, dimensionality of the problem,

chosen parameter sets of the PSO algorithm, etc.

As PSO is a social and/or cognitive algorithm, the question can be raised if and how

changes in the strength of collaboration between particles do have an influence with regard

to performant and stable system convergence. Secondly how the social dynamics influence

the beforehand discussed optimal balance point of exploration and exploitation.

The basic idea of variation of social and cognition reaction and interaction goes back to

work of Albert Bandura a social cognitive researcher in the 1960’s. He found out that

dynamic social learning not just stem from the fact of direct observation and imitation of

others, but also depends on the rewarding mechanism with regard to the initiated strength

of the social and/or cognitive reaction.

In an experiment called “Doll-experiment”, he was able to show that human beings adapt

the strength of their social reaction not just based on what they observe, but also on the fact

what exactly was rewarded or punished. In the “Doll experiment”, thirty-three boys and

girls was shown a movie, where a grownup called “Rocky” treats a plastic puppet called

Bobo very aggressively. The movie ends in three different variants, where in the first

version another person who enters the room rewards the behavior of Rocky, in the second

version the same person punishes what Rocky has done and in the third version the

behavior stays uncommented. Kids who saw the rewarding of the aggressiveness of Rocky

showed also significant increase of their own aggressiveness towards Bobo after entering

the room, whereas kids who have sawn the punishment of Rocky had a much lower level

7

of aggressiveness. The level of aggressiveness was different in the various groups just

because of the used rewarding or punishment model.

For the context of PSO this would mean that different strength level of social and cognitive

behavior would potentially also have an influence on the reward or success model used. In

other words, for example in unimodal problems more aggressiveness would be justifiable

because there is more likelihood to find better solution, whereas in multimodal problems

the same aggressiveness of individual particles and a 100% of success is contractionary as

it will be “punished” being too aggressive by being stuck into local minima. So, this shows

that it is not only beneficial to have an adaptive social strategy in the PSO algorithm., it is

somehow mandatory, because success is a relative measure, which varies dependent on the

underlying benchmark problem.

The parameters set used to control the behavior of the algorithm strongly depend on the

type of the problem surface and the actual situation the algorithm is facing in an iteration.

8

1.2 Present state of research

In Sedighizadeh and Masehian (2009) the authors motivate the need for a natural

computation (NC) paradigm composed of Epigenesis, Phylogeny and Ontogeny

Algorithm’s to deal with complex real-world problems having noisy data, inflexible

algorithmic structures and multi-dimensionality embedded into the problems. In this

context, they divide NC into three main domains:

Figure 1: Categorization of Natural Computation

They define the NC categories in more detail as following:

• Epigenesist Algorithms: a complex structure which is able to perform tentative

learning (e.g. human’s brain, immune system)

• Phylogeny Algorithms: learning and performing is achieved via a competition

algorithmic model (e.g. Evolutionary Programming, Genetic Algorithms)

Natural
Computation

Epigenesis
Algorithms

e.g Artificial
Neural

Networks

e.g. Human
Brain

Computation

Phylogeny
Algorithms

e.g.
Evolutionary
Programming

e.g. Genetic
Programming

Ontogeny
Algorithms

e.g. Particle
Swarm

Optimization

Other Swarm
inspired
Methods

9

• Ontogeny Algorithms: learning and performing is based on a cooperative strategy

(e.g. PSO, MFFA)

In this definition, they set the context for PSO as a way to perform NC in a cooperative

way among agents (particles). Based on this overall classification of PSO they describe

several characteristics on how the PSO research branch itself could be described. They

propose more than twenty aspects how PSO research branches potentially subdivides: For

example, by the following characteristic:

• Continuity (continuous, discrete, binary)

• Topology (star, ring, random, etc.)

• Hierarchy (flat, hierarchical)

• Activity (active, passive)

• Compound with other heuristics (Genetic Algorithms (GA), Ant Colony

Optimization, Neural Net, etc.)

• Attraction (attractive, repulsive, attractive-repulsive)

• Fuzziness (fuzzy, crisp)

• Divisibility (divided, undivided)

• Velocity Type (restricted, unrestricted, vertical velocity, escape velocity, …)

• Other

As this approach to categorize seems to massively branch out the different aspects of PSO’s,

a new categorization method would be helpful, to better reflect the present and future

research directions. The following categorization is a proposal on how to better structure

10

the existing PSO concepts and more important the recent research directions and activities.

A possible categorization is the following:

• Parameter optimized PSO’s

o Individual Parameter Optimization (manual, automatic)

o Many Parameter Optimization (dependent, independent)

• Operator optimized PSO’s

o Individual Enhancements to the particles update equation

o Automatic Enhancement to the particles update equations

• Information optimized PSO’s

o Analytic Information Gathering

o Statistical Information Gathering

o Historical Information Gathering

o Prognosis Information based

o Memetic information based

• Self-Optimizing PSO’s

o Self-Adaptive Parameters

o Self-Adaptive Update Equations

o Adaptive Algorithmic Selection

o Self-Organizing Individual & Group behavior

The individual parameter(s) optimized PSO’s take care about manual improvements with

regard to parameter settings such as optimal neighborhood topologies, optimal choice of

inertia weight, and others before the algorithm actually starts. The automatic parameter

11

optimization is valid during the PSO algorithm runtime and uses some logic to do so. The

same is possible for many parameters optimization. As an add on in the many parameters

domain it can be evaluated either manually or in automatic way if the parameters are

dependent or independent from each other.

The operators optimized PSO’s is about manual or automatic enhancements of the update

equations of the particles positions under certain conditions. When conditions are met this

will vary the particles trajectory compared to the Standard PSO and instantaneously

influence the flight behavior of the particle in the actual iteration.

The third category is about getting useful information during the algorithmic runtime in a

way such that it will not consume too many compute cycles. For simple unimodal problems,

an analytical way might be more accurate than using statistical methods. Whereas in the

case of more complex multimodal scenarios, deriving statistical information seems to be

more appropriate because the analytical approach could be very challenging in that case.

In higher dimensional problems, even the statistical information gathering might be

inefficient, so nature inspired algorithms might be more helpful to get an idea how the

search space looks like in order to find the best corresponding solutions.

The last class and this is a new direction is the approach of self-optimizing PSO’s, where

the core idea is to dynamically adapt the algorithms behavior to the actual problem space

without having full control over parameters and even more without having the complete

information about all neighboring particles. The promise made by self-optimization is the

automatic adaption of e.g. parameters to the actual searched part of the problem space

12

without employing a fully informed algorithm or a priori parameter optimization. The

figure below shows PSO variants that fit into the proposed PSO classes. The MSAPSO

discussed in this PhD-document, will exactly work in the context of self-optimization.

Figure 2: Proposed Classes of PSO Research Branches

Two leading Greece researchers in the area of PSO algorithms, describe the current state

of research as follows in Parsopoulas and Vrahatis (2010, p. 269)

Proposed PSO Research
Branches

Parameter optimized
PSO (e.g)

Standard PSO
(SPSO)

Constriction
PSO (XPSO)

2-D Otsu PSO
(TOPSO)

Dynamic
Neighborhood
PSO (DNPSO)

Velocity Limited
PSO (VLPSO)

Composite PSO
(COMPSO)

Optimized PSO

(OPSO)

Information Optimized
PSO (e.g)

Cooperative PSO

Comprehensive
PSO

Memetic PSO

Cultural based
PSO (CAPSO)

Niching PSO
(NPSO)

Dynamic and
Adaptive PSO

(DAPSO)

Evolutionary
Iteration PSO

(EIPSO)

Fully Informed
PSO (FIPSO)

Gaussian PSO
(GPSO)

Operator optimzed
PSO's (e.g.)

Comprehensive
Learning PSO

(CLPSO)

Attractive
Repulsive PSO

(ARPSO)

Greedy PSO
(GRPSO)

Escape Velocity
PSO(EVPSO)

Universal PSO
(UPSO

Neural PSO
(NPSO)

Self-Optimizing
PSO's (e.g.)

Self-adaptive
PSO (SA-PSO)

Self-adaptive
velocity PSO

(SAVPSO)

Self-
Organization
PSO (SOPSO)

Adaptive
Mutation PSO

(AMPSO)

Adaptive
Learning PSO

(ALPSO I)

Adaptive
Learning PSO

(ALPSO II)

Self - Learning
PSO (SLPSO I)

Self - Learning
PSO (SLPSO II)

...

Multi - Self-
Adaptive PSO

(MSAPSO)

13

” The different PSO variants has been very useful in addressing continuous and integer

problems, handling noisy and multi-objective cases, and producing hybrid schemes in

combination with specialized techniques or other algorithms in order to detect multiple

minimizer (local or global) or control its own parameters1 “. In fact, they anticipate the

following research areas as the main direction of future PSO research:2

• Theoretical Analysis of the PSO and their variants, especially but not limited to

o The description of the full dynamics of the original PSO algorithm

o The convergence criteria on complex problems

o Better control on PSO parameters and building blocks in general

optimization problems

• Strategies and operators, for example

o The determination if actual particle velocities and operators applied to the

particles are adequate or not

o The question, whether it is worthwhile to always use the same strategy for

all particles in a swarm

o The discussion if hybrid methods are useful and if yes to what degree

particular algorithm can improve the overall effectiveness

• Self-adaptive models, which claim to be the ultimate approach in dynamic

optimization problems, where

1 cf. Parsopoulas & Vrahatis (2010). Particle Swarm Optimization and Intelligence - Advances and

Applications. Information Science Reference., page 269
2 cf. ibid., page 270-272

14

o The topic is to identify relations to other research fields such as artificial

intelligence (AI), which is confronted with similar problems.

o The problem on how to develop appropriate proper operators and PSO

variants along with an intelligent decision-making scheme that requires

almost no parameter adaption und thus minimal user control.

• New variants of PSO suited to modern communication systems

In another scientific paper, (Bai, 2010, p. 182) comments about the future direction of PSO-

Research are made, where it is outlined that four major fields of improvements in the next

couple of years are expected:3

• The math’s basic theory of the PSO algorithm

• Variation of the topology of the particle swarm

• Principles on how to blend PSO with other algorithms

• Further develop the application area of PSO in non-coordinate and scattered

systems

The area of self-optimization behavior of PSO’s is still at an early stage. The dissertation

will focus on this field of research direction. In this context, the PhD work will compare to

other fields of swarm research, where self-optimization is also a central principle such as

3 cf. Bai (2010, February). Analysis of Particle Swarm Optimization.

http://www.ccsenet.org/journal/index.php/cis/article/view/5131/4314, page 182

15

Ant-, Bee-, Bat-, Firefly-, Cuckoo-, Glowworm, Flower Pollination- and other swarm

algorithms.

1.3 Problem statement

The problem in scope is to “solve” the conflict of extremely specialized PSO algorithms,

which just perform on a specific set of problem spaces and at the same time address the

issue that generalized PSO algorithms, which are very robust on a broad set of problems

will lack similar performance capabilities compared to the specialized PSO versions.

The problem addressed, is to bridge the gap between best performance characteristics and

extreme robustness of an algorithmic approach. A proper approach is searched, which

unifies best of both worlds for the application on an extremely wide set of mathematical

problems in a self-optimizing manner.

In this context MSAPSO shall avoid tuning of PSO influencing parameters, dynamically

optimize particles behavior while searching for optimal solutions in the “unknown” and

multidimensional search space. Also, the algorithm should be able to react dynamically to

environmental changes with regard to the problem surface structure and probability

distributions being used, while solving the optimization problem.

16

1.4 Research contribution

The research contribution focuses in the area of self-optimization of PSO based on a “to be

defined” Multi Self-Adaptive Particle Swarm Optimization (MSAPSO) approach. The

purpose of the new algorithm is the dynamic adaption on multiple levels at the same time.

These levels of MSAPSO are:

• Bidirectional learning strategy (social & cognition) with varying strength between

the individual particle and the swarm itself

• Adaptive inertia weight strategy along different classes of benchmarks

• Dynamic detection of balanced exploration and exploitation points

(optimal triples of inertia weight, social and cognition parameters)

• Use of adaptive randomization model with different probability distributions

• Finding dependencies between inertia weight and social & cognition parameters

The MSAPSO behavior can vary by self-adaptive social and cognitive parameters,

dynamic inertia weight and the adaptive randomization strategy of the algorithm, during

the runtime. The overall intent is to accelerate the convergence speed, while keeping the

diversity of the search to avoid trapping into local minima or maxima. The multi-level self-

optimization approach promises to generate positive synergies on both aspects (exploration

and exploitation behavior of the algorithm) at the same time.

17

The concept of the dissertation will fall into four parts, where the first part takes care about

the definition of a bidirectional learning approach, which is dynamic in nature because the

strength of this cooperation strategy depends on the individual and group success of the

particles in a varying problem search space (unimodal/multimodal and combinations of it).

An analogy to this aspect is the learning within social groups where it is of course beneficial

to learn from the actual best, but still the question remains open to what degree this should

happen. Although an individual might be not the best as of now, it could be that in the

future very good personal success is possible and because of that, the individual should

not just purely believe in the actual best in the group. In addition, the question is, if there

is a natural limit of bidirectional learning which makes the overall convergence optimal,

independent what the optimization problem is about. Also, the question can be raised how

the variation of social collaboration and cognition changes with the increase of the

dimensionality of the problem.

The second part will evaluate the concept of optimal balance points between exploration

and exploitation, which should be agnostic from the underlying benchmark problem, so it

is fully self-adaptive. In this context, there is a need to better understand the dynamics of

MSAPSO in general, the convergence behavior, the influence of the problem benchmarks

dimensionality and the applied probability distributions in the algorithm as influence

factors to the optimal “balance point”.

The third element of the MSAPSO study will focus on the relation of social and cognition

and inertia weight strategy. It is interesting to understand how changes in the collaboration

18

parameters influence the inertia weight parameter and vice versa and if rules can be found

such that it can be applied to the overall self-adaptive model of MSAPSO.

The last aspect is the adaptive randomization during the algorithmic runtime. The idea here

is that when convergence matures over time, there is decreasing need to equally distribute

the particles all over the search space. The overall goal is to find very good solutions at the

final convergence. So, based on this fact, there is the option to choose better fitting

probability distributions to draw random numbers from, when the algorithm matures as

there is better “knowledge” from the examined search space towards the end of the

algorithmic runtime.

The MSAPSO algorithm does not limit itself to the four self-optimization aspects as

proposed. In the future, many other aspects with regard to self-optimization might appear.

If that happens, there is the question which of them contributes to the success, which are

contradictory and which are synergetic to each other. Finally, this raises the question of

which self-optimization strategy or combinations of it to use for a certain type of a problem

surface. It is finally similar to the problem what also a human brain has to solve, which

needs to decide dynamically which “algorithms” to use and also the need to dynamically

parametrize the respective algorithms in order to best approach the actual faced problem

scope.

In Yang et al. (2013, p. 9) the authors describe what an ideal algorithm should do:

http://www.dict.cc/englisch-deutsch/contradictory.html

19

„ …. that the algorithm simply has to tell what the best answer is to any given problem in

one step! “4 Such algorithm surprisingly does exist in reality. For the special case of a

quadratic function, this actually works with a root finding method called Newton-Raphson,

which is able to find the global optimum within one-step. As mentioned, this is a special

case and of course cannot be generalized. Today, there is no known way to create one

universal algorithm that can provide the “one-step” answer to complex problems. On the

other side, there should be still enough room for improvement in order to shorten the time

of convergence (iterative steps) while still be able to work on a broad set of problems with

the “same” algorithm. When we consider the self-optimization as a way to continuously

adapt to the given underlying structure of the problem, then there is a chance to reduce the

iteration steps dramatically in average. To translate this into the view of a particle, the

following graph describes the “ideal” convergence with regard to a hypothetical self-

optimization PSO algorithm:

4 cf. Yang et al. (2013). Swarm Intelligence and Bio-Inspired Computation. Elsevier Insights., page 9

20

Figure 3: Ideal convergence behavior of a particle with self-optimization

In the graph at time point one, the different PSO variants takes a random and initial guess.

In the following iterations, the two self-adaptive strategies realize improvements over the

original “PSO algorithm without Self-Opt” (dark line). In iteration t PSO with “Self-Opt

2” (brighter dark line) realizes a benefit over the PSO “Self-Opt 1” strategy (brighter line).

The resulting dashed black line would be the “ideal” convergence behavior of a to be

defined multi self-adaptive algorithm.

On one hand, the nature of self-optimizing approaches should lead into broader

applicability of the algorithm with regard to optimization problems. On the other hand, the

21

hybridization of different self-optimization strategies is more complex to understand with

respect to their specific system and convergence behavior improvements and contributions.

1.5 Scope of PhD work

Although self-adaption in optimization algorithms is a broad and fast-growing research

area today, ranging from artificial intelligence concepts into bio-inspired computation

approaches the PhD proposal will focus and limit to the research branch of swarm

intelligence and more specifically to a self-adaptive and parameter-independent Particle

Swarm Optimization (PSO) approach.

In the last twenty years, PSO researchers covered many aspects of the original algorithm.

It started with basic research studies conducted by Kennedy in 1995 with regard to the

trajectory behavior of particles in the one-dimensional search space.

These studies found out that the stochastic velocity changes of the particles can expand

into wider and wider cycles such that it gets uncontrollable, because parameter settings of

the systems were exceeded. A simple method to avoid this was the introduction of a so-

called velocity clamping. In later studies, new particle parameter concepts such as inertia

weight (James Kennedy, 2001, p. 339) and constriction factor (Clerc, Particle Swarm

Optimization (L'Optimisation par essaims particulaires), 2005/2006, p. 220)

complemented the original PSO.

22

These parameters had the goal to better control the PSO algorithm behavior and therefore

avoid particles velocity explosion. On the other site, this better understanding led to the

improved applicability of PSO.

Finally, with the introduction and appearance of many new tuning methods for the PSO

parameters, on one hand researchers were able to better analyze the dynamics of PSO, but

on the other hand, the tuning of parameters had still to be done “manually” and finally

adapted to every class of optimization problem. Because of this tradeoff, a new sub branch

of research came up with the intention to automate parameter settings in PSO. At the same

time, researchers tried to make the PSO variants and algorithms more self-adaptive, while

still keeping the capability of the algorithm to solve a broad variety of problems. The PhD

proposal exactly focuses on this aspect of particle swarm research. Conceptually the PhD

proposal will clarify how social, cognition and inertia weight parameters are related to each

other and how different probability distributions influence this relation during convergence

and stagnation of the algorithm. Based on this knowledge MSAPSO should be able to

define new criteria(s) for better convergence and also find flexible parameter settings of

social and cognition “on the fly” for superior global and local search strategies. Of course,

the new self-adaptive PSO approach should be also applicable and useful in the N-

dimensional search space. Methodically we will test the effectiveness of MSAPSO by the

use a broad set of benchmark functions, where the self-optimizing PSO will show the

capabilities of self-adaptiveness, stable and fast convergence, independent of the

underlying problem benchmarks examined.

23

2 LITERATURE REVIEW

The literature review will first cover the Standard Particle Swarm Optimization algorithm

(SPSO) as a base model, the key PSO parameters and their contribution to improve the

SPSO for specific optimization problems. This can be seen as the “what was going on

within the PSO research segment” (vertical review). For the proposed classes of PSO

algorithms two examples for every class will show the principles of every proposed

research branch. For the section of self-optimizing PSO, a more granular study of the

algorithms is necessary, as this is the main direction of the proposed MSAPSO.

Secondly, the literature review will extend horizontally into other related bio- and social-

inspired research fields to investigate other bio-inspired concepts. The comparison will

focus on: if and how these algorithms use self-optimization principles and can be an

inspiration source for the design of the MSAPSO algorithm. Candidates for this

comparison are listed below:

• Artificial Bee Colony Algorithm (ABCA)

• Artificial Ant Colony Algorithms (AACA)

• Memetic Firefly Algorithm (MFFA)

• Glowworm Algorithm (GWA)

• Cuckoo Search Algorithm (CSA)

24

• Bat Artificial Algorithm (BAA)

• Cultural Algorithm (CA)

• other

A more complete list of the above-mentioned algorithms can be found in the following

literature sources (Commons Creative - Optimization Algortihms, 2011), (Commons

Creative - Evolutionary Algortihms, 2011) and (Swarm Intelligence and Bio-Inspired

Computation, 2013, p. 28).

The sections above will be complemented with the literature review of research articles,

which relates especially to PSO variants, which embeds the self-optimization aspect. For

the moment, self-optimization is not limited to the parameter level, it could also be on the

algorithm equation adaption aspect or the flexibile PSO variants invocation in a hybrid

algorithm schema. The major intent is not to explain in detail the above-mentioned

algorithms, but more to discuss the basic ideas. In addition, it is elementary to understand

what elements in these algorithms could relate to the concept of self-optimization.

Former social and cognitive theories is also a major source of information for the PhD topic,

because it can be the foundation on how the PSO particles relate to each other and what

are interesting models of learning and cooperation strategies to apply it to MSAPSO.

The following sections will on one hand, set the foundation for the MSAPSO in terms of

how the Standard Particle Swarm Optimization work and on the other hand focus on

differentiating aspects of other related PSO variants. Furthermore, the literature review will

25

highlight and describe important self-optimization concepts from other biologically

inspired algorithms as well as relevant social and cognitive theories. All parts of the review

should then feed into the core idea of the PhD proposal.

2.1 Traditional research branches PSO

2.1.1 Base Model - Standard Particle Swarm Algorithm (SPSO)

The standard version of the PSO algorithm (SPSO) invented by Kennedy, Eberhardt and

Shi in 1995 is a population based optimization algorithm described with all aspects in

(James Kennedy, 2001, p. 287). In an iterative way, the algorithm tries to improve initial

candidate solution with respect to a given measure of quality. A candidate solution equals

a so-called particle. The collection of particles forms the swarm, which moves throughout

the search space due to a certain mathematical movement equation. The particles itself do

have relationships to other particles in so-called neighborhood topologies. These

neighborhoods can be of various forms such as circles, partial-mesh, full-mesh or other

connection forms. When updating each individual particle position, it is influenced by the

local best position if neighboring particles are “fitter”, but at the same time each particles

position is updated with the “effect” of the global best position of the entire swarm. This

represents the social and cognitive behavior of the particle swarm. One key source of

innovative thinking for the PSO was the Adaptive Culture Model (ACM) which rely on the

following basic principles:

26

• Evaluate - Rate something as positive or negative, attractive or repulsive.

Evaluation is the prerequisite for an organism to “learn”, where learning in this

context: is a change that enables an organism to actually better rate in average

(evaluate) its environment.

• Compare - Based on Festinger’s social comparison theory the principle comparison

appeals to others as a kind of a motivation to learn and change the own behavior

(Festinger, 1954, pp. 1-16). In fact, in ACM and PSO the individual compares to

its neighbors and the global best on the critical measure and imitate only those

which are superior to the own performance.

• Imitate - While monkey see, monkey do. In fact, this is not the same than learning

through try and error. It is instead learning by direct observation or observational

learning originally described in Bandura’s social cognitive theory

(Bandura, 1986, p. 21). The difference is that someone can learn, even he has not

seen the specific behavior before.

Overtime this method(s) converges each particle to a global optimum in the search space.

One key execution principle, which embeds the basic concept of the algorithm, stems from

the fact that it will switch between two modes of operation.

• Exploration – evenly distributed global search in the appropriate dimensions of the

optimization problem to cover a broad range of the problem search space.

• Exploitation – rapid convergence to a promising optimum. This exploitation phase

will occur locally around the Pbest positions, with the goal to find better solutions.

27

The formal notation of the Standard PSO in the real-numbered space denotes as following:

• x⃗ id – Position vector of a particle i in any relevant dimension d

• φ1, φ2 – random numbers from a chosen probability distribution

• c1, c2 – cognitive and social weighting factor, which describe trust into

individual and group behavior

• 𝓌 – inertia weight – preservation of previous velocity of particle i

• ∆x⃗⃗⃗⃗ id or v⃗ id – Change of a particle position in any relevant dimension d or

simply velocity of a particle. Velocity is a vector of numbers that adds to the

position coordinates in order to move the particle from one-step in time to

another step-in time.

• x⃗ i (t) = x⃗ i (t − 1) + v⃗ i(t) – How to actually search the “Search Space” via

particle position update equation, which is influenced by the appropriate

underlying problem benchmark and the randomization of the particles position.

• P⃗⃗ i – Individual best position of a particle i

• P⃗⃗ g – Global best position of a particle found so far by the entire particle swarm

The PSO algorithm samples the “Search Space” by modifying the velocity term. A

structure of the neighborhood of the particles influences again the search process and has

impact to the individual position. In general, the “direction” of movement is a function of

movement of the current position and the velocity update, the location of the individual’s

previous best and the best position found globally.

28

Furthermore, the combined “change” is defined as a function of the difference between the

individual’s best position and the current position (cognitive portion) as well as the

difference of the global best position (social portion) and the current position.

The following things conclusively change during the execution of the PSO algorithm:

• Particles velocity:

𝑣 𝑖 (𝑡) = 𝓌𝑣 𝑖 (𝑡 − 1) + 𝑐1𝜑1 (�⃗� 𝑖 − 𝑥 𝑖(𝑡 − 1)) + 𝑐2𝜑2 (�⃗� 𝑔 − 𝑥 𝑖(𝑡 − 1))

Equation 1: SPSO – Particles velocity

• Particles position :

x⃗ i (t) = x⃗ i (t − 1) + v⃗ i(t)

Equation 2: SPSO – Particles position

Figure 4: Visualized PSO velocity and position update of particle i

29

This figure describes the particles velocity and position update for the following iteration.

It sums up three different tendencies (best own performance, best performance of all

neighbors and the velocity of the last iteration). Based on the PSO update formula as

described in Equation 1: SPSO – Particles velocity and Equation 2: SPSO – Particles

position, the new position of the particle i is then calculated.

• φ1,φ2 – are random numbers from a random distribution usually defined in the

interval [0,1] to randomize the PSO algorithm and make it a stochastic optimization

approach and process

• Weighted average of the two bests P⃗⃗ i P⃗⃗ g

(φ1 P⃗⃗ i +φ2 P⃗⃗ g)

φ1+φ2

Equation 3: SPSO – Weighted average position of the two bests

The effect of the weighted average is that the particles “cycles” or oscillates around this

point during the algorithmic run. The system has a tendency to explode when parameter

setting of SPSO are exceeded. Then oscillations of particle’s trajectories become wider and

wider unless a method is applied for dampening it. The method to do this is to introduce a

so-called velocity clamping.

• V-Max parameter to limit explosion for every individual particle i on each

dimension d.

If: Vid > Vmax then Vid = Vmax else if Vid < −Vmax then Vid = −Vmax

30

Equation 4: SPSO – Velocity clamping

In early phases of the Particle Swarm research one of the key issues was the empirical

determination of the PSO parameters so it fits to various problems. By adapting the

parameters, researchers were able to adapt the algorithm to the explored problems. This

was clearly an unpractical way of applying PSO to broader range problems. Therefore,

a new research direction was to minimize the tuning of parameters and the parameters itself,

such that it corresponds to more potential benchmark problems. In the following sections,

an approach is described, which shows the principles of parameter optimized PSO’s.

2.1.2 Parameter optimized PSO’s

These variants of PSO’s primarily deal with the optimization of parameter values itself

(manually, experimental, other), which are important to tune and let better perform the PSO

algorithm. In addition, the reduction of parameters is in scope. Furthermore, optimal

parameters combinations will have the potential to improve PSO convergence. This testing

can happen manually or with the help of e.g. Evolutionary Algorithms (EA’s). The PSO

depends in his standard version on the following factors:

• Cognitive factor c1 – believe in own search

• Social factor c2 – believe in aggregated search of others

• Inertia weight 𝓌 – how much speed to take from last iteration

31

Many PSO variants try to optimize the parameters so it fits to the actual optimization

problem. The main problem that exists is that the researchers manually or experimentally

adapts parameters to the optimization problems. Due to this approach, it is quite clear that

without a proper approach to do this automatically the PSO variants cannot get into the

direction of a universal algorithm. Secondly, because of this issue, researchers try to

minimize the needed parameters in their algorithmic logic with the purpose to optimize the

parameter settings and usage. The idea is the less parameters are needed the less manual or

experimental effort comes up to make the PSO variant performing. In the following

paragraphs, two examples from this PSO research branch are evaluated.

2.1.2.1 Unified Particle Optimization (UPSO)

UPSO is a parameter optimized PSO, which means that it minimizes the number of

parameters needed. The working principles are described by the authors as the inventors of

UPSO in (Parsopoulas & Vrahatis, 2010, p. 89). As in the SPSO the UPSO employs two

main phases during the iterations and while solving the optimization problem.

• Exploration (detection of the most promising regions of the search space)

• Exploitation (convergence of particles towards the best solutions)

The two phases can take place either once or successively during the execution of the

algorithm. For the transition between the two different modes, a so-called unification factor

controls the switch over between exploration and exploitation. Before the discussion is

made about the unification factor, there is a need to discuss certain characteristics of UPSO.

32

An important factor in UPSO as in other PSO variants is the neighborhood size. The two

subparts in PSO is neighborhood on Gbest (Global Best) and Lbest (Local Best).

• Gbest – the whole swarm is considered as a neighborhood of each particle

• Lbest – where neighborhoods are strictly smaller and local to an individual

particle

More specifically the global variant (Gbest) converges faster towards the overall best

solution than the local one (Lbest) in the most common neighborhood topologies.

Therefore, it is mostly favorable for its exploitation capabilities and characteristics.

On the other hand, the local variant has better exploration capabilities, since information

about the best position is gradually communicated to others. (Particles are gradually

attracted – this helps avoiding trapping early into suboptimal solutions).

Obviously, also the tradeoff between neighborhood topology and swarm size affects the

two different modes of exploration and exploitation, but there is no formal procedure from

the authors point of view to optimize it. The most common neighborhood configuration

consists of a ring applied to Gbest or Lbest. Under such configuration, the algorithm is

biased either towards exploration or towards exploitation, depending on the complexity or

“difficulty of the problem” 5 examined.

UPSO main idea was to combine the two-phase’s exploration and exploitation in one

generalized manner, such that a new scheme combines the two properties and minimizes

5 cf. LeClerc (2005). Particle Swarm Optimization. LAVOISIER. Chapter 1

33

the parameters. This unification of the exploration and exploitation in fact reduces the

number of parameters to configure and adapt.

In this context, the constriction factor 𝜒 of (LeClerc, 2005/2006, p. 223) for UPSO was

used to control the UPSO convergence behavior.

UPSO unification of global and local PSO defines itself as following, in addition to SPSO

definitions:

• N – denotes as the swarm size of the particle swarm

• Gij(t+1) – denotes as the global velocity update of the particle i in dimension j to

update particles position xi for the global PSO variant with constriction coefficient

𝜒

• pgj(t) – denotes as the best position in the neighborhood of xi for the global update

equation

• Lij(t+1) – denotes as the local velocity update of the particle i dimension j to

update particles position xi for the local PSO variant with constriction coefficient

𝜒

• pij(t) – denotes as the best position in the neighborhood of xi or global update

equation and local update equation

• u – denotes as unification factor [0,1] – with values between zero and one. In fact,

u attaches weight to either explorative or exploitation behavior of the algorithm

• i = 1, 2, …, N is denoted as the particle i

• j = 1, 2, …, n is denoted as the dimension j

34

The Global PSO variant in UPSO denotes finally as:

Gij(t+1) = 𝜒 [vij(t) +c1r1 (pij(t) –xij(t)) + c2r2(pgj(t) – xij(t)]

Equation 5: UPSO – Global PSO variant formula

The Local PSO variant is denoted as:

Lij(t+1) = 𝜒 [vij(t) +c1r1 (pij(t) –xij(t)) + c2r2(plj(t) – xij(t)]

Equation 6: UPSO – Local PSO variant formula

The Unified Particle Swarm (UPSO) then denotes as:

vij(t+1) = 𝑢 Gij(t+1) + (1- 𝑢) Lij(t+1)

Equation 7: UPSO – Unified Velocity Update of the particle

xij (t+1) = xij(t) + vij(t+1)

Equation 8: UPSO – Unified Position Update of the particle

Global PSO (𝑢 = 1) and Local PSO (𝑢 = 0) are special cases of the UPSO. All other

intermediate values define variants of the UPSO, which actually combines the two search

directions.

35

Evidently, lower values of u correspond to distributions biased towards the local best

position. Consequently, Lbest position dominates then in UPSO. Increasing u towards one

results in a shift to a more global best position equation and an expansion towards a global

search.

Thus, u can control the expansion of new positions for each particle – in fact controlling

the exploration/exploitation properties.

In general, when 𝑢 < 0.5 the local search direction is dominant, hence the algorithm is

mostly influenced by it. The opposite must hold for 𝑢 > 0.5.

There is an obvious dependency between UPSO swarm dynamics and the unification factor.

The unification factor controls the balance between exploitation and exploration.

• Small values of u favor the local algorithm resulting in better exploration

• Larger values of u favor the global algorithm promoting exploitation

• Values around u = 0.5 produces more balanced behavior of the algorithm.

However, such balanced behavior fails to take advantage of any special structure

of the objective function such as convexity, unimodality and others. In such cases

more extreme values such as zero or one may exhibit better performance

• Unification factor can be considered at swarm level or at particle level. In the first

case, particles have the same behavior for exploration/exploitation (aggregated

behavior). In the second case, each particle has its own special

exploration/exploitation tradeoff (behavior diversity).

36

Latest developments of UPSO show initial steps towards self-adaption for the unification

factor. Adaptive changes of u were developed with various update methods such as

• Linear Increase: unification factor is linearly increased from zero to one according

to the following formula at every iteration t:

u(t) =
t

Tmax

Equation 9: UPSO – Linear increase of unification factor

Which corresponds to a small and relatively slow transition from exploration to

exploitation

• Modular Increase: Unification factor is increased repeatedly from zero to one every

q iterations with the following formula:

u(t) =
t mod (q+1)

q

Equation 10: UPSO – Modular increase unification factor

• Exponential Increase: Unification factor is increased from zero to one exponentially

according to the following formula:

u(t) =
t log(2.0)

Tmax

Equation 11: UPSO – Exponentially increased unification factor

37

• Sigmoid Unification Factor: Another type of Unification Factor is the Sigmoid

Unification Factor, which works on a Swarm Level. The scheme for the sigmoid

transition from exploration into exploitation is the following:

u(t) = Fsig (t −
Tmax

20
, λ)

With

Fsig (x, λ) =
1

1 + exp (−λx)

Equation 12: UPSO – Sigmoid modulation of the unification factor

The form of the sigmoid transitions depends on the parameter λ, where lower values of λ

transition more smoothly than higher values, when changing from exploration into

exploitation.

This different scheme for manipulation of the unification factor results in various transition

models from exploration to exploitation during the iterations.

UPSO is a step to self-optimization of PSO, but it still embeds a couple problems. The first

one is that there are still underlying parameters such as c1, c2, χ which are still inflexible

from a parameter setting point of view. Although these parameters accumulate now in one

unification factor, it is still not sufficient, because it will not reduce the amount of

investigation for the underlying parameters to make them optimal with regard to the

investigated optimization problem. Secondly, the proposed adaption mechanism’s does not

embed a flexible logic, which fits to various optimization problems in order to switch

38

automatically over between exploration and exploitation. All adaption functions (linear,

sigmoid, and exponential) do assume a tendency, which might work in a couple of cases

but for sure be not optimal for a broad range of optimization problems as search spaces

within and between problem benchmarks can vary extremely.

2.1.2.2 Composite PSO (COMPSO)

The Composite PSO approach (COMPSO) is described in (Parsopoulas & Vrahatis, 2010,

p. 111). COMPSO is an application to PSO based on the Differential Evolution algorithm

(DE) introduced by Storn and Price (1997). The idea behind COMPSO is that the three

basic parameters of PSO (inertia weight, cognitive and social factor) probe the search space

such that the PSO will get optimal with regard to speed and stability of the algorithm.

This is achieved by defining a so-called three-dimensional individual, where the elements

of the individual’s vector are equal to the three basic PSO parameters. During every

iteration, a new swarm St is composed with the probing individual qm where

qm = { 𝓌𝑚, 𝑐1𝑚, 𝑐𝑚}. This parameter set applies then to the velocity update equation.

Subsequently over time, COMPSO tests the best particle xi with the actual best functional

value f(xi). The individual vector for every particle changes in every iteration using the

Differential Evolution algorithm, which executes the mutation of the individuals in every

iteration.

39

Although in this case, COMPSO uses the basic PSO parameters to probe the search space,

the randomization for the mutation of individuals still do not have a thought through logic

behind. COMPSO has a pure underlying evolutionary concept (DE). A concept of success

of a particle would be worthwhile to implement as an algorithmic logic rather than

randomly probing the parameter vector. An interesting effect to keep in mind is that

COMPSO always assigns larger values to c1 rather than c2. A mathematical understanding

of the embedded convergence behavior is not performed in order to better direct the random

mechanism of the probing method. Nevertheless, COMPSO shows a promising approach

which works on a lot of benchmark problems.

2.1.3 Information optimized PSO’s

As described in the introduction chapter, information optimized PSO’s general approach is

about gathering information from analytics, statistics, and information from other

algorithms or the search space in order to improve the classical PSO scheme. On one hand,

it is favorable to gather as much information as possible to make better exploration and

exploitation decisions. On the other hand, exactly this “collecting” of information

consumes a lot compute cycles. In fact, it is the tradeoff to find the right balance when

collecting supporting information for the optimization problem versus having a very good

performance during the algorithmic run. It very much relates to the No-Free-Lunch

theorem (NFL) referenced in (Wolpert, 1996), which says “…that for any algorithm any

40

elevated performance over one class of problems is exactly paid for in performance over

another class”6.

When this is translated into the information gathering aspect this would mean then,

independent how much information an algorithm gathers in average over all costs function

this algorithm will not be better than another algorithm not doing that. On the other site,

there is critic from a couple of researchers that in certain areas this is not true as the problem

area’s itself imply some structure whereas in NFL argumentation they claim the validity

over all problems which would not assume any underlying structure then. As a conclusion,

it is still an open debate when and how NFL applies. With regard to information based

PSO’s the prerequisite will be that there is some structure where information can be derived

from, so it is at least still possible that there would be an information optimized PSO that

could perform better on a large variety of problems compared to others. In the following

paragraph, again two examples are discussed, which shows the principle of information

gathering to improve the classical PSO.

2.1.3.1 Entropy-Based Memetic PSO (E-MPSO)

The basic concept of information theory and information entropy was originally introduced

by (Shannon, 1948). Shannon Information Entropy (SIE) is a measure of mess for E-MPSO

described in (Parsopoulas & Vrahatis, 2010, p. 105). The main application field of SIE in

general within optimization algorithms was consequently that of a diversity metric.

6 cf. Holpert (1996). No Free Lunch Theorems for Optimization.

http://www.no-free-lunch.org/WoMa96a.pdf.

41

The definition of E-MPSO is as following:

P – Population

K – Phenotype classes

Qk – Proportion of P occupied by K

Qs– User defined selection probability as a threshold

SIE – SIEt (P) = – ∑ Qk log Qkk representing the amount of chaos in the system

Small values of Qk correspond to high entropy, whereas high entropy indicates a higher

population diversity. In the context of the swarm S = {x1, x1, … , x1} of N particles and

population P = {p1, p2, … , pn}, which are the corresponding best positions, then at a given

iteration t, SIE in a particle context is defined as:

SIEt (P) = – ∑ Qi log Qi
N
i=1

Equation 13: E-MPSO – Entropy Measures of best positions with regard to particle i

Qk(t) =
f(pi(t))

– ∑ f(pi(t))
N
i=1

Equation 14: E-MPSO – Contribution of f(x) of best pos. of particle i to all best pos.

42

High Values of SIE indicate widely spread functional values of the best positions, while

small values show a narrow spread (similar functional values of best positions). SIE can be

used as an information so PSO can decide whether it goes for a wide spread search

(exploration) or for a narrow search or convergence behavior (exploitation).

It makes a lot of sense for PSO to gather such information to optimize the further logic and

decisions within PSO. The disadvantage will be that a lot of computation needs to be done

upfront in order to get to that decision point. For every particle, all best positions need to

be taken into consideration before the proportion can be calculated and finally the entropy

as a measure of particle diversity can be derived. In addition, another weakness is that the

proportion Qs needs to be set manually, so that the useful information gathered is bought

via another manual parameter which needs to be tuned empirically.

2.1.3.2 Niching Particle Swarm optimization (NPSO)

Niching PSO described in (Parsopoulas & Vrahatis, 2010, p. 119) is an approach, originally

suggested by (Brits, Engelbrecht, & van den Bergh, 2002). NPSO focuses on the so-called

“cognitive only model” at the beginning. In that regard initialization of the NPSO plays a

central role, because this model assumes independence for the individual particle i while

searching locally or individually. NPSO uses a special set of random numbers for that

(Faure random numbers).

The NPSO algorithm searches for so-called niches in the swarm. The information, which

provides that, is the measurement of the variance of the functional value of a particle for

43

several iterations. If it falls under a certain value (threshold), the algorithm creates a new

sub-swarm with this particle and his closest neighbor. The intent is to close the “niche”.

Although the niching information is useful for both convergence as well as diversity of the

swarm, there is still the need to define a manual threshold, which is set by the researcher.

Again, this is an example for the tradeoff between collecting sufficient information to make

decisions in PSO versus to introduce new complexity because the information gathered

needs new parameters (in this case a threshold parameter).

2.1.4 Operator optimized PSO’s

The class of operator optimized PSO’s try to improve the update equations of the PSO

algorithm itself. The consideration here is that differently structured search spaces of

optimization problems should get a representation in how particles surf across these

structures. In a fuzzy structure with slight variations with regard to functional values

(“many multimodal” problems), probably a uniform and broad flight and speed of the

respective particles is more appropriate.

In contrast, in a clear defined structure optimization problem (unimodal problems) with a

strong ascending or descending surface the PSO do not have to search broadly but rather

very fast because of the nature of the underlying problem surface. In addition, in dynamic

optimization problems there may be the need to react fast and quickly according to the

speed and direction of the particles and the swarm.

44

The next two PSO variants will give an example how to solve these challenges with

changes in the operator equation of the PSO itself. Two ways seem to be appropriate:

o Individual Enhancements to the particles update equation

o Automatic Enhancement to the particles update equations

2.1.4.1 Comprehensive Learning Particle Swarm optimization (CLPSO)

The CLPSO algorithm describes itself in (Liang & et al., 2006). A major issue what CLPSO

addresses is the solution finding efficiency for multimodal problems. The algorithm has

the following changed velocity update equation compared to the original PSO. It is

therefore an example for an operator optimized PSO.

vi
d = 𝓌 vi

d + c∗φi
d(pbestfi(d) − xi

d) ⩝ d = {1...D}

Equation 15: CLPSO – Changed velocity update equation

with

𝑓𝑖(𝑑) = {𝑓𝑖(1), 𝑓𝑖(2), … , 𝑓𝑖(𝐷) } – defines which particles ’Pbests’ with regard to the

dimension d the particle i should follow. In this case, the flight is not the classical way,

which goes iteration by iteration, but it is rather a method where the particle i parses all

dimensions with the PSO algorithm. All dimensions the particle is associated with,

potentially determine the overall fitness of a particle. This is a characteristic, which the

algorithm can use to find excellent solutions. First, a learning probability defines whether

45

something is to learn or not. In addition, as long there is something to learn, the algorithm

generates two functional values within the same dimension for the same particle normed

to the population size ps. These functional values compare to each other and the largest

value is stored in a variable. Then the particle “surfs” on to his next dimension to do the

same in the next dimension and so on. All particles will search for their optimum in the

same way and subsequently will find the global optimum.

The dimensional flight of the particle does show his advantages in multimodal functions

and show a good diversity of the swarm. However, on the other site in high dimensional

problems with simpler functions this way of updating the velocity is suboptimal. The main

reason for this is that CLPSO do have a larger search range than SPSO. The more complex

the problem is (higher dimensions, complex surface) the better CLPSO seems to work. The

flowchart is referenced from Liang et al. (2006, p. 283) and the particles’ dimension surfing

is there described as following:

46

Figure 5: CLPSO – dimension surfing based velocity updating of a particle

2.1.4.2 Escape Velocity Particle Swarm optimization (EVPSO)

The EVPSO algorithm is initially described by a Chinese research team from Wang et al.

(2006) and it shows another example of operator optimized PSO’s. The major intend of

the algorithm is to avoid trapping into local optima. It uses the regular velocity update

formula Equation 1: SPSO – Particles velocity and removes the velocity update of the last

iteration with the so-called escape velocity:

47

𝑣𝑒 = {

𝑣𝑖,𝑗(𝑡) , |𝑣𝑖,𝑗(𝑡)| > 𝑒𝑐

 𝑟𝑗 ⨯ 𝑣𝑖,𝑗(𝑡) | ⍴ |𝑣𝑖,𝑗(𝑡)| < 𝑒𝑐

Equation 16: EVPSO – Escape Velocity term for particle

In this context, rj are random numbers from a uniform distribution within the interval of

[-1, 1], ⍴ is a scaling factor that defines a region relevant for the escape velocity and ec is

a configured parameter which actually decides when the escape case happens (ec < 1). In

the situation, when many particles are stuck within a local optimum, the stochastic escape

velocity then actually increases the likelihood to create a velocity larger than the basin

diameter where the particles are potentially stuck in. Performance of EVPSO directly

correlates with the parameters and ec and ⍴. A large value of ec shortens the time to escape

which is equal to again perform a global search. A low value leads exactly to the opposite.

For the escape case of the particle i ⍴ need to have a large value, which actually reduces

the escape domain for the particle (particle gets faster out of the basin). Whereas this

parameter is optimal for the escape case of the algorithm (large ec, large ⍴), during the

regular run these setting can be very suboptimal.

For the desired behavior of a balanced exploration-exploitation, the algorithm works in two

phases, at the first stage, ec is set at a large value, and ⍴ is assigned a small value (broad

exploration to look for good minima), at the last stage, ec is set at a small value, and ⍴ is

set at a large value (fine granular search).

48

With these settings the particles make very large movements at the beginning and scan the

whole solution space for candidate solutions in the early stage, and they perform a fine

grain search in the final stage.

The critic to this approach is the following. Although it might be possible to escape from

local minima in early stages of the algorithmic search, this capability “is bought” by the

need for manual tuning of ec, ⍴. It is very difficult to find good criteria on how to do the

parameter settings automatically when the variety of benchmark problems are considered.

Also in dynamic problems where the problem surface changes over time, it is hard to

imagine that this approach leads to good results without tuning these parameters repeatedly.

49

2.2 Self-Optimization as new PSO research branch

2.2.1 Principles of Self-Organizing Systems

In Haken (1983, p. 191) the author describes “Self-Organization” in the context of a group

of workers. A process can be seen as self-organized when:

 “There are no external orders given, but the workers work together by some kind of mutual

understanding each one doing his job so as to produce a product”7.

Self-organization in general is a process where some form of global coordination appears

out of the local interactions among agents in an initially chaotic system. This process is

spontaneous and emergent. There is no master that controls the system itself neither from

the inside view nor from the external view.

State changes in the self-organizing system are often triggered by random fluctuations that

are amplified by positive feedback. The resulting organization has the characteristic of

decentralization among all the elements in the system. As such, it is typically

very robust and able to self-repair. Chaos theory discuss the “self-repair capability” as a

state of predictability in an ocean of chaos.

7 cf. Haken (1983). Synergetics An Introduction Nonequilibrium Phase Transitions and Self-Organisation.

Berlin Heidelberg: Springer Verlag., page 191

http://en.wikipedia.org/wiki/Statistical_fluctuations
http://en.wikipedia.org/wiki/Positive_feedback
http://en.wikipedia.org/wiki/Robust_(disambiguation)
http://en.wikipedia.org/wiki/Chaos_theory

50

Furthermore, in Ashby (1962, pp. 255-278) the author describes that:

 “Any deterministic dynamic system will automatically evolve towards a state of

equilibrium (or in more modern terminology, an attractor). As such it will leave behind all

non-attractor states (the attractor's basin), and thus select the best attractor out of all others.

Once there, the further evolution of the system is constrained to remain in this condition.

This constraint on the system as a whole implies a form of mutual dependency or

coordination between its subsystems or components. In Ashby's terms, each subsystem has

adapted to the environment formed by all other subsystems.”

In the area of biological systems, examples from bird flocking and other natural inspired

systems such as bee and ant colonies also show the relation to self-organizing behavior.

Particle Swarm Optimization is also an example for a self-organizing system, especially

because of the following definition coming from Camazaine et al. (2001, p. 8).

“In biological systems, self-organization is a process in which pattern at the global level of

a system emerges solely from numerous interactions among the lower-level components

of the system. Moreover, the rules specifying interactions among the system's components

are executed using only local information, without reference to the global pattern” 8

It is obvious that the particles itself with their interactions can represent the lower level in

the system. Also, the rules how particles interact (neighborhood structure) and how they

exchange information corresponds with this definition. In addition, randomness and

8 cf. Camazaine et al. (2001). Self-Organization in Biological Systems. Princeton University Press, page 8

http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Attractor
http://en.wikipedia.org/wiki/Attractor

51

positive amplification is also part of PSO. Think about, when a particle becomes Gbest:

then others are attracted, but also other may attract the actual best individual particle again

in the next iteration. Over all iterations, the portion of amplification coming from the Gbest

location which finds his way into the system and in other iterations, the system gives it

back as portion of amplification back to the individual particle again (self-amplification).

The last prove is, whether there is an attractor element in PSO and yes, the attractor is the

actual Gbest Position of all particles, so this look similar like the above described

equilibrium state in the system.

In the science of Self-Organization from (Haken, 1983), further hints can be found that

PSO by its nature qualifies as a self-organizing system. The theory describes the Brownian

particle movement (unpredictable model with emergent orders in the system), which has

strong similarities to the PSO Model. PSO, which has randomness elements by nature, but

with social and cognitive influenced trajectories of the particles also wants to achieve an

higher order attractor state (convergence) out of the system (emergence).

It is important to understand what the “inbuilt” capabilities of PSO are, in order to design

better PSO algorithms. Based on the above discussion, PSO shall have the characteristic of

self-organization by using self-adaptive parameter settings of social, cognition and inertia

weight. The parametric rules on a lower level should also attract the self-healing

capabilities of the swarm in an emergent way when environmental conditions changes (e.g.

complex problem surfaces, dynamic optimization problems, etc.).

52

2.2.2 Self-Optimizing PSO’s

In this section, several PSO variants are discussed, which focuses on the class of self-

adaption approaches and related concepts. In this context, the literature review focuses in

the first part on inherent self-adaption capabilities, such as automatic parameter selection

and variation. In the second part, the automated selection of several PSO variants within

the algorithmic convergence is discussed.

In order to understand other self-adaption algorithms in biological optimization such as

Bee Algorithms, Evolutionary Programming, Genetic Programming a representative

feature analysis is performed to extract relevant ideas from other self-optimizing nature

inspired approaches.

In most of the variants of PSO, the parameter definition was a manual and static process.

For example, c1φ1 and c2φ2 parameters were “tuned” before the optimization actually

has started. In addition, the number of particles during an optimum search was selected a

as a constant number. Other examples of static setting are the way the particles are

interconnected. Often a ring topology between particles is the default choice as a

“neighboring topology”.

In early versions of PSO, this seemed to be sufficient to experiment manually with the

parameter selection. Later PSO researchers then started to vary parameter during the

iterative search process, based on above-mentioned parameters but not limited to.

53

2.2.2.1 Dynamic Variation of PSO topology

The main objective of MSAPSO is to act as a kind of a universal algorithm with “good to

very good performance” characteristics. The algorithm shall work on a very large set of

different kind of benchmark problems without having the need to think about the parameter

settings anymore.

Although performance is important, the MSAPSO will not focus on the last percentage of

convergence tuning. Therefore, it is essential to find a communication structure, which

performs well on many optimization problems. In Kennedy and Mendes (2002, p. 1672),

the authors theorize that:

“Populations with fewer connections might perform better on highly multimodal problems,

while highly interconnected populations would be better for unimodal problems”.

The study shows in different tests that greater connectivity speeds up convergence,

nevertheless, it does not tend to improve the population’s ability to discover global optima.

In multimodal problems, faster convergence is not necessarily a good idea, thus fewer

neighbor connections would be better for complex multi-modal problems. In unimodal

problems, the opposite is valid.

The statement above shows that the dynamic variation of PSO topology can be a nice

research area from a performance tuning perspective, but as remarked it is not in scope for

this dissertation.

54

Instead, the MSAPSO needs a topology structure, which performs on many problems. The

recommended PSO topology structure also confirmed in (Olsson A. e., 2011, p. 228) is a

“von Neumann Structure”. Therefore, this is our choice for the communication structure

for MSAPSO.

Figure 6: PSO optimal particle’s neighborhood structure

2.2.2.2 Adaptive PSO (APSO)

An early self-adaption variant of PSO named “Adaptive Particle Swarm Optimization

(APSO) using information about Global Best” describes the aspect of dynamic tuning of

parameters (Teruyoshi Yamaguchi, 2007). Due to the wide ranges of applicability to

problems (unimodal, polymodal, in differentiability, etc.) the parameters of course on one

hand adapts to these specific problems on the other hand, it would have been useful to

automatically tune and adapt them to the optimization problems investigated. In the past,

tuning of parameters was mostly based on empiric analytics. Later on, scheduled and

planned changes of parameters during the iterations of PSO optimization was another

55

approach researchers looked into. Autonomous rules of parameter adaption were not really

in scope of former PSO research. In 2007, the inventors of Adaptive Particle Swarm

Optimization worked out an algorithm, which uses information from “Gbest”, in order to

tune parameters during the search process dynamically. The authors first give a definition

of adaptability of optimization algorithms in general and describe this as the

“self-adjustment of the internal structure of the algorithm in accordance to rules, so it can

perform better than before”.

The parameter tuning options they outlined were:

• Fixed parameter setting: Parameter is set before the algorithm execution

• Scheduled tuning rule: A predefined rule is used for the parameter tuning

• Iterative tuning rule: Parameter tuning is performed on one or more previously

matched conditions

• Adaptive tuning rule: Parameter tuning is based on a “static search policy” obtained

from information which is outside of the internal algorithm

• Autonomous tuning rule: Parameter are optimized based on a “dynamic search

policy” with the intent to improve the actual search policy in use, based on obtained

information which is available inside the algorithm

APSO algorithm describes the concept of the “tuning capacity of the algorithm”.

It examines how the adaption of theses parameters relates to the success of the search. In

the existent case, the parameters that are tuned on a particle level are c1 and c2 (cognition

and social weighting factors) and APSO evaluates their correlation to the update frequency

56

of Gbest. It is assumed that the more often Gbest is updated the more successful the search

will be.

The measurement of the success of the algorithm with regard to the parameter tuning is

based on the following criteria’s due to the authors:

• Gbest update probability

• Gbest update frequency

• Gbest update frequency & Gbest improvements

Where GBest improvements is the difference between the best-determined functional value

of Gbest at time t (iteration) minus the functional value of Gbest at time t = 0.

The prognosis of APSO is, if there is a relationship between parameter tuning (c1, c2) and

GBest “success” that this is useful for adaptively controlling the PSO algorithm in order to

perform a stable and fast convergence.

Within some numerical experiment, they analyzed the following:

• c1 relation to the update frequency of Gbest

• c2 relation to the update frequency of Gbest

• Gbest update frequency relation to improvements of Gbest

57

As a result, and based on different benchmark functions applied, there is a certain value

range of c1, c2 respectively where there is a higher update frequency of GBest. Moreover,

based on the nature of the tested benchmark problems there was no significant value

difference of c1, c2. The authors furthermore describe also the significant correlation of

the update frequency of Gbest and the improvements of Gbest, where this seems to be an

obvious relation.

All the above indicate that an adaptive search algorithm makes sense that uses the principle

of parameter tuning and update frequency of Gbest. The self-improvement of the APSO

algorithm implies the following principle:

“A particle that holds a c1, c2 parameter with a lower update frequency with regard to

Gbest, very likely will not contribute to the success of the search”.

The improvement equations and the definitions for the parameters are as following:

• k – iteration step

• αi, i = {1, 2, . . . , m}, – the step width of the tunable parameter

• Tmax – total number of iterations when calculating c1, c2 parameters

• c1i, i = {1, 2, . . . , m}, and c2i, 𝑖 = {1, 2, . . . , m},, – social tuning for each Particle

• cbest1 – best cognitive parameter holds by particle i

• cbest2 – best social parameter holds by particle i

• improvement equation for c1 of particle i at iteration k

58

𝑐1𝑖
𝑘+1 = 𝑐1𝑖

𝑘 + 𝛼𝑖
𝑘 (𝑐𝑏𝑒𝑠𝑡1𝑘 – 𝑐1𝑖

𝑘), 𝑖 = {1, 2, . . . , m}

Equation 17: APSO – Cognitive factor adaption

• improvement equation for c2 of particle i at iteration k

𝑐2𝑖
𝑘+1 = 𝑐2𝑖

𝑘 + 𝛼𝑖
𝑘 (𝑐𝑏𝑒𝑠𝑡2𝑘 – 𝑐2𝑖

𝑘), 𝑖 = {1, 2, . . . , m}

Equation 18: APSO – Social factor adaption in APSO

• step width when calculating c1, c2

𝛼𝑖
𝑘 = {

0,
1

𝑇𝑚𝑎𝑥

Equation 19: APSO – Step width when calculating c1, c2

After initialization of the algorithm c1, c2 is continuously determined due to the above

equations with regard to the cbest1, cbest2 values. The c1, c2 values are then put into the

velocity and position update equations for the next iteration for each particle. Finally, the

algorithm checks, whether there is a functional value improvement in iteration k + 1 with

the new adapted c1, c2 values compared to the actual personal best functional value at

iteration k of particle i. In a last step, the best personal value of all particles is searched and

then set to the global best value at iteration k + 1 . The algorithm stops when

k = Tmax .

59

The authors confirmed that the continuous parameter adaption of c1, c2 maintained good

search capabilities and therefore have a good robustness in a wide range of problems.

2.2.2.3 Adaptive Learning PSO (ALPSO I)

Researchers from the University of Leicester introduced one of the first entry points into

self-adaption in 2009. In their research paper they describe the principles of the so-called

ALPSO I algorithm (Chang Li, 2009). The learning strategy they outline separates the

algorithm into four essential parts, which gathers information coming from

a. The own historical best position (Pbest)

b. The closest neighbor (Pbest from closest neighbor)

c. A random position around itself

d. The global best one (Gbest)

The basic learning principle in ALPSO is based upon, that each particle is able to change

their individual search behavior and strategy. ALPSO I realize four operators, which do

have different characteristics in different search spaces. Based on a selection ratio the

operators are in use during the search process. For the learning of the Gbest particle only

information from other improved particles is used.

In order to keep diversity in ALPSO I, the cognitive (Lbest) part separates from the social

(Gbest) part. Nevertheless, the point where the switch over between learning from Lbest

or GBest has to happen is still a hard problem to solve.

60

According to the four different information sources ALPSO I do have four different update

equations or operators, which reflect the different learning strategies available to a particle.

ALPSO describes the learning strategies as follows:

Definitions:

xi
d – Position of particle i in dimension d

vi
d – Velocity of particle i in dimension d

ri
d – Random position of particle i in dimension d (around itself)

 pbesti
d – Personal best position of particle i in dimension d

 pbesti−nearest
d – Personal best position of closest neighbor to particle i in dimension d

𝓌 – Inertia weight

ɳ – Acceleration constant

vavg
d – Average velocity of all particles in dimension d

N(0,1) – Random number drawn from a normal distribution (mean = 0, variance = 1)

The four Update Operators:

vi
d = 𝓌vi

d + ɳri
d (pbesti

d - xi
d)

Equation 20: ALPSO I – Velocity update of particle i of the own (best) position

61

vi
d = 𝓌vi

d + ɳri
d (pbesti−nearest

d - xi
d)

Equation 21: ALPSO I – Velocity update of particle i related to Pbest closest neighbor

xi
d = xi

d + vavg
d N(0,1)

Equation 22: ALPSO I – Position of particle i

vi
d = 𝓌vi

d + ɳri
d (gbestd - xi

d)

Equation 23: ALPSO I – Velocity update of particle i related to Gbest position

The authors describe that based on the four operator equations, the particles do have a

chance to behave in four different ways and therefore increase the probability of a particle

i to move to a more promising position. As the particle still do not know how the region

around him looks like, the researchers introduce a learning concept on a particle level such

that the particle is able to apply the right operator equation.

62

The learning is dependent on two factors:

• A so-called progress value of the appropriate operator equation at iteration t. This

value memorizes how many particles and child particles were produced by which

operator equation in the past

• A reward value which is a significance factor per operator equation, which

memorizes the relative importance of the operator equation at time t. Reward is the

increase in relative progress compared to others

The selection ratio (selection probability) of the operator equation for the next iteration

denotes then as following:

“A reward value of the individual operator equation in relation to the overall reward”.

The critics stem from the fact that there is no concept of taking dependency between

subsequent iterations into consideration, as there is a certain likelihood and tendency for

an operator equation to be used by a particle. As it is designed in ALPSO I, it looks like

that they assume simply independence between the iterations. Also, it is still not understood

how the convergence characteristics of this PSO variant looks like to better understand and

set optimal parameter settings of the different update equation.

63

2.2.2.4 Adaptive Learning PSO (ALPSO II)

A further improved version of ALPSO I can be found in (Chang & Yang, 2010). The

authors mention that they were able to improve the performance of ALPSO I in ALPSO II

on multimodal problems. The major improvements are on the following topics:

• Adding particle’s status monitoring mechanism

• Controlling the number of particles

• Learn from the global best position Gbest, and the replacement of two of the four

learning operators used in ALPSO I

They claim in their tests that ALPSO II outperforms ALPSO I, but there was no study done

which compares the improvement to other Non-PSO algorithms, so it cannot be evaluated

if it is an improvement without tradeoffs in other areas.

2.2.2.5 Self-adaptive learning based PSO (SLPSO I)

An initial version of the “Self-adaptive & Learning based PSO” (SLSPO I) (Yu Wang,

2010) was described from a research team at University Anhui China. The new approach

describes the principles of SLPSO in his first version. It leverages four simultaneous search

strategies. An underlying probability model rates the success rate of the applied search

strategies such that, it determines the strategy in time, which strategy is likely the best to

update a particle velocity in the search space. In an iterative way and based on a learning

rate the execution probabilities of the four-update mechanism are updated. The algorithm

embeds also the history of previous optimization iterations in the update mechanism. The

64

basic idea described in the paper, is that the algorithm combines multiple particle update

strategies at different stages of the PSO execution.

The characteristics of the different update strategies summarizes as following:

• Update strategy one – CLPSO (Comprehensive Learning PSO): which has very

good exploration capabilities especially when handling multimodal problems, but

has low success within unimodal problems

• Update strategy two – PSO-CL-Pbest (PSO-Comprehensive Learning-Pbest) which

has worse exploration ability than one, but do have faster convergence behavior

than update strategy one.

• Update strategy three – DbV (Difference based velocity update strategy), which

uses differential information between the particles. The algorithm is helpful in

rotated and unimodal problems.

• Update strategy four – EbV (Estimation based velocity update), which shows very

good performance and convergence in unimodal problems.

Initially in SLPSO, there is an assignment of an execution probability. Because there are

four strategies to select from it is set to
1

4
 at the beginning: The algorithm denotes the

following definitions.

• proSTRi – Probability of strategy i to be selected for the particle velocity update,

where i = {1...4}

65

• proSTR’j – Temporal execution probability of strategies j which generates the

particle

• proSTRj – Weighted execution probability of strategies j which generates the

particle

• Gs – Fixed number of generations

• α – Learning rate of the algorithm, used to control the update proportion

• ps – Population size of particles

• Si – Accumulator for strategy i

• Sj – Accumulator for particle j

• Wj – Assigned weight to the particle j

During each iteration, particles are “ordered” based on their fitness values and then each

particle j is assigned a weight (logarithmic weighted average) with the formula:

Wj =
log(ps−j+1)

log(1)+ ..+ log (ps)

where,

 j = [1 . . ps]

Equation 24: SLPSO I – Assigned logarithmic weight to particle

As a next step, the weight is added to so-called accumulators Sj . After a number of

66

generation Gs the SLPSO algorithm does the following updates on the execution

probabilities of strategy j, which makes the particle(s) at a certain iteration.

proSTR’j = (1 − α) proSTRj + α
Sj

Gs

Equation 25: SLPSO I – Temporal execution probability of strategy j

proSTRj =
proSTR’j

 (proSTR’1+proSTR’2+proSTR’3+proSTR’4)

Equation 26: SLPSO I – Relative execution probability of strategy j

The goal of the algorithm is to find the strategy j that makes the fitness of all particles. The

strategy is selected based on an accumulator value Sj in a certain iteration.

Sj = Sj + Wj

Equation 27: SLPSO I – Accumulated importance of strategy j over all particles

The higher the accumulator, which expresses the most successful strategy j, the more likely

is the relevance of the strategy j.

SLPSO looks from his core idea very similar as ALPSO I in the original version. Although

executed in a different way it looks like a related concept to ALPSO I and II. Also in this

67

concept, the strategy limits at the end of the day to the four proposed update strategies.

The behavior of particles restricts to that model and they cannot choose alternate behavioral

models. In addition, there is not really a way to guess how the area around the individual

particle looks like. Multimodal and unimodal regions can change quickly in a problem so

the learning may simply take too long to make good just-in-time decisions for the particle.

2.2.2.6 Self-Learning PSO for Global Optimization (SLSPO II)

In (Changhe Li, 2012) the Self-Learning Swarm Optimizer for Global Optimization

(SLPSO II) describes a new and evolved aspect with regard to self-adaption of particle

swarms, which is the switch of PSO operators to adapt to the structure of the problem

surface. One of the motivations is to deal with very complex multimodal functions, which

do have a significant number of local minima’s. In the today’s and past invented PSO

approaches there has been just one single learning behavior of a swarm or a particle, which

ignore the fact, that a complex problem to solve may have various shapes and problem

surface structures embedded. It seems to be obvious that it should be possible for a particle

or a swarm to encourage varying learning strategies.

The SLPSO II described here, is a natural evolution of the Advanced Learning Particle

Swarm Optimization (ALPSO I/II). The basic concept of ALPSO and SLPSO is that both

can select between four learning strategies, where a particle can use those as a source to

68

optimize the exploration and exploitation phase. SLPSO introduces five new features9

compared to ALPSO, with the purpose to improve convergence performance and stability.

The basic idea behind SLPSO II stems from the fact, that when a particle learns from Gbest

and Lbest model at the same time, that this may combine disadvantages from both models

(Gbest – early stuck in local minima, Lbest – slower convergence). Remember that Gbest

and Lbest differ from each other such that Gbest (social part) interconnects every particle

with every other particle in a swarm, while Lbest (cognitive part) just have a few

neighborhoods. One idea to avoid the above problem of combining disadvantages is

actually to separate the cognitive (individual) from the social (group) learning. By that, the

individual particles could focus on the exploitation (Gbest) component or exploration

(Lbest) component in a certain iteration of the search or vice versa. The problem, which

appears in SLPSO II, is the choice of the right timing to select one or the other search

strategy and the right moment for it. Based on the “division of labor” idea the particles can

play different roles within the search process:

• Converging to a global best particle

• Exploiting the personal best position

• Exploring new promising areas

• Jumping out of local optima

9 cf, Changhe et al. (2012, June). A self-Learning Particle Swarm Optimizer for Global Optimization

Problems (SLPSO). IEEE Transaction on Systems, Man and Cybernetics - Part B: Cybernetics, Vol 42,

No. 3, page 1

69

The four strategies are implemented as varying operators, and each particle has then the

option to deal independently with different parts of the problem surface.

The work in SLPSO II also describes an Adaptive Learning Mechanism, which makes sure

that a particle uses the best operator in time during the search process. The adaption

mechanism itself founds on a success rate of each individual operator. The success rate

assumes that a “successful” operator may also be successful in the future. The success rate

of the operator itself is expressed in a so-called “selection ratio”. The selection ratio is

composed of a combination of:

• Current success ratio

• Offspring fitness

• Previous selection ratio

The higher the selection ratio, the more likely is the usage of the operator by the particle.

Over time, the particle gradually uses the best operator. Although SLPSO II is an

improvement with regard to selection of operator equations, it contains no concept of future

selection ratios, because if an operator equation is at a low success level it might make

sense to take the appropriate operation out of the selection process. The general doubt that

can be raised is that success on an operator level is not a scaling self-adaption method,

rather than using a success metric of particle on an individual level. As there are probably

infinite ways to create operators, it is a strong assumption that just four update strategies

can represent a broad range of search needs for a broad range of problems.

70

2.2.3 Self-Optimization in alternate bio-inspired algorithm’s

PSO is not the only research area with regard to swarm algorithms. In the meantime, many

others swarm and bio-inspired approaches evolved such as:

• Artificial Bee Colony Algorithm (ABCA)

• Artificial Ant Colony Algorithms (AACA)

• Memetic Firefly Algorithm FFA (MFFA)

• Glowworm Algorithm (GWA)

• Cuckoo Search Algorithm (CSA)

• Bat Artificial Algorithm (BAA)

• Cultural Algorithm (CA)

• Hunting Search Algorithm (HSA)

• Etc.

In general, these swarm algorithms mimic behavior of social animal groups and colonies

in order to apply them to complex optimization problems. The members of these groups

communicate based on simple rules either directly or indirectly with each other. This

interaction triggers emergent patterns in the system, which makes the colony to better react

to the environment and therefore perform better on problems apparent to the group.

Out of these algorithms, two of them as representatives of other “bio-inspired algorithms”

are more closely evaluated. The intent is not only to understand their algorithmic approach,

but also what kind of approaches they have with regard to self-adaption or self-organization

in their model compared to the PSO approach.

71

The selection of the investigated algorithms is done based on the self-adaption capabilities

of these bio-inspired algorithms, which means that they have just a few parameters to

define and that these parameters do have potential to be self-adaptive during the

algorithmic runtime.

2.2.3.1 BAT Artificial Algorithm (BAA)

BAA was originally created by (Yang, 2010). Bats uses sonar and echolocation to find prey

and avoid barriers. They do this by sending a very loud sound pulse at certain frequencies

and wavelength and then listen to the corresponding echo.

The BAT strategy can be theorized as follows:

• All bats use echolocation to determine the distance of objects. At the same time,

they are able to differentiate between objects (e.g. prey or obstacles)

• Bats randomly fly with velocity vi to position xi at a fixed frequency fmin. They are

able to adapt the wavelength λ and loudness A0 of the send pulses.

• Although loudness can vary significantly, it is assumed that loudness decreases

from large value A0 to a minimum value Amin.

The bat colony is set into the search room with an initial position xi and velocity vi (similar

to the PSO particles). Each bat is equal to a candidate solution

xi = {x1, x2, …, xn} of the optimization problem.

72

In addition, m design variables are defined with

{𝑥} = {𝑥1, 𝑥2, …, 𝑥𝑚} T and an objective function f(x).

At the same time the pulse rate ri, the loudness Ai and the frequency fi at xi is initialized.

New solutions at time step t are created due to the following update equations:

fi = fmin + (fmax − fmin)β

Equation 28: BAT Algorithm – Frequency update of bat at position xi

vi
t = vi

t−1 + (xi
t−1 − x∗)fi

Equation 29: BAT Algorithm – Velocity update of bat at iteration t+1

xi
t = xi

t−1 + vi
t

Equation 30: BAT Algorithm – Position update of bat at iteration t+1

β – is a random number from a uniform distribution [0,1], x∗ is the current best bat under

n bats. If a generated random number is > than pulse rate ri, then the algorithm looks for a

solution among the best solutions. Furthermore, the algorithm generates a local solution

around the best ones. In case a random generated number is > than the bats loudness Ai

and the functional value is smaller than the functional value of the actual best bat x∗ then

73

it is time to accept new solutions. Pulse rate i of the bat increases accordingly and the

loudness decreases according to a cooling mechanism. In order to find the new best bat, all

the best bats need to be ranked to find the new x∗.

With regard to self-adaption, the BAT algorithm categorizes as a self-adaptive

parameterization during the algorithmic runtime. The parameters adapted are the loudness

and the pulse rate of a bat, which then compares against generated random numbers. They

are a representation for exploitation and exploration when we talk in PSO terms. The

overall falling loudness when getting to optimal solutions looks similar like the inertia

weight factor which also cools down over time, indicating the exploitation phase, whereas

higher loudness is comparable with exploration state. The pulse rate instead is comparable

to the cognition factor in the PSO, which increases when an interesting place is found by a

particle. Overall there are a couple of similarities in the BAT algorithm compared to PSO,

the major difference lies in the concept of the multiple Gbest’s in the bat algorithm, whereas

in the standard PSO there is just one.

2.2.3.2 Memetic Firefly Algorithm (MFFA)

The second example is the Memetic Firefly Algorithm (MFFA). In Yang et al. (Swarm

Intelligence and Bio-Inspired Applications, 2013) the authors describe the criteria’s how

the firefly algorithm works. The major principle is that of a flashing light and the

appropriate light intensity IL. The light intensity shrinks when a firefly moves away from

source r according to the following relation:

IL ≈
1

r2

74

Equation 31: MFFA – Relation Light Intensity and distance r from source

The light intensity is a synonym of the fitness function of a candidate solution to a problem

to be optimized. So, it can be written such that, IL ≈ f(s), where s = S(x) is the candidate

solution.

The following characteristics must hold for the firefly algorithm:

• Fireflies are unisex

• Attractiveness β is proportional to the light intensity (relative measure from

beholders view)

• Light intensity is determined by the problem landscape (absolute emitted light)

The exact definition of light intensity is as follows:

IL(r) = ILo e
−γr2

Equation 32: MFFA – Light intensity varied by distance r

Where ILo is the light intensity at the source and λ a fixed light absorption coefficient.

Similar to the light intensity also the attractiveness β depends on distance r according to

the following formula:

β(r) = β0 e
−γrk , for k ≥ 1

Equation 33: MFFA – Attractiveness from beholders view varied by distance r

75

The distance between any pair of fireflies (i, j) is then calculated according the Euclidian

Distance formula with:

rij = ||xi − xj|| = √∑ (xik − xjk)
n
k=1

Equation 34: MFFA – Euclidian distance between a pair of fireflies

Finally each firefly i will change its position and move to more intersting firefly j based on

the following update equation:

xi = xi + β0e
−γrij

2

 (xj − xi) + αNi(0,1)

Equation 35: MFFA – Final update equation of a firefly i

The first portion of the equation describes the actual position, the second the attractiveness

and the third part corresponds to the random movement of the firefly.

It is only similar to PSO with regard to the position update and the random movement of

the firefly. Apart from that, it also differs such that MFFA has no conception of social and

cognition between fireflies. It just employs the approach of attractiveness at varying

strength between fireflies, which is simpler compared to the PSO algorithm.

76

Because the efficiency of MFFA is strongly dependent on the control parameters α, β and

γ, the initial setting of these parameters can turn into a problem during the runtime of the

algorithm.

The concept is as following:

The three control parameters α, β and γ are coded in the following form as a vector into

the firefly’s gene. In other words, it describes the firefly in his actual state including the

actual parameter values and the appropriate standard deviations of the parameter values:

xi
(t)
= (xi0

(t)
, … , xin

(t) ; α(t); σo
(t); β(t); σ1

(t); λ(t); σ12
(t)), for i = 1 . . N

Equation 36: MFFA – Genotype of a firefly i as a base for self-adaption

MFFA then mutates the self-adaptive control parameters according to specific rules, which

also implies randomness from a Gaussian distribution. In every iteration, MFFA then

calculates the fitness of the fireflies according to this genotype.

There are no similarities to existing PSO’s with regard to self-adaption of control

parameters. It is a new concept, which pretty much characterizes the firefly according its

success in the problem landscape. This can be an interesting idea for application in the

MSAPSO as well, although in the actual version there is no similarity between MFFA and

MSAPSO.

77

2.2.4 Dynamics in Social Systems - Bandura’s Learning Theory

In the social cognitive theory, (Bandura, 1986) describes the concept of reciprocal

determinism. In this model of reciprocal causation, he states that social behavior and

cognition and other environmental factors do have influence on each other in a bidirectional

way.

Furthermore, he outlines that reciprocal causation does not necessarily mean that the

different sources of influence (factors) needs to be of equal strength. He describes in an

example that a person (individual) is influenced by others behavior. On the other side, the

individual is also responsive to changes in environmental conditions. Therefore,

environmental conditions would trigger changes in behavior in an individual and in groups

where the individual is a part of.

This principle of causal reciprocal behavior is one inspiration source for the MSAPSO to

vary the cognition and social parameter. In the MSAPSO algorithm, the variation of the

social and cognition strength can have an influence on the algorithm such that, in certain

cases it might be better to have a stronger emphasis on collaboration (social) rather than

cognitive behavior. An example is when the to-be-solved problem gets complicated

(multimodal problem surface) then it is worthwhile to better collaborate whereas in simple

problem benchmarks the opposite is true.

78

2.3 Summary of Findings

In section two, various research branches in PSO were reviewed. One of the key takeaways

is that improvements in either parameters or superior update equations are often “bought”

with introduction of new parameters and other fields of complexity. Although in certain

areas there is progress, the aforementioned approaches are somehow limited by nature. In

the new research branch, self-adaptive PSO’s researchers try to eliminate these issues.

Therefore, they look for new self-adaptive methods, with the intent of automatic PSO

parameter or update equation adaption. The main goal is that this “self-adaption” lead to a

better representation of the surrounding and actual search space the particle resides in.

Related other bio-inspired swarm algorithm does follow similar concepts in the area of

adaptive parameters.

A major difference, which can be seen, is that the self-adaptive algorithmic approaches

often employ the concept of a gene or genotype, which characterizes the individual

parameters iteration by iteration. Based on this, more optimal parameter sets can be

determined. In the area of social and cognitive theories new concepts such as bidirectional

learning at varying strengths is an interesting direction, which primarily influences the area

of dynamic update equations. Albert Bandura and Kurt Levin as social and cognitive

researchers can be an interesting innovation source, when defining a new concept of self-

adaption. Synergies between different self-adaption variants is a logical consequence for a

“to be designed” algorithm. In any case a very good understanding of the convergence

parameter room is necessary to get understanding how automatic parameter settings in a

PSO can be done.

79

In the next sections, the different ideas, which were discussed previously are pulled

together. In order to come up with a new self-adaptive PSO approach, which works on

multiple levels (self-adapting parameters, dynamic escape strategies, dynamic update

equations, dynamic use of probability distributions for randomization of the particles), the

discussed concepts in this chapter are taken into consideration.

80

3 CONVERGENCE FRAMEWORK OF THE MSAPSO

Multi Self Adaptive Particle Swarm Optimization (MSAPSO) will combine several new

concepts (dynamic inertia weight, dynamic relation of inertia weight with the sum of social

and cognition, dynamic use of random probability distributions) into an advanced multi

self-adaptive PSO framework.

Furthermore, the new overall concept should employ the capability to adapt to the varying

environments in the search space. Also, a new concept to dynamically escape potential

local optima in high dimensional problem benchmarks is presented.

The key entry into all this is seen in the deep mathematical and graphical understanding of

the convergence characteristics of MSAPSO so an appropriate approach can be designed.

More specifically MSAPSO contains the following elements and contributions:

• The in-depth understanding of the stochastic convergence behavior of MSAPSO as

a foundation and the resulting stochastic convergence curves both for normal and

uniform distribution.

• The understanding of the relation of the so-called order-1 and order 2 convergence

zones, where order-1 describes the convergence behavior that is based on average

values of the particle flights and the corresponding parameter settings of MSAPSO.

81

• In addition, order-2 convergence implies the variance and standard deviation of

the particle flight and the associated parameter sets.

• Mathematical proof of the relation of order-1 and order-2 convergence zones and

the order-2 collapse into order-1 convergence zone under certain conditions.

• A self-optimization formula which describes the relation of the PSO parameters

social, cognition and inertia weight along the set of convergence curves.

• A method to use different probability distributions to control the exploitation and

exploration characteristics of the algorithm.

• A generic stability formula which describes the relation between social, cognition

and inertia weight independent of the applied probability distribution and the

to-be-solved benchmark problem.

• Mathematical proof that the found stability line is a natural property of the set of

convergence curves possible.

• A new escape local minima strategy for low and high dimensional problems.

3.1 Self-Adaptive behavior of MSAPSO

MSAPSO is by nature a stochastic PSO variant, which “detects” an optimal inertia weight

value based on a success model of the particle and/or swarm and then fits an corresponding

sum of social and cognition value to it, by some later explained equation. As the parameter

sets are dynamically changed from iteration to iteration, this basically means that there are

multiple dynamical systems at the same time, more precisely one dynamical system per

iteration. The basic behavior of MSAPSO is that of a stochastic process, which means that

the position and the velocity of a particle is stochastically dependent from previous

82

iterations. As the PSO uses random distributions such as normal, and uniform distribution

to vary the position of the particle during the convergence phase by default MSAPSO

implies stochasticity in the algorithm. This design of the self-adaptive MSAPSO algorithm

requires an in depth understanding of the respective convergence model.

3.2 General convergence analysis PSO and considerations

In Tian (2013), a review of different ways on how to do a convergence analysis can be

found. In the context of MSAPSO the following methods are theoretically available:

• Use of differential equations

• Matrix form calculations solving characteristic polynomial

• Difference equations to reduce the PSO system into recursive equations

• Z-Transformation

• Others methods, specific to an individual algorithm

All of the methods have the goal to consider the algorithm in a convergence situation, more

precisely when the particles or swarm velocity tends to zero. This is simply the case in the

so-called stagnation phase. Formally this is the situation when the following condition is

true.

xi =
(φ1 P⃗⃗ i +φ2 P⃗⃗ g)

φ1+φ2

vi = 0

Equation 37: Stagnation condition of the MSAPSO

83

where xi is the oscillating position of the particle i towards the potential convergence point

(equilibrium point) and vi is the corresponding velocity of the particle i . In the literature,

it can be seen that there are many simplifications made, before the appropriate

mathematical convergence analysis is performed. For example, the following assumptions

are being made:

• Reduction of the dimensionality of the PSO

• Social, cognition and inertia weight are assumed as constants

• Exclusions of the influence of the probability distributions applied

It is then relatively easy to study the convergence of PSO in general under such rigid

assumptions, but on the other hand it also has limits when studying detailed behavior of

our MSAPSO algorithm. In order to dynamically calculate the relation of social, cognition

and inertia weight, the previously made assumption need to be removed such that the real

parametric changes and probability distributions of the convergence analysis are taken into

consideration.

3.3 Assumptions for convergence analysis

The only assumption which is made is: that the particle swarm can be assumed in a

stagnation situation by the end of the algorithmic run. As a consequence of that, when the

particle swarm velocity tends to zero and has reached the final stagnation point it can be

assumed that statistical independence is given with regard to the previous iteration, as

84

velocity and position of the particle swarm should be almost the same both in actual and

previous situation.

Besides that, randomness is introduced reflected by the used probability distribution

applied to the variation of social, cognition and inertia weight into the convergence analysis.

Then an order-1 and order-2 model is executed to find specific convergence lines for

MSAPSO for a set of given probability distributions. In the case of initialization of the

MSAPSO algorithm a uniform distribution is used as well as when a stuck-in-local-optima

situation appears during the algorithmic convergence.

In all other cases (iterations) a normal distribution is used with an average value of
1

2
 and

a standard deviation of
1

2√3
.

It is important to mention that the standard deviation parameter in the uniform distribution

and the normal distribution do have the same value. The reason for that is explained in the

later discussion.

85

3.4 Order-1 convergence analysis – Difference & Matrix Model

The order-1 convergence embeds the average values of the evaluated MSAPSO parameters

(inertia weight, social and cognition) into the convergence analysis and by that the average

values of the particle flight. With the convergence analysis, it is possible to understand the

MSAPSO system behavior in certain situations such as stagnation and or general

convergence.

The base equations for the order-1 convergence analysis are denoted as following:

xi
k+1 = xi

k + vi
k+1

vi
k+1 = wkvi

k + φ1
k(gk − xi

k) + φ2
k(li

k − xi
k)

Equation 38: Base MSAPSO equations for convergence analysis

Where φ1
k = r1

kc1
k and φ2

k = r2
kc2
k are the respective random distributed social (c2

k) and

cognitive values (c1
k). The actual iteration is named k. The parameter r represents a random

number drawn from a chosen probability distribution. Then the second order stochastic

difference equation can be defined with a recursive approach of the previous equations

such that:

xi
k+1 = xi

k + wkvi
k + φ1

k(gk − xi
k) + φ2

k(li
k − xi

k)

xi
k+1 = xi

k + wkvi
k + φ1

kgk − φ1
kxi

k + φ2
kli
k − φ2

kxi
k

86

xi
k+1 = xi

k + wkvi
k + φ1

kgk + φ2
kli
k − φ1

kxi
k − φ2

kxi
k

xi
k+1 = xi

k + wkvi
k + φ1

kgk + φ2
kli
k − (φ1

kxi
k + φ2

kxi
k)

With φk = φ1
k + φ2

k it is possible to further reduce the equation to

xi
k+1 = xi

k + wkvi
k + φ1

kgk + φ2
kli
k − φkxi

k

Resorting and factorize the term with

xi
k+1 = xi

k − φkxi
k+ wkvi

k +φ1
kgk + φ2

kli
k

xi
k+1 = xi

k (1 − φk) + wkvi
k + φ1

kgk + φ2
kli
k

From previous base equation it can be concluded that vi
k = xi

k − xi
k−1. This equation can

then be substituted into the previous one and then via several steps transformed into the

final recursive equation:

xi
k+1 = xi

k (1 − φk) + wk(xi
k − xi

k−1) + φ1
kgk + φ2

kli
k

xi
k+1 = xi

k (1 − φk) + wkxi
k − wkxi

k−1 +φ1
kgk + φ2

kli
k

xi
k+1 = xi

k (1 − φk −wk) − wkxi
k−1 + φ1

kgk + φ2
kli
k

Equation 39: Base MSAPSO recursive equations

For the reason of simplification, equation parameters are replaced with the following terms:

A = 1 − φk −wk

87

B = − wk

C = φ1
kgk + φ2

kli
k

Equation 40: Simplified terms of the recursive order-1 equation

The mean trajectories of the particle swarm can be calculated by the introduction of the

expectation values and then apply it to both sides of the respective recursive equation,

which results into the following term.

E(xi
k+1) = E(xi

k) E(A) + E(xi
k−1)E(B) + E(C)

Equation 41: Expectation values of MSAPSO particles position

In order to understand the dynamics of this equation this equation is transformed into the

following dynamical system form.

(
E(xi

k+1)

E(xi
k)
) = Aorder−1 (

E(xi
k)

E(xi
k−1)

) + Corder−1

with Aorder−1 = (E(A) E(B)
1 0

) and Corder−1 = (E(C)
0
)

Equation 42: Dynamical Form of the MSAPSO order-1 convergence

88

where (
E(xi

k+1)

E(xi
k)
) equals the condition vector of the particle in the next iteration,

(
E(xi

k)

E(xi
k−1)

) corresponds with the condition vector in the previous iteration, Aorder−1

describes the matrix of the dynamical system and Corder−1 is the outer influence matrix of

the dynamical system.

The constants in the system are the following terms E(A), E(B) and E(C). Similar to

Equation 40: Simplified terms of the recursive order-1 equation it is possible to write:

E(A) = 1 − E(φk) − E(wk)

E(B) = − E(wk)

E(C) = E(φ1
k)E(gk) + E(φ2

k)E(li
k)

The subscript k are dropped as all constants are related to iteration k so, a simplified form

can be described as:

E(A) = 1 − E(φ) + E(w)

E(B) = − E(w)

E(C) = E(φ1)E(g) + E(φ2)E(li)

Expectation values are renamed again into the well-known terms for average values with:

E(w) = μw

E(φ) = E(φ1 + φ1) = E(φ1) + E(φ2) = μφ1 + μφ2 = μφ

89

As the particle flights are linear independent by the end of the convergence or in stagnation

phase from the previous iteration the E(C) equation can be rewritten into:

E(C) = μφ1E(g) + μφ2E(li)

E(A), E(B) and E(C) is further renamed into:

E(A) = 1 + μw − μφ

E(B) = − μw

E(C) = μφ1E(g) + μφ2E(li)

Equation 43: Expectation values µw, µφ of the dynamical order-1 convergence

Subsequently Equation 42: Dynamical Form of the MSAPSO order-1 convergence will

turn into the following µw, µφ based form:

 (
E(xi

k+1)

E(xi
k)
) = (1+μw − μφ − μw

1 0
) (

E(xi
k)

E(xi
k−1)

) + (μφ1E(g)+ μφ2E(li)
0

)

Equation 44: µw, µφ based form of the dynamical order-1 convergence

From the theory of dynamical systems, it is well known that a dynamical system exactly

then converges if the absolute values of the eigenvalues of the matrix A are smaller than

one. The eigenvalues of A can be calculated by the zeroing’s of the characteristic

polynomial. The characteristic polynomial ΧA is defined as:

90

ΧA = det (A − λE)

Equation 45: Characteristic Polynomial of the MSAPSO dynamical system

where A is the iteration matrix of the dynamical system, λ is the Eigenvalue and E is the

identity matrix of the dynamical MSAPSO algorithm. With the determinant of this linear

system it is possible to detect if there is a unique solution.

The eigenvalues of A are exactly the values, which define, whether a system converges or

not. The zeroing’s of the characteristic polynomial or in other words the eigenvalues of A

can be determined with the following equation:

det (A − λE) = det [(1+μw − μφ − μw
1 0

) − λ(1 0
0 1

)] = 0

det [(1+μw − μφ − μw
1 0

) − (λ 0
0 λ

)] = 0

det [(
((1+μw − μφ)− λ) − μw

1 − λ
)] = 0

Equation 46: Determinant of the order-1 MSAPSO dynamical system

Due to the rule of Cramer the determinant can be turned into the following quadratic

equation:

91

− λ(− λ + 1 + μw − μφ) – (− μw) = 0

λ2 − λ − λμw + λμφ + μw = 0

λ2 − λ(1 + μw − μφ) +μw = 0

This quadratic equation can be solved with the following formula of λ1,2 =
−b±√b2−4ac

2a
 ,

where a = 1, b = −(1 + μw − μφ) and c = μw in this case. Consequently, the

eigenvalues of the system in the order-1 convergence case are:

λ1,2 =
−(−(1+μw −μφ))±√(1−μw +μφ)2−4μw

2
 =

(1+μw −μφ)±√(1+μw −μφ)2−4μw

2

The root of the quadratic equation can be replaced with ϒ, so finally the following

eigenvalues of the order-1 system can be denoted.

λ1,2 =
(1+𝜇𝑤 −𝜇𝜑)± ϒ

2

with ϒ = √(1 + 𝜇𝑤 − 𝜇𝜑)2− 4μw

Equation 47: Eigenvalues of the order-1 MSAPSO dynamical system

92

3.4.1 Final order-1 convergence room of MSAPSO

According to previously mentioned dynamical system theory, a system converges formally

when, the |λ| < 1. Formally this is defined this as the spectral radius ƿ of the iteration

matrix A with the following order-1 convergence condition

ƿ(A) = max |λi| < 1

Where i is the respective eigenvalue calculated based on iteration matrix A.

For the case where |λ| = 1, the appropriate convergence line is defined with the recall of

Equation 46: Determinant of the order-1 MSAPSO dynamical system, by plugging in λ

with a value of one.

det [(
(1+μw − μφ)− λ − μw

1 − λ
)] = 0

setting λ = 1, equals −λ = −1, which results into

|
(1 + 𝜇𝑤 − 𝜇𝜑) − 1 − 𝜇𝑤

1 −1
| = 0

Again, the rule of Cramer is used, after multiplying out

((1 + μw − μφ) − 1) (−1)) − (− μw)(1) = (1 + μw − μφ) + 1 + μw

= 2 + 2μw − μφ = 0

93

The equation for order-1 convergence can be found for 𝜇𝜑 with

μφ = 2 + 2μw

Equation 48: Order-1 convergence limit MSAPSO dynamical system

The visualization of the order-1 convergence limit, is shown in the following graph:

3.4.2 Visualization of order-1 convergence

Figure 7: MSAPSO order-1 (µw, µφ) convergence room

94

3.4.3 Harmonic oscillation curve order-1 convergence

In order to determine the nature of the oscillation behavior of the MSAPSO system the

discriminant of Equation 47: Eigenvalues of the order-1 MSAPSO dynamical system can

be analyzed.

ϒ = √(1 + μw − μφ)2 − 4 μw

The discriminant is defined as:

ϒ = D = (1 + 𝜇𝑤 − 𝜇𝜑)
2 − 4 𝜇𝑤

Equation 49: Discriminant of the order-1 MSAPSO dynamical system

when D < 0 the eigenvalues are getting complex and there are no real solutions in this case.

In this case λ ∈ ℂ. The so called harmonic oscillation curve is where the particles swing

around the so-called equilibrium point which is defined with:

xi =
(φ1 P⃗⃗ i +φ2 P⃗⃗ g)

φ1+φ2

Equation 50: Equilibrium point of particles

https://www.dict.cc/englisch-deutsch/discriminant.html
https://www.dict.cc/englisch-deutsch/discriminant.html
https://www.dict.cc/englisch-deutsch/discriminant.html

95

From Equation 37: Stagnation condition of the MSAPSO and by setting the discriminant

to zero (D = (1 + 𝜇𝑤 − 𝜇𝜑)
2 − 4 𝜇𝑤) = 0 the harmonic curve equation can be derived

in the following way:

(1 + μw − μφ)
2 − 4 μw < 0

(1 + μw − μφ) (1 + μw − μφ) − 4 μw < 0

(1+ μw − μφ + μw + μw
2− μw μφ − μφ− μw μφ + μφ

2) − 4 μw < 0

(1+ 2μw − 2μφ + μw
2− 2μw μφ + μφ

2) − 4 μw < 0

(1− 2μw − 2μφ− 2μw μφ + μw
2 + μφ

2
) < 0

 μw
2 + μφ

2
 − 2μw μφ − 2μw − 2μφ + 1 < 0

Equation 51: Harmonic oscillation curve around equilibrium point

96

Figure 8: Harmonic oscillation area around equilibrium point

In the graph all value right to the harmonic oscillation curve are complex eigenvalues. The

analysis of the 1-order stability proved that convergence of MSAPSO depends on the

parameters on μw , μφ , such that the particles oscillate around the equilibrium point

xi =
(φ1 P⃗⃗ i +φ2 P⃗⃗ g)

φ1+φ2
 , where the averaged convergence limit is defined as μφ = 2 + 2μw .

In the next step, the higher statistical moments such as the variance are included into the

further convergence analysis, in order to analyze what the variance of the trajectories of

the particles means to the overall convergence of the MSAPSO algorithm.

The resulting order-2 convergence analysis is described in the next chapter.

97

3.5 Order-2 convergence Analysis based on Martinez approach

The foundation of the order-2 convergence analysis is described in two papers from

(Esperanza García-Gonzalo, 2014) and (Poli, Riccardo, 2009). Based on their convergence

methods and approaches the order-2 convergence behavior of MSAPSO can be analyzed.

From there on certain convergence conditions and formulas for the specifics of the

MSAPSO algorithm can be determined.

The MSAPSO uses two different probability distributions to randomize particle’s positions.

A uniform distribution for the initial distribution of the particle’s positions in the search

space and secondly for the case when the algorithm gets stuck into some local optima.

A normal distribution with N(μ, σ) is used during the normal convergence phase of the

algorithm.

The first step is the recall of the expressions and equations from the order-1 analysis. The

variables xi
k, xi

k+1, vi
k, vi

k+1 describe the stochastic process of MSAPSO, where by end of

the convergence of the MSAPSO algorithm or in a stagnation situation the particles are

getting almost linear independent from each other.

This means that the particle position is de facto not stochastically influenced by the

previous iterations anymore. The base formulas as in the order-1 convergence case are the

following:

xi
k+1 = xi

k + vi
k+1

vi
k+1 = wkvi

k + φ1
k(gk − xi

k) + φ2
k(li

k − xi
k)

98

Via the same method as in order-1 convergence analysis the recursive difference equation

can be found (compare for: Equation 39: Base MSAPSO recursive equations)

 xi
k+1 = xi

k (1 − φk −wk) − wkxi
k−1 + φ1

kgk + φ2
kli
k

As before the expectation values are introduced. The terms are simplified for better

handling of the equations and as in order-1 convergence the following term as previously

described in Equation 41: Expectation values of MSAPSO particles position can be derived.

E(xi
k+1) = E(xi

k) E(A) + E(xi
k−1)E(B) + E(C)

Equation 52: Recalled difference equation MSAPSO for order-1/order-2 convergence

The goal for the order-2 convergence analysis is to introduce the variance of the particle’s

position into the order-2 dynamical system of MSAPSO. From statistics theory it is known

that:

E((xi
k)2) = Var(xi

k) - E((xi
k))2 or Var(xi

k) = E((xi
k)2) - E((xi

k))2

Therefore, the exact terms for E((xi
k)2) and E((xi

k))2 in a difference equation context for

the MSAPSO order-2 dynamical system need to be determined. With the method showed

in (Poli, Riccardo, 2009, p. 714), which is the multiplying of E(xi
k) to both sides of the

order-2 difference Equation 52: Recalled difference equation MSAPSO for order-1/order-

2, the first step into this direction can be made.

E(xi
kxi

k+1) = E((xi
k)2) E(A) + E(xi

kxi
k−1)E(B) + E(C)E(xi

k)

99

In a second step E((xi
k))2 or E((xi

k+1))2 can be calculated from Equation 52: Recalled

difference equation MSAPSO for order-1/order-2 according to the

multinomial formula of (a + b + c)2 = a2 + b2+ c2+ 2ab + 2ac+ 2bc.

As a next step the term for E((xi
k+1))2 is calculated based on:

E(xi
k+1) = E(xi

k) E(A) + E(xi
k−1)E(B) + E(C) , which turns into following equation

along with the multinomial rule with:

E((xi
k+1))2 = E(A2)E((xi

k)2)

+ 2(E(AB)) E(xi
k) E(xi

k−1)

+ E(B2)E(xi
k−1)2

+ E(C2)

+ 2(E(AC)) E(xi
k)

+ 2(E(BC)) E(xi
k−1)

Now the terms for E(xi
kxi

k+1), E((xi
k+1))2 are known, so the formulation of the order-2

dynamical system with mean trajectories and variance of the trajectories of MSAPSO can

be done. The dynamical system denotes as following:

(
E((xi

k+1))2)

E(xi
k+1xi

k)

E((xi
k))2

) = Aorder−2(
E(xi

k)2

E(xi
kxi
k−1)

E(xi
k−1)2

) + Corder−2

With

100

 Aorder−2 = (
E(A2) 2(E(AB)) E(B2)

E(A) E(B) 0

1 0 0

)

Corder−2 = (

E(C2 + 2ACxi
k + 2BCxi

k−1)

 E(Cxi
k)

0

)

Equation 53: Dynamical Form of the MSAPSO order-2 convergence

Again, it is known that the definitions of E(A), E(B), E(BC) are

E(A) = 1 + μw − μφ

E(B) = − μw

E(C) = μφ1E(g) + μφ2E(li)

In order to derive the calculations of E(A2) , 2(E(AB) and E(B2) respectively, the

following calculation steps need to be done:

E(A2) = (1 + μw − μφ)
2 = 1 + 2 (μw) − 2 (μφ) − 2 (μw) (μφ) + (μw

2) + (−μφ
2)

E(AB) = − (μw) (1 + (μw) − (μφ)) = (μw) (μφ) −(μw
2) − (μw)

E(B2) = E(B(B)) = (− μw (− μw)) = (μw
2)

As the relation of the variance from statistical theory is defined as:

σw
2 = (μw

2) − (μw)
2 and σφ

2 = (μφ
2) − (μφ)

2, the substitution of the (μw
2), (μφ

2)

101

terms in the previous equation can be done such that:

E(A2) = (1 + μw − μφ)
2 = 1 + 2 μw − 2 μφ − 2 μw μφ + σw

2 + μw
2 + σφ

2 + μφ
2

E(AB) = μw μφ − σw
2 − μw

2 − μw

E(B2) = E(B(B)) = σw
2 + μw

2

Equation 54: Expectation Values of the order-2 iteration matrix

These values are later back substituted into the original Aorder−2 matrix to determine the

order-2 convergence curves. As the Aorder−2 matrix is of the form 3x3 matrix the resulting

calculation of the eigenvalues defines a cubic equation, which is not that easy to solve.

As a starting point, as with the order-1 convergence analysis the zeroing’s of the

characteristic polynomial of Equation 53: Dynamical Form of the MSAPSO order-2

convergence are determined. This equals the eigenvalues of the order-2 dynamical system

of MSAPSO. As before the first step is to calculate the determinant of the order-2

dynamical system of MSAPSO such that:

ΧA = det (A − λE) = 0

Then the rule of “Sarrus” is applied to execute the calculations in the following way:

det Aorder−2 = (
E(A2) − λ 2(E(AB)) E(B2)

E(A) E(B) − λ 0

 1 0 0 − λ

) = 0

https://www.dict.cc/englisch-deutsch/determinant.html

102

= |
E(A2) − λ 2(E(AB)) E(B2)

E(A) E(B) − λ 0

 1 0 0 − λ

|
E(A2) − λ 2(E(AB))

E(A) E(B) − λ

 1 0

= 0

Finally, this leads to the following terms:

= (E(A2) − λ)(E(B) − λ)(−λ) − (E(B) − λ)(E(B2)) −(−λ)(E(A))(2(E(AB))

= (E(A2) − λ)(−λ E(B)) +λ2) − (E(B) − λ)(E(B2)) +(λ)(E(A))(2(E(AB))=

−λ3 +λ2 E(A2) + λ2E(B) − λE(A2) E(B) − E(B3) − λ E(B2) + λ(E(A))(2(E(AB))

As det (A − λE) ≡ det (λE − A) both sides are multiplied by −1 and to finally get the

zeroing’s of the characteristic polynomial (eigenvalues) of the order-2 dynamical

MSAPSO system with:

λ3 −λ2 E(A2) − λ2E(B) + λE(A2) E(B) + E(B3) + λ E(B2) − λ(E(A))(2(E(AB))

By resorting the terms this leads into the following simplified equation

λ3 −λ2 (E(A2) − E(B)) + λ(E(A2) E(B) + E(B2) − 2E(A))E(AB)) + E(B3)

As this is manually very complicated to calculate, MATLAB is used to solve for the

respective eigenvalues λ1,2,3 such that:

λ1 = − E(B) = μw

λ2,3 = E(B) +
E(A2)

2
±

E(A)√E(A2) −4 E(B)

2

103

Equation 55: Cubic Eigenvalues equations of the order-2 MSAPSO dynamical system

With the according back substitutions from Equation 54: Expectation Values of the order-

2 iteration matrix the eigenvalues of the order-2 convergence system can be found with:

λ1 = μw

λ2,3 = −μw +
1 + 2 E(μw) − 2 E(μφ) − 2 E(μw) E(μφ)+ E(μw

2) + E(μφ
2)

2

±
(1+μw − μφ)√1 + 2 E(μw) − 2 E(μφ) − 2 E(μw) E(μφ)+ E(μw 2) + E(μφ2) −4 μw

2

Equation 56: Eigenvalues of the order-2 MSAPSO dynamical system

Obviously, it is very difficult to find a convergence line from this equation, so the same

approach is used as previously described in the order-1 convergence study. The

convergence border is known from previous convergence studies such that the spectral

radius of a dynamical system is defined as:

ƿ(A) = max |λi| < 1

and that a system converges formally when, the |λi| < 1. The convergence border of any

dynamical system is given when |λi| = 1. This value is plugged into the iteration matrix of

104

the 2-order convergence system. Accordingly, the convergence border of the order-2

system can be calculated by the use of the rule of “Sarrus”.

|
E(A2) − 1 2(E(AB) E(B2)

E(A) E(B) − 1 0

 1 0 0 − 1

|
E(A2) − 1 2(E(AB)

E(A) E(B) − 1

 1 0

= 0

Consequently, the calculation steps are:

(E(A2) − 1)(E(B) − 1)(−1) – (1) (E(B) − 1)(E(B2)) − (−1)(E(A))(2(E(AB)) = 0

(E(A2) − 1)(−E(B) + 1) – (E(B) − 1)(E(B2)) − (−E(A))(2(E(AB)) = 0

(E(A2) − 1)(1 − E(B)) + (1 − E(B))(E(B2)) + (E(A))(2(E(AB)) = 0

(1 − E(B)) ((E(A2) − 1) + E(B2)) + 2(E(A))((E(AB)) = 0

(1 − E(B)) ((E(A2) + E(B2) −1) = −2(E(A))((E(AB))

(1 − E(B)) (E(B2)+ E(A2) − 1) = −2(E(A) E(AB))

As a next step E(A), E(B), E(AB), E(A2), E(B2) needs to be back substituted

With the following equations in the previous equation:

E(A) = 1 + μw − μφ

E(B) = − μw

105

E(A2) = (1 + μw – μφ)
2

 = 1 + 2 μw − 2 μφ – 2 μw μφ + (μw
2)+ (μφ

2)

(μw
2) , (μφ

2) is equal to E(w2), E(φ)2respectively and

Because for any stochastic variable the following relation holds

E(X2) = VAR(X) + E(X)2

It can be written that:

E(w2) = VAR(w) + E(w)2 = σw
2 + μw

2

 E(φ2) = VAR(w) + E(φ)2 = σφ
2 + μφ

2

Finally, E(A2), E(AB), E(B2) can be calculated as following

E(A2) = 1 + 2 μw − 2 μφ − 2 μw μφ + σw
2 + μw

2 + σφ
2 + μφ

2

E(AB) = μw μφ − σw
2 − μw

2 − μw

E(B2) = σw
2 + μw

2

From the previous equation of (1 − E(B)) (E(B2)+ E(A2) − 1) = −2(E(A) E(AB))

And by the use of E(A), E(B) , E(A2), E(AB), E(B2) the resulting calculation is as

following:

106

(1 + μw)(σw
2 + μw

2+1 + 2 μw − 2 μφ − 2 μw μφ + σw
2 + μw

2 + σφ
2 + μφ

2 −1) =

−2(1 + μw − μφ)(μw μφ − σw
2 − μw

2 − μw)

(1 + μw)(σw
2 + μw

2 + 2 μw − 2 μφ − 2 μw μφ + σw
2 + μw

2 + σφ
2 + μφ

2) =

−2(1 + μw − μφ)(μw μφ − σw
2 − μw

2 − μw)

Then the term 2σw
2 is canceled from both sides and the split of the first bracket right hand

side is done.

(1 + μw)(μw
2 − 2 μφ + 2 μw − 2 μw μφ + σφ

2 + μφ
2 + μw

2) =

−2(1 + μw) (μw μφ − μw
2 − μw) + 2μφ(μw μφ − μw

2 − σw
2 − μw)

First collect terms on left side

(1 + μw)(σφ
2 + μφ

2 + 2μw
2 − 2 μw μφ − 2 μφ + 2 μw) =

−2(1 + μw) (μw μφ − μw
2 − μw) + 2μφ(μw μφ − μw

2 − σw
2 − μw)

Then reorganize terms on left side

(1 + μw)(σφ
2 + μφ

2 − 2 μφ) −2(1 + μw)(− μw
2+ μw μφ − μw) =

−2(1 + μw) (μw μφ − μw
2 − μw) + 2μφ(μw μφ − μw

2 − σw
2 − μw)

107

Then the term of −2(1 + μw) (μw μφ − μw
2 − μw) is cut on both sides

(1 + μw)(σφ
2 + μφ

2 − 2 μφ) = 2μφ(μw μφ − μw
2 − σw

2 − μw)

Then opening brackets on both sides

(1 + μw) σφ
2 + (1 + μw) μφ

2 − (1 + μw) 2 μφ =

2μφ
2μw − 2μφμw

2 − 2μφ σw
2 −2μφμw

σφ
2 + μw σφ

2 + μφ
2 + μw μφ

2 − 2 μφ − 2μw μφ =

2μφ
2μw − 2μφμw

2 − 2μφ σw
2 −2μφμw

Cutting − 2μw μφ and one time μφ
2μw

σφ
2 + μw σφ

2 + μφ
2 + μw μφ

2 − 2 μφ − 2μw μφ =

2μφ
2μw − 2μφμw

2 − 2μφ σw
2 −2μφμw

σφ
2 + μw σφ

2 + μφ
2 − 2 μφ = μφ

2μw − 2μφμw
2 − 2μφ σw

2

σφ
2 (1 + μw) + μφ

2 − 2 μφ = μφ
2μw − 2μφμw

2 − 2μφ σw
2

Shift left terms μφ
2 − 2 μφ to the right

σφ
2 (1 + μw) = μφ

2μw − 2μφμw
2 − 2μφ σw

2 − μφ
2 + 2 μφ

108

By collecting right terms, the following equation can be found. This equation is also

reported in (Esperanza García-Gonzalo, 2014, p. 289):

σφ
2 (1 + μw) =μφ

2(μw − 1) + 2μφ(1 − μw
2 − σw

2)

From here a formula is searched, which is dependent from μφ. Also, it is important to

understand how the order-2 convergence is dependent of the variance or standard deviation.

The first step is the norming of the variance in the previous equation such that the

appropriate variation coefficient or the relative variance can be found with regard to the

above formula. In order to do so, both sides are divided through by μφ
2, then by μw

2.

σφ
2 (1+ μw)

μφ2
 =

μφ
2(μw −1)

μφ2
 +

2μφ(1−μw
2− σw

2)

μφ2

σφ
2

μφ2
 is replaced with cvφ

2

cvφ
2(1 + μw) = (μw − 1) +

2μφ(1−μw
2− σw

2)

μφ2

cvφ
2(1 + μw) =

μφ
2(μw −1) + 2μφ(1−μw

2− σw
2)

μφ2

Now divide both sides by μw
2

cvφ
2(1+ μw)

μw 2
 =

μφ
2(μw −1) + 2μφ(1−μw

2− σw
2)

μφ2μw 2

109

As a next step, the terms right hand side are split into

cvφ
2(1+ μw)

μw 2
 =

μφ
2(μw −1)

μφ2μw 2
 +

2μφ(1−μw
2)

μφ2μw 2
 −

2σw
2

μφμw 2

Also, the most right-hand side term with
σw
2

μw2
 is now replaced with cvw

2

cvφ
2(1+ μw)

μw 2
 =

μφ
2(μw −1)

μφ2μw 2
 +

2μφ(1−μw
2)

μφ2μw 2
 −

2cvw
2

μφ

Now multiply μw
2 on both sides and cleanup terms on both sides

cvφ
2(μw + 1) = (μw − 1) +

2(1−μw
2)

μφ
 −

2cvw
2μw

2

μφ

Shift (μw − 1) to the left

cvφ
2(μw + 1) − (μw − 1) =

2(1−μw
2) − 2cvw

2μw
2

μφ

Divide both sides with (μw + 1) − (μw − 1)

cvφ
2 =

2(1−μw
2) − 2cvw

2μw
2

μφ (μw +1) − (μw −1)

Then exchange cvφ
2 to the left side and μφ to the right side

μφ =
2(1−μw

2) − 2cvw
2μw

2

cvφ2 (μw +1) − (μw −1)

110

Multiply out denominator, resort terms

μφ =
2(1−μw

2) − 2cvw
2μw

2

cvφ2μw +cvφ2 − μw + 1

μφ =
2(1−μw

2) − 2cvw
2μw

2

μw (cvφ2−1)+(cvφ2+1)

μφ =
2−2μw

2 − 2cvw
2μw

2

μw (cvφ2−1)+(cvφ2+1)

μφ =
2(1−μw

2 − cvw
2μw

2)

μw (cvφ2−1)+(cvφ2+1)

μφ =
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)

As a final step, the zeroing’s of the order-2 convergence curve are calculated.

By setting μφ = 0 and solving the previous equation, the zeroing’s can be determined

with

0 =
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)

Multiply both sides with μw (cvφ
2 − 1) + (cvφ

2 + 1)

0 = 2 (1 − (1 + cvw
2)μw

2)

Divide both sides by 2 and shift (1 + cvw
2)μw

2 to the left side

111

(1 + cvw
2)μw

2 = 1

Divide both sides with (1 + cvw
2) then we get

μw
2 =

1

1 + cvw2

By applying the root to the previous equation, we end in:

μw1,2 = w1,2 = √
1

1 + cvw2

The final order-2 convergence system of MSAPSO is then written as, which is also

reported in (Esperanza García-Gonzalo, 2014, p. 290)

μφ =
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)

And with the zeroing’s of the convergence order-2 equation with

μw1,2 = w1,2 = √
1

1 + cvw2

Equation 57: Order-2 convergence system for generic probability distributions

112

3.5.1 Visualization of the order-2 convergence system

With this formula, the next step can be made in the MSAPSO convergence analysis. In

order to get an idea about the impact of the formula itself, the first step is to visualize the

formula within the ranges of the parameters. As μφ, μw , cvφ, cvw are stochastic variables

someone can anticipate that the set of convergence curves are fluctuating and vibrating.

This is dependent primarily on the used probability distribution but also on the underlying

problem space which is solved.

Based on a normal distribution with N(
1

2
, σw), where, σw ∈ {0.0 ... 0.7} the following set

of convergence curves can be drawn and visualized.

Figure 9: Set of order-2 convergence curves

113

It can be easily derived that the order-2 convergence lines heavily depend on the variance,

in this case of the normal distribution. When the variance is almost zero, the order-2

convergence room (set of parabolic convergence curves) collapses into the order-1

convergence system (triangle) and tend to be in the upper right corner, whereas when the

variance is increased the convergence curves flattens and approaches the x-axis. The

hypothesis is that order-2 convergence is an element of the order-1 system, when taking

out the randomness of the probability distribution. If true, this would open up a way of

controlling the behavior of MSAPSO dynamically. The question here at this point is what

is a good choice of a parameter set of inertia weight, social & cognition such that it is

dynamic and adaptive to the underlying benchmark and probability distribution.

3.5.2 Harmonic oscillation curve order-2 convergence

In order to determine the nature of the oscillation behavior in the order-2 MSAPSO system

the discriminant of Equation 55: Cubic Eigenvalues equations of the order-2 MSAPSO

dynamical system is being analyzed. The first step is to define the discriminant with:

ϒ = D = E(A2) − 4 E(B)

Equation 58: Discriminant of the order-2 MSAPSO dynamical system

It is known that,

E(A2) = 1 + 2 (μw) − 2 (μφ) − 2 (μw) (μφ) + (μw
2) + (μφ

2) , −E(B) = μw

https://www.dict.cc/englisch-deutsch/discriminant.html
https://www.dict.cc/englisch-deutsch/discriminant.html
https://www.dict.cc/englisch-deutsch/discriminant.html

114

with that substitutes of 𝐸(𝐴2), 𝐸(𝐵) can be plugged in such that,

D = 1 + 2 (μw) − 2 (μφ) − 2 (μw)(μφ) + (μw
2) + (μφ

2) − 4 μw < 0

D = 1 + 2 μw − 2 μφ − 2 μw μφ + μw
2 + μφ

2 − 4 μw < 0

D = 1 − 2 μw − 2 μφ − 2 μw μφ + μw
2 + μφ

2< 0

Figure 10: Same Order-1, Order-2 harmonic oscillation curve

In the figure above, it is obvious that order-2 harmonic oscillation curve is exactly the same

as the order-1 harmonic oscillation curve found in Figure 8: Harmonic oscillation area

around equilibrium point.

115

3.5.3 Mathematical proof of order-1 order-2 convergence zone collapse

It can be mathematically proven, that the hypothesis is true that the order-1/order-2

convergence room is related. For that Equation 57: Order-2 convergence system for generic

probability distributions the following formula can be recalled.

μφ =
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)

If the randomness is reduced in the previous equation by letting run cvw, cvφ to zero then

we get

lim μφ
 cvwcvφ→ 0,

=
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)

μφ =
2(1 − (1 + 0)μw

2)

μw (0 −1)+(0+1)

μφ =
2(1 − μw

2)

−μw +1

μφ =
2(1 − μw)(1+ μw)

(1 −μw)

The term (1 − μw), can now be cut out, so the resulting term then finally is equal with the

order-1 convergence equation denoted as:

= 2(1 + μw) = 2 + 2μw

116

This is exactly consistent with the Equation 48: Order-1 convergence limit MSAPSO

dynamical system. By this approach it has been proven that the order-2 convergence can

be transformed back into the order-1 convergence formula and that order-2 is element of

order-1 convergence area. This knowledge can be used for the design of the MSAPSO

algorithm such that varying probability distribution can be triggered for the purpose of

controlling exploration and exploitation behavior of the algorithm. In general, if the chosen

probability distribution does have a small variance it stimulates the exploration of the

algorithm as the initiated convergence curve of the system tends to collapse into the

order-1 convergence curve (convergence curve is in the upper area of the convergence

room). Whereas when the variance of the used probability distribution increases the

appropriate convergence curve is being flattened and then the algorithm is more in favor

of exploitation behavior.

3.5.4 Application of convergence study to MSAPSO

For the specifics of the MSAPSO algorithm the base for the analysis is again Equation 57:

Order-2 convergence system for generic probability distributions. In the MSAPSO case

two probability distributions are used, as they are located in the center of the convergence

domain. This will guarantee the balance between exploration and exploitation of the

algorithm. This balance is best when both order-2 convergence lines are in the middle of

the max value of the sum of social & cognition as well as in the middle of the max value

of inertia weight. MSAPSO uses two different probability distributions at the same time:

• A uniform distribution UNIF (
1

2
 ,

1

2√3
)

117

• A normal distribution with N(
1

2
, σw), where σw =

1

2√3
, which is also the standard

deviation of the uniform distribution

The uniform distribution is being used in the case of initialization of the algorithm and in

the situation after the algorithm has run into a local minima or maxima. During regular

operation of the algorithm the normal distribution is used to be more optimal in the case of

general convergence. The form of the normal distribution makes sure that during regular

convergence the algorithm quickly converges while also having some balanced and stable

exploration and exploitation behavior. The algorithm can change in every iteration the use

of the two probability distributions. Also per one iteration the inertia weight factor is static,

but can vary from iteration to iteration.

Therefore, there is a need to evaluate the two extreme cases in the specific case of

MSAPSO when studying the convergence characteristics.

• MSAPSO using uniform distribution to detect a first set of convergence lines

• MSAPSO after initialization just using the normal distribution afterwards with

another set of convergence lines triggered by the normal case

All other cases and combinations of probability distributions being used from iterations

can be found between the two set of convergence curves.

For the first case using a uniform distribution Equation 57: Order-2 convergence system

for generic probability distributions is recalled with the following equation.

118

μφ =
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)

From (Esperanza García-Gonzalo, 2014, p. 291) table two and from the statistics of a

uniform distribution it is known that:

• cvw
2 = 0, as μw = w, which means inertia weight is assumed static per iteration

• cvφ
2 =

1

6

When using these values, the following μφ based convergence curve can be derived:

μφ =
2(1 − (1 + 0)μw

2)

μw (
1

6
−1)+(

1

6
+1)

μφ_msa_unif =
2(1 − (μw

2))

−μw (
5

6
)+(

7

6
)

μφ_msa_unif =
2(1 − μw

2)

−μw (
5

6
)+(

7

6
)

Norming the right term with
6

6
 leads into the final μφ based convergence term of:

μφ_msa_unif =
12(1 − μw

2)

7 −5μw

Equation 59: Order-2 convergence system for MSAPSO with uniform distribution

119

For the second case, when using a normal distribution with N(
1

2
, σw) , where

 σw =
1

2√3
, the following order-2 convergence model can be described:

Again, from (Esperanza García-Gonzalo, 2014, p. 291) in table two and from the statistics

of a normal distribution it is known that:

• cvw
2 = 0, as μw = w, which means inertia weight is assumed static per iteration

• cvφ
2 =

σφ1
2 + σφ2

2

(μφ1+ μφ2)2

• μφ1 = μφ2 =
1

2

• σφ1
2 = σφ2

2 = (
1

2√3
)2

With μφ_msa_norm =
2(1 − (1 + cvw

2)μw
2)

μw (cvφ2−1)+(cvφ2+1)
 and the above definitions of

 cvw
2, cvφ

2, μφ1, μφ2, σφ1
2 , σφ2

2 it is possible to get into the following equations:

μφ_msa_norm =
2(1 − (1 + 0)μw

2)

μw (
σφ1
2 + σφ2

2

(μφ1+ μφ2)
2 − 1) + (

σφ1
2 + σφ2

2

(μφ1+ μφ2)
2+ 1)

μφ_msa_norm =
2(1 − (1 + 0)μw

2)

μw (
(
1

2√3
)2+ (

1

2√3
)2

(
1
2
+
1
2
)2

 − 1) + (
(
1

2√3
)2+ (

1

2√3
)2

(
1
2
+
1
2
)2

+ 1)

μφ_msa_norm =
2(1 − μw

2)

μw (
(
1

2√3
)2+ (

1

2√3
)2

(
1
2
+
1
2
)2

 − 1) + (
(
1

2√3
)2+ (

1

2√3
)2

(
1
2
+
1
2
)2

+ 1)

120

μφ_msa_norm =
2(1 − μw

2)

μw (
(
1
12
)+ (

1
12
)

(
1
2
+
1
2
)2

 − 1) + (
(
1
12
)+ (

1
12
)

(
1
2
+
1
2
)2

+ 1)

μφ_msa_norm =
2(1 − μw

2)

μw (
(
1
6
)

(1)
 − 1) + (

(
1
6
)

(1)
+ 1)

μφ_msa_norm =
2(1 − μw

2)

μw (−
5

6
) + (

7

6
)

Norming the right term with
6

6
 again leads into the final 𝜇𝜑 based convergence term

μφ_msa_norm =
12(1 − μw

2)

7 −5μw

Equation 60: Order-2 convergence system for MSAPSO with normal distribution

It is “surprising” that both convergence systems for MSAPSO with the uniform and the

normal distribution lead to the same convergence formula. This would mean, when the

variance/standard deviation of the probability distribution(s) (uniform or normal) for

cognition (μφ1) and social (μφ2) are the same, then the appropriate convergence lines are

only dependent on the coefficient of variance.

121

Figure 11: 2D view - order-2 convergence limits and μφ, μw of real algorithm runs

In the above figure the real environment is shown, where the MSAPSO algorithm takes a

set of benchmarks over five dimensions and then draw the respective convergence curves

of each benchmark, both with uniform as well as with normal distribution. The parabola

like curves are the uniform and normal distribution based order-2 convergence limits,

triggered by the respective benchmarks. The respective convergence curves are fluctuating

per benchmark (Thicker area in the set of convergence curves)

122

The grey dots on top of the convergence curves represents the real averaged μφ with the

appropriate μw of each specific benchmark during the real algorithmic runs.

Figure 12: 3D view - order-2 convergence curves and MSAPSO stability curve

In this view μφ1, μφ2 is split on the x-, z-axis and μw is on the y-axis. When visualized in

3D format it can be seen that a very interesting property of the set of convergence curves

do exist, when plotting convergence limits with different variance values in a normal

distribution case.

123

The highpoints of the set of convergence curves constitutes a new line, which is named

MSAPSO Stability Line (MSL) from now on. (lower left corner to lower right corner in

the triangle). The highpoints of the appropriate set of convergence curves are the optimal

points for balanced exploration and exploitation behavior. Mathematically this is the

location curve with the property of the highpoints for all possible convergence curves. This

knowledge can be used for the design of the MSAPSO algorithm later on, as a method to

get independent from the variance/standard deviation of the used probability distribution

3.5.5 Final order-2 convergence room of MSAPSO

The final convergence room we can define for MSAPSO as the following convergence

curve: Both for uniform and normal distribution with N(
1

2
, σw).

μφ_msa_norm =
12(1 − μw

2)

7 −5μw
 μφ_msa_unif =

12(1 − μw
2)

7 −5μw

Equation 61: Final convergence room MSAPSO with uniform, normal distribution

3.6 MSAPSO Stability Line for a universal stable convergence

Based on the previously discussed convergence curves of MSAPSO, we want to better

understand if there is a property that can be derived from the discussion in order to motivate

some general criteria for a parameter independent model for the MSAPSO algorithm. In a

first step, it is important to visualize how the set of convergence curves looks like when

the parameters of the used probability distributions are varied. For the purpose of a first

124

visualization of the set of convergence curves the standard deviation of a normal

distribution is stepwise decreased from [0.7 ... 0.0].

Figure 13: Visualization of set of convergence curves – Stability property MSAPSO

The set of convergence curves of MSAPSO finally tends to the upper right corner when

the standard deviation of the normal distribution is reduced to zero. It looks like that the

order-2 convergence curves collapses into order-1 convergence room.

125

The resulting curve equals all the high points of all convergence curves possible (sum of

the bold points). This can be seen as a new property of these set of convergence curves.

This new curve can be used as a Stability Line which makes the MSAPSO parameter less

for every evaluated problem type. Visually it can be concluded, that this new curve is

similar to a parable. The derived hypothesis is that these curve is equal to the following

formula:

μφ_stable = (μw + 1)
2

Equation 62: MSAPSO Stability Line (MSL) hypothesis

The idea for a parameter less MSAPSO is that the high point of a specific convergence

curve describes the optimal balance between exploration and exploitation of the particles

of a swarm. The convergence curve changes from iteration to iteration slightly as random

numbers created by statistics will vary by the used probability distribution. Also, there is

an influence by the number of dimensions in a problem as random numbers are generated

by dimension and finally are accumulated into an overall averaged number. And finally,

the benchmark itself with the specific n - dimensional problem surface will have an

influence on the averaged convergence curve.

Therefore, there is a need to follow the stable point(s) of the appropriate convergence

curve(s) in order to have a balanced and performance-capable convergence of the algorithm.

The MSL is a way to describe the specific and individual parameter sets for inertia weight,

social & cognition parameter at every given iteration of the algorithmic convergence. In

126

order to validate our hypothesis, a two-step process is needed. First, a regression analysis

overall high points of all set of convergence curve is performed to see if the resulting

regression line equals with the formula in Equation 62: MSAPSO Stability Line (MSL)

hypothesis and secondly, the y-value of the first deviation of Equation 60: Order-2

convergence system for MSAPSO with normal distribution is checked whether it equals

the y-value of the stability line property of MSAPSO. If so, it is proved that our stability

line hypothesis is correct.

3.6.1 Regression analysis of the stability property of MSAPSO

As previously described the first step is a search via a regression line whether the

previously described hypothesis is true. The method is described in the following steps:

• Ten subsequent runs are used to detect the appropriate regression lines.

• In every individual run twenty-five benchmarks over five dimensions are used to

detect the real averaged μφ at dynamic μw.

• Also, a normal distribution with N(
1

2
, σw) is used to randomize particles positions

where σw = {0.7 . . 0.0} and is varied in steps of 0.025 down

from 0.7 to 0.0.

• Then the averaged regression line out of the ten subsequent runs is calculated.

127

Figure 14: Regression curves to proof MSAPSO stability property hypothesis

In the regression analysis, the results in the above figure do show that the real regression

line is very close to the anticipated Equation 62: MSAPSO Stability Line (MSL) hypothesis,

which is a first good indication that our stability line hypothesis is correct.

3.6.2 Mathematical proof of the MSAPSO stability curve

Now in the second step of the mathematical proof, it is checked if the y-value of the first

deviation of the MSAPSO convergence curve is equal to the y-value of the MSL. In a first

step the first derivation of the MSAPSO convergence curve is detected. For that the

following formula is recalled:

μφ_msa_norm =
12(1 − μw

2)

7 −5μw

With MATLAB, the first derivation is calculated with

128

μφ_msa_norm_prime =
12(5 μw

2 −14μw +5)

 (5μw − 7)2

If μφ_msa_norm_prime = 0, then the zeroing’s of the first derivation is calculated with:

μw1 =
7−2√6

5
 and μw2 =

2√6 + 7

5

As μw1 is the only zeroing which is located in the order-1 order2 convergence area of

MSAPSO, this value is used to proof whether the y-values of the convergence curve and

the stability property of MSAPSO are the same.

First the μw1 is plugged into μφ_msa_norm =
12(1 − μw

2)

7 −5μw
 with,

μφmsanorm(μw1) =
12(1 – (

7−2√6

5
)
2

)

7 −
5(7−2√6)

5

 =
12(1 – (

7−2√6

5
)
2

)

7 –
(7−2√6)

1

 =
12(1 – 0.17657)

(7 – 2.10102)

=
12(1 − 0.17657)

(7 − 2.10102)
 =

9.88116

4.89898
 = 2.01698

Then μw1 is plugged into MSL in the same way with,

 μφ_stable = (μw1 + 1)
2 = (

7−2√6

5
+ 1)2 = 2.01698

As the y-values are the same, this would mean that we have a very good confidence, that

(μw1 + 1)
2 is the stability property of the set of convergence curves described.

129

4 DESIGN OF MSAPSO ALGORITHM

With the results of the order-1 and order-2 convergence analysis there is the foundation to

design our self-adaptive MSAPSO algorithm. First the start values for social, cognition and

the inertia weight parameters need to be defined. Secondly, the different flavors of self-

adaptiveness methods based on the knowledge of the previous chapter have to be

introduced. Also, different levels of probability distributions such as normal and uniform

are evaluated to control exploration and exploitation behavior of the MSAPSO algorithm.

With the knowledge of the MSL described in the previous chapter, it is possible to use any

inertia based method (also new one’s) to find matching and self-adaptive parameter sets in

any iteration of the convergence of the algorithm. In general, former key findings from

chapter three can be used to implement the described design of MSAPSO accordingly.

The relation between inertia weight, social and cognition, can be described with the found

MSL. The saddle points of the set of convergence curves (equals the MSL) is an optimal

balance method between exploration and exploitation for the MSAPSO in any case. As per

benchmark problem the individual convergence curve can and will vary we can so to say

predict in real-time the optimal saddle point per iteration.

During the convergence of the algorithm it can also happen that algorithm overcoats

different regions (unimodal, multimodal) of the benchmark’s problem surface. When this

happens the probability distribution used, also have an influence with regard to the level of

130

the convergence curve in time. When applying e.g. a normal distribution instead of a

uniform distribution for the position and velocity vector randomization of the particles the

corresponding convergence curves do look slightly differently with regard to unimodal

versus multimodal areas of the benchmark surface. In this chapter, the aforementioned

aspects of the self-adaptiveness of MSAPSO will be illustrated and discussed in more detail.

4.1 Self-Adaptiveness of MSAPSO

The MSAPSO algorithm do claim that it’s behavior is totally self-adaptive with regard to

optimal parameter settings of social, cognition and inertia weight. This can be achieved in

two ways:

• By using different types of probability distribution such as uniform, normal

distributions and others who do have an average value and a standard deviation.

• By creating a method of varying inertia weight dynamically with some kind of an

algorithm, then the corresponding social & cognition values can be found via the

MSL.

The nature of self-adaptiveness is that of a “parameter-less” algorithm, where for every

iteration in the algorithmic run as well as for different underlying benchmark problems

self-optimizing parameters combinations of inertia weight, social & cognition can be found

based on the MSL criteria. It is interesting to mention here, that parameter sets can exceed

the appropriate convergence curve per iteration, but overall iterations the average of the

131

parameter values just create optimal behavior of the algorithm (optimum of convergence

speed and stability) when it is slightly below the saddle point(s).

4.2 MSAPSO Stability Line Formula

One of the research contributions made is the new-found stability curve Equation 62:

MSAPSO Stability Line (MSL) hypothesis over the set of convergence curves which is

defined via Equation 57: Order-2 convergence system for generic probability distributions.

It is named from now on MSAPSO-Stability-Formula (MSF). This curve describes the

general relation between inertia weight, social & cognition in the case of the optimal

balance point between exploration and exploitation of the MSAPSO algorithm. In a

dynamic algorithm either inertia weight is variated or the standard deviation of the

probability distribution. Also in this case the stability curve still describes the parameter

relations correctly. It is important to mention here that the stability equation is stochastic

in nature and is not an 100% exact prediction of the searched parameter set. The

prerequisite of the stability curve/equation is, that it requires a probability distribution

which do have an average and a standard deviation. There are probability distributions such

as Cauchy distribution, where the stability curve then is not a valid approach.

The proof that the stability curve is a property of the set of the convergence curves was

made in the previous chapter. Also, the hypothesis was proved that order-2 convergence

room collapses into the order-1 convergence room under certain conditions. This is exactly

the case when randomness was taken out in the order-2 convergence analysis. This was

done by letting run the limes of the standard deviation of the probability distribution to

132

zero. In the next chapter it is analyzed how the variation options of the MSAPSO algorithm

can look like.

4.3 Variation options of MSAPSO Stability Line

Figure 15: Variation options of MSAPSO Stability Line

As mentioned before the set of convergence curves and the resulting stability curve can be

influenced via the probability distribution parameters such as average value and

variance/standard deviation and/or by the use of inertia weight. In the above picture, the

133

options on how to influence the behavior of the MSAPSO algorithm are outlined. The first

thing to mention here is, that the form of the order-2 convergence curve is fully dependent

on the average value and the appropriate standard deviation of the probability distribution.

In the graph, the convergence curve triggered by a uniform distribution lies in the “middle”

of all convergence curves possible. Secondly when a normal distribution with N(
1

2
,
1

2√3
)

is used, the convergence curve form equals exactly that of the convergence curves caused

by a uniform distribution.

The average value of a uniform distribution in the range of [0,1] is
1

2
 and the standard

deviation of the uniform distribution equals to
1

2√3
. The hypothesis is that when the different

flavors of probability distributions do own the same average value and standard deviations

that the form and the equations of the corresponding convergence lines are equal. In Figure

15: Variation options of MSAPSO Stability Line it is visualized that it is an almost exact

overlay of the convergence curves triggered by uniform as well as the normal distribution

with N(
1

2
,
1

2√3
). If Equation 59: Order-2 convergence system for MSAPSO with uniform

distribution and Equation 60: Order-2 convergence system for MSAPSO with normal

distribution is recalled, it is obvious that both probability distributions do lead to the same

mathematical specific convergence equation.

As the two specific probability distributions triggers the “same” order-2 convergence curve

for MSAPSO and also lie in the middle of all possible convergence curves it can be

concluded that these levels of convergence curve are ideal over all possible benchmarks

with regard to an optimal initial point of inertia weight, social & cognition parameter.

134

Figure 16: Lowered convergence and stability curve with N(0.5,0.475)

In more detail, the above figure shows how to manipulate the behavior of MSAPSO with

different levels of normal distributions. In this case a normal distribution with

N(0.5,0.475) was used to influence the general behavior of the MSAPSO algorithm.

First of all the broader standard deviation of the normal distribution does have an influence

on the height of the triggered convergence curve. Secondly the saddle point has shifted to

the left in this case. This new location of the saddle point also has a corresponding inertia

135

weight, social and cognition value then. In general, if the inertia weight value is lowered

and left-shifted the algorithms converge “faster”. The same can be achieved when the sum

of social and cognition is lowered. In this case both is true, so having a low sum of social

and cognition as well as low inertia weight makes the algorithm to accelerate to find

solutions more quickly.

This knowledge can be used to design algorithms in order to perform faster in unimodal

problems, where benchmarks do have simple problem surfaces. Whereas in multimodal

benchmark problems to fast convergence speed can be a problem as there is a higher risk

to be stuck into local optima and then afterwards losing the capability to find better local

optima. In general, the described behavior is useful to put the algorithm into exploitation

mode.

136

Figure 17: Raised convergence and stability curve with N(0.5,0.075)

In the other case, which means that the standard deviation of the normal distribution with

N(0.5,0.075) is decreased, then the corresponding convergence curve moves up to the

upper right corner. In fact, this means that the exploration behavior of the algorithm is

improved, which is useful in multimodal functions but not so useful in unimodal functions.

137

4.3.1 Variation with success-based inertia-weight strategy

Figure 18: Balanced convergence and stability curve with N(0.5,0.288675),UNIF

Another way to let the MSAPO algorithm self-adapt is the creation of a dynamic inertia

weight strategy around the saddle point location. In this case MSAPSO uses the probability

distributions with uniform and normal distribution of N (
1

2
,
1

2√3
). It is important to mention

here that also very slight variations of the inertia weight value around the optimal x-value

of the saddle point or the appropriate x-value of the stability curve can have big impact

138

with regard to performance of the algorithm. This is especially true when the benchmark

implies a lot of dimensions. Actually, all the options described before are being used in the

real MSAPSO algorithm implementation. The method described along with

N(
1

2
,
1

2√3
) , UNIF probability distributions is the self-adaptive method used along the

regular convergence of the algorithm. When the algorithm is stuck into local optima then

the self-adaptive method N(
1

2
, narrow value) is used to avoid premature convergence.

For the last iterations during the algorithmic run, when global optimum search stabilizes

then N(
1

2
, broad value) is applied in order to accelerate convergence by end of the

algorithm or when in between a unimodal area is being seen by the algorithm.

4.4 Reasoning of chosen MSAPSO probability distributions

As described in previous discussions it is important to select a well-fitting probability

distribution in order to support the optimal balance point of exploration versus exploitation

of the MSAPSO algorithm. This point was located both with uniform as well as normal

distribution with N(
1

2
,
1

2√3
) at the same inertia weight value. For the two types of

probability distribution it was found that the average value and the standard deviation is

the same.

The following discussion will show, when we deviate from the chosen probability

distributions we can either get better results for unimodal benchmarks, but then stability in

multimodal functions gets worse or the other way around. It really looks like that the

uniform distribution with its characteristics can be used as the “middle way” of stability

139

and performance and furthermore that the normal distribution with the same values of

average and standard deviation like the uniform distribution makes the algorithm again

perform better. Why the two types of probability distributions do create the same

convergence curve can be answered from Equation 59: Order-2 convergence system for

MSAPSO with uniform distribution and Equation 60: Order-2 convergence system for

MSAPSO with normal distribution, where we got the same specific convergence curve

with:

 μφ_msa_norm =
12(1 − μw

2)

7 −5μw
 μφ_msa_unif =

12(1 − μw
2)

7 −5μw

In both cases the formula finally is just dependent on μw . When other levels of normal

probability distributions are used other convergence-equations will arise with similar

formulas but different numbers in the above 𝜇𝜑_𝑚𝑠𝑎_𝑛𝑜𝑟𝑚 term. So, this means that with

the average value of
1

2
 and the standard deviation of

1

2√3
 this is the only case where the

convergence curve formulas of the uniform and normal probability distribution are the

same and do lie in the “middle” of the set of convergence curves. MSAPSO uses these two

levels of probability distributions during the algorithmic run, where the uniform

distribution is used in the initialization phase and after the algorithm has been stuck-in-

local-optima, whereas the normal distribution is being used during the normal algorithmic

run with N(
1

2
,
1

2√3
) and also when stuck-in-local-optima should be avoided proactively

with N(
1

2
, narrow_value).

140

4.5 Start values of MSAPSO

4.5.1 Reasoning of MSAPSO start inertia weight

The reasoning for the inertia start value can be derived from a Mathematical proof of the

MSAPSO stability curves. There we calculated the zeroing’s of the specific convergence

curve with

μφ_msa_norm =
12(1 − μw

2)

7 −5μw

μφ_msa_unif =
12(1 − μw

2)

7 −5μw

The initial step was to calculate the first derivation of the above term and setting the same

to zero such that:

μφ_msa_norm_prime =
12(5 μw

2 −14μw +5)

 (5μw − 7)2
 = 0

Finally, the following zeroing’s values of the first deviation can be calculated with,

μw1 =
7−2√6

5
 = 0,42020

μw2 =
2√6 + 7

5
 = 2,37979

Equation 63: Most optimal inertia weight values

141

As μw1 is the only value which falls into the range of a useful inertia weight [0,1] we will

choose μw1 as the start inertia weight of the algorithm as it also represents the x-value of

the saddle point of μφ_msa_norm equation.

In another convergence analysis from Hua-Ma et al. (2013, p. 7) based on a Simpson

distribution a very similar optimal inertia weight value with 0.4222 was reported based on

an optimal spectral radius analysis. This study also showed superior performance

characteristics for a general PSO compared to other variants.

The small difference in the found optimal inertia weight values can come from the different

probability distributions being used in the studies. In general, this gives very good

confidence that the found inertia weight start value is an optimal choice with regard to the

selected probability distribution(s).

4.5.2 Swarm size in different dimensions

The swarm size defines the number of particles of the MSAPSO algorithm. The values for

the MSAPSO itself, for other tested PSO variants and for the Firefly algorithm are all set

to the same level.

In 2D: swarm size is set to thirty. In all other dimensions >2D swarm size is also set to

thirty. In general, in this PhD study swarm size is not a parameter which is varied.

142

4.6 Success definition of the MSAPSO

The swarm success is an important criterion to react to certain situations while the particles

are converging (e.g. particles are stuck into local minima/maxima, low success rate in

previous runs). Therefore, the success is measured in two ways. First the success of the

total swarm per iteration. Secondly it also interesting to measure the swarm success over a

set of iterations to track the progress of the swarm towards the global minimum or

maximum. Both measures are reflected in a percentage value compared to the overall

success possible.

4.6.1 Swarm success per iteration

In the MSAPSO algorithm one key element of self-optimization is the idea of the “success”

of a particle per iteration. Therefore, it is essential to understand how such a “success”

definition translates into a mathematical model.

If we take both the particles and the total swarm’s view into consideration, we can define

the following classes of success and fail for a particle in a minimization problem:

SUCi =

{

 0, if particle i failed | f (xi

d(t)) > favg i(t) and f (xi
d(t)) > f avg all(t)

1, if particle i success | f (xi
d(t)) > favg i(t) and f (xi

d(t)) < f avg all(t)

0, if particle i failed | f (xi
d(t)) < favg i(t) and f (xi

d(t)) > f avg all(t)

1, if particle i success | f (xi
d(t)) < favg i(t) and f (xi

d(t)) < f avg all(t)

143

Where i is the particle, xi
d is the particle position in dimension d, f (xi

d(t)) is the functional

value at the particles position at timestep t, favg i(t) equals to the average functional value

of particle i , f avg all(t) is the average functional value of all particles in the swarm at

timestep t and t itself is the iteration in discrete steps.

In a maximization problem, the opposite holds with:

SUCi =

{

 0, if particle failed | f (xi

d(t)) < favg i(t) and f (xi
d(t)) < f avg all(t)

1, if particle success | f (xi
d(t)) < favg i(t) and f (xi

d(t)) > f avg all(t)

0, if particle fail | f (xi
d(t)) > favg i(t) and f (xi

d(t)) < f avg all(t)

1, if particle success | f (xi
d(t)) > favg i(t) and f (xi

d(t)) > f avg all(t)

Figure 19: MSAPSO – Graphical Visualization of the “success” of a particle

144

The picture visualizes the success of a particle in the minima case. In all cases, where the

particle state is as follows f (xi
d(t)) < f avg all(t) (Particle Position 1, and 2) then particle

i is successful, even when the actual functional value (Particle Position 1) is worse than the

particle’s individual average f (xi
d(t)) > favg i(t). In multimodal functions, this definition

gets even more important, as it is much harder to decide when a particle is successful,

because of the number of local optima’s in a region. The proposed model provides an

orientation through two measures of averaged functional value (one for the particle/one for

the swarm). Based on this a two-level approach the success rate can be calculated:

• an individual particle success rate at iteration t

• a swarm success rate at iteration t

For the particles individual success rate, it is important to know if a particle is below the

“contributing line” from the swarm’s perspective, because then it really contributes to the

success of the algorithm on all aspects. The deciding line will have two perspectives for a

minimum problem.

• The particle shall improve (decrease) its own average functional value iteration by

iteration to name the particle successful: For example, when the particle was five

times below the limit of actual five iterations then the particle i was for sure

successful from his own perspective. However, from a particle’s point of view it is

more important that the particle’s functional value is below the functional average

of all particles at iteration t.

145

• Secondly, from the swarm’s perspective the functional value of particle i should be

smaller than the average functional value of all particles at iteration t. The swarm

would not too much care about if the individual functional value at iteration t+1 is

above his individual average value at time point t. The swarm would still see the

particle successful as he still contributes to the convergence of the algorithm from

his individual average functional perspective.

So, to name the particle mathematically as “successful” in an iteration with regard to a

minimization problem the following condition must hold:

 f(Xi
d(t)) < favg i(t) & f(Xi

d(t)) < f avg all(t)

f(Xi
d(t)) > favg i(t) & f(Xi

d(t)) 𝑎𝑛𝑑 f(Xi
d(t)) < f avg all (t)

Equation 64: MSAPSO – 2-View Perspective - Success of a particle i

146

Figure 20: MSAPSO - State transition diagram of particle i – Minimum Problem

The above state transition diagram visualizes the different state changes from success to

no success in a minimum problem.

The success rate in an iteration is used to capture situations such as low success rate of the

swarm or being stuck-into-local-minima. For example, in a stuck-into-local-minima

situation the particle swarm success is used to switch to another level of normal distribution,

which then supports the swarm escaping from it by raising the height of the actual

convergence curve. We remember here from previous discussions that a small standard

deviation in a normal distribution raises the actual convergence line and by that supports

the explorative search behavior of the swarm.

147

4.6.2 Swarm success in consecutive iterations

The second definition of swarm success is, if the swarm has improved itself over five

consecutive iterations. It is the same definition as described in 4.6.1 with the difference

that it is applied over a time sequence. This criterion is used later on, in the so-called search

space characterization.

In summary, the swarm success per iteration is used in combination with the “stuck-in-

local-optima” situation to proactively trigger a higher level of the convergence curve with

the help of a normal probability distribution with a small standard deviation. The swarm

success over consecutive iterations instead is used to characterize the search space of the

actual benchmark into unimodal or multimodal like areas. With this characterization, the

inertia weight parameter is either slightly adapted towards exploration or exploitation.

For unimodal functions, the parameter is shifted below the optimal inertia weight when

success rate of the swarm is high to accelerate convergence of the swarm. In the case of a

multimodal benchmark when the success rate is likely to be low then the inertia weight

parameter is increased in order to accelerate the particles of the swarm and by that avoid

the situation of a “stuck-into-local-optima”.

148

4.7 Escape Local Minima Strategy

PSO as an algorithm do not have an inbuilt strategy to react to situations like “stuck-into-

local-optima”. Therefore, it can happen that also MSAPSO gets into this situation, even if

the adaption of the parameter triple (social, cognition, inertia weight) can be dynamically

adapted and adjusted during convergence as discussed previously. One of the challenges is

therefore the need for a flexible “Escape Local Minima Strategy” especially when the

benchmark problem does have a lot of dimensions. Then the search room for the particle

also increases by the power of the dimensions. With a fixed number of particles in the

swarm it means that the search room of a high dimensional benchmark problem is almost

empty in relation to the total number of the particles (swarm size).

Another challenge is the No-free-lunch (NFL) theorem. In order to avoid “stuck-into-local-

optima” situations a lot of PSO algorithm variants do collect a lot of information about the

individual particles position and trajectory.

In specific, typically the distance from the local and global best position of the swarm is

calculated overall dimensions. This is useful in order to have a decision criterion to trigger

the swarm escape. On the other hand, this turns down the algorithmic performance when a

“stuck-into-local-optima” situation happens in high dimensional benchmark problems as

information gathering is then quite compute intensive and exponentially grows with the

number of dimensions.

149

4.7.1 Definition of stuck-into-local-optima

In the MSAPSO algorithm the “stuck-into-local-optima” situation is reached when: after a

certain amount of time the Gbest-functional-value of the algorithm do not change anymore.

Theoretically when the Gbest-functional-value stays the same more than once then we

might have a situation where the algorithm is “stuck-into-local-optima” or simply the

algorithm loses performance even if it is able to get out of this situation by itself. On the

other end if we are too fast assuming “stuck-into-local-optima” then the previously

collected information by particles (expressed by their positions and Pbests) is lost after

some escape procedure. It is important to mention here, that when MSAPSO faces such a

“stuck-into-local-optima” situation that there is not a change of the actual Gbest-x-value

until there is some better position found during the re-randomization strategy of the swarm.

MSAPSO do not use swarm-radius measure to detect “stuck-into-local-optima” but for the

re-randomization strategy of the swarm. Again, we have differences in the meaning being

“stuck-into-local-optima” in unimodal versus multimodal benchmarks. In multimodal

functions, there might be better positions closely around the actual best position. In

unimodal problems, we might see the situation that at the border of the various dimensions

there could theoretically be better minima’s or maxima’s. So, the escape strategy also needs

to be adaptive due to the actual nature of the benchmark problem we are facing.

4.7.2 Concept of the Hyper-Middle-Point in the search space

The base concept of the MSAPSO “escape-local-minima” strategy is that of a Hyper-

Middle-Point. The Hyper Middle Point (HMP) itself is the average value of the left and

right border per dimension. The assumption we make here is that the borders are symmetric

150

in nature. In relation to the HMP we look for the x-vector orientation of the actual Gbest-

value such that if it is “left- or right dimensional” orientated with regard to the HMP.

Figure 21: HMP in the 2D search space with particles close to Gbest

The HMP can be seen as a kind of a reference point in the n-dimensional search space. We

can use this point to gather some information about the most likely location of the Gbest-

value relative to the HMP. In our case the actual Gbest-value is located in the (-/-) quadrant.

It is interesting to mention that quadrants with the opposite sign (+/+) touches the actual

151

Gbest-quadrant with a “corner” whereas all the others touch the Gbest-quadrant with an

edge.

Figure 22: HMP in the 3D search space with particles close to Gbest

In a 3D problem, the HMP has the same property relative to the overall search dimensions.

It is the “middle point” overall dimensions. Analogue to this the HMP can be found in the

n-dimensional search space. In every dimension, the left and right ranges are summed up

and divided by two to find the appropriate x-coordinates of the vector of the HMP.

152

4.7.3 Gathering information about Gbest-position without vector calculation

As mentioned before we want to avoid compute intensive vector calculations to derive

some information about the actual Gbest-value location and orientation. Therefore, we use

a method where the mean value of the Gbest-x-value is calculated in order to get an idea

how the global best position relate to the HMP-x-vector. In simple words when the Gbest-

x-value/Gbest-value lies in a negative orientated quadrant in the 2D case as described in

Figure 21: HMP in the 2D search space with particles close to Gbest the following is true:

• Gbest-x-value < HMP, Gbest-x-value is left-neighboring-orientated related to HMP

• Gbest-x-value>HMP,Gbest-x-value is right-neighboring-orientated related to HMP

• Gbest-x-value = HMP then Gbest-value equals HMP

For the 3D case as shown in Figure 22: HMP in the 3D search space with particles close to

Gbest this means that the Gbest-x-value must be more likely in the lower-neighboring 3D

area as well. The opposite is true when the mean-Gbest-x-vector is more positive. We mark

with a flag whether the Gbest-x-value is with a certain likelihood lower-neighbor-

orientated or upper-neighborhood-orientated. It is to mention here that we cannot exactly

calculate where the real Gbest-x-vector lies, simply for the reason that we do not want to

do it for compute reasons. Based on this approximate information about the Gbest-x-value

orientation we can then design a flexible and efficient escape strategy.

153

4.7.4 Detecting swarm radius to size the local search hyper cube

During the algorithmic run of MSAPSO the calculation of the averaged personal best

vector of the swarm takes place. As mentioned earlier we do not use this to detect the stuck-

local-optima situation, but for the reason we can size a local search cube in the hyper room

around the actual Gbest-x-vector/Gbest-value.

The size of the local search cube is calculated as the absolute value of the difference

between the Gbest – mean(Pbests).

Figure 23: Defining local search hyper cube around actual Gbest

In the graph, the dashed circle represents an averaged vector of the mean Pbest-values of

the swarm. For the local search hypercube calculation, this averaged vector is subtracted

154

from the real Gbest-x-vector to create an absolute value out of it. As a next step this

absolute is used to center a local search hypercube around the actual Gbest-x-vector to

perform a local search. Afterwards a subset of the particles is randomized in this local cube.

4.7.5 Detecting the global search hyper cubes

When we roughly know the approximate orientation of the Gbest-x-vector from previous

discussion we not just search around the local search hypercube but also in so-called global

search hyper cubes. Independent from the dimensionality we always flip two x-vector

elements (e.g. x- and z-axis) of the complete vector and by that we always generate four

global search hyper cubes.

Figure 24: Defining one of the four possible global search hyper cubes

155

This is also true for higher dimensional benchmark problems. Then, as before part of the

particles are randomized in this global search hyper cubes. It is important to mention that

the likelihood of finding better minima or maxima is given by the fact that there is a higher

density of particles per hyper cube. One by the other the next hypercubes is created by

flipping two axes of the complete vector and by intent a hyper cube is used which is outside

of the actual Gbest-x-vector. By that the likelihood is increased again that we find a better

position.

Also, there are limitations to this approach. When there is a high number of dimensions the

density of the particles decreases again as the amount of the four hyper cubes do not change.

What is effective, that the particle always travels back from the part hyper cube back to the

actual Gbest-x-vector, which means that we have a good likelihood to find better positions

along that path, as the method is repeated a couple of times.

156

4.7.6 HMP centric search cube

Figure 25: Defining centric hyper cube around HMP

The third element of the hyper cube strategy is using the maximum average swarm radius.

The absolute value of it is then used to center a centric hyper cube around the HMP.

Another effect of this is that wherever another better local minimum is located (in other

regions, close to borders, etc.) part of the swarm is always centered again around the HMP

in order to keep the balance between the different options. It is so to say a gravitational

hyper cube between the local and global hyper cube approach and also self-adaptive in

nature as the swarm radius is variable due to the other self-adaptive methods previously

discussed.

157

4.7.7 Final escape strategy for 2D to N-dimensions

Based on the three previously discussed hyper cube strategies

• Smaller local hyper cube around Gbest-value

• Global part hyper cube based on two flipping x-vector elements

• Gravitational hyper cube to balance between local and global search

all three methods in place are used to setup an escape-local-minima strategy for MSAPSO.

The question how many particles to use for which strategy is again dependent on the type

of the benchmark area (unimodal or multimodal like). In the case of a multimodal area a

combination of local and global hyper cubes is used, where the number of particles for the

local search was slightly higher than for the global hyper cubes.

For unimodal problems, a combination of global and centric hyper cubes is leveraged. In

this case the vast majority of the particles were used for the global hyper cubes in order to

better capture better minima or maxima in border regions of the search dimensions. The

centric hyper cube was useful to avoid biases when performing the global hyper cube

model. In the case of mixed unimodal or multimodal areas within a benchmark problem a

balanced model of all three hyper cube strategies is executed.

4.8 Dynamic inertia weight strategy

Another aspect of self-adaptiveness in the MSAPSO can be achieved via a dynamic inertia

weight strategy. As a foundation to it, we use our mathematically derived optimal inertia

158

weight value of μwoptimal =
7−2√6

5
 as a start value, which was found in the chapter

“Reasoning of MSAPSO start inertia weight”. The principle is that an increase of the

convergence speed of the swarm can be achieved by reducing the inertia weight value when

we face a unimodal area or when there is a multimodal like segment the exploration of the

swarm by increasing the inertia weight value should be strengthened.

4.8.1 Search Space characterization unimodal and multimodal

In order to implement the previous concept, a so-called search space characterization of

the benchmark surface is performed. This is executed with the model of “Swarm success

in consecutive iterations”. With this model, it is evaluated how successful the swarm is

over five iterations at every timestep of the convergence of algorithm. The search space

characterization is then as following:

Swarm success < 50% in five runs | search space

= 0,where 0 stands for multimodal area

50% ≥ Swarm success < 80% in five runs | search space

= 1,where 1 stands for mixed area

Swarm success ≥ 80% in five runs | search space

= 2,where 2 stands for unimodal area

Equation 65: Search space characterization - unimodal and multimodal areas

159

4.8.2 Sliding concept around optimal inertia weight

The concept of the dynamic inertia weight model can be described based on Figure 18:

Balanced convergence and stability curve with N(0.5,0.288675),UNIF. In this graph, the

optimal inertia weight is slightly variated with small plus or minus increments. The

increments itself are dependent on the success of the swarm in consecutive iterations. In a

multimode area, the increase of the increments is done by summing it up and with that the

speed of the swarm is also slightly increased.

In unimodal situations, the acceleration of the swarm is done by decreasing the sum off

increments. The absolute steps of the increments are set at a value of 10−5. Small changes

of inertia weight can lead to larger performance differences. Too high values of the

incremental steps might lead either to premature convergence or to too much acceleration

of the swarm. During the execution of the sliding inertia weight concept a corresponding

social and cognition value can be found with Equation 62: MSAPSO Stability Line (MSL)

hypothesis formula. In this case it is also mandatory that social and cognition as a sum is

equal to the y-value of the previous formula., which would mean that social and cognition

can have different values as long as the sum is equal.

160

5 EVALUATION MODEL & RESULTS

The evaluation model of MSAPSO has the objective to determine whether performance

and stability of the MSAPSO algorithm is superior compared to other nature inspired

algorithms. It consists of several sub-chapters where we cover the following evaluation

aspects:

• Performance influence on MSAPSO when inertia weight, social and

cognition is variated

• Performance influence on MSAPSO when normal distribution as adapted

• Performance influence on MSAPSO when MSF is variated

• Minimal error towards optimum of MSAPSO compared to other algorithms

• Minimal runs achieved towards optimum of MSAPSO compared to other

algorithms

The tests are based on twenty-five benchmarks. The benchmarks itself do have either

unimodal or multimodal characteristic. Also, the tests are split into the class of 2D

benchmarks and other benchmarks which vary up to five hundred dimensions dependent

on the individual benchmarks solution room. Beside the shortest runs of the algorithms we

also measure the minimal error towards the global or local optimum. From an algorithms

point of view, MSAPSO compare against other PSO variants as well as other nature

161

inspired algorithms such as the Memetic Firefly Algorithm (MFFA). The number of

particles and/or fireflies is at a fixed number.

Also, the stop criterion is the same across all algorithmic variants tested.

5.1 Performance view of changes in convergence and stability zone

The intention of this chapter is to variate the values of inertia, social and cognition different

from the optimal values found and discussed in chapter three. The anticipated results after

the variations are as following:

• At a given inertia weight, performance degradation is seen when moving away from

the optimal sum of social and cognition which is defined through Equation 62:

MSAPSO Stability Line (MSL) hypothesis.

• Changes in stability of the algorithm when the level of the normal distribution is

being changed. With level, here the change of the standard deviation parameter is

meant, which then triggers another convergence curve.

• Performance changes when inertia weight as well as the sum of social and cognition

along the appropriate MSF is variated. In this case we would see performance

improvement or degradations for certain levels of the triple (inertia weight, social

and cognition). The performance improvements would then be bought with reduced

stability of the algorithm

In the following chapters, the variation options are discussed and described in more detail.

This is done by moving away either from the appropriate point of the stability line or by

162

moving away from the optimal inertia weight found in Equation 63: Most optimal inertia

weight values.

5.1.1 Performance influence of inertia weight variation

In order to get an idea of the dynamics of inertia weight and the influence to the

performance characteristics of MSAPSO the test is done in the following approach:

• Allow set of increments (±0.025) to add or subtract from optimal dynamic inertia

weight value and see how this influences the performance changes in unimodal or

multimodal functions and compare this to the original MSAPSO

• The conditions for the above test are described as following:

o with thirty particles in the swarm

o with a preciseness of 10−5 for the convergence case

o hundred fifty runs to accept global convergence for the algorithm

o Benchmark functions used for the test sets

▪ Bird

▪ Bohachevsky

▪ Booth

▪ Camel

▪ Dropwave

o Dimensionality of all benchmark problems was two

o Escape-lmin-strategy of MSAPSO is turned off to guarantee comparability

163

Figure 26: Dynamic inertia weight with increments variation along MSF

• The first test case (grey box) is based on the original MSAPSO algorithm, as it was

designed in previous chapters. This test case has the best result with regard to the

combination of average runs and average total error:

o Average runs: 187,62

o Average error: 6,3800E-04

• In test case two we have slightly increased inertia weight by 0.025 and by that

increased the sum of social and cognition along the matching MSAPSO special

convergence curve. In general, this would mean that we strengthen exploration

capabilities of MSAPSO with the increase of the inertia weight value. This test case

has worse results compared to test case one, with regard to the combination of

Runs: 100

Selective Benchmarks

Test Set Dimensions Global Optimum Minimum Average Runs Minimum Average Error iwt iwt variation type

Bird 1 2 -1,06765E+02 187,7 0,0000E+00 0,42019 0,0000E+00 multi

Bohachevsky 1 2 0,00000E+00 192,1 0,0000E+00 0,42020 0,0000E+00 multi

Booth 1 2 0,00000E+00 181,1 0,0000E+00 0,42019 0,0000E+00 uni

Camel 1 2 0,00000E+00 173,8 0,0000E+00 0,42020 0,0000E+00 multi

Dropwave 1 2 -1,00000E+00 203,4 3,1900E-03 0,42020 0,0000E+00 multi

187,62 6,3800E-04

Dimensions Global Optimum Minimum Average Runs Minimum Average Error iwt type

Bird 2 2 -1,06765E+02 187,9 5,8361E-01 0,44519 2,5000E-02 multi

Bohachevsky 2 2 0,00000E+00 191,5 0,0000E+00 0,44518 2,5000E-02 multi

Booth 2 2 0,00000E+00 181,2 0,0000E+00 0,44519 2,5000E-02 uni

Camel 2 2 0,00000E+00 173,3 0,0000E+00 0,44520 2,5000E-02 multi

Dropwave 2 2 -1,00000E+00 205,1 6,3800E-03 0,44519 2,5000E-02 multi

187,8 1,1800E-01

Dimensions Global Optimum Minimum Average Runs Minimum Average Error iwt type

Bird 3 2 -1,06765E+02 188,7 1,9454E-01 0,39519 -2,5000E-02 multi

Bohachevsky 3 2 0,00000E+00 191,9 0,0000E+00 0,39519 -2,5000E-02 multi

Booth 3 2 0,00000E+00 181,1 0,0000E+00 0,39518 -2,5000E-02 uni

Camel 3 2 0,00000E+00 173,3 0,0000E+00 0,39520 -2,5000E-02 multi

Dropwave 3 2 -1,00000E+00 207,1 5,7400E-03 0,39520 -2,5000E-02 multi

188,42 4,0056E-02

Dimensions Global Optimum Minimum Average Runs Minimum Average Error iwt type

Bird 4 2 -1,06765E+02 183,3 1,9454E-01 0,67019 2,5000E-01 multi

Bohachevsky 4 2 0,00000E+00 186,1 0,0000E+00 0,67020 2,5000E-01 multi

Booth 4 2 0,00000E+00 177,5 0,0000E+00 0,67020 2,5000E-01 uni

Camel 4 2 0,00000E+00 171,7 0,0000E+00 0,67018 2,5000E-01 multi

Dropwave 4 2 -1,00000E+00 200,7 7,6500E-03 0,67019 2,5000E-01 multi

183,86 4,0438E-02

Dimensions Global Optimum Minimum Average Runs Minimum Average Error iwt type

Bird 5 2 -1,06765E+02 183,3 5,8361E-01 0,17019 -2,5000E-01 multi

Bohachevsky 5 2 0,00000E+00 187,9 0,0000E+00 0,17020 -2,5000E-01 multi

Booth 5 2 0,00000E+00 178,5 0,0000E+00 0,17019 -2,5000E-01 uni

Camel 5 2 0,00000E+00 173,2 0,0000E+00 0,17018 -2,5000E-01 multi

Dropwave 5 2 -1,00000E+00 196,8 7,6500E-03 0,17019 -2,5000E-01 multi

183,94 1,1825E-01

Test Type: dynamic inertia weight variation with a set of different increments, cook-formula

164

average runs and average total error. In detail, it has a slightly higher average runs

value, but also has a higher total error compared to test case one. More precisely

we have the following results:

o Average runs: 187,80

o Average error: 1,1800E-01

• In test case three we have slightly decreased inertia weight by 0.025 and by that

also decreased the matching sum of social and cognition along the corresponding

MSAPSO special convergence curve. In general, this would mean that we

strengthen exploitation capabilities of MSAPSO with the three factors inertia

weight, social and cognition. This test case has also worse results compared to test

case one, with regard to the combination of average runs and average total error. In

detail, it has also a slightly higher average runs value than in test case one. It is to

mention here, that the total error is smaller than in test case two, but still higher

than in test case one. More precisely we have the following results:

o Average runs: 188,42

o Average error: 4,0056E-02

• In test case four and five we have a faster convergence, but this is due to the higher

total error which can be reported in both cases. In detail for case four we have the

following results:

o Average runs: 183,86

o Average error: 4,0438E-02

Furthermore, for case five we have the following results:

o Average runs: 183,94

165

o Average error: 1,1825E-01

So, bottom line we can claim that we have with the MSAPSO in the unchanged version the

best results with regard to the combination of average of the total runs and the average of

the total error.

5.1.2 Performance influence of probability distributions variation

Another way to test adaptability, performance and stability of MSAPSO is the variation of

probability distribution used. In our case we variate the standard deviation of the normal

distribution. When the standard deviation is variated then the saddle point of the

appropriate convergence curve is moved upwards or downwards. In the upwards case, the

standard deviation is reduced and tends towards the order-1 convergence area. In the

downwards-case the standard deviation is broad which lowers the saddle point of the

corresponding MSAPSO convergence curve. We use the same conditions as in the previous

chapter for the test, with the difference that a normal distribution is applied at four levels

of different of standard deviations. Also, in this case we have turned off escape-lmin-

strategy to get comparable results with regard to the pure influence of the changing

parameters of the normal distribution.

166

Figure 27: Variation of standard deviation in normal distribution along MSF

From the previous table we can see that we are also able to “control” the MSAPSO behavior

with the use of different standard deviations in the normal distribution.

• As in the case with the variation of the inertia weigh values, also in the case with

the variation of the standard deviation of the normal distribution the unchanged

MSAPSO algorithm is the best algorithm using a N(
1

2
,
1

2√3
) probability distribution.

This is true with regard to the combined view of total average runs and the total

error over five benchmarks. For simplicity reasons, the measurements were taken

over from the last chapter as it is the same algorithmic test just with a different

focus in this chapter. This test case one (grey box) has the best result with regard to

the combination of average runs and average total error:

o Average runs: 187,62

Runs: 100

Selective Benchmarks

Test Set Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal Std Dyn IWT type

Bird 1 2 -1,06765E+02 187,7 0,0000E+00 N(0.5/Std) 2,8868E-01 0,42019 multi

Bohachevsky 1 2 0,00000E+00 192,1 0,0000E+00 N(0.5/Std) 2,8868E-01 0,42020 multi

Booth 1 2 0,00000E+00 181,1 0,0000E+00 N(0.5/Std) 2,8868E-01 0,42019 uni

Camel 1 2 0,00000E+00 173,8 0,0000E+00 N(0.5/Std) 2,8868E-01 0,42020 multi

Dropwave 1 2 -1,00000E+00 203,4 3,1900E-03 N(0.5/Std) 2,8868E-01 0,42020 multi

187,62 6,3800E-04

Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal Std type

Bird 2 2 -1,06765E+02 210,5 3,8908E-01 N(0.5/Std) 2,0000E-01 0,56040 multi

Bohachevsky 2 2 0,00000E+00 216,1 0,0000E+00 N(0.5/Std) 2,0000E-01 0,56008 multi

Booth 2 2 0,00000E+00 196,8 0,0000E+00 N(0.5/Std) 2,0000E-01 0,56002 uni

Camel 2 2 0,00000E+00 186,9 0,0000E+00 N(0.5/Std) 2,0000E-01 0,56045 multi

Dropwave 2 2 -1,00000E+00 223,7 3,8300E-03 N(0.5/Std) 2,0000E-01 0,56010 multi

206,8 7,8582E-02

Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal Std type

Bird 3 2 -1,06765E+02 179,2 0,0000E+00 N(0.5/Std) 4,0000E-01 0,28080 multi

Bohachevsky 3 2 0,00000E+00 179,7 0,0000E+00 N(0.5/Std) 4,0000E-01 0,27968 multi

Booth 3 2 0,00000E+00 174,1 0,0000E+00 N(0.5/Std) 4,0000E-01 0,27492 uni

Camel 3 2 0,00000E+00 167,8 0,0000E+00 N(0.5/Std) 4,0000E-01 0,28137 multi

Dropwave 3 2 -1,00000E+00 193,9 8,9300E-03 N(0.5/Std) 4,0000E-01 0,28059 multi

178,94 1,7860E-03

Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal Std type

Bird 4 2 -1,06765E+02 384,4 5,8570E-01 N(0.5/Std) 5,0000E-02 0,86757 multi

Bohachevsky 4 2 0,00000E+00 437,8 0,0000E+00 N(0.5/Std) 5,0000E-02 0,86585 multi

Booth 4 2 0,00000E+00 337,1 0,0000E+00 N(0.5/Std) 5,0000E-02 0,86723 uni

Camel 4 2 0,00000E+00 292,8 0,0000E+00 N(0.5/Std) 5,0000E-02 0,86575 multi

Dropwave 4 2 -1,00000E+00 383,9 0,0000E+00 N(0.5/Std) 5,0000E-02 0,86585 multi

367,2 1,1714E-01

Test Type: dynamic variation of normal distribution with a set of different standard deviations, cook-formula

167

o Average error: 6,3800E-04

• In test case two we have reduced the standard deviation to 0.2 and this lifts the

MSAPSO convergence curve more into the upper right corner and by that also shift

the inertia weigh value more to the right. We can see in the results table an increased

value of the total averaged runs as well as an increased error compared to test case

one. This test two has the following result with regard to the combination of average

runs and average total error:

o Average runs: 206,8

o Average error: 7,8582E-02

• In test case three the standard deviation was increased to 0.4 and this shifts the

MSAPSO convergence curve more into the lower left corner and by that also shift

the inertia weigh value more to the left. We can see in the results table a better value

of the total averaged runs, but on the other hand still an increased error compared

to test case one. This test case three has the following result with regard to the

combination of average runs and average total error:

o Average runs: 178,94

o Average error: 1,7860E-03

• In test case four we have extremely reduced the standard deviation to 0.05 and this

lifts the MSAPSO convergence curve extremely more into the upper right corner

and by that also shift the inertia weigh value extremely more to the right.

We can see in the results table a significant increased value of the total averaged

runs as well as an increased error compared to test case one. This test four has the

168

following result with regard to the combination of average runs and average total

error:

o Average runs: 367,2

o Average error: 1,1714E-01

Also, in this test series we can finally claim that we have with the MSAPSO in the

unchanged version the best results achieved with regard to the combination of average of

the total runs and the average of the total error.

5.1.3 Performance and stability influence of variation of social and cognition

Another test to perform is what happens when we variate at the optimal inertia weight the

sum of social and cognition combination. We recapture that the most “optimal” parameters

of MSAPSO can be found at as previously discussed:

μw1 =
7−2√6

5

The test will be done based such that we add/subtract an offset in steps of ± 0.01 and ±

0.02 to the sum of social and cognition at the level of the optimal inertia weight. We use

again the same set of benchmarks and algorithmic conditions as before.

169

Figure 28: Variation of social and cognition at optimal inertia along MSF

• As before in the other test scenarios, also in the test case one with the variation of

the sum of the social and cognition value, the unchanged MSAPSO algorithm is the

best algorithm using a N(
1

2
,
1

2√3
) probability distribution. This is true with regard

to the combined view of total average runs and the total error over five benchmarks.

This test case one (grey box) has the best result with regard to the combination of

average runs and average total error:

o Average runs: 187,62

o Average error: 6,3800E-04

• In test case two we have increased the sum of the social and cognition value by

0.01. Compared to the test case one the results are the following:

o Average runs: 192,22

o Average error: 1,5640E-01

Runs: 100

Selective Benchmarks

Test Set Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal Dyn IWT SocCog Offset SocCog type

Bird 1 2 -1,06765E+02 187,7 0,0000E+00 N(0.5/Std) 0,42019 2,00578 0,00000 multi

Bohachevsky 1 2 0,00000E+00 192,1 0,0000E+00 N(0.5/Std) 0,42020 2,00752 0,00000 multi

Booth 1 2 0,00000E+00 181,1 0,0000E+00 N(0.5/Std) 0,42019 2,00770 0,00000 uni

Camel 1 2 0,00000E+00 173,8 0,0000E+00 N(0.5/Std) 0,42020 2,00774 0,00000 multi

Dropwave 1 2 -1,00000E+00 203,4 3,1900E-03 N(0.5/Std) 0,42020 2,00762 0,00000 multi

187,62 6,3800E-04

Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal type

Bird 2 2 -1,06765E+02 190,8 7,7815E-01 N(0.5/Std) 0,42019 2,11605 0,10000 multi

Bohachevsky 2 2 0,00000E+00 195,1 0,0000E+00 N(0.5/Std) 0,42020 2,11819 0,10000 multi

Booth 2 2 0,00000E+00 184,9 0,0000E+00 N(0.5/Std) 0,42019 2,11562 0,10000 uni

Camel 2 2 0,00000E+00 176,2 0,0000E+00 N(0.5/Std) 0,42020 2,11727 0,10000 multi

Dropwave 2 2 -1,00000E+00 214,1 3,8300E-03 N(0.5/Std) 0,42020 2,11630 0,10000 multi

192,22 1,5640E-01

Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal type

Bird 3 2 -1,06765E+02 195,3 1,9454E-01 N(0.5/Std) 0,42019 2,21539 0,20000 multi

Bohachevsky 3 2 0,00000E+00 199,9 0,0000E+00 N(0.5/Std) 0,42020 2,21577 0,20000 multi

Booth 3 2 0,00000E+00 187,8 0,0000E+00 N(0.5/Std) 0,42019 2,21719 0,20000 uni

Camel 3 2 0,00000E+00 178,2 0,0000E+00 N(0.5/Std) 0,42020 2,21899 0,20000 multi

Dropwave 3 2 -1,00000E+00 221,6 5,7400E-03 N(0.5/Std) 0,42020 2,21769 0,20000 multi

196,56 4,0056E-02

Dimensions Global Optimum Minimum Average Runs Minimum Average Error Normal type

Bird 4 2 -1,06765E+02 182,8 7,7815E-01 N(0.5/Std) 0,42019 1,81735 -0,20000 multi

Bohachevsky 4 2 0,00000E+00 187,1 0,0000E+00 N(0.5/Std) 0,42020 1,81737 -0,20000 multi

Booth 4 2 0,00000E+00 177,5 0,0000E+00 N(0.5/Std) 0,42019 1,81798 -0,20000 uni

Camel 4 2 0,00000E+00 170,9 0,0000E+00 N(0.5/Std) 0,42020 1,81676 -0,20000 multi

Dropwave 4 2 -1,00000E+00 196,9 4,4600E-03 N(0.5/Std) 0,42020 1,81610 -0,20000 multi

183,04 1,5652E-01

Test Type: dynamic Sum of social & cognition with a set of offsets along the cook-formula

170

Both the total averaged runs and total averaged error is increased and therefore a

worse result than in the test case one

• In test case three the sum of the social and cognition value was increased by a total

value of 0.02. Compared to the test case one the results are the following:

o Average runs: 196,56

o Average error: 4,0056E-02

Both the total averaged runs and total averaged error is increased and therefore a

worse result than in the test case one. In relation to test case two there is again an

increased value with regard to the total averaged runs and total averaged error,

which means that the more we step away from the optimal social and cognition

value at an optimal inertia weight the more worse the algorithm will get with regard

to performance.

• In test case four the sum of the social and cognition value is decreased by a total

value of − 0.02. Compared to the test case one the results are the following:

o Average runs: 183,04

o Average error: 1,5652E-01

In this test case the total averaged runs decreased compared to test case one (faster),

but the total averaged error is significantly increased and therefore it is also a worse

result compared to test case one.

Also, as shown in the previous test series MSAPSO in the unchanged version can claim to

have achieved the best results with regard to the combination of average of the total runs

and the average of the total error. This is a very promising result with regard to an almost

optimal designed MSAPSO algorithm. In the next section MSAPSO will test itself against

171

twenty-five selected benchmark problems and also introduce a comparative testing to other

swarm inspired algorithms.

5.2 Testing method of MSAPSO against benchmark functions

In this section, the detailed test of MSAPSO algorithm will be performed such that it is

possible to compare it with other swarm variants such as:

• SPSO (Standard PSO)

• XPSO (Le Clerc PSO)

• UPSO (Unified PSO)

• MFFA (Memetic Firefly algorithm)

• MSAPSO_FERNANDEZ (MSAPSO based on pure Fernandez formula)

MSAPSO with the pure MSF (Multi self-adaptive PSO) will compare to these algorithms.

Also, a test set of twenty-five benchmark functions is defined to evaluate the performance

of each algorithm including MSAPSO.

All the benchmarks are tested in two dimensions, and a subset of the benchmarks up to five

hundred dimensions, if possible. The benchmarks itself fulfill several benchmark

characteristics such as:

• Modality

• Basins

172

• Valleys

• Separability

• Dimensionality

The more exact definition of the above characteristics of the tested benchmark problems

can be found in Jamil and Yang (2013). In this paper, the below description is outlined in

detail.

Modality

The number of peaks in the benchmark landscape corresponds to the modality of a function.

If the algorithms walk up these peaks during a search process, there is a tendency that the

algorithm may be trapped in one of such peaks and consequently is stuck into local optima.

This will have a negative impact on the overall convergence process, as this situation can

move away the algorithm from the true optimal solutions.

Basins

Are characterized by relatively steep decline surrounding a large area is called a basin.

Optimization algorithms can be easily attracted to such regions. Once in these regions, the

search process of an algorithm is severely hampered. This is due to lack of information to

direct the search process towards the minimum. A basin corresponds to the plateau for a

maximization problem, and a benchmark problem can have multiple plateaus.

173

Valleys

A valley occurs when a narrow area of little change is surrounded by regions of steep

descent. As with the basins, minimizers are initially attracted to this region. The progress

of a search process of an algorithm may be slowed down considerably on the ground of the

valley.

Separability

The separability is a measure of the difficulty of the respective benchmark functions. In

general, separable functions are relatively easy to solve, when compared with their

inseparable counterpart, because each variable of a function is independent of the other

variables. If all the parameters or variables are independent, then a sequence of n

independent optimization processes can be performed.

As a result, each variable or parameter can be optimized independently. In other words, a

function of p variables are called separable, if it can be written as a sum of p functions of

just one variable. On the other hand, a function is called non-separable, if its variables show

inter-relation among themselves or are not statistically independent.

Dimensionality

The difficulty of a problem generally increases with its dimensionality as the number of

variables increases. The search space also increases exponentially. For highly nonlinear

problems, this dimensionality may be a significant hurdle for almost all optimization

algorithms.

174

5.2.1 Start and convergence settings for MSAPSO algorithm

MSAPSO do have the following start values and parameter settings:

• Inertia weight: Wstart =
7−2√6

5

• Sum of social & cognition: μφ_start = (μw1 + 1)
2

• Uniform distribution for the particles distribution at the beginning

• Normal distribution with N(
1

2
,
1

2√3
) during regular convergence phase

• Normal distribution with N(
1

2
, small value) to avoid escape-lmin situations

• Swarm size equals thirty particles for all dimensions

• Convergence is assumed after hundred fifty runs of unchanged Gbest-functional-

values

• Acceptable error is defined in the algorithm to be smaller or equal than 10-5

compared to the real optimum

• Inertia weight, social and cognition are calculated dynamically in every iteration

• Random numbers for the probability distribution are created from a random number

generator called ‘simdTwister”. ‘simdTwister’ is a new variant of Mersenne

Twister (MT) introduced by Mutsuo et al. (2006). ‘simdTwister’ is a Linear

Feedbacked Shift Register (LFSR) generator that generates a 128-bit

pseudorandom integer at one step.

http://home.hiroshima-u.ac.jp/d073872/index-en.html

175

5.2.2 Description of test method

The test method is as following:

• Per algorithm the performance (minimal runs) is detected over the selected twenty-

five benchmarks.

o For all benchmarks, the performance is evaluated over two dimensions

o For a defined subset of benchmarks, the minimal runs in higher dimensions

is evaluated

• The minimal error towards the global optimum per benchmark per algorithm is

determined.

o For all benchmarks the algorithmic convergence preciseness of < 10-5

o Convergence is assumed, when there is no change in the actual global

optimum for about hundred fifty runs.

• With the above key performance indicators (minimal runs, error towards global

optimum) per benchmark per algorithm, then a total average overall benchmark per

algorithm per dimension is calculated.

• We run the above method for the case of minimization as well as maximization for

all the tested benchmarks.

With this information, it is possible to detect the most stable or error resistant algorithm

with the best performance.

176

5.2.3 List of benchmarks and their characteristics

Below the selected benchmarks are listed, which are used for the to-be-performed

comparative tests of MSAPSO, SPSO, XPSO, UPSO, MFFA and MSAPSO_FER-

NANDEZ algorithms.

Benchmark Dimensions Modality Separability

Bird [2] multimodal non-separable

Bohachevysky [2] multimodal separable

Booth [2] unimodal non-separable

Camel [2] multimodal non-separable

Dropwave [2] multimodal non-separable

Easom [2] multimodal separable

Shubert [2] multimodal separable

Zettl [2] unimodal non-separable

Eggholder [2] multimodal non-separable

Rana [2] multimodal non-separable

Salomon [2] multimodal non-separable

Schwefel [2-4-6-15-30] multimodal partially-separable

Styblinskitang [2-5-10] multimodal non-separable

Michalewicz [2-5-10] multimodal non-separable

Ripple1 [2-5-10] multimodal non-separable

Trigonometric [2-5-15] multimodal non-separable

Quintic [2-10-20-30-100] multimodal separable

Deb1 [2-10-20-30-100] multimodal separable

Ackley1 [2-10-20-30-100] multimodal non-separable

Griewank [2-10-20-30-100-250-500] multimodal non-separable

Rastrigin [2-10-20-30-100-250-500] multimodal non-separable

Wavy [2-10-20-30-100-250-500] multimodal non-separable

Sphere [2-10-20-30-100-250-500] unimodal separable

Sphere small [2-10-20-30-100-250-500] unimodal separable

Figure 29: List of benchmarks and their general characteristics

177

5.3 Test results MSAPSO versus comparative algorithms

In this section, a comparative study is made on how MSAPSO with the MSF performs

against other bio-inspired algorithms such as SPSO, UPSO, XPSO, MFFA and

MSAPSO_FERNANDEZ. For the studies, the tests are made over twenty-five benchmarks

or a subset of the benchmarks against the above-mentioned algorithms.

5.3.1 Short description of comparative algorithms

SPSO

The SPSO is described in LeClerc (2012) with the following characteristics:

“You have a search space. On each point of this search space, you know how to evaluate a

fitness, which is a numerical value. Now, you are looking for the best point, i.e. the one

that has the best fitness (say the smallest one). This point is called the global optimum point

(or simply optimum point, in short). In order to do that, SPSO makes use of “agents” called

particles, which move step by step. A step is called an iteration (or sometimes a time step).

A particle is made of a position inside the search space, the fitness value at this position, a

velocity (in fact a displacement), which will be used to compute the next position, a

memory, that contains the best position (called the previous best) found so far by the

particle, the fitness value of this previous best. The set of particles is called the swarm.

Inside the swarm a topology is defined: it is a set of links between particles, saying “who

informs whom”. When a particle is informed by another one, it means that the particle

knows the previous best position. The set of particles that informs a particle is called its

neighborhood.

178

In SPSO, the neighborhood contains the particle itself, but is not necessarily symmetrical.

The search is performed in two phases: initialization of the swarm, and then a cycle of

iterations. The parameters of social, cognition and inertia weight are usually set statically

as following: (social, cognition both equals 1.49445, inertia weight is set at 0.7298). A

more mathematical described also can be found in the chapter 2.1.1. The basic movement

equations are:

• Particle’s Velocity :

v⃗ i (t) = 𝓌w⃗⃗⃗ i (t − 1) + c1φ1 (P⃗⃗ i − x⃗ i(t − 1)) + c2φ2 (P⃗⃗ g − x⃗ i(t − 1))

• Particle’s Position :

x⃗ i (t) = x⃗ i (t − 1) + v⃗ i(t)

XPSO

In addition to the PSO algorithm, XPSO (Constriction PSO) which is the constricted

version of the PSO adds a so-called constriction factor χ to the motion equations of the

particle’s. This is due to the following argumentation. As the traditional version of the PSO

algorithm can explode or diverge from particle movements point of view in the situation

when:

c1φ1 + c2φ2 > 4

XPSO examines the condition when the PSO exactly converges. LeClerc (2005/2006, p.

222) and following pages describe how to turn the original motion equations of PSO into

a convergence analysis of the XPSO system.

179

This is done by the following steps: The base equations of SPSO referenced in Equation 2:

SPSO – Particles position are transformed via several steps into the XPSO base equations

with:

V(t + 1) = V(t) + φ(P − X(t))

X(t + 1) = X(t) + V(t + 1)

Equation 66: Base equations of XPSO

Then Y(t) = P − X(t) is set, consequently the resorted term is X(t) = P − Y(t)

V(t + 1) = V(t) + φ Y(t)

−Y(t + 1) = −Y(t) + V(t + 1), when P = 0

Then V(t + 1) is plugged into the second equation it is possible to reduce the system into

−Y(t + 1) = −Y(t) + V(t) + φ Y(t)

Then both sides are multiplied by -1 by resorting terms we finally get:

Y(t + 1) = − V(t) + (1 − φ) Y(t)

180

The dynamical system of XPSO composed of velocity and actual position of the particle

can then be written as a dynamical system:

V(t + 1) = V(t) + φ Y(t)

Y(t + 1) = − V(t) + (1 − φ) Y(t)

Equation 67: Dynamical system of XPSO

The system matrix 𝐶 of coefficients can be concluded from the previous equation with

C = (
 1 φ
−1 1 − φ

)

As a next step the determinant of the system matrix can be calculated. By setting it zero,

the eigenvalues can be determined (characteristic polynomial).

det (C − λE) = det [
 χ − λ − χφ

−χ χ(1 − φ) − λ
] = 0

From here the quadratic equation can be derived with the Cramer rule. Finally, the

quadratic eigenvalue equation can be concluded as:

λ2 + χ(φ − 2)λ + χ2 = 0

181

This equation is solved for λ and then resolved for χ. Finally, the constriction factor can be

computed with:

χ =
2

|φ−2+√φ2−4φ|
 where φ = c1φ1 + c2φ2 and φ >= 4

Equation 68: Constriction factor of XPSO

With the setting of φ = 4.1 this leads typically to a constriction factor of χ ≈ 0.7298

This constriction factor is then applied to the new motion equation so the XPSO will

converge safely. The new motion equations of XPSO are denoted as following:

• Particles Velocity :

V⃗⃗ i (t + 1) = χ (V⃗⃗⃗⃗ i (t) + c1φ1 (P⃗⃗ i − X⃗⃗ i(t)) + c2φ2 (P⃗⃗ g − X⃗⃗ i(t)))

• Particles Position :

X⃗⃗ i (t + 1) = X⃗⃗ i (t) + V⃗⃗ i(t + 1) +

 (1 − χ) (c1φ1 (P⃗⃗ i − X⃗⃗ i(t)) + c2φ2 (P⃗⃗ g − X⃗⃗ i(t)))

Equation 69: Motion equations of XPSO

182

UPSO

Unified Particle Optimization (UPSO) is described in detail in the literature review in

chapter two.

MFFA

MFFA is a very popular and efficient nature inspired swarm algorithm described in Yang

et al. (2013). Please refer to the detailed description in the mentioned literature reference.

Also, MFFA was discussed in detail also in chapter two.

MSAPSO_FERNANDEZ

MSAPSO_FERNANDEZ is exactly the same algorithm as MSAPSO, with the following

differences: It has no variation of the theoretical inertia weight factor, which is based on a

previous search room characterization in MSAPSO. Instead of the stability formula found

in chapter three Equation 62: MSAPSO Stability Line (MSL) hypothesis and the special

convergence curves for MSAPSO Equation 61: Final convergence room MSAPSO with

uniform, normal distribution, it uses the original Martinez Fernandez convergence formula.

This formula is described in Equation 57: Order-2 convergence system for generic

probability distributions.

5.3.2 Preconditions for the long run test

The preconditions for the long runs for all algorithms tested are the following:

• Preciseness towards the global optimum is defined with 10-5

183

• Convergence of the algorithm is assumed when the actual Gbest-val at Gbest

position has not changed for about hundred fifty runs within an algorithmic run.

• To achieve statistical significance the number of runs is set to the following values

for the respective benchmarks:

o = 2D for all benchmarks with 500 runs

o > 2D and < 100D with 250 runs

o >= 100D and <= 500D with 100 runs

184

5.3.3 Benchmarks and Minimum Tests

Figure 30: List of benchmarks MIN-TEST in respective dimensions

185

5.3.3.1 Minimum 2D Long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

MARTINEZ
FTO SPSO FTO

BIRD 187,6 0,00000E+00 189,0 0,00000E+00 221,4 0,00000E+00

BOHACHEVSKY 159,4 0,00000E+00 159,9 0,00000E+00 229,4 0,00000E+00

BOOTH 182,0 0,00000E+00 182,5 0,00000E+00 207,3 0,00000E+00

CAMEL 159,3 0,00000E+00 159,7 0,00000E+00 192,1 0,00000E+00

DROPWAVE 159,7 0,00000E+00 159,6 0,00000E+00 222,9 2,68000E-03

EASOM 190,2 0,00000E+00 191,2 0,00000E+00 220,9 2,00000E-03

SHUBERT 203,2 0,00000E+00 203,4 0,00000E+00 251,1 0,00000E+00

ZETTL 175,4 0,00000E+00 175,8 0,00000E+00 194,7 0,00000E+00

EGGHOLDER 192,6 0,00000E+00 193,4 0,00000E+00 249,2 4,38330E+01

RANA 359,7 4,18560E-01 361,9 4,24610E-01 498,5 6,62270E-01

SALOMON 159,6 0,00000E+00 159,3 0,00000E+00 237,8 7,76000E-03

SCHWEFEL 194,8 0,00000E+00 195,7 0,00000E+00 254,6 4,38222E+01

STYBLINSKITANG 182,0 0,00000E+00 182,2 0,00000E+00 208,6 0,00000E+00

MICHALEWICZ 181,8 0,00000E+00 182,1 0,00000E+00 209,6 3,30000E-03

RIPPLE1 158,9 0,00000E+00 159,0 0,00000E+00 244,1 0,00000E+00

TRIGOCOMETRIC 178,8 0,00000E+00 178,9 0,00000E+00 202,9 0,00000E+00

QUINTIC 223,6 0,00000E+00 224,8 0,00000E+00 293,3 0,00000E+00

DEB1 159,6 0,00000E+00 160,1 0,00000E+00 239,8 0,00000E+00

ACKLEY1 159,5 0,00000E+00 159,5 0,00000E+00 271,7 0,00000E+00

GRIEWANK 159,6 0,00000E+00 159,7 0,00000E+00 233,9 1,60000E-03

RASTRIGIN 159,5 0,00000E+00 159,2 0,00000E+00 220.3 0,00000E+00

WAVY 159,6 0,00000E+00 159,3 0,00000E+00 193,1 0,00000E+00

SPHERE 159,5 0,00000E+00 159,7 0,00000E+00 231,7 0,00000E+00

SPHERE AT ONE 156,9 0,00000E+00 156,9 0,00000E+00 179,6 0,00000E+00

HOLDERTABLE 186,7 0,00000E+00 187,6 0,00000E+00 194,4 0,00000E+00

AVERAGE RUNS/

PRECISION
182,0 1,67424E-02 182,4 1,69844E-02 227,3 3,53339E+00

186

XPSO FTO UPSO FTO MFFA FTO

193,2 0,00000E+00 215,6 0,00000E+00 287,2 2,41330E-01

197,7 0,00000E+00 227,4 0,00000E+00 285,2 5,03930E-01

185,7 0,00000E+00 202,5 0,00000E+00 278,5 1,87000E-03

178,9 0,00000E+00 191,7 0,00000E+00 287,0 2,60000E-04

213,1 7,91000E-03 236,4 7,70000E-04 314,3 2,11000E-03

193,8 1,60000E-02 212,7 3,40000E-02 223,8 4,82290E-01

213,4 0,00000E+00 259,0 0,00000E+00 265,9 1,86013E+00

178,2 0,00000E+00 190,9 0,00000E+00 296,9 1,50000E-04

211,6 1,66818E+01 294,9 9,16963E+00 286,0 5,57250E-01

399,9 5,14360E-01 408,0 7,96090E-01 284,3 1,20742E+00

219,6 1,55600E-02 245,8 1,39000E-03 330,7 1,03000E-03

220,2 1,53970E+01 245,2 7,58005E+00 293,3 1,65930E+00

186,2 0,00000E+00 203,6 0,00000E+00 286,7 3,12000E-03

187,0 1,60000E-03 204,4 0,00000E+00 291,2 1,71000E-03

368,2 1,60000E-04 435,4 1,00000E-04 255,6 3,02000E-03

182,2 0,00000E+00 201,4 0,00000E+00 275,8 2,00000E-04

227,4 0,00000E+00 288,4 0,00000E+00 549,8 4,94000E-03

206,2 0,00000E+00 249,4 0,00000E+00 266,2 8,10000E-04

219,5 0,00000E+00 266,8 0,00000E+00 445,0 1,06900E-02

236,6 3,17000E-03 295,6 1,70000E-03 289,9 5,67000E-03

203,8 7,96000E-03 228,6 0,00000E+00 293,6 4,12300E-02

183,0 0,00000E+00 200,1 0,00000E+00 302,4 5,50000E-04

197,2 0,00000E+00 225,7 0,00000E+00 306,5 5,64400E-02

170,6 0,00000E+00 177,5 0,00000E+00 182,4 0,00000E+00

194,0 0,00000E+00 213,5 0,00000E+00 365,3 1,70000E-03

214,7 1,30582E+00 244,8 7,03349E-01 301,7 2,65886E-01

Figure 31: Min 2D Long runs with minimum error over all algorithms

187

Figure 32: Min 2D Long MSAPSO compared to other algorithms

5.3.3.2 Minimum 5D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

SCHWEFEL 243,3 3,95645E+01 246,7 4,47819E+01 338,7 2,30639E+02

STYBLINSKITANG 215,0 0,00000E+00 215,0 0,00000E+00 265,7 3,78664E+00

MICHALEWICZ 250,4 1,27640E-01 250,1 1,47600E-01 307,3 1,40320E-01

RIPPLE1 289,4 4,00000E-04 295,2 3,30000E-04 576,8 1,30800E-02

TRIGOCOMETRIC 226,4 0,00000E+00 228,8 0,00000E+00 271,5 0,00000E+00

QUINTIC 273,5 0,00000E+00 277,9 0,00000E+00 366,0 0,00000E+00

DEB1 217,1 0,00000E+00 219,8 0,00000E+00 318,7 0,00000E+00

ACKLEY1 231,2 0,00000E+00 227,6 0,00000E+00 340,0 0,00000E+00

GRIEWANK 263,9 2,79000E-03 273,0 2,54000E-01 458,1 3,19700E-02

RASTRIGIN 250,7 0,00000E+00 251,5 0,00000E+00 365,2 7,76070E-01

WAVY 198,7 0,00000E+00 199,8 0,00000E+00 251,8 1,28000E-03

SPHERE 213,6 0,00000E+00 216,8 0,00000E+00 288,3 0,00000E+00

SPHERE AT ONE 178,6 0,00000E+00 179,3 0,00000E+00 212,1 0,00000E+00

AVERAGE RUNS/

PRECISION
234,8 3,30795E+00 237,0 3,76532E+00 335,4 1,96157E+01

188

XPSO FTO UPSO FTO MFFA FTO

334,1 1,87731E+02 392,4 1,55865E+02 305,2 4,66423E+02

236,7 6,78560E-01 259,7 5,65470E-01 314,2 1,57179E+01

272,7 7,85800E-02 375,2 2,43280E-01 325,8 1,27966E+00

393,8 3,71300E-02 487,2 3,15200E-02 273,8 2,31080E-01

249,8 0,00000E+00 262,2 0,00000E+00 303,2 5,75390E-01

299,5 0,00000E+00 340,9 0,00000E+00 1982,2 1,17077E+00

300,2 0,00000E+00 456,6 6,00000E-05 277,7 7,21100E-02

280,7 0,00000E+00 302,1 0,00000E+00 885,6 8,67980E+00

398,5 4,16300E-02 659,5 2,46100E-02 303,3 2,35100E-01

337,9 1,01088E+00 463,3 3,46250E-01 311,3 7,66160E+00

234,4 2,13000E-03 278,5 4,30000E-04 311,0 6,00000E-04

247,4 0,00000E+00 260,4 0,00000E+00 1304,8 1,01290E-01

197,4 0,00000E+00 199,1 0,00000E+00 362,5 6,00000E-05

291,0 1,57983E+01 364,4 1,30897E+01 558,5 4,18457E+01

Figure 33: Min 5D Long runs with minimum error over all algorithms

Figure 34: Min 5D Long MSAPSO compared to other algorithms

5.3.3.3 Minimum 10D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

189

SCHWEFEL 319,2 1,77100E+02 324,0 1,88489E+02 476,8 7,14615E+02

STYBLINSKITANG 277,0 6,44635E+00 275,6 7,29455E+00 332,6 2,36931E+01

MICHALEWICZ 385,6 6,21380E-01 399,1 5,86240E-01 492,7 1,10240E+00

RIPPLE1 638,6 9,79200E-02 590,1 1,09420E-01 599,9 2,00860E-01

TRIGOCOMETRIC 372,5 0,00000E+00 380,3 4,77461E-01 417,1 0,00000E+00

QUINTIC 357,0 0,00000E+00 364,0 0,00000E+00 471,1 0,00000E+00

DEB1 276,2 0,00000E+00 279,5 0,00000E+00 381,4 0,00000E+00

ACKLEY1 371,4 0,00000E+00 372,6 0,00000E+00 428,2 0,00000E+00

GRIEWANK 406,9 7,15000E-03 410,2 8,45000E-03 419,7 8,37600E-02

RASTRIGIN 386,8 5,97000E-02 402,8 1,15420E-01 477,9 5,28522E+00

WAVY 255,1 0,00000E+00 258,1 0,00000E+00 329,4 3,64700E-02

SPHERE 309,7 0,00000E+00 309,8 0,00000E+00 363,4 0,00000E+00

SPHERE AT ONE 218,1 0,00000E+00 219,4 0,00000E+00 254,6 0,00000E+00

AVERAGE RUNS/

PRECISION
351,9 1,41794E+01 352,7 1,51600E+01 418,8 5,73090E+01

XPSO FTO UPSO FTO MFFA FTO

495,0 5,68808E+02 636,8 5,63936E+02 1123,6 1,72791E+03

332,1 6,44560E+00 338,9 1,97914E+01 607,2 5,29056E+01

455,7 5,35700E-01 699,8 1,88136E+00 319,3 4,94244E+00

441,9 2,69780E-01 515,8 2,50880E-01 371,8 3,24370E-01

438,4 0,00000E+00 452,3 8,65300E-01 4958,0 1,65836E+01

420,9 0,00000E+00 452,5 6,86000E-02 1351,2 9,24152E+00

385,2 0,00000E+00 595,2 2,30000E-04 751,8 6,99900E-02

392,1 1,84800E-02 341,6 6,93200E-02 707,1 1,35813E+00

399,6 8,19100E-02 620,3 4,85900E-02 461,5 2,15420E-01

474,2 5,83444E+00 863,2 3,69443E+00 406,0 4,41752E+00

325,4 3,29900E-02 444,8 5,53100E-02 464,5 2,14790E-01

339,1 0,00000E+00 296,7 0,00000E+00 559,6 5,33080E-01

247,1 0,00000E+00 222,9 0,00000E+00 1324,7 0,00000E+00

395,9 4,47713E+01 498,5 4,54355E+01 1031,3 1,39901E+02

Figure 35: Min 10D Long runs with minimum error over all algorithms

190

Figure 36: Min 10D Long MSAPSO compared to other algorithms

5.3.3.4 Minimum 30D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

QUINTIC 896,3 8,40000E-03 897,4 0,00000E+00 1485,5 1,40180E-01

DEB1 454,4 0,00000E+00 470,3 0,00000E+00 634,6 6,90000E-04

ACKLEY1 1201,7 0,00000E+00 1244,3 0,00000E+00 684,7 2,23549E+00

GRIEWANK 551,5 0,00000E+00 568,3 0,00000E+00 582,7 1,53600E-02

RASTRIGIN 719,0 2,58690E-01 815,2 1,98990E-01 741,2 4,65680E+01

WAVY 560,0 0,00000E+00 581,0 0,00000E+00 585,6 1,61730E-01

SPHERE 997,0 0,00000E+00 1021,9 0,00000E+00 783,0 0,00000E+00

SPHERE AT ONE 522,0 0,00000E+00 528,3 0,00000E+00 464,7 0,00000E+00

AVERAGE RUNS/

PRECISION
737,7 3,33863E-02 765,8 2,48738E-02 745,3 6,14018E+00

XPSO FTO MFFA FTO

1064,8 0,00000E+00 3438,0 4,85000E+01

680,4 0,00000E+00 1657,2 2,17120E-01

959,8 4,49600E-01 797,7 1,53842E+00

648,0 1,36200E-02 1273,2 1,62100E-02

888,7 4,33802E+01 1176,2 1,14095E+01

661,5 1,31370E-01 580,4 8,87700E-02

845,1 0,00000E+00 2272,2 5,06670E-01

510,6 0,00000E+00 1581,8 4,00000E-05

191

782,4 5,49684E+00 1597,1 7,78459E+00

Figure 37: Min 30D Long runs with minimum error over all algorithms

Figure 38: Min 30D Long MSAPSO compared to other algorithms

5.3.3.5 Minimum 100D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

QUINTIC 3846,2 5,66360E-01 4058,3 1,98610E-01 8138,3 1,92171E+01

DEB1 1513,8 1,07000E-03 1586,3 8,60000E-04 2374,4 9,82000E-03

ACKLEY1 2945,3 1,00000E-05 3044,8 1,00000E-05 3002,7 9,90531E+00

GRIEWANK 1275,2 0,00000E+00 1339,8 0,00000E+00 3430,6 9,58900E-02

RASTRIGIN 2144,6 3,45251E+00 2238,3 9,24321E+00 4156,4 2,36237E+02

WAVY 1141,6 0,00000E+00 1171,0 1,00000E-05 60,0 2,51130E-01

SPHERE 2632,2 0,00000E+00 2771,1 0,00000E+00 6198,9 6,06125E+01

SPHERE AT ONE 1250,5 0,00000E+00 1303,4 0,00000E+00 2464,8 9,30000E-03

AVERAGE RUNS/

PRECISION
2093,7 5,02494E-01 2189,1 1,18034E+00 3728,3 4,07923E+01

XPSO FTO MFFA FTO

5192,7 5,13200E-02 7398,1 2,16650E+02

2181,2 4,10000E-04 4747,0 2,31420E-01

4617,7 1,89874E+00 783,9 4,76128E+00

192

2742,0 3,63300E-02 1823,5 1,01230E-01

3447,2 2,13647E+02 3088,7 4,11171E+01

2502,2 1,77400E-01 2222,6 1,01250E-01

4234,4 1,00000E-05 7927,9 3,48390E-01

2194,3 3,00000E-05 3372,6 2,80000E-04

3389,0 2,69764E+01 3920,5 3,29139E+01

Figure 39: Min 100D Long runs with minimum error over all algorithms

Figure 40: Min 100D Long MSAPSO compared to other algorithms

5.3.3.6 Minimum 250D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO MFFA FTO

GRIEWANK 1850,3 0,00000E+00 1930,4 1,00000E-05 2960,9 1,66980E-01

RASTRIGIN 4296,9 2,05387E+01 4341,4 3,13322E+01 8169,2 1,77386E+02

WAVY 1399,6 0,00000E+00 1437,8 0,00000E+00 5687,1 7,45900E-02

SPHERE 4141,4 1,00000E-05 4356,8 1,00000E-05 3070,3 8,05225E+01

SPHERE AT ONE 1874,4 0,00000E+00 1992,3 1,00000E-05 6623,5 1,70000E-04

AVERAGE RUNS/

PRECISION
2712,5 4,10774E+00 2811,7 6,26644E+00 5302,2 5,16300E+01

Figure 41: Min 250D Long runs with minimum error over all algorithms

193

Figure 42: Min 250D Long MSAPSO compared to other algorithms

5.3.3.7 Minimum 500D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO MFFA FTO

GRIEWANK 2269,2 1,00000E-05 2441,6 1,00000E-05 4599,4 1,89660E-01

RASTRIGIN 9540,2 5,46632E+01 9090,8 8,29688E+01 32565,0 1,89043E+02

WAVY 1532,6 1,00000E-05 1606,1 1,00000E-05 10085,2 7,43900E-02

SPHERE 5150,1 2,00000E-05 5636,4 3,00000E-05 4659,5 1,32408E+02

SPHERE AT ONE 2357,1 1,00000E-05 2524,1 1,00000E-05 10978,6 1,00000E-03

AVERAGE RUNS/

PRECISION
4169,8 1,09327E+01 4259,8 1,65938E+01 12577,5 6,43433E+01

Figure 43: Min 500D Long runs with minimum error over all algorithms

Figure 44: Min 500D Long MSAPSO compared to other algorithms

194

5.3.4 Benchmarks and Maximum Tests

Figure 45: List of benchmarks MAX-TEST in respective dimensions

195

5.3.4.1 Maximum 2D Long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

BIRD 178,4 0,00000E+00 178,9 0,00000E+00 175,3 6,63285E+00

BOHACHEVSKY 152,9 0,00000E+00 153,0 0,00000E+00 153,0 0,00000E+00

BOOTH 153,5 0,00000E+00 153,5 0,00000E+00 153,4 0,00000E+00

CAMEL 153,7 0,00000E+00 153,7 0,00000E+00 153,7 0,00000E+00

DROPWAVE 161,3 0,00000E+00 162,2 0,00000E+00 169,9 0,00000E+00

EASOM 183,9 0,00000E+00 184,4 0,00000E+00 209,9 2,00000E-05

SHUBERT 204,1 0,00000E+00 205,3 0,00000E+00 251,9 0,00000E+00

ZETTL 153,2 0,00000E+00 153,2 0,00000E+00 153,3 0,00000E+00

EGGHOLDER 163,7 0,00000E+00 162,8 0,00000E+00 202,6 6,21012E+01

RANA 381,7 5,42250E-01 381,8 4,54700E-01 497,5 6,73080E-01

SALOMON 152,9 0,00000E+00 153,0 0,00000E+00 153,0 0,00000E+00

SCHWEFEL 194,8 0,00000E+00 195,6 0,00000E+00 251,0 4,64278E+01

STYBLINSKITANG 157,1 0,00000E+00 157,0 0,00000E+00 158,2 9,85000E+00

MICHALEWICZ 181,3 0,00000E+00 182,5 0,00000E+00 209,2 1,60000E-03

RIPPLE1 678,6 1,96000E-03 718,2 2,09000E-03 867,4 2,94000E-03

TRIGOCOMETRIC 186,0 0,00000E+00 186,9 0,00000E+00 215,1 4,95050E-01

QUINTIC 154,8 0,00000E+00 154,9 0,00000E+00 157,3 1,04910E+04

DEB1 152,3 0,00000E+00 152,3 0,00000E+00 152,4 0,00000E+00

ACKLEY1 289,3 5,90000E-04 292,6 3,80000E-04 423,7 1,01000E-03

GRIEWANK 176,1 0,00000E+00 177,2 0,00000E+00 198,3 0,00000E+00

RASTRIGIN 189,5 0,00000E+00 190,5 0,00000E+00 230,3 0,00000E+00

WAVY 179,6 0,00000E+00 179,8 0,00000E+00 203,6 0,00000E+00

SPHERE 152,9 0,00000E+00 152,9 0,00000E+00 153,0 0,00000E+00

SPHERE AT ONE 152,9 0,00000E+00 152,8 0,00000E+00 152,9 0,00000E+00

HOLDERTABLE 153,2 0,00000E+00 153,2 0,00000E+00 153,6 0,00000E+00

AVERAGE RUNS/

PRECISION
201,5 2,17920E-02 203,5 1,82868E-02 232,0 4,24688E+02

196

XPSO FTO UPSO FTO MFFA FTO

168,2 6,60284E+00 211,5 5,36640E-01 294,8 3,64000E-03

152,7 0,00000E+00 153,3 0,00000E+00 160,7 0,00000E+00

153,1 0,00000E+00 153,8 0,00000E+00 165,8 0,00000E+00

153,3 0,00000E+00 154,2 0,00000E+00 167,7 0,00000E+00

168,0 0,00000E+00 169,6 0,00000E+00 156,2 0,00000E+00

187,6 1,70000E-04 206,6 3,30000E-04 244,1 4,36000E-03

217,1 0,00000E+00 254,9 0,00000E+00 262,2 4,02323E+00

152,9 0,00000E+00 153,6 0,00000E+00 163,6 0,00000E+00

178,7 3,91936E+01 194,7 1,87736E+01 153,5 0,00000E+00

400,7 5,26140E-01 406,6 7,95680E-01 273,4 1,36533E+00

152,7 0,00000E+00 153,2 0,00000E+00 192,0 0,00000E+00

221,3 1,80026E+01 251,3 8,05380E+00 296,3 0,00000E+00

155,3 8,15000E+00 163,9 7,00000E-01 153,5 0,00000E+00

187,3 0,00000E+00 204,9 0,00000E+00 271,6 2,22000E-02

677,0 2,66000E-03 192,5 1,84780E-01 164,1 2,22000E-02

187,2 6,88400E-01 214,3 2,42900E-02 290,7 1,80230E-01

154,9 9,89493E+03 158,1 0,00000E+00 153,3 0,00000E+00

152,3 0,00000E+00 152,7 0,00000E+00 152,7 0,00000E+00

348,1 8,00000E-04 317,2 1,02000E-03 557,1 2,31100E-02

183,0 0,00000E+00 175,4 0,00000E+00 254,6 3,00000E-05

198,7 0,00000E+00 213,1 0,00000E+00 268,5 2,57000E-02

183,4 0,00000E+00 206,7 0,00000E+00 278,7 4,50000E-04

152,8 0,00000E+00 153,4 0,00000E+00 156,5 0,00000E+00

152,7 0,00000E+00 153,3 0,00000E+00 152,0 0,00000E+00

190,9 0,00000E+00 175,1 0,00000E+00 253,8 3,00000E-05

209,2 3,98724E+02 197,8 1,16281E+00 225,5 2,26820E-01

Figure 46: Max 2D Long runs with minimum error over all algorithms

197

Figure 47: Max 2D Long MSAPSO compared to other algorithms

5.3.4.2 Maximum 5D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

SCHWEFEL 245,4 4,82560E+01 245,3 4,68287E+01 336,0 2,34034E+02

STYBLINSKITANG 187,9 8,50000E+00 195,8 6,30000E+00 185,5 4,62977E+01

MICHALEWICZ 254,2 1,46060E-01 251,5 1,61870E-01 310,8 1,60740E-01

RIPPLE1 509,7 1,09930E-01 514,8 7,96600E-02 676,2 1,28850E-01

TRIGOCOMETRIC 236,4 1,19905E+00 240,0 1,55983E+00 339,5 3,82997E+01

QUINTIC 182,6 4,76900E+03 178,4 5,24550E+03 182,6 7,41524E+04

DEB1 159,0 0,00000E+00 158,1 0,00000E+00 170,8 0,00000E+00

ACKLEY1 555,0 1,42200E-02 574,5 1,48900E-02 838,7 2,20000E-02

GRIEWANK 222,8 0,00000E+00 225,6 0,00000E+00 340,9 0,00000E+00

RASTRIGIN 229,7 3,21600E-02 232,0 0,00000E+00 309,6 3,21600E-02

WAVY 207,5 5,20000E-04 208,5 6,20000E-04 252,9 0,00000E+00

SPHERE 159,3 0,00000E+00 158,4 0,00000E+00 167,6 0,00000E+00

SPHERE AT ONE 155,3 0,00000E+00 155,3 0,00000E+00 168,6 0,00000E+00

AVERAGE RUNS/

PRECISION
254,2 4,02271E+02 256,8 4,41704E+02 329,2 6,20594E+03

XPSO FTO UPSO FTO MFFA FTO

327,2 1,72859E+02 409,8 1,18438E+02 354,7 6,34225E+02

171,7 3,99000E+01 210,2 2,76927E+01 205,5 2,16667E+01

198

272,6 9,00500E-02 390,2 2,41610E-01 277,2 1,84627E+00

510,9 9,24800E-02 257,8 9,46340E-01 306,8 9,71260E-01

260,2 3,43932E+01 480,7 3,22799E+00 254,6 4,64060E+01

173,0 5,60315E+04 186,0 3,64928E+04 237,6 2,41089E+04

167,1 0,00000E+00 191,7 0,00000E+00 233,5 3,00000E-05

732,9 1,43800E-02 855,1 2,63600E-02 297,5 1,19920E-01

252,9 0,00000E+00 252,9 1,73900E-02 269,4 2,10110E-01

261,2 0,00000E+00 270,1 2,65420E-01 318,5 9,09359E+00

229,0 0,00000E+00 206,4 0,00000E+00 414,2 7,79800E-02

159,6 0,00000E+00 155,7 0,00000E+00 196,9 0,00000E+00

160,0 0,00000E+00 155,8 0,00000E+00 152,0 0,00000E+00

282,9 4,68991E+03 309,4 3,05364E+03 270,6 2,06863E+03

Figure 48: Max 5D Long runs with minimum error over all algorithms

Figure 49: Max 5D Long MSAPSO compared to other algorithms

5.3.4.3 Maximum 10D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

SCHWEFEL 313,4 1,97508E+02 321,5 2,12407E+02 469,4 7,67676E+02

STYBLINSKITANG 336,7 5,83578E+01 331,7 5,61601E+01 873,6 1,34539E+02

MICHALEWICZ 385,6 7,64480E-01 402,4 5,99900E-01 492,8 1,08687E+00

RIPPLE1 559,3 1,41876E+00 546,5 1,10224E+00 828,9 3,27981E+00

TRIGOCOMETRIC 304,1 3,32665E+02 311,4 3,79197E+02 694,6 4,60773E+02

199

QUINTIC 367,6 3,89223E+04 367,6 3,71954E+04 1111,1 1,82993E+05

DEB1 175,4 0,00000E+00 174,3 0,00000E+00 369,1 0,00000E+00

ACKLEY1 737,4 3,27800E-02 795,3 3,38900E-02 1122,9 5,55500E-02

GRIEWANK 286,9 2,25230E-01 294,9 2,32820E-01 540,3 6,78400E-02

RASTRIGIN 308,0 2,23535E+00 315,6 1,49560E+00 448,6 2,73388E+00

WAVY 250,8 1,62000E-03 253,6 1,03000E-03 330,1 9,30000E-03

SPHERE 359,3 0,00000E+00 353,2 0,00000E+00 1081,6 1,79500E-02

SPHERE AT ONE 156,1 0,00000E+00 156,2 0,00000E+00 634,6 0,00000E+00

AVERAGE RUNS/

PRECISION
349,3 3,03966E+03 355,7 2,91128E+03 692,1 1,41818E+04

XPSO FTO UPSO FTO MFFA FTO

503,1 5,69817E+02 664,4 5,74832E+02 294,3 1,81924E+03

426,2 9,75984E+01 194,2 9,85461E+01 297,9 2,11084E+02

447,4 4,95480E-01 690,6 1,82330E+00 266,4 6,28479E+00

494,0 4,68940E-01 399,1 9,65221E+00 250,7 2,65883E+01

416,1 4,44722E+02 502,9 4,69713E+02 285,0 2,11000E+03

506,1 1,43536E+05 186,5 1,78135E+05 280,4 2,68645E+05

304,4 0,00000E+00 384,1 0,00000E+00 371,1 1,73600E-02

1057,5 3,69200E-02 1072,2 7,50500E-02 285,0 2,76380E-01

375,5 1,88890E-01 232,0 5,17430E-01 288,4 7,14250E-01

375,8 4,50290E-01 370,2 1,23993E+01 236,9 9,15596E+01

307,3 2,60000E-04 460,4 2,58800E-02 593,3 6,20800E-02

503,3 0,00000E+00 158,0 0,00000E+00 294,5 4,79370E+04

335,4 0,00000E+00 158,4 0,00000E+00 152,0 0,00000E+00

465,5 1,11269E+04 421,0 1,37925E+04 299,7 2,46806E+04

Figure 50: Max 10D Long runs with minimum error over all algorithms

200

Figure 51: Max 10D Long MSAPSO compared to other algorithms

5.3.4.4 Maximum 30D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

QUINTIC 917,3 6,51498E+04 953,3 6,65225E+04 6199,0 7,51442E+05

DEB1 335,2 0,00000E+00 350,2 0,00000E+00 796,3 0,00000E+00

ACKLEY1 981,5 7,13300E-02 1092,5 6,92700E-02 1575,5 1,33620E-01

GRIEWANK 540,4 0,00000E+00 554,7 0,00000E+00 2845,7 1,03260E-01

RASTRIGIN 656,9 4,45957E+01 685,1 4,36503E+01 857,7 1,40440E+02

WAVY 450,0 1,37700E-02 463,1 1,36600E-02 590,0 9,23000E-02

SPHERE 901,7 0,00000E+00 939,9 0,00000E+00 6382,1 2,55195E+04

SPHERE AT ONE 156,0 0,00000E+00 155,6 0,00000E+00 3013,1 1,22900E-01

AVERAGE RUNS/

PRECISION
617,4 8,14932E+03 649,3 8,32078E+03 2782,4 9,71379E+04

XPSO FTO MFFA FTO

2018,2 4,76626E+05 263,4 1,67740E+06

914,8 2,60000E-04 744,6 2,76100E-02

1441,9 6,86000E-02 259,9 4,72700E-01

1113,4 0,00000E+00 259,6 3,75221E+00

929,8 4,54222E+01 269,6 3,77137E+02

641,6 1,87000E-02 906,8 1,67970E-01

2017,8 0,00000E+00 321,2 1,42383E+06

1152,0 0,00000E+00 152,0 0,00000E+00

201

1278,7 5,95839E+04 397,1 3,87701E+05

Figure 52: Max 30D Long runs with minimum error over all algorithms

Figure 53: Max 30D Long MSAPSO compared to other algorithms

5.3.4.5 Maximum 100D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO SPSO FTO

QUINTIC 5341,2 5,05870E+04 5788,0 4,59612E+04 233781,1 5,36990E+06

DEB1 1137,8 1,00000E-05 1284,9 2,00000E-05 1984,9 4,00000E-05

ACKLEY1 1900,9 9,95000E-02 2067,1 9,87800E-02 2960,3 2,62870E-01

GRIEWANK 2661,6 4,05000E-03 2857,9 4,12000E-03 7313,2 1,31046E+01

RASTRIGIN 2954,6 2,78862E+02 3084,2 2,69953E+02 4117,0 7,65945E+02

WAVY 1601,6 1,95000E-02 1607,8 1,36400E-02 2202,6 1,60890E-01

SPHERE 5269,9 3,01560E-01 5800,6 2,14000E-03 29891,9 3,77800E+06

SPHERE AT ONE 155,5 0,00000E+00 155,9 0,00000E+00 7587,2 2,11713E+01

AVERAGE RUNS/

PRECISION
2627,9 6,35829E+03 2830,8 5,77891E+03 36229,8 1,14359E+06

202

XPSO FTO MFFA FTO

28083,0 1,41810E+06 164,7 1,08572E+07

2803,0 2,03000E-03 151,3 8,49930E-01

2984,3 1,86870E-01 1339,3 5,94000E-02

11007,3 1,33090E-01 293,0 2,08639E+01

3873,9 3,85082E+02 271,3 1,43503E+03

2407,8 2,96900E-02 3413,5 6,16200E-02

28684,2 2,67494E+03 528,5 1,51291E+07

12070,3 1,77800E-01 160,0 0,00000E+00

11489,2 1,77645E+05 790,2 3,24847E+06

Figure 54: Max 100D Long runs with minimum error over all algorithms

Figure 55: Max 100D Long MSAPSO compared to other algorithms

5.3.4.6 Maximum 250D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO MFFA FTO

GRIEWANK 12188,7 1,82028E+00 14295,0 1,88474E+00 280,3 6,29300E+01

RASTRIGIN 12043,5 2,51779E+02 12977,9 8,04825E+01 255,7 3,09820E+03

WAVY 4758,4 1,52300E-02 5344,8 1,83600E-02 9529,7 6,37100E-02

SPHERE 22205,3 8,88453E+04 26506,2 1,15230E+05 168,0 3,93130E+07

SPHERE AT ONE 156,1 0,00000E+00 155,7 0,00000E+00 162,0 0,00000E+00

203

AVERAGE RUNS/

PRECISION
10270,4 1,78198E+04 11855,9 2,30625E+04 2079,1 7,86324E+06

Figure 56: Max 250D Long runs with minimum error over all algorithms

Figure 57: Max 250D Long MSAPSO compared to other algorithms

5.3.4.7 Maximum 500D long runs with minimal runs and error

BENCHMARK
MSAPSO

COOK
FTO

MSAPSO

COOK &

MARTINEZ

FTO MFFA FTO

GRIEWANK 26347,1 1,12856E+01 31263,5 1,25000E+01 265,8 1,80599E+02

RASTRIGIN 23605,5 1,34904E+03 27964,0 9,63675E+02 257,7 6,48999E+03

WAVY 9801,9 7,48600E-02 10755,6 6,41400E-02 16620,0 5,81000E-02

SPHERE 39911,2 2,73565E+06 47481,1 3,16124E+06 250,6 5,31081E+07

SPHERE AT ONE 155,8 0,00000E+00 155,9 0,00000E+00 500,0 0,00000E+00

AVERAGE RUNS/

PRECISION
19964,3 5,47402E+05 23524,0 6,32442E+05 3578,8 1,06230E+07

Figure 58: Max 500D Long runs with minimum error over all algorithms

204

Figure 59: Max 500D Long MSAPSO compared to other algorithms

5.4 Comparison MSAPSO & MFFA with and without ELM

5.4.1 Sphere Function without ELM

Figure 60: Min 2D-500D Long runs with Sphere Function comparison wo ELM

205

Figure 61: Min 2D-500D Min error with Sphere Function comparison wo ELM

5.4.2 Sphere Function with ELM

Figure 62: Min 2D-500D Long runs with Sphere Function comparison with ELM

206

Figure 63: Min 2D-500D Min error with Sphere Function comparison with ELM

5.4.3 Referenced Function comparison MSAPSO versus MFFA

In order to check with officially available performance data from MFFA tests, the

following source (Yang, Firefly for Multimodal Optimization, 2010, p. 9) is referenced to

check that the previously made performance and stability tests for MSAPSO and MFFA

are valid and consistent.

As an example, the De Jong Function and the Ackley Function is used. In Yang’s paper

the following performance figures are reported (column two and three). Right to the official

reported test, the evaluations within the PhD evaluations are reported (column four, five

and six).

207

The preciseness of the comparison is about ≤ 10-5 both for the Yang test as well as for the

PhD test. The numbers under the respective algorithm names in the table reflect the average

runs achieved. The percentage values in brackets is the rate of convergence to the real

global optima.

Referenced

Function

PSO

 (Yang)

MFFA

(Yang)

PSO

 (PhD Test)

MFFA

(PhD Tests)

MSAPSO

(PhD Tests)

De Jong

Function 1

D = 256

17040

(100%)

7217

(100%)

14989

 (100%)

7369

(99%)

2167

(100%)

Ackley

Function 1

D = 128

23407

(92%)

5293

(100%)

19589

(90%)

4853

(96%)

3335

(100%)

Figure 64: Official Performance Data from Yang compared to MSAPSO tests

Some explanation is required for the small differences in the test result between the

numbers reported in the Yang Tests versus the PhD Tests, although the preciseness setting

is the same in both tests cases. As the PSO in the PhD implementation is a van Neumann

topology the performance figures are slightly better than in the Yang tests. Secondly as the

208

parameter setting for MFFA in the Yang tests are unknown, in the PhD Tests we have

chosen the MFFA parameters as following:

MFFA setting for De Jong Function 1: 𝛼 = 0.0175 β = 0.05 γ = 0.05

MFFA setting for Ackley Function 1: 𝛼 = 0.0002 β = 0.50 γ = 1.00

There is also not an exact statement with regard to the number of particles and fireflies

used in the Yang tests. In the PhD test this value is set to thirty. Although there is some

uncertainty with regard to parameter configuration details in MFFA as well as the

implementation details with regard to the PSO topology used in the Yang tests the tendency

in the comparative tests seem to confirm the PhD results when reflecting it with the official

tests from Yang.

Finally, also in this direct comparison MSAPSO outperforms MFFA (PhD test)

significantly both in high dimensional unimodal and multimodal functions (column five

and six). The average performance benefit of MSAPSO is about fifty percent in the

combined test case.

5.5 Summary Evaluations Results

• In the tests of the variation of inertia weight, sum of social and cognition and the used

probability distribution, MSAPSO with MSL seems to be an optimal strategy with

regard to minimal total averaged runs and minimal total averaged error based in the

tested benchmarks.

209

• Furthermore, MSAPSO still have a lot of flexibility built in, along the specific set of

convergence curves, represented by the MSF and the sliding concept of the inertia

weight value. Also, this flexibility can be used for example in escape-lmin-optima

situations.

• For the case of the detailed MSAPSO tests, the MSF is used, as well as the escape-

lmin-strategy is turned on. Then we have the following results for the minima and

maxima test:

o In 2D: MSAPSO is significantly superior compared to all other algorithms

tested both with regard to total averaged runs and total averaged error.

o In 5D: MSAPSO is significantly superior compared to all other algorithms

tested both with regard to total averaged runs and total averaged error.

o In 10D: MSAPSO is significantly superior compared to all other algorithms

tested both with regard to total averaged runs and total averaged error.

o In 30D: MSAPSO is significantly superior compared to all other algorithms

tested both with regard to total averaged runs and total averaged error. With

30D the number of comparative algorithms and benchmarks needs to be

reduced.

o In 100D-500D: MSAPSO is significantly superior compared to all other

remaining algorithms tested both with regard to total averaged runs and total

averaged error. With dimensions of 100D-500D the number of comparative

algorithms and benchmarks further needs to be reduced, because most

algorithms lose the capability to converge in a stable way. Just three algorithms

remain with MSAPSO, MSAPPSO_FERNANDEZ and MFFA.

210

o In comparison with MFFA and with escape-lmin-strategy turned off MSAPSO

is superior over MFFA up to round about hundred thirty dimensions (see sphere

function tests). From there on MFFA do have a better performance and stability.

o When escape-lmin-strategy in MSAPSO is turned on again, then it is superior

also compared to MFFA in higher dimensions.

211

6 RESEARCH CONTRIBUTION OF MSAPSO

The general and specific research and knowledge contribution of the MSAPSO algorithm

is summarized in the below table and sorted by the order of importance and relevance.

General Theme Specific Research Contribution

General Optimizer

with the concept of a “parameter-less” and “self-

adaptive” swarm concept, which is agnostic to the

underlying benchmark problems and the used

probability distributions.

Creation of a new stability criteria (MSL) based on

the saddle point of the set of specific convergence

curves, which forms a new way to get independent

from chosen inertia weight, social, cognition

parameter settings and the used probability

distribution.

μφstable = (μw + 1)
2

Understanding of the relation between MSAPSO

order-1 and order-2 convergence room and the

order-2 collapse into order-1 zone.

Please refer to chapter 3.6.2

Mathematical proof of order-1 order-2 convergence

zone collapse.

212

 Theoretical understanding of the optimal start

inertia weight value of MSAPSO.

Please refer to: chapter 4.5.1

Reasoning of MSAPSO start inertia weight

Specific convergence curve of MSAPSO and the

understanding that for uniform and the normal

distribution we have the same convergence curve,

when we have the same average value and the same

standard deviation independent of the type of the

probability distribution:

Please refer to: chapter 3.5.4

Application of convergence study to MSAPSO

Understanding, how average and variance based

probability distributions can be used to control the

level of exploration and exploitation in MSAPSO.

Please refer to:

Figure 17: Raised convergence and stability curve

with N(0.5,0.075)

Flexible Escape Local Optima Strategy

A HYPERCUBE-, LOCALCUBE-, and

GRAVITATIONAL CUBE Escape Local Optima

strategy, which works “dimension-less” and

213

with the concept of a self-adaptive and N −

dimensional benchmark agnostic escape strategy

independent from the underlying benchmark

problem structure. It is flexible in nature such that

different portions of the three strategies will be

applied for different benchmark types.

Please refer to: chapter

Escape Local Minima Strategy

Dynamic Characterization of the Search Space as a

prerequisite to efficiently escape local optima’s as

well as dynamic inertia weight strategy around

optimal inertia weight point.

Please refer to: chapter 4.8.1

For the above research contribution, we have the following limitations:

• MSAPSO convergence study is only valid with probability distributions that have

an average value and a corresponding variance.

• For the case of, e.g. Cauchy- and Levy distribution the stability criteria are not

applicable, because of the lack of an average value and variance in these

distributions, therefore it would be worthwhile to investigate a convergence

analysis to embed this into the MSAPSO algorithm.

214

7 FUTURE RESEARCH

With regard to the MSAPSO there are various areas of future research which can be worked

on. In order to outline these fields, we need also to understand what other areas such as

Artificial Intelligence (AI) do have as a problem: in that context, the following fields

specific to MSAPSO or related to other intelligent bio-inspired algorithms can be named:

In general:

• Deep understanding of the mathematics of other nature-inspired algorithms

(convergence behavior, parameter influence on the algorithms).

• Understand self-parameterizing concepts which has their roots in biology

(brain function, bio-inspired system in general).

• Criteria’s for combining hybrid algorithms and methods to understand their

respective influence into the overall results (performance, error-proneness)

• Get a better understanding why dynamical system such as MSAPSO do aim for

emergent behavior.

https://www.dict.cc/englisch-deutsch/error-proneness.html

215

Specific to MSAPSO:

• Analyze the mathematical criteria’s and relations of probability distributions used

and their influence on the optimal balance points, in the context when to use what

kind of a probability distribution when facing different types of benchmark

problems.

• In this context, also understand how non-averaged & non-variance value

probability distributions such as Cauchy and Levy distributions can be integrated

into a self-parametrizing model of MSAPSO.

• Mathematical Analysis of the 3rd (kurtosis) and 4th (skewness) statistical moment

and their influence on the MSAPSO convergence analysis shown in this PhD

document.

• A more detailed analysis on the particular influence of social and cognition at the

sum of both with regard to unimodal and multimodal functions, also in the context

of high dimensional benchmark problems.

.

216

REFERENCES

Ashby, R. (1962). Principles of the self-organizing system. 255-278. Retrieved from

http://csis.pace.edu/~marchese/CS396x/Computing/Ashby.pdf

Bai, Q. (2010, February). Analysis of Particle Swarm Optimization. Retrieved from

http://www.ccsenet.org/journal/index.php/cis/article/view/5131/4314

Bandura, A. (1986). Social Cognitive Theory. Stanford, California, United States.

Retrieved from http://www.uky.edu/~eushe2/Bandura/Bandura1989ACD.pdf

Brits, R., Engelbrecht, A. P., & van den Bergh, F. (2002). Niching PSO. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.6137&rep=rep1&ty

pe=pdf

Camazaine, S., Deneubourgh, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau,

E. (2001). Self-Organization in Biological Systems. Princeton University Press.

Chang Li, S. Y. (2009). An Adaptive Particle Swarm Optimizer for Function

Optimization. (IEEE, Ed.) Leicester, United Kingdom. Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6069879

217

Chang, L., & Yang, S. (2010, July 18-23). Adaptive Learning Particle Swarm Optimizer-

II for Global. (IEEE, Ed.) Retrieved from

http://www.cs.le.ac.uk/people/sy11/Papers/CEC10_1.pdf

Changhe Li, S. Y. (2012, June). A self-Learning Particle Swarm Optimizer for Global

Optimization Problems (SLPSO). IEEE Transaction on Systems, Man and

Cybernetics - Part B: Cybernetics, Vol 42, No. 3, June 2012. Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6069879

Clerc, M. (2005/2006). Particle Swarm Optimization (L'Optimisation par essaims

particulaires). Hermes Science Lavoisier in France (2005) ISTE Ltd in Great

Britain & United States (2006).

Commons Creative - Evolutionary Algortihms. (2011). Evolutionary Algorithms.

Memphis: www.booksllc.net.

Commons Creative - Optimization Algortihms. (2011). Optimization Algortihms. (B. L.

Series, Ed.) Memphis: www.booksllc.net.

Esperanza García-Gonzalo, J. L.-M. (2014). Convergence and stochastic stability analysis

of particle swarm optimization variants with generic parameter distributions. 286-

302. Retrieved from https://ac.els-cdn.com/S0096300314014416/1-s2.0-

S0096300314014416-main.pdf?_tid=d687ccb2-d79d-11e7-8585-

00000aab0f6c&acdnat=1512246036_55f855e4673fe5face4d83521f878e8f

218

Festinger. (1954). A Theory of Social Comparision Processes. Retrieved from

https://www.humanscience.org:

https://www.humanscience.org/docs/Festinger%20(1954)%20A%20Theory%20of

%20Social%20Comparison%20Processes.pdf

Haken, H. (1983). Synergetics An Introduction Nonequilibrium Phase Transitions and

Self-Organisation. Berlin Heidelberg: Springer Verlag.

Heppner, & Grenander. (1990). https://www.researchgate.net. Retrieved from

https://www.researchgate.net/profile/Frank_Heppner/publication/216300775_A_S

tochastic_Nonlinear_Model_for_Coordinate_Bird_Flocks/links/55acf79d08aea99

46727dd2a/A-Stochastic-Nonlinear-Model-for-Coordinate-Bird-

Flocks.pdf?origin=publication_detail&ev=pub_in

Hua-Ma, L., Ming, X., Meng, S., & Zhe, M.-L. (2013). Convergence and Spectral Radius

Analysis PSO and Parameter Selection for the PSO algorithm based on a

Stochastic Process. Retrieved from http://scialert.net:

http://scialert.net/qredirect.php?doi=itj.2013.1480.1490&linkid=pdf

James Kennedy, R. C. (2001). Swarm Intelligence, First Ediiton. Morgan Kaufmann.

Jamil, M., & Yang, X.-S. (2013). A Literature Survey of Benchmark Functions For

Global. Retrieved from https://arxiv.org/pdf/1308.4008.pdf

219

Kennedy, & Eberhard. (1995). Particle Swarm Optimization. Retrieved from

http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20pa

rticle%20swarming.pdf

Kennedy, J., & Mendes, R. (2002). Population Structure and Particle Swarm

Optimization Performance. Washington, USA. Retrieved from

http://ieeexplore.ieee.org/document/1004493/

LeClerc, M. (2005/2006). Particle Swarm Optimization (L'Optimisation par essaims

particulaires). Hermes Science Lavoisier in France (2005) ISTE Ltd in Great

Britain & United States (2006).

LeClerc, M. (2012, September 23). Standard Particle Swarm Optimization. Retrieved

from r/pso/SPSO_descriptions.pdf:

http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf

Liang, & et al. (2006). Comprehensive Learning PSO. (IEEE, Ed.) Retrieved from

https://pdfs.semanticscholar.org/2142/bb3f3c3dbce455506c1e5cd15826f5c3093a.

pdf

Novak, Latane, & Vallacher. (1994). Dynamical Social Psychology An Introduction.

Retrieved from

https://www.researchgate.net/publication/236007812_Dynamical_Social_Psychol

ogy_An_Introduction

220

Olsson, A. e. (2011). Particle Swarm Optimization - Theory, Techniques and

Applications. Nova Science Publishers Inc.

Parsopoulas, V. K., & Vrahatis, M. N. (2010). Particle Swarm Optimization and

Intelligence - Advances and Applications. Information Science Reference.

Poli, Riccardo. (2009, August). Mean and Variance of the Sampling Distribution of

Particle Swarm Optimizers During Stagnation. IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4,, 712-720. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F27FDBA20F503AF5

C80B12BF8BF98AB?doi=10.1.1.206.4273&rep=rep1&type=pdf

Reeves. (1983). Particle Systems - A Technique for Modelling Fuzzy Systems. Retrieved

from https://sealab.cs.utah.edu: https://sealab.cs.utah.edu/Courses/CS6967-

F08/Papers/Reeves-1983-PSA.pdf

Reynolds. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model.

Retrieved from https://www.red3d.com/cwr/papers/1987/SIGGRAPH87.pdf

Sedighizadeh, D., & Masehian, E. (2009). Particle Swarm Optimization Methods,

Taxonomy and Applications - International Journal of Computer Theory and

Engineering, Vol 1 No 5. Retrieved from www.academia.edu:

http://www.academia.edu/213172/Particle_Swarm_Optimization_Methods_Taxo

nomy_and_Applications

221

Shannon. (1948). A Mathematical Theory of <Communication. Retrieved from

http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

Teruyoshi Yamaguchi, N. I. (2007, April). Adaptive Particle Swarm Optimization using

Information about Global Best. Tokyo, Japan. Retrieved from

http://onlinelibrary.wiley.com/doi/10.1002/eej.20487/epdf?r3_referer=wol

Tian, D. (2013). A Review of Convergence Analysis of Particle Swarm Optimization.

117-128. Retrieved from http://www.sersc.org/journals/IJGDC/vol6_no6/10.pdf

Wang, X., Wang, Y., Zeng, H., & Zhou, H. (2006). Particle Swarm Optimization with

Escape Velocity (EVPSO). Retrieved from

http://ieeexplore.ieee.org/document/4072129/

Wolpert. (1996, December 31). No Free Lunch Theorems. Retrieved from

http://www.no-free-lunch.org/WoMa96a.pdf

Yang. (2010). BAT algorithm: Review and Applications. Retrieved from

https://arxiv.org/pdf/1308.3900.pdf

Yang. (2010, March). Firefly for Multimodal Optimization. Cambridge, Great Britain.

Retrieved from https://arxiv.org/pdf/1003.1466.pdf

Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm

Intelligence and Bio-Inspired Applications. London: Elsevier.

222

Yang, X.-S. (2013, August 18). Firefly Algorithm: Recent Advances and Applications.

Retrieved from https://www.researchgate.net:

https://www.researchgate.net/publication/255971821_Firefly_Algorithm_Recent_

Advances_and_Applications

Yang, X.-S., Cui, Z., Renbin, X., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm

Intelligence and Bio-Inspired Computation. Elsevier Insights.

Yu Wang, B. L. (2010). Self-adaptive learning based particle swarm optimization.

Retrieved from Science Direct:

http://www.sciencedirect.com./science/article/pii/S0020025510003312

223

LIST OF ABBREVIATIONS

AACA ... Artificial Ant Colony Algorithm

ABCA .. Artificial Bee Colony Algorithm

ACM ... Adaptive Cultural Model

AI .. Artificial Intelligence

ALPSO I... Adaptive Learning Particle Swarm Optimization

ALPSO II ... Adaptive Learning Particle Swarm Optimization II

APSO .. Adaptive Particle Swarm Optimization

BAA .. Bat Artificial Algorithm

CA ... Cultural Algorithm

CLPSO ... Comprehensive Learning PSO

COMPSO ... Composite PSO

CSA .. Cuckoo Search Algorithm

DbV ... Difference based velocity update

EbV .. Estimation based velocity update

E-MPSO .. Entropy based Memetic PSO

EP .. Evolutionary Programming

EVPSO .. Escape Velocity PSO

FFA ... Firefly Algorithm

Gbest ... Global best in Particle Swarm

224

GP ... Genetic Programming

GWA .. Glowworm Swarm Algorithm

HMP .. Hyper-Middle-Point

HSA... Hunting Search Algorithm

Lbest .. Local best in Particle Swarm

MFFA ... Memetic Firefly Algorithm

MSAPSO... Multi Self Adaptive Particle Swarm Optimization

MSF... MSAPSO Stability Formula

MSL ... MSAPSO Stability Line

NC ... Natural Computation

NFL ... No-Free-Lunch Theorem

NPSO ... Niching PSO

PSO .. Particle Swarm Optimization

PSO-CL-pbest ... PSO Comprehensive Learning Pbest

SIE... Shannon Information Entropy

SLPSO II Self-Learning Swarm Optimizer for Global Optimization

SLSPO I .. Self-adaptive learning based PSO

SPSO ... Standard PSO, Standard Particle Swarm Optimzation

UPSO .. Unified Particle Swarm Optimization

XPSO .. Constriction PSO

225

APPENDICES

APPENDIX A – MINIMUM BENCHMARK FUNCTIONS

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Bird

[2] [−2𝜋, 2𝜋]𝐷 [
1.58214,
3.13024

]

−106.76453

Bohachevsky

[2] [−100,100]𝐷 [
0
0
]

0

226

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Booth

[2] [−10,10]𝐷 [
1
3
]

0

Camel

[2] [−5,5]𝐷 [
0
0
]

0

Dropwave

[2] [−5,5]𝐷 [
0
0
]

-1

227

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Easom

[2] [−100,100]𝐷 [
𝜋
𝜋
]

-1

Shubert

[2] [−10,10]𝐷 [𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒]

186,73091

Zettl

[2] [−5,5]𝐷 [𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒]

-0,03790

228

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Eggholder

[2] [−512,512]𝐷 [
512

404,23181
]

-959,6406

Rana

[2] [−512,512]𝐷 [𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒]

-513

Salomon

[2] [−10,10]𝐷 [
0
0
]

0

229

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Schwefel

[2] [−500,500]𝐷 [
420,96875
420,96875

]

-837,9657

Styblinskitang

[2] [−5,5]𝐷 [
−2,90353
−2,90353

]

-78,33233

Michalewicz

[2] [−𝜋, 𝜋]𝐷 [
2,20290
1,57079

]

-1,80130

230

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Ripple1

[2] [−0,5,0,5]𝐷 [
0
0
]

-0,2

Trigonometric

[2] [−𝜋, 𝜋]𝐷 [𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒]

0

Quintic

[2] [−10,10]𝐷 [𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒]

0

231

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Deb1

[2] [−1,1]𝐷 [𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒]

-1

Ackley1

[2]
[
−32,768,
32,768

]
𝐷

 [
0
0
]

0

Griewank

[2] [−50,50]𝐷 [
0
0
]

0

232

Benchmark

Function

2D view D Xi Range

R

Xmin

𝒙∗

Function

Value

f (𝒙∗)

Rastrigin

[2] [−5,12,5,12]𝐷 [
0
0
]

0

Wavy

[2] [−𝜋, 𝜋]𝐷 [
0
0
]

0

Sphere

[2] [0,0]𝐷 [
0
0
]

0

Sphere_at_one

[2] [1,1]𝐷 [
0
0
]

0

233

APPENDIX B – MSAPSO STRUCTURAL DIAGRAM

Figure 65: MSAPSO Structural Diagram

234

Figure 66: MSAPSO Escape Local Optima Mode

235

 CURRICULUM VITAE

Personal Information

LAST NAME: Koch

FIRST NAME: Gerhard

NATIONALITY German

GENDER Male

LANGUAGES German, English, French

PRIVATE PHONE: +49 7471 617238

MOBILE PHONE: +49 171 8614865 (private)

EMAIL-ADDRESS: gkoch3103@gmail.com

Education

UNIVERSITY OF

APPLIED SCIENCES

ALBSTADT-EBINGEN:

Technical Computer Science

1988-1993

UNIVERSITY OF

APPLIED SCIENCES

HAMBURG:

Industrial Engineering

2004-2006

UNIVERSITY OF

LOUISVILLE

SPEEDSCHOOL

OF ENGINEERING

PhD Industrial Engineering

2009-2017

Professional Societies

IEEE: Member since 2007

AUTOISAC: Board Member since 2017

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2018

	Multi self-adapting particle swarm optimization algorithm (MSAPSO).
	Gerhard Koch
	Recommended Citation

	Swarm Algorithm PhD

