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ABSTRACT

DYNAMIC WAREHOUSE OPTIMIZATION USING

PREDICTIVE ANALYTICS

Parvaneh Jahani

November 30, 2016

A warehouse is a key component of a logistics system that provides a central

location for receiving, storing, and distributing raw materials or manufactured goods.

While the objective of a logistics system is reducing the overall inventories and cycle

times (the average time between successive deliveries), warehouses are concerned with

having the right items, available at the right place, at the right time.

As e-commerce continues to expand and order shipments become smaller, more

diverse, and frequent, warehouses must adjust proactive approaches for order fulfill-

ment. Efficient replenishment of the right products into the forward picking areas

becomes a more challenging problem in this dynamic environment. The set of items

ordered in one month might be completely different from next month’s orders. His-

torical time-based demand data provides valuable information for the models, which

have demand as an input. Disregarding the knowledge about the order data behavior

over time is costly. One warehousing problem that is highly dependent on product

demand and picks is the Forward-Reserve Problem (FRP).
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The forward area is a small area of a warehouse with a low picking cost.

Therefore, the items of a warehouse compete to be located in this area rather than the

reserve area, which has a higher picking cost. Two approaches that are investigated

for selecting the SKUs of the fast picking area and the allocated space are the static

and the dynamic approaches.

In the case that decisions about the forward area are made periodically (e.g.

yearly) and the products’ demand patterns are completely ignored, the FRP is static.

Due to the NP-hard nature of the product assignment to the forward area, we de-

veloped two heuristics that solve the large discrete assignment, allocation, and sizing

problem simultaneously. We also developed a heuristic that determines the best sizes

of the different pick modes within the forward area.

Using a fixed number for the “demand per year” in the static approach does not

accurately capture the characteristics of the demand pattern. Replenishing the same

product in the same place of the forward area brings about a “Locked” layout of the

fast picking area during the planning horizon. By using a dynamic slotting approach,

the product pick locations within the warehouse are allowed to change and pick oper-

ations can accommodate the variability in the product demand pattern. A dynamic

approach can introduce the latest fast movers to the forward area, as an opportunity

arises, and stop the replenishment of the products with decreasing turnover rates in

this area at the right time. The allocated space to the items in the forward area can

also vary over time. We show that on average 39% of the candidate SKUs for the

forward area experience the flexibility that the dynamic slotting approach provides.

However, updating the forward area periodically in the static approach affect on only

6% of the SKUs.

The primary objective of this dissertation is to formally define the dynamic
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FRP. Although real-time order picking and replenishment systems are becoming a

pivotal component of today’s order fulfillment systems, no consensus in the literature

has been made regarding a definition for dynamic slotting optimization. One main

mission of this research is to define a generic dynamic slotting problem while also

demonstrating the strengths of this approach over the static model.

Dynamic slotting continuously adjusts the current state of the forward area

with real-time decisions in conjunction with demand predictive analytics. Therefore,

the layout of the fast picking area is updated over time with replenishment of the

appropriate SKUs, as opposed to traditional methods that periodically reslot the

forward area to reach a predefined target map. A powerful slotting methodology

not only considers seasonality, but also other types of demand shifts, trends, and

frequencies. We explored the methods for demand pattern detection and demand

forecasting as well as proposed MIP mathematical model for the dynamic forward-

reserve problem for the first time. This model relaxes the major implicit assumptions

of the static model and quantifies the effects of the static strategy versus the dynamic

strategy.

Extensive numerical experiments are conducted to compare the static FRP so-

lutions, optimal solutions of the dynamic slotting model, and the developed threshold

policy, a faster method that performs almost as well as the dynamic MIP model. The

results show that the threshold policy solution is always very close to the optimal

solution in terms of both the total cost of picking and replenishment and the forward

area assignment and allocation. Applying different order data with different demand

volatility, we show that the dynamic model always outperforms the static model. The

benefits attained from the dynamic model over the static model are greater for more

volatile warehouses.
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CHAPTER I

INTRODUCTION

A Warehousing in logistics systems

A warehouse is a building used for the storage of goods, such as manufactured

parts, raw materials, spare parts and more. This building has both receiving and

shipping areas, in which goods are unloaded from the trucks in the receiving docks

and are loaded to the trucks on a smaller scale in the shipping docks. The level of

automation differs in different warehouses. While the products are completely picked,

packed, and transported automatically in some warehouses, others utilize labor for

those activities.

Material flow within the warehouse varies in terms of both type of Stock Keep-

ing Units (SKUs) and the volume. SKUs and demand growth are two subjects that

jeopardize any warehouse space management system. These growths will also affect

warehouse functions. In some cases, managers must accommodate by adding new

products to the already strained capacity of the distribution center. They may also

need to apportion available space to those SKUs that have experienced growth in

demand.

Every warehouse requires labor, capital, land, and an information system, but

providing these resources is costly. One important reason to have a warehouse is to

address a highly volatile and changing demand environment. Warehouses provide a
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buffer for these unpredictable changes. They can also reduce transportation costs

by product consolidation before shipping the aggregate volume. Several value added

services, such as packaging, returned product services, repairs, testing, inspection,

and assembly, are provided by warehouses.

B Warehouse operations

To accomplish the broad scope of warehousing functions (e.g. receiving, stor-

ing, picking, sorting, packing, shipping), a warehouse is commonly divided into several

functional areas. Figure 1 illustrates the basic flows in a warehouse, starting from

the receiving area and ending in the shipping area. After products are received, they

are sent to other functional area(s) or directly to the shipping area. The process

of unloading the receiving trucks and directly loading the shipping trucks is called

cross-docking.

Warehouse operations are labor intensive. Bartholdi and Hackman (2010)

report that 55% of warehouse operating costs belong to order-picking. This shows

the high potential of order picking and replenishment for warehouse improvements.

Not all of the areas of a warehouse have the same picking cost, however, the larger

areas and also the farther areas from the Input/Output (I/O) point have a larger

picking cost because pickers have to travel longer distances to pick items.

Slot and slotting are two common terms in warehouse studies. A slot is the

place allotted to the products on the shelf (see Figure 2). The front side view of Figure

2 shows three bays, each having three shelves with four slots per shelf. Slotting is the

process of determining the item location in a warehouse.

Regarding SKU units, we use the same terms applied in Walden (2005). Figure

3 illustrates the unit levels that describe an SKU in a warehouse. The levels are

2



Figure 1. Basic flows in a warehouse

Figure 2. Bay configuration
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pallet, tier (level), case (carton), inner, and each (piece), respectively. As Figure 3

demonstrates, a pallet includes layers of cartons. In logistics industry, the number of

cartons on a layer is called TI. The number of layers that are stacked on the pallet is

called HI. The TI and HI values in Figure 3 are 15 and 6, respectively. Case refers to

the carton or box. A quantity per pick is usually less than a full case. The smallest

unit of the SKU, which is picked from inside of the case, is called an each or piece.

Figure 3. Structure of an SKU

While some zones of the warehouse are replenished by the SKU cases, others

can be replenished by the pallets. Likewise, the SKUs can be picked by units or

cases. The information about the SKUs and cases such as the length, the width, the

height, the weight, the case pack (the number units per case), and the order data

affect the warehouse operation decisions. An item in the warehouse can have a single

or multiple pick location(s). The products are scanned in the different functional

areas for tracking and visibility purposes. Determining the best pick location(s) of

the products in the warehouse is challenging. Searching and extracting the SKUs

located in the smaller areas need less travel distance. However, the picker should

travel more distance to find and pick an item from the larger areas.
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C Forward-Reserve Operations

The forward area, or the fast picking area, is a small valuable section of the

warehouse with low picking cost. It is expected that the distance the picker traverses

in the forward area to pick an order is less than the distance traversed in the reserve

area because the forward area is smaller than the reserve area. In addition, the

physical nature of rack types in the forward area that we discussed earlier make the

pick operation more convenient in the forward area.

The items that go into the forward area are replenished (restocked) from the

reserve or bulk area, which is a large area with a high picking cost, to be picked more

efficiently. The SKUs are scheduled to be replenished from the reserve area to the

forward area. The Warehouse Management System (WMS) keeps track of real-time

inventory and schedules the replenishments. The best utilization of the areas with

low picking costs plays a significant role in having a more productive warehouse.

The total picking and replenishment costs will increase considerably if we

choose a wrong set of SKUs for the forward area. The reason is that inappropri-

ate SKU assignment results in less saving opportunities that the forward area can

provide. In addition, the number of replenishments will rise if the allocated slot(s) to

the SKUs in the forward area is less than optimal. Allocating more slots than optimal

reduces the chance of having a larger set of SKUs in the fast picking area. A clever

approach to detect the best SKU for the fast picking area and also the optimal slot

allocation enhances warehouse productivity and reduces operational costs.

Since the cost of picking from the forward area is low, one may be inclined to

have more products in the forward area due to the low picking cost. Two strategies

lead to having more items in the forward area: enlarging the forward area, and
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allocating less space to each item. The first approach often increases the picking cost,

since the picker has to travel a longer distance to pick. The second approach not

only involves more items in the restocking process, but also increases the number of

replenishments from the reserve area to satisfy the demand. The optimal size of the

forward area reduces the total cost of picking and replenishments.

1 Pick mode equipment

To present more details about the pick modules in the forward area, we compare

different types of pick modes in this section. The term pick mode refers to a region of

the forward area with similar rack characteristics. Typical examples of pick modes in

the forward area include five categories: pallet flow racks, carton flow racks, decked

racks, steel shelving, and bin shelving. Table 1 compares these different types of racks

shown in Figures 4, 5, 6, 7, and 8.

Figure 4. Pallet flow rack
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TABLE 1

Comparisons of the different types of pick mode racks

Pallet flow rack

Application Used for the fastest movers.

Advantage
Can hold a substantial amount of inventory for a single SKU.
Fast replenishment.
Replenishment does not interfere with picking.

Disadvantage
Low SKU density.
Can pass few SKU’s in a long distance.
Low space utilization.

Carton flow rack

Application Used for fast to medium movers.

Advantage
Can be replenished by the behind reserve racks.
Can hold a substantial amount of inventory and minimize the linear travel.
Replenishment does not interfere with picking.

Disadvantage
Low cube utilization.
Density is lower than steel shelving and more expensive than it.
Smaller product falls through the skate wheels or rollers.

Decked rack

Application Used for medium to slow movers.

Advantage Can be utilized on the floor level with reserve pallets above.
Medium SKU density.

Disadvantage Higher cost.
Decked rack has a thick support beam compared to shelving.

Steel shelving

Application Used for slow movers.

Advantage
High SKU density.
Can pass many SKUs in a short distance.
High space utilization

Disadvantage Not ideal for larger SKUs.
Replenishment is cumbersome.

Bin shelving

Application Used for small slow movers.

Advantage Low cost.
High space utilization.

Disadvantage
Can result in excessive travel for a picker.
Difficult to pick from the top shelf.
Replenishment can interfere with picking.
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Figure 5. Carton flow rack

Figure 6. Decked rack

Figure 7. Steel shelving
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Figure 8. Bin shelving

D Forward-Reserve Problem

The literature on the forward-reserve problem so far assumes that a warehouse

has one small and one large section, named fast and slow picking areas, respectively.

In practice, the fast picking area may refer to a shelving area, a section of the carton

flow rack, or even an automated system, such as carousels or a miniload system. Our

research is not concerned with the specific type of system as long as the picking cost

within the area is lower than in the reserve area.

To clarify the configuration of the forward-reserve area in this dissertation, we

describe our system as:

The warehouse has a forward and reserve area, where the picking cost from

the forward area is less in the reserve area, and the restocking cost from the reserve

area to the forward area is more than the cost of picking from the reserve area.

Assuming that the item is available in the reserve area, we perform concurrent

replenishment, in which the replenishments can happen during the order picking

process.

As opposed to a storage/retrieval machine that travels along the aisle to bring

part(s) to the picker, our picking policy in both the forward and reserve areas is
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picker-to-parts, where the order picker walks or drives along the aisles to pick order

lines.

Only one SKU can be stored in a particular slot.

Optimizing the decisions about the forward area is addressed in a well-known

warehousing problem called the Forward-Reserve Problem (FRP). Two important de-

cisions of this problem are the selection and the quantities of SKUs in the forward

area. The size of the forward area is another critical decision. All previous studies

assume that the set of SKUs assigned to the forward area should be known to deter-

mine the appropriate size of the forward area. The research in this dissertation solves

these three problems simultaneously.

The decisions about the forward and reserve areas are critical. Selecting the

wrong products for the forward area is costly. If the slow movers are stored in the

forward area, the chance of having more fast movers in the fast picking area is reduced.

If the fast movers with high volume movement per year are selected for this area, the

slots of the fast picking area will be depleted frequently and having enough inventory

for pick operations will require more restocks.

In addition, if the allocated slots to the SKUs in the forward area are higher

than the optimal, we can store less products there and so less savings by picks will

be achieved. If the allocated slots are less than optimal, it will result in more re-

plenishments. The picking and replenishment costs in the forward-reserve problem

can significantly increase with improper SKU assignment and slot allocation. The

mathematical models for the traditional forward-reserve problem will be presented in

section B of Chapter II.
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E Literature Review

The static forward-reserve problem with a continuous allocation of space has

been widely researched. Hackman et al. (1990) were the first to develop a mathemat-

ical model for the problem. They proposed a greedy heuristic to solve the model. A

further contribution is Frazelle et al. (1994), which considers the size of forward area

as the decision variable.

Gu et al. (2010) applies a branch and bound algorithm to solve the forward-

reserve problem. They assert that the heuristic and optimal assignment of SKUs, as

well the total cost, are very close together. The optimal stocking strategy is analyzed

by Bartholdi and Hackman (2008) and Bartholdi and Hackman (2010) in detail. They

compare the optimal strategy with two practical real world strategies: equal space

and equal time allocations. Equal space allocation strategy allocates the same amount

of space to each SKU. Equal time allocation strategy allocates an equal time supply

of each SKU in the forward area.

Hackman and Platzman (1990) extend the fluid model by proposing a generic

discrete model based on non-smooth convex relaxation for determining the SKUs and

their volume, in an automated forward area. They develop an algorithm with near-

optimal solution for the problems, where each allocation is a fraction of standard size

bin. One deficiency of the greedy heuristic is that it provides no posterior bound on

the performance of the solution (Hackman and Platzman, 1990).

Walter et al. (2013) relax the assumption of continuous space forward area and

solve the discrete assignment, allocation, and sizing of the fast picking area. However,

they do not solve these three problems simultaneously. They propose four heuristics

for solving the discrete forward-reserve problem, which allocates SKUs to shelves (in
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contrast with slots). Their method is applicable for small size problems. We address

this study in chapter II in detail.

Van den Berg et al. (1998) investigate the prior to picking replenishments to

minimize the expected labor during the pick period, assuming that prior to pick-

ing period there is sufficient time for replenishing the products. They consider the

replenishments and demands of forward area SKUs as random variables. Through

this method, the number of restocks in objective function of problem Continuous

Assignment-Allocation Problem (CAA) is no longer nonlinear. They perform a con-

current replenishment of unit load of SKU i. In other words, their model determines

whether the unit load of an SKU is replenished prior to picking period or not. The

number of restocks in their model is defined as the sum of the multiplication of binary

decision variables (xij: if the jth unit-load of SKU i is replenished in advanced or

not) by the probabilities of having more demand of SKU i than j allocated unit loads.

They solve the linear programming relaxation of the discrete model and obtained lim-

ited number of fractional solution.

Bozer (1985) discusses the optimal inventory and unit load size in the picking

area. He also compares the results of considering the entire warehouse as picking area

and separating the picking and reserve areas.

Heragu et al. (2005) investigate the proportion of continuous available space

allocated to forward, reserve, and cross-docking areas. They consider five operation

areas in the warehouse: receiving, shipping, forward area, reserve area, and cross-

docking operation. The authors define four material flows based on these configura-

tions, where all originate from the receiving area and end in the shipping area. The

first flow involves a cross-docking operation. Order picking is performed directly from

the reserve area in the second flow. The third flow is similar to the forward-reserve
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problem environment. The last flow stores the product directly in the forward area

to perform order consolidation. This research assumes that the product assignment

of each area is known. In addition, the average distance traveled to store and retrieve

a product in an area is constant and also known. Finally, the model decides whether

or not a product should be assigned to a flow, and how much space is to be allocated

to each functional area.

Hollingsworth (2003) reduces the number of restocks by performing replenish-

ments directly from the receiving area. It minimizes the replenishment cost containing

three components: the number of trips from receiving area to reserve area, the num-

ber of trips from reserve area to forward area, and the number of trips from receiving

area to forward area. In the domain of restocking cost reduction, Liu et al. (2011)

develop a non-linear mathematical fluid model for allocation of storage resources in

the forward area. Their order picking system, called the Complex Automated Order

Picking System (CAOPS), is automated with multiple dispenser types. They consider

four storage modes and safety stocks for each mode.

Some researchers have studied replenishment prioritization of the forward area.

Gagliardi et al. (2008) propose four heuristics for replenishment policies, two for long-

term demand, and two for short-term demand. Unlike Gagliardi et al. (2008) that

study the replenishment of the next product, de Vries et al. (2012) consider wave-

picking and set replenishment priorities for several workers. The latter develops two

replenishment strategies. The first one, Stock-Needs Rule, prioritizes the replenish-

ments based on a ratio dividing the available inventory. The second strategy, the

Order-Quantity Based Rule, minimizes the total expected number of zero-picks. The

authors extend their study further by comparing three policies for prioritizing replen-

ishments and considering the number of stockouts (de Vries et al., 2014).
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In addition to exact optimization techniques and heuristics, the forward reserve

problem can be investigated by simulation methods. Venkatadri et al. (2015) propose

a simulation model to evaluate the queueing of a given product placement policy in

the forward area. This study aims to reduce the congestion in the fast picking area.

We will review the relevant studies to the dynamic slotting optimization prob-

lem in chapter V.

F Purpose of the dissertation

To have the best set of SKUs in the forward area continuously, warehouses

apply the static FRP periodically. This approach prompts inevitable assumptions.

The forward area will have a fixed set of SKUs during a certain period. The products

have only one pick location in the warehouse if they are assigned to the forward area.

In other words, they should be picked only from the forward area, not the reserve

area. However, when the order quantity is occasionally high, it is more efficient to

pick the item from the reserve area rather than the forward area. This assumption

originates from choosing a fixed number as an annual demand of SKU. Furthermore,

refilling the same SKU in the same location with the same replenishment quantity is

not the best way to address the SKUs’ order fluctuations over time. To combat this,

we develop a dynamic model to update the layout of the forward area over time.

We have heard from warehouse managers that they want to avoid the long list

of moves generated after running the FRP. The moves are designated for transferring

the slow movers to the reserve area. They may only need to update specific areas

within their picking area more frequently to keep up with changing demand like

seasonality. The dynamic slotting proposed in this research addresses that need.

Dynamic approach performs the reslotting of the forward area —updating the forward
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area layout— on a frequent basis by using the replenishment of empty slots with the

correct SKUs without any moves.

Besides, there are critical questions that warehouse managers are challenging

with:

1. Which SKUs go into forward area?

2. How many days of inventory should a restocker store in the forward area?

3. How often should a facility reconsider the set of items that go into the forward

area and allocated slots?

4. If an SKU is stored in the forward area, are there any cases that it can more

efficiently be picked from the reserve area rather than the forward area?

The first two questions have been extensively studied with an assumption of

continuous space of the forward area. The last two questions have not been answered

in literature. The problem addressing the integral solution of assignment, allocation,

and sizing simultaneously, which consider the slot and SKU geometries, have not been

answered yet.

There are two major weaknesses in previous studies on the FRP. First, they

assume that the space of the forward area is continuous, when most often it is dis-

crete. Assuming cubic product movement per year and disregarding slot and SKU

dimensions, they allocate cubic space of the forward area to the selected items for

this area. In addition, current approaches assume decisions about the forward area

are one-time decisions during the planning horizon. As a result the fast picking area

is replenished with the same products for a long time. These approaches miss the

opportunity of updating the layout of the forward area based on the SKUs’ demand
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patterns over time. SKU assignment and allocation in the fast picking area are not

long term decisions because of the ever-changing demand environment.

The first shortcoming of previous studies creates a gap between the “state of

art” and the “state of practice” in the forward-reserve problem. The state of practice

does not allow allocation of the continuous space of the forward area to SKUs, while

the state of art is based on this assumption. The space wasted while allocating the

SKUs to the slots is unavoidable. Geometry considerations for both slots and SKUs

are necessary. We develop a discrete FRP model, which relaxes these continuous

model assumptions.

The contributions of this dissertation are:

Contribution 1: For the static forward-reserve problem, we develop two heuris-

tics that address the discrete assignment, allocation and the sizing of the forward-

reserve problem for large size problem. As opposed to the first heuristic, the second

heuristic takes the slots and SKUs’ dimensions into account. The algorithms are fairly

simple, fast, and applicable for a real world warehouse. The solutions are quite close

to the optimal.

Contribution 2: We propose an algorithm for both profiling and slotting opti-

mization simultaneously. This algorithm determines the best size of each pick mode

within the forward area, as well as respecting the different rack configurations, pick

technology specifications and replenishment policies of the pick modes. The SKU and

demand growths, the active period of the fast movers based on their order date, and

the optimal case orientation in each slot are the subjects that have also been taken

into consideration.

Contribution 3: To the best of our knowledge, we are the first to propose

the dynamic forward-reserve problem. We developed the first MIP formulation for
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the dynamic assignment and allocation of the forward area. The main contribution

of this research is quantifying the effects of the traditional wisdom of running the

static model in certain intervals assuming constant demand. We elaborate on de-

mand trend analysis prior to the development of the dynamic forward-reserve model.

We first propose an Artificial Neural Network (ANN) based model for pattern recog-

nition of the different types of demand trends. Further, we develop an algorithm for

forecasting the demand quantity. The method of forecasting is dependent of the class

of demand trend recognized in the previous stage. The algorithm is the combination

of the AutoRegressive Integrated Moving Average (ARIMA) model for predicting

smooth demand trends and the Markov-based bootstrapping method for predicting

intermittent demand pattern.

The remainder of the dissertation has been organized as follows. Chapter II

focuses on static forward-reserve problem and presents two intuitive simple heuristics

for discrete FRP. We propose an algorithm in Chapter III for determining the best

sizes of pick modes within the forward area. A model for predictive analytics of

products’ demand is developed in Chapter IV. We propose the MIP formulation for

the dynamic forward-reserve problem and compare the static and dynamic model

with experimental design in chapter V. Chapter VI concludes the dissertation.
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CHAPTER II

THE STATIC FORWARD-RESERVE PROBLEM

A Introduction

This chapter addresses the static discrete assignment, allocation, and sizing

problems of the forward area. The term static suggests that the decisions about

the forward area are made periodically (e.g. yearly). This approach disregards the

SKUs’ demand trends during the planning horizon. Thus, in the static forward-

reserve problem, the demand term represents the total demand of an SKU during the

past year or in a forecast year.

The term discrete suggests that discrete units of the SKUs can be stored in

discrete slots. This concept avoids allocating a portion of a slot to an SKU, which

is allowed in the continuous space model but not in practice. Previous research in

this area has focused on the continuous forward-reserve problem. No more than one

type of SKU can be kept in the discrete model. The discrete model considers lost

space resulting from differences in slots and SKU dimensions. Solving the allocation

problem in a continuous space model causes many SKUs having allocated space of

less than one slot, which is impractical.

Rounding down the solution of continuous space model threatens the optimal

solution. It has the risk of removing SKUs with less than one allocated space, from

the forward area. Further, if the case width is larger than the allocated slot(s) width,

18



the stored unit will no longer fit the allocated slot(s).

Rounding up the solution of continuous space model may also assign the inel-

igible slow movers with very small space (close to zero), to the forward area. Con-

sequently, the eligible ones will have to leave the set of SKUs of forward area or

get fewer slots. Allocating few slots will increase the number of replenishments. To

address the aforementioned shortcomings, this chapter tackles the discrete forward-

reserve problem considering both slot and SKU dimensions. There is also the need

for solving the assignment, allocation and sizing problems, simultaneously, for a large

number of SKUs.

B The continuous model for space allocation

The fluid model for space allocation assumes that the forward area can be

continuously subdivided. In other words, each SKU is considered as an incompressible

fluid rather than discrete units that are packed in cartons. Since the solution of the

continuous space model is the basis of our proposed algorithms for the discrete model,

we first review Hackman et al. (1990)’s model for allocation and assignment of SKUs

to the forward area in this section.

The flow rate of SKU i fi is the demand of SKU i per year expressed as volume

per year, e.g. cubic feet per year. Variable fi can be computed as follows (Bartholdi

and Hackman, 2010):

fi = di
bi
oi, (1)

where di is the demand of SKU i per year (units per year), bi is the number of selling

units within a storage unit (case), and oi is the volume per storage unit of SKU i.

Hackman et al. (1990) assume that the pick quantity for SKU i in the forward
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area is always less than the full allocation of an SKU in the forward pick area. A

restock is scheduled when the inventory level of slots drop to a certain threshold. The

number of restocks per year is defined as follows:

ri =
⌈
fi
vi

⌉
(2)

where vi is the volume of SKU i stored in forward area. In the fluid model, it is also

assumed that the replenishment can be fully satisfied in one trip. In other words, the

entire restock quantity is always less than the restocker capacity. The restocking cost

includes the following costs (Bartholdi and Hackman, 2008):

1. The travel between forward and reserve areas, which depends on the warehouse

layout.

2. The average travel within the reserve area, which is based on “random storage”

in this area.

3. The negligible cost of traveling within the forward area, since the size of forward

area is a small fraction of the warehouse.

4. The fixed cost of handling storage units while restocking.

Due to the fixed and small nature of these cost components, the number of re-

stocks multiplied by the associated restocking cost fully represents the total restocking

cost. Hackman et al. (1990) develop a heuristic solution algorithm, with a priori and

posteriori tests for optimality, to determine which SKUs go into the forward area. In

their model, the space allocated to each SKU is continuous. Their objective function

maximizes the benefits (pick savings, less restock costs) as below.
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Problem CA (Continuous Allocation Problem):

Maximize
∑
i∈A

spi − c
fi
vi

(3)

∑
i∈P

vi ≤ V (4)

vi > 0 (5)

where V is the volume of the forward area, pi is number of picks of SKU i per

unit time, A is the set of SKUs that go into forward area, s is the savings per pick if

stored in the forward area (s is equal to the difference between cost of picking from

the reserve area and forward area), and c is restocking cost.

The capacity constraint refers to the maximum inventory of each SKU selected

to be assigned in forward area. Given the set of items allocated to the forward area

and setting optimal Lagrange multiplier for constraint 4, the space allocation vector

v = {v1, ..., vi} can be computed as below (Hackman et al., 1990):

v∗i =
√
fi∑

i∈A

√
fj
V. (6)

The following knapsack problem considers the allocation and assignment of

SKU i to forward area together.

Problem CAA (Continuous Assignment-Allocation Problem):

Maximize
n∑
i=1

(
c1pi + c

fi
vi

)
xi +

n∑
i=1

(c2pi)(1− xi) (7)

n∑
i=1

vixi ≤ V (8)

xi ∈ {0, 1} (9)
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The reformulation of problem CAA based on ci = c2 − c1 is

Maximize
n∑
i=1

(
spi − c

fi
vi

)
xi (10)

n∑
i=1

vixi ≤ V (11)

x ∈ {0, 1} (12)

where c1 and c2 are the cost of picking from the forward and reserve areas, respectively,

and xi is the binary decision variable determining if item i is assigned to the forward

(xi = 1) area or not (xi = 0). Problem CAA is NP-complete. A well known heuristic

for solving this category of problem is to rank the SKUs according to their “bang-for-

buck,” which in our case is

benefiti
vi

=
spi − c fi

vi

vi
. (13)

We fill the knapsack until adding the additional SKU exceeds the capacity of

the forward area. Since the set of SKUs assigned to the forward area is unknown, the

labor efficiency ratio lei is used to sort the SKUs. This ratio is equivalent to bang-

for-buck. Substituting equation 6 in CAA, the labor efficiency of SKU i is defined

as:

pi√
fi
. (14)

However, this method cannot be implemented directly because we do not know

the vi’s a priori.

The Hackman et al. (1990) heuristic for solving problem CA is summarized as

below:

1. Rank all SKUs in order of non-increasing pi√
fi
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2. for i=1:No. of SKUs(N) do

a) Use equation 6 to compute the space allocation vector v = {v1, ..., vi}

corresponding to the set of Si = {1, ..., i} SKUs in forward area.

b) Use Equation 3 to compute the total benefit for each set of Si.

end for

3. Select the set of Si with maximum value of total profit satisfying constraint 4.

Both a priori and a postriori tests are checked for the optimality of the heuristic

algorithm in Hackman et al. (1990). Using a numerical example, the authors show

that their proposed algorithm outperforms a conventional method of ranking based

on number of picks per unit time.

Gu et al. (2010) evaluate the gap between the Hackman et al. (1990) greedy

heuristic and optimal solution. They conclude that this gap is negligible for real world

problems, where the number of SKUs is large enough.

Frazelle et al. (1994) extends the Hackman et al. (1990) study by treating the

capacity of the forward area as a decision variable. Determining the optimal size of

the forward area, they first solve the assignment-allocation subproblem with fixed size

of forward area. They show how the forward area sizing problem can decrease the

picking costs. In their numerical example, they reduce the picking costs from $0.25 to

$0.14 by decreasing the size of the forward area to 32% of its original size. The order

picking and replenishment costs are discussed in detail in their work. In addition to

storage-volume capacity, they consider congestion constraint.

The congestion constraint plays a more important role in AS/RS systems than

cart picking system. Cart picking systems with wide aisles allow more than one order

picker to travel among the same aisle (Frazelle et al., 1994). The congestion con-
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straint is also a function of time spent in the forward area. The authors develop two

algorithms for solving the assignment, allocation, and sizing forward reserve problem.

Another extension of the fluid model is the case when several forward areas exist

(Subramanian, 2013).

C A discrete model for space allocation

In the following section, we review the methodology of Walter et al. (2013)

to solve the discrete forward-reserve problem. Then, we propose a greedy heuristic

solution procedure for solving the discrete forward-reserve problem. We also relax the

assumption of one SKU in each shelf by considering a variety of SKUs in one shelf.

As a result, more than one SKU may be assigned to a shelf with a certain number of

slots.

SKUs are slotted into carton flow rack with both SKUs and slots’ dimensions

considerations. All details, including dimensions of storage containers and shelves are

accounted for. Generally, two kinds of SKUs cannot be located to one slot. The SKUs

wider than the slots’ width have different lower bounds for the allocated number of

slots decision variable. For example, if the width of SKU i is 18 inch and the slot

width is 12 inches, the discrete solution should assign at least two slots to SKU i.

The minimum number of allocated slots to the SKU in the forward area varies based

on SKU and slot dimensions. Previous studies assume that the width of an SKU is

always less than the opening location.

After defining the discrete FRP, we propose two heuristics to find a discrete

solution. The optimal size of forward area is also investigated through the proposed

algorithms.

Walter et al. (2013) investigate the discrete forward-reserve area with equal
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size shelves, each containing only one SKU. They assume that SKU i can be stored

with a certain number of units (e.g. 1ai, 2ai, 3ai, ..., jai, ..., nai) in the forward area,

where ai is the number of units of SKU i that can be stored in one shelf. The storage

mode j is the number of allocated shelves. Therefore, aij = jai is the number of units

of SKU i associated with each storage mode j and wij is the space required. They

developed three discrete forward-reserve problems:

1. The discrete forward-reserve allocation model.

2. The discrete forward-reserve assignment and allocation model.

3. The discrete forward-reserve allocation and sizing model.

The authors then compare four repair heuristics with an optimal discrete solu-

tion using the Bitran and Hax (1981) algorithm. In what follows, we use the notation

of Walter et al. (2013).

Among four heuristics (R1, R2, R3, R4) described in Walter et al. (2013), R4

outperforms the others. The gap between fluid models and their discrete counterparts

for the defined instances are negligible from the practitioners’ point of view. They

leave the solution procedure for large sized problems open for future research.

The discrete version of problem CAA is mathematically equivalent to the mul-

tiple choice knapsack problem (See problem DAA, Discrete Assignment-Allocation

Problem.) In this type of knapsack problem, the items are categorized into k classes,

and exactly one item must be taken from each class. In discrete problem, the storage

modes are same as the items in multiple choice knapsack problem. If an SKU is

selected for the forward area, it must take exactly one type of storage mode.

Binary variable xij not only decides about the assignment of an SKU to the

forward areas, but also determines which storage mode j is optimal for SKU i. Again,
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the storage mode is the number of shelves allocated to the SKU. If SKU i is assigned

to the forward area, then xi0 = 0, and otherwise xi0 = 1. The discrete problem can

be formulated as below.

Problem DAA (Discrete Assignment-Allocation Problem):

Minimize
∑
i∈P

ni∑
j=1

(
c1ipi + ci

di
aij

)
xij +

∑
i∈P

(c2ipi)xi0 (15)

ni∑
j=0

xij = 1 ∀i ∈ P (16)

∑
i∈P

ni∑
j=1

wijxij ≤ S (17)

xij ∈ {0, 1} ∀i ∈ P ; j = 0, ..., ni (18)

where ni is the upper bound of storage mode for SKU i and P is the set of all SKUs. c1i

and c2i are the costs of picking of SKU i from forward and reserve areas, respectively,

ci is the restocking cost for SKU i, S is the size of forward area in terms of number

of shelves, and pi is the number of picks for SKU i. Assume Cadd
i = c2i − c1i. The

reformulation of objective function of problem DAA is:

C(x) =
∑
i∈P

ni∑
j=1

(
c1ipi + ci

di
aij

)
xij +

∑
i∈P

(c2ipi)xi0 (19)

=
∑
i∈P

ni∑
j=1

ci
di
aij
xij +

∑
i∈P

Cadd
i pixi0 +

∑
i∈P

c1ipi (20)

Minimizing C(x) is equivalent to minimizing

C ′(x) =
∑
i∈P

ni∑
j=1

ci
di
aij
xij +

∑
i∈P

Cadd
i pixi0 (21)

If only one shelf is allocated to SKU i, the aggregate restock cost of SKU i is

qi = ci
di

ai
. The additional cost generated by SKU i if picked from the reserve area is
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qRi = Cadd
i pi. The minimum storage is defined as jmini , which leads to ci di

a
ijmin

i

< Cadd
i pi

for the first time. If the shelves are equally sized, then problem DAA becomes:

Minimize C(x) =
∑
i∈P

fi(xi) (22)

S.t.
∑
i∈P

xi ≤ S (23)

xi ∈ {0, 1, ..., ni} ∀i ∈ P ; (24)

where:

fi(xi) =


qi

xi
if x∗i ≥ 1

qRi otherwise

Walter et al. (2013) compare the discrete optimal solution of assignment and

allocation problems with two repair heuristics R2 and R4. Both the discrete optimal

solution and the repair heuristics use the Bitran and Hax (1981) algorithm and enu-

merate all possible SKU selections A ⊆ P , where A is an alternative set of SKUs going

into the forward area. The authors substitute the total number of shelves (slots) S

for the volume of the forward area V in equation 6:

v′∗i =
√
fi∑

i∈A

√
fj
S. (25)

Then, the allocated spaces obtained from equation 25 are forced to have at

least jmini slots to all SKU i ∈ A via Bitran and Hax (1981) algorithm, and all

A ⊆ P fulfilling ∑i∈P j
min
i ≤ S are considered a reasonable selection. Their procedure

requires checking all possible SKU-selection A ⊆ P to enumerate the reasonable SKU

selections, which is equal to 2|P | − 1 selection of SKUs. This means an exponential

number of instances should be solved, which is computationally expensive.
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Walter et al. (2013) study four heuristics for solving the equally sized shelves

DAA problem. They refer to this problem as the discrete forward-reserve assign-

ment and allocation problem (DFRAAPES). Their best repair heuristic for altering

non-integral solution obtained from the fluid model to an integer solution is R4.

They consider z∗i as the optimal non-integral solution of fluid model, and xRi is the

round-down non-integral solution elements of the fluid model. Walter et al. (2013)’s

procedure to find the discrete assignment and allocation of SKUs in forward area,

DFRAAPES, using heuristic R4 is as below:

for all possible SKU-selections do

1. Obtain the fluid model solution according to z∗i = S
√
qi∑

k∈A

√
qk

via the Bitran and

Hax algorithm, forcing z∗i ≥ jmini for all i ∈ A.

end for

2. Determine the continuous optimal SKU assignment.

3. Round down the non-integral solution elements (allocations) of the fluid model

(xRi = bz∗i c).

4. Compute di(xRi ) = fi(xi) − fi(xi + 1) for all non-integral solution elements of

fluid model.

5. Sort all SKUs in forward area in order of non-increasing di(xi).

6. Increase the number of allocated shelves for each of the δ SKUs by one until∑
i∈P x

R
i = S (δ is the difference between S and the number shelves allocated in

step 2).

7. Compute C(x) = ∑
i∈P fi(xi).

Replicating the Walter et al. (2013) model, we implemented Bitran and Hax

(1981) algorithm, which is a recursive procedure that repeatedly allocates shelves

according to equation 25 until all SKUs i received at least jmini shelves. Those SKUs
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in A that have received the number of shelves less than the lower bound ( z∗i < jmini )

are shown with P−t , and those SKUs in A that have received the number of shelves

more than upper bound ni are shown with P+
t . The upper bound to find the optimal

solution of DAA in Walter et al. (2013) is ni = S − |A|+ 1.

In each iteration t, the total gap with lower bound (∆−) and upper bound

(∆+) corresponding to P−t and P+
t are determined, respectively. If ∆+

t ≥ ∆−t , then

z∗i = ni, ∀i ∈ P+
t . Otherwise, z∗i = jmini ,∀i ∈ P−t . The remained space at iteration

t of this algorithm is shown with St. Let assume the SKUs with z∗i < jmini reach

their lower bound. The remained space St = S − ∑i∈P−t
jmini should be allocated

to the rest of SKUs and resolve the equation 25 with the new total space St. Then

the next iteration (t+1) of this recursive algorithm is performed. The procedure will

stop when all SKUs receive at least jmini and at most ni shelves. At the end of this

procedure, the non-integral solution of the fluid model is found.

DFRAAPES−R4 is only solvable in reasonable time for small problems. Walter

et al. (2013) solved the assignment-allocation problem for a warehouse with 12 and

24 SKUs using their heuristics R2 and R4. Two implicit limitations of their work are:

1. The first assumption is related to the size of the problem. Since all SKU as-

signments are generated in both discrete optimum and repaired heuristics, their

methodology is not applicable for real size problems.

2. None of their problems considers the joint assignment, allocation and sizing of

discrete forward-reserve problem.

They also implicitly assume that the SKUs are stored in the shelf not slot. Note

that a shelf consists multiple slots. This assumption fails to address the geometric

considerations of both slots and SKUs. Specifically, the case that SKU width exceeds
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the slot’s width are not addressed. Situations in which there is more than one SKU

per shelf are not addressed.

1 Heuristic G1

Heuristic G1 solves the assignment and allocation problems simultaneously.

The labor efficiency in G1 is obtained from following formula:

caddi pi√
qi

= λiqi√
qi

= λi
√
qi (26)

Heuristic G1 is as follow:

1. Sort all SKUs in order of non-increasing labor efficiency.

Alternative set of SKUs for the forward area = [ ]

for i=1:No. of SKUs(N) do

2. Add one SKU to the alternative set of SKUs.

3. Compute z∗i = S
√
qi∑

k∈A

√
qk

4. Let xRi = bz∗i c.

5. Compute di(xi) = fi(xi)− fi(xi + 1) for all SKUs in the alternative set for the

forward area (i ∈ A).

6. Sort all SKU in order of non-increasing di(xi).

7. Having δ as the difference between S and the number shelves allocated in step

3, Increase the number of allocated shelves for each of the δ SKUs by one until∑
i∈P x

R
i = S.

8. Compute C(x) = ∑
i∈P fi(xi)

end for

9. Select the minimum C(x).

Walter et al. (2013)’s procedure for finding DAA solution distributes δ among a
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fixed set of SKUs, which is called the continuous optimal SKU assignment. Afterward,

they discretize the respective fluid model allocations according to R4. Their solution

guarantees that each SKU receives at least jmini shelves.

On the other hand, G1 may delete some SKUs from the fluid model assignment

solution, if the round down allocation is zero. The SKUs with no allocated shelf go

into the reserve area. In summary, the optimal assignment of the continuous model

may or may not be same as the assignment generated.

2 Testing the model

We now elaborate on a test instance generation for DAA problem with respect

to Walter et al. (2013)’s tests. The three changing parameters in instances are as

below:

1. Set of SKUs (PPP). We choose |P | ∈ {12, 15, 18} as the total number of SKUs.

2. Total number of available shelves (SSS). This parameter corresponds to

coefficient r, where r ∈ {1/2, 1/2, 2/3}. The number of shelves is set to S = rP .

So the number of SKUs assigned to the forward area is a portion of total SKUs.

3. The aggregate restock cost (qiqiqi). qi is the aggregate number of restocks

if minimum number of slots is given to the SKUs in the forward area. For

the our numerical examples, we assume that this parameter is independent

uniformly distributed in the range [0.1, 0.2) for product category 1, [0.2, 0.4) for

product category 2 and [0.4, 0.8) for product category 3. For total additional

costs, we assume qRi = λiqi, where λi is distributed in the intervals (0.1,.5)

with probability pλ and (1.5,2) with converse probability. The values of pλ are

selected as pλ ∈ {0.2, 0.5, 0.8}.
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Similar to Walter et al. (2013) study, we consider three product categories

with a distribution D2. The probability of product belonging to category 1, 2, and

3 are .3, .4 and .3, respectively. We generate 100 independent instances for 33 = 27

experiments (three varying parameters P , S and pλ each with three choices). Four

performance measures are:

• ACI: Average percentage of cost improvement of G1 over DFRAAPES −R4.

• ACD: Average percentage of cost difference betweenG1 and its continuous model

counterpart.

• SA: Same Assignment (but different allocation) in DFRAAPES − R4 and G1

via 100 replications.

• SAA: Same Assignment and allocation in DFRAAPES − R4 and G1 via 100

replications.

TABLE 2

Heuristics DFRAAPES −R4, G1 and continuous space model comparisons

|P | = 12 |P | = 15 |P | = 18

P
λ

A
C

I

A
C

D

SA SA
A

A
C

I

A
C

D

SA SA
A

A
C

I

A
C

D

SA SA
A

r=1/3
0.2 0.12 2.15 83 74 0.13 2.07 69 68 0.10 1.99 66 65
0.5 0.18 2.90 76 69 0.17 3.04 70 70 0.07 2.82 82 82
0.8 6.84 0.21 100 58 0.00 3.74 100 100 0.16 4.29 84 80

r=1/2
0.2 0.22 2.12 65 64 0.28 2.29 54 54 0.11 2.72 61 61
0.5 0.63 2.59 56 51 0.40 3.01 68 65 0.16 3.93 71 71
0.8 2.21 0.15 100 58 6.13 0.73 38 16 2.56 0.90 100 64

r=2/3
0.2 0.78 2.18 60 54 0.44 2.23 54 52 0.30 2.88 48 46
0.5 1.42 2.57 79 68 2.99 2.55 66 42 1.57 3.04 39 33
0.8 1.38 0.11 100 42 0.86 0.33 100 74 3.28 0.29 100 18
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Table 2 lists the results of our computational study on the DFRAAPES −R4,

G1, and continuous model. The numbers of this table represent the cost improvement

of G1 over DFRAAPES −R4 or ACI is considerable for larger problems. The largest

cost improvement (6.13%) happens for the moderate size of the forward area (r =

1/2), when P = 15. The assignment and allocation solutions of DFRAAPES−R4 and

G1 are respectively similar in 38 and 16 out of 100 generated instances in this case.

The assignment solutions of these two heuristics is more similar for lower additional

costs resulted by picking more orders from the reserve area rather than the forward

area (larger Pλ). As expected, the cost difference between G1 and its continuous

counterpart becomes smaller for larger size forward areas. The adverse effect of the

continuous model is more tangible for smaller forward area.

Figure 9 confirms G1 outperforms DFRAAPES − R4 in all experiments. This

figure also shows large probability of lower additional cost of picking from the re-

serve area (large Pλ), specifically when the number is SKUs is low, results in smaller

gap between G1 and its continuous counterpart. Note that our heuristics are based

on greedy algorithm, while DFRAAPES − R4 is based on Bitran and Hax (1981)

algorithm.

Regarding the solution time, algorithm DFRAAPES − R4 applies Bitran and

Hax (1981) algorithm with running time o(|p|2). Every generated combination set

A ⊆ P (with at most o(2|p|) running time) applies Bitran and Hax (1981) algorithm.

Therefore, DFRAAPES−R4 solution time is o(|p|22|p|) and it cannot be solved within

reasonable time for large size problems. However, G1 delivers the assignment and

allocation solution of P = 1000 in 10.42 seconds.

In following, we address discrete assignment, allocation, and sizing problems

together with no restriction on the width of SKUs that go into the forward area.
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Figure 9. The sorted ACI and ACD for 100 replications
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3 Heuristic G2

Before explaining the heuristic G2, we represent the parameters used in the

remainder of this chapter as following.

Notation:

1. Rack information:

W : Slot width

L: Slot Depth

H: Slot height

O: Volume of slot (= WLH)

NSL: Number of slots per shelf

W SH : Shelf width

NSH : Number of shelves per bay

NB: Number of bays

S: Total number of slots

V : The volume of forward area (= NBNSHW SHLH)

2. SKU information:

wi: Case width for SKU i

li: Case length for SKU i

hi: Case height for SKU i

oi: Volume of carton of SKU i (= wilihi)

bi: Eaches per case for SKU i

di: Demand for SKU i per year

pi: No. of picks for SKU i per year

fi: Flow of SKU i in ft3 per year

ϕi: Maximum possible stack for SKU i in slot (=
⌈
H
hi

⌉
).
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θi: Maximum possible No. of cartons of SKU i in depth of slot

(=
⌈
L
li

⌉
).

Input data: Rack information, SKU information, as above.

Result: Optimally slotted SKUs into the carton flow rack (determines which SKUs

should be stored in the forward area and number of slots given to SKU i, ni, in the

forward area).

Two important questions come up in discrete assignment-allocation problem

with greedy algorithm perspective:

1. How to rank the SKUs in the discrete problem?

2. How many slots are given to the set of A ⊆ P SKUs selected for the forward

area?

The answer of these two questions in the continuous fluid model were addressed

before. However, we need to apply a different approach for the discrete problem

because of SKU and slot dimensions considerations and the resulted lost space.

As previously defined, the flow rate of SKU i (fi) is the demand of SKU i per

year translated to the volume per year. We need to revise the concept of flow in the

discrete version of forward reserve problem to account for unavoidable wasted empty

space due to the case(s) not completely occupying the slot(s) (see Figure 10). The

practical flow fpi is:

fpi = Number of slots required for SKU i per year × slot volume
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Therefore:

fpi =
⌈

fi
(ϕihi)(θili)W

⌉
O (27)

=


di

bi
oi

(ϕihi)(θili)W

O (28)

=


di

bi
wilihi

(ϕihi)(θili)W

O (29)

=


di

bi
wi

ϕiθiW

O (30)

Figure 10. The unavoidable wasted empty space due to the difference between the
cases and the allocated slots dimensions.

Example. Assume that the demand of SKU i per year is 320 units (eaches)

and each case (carton) of SKU i has the capacity of 80 eaches (di = 320 and bi = 80).
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The dimension of the case for SKU i is:

wi = 5 ft, li = 4 ft, hi = 4 ft.

oi = wilihi = 80ft3

In the continuous model, where the slot dimensions are ignored, the flow of SKU i is

equal to:

fi = di

bi
oi = 320

80 80 = 320ft3/year

However, the slots’ dimensions are considered in discrete model. Assume:

W = 6 ft, L = 6 ft, H = 10 ft

O = WLH = 360

Practical flow fpi in discrete model is:

fpi =


di

bi
wi

ϕθW

O (31)

=
⌈

(320
80 )5

(2)(1)(6)

⌉
360 (32)

= 720ft3/year (33)

The difference between fi and fpi (400 ft3), is the volume of empty space

around the cases stored in two slots of the forward area as shown in Figure 10. If we

generalize this wasted space to all slots in forward area, the amount of lost space by

discretizing the problem is non-trivial. The heuristic will inherently tend to reduce

the lost space as much as possible. Consequently, we introduce parameter e in our

heuristics in order not to exceed the capacity of the forward area and generate feasible

solutions. As mentioned, only a fraction of the forward area space can be practically

allocated to SKUs and the rest is wasted. This fraction depends on the selected set

of SKUs for the forward area. So we search the best solution by examining different

amounts of e in the range 0 < e ≤ 1. Finally, the best coefficient of space is found.

We develop four procedures for ranking and fraction searching. yi in heuristic
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G2 is used for calculating the number of slots allocated to SKU i ni and is corresponded

to the optimal space allocation in fluid model. For the first two procedures, where

the SKU flows fis are cubic feet per year, yis are equal to the optimal cubic space

given to SKU i in fluid model. However, the yis in the last two procedures are based

on case movements per year. q′i is the aggregate number of restocks of SKU i for the

planning horizon period, if only a single slot (or minimum number of feasible slots

for wi > W ) is allocated to SKU i (q′i = di

biai
.) ai is the units of SKU i that can be

stored in minimum number of feasible slots allocated to the SKU and is defined as:

ai =


θϕbW

wi
c if wi ≤ W

θϕ otherwise

The procedures are:

A1: f 1
i = di

bi
oi le1i = pi√

f1i

y1
i =

√
f1i∑

j∈A

√
f1j
S

A2: f 2
i = di

bi
oi le2i = pi√

fp
i

y2
i =

√
f2i∑

j∈A

√
f2j
S

A3: f 3
i = di

bi
lei = pi√

f3i

y3
i =

√
f3i∑

j∈A

√
f3j
S

A4: f 4
i = di

bi
lei = pi√

f4i

y4
i =

√
q′i∑

j∈A

√
q′j
S

While A1 and A2 rank the SKUs based on cubic feet movement of SKU, A3 and

A4 use the number of cases needed during the planning horizon, instead of volume, for

ranking SKUs. Note that the fraction given to SKU i in A4 corresponds to parameter

q′i, not fi. Of the four procedures, only A2 uses the practical flow fpi for labor efficiency

computation.

Heuristic G2 is a greedy algorithm based on rounding up the continuous model

solution. After discretizing the non-integral solution, it applies a post processing
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step, called bottom-up deletion, for removing undesirable SKUs from the forward

area. After assignment of SKUs and allocation of slots, it sorts the SKUs in order

of non-increasing total number of restocks. Then, it deletes the SKU with minimum

number of restocks (say 1 restock), and allocates its space to the SKU in the forward

area with maximum number of restocks. We call this method bottom-up deletion,

since the bottom SKU in number of restocks ranking will be deleted and its slot is

added to the upper SKU in the ranking. We iterate this procedure until achieving no

cost improvements. Heuristic G2 is as follow:

1. Rank all SKUs in order of non-increasing lei (different definitions for lei will be

discussed)

for i=1:No. of SKUs(N) do

2. Define

n1i =
⌈
wi
W

⌉
n2i =

⌈
eyi
O

⌉
ni = max(n1i, n2i)

3. Get the assignment and allocation solutions and number of restocks (ri)

end for

4. Rank all elements of SKUs assignment solution given by step (4) in order of

non-increasing ri.

5. Apply bottom-up deletion approach:

for j=1:No. of selected SKUs for forward area do

7. Remove the SKU with minimum ri and add its slot to the SKU with maxi-

mum ri

end for
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8. Repeat steps (1) to (7) for different 0 < e ≤ 1 with interval .1 to choose the one

gives the minimum cost.
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Figure 11. The cost reduction representation with increasing the number of SKUs in
forward area.

We consider a warehouse with 700 SKUs to determine the assignment, alloca-

tion, and size of the forward area. The SKUs’ dimension data belongs to a real world

warehouse. The best size of the forward area as suggested by G2 is 626 slots with 590

SKUs (see Figure 11). The minimum cost in Figure 11 occurs when to start adding

those SKUs to the forward area that could be picked more efficiently from the reserve

area. However, we have only 400 slots available in the forward area.

Before applying the bottom-up deletion approach, the set of 374 SKUs leads
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Figure 12. The bottom-up deletion approach.

to minimum cost of picking and replenishment. As Figure 12 shows, the bottom-up

deletion approach in heuristic G2 recommends deleting 69 out of 374 SKUs from the

forward area to devote their slots to those SKUs of the forward area with a higher

number of restocks. The bottom-up deletion approach motivates having the uniform

number of restocks among SKUs because the SKUs, which have had high number of

restocks, no longer be replenished very frequently. Using this approach, they have

more slots and more cases in the forward area because of allocating the slots of the

deleted SKUs to them. The cost increment in iteration 52 of Figure 12 is associated

with the situation, where the bottom-up deletion approach deletes one SKU with one

slot from the forward area, but the candidate SKU for this slot from top of the list,

needs more than one slot to be able to have one more lane in the forward area (wider

SKU than slot width.) Therefore, we have one deleted SKU from the forward area

42



without any value added and the total cost slightly increases. In our example, this

approach reduces the total cost by 4.4%.

D Comparisons

We apply a data set from a telecommunications provider warehouse studied

in Bartholdi and Hackman (2008) to compare the procedures. The warehouse that

we addressed in our numerical example has 3049 SKUs, 30 bays, each having four

shelves. In this warehouse, each shelf has eight equal standard size slots and therefore

960 slots. The algorithm suggested the best coefficient of space for this warehouse

e = 0.17.

Table 4 compares the costs of G2 for different procedures A1 to A4. The costs

of A1, A3 and A4 are very close. However, A4 outperforms others in this example.

TABLE 4

Cost comparisons between the procedures A1 to A4 using heuristic G2

A1 A2 A3 A4

No. of SKUs in forward area 805 783 721 722
Total cost 16237323 17035435 16190930 16182930

Solution time (seconds) 2.321091 1.903433 2.083014 2.123233
Cost Imp. of G2-A4 (%) 0.334988 5.004304 0.049408 -

Using the same data set, Figure 13 shows the total cost of picking and restock-

ing for heuristic G2 using A1 to A4. In this figure, the horizontal axis shows iteration

i, when we add an SKU into the forward area in each step. We avoid naming this axis

“Number of SKUs that go into the forward area,” since some SKUs selected for the

forward area were removed in bottom-up deletion approach in heuristic G2. Figure

13 confirms the result of table 4 regarding the minimum cost of G2 using A4 scenario.
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The cost associated with G2 − A4 lies below the others.

Using Figure 13, we can find the iteration that leads to the minimum cost, and

then the best size of the forward area corresponding to that iteration can be obtained

for each scenario. This figure provides practitioners a hint to decide about the size of

forward area.
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Figure 13. The cost comparisons of G2 using different scenarios A1 to A4.

In a second numerical example, we apply heuristic G2−A1 to a real data set to

compare the capability of the offered heuristics in assignment, allocation, and sizing of

forward area with an available online software (http://www.warehouse-science.com/)

by Bartholdi. In this example, the warehouse has 6498 SKUs and the slots of the for-

ward area are assumed to be identical with given dimensions. The SKUs’ dimensions,

demands, and picks data are given. The total cost is:
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i∈P
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Figure 14. Heuristic G2 − A1 for real world data set with 6498 SKUs.

TABLE 5

Comparison of two methodologies for the discrete forward-reserve problem

No. of SKUs in FW area No. of used slots Cost No. of replens.
G2 − A1 4294 4318 5618853 3779

As observed in Figure 14 and Table 5, the optimal size of the forward area is

4318 slots. Giving more slots to the SKUs selected for the forward area than their

allocated slots does not reduce their number of replenishment. So, the algorithm

suggests to leave some slots unfilled.
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As Figure 14 shows, the total cost starts to increase after the minimum point of

the curve because the algorithm assigns the SKUs with the low rank labor efficiency

to the forward area. These SKUs can be picked more efficiently from the reserve area.

According to the results, if we assign more than 4294 SKUs to the forward area, the

total cost will grow due to the increase of replenishments. The solution time for

G2 − A1 is 2.83 seconds.

E Conclusion

Unlike previous studies conducted on the forward reserve problem, which con-

sider the continuous space of the forward area, we addressed the assigning and al-

location of the discrete units of SKUs to their discrete slots. The gap between the

continuous space model and its discrete counterpart has been quantified for different

test problems. Our numerical results showed that the cost difference between the

heuristic and its continuous counterpart decreases for larger size forward areas.

First, we investigated the assignment, allocation, and the sizing problems si-

multaneously. We determined the optimal size of the forward area while deciding the

optimal set of SKUs for the forward area. Second, the proposed heuristics delivered a

solution in seconds for the large size discrete forward-reserve problem with thousands

of SKUs. Finally, we relaxed the assumption of assigning the SKUs to the shelves

versus the slots, since this hypothesis limits the problem to the condition whereby

the width of the opening is always greater than the SKU width.

In all of the experiments, the cost comparison results showed that G1 always

outperforms DFRAAPES−R4 in terms of the total cost of picking and replenishment.

This cost improvement will become greater for larger size problems.

While G1 works for the situations where the case and slot dimensions are not
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available, G2 considers these dimensions. The last two procedures for ranking the

SKUs in the greedy algorithm, A3 and A4, which involve the discrete fi, outperform

the first two procedures, A1 and A2, which contain a portion of the forward area’s

continuous space, oi. Procedure A4 outperforms other procedures. It allocates the

slots based on the aggregate number of restocks, if only a single (or minimum feasible

number of slots) is allocated.
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CHAPTER III

THE AREA SIZING AND SLOTTING OF A MULTI-MODE

FORWARD AREA

The picking and replenishment costs of the SKUs selected for the forward area

can be reduced in multi-mode forward areas. While the number of cases stored in

some pick modes can be more flexible, others have a fixed storage capacity. For

example, the number of slots given to the SKUs in the carton flow rack are optimized

by the allocation problem. The allocated slots can be one or multiple slots. However,

the SKUs selected to be picked from the pallet flow rack are stored by a definite

number of cases in the pallet. Different pick modes result in different number of

replenishments for the SKUs selected for the forward area.

Selecting the best types of racks (e.g. pallet flow rack, carton flow rack, bin

shelving, etc.) and their effective size along with the best assignment of the SKUs

to the pick mode within the forward area, considerably affects the total picking and

replenishment cost. For instance, although pallet flow racks can hold many cases of an

SKU on one pallet, a small quantity of that SKU can fit in one bin of bin shelving. As

a result, the former has lower replenishment costs, but higher picking costs because of

the lower pick density of items. On the other hand, the latter has lower picking cost

inside the bay, but higher number of replenishments because of the smaller allocated

space. After finding the best SKU assignment and slot allocation for each pick mode,

the best size of the mode and so the overall size of the forward area are found.
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The classic Forward-Reserve Problem selects the best set of SKUs for the fast

picking area of the warehouse and allocates the best number of slots to them having

the size of the forward area. However, we will address the problem of determining the

best number of bays/slots for each pick mode (e.g. pallet flow rack, carton flow rack,

bin shelving, etc.) within the forward area, and we do so while determining the best

SKU assignment and slot allocation. Considering an available space, we develop an

algorithm, namely Profiling and Slotting Optimization (PSO) algorithm, which can

increment number of bays of each pick mode, until adding more bays in the forward

area increases the travel distance and costs (see Appendix.)

Although expanding the forward area decreases the total number of replen-

ishments, the large forward area has larger fixed picking and replenishment costs

because of larger travel distance. Determining the best size of each pick mode, we

calculate the cost of every possible combination of bays quantities corresponding to

each pick mode, while not exceeding the available space. In each iteration, the best

SKU assignment and slot allocation are found as well.

In this chapter, one iteration of the PSO algorithm refers to generating one

alternative for the forward area. The alternatives differ in their number of bays of

each pick mode. The average travel distance for picking or replenishing of the items

depends on the size of the pick mode. The average travel distance of a pick mode

refers to the average horizontal distance that the labor traverses to pick or replenish

an item (average aisle width) plus the average vertical distance (average aisle length).

Therefore, our model accounts for the different picking and replenishment costs be-

tween the pick modes with different sizes within an alternative and also between the

same pick mode of different alternatives. The sequence of the pick modes within the

forward area is assumed known and is taken into consideration while calculating the
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average travel distance. Therefore, the farther pick modes to the Input/Output point

have higher average pick/replenishment travel distance(See Figure 15.)

Figure 15. The multi-mode forward area

Besides the travel distance analysis, SKU (each), case and slot dimensions

are taken into consideration in the proposed model to conduct the fitting test for the

replenishment unit and the slot. Furthermore, the model suggests the best orientation

of replenishment unit (case), which enhances space utilization. The space allocation

to the SKUs is discrete, as opposed to the traditional method of allocating continuous

space to the SKUs.

Jernigan (2004) develops a multi-tier inventory system. A multi-tier inventory

system is an extension of the forward-reserve system with multiple forward modes. As

opposed to our problem, which assumes all pick modes are replenished from the bulk

storage, Jernigan (2004) establishes intermediate modes between the forward modes

and the reserve area to reduce the restocking cost. The slotting of the inventory

system in her study refers to finding the SKU assignment of the forward modes and the

space allotted to the SKUs there, aiming to reduce the total picking and replenishment

50



costs. While the volumes of the storage modes are known in Jernigan (2004)’s study,

we optimize the size of the pick modes coupled with the slotting of the modes. Her

study is also based on continuous space allocation, while we allocate discrete cases to

the discrete number of slots slots, considering SKU and slot dimensions.

The PSO algorithm, which can be found in appendix, accounts for:

1. Discrete case quantity movement: The small size fast movers have a low

cubic feet movements. The continuous space allocation has the risk of assigning

the small size fast movers to the high cost areas within the forward area and

large size slow movers to the low cost areas within the forward area. Algorithm

PSO is based on discrete quantity of moves for each SKU.

2. Discrete space allocation: PSO is a discrete space allocation model, which

considers the lost spaces resulted from differences in slots and SKUs dimensions.

Solving the allocation problem in a continuous space model causes many SKUs

to have allocated space of less than the volume of one slot, which is impractical.

Rounding up the solution and allocating one slot to these category leads to

exceed the size of the forward area, which is infeasible. The PSO algorithm

considers discrete space allocation, as opposed to the continuous space allocation

of the picking areas. So, discrete units of the SKUs (case quantities) are stored

in discrete units of slots. This concept prevents allocating a portion of a slot to

the SKUs.

3. Replenishment unit fit test: If we do not check the dimensional fitness of

the SKU to the slots of the pick modes, there is the risk of assigning the large

size items in small size rack types. The PSO algorithm will consider both SKU

and slot dimensions.
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4. Optimizing case orientation: Finding the best case orientation in the rack

and maximum feasible stack level leads to better space allocation and so more

cases can be replenished in the slot. So, the number of replenishments will be

reduced. SKU rotation allows the SKUs to have more options for being assigned

to the different pick modes. The PSO suggests the best case orientation.

Notation:

1. Rack information:

j: Pick modes, j ∈ {0, 1, 2, 3}

Wj: Slot width in pick mode j

Lj: Slot Depth in pick mode j

Hj: Slot height in pick mode j

Oj: Volume of slot in pick mode j (= WjLjHj)

NSH
j : Number of shelves per bay in pick mode j

NSL
j : Number of slots per shelf in pick mode j

NB
j : Number of bays in pick mode j

W SH
j : Shelf width in pick mode j

Vj: The volume of the pick mode j (= NB
j N

SH
j W SH

j LjHj)

2. SKU information:

wskui : Width of SKU i

lskui : Length of SKU i

hskui : Height of SKU i

wi: Case width for SKU i

li: Case length for SKU i

hi: Case height for SKU i

oi: Volume of case containing SKU i (= wilihi)

bi: Eaches per case for SKU i
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Li: Find the number of lanes for SKU i in carton flow rack

θij: Maximum No. of cases of SKU i in depth of slot in mode j(=⌈
Lj

li

⌉
).

ϕij: Maximum calculated stack level for SKU i in slot of mode j

(= min(ρi,
⌈
Hj

hi

⌉
).

ρi: Max given stack level of SKU i

3. Costs notation:
cpj : Average picking cost from pick mode j.

crj : Average replenishment cost of pick mode j > 0 (cri0 = 0.)

rij: Number of replenishments if SKU i is assigned to mode j > 0 (ri0 = 0.)

Cp
ij: Picking cost if SKU i is assigned to mode j.

Cr
ij: Replenishment cost if SKU i is assigned to mode j > 0 (Cr

i0 = 0.)

CT
ij : Total picking and replenishment costs, if SKU i is picked from the mode j.

sij: Saving of SKU i, if it is picked from mode j > 0 rather than mode 0.

The steps of the proposed algorithm for Profiling and Slotting Optimization

of the forward area are as follow. The algorithm has been coded with the Python

programming language.

1. Import data: Four types of data are imported: SKU data, order data, rack

data and facility data. The SKU data provides the information about the

case and SKU (each) dimension. The order file contains the historical demand

data. The rack information delivers the setting of the racks in different types

of pick modes (see table 10). The available space for designing the forward

area and number of bays in the reserve area are provided by the facility data

to estimate the fixed picking and replenishment costs. Table 7 summarizes the

inputs parameters.
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TABLE 7

Inputs

SKU Data Order Data Rack Data Facility Data
SKU Number Time Width of a shelf Horizontal length of the forward area
SKU Length SKU Number Depth of a shelf Vertical length of the forward area
SKU Width Order quantity Height of a shelf No. of bays in one aisle of the reserve area
SKU Height No. of level No. of aisles in reserve area
Case Length No. of Slots per Shelf
Case Width
Case Height
Case Pack
Max Stack Level

We assume that the pallet flow rack, which is generally the best option for the

fast movers, is closest zone to the Pick up and Deposit (P&D) point. Next, the

carton flow rack and the bin shelving zones are designed (see Figure 15). We

also consider three types of pick mode in our example warehouse.

2. Fit test: Based on SKU and slots dimensions, the SKUs that are not fitted to

a particular type of slot will not be assigned to that rack type.

3. Case orientation: For all SKUs, the best case orientation in each pick mode

that gives the maximum space utilization is determined in this section of the

PSO algorithm.

4. Finding other parameters: The SKU demand di and picks pi, which is the

sum of order quantity and the order lines per SKU during the planning horizon,

respectively, and the SKU flow fi or the number of cases of SKU i during the

planning horizon, are found in this step. fi can be found as:

fi = di
bi

(35)
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We define aij as the number of cases of SKU i that can be stored in one pallet of

a pallet flow rack (j = 1), the number of cases can be stored in minimum number

of feasible slots in a carton flow rack (j=2), or one for bin shelving (j = 3).

Assuming that the case pack quantity can fit in one bin of bin shelving, aij is

obtained from:

aij =


θijϕij

⌊
Wj

wi

⌋
, if wi ≤ Wj

θijϕij, otherwise.

For the pallet flow rack, aij is calculated from the first equation of aij, because

the case width is always less than the pallet width. For bin shelving, aij is one

case.

TABLE 8

6 possible case orientations in slot

Orientation Wj Lj Hj

1 wij lij hij
2 wij hij lij
3 lij hij wij
4 lij wij hij
5 hij lij wij
6 hij wij lij

For each SKU, we check 6 possible case orientations to find the best orientation

of the case in pick mode j that gives the maximum aij (see Table 8.)

We define q′ij as the number of replenishments if the minimum number of slot(s)

of mode j is allocated to the SKU and is calculated as below:

q′ij = fi
aij

(36)
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5. Cost analysis: In this section, for every possible combination of the number

of bays in each pallet flow rack, carton flow rack and bin shelving, the savings

of picking from these areas versus picking from the reserve area are calculated

for all SKUs. The slow movers with negative savings, however, are picked from

the reserve area. The reserve area, pallet flow rack, carton flow rack, and bin

shelving have the modes 0, 1, 2, and 3, respectively, in our example.

To calculate the average picking and replenishment costs, we assume that the

maximum horizontal length and vertical length of the available space for the

forward area are given. The total costs and savings of an SKU by picking from

the mode j are calculated as:

rij =
⌈
di
mij

⌉
(37)

CT
ij =Cp

ij + Cr
ij (38)

=cpjpi + crjrij (39)

sij =CT
i0 − CT

i,j>0, (40)

where rij is the number of replenishment of SKU i in mode j. mij is the units

(eaches) of SKU i in mode j. The algorithm for finding mij can be found in

Appendix.

6. Export file: The algorithm will be terminated by exporting the outputs.

We have implemented the PSO algorithm for an example warehouse with 28 SKUs.

The rack information data can be found in Table 10. Using PSO algorithm, the

optimal number of bays of pallet flow racks, carton flow racks and bin shelving, are
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TABLE 9

Outputs

Slotting and Cost Data Size of each pick mode
SKU No. Slots in CF No. bays of carton flow rack
Pick mode Cases in CF No. bays of pallet flow rack
Adjusted Width Lanes in CF No. of bays of bin shelving
Adjusted Length Stacks in CF
Adjusted Height Depth in CF
Each fit CF? Ordered QTY
Case fit CF? Order Lines
Each fit PF? SKU Flow
Case fit PF? Saving
Each fit SH? Picking Cost
Case fit SH? Replenishment Cost

Total Cost

PF = Pallet flow rack
CF = Carton flow rack
SH = Bin shelving
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3,3,1, respectively ([NB
1 , N

B
2 , N

B
3 ]=[3,3,1].) If we expand the forward area more, the

picking and replenishment costs will increase. The algorithm then suggests the best

number of bays of each pick mode, along with the maximum total savings.

TABLE 10

Rack information

Carton Flow Rack (CF) Pallet Flow Rack (PF) Bin Shelving (SH)

Width of a shelf 96 Width of a shelf 96 Width of a shelf 48
Depth of a shelf 96 Depth of a shelf 48 Depth of a shelf 21
Height of a shelf 20 Height of a shelf 60 Height of a shelf 12
Number of levels 4 Number of levels 1 Number of levels 5
Number of slots per Shelf 6 Number of slots per Shelf 2 Number of bins per shelf 4

1 Extensions

The PSO algorithm (see Appendix) is a general model for sizing and slotting

of the forward area’s zones. Considering the broad spectrum of requirements in real

world warehouses, we evaluate the opportunities to empower the PSO algorithm in

many ways. The goal is to explore and validate multiple pick mode design options

that meet the distribution center’s requirements. The main features that have been

added to the model are as follows:

Volume growth and SKU growth

Two types of growth affect the decisions made about the forward area: SKU

growth and units growth. They should be considered while planning for the size of

the pick modes. The units growth is the total growth in shipping units during the

planning horizon, which includes the SKU growth as well. If no new SKU is introduced
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to the warehouse during the planning horizon (e.g. next 2 years), meaning that the

SKU growth is equal to zero, we can account for the units growth by multiplying

the historical SKUs demand and pick data by the units growth in the forward area

sizing problem. The effect of the SKU growth is zero in this case. Thus, the SKUs

demand will grow by the units grow factor itself. However, when the SKU growth

is not zero, the SKU growth should be extracted from the units growth to provide

a net growth factor. This prevents an over-expansion of the forward area. Applying

the units growth and the SKU growth separately on the demand data executes the

SKU growth twice because the units growth already includes the SKU growth. We

are looking for the net growth factor to apply to the demand data, which will address

both growths simultaneously. The goal is to change the historical demand data to

account for both units and SKU growths.

We define factor γ (%) as the net growth factor, which can address both types

of growth. Thus, planning for the size of the pick modes will be based on the demand

data, which has grown by γ. We have α = γ + 1 in the following equations for

simplification. Assume:
a1: Units growth during the planning horizon (%)×0.01.

a2: SKU growth during the planning horizon (%)×0.01.

n1: Number of SKUs before the SKU growth.

n2: Number of added SKUs after the SKU growth (n2 = a2n1.)

pi: Historical picks (lines) for SKU i before any growth, i ∈ {1, ..., n1}.

p̄: Average picks (lines) of new SKUs based on the historical pick data.

α(
n1∑
i=1

pi + n2p̄) = (1 + a1)
n1∑
i=1

pi (41)

The term n2p̄i in equation 41 represents the expected additional picks in the
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future, which considers the SKU growth. It is assumed that the prospective SKUs

have the mean picks of the historical pick data. Then, we apply α to the expanded

data set, containing both prospective and current SKUs. This would be equivalent to

applying the (1 + a1), which inherently includes both units and SKU growths, to the

picks of the current SKUs in the warehouse. Then, by setting p̄ =
∑n1

i=1 pi

n1
, we obtain:

α(
n1∑
i=1

pi + n2

∑n1
i=1 pi
n1

) = (1 + a1)
n1∑
i=1

pi (42)

For simplicity, we assume: β = ∑n1
i=1 pi

α(β + n2
β

n1
) = (1 + a1)β (43)

αβ(1 + n2

n1
) = (1 + a1)β (44)

α(1 + n2

n1
) = (1 + a1) (45)

α(1 + a2n1

n1
) = (1 + a1) (46)

α = 1 + a1

1 + a2
(47)

γ = 1 + a1

1 + a2
− 1 (48)

γ = a1 − a2

1 + a2
(49)

We can observe from equation 49 that the actual growth factor γ is not affected

by the order data. We can also see if the SKU growth, a2, is larger than the volume

growth, a1; the decreasing γ factor should be applied to the historical order data.

From a practical viewpoint, if a high number of new SKUs are introduced to the

warehouse (high SKU growth) but the total shipping units do not considerably grow

(low units growth), the historical order data is experiencing a downward trend with

a decreasing γ factor. Likewise, if a low number of new SKUs are introduced to the
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warehouse (low SKU growth) but the total shipping units are growing considerably

(high units growth), the historical order data is experiencing an upward trend with

an increasing γ factor. If the SKU and units growth are the same, a1 = a2, it means

that the new SKUs’ orders are following the order history. No change in order data

is required, however, when the γ factor is zero. After applying the γ factor to the

historical order data, we expand the size of the forward area based on SKU growth,

a2, accordingly, to stay up-to-date with the projected growths.

Time window analysis

Among those SKUs that have been selected to be picked from the forward area,

many items are active only during a specific period of the year and are occasionally

ordered (Halloween products, Christmas products, etc.). These seasonal products are

fast movers in their active period and inactive during the rest of the planning horizon.

Those seasonal products that their active periods have no overlap during the planning

horizon can share their slots in the forward area. Considering an individual space for

the seasonal items in the forward area expand the forward area unnecessarily. Storage

sharing of the seasonal items prevents over expansion of the forward area. Considering

that seasonal fast movers are not always active during the planning horizon, the

storage share idea provides the opportunity of having active fast movers in the forward

area.

We extract the “start and end order dates” of each SKU from the order file.

Therefore, the active periods of all SKUs, which is the period between these two

dates, are achieved. Those active SKUs, which are picked from the similar pick mode

zone and whose active periods do not have any overlap, will share one location in

that zone. For example, the Christmas products will replace the Halloween products,
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when their active periods are over. This method shrinks the forward area as required

and shortens the travel distance for the rest of the fast movers, which are active all

year. Numerical example will quantify the decrease in number of slots by storage

share in each pick mode.

Although it can be assumed that the SKUs have multiple active periods during

the planning horizon, we consider a single active period per SKU, beginning with the

first order date and ending with the last order date. The reason is the opportunity

of replacing the SKU, whenever it gets inactive, is delivered by the dynamic slotting

of the forward area.

Other extensions of the PSO algorithm

Other features that have been applied to the model are stated below:

• Reorder point. This percentage triggers the replenishment process, whenever

the inventory on hand for the SKUs in the forward area is diminished up to a

certain threshold. Different pick modes present different replenishment trigger

thresholds, but larger values for this factor leads to more frequent replenish-

ments.

• Space utilization factor. This factor determines the space efficiency of the

pick modes. Higher space utilization refers to the higher density of products

in the bay. Since the model considers the discrete replenishment units, there

is always some lost space due to the difference between the dimensions of the

slots and the cases. The space utilization factor of the bay in pick mode j is:

Total volume of all cases in one bay of pick mode j
Bay width× Bay depth× Bay height (50)
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• Lock the dimension. Although the PSO algorithm can deliver the optimal

orientation of the cases in the slots, which results in the highest spaces utiliza-

tion, some SKUs need to be locked by certain dimension(s). The lock dimension

for each SKU is a binary input. For example, setting the “height case locked”

to one SKU indicates that the slotted case orientation height must match the

Case Height. Even an SKU is locked in one dimension, the orientation of other

two dimensions is fixed.

2 Numerical example with a large data set

To test the pick mode model, we used real warehouse data with 6,000 SKUs.

The historical order data contains 3,501,347 order lines over 391 days. The projected

SKU and volume growth are 10% each. The replenishment trigger percentage is set

to 10% based on their replenishment policies. The SKU and case dimensions are

available and the dimensions are not locked. The rack types considered for the fast

picking area are standard size pallet flow rack, carton flow rack and bin shelving (see

Table 10).

Changing two parameters of aisle length and width, we designed six experi-

ments with different sizes of the forward area’s available space to study the pick mode

model performance. The aisle width and length are increased in steps of 1000′′ and

500′′, respectively. Table 11 presents the relevant numerical results. [NB
1 , N

B
2 , N

B
3 ]

and [NB
1 , N

B
2 , N

B
3 ]* are the relevant solutions without and with the time window

analysis. The time window analysis reduces the zones’ size, where there is the oppor-

tunity of sharing the locations among the fast movers with no overlap in their active

periods. Figure 16 shows that the picking and replenishment costs will no longer be

reduced after experiment 3 and the optimal size of the forward area is 4000′′× 2000′′.

63



The reason is that the travel cost of larger forward areas are greater. The solution

time rises in extending the area.

TABLE 11

Experiments for pick mode analysis

No. Aisle Width Aisle Length [NB
1 , N

B
2 , N

B
3 ] [NB

1 , N
B
2 , N

B
3 ]* Cost Sol. Time

1 2000 1000 [10, 50, 160] [10, 50, 159] 3064664986 587.16
2 3000 1500 [15, 165, 155] [15, 165, 129] 1863577592 888.26
3 4000 2000 [20, 280, 82] [20, 278,44] 1676469592 1890.83
4 5000 2500 [26, 286, 52] [25, 284, 40] 1719429196 3485.69
5 6000 3000 [31, 310, 62] [30, 306, 21] 1811408626 7045.21
6 7000 3500 [36, 324, 72] [29, 319, 12] 1923196148 15686.47

Figure 17 compares the optimal number of bays of the carton flow rack and bin

shelving in our six experiments. One insightful outcome of this figure is that larger

forward areas to have more carton flow racks and smaller forward areas tend have

larger bin shelving area. The allocated space to the SKUs in the bin shelving area

is less than the carton flow rack area. In our example, one bin is given to each SKU

in the bin shelving area, and each bin can contain one case, if the case and the bin

dimensions fit. However, carton flow rack slots can provide more than one case per

SKU because the carton flow rack’s slots are larger than the bins in the bin shelving

area. The bin shelving mode provides the opportunity of having the fast movers in

small forward areas. As a result, the best storage mode of the SKUs selected for the

forward area depends on the size of the available space for designing the forward area.

A Conclusion

We proposed the PSO algorithm for both profiling and slotting optimization.

It determines the best size of a different pick mode in the forward area, along with

64



Figure 16. Pick mode cost for experiments 1 through 6
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Figure 17. Carton flow rack and bin shelving comparison
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the SKU assignment and slot allocation. PSO includes a replenishment unit fit test

and implements the case orientation test for maximizing space utilization within a

slot type. We showed how the time window analysis, which is based on sharing

the storage in the forward area among the seasonal fast movers with different active

periods, makes the size of each pick mode smaller, causing the overall size of the

forward area to decrease. Using this idea, we can make the picking and replenishment

travel distances shorter without giving the seasonal SKUs a smaller allocated space

in the forward area. Finally, the results of our six experiments on a real warehouse

data set showed that the larger available space for the forward area leads to having

more carton flow racks than bin shelving settings.
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CHAPTER IV

DEMAND FORECASTING

The traditional forward-reserve problem fails to consider the effect of signif-

icant changes in demand. In some cases, only the products with seasonal demand

patterns are considered for the forward area. Consequently, important opportunities

and costly threats may be missed. The static slotting optimization addresses a prob-

lem, when the decisions about the forward area are made periodically and ignores

the historical demand trends of SKUs. We define dynamic slotting optimization as

a methodology that uses information available during the planning period to affect

storage and retrieval decisions (e.g. how to fill empty slots).

We address the problem of forecasting different types of demand trends in

this section. In the first step, we recognize the type of demand trend using the

Neural Network (NN). Next, the demand quantity is predicted using the appropriate

method depending on the demand trend of the SKU. For example, some SKUs have an

irregular demand pattern, for which traditional smoothing-based forecasting methods

do not work. The SKUs with an intermittent demand have many zero values of

demand during the planning horizon. So the method of forecasting them is different

from the SKUs that are ordered frequently.

The selection of a method depends on, but is not limited to, the relevance and

availability of the historical data, the desirable degree of accuracy, the time period

to be forecasted, and the time available for making the analysis. Our purpose here
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is to present an approach for acquiring demand forecast data as an input for the

dynamic forward-reserve problem. We will employ the Artificial Neural Network

(ANN) technique as a tool for qualitative step and a time series data analysis for the

quantitative step.

The rest of the chapter IV is organized as follows. In section A, we propose a

new method based on ANN for forecasting different types of demand trends. After

recognition of a demand trend type, the demand quantity is forecasted in section B.

A Qualitative model

The Control Chart Pattern Recognition (CCPR) technique, which is an ef-

fective tool in Statistical Process Control (SPC) for detecting process mean shifts,

has been applied for the demand trend recognition. In Statistical Process Control,

selected statistics are used to monitor processes for instability. The process is said

to be “out of control” if the statistic falls outside of the defined control limits or

follows a trend. Assume the demand of each SKU as the statistic plotted on the

control chart. Figure 18 shows the Control Chart (CC), which monitors the demand

statistics during the planning horizon.

The demand patterns considered in this research include normal, down trend,

up trend, systematic, down shift, up shift, cyclic, and intermittent patterns. Previous

studies on CCPR consider one pattern as normal and all other patterns are defined

as different kinds of abnormality.

There are several methods for CCPR pattern recognition in the literature.

Artificial Neural Network (ANN) is a common tool for classification problems and

pattern recognition. Figure 19 illustrates a basic structure of a NN with three layers:

input, hidden, and output. It contains artificial neurons and interconnections similar
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Figure 18. Demand trend shown by Control Chart

to the human brain. Each processing unit (neuron) receives and combines the input

and then transforms them into a single output. The network connects an input layer

to an output layer through hidden, or internal, nodes.

Two stopping criteria in modeling a neural network are defined. The hidden

nodes are added until the further addition no longer reduces the forecast error or until

the forecast error is within a defined tolerance level. Some advantages of NN are non-

linearity, the capability of learning from instances, adaptivity, evidential response,

fault tolerance, and the uniformity of analysis and design (Kantardzic, 2011).

Pattern recognition is defined as the process whereby a received pattern is as-

signed to one of a prescribed number of classes (Kantardzic, 2011). We perform

pattern recognition through a learning process. The ANN first operates the training

phase, during which the network receives a set of historical demand patterns along

with the class of which each specific pattern belongs. Next, a new demand pattern

is given to the network during the testing phase to identify the category of that
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Figure 19. Basic structure of a NN

particular demand pattern.

Pattern recognition accuracy is designed as a performance measure in ANN-

based approaches. Guh and Hsieh (1999) proposed an ANN that not only recognizes

the abnormal pattern, but also estimates the abnormality parameters, such as trend

slope and shift magnitude. Perry et al. (2001) report an ANN that automatically

detects and corrects out-of-control states. Purintrapiban and Corley (2012) develop

a NN-based model for autocorrelated processes. They state that all previous applica-

tions assume that the monitoring statistic is independent and identically distributed.

Masood and Hassan (2012) present issues corresponding to input data representation,

training, diagnosis, and recognizer design.

Recently, there has been a trend towards applying feature-based input repre-

sentation techniques and hybrid recognition systems. According to Motoda and Liu

(2002), feature selection is the process of choosing a subset of features, while feature

extraction is the process of creating a new set of features. Pham and Wani (1997)

use a feature extraction module on unprocessed data to raise the recognition accu-
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racy of pattern shapes. Gauri and Chakraborty (2006) introduce eight new features

to enhance ANN and recognizer performance. Hassan et al. (2003) demonstrates

that a feature-based ANN pattern recognizer for SPC, gives significantly better re-

sults compared to a raw data-based recognizer. Ranaee and Ebrahimzadeh (2011)

improve the classification performance of a proposed feature-based Support Vector

Machine (SVM) by integrating this classifier with a Genetic Algorithm (GA) for SVM

parameter optimization.

Based on mathematical models described in studies by Al-Assaf (2004), Gauri

and Chakraborty (2006), Gauri and Chakraborty (2009), and Shao (2012), we simu-

lated normal and abnormal patterns, as illustrated in Figure 20.

The mean of abnormal pattern, a(t), consists of two important components of

a constant term: µ and a particular abnormal function d(t) that models a particular

abnormal pattern. This term d(t) is zero in the normal demand pattern. The mathe-

matical model for the mean of simulated patterns can be expressed by the following:

a(t) = µ+ d(t) (51)

In equation 51, d(t) is defined as the following for different abnormal patterns:

1. Up/Down trends: d(t) = λt, where λ is the trend slope in terms of σε. The

parameter λ > 0 is selected for up trends and λ < 0 for down trends.

2. Up/Down shifts: d(t) = γ, where parameter γ shows the shift magnitude. The

parameter γ > 0 is selected for up shifts and γ < 0 for down shifts.

3. Cyclic pattern: d(t) = κ(2πt
Ω ), where κ is the amplitude of the cyclic patterns,

and Ω is the cyclic pattern period.
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4. Systematic trends: d(t) = ν(−1)t, where ν is the magnitude of systematic

pattern.

In obtaining the demand patterns, we first generate a random number ρt from

the normal distribution with mean a(t) and standard deviation parameter σ at time

t. Then, we apply the Exponentially Weighted Moving Average, EWMA, technique,

where the demand at time t depends on the EWMA statistic, which is an exponentially

weighted average of all prior demand data, including the most recent demand. We

compute successive demand points Zt using all preceding demand points and the

weighting factor of Θ. The EWMA static is calculated as:

Zt = Θa(t) + (1−Θ)Zt−1 (52)

With respect to the broad spectrum of parameters levels in relevant studies,

(Gauri and Chakraborty, 2009) and (Shao, 2012), a trial-and-error approach is taken

in this research to improve the model’s parameters.

The CCPR problem has been formulated into a classification problem with

ANN. In the example shown in Figure 20, we generated random independently and

identically normal and abnormal distributed samples with size m = 30 for different

patterns during the observation window length w = 20.

We assume the cyclic pattern is influenced by the seasonal factors with fixed

and known periods (e.g., the quarter of the year, the month, or day of the week).

Therefore, the term cyclic pattern can be replaced by seasonal pattern. Visualization

tools such as Figure 20 provide us with the trend cycle in cyclic and systematic trends.

After generating eight demand patterns, we scale the minimum and maximum

values of each sample to [-1,1] for better training. Next, we divide the targets into
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Figure 20. Example of different generated demand patterns.
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three sets: training (70%), validation (15%), and testing (15%) sets for our network.

The Levenberg-Marquardt back propagation algorithm suits our network for training

process. The Logsig transfer function that calculates the NN layer’s output from its

net input is used. These choices of transfer function and training algorithm give the

best classification accuracy by trial-and-error and are often used in the literature.

The Mean Square Error (MSE) performance function with error weighting is used as

the stopping criteria.

As the confusion matrix in Figure 21 shows, the performance of the ANN

classifier for detecting demand pattern is 99.6% for all cases, which demonstrates

the capability of NN for predicting the demand trends. In this figure, each row

represents the instances in an actual class, while each column presents the instances

in a predicted class (type of demand trend). The high accuracy shown in this matrix

verifies the ANN’s capability in recognizing demand trends. The Mean Square Error

(MSE) of this classification problem is .00391 after 6 iterations with solution time of

less than five seconds. The error histogram plot, shown in Figure 22, validates the

small values of errors for the three phases. This small error confirms the quality and

fitness of the ANN classifier for this pattern recognition problem.

B Model

It is not possible to perfectly forecast the future, but ignoring the forecast is

very expensive. The predictive models will not tell us what will happen in the future.

Instead, they determine what will probably happen with an acceptable level of error.

Assessing demand trends using real-time order transaction data is an essential aspect

of a warehouse management system. Selecting the method of demand forecasting

differs for different demand trends. Models for time series demand data can have
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Figure 21. Confusion matrix for demand trend classifier.
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Figure 22. Error Histogram for demand trend classifier.
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many forms.

Three classes of the autoregressive (AR), the integrated, and the moving aver-

age (MA) models are the most common ones for forecasting time series points. These

three classes depend linearly on previous points on times series (Gershenfeld, 1999).

Bootstrapping methods are more accurate for forecasting an intermittent demand

time series. In this section, we will first describe the forecasting method of demand

trends 1 to 7 in Figure 20, and then the forecasting approach for intermitent demand

data will be discussed.

1 Autoregressive Integrated Moving Average (ARIMA)

One key assumption of ordinary regression analysis is that the errors are inde-

pendent of each other. However, the ordinary regression residuals usually are corre-

lated over time with time series data. This statistical assumption makes the ordinary

regression analysis undesirable for time series data. There are regression models for

time series analysis with the capability of adjusting estimated regression coefficients

and standard errors when the errors have an AR structure.

As a consequence of violating the assumption of independent errors on ordinary

regression, the statistical tests of the significance of the parameters and the confidence

limits for the predicted values would be false. Further, the estimates of the regression

coefficients are more effective when considering autocorrelation. The dependency of

the regression residuals can improve the prediction of future values. In this study,

AR error correction or a serial correlation correction is used to forecast the demand

time series data except for the intermittent trend.

Before applying the regression model with AR errors, one may start by doing

an ordinary regression and storing the residuals. If the residuals from the ordinary
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regression seem to have an AR structure, applying the regression model with the AR

model improves the accuracy of forecasting.

A simple regression model with AR errors can be written as:

Yt = Υ0 + Υ1Xt + ξt (53)

ξt = χ1ξt−1 + χ2ξt−2 + ...+ χmξt−m + εt (54)

εt ∼ iid N(0, σ2), (55)

where Yt and Xt are time series variables, Υt is the regression coefficient, χi is the

autoregressive error model parameters, and ξt is the autoregressive error model vari-

able. The notation εt ∼ iidN(0, σ2) shows that each εt follows a normal distribution

with mean 0 and variance σ2 and is identically and independently distributed. The

parameter εt is called white noise. For a higher order AR, the adjustment variables

are calculated in the same way with more lags.

Since the current value of an AR series is correlated with all previous values,

the AR model has a relatively “long” memory. Therefore, the AR model cannot be

a good representative of the series, where the current value is only correlated with

a few previous values. The “very short memory” property of the MA model makes

it a favorable approach for modeling univariate time series. If it is algebraically

equivalent to a converging infinite order AR model, the MA model will be invertible

(AR coefficients decrease to 0 as we move back in time). The MA model is defined

as the following:

Yt = µ+ ξ′t (56)

ξ′t = %1εt−1 + %2εt−2 + ...+ %mεt−m + εt (57)

εt ∼ iid N(0, σ2), (58)

79



where the %is are the parameters of the MA model, µ is the expectation of Yt, and

the εt is a white noise error term and εt ∼ iid N(0, σ2).

As a result, the ARMA model, which contains both AR and MA models, is

written:

Yt = c+ ξt + ξ′t (59)

In the time series analysis, the ARIMA model is the integration of the AR

and MA models. In other words, the ARIMA model is a generalized version of an

ARMA model. The notation of ARIMA(p, d, q)(P,D,Q) represents the model with

p order of autoregressive model, d degree of differencing, and q order of the MA

model. The parameters P , D and Q are respectively the autoregressive, differencing,

and moving-average terms for the seasonal part of the ARIMA model. Note that

the ARIMA(0,1,1) model without a constant is equivalent to the Simple Exponential

Smoothing model.

Figure 23 represents our forecasting algorithm applied for the demand quantity

prediction of trends 1 through 7. First, the demand trend class is found by the NN

method described in section A. If the demand trend belongs to any class in 1 through

7, which were defined before, the ARIMA model will be executed. If the demand

trend is intermittent, the bootstrapping method will be implemented.

Figure 23 shows that we can execute the auto.arima() function in the R soft-

ware to find the best order for the ARIMA model. On the other hand, we produced a

procedure to reach the best model, which examines some performance measures that

test the alternative ARIMA models to select the best one.

The non-automated procedure scans four decision criteria, which include the

autocovariance or autocorrelation function (ACF), partial autocorrelation function

(PACF), root mean square error (RMSE), and σ2, to find the appropriate model.
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Figure 23. Algorithm of demand forecasting
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The automated function takes care of these steps by using the embedded function in

the R software auto.arima. The σ2 that resulted from the automated algorithm is

equal or greater than the non-automated algorithm in all cases.

TABLE 12

The ARIMA model results for instances of demand trends classes of 1 through 7

Trend ARIMA Order Coefficients σ2 AIC
1 (0,0,0) Intcp. 5.76 242.66

4.75
2 (5,0,0) ar1 ar2 ar3 ar4 ar5 0.02 -43.75

0.65 0.56 0.38 -0.42 -0.18
3 (5,0,0) ar1 ar2 ar3 ar4 ar5 Intcp. 0.00 -111.79

0.51 0.65 0.30 0.07 -0.54 3.24
4 (1,0,3) ar1 ma1 ma2 ma3 Intcp. 0.06 16.84

-0.99 1.20 0.27 -0.04 1.18
5 (4,0,2) ar1 ar2 ar3 ar4 ma1 ma2 Intcp. 0.08 34.39

-0.02 -0.33 0.70 0.34 0.40 0.76 1.03
6 (1,0,1) ar1 ma1 Intcp. 0.02 -38.30

0.91 -0.33 1.69
7 (1,0,1)(0,1,2) ar1 ar2 ar3 ma1 sma1 sma2 0.52 133.94

1.03 -0.46 -0.34 -0.59 -1.48 0.52

One way to find the best order of the ARIMA model is through the visual

inspection of the ACF and PACF plots and making a decision about the AR and MA

orders by a sharp cutoff that appears in the ACF and PACF plots. For example, the

PACF with a sharp cutoff while the slow decay of ACF represents an “AR signature”

rather than “MA signature”. Notwithstanding, this method is not practical in our

case, since we have to forecast the demand of very large number of the SKUs in

the warehouse. Instead, we involve statistics obtained from these functions in our

analysis.

Table 12 presents the results of the algorithm from Figure 23, for the seven

demand trend classes of 1 through 7. The algorithm suggests the best model for
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forecasting the demand trend of the instances. Class 7, which represents a cyclic

trend, has two AR terms: one MA term and two seasonal terms. After having the

coefficients of the best ARIMA model, we are able to forecast the demand quantity

of t time units ahead.

2 The bootstrapping method for intermittent demand data

Forecast errors can be costly in terms of keeping obsolete SKUs inside the for-

ward area when using dynamic slotting. Although the traditional forecasting methods

predict smooth demand data with proper accuracy, they are not capable of producing

accurate forecasting for intermittent demand time data because these time series have

a large number of zero values. Many of them assume that the probability distribution

of the total demand over a planning horizon follows a normal distribution, which is

not true. Croston (1972) was the first to recognize this phenomenon. This section is

motivated to explore a way that increases the accuracy of the intermittent demand

data forecasting using the bootstrapping methods.

Kourentzes (2013) propose a NN for forecasting intermittent demand data.

They consider an inter-arrival rate of demand events to improve Croston’s method.

Gutierrez et al. (2008) also compare the NN forecasts against Croston’s method, single

exponential smoothing, and the Syntetos-Boylan approximation.

Wallström and Segerstedt (2010) evaluate performance/error measurements

for the intermittent demand, since the comparison of different techniques is highly

dependent on choosing appropriate decision criteria. Besides the traditional perfor-

mance measures (e.g. MSE, RMSE), the new measurements’ “number of shortage”

and “periods in stock” are assessed to suggest a complementary measure.
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Teunter and Duncan (2009) compare Exponential Smoothing, the Simple Mov-

ing Average, the Croston’s method, and the bootstrapping methods in terms of fore-

casting accuracy. They conclude that Croston’s method and the bootstrapping tech-

nique for forecasting intermittent demand outperform the MA and single exponential

smoothing.

Croston’s method applies exponential smoothing separately to the intervals

between nonzero demands and the demand quantities in order to predict the mean

demand per unit time. Willemain et al. (2004) show that the bootstrapping method

generates more accurate forecasts of the demand distribution over a fixed planning

horizon, compared to the exponential smoothing and the Croston’s forecasts.

Following Croston’s method, Willemain et al. (2004) apply a normal distribu-

tion with a specific mean and a standard deviation. The authors also show that there

is no statistically significant difference between the Croston’s method and exponen-

tial smoothing at forecasting the entire lead time and that the bootstrapping method

outperforms both. Furthermore, the accuracy of the Croston’s method encounters a

very serious bias compared to the other techniques (Teunter and Sani, 2009). Thus,

we select the Willemain et al’s method for intermittent demand data forecasting.

Forecasting the demand size and the nonzero demand intervals are two im-

portant issues, which are considered in intermittent demand forecasting. We imple-

mented Willemain et al’s algorithm, as shown in Figure 24. This algorithm performs

a two-state first order Markov process to model the autocorrelation. The forecast of

the sequence of zero and nonzero values are conditional on having or not having a

demand in the last period (X(T ) = 1 or X(T ) = 0 ).
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Figure 24. Algorithm for forecasting the intermittent demand data
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They define the jittering process as follows:

JITTERED =


X∗ If JITTERED ≤ 0

1 + bX∗ + Z
√
X∗c otherwise,

where X∗ is one of the historical demand values randomly selected and Z is the

standard normal random deviate.

TABLE 13

Summary statistics for intermittent demand forecasting

Forecasting lead time (% of data size)
10% 20% 30% 40% 50%

MMSE 0.1575 0.1588 0.1588 0.1587 0.1580
MRMSE 0.2691 0.3269 0.3580 0.3694 0.3752
MMAE 0.1393 0.1403 0.1404 0.1399 0.1393

Table 13 summarizes the statistics of the intermittent demand forecasting for

6000 SKUs that follow this pattern during 52 days of historical demand data. On

average, each SKU demand profile has a 87.05% zero value. We evaluate different

chunks of the forecasting horizon in terms of the fraction of available historical de-

mand. For example, if the forecasting horizon is supposed to be 10% of the 52 days,

the first 52-5=47 days would be the training input data for the algorithm in Figure

24, and the remaining 5 days are the testing data. A bootstrap size of 1000 was

arbitrarily chosen.

The results from Table 13 show the capability of the Willemain et al’s method

for intermittent demand data forecasting, which is a good fit for forecasting class 8 of

our defined demand patterns. The errors do not experience fast growth by enlarging

the lead time and look satisfactory even for larger forecasting horizons.
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In summary, we developed an algorithm for the demand forecasting of differ-

ent demand trends. The Control Charts Pattern Recognition (CCPR) using ANN

presented excellent accuracy in terms of detecting the demand trend. The ARIMA

method is recommended for forecasting the demand quantity of patterns belonging to

classes 1 through 7. However, the bootstrapping method fits well for the intermittent

demand pattern, class 8.

In summary, CCPR using ANN presented excellent accuracy in terms of de-

tecting demand trends. The ARIMA method is recommended for forecasting the

demand quantity of smooth patterns that belong to classes 1 through 7. However,

the bootstrapping method is a good match for the last class, intermittent demand

pattern. The forecasted demand data are applied to the dynamic model in the next

chapter, when the perfect future demand data is not available.
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CHAPTER V

THE DYNAMIC FORWARD-RESERVE PROBLEM

In the static forward-reserve problem, the SKUs’ positions are fixed and a

particular SKU designated for a slot in the forward area will be replenished in the same

slot during the planning horizon. Because the warehouse environment is dynamic,

why not consider storing those SKUs with certain demand trends in the forward area?

Dynamic Forward-Reserve Problem (DFRP) changes the layout of the forward

area by real-time replenishments of the correct SKUs in the naturally emptied slots by

picks. This approach should not be confused with similar concepts. DFRP is different

from “warehouse reshuffling”, which refers to the process of converting the current

slotting to a designated target map. Relocating SKUs to convert from the current

slotting to the target map (optimal layout of the forward area) obtained from static

slotting optimization are typically called “moves” or “slotting moves.” The interval

between the first and last move for getting from current state to target map is called

the “reshuffling period.”

We have heard from warehouse managers that they want to avoid the large

number of moves suggested by the static slotting software. The DFRP approach

improves the layout of the forward area on a frequent basis by using the replenishment

of empty slots with proper SKUs.

The question of “Should we reslot our warehouse?” is popular in practice.

One strategy is running the static model periodically, e.g. monthly, but warehouse
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managers should know how often they need to re-layout the warehouse to update the

current slotting to the target map.

The best interval for the forward area re-layout is uncertain. If the selected

period is shorter than the best time for re-layout, it will be disruptive. Some SKUs are

moved to the reserve area without attaining their expected savings from being stored

in the forward area. On the other hand, if the selected period is long, we cannot be

sure if we have the optimal layout of the forward area over time. As a result, improper

SKUs, which are no longer eligible to be in the forward area due to their demand

trend, will stay there. A good reslotting methodology not only reslots seasonal items,

but also corrects the mis-slotted items of other demand pattern classes.

Therefore, having a strategy that guarantees the best layout of the forward

area is critical. The goal is to make sure that the assignment and allocation of SKUs

to the forward area are always updated during the planning horizon. Three concepts

of updating the layout of the forward area are:

1. Dynamic warehouse reshuffling: This method is based on repositioning and

(or) the adding/dropping of SKUs in the forward area by moving them. The

number of empty slots and their positions vary in each state depending on the

demand profile. Given the varying current slotting and the target map at each

unit of time, this model suggests the best moves to convert the current slotting

to the target map during the planning horizon. The goal is to have both the

minimum number of moves and the shortest moves from the origin slot to the

destination slot. This methodology takes advantage of the empty slots in a

real-time process to replenish the correct items in the correct locations. In this

strategy, the slots in the forward area are not identical, and moving the SKUs

located close to each other costs less than moving the farther ones.
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2. DFRP with no moves: Given an empty slot in a forward area and full informa-

tion about the historical demand, this concept decides whether the restocking is

with the same SKU or a different one. This approach explicitly schedules real-

time replenishment activities and considers the sequence of replenishments.

3. DFRP with moves: This method, which is the complement of the second

method, gives the opportunity of extracting slow movers in the forward area

and moving them to the reserve area. Therefore, we not only make decisions

about picking locations and replenishments, but also about those SKUs that

require to be moved to the reserve area. The slots of the forward area are

identical in the second and third approaches. These approaches do not require

the slotting map as an input.

Since the warehouse environment is dynamic, it is necessary to continuously

update the forward area layout. In this chapter, we will address the last two concepts

— DFRP with no target map or designated moves. Factors that account for this

dynamic environment include the seasonal item demand fluctuations, promotional

policies, and the general economic conditions that affect the demand trends. We

call these factors “destabilizing events”. When these events occur, it is likely that

temporarily excluding and including some SKUs in the forward area can reduce costs.

Instead of using accumulated annual demand data, we use raw order data, which

preserves the knowledge that can be obtained from real-time demand trends. We will

use the demand forecasting method explained in chapter IV to provide the forecast

demand data for the dynamic model that will be discussed.
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A Literature Review

In this section, we first review the studies with a dynamic approach in a ware-

housing context, such as the dynamic order picking system, the dynamic order re-

plenishment system, the dynamic inventory strategy, the dynamic slotting of the

correlated SKUs, and the dynamic lot-sizing. Next, we address the necessity for

developing the dynamic assignment and allocation of SKUs in the forward area.

For a unit load warehouse, Goetschalckx and Ratliff (1990) develop a shared

storage model, where different SKUs are stored in the same slot over time. They

assume that each unit load requires the same space. Therefore, the cost of replenishing

or picking a unit load from a storage unit is independent of the SKU type. They

present two heuristics for static and adaptive policies, in addition to an optimal

storage policy for a balanced system, where the number of arriving units is equal to

the number of departing units. They conclude that a shared storage policy based on

duration of stay will reduce travel time.

For a less than unit load warehouse, Landers et al. (1994) develop a framework

for a dynamic order picking system. Their study considers the correlated and com-

monality of demand within families. These considerations lead to resizing the slots

and SKU reslotting. A clustering algorithm determines the group of SKUs that are

stored together based on the long-run average correlation. As a result, a long run av-

erage flow may cause ineffective slotting. Sadiq et al. (1996) also study the dynamic

environment, in which the items go through life cycles and product mix changes.

They show that their algorithm for the Dynamic Stock Location Assignment Algo-

rithm (SLAA) outperforms the cube per order index at the order processing time

minimization when popularity and correlation of demand are changing over time.
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Yingdea and Smith (2012) address the dynamic slotting problem based on SKU

correlations. While we improve the picking and replenishment costs by dynamic SKU

assignment and allocation in the forward area, Yingdea and Smith (2012) improve

the picking efficiency by assigning correlated SKUs to their adjacent slots in a ware-

house. The authors propose an ant colony optimization with a slot-exchange policy

to assign the correlated SKUs. The limitation of this paper is the assumption that

the cartonization information is known. They use the same Mixed Integer Program-

ming (MIP) formulation proposed by Kim and Smith (2012), whose objective is to

minimize the pick wave span and maximize the total completion time among all pick-

ers. Kim and Smith (2012) study SKU assignment to zone-based carton picking DC,

where the WMS makes the routing decisions dynamically. They propose four two-

phase heuristics for the slotting problem. One of these heuristics applies simulated

annealing based on correlated interchanges. Their picking area becomes completely

emptied each day and is replenished after every pick wave.

A limited number of studies evaluate the dynamic perspective by analyzing the

warehouse activities like the dynamic order picking system and the dynamic order

replenishment. Bukchin et al. (2012) develop a Markov-based model that determines

whether to go on a tour and pick the accumulated orders or to wait for more orders

to arrive at every period. Therefore, the solution decides the batching orders in

a dynamic, finite-horizon environment. Order tardiness and overtime costs of the

pickers are minimized in their model.

Gong and De Koster (2008) develop a dynamic order picking system, in which

orders arrive in real-time and the picking information is dynamically changed during

the picking operation. Therefore, the pick locations are not fixed in a picking cycle

and the response time is reduced. They show that the polling-based picking systems
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outperform the traditional batch picking systems using optimal batch sizes in terms

of order waiting and throughput time.

Further, Berman and Kim (2001) studied a dynamic order replenishment sys-

tem, which follows an Erlang distribution. They show that Erlang lead times are

more stable than exponential lead times in terms of the cost. Finally, they recom-

mend dynamic policies with an adjusted reorder point based on customer orders and

the inventory status. This method is more efficient than traditional inventory policies.

Strack and Pochet (2010) propose an integrated model for warehousing and

inventory planning with different levels of integration. They demonstrate that this

integration will considerably reduce the cost of warehousing and the inventory system,

since the space allocation and replenishment decisions are closely dependent and

can be translated to each other. Their model determines: 1) the products that are

assigned to and only picked from the reserve area, 2) the products that are directly

supplied in the fast picking area and are only picked from the forward area, and 3) the

products that are supplied in the reserve area and are picked from the forward area

and a number of locations allocated to them in the forward area. They introduce two

integration levels: the lower level and the higher level. The lower level considers the

limited space in the warehouse but the inventory model ignores the routes taken by

the products, which includes external supplies sent to the reserve area or directly to

the forward area, and the number and capacity of the locations in the forward area.

The higher level considers the capacity constraint of the forward and reserve areas as

well as the reception cost of each product.

Our dynamic model makes decisions about the forward area assignment, the

allocation, and the replenishment regarding the SKUs’ inventory in this area. Berman

and Kim (2004) study the dynamic inventory strategy and the replenishment policy.
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They propose a Markov based model to reach an optimal dynamic inventory strategy

and maximize the facility’s profit. As an application of dynamic programming in

inventory management, Shapiro (2011) delivers an adjustable multistage robust op-

timization model. This research also analyzes a risk averse stochastic programming.

Many articles have studied the Dynamic Lot-Sizing Model (DLSM), which

consists of the inventory problem for single or multiple item(s) and transportation

functions. Kim and Lee (2012) propose a metaheuristic for the dynamic lot sizing and

shipment scheduling problem. The objective is to minimize the total cost including

the associated costs of ordering, inventory, holding, and freight. A genetic algorithm

is recommended by Kim et al. (2012) for solving the problem of inbound ordering and

outbound dispatching. The authors consider the dynamic demands over a discrete

finite time horizon. Kim and Lee (2013) also suggest a heuristic for solving the

problem of scheduling multiple products with a dynamic demand. These three articles

determine the order and shipment quantities of product i and the number of containers

used in period t.

The rest of the chapter V is organized as follows. Section B describes the

mathematical model of a dynamic discrete forward-reserve problem (method 1). The

comparison of the dynamic model with the static forward-reserve model will be dis-

cussed in section D.

B Mathematical Model

The static FRP has several assumptions:

1. A fixed set of SKUs selected for the forward area. The set of SKUs

assigned to the forward area is fixed during the planning horizon. So, if a slot

becomes empty, the same SKU as before will be replenished in that slot. The
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dynamic model decides based on the SKUs’ demand patterns whether or not

the same SKU should be replenished in the empty slot(s).

2. A fixed number of slots allocated to the SKUs selected for the for-

ward area. Due to the demand fluctuation, the number of slots given to the

SKUs in the forward area should change over time. The dynamic allocation

allows varying number of slots to the assigned SKUs to the forward area, when

required.

3. Restricting the model to always pick from the forward area if the

SKU exists there. If an SKU is assigned to the forward area, no matter the

order quantity, it is picked from the forward area and not from the reserve area.

Nonetheless, the dynamic model intends to command the picking of SKUs with

a high order quantity from the reserve area, not the forward area, to reduce the

replenishments.

4. Stocking the fixed steps of multiple units in the forward area. The

quantity stocked in the forward area is defined as the steps of multiple units.

In other words, the replenishment units is the factor based on the number of

allocated slots (e.g. if the maximum storage unit for SKU x is 100 cases, and

the allocated slots is two slots, 200 cases is stocked in each restocking event).

However, there is the chance of replenishing of the non-empty slots with less

than the maximum storage units.

5. Pick quantity is always less than the full allocation. The pick quantity of

the SKUs in the forward area is always less than the full allocation of the SKU

in the forward pick area. However, the large order quantities may be referred

from the reserve area to save the replenishment costs.
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6. The unlimited restock quantity by the restocker. Likewise, the number

of cases that a restocker can restock is unlimited in a static model. However,

the material handling device has a limited capacity in the dynamic model.

7. A non-integral number of replenishments. The number of restocks is not

integral in a static forward-reserve problem. This assumption and also the free

first restock affect the optimal solution. A dynamic model delivers an integer

number as the number of replenishments for each SKU.

8. The frequency of running the static model is assumed as known. The

static model does not address the question of “how often to run the optimization

model to update the assignment and allocation of the forward area”. Rather,

the dynamic model optimizes the layout of the forward area continuously.

In this section, we propose a generic Mixed Integer Programming (MIP) formu-

lation for dynamic and discrete assignment and allocation of SKUs into the forward

area. The aforementioned assumptions are relaxed in the proposed MIP model. The

real world warehouse requirements inspired us to avoid the static model assumptions.

We embedded some constraints in the model to address these critical requirements.

The inputs of this model include: the item file containing the SKUs’ dimension, the

slot file containing the information of the slots in the forward area, and the order file.

Parameters:

N : Number of SKUs (i=1,2,...,N)

T : Number of periods (t=1,2,...,T)

c: Restock cost

c1: Cost of picking from the forward area

c2: Cost of picking from the reserve area
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ei: Number of units of SKU i that can be stored in one slot

dit: Demand of SKU i at time t

pit: Number of picks of SKU i at time t

η: Total number of slots in the forward area

Decision Variables:

xit: 1 if SKU i is picked from the forward area at time t; 0 otherwise

yit: 1 if SKU i is restocked at time t; 0 otherwise

Iit: Inventory of SKU i in the forward area at the end of time t

Rit: Number of units of SKU i that are restocked at time t

nit: Number of slots occupied by SKU i at time t, nit ∈ {0, 1, 2, 3, ...}

1 The generic MIP model of DFRP

We propose the MIP mathematical model for the dynamic-discrete forward-

reserve problem for the first time as follows:

Min C1 = c1

N∑
i=1

T∑
t=1

pitxit + c2

N∑
i=1

T∑
t=1

pit(1− xit) + c
N∑
i=1

T∑
t=1

yit (60)

subject to:

−Iit + Ii,t−1 +Rit − ditxit = 0 ∀i, t ≥ 2 (61)
N∑
i=1

nit ≤ η ∀t (62)

Rit ≤ ηeiyit ∀i, t (63)

nit ≥
Ii,t−1 +Rit

ei
∀i, t (64)

Rit, Iit ≥ 0 ∀i, t (65)

xit, yit ∈ {0, 1} ∀i, t (66)

nit ∈ {0, 1, 2, 3, ...} ∀i, t (67)
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This model decides the replenishment of empty slots, which appears during the

order picking, with the same SKU or a different one. Unlike the static forward-reserve

problem, which is non-linear, the dynamic model is linear. The objective function in

equation 60 is the total cost of picking and replenishments of SKUs assigned to the

forward or reserve area.

In this dynamic model, SKUs may occupy more than one slot in the forward

area. This model takes advantage of a “shared storage” policy in which the residual

empty space generated by order picking might be aggregated, such that more SKUs

could be put in the forward area. In each time period, some slots that become empty

provide the opportunity of storing the appropriate SKUs in the forward area. How-

ever, each SKU reserves its own restocking slots as it nears the time for replenishment,

as in “dedicated storage.”

The concept of time period t in the dynamic model may vary in different

warehouses with different picking/replenishment methods and SKU activities. For

example, the warehouses, which apply the “wave” picking method, may choose the

length of the wave as t. A wave is constructed with groups of orders. t may also

be corresponded to the daily items’ flow. It is expected that t expresses a shorter

intervals in more active warehouses with higher product flows. Comparing to the

inactive warehouses, the inventory level of the slots in active warehouses are depleted

faster due to more frequent picks. t should be small enough to capture the changes in

inventory status of slots and trigger the replenishments. Choosing a short t interval

(e.g. hour) in inactive warehouses will not add value to the dynamic model because

of no change in inventory levels of slots over a sequence of t.

The unit of inventory in our problem is selling units. Constraint 61 guarantees

that the demand is satisfied by picking either from an on-hand inventory in the
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forward area or from the reserve area. We can track the existence of an SKU in the

forward area by its inventory level, Iit.

If the demand of SKU i is satisfied from the forward area at time t, then

xit = 1. However, this model does not mandate picking from the forward area, if

Iit > 0, since product i stocked in the forward area can more efficiently be picked

from the reserve area in the case of high order quantity per pick. The model makes

such decisions implicitly.

Constraint 62 does not allow the total allocated slots to the SKUs in the

forward area to exceed the total number of slots. Further, constraint 63 makes the

binary variable of replenishment, yit, equal to 1 if SKU i is restocked at time t.

Constraint 64 establishes the number of slots given to each SKU i at time t.

Our solution shows that relaxing the integrality constraint for variables Rit

and Iit leads to the integer solution. However, nit should be selected from the integer

numbers. nit is the ceiling function of Rit and Ii,t−1 as below:

nit =
⌈
Ii,t−1 +Rit

ei

⌉

C Numerical example

Before discussing our numerical example, we first describe the procedure for

running the dynamic model in Figure 25. When the perfect information about the

future demand data is not available, the dynamic model is not a one-time run model

because the forecasted demand data is updated at each run r. The dynamic model

is run w (time window) times with the updated data based on the last H periods.

The picks and replenishments’ solutions of each run are saved for computing the final

total cost during the planning horizon.
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Figure 25. The run procedure for the dynamic slotting model
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The dynamic model plans for the next T periods at each run r. Since the

picks and the demand data of the initial period are assumed known, the inventory

level reductions that corresponded to the first period are actual at each run r. The

initial period replenishments are commanded and the inventory level of the slots are

updated. The runs continue to cover the whole planning horizon.

Selecting a sufficient time window w makes the comparison between the dy-

namic and static models s more reliable. It is worth noting that the dynamic model

can plan for the next 6-8 periods in a reasonable time, depending on the number

of SKUs. On the other hand, when T is not sufficiently large, the model generates

short-sighted decisions. Therefore, selecting a proper T is challenging in different

industries. In addition, the duration between two consecutive runs of the dynamic

model, period t, is important. The large time segments can result in a delay of the

replenishment or moves decisions. However, choosing small periods is not computa-

tionally efficient. In our numerical examples, we found that the daily decisions made

about the forward area are sensible.

We compare the static model (G2 − A4) with the dynamic model. In our

example, we consider a warehouse with 5000 SKUs. The relevant values of other

parameters of the model can be found in Table 14. We used the information of the

SKUs’ dimensions, which belong to a real world warehouse. Our order generator

simulates the eight different types of demand trends explained in section A. The

order data for 50 days of history is simulated, and a dynamic slotting strategy that

uses the daily demand quantity forecasting for 30 days ahead is delivered.

We run 7 experiments designed for the different sizes of the forward area listed

in Table 15 in order to perform our comparison. In this example, the unit of time is one

day in the dynamic strategy. The perfect information about the future demand data is
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assumed as known in this example. The parameters associated with c1, c2 and c costs

have been selected from the default values of a commercial slotting software. The

units used for measuring the travel distance of picking and replenishment activities,

such as inch, describes the unit of unit of cost in this dissertation.

TABLE 14

The values of model’s parameters

Item Info Slot Info. Order Info. Cost Info.

SKU dimensions file
W = 18

Order generator
c = 170

H = 16.5 c1 = 27
L = 96 c2 = 100

TABLE 15

Results of cost and solution time comparisons of the static versus dynamic model

η Cstat−H STStat−H CStat−PI STStat−PI CDyn−PI STDyn−PI Imp1% Imp2% Gap
100 1761513 0.06 1677445 0.06 1538725 422 12.65 8.27 0
150 1516117 0.07 1438928 0.05 1425630 388 5.97 0.92 0.0014
200 1446542 0.09 1356799 0.05 1329306 486 8.10 2.03 0.0036
250 1368497 0.08 1272363 0.06 1244400 563 9.07 2.20 0
300 1296999 0.08 1197283 0.06 1161791 630 10.42 2.96 0.0131
350 1236235 0.07 1120830 0.06 1084762 1113 12.25 3.22 0.0197
400 1165466 0.08 1050649 0.06 1009547 794 13.38 3.91 0.0192

CStat−H = Cost of static model using historical demand data,
CStat−P I = Cost of static model using perfect information about the future data,
CDyn−P I = Cost of dynamic model using perfect information about the future data,
ST = Solution time (seconds),
Gap = Absolute MIP gap tolerance for the dynamic model,
Imp1% = Improvement percentage of the Dyn− PI over Stat−H model,
Imp2% = Improvement percentage of the Dyn− PI over Stat− PI model.

Assuming that the picking cost from the forward area is fixed in all experiments,

we expect that the larger forward area results in a lower total cost. Results of Table
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15 for both static and dynamic strategies confirm this expectation. Columns Imp2%

and Imp2% of Table 15 presents the improvement percentage of the dynamic over

the static model for different sizes of the forward area.

Table 15 shows that the dynamic model outperforms the static model for any

size of the forward area. The costs of the dynamic model are considerably lower than

their static counterparts in all cases, and the greatest benefit of 12.65% is achieved

where the forward area is very small (100 slots).

The results of Table 15 shows that the dynamic strategy is more effective

for small and large sizes of the forward area compared to the medium size in this

example. In small forward areas, since a few number of slots are available, selecting

the best set of SKUs for the forward area is underlined, and poor decisions about the

assignment and allocation are more expensive. The dynamic model can introduce

new fast movers to the forward area and keep the layout updated in the small size

case. In large forward areas, it is expected that the proportion of improper SKUs

suggested by the static model for the forward area are higher than the medium size

forward area, resulting in a total cost increase. Larger forward areas provide the

dynamic model more opportunity and flexibility in dynamic slot allocation (changing

the number of allocated slots over time based on the changes in demand), which

results in cost improvements.

D Comparison of the static and the dynamic models with multiple runs of the static

model

The best time to re-layout the forward area regarding its current state is still

a critical unanswered question in practice. One may assume that running the static

model periodically competes with the dynamic strategy. In this section, we compare
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these two strategies and quantify the benefits of the dynamic model over updating

the forward area in certain intervals by assessing three scenarios:

1. PI: The dynamic forward-reserve problem with Perfect Information (PI) about

the next k units of time (day).

2. FI: The dynamic forward-reserve problem with Forecasting Information (FI)

about the next k units of time (day).

3. S: The static forward-reserve problem with updating the layout of the forward

area in certain points of the planning horizon.

Since there are no established tests for running the discrete forward-reserve

problem in certain periods, we design an example that includes time periods. Running

the static model in a certain time interval to get the most updated layout of the

forward area is a common way to take the demand changes into account. Then

the “moves” from the forward area to the reserve area are designated to exclude

the obsolete slow movers from the forward area. We charge each SKU move for

“transition” costs equal to the replenishment cost, when an SKU should move from

the forward area to the reserve area in the update points.

The demand of every SKU in the warehouse, which is an input of the static

model, is not fixed and changes over time in unanticipated ways. The source of

this change is due to the changes in customers’ behavior over time. Following the

language of predictive analytics, we call the demand per year, which is supposed to

be predicted, the concept and the process of shifting the concept over time is called

the concept drift.

As Figure 26 shows, the horizontal axis represents both a history and future

planning horizon. The history is up to point zero in the diagram. The static model is
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run only once at time zero in the first scenario. The layout of the forward area would

be fixed during the planning horizon w.

While the first scenario has a single chunk of data, others have sequential data

chunks of sizes a1, a2, ..., am. We run the static model every a1 units of time (e.g.

days) in the second configuration. We shrink the intervals in the next runs until am

days in the last configuration, which is the shortest period of running the static model

(a1 > a2 > ... > am). Note that in all configurations, the static model will receive

the demand profile of the last H days as an input, and the concept, which is the total

demand in the last H days, is drifting.

Figure 26. The planning horizon diagram with different run intervals for the test
example

As Figure 27 illustrates, we run the static model once (no update), every 15,

10, and 6 days (a1 = 30
2 , a2 = 30

3 , a3 = 30
5 ). Here, the historical demand is defined

as the most recent 50 days (H = 50) and the planning horizon incorporates 30 days
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(w = 30). Other parameters’ values can be found in Table 14. We selected heuristic

G2−R4 for solving the static model, since it showed the best performance among all

heuristics discussed in Chapter II.

Figure 27. The planning horizon diagram with different run intervals

Table 16 represents the total picking and replenishment cost of the static model

solved by G2 for different scenarios. For the first scenario that has a single data chunk,

we have only one total cost over days 31-80. Nonetheless, other scenarios have more

than one cost considering a different data chunk i ahead, which we show with ci. For

example, the scenario with a2 = 10 calculates the costs of chunks 51-60, 61-70, and

71-80, which are equal to c1, c2, and c3, respectively. The sum of these three costs

provides the total picking and replenishment cost, C, during 30 days for this scenario.

106



The results of C in the last column of Table 16 depicts how costly it would be

to select an inappropriate interval for running the static model, ai. The total cost of

running the static model every 30 days (no update) is less than early update intervals

15, 10 and 6 days that impel “early shock” to the static model. Depending on the

activity distribution of the items in the forward area, it takes longer for many SKUs

to emerge as cost effective. The SKUs that encounter the replenishment cost should

stay for awhile in the forward area to generate expected savings by picks. Deleting

them early from the forward area and moving them to the reserve area not only incurs

the moving cost, but also prevents expected savings per pick.

The results of the last two scenarios in Table 16 with two and four updates show

that the costs go down and up. Since the slotting of the first period is initiated with

an empty forward area, all slots in that period are replenished. However, the following

periods begin with non-empty slots. Therefore, the number of replenishments is lower

in the middle of the planning horizon, which reduces the total cost. The slots are

depleted over time and need to be replenished again in the final periods. As a result,

the costs will eventually grow again.

TABLE 16

Picking and replenishment cost for the static model.

c1 c2 c3 c4 c5 C

No update 1368497 0 0 0 0 1368497
One update 697707 684351 0 0 0 1382058
Two updates 499925 416805 485430 0 0 1402160
Four updates 315898 288248 240906 279170 317616 1441838

In the cases of running the static model more than once if the set of SKUs in

the new layout is different from the previous layout, we move the SKUs not found in
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the new layout to the reserve area with a cost equal to the replenishment cost. Table

17 shows the different SKUs (DSKi) and different slots (DSLi) in chunk i of the

previous and the next state. The first columns of Table 17 are zero, since we start

from an empty forward area. Table 18 presents the cost of moves, cmi, in data chunk

i. Finally, the total cost, CS = C + CM , in the last column of Table 18 will display

the total cost of each scenario in the static model.

There is a trade off between continuously going with the previous layout of the

forward area and having the most updated layout of the forward area but undergoing

the moving cost. Table 18 suggests not to reslot before 30 days.

TABLE 17

The number of different SKUs (DSKi) and the different slots (DSLi) in the previous
and next states of the forward area in a static model

DSK1 DSL1 DSK2 DSL2 DSK3 DSL3 DSK4 DSL4 DSK5 DSL5

No update 0 0 0 0 0 0 0 0 0 0
One update 0 0 15 15 0 0 0 0 0 0
Two updates 0 0 14 14 18 18 0 0 0 0
Four updates 0 0 9 9 5 5 13 13 16 16

TABLE 18

Cost of moving to reserve area in the static model

Config. cm1 cm2 cm3 cm4 cm5 CM CS

No update 0 0 0 0 0 0 1368497
One update 0 2550 0 0 0 2550 1384608
Two updates 0 2380 3060 0 0 5440 1407600
Four updates 0 1530 850 2210 2720 7310 1449148

We used the same data set for the dynamic MIP model discussed in section

B with having the Perfect Information (PI) of the future demand. The cost of the
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dynamic model with perfect information about the future demand is CPI .

Table 19 presents the comparison results of the static model and the dynamic

model with perfect information about the future order transactions. The last column

of this table shows the promising cost improvements of the dynamic model over the

static model. The total costs of dynamic scenarios, PI, is always less than the static

model. Note that the availability of the movers to convert the previous state of the

forward area to the new layout in this short interval is questionable. In reality, it takes

time to get from the current state to the target map, whereas we assume no delay

for reslotting. The percentages of saving attained by the dynamic model in Table

19 provide the cost justification of using the dynamic model for the forward-reserve

problem rather than the static model.

TABLE 19

The total cost and savings (%) obtained from the static and dynamic models (PI).

Config. CS CPI saving (%) CPI→S
No update 1368497

1244400

9.07
One update 1384608 10.13
Two updates 1407600 11.59
Four updates 1449148 14.13

The traditional wisdom assumes that running the static model more frequently

generates more savings than less frequent runs. Nevertheless, Table 19 shows that

the savings are greater when the layout of the forward area is updated in longer

intervals. The reason is that each SKU in the forward area has its own “minimum

payback” period. If an SKU exists in the previous layout but is not found in the new

target map, it is moved from the forward area to the reserve area. This approach

prevents the receiving of the whole expected benefits after the last replenishment. In
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other words, the SKUs may leave the forward area before reaching their minimum

payback point. In each update, it is assumed that the next decision about the layout

of the forward area is not influenced by “what state the SKU is in.” In essence, the

next update “forgets” how much time has elapsed from the last replenishment of the

SKUs in the forward area. This memorylessness property is assumed in each update,

causing more frequent updates that result in higher costs. Our results suggests to

run the static model no earlier than 30 days in this example.

These comparisons provide a basis for warehouse managers to select their de-

sired methodology for updating the forward area. While the static model requires the

movers to convert the previous state to the target map, the dynamic strategy takes

the advantage of pick clean (having empty slots by picks) to replenish new items in

the slot and updates the layout of the forward area.

At the end of this chapter we will show the warehouses that keep short life

cycle products, such as fashion products, as well as highly volatile products in order

to receive more benefits from the dynamic model, compared to the warehouses that

store conventional and fixed demand products.

E Model enhancement

In this section, we test the dynamic model by applying our forecasting system

and assess the potential change requirements for making the model more realistic.

Then, we will compare the static model, S, to the dynamic model with forecasted

demand data, FI, and new features, including the option of moving to the reserve

area and selecting the replenishment policy. We improve the DFRP in three ways:

1. Estimating the model parameters and fixed costs adjustments. We

enhance the dynamic model to adjust the costs of picking from the forward area, the
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reserve area, and the replenishments with respect to the changes in each area’s size.

The forward area can be recognized from the reserve area in Figure 28. Obviously,

having a forward area with more aisles will increase the picking cost from this area.

c, c1 and c2 are then

c1 =2L2 + Zv

2 = L+ Zv

2 (68)

c2 =2L2 + Zu

2 = L+ Zu

2 (69)

c =L2 + Zu

2 + Z(u+ v)
2 + L

2 + Zv

2 = L+ Z(u+ v) (70)

Where

L: Length of each picking aisle

v: Number of picking aisles in the forward area

u: Number of picking aisles in the reserve area

Figure 28. Warehouse layout (Forward area: green aisles; Reserve area: black aisles)

The picking cost from the forward/reserve areas in equations 68 and 69 is
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the sum of cross aisle travel and picking aisle travel. The replenishment cost in

equation 70 includes three costs: the retrieval cost from the reserve area, the travel

cost from the reserve to the forward area, and the storage cost in the forward area.

The replenishment cost will not change, when enlarging or shortening the forward

area, since it is relative to the total number of aisles (u+ v).

2. Moving the slow movers to the reserve area. The opportunity of

moving the slow movers nested in the forward area for a long time, due to the lack of

sufficient orders in the dynamic problem, is addressed. These moving costs are equal

to the replenishment cost. If we have the perfect information about future orders,

this problem is automatically solved because we always replenish the exact amount of

the future demand and will have the slot empty at some point in the future without

any move. Nevertheless, it is not true for the dynamic model to use the forecasted

data. The decisions about moving the slow movers to the reserve area determine

which SKUs should leave the forward area.

3. Applying different types of replenishment. One limitation of the

generic DFRP discussed in section B is when the inventory level of a certain slot gets

very low and the actual order is greater than the inventory in the forward area. Three

options are available for order fulfillment in this case:

a) Move the item to the reserve area and pick the whole order from the reserve

area (c+ c2).

b) Replenish the rest of the order (or more) in the forward area and pick the

order from the forward area (c+ c1).

c) Leave the low inventory item in the forward area and pick the whole order

from the reserve area (c2+cw), where cw is a waiting time cost to get an order quantity

equal to the inventory and have the slot empty.
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Option a is always more expensive than option b, so the model will not suggest

that. Since moving the item to the reserve area results in a cost equal to the replen-

ishment cost, the model rarely suggests the move to the reserve area. It inclines to

wait to get an order quantity equal to the inventory level, which makes the slot empty

for free. However, this waiting time in option c – leaving some slots with a low inven-

tory level in the forward area to get the order quantity exactly the same as the low

inventory– postpones generating the pick savings from the forward area, which is not

efficient. We will show in the following that the size of the forward area impacts these

decisions. We will address this issue by discussing different replenishment policies.

F Replenishment policies

In section B, we addressed a general form of the dynamic model by having the

restock quantity as the decision variable. In this section, we will elaborate on the

different replenishment strategies, the quantity replenishment (model 1), and the full

replenishment of a slot (model 2.) Each of these models contains sub-models. Note

that model 2 is not a special case of model 1, since the dynamic model is not just a

one-time run model for the whole planning horizon and works with forecasted data.

The demand input is updated in every t.

The dynamic model, which uses the forecasted data, is run at each t to make

both the pick decisions from the forward or reserve area as well as the replenishment

decisions. Therefore, the actual demand quantity and picks is prone to the forecast

errors. We may not receive exactly the same orders as the forecasted ones. As a

result, some SKUs may stay in the forward area with low level inventory.

One way to pick again from those low level inventory slots is by replenishing

them up to full or less than full with the same SKU, even if they are not empty.
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Another way to remove the remaining inventory is by moving them to the reserve

area anytime, with a cost equal to the replenishment cost. Therefore, moving the low

inventory from the forward area to the reserve area and then restocking the emptied

slot with another SKU costs twice as much as the replenishment cost.

1 Quantity replenishment (M1)

The replenishment quantity is an integer decision variable in model 1 (M1).

Model M1
LH considers a limited horizon aiming to reduce the problem size. If an

SKU is selected for the forward area in this strategy, there is the risk of restocking an

amount equal to the demand of the limited forecast horizon and losing the chance of

a full replenishment of the slot. Consequently, the initial inventory of the slot in the

next run of the dynamic model would be less than the full replenishment strategy.

The model considering the whole horizon (T = 21) is complex and will not

deliver the solutions in a reasonable time. In the unlimited horizon model, M1
ULH ,

we enlarge the period t by aggregating the forecast demand data of 3 consecutive

days (t ∈ {1, ..., 21
3 }.) As a result, the final number of periods ahead (T ) will be

reduced from 21 to 7. Although the shorter periods result in more prompt responses

and decisions about the picks, replenishments, and moves, it is not computationally

efficient when addressing the whole horizon. One limitation of expanding the period

is that the decisions about the forward area are released every 3 days, not daily.

Model 1 is similar to the general model introduced in section B but has the

option of moving the slow movers to the reserve area when required.

M1 : Min C1 = c1

N∑
i=1

T∑
t=1

pitxit + c2

N∑
i=1

T∑
t=1

pit(1− xit) + c
N∑
i=1

T∑
t=1

(yit + wit)
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subject to:

−Iit + Ii,t−1 +Rit − ditxit − sfit = 0 ∀i, t ≥ 2 (71)
N∑
i=1

nit ≤ η ∀t (72)

Rit ≤ ηeiyit ∀i, t (73)

nit ≥
Ii,t−1 +Rit − sfit

ei
∀i, t (74)

sfit ≤ ηeiwit ∀i, t (75)

Rit, Iit, s
f
it ≥ 0 ∀i, t (76)

xit, yit, wit ∈ {0, 1} ∀i, t (77)

nit ∈ {0, 1, 2, 3, ...} ∀i, t (78)

Where

Parameters:

N : Number of SKUs (i=1,2,...,N)

T : Number of periods (t=1,2,...,T)

c: Restock cost

c1: Cost of picking from the forward area

c2: Cost of picking from the reserve area

ei: Number of units of SKU i that can be stored in one slot

dit: Demand of SKU i at time t

pit: Number of picks of SKU i at time t

η: Total number of slots in the forward area

Decision Variables:

xit: 1 if SKU i is picked from the forward area at time t; 0 otherwise

yit: 1 if SKU i is restocked at time t; 0 otherwise
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Iit: Inventory of SKU i in the forward area at the end of time t

Rit: Number of units of SKU i that are restocked at time t

nit: Number of slots occupied by SKU i at time t, nit ∈ {0, 1, 2, 3, ...}

sfit: Units of SKU i that are moved from the forward to the reserve area at

time t.

wit: 1, if SKU i is moved from the forward area to the reserve area at time t;

0 otherwise.

Constraint 75 makes the binary variable of the move from the forward to the

reserve area, wit, equal to 1 if any units of SKU i are moved to the reserve area at

time t (sfit > 0).

2 Full replenishment (M2)

Model 2 restocks the full allocated slot(s). If Uit slot(s) are given to the SKU

i at time t, the replenishment quantity will be eiUit. We investigate three different

strategies for model 2, named M2
a , M2

b , and M2
c .

M2
a : Can replenish up to full if the slot(s) are empty.

M2
b : Can replenish up to full if the slot(s) are empty and can replenish partially

if the slot(s) are non-empty. The partial replenishment can make the slot less than

full or full.

M2
c : Can replenish full any time.

Figure 29 summarizes the replenishment policies. The three MIP models de-

fined for model 2 are demonstrated below:
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Figure 29. Replenishment policies
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Replenish up to full if empty (M2
a )

Min C1 = c1

N∑
i=1

T∑
t=1

pitxit + c2

N∑
i=1

T∑
t=1

pit(1− xit) + c
N∑
i=1

T∑
t=1

(yit + wit)

subject to:

−Iit + Ii,t−1 + eiUit − ditxit − sfit = 0 ∀i, t ≥ 2 (79)
N∑
i=1

nit ≤ η ∀t (80)

Uit ≤ ηyit ∀i, t (81)

nit ≥
Ii,t−1 + eiUit − sfit

ei
∀i, t (82)

sfit ≤ ηeiwit ∀i, t (83)

Iit, s
f
it ≥ 0 ∀i, t (84)

xit, yit, wit ∈ {0, 1} ∀i, t (85)

nit, Uit ∈ {0, 1, 2, 3, ...} ∀i, t (86)

Constraint 81 makes the replenishment binary variable yit equal to 1, if Uit

slots are given to SKU i at time t. The number of replenishment units for SKU i at

time t is eiUit in constraint 82.

Replenish up to full if empty or partially if not empty (M2
b )

Min C1 = c1

N∑
i=1

T∑
t=1

pitxit + c2

N∑
i=1

T∑
t=1

pit(1− xit) + c
N∑
i=1

T∑
t=1

(yit + wit + hit)

118



subject to:

−Iit + Ii,t−1 + eiUit − ditxit − sfit + srit = 0 ∀i, t ≥ 2 (87)
N∑
i=1

nit ≤ η ∀t (88)

Uit ≤ ηyit ∀i, t (89)

nit ≥
Ii,t−1 + eiUit − sfit + srit

ei
∀i, t (90)

sfit ≤ ηeiwit ∀i, t (91)

srit ≤ ηeihit ∀i, t (92)

srit ≤ ei − Ii,t−1 ∀i, t ≥ 2 (93)

Ii,t−1 ≥ hit ∀i, t ≥ 2 (94)

Iit, s
f
it, s

r
it ≥ 0 ∀i, t (95)

xit, yit, wit, hit ∈ {0, 1} ∀i, t (96)

nit, Uit ∈ {0, 1, 2, 3, ...} ∀i, t (97)

Where

srit: Units of SKU i that is restocked in the non-empty slot containing SKU i

at time t (partial replenishment units of SKU i at time t.)

hit: 1 if srit units of SKU i are restocked in the non-empty slot containing SKU

i at time t; 0 otherwise.

Since model M2
b provides both partial and full replenishment opportunities for

the products of the forward area, nit is corresponded with both variables Uit and srit in

constraint 90. Uit covers the full replensihments and srit accounts for the partial ones.

Constraint 92 makes the binary variable hit 1, if any partial replenishment occurs.

Constraint 93 assures that the units of partial replenishment are less than or equal to

the available capacity of the non-empty slot containing SKU i at time t. Constraint
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94 controls the partial replenishments and makes sure that they are executed for only

non-empty slots.

Replenish up to full any time (M2
c )

Min C1 = c1

N∑
i=1

T∑
t=1

pitxit + c2

N∑
i=1

T∑
t=1

pit(1− xit) + c
N∑
i=1

T∑
t=1

(yit + wit + hit)

subject to:

−Iit + Ii,t−1 + eiUit − ditxit − sfit + srit = 0 ∀i, t ≥ 2 (98)
N∑
i=1

nit ≤ η ∀t (99)

Uit ≤ ηyit ∀i, t (100)

nit ≥
Ii,t−1 + eiUit − sfit + srit

ei
∀i, t (101)

sfit ≤ ηeiwit ∀i, t (102)

srit ≤ ηeihit ∀i, t (103)

srit ≤ ei − Ii,t−1 ∀i, t ≥ 2 (104)

srit ≥ ei − Ii,t−1 − ei(1− hit) ∀i, t ≥ 2 (105)

Iit, s
f
it, s

r
it ≥ 0 ∀i, t (106)

xit, yit, wit, hit ∈ {0, 1} ∀i, t (107)

nit, Uit ∈ {0, 1, 2, 3, ...} ∀i, t (108)

Model M2
c can replenish fully at any time. This model is similar to model M2

b ,

except in one constraint: model M2
c does not need constraint 94. Instead, we added

constraint 105 to link to constraint 104 and replenish an amount exactly equal to
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the available capacity of the slot (ei− Ii,t−1) when a partial replenishment is required

(hit=1).

G Heuristics for the dynamic forward-reserve problem (T.P )

In this section, we will investigate a simple threshold policy that performs

almost as well as the dynamic MIP model M2
c in section F. The problem gets sig-

nificantly more computationally expensive for large amounts of data. The suggested

intuitive heuristic T.P. delivers a near optimal solution within a reasonable computing

time as well as an acceptable performance consuming the sensible number of SKUs

and size of the forward area in practice. It is assumed that the replenishments can

be made over time with a negligible operational time and when the pick list for the

current period (t = 0) is known. The demand data for the next ω period is forecasted.

T.P. uses heuristic G2 explained in chapter II for an SKU assignment and slot

allocation of the forward area. In the case of the initial empty forward area, we first

run the G2 to get the initial layout and slot allocation. In each period, the inventory

level of the slots drop based on the SKU demand in that period. If the inventory

level of the SKU is zero or below, we run G2 to decide the SKU re-assignment in

the forward area. If re-assigned, it will be replenished and the inventory level gets

updated. If not, the slot gets empty by pick. Note that the SKUs that are available in

the forward area with Iit > 0 are excluded from the candidate set of SKUs imported to

G2. Finally, all replenishments and picks from the forward and reserve areas counted

for the total cost calculations.

T.P. is an algorithm used simultaneously for a dynamic SKU and an assignment

of the forward area. In other words, this heuristic not only keeps the currency of the

forward area by updating the set of assigned SKUs to the fast picking area, but also
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adjusts the allocated slots to them. The pseudo code for the heuristic T.P. that

updates both the SKU assignment and the discrete space allocation in the forward

area can be found in the Appendix.

Examining the effect of a slot allocation on the total cost, algorithm T.P.′ is

developed for the dynamic slotting problem that only considers the assignment of

SKUs to the forward area, not the space allocation. Heuristic T.P.′ assumes one slot

per SKU in the forward area and is based on the following four steps:

Dynamic SKU assignment in the forward area (heuristic T.P.′)
Input: The generic MIP DFRP model’s parameters.
Output: The dynamic SKU assignment in the forward area over time.
For (t = 1 to T )

1. Find empty slots. Find e, the total number of the empty slots and the slots that become

empty by the order picking at time t.
2. Sort. Rank the SKUs by the labor efficiency of SKU it at time t (leit) using the forecast

demand data for the forecasting window, where f4it = dit

bi
, leit = pit√

f4it

.

3. Update. Update the list by excluding those SKUs that still have inventory in the forward

area, even after order picking at time t.
4. Assign SKUs to the empty slots. Assign the first e SKUs of the list to the emptied

slots. Each assigned SKU gets one slot.
EndFor

H Model Validation and Numerical Discussions

In this section, we first compare the static model of an SKU assignment and

a discrete space allocation of the forward area (G2 in chapter II) to the most similar

dynamic model, which is Ma
2 . The solution of the problem with perfect information

about the future demand demonstrates the resulted gap due to the demand forecast-

ing process. The effect of an activity distribution of items on the total saving by

the dynamic model is addressed. Then, we compare the performance of DFRP to
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the different replenishment strategies in Figure 29; a static FRP and two threshold

policies developed in section G. Finally, we examine how the volatility of the demand

patterns impact the computational results using a variety of data sets.

1 Comparison of the static and dynamic models using the forecast demand data

The static and dynamic model picking and replenishment costs are presented

in Table 21. While the demand data of the first period (t = 1) is assumed as known,

the demand data for the rest of the planning horizon is forecasted and updated at

each run t. Therefore, the pick and replenishment decisions of the first period using

the known demand and picks data are actual, causing the inventory level of slots to

drop by the actual demand values, but those for t > 1 provide the planning insights.

Note that all DFRP results are associated with forecasted data, unless we mention

the PI for the perfect information.

It is observed in Table 21 that the dynamic model always outperforms the

static model. The cost improvement by the dynamic model is greater when the static

model is interrupted more frequently (four updates or every four days, T = 20). The

reason is that some SKUs leave the forward area in each update before finishing their

minimum payback period (T ′i ). T ′i is the minimum time that SKU i should stay in

the forward area to make a profit. The smallest number that satisfies non-equality

110 below is T ′i .

c+ c1

T ′i∑
i=1

pit < c2

T ′i∑
i=1

pit ∀t (109)

T ′i∑
i=1

pit >
c

c2 − c1
∀t (110)

T ′i s values are not the same for every SKU. Thus, re-layouting the forward area
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in a certain interval will be disruptive for the SKUs, which have been stored for less

than T ′i periods after their last replenishment in the forward area and are forced to

leave the forward area during update times.

TABLE 21

Total cost and savings (%) obtained from static(S) and dynamic model M2
a .

CS CM2
a
(PI) %ImpM2

a(PI)→S CM2
a

%ImpM2
a→S

No update 1643452

1392004

15.30

1403328

14.61
One update 1625704 14.38 13.68

Three updates 1756932 20.77 20.13
Four updates 1822404 23.62 23.00

In order to study the performance of the dynamic model for a different activ-

ity level of the items in the facility, we generated the experiments listed in Table 22.

Active items are those items that are picked frequently. The percentage of the fast

movers ranges from 10% to 85%. The results of this Table shows that active ware-

houses with large percentage of fast movers can benefit more from the dynamic model

rather than the slow warehouses, which contains a large fraction of slow movers. As

expected, a saving of 9.72%, which was obtained from the dynamic model over the

static model, is still considerable for the inactive warehouse in our designed experi-

ments.

2 Comparison of different replenishment strategies of the dynamic model, static

model and threshold policies

In this section, we first provide our mechanism for constructing the data set

used in our comparisons. We drastically reduce the size of our data set by applying

the ABC analysis. The slow movers are excluded from the candidate set of SKUs for
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TABLE 22

Cost comparisons of the activity distribution of items (M2
a )

No. of SKUs No. of slow movers % fast movers % Imp(M2
a→static)

5000 4500 10 9.72
2500 2000 20 11.94
1666 1166 30 12.92
1250 750 40 13.48
1000 500 50 13.84
600 100 85 14.45

the forward area by this method.

While a large portion of the SKUs in the warehouse are slow movers, a small

portion accounts for most of the picking activities and makes up a large percentage of

orders. We need to know the fast movers, which can be candidates in DFRP analysis.

Traditionally, the ABC analysis classifies the SKUs based on their activities in three

groups: a small fraction of fast movers, medium movers, and a large fraction of slow

movers.

Wild (2007) suggests that the breakdown of ABC classes as 10% of items

represents class A, 20% of items represents class B, and 70% of items represents class

C. Hausman et al. (1976) propose a continuous demand model for representing ABC

analysis.

The small fraction of SKUs (the fast movers) matters in making decisions for

the forward area. The intermittent demand trend (trend 8) discussed in chapter

IV, which contains many zeros in the demand profile, forms a large portion of slow

movers.

Figure 30 shows the demand curve of the total 5000 SKUs in the warehouse.

We ranked the items in decreasing order based on their contribution to the total
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demand. The SKUs up to the red line are considered in DFRP. Since there is no

fixed threshold for each class, depending on the size of the forward area, the red line

can move left or right based on objective criteria in the dynamic assignment and

allocation problem to consider less or more SKUs as DFRP input. The forward area

in the following numerical examples has 320 slots. Respecting the recommended break

down for ABC classes, we truncated 500 of the fastest movers (10% of all SKUs) as

the candidates to be stored in the forward area. This 10% accounts for 68.73% of all

picks in our data set.

We compare the total costs of the discussed replenishment strategies for the

dynamic model, along with the dynamic, static, and dynamic heuristics T.P. and T.P.′

comparisons. Table 23 contains the results of our computational study on the DFRP

with different replenishment policies. The full replenishment models (M2) always

outperform the quantity replenishment models (M1). The quantity replenishment

models have a higher number of partial replenishments compared to the full replen-

ishment models. Part of the partial replenishments of M1 models is due to vacating

the slots based on the forecasted demand data. However, the actual demand may

not be exactly the same as the forecasted demand and so the slots cannot get empty.

This risk does not concern the M2
a and M2

c models, where only full replenishments

are allowed.

M1
LH model considers a limited horizon, where the replenishment quantity may

be less than the full slot. In this case, the chance of restocking the whole slot is missed.

Consequently, the number of replenishments rises, but still less than the static model.

The unlimited horizon in M1
ULH does not not fix this problem. Similarly, it may fill

a portion of a slot, even having the whole horizon forecast, in the hopes of vacating

a slot. However, slot vacating may not come true by the actual demand. Another
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TABLE 23

Results for different replenishment policies of DFRP

Static M1
LH M1

ULH M2
a (PI) M2

a M2
b M2

c T.P. T.P.′

Full Replens 1659 - - 674 577 350 350 1020 1226
Partial replens - 1134 691 - - 667 667 - -
Move to reserve 37 0 66 0 1 0 0 222 213
Replens&moves 1696 1134 757 674 578 1017 1017 1242 1439
Forward picks 5396 5061 4103 4351 4028 4900 4991 5269 5842
Reserve picks 4277 4612 5570 5322 5645 4773 4682 4404 3831
Total cost 1625704 1461724 1460248 1392004 1403328 1441092 1378604 1471980 1462036
% Imp. Over static - 10.09 10.18 14.38 13.68 11.36 15.20 9.46 10.07

limitation of model M1
ULH is that the length of period t is 3 days (t in the other

models is one day) due to the computational complexity reduction. So, the delivered

solutions are corresponded to the 3 days demand data, not the daily demand. In

other words, the decisions about the forward area can only be updated every 3 days.

It is observed that M1
ULH generates the largest number of moves to the reserve area.

Among all three replenishment policies defined for the full slot replenishment

in M2, model M2
b , which allows the partial replenishment of a non-empty slot along

the operations, suffers from the aforementioned limitations of the partial restocking,

including the high number of replenishment and so a greater total cost. Compared

to M2
a , which does not have the option of a partial replenishment of the non-empty

slots, M2
b allows more picks from the forward area rather than the reserve area, but

the number of moves and replenishments in M2
b is 43% higher than M2

a . Therefore,

it is suggested to not partially replenish the forward area slots any time.

Model M2
c , which fully replenish the empty slot(s) and also have the option of

replenishing the non-empty slots up to full capacity, ei, is the best strategy with the

lowest cost among all of the DFRP’s replenishment policies. Although the number of

replenishments and moves in M2
c is not minimum among all other models, this model
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has the minimum number of picking and replenishment costs. The cost of M2
c is even

less than the M2
a (PI) cost because it can replenish any time up to full while M2

a (PI)

can replenish full only when the slot is empty. It is worth noting that although M2
c is

more constrained than the quantity replenishment models (M1), its lower total cost

during the planning horizon after multiple runs of M2
c with the updated forecasted

demand data at each t justifies the fitness of this model in the dynamic slotting (See

Figure 25). We are not comparing the one-time run models with fixed input data.

The models are fed with the varying demand and pick data at each t and the models’

decisions are changed with the updated inputs at each t.

It can also be referred from Table 23 that the dynamic threshold policies T.P.

and T.P.′ are almost as good as the dynamic model with partial replenishment.

Space allocation by T.P. heuristic makes 0.61% more savings than allocating the

same amount of space (one slot per assigned SKU) in the T.P.′ heuristic.

The number of moves to the reserve area depends on the size of the forward

area. Figure 31 shows that the smaller forward areas experience a higher number

of moves from the forward area to the reserve area due to the open space for the

candidate SKUs in the forward area.

We investigate the dynamic slot allocation behavior for different replenishment

policies. SLi is the set of allocated slots to the SKU i during the planning horizon,

SLi = {ni1, ni2, ni3, ..., niT}, where T is the length of the planning horizon and nit ≥ 0.

We define parameter Ki as the number of unique values in SLi. Higher values of

parameter Ki show that the SKU experiences a more diverse number of allocated

slots in the forward area. For example, if an SKU is given, sometimes 2 slots, other

times 3 slots, in the forward area, SLi will have two unique values (Ki = 2). Note

that nit can be zero, which means that SKU i has not been in the forward area at time
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Figure 31. Number of moves from the forward area to reserve area
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t (nit = 0). Our example’s solutions reveal that the assigned SKUs to the forward

area never receive more than 3 slots in all of the strategies (Ki ≤ 4). We split Ki = 1

to two cases:

Ki =


1′ if all nit = 0

1′′ otherwise

Ki = 1′ refers to the SKUs that are always picked from the reserve area and

so their allocated slots are always zero. Ki = 1′′ refers to the SKUs that always have

a fixed number of allocated slot(s) in the forward area.

Table 24 returns the number of SKUs with different Ki for the static model

with one update and the dynamic model with different replenishment strategies. It is

observed that the static model excludes the greatest number of SKUs for being stored

in the forward area. Compared to the full slot allocation models, M2, the partial

replenishment models, M1, face a higher number of SKUs with Ki ≥ 3, meaning that

more allocated slots to the SKUs in the forward area and a higher variability in slot

allocation as well.

TABLE 24

No. of SKUs with different values of Ki

Ki Static M1
LH M1

ULH M2
a (PI) M2

a M2
b M2

c T.P. T.P.′

1′ 200 137 177 138 142 160 138 51 49
1′′ 231 140 84 117 122 285 201 138 169
2 69 139 197 211 212 54 134 285 282
3 0 80 40 34 24 1 27 26 0
4 0 4 2 0 0 0 0 0 0

Figure 32 displays the stacked bar graph of distribution of items, based on Ki,

for different models. Each bar is multicolored, with colors corresponding to Ki and
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showing the relative contribution that different values of Ki make to the total number

of SKUs. This figure shows that M2
b , which can partially replenish the non-empty

slots, is the most similar case to the static model regarding the slot allocation. While

M2
a andM2

b has a large portion of SKUs in storage mode 2 and 1, respectively, M2
c –the

best replenishment strategy using the forecasted demand data– has the SKUs more

evenly distributed among these two storage modes. In dynamic slotting strategies,

on average 39% of the SKUs experience more than one storage mode (Ki ≥ 2) in the

forward area. However, updating the forward area periodically in the static model

changes the storage mode of only 6% of the SKUs.

Although the static model has the option of periodically updating the forward

area, Figure 32 also shows that the Ki values of this model do not exceed 2, which

shows the less variability and flexibility in the number of allocated slots to the SKUs.

3 Volatility

What industries can benefit most from implementing the dynamic slotting?

Is the dynamic model more effective in high volatile periods? Demand volatility

is a reality in the logistics industry. The dynamic slotting model can alleviate the

adverse effects of the demand volatility on the decisions about the forward area over

time. Given the historical demand data, we aim to find out in what periods of the

year a warehouse will benefit more from the dynamic approach compared to the

static strategy. It is valuable to assess the effectiveness of the dynamic model in two

situations:

1. The demand trends of the majority of SKUs in a warehouse is normal (the first

demand trend defined in chapter IV) or,
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2. The majority of SKUs shows a high level of volatility in their demand trends

(the second to seventh demand patterns defined in chapter IV)

The SKUs’ demand trends are statistically equivalent to the time series. The

volatility index discussed in this section does not represent the variation within the

demand trends. It is also different from the beta factor in finance, which measures the

stock’s volatility over time in relation to the overall market. Nevertheless, it aims to

denote the non-similarity between the SKUs’ demand trends over time. The volatility

index contains the influence of the abnormal demand patterns. One simple way to

compute this index is by detecting the change in the linear trend (slope) through the

use of the end points from the time segments. The slope between the consecutive

break points is a simple measure that can provide the information about the demand

pattern variation. The high volatility index refers to the high variance between the

slopes of SKUs’ demand trends in each time segment.

Time-varying demand volatility implies that the volatility is itself subject to

swings at various points in time. In other words, the order data reflects the high

and low volatility periods over time. We first investigate an algorithm to represent

the volatility of the demand patterns over time. Second, we discuss the saving lev-

els resulted from the dynamic model, which corresponds to the different amount of

volatility.

Assessing the time-varying demand volatility, we develop the following proce-

dure:

Step 1. Shift the SKU demand curves towards the mean of the mean curve.
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Step 2. ∀t, compute the slope, sit, of the next T s period for each SKU, using

the following formula:

sit = Di,t+T s −Dit

T s
(111)

Step 3. Compute the variance of the slopes over time.

We provide the example below to clearly explain the algorithm for finding the

volatility index.

Example: Our numerical example for the volatility index algorithm contains

two SKUs. The second and third columns of Table 25 show the demand data for the

SKU 1 and 2. The fourth column of this table forms the mean curve points, shown in

Figure 33, based on the mean of D1 and D2 columns at each t. The demand curves

in Figure 33 are shifted toward the mean curve, an amount equal to the difference

between the mean of the mean curve (13.71) and mean of the demand curves. Thus,

D1 is shifted 15.58− 13.71 = 1.87 and D2 is shifted 13.71− 11.83 = 1.88 toward the

mean curve for all t. The decimal values of the numbers in this table are rounded.

Next, the slopes of the shifted demands are obtained in columns S1t and S2t, using

the equation 111 and the arbitrary value of T s = 2. The last column of Table 25,

which is corresponded to the curve in Figure 34, calculates the variance of the slopes

at each t. These variance values are the volatility indexes of our example over time.

Figure 34 shows that the demand data volatility of this data set is rising, which starts

at period 4 and will go down until period 12 where the demand curves start to follow

the smooth and stationary pattern again with no up/down trend.

The index that is obtained from step 3 of the algorithm is named the Volatility

index in our analysis. Figures 35 and 36 display the variation of this index over time.

When the majority of SKUs follows a normal demand pattern, the volatility index is

close to zero. On the other hand, the volatility index rises in periods when the order
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TABLE 25

Example for the volatility index calculation

Time D1 D2 MD SD1 SD2 S1t S2t Var
1 3 12 7.5 4.88 10.125 0.00 0.00 0.00
2 3 12 7.5 4.88 10.125 0.00 0.00 0.00
3 3 12 7.5 4.88 10.125 0.00 0.00 0.00
4 3 12 7.5 4.88 10.125 1.50 -0.50 2.00
5 3 12 7.5 4.88 10.125 2.50 -1.00 6.13
6 6 11 8.5 7.88 9.125 2.50 -1.00 6.13
7 8 10 9 9.88 8.125 3.00 -0.50 6.13
8 11 9 10 12.88 7.125 2.00 -1.00 4.50
9 14 9 11.5 15.88 7.125 1.00 -1.50 3.13
10 15 7 11 16.88 5.125 1.00 -1.00 2.00
11 16 6 11 17.88 4.125 0.50 -0.50 0.50
12 17 5 11 18.88 3.125 0.00 0.00 0.00
13 17 5 11 18.88 3.125 0.00 0.00 0.00
14 17 5 11 18.88 3.125 0.00 0.00 0.00
15 17 5 11 18.88 3.125 0.00 0.00 0.00
16 17 5 11 18.88 3.125 0.00 0.00 0.00
17 17 5 11 18.88 3.125 0.00 0.00 0.00
18 17 5 11 18.88 3.125 0.00 0.00 0.00

Mean 15.58 11.83 13.71

D1 = Demand of SKU 1,
D2 = Demand of SKU 2,
MC = Mean of SKUs demand,
SD1 = Shifted demand of SKU 1,
SD2 = Shifted demand of SKU 1,
S1t = Slope of SKU 1 with T s = 2,
S2t = Slope of SKU 2 with T s = 2.
S2t = Variance of slopes of SKU 1 and 2.
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data contains the variety of demand trends (up/down trends, up/down shifts, cyclic,

systematic).

Investigating the improvement percentage of the dynamic over the static model,

we simulated 7 order transaction data, as presented in Table 26. The portion of the

SKUs with a normal demand pattern in the data set varies, as shown in the first

column of this table. We observe that the dynamic model makes more profit when

the demand volatility is higher. We will present the results of Table 26, using Figures

37 to 40.

Figure 37 represents the profits of the dynamic model for a different portion

of the normal demand patterns in the data set. As this figure shows, the dynamic

model generates more savings for high volatility cases (the lower portions of the

normal demand trends in the data set). The maximum saving of the dynamic model

over the static model in this example is 14% and it occurs when the portion of the

SKUs with normal demand patterns is the lowest (1/7).

The main insight of this section is that once one has decided to use the dynamic

re-slotting strategy, the profits are higher during the periods of the year when the

SKUs’ demand patterns encounter instability (e.g. seasonality, SKU growth, demand

growth, promotions, competitor’s offering, etc.). However, it does not mean that the

stable time conveys no benefit, since the first data set with 100% normal data still

results in 2.26% saving.

Figure 38 shows the number of picks from the forward and reserve areas versus

the demand volatility for different models. Interestingly, the number of picks from the

forward area in the dynamic model decreases when the demand volatility is higher.

Therefore, the picks from the reserve area increases during high volatile periods. The

static model is less sensitive in this regard; once an SKU is assigned to the forward
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Figure 35. Volatility diagrams of simulated order data 1 through 6
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Figure 36. Volatility diagrams of simulated order data 7 through 10
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TABLE 26

Comparison of the dynamic model, threshold policies T.P. and T.P.′ and static model
for warehouses with different portion of SKUs with normal demand pattern

Normal∗ Model FW. Picks RES. Picks Replens. Moves to RES Replens.+moves Cost

100%

Dynamic 5330 3670 401 82 483 1050700
T.P. 5582 3418 604 20 624 1066984
T.P.′ 5709 3291 670 33 703 1078208
Static 5742 3258 674 -∗∗ 674 1062304

1/2

Dynamic 5156 3844 416 319 735 1172212
T.P. 5172 3828 653 146 799 1194164
T.P.′ 5507 3493 890 181 1071 1247944
Static 5688 3312 992 - 992 1191136

1/3

Dynamic 5110 3890 406 334 740 1180920
T.P. 5232 3768 653 142 795 1183764
T.P.′ 5562 3438 898 144 1042 1228784
Static 5706 3294 1102 - 1102 1230272

1/4

Dynamic 5033 3967 428 336 764 1213216
T.P. 5028 3972 663 156 819 1223076
T.P.′ 5471 3529 949 145 1094 1262012
Static 5616 3384 1230 - 1230 1292232

1/5

Dynamic 4903 4097 433 378 811 1238536
T.P. 4940 4060 681 169 850 1247880
T.P.′ 5451 3549 1001 165 1166 1292332
Static 5616 3384 1463 - 1463 1380772

1/6

Dynamic 4791 4209 451 378 829 1261952
T.P. 4844 4156 727 186 913 1286028
T.P.′ 5398 3602 1055 164 1219 1320316
Static 5562 3438 1671 - 1671 1467804

1/7
Dynamic 4721 4279 470 390 860 1284092
T.P. 4849 4151 774 186 960 1303148
T.P.′ 5409 3591 1125 207 1332 1361628
Static 5616 3384 1758 - 1758 1492872

∗ The first column represents the portion of all SKUs with normal demand patterns. The lower
number in the Normal column refers to the higher volatility.
∗∗The best solution of static model is associated with “no update” during the planning horizon.
Thus, the moves to the reserve area is not applicable in a static case.
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Figure 37. Dynamic model efficiency versus the demand volatility
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area, it is always picked from the forward area. Nevertheless, the dynamic model

allows picking from the reserve area when unusual orders are being received. The

goal is avoiding extra replenishments and moves in high volatile periods.
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Figure 38. Demand volatility impacts on picks from the forward or reserve area

Figure 39 displays how the dynamic model moderates and controls the total

number of moves and replenishments in medium and high volatile periods (1/2 normal

and after). Nonetheless, the static model experiences the growth in the total number

of the moves and replenishments when facing the demand abnormality.
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Finally, Figure 40 illustrates the total costs of the four models. The dynamic

model has the lowest cost in all experiments 1 to 7. From this figure, it can be

interpreted that the threshold policy T.P. can fairly represent the dynamic model.

The average gap between the dynamic model and the T.P. is 1.21% in this figure. The

total cost of the static model gets higher than the T.P.′ when the volatility increases

(after 1/3 normal.)
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Figure 40. Demand volatility impacts on the total cost
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I Checking the robustness of the models

This section checks the robustness of the dynamic model, the static model,

and the threshold policies to establish the reliability, validity, and applicability of

the results. We will present the experimental design and the statistical analysis to

address the three concerns listed below:

1. A sensitivity analysis is carried out to study the effects of the parameters used

for the demand trends’ generation on the total picking and replenishment costs

of the static, T.P., T.P.′, and dynamic models. Hence, the total cost is the

response variable.

2. We evaluate whether there is statistically a difference between the four afore-

mentioned models.

3. For each model, we evaluate the significance level of difference between the four

order data sets. We investigate if there is statistically a significant difference in

the mean costs of the four order data sets with different portions of the normal

demand pattern.

We study eight types of demand patterns, including normal, up/down trends,

up/down shifts, cyclic, systematic and intermittent. The mean of an abnormal pat-

tern, a(t), consists of two important components of a constant term µ and a particular

abnormal function d(t) that models a particular abnormal pattern. This term d(t)

is zero for the normal demand pattern. The mathematical model for the mean of

simulated patterns can be expressed by the following:

a(t) = µ+ d(t) (112)

In equation 51, d(t) is defined as the following for different abnormal patterns:
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1. Up/Down trends: d(t) = λt, where λ is the trend slope in terms of σε. The

parameter λ > 0 is selected for up trends and λ < 0 for down trends.

2. Up/Down shifts: d(t) = γ, where parameter γ shows the shift magnitude. The

parameter γ > 0 is selected for up shifts and γ < 0 for down shifts.

3. Cyclic pattern: d(t) = κ(2πt
Ω ), where κ is the amplitude of the cyclic patterns,

and Ω is the cyclic pattern period.

4. Systematic trends: d(t) = ν(−1)t, where ν is the magnitude of systematic

pattern.

To obtain the demand patterns, we first generate a random number ρt from

the normal distribution with the mean a(t) and the standard deviation parameter σ

at time t. Then, we apply the Exponentially Weighted Moving Average (EWMA)

technique, where the demand at time t depends on the EWMA statistic. EWMA is

an exponentially weighted average of all prior demand data, including the most recent

demand. We compute successive demand points Zt using all preceding demand points

and the weighting factor of Θ. The EWMA static is calculated as:

Zt = Θρt + (1−Θ)Zt−1 (113)

With respect to the broad spectrum of parameter levels in relevant studies,

Gauri and Chakraborty (2009) and Shao (2012), a trial and error approach is taken

in this research to adjust the model’s parameters to our purpose.

The warehouse of our example contains 5000 SKUs. We generate the data sets

containing 10% fast and medium movers. The slow movers, which have many zeros

in their demand file and follow the intermittent demand pattern, are more efficiently

picked from the reserve area. The fast and medium movers, following the demand
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patterns 1 to 7, are the candidates for being slotted in the forward area. Tables 33,

34, 35 and 36 are associated with the costs of our experiments and can be found in

the Appendix.

1 Sensitivity analysis

We performed an experimental design to investigate the effects of six factors

listed in table 27 on the cost of each model. We consider two levels, upper and lower

bounds, for the six variables. Table 28 shows a two-level full factorial design (26 = 64

runs for each model) with six variables (factors). The response is the total picking

and replenishment costs.

TABLE 27

Factors and levels in experimental design

Factor Factor in ANOVA1 Factor in ANOVA2 Description Level 1 Level 2
Normal % X1 A % of normal patterns 10% 70%

λ X2 B Up/Down trends 0.005 0.008
γ X3 C Up/Down shifts 1.5 2
κ X4 D Cyclic pattern 0.5 0.75
ν X5 E Systematic trends 0.5 0.75
σ X6 F Standard deviation 0.7 0.9

In the sensitivity analysis of the demand patterns’ parameters, we perform the

steps below for all models:

1. Run each model with 64 data sets, corresponding to our full factorial design.

Each row of the table 28 represents one experiment out of 64 experiments.

2. Conduct a six-way analysis of variance (ANOVA) to extract the main factors

with a P-value less than 0.05 (ANOVA1). The results of the ANOVA1 tests for
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the static, T.P., T.P.′, and the dynamic models have been presented in Figures

41, 44, 47, and 50, respectively.

3. Delete the negligible effect factors with a P-value greater than 0.05.

4. Conduct the second n-way ANOVA test (ANOVA2), where n = 6− (No. of

deleted factors), by considering the two-factors’ interactions and creating a gen-

eralized linear regression model. Figures 42, 45, 48, and 51 are the ANOVA2

tests for the static, T.P., T.P.′, and the dynamic models, respectively.

5. Plot the normal probability plots in Figures 43,46, 49, and 52, which verify the

significant effects and interaction for the static, T.P., T.P.′, and the dynamic

models, respectively. The statistical and magnitude significance of the main ef-

fects and their interaction effects in a two-level factorial design can be compared

using normal probability plots. If the effects were zero, we would expect the

points to fall on the fitted line. Significant effects have a label and fall toward

the left or right side of the graph. The negative effects are on the left side of

the graph, and the positive effects are on the right side of the graph.

Figure 41. ANOVA1 test for the static model
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TABLE 28

Full factorial design 26

# % Normal λ γ κ ν σ # % Normal λ γ κ ν σ

1 - + + + + + 33 + + + + + +
2 - + + + + - 34 + + + + + -
3 - + + + - + 35 + + + + - +
4 - + + - + + 36 + + + - + +
5 - + - + + + 37 + + - + + +
6 - - + + + + 38 + - + + + +
7 - + + + - - 39 + + + + - -
8 - + + - - + 40 + + + - - +
9 - + - - + + 41 + + - - + +
10 - - - + + + 42 + - - + + +
11 - + + - + - 43 + + + - + -
12 - + - + + - 44 + + - + + -
13 - - + + + - 45 + - + + + -
14 - + - + - + 46 + + - + - +
15 - - + + - + 47 + - + + - +
16 - - + - + + 48 + - + - + +
17 - + + - - - 49 + + + - - -
18 - + - + - - 50 + + - + - -
19 - + - - + - 51 + + - - + -
20 - + - - - + 52 + + - - - +
21 - - + + - - 53 + - + + - -
22 - - + - + - 54 + - + - + -
23 - - + - - + 55 + - + - - +
24 - - - + + - 56 + - - + + -
25 - - - + - + 57 + - - + - +
26 - - - - + + 58 + - - - + +
27 - - - - - + 59 + - - - - +
28 - - - - + - 60 + - - - + -
29 - - - + - - 61 + - - + - -
30 - - + - - - 62 + - + - - -
31 - + - - - - 63 + + - - - -
32 - - - - - - 64 + - - - - -
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Figure 42. ANOVA2 test for the static model
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Figure 43. Normal Probability Plot for the static model
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Figure 44. ANOVA1 test for the T.P. model

Figure 45. ANOVA2 test for the T.P. model
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Figure 46. Normal Probability Plot for the T.P. model

Figure 47. ANOVA1 test for the T.P.’ model
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Figure 48. ANOVA2 test for the T.P.’ model
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Figure 49. Normal Probability Plot for the T.P.’ model
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Figure 50. ANOVA1 test for the dynamic model

Figure 51. ANOVA2 test for the dynamic model
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Figure 52. Normal Probability Plot for the dynamic model
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Table 29 summarizes our sensitivity analysis results. It shows the main effects

of all models. The percentage of the SKUs with a normal demand pattern (factor A)

and the up/down trend parameter (factor B) are the main effects of all models. The

T.P.′ model is the only model that is not significantly affected by the interaction of

factor A and B. It is observed that while the dynamic model and threshold policies

TP and T.P.′ are sensitive to the up/down shift parameter (factor C) and their

interaction with factor A, the static model is not affected by factor C. Factors κ, ν,

and σ (D,E,F) are not a main effect of all four models.

TABLE 29

Summary of the main effects of the models

Static T.P. T.P.’ Dynamic

and interactions
Main effects

A A A A
B B B B

AB C C C
AB AC AB
AC AC

In this section, we extracted the main effects of the dynamic model, the static

mode,l and the threshold policies. The results of Table 29 justifies the following

conclusions:

• The portion of the SKUs with normal demand patterns and the up/down trend

parameter are both the main effects of all aforementioned models. Therefore,

the forward area’s picks and replenishments decisions as well as the total costs

are influenced by these two factors.

• While the static model is not sensitive to the up/down shift parameter, both

the dynamic model and the threshold policies are sensitive to this parameter. If
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the SKUs’ demand patterns are experiencing the up/down shift, it is expected

that the dynamic model adjusts the layout of the forward area, causing its total

cost to be significantly affected by this adjustment. Nevertheless, the up/down

shifts in the demand data do not impact the static model decisions about the

forward area.

• As expected, the main effects of the dynamic model and T.P. are the same.

• The most interesting insight found from the results of Table 29 was that none

of the discussed models are significantly affected by the cyclic and systematic

demand patterns as well as the standard deviation used for generating the ran-

dom normal number in the EWMA statistic. When the demand time series

data exhibit rises and falls in the cyclic or systematic patterns, even the dy-

namic model and the threshold policies are not significantly affected by those

fluctuations in the demand trends.

2 Statistical comparison of the models

A one-way analysis of variance with sample size 128 was performed to compare

the static, dynamic, T.P., and T.P.′ models in a cost manner. The hypotheses of

interest in our ANOVA are as follows:

H0 : µstatic = µT.P. = µT.P.
′ = µdynamic

H1: The means are not equal,

where µmodel is the mean cost of model. The results of ANOVA test in Figure 53 with

very small p-value (less tan 0.05) verifies there is significant difference between four

models and the null hypothesis is rejected.

The box plot of the costs in Figure 54 shows the difference between the median
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of the dynamic model and the threshold policy T.P. is negligible; however, the dy-

namic model outperforms the threshold policy as well as the static and T.P.′ models.

The T.P.′ model, which is based on the dynamic approach, but disregards the slot

allocation, competes with the static model, which considers both the SKU assignment

and slot allocation.

Figure 53. ANOVA table for comparison of the models

3 Effects of the size of normal patterns in order data

In this section, we will investigate our models separately to find out whether

there is statistically significant difference in the mean cost among the four groups

of order data with different portions of normal demand trends (10%, 30%, 50% and

70%). The ANOVA test is conducted for each model to compare the mean cost of the

four groups. The groups are independent and the sample size is 32. The hypotheses

of interest in our ANOVA are as follows:

H0 : µM10% = µM30% = µM50% = µM70%

H1: The means are not equal,

where µMx% represents the mean cost of the model M ∈ {static, T.P.,T.P.′,dynamic},

corresponding to the order data with x% normal demand trends.

Figures 55, 57, 59, and 61 present the results of ANOVA tests for the static,

dynamic, T.P. and T.P.′ models, respectively. The large F-statistics and small p-value
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(less than 0.05) confirms that there is statistically significant difference between the

four groups of order data in all models, causing us to reject the null hypothesis.

The box plots in Figures 56, 58, 60, and 62, corresponding to each of the

aforementioned models, visually represents the cost data for the four groups with

different portions of normal demand patterns. For all studied models, it is observed

that the medians of groups are not equal and the data set with the lowest volatility

(70% normal patterns) has the least median and variation. Comparing the four

models, the static model shows the greater variation in cost data when the percentage

of the normal demand patterns are 10%, 30% and 50%. Therefore, the models based

on the dynamic slotting strategy (T.P., T.P.′ and the dynamic model) are more robust

than the static model.

Figure 55. ANOVA table for significance of the normal patterns portion in the order
data (static model)
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Figure 57. ANOVA table for significance of the normal patterns portion in the order
data (T.P. model)
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Figure 59. ANOVA table for significance of the normal patterns portion in the order
data (T.P.′ model)
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Figure 61. ANOVA table for significance of the normal patterns portion in the order
data (dynamic model model)
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J Conclusion

Dynamic slotting of the forward area is a warehousing approach where the set

of SKUs and the slots allocated to them are changed to continuously have an updated

layout that will improve the picking and replenishment costs. The main contribution

of this chapter is developing the first mathematical programming formulation for

the dynamic slotting optimization with discrete slot allocation as well as the MIP

formulations for the dynamic models with different replenishment strategies. We

quantified the gap between the static and dynamic forward-reserve problems in terms

of the total picking and replenishment costs. Two heuristics based on the threshold

policies are proposed that closely perform as well as the dynamic model but have a

shorter solution time. The second heuristic enforces one slot per SKU in the forward

area. We showed that when the SKUs’ demand patterns are highly volatile, the

dynamic model significantly reduces the overall costs. Through our experimental

design, we validated and compared the static, dynamic, and the threshold policies

models. An exhaustive full factorial design was executed to check the sensitivity of

the aforementioned models to the variety of the factors affecting the SKUs’ demand

patterns.
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CHAPTER VI

SUMMARY

The forward area is a small area of the warehouse with a low picking cost.

Therefore, the items of the warehouse compete to be located in this area rather than

the reserve area, which has a higher picking cost. Two approaches for selecting the

SKUs of the fast picking area and the allocated space were investigated: the static

and dynamic approaches.

In the static forward-reserve problem, we developed the discrete assignment,

allocation and sizing model for large size problems. Prioritizing to solve any of these

three problems and then using the resulting solution as the input to others is not the

best strategy. A heuristic for the discrete forward-reserve problem has been suggested

(Walter et al., 2013), but it is not applicable for large problems due to the solution

time. They also assume that the slots are always wider than the SKUs and do not

solve the three mentioned problems together. We are first to solve the assignment,

allocation, and sizing problems simultaneously with very small solution time for large

size problems and no restriction on the SKUs and slots dimensions. We developed

two heuristics for the situations: with or without SKUs and slots dimensions. We

compared several scenarios for the SKU labor efficiency, which is a key component of

our heuristics. The heuristics were tested with real data.

Additional contribution of the static FRP study to the literature also includes

the proposed algorithm for both profiling and slotting optimization. The proper
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profiling significantly reduces the replenishment activities and picking costs, while at

the same time, maximizing the space utilization within a slot type in the forward

area. The proposed algorithm evaluates the slot types in the fast picking areas and

determines the best size of each pick mode, along with the SKU assignment and slot

allocation.

We introduced the concept of a dynamic forward-reserve problem to ware-

housing. Under the dynamic environment, different sets of SKUs are assigned to

the forward area and the number of slots allocated to them is not fixed for different

periods. Therefore, the fast picking area is updated over time with replenishment of

the appropriate SKUs, as opposed to the traditional static model that periodically

reslots the forward area to reach the target map. A proper slotting methodology not

only considers seasonality, but also other types of demand shifts, trends, and frequen-

cies. We explored the methods for demand pattern detection and demand forecasting

before proposing the dynamic model.

We proposed the MIP mathematical model for the dynamic forward-reserve

problem for the first time. This model relaxes the major implicit assumptions of the

static model. Assignment, allocation, and sizing problems are highly dependent on

the activity distribution of products. Considering a fixed demand over time adversely

affects decisions made regarding this efficient area of the warehouse in terms of a low

picking cost.

We quantified the effects of using a static versus a dynamic setting. In our

experiments, the dynamic model for SKU assignment and slot allocation in the fast

picking area always outperforms the static model, regardless of having or not having

future orders. The lost savings that resulted from forecasting errors is negligible in

the dynamic model. Results show that early reslotting of the forward area is not the
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best way to always have the most effective layout of the forward area. Updating the

layout of the fast picking area can be very costly if it is done at an inappropriate

time.

Different replenishment policies for the forward area were investigated. Choos-

ing the option of partial replenishment or full replenishment of slots affects the total

picking and replenishment costs. The slots get empty later in the full replenishment

scenario, but the number of replenishments is lower than the quantity replenishment

scenario. In both strategies, the slow movers can be deleted from the forward area

any time by moving them to the reserve area. The results recommend the full re-

plenishment over the quantity replenishment. Even if the slot is not empty but needs

more inventory to meet the demand, it is suggested to replenish the slot up to the

full capacity. The dynamic model assumes that the replenishment of the forward area

can be promptly accomplished.

Compared to the dynamic model, the static model excludes a significant por-

tion of SKUs to be stored in the forward area. Smaller forward areas require more

moves to the reserve area in the dynamic strategy to stay tuned with changes. The

benefits attained from the dynamic model over the static model is greater for more

volatile warehouses because the dynamic model adjusts the forward area’s layout

quickly to the changes in the demand pattern by replenishing the new SKUs. This

research provides insights for practitioners to choose the appropriate setting for up-

dating their forward area.

Finally, we developed a simple threshold policy that performs almost as well

as the dynamic model. The dynamic model gets significantly more computationally

expensive for large problems. The suggested intuitive methodology delivers a near

optimal solution within a reasonable computing time as well as a good performance
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for the sensible number of SKUs and the size of the forward area in practice. Another

model based on our threshold policy was developed to optimize the dynamic SKU

assignment, but not slot allocation, in the forward area. The static and dynamic

models were compared with two threshold policies by several experiments. The ro-

bustness of the models were checked with designing the experiments on the factors

impacting the models. These factors include the parameters used for the demand

trends’ generation. Thus we can generalize our conclusions with these experiments.

This study provides insights for the practitioners who aim to achieve the pick

efficiency by applying the dynamic slotting approach. Based on our numerical tests,

the dynamic strategy can improve the total picking and replenishment costs by 6%

to 14%.
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APPENDIX

Algorithm for Profiling and Slotting Optimization (PSO) of multi-mode Forward Area
Input: The SKU, order, rack, and facility data.
Output: Profiling and slotting optimization of the multi-mode forward Area.
* Import Data
Read the SKU, order, rack, and facility data.
* Fit test
For all pick modes j > 0

For all SKUs
Check if the SKU (eaches) fits the slot (=1) or not (=0).
Check if the case fits the slot (=1) or not (=0).

EndFor
EndFor
* Find the best case orientation, which results in space utilization
For all SKUs

Find the optimal orientation in one Pallet and one lane of the Carton Flow Rack.
EndFor
* Find the parameters required for cost analysis
For all SKUs

Find the SKU flow, the accumulated ordered quantity (demand) and order lines (picks) during
the planning horizon.
The No. of eaches/cases in Min No. of slots given to the SKU in the Carton Flow Rack.
The No. of eaches/cases in one pallet of the Pallet Flow Rack mode.

EndFor
For all pick modes j > 0

For all SKUs
Find the No. of restocks during the planning horizon period, if Min No. of slot(s) is given.

EndFor
Find the volume of the shelf.

EndFor
* Cost analysis
For all i in Pallet Flow Rack Bays Range

For all j in Carton Flow Rack Bays Range
For all k in Bin Shelving Bays Range

Find the Ave. picking cost from the reserve area.
For all pick modes

Find the Ave. picking and replenishment costs of the mode by travel distance
calculation.
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EndFor
If the total bays fit in the picking area

For all SKUs
Find the optimal number of slots given to the SKU in a Carton Flow Rack.
comment: (Refer to the algorithm for finding mij in next Appendix)
Find the picking cost from the reserve area.

EndFor
For all pick modes

Find the picking cost for the SKU if it is picked from the mode j.
Find the replenishment cost for the SKU if it is picked from the mode j.
Find the total cost for the SKU if it is picked from the mode j.
Find the savings by picking the SKU from the pick mode rather than
the reserve area.

EndFor
While saving > 0

Find SKU x with the max savings by picking from mode y
If any slot(s) is available in the mode y

Assign the SKU x to the mode y
Exclude the allocated slot(s) to SKU x from the available slot of mode y
Get the associated costs of SKU x
Exclude SKU x

EndIf
EndWhile
Find the total cost of mode (i,j,k)

EndIf
EndFor

EndFor
EndFor
Find the optimal design (i*,j*,k*), which provides the Min total cost among all modes
* Export Data
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Algorithm for finding mij (units of SKU i in mode j)

For all SKUs

For all pick modes

If j=1

mij =
⌊

W1
wi

⌋
ϕijθijbi

ElseIf j=2

yi =
√

qij∑
k∈A

√
qkj
V2

comment: (A is the set of SKUs)

n1i =
⌈

wi

W2

⌉
& n2i =

⌈
yi

Oj

⌉
ni = max(n1i,n2i)

comment: (ni is the number of slots allocated to SKU i)

comment: (Find the number of lanes in carton flow rack given to SKU i)

Li =
⌊

WjNSL
j

wi

⌋
mij = Liϕijθijbi

comment: (Find the number of cases of SKU i that is replenished in mode j)

ElseIf j=3

mij = bi

EndIf

EndFor

EndFor
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Dynamic SKU assignment and slot allocation in the forward area (heuristic T.P.)
Input: The generic MIP DFRP model’s parameters.
Output: The dynamic SKU assignment and slot allocation in the forward area over time.
r, p, k, E = 0
For (t = 1 to T )

Read the initial inventory of the current layout of the forward area (Iit);
Read the actual demand data for the current time;
Read the forecasted demand (dit) of forecasting window ω;
For all SKUs in the forward area

Iit = Ii,t−1 − dit;
EndFor
e1, e2, e, x = 0;
For all SKUs in the forward area

If Iit = 0 & Ii,t−1 > 0 then e1 = e1 + 1; endIf
If Iit < 0 then e2 = e2 + 1; endIf

EndFor
e = e1 + e2;
If e > 0 then

Run G2 from chapter II to get SKU assignment and allocation;
comment: (Procedure A4 was used in G2 for ranking and space allocation:

A4: f4it = dit

bi
leit = pit√

f4it

y4it =
√

q′
it∑

j∈A

√
q′

jt

S.)

Exclude all available SKUs in the forward area (Iit > 0) from the solution of G2;
comment: (Replenish the empty slots with the first e allocated slots from the
solution of G2.)
For all SKUs in the forward area

If Iit ≤ 0 then Iit = Iit + ainit; endIf
EndFor
For all SKUs in the forward area

If Iit < 0 then
Iit = 0; k = k + 1;
comment: (k is the number of SKUs that leave the forward area and
only the rest of order is replenished at time t.)

endIf
EndFor

EndIf
E = E + e; comment: (E calculates total number of emptied slots during T .)
EndFor
For (t = 1 to T )
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For all SKUs in the forward area
If Ii,t+1 > Iit

r = r + 1; comment: (Find number of replenishments.)
EndIf
If Iit > 0 & Ii,t+1 & Ii,t+1 < Iit

p = p+ 1; comment: (Find number of picks from the forward area.)
EndIf

EndFor
EndFor
comment: (Calculate the picking and replenishment costs as below. P is the total picks during T )
Total cost=c1(p+ E − k) + c2(P − p) + c(r + k)
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TABLE 33

Costs for the data set with 10% Normal demand patterns

Static T.P. T.P.’ Dynamic
2481500 2315388 2440144 2284884
2402424 2311044 2438484 2282586
2517768 2306992 2464108 2277208
2436628 2299004 2441820 2272354
2449332 2340312 2477152 2304448
2702740 2279584 2455728 2253188
2430184 2305364 2452468 2277494
2474096 2305404 2435196 2276826
2482584 2348288 2462580 2312590
2721572 2338484 2493844 2300414
2463472 2337272 2453900 2306420
2485292 2324920 2480332 2288898
2694116 2290088 2451340 2262392
2497864 2320784 2505396 2285162
2733024 2307664 2457024 2278674
2718308 2297828 2449812 2270704
2522300 2307184 2455260 2278908
2413560 2333584 2461112 2298760
2416264 2335664 2467100 2300094
2550388 2324164 2452040 2290320
2698772 2286768 2422408 2260018
2693116 2279912 2428772 2253176
2731624 2267820 2438228 2240886
2688704 2290572 2435848 2259078
2707868 2292592 2445780 2259292
2724216 2290672 2445320 2257718
2702808 2302244 2443776 2270842
2723256 2329208 2457880 2294852
2674760 2298320 2445672 2265858
2709352 2283036 2431884 2256514
2468772 2357732 2483912 2322788
2736940 2334208 2485440 2300058
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TABLE 34

Costs for the data set with 30% Normal demand patterns

Static T.P. T.P.’ Dynamic
2125212 2052092 2200612 2042148
2129772 2042088 2193208 2032772
2136280 2041940 2203532 2032656
2125688 2060604 2184272 2050874
2150548 2062272 2221596 2050590
2378284 2032332 2164024 2022964
2139260 2030876 2167736 2022056
2179524 2059868 2205816 2049722
2145128 2059396 2205676 2048932
2389248 2052392 2185124 2041314
2141212 2048308 2200180 2038624
2141212 2070236 2215972 2058046
2372600 2046748 2178292 2037496
2145116 2090800 2222988 2079024
2366632 2069400 2208896 2059480
2368680 2007248 2161576 1997724
2147432 2038776 2198376 2029680
2126596 2102876 2225944 2090920
2151696 2087480 2223652 2076570
2192436 2108168 2237488 2096134
2363780 2029612 2173632 2019712
2316004 2086552 2213936 2076434
2379132 2076504 2236384 2065332
2366500 2094684 2238680 2082014
2373224 2086388 2234072 2073842
2366028 2086944 2237408 2075910
2399964 2089768 2244208 2076904
2376912 2090832 2239400 2078682
2383340 2064136 2193256 2052898
2392788 2026884 2169468 2017052
2166756 2079680 2237260 2068588
2396012 2087292 2243236 2074240
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TABLE 35

Costs for the data set with 50% Normal demand patterns

Static T.P. T.P.’ Dynamic
2396012 2087292 2243236 2055770
2031964 1888808 2049800 1865248
2025520 1886380 2036184 1862806
2014800 1877500 2033716 1853904
2008388 1910084 2063396 1885000
2158820 1902224 2056964 1878262
2007744 1880968 2038396 1857778
2019548 1879936 2037828 1857156
2019888 1915104 2063792 1889248
2157356 1925768 2080852 1899916
2169588 1906900 2065344 1882536
2023596 1914996 2073412 1889916
2165800 1911732 2061964 1887360
2021300 1887060 2042228 1863088
2155368 1900184 2053452 1876204
2153404 1891700 2057720 1868134
2028124 1878020 2033168 1855178
2007444 1908312 2047556 1883614
2020892 1897972 2048656 1873648
2030784 1901296 2058216 1877326
2163140 1899564 2057544 1875240
2169924 1885872 2039500 1862302
2131352 1880960 2048756 1857760
2158028 1911224 2067620 1885710
2144760 1904880 2066488 1880540
2169212 1929328 2075648 1903078
2172876 1912460 2069252 1887370
2160112 1920904 2073436 1896152
2184104 1929956 2079612 1904858
2158132 1894148 2054912 1870536
2012304 1908520 2058816 1884876
2153912 1898104 2058892 1873776
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TABLE 36

Costs for the data set with 70% Normal demand patterns

Static T.P. T.P.’ Dynamic
1827840 1725976 1872908 1704174
1845084 1740048 1889936 1719126
1831956 1724644 1879392 1703908
1832564 1731508 1879412 1709632
1843696 1741960 1894932 1722018
1842600 1733692 1891140 1712196
1841488 1717028 1873148 1696646
1839588 1742596 1897052 1719848
1835548 1731820 1881308 1711838
1828532 1720408 1867260 1701112
1833904 1727128 1873580 1706806
1838532 1732636 1881284 1713480
1829852 1740816 1889100 1718386
1828372 1737912 1891456 1716990
1838248 1727880 1880492 1707938
1838688 1724456 1877764 1707488
1839128 1730024 1880884 1708428
1830088 1742532 1893376 1717664
1830088 1722584 1873612 1704696
1830576 1735032 1879388 1712898
1833064 1745336 1888596 1723554
1838048 1726416 1873012 1705120
1826044 1716796 1869812 1697060
1841788 1743976 1890572 1721548
1836156 1736252 1885064 1714664
1830304 1729724 1878644 1709482
1832020 1734588 1876584 1713946
1828328 1731344 1875592 1711896
1823660 1720952 1866492 1701050
1828152 1728572 1874812 1706036
1837036 1733396 1886116 1712980
1830680 1722032 1866092 1704144
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