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ABSTRACT

Multidimensional Item Response Theory in Clinical Measurement:
A Bifactor Graded Response Model Analysis of the

Outcome-Questionnaire-45.2

Arjan Berkeljon
Department of Psychology, BYU

Doctor of Philosophy

Bifactor item response theory (IRT) models are presented as a plausible structure
for psychological measures with a primary scale and two or more subscales. A
bifactor graded response model, appropriate for polytomous categorical data,
was fit to two university counseling center datasets (N = 4, 679 and N = 4, 500)
of Outcome-Questionnaire-45.2 (OQ) psychotherapy intake data. The bifactor
model showed superior fit compared to a unidimensional IRT model. IRT item
parameters derived from the bifactor model show that items discriminate well
on the primary scale. Items on the OQ’s subscales maintain some discrimination
ability over and above the primary scale. However, reliability estimates for the
subscales, controlling for the primary scale, suggest that clinical use should
likely proceed with caution. Item difficulty or severity parameters reflected item
content well, in that increased probability of endorsement was found at high
levels of distress for items tapping severe symptomatology. Increased probability
of endorsement was found at lower levels of distress for items tapping milder
symptomatology. Analysis of measurement invariance showed that item
parameters hold equally across gender for most OQ items. A subset of items was
found to have item parameters non-invariant across gender. Implications for
research and practice are discussed, and directions for future work given.

Keywords: bifactor model, clinical measurement, graded response model, item
response theory, outcome questionnaire
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1

Multidimensional Item Response Theory in Clinical Measurement: A

Bifactor Graded Response Model Analysis of the Outcome-Questionnaire-45.2

“. . . we wish to clearly identify the measurement area as a problem area that

presents special challenges. For the vigorous and rigorous researcher who can

produce creative innovations in this area, great rewards are likely to follow.”

(Lambert & Garfield, 2004, p. 817)

In its most basic sense psychological measurement entails

measuring—systematically assigning numbers to represent psychological traits,

or characteristics of individuals. Psychological tests are the instruments by which

such measurement happens. Historically, developments in psychological

measurement have been driven by a theory of measurement known as True

Score Theory or Classical Test Theory (Allen & Yen, 2001; Lord & Novick, 1968).

Consequently, the assumptions underlying the conceptualization of

measurement in CTT have guided how clinical measures are developed and

evaluated (Embretson & Reise, 2000; Reise & Waller, 2009). Although CTT has

led to theoretical and practical benefit in clinical measurement, problematic

issues remain.

As its name suggests, CTT defines a theory of tests or measures.

Specifically, CTT defines the relationship between an individual’s observed score

on a test and the measurement error involved in obtaining this score. A

foundational assumption of CTT states that observed scores consist of true scores

plus error scores. A true score is defined as the mean of the theoretical

distribution of observed scores; a person’s true score would be obtained by

infinite, independent measurements using the same test. The true score thus is a

theoretical construct with a fixed, but unknown value. The observed score is an

attempt to measure the true score as accurately as possible, minimizing

measurement error. This notion of measurement accuracy yields the familiar
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notion of test reliability. More precisely, test reliability can be expressed as the

ratio of true score over observed score variance. Consequently, a measure is

perfectly reliable if all observed score variance reflects true score variance, and

error score variance is zero. However, perfect reliability is never obtained in

practice because measurement is always assumed to reflect some error, that is,

error score variance is always greater than zero.

CTT assumes that this error score variance is constant across individuals

for any particular test. Further, CTT assumes that all items on a particular test

contribute equally to true score variance. This assumption, known as parallel

measurement, is the foundation of test development from a CTT perspective. An

important consequence of this assumption is that item responses may be

summed to reflect total test performance. For example, imagine a hypothetical

measure of the construct depression with 10 items, each rated on a 4-point Likert

scale, with anchors “Never,” “Rarely,” “Sometimes,” “Always,” respectively.

Imagine a patient with a total observed score of 25 obtained by rating five items

at four and five items at one. Suppose a second patient also had a total score of

25, but obtained that score by rating seven items at three, two at two, and one at

one. Here the question arises to what extent the same total score reflects similar

distress given that the first patient’s scores reflect a dichotomous presentation of

symptoms and the second patient’s scores reflect a more uniform presentation.

One might infer that patients’ level of distress is similar because their scores are

equal. However, given their particular responses to the items, the quality and

content of their distress may be distinct.

Next, suppose that two new patients are administered the measure from

the previous example at intake and after 10 sessions of therapy. The first

obtained an initial score of 40 and, following treatment, a score of 30. The second

obtained a initial score of 20 and, following treatment, a score of 10. Did the
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patients experience the same amount of change? Obviously in a numerical sense

it is equal, 10 points. However, the same score change may have come about in

different ways. For example, a change in rating on three items from 4 to 1, and a

change in rating on one item from 2 to 1 equals a change of 10 points. However,

a change in rating from 4 to 3 on 10 items also equals a change of 10 points.

Thus, although the difference score suggests similar change, the manner in

which such change occurs may be different across patients. Also, because both

patients start therapy at different ends of the scale, one high, and one low, the

question arises whether equal numerical change may reflect a different quality of

change considering the place on the scale. That is, for a high initial level of

distress, a 10 point reduction might reflect significant relief, for example from

feeling depressed “Always” to feeling depressed “Sometimes.” By contrast, on

the lower end of the scale the difference between feeling depressed “Sometimes”

and feeling depressed “Rarely,” may provide some, but less significant relief.

In CTT, although these problems are acknowledged, they are usually

ignored in practice. For example, although confirmatory factor analyses of

clinical measures are common, the findings that different items do indeed

contribute differentially to the measure as a whole do not necessarily affect how

a measure is scored. Because CTT makes no discrimination on an item level in

terms of each items’ differential contribution (i.e. the parallel assumption), the

current practice of using sum scores seems warranted. In fact, obtaining a global

level or generalized index of complex information serves a useful deductive

purpose in clinical decision making and reducing information is a legitimate and

necessary component of effective decision making. However, when items do not

meet the parallel assumption, an alternative measurement model would be

useful. Such a model would have to incorporate differences on an item level and

yet not sacrifice in effective decision making.
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A measurement model that can satisfy this requirement is Item Response

Theory (IRT; Embretson & Reise, 2000). Although IRT has been used in

measurement development at least since the late 1950s, its adoption into

mainstream clinical measurement has been slow (Embretson & Reise, 2000; Reise

& Waller, 2009). A key difference between CTT and IRT is that whereas in CTT

test performance is defined in terms of a person’s true score, in IRT test

performance is defined in terms of an unobserved ability or trait (Allen & Yen,

2001; Embretson & Reise, 2000). For example, for the depression measure above

CTT assumes that a person’s item responses depend on their true score for that

measure. IRT, on the other hand, assumes that a person’s responses depend on

their standing on the latent trait of depression. IRT provides estimates of latent

traits that may be used to interpret person and item performance. Because such

interpretations are trait-based, rather than score-based, possible interpretative

complications such as the ones illustrated above can be avoided.

Item Response Theory

Because of the proposed direct relationship between latent trait and test

performance in IRT, this method allows for a more direct investigation of the

relationship between latent trait levels and person and item performance than

under CTT. Unlike CTT, where the observed score is a linear function of the true

score plus error, in IRT the observed score is not a simple linear function of the

latent trait. Instead, a person’s response to any given item on a test is a function

of their trait level and certain parameters of the item. In other words, IRT

methods allow one to investigate of how items differentially contribute to a

measure.
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IRT methods yield two important parameters for each item on a measure,

difficulty and discrimination.1 Item difficulty is scaled on a common metric with

the trait level of persons; item discrimination is a multiplier of the difference

between item difficulty and a person’s trait level. Thus, information about item

parameters provides a means to select items that give the most accurate estimate

of a person’s standing on the latent trait. By definition, when trait level equals

item difficulty, the probability of a person with that trait level endorsing an item

with that difficulty is .5. Consequently, for persons with a certain trait level, the

probability of endorsing an item of higher difficulty is less than .5, and

endorsing an item of lower difficulty is greater than .5. For items with a certain

difficulty, the probability of a person with higher trait level endorsing the item is

greater than .5, and a person with lower trait level endorsing the item is less than

.5. An item’s discrimination is defined as the degree to which an item

discriminates between different trait levels. In other words, for a highly

discriminating item, a person who endorses the item is likely to have a trait level

greater than the difficulty of that item. Conversely, a person who does not

endorse the item is likely to have a trait level less than the difficulty of the item.

An item that does not discriminate well provides much less information about

persons’ trait standing relative to the item’s difficulty.

The information obtained via IRT methods can be used to improve the

accuracy of measurement. In particular, IRT methods may be useful to clinical

measurement development in three ways. First, Reise and Waller (2009) discuss

the benefits of IRT trait estimates as opposed to using CTT-inspired sum and

change scores. The authors note that although IRT trait estimates may correlate

highly with CTT estimates, the information obtained from IRT analysis makes an

IRT approach beneficial in spite of high correlations. A correlation is insensitive

1Other item parameters can be obtained using IRT methods, but difficulty and discrimination
are most common.
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to specific values of estimates in the sense that a similar pattern and spread

yields a high correlation even though relative position on the trait scales

suggests a different interpretation for different scores.

Second, Doucette and Wolf (2009) discuss the importance of analyzing

item parameters from an IRT perspective. They mention three relevant analysis

strategies. First, an analysis of item difficulty may be done to ensure sufficient

coverage of the latent trait. Items may be located unevenly on the trait range (i.e.

lumped) or lack of coverage may exist for a certain range of the trait. Second, an

analysis of difficulty and discrimination parameters may be done to assess for

unexpected item behavior. That is, items’ actual difficulty or discrimination may

not represent their intended difficulty or discrimination. Thus, an item intended

to be difficult may not actually be endorsed with a higher probability by persons

located higher on the latent trait. Or, an item intended to discriminate persons

located high on the latent trait from persons located lower on the latent trait may

not actually distinguish such persons. For example, an item such as “In your

lifetime, have you ever felt depressed?” will likely be endorsed with high

probability by most persons regardless of their current level of depression; the

item is not difficult. An item such as “Do you currently feel depressed?” may be

more difficult than the previous item in the sense that persons who feel

depressed are more likely to endorse it than persons who do not feel depressed.

However, this item likely does not clearly distinguish persons who are more

depressed from those that are less depressed. Third, the authors discuss using

polytomous models to assess the adequacy of response categories. That is, only a

limited number of an item’s response categories may show expected properties.

For example, an item rated on a four-point scale may display infrequent use of

the outer response categories. This may reflect adjacent response category
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boundaries on the latent trait continuum that overlap or response category

boundaries that occur at a lower or higher level on the latent trait continuum.

Third, Reise and Waller (2009) discuss Differential Item Functioning (DIF;

referred to as measurement invariance in the CFA literature). In most research

distinct groups of responders are often present (e.g. men and women, depressed

and nondepressed etc.). The purpose of a DIF analysis is to ascertain to what

degree item parameters are different for the same trait level for persons in

distinct groups (Embretson & Reise, 2000). DIF analyses are clinically useful to

justify use of uniform tests or items across groups (in the absence of DIF) or use

of distinct tests or items across groups (in the presence of DIF).

IRT Models for Binary Responses

In the simple case of a dichotomous item, an IRT model describes the

relationship between a person’s latent trait standing and the probability of a

correct response. Most standard IRT models share two assumptions: (a)

unidimensionality and (b) local independence (Embretson & Reise, 2000).

Unidimensionality refers to the assumption that a single trait captures the

relationships between the items; this is referred to as a unidimensional latent

trait. Local independence refers to the relationships between the items or

persons. This assumption is satisfied if the relationship among items is fully

accounted for by the item and person parameters specified in the model.

Given a unidimensional latent trait, regressing the item score onto the

latent trait, θ, yields an item characteristic curve (ICC), which describes the

relationship between trait level and probability of a certain response. In the

traditional normal ogive model the ICC takes the shape of a normal cumulative
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distribution function (CDF):

Pi(θ) =
1√
2π

zi(θ)∫
−∞

exp(−y2/2) dy, (1)

where

zi(θ) = ai(θ − bi), (2)

which defines the probability of a correct score, Pi, on a dichotomous item, i, as a

function of the cumulative proportion of cases below a standard score, zi,

defined on a standard scale θ with a mean of 0 and standard deviation of 1,

containing item parameters ai and bi, representing item discrimination and

difficulty as defined above, respectively. Because the model incorporates both ai

and bi parameters, this model is often referred to as the traditional two

parameter normal ogive model. Note that the relationship between trait level

and item response in IRT models has also been defined in terms of the logistic

rather than normal ogive cumulative distribution function. The normal ogive

and logistic functions nearly coincide and thus yield similar item characteristic

curves given identical item properties. The logistic analog to the two parameter

normal ogive model is defined as follows:

Pi(θ) =
exp(Dai(θ − bi))

1 + exp(Dai(θ − bi))
, (3)

which defines the probability of a correct score, Pi, on a dichotomous item, i, as a

logistic function of item parameters and standard scale θ. To correct for the small

scaling difference between the normal ogive and logistic models, D is included

as a unit scaling factor set at D = 1.7. In the logistic model ai(θ − bi) is referred

to as the logistic deviate with ai and bi as defined above.
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A graphical representation of three different item characteristic curves is

shown in Figure 1. A theoretical trait level is displayed on the x-axis. On the

y-axis the corresponding response probability is given. The ICCs for three items

with different bi parameters are shown. The different bi parameters affect the

location of the inflection point of the curve in relation to the x-axis. That is, as

the value of bi increases, the curves inflection point shifts to the right on the θ

scale. Thus, as bi increases, the value of θ necessary to yield an equal response

probability also increases. This illustrates that bi represents the difficulty of an

item given a certain trait level. Note that when trait level equals the item

difficulty (at the curve’s inflection point), the probability of endorsing the item is

precisely .5. For an item of average difficulty, item difficulty equals the average

trait level, 0 on the standard θ scale.
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Low difficulty
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Figure 1. Item characteristic curves for items of varying difficulty. Graphic shows item
response probability as a function of latent trait level for items of low, moderate, and high
difficulty. The latent trait scale has a mean of zero and a standard deviation of one.
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A set of ICCs with different ai, but equal bi parameters is shown in Figure

2. As can be seen the ai parameters affect the slope at the inflection point of the

curve (at bi, the item’s difficulty). That is, for larger values of ai the slope of the

curve at its inflection point increases; the curve is steeper. Thus, as ai increases,

relatively smaller differences in θ yield relatively larger differences in response

probability. Note that the influence of ai on response probabilities is strongest at

an item’s bi and decreases as θ and bi become more distinct. This illustrates that

ai represents the discriminating ability of an item of particular difficulty, bi, given

a certain trait level, θ. An item is most discriminating for persons whose trait

level matches the item’s difficulty. Note that as ai approaches zero, an item’s

discriminating ability diminishes. Thus, in all cases desirable values for ai are

positive real integers.
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Figure 2. Item characteristic curves for items of varying discrimination. Graphic shows
item response probability as a function of latent trait level for items of low and high
discriminating ability. The latent trait scale has a mean of zero and a standard deviation
of one.
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More concretely, consider again the hypothetical measure of depression

mentioned previously. We may interpret Figure 1 to reflect the level of

depression on the x-axis and the probability of endorsing three of the 10 items

on the y-axis. The curves represent, for each of the three items shown, the

relationship between level of depression and the probability of endorsing the

item in question. The curve farthest to the left represents an item of low

difficulty or severity. That is, the probability of endorsing this item is high for

relatively low levels of the latent trait, depression. In other words, this item

reflects an aspect of depression that is present for relatively low levels of

depression, for example depressed mood. By contrast, the item farthest to the

right represents an item of high difficulty or severity. That is, the probability of

endorsing this item is low for relatively low levels of the latent trait and only

increases as the level of the latent trait increases. In other words, this item

reflects an aspect of depression that is present only for relatively high levels of

depression, for example blunted affect.

Similarly, Figure 2 may be interpreted as showing items of low and high

discriminating ability concerning level of depression, respectively. One might

conceive of an item with the content “I feel down”, and imagine a low

discriminating version as having but two response options, “Never” or

“Always.” Given these options and the frequent incidence of “feeling down” at

even low levels of depression (i.e. the item is not difficult), it seems likely that

the item will not clearly distinguish lower trait levels from higher trait levels.

However, given a more elaborate response set such as “Never,” “Rarely,”

“Sometimes,” and “Always” it seems likely the item might be able to distinguish

lower trait levels from higher trait levels more accurately than the dichotomous

version of the same item.
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Before describing IRT models for polytomous responses, a class of

common IRT models based on the logistic function deserves mention.

Historically, these models have become more or less synonymous with IRT, and

although they do not exclusively define the field much of IRT’s advances have

come from work in this area. In a class of models known as Rasch models

(Rasch, 1960) the probability of a correct answer to a dichotomously scored item

given a certain trait level is represented as follows:

Pi(θ) =
exp(θ − bi)

1 + exp(θ − bi)
, (4)

with terms defined as above. Note that in the traditional Rasch model given

above, as well as derivations thereof, no item discrimination parameter, ai, is

modeled.

In a more generalized form, the Rasch model may be expressed as

follows:

Pi(θ) =
exp(a(θ − bi))

1 + exp(a(θ − bi))
, (5)

where a equals 1. When a is not constrained to be 1 but is estimated as a

common parameter across all items, Equation 5 defines a class of models known

as one parameter logistic (1PL) models.

If the common item discrimination parameter estimated in 1PL models is

freely estimated separately for each item, Equation (5) yields Equation (3)

defined above. Because in such models two parameters are estimated uniquely

for each item, namely item discrimination and item difficulty, these models are

often referred to as two parameter logistic (2PL) models. The Rasch model can

thus be seen as a special case of the 1PL model, which in turn is a special case of

the 2PL model.
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IRT Models for Polytomous Responses

In the polytomous case the relationship between trait level and item

response is complicated by the availability of three or more response options.

IRT models for ordered categorical responses have addressed this complication

by treating a k-category response item as k− 1 hypothetical dichotomous

subitems. Thissen and Steinberg (1986) distinguish two broad classes of models:

divide-by-total models and difference models.

In divide-by-total models such as the Partial Credit Model (PCM; Masters,

1982) and the Rating Scale Model (RSM; Andrich, 1978b, 1978a), the probability

of a response in a certain category is directly estimated for each category. By

contrast, in difference models such as the graded response model (GRM;

Samejima, 1969, 1996), first the probability of a response in or above category j is

calculated as a function of item parameters and a given trait level. Subsequently

the probability of a response in category j is calculated as the difference between

the probability of a response in or above that category and the probability of a

response in or above the adjacent category. Thus for a k-category item the

probability of responding in category j is defined as follows:

Pij(θ) = P∗ij(θ)− P∗i,j+1(θ), (6)

with P∗i0(θ) = 1 and P∗ik(θ) = 0.

The normal ogive model in the polytomous case again assumes a normal

CDF for the probability of a response in or above category j of item i, P∗ij(θ):

P∗ij(θ) =
1√
2π

zij(θ)∫
−∞

exp(−y2/2) dy, (7)
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where

zij(θ) = ai(θ − bij), (8)

with item discrimination, ai, and threshold parameter, bij, which denotes the

threshold on the θ scale between adjacent categories j and j + 1 on item i.

P∗ij(θ) is defined as follows for the logistic model:

P∗ij(θ) =
exp(Dai(θ − bij))

1 + exp(Dai(θ − bij))
, (9)

with ai and bij defined as above. The normal ogive and logistic functions define

operating characteristic curves for each P∗ij(θ). Through Equation 6 these yield

category response curves (CRCs) which represent the probability of a response

in a given category conditional on trait level, Pij(θ).

An example for a three-category item CRC is shown in Figure 3. A

theoretical trait level is displayed on the x-axis. On the y-axis the corresponding

response probability is given. The three different curves show the relationship

between trait level and probability of response in a certain category for each of

the three categories. For low levels of the latent trait, the probability of

responding in category 1 is high, whereas the probability of responding in either

category 2 or 3 is low. As trait level increases the probability of responding in

category 1 decreases and the probability of responding in category 2 or 3

increases. As trait level increases further, the probability of responding in

category 2 reaches a maximum and then decreases. The probability of

responding in category 3 subsequently increases. The CRC shown thus reflects

an item where persons low on the latent trait have a high probability of

responding in category 1, persons with moderate levels of the latent trait have a

high probability of responding in category 2, and persons high on the latent trait

have a high probability of responding in category 3. Note that, similarly to
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Figure 3. Category response curve for a three-category item. Graphic shows category
response probability as a function of latent trait level for a three-category item of particu-
lar difficulty and discrimination. The latent trait scale has a mean of zero and a standard
deviation of one.

binary IRT models, item difficulty is expressed as location of the CRCs with

respect to the latent trait scale. However, item discrimination is expressed as the

peakedness or slope of the curves; a higher discrimination parameter is

associated with more peaked or steeper curves.

For example, on a three-category response item asking about the daily

presence of depressed mood, the categories represented in Figure 3 might

denote “Rarely,” “Sometimes,” and “Always.” Thus, for low levels of the latent

trait or low depression, the depressed mood rarely occurs daily. For increasing

levels of depression the occurrence of daily depressed mood increases as well

from often to always.
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Multidimensional IRT Methods

The IRT models and applications discussed thus far rely on the

assumption of unidimensionality. However, most measures, and certainly most

psychological measures, are conceptually broad in that they have content

heterogeneous indicators. For example, a hypothetical depression measure may

have items for both mood and physiological concerns. The more content

heterogeneous indicators a measure contains, the more appropriate a

multidimensional representation becomes. Because of the assumption of

unidimensionality in most standard IRT models, content heterogeneity has direct

implications for IRT model selection and standard IRT models may not be

appropriate (Gibbons & Hedeker, 1992; Reise, Morizot, & Hays, 2007).

Methods have been developed that allow for multidimensional IRT

models in which item response are modeled as person and item properties

reflecting two or more dimensions or latent traits (Embretson & Reise, 2000;

Reckase, 2009). Such methods apply where two (or more) distinct dimensions are

modeled. However, many psychological measures have indicators that reflect a

hierarchical structure. For example, although the hypothetical depression

measure mentioned previously may have items for both mood and physiological

concerns, these dimensions are not independent of the broader dimension of

depression. Rather, they may be considered subdimensions. In the confirmatory

factor analysis literature hierarchical factor models are commonplace in

modeling multidimensional constructs (Brown, 2006). In such models, layers of

factors represent the heterogeneity of the broader content domain. The observed

variables in the model load on one or more of these factors. One such

hierarchical model is the bifactor model. In the bifactor model proportionality

constraints are such that items relate to one general dimension or factor and one

of two or more subdimensions or group factors. Each item is constrained to load
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on the general factor and one of the group factors. This contrary to a

second-order model, which is nested within the bifactor model, where the

bifactor general factor resembles the second-order factor, and the bifactor group

factors resemble disturbances of first-order factors. Yung, Thissen, and Mcleod

(1999) describe the difference between these two factor models as the difference

between the “breadth" versus the “superordination" conception, respectively.

The properties of the bifactor model, specifically the restriction of nonzero

loadings on the general factor and only one group factor, make it

computationally attractive (Gibbons & Hedeker, 1992).

In addition to computational advantages, Chen, West, and Sousa (2006)

name several advantages of the bifactor over a second-order model, three of

which are relevant to the present study. First, the bifactor specification allows for

inferences regarding the predictive value of the group factors over and above the

general factor. Second, the bifactor model allows for a direct examination of the

strength of the relationship between items and group factors. Third,

measurement invariance between different groups (e.g. males vs. females), can

be directly tested for the general as well as group factors. This cannot be done in

a second-order model because domain specific factors are represented by

disturbances. Such measurement invariance testing is analogous to the process

of DIF testing in IRT.

An early bifactor IRT implementation for dichotomous response scale

data is described by Gibbons and Hedeker (1992). An extension applied to

categorical response data is described by Gibbons et al. (2007). They define a

bifactor implementation of the GRM. For computational purposes it is

convenient to define the GRM using the item intercepts, cij = −aibij (Bock,

Gibbons, & Muraki, 1988; Gibbons et al., 2007). This yields the probability of a

response in or above category j of item i defined as in Equation 7, with the
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following in the unidimensional case (equivalent to Equation 8):

zij(θ) = cij + ajθ. (10)

In the bifactor case the probability of a response in or above category j of item i

is also defined as in Equation 7, but with

zij(θ) = ci +
s

∑
k=1

ajk(θk), (11)

and k equal to the number of factors in the bifactor model and k = 1 for the

primary factor and k = 2, . . . , s for the group factors. Only one of k = 2, . . . , s

values of ajk is nonzero in addition to aj1. This imposes the bifactor model

constraint that each item loads on the primary factor and on only one of the

group factors.

The item intercepts span all factors in the bifactor model and are not

directly interpretable in terms of any one factor. This has particular

consequences for the item threshold parameters (i.e. the difficulty or location

parameter in IRT terms). In the bifactor model these invariant location

parameters do not exist with respect to one latent variable in the model. Rather,

the thresholds pertain to an additive composite of all latent variables in the

model (Bock et al., 1988).2 Thus, contrary to unidimensional IRT models, where

item thresholds are defined relative to the unidimensional latent trait, in bifactor

models item thresholds are defined relative to an additive composite of all latent

variables in the model. Specific to the GRM, whereas in the unidimensional case

item thresholds reflect the location on the latent trait where there is a probability

of .50 of selecting a response in a particular category or higher, in the bifactor

case thresholds reflect this same probability, but on a scale defined by the added

2R. Gibbons, personal communication, February 8, 2011.
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composite of latent variables in the model. Consequently, whereas in a

unidimensional model item slopes and intercepts are defined uniquely for the

single latent variable in the model, in the bifactor case only item slopes are

uniquely defined for each of the latent variables in the model, however, item

thresholds are not.

IRT in Clinical Measurement

IRT methods have been slow to appear in clinical research and useful

findings are sparse (Reise & Waller, 2009). Multidimensional, and in particular

bifactor IRT approaches, are even less common in spite of their potential utility

in clinical measurement. Gibbons and Hedeker (1992) report a full-information

bifactor analysis of the Hamilton Depression Rating Scale (HDRS), noting

however, that an unrestricted five-factor model had significantly better fit than a

five-dimensional bifactor model. This suggests that the four subdomains of the

HDRS model are likely not fully independent as a strictly orthogonal bifactor

structure presupposes. Extending the full-information bifactor approach to

polytomous items Gibbons et al. report an analysis of a quality of life measure,

the Quality of Life Interview for the Chronically Mentally Ill (Lehman, 1988). For

this measure, with seven proposed subscales and one global item, a bifactor

graded response model showed improved fit over a unidimensional graded

response model. Using a similar method, Reise et al. (2007) show that after

controlling for a general dimension, subscales of the Consumer Assessment of

Healthcare Providers and Systems survey (a healthcare satisfaction survey)

provide little measurement precision. Finally, Immekus and Imbrie (2008) test

the dimensionality of an adapted version of the State Metacognitive Inventory

(O’Neill & Abedi, 1996), a self-report measure of self-regulatory processes in
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students. They report improved fit for a bifactor GRM over a unidimensional

GRM.

To extend the understanding and application of bifactor IRT methods in

clinical measurement the present study gives an implementation of a bifactor

IRT model for a well-known psychotherapy measure, the Outcome

Questionnaire-45.2 (OQ; Lambert et al., 1996; Lambert et al., 2004). The OQ is a

45-item, self-report questionnaire that measures patients’ progress during the

course of psychotherapy treatment. Progress is measured as an overall score on

45 five-point (0=Never, 1=Rarely, 2=Sometimes, 3=Frequently, and 4=Almost

Always) Likert scale items as well as a score on three subscales: (a) Symptom

Distress (SD); (b) Interpersonal Relations (IR); and (c) Social Role (SR). The

overall score (0–180) provides a measure of overall psychological disturbance.

The SD score (0–100) signifies subjective symptom distress; the IR score (0–44)

indicates satisfaction/problems with interpersonal relationships; the SR score

(0–36) indicates patients’ dissatisfaction, experienced conflict, or feelings of

inadequacy in tasks related to their employment, family life, and leisure life. The

sparsity of IRT research in clinical measurement in general is reflected in the

literature available for the OQ. Two IRT studies of the OQ exist in the literature.

Pastor and Beretvas (2006) report a longitudinal Rasch study of the OQ.

They address the multidimensionality of the OQ by separately fitting three

unidimensional IRT models to three subscales derived using an exploratory

factor analysis. Analysis of item difficulty parameters across three points shows

time non-invariance for four of the 18 OQ items comprising their derived

subscales. The remaining 14 items were found to be invariant across time.

Although important given the OQ’s use as a measure of patient change across

time, Pastor and Beretvas’ findings are limited because derived subscales cover

only a subset of the 45 total items on the OQ. In addition, subscales were fit
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separately, rather than in a model framework that captures the primary-subscale

structure of the OQ.

Doucette and Wolf (2009) report an IRT analysis of the full response scale

of the Life Satisfaction Questionnaire (LSQ; Lambert et al., 2003), a 30-item

variant of the OQ. Both a Rasch model and 2PL model were fit, with the 2PL

model showing modestly better fit over the Rasch model. Results showed that

items do not provide adequate coverage for mild and high distress. The authors

report a principal components analysis (PCA) of model residuals to support

their assertion that the LSQ is sufficiently unidimensional to warrant fitting a

standard IRT model. The first extracted component explains 53% of the variance

in the data, the second 4%. Noting that three substance abuse differ notably

from other items in terms of IRT parameters, the authors argue that the LSQ

consists of two subscales, one with the three substance abuse items, the other

with the 27 remaining items. They further report PCA results to support their

claim that certain items’ residuals are correlated and may be eliminated because

of redundant content. The authors’ approach is appropriate given that the LSQ

has a proposed unidimensional structure, but it is not an appropriate general

strategy for dealing with unidimensionality given the structure of many clinical

measures. As argued above, because many clinical measures are structurally

multidimensional, unidimensionality can often not be assumed and

multidimensionality has to be explicitly addressed. Moreover, PCA, which is

primarily a data reduction method, is limited as a method to analyze

measurement structure compared to methods such as confirmatory factor

analysis (CFA; Brown, 2006). In fact, in a recent CFA of OQ data, Bludworth,

Tracey, and Glidden-Tracey (2010) report superior fit of a bifactor model over a

single (unidimensional) model of the OQ. This further establishes the utility of

the bifactor method in the present study.
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Primary Aims

The present study proposes a bifactor IRT method to account for the

multidimensionality of the OQ within an IRT framework. The proposed method

serves three broad aims: (a) study the OQ’s dimensional structure; (b) study the

OQ’s primary scale, subscale, and item behavior; and (c) study the stability of

the OQ’s scale and item properties across a clinically relevant group (i.e.

measurement invariance with respect to gender), all within an IRT framework.

For each of these aims, the following specific objectives are defined:

1. Dimensionality:

(a) Address the dimensional structure of the measure, by fitting a bifactor

graded response model (GRM; Gibbons et al., 2007; Samejima, 1969,

1996) to OQ data and compare model fit to a traditional

unidimensional graded response model.

(b) Test for model parsimony by comparing an unconstrained bifactor

GRM to a constrained, tau-equivalent version of the model.

2. Item behavior:

(a) Evaluate the OQ in terms of its item behavior (expected/unexpected

difficulty and discriminatory properties).

(b) Assess item behavior for both primary and subscale factors and assess

utility of the subscales, if any, over and above the primary dimension.

3. Measurement invariance:

(a) Assess measurement invariance of item behavior across gender.

Specifically, measurement invariance across gender will be assessed

separately for primary and subscale factors.
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Methods

Participants and Procedures

Two sources of outcome data were used, one from The University of Texas

at Austin Research Consortium consisting of aggregate data from 70 United

States college and university counseling centers (cohort I) and one from Brigham

Young University’s Counseling Center (cohort II). The former included

observations of subjects who presented for discrete episodes of individual

therapy at various university counseling centers. This yields a total dataset of

4,679 patients seen by 488 therapists. Average attendance was 7.58 sessions

(SD = 4.25, range = 4–38). Clients were predominantly Caucasian and female

(73% and 66%, respectively) with an age range from 16–61 (M = 23.4,

SD = 5.77). The average intake OQ score was 70.77 (SD = 24.90, range = 4–153).

The latter included a subset of observations from a larger data pool. Subjects

were included who presented for individual therapy, within their first episode of

therapy (defined as no more than 90 days between sessions), and attended at

least three sessions, but no more than 403. A random subset of these data gives

4,500 clients seen by 181 therapists. Average attendance was 7.87 sessions

(SD = 6.15, range = 3–40). Clients were predominantly Caucasian and female

(87% and 62%, respectively) with an age range from 17–60 (M = 22.66,

SD = 3.99). The average intake OQ score was 69.31 (SD = 22.87, range = 6–162).

Dimensionality and item behavior analyses proceeded on two random

subsets of cohort I (cohort Ia, N = 2, 297 and cohort Ib, N = 2, 382) separately

and the full sample of cohort II (N = 4, 500). To balance gender representation in

measurement invariance analyses subsamples of these cohorts were used. In

addition, because measurement invariance testing involves many model

3This criterion excludes outlier observations with number of sessions below and above the
bottom and top fifth percentiles, respectively.
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comparisons, reducing the full data decreases computational time. Measurement

invariance analyses proceeded on random subsets of cohort Ia (nmen = 512,

nwomen = 559), cohort Ib (nmen = 560, nwomen = 530), and cohort II (nmen = 1710,

nwomen = 1661).

Measure

Psychotherapy outcome data was gathered using the Outcome

Questionnaire-45.2 (OQ; Lambert et al., 1996; Lambert et al., 2004). The OQ

shows high test-retest reliability (.84 for the Total score) and high internal

consistency (Cronbach’s α for the Total score is .93 for a sample of college

students and a sample patients). Internal consistencies for the subscales ranged

from .70–.92 in the nonpatient sample and from .71–.91 in the patient sample.

The OQ also shows high concurrent validity in that correlations between the OQ

Total score and instruments such as the Beck Depression Inventory (Beck, Ward,

Mendelson, Mock, & Erbaugh, 1961), the State-Trait Anxiety Inventory

(Spielberger, 1983), and Social Adjustment Scale (Wiessman & Bothwell, 1976)

are moderate to high.

Statistical Analyses

Bifactor and unidimensional graded response models were fit using

Mplus software, version 6 (Muthen & Muthen, 2010). Measurement invariance

was assessed with a series of constrained bifactor GRMs in Mplus. All other

analyses were performed R using version 2.13 (R Development Core Team, 2011).

To address the aims of the present study I performed the following analyses:

• Dimensionality:

1. A bifactor graded response model (BFGRM; see Figure 4) was fit to

OQ data using robust maximum-likelihood (MLR) estimation with a
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probit link (Muthen & Muthen, 2010). Robust maximum-likelihood

estimation, like standard maximum-likelihood estimation, is a

full-information estimation approach and yields optimal estimates

given sufficient data. In addition, robust maximum-likelihood is

appropriate for use with non-normal data. Thus, MLR is a desirable

estimator for the naturalistic clinical data used in the present study.

2. A unidimensional IRT implementation of the graded response model

(UGRM; see Figure 5) was fit to OQ data using robust

maximum-likelihood estimation with a probut link. This analysis thus

provides a basis for comparing the bifactor graded response model to

a unidimensional graded response model.

3. A constrained version of the bifactor graded response model was fit to

OQ data using robust maximum-likelihood estimation with a probit

link:

(a) Tau-equivalent bifactor GRM with factor loadings constrained to

be equal within factors (BFGRMte; see Figure 6). That is, factor

loadings on the primary factor are constrained to be equal and

factor loadings within each of the subscale factors are constrained

to be equal, respectively.

A Satorra-Bentler scaled χ2-difference or log-likelihood ratio test, which is

appropriate for robust maximum-likelihood estimation, was used to

compare nested models (Muthen & Muthen, 2010; Satorra, 2000).

• Item behavior:

4. Item properties (i.e. difficulty and discrimination) are reported as

estimated by Mplus. Subscale utility was quantified by calculating

subscale reliability using the following formula (Reise et al., 2007, p.
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26):

Reliability = (N −∑ SE2)/N, (12)

where SE denotes the standard errors of the estimated factor scores.

This reliability estimate is a measure of the degree of precision with

which individuals can be assessed on a subscale factor controlling for

the primary factor.

• Measurement invariance:

5. Measurement invariance (analogous to differential item functioning or

DIF in an IRT framework) was studied with respect to gender with

men as reference group and women as focal group.

Historically, studies of measurement invariance in a factor analysis

framework and an IRT framework have been separate, however, the

methodologies frequently overlap (Embretson & Reise, 2000; Holland &

Wainer, 1993). For the purposes of this paper measurement invariance was

tested in a nested model approach as is common in the measurement

invariance literature. In their extensive review of the measurement

invariance literature, Vandenberg and Lance (2000) describe the following

recommended practices for measurement invariance testing:

(a) Test of configural invariance

(b) Test of metric or weak factorial invariance (invariance of factor

loadings across groups)

(c) Test of scalar or strong invariance (invariance of intercepts or

thresholds across groups)

(d) Tests of partial invariance (of individual items, provided that full

metric or scalar invariance do not hold)
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These tests are sequential. That is, a test for metric invariance takes into

account results of a test of configural invarance, a test of scalar invariance

proceeds takes into account results of a test of metric invariance, and so on

(Vandenberg & Lance, 2000).

Invariance testing was evaluated via nested model comparisons using a

weighted least squares estimator with mean and variance adjustment (WLSMV)

under a theta parameterization.4. Like MLR, WLSMV is robust against

non-normal data. Unlike MLR, which is a full-information estimator, WLSMV is

a limited-information estimator. Thus, compared to MLR WLSMV estimates are

suboptimal. However, MLR as currently implemented in Mplus (version 6.1 at

time of writing) introduces several complexities into measurement invariance

testing, two of which are relevant here: (a) because of the numerical integration

required, MLR estimation is substantially slower (by a factor of approximately

eight for the current models and data) than WLSMV estimation; (b) modification

indices are not offered for MLR, but are offered for WLSMV. Addressing these

complexities is beyond the scope of the current study and therefore WLSMV is

used an estimator for measurement invariance testing in what follows.

Model comparisons are done using the Mplus DIFFTEST procedure for

nested model comparisons under WLSMV. This procedure yields appropriately

scaled χ2-difference tests for nested models. Partial invariance testing is done

using modification indices to suggest removal of equality constraints between

groups that contribute most to local model misfit. Modification indices give the

approximate overall model χ2 decrease after removal of an equality constraint

(Brown, 2006). Equality constraints were removed iteratively based on

modification indices suggesting a significant χ2 decrease at p = .05.

4 Under a theta parameterization residual variances of latent response variables are parameters
of the model. This parameterization is preferred for multiple group analyses, particularly of
categorical data, because it allows three sources of group differences to be distinguished, factor
loadings, factor variances, and residual variances (Muthen & Asparouhov, 2002)
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Figure 4. BFGRM: full bifactor graded response model. Graphic shows an unrestricted
bifactor graded response model of the OQ. Primary and group factors are represented as
circles and correspond to the OQ’s general dimension and subscales. OQ items are rep-
resented as squares. Item factor loadings are represented as arrows and are all estimated.
Factor means are fixed at zero and factor variances at one. Factors are defined orthogonal
to each other.
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Figure 5. UGRM: unidimensional graded response model. Graphic shows an unrestricted
unidimensional graded response model of the OQ. Latent trait is represented as a circle
and OQ items are represented as squares. Item factor loadings are represented as arrows
and are all estimated. Factor means are fixed at zero and factor variances at one.
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Figure 6. BFGRMte: tau-equivalent bifactor graded response model. Graphic shows
a restricted bifactor graded response model of the OQ. Primary and group factors are
represented as circles and correspond to the OQ’s general dimension and subscales. OQ
items are represented as squares. Item factor loadings are represented as arrows and are
restricted to be equal within each factor (such that loadings are equal within each λk,
with k = 1, 2, 3, 4). Factor means are fixed at zero and factor variances at one. Factors are
defined orthogonal to each other.
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Results

Preliminary Analyses

Preliminary and exploratory data analysis revealed two relevant

concerns.5 First, consistent with previous literature the OQ’s 5-point Likert scale

yields infrequent responses in the extreme categories (Pastor & Beretvas, 2006).

Second, also consistent with previous literature the OQ’s three substance abuse

items (11, 26, and 32) show significant skew in that they are endorsed relatively

infrequently (Doucette & Wolf, 2009). To reduce computational convergence

concerns and interpretation problems introduced by these skewed response

patterns two data management decisions were implemented. First, the lowest

and highest categories (i.e. 0=Never and 1=Rarely, and 3=Frequently and

4=Almost Always, respectively) were collapsed for all observations yielding

three effective categories. Second, the three substance abuse items were excluded

from all subsequent analyses. This is in line with previous research by Doucette

and Wolf (2009), who suggest that the substance abuse items may be best

regarded as forming a separate subset of items apart from the other items on the

OQ.6 Final data analyses are presented for data from cohort’s I and II with

response categories collapsed and substance abuse items removed.

5Feasibility and soundness of model specifications were assessed with two independent ran-
dom samples of 200 observations from cohort I. Assessment proceeded using a subset of OQ items
to reduce model complexity and to minimize computational difficulty. Three items were chosen
from SD and SR subscales, and two items from the IR subscale. In addition, all three substance
abuse items were included to assess sensitivity of the implementation to anomalous items. This
yielded a final subset consisting of items 1, 4, 5, 8, 11, 26, 30, 32, 35, 39, and 44. The bifactor
GRM in Mplus, POLYBIF (Gibbons & Hedeker, n.d.), and IRTPRO beta (Cai, du Toit, & Thissen,
n.d.) software all converged, although inclusion of substance abuse items introduced convergence
problems for Mplus using the MLR estimator. Factor loadings and item thresholds were compara-
ble across software programs apart from scaling. This substantiates the soundness of the bifactor
GRM as implemented in the present study. Further details available from the author upon request.

6The developers of the OQ acknowledge the problematic nature of the substance abuse items,
however the items were included as requested by a funding contributor in spite of their divergent
properties (Michael Lambert, personal communication, June 24, 2010).
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Dimensionality

Initial analyses show superior fit for the bifactor graded response model

(BFGRM) on a random subset (N = 2297) of cohort I’s (Ia) data compared to the

unidimensional graded response model UGRM, χ2
di f f (42) = 2313.94, p < .001. In

addition, the BFGRM shows superior fit compared to the tau-equivalent model

(BFGRMte), χ2
di f f (80) = 3048.34, p < .001.

Cross-validation of these results on the remaining observations from

cohort I’s (Ib) data and cohort II’s full data yielded similar results. In cohort Ib’s

data (N = 2382) the BFGRM shows superior fit compared to the UGRM,

χ2
di f f (42) = 2346.10, p < .001. In addition, the BFGRM shows superior fit

compared to the tau-equivalent model (BFGRMmte), χ2
di f f (80) = 3176.14,

p < .001. In cohort II’s data (N = 4500), the BFGRM shows superior fit

compared to the UGRM, χ2
di f f (42) = 5718.03, p < .001. In addition, the BFGRM

shows superior fit compared to the tau-equivalent model (BFGRMte),

χ2
di f f (80) = 9228.09, p < .001. Taken together these results provide support for

the utility of a bifactor model over a unidimensional model for the OQ. In

addition, a full, unrestricted version of the bifactor model achieves better fit than

models where item factor loadings are restricted within factors or scales.

Item Behavior

Item behavior in traditional polytomous IRT models is evaluated in terms

of discrimination and item category difficulty. The bifactor IRT implementation

presented here provides parameters that are analogous, although not strictly

identical to, traditional IRT parameters: (a) analogous to item discrimination,

items are evaluated with respect to item factor loadings on the primary as well as

group factors; (b) analogous to item category difficulty, items are evaluated with

respect to item category thresholds. However, because under the bifactor model
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item thresholds are not directly interpretable in terms of any one factor, they

cannot be interpreted as the invariant location with respect to a unidimensional

latent trait like in unidimensional IRT models. Rather, thresholds pertain to an

additive composite of all latent variables in the model and as a such are not

separated between primary and group factors. In what follows, discrimination

and difficulty refer to parameters as they apply in the bifactor IRT case.

Item factor loadings. Figure 7 shows, for each of the OQ’s subscales

separately, a comparison of primary loadings versus group loadings across

datasets. Each item’s coordinates reflect its relative discrimination on the

primary versus group factor. Positive values reflect an items’ discriminating

ability, that is the information an item provides about persons latent trait

standing. Values close to zero reflect poor discriminating ability, that is persons

high and low on the latent trait have comparable probabilities of response

endorsement. Negative values reflect negative discriminating ability such that on

these items persons at higher trait levels have a lower probability of response

endorsement and persons at lower trait levels have a higher probability of

response endorsement. Because items with discrimination close to zero and

smaller provide little to no useful information about persons latent trait

standing, such items are considered undesirable. Based on Figure 7 four

observations can be made. First, as required given the bifactor structure, item

discrimination (loadings) is higher on the primary than on group dimension.

That said, there is definite separation of items across both dimensions in that

some items discriminate more highly on both dimensions, some discriminate

more highly on primary, less so on group dimension, some discriminate less

highly on primary, more highly on group dimension, and some items do not
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Figure 7. Primary and subscale item factor loading estimates. Graphic shows the mag-
nitude of item factor loadings on the OQ’s primary versus subscale dimensions. Axes
denote each dimension’s respective latent trait scale, in both cases with a mean of zero
and standard deviation of one.
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discriminate as highly on either dimension. Second, across different datasets

items on the SD subscale are more clustered on both primary and group

dimensions than items on either the IR or SR subscales. Third, for items on the

IR subscale the range of discrimination appears larger across the group

dimension than across the primary dimension compared to the SD or SR

subscales across datasets. Finally, items on the SR subscale appear to have

among the lowest discriminatory power across dimensions across datasets.

Table 1 gives the exact magnitude of item factor loadings shown in Figure

7. Although differences in absolute magnitude of loadings are evident across

datasets, a comparison of relative magnitude suggest a similar pattern of relative

item discrimination behavior across datasets: Spearman’s correlations of items

ranked by item factor loading magnitude are high on the primary dimension

(.84–.94), on the SD subscale (.95–.98), on the IR subscale (.76–.98), and on the SR

subscale (.90–.98). The OQ’s primary dimension appears well-suited to its task of

distinguishing those with higher distress from those with lower distress; all

items have moderate to high loadings on the primary factor. The three most

discriminating items were 31 (“I am satisfied with my life”), 15 (“I feel

worthless”, and 24, (“I like myself”) in cohort I, and items 31, 13 (“I am a happy

person”), and 42 (“I feel blue”) in cohort II. The three least discriminating items

were 14 (“I work/study too much”), 16 (“I am concerned about family

troubles”), and 7 and 17 (“I feel unhappy in my marriage/ significant

relationship” and “I have an unfulfilling sex life”), in cohorts I and II respectively.

Item factor loadings on the group dimensions denote the discriminating

ability of an OQ item on its respective subscale, controlling for the primary

dimension. The three most discriminating items on the Symptom Distress (SD)

subscale in cohorts I and II were 36 (“I feel nervous”), 29 (“My heart
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Table 1
Primary and subscale item factor loading estimates.

Cohort Ia Cohort Ib Cohort II
Item OQ SD IR SR OQ SD IR SR OQ SD IR SR

1 2.40 0.40 2.14 0.30 0.69 0.27
2 2.18 0.39 1.73 0.28 0.60 0.46
3 2.71 0.08 2.71 -0.03 1.07 0.05
4 1.90 0.51 1.54 0.40 0.56 0.40
5 1.98 0.14 2.01 0.08 0.75 0.22
6 1.97 0.23 1.83 0.13 0.69 0.20
7 1.56 0.57 1.43 0.51 0.44 0.82
8 2.84 0.05 2.78 -0.09 0.95 0.10
9 3.02 0.42 3.00 0.35 0.89 0.55

10 2.53 0.50 2.45 0.45 0.69 0.60
12 2.33 0.39 1.96 0.37 0.92 0.46
13 3.28 -0.41 3.08 -0.36 1.45 -0.26
14 1.09 0.03 1.05 -0.07 -0.04 -0.03
15 3.70 -0.05 3.40 -0.10 1.31 0.08
16 1.19 0.14 1.12 0.09 0.16 0.29
17 1.57 0.55 1.42 0.60 0.21 0.58
18 2.79 0.42 2.59 0.45 1.00 0.35
19 1.72 0.33 1.63 0.23 0.30 0.47
20 3.18 0.79 2.94 0.76 1.07 0.54
21 2.16 -0.03 2.02 0.00 0.82 0.07
22 1.97 0.28 1.78 0.33 0.66 0.34
23 2.88 0.03 3.04 -0.01 1.20 0.15
24 3.37 -0.49 3.35 -0.59 1.36 -0.17
25 2.00 0.40 2.16 0.40 0.48 0.35
27 1.91 0.66 1.74 0.52 0.38 0.61
28 1.72 0.63 1.78 0.65 0.77 0.79
29 2.37 0.67 2.09 0.59 0.49 0.64
30 2.36 0.36 2.06 0.31 0.64 0.39
31 4.29 -0.52 3.81 -0.47 1.69 -0.21
33 2.16 0.48 2.40 0.44 0.66 0.56
34 1.76 0.51 1.64 0.50 0.26 0.53
35 2.36 0.55 2.19 0.41 0.35 0.48
36 2.44 0.69 2.18 0.65 0.68 0.73
37 2.53 1.03 2.56 1.34 0.76 0.83
38 2.29 1.11 2.31 1.56 0.80 1.19
39 2.15 0.33 2.07 0.28 0.49 0.24
40 2.87 0.22 2.40 0.19 0.83 0.36
41 1.87 0.45 1.77 0.41 0.49 0.40
42 3.23 0.15 2.99 0.13 1.38 0.23
43 2.98 0.69 2.69 0.71 1.09 0.62
44 2.25 0.22 2.36 0.13 0.63 0.06
45 1.71 0.60 1.65 0.52 0.36 0.49
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pounds too much”), and 27 (“I have an upset stomach”). The three least

discriminating items were 31 (“I am satisfied with my life”), 24 (“I like myself”),

and 13 (“I am a happy person”). Thus, these items discriminate highly on the

primary factor, but not on their group factor. On the Interpersonal Relations (IR)

subscale the three most discriminating items were 37 (“I feel my love

relationships are full and complete”), 20 (“I feel loved and wanted”), 43 (“I am

satisfied with my relationships with others”) and 7, in cohorts I and II

respectively. The three least discriminating items were 16 (“I am concerned

about family troubles”), 19 (“I have frequent arguments”), and 1 (“I get along

well with others”), 18 (“I feel lonely”), and 30 (“I have trouble getting along with

friends and close acquaintances”), in cohorts I and II respectively. On the Social

Role (SR) subscale the three most discriminating items were 38 (“I feel that I am

not doing well at work/school”), 28 (“I am not working studying as well as I

used to”), and 4 (“I feel stressed at work school”) and 12 (“I find my

work/school satisfying”), in cohorts I and II respectively. The three least

discriminating items were 21 (“I enjoy my spare time”), 14 (“I work/study too

much”), and 44 (“I feel angry enough at work/school to do something I might

regret”). From the above it is clear that most items have substantial loadings on

the primary factor and less substantial loadings on the group factors.

Particularly, pronounced factor loading differences between primary and group

factors are seen for items 13, 24, and 31 on the SD subscale. That is, these items

discriminate highly on the primary factor, but not on their group factor. In other

words, they suggest distinct differences in content and measurement precision

between the primary construct measured by the OQ and the specific construct

measured by the SD subscale.

Estimates of the differences in measurement precision between primary

and subscale dimensions can be calculated and provide information akin to the
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CTT notion of reliability. The notion of factor reliability used here derives from

Reise et al. (2007) who suggest a calculation method using the standard errors of

expected a posteriori factor scores . They write: “the size of these reliability

estimates indicates the degree to which individuals could be precisely assessed

on the group factors, sans the general” (pp. 26–27). The reliability estimates for

the primary scale and subscales are shown in Table 2. Estimates for the primary

scale are comparable to values of Cronbach’s α in the data used (.98, .98, and .92

for Cohort Ia, Ib, and II, respectively). For the subscales, controlling for the

general factor, precision is poor by common standards of reliability (Nunnally,

1978). Naturally, given the bifactor structure, reduced precision on subscales is

expected after controlling for the general dimension. In other words,

measurement precision obtained at the general level, is, to a degree, at the

expense of measurement precision on the subscale level.

Item category thresholds. Item category thresholds or difficulty,

contrary to item discrimination, cannot be analyzed separately for primary and

group factors under the bifactor model. What remains is a nonetheless

informative interpretation akin to that in unidimensional IRT difference models

such as Samejima’s GRM (1969, 1996), with the caveat that difficulty is not

related to a single underlying dimension, but rather to an additive composite of

both primary and group dimensions. Recall that in difference models item

Table 2
Reliability estimates for OQ primary scale versus subscales (controlling for the general
dimension)

Reliability estimates
Cohort Ia Cohort Ib Cohort II

Primary .99 .99 .92
Subscale SD .76 .74 .67

IR .71 .73 .60
SR .66 .70 .55
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thresholds refer to the location on the latent trait (or in the bifactor case, the

location with respect to the additive composite of latent variables in the model)

at which persons have a .5 probability of responding in a particular category or

higher. Recall also that the OQ’s five-point Likert scale was collapsed to a

three-point scale for the purposes of this study. Therefore, the first threshold

reflects the point on the latent trait scale where persons have a .5 probability of

responding in collapsed category 1 or higher (i.e. original OQ anchors “Never”

and “Rarely”). The second threshold reflects the point on the latent trait scale

where persons have a .5 probability of responding in collapsed category 2 or

higher (i.e. original OQ anchors “Sometimes,” “Frequently,” and “Always”).

With respect to the OQ, the latent trait scale may be conceptualized as reflecting

less or more, respectively, levels of psychological distress. Thus, an item’s

threshold may be seen as reflecting its severity. Low threshold items are less

severe, meaning that they are endorsed when a relatively lower level of

psychological distress is present. High threshold items are more severe, meaning

that they are not endorsed until a relatively higher level of psychological distress

is present. First thresholds capture initial or lower anchor endorsement, whereas

second thresholds capture subsequent or higher anchor endorsement. Thus,

items with a high first threshold are severe items endorsed minimally at high

levels of distress. Items with low first thresholds are less severe items, endorsed

at lower levels of distress. Items with a high second threshold are items with

higher anchor endorsement at higher levels of distress. Items with a low second

threshold are items with higher anchor endorsement at lower levels of distress.

Figure 8 shows a comparison of first and second category thresholds

across datasets. Table 3 gives the exact magnitude of item category thresholds

shown in this figure. Although differences in which items appear to have highest

and lowest thresholds are evident between datasets, overall relative item
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Figure 8. First and second item category threshold estimates. Graphic shows the magni-
tude of first and second category thresholds. The horizontal axis denotes OQ items; the
vertical axis denotes the OQ’s composite latent trait scale (the additive composite of both
primary and group dimensions) with a mean of zero and standard deviation of one.



41

Table 3
First and second item category threshold estimates.

Cohort Ia Cohort Ib Cohort II
Item First Second First Second First Second

1 -0.28 0.75 -0.09 0.78 1.57 2.80
2 -2.07 -0.88 -1.64 -0.59 -0.87 0.39
3 -1.88 -0.77 -1.80 -0.60 -0.39 1.07
4 -2.62 -1.44 -2.23 -1.14 -1.52 -0.21
5 -2.29 -1.16 -2.23 -1.17 -1.52 -0.24
6 -2.04 -0.88 -1.84 -0.68 -0.92 0.49
7 -0.84 -0.31 -0.67 -0.12 0.14 1.16
8 -0.30 0.50 -0.16 0.66 1.31 2.26
9 -1.88 -0.75 -1.77 -0.62 -0.43 0.90
10 -1.70 -0.70 -1.59 -0.57 -0.50 0.72
12 -1.90 -0.53 -1.58 -0.29 -0.33 1.25
13 -2.47 -0.70 -2.23 -0.46 0.02 2.18
14 -0.57 0.15 -0.54 0.25 -0.17 0.78
15 -2.07 -0.80 -1.74 -0.51 -0.32 1.12
16 -0.76 -0.20 -0.65 -0.09 -0.35 0.33
17 -0.75 -0.21 -0.57 -0.04 0.70 1.36
18 -2.62 -1.48 -2.27 -1.18 -1.07 0.30
19 -0.60 0.17 -0.45 0.23 0.67 1.54
20 -2.13 -0.60 -1.80 -0.33 -0.10 1.62
21 -1.54 -0.45 -1.38 -0.30 -0.15 1.11
22 -2.00 -0.98 -1.86 -0.79 -1.11 0.12
23 -1.66 -0.59 -1.57 -0.45 -0.33 1.07
24 -2.07 -0.46 -1.94 -0.19 -0.11 1.80
25 -1.39 -0.54 -1.36 -0.57 -0.25 0.69
27 -0.97 -0.07 -0.74 0.10 0.10 1.01
28 -1.35 -0.67 -1.38 -0.65 -0.76 0.18
29 -0.72 0.17 -0.55 0.25 0.69 1.62
30 -0.66 0.24 -0.37 0.55 0.72 1.81
31 -3.60 -1.72 -3.13 -1.32 -0.89 1.22
33 -1.27 -0.30 -1.29 -0.31 0.09 1.22
34 -0.75 0.08 -0.62 0.23 0.13 0.97
35 0.25 0.78 0.36 0.92 1.46 2.05
36 -1.92 -0.75 -1.74 -0.58 -0.39 0.88
37 -2.51 -1.45 -2.56 -1.26 -0.81 0.34
38 -2.12 -0.95 -2.35 -0.90 -1.14 0.26
39 -0.07 0.60 0.09 0.74 1.41 2.13
40 -1.81 -0.90 -1.44 -0.51 -0.40 0.55
41 -1.22 -0.50 -1.04 -0.35 -0.10 0.60
42 -2.98 -1.64 -2.67 -1.33 -1.12 0.54
43 -2.27 -0.62 -1.96 -0.38 -0.47 1.28
44 -0.11 0.51 0.01 0.68 1.27 2.02
45 -0.97 -0.14 -0.88 -0.03 0.04 0.87
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threshold behavior appear similar. As expected Spearman’s correlation of first

item category thresholds ranked by magnitude between cohort Ia and Ib was .98.

Between cohort Ia and Ib, and cohort II correlations were .83 and .86,

respectively. Second item category thresholds correlated at .97 between cohort Ia

and Ib. Between cohort Ia and Ib, and cohort II correlations were .68 and .73,

respectively. Inspection of item rankings by quantile reveals that difference

between datasets predominantly occur at quantile boundaries, which similarly

suggests that ranking differences are small.

For cohort Ia and Ib items with the highest first thresholds were 35 (“I feel

afraid of open spaces, of driving, or being on buses, subways, and so forth”), 39

(“I have too many disagreements at work/school”), and 44 (“I feel angry enough

at work/school to do something I might regret”), revealing that initial

endorsement requires a relatively higher level of the composite of latent

variables than the remaining items. For cohort II item 1 (“I get along well with

others”) showed a high first threshold in addition to items 35 and 39. Items with

high second thresholds (i.e. subsequent endorsement) for cohort Ia and Ib

included items 35, 1, and 39. For cohort II items 1, 8 (“I have thoughts of ending

my life”), and 13 (“I am a happy person”), had highest second thresholds. Items

with a low first threshold, reflecting that initial endorsement is likely at

relatively low levels of the composite latent trait, were 31 (“I am satisfied with

my life”), 42 (“I feel blue”), and 18 and 37 (“I feel lonely" and “I feel my love

relationships are full and complete”) for cohort Ia and Ib. For cohort II items 4

(“I feel stressed at work/school”), 5 (“I blame myself for things”), and 38 (“I feel

that I am not doing well at work/school”) had lowest first thresholds. Items with

low second thresholds (i.e. subsequent endorsement) for cohort Ia and Ib

included items 31, 42, and 18 and 37. For cohort II items 4, 5, and 22 had the

lowest second thresholds.
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Measurement Invariance

Findings reported thus far assume that item factor loadings and item

category thresholds are invariant across possibly clinically relevant domains

such as gender. This assumption, known as measurement invariance, is tested

through fitting a succession of measurement invariance models across a specified

group. In what follows measurement invariance for the bifactor model of the OQ

is examined across gender. Table 4 shows fit statistics for a configural invariance

model, with item factor loadings and item category thresholds equal between

men, the reference group, and women, the focal group. Results indicate

acceptable fit across datasets, which suggest that further exploration of

measurement invariance is feasible.

Item factor loading (metric) invariance. Invariance of item factor

loadings was examined in a model with constrained item factor loadings. In the

reference group factor means and variances were fixed at zero and one,

respectively. In the focal group factor means and variances fixed at zero and

estimated, respectively. Item-residual variances were fixed at one in both

reference and focal groups for model identification. Item category thresholds

were estimated in both groups separately. A χ2-difference test reveals

measurement invariance of item factor loadings (of primary and group factors)

with respect to gender in cohort Ia, χ2
di f f (80) = 97.45, p = .090 (nmen = 512,

nwomen = 559) and cohort Ib χ2
di f f (80) = 87.31, p = .270 (nmen = 560,

Table 4
Fit statistics configural measurement invariance model in each of the three datasets.

Data χ2(DF) CFI TLI RMSEA
Cohort Ia 3618.60 (1554) .914 .905 .050
Cohort Ib 3885.33 (1554) .914 .905 .052
Cohort I I 9303.97 (1554) .922 .914 .054
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nwomen = 530), and non-invariance in cohort II, χ2
di f f (80) = 154.01, p < .001

(nmen = 1710, nwomen = 1661).

Partial invariance of item factor loadings with respect to gender was

examined for cohort II. Successive removal of equality constraints of item factor

loadings between groups revealed non-invariance for primary loadings of items

19 (“I have frequent arguments”), 33 (“I feel that something bad is going to

happen”), 10 (“I feel fearful”), 16 (“I am concerned about family troubles”), and

34 (“I have sore muscles”). Removing further item factor loading equality

constraints no longer yielded significantly improved fit compared to the

configural model. Thus, the remaining item factor loadings were considered

invariant across gender in cohort II’s data. Table 5 shows standardized item

factor loadings and model comparisons of non-invariant items for both men and

women. Results indicate that items were 33, 10, and 16 were significantly more

discriminating for men than for women on the primary latent factor of the OQ.

Items 19 and 34 were significantly more discriminating for women than for men.

Item category threshold (scalar) invariance. Invariance of item category

thresholds was examined in a model with constrained item thresholds. In the

Table 5
Non-invariant item factor loadings for men vs. women in cohort II

Item Men Women χ2
di f f p

19 .219 .329 135.24 .000
33 .609 .461 121.63 .001
10 .615 .476 107.96 .011
16 .213 .117 101.17 .028
34 .250 .280 99.04 .033

Note. Results shown reflect order in which equality constraints were removed based on
largest modification index (χ2 > 3.42, p < .05). Item factor loadings shown are stan-
dardized estimates from a model with equality constraints removed for all non-invariant
items. Resulting χ2-difference tests (with one degree of freedom) are shown between
models with successively unconstrained item factor loadings. Associated p-values are
given.
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reference group factor means and variances were fixed at zero and one,

respectively. In the focal group factor means and variances were estimated.

Item-residual variances were fixed at one in both reference and focal groups for

model identification. Item factor loadings were constrained in both groups for

cohort I. For cohort II, item factor loadings found to be non-invariant above were

estimated separately between groups. All other item factor loadings were

constrained between groups. A χ2-difference test reveals measurement

non-invariance of item category thresholds with respect to gender in cohort Ia

χ2
di f f (80) = 231.47, p < .001, cohort Ib χ2

di f f (80) = 334.98, p < .001, and cohort II

χ2
di f f (80) = 759.78, p < .001.

Partial invariance of item category thresholds with respect to gender was

examined for cohort Ia. Non-invariance was found for the first category

threshold of items 2 (“I tire quickly”), 17 (“I have an unfulfilling sex life”), 27 (“I

have an upset stomach”), and 42 (“I feel blue”), and the first and second

category thresholds of item 45 (“I have headaches”). No further item category

thresholds suggested model fit improvement at a .05 significance level. Thus,

remaining thresholds were considered invariant across gender in cohort Ia.

Table 6 shows standardized item category thresholds and model

comparisons of non-invariant items for both men and women. Results indicate

that first thresholds of items 2, 27, 42, and 45 are higher for men than for women.

In other words, these items are more readily endorsed at lower levels of distress

initially by women than by men. The same is true for endorsement in higher

categories for item 45. Item 17 (“I have an unfulfilling sex life”) on the other

hand, has a first threshold that is higher for women than for men. In other

words, this item is more readily endorsed at lower levels of distress initially by

men than by women.
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Table 6
Non-invariant item category thresholds for men vs. women in cohort Ia

Item Men Women χ2
di f f p

(threshold) .
45 (1) 0.329 -0.077 211.68 .000
45 (2) 1.026 0.650 196.38 .000
27 (1) 0.381 0.055 179.57 .000
2 (1) -0.413 -0.790 160.77 .000
17 (1) -0.088 0.202 146.59 .000
42 (1) -0.650 -0.963 136.69 .000

Note. Results shown reflect order in which equality constraints were removed based
on largest modification index (χ2 > 3.42, p < .05). Item category thresholds shown
are standardized estimates from a model with equality constraints removed for all non-
invariant items. Resulting χ2-difference tests (with one degree of freedom) are shown
between models with successively unconstrained item category thresholds. Associated
p-values are given.

Partial invariance of item category thresholds with respect to gender was

also examined for cohort Ib. Non-invariance was found for the first category

threshold of items 2, 5 (“I blame myself for things”), 17, 35 (“I feel afraid of open

spaces, of driving, or being on buses, subways, and so forth”), and 40 (“I feel that

something is wrong with my mind”). In addition, second category thresholds

were non-invariant for items 4 (“I feel stressed at work/school”) and 13 (“I am a

happy person”). Both thresholds were non-invariant for items 21 (“I enjoy my

spare time”), 27, 34 (“I have sore muscles”), and 45. No further item category

thresholds suggested model fit improvement at a .05 significance level. Thus,

remaining thresholds were considered invariant across gender in cohort Ib.

Table 7 shows standardized item category thresholds and model

comparisons of non-invariant items for both men and women. Results indicate

that first thresholds of items 2, 5, 27, 34, 35, and 45 are higher for men than for

women. In other words, these items are more readily endorsed at lower levels of

distress initially by women than by men. The same is true for endorsement in

higher categories for item 27, 34, and 45. Items 17 and 40, on the other hand,
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Table 7
Non-invariant item category thresholds for men vs. women in cohort Ib

Item Men Women χ2
di f f p

(threshold) .
45 (2) 1.186 0.613 307.01 .000
45 (1) 0.395 -0.037 284.50 .000
4 (2) -0.085 -0.385 267.69 .000
17 (1) -0.076 0.203 253.63 .000
27 (1) 0.400 0.065 242.56 .000
40 (1) -0.217 0.007 231.65 .000
13 (2) 0.489 0.859 218.98 .000
21 (1) -0.352 -0.118 209.11 .000
35 (1) 1.465 1.135 201.48 .000
2 (1) -0.395 -0.683 191.08 .000
34 (2) 1.116 0.844 183.08 .000
27 (2) 1.076 0.783 174.46 .000
21 (2) 0.499 0.758 165.55 .000
34 (1) 0.347 0.131 157.42 .000
5 (1) -0.798 -1.099 148.17 .000

Note. Results shown reflect order in which equality constraints were removed based
on largest modification index (χ2 > 3.42, p < .05). Item category thresholds shown
are standardized estimates from a model with equality constraints removed for all non-
invariant items. Resulting χ2-difference tests (with one degree of freedom) are shown
between models with successively unconstrained item category thresholds. Associated
p-values are given.

have first thresholds that are higher for women than for men. In other words,

these item are more readily endorsed at lower levels of distress initially by men

than by women. Similarly, items 4, 13, and 21 are more readily endorsed in

higher categories at lower levels of distress by men than by women.

Finally, partial invariance of item category thresholds with respect to

gender was examined for cohort II. The first category threshold of item 44 (“I

feel angry enough at work/school to do something I might regret”) was

non-invariant. Additionally, second category thresholds were non-invariant for

items 5 (“I blame myself for things”), 10 (“I feel fearful”), and 34 (“I have sore

muscles”). Both thresholds were non-invariant for items 2 (“I tire quickly”), 4 (“I

feel stressed at work/school”), 6 (“I feel irritated”), 15 (“I feel worthless”), 16 (“I
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am concerned about family troubles”), 17 (“I have an unfulfilling sex life”), 18 (“I

feel lonely”), 24 (“I like myself”), 25 (“Disturbing thoughts come into my head

that I cannot get rid of”), 27 (“I have an upset stomach”), 30 (“I have trouble

getting along with friends and close acquaintances”), 35 (“I feel afraid of open

spaces, of driving, or being on buses, subways, and so forth”), 40 (“I feel

something is wrong with my mind”), 42 (“I feel blue”), and 45 (“I have

headaches”). No further item category thresholds suggested model fit

improvement at a .05 significance level. Thus, remaining thresholds were

considered invariant across gender in cohort II.

Table 8 shows standardized item category thresholds and model

comparisons of non-invariant items for both men and women. Results indicate

that first and second thresholds of items 2, 4, 6, 15, 18, 24, 27, 30, 35, 42, and 45

are higher for men than for women. In other words, women more readily

endorse these items at lower levels of distress than men. Second thresholds of

items 10 and 34 are higher for men than for women, indicating that women more

readily endorse these items in higher categories than men. Items 17, 25, and 40

have first and second thresholds higher for women than for men. In other words,

these item are more readily endorsed initially by men than by women. Item 44

has a higher first threshold for women than for men, indicating that men more

readily endorse this item at lower levels of distress.
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Table 8
Non-invariant item category thresholds for men vs. women in cohort II

Item Men Women χ2
di f f p

(threshold) .
16 (2) 0.609 0.145 888.43 .000
16 (1) -0.088 -0.474 798.67 .000
25 (1) -0.305 -0.003 726.92 .000
25 (2) 0.516 0.830 654.79 .000
45 (2) 1.153 0.724 607.86 .000
17 (1) 0.383 0.736 557.51 .000
17 (2) 0.924 1.361 493.87 .000
45 (1) 0.397 0.047 449.58 .000
27 (1) 0.447 0.118 408.35 .000
2 (1) -0.418 -0.735 378.52 .000
2 (2) 0.595 0.352 352.36 .000
24 (2) 1.196 0.960 330.79 .000
40 (1) -0.276 -0.136 307.72 .000
18 (1) -0.516 -0.815 283.09 .000
24 (1) 0.023 -0.220 261.68 .000
27 (2) 1.105 0.899 247.36 .000
35 (1) 1.558 1.321 233.29 .000
18 (2) 0.363 0.177 216.73 .000
4 (2) -0.026 -1.301 202.49 .000
30 (2) 1.583 1.405 191.58 .000
40 (2) 0.428 0.549 180.27 .000
44 (1) 1.010 1.181 169.30 .000
6 (2) 0.524 0.376 160.45 .000
42 (2) 0.440 0.296 150.87 .000
15 (1) -0.087 -0.263 140.36 .000
42 (1) -0.476 -0.688 129.31 .000
15 (2) 0.761 0.654 119.51 .000
5 (2) -0.063 -0.199 111.40 .000
34 (2) 1.081 0.928 104.50 .000
10 (2) 0.718 0.657 96.41 .000
35 (2) 1.999 1.822 90.47 .000
4 (1) -1.108 -1.301 81.80 .001
6 (1) -0.605 -0.763 73.74 .007
30 (1) 0.648 0.552 67.18 .022

Note. Results shown reflect order in which equality constraints were removed based
on largest modification index (χ2 > 3.42, p < .05). Item category thresholds shown
are standardized estimates from a model with equality constraints removed for all non-
invariant items. Resulting χ2-difference tests (with one degree of freedom) are shown
between models with successively unconstrained item category thresholds. Associated
p-values are given.
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In sum, a majority of items appears invariant across gender with respect

to item factor loadings and item category thresholds in cohort I. In cohort II,

more non-invariant item factor loadings and category thresholds were found.

Although there are differences between which items show non-invariance

between datasets, four items show threshold non-invariance in all samples and

three items show invariance across two samples. Items 2 (“I tire quickly”), 17 (“I

have an unfulfilling sex life”), 27 (“I have an upset stomach”) and 45 (“I have

headaches”) show non-invariance across all three samples studied for the first

threshold (i.e. minimal endorsement). Items 34 (“I have sore muscles”) 35 (“I feel

afraid of open spaces, of driving, or being on buses, subways, and so forth”), and

40 (“I feel something is wrong with my mind”) are non-invariant with respect to

its first threshold across two samples. Further, items 4 (“I enjoy my spare time”),

27 and 34 show non-invariance across two samples for the second threshold (i.e.

higher anchor endorsement). Thus, items 27 and 34 are non-invariant in two

samples across both thresholds; item 45 is non-invariant in all three samples

across both thresholds. Examining standardized estimates of these non-invariant

thresholds shows that women more readily endorse items 2, 27, 34, 35, and 45 in

lower response categories at lower levels of distress than men. The same is true

for items 4, 27, 34, and 45 in higher response categories. Items 17 and 40, on the

other hand are more readily endorsed in lower response categories at lower

levels of distress by men than by women. Of these threshold non-invariant items,

only item 34 also displays item factor loading invariance such that the item

discriminates more for women than for men. Taken together these findings show

significantly different item behavior for men and women, a finding

cross-validated across different samples.
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Conclusion

Many achievements in clinical measurement are indebted to Classical Test

Theory (CTT; Allen & Yen, 2001; Lord & Novick, 1968). As a theory of

measurement, it has succeeded in defining the field of clinical psychology

measurement. The principle problem for the clinical researcher is unifying a

quantifiable method with phenomena resistant to quantification. That is, finding

a standard of measurement to capture illusive phenomena, such as

worthlessness, hopelessness, phobia, and anguish is a difficult task. Because of

the complexity of clinical data, clinical researchers are up against formidable

challenges in modeling such data adequately. Traditional CTT methods,

although powerful, commit a researcher to assumptions about their data that are

not without consequence. I argued that the foundational assumption of parallel

measurement in CTT yields an approach to clinical measurement that

overemphasizes similarity of item properties and test-takers’ responses to such

items. However, Item Response Theory (IRT; Embretson & Reise, 2000) defines a

measurement model that quantifies both person and item properties such that

differences between them can be meaningfully represented. I further argued that

the multidimensionality of most psychological constructs warrants an extension

of the traditional IRT measurement model into the bifactor IRT model (Gibbons

& Hedeker, 1992; Gibbons et al., 2007) to increase applicability. A bifactor IRT

approach was shown for a well-known clinical measure, the Outcome

Questionnaire-45 (OQ; Lambert et al., 2004). The following sections serve to (a)

summarize the main findings; (b) note the implications of these findings given

prior research as well as implications for clinical practice; and (c) demarcate

limitations of the work presented.
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Summary of Findings

The application of a bifactor IRT method to the OQ was guided by three

research aims. First, in evaluating the dimensionality of the OQ a bifactor model

was contrasted with a unidimensional IRT model. Second, item behavior was

evaluated in terms of difficulty and discrimination parameters, and subscale

utility over and above the primary scale was assessed. Third, measurement

invariance, or sensitivity of item parameters to one or more relevant variables,

was examined across gender.

Dimensionality. Empirical investigation of the utility of the bifactor IRT

structure reveals superiority of a bifactor model over a unidimensional IRT

model. The full bifactor IRT structure also show superiority to a constrained,

tau-equivalent, version of the bifactor model.

Item behavior. Item behavior was evaluated by examining item factor

loadings or discrimination and item thresholds or category difficulty. Items

appear to discriminate well on the primary scale. Highest discrimination is

obtained for items within the life satisfaction and happiness content domains.

A principle advantage of the bifactor structure is that item factor loadings

or discrimination on the OQ’s subscales can be assessed over and above the

primary scale. Results indicate that items on the OQ’s subscales maintain some

discriminating ability over and above the primary scale. However, reliability

estimates for the subscales, controlling for the primary scale, suggest that

reliability of information obtained from subscales beyond that of the primary

scale may be limited. Specific data regarding item parameters provided here

may be used to guide clinical decisions based on specific constraints dictated by

setting, however, clinical use of the subscales should likely proceed with caution.

Item thresholds or category difficulties pertain to an additive composite of

all latent variables in the model and are not separated between primary scale
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and subscale like item factor loadings. Items with high thresholds, reflecting that

endorsement requires a relatively high level of the composite latent trait, are

items whose content taps more infrequent or severe symptoms of psychological

distress, including suicidal ideation, violent impulses, and agoraphobia. Items

with low thresholds, reflecting that endorsement requires a relatively low level

of the composite latent trait, are items whose content taps life/relationship

satisfaction, and also symptoms of mild psychological distress including feeling

stressed, mild negative mood changes, and difficulty concentrating.

Measurement invariance. Measurement invariance or differential item

functioning analyses indicate where universally applied measurement models

may need to deviate with respect to a relevant variable. Findings were reported

for measurement invariance with respect to gender. Results suggest that equal

item-factor loadings and threshold parameters hold across gender for a majority

OQ items. However, for a subset of items systematic differences exist between

men and women. Items that tap somatic content, including fatigue,

gastrointestinal problems, sore muscles, and headaches, as well as agoraphobia

are more readily endorsed by women than men at lower levels of psychological

distress. Items about sex life fulfillment and disturbing thoughts are more

readily endorsed by men than by women at lower levels of distress. Of these

items, the item that addresses muscle soreness also appears more discriminating

for women than for men.

Implications of Findings

The described application of a bifactor IRT method to the OQ has bearing

on clinical measurement research, including but not limited to research on the

OQ. Similarly, the presented method has implications for clinical practice, both
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for use of the OQ, and more generally for clinical measurement in practice.

These implications are presented in turn.

Implications for research. With the bifactor IRT method used in the

present study, the utility and viability of multidimensional IRT models for

clinical measurement is solidified. As argued, measurement development has

long since made use of methods embedded in CTT. Given the emerging clinical

research using IRT and bifactor methods, the present study included, future

clinical measurement development would do well to be informed about and

make use of these methods. Specifically, the information IRT methods provide

about item parameters and latent trait estimates yields a much richer

measurement development framework than CTT methods can provide. Further,

accounting for the multidimensionality of clinical instruments is desirable. That

is, specifying a measurement model that is correct in the sense that it represents

the multidimensional structure of a measure allows researchers to evaluate the

utility of the dimensions contained in the measure. From the above it is clear

that the bifactor method allows for such an evaluation.

Implications for practice. The reported findings have several

implications for the OQ over and above findings previously reported using IRT

methods (see Doucette & Wolf, 2009; Pastor & Beretvas, 2006). First, the OQ’s

subscales appear to contribute limited information over and above the primary

scale. The SD appears most reliable whereas the IR and SR subscales are much

less reliable, bordering on unacceptable by common standards. Use of these

subscales as independent sources of information is therefore discouraged.

Second, the OQ’s primary scale appears to discriminate most on items in the life

satisfaction and happiness domains. Thus, the OQ’s primary scale is most

sensitive as a measure of these domains. Note that these findings correspond to

findings concerning the 10-item screening version of the 45-item OQ, the
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OQ-10.2 (Lambert et al., 1998). In a factor analytic study, item sensitivity was

detected for items in the life satisfaction and happiness content domains (Seelert,

Hill, Rigdon, & Schwenzfeier, 1999). The SD subscale appears to discriminate

most on items in the anxiety content domain compared to the depression content

domain. In deriving symptom- or diagnosis-specific information from the SD

subscale this may be take into account. Third, although most of the OQ’s items

appear invariant between men and women, several exceptions exits. At this point

further research is needed to determine the clinical significance of these findings.

Limitations

The presented method has several important limitations, some generally

applicable to a bifactor IRT approach, some particular to the specific

implementation of the present study. Four such limitations are described. First,

the present study used single time-point data to derive item characteristics.

Specifically, patient intake data was used. Previous research suggests that a

subset of OQ item characteristics may be non-invariant across time (Pastor &

Beretvas, 2006). Item characteristics reported here may thus not be comparable

across time-points. This is particularly relevant to the OQ since its primary use is

as a longitudinal measure of patient change. Second, evaluation of model fit in

the present study was done using χ2-difference test comparison of nested

models for both full-information and limited-information estimation procedures.

Adequacy of configural invariance models was determined by using absolute

and comparative fit indices (i.e. RMSEA, CLI, and TFI). Such methods are

common and well-documented in the confirmatory and item-factor analysis

literature (Brown, 2006). IRT models, however, are usually evaluated at a local

rather than global level. Item and person fit are two common indices of IRT

model fit by which adequacy of the model is judged based on congruence
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between item and person behavior given a specified IRT model (Embretson &

Reise, 2000). No such methods have been developed for the bifactor IRT case.

Third, a primary advantage of the bifactor approach is that item-factor loadings

can be separated between primary scales and subscales of a measure. This is an

advantage on a measurement level, as it allows for a multidimensional structure

to be assessed in a single measurement model. It is also an advantage on an

interpretative level since relationships between measured and latent variables

can be meaningfully interpreted for primary as well as subscale domains.

Unfortunately, no such advantage is available for item category thresholds.

These thresholds are not defined separately between primary scales and

subscales. This limitation is particularly salient for a bifactor IRT implementation

because in traditional IRT methods strong interpretative weight is given to both

item-factor loadings as well as item thresholds (or rather, their IRT analogues

item discrimination and difficulty, respectively). Finally, the use of a

full-information estimation procedure in deriving OQ item characteristics is a

distinct advantage over a limited-information procedure. Estimates obtained are

suboptimal for the former compared to the latter, however, in certain situations a

limitation-information approach may be reasonable, or even the only one

feasible. Computational complexity increases exponentially for complex models

with many latent variables. In these cases a limited-information estimator may

be preferable, or the only computationally feasible option. In the present study a

full-information estimator was used to derive item characteristics. A

limited-information estimator was used to conduct measurement invariance

testing. Using a limited-information approach was computationally attractive

and addressing the complexities involved with a full-information procedure

were beyond the scope of this study. However, using a limited-information

approach sacrifices in parameter precision that would have been obtained with a
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full-information approach. The following section describes areas where future

research may improve upon the present study and the limitations noted.

Future Work

In line with the preceding limitations, four specific recommendations for

future research are made. These recommendations apply to the specific topic of

the present study, a bifactor IRT model of the OQ, but also apply more generally

to bifactor IRT and IRT methods of clinical measures. First, future (bifactor) IRT

approaches may use different time-points to obtain item characteristics. Ideally,

longitudinal measurement invariance is studied to provide a more precise

quantification of (non-)invariance of item characteristics over time. Applying

such methods to the bifactor case would be especially interesting as no such

research has been done at this time. In addition to studying measurement

invariance over time other relevant variables may be studied as well. In addition

to gender, which was examined in the present study, clinical diagnosis, level of

psychological distress, and others may warrant attention. Second, it is not

possible to obtain standard IRT item or person fit statistics for a bifactor IRT

model as implemented in the present study. However, indicator bivariate

residuals may be used to obtain information analogous to item fit statistics.

Bivariate residuals provide an indication of how well a proposed IRT model

structure accounts for covariance between indicators. Many large bivariate

residuals would suggest poor item fit. Third, although the absence of item

threshold separation between primary and subscale domains was presented as a

limitation, it is also an inherent property of the bifactor model. Where possible

future researchers may compare thresholds derived from a bifactor model to

thresholds derived from a unidimensional model. Such a comparison may

provide insight into similarities and differences between bifactor and
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unidimensional approaches given particular data. Finally, in addition to

studying item characteristics using a full-information method, measurement

invariance may also be studied using full-information methods. Given sufficient

time and computational power, models with and without individual item-factor

loading and item threshold constraints may be fit. Loglikelihood-difference

testing may be used to compare such models. Because model comparisons will

have to be made for every equality constraint this will likely be a

computationally expensive and time-consuming procedure.

In conclusion, the future of research as presented in this study depends

on the development of specialized methods software. The complexity of the

measurement models and software needed to represent such models is such that

they are not among widely used or accessible methods in clinical research and

practice. Further dissemination of these methods in both research and practice

therefore depends on those conducting such research to make their methods and

findings more broadly available to clinical researchers and practitioners alike. It

is hoped that methods and findings presented here contribute to such efforts.
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