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Abstract

As a non-storable commodity with time-varying demand, the ‘logistics’ of electricity
has always been challenging. To ensure reliability, electricity systems are required to
be built with redundant generation, transmission and distribution capacity such that
they are able to withstand the maximum demand under expected fault conditions.
On the one hand, structuring the electricity system in such a way is not efficient.
A significant portion of network capacity is under utilised or sitting idle for most of
the time and the situation is getting worse over time as shown by increasing peak to
average ratios. On the other hand, emerging technologies such as Electric Vehicles
(EV), photovoltaic (PV) and storage devices will fundamentally change the existing
paradigm of the existing electricity network. The potential peak surge caused by
large numbers of EVs and possible over-supply from PVs may harm the networks but
the large flexible battery capacity of EVs, inexpensive and clean energy from PVs
together with storage devices could, on the other hand, greatly benefit the networks.
This is especially the case with smart measuring devices being widely installed and af-
fordable sensors being ubiquitous. Therefore, it is hugely important to implement the
technologies appropriately and prepare the electricity networks for upcoming changes.

Demand Side Management (DSM) and tariff design are proposed, from two com-
plementary directions, as promising concepts to increase the efficient use of electricity
grid assets, to enable a smooth transition towards smarter grids and to promote fair-
ness among network users. Among the rich literature on DSM algorithms, advanced
electricity grid information and communication technology (ICT) is usually assumed
to exist. In this thesis, however, the requirement of communication is relaxed and so-
lutions for networks with different ICT infrastructures are developed and compared.
It is shown that satisfactory DSM can be achieved even without communication via
the stochastic voltage-demand model we develop. Network tariff design focusing not
only on revenue recovery and social welfare maximisation, but also fairness among
electricity users especially in the presence of PVs has also been studied. A utility
based model to quantify the benefit and cost for an individual user using the network
is proposed. The model is adopted to assess efficiency and fairness of existing tariff
structures as well as designing optimal tariffs.
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Chapter 1

Introduction

Electricity grids or power systems are the largest machines ever built by humans.

They have been changing and evolving since the first complete system, Pearl Street

Station, was built in New York City in the late 19th century. The station was designed

by Thomas Edison and served a few hundred lamps in a local neighbourhood [48].

Then Alternating Current replaced Direct Current, isolated local networks expanded

to huge interconnected networks and the mission to light lamps became to power

billions of appliances for millions of people. We are now stepping into the era of

the smart grid where the electricity networks will be integrated with distributed

generation, electrified vehicles, communication technologies, advanced control devices,

fairer tariffs and many more renewable energy technologies. This smart grid is much

more environmentally friendly and economically efficient. However, such exciting

opportunities do not exist without challenges and a tremendous effort is required to

make this transition to a smart grid as smooth as possible.

In this chapter, we use the Australian power system as an example to explain some

of the basic facts in regards to electricity network and market operations. Note that

the electricity grids in different countries or regions, though sharing similarities, may

operate differently. The Australian power grid is not one of the larger systems and it

has its own specialities. However, an in-depth understanding of the Australian power

grid would greatly facilitate the comprehension of other power systems. Meanwhile,

we also point out the challenges faced by traditional power networks in the era of the
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smart grid. Then, as possible remedies to the problems faced by electricity networks,

DSM and tariff design will be discussed on a macro level. Later in this chapter, we

review the relevant literature and point out our approaches and contributions. A list

of our publications, upon which this thesis is based, is appended at the end of this

chapter.

1.1 Background

In the context of the Australian grid, in this section, we introduce the basic compo-

nents of an electricity network and the associated operators. We also explain how

electrical energy is traded on a designated market including the bidding and dispatch-

ing process. Then DSM technologies and network tariffs are discussed with a listing

of common practices.

1.1.1 Background on power systems

In terms of operation, an electricity grid or power system typically comprises three

major components: generation, transmission and distribution. All these components

together form a massive network which delivers electrical energy from generators to

individual users instantaneously as shown in Figure 1-1. Generators or plants are

owned and operated by generator companies who trade energy on a wholesale market

which will be explained later in this section. In Australia, coal fired plants supply

around 75% (as in 2014) of the total consumption while the renewable energy sup-

ply is growing steadily [12]. Electrical energy then flows through the transmission

network which is owned and operated by transmission system operators (TSO) and

supervised by network regulators. TSOs are monopolies by nature and they play a

crucial role in interstate power imports and exports. When electricity arrives at the

region of need, distribution networks take over and distribute energy to end users

which include industrial, commercial and residential users. Distribution networks are

owned and operated by distribution system operators (DSO). DSOs are also monop-

olies by geography and they are responsible for the power quality, metering and the

2



distribution assets.

Though both are called networks, there are many differences between a transmis-

sion network and a distribution network. A transmission network usually operates

at high voltage and transmits electrical power over long distances. Such a network is

usually equipped with dedicated and advanced measuring, communicating and con-

trolling devices. At various points of a transmission network, the states are closely

monitored and regulated. Distribution networks, especially the last mile, are usually

considered as a mere disturbance of lesser interest in power system analysis and op-

eration. Their attributes are not usually closely monitored or communicated for cost

reasons as they are much less important than the transmission network. As a result,

though power is measured, DSOs would not know the voltages, unbalances, current,

or even outages at individual households.

As for the financial operation of electricity grids, energy is usually traded on

wholesale markets. Most of the states in Australia trade electricity on the National

Electricity Market (NEM), the largest wholesale electricity market in the nation,

which is operated by the Australian Energy Market Operator (AEMO). The NEM

spans the east and south east coast of Australia and serves 9 million customers from

5 of the most populated states [12]. In the NEM, generators sell electricity and re-

tailers buy it to resell to consumers. Retailers normally do not own any network

assets, they handle billing and customers services in the power system. The NEM

has over 100 registered generators and retailers placing bids to sell and to buy respec-

tively [12]. Since electricity is not easily stored, power supply and demand is matched

instantaneously by controllers and regulators through some optimal dispatching al-

gorithm [11]. The NEM effectively works as a spot market where electricity trading

is settled. Generators submit supply bids every five minutes which are gathered by

AEMO to calculate the most cost effective way of buying energy while meeting real

time consumer demand. Though energy is dispatched in five minutes intervals, the

successful bidding prices are averaged every half hour to determine the spot price for

trading settlement [11].
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Figure 1-1: Structure of a conventional electricity grid.

1.1.2 Demand side management

Under the existing paradigm of the power system, supply matches demand or the

system encounters problems, the consequences of which are seen in the frequency

variations of the network. When switches are flicked at the consumers’ side, electric-

ity will be delivered without any delay. DSM aims to alter the paradigm by enabling

demand to coordinate with supply. Certain appliances such as pool pumps, pool

heaters and EVs may choose to delay or even advance their demand instead of us-

ing electricity straight away. In such a way, stress of the grid can be relieved and

utilisation of the entire infrastructure can be improved.

However, is it physically possible for power demand to be adapted to match sup-

ply? Arguably the answer is yes and we justify the assertion by explaining some of

the relevant time constants in the grid. An overview of typical time scales is dis-

played in Figure 1-2 whose detailed explanation can be found in [69]. DSM operates

in grid electrical steady state (frequency and voltage regulated) which can typically

be considered on time scales of minutes and longer. This so called steady state is

regulated within national operating guidelines such as [2, 10, 74]. As we have seen

from the previous section, in the Australian electricity market, energy dispatch is or-
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Figure 1-2: Typical time scales at play in the electrical grid shown on a logarithmic
scale (10t seconds) [69].

ganised on a 5 minute interval basis, and real time trading is organised in 30 minute

time slots. The implication from the numbers is that aggregated demand does not

fluctuate significantly over half an hour scale. The DSM algorithms we propose work

on time scales of 1 minute up to 15 minutes. It is not to let everyone bid for as much

electricity as they need now, but to average the power over the energy needs on a

longer time scale of half an hour or more.

The term DSM was proposed soon after the energy crisis in 1973 in the USA

[30]. DSM is not precisely defined but it commonly refers to techniques deployed

by DSOs and/or consumers to achieve certain management goals at the demand

side [91]. Such goals include shaving peak demand, flattening consumption patterns

and creating better billing schemes. DSM techniques range from energy efficient

devices and demand controlling devices all the way to tariffs that encourage certain

usage patterns especially the Time-of-Use (TOU) Tariff [77]. In fact, tariffs could not

only encourage certain demand patterns, but also maximise social welfare and fairness

if designed properly. Thus we discuss tariff design in addition to DSM technologies

5



in Chapter 6. In the next section, we briefly explain the background on DSM and

tariff design.

1.1.3 Common DSM technologies

DSM technologies are those techniques deployed by consumers and/or DSOs that

redistribute the demand in time without a major reduction of energy consumption

unless there is a huge incentive for consumers. Typical and most commonly imple-

mented DSM technologies can be classified as the following:

1. Direct load control (DLC): Utilities have free access to control consumers’ appli-

ances or equipment and consumers are able to receive reduced electricity prices

as a result [91]. Some common appliances that can be operated in this way

are air-conditioners, water heaters and swimming pool pumps. In case of a

supply shortage, a signal will be received by complying appliances which will

then stop operating for a period of time. A problem with this approach is that

direct access of appliances is not desirable from the consumers’ perspective.

Furthermore, switching off air-conditioners or reducing their cooling output on

the hottest summer day is likely to be frustrating for consumers. Note that

some big industry consumers can also be subject to DLC.

2. Commercial, industrial programs: examples of such programs are energy saving

systems for buildings (e.g. motion detectors to switch lights off) which are

not the focus of this thesis. Another important type is the interruptible loads

installed by commercial and industrial customers who in return get a significant

price reduction on their electricity bill for this provision. Whenever necessary,

these loads can forgo a certain amount of electricity which then flows to the

consumers in need. These loads are virtually acting as reserve generators and

the customers are paid for providing reserve services. The Western Australia

Electricity Market is a typical example where this type of reserve service is

provided [53].
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3. Demand response programs: A promising DSM technique is the introduction

of demand response programs in residential, industrial and commercial proper-

ties. Local controllers will adjust demand behaviour according to price or other

information broadcast by DSOs whilst still meeting the energy needs (not the

power needs) of the customer. Together with a well designed pricing structure,

this could result in huge shifts of energy usage and benefit for both the network

and the consumers [91].

1.1.4 Common network tariff structures

The billing system for electricity has been changing and reforming since the discovery

of electricity. For every dollar a consumer spends on their electricity bill, about 51%

goes to the network operators which eventually pays for the grid infrastructure such

as poles and wires [12]. The costs for electricity for consumers are largely determined

by network tariffs. Collaborative efforts by electrical engineers and economists (as

summarized in [87]) have been made to design a pricing structure that on the one

hand covers sunk infrastructure costs of electricity networks, and on the other hand,

accommodates a non-storable commodity with time-varying demand. The following

describe different tariffs.

1. Two-part tariff: a two-part tariff consisting of a fixed charge and a variable usage

charge (at a fixed unit rate), was proposed [38, 59] and widely implemented.

However, a fixed unit rate does not relieve peak demand which has become a

major problem for most electricity networks;

2. Time-of-Use tariff: TOU charge was proposed [42, 52]. Under this system,

electricity usage during peak hours is priced higher than during off-peak hours.

The partitioning of periods can be finer to create shoulder hours and critical

peak hours. Nevertheless, despite having taken peak usage into account, a TOU

tariff does not align electricity billing with actual benefits and costs consumers

get from networks.
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3. Three-part tariff (demand tariff): a three-part tariff comprising a fixed charge

(can be zero in some cases), a TOU charge and a maximum demand charge

was then introduced [50] [99]. Despite the fact that more advanced pricing

structures, including dynamic pricing [22], have been proposed more recently,

the three-part tariff has an advantage in terms of implementability and opti-

mality and it has been gradually adopted by network operators. In Australia,

CitiPower offers three-part tariff to new low voltage customers with a large load

while residential customers are still on a TOU tariff [24]. United Energy has

a similar tariff for residential customers. However, for customers with a large

load, daily standing charge is replaced by a more aggressive demand charge [94].

1.2 Motivation for DSM and tariff design

1.2.1 Infrastructure utilisation

The power grid is designed to generate, transmit and distribute the peak power re-

quired because there is no simple and cost-effective storage solution for electrical

energy. In addition, infrastructure is required to provide for spare capacity in power

transfer: a safety margin to cope with inevitable failures in infrastructure assets.

As a consequence, the grid infrastructure is always under-utilised and the utilisation

rate is especially low during periods other than peak periods. The transmission and

distribution assets in particular form a significant part of the electricity price and

under-utilised infrastructure eventually leads to higher electricity prices especially

where network companies are promised a fixed return on their investments. This

situation is getting worse over time due to surging peak demand and over designing.

In the state of Victoria, Australia, about half of the electricity price goes towards

network infrastructure [12]. The other half goes towards energy costs (30%) and re-

tail margins (20%) [12]. Inefficient use of the grid ultimately leads to more costs for

consumers. Using DSM, peak loads can be rescheduled to off-peak periods without

sacrificing appliance performance [91]. Doing so, more total energy can be delivered
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in the existing grid without causing outages and this brings reliability to the existing

electricity grid. Moreover, by spending less money on infrastructure, more load can

be supplied. This helps to address the demand peaking issue that some researchers

have discussed with large scale electric vehicle integration. In addition, demand peaks

usually create accumulated heating in cables and transformers which shortens equip-

ment lifespan. In addition, equipment can be used for more than 100% of its design

capacity (remains below the safety limit), and the more you go over this limit, the

more you reduce the life span of the device. By alleviating peaks via DSM, ageing of

equipment would be eased to a certain extent.

This argument also applies to generators. The nature of electricity demand is

uncontrollable and varies with seasons, temperatures and time of day. On the other

hand, service interruption of the electricity network can be very costly [91]. There-

fore, in Australia and many other parts of the world, the grid is built with generation

redundancy such that the highest possible demand can be matched whenever neces-

sary. In order to do so, a certain level of power has to be made available immediately

through spinning reserves and non-spinning reserves [11]. In Victoria, the installed

generation capacity is almost twice that of average demand [11]. Such a generation

setting is not efficient since a huge part of the generation is not used for most of the

year and DSM might be better placed in terms of ensuring power system reliabil-

ity and supply security. By predicting and redirecting demand patterns, managed

demand can act as capacity reserve. Peak demand can be reduced and uncertain-

ties limited. Therefore, by deploying DSM, generation investment efficiency can be

improved.

In addition, as mentioned earlier, electricity is traded through a spot market where

generators submit supply bids and AEMO gathers all the offers to calculate the most

cost effective way of buying energy while meeting real time consumer demand. Due

to the market mechanism and uncertainty of demand, generators are able to charge

scarcity prices for electricity in certain periods when demand outruns supply. Figure

1-3 shows the 30 minute wholesale price of electricity on a very hot day in Victoria and

South Australia, 2014. In the afternoon, the spot price jumps to several magnitudes
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Figure 1-3: Wholesale prices (at 30 min) and demand (MWh) on 15-16/Jan/2014 for
Victoria and South Australia [13]

higher than normal1. Such an incredibly high price threatens small retailers and a

portion of the excessive cost will eventually be paid by consumers through increased

electricity prices. However, by deploying DSM technology at a large scale, the market

power of consumers can be exercised. Decision-making processes regarding the op-

eration and future development of the grid will place consumers of electricity in the

center. By doing so, power grid investment will be made more efficient. Regulators,

DSOs and especially consumers will benefit from this shift [5, 26].

1average whole sale spot price in Victoria (VIC), Australia, Jan, 2013 is around $50/MWh
according to AEMO website
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1.2.2 Integrating emerging technologies

The electricity grid is evolving, many technologies have been developed or popularized

in recent years. These technologies include electric vehicles and distributed generation

and these have raised concerns about the stability and reliability of the electricity

grid. Shifting from internal combustion engine vehicles to EVs (including plug-in

hybrid EVs) can lead to benefits for the environment and enhance energy security.

Many major automakers are investing significant resources into extending EV range

and reducing the cost of production, especially of EV batteries. If both of these

bottlenecks can be overcome, EVs will become very market competitive and it is

therefore possible that a significant market penetration of EVs will be reached in the

future. In fact, the sales of EVs are growing very fast in developed countries. In the

U.S. alone, more than 50,000 EVs were sold in 2012 which was three times that in

the previous year. Beside the United States, studies have shown that EV penetration

may reach 30% in Belgium by 2030 [64]. However, one important factor to note about

EVs is that they run on electricity and have to be charged. Currently, commercially

available plug in electric vehicles are equipped with a battery with a storage capacity

around 25kWh or more (Nissan Leaf 2 24kWh, Tesla model S 3 60kWh− 85kWh ).

Consider normal urban users in Australia, and assume an average passenger vehicle

travels nearly 75km per day. With a conversion rate of 0.2kWh per km [70] (the

actual value could be higher depending on road condition and drivers skill), this

would result in a need for 15kWh of electricity. To compare, a typical Australian

family, depending on the geographical location, uses 15kWh - 30kWh of electricity

per day [28,70]. One EV would increase household electricity consumption by at least

50% and two EVs would double the current demand. The existing grid is not designed

for the large uptake of EVs and the integration problem has raised many concerns.

Studies have shown that even with a small EV penetration, losses in power are likely

to increase and voltages could likely deviate from regulated levels [25]. However, DSM

could play a very positive role in this situation and solve the problem with minimum

2http://www.nissan.com.au/Cars-Vehicles/LEAF/Overview
3http://www.teslamotors.com/models
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cost.

In a similar way to EV, solar energy, in the form of distributed photovoltaic

(PV), is a major step towards a low emission society. The environmental benefits are

clearly enormous. Most distributed PV systems in Australia are installed under the

Commonwealth Government’s Renewable Energy Target scheme which commenced

on 1 April 2001 [15]. After a period of steady low growth for almost 10 years, a period

of extremely rapid growth occurred between 2010-2013. By August, 2015, the total

installed PV capacity in Australia was around 4.5 GW (approximately 10% of total

capacity) which contributes approximately 1% of the total energy generation [11].

The imbalance between the two percentages is caused by the variations in irradiation

time. The distributed PV installation rate or penetration rate among dwellings varies

depending on geographic locations. The highest penetration is approximately 27%

in Queensland and South Australia. In New South Wales and Victoria, about 12

percent of households have PV systems installed [15].

A high penetration of distributed PV generation, however, may not be desirable

for the network under the existing paradigm and the reasons are three-fold. Firstly,

due to naturally inherent uncertainty, PV systems need to be backed up by reliable

reserve generation and ancillary services which makes the overall paradigm rather

inefficient [55]. Secondly, the electricity grid is designed for a one-way power flow. A

high penetration of PV systems could lead to over-voltage at various points in the dis-

tribution network and reverse power flow (where an entire feeder line is over-supplied

and power flows into the substation from downstream) [55]. Impacts of such phenom-

ena include shortened lifespan of equipment, unstable power quality and difficulties in

generation planning. Thirdly, the network tariff in the traditional structure is levied

on a uniform basis assuming a similar demand pattern among users but the cost is

actually largely determined by the peak demand. Due to the fact that PV peak does

not coincide with peak demand, PV systems could well reduce average usage but not

peaks. In [87] [100], the authors argue that solar PV systems reduce the average

network demand but their impact on peak demand is insignificant or limited. As

a result, the overall utilisation of the electricity infrastructure is reduced. Further-
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more, because of an old fashioned tariff structure and various incentive programs for

rooftop PV installers including feed-in tariffs, the authors show that households and

businesses that have not installed solar rooftop PV systems are spending billions of

dollars subsidising households that have in Australia. However, from a different per-

spective, it has been pointed out in [82] that the so called subsidising exists because

existing electricity distribution charges are levied on a uniform basis, but the costs of

the electricity distribution network depends mostly on peak demand. The problem

has been there for a long time and PV systems are not completely responsible for it.

Therefore, we propose a quantitative measurement from an engineering point of view

such that fairness and social welfare can be design features of the network and its

operation.

1.3 Related Work

There exists an extensive literature on modern DSM including technical papers and

overview papers [5, 23, 27, 31, 41, 47, 60, 68, 72, 73, 77, 79, 91, 98]. The ones that are

most relevant to this thesis will be briefly reviewed in this chapter. In addition, we

also review the literature on demand management for EVs [9, 25,32,36, 37,41,44, 45,

62, 67, 83, 90]. EVs are loads with huge demand and storage capacity. The concepts

and algorithms used for EV charging management can be easily migrated to other

appliances.

Most modern, novel DSM technologies in the literature make use of communi-

cation infrastructure and information exchange to achieve better performance and

optimal results. Depending on how information is exchanged and where the decision

is made, the algorithms can be categorized into two categories: centralised and dis-

tributed. Centralised approaches solve the problem from top down where a master

controller has access to all the key information relating to the grid and users. This

information may include voltage, demand and frequency. Computation is done by

the master controller and control signals are then broadcast to individual users. The

solutions from centralised algorithms are generally accurate and optimal as long as
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there is adequate information and computing power. However, there is always the

need for additional communication facilities as well as a powerful central computing

unit which could be too expensive and complicated to be installed especially for dis-

tributed networks. Scalability is always an issue with this category of algorithms. The

computational complexity increases dramatically as the size of the network increases.

Alternatively, calculations can be done in a distributed way at the point of each

load or household, only where there is access to the limited information broadcast by

neighbours or nearby transformers. Compared to centralised algorithms, distributed

algorithms generally require less information and are much easier to implement. How-

ever, the accuracy and optimality of distributed methods are generally not as desirable

as those of centralised algorithms.

1.3.1 Centralised algorithms

Centralised charging algorithms usually assume the availability of a model of some

sort. Most of such problems are formulated as optimisation problems with various

cost functions to minimise (or objective functions to maximise) and with constraint

sets. The cost functions may be power losses across the network, voltage deviations

from an operating point or billable electricity cost. The objective functions may be

total power delivered or social welfare. Apart from the differences in cost functions,

the algorithms can also be categorized according to whether a prediction or forecast

is required. Two common categories are discussed in this section.

Centralised algorithms with prediction

If each load is able to submit a demand schedule (time to start, time to finish and

energy required) for the next period of time (typically a day), the central controller

will be able to calculate the optimal demand profile for all the loads. The demand

profiles are then broadcast to all users for execution. The whole process is then

repeated after this period of time.

A possible cost function as shown in (1.1) which minimises power losses in the
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whole network for an entire day is introduced in [25] where Rl represents the line

resistance of line l and Il,t represents the current flowing on line l at time t. The

algorithm assumes a static model with a time step size of several minutes and the

prediction horizon is 24 hours.

min

tend∑
t=1

lines∑
l=1

RlI
2
l,t (1.1)

Users are required to submit details regarding how much energy is needed in what

time window. The central controller collects the information and solves (1.1) using

quadratic programming. This also involves solving the load flow equations many times

to calculate the line currents as inputs for the optimisation problem. The biggest issue

with such centralised algorithms is the heavy dependence on the accuracy of forecast,

especially load profiles which are hard to determine in advance with high accuracy.

To relax the dependence, in [90], the authors argue that instead of knowing the exact

demand profiles, a stochastic modelling of loads with expected values and variances

can also be used to formulate the optimisation problem but with reduced optimality.

More sophisticated Model Predictive Control (MPC) approaches which also re-

quire more model information are introduced in [32] where realistic network con-

straints are considered. In [32], a standard objective function is proposed as shown

in (1.2).

max
N∑
i=1

T−1∑
t=0

xi,t (1.2)

The current used for EV i at time t is shown as xi,t. Current is used instead of

power in this objective for the reason that the EV charger standard J1772 is specified

in terms of charging current. The algorithm assumes a static model with a time

step size of 15 minutes. i.e. t is 15 minutes apart and decisions are made every 15

minutes. Whenever a decision is made, charging profiles for a future window of length

8 hours are calculated. However, such profiles will only be executed for another 15

minutes when the central controller calculates the next horizon and makes the next

decision. In this way, future events are taken into consideration and flexibility is also
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guaranteed.

A similar algorithm with a different triggering mechanism is used in [37]. The

algorithm in [32] is time triggered which means the calculation is repeated every

certain time interval regardless of what is happening in the network. However, in [37],

the user proposes an event triggering mechanism where charging control signals are

updated when an ‘event’ takes place. Such an event can be a EV arriving at home or

leaving home and sudden changes in non-EV demand.

However, for all the above algorithms, load flow equations need to be solved at each

iteration which requires accurate knowledge of the network configuration. In other

words, information like network topology and individual line impedances need to be

known centrally which is not easy in practice. In addition, the fact that both methods

require significant computation power (highly non-linear load flow computation) may

not be favourable for immediate implementation.

Centralised algorithms without prediction

In order to develop algorithms that are more realistic and adaptive, on-line centralised

algorithms are proposed where computation can also be performed in real time with

less complexity but no prediction.

An optimisation technique that maximises the total amount of energy that can

be delivered to EVs over a fixed charging duration while ensuring network limits are

maintained is introduced in [83]. The basic objective function is modelled as follows:

max
N∑
i=1

PEVixi (1.3)

In the function, N is the total number of EVs that is registered at the central controller

and whether or not they are connected is represented by xi being 0 or 1. PEVi is

the power delivered to EV i. Several constraints are considered in the formulation

including the physical limit of charging power and the changing speed in charging

power. The voltage level at each household and thermal loading of the network are

also listed in the constraint set. In the above formulation, EVs at the far end of the
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transformer are less favoured because of higher line losses while charging them. To

deal with this issue, the objective function can be altered to prioritize EVs with a low

battery state of charge (SOC) given that the central controller has access to all SOC

levels in real time. The optimal solution to the problem is calculated using linear

programming to reduce computational complexity and the process will be performed

at each chosen time interval of several minutes. The performance of such an algorithm

has been tested by simulations and it is shown that the power delivered to EVs is

increased significantly and all grid limits outlined above are well maintained.

Compared to algorithms with forecast, the real time algorithms work on the net-

work states at a particular time instance without foreseeing the future and planning

ahead. It is therefore difficult to provide guarantees regarding, for example, the final

SOC levels of EVs.

1.3.2 Distributed algorithms

The reviewed centralised algorithms, though they differ from one another in terms of

design goals and optimisation methodology, share the same weakness in that they all

rely heavily on information and they all require significant computation power. For

the centralised optimisation to work, the controller requires an accurate model of the

network to perform power flow analysis [25,32,36,37,83,90]. Such a model is often not

available and the power flow computation requires much processing power even when

the network is small. Moreover, the optimisation itself requires quadratic or more

complex programming which is resource-intensive especially when the network size

increases. Distribution networks, commonly considered as the less significant part of

the grid, are not very well equipped with varies monitoring and remote control devices.

And the fact that computation power is costly may also limit the implementation of

centralised algorithms.

Distributed algorithms, which may not be able to guarantee the same level of

optimality as centralised algorithms do, have good scalability and are much easier to

implement. Different distributed algorithms require different patterns of communica-

tion and different intensity of information exchange. Some algorithms use two-way
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communication which means that consumers or users negotiate with DSOs to make

charging decisions. Methods using two-way communication require the highest level

of information exchange, therefore their level of distribution is low. Other algorithms

use one-way communication which only requires users to listen to the information

broadcast by the DSOs and no negotiation is required. In all the algorithms, apart

from users and the DSOs, there could be regulators who oversee the entire opera-

tion and intervene if necessary. In this section, several state-of-the-art distributed

charging management algorithms will be discussed according to their communication

patterns and requirement on information exchange.

Two-way communication algorithms

Game theoretical algorithms are common in distributed DSM and information ex-

change is usually intensive. An example of an algorithm to schedule demand using

game theoretical modelling is presented in [73]. The model has two major objec-

tives: one is the peak-to-average ratio minimisation desired by DSOs; the other is

the cost minimisation desired by end consumers. The authors show that by selecting

the right pricing function, a Nash equilibrium can be established and both DSOs

and consumers can win from the formulation. One issue about this algorithm is that

consumers are required to inform DSOs of their demand patterns one day ahead in

an asynchronous manner which is difficult to implement in practice. In fact, most of

the decentralised algorithms that use two-way communication are designed in a day

ahead manner [41,44,45,67].

The key to shifting computation from the central controller to individual agents

is using feedback signals. Price is used as the feedback signal in [67] where the overall

goal is to flatten the demand profile, obtain a valley-filling effect to minimise the cost

for generation and maximise the use of assets. In order to achieve the goal, the authors

assume that the price (may not be the actual monetary price) is proportional to total

demand at all times and the process works as follows repeatedly until convergence:

before the start of a new day, the DSO broadcasts its prediction of the price profile

to all the EVs. Each of the EVs proposes a charging profile that minimises its own
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cost function with respect to the average price profile broadcast by the DSO. The

objective function proposed in [67] is shown in (1.4):

min
T∑
t=0

(
p(·)unt + σ(unt − uavgt )2

)
(1.4)

where p(·) is the price function which is continuously differentiable and strictly in-

creasing. The example function used is a price proportional to total demand; unt is the

charging power at time t for EV n; σ(unt − uavgt )2 shows the deviation of individual

charging profile from average behaviour. The DSO then collects all the individual

optimal charging strategies and updates the price profile (proportional to aggregate

demand) in line with the proposed charging strategies. This updated price is broad-

cast back to all EVs for distributed decision making. The whole process will be

repeated until convergence. Then the resultant charging profiles will be executed by

EVs for the day.

Inspired by this work, [44] provides a similar valley filling algorithm that makes

less assumptions about the grid and base demand. The utility function used in [44]

consists of both electricity cost (based on the most recent price broadcast by the

DSO) and the cost of deviating from the previous charging profile. So far, only

homogeneous agents have been considered, but it is also possible to individualize

users as demonstrated in [41]. Willingness to pay is used as the way to distinguish

users in [41] and randomness is used in [45] to break the symmetry.

Instead of the interaction between a single DSO and many customers, [68] pro-

poses a framework to coordinate multiple DSOs and multiple consumers based on a

Stackelberg game. The overall goal of this game theoretical algorithm is to maximise

both the revenue of each DSO and the pay-off of each user. In order to do so, each

user will have to set a monetary budget constraint and a utility function. Based on

this information, the objective on the users’ side is to maximise the aggregated utility

while keeping the cost within limits; the objective on the DSO side is to maximise

revenue. The DSOs and users will jointly compute a equilibrium solution in advance

which will be executed for the next time interval.
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Compared to centralised algorithms, the method using two-way communication

decomposes and distributes computation from a central processing unit to individual

users. The DSO commonly uses a price alike signal to coordinate users and the

signal is usually proportional to the total load in the network. By doing so, network

information such as topology and phase allocations are no longer required. And users’

privacy is better protected as only the aggregated demand information is required.

However, optimality of solutions is no longer guaranteed and network constraints are

not as well monitored and maintained.

In [41,44,45,67,73] as discussed above, users are all required to know their demand

profiles or network background demand profile for a future horizon in order to compute

local optimums which may be impractical and inconvenient. Moreover, loads are not

modelled in full details and they are often assumed to be resistive and interruptible.

Considering that different appliances have distinct demand patterns, the algorithms

may encounter difficulties during actual implementation.

One-way communication algorithms

It could be argued that the algorithms using two-way communication are not really

distributed since they require each vehicle to communicate extensively with a central

agent (e.g. the DSO). Some may also argue that most papers in the literature are

prediction-based, which may lead to inaccuracy and robustness issues. Therefore,

algorithms that are less dependent on information, less dependent on forecasting and

do not require extensive two-way communication have been proposed. These algo-

rithms usually use only one-way communication and some examples will be discussed

in the following paragraphs.

One of the early approaches to optimally managing storage type demand in re-

sponse to electricity spot price was proposed in 1989 [31]. The authors assume that

electricity is priced such that the actual price reflects the marginal cost of genera-

tion. The spot price Pk, k = 1, 2, 3, ... for period k is updated after every interval and

is kept constant for the following interval. Each household has access to the price

information through communication channels. The overall cost to be minimised for
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every moving time horizon N is shown in (1.5) where Uk denotes the consumption of

electricity during period k.

min
Uk

N∑
k=1

Pk × Uk (1.5)

The cost function together with constraint sets can be solved mathematically. One

constraint that the authors emphasise is that the energy storage level at the end should

be regulated. Otherwise the final energy storage level will be as small as possible.

The authors test their algorithm on the data from an air compression company and

show that a generation saving of 7.53% to 15.04% can be achieved. However, the

authors assume that customers have access to spot prices in real time even for a

period in the future. In Victoria, the spot price is determined every 5 minutes and

fluctuates depending on actual demand. It is difficult to have a precise model in

advance. Moreover, in Victoria, generation cost only counts for only a small portion

of the retail price which makes the optimisation impractical. Many other papers also

use total price as an objective. As an example, in [36] the authors proposed a novel

load management solution for coordinating EV charging. The algorithm minimises

the total cost of electricity generation plus the associated losses in the grid. It also

incorporates the market electricity price to make the algorithm more realistic.

Computer networks and power networks share a lot in common especially as they

are facing the same challenge where multiple agents share a common medium. There-

fore, some protocols developed for computer networks can be applied to DSM prob-

lems. The principal of utility theory and congestion pricing (rather than actual price)

in computer networks is applied to DSM in [41,60].

In [41], each user is modelled as a net utility problem where net utility for each

household is the utilities of appliances minus the price (which may or may not be

actual monetary price) they pay as in (1.6)

u(x(n))− x(n)p(n) (1.6)

where u denotes the utility of a user and x(n) is the power demand for discrete time
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slot n, p(n) indicates the congestion price at that point of time which goes up linearly

with the total demand of all users. Instead of using prediction and optimising over

a horizon, users maximise their utility function after every update interval for that

time instance only.

Instead of a homogeneous utility function, one of the contributions of [60] is that

appliances are modelled by different utility functions reflecting the nature of appli-

ances. The prime focus of that paper is residential loads which are classified into four

categories with distinct utility functions. The categories include temperature related

loads such as air-conditioners and fridges whose objective is to keep the temperature

within desired bounds and the utility is modelled as a function of the difference be-

tween actual temperature and a comfortable temperature range; fixed total energy

loads such as EVs and poll pumps which need a certain amount of energy to complete

their duties regardless of the distribution of the energy in time and their utilities are

represented as a function of the total energy delivered to the loads; rigid loads such

lights which must be on for a continuous amount of time and their utility will be a

function of both power and time; entertainment appliances such as a TV or Xbox

whose utility will be similar to rigid loads except that users are more flexible about

these appliances.

Having defined all the utility functions, the authors formulate the problem as a net

utility optimisation problem. By modelling the price as a function of total demand,

an equilibrium can be established among all users. However, the utility models of

appliances are somewhat ideal. For example, interrupting a washing machine or dish

washer during washing cycles may be problematic.

Similar approaches are adopted for EV charging management [3] and [61]. Instead

of communicating with all vehicles, the DSO only collects information on the current

charging power of each EV. Based on transformer capacity and historical data of

household demand, the DSO calculates and broadcasts the average power reserve in-

formation to each EV. The vehicles only listen to the DSO passively to make charging

decisions based on their SOC and the power reserve information. However, it is still

necessary for the DSO to know the number of EVs that are plugged in at all times
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and the available power at the transformer.

In [9, 62] and [92], an additive-increase-multiplicative-decrease (AIMD) charging

algorithm is introduced and studied. The concept of AIMD came from the Trans-

mission Control Protocol (TCP) in the internet transport layer and is well known

for its sawtooth behaviour. In the application of EV charging, AIMD simply means

that each EV increases its charging power linearly until a feedback message (e.g. no

more capacity in the transformer) is received, upon which, the charging power will

be halved. Different analytical approaches are taken in the literature for the AIMD

style algorithm. [62] and [92] use the traditional AIMD where the size of increment

and decrement is fixed. In a different study, [9] developed a sophisticated control al-

gorithm that changes the rate for increasing and decreasing the power for optimality

and faster convergence.

Similar to algorithms using two-way communication, the ones using only one-

way communication also make use of a price-like signal broadcast by the DSO to

calculate a local strategy. And this signal is usually proportional to total demand

in the network. One-way communication algorithms are usually implemented on-line

with or without little forecast. They are less optimal but easier to implement.

Communication independent algorithms

So far, almost all the DSM algorithms discussed above involve a certain level of com-

munication and information exchange. Sensing, monitoring and controlling facilities

are not available in distributed networks in most countries. The question is how de-

mand can be managed without these facilities? An interesting approach is proposed

in [46] to schedule home appliances where the local voltage level is used as a feedback

signal. It is argued in the paper that in a distribution network, load voltage will

drop significantly if the total grid demand exceeds 60%−70% of capacity. Therefore,

appliances will run when local voltage is high and stop when local voltage is low [46]

to protect the grid and make the most of spare capacity. Consumers will get a certain

level of compensation for installing the device. However, the voltage model used by

nPlug neglects the topologies of networks and control parameters need to be carefully
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chosen for different networks to yield acceptable behaviours. Also, optimality, fairness

and other global aspects of the emerging network behaviour under such decentralised

and distributed demand management remain open areas of research. Nevertheless,

this idea of using local voltage as a grid indicator inspires many algorithms that will

be proposed in later chapters.

1.3.3 Related work on tariff design

As for network tariff design, we will give an introduction to common practices as well

as the state-of-art approaches on optimal tariff design. At the time of this thesis, a

debate on how PV systems are impacting network tariff structure is ongoing. Some

researchers believe that domestic solar PV systems reduce the overall utilisation of

the electricity infrastructure which may eventually lead to higher prices. In addition,

distributed PV users with altered electricity consumption patterns may take advan-

tage of the current pricing structure and eventually, receive hidden subsidies from

users without distributed PV [87] [100]. Others point out that all the hidden subsidy

arguments originate from the fact that existing electricity distribution charges are

levied on a uniform basis, but the costs of the electricity distribution network depend

mostly on peak demand [82]. The problem has been there for a long time and PV

systems are not completely responsible for it. The viewpoint both parties share in

common is that network tariffs are due for an upgrade. In this section, we will briefly

look into the history of the pricing of electricity and how network operators charge

for infrastructure.

Electricity tariffs have existed since the establishment of electricity networks in the

late 19th century and it was first priced uniformly like other commodities according to

demand and supply in the market [87]. However, it did not take long before the utility

companies realised that the consumption of electricity is extremely unstable where

peak load differs significantly from off-peak load. The resultant low utilisation of

expensive infrastructure, which has to be constructed according to peak load, created

an enormous challenge for network operators at that time and a profitable business

was pointed towards bankruptcy [81]. The root of the problem came from the nature
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of how electricity is consumed and a simple increase or decrease of unit price would

not be the solution. One of the widely accepted remedies at that time was a tariff

that consists of a variable energy charge (c/kWh) and a demand charge ($/kW), the

latter can be calculated based on the user’s historical peak load. The tariff was first

introduced by Prof. John Hopkinson and was adopted in a few countries [50]. The

application was very limited because the meters were designed to record aggregated

consumption only and were not able to track historical peak demand. However, there

is no doubt that the pricing scheme is ingenious and one of the major contributions

of this tariff structure is the identification of a sunk capital cost or infrastructure cost

which is dominating. In a way, demand charge directly corresponds to sunk cost.

Running cost or operation cost which is a relatively less important term corresponds

to the energy charge. Almost concurrently, [38] introduced a fixed charge to further

reduced the impact for short-using customers.

In the early 20th century, economists stepped in and worked with engineers to

design more optimal tariff structures which also maximise welfare. The tariffs intro-

duced previously try to set prices in order to recover overall costs. But economists

believed that the marginal running cost should be the one to be recovered and a

penalty charge should only be applied when the demand is approaching the limit of

supply [51]. Such a pricing structure would very well recover the operational cost but

not the sunk capital cost. The authors argue that the balance should be recovered

through the taxation system rather than be uniformly levied on consumers. The pa-

per should be credited for suggesting that electricity consumed at different marginal

running costs should be charged accordingly which forms the basis for the TOU tariff.

Consolidating all the work to date, a well known and well implemented tariff

structure was introduced in [20] where three network classes are identified: a) the

overall network where prices are determined based on the marginal running cost

according to the collective consumption and a TOU charge; b) individual component

and the price is determined according to a personal peak as a fixed demand charge;

c) intermediate network where total peak consumption is volatile and the pricing is

also determined following the marginal cost principle as an additional peak charge.
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This particular tariff structure was highly regarded and implemented.

Pricing of electricity was made more systematic in [21] where 10 crucial principles

were introduced and followed by electrical engineers as well as economists. Among

the principles, three primary ones are static efficiency, revenue adequacy and fair allo-

cation of sunk cost. Following these guidelines, in the context of Australian networks

faced by increasing distributed PV penetration, an optimal three-part tariff structure

has been defined in [87] as follows : a) a fixed charge designed to cover the fixed op-

eration cost; b) a TOU charge to cover nominal variable marginal costs; c) a demand

charge to cover sunk infrastructure costs.

1.4 Our approach

In this thesis, we aim to re-engineer both DSM and network tariff for the distribution

networks. The following technical goals or requirements were kept in mind during

the engineering process.

Minimal communication Many countries are promoting a smart grid nowadays,

however large scale ICT monitoring and controlling facilities are still not com-

monly available in distribution networks. Many existing DSM techniques rely on

communication between DSOs and consumers. However, without the necessary

infrastructure and protocols, such techniques may not be readily applicable.

We aim to exploit the existing infrastructure and design solutions that use as

little communication as possible. Also, from a philosophical point of view, the

interference of a DSO or a regulator could cause anxiety among users. Hence

the more that can be done from a user perspective, the more the user is in con-

trol, or feels in control, the better the acceptance of the technologies. Strategies

with minimal communication naturally leave more decisions for users to make

locally, which would lead to better understanding and acceptance.

Scalability We aim to design solutions that are easily scalable with respect to the

numbers of users and the sizes of networks. The designs will be based on the
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last mile of a distribution network, however, when scaled to the distribution

network level, the cost of implementation should only increase linearly with

respect to the size of the network.

Utilisation For a DSM solution, we want to maximise the utilisation of existing grid

infrastructure such that an upgrade can be deferred and the overall cost can

be reduced. For a tariff design, we want to increase the social welfare or the

aggregated happiness of all users under the tariff.

Compatibility The sunk cost in the infrastructure of the grid is enormous, new

technologies should be designed in such a way that existing infrastructure can

be better utilized without any compatibility issues. Compatibility also means

that possible future technologies should be taken into account in the design

process to increase investment efficiency.

Fairness Fairness is often omitted in electricity network tariff design and the design

of DSM. We first of all want to ensure that users, regardless of what appliances

they have or how much energy they use, pay their fair share of the infrastructure

cost. We also want to make sure that nobody is disadvantaged or advantaged

under any DSM we propose.

1.5 Our contribution

A lot of effort has been made to develop efficient DSM solutions. However, one of

the key questions remaining to be answered is how to design DSM solutions that

are readily applicable and tailored for the last mile distribution network? In other

words, the algorithms have to be communication independent and responsible for

maintaining basic network constraints. Both of these aspects are not satisfactorily

addressed in the literature. For tariff design, we aim to fill the gap and evaluate the

efficiency and fairness of network tariffs in presence of domestic solar generation.

More specifically, our work complements the existing literature and answers the

following high level questions:
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• Is it possible to make reasonably good demand management decisions

without using any explicit communication or using a minimal level of

communication? What is the benefit achieved by communication, i.e.

what is the cost-benefit analysis for communication? In the context of a

distribution network, we propose a stochastic model that correlates household

voltages and network demand. Based on such a model, we develop solutions

for demand management (including distributed generation management) using

only local measurements. We then compare it with solutions using different

levels of communications. We study the performance of these solutions and

quantify the benefit of information.

• If we have a variety of local ‘needs’ how can these be compatible with

the overall ‘system needs’ (satisfying constraints, and minimising en-

ergy use)? What is the trade-off between individual freedom, social

welfare and system constraints when it comes to electricity distribu-

tion? To answer this question, we model the last mile of a distribution network

and the relevant constraints such as unbalance and voltage levels both in theory

and in simulation. The constraints are taken into account while performing op-

timisation and the results are verified in simulations. The aim of this study is to

provide users and operators with a way to maximise the utilisation of networks

without violating the operation limits.

• How to quantify the efficiency and fairness of tariff? How do emerging

technologies, especially PV systems, affect the efficiency and fairness

of electricity network tariffs and can one design a better one? Through

analysis of real demand and supply data at the household level from Australian

networks, we propose a utility theory based framework to quantify the benefits

a user gets from the network infrastructure. Based on such a model, we are

able to then quantify the aggregated social welfare of a tariff and evaluate the

fairness of it. In addition, we also form an optimisation objective to find a

better tariff.

28



Further, there are a few extensions to the work performed in this thesis which

are worth further study. First of all, we only study DSM for networks under normal

operating conditions. Network dynamics and control under fault conditions, which

are a crucial component to power system study, will be left for future investigation.

Secondly, though the modelling is adopted from real networks and simulations are

driven by real data, hardware experiments are not performed in this thesis.
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1.7 Chapter summary

In this chapter, we have first of all discussed the background of power systems. In

the context of the Australian grid, which is operated in a similar way to many major

grids around the globe, we have explained the physical load flow and governing bodies

involved in network operation and electricity trading. We have also introduced the

terminologies of DSM and tariff design followed by a listing of the common practices.

Next we discussed the challenges and opportunities of existing networks in the era of

the smart grid. This serves to motivate our work, and that of others which we re-

viewed briefly. From this review, a number of open questions transpired that we have

addressed in this thesis. After an overview of state-of-art approaches and identifica-

tion of their strengths and weaknesses, we highlight particular design requirements

which will form the basis of our methodology and be followed throughout the engi-

neering process. These requirements make the work in this thesis distinguishable and,

to a certain extent, practical. We then explain our contributions more specifically in

the context of our design milestones.
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Chapter 2

Models

Many theoretical and simulation models have been developed and utilized in this

thesis. The ones of particular importance which are crucial to the rest of the thesis

are introduced in this chapter. These models include the distribution network, par-

ticularly the last mile level model and the voltage-demand relationship model. We

explain how the models are constructed both in theory and in simulation.

2.1 Last mile network model

2.1.1 Overview

As illustrated earlier, the power grid usually consists of generation, transmission and

distribution components as shown in Figure 1-1 where the last mile network is high-

lighted. Traditionally, power systems research has been largely concentrated at the

generation and transmission level; with distribution networks considered generating

slight disturbances. Remote sensing, monitoring and controlling devices are widely

available at the transmission level. The distribution networks, especially the last mile

are essentially operating ‘blindly’. In the new paradigm of the grid, this is changing:

shiftable loads, distributed generation and the matching of demand to supply using

novel control technologies mean that now distribution network modelling is an im-

portant part of power systems planning and one that is poorly understood because of
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Figure 2-1: Diagram of a last mile network in Australia comprising 113 houses.

the lack of attention to measurements and modelling of the last mile in the network.

If each and every last mile network can be properly managed, then the stress on the

entire grid can be very much limited. In this thesis, we model in detail the last mile

of a radial distribution network - a neighbourhood network. Note that the radial net-

work is typical in Australia. There might be a few tie lines that can make a difference

but by and large the distribution network is radial only. An example is presented in

Figure 2-1 where 113 users are supplied by a single DSO via a transformer which steps

from medium voltage to 230V. The transformer voltage is regulated in the medium

voltage side substation which for this thesis is treated as a constant amplitude voltage

source.

Since such last mile networks are usually not treated with significance, off-the-

shelf simulation softwares such as OpenDSS and PSS SINCAL which had been used

by utility companies for analysis do not have detailed enough load model to facil-

itate DSM analysis. In addition, the variation in last mile implementation across

the globe is large and there is no standardisation across the globe on last mile net-

work modelling. For example, in the USA the low voltage networks have very few

houses after a transformer because of the 110V outlet voltage, earthing, and neutral
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wire connectivity. Most papers in the literature use an IEEE standard transmission

network model and modify some parameters to approximate the last mile network.

Such models are not capable of catching important network features such as phase

allocation and power factors. In order to simulate DSM algorithms and understand

the impact from emerging technologies, it is absolutely important to have an accurate

model. We therefore construct a model ourselves which represents the state-of-art in

last mile network modelling. Initial work on such models can be found in [32, 34].

Note that our models are for Australia, and not directly translatable to Europe, Asia

or the USA.

This model is constructed based on a real network in Australia and data are

collected from utility providers or government bodies. The network configuration

including transformer specifications, backbone wires and service lines specifications,

locations of poles, distances between houses and phase allocations which are based

on real data. The number of houses on each of the three phases is different which

introduces a certain level of unbalance. Inside a household, as shown in Figure 2-2,

there are a variety of appliances such as air-conditioners, electric water heaters, etc.

A household may also have an EV or may have a PV system installed. For most of

the algorithms proposed in this thesis to function, a control unit is required to be

installed on the piece of equipment that is to be managed. This control unit can

simply be a plug-in device which goes on to normal power outlets as shown in Figure

2-2.

2.1.2 Simulation software and data

In order to verify the performance of our proposed algorithms, a sophisticated simu-

lation model of the last mile network is constructed in MATLAB which captures as

many real network properties as possible. A sample simulation network is shown in

Figure 2-3 where a four wire three phase system is constructed. Each individual house

in the network is connected to a single phase. MATLAB could only perform load flow

analysis at a given point of time. In order to generate continuous time simulations

and create appliances profiles, we use the POSSIM Simulator concurrently (POSSIM
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Figure 2-2: Configuration of the connections within a household.

Figure 2-3: A model of a sample last mile network in MATLAB.
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was developed by Julian de Hoog, and extended and customized by myself. More

details can be found on www.possim.org.).

POSSIM effectively acts as an interface between a profile library and MATLAB.

The profile library keeps track of the internal states of all controllable and uncontrol-

lable loads as time series values. These states include (if applicable) demand, supply,

SOC, control strategy, etc. Some of these states are used as inputs to MATLAB for

load flow analysis and the library can be updated based on the outputs from the load

flow analysis.

Specifically, my contribution to the simulator include the following:

• Design and integration of distributed DSM algorithms which will be discussed

in the rest of the thesis.

• Integration of domestic PV units and associated generation profiles.

• Design and integration of storable and shiftable loads.

• Simulator testing and verification.

2.1.3 Component modelling

In this section, we give more details on how the major components in our analysis

are modelled in theory and in simulation.

Modelling household loads

Households may possess a variety of loads. Conventional lighting, various heaters

(water, space), cooking appliances are mostly constant impedance loads. Devices that

involve power electronics, such as computers, TVs, EV chargers and energy-efficient

lighting, tend to behave as constant power. Motor loads, such as air-conditioner

compressors, exhibit more complex behaviours.

As for the actual mathematical modelling in our analysis, we consider households

as current loads varying over time and the currents are derived from overall consump-

tion at transformer level through averaging or stochastic operations. This assumption
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Figure 2-4: Network total load profile for a summer day in 2013.

relaxes the condition that the consumption at a household depends on the voltage at

that household and therefore makes the load flow problem linear.

We acknowledge that there is a gap between our model and the actual behaviour

of the loads. However, the gap is relatively small and negligible in our case as our

focus is residential networks which are typically highly linear and resistive.

The network total demand profile of a summer day in 2013 for the network shown

in Figure 2-1 is presented in Figure 2-4. The data is obtained from a utility provider

based in the state of Victoria. Demand could vary on a day to day basis but the

evening peak and overnight demand valley is a universal phenomenon in residential

networks. More on the demand of individual households and the demand distribution

among a network will be introduced in the Section 2.2.

Modelling EVs

EVs form an important part of this thesis and similar to other household loads, they

are modelled as varying impedances consuming only real power. However, EVs possess

some features which need to be modelled separately in POSSIM. Firstly, EVs are all

equipped with batteries each of which has an associated SOC at any point in time.

Secondly, EVs also have travel profiles describing when they arrive and leave as well

as how much distance they have travelled. We therefore create a profile in POSSIM

38



0 4 8 12 16 20 24
10

20

30

40

50

60

70

80

90

100

Time of Day

%
 V

eh
icl

es
 a

t h
om

e

EV Behaviour

Figure 2-5: An average workday EV travelling profile generated from a sample of size
100 from a Victoria government survey [1].

8:00 12:00 16:00 20:00 0:00 4:00 8:00
Time of day

In
di

vi
du

al
 v

eh
ic

le
s

 

 
 Home, fully charged

 Home, charging
 Away

Figure 2-6: Charging flexibility. [1, 69].
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for each EV which keeps track of the charging power, charging time, travel time and

travel distances whenever applicable. The SOCs are then updated accordingly using

a simple linear charging model. Battery chemistry and ageing issues are not modelled

in our simulation. The EV travelling models are based on real data from a Victoria

Government survey [1]. A typical average workday EV behaviour profile in Victoria is

shown in Figure 2-5 and the actual travel profiles over 24 hours for a number of typical

EVs are depicted in Figure 2-6. Each horizontal line represents a real individual 24-

hour vehicle travel profile. Required charging time is based on distance travelled. The

green area therefore represents charging flexibility. Only residential networks will be

examined in this thesis where EVs can only be charged at home; and charging in

the workplace is not considered. The distribution of daily travelled distances before

arriving home are shown in Figure 2-7. An EV in our simulation would randomly

pick a travel schedule as in Figure 2-6 and a distance as in Figure 2-7. EVs, currently

with a small market penetration, are not a major risk to the grid. However, we will

show in the next chapter how the uptake of EVs could put distribution networks in

jeopardy when when the penetration level goes up.

We further make the following assumptions on our EV model:

• The maximum charging rate is 3.5 kW (default rate) and an EV is able to be

charged at any rate between 0 kW and the maximum rate.

• If at home, EV charging can be interrupted and shifted.
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• Battery chemistry is not considered and we assume SOC changes linearly with

charge/discharge rate.

• Vehicle-to-Grid power transfer is not permitted.

Modelling a distributed PV system

Throughout this thesis, we assume PV systems to be voltage controlled current

sources. In our simulation model, a phase locked loop (PLL) measures the grid

voltage phase and frequency. The inverter injects current in phase with the grid

voltage using the two pieces of information available locally, which are: (a) reference

current information from the direct current voltage regulation, and (b) voltage and

frequency information from the PLL. The power injected in this manner is purely

real and the power factor associated is unity which is a widely used assumption in

the literature [63]. One advantage of unity power factor injection is that it can be

expressed as an absolute current supplied to a system at a given voltage. However,

including all these individual entities into our theoretical model would lead to com-

plex nonlinearities. To avoid this, for theoretical analysis, we treat PV systems as

controllable current sources. This is a reasonable approximation (controllability is

embedded in the power electronic systems) in the given context and is also preceded

by assumptions made in section 2.1.3 [63].

As for the output of PV systems, users may install panels of different sizes and

depending on the orientation, efficiency, cloud coverage, etc., output from panels

may differ from one another. However, in the same area, the differences are rather

insignificant. Therefore, we take an averaged approach and assume all the PV systems

in a last mile network have the same behaviour which is depicted in Figure 2-8 as

obtained from a utility company operating in NSW. The profile captures a long day

of sunshine and cloud effects are attenuated through averaging.
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Figure 2-8: Averaged rooftop PV generation profile during January in NSW.

2.2 The voltage-demand relationship model

Having the components modelling explained, we now introduce the most important

model in this thesis: the voltage-demand relationship model. Most demand side

management algorithms make use of remote sensing and controlling devices which

are not widely available in distribution networks [9]. In order to design a solution

that is readily applicable and easily implementable, we propose a voltage-demand

relationship model to correlate the voltage measurements at individual households

and the total demand on the feeder using stochastic modelling. Stochastic analysis is

a popular tool in low voltage (LV) network demand forecasting and LV network de-

mand modelling [49,71,76]. A beta distribution model is proposed in [49] to estimate

household load profiles such that the peak demand can be estimated and transform-

ers can be sized accordingly. Such an approach has been adopted in the electricity

network design in South Africa [49]. More recently, a gamma distribution model has

been shown to be more accurate in terms of capturing household half-hourly demand

patterns via Monte Carlo simulations [71]. The authors have also shown that pa-

rameters of probability density functions can be extracted from known data-sets and

the model is calibrated against varying temperature. Such stochastic modelling can

be implemented on a finer level where load profiles of different appliances within a

household are modelled as different random variables [76]. Instead of a single random

variable, the demand profile of a household is now a combination of several random
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variables. The results have also been shown to match the actual demand profiles. In

this thesis, we use a simple gamma distribution to model household demand patterns

and the parameters for the distribution are extracted from actual smart meter data.

With this probability distribution of demand profiles, using classic circuit theory,

we correlated demand and voltages in a distribution network such that the probability

distribution of household voltages under a given network demand can also be derived.

Intuitively, if the demand of a network is high, line voltage drops will increase as a

result of increased line current. Using that information, the power-line itself can be

viewed as a communication channel and household voltage measurements can be used

as a signal for demand management coordination.

2.2.1 Theory assumptions

Based on the statistical evidence, we proceed by making the following assumptions

which is for the ease of theoretical analysis:

• We assume that the transformer feeding the network is a constant voltage source

and there is a capacity limit associated with it.

• We assume (as in residential networks) that the networks of interest are domi-

nated by resistive loads.

• We assume that the backbone wires have a low reactance/resistance (X/R) ratio

(< 1/5) which is again true for residential networks.

• We assume that the network is balanced on the three phases as required by

relevant regulations though not enforced in reality.

• We assume that the distribution line impedances between two adjacent house-

holds on the same phase are identical.

• For theoretical analysis only, if there is distributed generation in the network,

we take an averaging approach and assume the generation comes evenly from

all households.
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Figure 2-9: System diagram for a single branch network

Note that the assumptions made are for theoretical analysis only and there will

certainly be inaccuracies. However, we will see later in the paper how these inac-

curacies can be eliminated by feedback and how the model corrects itself. In the

simulations, the actual network will be realistically modelled under its normal op-

erating condition. The network will have reactive power, phase unbalance, source

voltage disturbance, etc. all based on real network data. And as a result, most of the

assumptions made above will be violated. The simulations can therefore be seen as a

way of examining the validity of the theoretical model in practice.

2.2.2 Single branch network

We begin the analysis by extracting the fundamental components from the network

model illustrated in Figure 2-1 and turning them into electrical circuits as explained

above. We start by looking at networks having only one branch and then extend

the approach to branched networks. Figure 2-9 shows the schematic of one of three

phases, for a single branch. There are in total n houses connected on this phase.

As explained above, households are current sinks where dx, x = 1, 2, ..., n depicts

the demand of house x in terms of current at a time instance; a household may be

equipped with a rooftop solar system which is modelled as a current source where

sx, x = 1, 2, ..., n depicts the amount of current injected. The internal structure

diagram is shown in Figure 2-10. The net current Ix, x = 1, 2, ..., n whose direction
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is shown in 2-9 can be written as follows:

Ix = dx − sx, x = 1, 2, ..., n (2.1)

The total demand in the network at this time instance is also defined in terms of

current, ds =
∑n

x=1 dx, and the total supply from rooftop PV systems is ss =
∑n

x=1 sx.

The total net demand Is which is defined as net current flowing out of the transformer

is therefore given by:

Is = ds − ss (2.2)

Following the assumptions as in Section 2.2.1 that the voltage at the source side, Vs,

is a constant and the line impedances between any two adjacent houses are the same

which is denoted by ZL as shown in Figure 2-9, using circuit theory, the relationship

between voltages and demand is expressed as (2.3).

V1 = Vs − ZL
n∑
i=1

Ii

V2 = V1 − ZL
n∑
i=2

Ii = Vs − ZL
n∑
i=1

Ii − ZL
n∑
i=2

Ii

V3 = Vs − ZL(
n∑
i=1

Ii +
n∑
i=2

Ii +
n∑
i=3

Ii) (2.3)

...

Vn = Vs − ZL(
n∑
k=1

n∑
i=k

Ii)

To model household demand, we have collected and analysed smart meter data

samples, obtained from a number of utility companies, from multiple distribution

networks in Australia with thousands of users. The dataset consists of half hourly

sampled demand values from each household for an entire year. A histogram of

household demand at an instance is shown in Figure 2-11. The distributions have

tall heads and a long tails and can be fitted by gamma probability density functions
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(shown as a continuous curve in Figure 2-11). Therefore, we proceed by assuming

that the household demands dx, x = 1, 2, ..., n, at a time instance, are mutually

independent variables Dx, x = 1, 2, ..., n which satisfy a gamma distribution that is

described as follows:

Dx ∼ Γ(k, θ) (2.4)

E[Dx] = kθ :=
ds
n

(2.5)

V ar[Dx] = kθ2 := θ
ds
n

(2.6)

where k is the shape parameter and θ is the the scale parameter for the distribution.

The mean of the distribution is E[Dx] and the variance is Var[Dx]. Note that the

distribution is time varying and ds is also time varying. The notation in this thesis

captures the behaviour of the network at a point of time. Analysis using half-hourly

demand data suggests that a constant scale parameter θ can be used to describe the

distributions at any particular time in a day or a year. To obtain the scale parameter

θ, we perform gamma distribution fittings on the histograms from all the half-hourly

instances over the entire year. The average value of scale parameters from all the

fittings is used as the constant θ. The shape parameter k then changes according to

the total demand ds proportionally as per (2.5).

For domestic solar PV generation, despite the fact that depending on the geo-

graphic location, cloud coverage, installation capacity and orientation, the output of

rooftop PV systems can vary, we nevertheless adopt an averaged approach for theo-

retical analysis. We assume that the total distributed generation is evenly supplied

by all households in the network even though not every house has an PV system. In

other words, for x = 1, 2, ..., n we have:

sx =
ss
n

(2.7)

Now let Ux be the random variable corresponding to voltage Vx at house x at a

time instance. After substituting the net current dx − sx with Dx − sx, (2.3) can be
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rewritten as follows for user x, x = 1, 2, ..., n:

Ux = Vs − ZLBx + ZLJx (2.8)

Bx = x
n∑
i=x

Di +
x−1∑
i=1

(iDi)

Jx = sx
(2n− x+ 1)x

2
(2.9)

where Bx is a random variable and Jx is a deterministic value. Note that the na-

ture of the distribution of Bx, which is a linear combination of independent gamma

variables, is an open research question. However, a widely-used method, the Welch-

Satterthwaite method [84], approximates Bx using a gamma random variable B̂x ∼

Γ(kB̂x , θB̂x) for x = 1, 2, ..., n that can be written as follows:

E[B̂x] = kθ
(2n− x+ 1)x

2
(2.10)

V ar[B̂x] = kθ2−4x3 + 6nx2 + 3x2 + x

6
(2.11)

kB̂x = E2[B̂x]/V ar[B̂x] (2.12)

θB̂x = V ar[B̂x]/[B̂x] (2.13)

Then the values of Ux in (2.8) can be evaluated approximately.

2.2.3 Multiple-branch network

We now extend this model to branched networks with multiple feeders. Figure 2-12

is a generic representation of one phase in a network with m branches. This diagram

applies to most topologies - a new branch can split off from anywhere on an existing

branch, not just at the start. The problem can be solved in two stages.

Stage 1 : Assuming that each branch is a single load, the problem is transformed

into a single branch problem as in the previous subsection where loads have dif-

ferent characteristics. Assume that the number of houses on branch 1, 2, ...,m is

n1, n2, ..., nm, using (2.4) for the household demand, the aggregated demand on each
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Figure 2-12: System diagram for a multiple branch network

branch is a gamma random variable My ∼ Γ(ky, θ), y = 1, 2, ...,m which can be

described as follows:

ky = nyk (2.14)

E[My] = nykθ (2.15)

Var[My] = nykθ
2 (2.16)

Now let U0
y be the random voltage at the first node of branch y, y = 1, 2, ...,m.

Apply (2.8) and (2.9) here, we have:

U0
y = Vs − ZLB0

y + ZLJ
0
y

B0
y = y

m∑
i=y

Mi +

y−1∑
i=1

(iMi)

J0
y = sx(y

m∑
i=y

ni +

y−1∑
i=1

(ini)) (2.17)

Again, B0
y is a linear combination of random gamma variables which can be ap-

proximated using a gamma distributed random variable B̂0
y . The parameters of
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B̂0
y ∼ Γ(kB̂0

y
, θB̂0

y
) for y = 1, 2, ...,m are given as follows:

E[B̂0
y ] = kθ(y

m∑
i=y

ni +

y−1∑
i=1

(ini))

Var[B̂0
y ] = kθ2(y2

m∑
i=y

ni +

y−1∑
i=1

(i2ni))

kB̂0
y

= E2[B̂0
y ]/Var[B̂0

y ]

θB̂0
y

= Var[B̂0
y ]/E[B̂0

y ]

Stage 2 : If the voltage at the first node of each branch (V 0
1 , V 0

2 ,...,V 0
m) is constant,

the problem on each branch is identical to the single branch scenario. However, since

the voltage at the first node of each branch is now a random variable itself (U0
1 ,

U0
2 ,...,U0

m), the problem is now slightly different. We can write the following for house

x on branch y:

Ux
y = U0

y − ZLBx
y + ZLJ

x
y

= Vs − ZLB0
y − ZLBx

y + ZLJ
0
y + ZLJ

x
y (2.18)

Similar to (2.10) and (2.11), the random variable Bx
y can be approximated by a gamma

random variable B̂x
y described as follows:

E[B̂x
y ] = kθ

(2ny − x+ 1)x

2

Var[B̂x
y ] = kθ2−4x3 + 6nyx

2 + 3x2 + x

6

And Jxy is calculated as below:

Jxy = sx
(2ny − x+ 1)x

2
(2.19)

Using (2.18), define the voltage drop due to demand only (isolating the effect of
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supply) at house x on branch y as:

∆W x
y = Vs − Ux

y + ZLJ
0
y + ZLJ

x
y = ZLB

0
y + ZLB

x
y (2.20)

This can be approximated as ∆Ŵ x
y = ZLB̂

0
y+ZLB̂

x
y , and hence ∆Ŵ x

y ∼ Γ(k∆Ŵx
y
, θ∆Ŵx

y
)

can be described by the following parameters:

E[∆Ŵ x
y ] = kZLθ(

(2ny − x+ 1)x

2
+ y

m∑
i=y

ni +

y−1∑
i=1

(ini)) (2.21)

Var[∆Ŵ x
y ] = kZ2

Lθ
2(
−4x3 + 6nyx

2 + 3x2 + x

6
+ y2

m∑
i=y

ni +

y−1∑
i=1

(i2ni)) (2.22)

k∆Ŵx
y

= E2[∆Ŵ x
y ]/Var[∆Ŵ x

y ]

θ∆Ŵx
y

= Var[∆Ŵ x
y ]/[∆Ŵ x

y ]

Then, using (2.5) and (2.6), we can simplify (2.21) and (2.22) as:

E[∆Ŵ x
y ] = Kx

yZLds (2.23)

Var[∆Ŵ x
y ] = θCx

yZ
2
Lds (2.24)

where Kx
y and W x

y are house specific constants depending purely on the topology of

network and the household location. The constants Kx
y and W x

y can be written as

follows:

Kx
y =

1

n
(
(2ny − x+ 1)x

2
+ y

m∑
i=y

ni +

y−1∑
i=1

(ini)) (2.25)

Cx
y =

1

n
(
−4x3 + 6nyx

2 + 3x2 + x

6
+ y2

m∑
i=y

ni +

y−1∑
i=1

(i2ni))
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Similar to (2.20), the final expression for voltage drop ∆Ux
y = Vs − Ux

y is:

E[∆Ûx
y ] = Kx

yZLds − ZLJ0
y − ZLJxy

= Kx
y (ZLds − ZLss) (2.26)

Var[∆Ûx
y ] = θCx

yZ
2
Lds (2.27)

E[Ûx
y ] = Vs −Kx

yZL(ds − ss) (2.28)

Therefore, we have obtained a linear expression as in (2.28) to relate the expected

values of individual household voltages and total network demand. The variance of

such an approximation is also linear to the total demand as shown in (2.27). We then

naturally state the following theorem:

Theorem 1 Subject to the assumptions in Section 2.2.1, for the last mile radial net-

work whose topology matches the generic topology shown in Figure 2-12, the expected

local voltage value for a household in the network can be expressed as a location specific

linear function of the total net demand in the network as per (2.28).

Most distributed demand response algorithms require the total network demand to

be broadcast either in its direct form or in the form of a dynamic price via a dedicated

communication channel. The above analysis shows that the power line itself can be

such a communication channel: household voltages averaged over certain interval can

be used as the dynamic price signals to coordinate demand management of various

users.

2.2.4 Verification

To further justify the model under actual operating conditions, using collected de-

mand data and our simulation model, we plot the network total demand versus a

randomly selected household’s voltage in Figure 2-13. Note that in practice we want

to use averaged voltages over certain intervals to avoid noises in measurements. In

simulation, the data we used was already averaged at collection. The curves span 36

hours where total network demand and local voltage are shown as a blue solid line
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and a green dotted line respectively. From the demand curve, the evening peak and

overnight valley can be observed clearly. More importantly, when the demand is at

maximum, the voltage measurement drops to its minimum and vice versa.

We then correlate these two curves and plotted the relationship between total load

and household local voltages for three houses selected at random (one on each phase)

in Figure 2-14. From the plot, we can see that the three phases are not very well

balanced. For phase C, the total demand values are mainly distributed towards the

lower end (0.2 p.u. - 0.4 p.u.). While for phases A and B, the total demand values

are heavily distributed between 0.4 p.u. to 0.8 p.u. As a result, phase A and B are

constantly more heavily loaded than phase C. This unbalance is not uncommon in

reality and it will be observed in our simulations that are based on network measure-

ments. Despite the unbalance, there is an approximate linear relationship between

local voltage and total demand for each household. From observation, the approxima-

tion errors increase as total demand increases, which corresponds to our theoretical

model. The parameters associated with the linear relationship may be different for

different houses (which could be learnt from historical data), but an approximate

linear relationship can be demonstrated for all houses in the network.

To verify the performance of our model in a network with PV systems, we fix the

demand profiles from households and assign PV systems to users randomly. Figure

2-15 shows the voltage-demand relationship with 30% distributed PV penetration

and and 2-16 shows the relationship with 50% distributed PV penetration. The

scatter plots manifest clear linear trend and can be fitted with straight lines. The

approximation errors in both plots increase as total current increases.

2.3 Chapter summary

In this chapter, we have first of all introduced the last mile network model used in

this thesis. We have explained how the network and each component in the network

is constructed in theory and in simulation. We have followed a data-driven approach

in this thesis and the categories of data we collected and make use of have been intro-
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Figure 2-13: Voltage profile of the house A with dotted line on right axis and corre-
sponding total phase demand with solid line on left axis.
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Figure 2-14: Plot of total demand of network for a given phase against voltage at a
randomly selected house on the phase (effects of transformer tap changes inclusive)
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Figure 2-15: Relationship between network net current consumed and local voltage
of a house in the network. (30% penetration)
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Figure 2-16: Relationship between network net current consumed and local voltage
of a house in the network. (50% penetration)
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duced. In addition, we have developed a stochastic model to describe the correlation

between household voltages and the total demand in the last mile of LV networks

which has been derived in theory and verified in simulation using real data. The

linear relationship can be learnt from transformer and local data, but later will be

used in a different manner, namely to use local voltage as a pseudo measurement for

network demand.
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Chapter 3

Distributed EV charging

management

In this chapter, we concentrate on EV charging management which offers special

opportunities for DSM. Their storage capacity and reasonable flexibility make EVs

excellent agents for DSM. With minor modifications, most charging management

algorithms for EVs can be applied to other home appliances. We start the chapter by

giving some background information on EVs. Next we present two distributed DSM

algorithms. The first algorithm is a heuristic greedy approach based on solutions

widely applied in computer networks. We show that it achieves reasonably good

results with significantly less requirement for information and communication than

centralised algorithms. To gain a better understanding of convergence and to have a

theoretical guarantee on performance, we then propose a game theoretical approach.

Uniqueness, existence, convergence and stability properties of the proposed solution

are established. The game theoretical algorithm is also shown to perform well with

minimal requirement for information and communication.

3.1 Background on EVs

In the last few hundred years, two massive energy conversion systems have been devel-

oped [70]. One is the electric utility system which ranges from small home appliances
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like a lamp to heavy industrial equipment mainly concerned with stationary power

conversion applications (apart from some electrified public transport systems). The

other is the internal combustion engine running on fossil fuels mainly concerned with

mobile applications, and remote locations. Internal combustion engines have served

society well but there are also issues people are concerned about. These issues include

pollution, energy security, fuel price and carbon emissions [86]. A large scale transi-

tion to electric vehicles from conventional fossil-fuel powered vehicles would benefit

both the environment and economy. However, the electricity grid does not currently

have the capacity to support a significant uptake of EVs. Much research has been

carried out on studying the impact of increased EV penetration [25, 39, 58], and it

has been shown that even a 10% EV penetration could cause problems on the grid

especially during peak periods. To get a better understanding of what would happen

when the number of EVs increases, a series of simulations have been carried out based

on the network model as shown in Figure 2-1 of Section 2.1.

Figure 3-1 shows the demand profile of the network shown in Figure 2-1 with

80% EV penetration. Even though 80% penetration is high and will probably not be

reached in the immediate future, it shows the effect of additional EV demand very

clearly and it helps to illustrate the efficiency of the charging management algorithms

that will be proposed. The peak demand increases significantly which leads to a

critical situation for the grid, i.e. it requires further investment in infrastructure,

large conductors, and transformers.

The voltage profiles of all households in the same network is shown in Figure 3-2

and different colours stand for different houses. The network is not well balanced

in that the load on Phase A is heavier than the other phases. For as long as there

is ample spare capacity, the phase unbalance is of little concern. However, with the

increased demand to meet the EV requirements, the phase unbalance leads to the

electricity supply not meeting the Australian Distribution Code for about a third of

all the houses on phase A for part of the day.

Figure 3-3 shows the SOC of all EVs in the network when there is no charging

management. Horizontal lines indicate that the EVs are either away on the road or
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Figure 3-1: Demand profile of a distribution network with 80% EV penetration.

parked but not being charged. Sudden drops indicate that the the EV has arrived at

home and is starting to charge. The increasing lines show the progress of charging.

Most of EVs arrive during evening peak period and start to charge at full rate.

However, demand in the morning and overnight periods (commonly referred to as

valley periods) in Figure 3-1 is significantly lower than the demand in the evening

peak period. The day valley (8:00-16:00) corresponds to users being at work and if

charging facilities are available at work (which is not considered in our model), these

periods can be well utilized; the overnight valley (0:00 - 8:00), gives a lot of potential

for residential network demand management. If the green area in Figure 3-1 can be

shifted to fit into the overnight valley and if the light brown area in Figure 3-1 can be

evenly spread across the time, demand requirements will be well maintained and the

problem could be solved. In this chapter, two algorithms particular aiming at solving

EV demand management problem (management of the green area) are discussed.

How these results and conclusions can be extended to general demand management

problems will be explored in the next chapter.
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Figure 3-2: Voltage profile of each household in a distribution network with 80% EV
penetration.
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Figure 3-3: Battery SOC profiles of EVs in a distribution network with 80% EV
penetration.

3.2 A TCP-like algorithm for EV charging man-

agement

Many centralised and distributed DSM algorithms have been compared and discussed

in Chapter 1.3. In general, distributed algorithms have better scalability and ro-

bustness over centralised solutions at the price of losing optimality. Among all the

distributed charging solutions, those using only one-way communication require the

least amount of additional infrastructure and are easiest to implement. However, even

for the algorithms using one-way communication, some sort of infrastructure is re-

quired and information exchange is necessary. At the distribution network level, this

is impractical for immediate deployment. In this section, we propose a distributed al-

gorithm that is inspired by the TCP used in computer networks. However, compared

to conventional solutions, this algorithm requires no communication facilities at all

while achieving similar performances. The key to the solution is the use of the linear

voltage-demand estimation model we have developed as in Theorem 1. The impor-
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Table 3-1: List of Symbols for Chapter

3.2

m electric vehicle m
M(t) number of electric vehicles plugged in at time t
tm(s) charging start time of EV m
tm(e) charging finish time of EV m
τ length of each charging interval
k constant relating to user preference
Vm(t) local voltage at house m (or EV m) at time t
V m(t) minimum local voltage at house m at time t
V m(t) maximum local voltage at house m at time t
Sm(e) starting SOC level of EV m
Sm(t) SOC level of EV m at time t
Sm(s) finish SOC level of EV m
pm maximum charging power for EV m
pm charging power of electric vehicle m
em(t) travelling profile of electric vehicle m at time t

tant consequence of this model is that the local voltage measurement is an indicator

for the loading of the network. Using a mere comparison of where the local voltage

samples fits within the range of minimum to maximum local voltage it is possible to

make a well informed DSM decision, regarding the consumption of electricity whilst

the network is lightly loaded.

3.2.1 Preliminaries

It is assumed that each EV charger is connected to a controlling unit (or has a digital

controller embedded) which is able to read local voltages, EV battery SOC, perform

calculations and supply charge with discretionary current. This would be the only

hardware required for the proposed algorithm to work on any existing electricity grid.

The variables we use in this section are summarized in Table 3-1. In the following

paragraphs, unless specified, we abuse the notation slightly and drop all the subscripts

m from Table 3-1. There are some inputs a controller requires from the users. The

charging start time t(s) is the time when the EV is plugged in. The user needs to input

an expected finish time t(e) which is when the EV needs to be ready for departure.

It is assumed in this chapter that users behave rationally and do not cheat by setting

a finish time that occurs long before they need to depart. The users’ behaviours can
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be influenced by introducing price incentives.

The required SOC level S(e) is usually 100% upon finishing but a user could

overwrite such a value. The controller also records the initial SOC level S(s) when

the vehicle is plugged in. The sensing of controllers is executed in a slotted manner

with equal slots of several minutes. The slots for each EV are equal in length, but

they are not synchronized across EVs. At the beginning of each slot, each controller

monitors the SOC level S(t), the local voltage V (t) and calculates a charging level

which is maintained for the duration of that slot.

3.2.2 TCP style algorithm

Algorithm 1 Fair EV charging with local measurements

Require: t, t(s), t(e), τ , k, V (t), V (t), V (t), S(e), S(t), S(s), p
1: p(t) = 0 . initialisation
2: S(wanted) = S(e)− S(s), T = t(e)− t(s) . required charge and available time
3: B = S(wanted)/T . average charging rate, initialisation completed
4: update V (t) and V (t) . main algorithm starts
5: if S(e)− S(t) ≤ 0 then . check if fully charged
6: charge (OFF)
7: else if V (t)− V (t) ≤ 0 then . network overloaded
8: p(t) = 0.5p(t− 1) . drop to half
9: charge (ON)

10: else
11: A← (S(e)− S(t))/(t(e)− t) . required average rate to meet deadline
12: ∆p(t)← k ∗ p ∗ (V (t)− V (t))/(V (t)− V (t)) . increment as per available

capacity
13: p(t)← (p(t− 1) + ∆p(t)) ∗ (A/B) . adjusted charging rate
14: charge (ON)
15: charge rate = min{p(t),p} . maximum charging rate protection
16: end if
17: keep charging for (τ) . typically 5 to 15 minutes
18: goto (step 4)

The proposed distributed EV charging algorithm for each individual EV is sum-

marized in Algorithm 1. The discrete time algorithm is executed every few min-

utes and t denotes the current time. The charging start time t(s) is the time when

an EV is plugged in and t(e) is an expected finish time. The parameter τ de-
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notes the time slot which can be a few minutes and the constant k controls the

power increment step size (with a large k, the charging profile will exhibit more

spikes). The variable V (t) is the local voltage sensed at time t. The parame-

ters V (t) and V (t) are the threshold values on local voltages which will be used

to regulate the total EV demand in the grid, i.e. when the total demand is too

high, the local voltages will drop below the threshold and EVs will decrease their

charging rate. V (t) and V (t) can be obtained via a number of ways. We deter-

mine the values from historical data by calculating rolling maximum and minimum

over a horizon of length H, i.e. V (t) = max{V (t − H), V (t − H + 1), ..., V (t)} and

V (t) = min{V (t − H), V (t − H + 1), ..., V (t)}. Note that both thresholds are then

bounded by limits set by relevant distribution code. Also note that data on weekends,

weekdays and holidays will be classified in different sets since the demand profiles are

different. S(e) is the required SOC level, S(s) is the initial SOC level when a vehicle

is plugged in and S(t) is the SOC measured at time t. p denotes the physical maxi-

mum charging power. We assume a linear battery model such that dS(t)/dt = p(t)/c

where c is a constant relating energy to battery percentage change.

The algorithm works unsynchronised. Each EV controller will independently ex-

ecute the Algorithm 1 starting from step 1 as soon as an EV is plugged in.

While controlling EV charging from a distributed point of view, it is very difficult

for individual EV controllers to coordinate or communicate with others without ad-

ditional complexity and infrastructure. Therefore, it is natural for each EV to take

power greedily if it is safe to do so. By greedily, it is meant that each EV tries to

maximise the charging such that the set of all charging profiles at t is close to a

solution of (3.1).

minimise
p1(t),...,pM (t)

C(t)−
M(t)∑
m=1

pm(t)

2

subject to 0 ≤ pm(t) ≤ em(t)pm(t), m = 1, ...,M(t),

Sm(t) ≤ Sm(e), m = 1, ...,M(t).

(3.1)
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This performance will be backed up via realistic simulation. The parameter em(t)

which is either 0 or 1 represents the travelling profile for EV m at time t denoting

whether the EV is away or at home respectively. pm is the charging profile for vehicle

m which is the main dependent variable for the system. Sm(e) is the intended SOC

level upon finishing the charging for EV m. p is the maximum charging power limit

for EV m. Also the total number of EVs plugged in at time t is M(t) =
∑M

m=1 em(t)

where M is the total number of houses with EVs. Tm is the total charging time

for EV m and C(t) = max {0, E(t)−D(t)} is the spare capacity where E(t) is the

maximum level of power the transformer is willing to supply and D(t) is the total

non-EV demand in the distribution network.

In (3.1), C(t) is not directly measurable and the equations rather represent an

ideal case which one would like to realise. Each EV could estimate the spare capacity

in the grid using local voltage as stated in Theorem 1 if the topology of the network

were known. However, given the linear voltage-demand relationship, the minimum

voltage threshold corresponds to the maximum level of power E(t) the transformer

is willing to supply. Nevertheless, without using the topology of the network, each

EV could gradually increase its charging power until the local voltage threshold V (t)

is reached. The charging power increments may be determined proportionally to the

spare capacity in the grid as follows:

∆p(t) = kp
V (t)− V (t)

V (t)− V (t)
(3.2)

When the grid limit is about to be reached, the power increment ∆p(t) as in (3.2) for

each EV decreases and avoids a sudden violation of grid constraints.

Fairness is important while developing EV charging algorithms. Due to location

and load conditions, when using the greedy algorithm, it is always the case that some

vehicles have charging advantages over the others. However, it is not acceptable to

have any EVs unduly disadvantaged. Though it is not possible to communicate with

other households, EVm has an average charging rate, (Sm(e)− Sm(s))/(tm(e)− tm(s)),

calculated from user settings which can be used as a benchmark charging speed. In
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this thesis, it is assumed there is a price incentive such that users plug in their EVs

as soon as they get home and set the finish time as late as possible to avoid paying

extra. At time t, (3.3) will be applied to calculate a correction factor p(t) which is

used to adjust the current charging rate to keep it consistent with the benchmark

charging speed.

p(t) =
Sm(e)− Sm(t)

tm(e)− t
/
Sm(e)− Sm(s)

tm(e)− tm(s)
(3.3)

What (3.3) does for EV m at time t is to determine how much faster/slower it has to

be charged after t such that Sm(e) can be achieved exactly at tm(e). These steps will

be repeated until local voltage reaches the threshold value, in which case the power

will be dropped to half to ensure safety and electricity quality across the grid.

3.2.3 Simulation results

Simulations have been run for the above algorithm using a real suburban distribution

network with 113 households as shown in Figure 2-1. In order to test the capability

and robustness of the algorithm, the simulations assume an EV penetration rate of

80% with realistic demand profile and EV travelling profiles.

To compare with the uncontrolled case presented in Section 3.1, two sets of simu-

lations are performed in this section. The first set is an implementation of (3.1) where

the central controller has perfect knowledge of how much spare capacity the grid has

and how many EVs are plugged in. Therefore the controller is able to distribute spare

capacity equally among all EVs. This algorithm is a centralised version of the greedy

algorithm presented in [33]. The other set follows the instructions in Algorithm 1.

The discrete time step is 15 minutes across the simulations and a time window of

24 hours is used to calculate V (t) and V (t) for each household.

Figures 3-4 and 3-5 show the aggregated demand of all EVs, aggregated house-

hold non-EV demand and their sum for centralised control and distributed control

respectively. It can be seen from Figure 3-1 and 3-2 that without control, additional

EV load will cause significant peak increase which affects not only electricity price

but also electricity quality (e.g. voltage stability, power factor and phase unbalance).
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Figure 3-4: Demand profile of the network under centralised control
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Figure 3-5: Demand profile of the network under distributed control
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Figure 3-6: Battery SOC level of all EVs in the network under centralised control.
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Figure 3-7: Battery SOC level of all EVs in the network under distributed control.
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Figure 3-8: The household local voltage levels with the centralised charging.
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Figure 3-9: The household local voltage levels with distributed greedy fair charging.
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The centralised algorithm makes very good use of spare capacity in the grid and the

total demand when most EVs are plugged in oscillates between 100kW and 120kW .

The oscillation is caused by the synchronous behaviour in the simulations. Due to

computing power limitation, rather than making decisions in a fully unsynchronised

way, users are divided into several groups and each group will make decisions together

which introduces slight oscillation in total demand. The distributed fair charging al-

gorithm also controls peak load well and moves the majority of EV demand to the

overnight valley. Almost all EVs are charged to above 80% in this algorithm. Even

though it is not as good as the centralised algorithm, the results for the distributed

algorithm are still impressive given the difference in the amount of information used

in the two strategies.

Figure 3-6 and 3-7 show how the SOC level of each EV changes over time for

centralised control and distributed control respectively. During the middle of the day,

most EVs are out and there is not much EV demand in the grid. Since controllers do

not have access to SOC levels while EVs are travelling, the SOC levels are therefore

shown as constants when EVs are away and adjusted as soon as the vehicles are

plugged in. It is worth noting that in general, EVs with higher SOC levels are

charged with smaller rates which are represented as flatter curves in the figures and

those with low battery level tend to have a steep charging profile. This is essentially

due to the fairness correction term as in (3.3).

Figure 3-8 and 3-9 show the local voltage on each phase for each house under

the two algorithms respectively. Compared to the uncontrolled case where Phase

A voltages drop below distribution code regulated level 216V , both the centralised

and distributed algorithms keep the voltage within range. As we have explained

above, though the algorithms are designed to be fully asynchronous in reality, due

to computation power limitation, EVs are grouped in simulations and they update

synchronously within each group. Therefore, some fluctuations in demand and volt-

age are observed. This is especially the case in voltage profiles simulation during

overnight period as shown in Figure 3-9. When a group of EVs make charging deci-

sions, they may shoot for more energy than intended since they are unaware of the
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decisions the other EVs in the same group are making. Then because of the feedback

mechanism, the overshoot might be over-corrected when the next group make deci-

sions causing the oscillation in voltage. However, in reality, each EV will be making

decisions asynchronously. And under fully asynchronous updates, such osculation can

be avoided.

3.3 Strategic game based model for EV charging

management

In the previous section, we have proposed a TCP-like algorithm which achieves re-

markable results given the fact that no communication is used. The greedy algorithm

follows a heuristic approach. In this section, a more theoretically driven distributed

control algorithm is proposed to manage the electrical power demand for the purpose

of charging electric vehicles so that: (a) the overall power demand remains within

the limitations of the distribution network; (b) each vehicle obtains a sufficiently

charged battery at the end of the charging cycle and (c) the performance is theo-

retically derived and verified in simulations. The control problem is modelled as a

non-cooperative game with weakly coupled cost functions for each vehicle. The cost

function for each vehicle consists of an individual cost term and a group cost term.

The group cost term expresses the aggregated demand of all vehicles and serves the

purpose of ensuring that the infrastructure capacity constraints are respected. It is

shown that this term can be estimated from local voltage measurements. The in-

dividual cost term reflects the need to achieve a desired charge level in the battery.

Sufficient conditions for the overall system to admit a unique Nash Equilibrium are

identified. Convergence and stability properties are also studied. To illustrate the

efficiency of the proposed charging methodology, the algorithm is again simulated in

the context of an Australian suburban low voltage electricity distribution network as

in Figure 2-1.
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3.3.1 Strategic game

Game theory was first introduced more than 60 years ago by John Nash. Game

theory deals with strategic interactions among multiple agents. Each agent has their

own preferences among many possibilities and the preferences are often captured by

an objective function or cost functions. Generically, in a multiple-agents game, one

player’s objective function is related to the behaviours of others. In other words,

all players are coupled with each other through their objective function. Depending

on the preferences of agents and constraints of the game, agents can either play a

cooperative game where everyone chooses to work together to establish a win-win

situation, or choose not to collaborate and play a non-cooperative game where no

one can benefit from a unilateral move. Since communication is not an option for

most existing distribution networks, the system is modelled here as a non-cooperative

game which requires the least amount of information exchange.

The EV charging problem is formulated as anM -player strategic (non-cooperative)

game G = 〈M,P ,J 〉. The player set M := {1, ...,M} includes all houses with an

EV in a low voltage network. The strategy set Pm is the collection of all actions pm

the player m can take and P is the union of all Pm. The set J := {J1, ..., Jm} is the

set of cost functions to be minimised for all players.

The variables used in this section are summarized in Table 3-2. We first give the

mathematical definition of Nash equilibrium in an M player strategic game.

Definition 1 Nash Equilibrium [75] A Nash equilibrium of a strategic game

G = 〈M,P ,J 〉 is a profile of strategies p∗m ⊂ P, m = 1, 2, ...,M , with the property

that for every player m ⊂M we have

Jm(p∗m, p
∗
−m) ≤ Jm(pm, p

∗
−m) for all p∗m ⊂ P (3.4)

In simple words, at a Nash equilibrium, no player can benefit by deviating from his

equilibrium strategy if other players keep their equilibrium strategies unchanged.

The cost functions Jm,m = 1, 2, ...,M of the game are chosen to be quadratic.

Each cost function has two terms: a group cost and an individual cost. The group
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Table 3-2: List of Symbols for Chapter 3.3
m electric vehicle m
M number of electric vehicles
D upper bound on total demand level on relevant phase
D actual total demand on relevant phase
D lower bound on total demand on relevant phase
pm charging power of electric vehicle m
p−m vector of charging power of all EVs except m
p−m sum of charging power of all EVs except m
V m local voltage at house m corresponding to D
Vm local voltage at house m (or EV m)
V m local voltage at house m corresponding to D
Jm cost function of electric vehicle m
E upper bound on aggregated EV demand on relevant phase
Rm total charging energy required for EV m
Tm total time available for charging for EV m
αm, βm constants related to the user preferences of EV m
γm scheduled charging power of electric vehicle m
km constant related to network maximum and minimum demand
H aggregate household non-EV demand

cost is defined as the square of distance between the actual total demand level and the

total demand level upper bound. Each EV is to maintain a charge rate (no greater

than designed charge rate) such that the total demand is close to the upper bound

D whenever possible. Note that in a network with plenty of spare capacity, EVs will

charge at designed full rate for most of the time. We admit that such a strategy

may not be optimal in terms of network losses minimisation. However, our design

intention is to ensure network safety and power quality while keeping intervention at

minimal. And the strategy achieves such intentions and goals sufficiently.

The other cost to be minimised is the cost for deviating from local charging plans.

When EV m is plugged in, the user will set the total time Tm available for recharging

the EV. The ratio γm = Rm/Tm gives an average charging power for the EV to be

charged on time; where Rm is the total energy needed to fully charge the battery of

EV m. This average is a bottom line that the EV wants to keep track of. Without

such a cost term, it is possible that some EVs are given much more charging power

than others and fairness issues arise. It is important to note that it is assumed all
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users leave EVs plugged in for as long as possible and input the data honestly. It is

also assume that a tariff system is in place which encourages smaller average charging

rate and honest behaviours.

The cost function is then defined as follows:

Jm(pm, p−m) = (km(E − pm − p−m))
2

+ βm

(
pm − γm
γm

)2

(3.5)

where km = 1/(D − D) is the difference between upper bound and lower bound of

demand. E = D − H is the upper bound on total EV demand where H is the

household non-EV demand. E is essentially a time-varying quantity as household

load varies. However, as explained in Section 1.1.2 and Figure 1-2, the variation is

on a rather slow time scale of 30-minute or more which is sufficiently long for EVs

to converge to their optimal charging power as we will show later. γm is the average

charging power from user setting and βm is a positive constant.

Since there is no direct access to total demand levels, EVs estimate such values

using local voltage measurements according to Theorem 1 as follows:

D −D
D −D

=
V m − Vm

V
m − Vm

. (3.6)

As a result, the goal is equivalent to the local voltage of agent m being as close to

Vm as possible.

Using (3.6), the cost function (3.5) is equivalent to the following:

Jm(pm, p−m) = (km(E − pm − p−m))
2

+ βm

(
pm − γm
γm

)2

=

(
D −D
D −D

)2

+ βm

(
pm − γm
γm

)2

= Jm(pm, Vm)

=

(
Vm(pm, p−m)− Vm

V
m − Vm

)2

+ βm

(
pm − γm
γm

)2

(3.7)

The players minimise this cost function by adjusting their charging power pm.
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Because of the convexity of (3.5) with respect to pm, by taking its partial derivative

with respect to pm and letting it be zero, we obtain:

∂Jm
∂pm

= 2k2
m(pm + p−m − E) +

2βm
γ2
m

(pm − γm) = 0 (3.8)

The solution to (3.8) is given as follows:

pm = Φm(p−m, βm, km, γm)

=
k2
mγ

2
mE − k2

mγ
2
mp−m + βmγm

k2
mγ

2
m + βm

(3.9)

= −p−m
k2
mγ

2
m

k2
mγ

2
m + βm

+
k2
mγ

2
mE + βmγm

k2
mγ

2
m + βm

(3.10)

whose value is always non-negative since E ≥ p−m.

This is also the best response reaction function of EV m which is in a linear form

with respect to p−m. Let αm = (k2
mγ

2
mE + βmγm)/(k2

mγ
2
m + βm), we can write the

equilibrium solution as:
1 k2

2γ
2
2 · · · k2

mγ
2
m

k2
1γ

2
1 1 · · · k2

mγ
2
m

...
...

. . .
...

k2
1γ

2
1 k2

2γ
2
2 · · · 1




p∗1

p∗2
...

p∗m

 =


α1

α2

...

αm

 (3.11)

⇔ Ap∗ = α (3.12)

where the updated values are shown on the left of the equality sign. Then we introduce

the following proposition:

Proposition 1 There exists a unique Nash Equilibrium in the M-player noncooper-

ative EV charging game G.

Since all pm values are non-negative, the proof of Proposition 1 is straightforward.

It can be shown by contradiction that under generic conditions, matrix A is non-

singular, thus invertible. Therefore, there exist a unique solution to (3.12) which can
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be computed as:

p∗ = A−1α⇔ (3.13)
p∗1

p∗2
...

p∗m

 =
m∑
i=1

αi


k2

1γ
2
1

k2
2γ

2
2

...

k2
mγ

2
m

−


α1k
2
1γ

2
1 − α1

α2k
2
2γ

2
2 − α2

...

αmk
2
mγ

2
m − αm

 (3.14)

Lemma 1 If all EVs have the same setting of β, γ and k, from (3.9), then for any

EV m, the charging power at equilibrium can be calculated as follows:

pm =
k2γ2E + βγ

k2γ2M + β
(3.15)

To prove the lemma, the following equation holds at equilibrium:

pm =
k2γ2E − k2γ2(M − 1)pm + βγ

k2γ2 + β
(3.16)

The solution to equation (3.16) is given by (3.15).

Remark 1 The reaction function defined in (3.9) represents the optimal response of

EV m to the charging rate of all other users. And this charging rate of all other users

is only determined through the sum. Again, in practice, there is no access to the value

of the aggregated charging rate from each house’s point of view. However, (3.9) can

be approximated as follows using (3.7):

pm =
kmγ

2
m(Vm − Vm)/(V

m − Vm) + βmγm
k2
mγ

2
m + βm

(3.17)

Remark 2 The value γm is considered a constant for each EV in this thesis. How-

ever, in reality, γm can be used as a pricing parameter and associated with a tariff.

The users can choose to have their vehicles charged faster by paying more and γm

can be adjusted to higher value to meet the requirement. Customers who do not need
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to use their vehicle in the next day can choose a very small γm and pay much less

than normal electricity price (making benefit in some sense). More research will be

carried out to study the effect of γm and how to set the value based on different user

requirement.

Remark 3 In terms of how to determine parameters when the algorithm is embedded

in hardware, it is suggested that simulations should be carried out for a system where

everyone has the same setting. First of all, (3.15) can be written as follows:

pm =
E/M + βγ/(k2γ2M)

1 + β/(k2γ2M)
(3.18)

There are two terms in the numerator; the first term indicates the average spare

capacity that each household could have and the second term shows the willingness to

pay in exchange for faster charging speed. β is a weighting factor and the two terms

can be equally weighted by setting β = k2γ2M .

3.3.2 Update scheme and stability analysis

The Nash Equilibrium solution derived in the previous section can be computed in

a decentralised manner where each agent executes the best-response algorithm using

only local information. There are a variety of distributed update schemes such as

asynchronous, parallel and round robin [17]. In this section, the stability property is

investigated under an asynchronous random update algorithm.

It is assumed that time is discretized. At the beginning of interval i+1, the player

m updates with a non-zero probability πm(i + 1) based on the residual information

from the last interval and does not change the present policy with probability

p(i+1)
m =

Φm(p
(i)
−m), with probability πm(i+ 1)

p
(i)
m , with probability 1− πm(i+ 1)

. (3.19)

The reason for adopting an asynchronous and random update model is that if all

agents sense the grid and make decisions at the same time, the demand will fluctuate
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Figure 3-10: Numerical demonstration of the algorithm for 10 homogeneous players
among 91 from cold start.

a lot. In reality, people do not use electricity synchronously, despite similarity in

behaviour.

Also note that the update scheme in (3.19) is very general due to the update

probability being dependent on time. It can be seen that random round robin and

parallel update are special cases by using appropriately defined probability functions.

Figure 3-10 shows numerically the asynchronous behaviour and the convergence

of this update algorithm as per (3.19) for 10 homogeneous players among 91. Distri-

bution network constraints are not considered in this numerical example and players

update their charging power with probability of one tenth at each interval. It is ob-

served that it only takes a very short time for the game to converge in this ideal case.

Stability properties of the algorithm will be establish in Theorem 2.

Theorem 2 Under update scheme (3.19), the system asymptotically converges in the

mean to the unique Nash equilibrium from any starting point if km, βm and γm are

chosen such that the following condition is satisfied:

M ≤ 2 +
βm

k2
m γ

2
m

, ∀m. (3.20)
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Note that this sufficient condition is easy to satisfy since k2
mγ

2
m is a very small unit

free value in most cases.

Proof The proof here is based on [19] and the proof of Theorem 4.1 in [7]. At

the unique Nash Equilibrium:

p∗m =
k2
mγ

2
mE − k2

mγ
2
mp
∗
−m + βmγm

k2
mγ

2
m + βm

(3.21)

Let the difference between the mth user’s charging power and equilibrium power level

at interval i be ∆p
(i)
m = p

(i)
m − p∗m where p∗m is always positive. It will be shown that

the update function (3.19) generates a contraction mapping. From (3.19), no matter

what the equilibrium value p∗m for user m is, the following holds:

E|∆p(i+1)
m | = E|∆p(i+1)

m |πm + E|∆p(i)
m |(1− πm)

=
k2
mγ

2
mπm

k2
mγ

2
m + βm

∑
n6=m

E|∆p(i)
n |

+ E|∆p(i)
m |(1− πm), (3.22)

where E denotes expected value.

Now let the infinity norm of the vector (∆p1,∆p2...∆pM)T be ‖∆p‖∞ which is the

maximum entry in the vectors, the inequality becomes:

E‖∆p(i+1)‖∞ ≤ max
m

(
k2
mγ

2
mπm(M − 1)

k2
mγ

2
m + βm

+ (1− πm))E‖∆p(i)‖∞ (3.23)

Therefore, it is sufficient for the right hand side of (3.22) to be a contraction

mapping if the condition in Theorem 2 holds.
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Figure 3-11: POSSIM generated demand profile of the Melbourne network using the
distributed charging algorithm based on game theory under 80% EV penetration.
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Figure 3-12: POSSIM generated battery state of charge (SOC) level changes of 10
EVs from 91 (113 houses with 80% EV penetration). Each curve represents a vehicle.
Dashed lines indicate vehicles being away, as opposed to solid lines. Gradients of
curves denote the charging rate.
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Table 3-3: Performance comparisons under no EVs, uncontrolled charging and dis-
tributed charging.

Algorithm (50% EV) no EVs uncontrolled distributed

voltage outliers% 0 2 0
average charging rate n/a 3.45kW 0.89kW
peak vs valley demand 3.63 5.68 3.67
cost for charging n/a $15.86 $14.13
unbalance time% 0.05 1 0
adequately charged% n/a 100 97.55

Algorithm (80% EV) no EVs uncontrolled distributed

voltage outliers% 0 2 0
average charging rate n/a 3.45kW 0.61kW
peak vs valley demand 3.63 6.19 3.47
cost for charging n/a $25.34 $21.84
unbalance time% 0.05 1 0
adequately charged% n/a 100 95.16

3.3.3 Simulations

In order to verify the actual performance of this algorithm, simulations are run again

on the real Australian suburban three-phase distribution network with 113 households

as in Figure 2-1. We examine EV penetration rates of 50% and 80% with real demand

profiles (provided by Australian distributors) and EV travelling profiles. It should

be noted that there is no distributed generation such as domestic solar panels in

the network. The demand level upper bound is set to be similar to the existing peak

demand value without EVs, which is very low considering the additional demand from

EVs, to test the performance of this algorithm under extreme conditions. Details on

network modelling and simulation platforms can be found in Chapter 2. The data for

simulations in this section was obtained from a utility company based in Australia.

Figure 3-1 shows the demand profile of the network with 80% EV penetration

without any management. Figure 3-11 shows the performance of the distributed

algorithm in the network on a typical working day under 80% EV penetration. It

is clear from the figure that demand peak in the evening decreased and additional

demand is distributed to the overnight demand valley. From Figure 3-12, it is apparent

that the charge rates (solid lines) are steeper during the overnight period than in the
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evening peak. In the morning, all cars are sufficiently charged for the day and most of

them are fully charged. In reality, the demand level upper bound can be set to higher

values such that EVs can be charged more and faster than shown in the simulations.

One fact to note about the EV travelling profiles is that most vehicles are out for

work during the middle of the day and only residential charging is considered at this

stage.

Table 3-3 presents some key performance parameters of the system in 24 hours

averaged over several typical winter working days under three conditions: no EVs, un-

controlled charging and this distributed charging. The percentage of voltage outliers

indicates the percentage of time that the system is violating the voltage requirements

(below 216 V) according to distribution code. The cost of charging calculates the

generation price of all electricity used within that 24 hours subject to a typical spot

price. The unbalance time shows the duration that the system is experiencing 3% or

more phase unbalance per house over 24 hours. An EV is called adequately charged

if it is charged above 80% before 8am in the morning. Note that 80% is often much

more than what a car needs for the following day. It can be seen that without any

control, all EVs will start to charge as soon as they arrive at home and this increases

the peak demand significantly. Using this distributed charging control, the peak

demand is decreased significantly without violating any constraints of the network

and the electricity price paid for charging is significantly lower. More importantly,

this algorithm requires no communication infrastructure, therefore, no update of the

existing facilities and it is ready to be used.

3.4 Chapter summary

In this chapter, a distributed greedy fair charging algorithm based on the feature of

AIMD in TCP protocols is proposed for EVs in a smart grid. Unlike all other algo-

rithms, this method is based totally on local information. By simulating an actual

distribution network, it is shown that, even with a high 80% penetration rate, the dis-

tributed greedy fair algorithm successfully mitigates peak demand, ensures battery
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level and fairness without breaking any grid constraints. Even though the perfor-

mance is not as efficient as a centralised solution, given the amount of information

used in the above algorithm, the result is remarkable. Moreover, the solution can

be readily implemented in the network and requires no upgrade of the current grids’

infrastructure.

Then a noncooperative game framework for the EV charging problem is estab-

lished based also only on local information. The existence and uniqueness of a Nash

Equilibrium is proved as well as the stability of an asynchronous update scheme un-

der a mild sufficient condition. Simulations conducted using realistic data show that

even with a high (80%) EV penetration rate, the distributed algorithm successfully

mitigates demand peaks and ensures satisfactory battery levels. Most importantly, it

requires no additional infrastructure and works only with local information.
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Chapter 4

DSM algorithm under network

constraints

In the previous chapters, we have proposed several DSM algorithms which operate

purely on local measurements without requiring explicit communication or informa-

tion exchange. We have shown that the algorithms have the potential to reduce

peak demand, improve grid utilisation (improving the peak-to-base ratio) and in-

crease users’ benefit. However, an important question remains to be answered: what

is the trade-off between network physical constraints and users’ benefit? In other

words, how can we maximise grid utilisation without violating network constraints?

To answer this question, network properties such as voltage levels, unbalance, current

ratings have to be modelled and analysed. The demand management problem in this

chapter is formulated as a constrained optimisation problem to meet end-user energy

demand subject to the physical limits of the electrical network. The adopted model

focuses on the last mile of distribution networks and accounts for transformer loading,

line loading, voltage levels and phase unbalance limitations. Note that only normal

operating conditions are considered in this thesis. Faults and operating under faults

is not part of this study.

The optimisation problem is decomposed and solved via two different mechanisms.

In the first mechanism, the behaviour of all users is coordinated through a time-

varying price signal (a virtual price) that reflects how much power can be distributed
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given the network constraints. This virtual price signal is broadcast to all end-users

by the DSO through a one-way communication channel. The second mechanism is

a relaxation of the first. An algorithm, local to the user, approximates the state

of congestion in the network using the history of local voltage measurements. This

method does not require any communication infrastructure. The performance of

both methods is compared and their characteristics are illustrated using realistic

simulations.

4.1 Network model and constraints

4.1.1 Network model

In this section, we build upon the model proposed in Figure 2-1 from Chapter 2.

A user may own several appliances with flexible demand patterns (e.g. an EV, a

water heater or an air conditioning (AC) unit). We assume that the DSO has the

incentive to flatten total demand profiles and limit peak demand for asset protection

and profit maximisation. Such goals can be achieved by appropriately incentivizing

consumers [40,88] and it is assumed that such incentives are place.

We consider two network scenarios with different communication infrastructures.

In the first scenario, we assume that uni-directional communication is available in the

grid such that customers are able to receive virtual price signals from the DSO and

are able to make control actions accordingly. Bi-directional information infrastructure

and protocols are not required. Figure 4-1 (left) shows the information and load flow

schematics of this scenario. In the other scenario, we assume that no communication

is available. Households make demand management decisions only based on local

measurements as in Figure 4-1 (right).

4.1.2 Network constraints

Three phase, low voltage networks have many constraints, most of which are imposed

by the electricity distribution codes. There are penalties for not abiding by the code
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Figure 4-1: Information and power flow schematic of the algorithm using virtual price
signals from the DSO (left) and the algorithm using only local measurements (right).

or not delivering expectations placed on the DSOs by the regulator.

We first analyse the constraint sets for each of the three phases. Note that,

residential networks usually have high power factors (we will further demonstrate this

in Section 4.5) such that the real component of current is dominant. For simplicity of

analysis, and presentation, we present the network constraints under the assumption

that the network, from the transformer down, is resistive as the power factor in last

mile networks is close to unity. The transformer itself is treated as a constant voltage

source. This is for the purpose of analysis only. In the simulation and testing of the

algorithms this assumption is removed and realistic network and network constraints

are used. We also represent most of the quantities in terms of current rather than

power or energy. However, under a constant voltage assumption and unity power

factor current and power can be interchanged and that leads to a connection to

energy through integration over time.

1) Transformer capacity rating constraint : The first constraint relates to the capacity

of the distribution transformer. The aggregated power drawn at any time in the dis-

tribution network should not exceed the transformer rating. Continuous overloading

of a transformer will shorten equipment lifespan and increase losses. This constraint

is represented as follows:

∑
m∈M

xm ≤ Irating, (4.1)

where Irating is the transformer rating in terms of current and xm is the demand
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defined in terms of current of household m among a total of M households at a given

point of time. Note that the real rating is time varying, i.e. for short periods of time,

we are allowed to go over the limit [97].

2) Real line current rating constraint : Power lines in the network have current ratings

that should not be exceeded. Let Iφ be the rating of phase φ. This constraint is

represented as follows for phase 1, 2 and 3:

∑
m∈Mφ

xm ≤ Iφ, φ ∈ {1, 2, 3}, (4.2)

where Mφ represents set of the house numbers m on phase φ.

3) Phase unbalance constraint : Phase unbalance in a network leads to increased

current in the neutral and creates additional losses (as in principle, in a balanced

network, the neutral conductor is current free). In addition, phase unbalance also

leads to pulsating torque on motors and overheating of motors. Phase unbalance is

usually defined in terms of voltages. A common definition is the maximum deviation

of phase to neutral voltage from the average voltage normalized by the average voltage

[80]. In our case, assuming unity power factor, phase unbalance comes from uneven

active loads across the three phases. And we define the phase unbalance constraint

as a linear expression as shown in (4.3) where the maximum deviation of individual

phase load from the average load is capped.

|
∑

m∈Mφ
xm − 1

3

∑
m∈M xm|

1
3

∑
m∈M xm

< k, φ ∈ {1, 2, 3} (4.3)

where k is a given constant. Note that unbalance levels at various points in the

network would be different and ideally they should all be monitored. This imbalance

constraint we set is for the transformer node only, where the largest imbalance mainly

occurs. However, we acknowledge that it really can occur anywhere in the network

depending on the demand profile along the lines.

4) Artificial peak demand constraint : For the purpose of reducing peaks, it is im-

portant that the variation in aggregated demand is minimised. Hence, we apply an

artificial constraint to the system which may supersede the transformer capacity rat-
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ing constraint. We assume that as part of the normal operation of the network, the

DSO predicts the mean power and sets a total current demand threshold I for users

of all phases in the network as in (4.4).

∑
m∈M

xm ≤ I (4.4)

I is time varying, and it is larger than the expected average load. In the simulations,

we assume this value to be 30% larger than the expected average load.

All the constraints are represented as linear inequalities in terms of aggregated

current consumption and they can be combined as in (4.5):

AX ≤ B, (4.5)

where A is a sparse matrix, X is the vector of all xm and B is a vector of constants.

4.2 Problem formulation

4.2.1 Load and preference analysis

The preference levels of energy consumption for households are modelled using utility

functions as commonly used by economists [43]. For a consumer, the utility is a

function representing the satisfaction level or benefit received from the amount of

current consumed. In practice, each home appliance may have a different preference

in the way it consumes energy and the utility function may be a non-continuous

function. However, it is reasonable to approximate the aggregated utilities of all

appliances in one household with a differentiable function. The following assumption

is introduced.

Assumption 1 The aggregated utilities of all appliances in a household can be ap-

proximated by an increasing, twice continuously differentiable and concave function

whose curvature is bounded away from zero. In the context of this thesis, we will
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represent household utilities using a logarithmic function by the following:

Um(xm) = α log

(
xm
xmaxm

)
, xm > 0 (4.6)

where α is a scaling factor that is the same for all households in the entire network.

Um(xm) is the utility of house m at a point of time and xmaxm is the circuit breaker

current rating of house m.

Note that the knowledge of α and xmaxm has to be known separately as α is a global

parameter and xmaxm is a local one. The household utilities are relative measures and

the signs of such values do not matter.

Logarithmic utility functions have been studied for congestion control in com-

munication networks due to their proportional fairness [57]. We conjecture that they

may also be applicable to demand management [9]. We justify the use of a normalised

logarithmic function with the following arguments:

a) Prioritizing loads : The first reason behind choosing a logarithmic function is that

it is well suited for prioritizing loads within a household. The decreasing slope of a

logarithmic function could well represent the priority of loads. To better understand

what happens within a household, we categorize household loads into three categories.

1) Storable demand loads : The first category of loads includes those appliances

that are relatively robust to variations in power input. Some typical examples include

AC units, fridges, space heaters, electrical water heaters and EVs. For AC units and

fridges, the objective is to keep interior temperature within a desired range. Therefore,

an interruption for a period of time (minutes to hours, depending on thermal mass,

and acceptable temperature range) followed by a higher cooling output or vice versa

can still sustain desired temperature range and provide scheduling flexibility. For EVs

and water heaters, the flexibility is even higher. Such appliances can be interrupted

for hours without affecting the quality of service.

2) Shiftable demand loads : The second category of loads includes those whose

demand can be shifted but not easily interrupted. Examples of such loads include

washing machines, driers and dish washers. These appliances can be delayed until
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there is increased capacity in the network before they are turned on. However, once

these appliances are turned on, they should not be interrupted until their desired

functional cycles finish.

3) Rigid loads : The third category of loads includes those whose demand cannot

be easily shifted or interrupted. Examples of such loads includes lights, most kitchen

appliances and entertainment systems. These appliances consume energy as soon as

they are switched on, cannot be shifted to a later time, and are therefore assigned

higher priority in terms of energy supply. These loads will be called rigid loads or

inflexible loads.

The first two categories of loads are also called flexible loads. In this chapter, we

assign lower priority to flexible loads. It is assumed that there is a local controller

at each house which controls the energy consumption of all loads within that house.

This controller follows the logarithmic utility function and checks the virtual cost for

electricity. It then calculates an optimal consumption level and allocates power to

loads according to their priorities. As a result, flexible loads are likely to be curtailed

or delayed during peak hours.

b) Geometric mean maximisation (Fairness among users): Having the consumers’

utility defined as logarithmic functions, the objective function for the network oper-

ator, which takes the form of maximizing
∑

m∈M Um(xm), can be interpreted as the

maximisation of the geometric mean of all users’ demand. Traditionally, from the op-

erators point of view, the more power it sells without breaking network constraints,

the more profit it generates. Therefore, a traditional utility function of a operator

will be to maximise the sum of all households demand. However, this may result in

unbalanced power distribution among users. Geometric mean maximisation equalizes

the portion allocated to each user as well as maximizing total demand. We assume

the cost to be constant and do not model the term explicitly in the objective function.
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4.2.2 System objectives

As described above, in order to maximise the benefits to all users and the DSO while

ensuring fairness, the following system objective function is proposed

maximise
X

∑
m∈M

Um(xm)

subject to 0 < xm ≤ xmaxm ∀m ∈M

AX ≤ B

(4.7)

where A, B and X are as described in (4.5). The Lagrangian function of the optimi-

sation formulation is as follows:

L(X;λ) = max
0<xm≤xmaxm

{∑
m∈M

Um(xm) + λT (B − AX)

}
(4.8)

where λ is the Lagrangian multiplier. The corresponding dual problem [18] is

min
λ

max
0<xm≤xmaxm

{
λTB + (

∑
m∈M

Um(xm)− λTAX)

}
(4.9)

4.2.3 User objectives

The dual problem in (4.9) can be solved by the DSO and the users iteratively according

to [78]. The first part, which is for the DSO to optimize and compute prices, will

be introduced in Sections 4.3 and 4.4. The second part is for each user m to locally

optimize and it is given as:

maximise
xm

Um(xm)− λTAmxm

subject to 0 < xm ≤ xmaxm

(4.10)

where Am is the mth column of matrix A. λTAm reflects how congested the distribu-

tion route to user m is and how the constraints on this route are satisfied. Substituting

Um with (4.6) and letting the virtual price per unit signal be pm = λTAm, (4.10) can
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be written as:

maximise
xm

α log

(
xm
xmaxm

)
− pmxm

subject to 0 < xm ≤ xmaxm .

(4.11)

The first term in (4.10) is a unitless term. The second term, virtual price per unit

times the number of units gives the total virtual price which has no unit either.

Having the load preferences, utility functions and system objectives defined, we

will propose in the next two sections distributed algorithms for all users and the DSO

to jointly compute the optimal demand strategy iteratively.

4.3 Algorithm using virtual pricing signals from

the DSO

Algorithm 2 Update the algorithm using pricing signals from the DSO

For the DSO

1: if t ∈ TDSO, TDSO = {0, τ, 2τ, 3τ ...} then
2: λ(t+ 1) = max {0, λ(t)− δ(B − AX(t))}
3: else
4: λ(t+ 1) = λ(t).
5: pm(t+ 1) = λ(t+ 1)TAm
6: Broadcast pm
7: end if

For each user

1: if pm received then

2: xm(t+ 1) = min
{

max
{

0, α
pm(t)

}
, xmaxm

}
3: end if

One way to solve the problem defined in Section 4.2 is via a price signal from

the DSO. Assume that there is a uni-directional communication channel is available

in the network. The DSO sends a discrete time-varying virtual price signal which is

updated every τ seconds or minutes to coordinate users’ behaviours. Note that the

DSO price signal is a virtual price for the sake of management, and not a real price.

The problem can then be solved using Algorithm 2 where δ is the step size vector for

virtual price update.
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Theorem 3 If the update step size δ satisfies 0 < δ < 2α/(x2
sM) where xs :=

max{xmaxm , m ∈ M}, then starting from any initial current 0 < x ≤ xmax and

constraints price vector λ ≥ 0, the Algorithm 2 will converge to an equilibrium which

is primal-dual optimal.

The proof is similar to the proof of Theorem 1 in [66]. Our application is a special

example where there is only one link in the system and there are multiple linear

constraints.

To understand how fast the desired value is reached, we have simulated the al-

gorithm in the network model proposed under sudden changes of total demand in

the network starting from random initial values. The resultant behaviours of 10 ran-

domly selected houses are shown in Figure 4-2. At iteration 0, total network rigid

demand increases suddenly and it takes two iterations for households to adapt to the

new equilibrium. At iteration 5, total network rigid demand decreases suddenly and

it only takes one iteration before steady state. In the simulations for these extreme

cases, convergence is reached after a maximum of two iterations. In our application,

dynamics mainly result from the change in network demand which is on a slow time

scale as explained in Section 1.1.2. Therefore, the proposed algorithm is fast enough

to respond to changes in demand.

4.4 Algorithm using local measurements only

In most parts of the world, low voltage distribution networks are not equipped with

any information exchange infrastructure. We therefore propose an asynchronous dis-

tributed algorithm that works using local measurements only to solve the problem in

Section 4.2. In radial LV networks, voltages are a good indication of network demand

and (4.12) presents a reasonable approximation for a voltage to current demand re-

lationship, which is in general non-linear and multidimensional. The general form of

(4.12) follows from Theorem 1.
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Figure 4-2: Algorithm response of 10 randomly selected houses to a sudden increase
in demand at iteration 0 and a decrease in demand at iteration 5

Vm(t)− V ∗m =
1

cm
(I∗φ −

∑
n∈Mφ

xn) (4.12)

where Vm(t) is the voltage of house m at a particular time, V ∗m is a known benchmark

local voltage value which corresponds to a known total demand I∗φ on the same phase.

cm is a constant associated with the slope which can be learnt from historical data

sets. Generally, high demand in a distribution network leads to high voltage drops

along the distribution lines which will result in lower voltages at each household [108].

In addition, voltage is also an accurate indicator of potential faults in a network

and making demand decisions based on voltage measurements ensures reliability in

a network though in most cases, faults would be cleared much faster than demand

response actions. Note that the linear model is not an error-free model. The linear

approximation may over-estimate or under-estimate true demand value. However the

model does not need to be perfect to allow for good control. Indeed in the algorithm

to be presented, the model (4.12) is used to inform a decision about increasing or

decreasing further demand. It can be seen that the modelling errors are compensated

through feedback control.

For implementation of this algorithm, some modifications have to be made to the

constraint set as described below. Since there is no communication channel, each
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household will use local voltage measurements to approximate how much load there

is on the corresponding phase. Unbalance constraint (4.3) is taken out of consider-

ation since it is not possible to estimate it from the perspective of a single house.

Constraints (4.1) (4.2) (4.4) can be grouped and written as in (4.13).

∑
m∈Mφ

xm ≤ Iφ, φ ∈ {1, 2, 3}. (4.13)

where Iφ represents the combined requirements in (4.1) (4.2) and (4.4). We therefore

propose the following algorithm:

Algorithm 3 Update algorithm using local measurements

For users only

1: if t ∈ Tm, Tm = {0, τm, 2τm, 3τm ...} then
2: pm(t+ 1) = max {0, pm(t)− δcm(Vm(t)− V min

m )}
3: xm(t+ 1) = min

{
max

{
0, α

pm(t+1)

}
, xmaxm

}
4: else
5: xm(t+ 1) = xm(t).
6: end if

where δ is the step size which is a small number. The update interval τm is usually

of a minute up to 15 minutes and α is the scaling factor.

V min
m is a lower bound for our algorithm. It could be anywhere between the

mean and the minimum over a historic observation window depending on the design

goals. Fine tuning of this parameter is not within the scope of our study and for our

simulation, we set V min
m to be one standard deviation lower the mean.

4.5 Simulations and discussion

4.5.1 Simulation setup

To illustrate the performance of our proposed algorithms under realistic operating

conditions, we simulate the algorithms above on validated models of various Aus-

tralian networks. In this thesis, we present a model of a real Australian suburban

three-phase residential distribution network using January demand data (the hottest
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Figure 4-3: Demand profile where half of the demand (showing in pink) has flexibility
and can be shifted.
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Figure 4-4: The current profiles of three phases and neutral.
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Figure 4-5: Phase unbalance averaged over all poles.
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Figure 4-6: Averaged power factor of all phases for 24 hours under normal operating
condition.

month of the year) as measured at the transformer of this network. The chosen model

is highly unbalanced and January is the month where maximum demand occurs. As

a result, this is a particular challenging scenario which helps to understand the tol-

erance of our algorithms. The network has 113 households. The phase allocation

is shown in Figure 2-1. Note that the network is modelled with line losses, reactive

power and phase unbalance. Therefore the simulations extend the theoretical analysis

and verify the performance of our algorithms.

It has been indicated in [96] that in an EV enabled society, up to half of domestic

loads have a certain level of energy storage capacity (thermal, chemical, etc.). We

therefore assume that half of the total demand (approximately 24kWh in our simula-

tion) for each house is flexible and half of the demand is rigid. Rigid loads cannot be

interrupted and they will remain the same throughout the simulations. Flexible loads

can consume up to 3kWh of energy (of a total of around 12kWh) up to 6 hours before

or after the original time of operation in any one day. In other words, flexible loads

could distribute 3kWh of energy in a 12-hour time window (or opportunity window)

according to certain rules. While this assumptions on loads may not capture the

actual situation precisely, the purpose of this load model is to illustrate and compare

the effectiveness of two proposed algorithms. To this end, the model is of reasonable

resolution especially with EVs and energy storage devices becoming popular. The
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utilitarian formulation implies that there will be unsatisfied demand because of the

network constraints. In the simulations, we assume that unsatisfied demand will be

left unsatisfied until the next opportunity window commences. However, for flexible

loads, it is the energy rather than demand that needs to be satisfied. And due to the

huge amount of spare network capacity released by the proposed algorithms in off-

peak periods, the situations where households do not get enough energy rarely occur.

We also try to design the constraints in a way such that demand can be satisfied as

much as possible without violating network constraints.

Figures 4-3 - 4-6 show the network profiles under normal operation with no DSM.

Values are recorded at the end of every 5 minutes update interval. From Figure 4-6,

we observe that the average power factors on all phases are close to unity. Therefore,

our assumption of high power factor holds and the theoretical performances of the

proposed algorithms are expected to be achieved in this network. It is also clear, from

Figure 4-3, that the demand varies significantly during the day. The demand differ-

ence between peak hours and valley hours is large, but realistically so. In addition,

this transformer is operating close to its capacity and may need to be upgraded in

the near future if demand increases. Figure 4-4 shows the amount of current flowing

on three phases and neutral. Because the network is not well balanced, the current

flowing in the neutral is not negligible. The unbalance level is calculated at each pole

in the network using (4.3), and Figure 4-5 shows the average unbalance of all poles.

4.5.2 DSM using virtual price signals

In this section, we assume half of the loads are controlled in response to a discrete

virtual price signal from the DSO. The time between each price signal update, τ ,

is set at 5 minutes. A shorter update interval would result in faster convergence.

However, it might be operationally infeasible for loads to change demand patterns

on a millisecond or second scale in distribution networks. The choice of step size

δ can be important. A small δ may leads to slow response and large δ may cause

fluctuating demand profiles. In the simulations, following the guidance of Theorem

3, we set the value to be α/(x2
sM) which yields fastest response without causing
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Figure 4-7: Demand profile for the algorithm using virtual price signal.
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Figure 4-8: Current profiles of three phases and neutral. for the algorithm using
virtual price signal.
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Figure 4-9: Phase unbalance averaged over all poles for the algorithm using virtual
price signal.
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significant oscillation. As we can see from Figure 4-7 and comparing with Figure 4-3,

peak demand is brought down from around 160kW to around 100kW and the valleys

are well filled. In reality, what happens is that flexible loads will greedily consume

energy when the virtual price is low (e.g. EVs will charge as much as possible when

the virtual price is low) such that the peak demand is automatically reduced. At

the same time, line currents as in Figure 4-8 and phase unbalance as in Figure 4-9

are well reduced which will result in fewer losses in the system. Figure 4-13 shows

the broadcast virtual price for three users on different phases. Since the network

was originally heavily unbalanced, consumers on different phases do receive different

virtual prices. To encourage consumers to participate in DSM, the DSO might have

to compensate consumers on heavily loaded phases or rebalance the network.

4.5.3 DSM using local measurements

When a communication facility is not available, local voltage measurements are used

to make DSM decisions. We set the update interval for each house to be 5 minutes.

Houses update asynchronously (which is the natural mode of operation in the dis-

tribution grid), thereby avoiding instability issues related to sudden jumps or drops

in network demand. The peak demand is also successfully brought down to around

120kW and current variation is well reduced as shown in Figure 4-10 and 4-11. Phase

unbalance as in Figure 4-11 is not sufficiently reduced as we have taken it out of the

constraints set as in (4.13). In reality, to effectively encourage DSM and avoid fair-

ness issues, the DSOs need to better balance the networks. As for the individually

approximated virtual prices, we show the virtual price approximation of one house

from each phase (same selection as in Section 4.5.2) in Figure 4-14. Compared to the

price profile in Figure 4-13, both algorithms capture the evening peak and increase

price accordingly which encourages less usage. For off-peak periods, the algorithm

uses a broadcast signal that captures more details on demand and it is able to perform

minor adjustments on prices.
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Figure 4-10: Demand profile for the algorithm using local measurements.
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Figure 4-11: Current profiles of three phases and neutral. for the algorithm using
local measurements.
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Figure 4-12: Phase unbalance averaged over all poles for the algorithm using local
measurements.
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Figure 4-13: The virtual price of three users on different phases broadcast by the
DSO.
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Figure 4-14: Locally approximated prices of three users on different phases.
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Table 4-1: Performance comparisons of the same network under no DSM, Algorithm
1 and Algorithm 2 with 50% flexible loads

Algorithm no DSM Algorithm 1 Algorithm 2

maximum total active power demand 164kW 113kW 120kW
maximum line RMS current magnitude 391A 225A 267A
maximum average pole unbalance 1.83 1.24 1.61
peak to average ratio 2.06 1.15 1.26

4.5.4 Comparison

The differences in key performance parameters between the above two algorithms are

summarised in Table 4-1. In terms of peak shaving, both algorithms achieve the design

goal. The algorithm that uses explicit virtual price signal (Algorithm 1) has a better

regulated total demand throughout the day while the algorithm that only uses local

information (Algorithm 2) has a more fluctuating behaviour. As for unbalance, again

Algorithm 1 has a more stable behaviour due to global communication. However,

the installation and maintenance cost associated with communication channels are

also a factor to be considered when making the decision. More importantly, despite

the fact that there are some mismatches between the approximated virtual prices

from Algorithm 2 and the virtual prices from Algorithm 1, they both indicate the

commencement and intensity of peak demand. Given the fact that Algorithm 2

does this using only local measurements, it is arguable that Algorithm 2 is a good

alternative for networks requiring less expensive, effective and readily applicable DSM

solutions.

To understand the effect of load composition on the performance of the algorithms,

we have simulated the cases with different flexible load penetration from 0% to 50%.

The results on peak to average ratio are presented in Figure 4-15. A key observation

is that the amount of flexible load affects the performance of proposed algorithms

significantly. The major performance indicator, the peak to average ratio, drops

approximately linearly with the amount of flexible load. In general, Algorithm 1

performs better than Algorithm 2 as the level of flexible load increases.
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Figure 4-15: Peak to average ratio under different levels of flexible load penetration

4.6 Chapter summary

In previous chapters, models and algorithms have been proposed to manage demand in

distribution networks. However, we have not taken network constraints into consider-

ation apart from aggregated total demand. In this chapter, we built upon the models

and algorithms proposed in earlier chapters and explicitly include network physical

constraints in the theoretical formulation. The DSM problem has been modelled

as a centralised constrained optimisation which maximises aggregated utilities of all

users and then decomposed for distributed implementation. The utility function we

designed takes into account marginal fairness and has the ability to prioritize loads.

We have proposed two implementations for the optimisation problem. In the first

implementation, using a uni-directional (DSO to consumer) communication infras-

tructure, the DSO uses a time varying virtual price to coordinate users’ behaviours.

In the other implementation, users approximate the virtual constraint prices via local

voltage measurements. We have shown theoretically and in simulations that both

algorithms achieve demand management targets and successfully shave peaks. Gen-

erally, the algorithm using price signal performs better but it requires a certain level

of additional infrastructure. On the other hand, the algorithm using only local mea-

surements could be a good solution for networks where communication infrastructure

is not available.
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Chapter 5

DSM and PV curtailment in

networks with domestic distributed

generation

In the previous chapters, we have studied DSM algorithms that can be applied in

networks with no distributed solar PV generation. We move the focus to networks

with domestic solar PV systems in this chapter. The contribution is twofold. We first

illustrate the impact of domestic solar PV systems have on distribution networks and

the subsequent risks. The impacts are illustrated via network data analysis as well

as realistic simulations.

Then, we study the compatibility of DSM in networks with PVs. In the previous

chapters, we started with a heuristic DSM approach and then established several the-

oretical DSM models. We followed a data-driven approach such that all the proposed

algorithms are verified in realistic network models with real network data. Domes-

tic PVs bring some fundamental changes to our models and algorithms. One of the

major changes is that power is now flowing in both upstream and downstream direc-

tions. All the previous algorithm and simulation models need to be updated to cater

for such changes. Instead of reproducing all the algorithms and associated theories,

we aim to give insights on how DSM can also be applied in networks with PVs and

how PVs can be managed in a similar way. Therefore we propose two heuristic al-
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gorithms for demand management and PV curtailment respectively. The algorithms

are implemented in the simulator and the performance is supported by simulation

results.

5.1 Residential PV systems in distribution net-

works

Renewable power such as derived from rooftop solar PV systems is believed to be a

major player in any future grid. In Australia, several subsidy schemes have stimu-

lated the uptake of solar PV systems in the domestic market. Australia has indeed

significant solar power potential, and its low density housing is well suited to domes-

tic solar PVs. Even so, there are technical issues associated with solar PV in the

distribution network that are not fully understood. Solutions presented at present do

not make full use of the potential of PV, nor are they integrated into the grid with

the same level of rigour that is demanded from the normal grid operations, but rather

solar PV are treated as negative demand. This is safe from a grid-operational point

of view, but undervalues the PV potential. In this section, we examine some of the

major effects rooftop solar PV systems bring to the electricity grid.

5.1.1 Capacity utilisation

Rooftop solar PV systems act as distributed generation sources which offset house-

holds’ electricity consumption from the grid. However, this reduction in consumption

may not always be favourable for networks whose sizes are determined by maximum

possible demand. In particular, notice that the generation peak of PV systems in

general does not coincide with the peak in residential demand. As a consequence the

network infrastructure, which must cater for peak demand, cannot be reduced in size,

but at the same time is used less as total demand is reduced. This observation also

goes a long way to explaining the consideration of PV supply as negative demand.

The distribution assets form a significant part of the electricity price and under-
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utilised infrastructure eventually leads to higher electricity prices (because less energy

must pay for the same cost of the infrastructure, price per unit electricity must go up),

especially where network companies are promised a fixed return on their investments.

Figure 5-1 shows the change of National Electricity Market peak demand and av-

erage demand from 1999 to 2013. The average demand curve shows a clear decrease

in demand in recent years compared to a more fluctuating behaviour of peak demand.

The fluctuation could be caused by different weather conditions as the main sources

of electricity peak consumption, space heating and cooling, are weather dependent.

Figure 5-2 plots the ratio between peak demand and average demand. Though vary-

ing, an increasing trend is evident for such a ratio over the period of time, especially

in recent years. Distributed domestic solar PV generation is considered to be one of

the causes of this increase. Generally, because of the extra energy solar panels gener-

ate, the average amount of energy supplied through the network is reduced. However,

given the fact that solar generation usually occurs during the day while residential

peak demand occurs in the evening, PV systems are not effective in reducing peak

demand.

To further verify the change in capacity utilisation of networks, we approach this

problem from a different scale and simulate the demand profile of households in a NSW

distribution network. For this network of thousands of customers, we have half-hourly

demand and supply data for 537 houses which are randomly located. Due to such

randomness, we argue that an analysis of these 537 houses is scalable to the entire

network. More details about the assumptions on demand profiles will be introduced

in later sections and Table 6-1. Here, we assume that the individual demand stays

unchanged but that the number of households having rooftop PV changes. Figure

5-3 shows how the peak to average ratio evolves with distributed PV penetration

from 0% to 75%. With this network, it can be clearly seen that as the number of

PVs increases, the peak to average ratio increases, too. This is intuitively reasonable

as PVs generate energy mainly during non-peak periods which lowers the average

consumption. However, the contribution to peak demand reduction is limited.
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Figure 5-1: Annual peak and average demand of NEM from 1999 to 2013 [13]
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Figure 5-2: Peak to average demand ratio of NEM from 1999 to 2013 fitted by a
linear and a quadratic function

110



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

PV penetration (pencentage total household)

Pe
ak

 to
 a

ve
ra

ge
 r

at
io

Figure 5-3: Simulated peak to average demand ratio of the small scale NSW distri-
bution network with respect to different PV penetration (0% to 75%)

5.1.2 Power quality issues reflected in simulations

To understand the physical effects of distributed generation on the electricity grid

and therefore the network capital expenditure, we have chosen a typical Australian

suburban network with 113 houses for a case study. This type of network is the

last mile of the electricity grid and the root of possible problems caused by domestic

PV systems. The schematic diagram in Figure 2-1 shows the network configuration

which is based on an actual network in an Australian suburb. The simulation setup

is also explained in Chapter 2. The network is supplied by a single transformer and

is configured radially. The network also accurately represents phase connections with

48 houses on phase A, 28 houses on phase B and 37 houses on phase C. More details

on the modelling and model validation can be found in [33,105,108,109].

Figure 5-4 shows the aggregated demand profile of the network under normal

operating conditions with no PV. The demand data is based on an actual January

(the hottest month of the year) usage as measured at the transformer of this network

(supplied by the network operator). The chosen model is highly unbalanced and

January is the month where maximum demand occurs.

Figure 5-5 shows the power factor on each of the three phases at the transformer.

This network has very high power factor as expected.
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Figure 5-4: Demand of the neighbourhood network with no distributed PV on a
typical January day (peak to average ratio 2.06).
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Figure 5-5: Corresponding power factor at transformer of the neighbourhood network
with no distributed PV.
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Voltage viability

Voltage plays a very important role in power quality. All electrical appliances need an

appropriate voltage to operate; over/under voltage could lead to shortened lifespan

of appliances and unsatisfactory performance.

In the simulation study, we maintain the consumption profiles of all households but

increase the number of PV systems in the network. The locations of the PV systems

are randomly selected, and uniformly distributed over the 3 phases. Three cases are

examined in this thesis, with PV penetrations of 30%, 50% and 100% of total number

of houses on each phase (the penetration levels are high to better illustrate impacts

and performance of possible remedies). The PV profiles are based on averaged real

generation data in January NSW as introduced in Section 2.1.3, Figure 2-8.

Figures 5-6 - 5-8 show gross demand, as well as net demand which is gross de-

mand minus distributed PV generation of the given network. The figures indicate

a significant discrepancy between the PV generation peak and electricity consump-

tion peak which further confirms our previous demonstrations about the increased

peak-to-average ratio.

In the simulation model, we are able to monitor the voltage level at each household

and the levels at individual households are also recorded and presented (we present

phase C as an example) for the three scenarios as shown in Figures 5-9 - 5-11. In

Australia, voltages at each point of connection must be maintained at 230 V, +10%

to -6%, i.e. in the range 216 V to 253 V [97], which are denoted as the dotted

(red) lines in the figure. With penetration smaller than 50%, the impact on voltage

levels are insignificant. However, with greater penetration, it can be observed that

the PV systems have imposed over-voltage risks to the network during the daytime.

However, the risks are not as significant as one may anticipate. This is because that

injected power of individual PVs are locked to the phase of the associated households’

voltages which would be different from houses to houses. As a result, some of the

voltage rises cancel out. The level of such over-voltage increases as the number of

PV systems goes up. For readers’ information, though utilities in Australia have
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specified that inverters should disconnect from the grid if local voltage exceeds 253

V, in practice, many inverters are not configured this way and inverter connection

point voltages of up to 270 V which is the maximum allowed according to AS 4777

have been observed [95].

Power factor

Power factor measures the ratio between active power being consumed and apparent

power. The Distribution Code in Australia requires a 0.8 or higher power factor for

most installations and residential networks are known to have a high power factor [97].

However, the introduction of PV systems has changed the picture completely. With-

out reactive power compensation embedded in PV systems, the power supplied by PV

systems will reduce the total active power demand from the transformer significantly.

However, the transformer still supplies the reactive power which has not been changed

much. As a result, the power factor at the transformer will be distorted significantly.

This would potentially affect the billing system as well as the efficiency of the entire

grid.

Figures 5-12 - 5-14 show the power factor value at the transformer level for indi-

vidual phases. In the morning, when PV systems start to generate, the transformer

starts to supply less and less active power but the amount of reactive power remains

the same. As a result, the power factor keeps decreasing. When the supply from PV

systems is high enough, active power starts to reversely flow into the transformer and

it can be observed that the power factor goes up again. However, since active power

and reactive power supplied by the transformer are flowing in opposite directions, the

power factor goes from lagging to leading. This situation is very undesirable from the

operators’ point of view. This phenomenon will be reversed in the afternoon when

the generation from PV systems reduces and the figures clearly illustrate the point

of change.
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Figure 5-6: Gross and net demand of the neighbourhood network with 30% distributed
PV penetration.
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Figure 5-7: Gross and net demand of the neighbourhood network with 50% distributed
PV penetration.

8:00 12:00 16:00 20:00 0:00 4:00 8:00

−200

−150

−100

−50

0

50

100

150

Time of Day

D
em

an
d 

(k
W

)

 

 

Net Demand
Gross Demand

Figure 5-8: Gross and net demand of the neighbourhood network with 100% dis-
tributed PV penetration.
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Figure 5-9: Household voltages of all houses on phase C in the neighbourhood network
with 30% distributed PV penetration.
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Figure 5-10: Household voltages of all houses on phase C in the neighbourhood
network with 50% distributed PV penetration.

8:00 12:00 16:00 20:00 0:00 4:00 8:00
210

220

230

240

250

260

270

V
ol

ta
ge

 (
V

)

Figure 5-11: Household voltages of all houses on phase C in the neighbourhood
network with 100% distributed PV penetration.
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Figure 5-12: Power factor at transformer of the neighbourhood network with 30%
distributed PV penetration.
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Figure 5-13: Power factor at transformer of the neighbourhood network with 50%
distributed PV penetration.
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Figure 5-14: Power factor at transformer of the neighbourhood network with 100%
distributed PV penetration.
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Figure 5-15: Averaged and worst voltage unbalance values from all poles in the neigh-
bourhood network with no distributed PV penetration.
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Figure 5-16: Averaged and worst voltage unbalance values from all poles in the neigh-
bourhood network with 50% distributed PV penetration evenly distributed on all
phases.
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Figure 5-17: Averaged and worst voltage unbalance values from all poles in the neigh-
bourhood network with 50% distributed PV penetration which is distributed on a
single phase.
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Phase unbalance

Phase voltage unbalance in a network leads to increased current in the neutral, cre-

ates losses and affects the functioning of three phase connected motors. Therefore it

is important to limit the unbalance level. The Distribution Code requires voltage un-

balance to be maintained within 5% for the network voltage under consideration [97].

We assume that the real component in voltage is dominant, the angles between any

two phases are kept close to 120 degrees and phase shifts are negligible. Therefore

the unbalance is determined by the magnitude of the differences of the voltages in the

three phases. Phase voltage unbalance is expressed in terms of the ratio between pos-

itive sequence voltage and negative sequence voltage. It could also be approximated

using (4.3).

Note that the voltage unbalance level will be different across the network and

in the simulation model, we measure unbalance at the poles whose positions are

shown in Figure 2-1. To illustrate the potential impact of distributed PV systems

on the unbalance level of a network, we first simulate the network where there is no

distributed PV at all as a benchmark scenario. The unbalance level averaged over

all poles is shown in Figure 5-15. We then simulate two scenarios with the same

degree of distributed PV penetration (50%) and electricity consumption patterns but

different locations for PV systems. In the first scenario, we randomly allocate the

domestic solar PV systems to households on all three phases. In other words, each

phase gets a share of the 34 domestic solar PV systems roughly proportional to the

total number of households on that phase. The resulting unbalance averaged over all

poles as well as the value on the worst pole are shown in Figure 5-16. An interesting

observation is that the added domestic solar PV systems have reduced the average

voltage unbalance level in the network which is of benefit to the network. It is also

worth mentioning that close to sunset, the small amount of output from PVs, which

is in the same phase as household voltage, is actually helping power factor. And

therefore the worst pole is less unbalanced than average. In the second scenario, all

domestic solar panels are located on a single phase. The result is shown in Figure 5-17
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where a significant spike can be seen. The peak unbalance value is more than 500%

the value when PV systems are evenly distributed across the phases. To conclude, if

domestic solar PV systems are distributed properly, it could be beneficial to a given

network in terms of improving voltage unbalance level and reducing losses. However,

if the installation of PV systems is skewed toward any particular phase, it could bring

a massive negative impact to the network by exacerbating the level of unbalance.

5.2 Distributed algorithms

Based on the voltage-demand relationship model introduced in Chapter 2, we present

in this section two sets of illustrative examples of possible distributed algorithms.

The first set aims to vary or shift demand which has enough flexibility such that

overall demand can be flattened. The other set of algorithms curtails distributed PV

generation when necessary to regulate voltages and prevent reverse power flow.

5.2.1 Feasibility of demand management algorithms in the

presence of PV

The DSM algorithms proposed in Chapter 3 and 4 can be applied to loads here with

some modifications. In the following sections, we use the same simple proportional

control logic for both loads and PV systems. Rather than developing optimal algo-

rithms, we are more interested in the validity of our linear voltage-demand model in

a network with PV systems. Therefore, some heuristic algorithms, as defined below,

are more suitable for the purpose.

With respect to a single appliance, we define the following variables. Note that

the algorithm works asynchronously and all the variables are user specific. We abuse

the notation by not putting a user specific subscript for every variable. Let drated

represent the current rating of the appliance. Let V (ts) be the voltage measured at

ts ∈ Ts where Ts = {0, τs, 2τs, ...} is the set of sampling times.

Let t ∈ T denote the time when a control action is taken where T = {0, nτs, 2nτs, ...}
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(n ∈ Z) is the set of control times. Note that T ⊂ Ts. V (t) then denotes the house-

hold voltage based on which a control action is taken at time t, and it is an average

of measured voltages between two control actions: V (t) =
∑t

t−nτs V (ts)/(nτs).

The measurement sampling time can be on a faster time scale of several seconds

up to a minute and the control actions could happen on a much slower time scale of

several minute up to 15 minutes as explained in Section 1.1.2.

Let d(t) denote the current consumption for a given appliance at time t and let p(t)

denote the probability of d(t), for a shiftable load; let Vmin, Vmax be the minimum and

maximum threshold voltages of a household which can be obtained from historical

measurements. The control interval length τn = nτs between iterations should be

carefully chosen for the algorithm to obtain the desired outcome.

Algorithms 4 and 5 below are proposals for managing storable loads and shiftable

loads respectively. Algorithm 4 is a rate-based controller which controls the current

flowing into an appliance. Current increases or decreases linearly according to the

household voltage measurements. Algorithm 5 is a probability-based controller that

controls the probability for an appliance to be switched on or off. Once switched on,

the appliance will complete its full duty cycle without interruption.

Algorithm 4 Storable loads management

Require: V (t), V min, V max, τn

Ensure: d(t)

1: while Required do

2: d(t)← drated ∗ (V (t)− Vmin)/(Vmax − Vmin)

3: d(t)← min{d(t),drated}

4: d(t)← max{d(t),0}

5: wait for τn

6: end while
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Algorithm 5 Shiftable loads management

Require: V (t), V min, V max, τn

Ensure: d(t)

1: while Required do

2: p(t)← (V (t)− Vmin)/(Vmax − Vmin)

3: p(t)← min{p(t),1}

4: p(t)← max{p(t),0}

5: if rand(0, 1) < p(t) then

6: d(t) = drated

7: run full duty cycle

8: end cycle

9: else

10: d(t) = 0

11: wait for (τn)

12: end if

13: end while

5.2.2 Rooftop PV curtailment algorithm

A local controller that makes decisions only from voltage measurements can be in-

stalled on rooftop PV units such that the output can be limited to prevent reverse

flow of power. An example algorithm for the controller is shown in Algorithm 6 where

sg(t) represent the current supplied by the rooftop PV at time t without control.
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Algorithm 6 PV curtailment

Require: V (t), V min, V max, sg(t), τn

Ensure: s(t)

1: while Required do

2: s(t)← sg(t) ∗ (Vmax − V (t))/(Vmax − Vmin)

3: s(t)← min{s(t),sg(t)}

4: s(t)← max{s(t),0}

5: wait for (τn)

6: end while

5.3 Simulations

To illustrate the performance of our proposed model and algorithms under real op-

erating conditions, we build a Simulink model based on the actual network, shown

in Figure 2-1. We then simulated the algorithms using real demand data collected in

this network. Based on the estimation in [70], we assume that 70% of the load in the

network is inflexible base load which cannot be managed, 15% of the load is shiftable

and 15% is storable. In other words, 30% of the load is flexible. We also assume that

all of the households have PV systems installed and the generation profile is shown

in Figure 2-8. Again, this is an exaggerated assumption for better presentation of the

effectiveness of to-be-proposed algorithms.

Figure 5-18 shows the total demand on Phase C before any management. At

noon, when distributed PV generation is at a maximum, supply outruns demand and

energy starts to flow in reverse into the distribution transformer. Such a situation

is extremely undesirable for operators as it distorts the power factor, voltage and

other network physical constraints significantly. The black solid line in Figure 5-20

shows how the average power factor at the transformer is distorted. When power is

flowing in reverse, the power factor goes from lagging to leading. In the evening, just

as domestic solar generation dies out, demand peak starts to occur and this peak

is significantly higher than average demand. During the overnight period, demand
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Figure 5-18: Demand profile of the network (Phase C) without management (100%
PV penetration).
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Figure 5-19: Demand profile of the network (Phase C) with management (100% PV
penetration).
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Figure 5-20: Average Power factor at transformer before and after control (reverse
current flow is shown as negative power factor).

decreases dramatically reaching a minimum at about 4:00 am. Figure 5-19 shows the

demand profiles after applying the proposed algorithms. At noon, the most obvious

difference is that distributed PV generation is curtailed to strictly prevent reverse

flow of energy. In addition, a portion of peak demand is moved to the morning which

is depicted by the increased width of the orange flexible demand area. During the

peak demand period, which is around 8 pm at night, because the demand is already

high, most flexible loads are shifted to other times so that total demand is reduced

significantly. A large part of this shifted demand then occurs during the overnight

demand valley, where again the orange area is much larger than in the original.

The red dotted line in Figure 5-20 shows that the power factor is better maintained

compared to the case without any management.

Figures 5-21 and 5-22 show the voltage profiles for all houses on Phase C in

this network before and after management. Depending on the actual location of

households and the distance from the transformer, the voltage profiles could vary.

However, it is generally true that when total demand in the network increases, the

voltages at individual houses will drop. Before management, voltage levels are pushed

up in the morning and many of them are worryingly low in the evening. The overall

pattern fluctuates a lot during one day. This situation is improved dramatically after
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Figure 5-21: voltage profile of the network without management.
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Figure 5-22: Voltage profile of the network with management.

the control is in place. The overall pattern is much flatter and all voltages are within

limits.

To further verify the voltage-demand relationship model we have derived in Section

2.2 and the performance of our proposed algorithms, we plot the network’s total net

demand versus an individual household’s voltage before and after control as in Figure

5-23. The red dots are measurements before any management of loads or PV. Black

solid dots are measurements after control. The scatter plots are squeezed to a middle

area which can be viewed as a set-point. Two lines which are slightly different from

each other can be fitted for the two scatter sets respectively. The norm of residuals for

the two fittings are 0.67 and 0.52 respectively which means the scatters after control
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Figure 5-23: Relationship between network net demand and local voltage of a house
in the network before and after control.

are around 20% more linear than before control.

The differences in the lines and the improvement of linearity suggest two facts: a)

the model is not absolutely accurate and it has noise; b) this open loop noise is well

compensated through closed loop control. In other word, the controller makes good

decisions within the noisy model and reduces modelling errors through feedback.

5.4 Chapter summary

In this chapter, we have extended the findings in previous chapters and looked at

networks penetrated by rooftop solar panels. We first of all gave an overview of

the impact of domestic solar generation in distribution networks, including financial

aspects and physical aspects. The physical impacts include, but are not limited to, a

lower network utilisation rate or higher peak-to-average ratio, voltage level distortion

and possible increased phase unbalance. These quantities have been expressed as

time series of physical values. Then, we have proposed a novel distributed approach

to regulate demand and distributed supply in the last mile of distribution networks

which requires no explicit communication and no upgrading of grid infrastructure.

One of the key components of the approach is the relationship modelling of voltage and

demand we have developed in Chapter 2. Based on such a model, we have proposed
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heuristic distributed demand and supply management algorithms targeted at flexible

demand and distributed supply respectively. Via simulations on a real Australian

suburban network, using real demand and supply profiles, the algorithms have been

shown to be effective for demand peak shifting, supply peak shaving and the flattening

of entire net demand profiles of the networks of interest. Most importantly, the fact

that such algorithms use only local information for decision making and do not require

any additional communication infrastructure makes them readily implementable.
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Chapter 6

Fair network tariff design

The study of impacts of PV systems on distribution networks consist of two com-

plementary components or directions. In Chapter 5, we have examined the first

component, the impact of PV systems on the physical properties of a distribution

network and the utilisation of grid infrastructure. We have also proposed a control

algorithm to curtail the supply for network protection and infrastructure utilisation

improvement. In this chapter, we continue the study on PV systems by looking at

the other component, which is a focus on individual customers’ welfare. Given known

network infrastructure expenditure, we are interested in what each consumer’s fair

share of this expenditure is, and how do PV systems affect this share with respect to

the cost paid under network tariffs? To answer this question, we propose a utility-

theory-based approach to quantify individual customers’ benefits of using network

infrastructure. Such benefits minus the billing amount capture the net utility or net

infrastructure benefit for a given customer. The net benefits are then used to assess

the fairness of various tariff structures, as well as to design optimal tariffs.
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6.1 A Utility model for sharing network infras-

tructure and fairness

Although network tariffs have existed for a long time, there is no clear definition of the

benefits that each customer gets from the network. In the public utility, the idea of a

tariff is simply to provide a means for society as a whole to pay for the infrastructure

and the energy use, with the firm belief that big users are better placed to pay more.

Hence a very small flag fall cost, a proportional cost for energy use and a clear subsidy

for those who can afford less form the basis of traditional electricity tariff design.

Current network tariff structure commonly consist of daily standing charge, de-

mand charge and TOU charge. United energy, as an example, has specific tariffs

for customer groups of different voltage and demand requirements as listed in [94].

Though there are many entries, all the tariffs can be explained using the three-part

structure. Low voltage residential users have a demand charge of zero and depending

on their metre type, they can be either on a higher standing charge (lower off-peak

charge) or a lower standing charge (no off-peak) tariff. Low voltage industrial and

commercial users are shifting from a zero demand charge tariff (higher standing charge

and TOU) to a zero standing charge tariff (higher demand charge, lower TOU) re-

flecting distributor’s attention of peak demand problem.

Despite the constantly change tariff, the fairness among different customers is

not well understood. In this section, we propose a rational economic pay structure

where users pay proportionally to benefit derived, not necessarily taking means into

account, or a society benefit of having electricity supply. We study the usage patterns

of different groups of customers and propose a novel utility model for sharing network

infrastructure. The model clearly quantifies the benefits and costs of households in

the network for using electricity. We then use the model to study the fairness and

efficiency of different tariff structures.
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6.1.1 Network capital cost and operational cost

We first look at the costs from the provider’s point of view. In order to be able to

deliver electricity energy to consumers, utility providers need to invest in infrastruc-

ture. They need to build, maintain and grow the network as per need basis, always

catering for the worst possible load, under faulty conditions (as the network is never

without faults essentially). A common approach for network expenditure analysis is

to break the cost into capital cost and operational cost. The capital cost includes the

sunk cost of initial infrastructure and ongoing infrastructure development. The oper-

ational cost includes maintenance costs, performance monitoring, billing. Note that

these incurred costs are for the network operators since they are the assets’ owners.

However, from a customer’s point of view, their usage of the infrastructure, which

is at the expense of the operators, can be considered as the customer’s benefit. There-

fore, we use each customer’s share in the overall network expenditure to quantify that

customer’s benefit of using the infrastructure. Nevertheless, the benefit comes at a

cost which in reality is reflected as the amount on electricity bills.

6.1.2 Utility model

Let M be the set of M customers and let the demand of customer m ∈ M at time

t ∈ T be xm(t) where T = {1, 2, ..., T} is the set of sampling times. In this thesis,

we use a half-hourly sampling rate and consider one year, i.e T=365*48=17,520. The

demand profile of customer m over the entire sampling period T is denoted as the

set xm = {xm(1), xm(2), ..., xm(T )}. The annual average demand of m is defined as

xam = (
∑

t∈T xm(t))/T . The aggregated demand profile of all customers can then be

denoted as set x = {
∑M

m=1 xm(1),
∑M

m=1 xm(2), ...,
∑M

m=1 xm(T )}. Assume that the

maximum total demand occurs at time tp ∈ T such that x(tp) = max (x). We then

define the annual peak demand contribution for customer m as xpm = xm(tp). The

annual network charge is a function of xm defined as Cm = fk(xm) under a given tariff

structure k, which will be explained in detail in Equation (6.2). The gross benefit for

customer m is then defined as follows:
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Category A Category B
Has PV No PV

Number of houses 131 406
Peak demand contribution xp

m (kW/house) 1.4 1.4
Annual mean net demand xa

m (kW/house) 0.44 0.60

Weighted critical peak MEAN(x
Icp
m ) + STD(x

Icp
m ) (kW/house) 1.025 1.027

Critical peak usage Xcp
m (kWh/year/house) 87.6 89.6

Peak usage Xp
m (kWh/year/house) 707.8 725.0

Shoulder usage Xs
m (kWh/year/house) 1496.4 2850.7

Off-peak usage Xo
m (kWh/year/house) 1513.3 1551.2

Solar generation (kWh/year/house) 1855.4 0
Solar consumed (kWh/year/house) 1411.5 0
Solar exported (kWh/year/house) 443.9 0

Gross consumption (kWh/year/house) 5216.6 5216.6
Net consumption (kWh/year/house) 3805.1 5216.6

Table 6-1: Demand and supply profiles of sample households over a year. Houses
from the same category are assumed to have identical profiles

Bm = CX × xpm∑M
m=1 x

p
m

+OX × xam∑M
m=1 x

a
m

where CX is the capital cost of the network and OX is the operational cost of the

network, both averaged on a per annum basis. M is the total number of households

on the network. We define the net utility or net infrastructure benefit of customer m

as the following normalised equation:

um(xm, tp) =
Bm − Cm + c

1
M

∑M
m=1 Cm

=
CX × xpm∑M

m=1 x
p
m

+OX × xam∑M
m=1 x

a
m
− f(xm) + c

1
M

∑M
m=1 f(xm)

(6.1)

where c is a constant added such that each net utility um (m ∈ M) is greater than

0. Note that the net utility is a relative measure and adding a constant will not

change the difference in utility benefits between two customers. The constant c can be

interpreted as an insurance policy or mechanism provided by regulators and operators.

6.1.3 Load and tariff model

For the tariff illustration in this section, we use the New South Wales network data

(half hourly sampled demand and supply) comprising 537 randomly selected house-

holds. Based on the formulas and regulations provided in [14] and the figures in [54],
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we assume the entire infrastructure cost per annum is $566, 448 for the 537 houses.

We further assume that the cost can be broken down into 50% capital expenditure

and 50% operational expenditure.

To study the general cases, instead of using the profiles individually, we create a

hypothetical load profile by averaging relative groups. With this averaged approach,

although our analysis is performed on a relatively small sample size, we argue that the

results are scalable to most distribution networks. Among the 537 houses, 131 houses

have domestic solar PV systems installed and the remaining 406 houses do not. The

half-hourly domestic solar supply profiles for all the 131 houses are averaged to create

a general supply profile. The half-hourly gross demand profiles (exclude distributed

PV) for all 537 houses are averaged to create a general demand profile which is also

the profile for houses without PV systems. By subtracting the general demand profile

by the general supply profile, we obtain the profile for houses with PV systems.

One important fact about this network is that most of the distributed PV units

were installed early which implies that they are smaller in size than some of the later

ones. Also, most of the houses may not have air-conditioners so the peak consumption

and average consumption are lower than some of the larger users.

The key data are summarised in Table 6-1. In this table: Solar generation refers to

the sum of domestic solar energy consumed and exported; Gross demand refers to the

sum of domestic solar energy consumed and net demand; Peak demand contribution

and annual mean net demand are defined in Section 6.1.2. The rest of the entries will

be explained in the following paragraphs.

In line with the most common tariff structures, we assume that there are up to 4

types of billing periods. Let Icp ⊂ T be the set of ‘critical-peak’ periods from 4pm to

8pm on 12 days declared by network operators several hours or days in prior. For the

subsequent simulation and analysis Icp is assumed to be known. Let Io ⊂ T be the

set of ‘off-peak’ periods from 10pm to 7am the next morning on all days. Let Is ⊂ T

be the set of ‘shoulder’ periods from 8pm to 10pm on all days, 7am to 4pm on all

days, and 4pm to 8pm on non-work days. Let Ip ⊂ T be the set of ‘peak’ periods

from 4pm to 8pm on all working weekdays excluding Icp.
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Let the set of demand of customer m during critical peak period be x
Icp
m = {xm(t) |

t ∈ Icp}; the set of demand of customer m during peak period be x
Ip
m = {xm(t) | t ∈

Ip}; the set of demand of customer m during shoulder period be xIsm = {xm(t) | t ∈ Is};

the set of demand of customer m for off-peak period be xIom = {xm(t) | t ∈ Io}. By

adding the mean and one standard deviation of the distribution x
Icp
m , we obtain the

so-called weighted critical peak as in Table 6-1.

Assuming half-hourly sampling rate, the total consumption of customer m over a

year during critical peak period is X
Icp
m =

∑
t∈Icp xm(t)/2. Note that xm is measured

in KW and X
Icp
m in measured in KWh. the equation is to be interpreted as just rep-

resenting the numerical values, not taking units into account; the total consumption

of customer m over a year during peak period is X
Ip
m =

∑
t∈Ip xm(t)/2; the total con-

sumption of customer m over a year during shoulder period is XIs
m =

∑
t∈Is xm(t)/2;

the total consumption of customer m over a year during off-peak period is XIo
m =∑

t∈Io xm(t)/2. The values for total consumptions are shown in Table 6-1.

Though consumers may usually deal with retailers rather than with network oper-

ators directly, we assume that the network cost component of their electricity bills is

charged according to network tariffs. Table 6-2 shows the details of the different tariff

structures. We introduce 6 parameters, Tf , Td, Tcp, Tp, Ts, To, corresponding to fixed

daily standing charge, demand charge (weighted critical peak charge), critical peak

usage charge, peak usage charge, shoulder usage charge and off-peak usage charge

respectively. For household m, under tariff structure k, the annual (assume 365 days)

cost for network usage fk(xm), k = 1, 2, 3 is defined as follows.

f1(xm) = 365× Tf + (XIp
m +XIs

m +XIo
m +XIcp

m )× Tp

f2(xm) = 365× Tf + (XIp
m +XIcp

m )× Tp +XIs
m × Ts +XIo

m × To

f3(xm) = 365× Tf +XIp
m × Tp +XIs

m × Ts +XIo
m × To

+XIcp
m × Tcp + (MEAN(xIcpm ) + STD(xIcpm ))× Td (6.2)

Tariff structure 1 has only a daily standing charge and a flat usage charge; Tariff
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Number Tariff Structure Standing charge(c/day) Demand charge($/kW) TOU charge(c/kWh)
1 Two-Part Tariff 59.1 N/A 12.64
2 Two-Part Tariff 59.1 N/A Peak 26.94

with Shoulder 11.38
Time-of-Use Off-Peak 6.95

3 Three-Part Tariff 61.7 315 Critical 11.59
Peak 6.41

Shoulder 2.71
Off-Peak 1.66

4 Optimal Tariff 8.64 315 Critical 24.03
Peak 3.37

Shoulder 11.12
Off-Peak 1.17

5 Elastic Tariff 40.44 315 Critical 12.60
Peak 6.76

Shoulder 6.51
Off-Peak 2.07

Table 6-2: Tariff options

2 has a daily standing charge and a TOU charge (such tariffs structure are termed

TOU tariffs); Tariff 3 has a daily standing charge, a TOU charge and a peak demand

charge (such a tariff structure is usually termed a demand tariff). An example of each

tariff structure is shown in Table 6-2 as Tariff 1-3 respectively and these examples are

consistent with the case studies in [87].

6.1.4 Tariff analysis and fairness criteria

In this section, we use the utility model developed earlier to evaluate consumers’ net

benefit from the network, which leads to an understanding of the fairness of a given

tariff. Tariff 1-3 in Figure 6-1 shows the net utility or net infrastructure benefit as

per Equation (6.1), of two groups of customers, whose behaviours are summarised in

Table 6-1, under the corresponding tariffs described in Table 6-2.

In the figure, the heights of the bars indicate the net benefit for the different groups

of customers. In general, the greater the difference in heights between the two bars,

the more unfair the tariff is. For this dataset, under a traditional two-part tariff (Tariff

1), people without PV systems get less net benefit from the network than customers

with PV systems. This creates a ‘hidden subsidy’ or ‘wealth transfer’ among the

customers. Such a finding coincides with the more general arguments in [87]. For
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Figure 6-1: Net utility of customers under tariff structures 1-5

Tariff 2, we can see that by adding TOU components to the tariff, distributed PV

customers’ advantage over customers without distributed PV is smaller (in fact, in

our example, the bar for users without PV is larger indicating that PV customers

are actually at a slight disadvantage), resulting in a fairer tariff. Tariff 3, though it

improves overall welfare, favours customers with no distributed PV from a fairness

point of view.

Now, we introduce several definitions which eventually lead to the concept of

fairness.

Definition 2 Demand elasticity If the demand of a customer does not respond to

changes in TOU prices, we call the demand price inelastic. Otherwise, if the demand

of a customer does change with respect to changes in TOU prices, we call the demand

price elastic.

Definition 3 Tariff feasibility Let U be the set of all um, m ∈ M as defined

in (6.1), U = {u1, u2, ..., uM}. For a given k ∈ {1, 2, 3, ...}, we refer to any tariff

structure satisfying
∑M

m=1 fk(xm) = Revenue (with non-negative unit prices) as a

feasible tariff and the resulting U as a feasible net utility set.

Note that the ‘Revenue’ refers to the target revenue determined by network operators
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under relevant regulation.

Definition 4 Max-min fairness A set of net utilities U is max-min fair if it is

feasible and if for each m ∈ M, um cannot be increased without decreasing un where

un < um [56].

For max-min fairness, absolute priority is granted for smaller elements in a set and

any increase in bigger elements resulting from a decrease in smaller elements is not

allowed. However, sometimes a tiny decrease in a smaller element could result in huge

improvements in other elements (bigger and/or smaller). Such a situation could be

desirable and an alternative fairness criterion namely proportional fairness is therefore

proposed as follows:

Definition 5 Proportional fairness [56] A set of net utilities U is proportionally

fair if it is feasible and if for every other feasible set V , the aggregated proportional

changes are non-positive: ∑
m∈M

vm − um
um

≤ 0. (6.3)

From the perspective of the entire network as a whole where the demand of the

users can be very different, we adopt the criterion of proportional fairness from here

on. Note that proportional fairness means that we are not trying to equalize every-

one’s benefit but to create maximum possible benefit for the group.

6.1.5 Optimal tariff design

As we have seen so far, Tariff 1-3 presented in Table 6-2 either favour customers

with PV systems or customers without PV systems. In addition, the tariffs do not

necessarily maximise the overall welfare of all customers as observed in Figure 6-1. In

this section, we aim to develop a framework to maximise the aggregated net utilities

of all customers and, more importantly, guarantee proportional fairness.

Consider a demand tariff with the same structure as Tariff 3 where f3(xm) is

parametrised by Tf , Td, Tcp, Tp, Ts, To as in Equation (6.2). The aggregated net
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utility maximisation problem of all network customers can be formulated as follows:

max
Tf ,Td,Tcp,Tp,Ts,To

M∑
m=1

log(um) (6.4)

s.t.

M∑
m=1

f(xm) = Revenue (6.5)

Tf , Td, Tcp, Tp, Ts, To ≥ 0 (6.6)

By expanding the relative terms, (6.4), (6.5) and (6.6) can be written as the following:

max
Tf ,Td,Tcp,Tp,Ts,To

M∑
m=1

log(CX × xpm∑M
m=1 x

p
m

+OX × xam∑M
m=1 x

a
m

− (365× Tf +XIp
m × Tp +XIs

m × Ts +XIo
m × To +XIcp

m × Tcp

+ (MEAN(xIcpm ) + STD(xIcpm ))× Td) + c)

− log(
1

M

M∑
m=1

(365× Tf +XIp
m × Tp +XIs

m × Ts +XIo
m × To +XIcp

m × Tcp

+ (MEAN(xIcpm ) + STD(xIcpm ))× Td)) (6.7)

s.t.

M∑
m=1

(365× Tf +XIp
m × Tp +XIs

m × Ts +XIo
m × To +XIcp

m × Tcp

+ (MEAN(xIcpm ) + STD(xIcpm ))× Td) = Revenue (6.8)

Tf , Td, Tcp, Tp, Ts, To ≥ 0 (6.9)

In other words, we are trying to maximise the aggregated net benefits of all cus-

tomers in a network while ensuring no one is disadvantaged. Meanwhile, we want to

ensure the network operator meet the revenue target which is regulated by regulators.

For inelastic customers whose demand does not change with prices, all the demand

and usage terms can be treated as constants.

The problem defined by (6.4), (6.5) and (6.6) is therefore a convex optimisation

problem with linear constraints.

We propose the following two theorems regarding the existence, uniqueness, opti-

mality and fairness of possible solutions.
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Theorem 4 If the optimisation problem defined by (6.7), (6.8) and (6.9) is feasible,

then there exists a unique solution that is globally optimal.

The detailed proof would follow the guidelines in [18]. The objective function defined

by (6.7) is strictly concave and differentiable. The feasible region defined by (6.8)

and (6.9) is compact. Therefore, a unique global optimum for U which is associated

with a unique tariff can be found.

Theorem 5 A set of positive net utilities U solves the problem defined by (6.7), (6.8)

and (6.9) if and only if it is proportionally fair .

Assume U solves the problem and assume vm is a perturbed signal for um such that

vm = um + δum for all m ∈M. The objective function (6.4) can only be increased if∑M
m=1

d log(um)
dum

δum > 0. Such a condition implies that
∑M

m=1(vm − um)/um > 0 and

vice versa. This proves the theorem.

The problem is formulated and solved using the MATLAB Optimisation toolbox

and the result is shown as Tariff 4 in Table 6-2. Interestingly, the tariff suggests a

heavier charge during critical periods and shoulder periods and a lower daily standing

charge. From Figure 6-1, we can see the net benefits of different groups of customers

under this tariff. The differences between bars are much smaller than the other tariffs.

6.1.6 Optimal tariff design with elastic demand

The optimal tariff we have designed gives a valuable insight on how the behaviours of

customers affect a tariff and how fairness should be taken into consideration. However,

we have assumed thus far that consumers’ behaviours are price-inelastic which means

that they do not respond to price changes and their demand always remains the same.

In reality, demand will show a certain level of elasticity to price changes. Generally,

a higher price would trigger a decrease in demand and vice versa. In that case, the

cost function would no longer be linear and the optimisation problem will have to be

modified. We adopt a simple yet illustrative linear elasticity model where demand

decreases proportionally to the increase in price. We assume that every 1% increase in
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price corresponds to a E% drop in usage. Here we take the elasticity constant E = 0.1.

Assume that the initial demand sets at time Icp, Ip, Is, Io are x
Icp
m0 , x

Ip
m0 , x

Is
m0
, xIom0

with

corresponding initial total consumptions as X
Icp
m0 , X

Ip
m0 , X

Is
m0
, XIo

m0
. We use the values

in Table 6-1 as initial gross demand. Assume the initial charges for the corresponding

periods are Tcp0 , Tp0 , Ts0 , To0 and we use Tariff 3 in Table 6-2 as the initial tariff. In

this case, demand profiles of customers are no longer fixed. During the process of

finding optimal prices, consumptions during each interval are calculated on the fly as

follows:

XIp
m = XIp

m0
× (1− E × (

Tp
Tp0
− 1))× Tp

XIs
m = XIs

m0
× (1− E × (

Ts
Ts0
− 1))× Ts

XIo
m = XIo

m0
× (1− E × (

To
To0
− 1))× To

XIcp
m = XIcp

m0
× (1− E × (

Tcp
Tcp0
− 1))× Tcp

and the new optimisation problem is formulated accordingly as follows:

max
Tf ,Td,Tcp,Tp,Ts,To

M∑
m=1

log(CX × fp(Tcp, Tp, Ts, To) +OX × X
Ip
m +XIs

m +XIo
m +X

Icp
m∑M

m=1(X
Ip
m +XIs

m +XIo
m +X

Icp
m )

− (365× Tf +XIp
m × Tp +XIs

m × Ts +XIo
m × To +XIcp

m × Tcp

+ (MEAN(xIcpm ) + STD(xIcpm )× Td) + c)

− log(
1

M
×Revenue) (6.10)

s.t.

M∑
m=1

(365× Tf +XIp
m × Tp +XIs

m × Ts +XIo
m × To +XIcp

m × Tcp

+ (MEAN(xIcpm ) + STD(xIcpm ))× Td)) = Revenue (6.11)

Tf , Td, Tcp, Tp, Ts, To ≥ 0 (6.12)

Note that to simplify the presentation, we have written the share in peak demand

xpm/
∑M

m=1 x
p
m as fp(Tcp, Tp, Ts, To), which is a non-linear equation, following the defi-

nitions in Section 6.1.2. The new problem is a non-linear optimisation with non-linear
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Figure 6-2: Total aggregated logarithmic network utility under different tariff struc-
tures

constraints. We do not draw conclusions on the existence or uniqueness of optimal

solutions theoretically. However, through observing the results generated using MAT-

LAB Optimisation Toolbox, we found that under general conditions, a solution can

be found. The resulting tariff is presented as Tariff 5 in Table 6-2, and the result on

net utility is presented in Figure 6-1 as Tariff 5 (Elastic). The new demand patterns

for consumers are summarized in Table 6-3. Note that in Figure 6-1, Tariff 3-5 re-

cover the same amount of revenue which is slightly higher than what is the case for

Tariff 1 and Tariff 2. Figure 6-2 shows the total aggregated network utilities under

different tariffs. After comparing the results from Tariff 5 (Elastic) with that from

Tariff 4, we found that both tariffs have good performance in terms of the net utility

maximisation of each group of customers and fairness assurance compared to Tariff

1-3. However, judging from the differences between bars and total net utility, Tariff

5 does perform slightly worse than Tariff 4 which can be seen as a price for elasticity.

Note that under Tariff 5 (Elastic), the total demand of both groups of customers has

been reduced by approximately 7%.

Through the above analyses on existing tariffs and optimal tariffs, we found that by

appropriately designing the daily standing charge component, the TOU component

and the demand charge component, a much fairer tariff can be created while still
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Category A Category B
Has PV No PV

Number of houses 131 406
Peak demand contribution xp

m (kW/house)) 1.34 1.34
Annual mean net demand xa

m (kW/house) 0.40 0.54

Weighted critical peak MEAN(x
Icp
m ) + STD(x

Icp
m ) (kW/house) 1.02 1.02

Critical peak usage Xcp
m (kWh/year/house) 87.0 89.0

Peak usage Xp
m (kWh/year/house) 705.7 722.9

Shoulder usage Xs
m (kWh/year/house) 1253.6 2450.0

Off-peak usage Xo
m (kWh/year/house) 1499.7 1537.7

Solar generation (kWh/year/house) 1855.4 0
Solar consumed (kWh/year/house) 1298.5 0
Solar exported (kWh/year/house) 556.89 0

Gross demand (kWh/year/house) 4844.5 4844.5
Net demand (kWh/year/house) 3546.0 4844.5

Table 6-3: Demand and supply profiles of sample households over a year considering
demand elasticity. Houses from the same category share the same profile

satisfying the operator’s revenue constraint. In reality, the tariff design is a more

complex iterative process as numbers of house may increase and decrease, usage

patterns may change, etc. However, our simplified model provides insights on how to

take fairness into account while designing tariffs. Traditional network tariffs are levied

on a uniform basis although a network tariff reform process is currently underway.

Clearly one of the key lessons we learn from the optimization problems solved here,

is that the design of an efficient and fair tariff requires knowledge of the composition

of different categories of customers as well as their demand patterns. A network with

high distributed PV penetration would have a significantly different tariff compared

to a network with none.

6.2 Unaveraged load profiles

In the previous section, we used an average profile to represent two categories of cus-

tomers and showed their net infrastructure benefits under different tariff structures.

Customers from the same category shared the same demand and supply profile. We

argued that findings under such an approach are scalable to larger networks. In this

section, we use the original profiles of the 537 houses for analysis. The demand and

supply profiles will be different for each customer and the findings may be subject
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Category A Category B
Has PV No PV

Number of houses 131 406
Average peak demand contribution xp

m (kW/house) 1.2 1.5
Average annual mean net demand xa

m (kW/house) 0.32 0.68

Average weighted critical peak MEAN(x
Icp
m ) + STD(x

Icp
m ) (kW/house) 0.75 1.12

Average critical peak usage Xcp
m (kWh/year/house) 60.4 98.9

Average peak usage Xp
m (kWh/year/house) 481.1 802.6

Average shoulder usage Xs
m (kWh/year/house) 1172.6 3335.9

Average off-peak usage Xo
m (kWh/year/house) 1017.1 1721.3

Average solar generation (kWh/year/house) 1855.4 0
Average solar consumed (kWh/year/house) 185.2 0
Average solar exported (kWh/year/house) 1670.2 0

Average gross consumption (kWh/year/house) 2916.3 5958.8
Average net consumption (kWh/year/house) 2731.2 5958.8

Table 6-4: Average demand and supply profiles of sample households over a year

to the specific dataset. However, some hidden properties of such a network may be

revealed.

The average of demand and supply profiles is shown in Table 6-4. These aver-

aged values are presented to give readers an overview of the consumption/generation

patterns and they will not be used in later analysis. There are two key differences

between Table 6-4 and Table 6-1. In Table 6-1, customers from the same category

have the same profiles while they are all different in Table 6-4; In Table 6-1, gross

consumption is averaged over all customers while in Table 6-4, a separate average is

calculated for each category. In other words, we assume all customers have a similar

demand pattern regardless of whether they have PV systems or not in Table 6-1 but

we examine the individual differences in Table 6-4.

After a comparison between Table 6-4 and Table 6-1, we found that the rooftop

PV customers in this network, even without the inputs from PV systems, use much

less electricity in all periods than the customers who do not have PV systems. There

are two possible explanations: one is that customers with PV systems are in general

more conscious about electricity usage and the environment for which reason they

have more energy efficient appliances or gas powered appliances; the other is that

there are, in terms of percentage, more large consumers among the group without PV

systems which increases the average. Such a feature of this dataset may affect the
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Figure 6-3: Net utility of customers under tariffs 1-3, 6, 7 in order for unaveraged
demand profiles (all tariffs are revenue equivalent)

numerical results but the methods and methodologies are applicable to any residential

networks. The averaged net benefits of customers are shown in Figure 6-3 for compar-

ison. Because of the huge differences in usage, all existing tariffs (Tariff 1-3) appear

to favour customers without PV systems (as shown in Figure 6-3) and this is caused,

to a large extent, by the daily standing charge. However, this difference should really

be interpreted as: customers with heavier loads and higher consumptions are benefit-

ing relatively more from the infrastructure compared to smaller customers in general.

The unaveraged individual net benefits are plotted as histograms in Figures 6-4 to

6-8. The net benefits are also represented using probability density functions (PDF)

and cumulative distribution functions (CDF) in Figures 6-9 and 6-10 by fitting the

histograms.

Note that for other networks where rooftop PV customers use a lot of energy, the

results would be different following the same methodology which is compatible with

any residential network.

6.2.1 Tariff design and analysis

For individual demand profiles, we perform the same optimisation as in the previous

section for the case with inelastic demand and the case with elastic demand. The
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Figure 6-4: Histogram of individual customers’ net utilities under Tariff 1

0 0.5 1 1.5
0

10

20

30

40

50

60

70

N
um

be
r 

of
 h

ou
se

s

Normalized net infrastructure benefit

Figure 6-5: Histogram of individual customers’ net utilities under Tariff 2
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Figure 6-6: Histogram of individual customers’ net utilities under Tariff 3
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Figure 6-7: Histogram of individual customers’ net utilities under Tariff 6

0 0.5 1 1.5
0

10

20

30

40

50

60

70

N
um

be
r 

of
 h

ou
se

s

Normalized net infrastructure benefit

Figure 6-8: Histogram of individual customers’ net utilities under Tariff 7
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results are shown as Tariff 6 and Tariff 7 respectively in Table 6-6 and the comparison

of aggregated net logarithmic utilities for all tariffs is shown in Figure 6-11.

For the averaged profile, the optimiser tries to make two generic groups even.

However, for unaveraged profiles, 537 individuals need to be levelled. Due to the

diversity in demand (e.g. some customers may barely use any electricity at all), the

optimal tariff (Tariff 6) suggests no charges for daily standing part and maximum de-

mand. Instead, TOU charges are significantly increased to make up for the revenue.

This is intuitively comprehensible since high daily standing charges would disadvan-

tage a customer who barely uses any electricity at all. Nevertheless, this approach

to bring fairness to every single individual may cause tariff robustness issues as well

as scalability problems which is undesirable. As a result, we argue that using the

average profiles may be more suitable for tariff design.

To complete the analysis, for the unaveraged profile, with elasticity, the new de-

mand profile (averaged) under Tariff 6 is shown in Table 6-5. Due to elasticity, the

overall consumptions for both groups of customers have been reduced by up to 45%.

This is a drastic reduction as a consequence of the linear elastic model, which has

really no limit to how much more or less energy will be consumed. The model aims to

give insights on how elasticity changes tariff design. Future work would involve using

a more sophisticated elasticity model and putting boundaries on how much demand

changes with respect to price changes.

However, the tariff manages to maintain a high overall aggregated net utility.

Obviously, this tariff finds its optimum by charging much more than Tariff 6 in all

parts except for off-peak periods and forces customers to use less electricity.

The PDF and CDF for Tariffs 6 and 7 are shown in Figure 6-9 and Figure 6-10 by

fitting histograms. In Figure 6-9, Tariff 6 has the narrowest envelope suggesting that

the benefits of all houses are forced to an average position. Tariff 7, given that total

consumption is significantly less than what it is under Tariff 6, produces the second

best result. In Figure 6-10, it is more obvious that Tariff 6 and 7 have the steepest

increase suggesting that most houses are having a similar amount of net benefits which

can be interpreted as being more fair. The total aggregated logarithmic network

147



Category A Category B
Has PV No PV

Number of houses 131 406
Average peak demand contribution xp

m (kW/house) 0.36 0.46
Average annual mean net demand xa

m (kW/house) 0.09 0.19

Average weighted critical peak MEAN(x
Icp
m ) + STD(x

Icp
m ) (kW/house) 0.49 0.74

Average critical peak usage Xcp
m (kWh/year/house) 40.0 65.6

Average peak usage Xp
m (kWh/year/house) 279.4 467.9

Average shoulder usage Xs
m (kWh/year/house) 600.12 1782.7

Average off-peak usage Xo
m (kWh/year/house) 557.1 945.6

Average solar generation (kWh/year/house) 1855.4 0
Average solar consumed (kWh/year/house) 128.6 0
Average solar exported (kWh/year/house) 1726.4 0

Average gross consumption (kWh/year/house) 1606.2 3263.6
Average net consumption (kWh/year/house) 1477.6 3263.6

Table 6-5: Average demand and supply profiles of sample households over a year

Number Tariff Structure Standing charge(c/day) Demand charge($/kW) TOU charge(c/kWh)
6 Optimal Tariff 0.00 Demand 0.00 Critical 136.14

Peak 22.56
Shoulder 13.44
Off-Peak 13.57

7 Elastic Tariff 84.98 Demand 102.34 Critical 66.05
Peak 35.33

Shoulder 15.32
Off-Peak 9.16

Table 6-6: Tariff options

utility under different tariff structures, for unaveraged demand profiles, is shown in

Figure 6-11.

6.3 Chapter summary

In this chapter, we looked at the network tariff fairness problem in distribution net-

works where there are PV customers. We defined the benefits as well as costs for each

customer of using the network infrastructure, based on which we formulated a utility

theoretical model for electricity usage where the net benefits of using the network

infrastructure can be quantified. Using such a model, we analysed three existing dif-

ferent tariffs with distinct structures. The tariffs have been shown to favour either

customers with PV systems or customers without PV systems. We then formulated

an optimisation problem aiming to find a tariff that maximises the aggregated net
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Figure 6-9: PDF (shown as sample numbers) obtained using kernel density estimation
on histograms
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Figure 6-10: Empirical CDF obtained using MATLAB

149



0 500 1000 1500 2000 2500 3000 3500

Elastic optimal tariff

Optimal tariff

Tariff 3

Tariff 2

Tariff 1

Net aggregated logarithmic utility of network

C
at

eg
or

y 
of

 ta
ri

ff
s

Figure 6-11: Total aggregated logarithmic network utility under different tariff struc-
tures for unaveraged demand profiles (all tariffs are revenue equivalent)

utility of all customers while ensuring fairness. Using a generic demand profile, unique

solutions can be found to the problem formulated and proportional fairness can be

established. We also extended the case to elastic loads for which the problem is more

difficult to solve. However, local optimal solutions can be found using standard op-

timisation tools. The analysis is repeated using realistic demand profiles with more

diverse demand/supply patterns and similar observations are made.

The overall analysis and the optimal tariffs suggest that PV systems do not simply

bring ‘unfairness’ to a network and rooftop PV customers do not necessarily take

advantage of the network under given tariffs. It is the overall demand patterns of

customers that determine whether they are paying for their fair share of the network.

However, it is true that PV systems contribute much more in shoulder and off-peak

periods rather than during peaks, and when applied to average load, this has the effect

of reducing non-PV customers’ welfare. The current two-part tariff comprising fixed

($/day) and variable charges (c/kWh) has historically served the industry reasonably

well given metering and computing constraints. However, to remedy the substantial

deviations brought about by PV systems, tariff reform has to be carefully planned

and implemented. With the rising uptake of smart meters and the availability of

half hourly data, the methodology introduced in this thesis could be of use in this
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smart grid era. Due to inherent features of the sample dataset, such as small rooftop

PV units and low consumption from distributed PV customers, the numerical results

may not be universally applicable. However, the methods and methodologies are

compatible with most residential networks. As for future work, one direction is to

perform analysis on networks with different geographic locations and demographies

such as the mix of users and the penetration of PVs and EVs. Another important

question is to plan for demand changes because of the variations in household number

and technology changes.
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Chapter 7

Conclusion and future work

In this final chapter, we will review the earlier chapters, outline the contributions

made and point to useful future work.

7.1 Summary of contributions

In this thesis, we looked at the problems and potential challenges associated with the

electricity distribution network from two complementary directions: power delivery

and billing.

In Chapter 1, we have described in detail the two major concerns our distribution

networks are facing. Firstly, the low and declining asset utilisation. Secondly, the

disruption from emerging technologies. Later in the chapter, we have reviewed the

state-of-art approaches of DSM and tariff design which aim to address the concerns

about distribution networks. Built on the existing work, we then propose our own

approach which focuses on the root of the cause, the last mile in the network.

Since distribution networks, in particular the last mile, are usually not the primary

focus of electrical engineers, there is no satisfactory off-the-shelf simulation model

available. We therefore built our own simulation network in MATLAB and POSSIM

capturing all practical features of a real network in Australian conditions in Chapter 2.

These features, which are not modelled in most other work, include distribution line

impedances, network topologies, three phase unbalances, reactive loads and household
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voltage levels. Despite various assumptions we make in our theoretical formulations

as in Section 2.2.1, the simulation model is always as accurate and as detailed as our

data allows it to be. The simulation models serve to test and illustrate the validity

of the theoretical work against available network data/behaviour. In the second

half of Chapter 2, we have proposed a voltage-demand approximation model tailored

for another important feature of distribution networks where no remote sensing or

controlling devices are available. The approximation model is local to each household

and it is able to estimate network load from domestic voltage measurements. This

model is used throughout the thesis for controller design because of its simplicity, and

the insight it provides.

In Chapter 3, we addressed EV charging management problems. EVs could cause

increased peaks and associated power quality problems even with a small uptake.

Using real travel profiles and based on the voltage-demand model, we have proposed

distribution control algorithms that efficiently shift EV loads and shave peaks even

when we consider a very high EV penetration. The algorithms use only local infor-

mation and expected performance under realistic network conditions are underscored

through simulations.

In Chapter 4, we incorporated network constraints in the problem formulation

stage and not only in the simulations. The DSM problem is proposed as a constrained

optimisation problem which aims to maximise aggregated users’ welfare fairly without

violating network limits. The centralised optimisation problem is then decomposed

to distributed sub-problems which can be solved locally via price signals sent by the

DSO. Building on the essence of previous chapters, we further approximate the al-

gorithm and eliminate all communication requirements by replacing the DSO signals

with signals derived from local measurements. Through simulations we illustrate

that the sub-optimal decentralised communication free algorithms perform remark-

ably well, and approximate optimal behaviour under realistic network conditions. We

conclude that the cost of real time communication and central coordination cannot

be justified in this context.

In Chapter 5, we have extended the models and algorithms developed earlier to
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networks with decentralised domestic PV systems. The same methodology is applied

to not only demand shifting, but also rooftop PV supply curtailment. With simple

control instructions, we have shown that the local algorithms successfully prevent

current reverse flowing during the day and flatten evening demand peaks. Network

properties such as voltage levels and power factors are maintained inside electricity

regulations. As always, the algorithms require merely local measurements without

any communication with neighbours or central controllers.

Chapter 3, 4 and 5 consider mitigating the impact of emerging demand side tech-

nologies on the grid, in particular the last mile, from a technical point of view. In

Chapter 6, we approach the problem from a different yet complementary economic

perspective: network tariff and associated fairness issues. We have analysed usage

and billing data for a real distribution network in Australia to address the question

as to whether distributed PV customers receive hidden subsidies from their non-PV

neighbours under current network tariff structures. Our analysis showed that cus-

tomers with high peaks yet low average usage do take advantage (unintentionally

so) of the existing network tariff structure. Presently available data indicates that

domestic PV systems could lead to demand profiles with average usage reduced but

peaks unchanged. However, their impact on tariff fairness is to be assessed taking all

other appliances and consumers usage pattern into account.

7.2 Future work

Thus far, we have analysed power systems under normal static operation. Network

dynamics and control under fault conditions are not considered in this thesis. Fault

conditions occur all the time and this is a important component of modern power

system design and operation. DSM design and implementation under fault conditions

are of significance and this is left for future investigation.

We have proposed several models and algorithms for DSM and rooftop PV curtail-

ment in this thesis. Some of which, in theory, are based on assumptions like balanced

networks and active power loads as in Section 2.2.1. However, all the models and
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assumptions were tested on simulation networks which are almost as detailed and

practical as a real network. And the results from simulations, to a large extent, re-

flect how the models and algorithms would behave in reality. The next step would be

hardware implementation of the algorithms in a mini network. If the tests are suc-

cessful, the hardware could be installed in real networks and their behaviours could

be monitored.

The pricing structures we propose are based on the simple assumption that the

users and their appliances are fixed which may not be realistic. Ideally, we would

like to investigate tariff optimality and fairness under demand change scenarios, that

include growing demand (EV) and decreasing demand (PV) and a different fault

tolerance system (allowing reverse currents).
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