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Abstract 

 
By Jason Daniel Van Dyken, Ph.D. 
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August 2012 

 
 
Chair: José G. Delgado-Frias 
 

This research focuses on a modular and scalable implementation of a MIPS 

compliant processor core for a medium-grain reconfigurable hardware. The core of 

this research is built upon the design of four autonomous modular functional units 

that provide all the operations required of a MIPS core.  

Four novel extremely configurable execution cores have been designed to 

implement a five-stage processor architecture Each of the cores can be configured for 

varying path widths and forwarding schemes, which have been evaluated for criteria 

involving area (cell count), delay, and execution efficiency. A comparative study with 

other reconfigurable hardware has shown the proposed cores’ effective clock rate is 

3% above the average for similar cores when utilizing 150nm and 90nm CMOS, and 

0.99% below the average Xilinx and Altera soft processor speeds for 65nm and 45nm 

CMOS technologies. The proposed hardware has no specialized hardwired units such 

as multipliers or adders that are available in Xilinx and Altera chips. Ongoing research 

on FinFET technology has shown that a system clock of 5 GHz can reasonably be 

achieved. 
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An analysis of the hardware has also been conducted examining issues of 

hardware design and the energy required for the designs to operate and how the cores 

would be affected if the hardware were modified. The results of this analysis have 

shown that module power consumption averages 0.248 mW for 8-bit and 1.855 mW 

for 32-bit data path widths and that the average energy required for executing a SPEC 

integer benchmark is 2.06 !J. 

Lastly, designs for implementing a reorder buffer and reservation stations have 

been completed, which can be configured to track a varying number of instructions. 

Using these new modules with the previously analyzed components a superscalar core 

may be built. This core has been analyzed to determine the optimal configuration of 

the reorder buffer and reservation stations, and undergone the same evaluations as 

the five-stage cores to determine the best operation configuration and energy 

requirements. This analysis comparing the superscalar core with a five-stage 

execution core shows that a speedup of 2.073 can easily be achieved while increasing 

cell count by only 29%. 
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Chapter 1 

Introduction and Background 
As computer technology continues to advance the reliance of more devices 

upon general-purpose processors or microcontrollers continue to grow. This in part is 

due to the falling costs of digital devices, and the ease with which they can be 

designed and updated. To help integrate digital systems, designers have increasingly 

focused on two major design paradigms to implement digital systems, the first being 

to utilize specialized application specific integrated circuits (ASICs), the other is to 

focus on a single chip implementation that can be comprised of a System-on-Chip or 

reconfigurable hardware. All of these options typically rely on some form of a 

processing unit to execute the code that manages the device’s operation.  

While ASICs and System-on-Chip designs typically have high performance 

processing units available, reconfigurable hardware offers promising alternatives to 

these platforms such as the ability to rapidly prototype systems and the potential for 
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fault tolerance; faults may be avoided by routing around the faults. One such platform 

that has been developed is a medium grain reconfigurable architecture [1] based 

solely on memory cells, which allow for complete flexibility in design placement and 

fault avoidance since there is no special hardware components that require set design 

placement to access. To date the hardware has been used for the implementation of 

DSP algorithms. The primary focus of this work is the implementation of a MIPS 

compliant processor core for the target reconfigurable hardware that will not only 

provide reliable general purpose computing, but be easily translated into more 

complex processing architectures that provide high levels of performance. A 

secondary goal is the ability to provide a means for encrypting and decrypting data 

using the Advance Encryption Standard (AES) algorithm since the algorithm is not 

able to be efficiently implemented in code for standard processors without specialized 

execution hardware and instructions. 

1.1 Background 

This research study started with a primary focus of finding a reconfigurable 

hardware method for securing communication between wireless sensor networks 

(WSNs). The means of securing communication was not the only critical concern, but 

special attention had to be given to the energy required to secure the communications 

since many WSNs rely on low power sensor nodes. The AES algorithm was chosen as 

the focus because of its prominence in private and symmetric key encryption 
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algorithms. In the initial study FPGAs were chosen to investigate the implementation 

issues surrounding AES and how they could affect the power required to secure 

communications. It became readily apparent that while FPGAs could increase 

hardware utilization and reduce the physical chip count, the power required to 

integrate an FPGA would not always be possible or prudent, which will be explained 

further in Chapter 4. As a result the research shifted focus from FPGAs to a novel 

Medium-Grain Reconfigurable hardware platform that is expected to be much more 

power conscious and adaptable to new technology implementations, which will allow 

maximum performance for minimal power.  

In the following paragraphs an overview of the target hardware’s architecture 

is presented. The smallest piece of reconfigurable hardware is termed an element, and 

similar to most modern reconfigurable hardware designs the core of this hardware is 

memory. Each element contains 32 1-bit memory locations organized into two 16-bit 

columns. The memory bank is surrounded by interface components that allow for 

control of the memory that includes read and write capabilities along with 

multiplexers for routing data, which also provides the ability to act as a pass-through 

for other element outputs. The elemental structure is shown in Figure 1.1. 
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The reconfigurable hardware is then organized into cells containing a 4!4 grid 

of elements and is the smallest amount of hardware that can be individually allocated 

to a design. Each cell can take on one of two configurations, which define how the 

memory is accessed. The first mode that will be detailed is the Memory mode, and is 

shown in Figure 1.2. In memory mode the elements are organized into a 128!4-bit 

memory bank. These structures provide independent read and write control signals, 

which are used to offer single cycle concurrent read and write operations, to any of 

the 128 memory locations. 

Cells and elements can also be configured to operate in math mode, as shown 

in Figure 1.3. In math mode the write control signals are disabled turning each 

element into a 4 input look up table (LUT) with two outputs, which are the Y and Z 

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

a
b

c
d
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WI
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Y Z

 

Figure 1.1: Structure of an Element 
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lines detailed in Figure 1.1. By disabling the read enable mux the cell becomes flexible 

and dynamic by allowing the elements to more easily communicate with each other, 

facilitating the implementation of more complex mathematical functions. This 

capability allows for the math cell’s output to become 8-bits wide compared to the 4-

bit output in memory mode. The structure of the math cell was chosen to allow for a 

multiply and accumulate operation to be computed, which is detailed in Chapter 2. 

The target hardware contains two parallel communication networks, one 

being a local mesh network and the other being a global tree network [2]. The local 

mesh network connects neighboring cells together and allows for any neighboring 

cell to be communicating data with minimum delay, while the global pipelined 

communication tree is used to allow cells to communicate with distant cells. Utilizing 

the global pipelined tree incurs a single cycle of delay for every level traversed; this is 

D
ec
od
er

Clk
WA7:0
RA7:0

Wi3 Wi2 Wi1 Wi0Ri3 Ri2 Ri1 Ri0

Ro3 Ro2 Ro1 Ro0
 

Figure 1.2: Cell in Memory Mode 
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turn leads to a logarithmic delay time with respect to the distance between cells. An 

additional cycle of delay can be added in each node of the tree to allow for data 

arrival synchronization. 

 One of the key attributes that help to differentiate this architecture from 

traditional reconfigurable hardware platforms is how the clock is defined. Most 

reconfigurable hardware platforms determine the maximum clock rate by the longest 

delay in logic between memory elements, however the target hardware defines the 

maximum clock frequency by the time required for a cell to complete its most 

complex operation, which can be roughly calculated as one over seven times the 

elemental delay. This was done so that 4-bit multiply and accumulate operations 

could be carried out in a single cycle by a cell in math mode. The clock rate is 

 

Figure 1.3: Element and Cell in Math Mode 
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facilitated by built-in pipelining registers on each of the cell's outputs and pipelined 

communication tree. This means that the maximum clock rate is technology 

dependent and not on the mapping of a given design. In simulations it has been 

shown that using 180 and 90 nm MOSFETs allows for clocks speeds of 267 and 720 

MHz, respectively [3]. Scaling these results show that a speed of 2 GHz can be 

achieved in 45nm or better technology. Ongoing research utilizing future 

technologies such as FinFETs, similar to Intel’s 3D or tri-gate Transistors [4], has 

shown that speeds of 3 to 5 GHz can reasonably be achieved [5]. 

1.2 Outline 

In the remainder of this study the following topics will be introduced. Chapter 

2 will provide an explanation of how the different execution modules that facilitate 

MIPS compatibility and carry out the computational operations will be presented, 

including details on implementation. Next in Chapter 3, the proposed schemes for 

using the modules together as an execution core for a five-stage processor will be 

introduced, along with the ways in which forwarding can be implemented and 

optimized. Chapter 4 will provide an analysis of our approach and its results. This will 

include a more thorough discussion of the work with FPGAs, a performance 

evaluation of the designs and their custom configuration options, and finally a 

comparative analysis of this work with other reconfigurable hardware based 

processors. An investigation of the power consumption characteristics of the 
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hardware for a five-stage core as well as how the hardware is organized will be 

presented in Chapter 5. Chapter 6 will focus on the work done to investigate the 

implementation of a superscalar core and how its performance compares to that of the 

completed five-stage cores in performance, cell count, and energy required. Lastly, 

Chapter 7 offers concluding remarks including what knowledge was gained and how 

this research should continue to proceed in the future. 
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Chapter 2 

Execution Modules 
In this chapter the modules required to implement a processor core and 

facilitate AES encryption and decryption operations will be introduced. In keeping 

with the separation of primary and secondary goals as outlined in the chapter 1 the 

first group of modules that will be introduced are those designed to facilitate AES 

encryption and decryption operations. Next the modules that have been designed for 

the implementation of a processor core will be introduced. Each module discussion 

will include its provided operations, cellular implementation, sizing, and layout 

details. Once all modules have been introduced the means by which they were 

verified to function as intended will be provided. The actual bit configuration for the 

modules detailed in this chapter can be found in Appendix A. 
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2.1 AES Components 

In this section the modules that have been designed to facilitate hardware 

based encryption and decryption of data utilizing the AES algorithm will be 

introduced.  The reason why AES has been chosen is that it has become the standard 

for symmetric-key cryptography since it became officially adopted and approved of 

by the US Government in 2002 and is detailed in [6]. The AES algorithm encrypts 

data in 128-bit blocks that are organized into 4x4 matrices of 8-bit values, called state, 

which means that modules must operate on 8-bit blocks of data at a minimum rather 

than the 4-bit blocks used in the processor components.  There are four primary 

transformations that take place during encryption and decryption, three of which will 

be presented in the following sections.  The reason why only three of the 

transformations are detailed is that one of the transformations, termed the Shift Rows 

transform, has been demonstrated to provide better performance when implemented 

in the data routing network and not using logic elements [7] or in the target 

hardware’s case cells.  Lastly the key expansion transformation will be detailed along 

with how it can be implemented using the other components described. 
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2.1.1 S-Box Transform 

The S-Box, meaning substitution box, transform is what produces non-

linearity into the AES cipher. The mathematical operation that is performed in this 

transform is derived from a multiplicative inverse over the finite field {28} and is 

combined with an affine transform to strengthen the transformation against simple 

algebraic attacks.  This transform represented mathematically is shown in Equation 

2.1. This computation though is not easily implemented in hardware, but lends itself 

particularly well to implementation via LUT, because the mapping is 1:1 and thus 

only 256 8-bit memory locations are needed.  By focusing on the LUT 

implementation the resulting module will be the most ideally optimized for the target 

hardware since the target hardware is already made up of pure memory and can be 

used in a efficient manner with minimal delay for computation.   

+

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X0
X1
X2
X3
X4
X5
X6
X7

1
1
0
0
0
1
1
0

×

 

Equation 2.1: S-Box Transform 
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The design that was settled on for an 8-bit LUT module is detailed in Figure 

2.1, and is built with 5 cells.  Since each cell is able to provide 128 4-bit memories two 

cells are needed in parallel to produce an 8-bit string, two serially connected cells are 

also needed to provide 256 different memory locations which results in the two 

parallel cells feeding serially into two other parallel cells.  The fifth cell is used as a 

data read control signal, since the input data is already 8-bits and the most significant 

bit in the memory cell serves as a read enable all that must be done to utilize the 

serially connected cells is to invert the MSB of the input.  This means that the upper 

cells contain all the transforms for inputs ranging from 128 to 255, while the lower 

cells contain the transforms ranging from 0 to 127.  

The inverse operation for this transformation known as the Inverse S-Box is 

implemented the same way as the forward S-Box with the only difference being the 

contents of the LUTs.  These modules require 2 cycles to perform the transform and 

MSB 
Inverter

MSB 
LUT

128:255

LSB 
LUT

128:255

MSB 
LUT
0:127

LSB 
LUT
0:127

Output

INPUT

 

Figure 2.1: S-Box 8-Bit LUT Implementation 
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require 5 cells for every 8-bits of data that must be concurrently processed. A physical 

layout for an 8-bit module is shown in Figure 2.2A, and as is shown in Figure 2.2B 

four transforms allowing for a 32-bit data path can be fit into a 4x5 block of cells 

without any wasted hardware. 

2.1.2 Add Round Key Transform 

The Add Round Key transformation is carried out through the XORing of the 

128-bit state with one of the round keys.  Since the inverse of an XOR function is an 

XOR function the inverse Add Round Key transformation is itself a simple XOR 

operation. Although this transform could be carried out using the logic cell presented 

in section 2.2.1, an 8-bit XOR cell has been designed, shown in Figure 2.3, which 

reduces the cells needed for adding round keys by half. This translates into a forward 
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Figure 2.2: S-Box Hardware Layout 
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and inverse transformation requiring 1 cell per 8-bits of data being concurrently 

processed and 1 cycle of delay to complete the designated transform.  

It should be noted that when the last round of encryption is being computed 

the Mix Column transform is omitted from the round.  Rather than implement two 

round blocks in hardware a simple solution is to attach multiplexers to the input of 

the Add Round Key transformations which can choose the data coming from to Mix 

Column module or the result of the S-Box transformations via the hard wired Shift 

Rows transform. This can be seen in Figure 2.4 adds two cells to the Add Round Key 

module per 8-bits of processed data, and increases the delay by one cycle but greatly 

reduces overall cell count for most standard AES implementations. 
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2.1.3 Mix Columns Transformation 

The Mix Columns operation is the only operation that requires more than 8-

bits of data at once, since the shift row transformations can be carried out through 

routing. The Mix Column operation and its inverse are shown in Equation 2.2 A and 

B, and generate new values for each of the values in the state by using a series 

MUX MUX

8-Bit
XOR

CA B

 

Figure 2.4: Alternate Add-Round-Key 

2  3  1  1
1  2  3  1
1  1  2  3
3  2  2  1

×
S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

=
S'0,0 S'0,1 S'0,2 S'0,3
S'1,0 S'1,1 S'1,2 S'1,3
S'2,0 S'2,1 S'2,2 S'2,3
S'3,0 S'3,1 S'3,2 S'3,3

E  B  D  9
9  E  B  D
D  9  E  B
B  D  9  E

×
S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

=
S'0,0 S'0,1 S'0,2 S'0,3
S'1,0 S'1,1 S'1,2 S'1,3
S'2,0 S'2,1 S'2,2 S'2,3
S'3,0 S'3,1 S'3,2 S'3,3

A: Forward Mix Column Transform

B: Inverse Mix Column Transform  

Equation 2.2: Mix Column and Inverse Mix Column Transformations 
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weighted summations of each column.  The purpose of this transform is to increase 

entropy in the encrypted data and to ensure that the final output is dependant upon 

all of the plaintext and intermediate round bits. 

To implement the forward transformation each of the column’s state values 

must first be multiplied by two and three, which can be done using only two cells as 

shown in Figure 2.5. The cells take in the input data and generate their corresponding 

x2 result that is then output and routed back to the cells input.  Once the x2 result is 

sent back to the cell inputs, it is combined with the original input, delayed one cycle 

and sent to another input, to generate the x3 result. This means that the two required 

factors for completing the Mix Column transform can be generated using two cells 

and two cycles of delay. The designated results of the multiplication blocks along 

with original data values can then be fed into two parallel cells capable of a four input 

4-bit XOR operation to generate each of the new state column values.  

x2x3
High

x2x3
Low

Input

x2     x3
 

Figure 2.5: Multiply by 2 and 3 
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This means that 16 cells and 3 cycles of delay are needed to complete the 

forward Mix Column operations for a single column of the state when using a four 

input XOR block. There may be one or two cycles of added delay though as signals 

are routed to more distant cells. The inverse Mix Column transform requires scaling 

factors of 14, 13, 11, and 9, which can be done through a series of x2 multiplier blocks 

as detailed in [8], which would increase the cells required to 52 and the delay to 7 

cycles.  Further optimizations may be possible to reduce cell count for the inverse 

transform, but this would most likely increase the total delay of the unit. 

2.1.4 Key Expansion 

 Since the AES algorithm is based on repeated rounds of transformation 

operations the original key must be used to generate a unique key for every round 

called a round key and is used to ensure maximum entropy in the encryption process. 

The processes of generating new keys is the largest transformation of the AES 

algorithm, but can be looked at as a series of 4 smaller transformations. The key 

expansion process is the same regardless of whether encryption or decryption is being 

carried out and all that changes is the order in which the round keys are used.  

 Round keys are generated using the original key or the previous round 

key and a round constant that can be stored in a LUT. The round key is generated 

using the following steps and is shown in Figure 2.6: 
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Rotate Word: The rotate word transform takes the final 32 bits of the state 

and performs a right rotate of 8 places. This transform like the Shift Rows Transform 

is best accomplished through direct routing.  

Substitute Words:  The final 32-bits of the key then undergo a bit 

substitution to increase differences between round keys. The substitution that is 

carried out on the bits is the same S-Box substitution previously described in this 

section 2.1.1 and would require 16 cells and three cycles of delay. 

Add Round Constant: A round constant is then added to bits 96 through 

103 through an XOR operation.  The round constant is best implemented through the 

use of a LUT and 8-Bit XOR cell, which would require three cells and one cycle to 

complete the operation. 
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Figure 2.6: Key Expansion 
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XOR Stage: The result of the previous transformations is then XORed with 

the first 32-bits of the previous key to generate the first 32-bits of the new round key.  

The newly generated bits are then XORed with the second 32-bit block from the 

previous key to generate the next 32-bits of the new round key, which is repeated 

until the new key reaches 128 bits or 4 words. The method used to implement this 

process that best balances cell count and delay would include 16 8-bit XOR cells and 

require 4 cycles of delay. 

The cell count and delay requirements of the key expansion process as shown 

in Figure 2.6 would be 37 cells and 7 cycles, with the round constant LUT adding 2 

cells to the total cell count.  However it is possible for the round constant to be 

generated as part of the control logic and eliminate the 2 LUT cells.  

2.2 Processor Modules  

Before the actual components that make up an ALU or other critical CPU 

components could be designed the required functionality needed be determined. As 

previously mentioned it has been decided to provide a set of instructions that would 

be compatible with the MIPS instruction set as outlined in [9]. Using this as a base 

line for functionality allows for some flexibility in the design process, if an 

implementation could offer additional functionality without detrimentally affecting 

the component’s size and delay characteristics than the added functionality would be 

included. Another goal of the design process has been to ensure that the modules can 
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scale efficiently and are not locked to a set data path width. In the remainder of this 

section the designed components are presented, each component discussion includes 

an overview of how a four-bit operation is carried out along with a description of 

how the design can be expanded to more than 4-bits. Finally a brief discussion is 

provided on other support components that are critical for the implementation of a 

processing unit. An early version of these components has been presented [10]. 

2.2.1 Bitwise Logic 

When implementing a unit for bitwise logic the critical functions that must be 

included are AND, OR, XOR, and NOT.  This fits perfectly with the target hardware 

since two inputs could be allocated as data inputs {C3:0, D3:0}, with the other two 

inputs {Ax, B0} being allocated for use as a function select.  The remaining cells in the 

design could be used to route the data to either the Y7:4 or Y3:0 outputs.  Using this 

implementation all of the logic operations contained in the standard MIPs ISA could 

be provided.  

In keeping with the goal of providing extra functionality when there would be 

little or no cost to the cell count or delay requirements for a execution unit it was 

decided to use the second row of elements and the B1 input as an optional inverter. 

This meant that with the use of 1 extra input bit in an established control signal the 

logic functions, NAND, NOR, XNOR, and a pass-through could be provided.  This is 

shown in Table 2.1, and Figure 2.7. 



! "#!

One of the benefits to bitwise logic is that there is no need for any knowledge 

about neighboring bits or their result to complete the designated operation.  This 

results in a completely parallel computation structure, with the delay remaining 

unchanged for any path width and the cells required for a given operation to be 

calculated by simply dividing the path width by four.  For a 16-bit unit four cells are 

required and one cycle is needed to complete any supported operation, similarly a 64-

bit unit requires 16 cells and one cycle to complete a given operation.  

TABLE 2.1: LOGIC OPERATIONS AND CONTROL SIGNALS 
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Figure 2.7 Logic Cell Organization 
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When it comes to layout this unit is the most flexible of all of the units, since 

there is no need to communicate information about other bits such as their input 

values or output.  This allows for the Module to be placed in as small a region as 

possible, or spread out and placed in cells that are not being used, but surrounded by 

cells currently allocated for other modules.  The most obvious way to layout the 

modules is shown in figure 2.8, where in 2.8 A the cells are placed in a straight line. 

Alternately in Figure 2.9 B the cells are placed in a rectangle where X!Z equals the 

Path Width divided by 4. 

2.2.2 Multiplication, Addition, and Subtraction 

Rather than design components for each of these operations it was decided to 

use a component originally detailed in [11] and for which the math cell was designed. 
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Figure 2.8: Logic Module Layout and Placement 
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The unit is able to carry out a multiply and accumulate (MAC) operation. When 

every element in a cell is programmed to implement (2Z + Y) = (A AND B) + C + D, a 

4-bit MAC of the form (A!B) + C + D is obtained, with the resulting output being an 

8-bit value. This configuration though is only for unsigned numbers, but with minor 

changes can be adapted to accept signed values, along with varying input widths. The 

changes that are required to enable the module to accept signed numbers involve 

changing the configuration of elements internal to each cell. The four elemental 

configurations that can enable a signed MAC operate are termed Alpha, Beta, Gamma, 

and Delta, and are chosen based on which if any of its inputs represent a sign bit. 

Using these elemental configurations there are four separate cellular configurations 

that are used to make up a MAC unit greater than 4-bits. The four different cell types 
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Figure 2.9: Cell Types based on Elemental Configuration 
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are detailed in Figure 2.9 and show how the different elemental configurations are 

used to implement the cells, which share the same naming scheme as the cells 

themselves. Figure 2.10A shows the implementation of a 16-bit MAC unit and how 

signed bits are routed through the MAC unit. 

The obvious method for providing signed and unsigned operations in a 

processor core is to utilize 2 MAC units one configured for each type of input.  

However, this is not a responsible use of hardware, so a different method had to be 

found.  The solution that was derived and termed the MAC-2 is based on 

implementing an optional sign extension module, which could be placed in the 
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 A: Standard Signed MAC Unit B: 16-Bit MAC-2 Unit and Layout 

Dashed lines represent signed bits 

Figure 2.10: 16-Bit MAC Units 



! "#!

instruction decode section of a processor, and then to implement a MAC unit that was 

capable of computing a multiple and accumulate operation of N+4 bit, and then 

ignoring the highest 8 bits of output. The benefit of this method is detailed in Table 

2.2. As Table 2.2 shows the savings is minimal in terms of cell count for 8 bit data 

paths, but rapidly increases to almost 50% for larger data path widths. Additionally by 

utilizing the MAC-2 any standard arithmetic function can be completed except for 

division by controlling which input the data is routed to. As is shown in Table 2.3 

multiplications can be computed by sending the data values to the A and B MAC-2 

inputs. Subtraction operations can be accomplished by multiplying the subtrahend by 

-1 and adding it to the minuend. Addition operations can be completed by simply 

routing the two addends to the C and D inputs, but to minimize input usage and 

hardware routing paths the operation will be computed by multiplying the augend by 

1 and adding the other addend to its result. Furthermore if a specific application 

required incrementing operations by set amounts the MAC-2’s unused input could be 

adapted for that purpose, much like the ARM processors use barrel shifters in 

conjunction with adders for quick multiplications [12]. 

TABLE 2.2: MAC UNIT CELL COUNT COMPARISONS 
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As is demonstrated in Table 2.2 the MAC-2 unit scales at a rate of (N/4)2-1, 

while the delay required for operation scales at a rate of N/4 cycles for N-bit 

operations or N/2 cycles for 2N-bit operations.  This translates to a 16-bit MAC-2 unit 

requiring 15 cells and 4 or 16 cycles and a 64-Bit MAC-2 unit requiring 255 cells and 

8 or 32 cycles for N and 2N-bit operations respectively.  One drawback to the MAC 

units is that they require a set placement pattern that allows for built in pipelining to 

be utilized if needed and to eliminate extra delay when communicating carryout or 

borrow-in information. Figure 2.10B shows the required implementation for a 16-bit 

MAC-2 unit. 

2.2.3 Shifting and Rotating 

When designing the shift module the main operations that needed to be 

included were the shift left logical, shift right logical and shift right arithmetic 

operations. After examining different methods for implementing the unit a shifter has 

been chosen that would reduce delay and hardware when compared to more popular 

barrel shifters like those detailed in [13]. The shifter is made up of a single shifting 

TABLE 2.3: MAC-2 INPUT ORGANIZATION 
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cell, which can carry out shifts of 0, 1, 2, 3, or 4 bits and relies on inputs ordered {C3:0, 

D3:0}. Left and right shifts require separate, but identical configuration, cells that can 

be connected to a MUX to choose the appropriate output.  

The basic shift cell is shown in Figure 2.11 and as detailed in the figure shows 

the top row of elements are used as bit select blocks or basic two input multiplexers. 

The remaining elements in the cell are configured to act as a router and based on the 

A3:1 and B3:1 inputs can route the selected bits to any block for output. This 

configuration allows for any continuous sequence of 4 bits to be output from the cell 

from the original input of {C3:0, D3:0}.  When being used for left moving operations the 

input should be ordered with the original bits being sent to the C3:0 input and the shift 

in bits occupying the D3:0 input.  The right moving operations require the opposite 

input ordering with the original bits being connected to the D3:0 input and the fill bits 

tied to the C3:0 input. 

To facilitate operands greater than 4 bits, cells must be used in parallel with 

bits being shifted into one block being the primary bits in the neighboring block. 

Additionally shifts of greater than four bits can be implemented in one of two ways. 

The first method is through repeated use of the cells broken up into 4 or fewer bit 

shifts. An alternative method, which is used for this work, is based on feeding the 

output of the shifter into another shifter allowing for a total shift of 8 bits, which can 

be repeated to offer shifting of any number of bits. This method also allows for one 
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shifting cell to be eliminated for every row of shifters, because if a shift of greater 

than four is taking place, one cell will output four of the fill bits and this will not 

change no matter how many more places are shifted. This is detailed in figure 2.12, 

which shows a 16-bit right shifter capable of shifting up to 16 places.  

A rotate operation may be implemented simply by modifying the output 

MUX, which chooses the left or right shifter, to compute an OR operation of the two 

shifted values representing left and right shifts. This is only valid if the two shifters 

shift by complimentary amounts that when added equal the total path width. An 

example of this is that 8-bit value 10010110 when shifted left by 2 becomes 01011000, 

and when ORed with the same value shifted right by 6 (00000010), becomes a left 

rotate by 2 or 01011010. Since this required no additional hardware and only minor 
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C0C1C2C3 A0A1A2A3 D0D1D2D3

 

Figure 2.11: Shift Cell 
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modifications of the output mux and control logic it was added to the standard 

functions offered in our MIPS ISA compliant architecture. 

In addition to the shift cells and output mux it was decided that the control 

logic should be made internal to the shift module.  By doing this the modules inputs 

could be reduced to the 3 inputs: data, shift amount, and function, eliminating the 

control signals needed for each row of shift cells as inputs. To generate the control 

signals two memory cells are needed for each row of unidirectional shifts and must be 

used to generate the control signals a cycle before the data arrives at the controlled 

cells. Additionally a cell for modifying the input shift value to a memory index is 

needed for each shift direction.  This creates a delay overhead of 2 cycles and a 

sizeable increase in the total cell count requirements but ensures a self-sufficient 
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Figure 2.12: 16-Bit Right Shift Unit 
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module that can easily be integrated into any type of processor or device requiring 

shift or rotate functionality. 

A diagram of the shifter with the control logic is shown in Figure 2.13.  Like 

the MAC-2, the shift module relies not only on neighboring bits, but also on distant 

bits within a word, if the shift/rotate amount is significantly large, and serial 

computations. This means that rather than slowing increasing the delay in the 

component as the path width increases the delay increases linearly and can be 

calculated by computing 3+N/4. The cell count requirement for shifting and selecting 

an output are not easily defined by a single equation, but for a four bit shift requires 

3!(N/4), and for every for extra 4-bits of shifting 2!((N/4)-i) cells are required, where 

i is the distance from the first shifting row of cells.  This leads to a 16-bit shifter 

requiring 24 cells for shifting, 20 cells for control logic and 7 cycles for computation, 
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similarly a 64-bit shift unit would require 288 cells for shifting, 68 cells for control 

logic and 19 cycles for the operation to be completed. 

2.2.4 Comparator 

Comparators in modern processors are depended upon for two primary 

instruction types, the first being branching where the decision to branch is based on 

whether a number is equal to zero or to another number.  The second major use for 

comparators in processors is “set on” instructions which can range from set on: <, >, <, 

>, = or !. These instructions allow for the processor to make decisions on what to do 

based on the state of a register or registers. In the target reconfigurable hardware the 

comparator is one of the more challenging components to implement because unlike 

other operations there are three pieces of information needed to make a decision that 

are: has a decision been made, are the bits equal, or is the comparison bit greater than 

the reference bit. This causes one of the limitations of the math cell layout to come to 

light, which is that the last cell in each row can only transmit 1 bit of information 

about itself to the rest of the cell. To overcome this issue the comparator is broken up 

into 2 cells, the first being an information generation cell and the second being a 

decision-making cell. 

The information generation cell or top cell is a very simple cell.  As shown in 

Figure 2.14, the top row of elements in the cell output whether the bits are equal on 

one output and whether the comparison bit is greater than reference bit.  The equal 
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bits are then routed to the Y3:0 outputs representing the bit order {B3=, B2=, B1=, B0=}. 

Similarly the greater than bits are routed to the Y7:4 outputs, except that the bit order 

is reversed to represent {B0>, B1>, B2>. B3>}, which allows for the complexity of the 

decision cell to be reduced. If the input values are in 2’s compliment form all that 

must be done is to have the most significant bit’s information generation modified to 

output a greater than if the comparison bit is zero while the reference bit is 1 or vice 

versa, otherwise all information generation operations are the same. To include this 

functionality the B0 input of a cell can be used to indicate signed comparison and that 

standard behavior should be modified. 

The decision cell or bottom cell, as shown in figure 2.15 is actually quite 

simple and elegant since the bits representing greater than comparisons have been 
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reversed in the information generation cell, otherwise the decision cell would have 

become much more complex. As is shown in Figure 2.15 the cell operates on two 

different data paths.  The first path is dedicated to the greater than comparisons and 

routes data from the upper left corner down to the lower right.  While data is moving 

from element to element the greater than comparisons are merged into a single 

greater than decision, if a more significant bit is found to be greater than its reference 

than the previous decision is set aside and replaced with the most significant bit.  The 

second data path is dedicated to equal detection and transmits data in a tree pattern, 

from the top of the cell to the bottom.  With each additional level the equal 

information incorporates an additional bit of information so that by the time the data 

reaches the bottom of the cell, the left most three cells know if the original 4 input 

bits are equal or not.  Using the greater than and equal bits the output Y4:0 can be set 
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to show the result of any of the comparison operations on any or all of the outputs, as 

detailed in Table 2.4. To make the comparator more adaptable to expansion the 

output bits are mapped as follows: {>, =, >, =}. 

Rather than rely on the sequential nature of comparisons and chain the output 

of one 4-bit comparison into the input of another, a parallel implementation was 

adopted to reduce delay while minimally increasing the required number of cells. The 

final cell that needed to be designed to complete the module is a collector cell, which 

is shown in figure 2.16. The cell is divided into four parts with the cell’s four inputs 

being ordered {A, B, C, D} for order of significance.  Part J is used to merge the C and 

D inputs to make a decision on the eight least significant bits’ comparison. Part K 

takes the resulting decision from Part J and using the A and B inputs makes a decision 

for the entire 16 bits on whether the comparison input is greater than the reference 

and passes the result to Part M. Part L checks if each of the 4-bit segments are equal 

and if so sets an equal bit that is sent to Part M. Finally Part M takes the output from 

Parts K and L and can output any of the comparative results on the Y7:4 output.  To 

TABLE 2.4: Comparator Output Generation 
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ensure the module is highly scalable Part M is set to output the results in the form {>. 

=. >. =}, which can then be sent to another collector cell if needed.  Additionally 

output of the final collector cell can be modified to show the result of any supported 

comparison operations. A Diagram of the final module structure is shown in figure 

2.17 A. 

Using the collector cell allows for comparison operations to be computed in 

parallel, so that while the path width and cell count are increasing at a rate close to 

(N/4)!2+N/16+N/64… the delay required to complete the operation is increasing at a 

much slower rate, closely following 2+N/16+N/64... This translates to a 16-bit 

comparator requiring 9 cells and 3 cycles of delay while a 64-bit comparator requires 

37 cells and only 4 cycles of delay. An added benefit of relying on parallel 
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computations is that the comparator can be made to fit in a relatively small number of 

cells on the chip, as is shown in the layout of a 16-bit comparator in Figure 2.17 B. 

2.2.5 Other Components  

 Other key support units/components that allow the execution units to 

be integrated into a processor core are presented below. The implementation of these 

components is briefly described along with their basic sizing details.  

• Register File.  The register file is simply a block of memory that can 

concurrently read two values, while writing to another. This can be built by 

allocating two parallel groups of cells in memory mode and connecting the 

write inputs to the same source.  Using this model 2 cells are needed for every 

4-bits in the data path and will provide up to 128 register locations. Typically 

there are 32 general-purpose registers plus the Hi/Lo registers for 
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multiplication and division operations, by partitioning these memory locations 

accordingly a processor supporting 2 threads can easily be realized. 

• Program Counter. Since the program counter is meant to increment the PC 

value by four or another constant value a scaled down MAC unit can be used 

which simply takes the addends and computers next PC value. The optimized 

MAC is essentially the far right row in Figure 13.b and requires N/4 cells 

placed serially and requires N/4 cycles to generate the new PC value. 

• TriMux. Due to the architecture of the basic math cell a 2:1 mux can be 

implemented that only utilizes 25% of the elements in a cell. To increase cell 

utilization a 3:1 mux has been designed that can also set, reset and invert the 

chosen input bits. This unit makes data routing much more efficient, since 

building a 4:1 mux requires 2 cells rather than 3 cells. The TriMux requires 

N/4 cells for implementation and has no specific placement requirements since 

cells contain no interdependencies.  

• Pipeline Registers .  Pipeline registers can be implemented by using one 

input of a cell in math mode as feedback from the output, which allows for the 

current data to be saved for multiple cycles. The remaining 3 inputs can be 

used for new data input, set, and reset signals. This means that one cell is 

needed for every 4-bits of input and can be places in nonadjacent locations. 
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2.3 Module Functional Simulation 

One important aspect of the module design process that has not yet been 

touched on is the method for ensuring that the designs function as intended. It is 

critical that each cell and module will work as expected, without exception, because 

they will serve as the core of a processor or coprocessor that must be reliable in order 

to be utilized.  In this section the method used to verify the modules’ functionality 

will first be detailed, this will include a detailed description of the method used as 

well as an explanation for why the method was chosen. Lastly the module functional 

simulation results will be described. 

When attempting to verify that modules and their cells were functioning 

properly there were three possible choices.  The first method was to use hand 

calculations to prove functionality; this method was quickly abandoned though due to 

the size and complexity of some of the modules along with the ease with which 

human error could be introduced. The second method considered was to utilize a 

simulator developed by another student, which included basic cell placement 

capabilities. This option was appealing but in the end could not be used due to the 

simulator’s inability to track signals internal to modules and size constraints when 

implementing the larger modules such as the MAC-2 and shift modules.  The final 

method that was considered and ultimately chosen was to use VHDL modules to 
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implement the basic memory and math cells on an elemental level and then through 

component mappings connect the cells together to form each of the modules.   

The VHDL approach was particularly appealing since it allowed for signals not 

just within a module to be tracked during simulation, but also signals within a cell, 

and since VHDL is a common hardware definition language it also meant that there 

were many software suites that could be used to complete the simulation process 

without having to write custom simulation software.  Similarly test benches could be 

made to use VHDL’s file IO features so that expanding a test set required only adding 

the additional test to a text file.  This method also allowed for modules of any size to 

be designed, and for modules to be made of other modules if needed. 

The process to ensure each of the modules started at a cellular level; first each 

cell type in a given module was tested to ensure it reacted properly to the given 

stimulus.  Once each of the cells had been verified any groups of cells that were used 

together to carry out part of a modules operation were then tested.  Finally the 

module was built for a 32-bit path-width and tested with a sufficient number of 

inputs for each provided operation to ensure that everything was functioning 

correctly.  

Each of the processor modules as well as the support modules has been 

thoroughly verified to function properly through this simulation process.  An 

example of the verification output is shown in Figure 2.18 and 2.19, which 
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demonstrates that the Shift and MAC-2 modules consistently output the correct 

results. Each of the modules designed to carry out encryption transformations were 

also verified to ensure proper functionality.  Decryption transformation modules did 

not undergo the same thorough testing because they work identically to their 

encrypting transformations with only modified memory values.  
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Chapter 3 

Execution Cores and Forwarding 
One of the major benefits to using the modular processing components is that 

execution cores can be optimized for the most common instruction in a given 

program or for the behavior characteristics desired. Design considerations and 

components such as clocking, the core architecture and the methods for 

implementing data forwarding that are required to build the processor’s execution 

core are presented in this chapter. By utilizing the methods for configuring and 

designing the execution cores presented here, the design of a five-stage processing 

architecture as detailed in [9] may be obtained, that is not only MIPS compliant, but 

can extend the instruction set.  

The remainder of this chapter will proceed as follows. A discussion of how 

data processed and output by each of the modules will first be provided.  The 

introduction of the execution cores themselves will then be discussed including a 
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brief discussion of the mechanisms that allow for branch and jump instructions to be 

completed. Lastly, the three different data forwarding schemes that have been devised 

will be presented, along with details regarding their cell count and delay 

requirements. 

3.1 Five-Stage Architecture Adaptation 

The first step in implementing the execution core for a pipelined processor is 

to determine how best to adapt the standard five-stage model for the target hardware. 

The most obvious solution to this task is to utilize the hardware’s built in pipeline and 

serially connect all the necessary components. There are two downsides to this 

approach the first being to calculate PC + 4 requires up to eight cycles and would 

require generating new PC values in parallel to ensure maximum throughput. This 

leads to the second and most complex problem, which is managing the deep pipeline. 

The control logic required to clear the pipeline for a missed branch prediction or to 

service an interrupt would become very complex. 

An alternative approach that has been developed in this study is to utilize a 

predefined window of clock cycles to represent the time required for an instruction to 

be serviced in a given stage to implement a standard five-stage processor. This allows 

for the core to become more deterministic in terms of execution rate and can simplify 

the control logic.  The window size as defined by the number of cycles it spans has 

been termed the Control Synchronization Factor (CSF). If the CSF is 1 then every 
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cycle the control logic must determine if the operation has been completed, similarly 

a CSF of 10 means every tenth cycle the control logic would determine if the output 

was valid or not. It should be noted that when using the CSF values greater than 1 the 

system clock remains the same, but the effective clock rate of the execution core 

becomes the clock rate divided by the CSF. 

The standard five-stage processor utilizes boundary registers to save the results 

of one stage and hold the values constant as the input to the following stage, the clock 

rate is then defined by the maximum delay of any of the five stages. To adapt this to 

the target hardware the CSF is used and when implemented as shown in Figure 3.1 

can provide an equivalent architecture to the standard five-stage architecture. The 

primary difference is that the counter via the filter block controls an instruction’s 

transition from stage to stage. The filter block is used to dynamically increase the 

window size and allow extra CSF windows to be used for data forwarding while 

minimizing the number of unused cycles when forwarding is not needed. A brief 

 
Figure 3.1: Five-Stage Core Architecture Adaptation 
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explanation of how the instruction decode stage and control logic may be 

implemented can be found in Appendix B. 

3.2 Execution Cores 

Four different execution cores have been proposed, designed and evaluated. 

Each execution core has been developed around a specific module or design goal 

ensuring that each core could ideally fit an application highly dependant on a given 

instruction type or behavior. The first core is presented in detail to give a better 

understanding of how the proposed cores function and scale with varying data path 

sizes. The description of the three remaining cores is focused on their differences 

from the first core and what niche they are attempting to fulfill. Lastly, two methods 

for providing branch and jump operations are presented, which can work with any of 

the 5-stage cores.  

3.2.1 Half-MAC Core 

The first core is referred to as the half-MAC (or !MAC) core and was 

originally proposed in [14], since it is designed around the MAC unit and moving its 

results to the output as rapidly as possible once the computations are completed. The 

term half is used since the unit’s 64-bit output is treated as 2 distinct outputs, one for 

the lower 32-bits and one for the upper 32-bits. As is shown in Figure 3.2, the logic, 

comparator, and shift/rotate units’ outputs are all tied to a single TriMux. The output 
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of this TriMux is then tied to the third input of the lower TriMux, which is shared 

with both of the MAC-2 unit’s outputs, to produce the final execution stage output. It 

should be noted that using this method requires two cycles to commit the results of 

64-bit MAC operations, but in keeping with MIPS functionality this matches the Hi 

and Lo register segregation and allows for fewer cells to be used in the 

implementation of the register file. This core is best used for general-purpose 

programs where the MAC unit would be heavily relied upon.  

The width of the data path plays a critical role when determining core delay 

and size. As shown in Table 3.1 the modules can easily scale with the average a size 

increase approximated by multiplying the current size by 2.38 when the data path 

width doubles, the average delay increase is kept to a scaling factor of 1.34.  This 

shows that the !MAC core and all other cores utilizing the modules from Chapter 2 
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Figure 3.2: !MAC Execution Core 
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scale in a very similarly fashion. The size scales at an average rate of 2.67 and the 

delay increases at a rate of 1.79 cycles for every doubling in path width. When 

clocking this unit an ideal CSF factor is 9, because it allows for 32-bit operations 

(excluding shift operations) to be completed and output in a single control window 

while minimizing the number of wasted cycles for other operations. Additionally the 

64-bit operations and shift operations can be completed in the second CSF window. 

For the remainder of this study comparisons will be based on 32-bit path widths 

unless otherwise noted. 

3.2.2 Shift Centric Core 

The Shift Centric core is built around the shift/rotate unit. Similar to the 

!MAC unit the Logic and MAC-2’s outputs are fed into a TriMux, which is 

connected to the output TriMux that is shared with the shift/rotate and comparator 

units. This Unit is shown in Figure 3.3 and is ideally suited for programs in which 

 
TABLE 3.1: Core and Module Sizing Based on Path Width 
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division is carried out algorithmically through shift and comparison operations. 

Choosing a CSF for this unit is not as straight forward as other units because the shift 

operation requires the greatest amount of delay for a 32-bit output and unless the 

program being executed requires a large number of shifts a significant number of 

wasted machine cycles will result. An ideal CSF of 12 is best for shift dependant 

programs, while best performance would be achieved with a CSF of 10 if a program 

were not dominated by shift operations. 
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Figure 3.3: Shift Centric Core 
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3.2.3 Comparator Centric Core 

The Comparator Centric core is built around the comparator and logic 

execution units. The primary units are tied to the output TriMux along with the 

output of a TriMux connected to the MAC2 and shift/rotate unit, as shown in Figure 

3.4. This module is best used for systems that want to maintain a small CSF and are 

not concerned with complexity of control logic. This is due to the core being designed 

around the 2 units that require the fewest machine clocks to carry out their 

designated operations, and can be tuned to run with a CSF of 5 while minimizing 

wasted machine cycles. This core is particularly well suited for executing pre-

organized code blocks that rely heavily on logic and comparisons operations rather 
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Figure 3.4: Comparator Centric Core 
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than branching and arithmetic intensive code blocks and could be optimal for use as a 

microcontroller or monitoring the output of an A/D. 

3.2.4 ExCore  

The ExCore design is significantly different from the other cores in design 

philosophy, in that it was architected to balance the unit delays allowing for single 

clock execution time for all 32-bit operations and 2 system cycles for 64-bit 

operations. This was particularly useful when the design was originally implemented, 

because the core was still utilizing 2:1 multiplexers and this increased the delay for 

some modules’ outputs in reaching the stage output, as shown in figure 3.5. After 

having transitioned to utilizing TriMux multiplexers the implementation became very 
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Figure 3.5: Original ExCore Layout 
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similar to the shift core. The primary difference is that the MAC2’s outputs are split 

between the primary output TriMux and the upper TriMux, which is also shared with 

the logic and comparator units, as shown in Figure 3.6. When appropriate delays are 

added between execution units and their primary TriMux the design is best run tuned 

with a CSF of 12, however if few shift operation are required then a CSF of 9 is more 

ideal with shift operations also requiring 2 system cycles and transforming the core 

into a variant of the !MAC core. 
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Figure 3.6: ExCore 
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3.2.5 Branch and Jumps 

Branch and jump instructions are vital functions of any processor; typically a 

zero detection bit controls the PC replacement mux that facilitates branch 

instructions and replaces the current next PC value with the branch/jump target 

address. There are two methods for implementing the zero detect signal in the cores, 

the first relies on connecting the comparator unit’s output to the zero detection 

output and along with an enable bit controlling the PC replacement mux. This 

method does not require any additional hardware or delay to be added to the core. 

The other option shown in figure 3.7 is to implement a flag system, which has been 
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Figure 3.7: Flag System 
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designed and includes overflow/underflow flags, but requires 13 cells and adds 3 to 4 

cycles to the total execution stage delay depending on the core being used. 

3.3 Forwarding Mechanisms 

To accommodate data forwarding and reduce system stalls, three separate 

forwarding mechanisms have been implemented for use with the proposed processing 

cores. In the remainder of this chapter each mechanism’s primary functions will be 

detailed as well as the hardware requirements to implement the forwarding 

mechanism. 

Module Forwarding:  The Module Forwarding (MF) scheme, shown in 

Figure 3.8A and is the simplest of the forwarding mechanisms in that each module’s 

output can be sent directly back to the instruction decode stage of the processor for 

use in the next issued instruction. Since the instruction decode hardware is generally 

a network of LUTs and muxes to move data to the correct location and generate 

control signals. For the purposes of comparisons this forwarding scheme is considered 

to have no hardware or delay overhead for the execution stage of the processor. 

Module with Local Forwarding:  The Module with Local Forwarding 

(MwLF) method, shown in Figure 3.8B, is very similar to the module forwarding 

scheme, except that an input multiplexer is added to each of the inputs of the 

processing units and connected to the given units output. This allows for processing 
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units to be used repeatedly with the same data without incurring large delays when 

the data is at the unit’s output. The hardware and time requirements of the MwLF 

scheme compared to MF scheme are 48 cells and 1 machine cycle, but this could be 

reduced if the units that typically do not run sequentially on the same data like the 

comparator were not allocated this extra forwarding hardware. 

Module-to-Module with Local Forwarding:  The Module-to-Module 

with Local Forwarding (M2MwLF) scheme, shown in Figure 3.8C, builds further 

upon the MwLF scheme in that each module is able to directly forward its output to 

any of the other modules. This is done by adding an additional TriMux to the MwLF 

scheme that can select as an input the output of any of the three other processing 

units. When compared to the MF scheme this method required the addition of 96 

Module Module Module

Module Output

Data
Issue

Data
Issue

Data
Issue

Other 
Module Outputs

 
(A) MF Scheme  (B) MwLF Scheme   (C) M2MwLF Scheme 

Figure 3.8: Module Forwarding Schemes 
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cells and 2 machine cycles or double that of the MwLF scheme. Like the MwLF 

scheme the hardware and time overhead could also be reduced by selectively 

eliminating local and module-to-module forwarding where the performance benefits 

do not outweigh the additional hardware. 
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Chapter 4 

Five-Stage Core and Forwarding 

Scheme Performance Evaluation 
This chapter will focus on the evaluation of our approach and the effectiveness 

of the designed cores. The evaluation will be divided into three components, the first 

being the lessons learned from early research, which will provide an overview of 

what was learned from the FPGA research and a critique of the target hardware when 

compared to FPGAs. The performance evaluation will focus primarily on the effects 

of different control synchronization factors (CSFs) and forwarding schemes and how 

they effect the cycles required to execute a SPEC integer benchmarks. Finally a 

comparative analysis will be presented that focuses on how our approach differs from 

other reconfigurable hardware based processors in approach, performance, and 

adaptability. Using these evaluations in combination a clear picture will be given 
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showing the strengths and promise of the target hardware as well as the versatility of 

our approach in developing highly configurable execution cores.  

4.1 Past Lessons 

In [15], three AES encryption cores, termed DOR, DOR+K, and Dual-Stage, 

were proposed that included various optimization to the standard encryption core 

including custom routed Shift Row transformations, key storage registers, optimized 

Mix Column transforms and multi-round hardware implementations. These designs 

were then compared to similar work from [16], [17], and [18], which showed that the 

proposed schemes provided comparable levels of throughput while consuming the 

least amount of power, which is detailed in Table 4.1. Additionally the DOR and 

DOR+K schemes provided the best throughput vs. area metric of the compared 

designs, although some of the designs used for comparison included decryption 

hardware. 

TABLE 4.1: AES Implementation Comparisons 
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When the proposed encryption designs along with a design obtained from 

NIST [19] and the Open Cores project [20] were analyzed using the Xilinx’s XPower 

software a large insight into the performance and power characteristics of FPGAs was 

obtained. As shown in Figure 4.1 when operating at a speed of 5 MHz or an average 

rate of 25% of the maximum clock speed, quiescent power becomes the dominating 

power consumption component. This is not unexpected though because until recently 

FPGAs have typically been designed to provide the fastest performance possible 

without regards to the power consumption rates. Further research in [7] showed that 

regardless of design or operating speed the quiescent power required by an FPGA did 

not change, which shows that FPGAs are not able to disable unallocated parts of the 

device to reduce base power requirements and that this component is entirely 

dependant upon implementation choices and technology. This shows that FPGA 

choice is of more importance than design optimizations when it comes to reducing 

power consumption in certain environments regardless of the technology size, since 

 

Figure 4.1: Power Consumption of FPGAs 
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FPGAs utilizing the same transistor sizes can have vastly different power 

characteristics. 

Examining the items learned from the FPGA research helped to incentivize 

the move to the medium-grain reconfigurable hardware. It should be noted that the 

AES modules introduced in Chapter 2.1 are capable of being used to implement any of 

the designs used in [7] on the target hardware. Additionally some designs that were 

not used for comparison because they focused on minimal area like [21] could also be 

implemented using the proposed modules and the hardware’s integrated pipeline. 

One important characteristic of the reconfigurable hardware is that the clock is 

defined by the hardware implementation and technology, not by the design as with 

FPGAs. This is possible in large part because of the built in pipelining that allows for 

modules to continuously process data compared to FPGAs where chained logic blocks 

without buffer registers often limit the maximum clock rate. One example of this is 

that the DOR and DOR+K scheme were able to run up to speeds of 28 MHz, while the 

AES modules presented in section 2 can run at speeds reaching 720 MHz when 

utilizing the built in pipeline of the target hardware and do not require allocating 

additional hardware for buffer registers. If the natural pipeline were not to be used 

the speeds of the AES module would when implementing the DOR+K scheme be 

conservatively approximated at 72 MHz for a chip using the same technology as the 

Spartan 3E. 
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Another benefit of the target hardware is the ease with which new 

technologies can be adopted and fully utilized, since everything is based on a memory 

cell with no specialized hardware needing to be redesigned. As shown in [5] the 

power reduction in leakage current alone of FinFETs versus standard CMOS 

technologies is appealing and can increase clock speeds by more than 100% when 

compared to 45nm CMOS circuits. Similar research examining future 

implementations utilizing CNFETs (Carbon-nanotube FETs) has shown that a static 

power reduction of up to 98% and a 43% reduction in memory access delay may be 

achieved for 8-T memory cells when compared to standard CMOS technologies. 

Additionally the target hardware is divided into groups of reconfigurable elements 

that if not being used can be disconnected from the power supplies to eliminate idle 

leakage power. 

4.2 Performance Evaluation 

In this section the proposed schemes for flexible processing units are 

evaluated. These evaluations include different forwarding methods for performance 

and size, as well as the effects of varying the CSF. This discussion proceeds as follows: 

The method used to analyze the designs is first presented. Next the results of the 

analysis are detailed. Lastly an analysis of what the results show is presented.  

Before the evaluation process is detailed it should be noted that the range 

across which the CSF will be varied is 10 to 20. The reason for this is due to the time 
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it takes to generate a new PC value using an addition only MAC unit. The modified 

unit requires 8 cycles to compute a 32-bit addition and another cycle would be 

required to store the data into a register. A method could be devised in which 

multiple new PC values are generated at once allowing for CSFs less than 10, but for 

this evaluation 10 will be the minimum considered CSF value. 

To accomplish this evaluation a program has been written that computes the 

number of cycles a program takes to execute. By using the number of clock cycles 

required, comparisons may be made across core architectures, forwarding 

methodologies and CSF values without the need to translate data from one 

technology to another. A MIPS trace file (in machine code) is the input to the 

program, which takes each instruction and calculates the number of cycles required 

to execute the instruction, as well as any forwarding delays to communicate the 

current instruction’s results to the subsequent instructions. If the resulting number of 

cycles does not match a multiple of the CSF then extra cycles are added to 

synchronize with the control system. The program continues to process instructions 

until the end of the trace file. In the event that an instruction is not supported a 

penalty is added to the total cycle count equivalent to a 32-bit MAC operation. It 

should be noted that the forwarding delay is computed using the forwarding scheme’s 

cycle overhead plus the time to route data from one component to another using a 
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best-case placement. This analysis method is similar to the approach used in [22] for 

the design of a programmable instruction set computer. 

The MIPS trace files that are used for this analysis are the SPEC Li (Lisp), 

EQNTOTT (Equation to Truth Table), ESPRESSO (Boolean Function Simplification), 

COMPRESS (Text Compression Algorithm), and SC (Spreadsheet Application) integer 

benchmarks [23]. These test benchmarks range in size from 720K to 804K instructions 

and total 3.85 million instructions, with at most 0.07% of the instructions not being 

supported, which is made up mostly of coprocessor instructions. However, each 

benchmark does require a small number of division operations (.04% maximum); 

these instructions currently need be implemented algorithmically in software. It is 

estimated that these instructions would take 20 times the standard 64-bit MAC-2 

instruction time or 320 machine cycles. The simulator also has been modified to 

replace the standard MIPS NOP instruction that is a left shift of zero by zero with a 

logical ANDing of zero with zero, since the shift unit requires the most cycles to 

compute its results. 
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Evaluation results are shown in Table 4.2 and 4.3 and Figure 4.2 and 4.3. As is 

shown in Table 4.2 the more advanced forwarding schemes are able to provide a 

sizeable reduction in total cycles, the MwLF scheme averages 6.27% and the 

M2MwLF scheme averages 9.29%. This translates to an average savings of 6.28 and a 

TABLE 4.2: Optimal Performance Characteristics for Cores and Forwarding Schemes 

 

TABLE 4.3: Cycles (in Millions) Needed to Complete 5 Benchmarks  

Totaling 3.85M Instructions 

1/2MAC
Shift 

Centric
Comparator 

Centric ExCore

10 58.699 58.699 58.699 58.699
11 63.688 63.688 63.688 63.688
12 67.906 67.366 67.906 67.366
13 72.980 72.980 72.980 72.980
14 77.165 77.165 77.165 77.165
15 77.140 77.140 77.140 77.140
16 80.687 80.687 81.060 80.687
17 85.451 84.600 84.720 84.441
10 53.397 67.966 67.965 67.965
11 57.815 57.815 57.815 57.815
12 63.027 63.027 63.027 63.027
13 65.139 64.553 65.139 64.553
14 69.506 69.507 69.506 69.506
15 72.486 72.487 72.486 72.486
16 74.162 74.162 74.536 74.162
17 77.956 77.668 77.787 76.947
10 50.932 65.500 65.500 65.500
11 55.204 55.204 55.204 55.204
12 60.210 60.211 60.210 60.210
13 62.115 61.529 62.115 61.529
14 66.262 66.262 66.262 66.262
15 70.865 70.865 70.865 70.865
16 73.656 73.713 74.087 73.656
17 77.415 77.126 77.250 76.405
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maximum of 7.84 million cycles for the MwLF scheme and an average of 8.38 and a 

maximum of 10.9 million cycles for the M2MwLF scheme.  

It can be observed that the Shift Core, Comparator Core and ExCore actually 

experience a decrease in performance when using the more advanced forwarding 

schemes and a CSF of 10. The main reason for this is that the 32-bit MAC2’s forward 

 

Figure 4.2: !MAC Performance for SC Benchmark 

 

Figure 4.3: ExCore Performance for Compress Benchmark 
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data path in these instances becomes optimized for 11 cycles due to the input mux on 

each execution unit. This is more evident in Figure 4.2 and 4.3, which show the 

machine cycles for the !MAC and ExCore cores for the SC and Compress 

benchmarks respectively. The !MAC Core scales in an almost linear fashion until a 

CSF of 19 is reached where a relative minimum occurs. The ExCore design exhibits a 

very different response to increasing the CSF; there is virtually no change between 12 

and 13 machine cycles per system cycle, and relative minimums at 11, 16, and 19. 

Additionally the ExCore, which was optimized for a CSF of 12, exhibits the most 

consistent performance of the cores regardless of forwarding mechanism for CSFs 

greater than 12. 

When using these results it becomes apparent that the core can be easily 

optimized for any type of program with only a small amount of foresight as to the 

types of operations that a program will be executing. There are some trade-offs that 

must be considered: a 10.74% reduction in machine cycles requires a 20% increase in 

cell count, or a 14.89% reduction in machine cycles incurs a 40% increase in cell 

count. If the designer is striving for a pure general purpose platform, where all 

instructions must be completed as fast as possible, then the size of a design becomes 

the deciding factor in choosing which core and forwarding mechanism to utilize. In 

this case the !MAC offers the best performance when utilizing the MwLF and 
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M2MwLF schemes, but offers marginally poorer performance than the ExCore unit 

with MF for varying CSFs. 

4.3 Comparative Analysis 

In this section a comparison with other reconfigurable hardware based 

processors is presented. There are a number of approaches that can be taken when 

implementing reconfigurable hardware based processors; four approaches have been 

selected that represent a significant portion of the research done. A brief discussion of 

each approach is presented along with specific implementations utilizing the 

approach. Once each approach has been detailed, a comparison of these approaches 

with each other and the proposed designs is then presented.  

When considering design area for a comparison metric Xilinx characterizes 

their design in terms of slices, four input LUTs, and block RAMs, while Altera 

primarily uses logic elements. These two metrics can be approximated to provide fair 

comparisons between designs based on different FPGAs. However, there is no reliable 

way to compare them with a cell from our medium-grain reconfigurable hardware. 

Thus, to avoid unfair area comparison this analysis does not consider area as a metric. 

This leaves implementation speed as the only fair metric for offering valid comparison 

across devices and technology.  
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The first approach for utilizing reconfigurable hardware for processors is to use 

a soft processor developed by another party for a specific platform. Xilinx has 

developed and maintained the MicroBlaze and PicoBlaze series of soft processors [24], 

which can be configured to offer tuned performance for a given design’s specifications 

and can reach speeds of 85 and 154 MHz on the Spartan 3 and 6, respectively. 

Similarly Altera has provided the NIOS II [25] soft processor core for its FPGAs that 

can be configured for fast, standard or economic implementations, with the standard 

implementation maintaining speeds up to 110 and 145 MHz on the Cyclone II and III 

FPGAs. While these options provide a streamlined mechanism to implement 

processors on reconfigurable hardware, these implementations usually provide low 

performance when pared with other custom hardware. This is why Xilinx started to 

embeds Power PC cores and Altera embeds ARM cores into their high-end FPGAs.  

The second approach builds off of existing soft processors and modifies their 

organization/architecture through the use of the reconfigurable components to 

improve performance. Gonzalez et al. [26] added reconfigurable encryption 

coprocessors to the MicroBlaze soft processors that could be dynamically reconfigured 

on a Spartan 3 FPGA. The work showed that by using a reconfigurable coprocessor 

three different encryption ciphers may be sped up in hardware without dramatically 

increasing area requirements, but were only able to maintain a speed of 65 MHz for 

verification. Similarly Lysecky and Vahid [27] focused on making loop execution 



 

 68 

more efficient, by identifying repeated code blocks and using reconfigurable 

hardware to replace the repeated instructions. In their work they found that the 

MicroBlaze was able to operate at speeds of 85 MHz while the reconfigurable 

coprocessor could reach speeds of 250 MHz. Both of these examples are able to boost 

the performance of their target processors, but require a prior knowledge of the code 

being executed or the addition of hardware that can analyze code and initiate 

reconfigurations for possible optimization. This combined with the hardware 

required to dynamically reconfigure parts of a chip during execution are not trivial 

and come with an increase in design area and execution time caused by 

reconfiguration delays. 

Other researchers have looked to unique architectures that not only adapt well 

to specific tasks, but to implementation on reconfigurable hardware. In [28] a parallel 

associative processor was built with multi-comparand multi-search operations that 

could reach speeds of 104 MHz on a Spartan 3. This type of processor is particularly 

well suited for highly parallel application including graph theory and matrix/list 

computations, and could be scaled based on the desired block size. Similarly a double-

issue processor was built in [29] that operates much like a VLIW processor, since 2 

instructions of differing types can be issued concurrently. While the instructions per 

cycle factor would increase with multi-issue CPUs, the processor speed suffered, as it 

was only able to reach a speed of 63.3 MHz. Both of these processors faced the same 
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problems though, which is one of size and resource utilization. As the size of the 

processor increased for larger data paths and free space on the device decreased the 

speeds started to drop dramatically because of the overhead of routing data around 

the target device and trying to fit parts of the processors close to specialized hardware 

blocks. 

Researchers have also focused on schemes to implement MIPS processors 

utilizing reconfigurable hardware. Li et. al. [30] proposed an economic MIPS design 

that strived to minimize design area by taking full advantage of embedded 

components such as multipliers while operating at speeds up to 64 MHz on a Spartan 

3. Similarly Ramdas et. al [31] designed an integer MIPS processor using Handel-C 

that reached speeds of 45 MHz on Virtex-II for facial recognition. Lastly in [32] 

researchers attempted to build a low-power MIPS processor and by utilizing a 

modified pipeline to increase performance were able to operate at an effective clock 

rate of 100 MHz on a Spartan 3E. Power however is a particularly important area for 

FPGA research due to their poor power consumption characteristics, detailed in [33, 

34]. Each of these groups were able to successfully implement a MIPS processor for 

their intended use, but only [32]’s performance stood out and that design required a 

significant modification to the pipeline and when running at maximum speed would 

not efficiently consume power as the designers intended, which has been 

demonstrated in [7]. 
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Now having presented some of the various design focuses, we turn our 

attention to the use of specialized hardware on chip such as embedded multipliers and 

memory to increase speed and performance. While the efficient use of available 

resources on the target chip is critical, it also locks an implementation to a specific 

placement on a chip, and if a fault occurs in or near the specialized unit the device 

can become unusable. This is one of the primary appeals of our approach in that the 

platform offers no specialized hardware, which means that the design can be 

placement agnostic and the most efficient way to route a design can be used regardless 

of the technology used. The number and word-lengths of the units may also be 

tailored to the target application’s requirements using the proposed reconfigurable 

hardware. Additional performance gains can also be achieved by utilizing the built in 

hardware pipelining, which allows for increased clock rates, without a substantial 

area penalty. A potential drawback of utilizing the pipeline hardware is the increased 

complexity for: control logic, clearing the pipeline, and the time it takes to repopulate 

it.  

Another characteristic that differentiates our approach from the others is that 

by not utilizing specialized hardware on chip; the reconfigurable hardware can be 

transitioned very quickly to other technology types since everything is memory 

based. As is shown in Table 4.4 the proposed hardware and execution cores are able to 

provide competitive levels of performance with the other designs. At 90 nm the 
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!MAC and ExCore schemes’ clock speeds are comparable to the other designs’ clock 

speeds, but when transitioned to a 45 nm process the scheme offers some of the best 

performance of the designs and without any modifications required. It should be 

pointed out that the machine clock for our designs is 720 MHz and 2GHz for the 

90nm and 45nm technologies. The ongoing work being done to implement our 

reconfigurable hardware with FinFET technology [3] has shown an even greater 

performance increase while using conservatively calculated machine clock speeds. 

Our FinFET designs show that the machine clock can easily reach 5GHz. 

Furthermore the power consumption of FinFET devices is expected to be much lower 

than standard CMOS devices, which has contributed to Intel utilizing similar 

technology in their current generation of Ivy Bridge processors [35]. 

TABLE 4.4: Design Technology Size and Processor Clock in MHz 

 
† Denotes Larger Technology Size 



 72 

 

 

Chapter 5 

Hardware Analysis and  

Design Characterization 
Having characterized the performance of the designed modules and execution 

cores based on the target hardware’s performance characteristics, the attention of this 

study will shift focus to the cost for this performance and a more thorough evaluation 

of the target hardware. In this chapter the energy consumption characteristics of the 

modules and cores are evaluated to gain an insight into the cost of utilizing the target 

hardware. The first component of this evaluation is a look at how efficiently the 

hardware is utilized in terms of cell utilization, which will focus on how cell sizing 

would affect the area (cell and elemental count) and delay characteristics of the 

designs detailed in Chapters 2 and 3. The focus will then shift to the energy 

consumption rates of the components and a characterization of the individual 
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module’s power consumption rates. Next the execution core characterization for each 

core type will be offered, including the effects of the varying forwarding schemes and 

CSFs. Lastly, the energy consumption and performance results from chapter 4 are 

combined to provide a picture of how the different cores perform in comparison to 

each other.  

5.1 Hardware Design Analysis 

The primary reason for the evaluation of the physical hardware design in this 

investigation is that the hardware development is currently ongoing and if a more 

optimal cellular configuration could be found the hardware may still be adapted to 

take advantage of the more optimal configuration. As a result this analysis will focus 

on the size of the cell and how efficiently the different modules utilize the included 

components, this approach provides an obvious metric for comparison and that is 

elemental utilization. This utilization can then be broken down into the following 

distinct categories: not in use, forwarding and computational. Not in use elements are 

elements contained in used cells but not serving any purpose, but have been allocated 

as part of a cell in use. Forwarding elements are elements that act as repeaters 

forwarding one or two of their inputs to either of its outputs. Lastly computational 

elements are any allocated element that does more than simply echo data from one 

input to an output, this could be to simply AND two of the inputs or compute the 

logic function ((A AND B) XOR C) NOR D. 
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To complete this analysis the methodology chosen was to vary the number of 

elements in a cell, but keep the basic configuration of four N-bit inputs feeding into 

an N!N grid of elements. Each of the modules detailed in Chapter 2 could then be 

scaled to the new cell configurations. Additionally using timing data from [35] and 

[37] an estimate of the new clock speed can be realized and used for comparison. 

The chosen configurations for examination are: 4!4, 6!6, 8!8, 16!16, and 

32!32. An example of how the modules are scaled is shown Figure 5.1 and details 

how the shift cell is scaled to the 6!6 and 8!8 cell configurations. Using this same 

 
 

Figure 5.1: Shift Cell Scaling 
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approach, each of the cells from Chapter 2 have been scaled to take advantage of the 

different cell configurations, the results of which are detailed in Appendix C, table 5.1 

shows the computational and forwarding utilization for a 32-bit !MAC core. What 

these results show is it that 6"6 and 8"8 cellular configurations may offer a 

comparable percentage overall utilization. But the original 4"4 configuration offers 

the highest computational usage while minimizing the number of not in use elements 

as well as the forwarding elements and is shown in Figure 5.2.  

5.2 Hardware Energy Analysis 

Before introducing the energy consumption characteristics of the different 

execution cores and modules the method by which the numbers were obtained must 

be presented. The chosen method for characterizing the energy consumption of the 

designs is a simulative approach utilizing a hierarchical simulation technique similar 

to that of [38] and [39]. The Hierarchical model is based on using two separate 

components, one to characterize switching activity and one to combine the activity 

TABLE 5.1: Cell Utilization for Varying Configurations 
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models with energy numbers to determine the estimated energy consumption like in 

[40]. This is very similar to the methods used by Xilinx with their XPower tool [41] 

and other researchers [42]. 

To apply the hierarchical technique to the target hardware a program had to 

be made that calculated the probability of reading a 1 or 0 from memory based on the 

cellular configurations and input probabilities, as well as storing 1’s and 0’s in the 

output flip-flops. The input probabilities were calculated by having all data values and 

operation considered equally likely and if one cell is connected to another its output 

probability becomes the input probability of the succeeding cell(s). Once the memory 

access probabilities are determined the numbers can then be combined with energy 

consumption data from [35] and [37] which target 21nm FinFETs using a shorted gate 

configuration, to minimize leakage, and a 10 GHz clock to characterize each cell’s 

 
Figure 5.2: Cellular Utilization Characterization 
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expected energy and power consumption. Currently the memory decoder attached to 

each cell has yet to be implemented in the ongoing work focusing on FinFETs, but a 

pessimistic view of the energy required for memory access (5x increase for each of the 

32 banks) should compensate for this and provide a reasonable characterization. 

The first step in characterizing each core’s benchmark energy consumption is 

to determine the power required for each of the execution modules, which is shown 

in Table 5.2 for path widths of 8, 16, and 32-bits. As expected the modules that 

increase linearly in area also increased linearly in power consumption, this is shown 

by the logic module’s power requirement scaling from 0.07 mW for 8-bit path widths 

to 0.29 mW for 32-bit path widths. Similarly the shift and MAC-2 modules, which 

scale at a larger rate than the other modules, increases at an acceptable rate 

considering how many cells are required to work together for operation, as shown by 

the MAC-2 requiring 0.37 mW and 3.58 mW for 8 and 32-bit path widths 

respectively. 

TABLE 5.2: Module Power Consumption 
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Utilizing the power characteristics of each module and component it became 

possible to determine the energy consumption for each of the cores while executing 

the SPEC integer benchmarks described in Section 5.1. The analysis of the execution 

core behaviors for various CSF and forwarding schemes found in the previous section 

yielded a series of figures, two of which are shown in Figure 5.3 and Figure 5.4 and  

 
Figure 5.3: ExCore Cycles for the Espresso Benchmark 

 
Figure 5.4: ExCore Energy Characteristics for the Espresso Benchmark 
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demonstrate common trend in results. What these charts demonstrate is that as the 

CSFs increased and the number of machine cycles grew rapidly the energy required 

very slowly increased due to the efficiency of shorted gate FinFET designs in 

minimizing leakage currents. The numeric results of this analysis are shown in Table 

5.3 for the CSF values that resulted in the fewest machine cycles. The most 

interesting item contained in the table is that even though the M2MwLF scheme 

while requiring a sizable increase in area over the MwLF schemes does not greatly 

affect the dynamic power consumed, usually by less than 0.1% of the difference from 

the MF power scheme and both the MwLF and M2MwLF schemes require 35.9% 

more energy than the MF scheme configurations on average. 

5.3 Combined Energy and Performance Analysis  

The final step in the core characterizations and hardware analysis is to 

combine the performance and energy characterizations into a single set of data points 

that could help to further differentiate the schemes and pinpoint the best 

TABLE 5.3: Benchmark Energy Consumption 
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combination of core organization, forwarding scheme and CSF. The settled upon 

metric for completing the combination of the two characterizations was to simply 

multiply the number of cycles with the total energy required for execution of a 

benchmark. When looking at a single core type with varying forwarding mechanisms 

the results were all very similar regardless of core, with the !MAC’s result being 

shown for the Espresso benchmark in Figure 5.5. The results show that the MwLF 

scheme increases the Cycles x Energy metric by an average of 29.1% with a minimum 

and maximum difference of 23.0% and 48.4% respectively. Similarly the M2MwLF 

scheme increases the metric by an average of 22.5% with minimum increase of 15.1% 

and a maximum increase of 41.6%. Although increasing the CSF can offset some of 

the increase it can be concluded that unless minimal execution time is the ultimate 

goal the cores with simple module forwarding offer the best balance of performance 

 
Figure 5.5: Cycles ! Energy vs. CSF for Espresso Benchmark on 1/2MAC Core 
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and energy consumption. The results also show that the only time the MwLF scheme 

should be used is if the designer does not have the area to implement the M2MwLF 

scheme, but still requires the lowest possible execution time. 

Lastly, as shown in Figure 5.6 and Figure 5.7 the execution cores themselves 

have been compared using the two most promising forwarding mechanisms, MF and 

M2MwLF. These figures when used together show that for the Espresso Benchmark 

the !MAC core provides the best balance of performance regardless of forwarding 

type. The more advanced forwarding schemes help to narrow the performance gap, 

but it is never fully overcome in the range of usable CSFs, being 9 and higher. While 

the ExCore, Shift Centric, and Comparator Centric cores still provide alternatives for 

programs utilizing specific instructions, be it shifts, comparisons, or logic, more 

 
Figure 5.6: Core Cycles ! Energy Characterization for Espresso Benchmark 

 Utilizing Module Forwarding 
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heavily than general-purpose computing applications the !MAC core should be 

considered the primary core for further development and optimizations. These 

conclusions are further supported when examining Figure 5.8, which shows the total 

energy required versus the total cycles required for execution for all of the 

benchmarks when using the optimal CSF from Table 4.3 and shows that the ultimate 

cost of reducing execution cycles by 13.2% is an increase in energy consumption of 

38.1% for the 5-stage execution cores. 

 

 

 
Figure 5.7: Core Cycles ! Energy Characterization for Espresso Benchmark 

 Utilizing Module to Module with Local Forwarding 
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Figure 5.8: Total Energy vs. Total Cycles  
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Chapter 6 

!"#$%&'()(%*+%',-.$'."%$*
Having investigated and characterized the designs for a five-stage execution 

core the focus of this research shifts to investigating alternative architectures for 

reducing execution cycles. As shown in Chapters 4 and 5 a measurable performance 

increase can be achieved through better forwarding techniques, but at a steep cost in 

cell count and substantial energy increase. This factor along with the hardware 

analysis helps to narrow the focus of this pursuit to architectural changes that better 

utilize the hardware and provide higher levels of performance. The architectures that 

have been considered for this initiative are Very Long Instruction Word (VLIW), 

Vector, and Superscalar paradigms. VLIW processors utilize large instruction sizes 

that can hold multiple execution unit specific instructions to parallelize processing, 

but require the code to be compiled for the specific processor configuration. Vector 

processors are known for processing large amounts of data very rapidly and are very 



 85 

well suited for applications involving a set operation manipulating an array of data 

values, but are not an optimal solution for general purpose processing. Superscalar 

processors focus on maintaining instruction level compatibility with five-stage 

processors and improving overall performance through dynamic instruction 

scheduling. Since the goal of this research has been directed toward a MIPS compliant 

general-purpose processing core the focus of this chapter will be the development of a 

superscalar execution core [43]. 

As Smith and Sohi [44] pointed out one of the major benefits to superscalar 

architectures is that it parallelizes linear code and can eliminate many of the data 

hazards that the five-stage pipeline introduced. Furthermore the superscalar 

architecture can allow for such large increases in performance that modern general-

purpose processors have stopped using the cycles per instruction (CPI) metric and 

begun using instructions per cycle (IPC). In this chapter the efforts to adapt the 

modules from Chapter 2 into a superscalar execution core will be presented. This will 

commence with an explanation of the new modules that had to be designed to allow 

for a superscalar configuration, including detailed performance, cell count, and delay 

characteristics. Next the execution core that has been designed will be introduced and 

will include a description of its configurability options. An analysis of the new core's 

performance will be given similar to the evaluation in Chapter 4, focusing on how the 

different configuration options affect performance. Then an examination of the power 

and energy consumption characteristics will be offered similar to Chapter 5. Lastly 
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this evaluation will be used to provide a comparison to the five-stage execution cores 

for gauging the cost vs. performance increase that the superscalar core should offer. 

6.1 Additional Components 

In the design of the superscalar core it is necessary to identify the new 

components that need to be designed to allow for its implementation. One benefit to 

dynamic instruction execution is that it helps to eliminate stalls in hardware through 

out-of-order execution (OOE) processing and register renaming. Both of these 

methods require specialized hardware to be utilized, which include a reorder buffer 

for OOE and a set of reservation stations for tracking and forwarding renamed 

registers and their data. In this section the method for implementing these two 

critical components will be detailed. Each description will start with an explanation 

of the functionality that is required from the module and be followed by an overview 

of the new modules design. 

6.1.1 Reorder Buffer 

A critical component that needs to be designed is the reorder buffer (RoB). 

The purpose of the RoB is simply to insure instructions are committed in the proper 

order to avoid hazards and maintain precise interruptions. The ability to buffer 

instruction commitments also is what allows for OOE to be possible. This component 

is actually relatively simple in structure though because it is a queue that monitors the 

oldest instruction issued and commits that instruction once it has been completed. 
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When implementing the reorder buffer the key requirements are the ability to 

commit a value and read a value, additionally the ability of the module to also know 

that status of each instruction is useful because it would reduce the complexity of the 

control logic interacting with the module. The final structure of the module is shown 

in Figure 6.1, and is divided into two halves, one for reading and one for writing with 

a memory bank for storing the computed values. As is shown in Figure 6.1, two 

muxes on the write inputs allow for the RoB to be initialized for new instructions, or 

to commit the computed results from the data bus. To commit an instruction's results 

back to memory the RoB receives a signal including the index of the oldest 

instruction and outputs the data through a read from the memory bank. On a cellular 

level the RoB is quite straightforward to implement because cells can be configured as 

!
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a 128x4-bit memory bank, which can be used to implement both the status registers 

as well as the memory bank of results. The control blocks can then be implemented 

with a group of cells in math mode that based on the status and the transmitted 

address generates the proper read/write control signals. 

Although the RoB offers a straightforward implementation it is not without its 

critical design choices. The most critical choice is how many slots to support, which 

translates to the number of instructions that can be tracked at any given time. For any 

number less than 16 every slot can be identified in a single 4-bit bundle, larger 

number will require more 4-bit bundles as well as more cells to complete the 

comparisons required to determine where the result is destined and if it should be 

stored. A 16 slot RoB requires 5 cells for status storage and update along with reading 

from and writing to the memory bank, which requires N/4 cells where N is the Path 

Width. The RoB currently takes 3 cycles to save the results of an instruction and to 

output the results of an instruction, although this is pipelined so if needed commits 

can occur with a latency of 1 cycle. 

6.1.2 Reservation Stations 

The other module that needs to be designed to accommodate a superscalar 

core is the reservation station (RS), which utilizes register renaming to maximize the 

use of the execution modules and facilitate dynamic instruction scheduling. RSs store 

the type of operation to be executed by the functional unit, operand values or RoB 
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pointers, and RoB entry where the instruction is stored. RSs must be able to initialize 

a slot for a new instruction, update its status, store newly computed source data and 

issue the operation when ready data is in the RS entry. The RS is essentially made up 

of a series of memory components that hold the operation to be computed including: 

the renamed location of the register that is the target for source data, source data, a 

register to keep track of the validity of each memory unit and whether the instruction 

is ready to be processed. This fits very well with the target hardware, which is 

essentially all memory, and allows for a cell to be used to store multiple RS’s source 

data. 

The general structure of the reservation station is shown in Figure 6.2. Each 

reservation station slot has its own source address, op code, ID, and status registers to 

minimize overall delay, but the data memory is shared between all of the execution 

unit’s reservation stations. The current structure allows for issuing instructions to be 

committed at one time utilizing delays in the communication tree, however when 

data is being forwarded the data must be held for the number of cycles that match the 

number of reservation stations. This is because the reservation station is constantly 

checking if the data on the bus matches one of the reservation stations renamed 

dependencies and commits the data if so. This process is very similar to polling and 

helps to reduce the complexity and delay of the RS design. 
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Figure 6.3 provides a cellular description of the RSs and how a 2 slot RS would 

be structured. The Qj and Qk slots are the renamed registers, which indicate where 

the source data is coming from if a dependency is present. The values stored in the Q 

register are then compared to the current ID for the data on the incoming data bus in 

the Valid blocks, which are essentially comparators, and if the values match and the 

instruction status is waiting for data a write signal is sent to the Memory count filters. 

The memory count filters are essentially continuous counters that if the input 

matched to a given counter value is enabled the filter enables a write to occur to the 

memory bank, which are named Vj and Vk. For RSs with more than two slots multiple 

tiers of memory count filters can be used as shown in Figure 6.4 for a 4 slot RS. 

!

"#$%&'!()*+!,'-'&./0#12!30/0#12!30&%40%&'!



 91 

Like the execution modules the reservation station unit can support data 

widths of any multiple of 4. For a 32-bit data path with 2 RS slots the implementation 

requires 34 cells and 2 cycles to update data, similarly for 4 RS slots the cell count is 

increased to 54 cells with 4 cycles to update the data memory. An 8 location RS 
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similarly requires 8 cycles to update memory, but due to the increasing number of 

comparators requires 94 cells to implement. 

6.2 Superscalar Core 

Having designed the RSs and the RoB the next step in this pursuit is to design 

the actual core itself. Superscalar cores typically follow one of two paths, the first 

being to utilize multiple ALUs and/or floating point modules so that any operation 

that may be computed by any available and compatible module like in [45]. The other 

approach which is used in this study is to separate the execution modules or 

functional units (FUs) from each other so that their use can be maximized and have a 

set of reservation stations for each FU. This approach also allows for multiple FUs of 

the same type to be included without wasting cells for other unneeded duplicate FUs. 

!
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The basic structure of the core is shown in Figure 6.5. Each execution module 

or FU is allotted its own set of RSs, allowing FUs to execute operations 

simultaneously. Furthermore, the shared bus allows for minimal hardware to be used 

in forwarding. The only drawback is that the data must be held constant for the 

number of cycles identical to the number of RS slots to allow for every slot to be 

updated. Similarly to the five-stage cores proposed in [14] this core will work for all 

path widths that are a multiple of 4 and scales in a reasonable manner for the number 

of cells required. A 32-bit core that uses 2-slot RSs and a 16 location RoB requires 374 

cells, while a 4-slot RS and 16 location RoB configuration requires 484 cells. 

6.3 Performance Evaluation 

Once the basic structure of the core had been determined the next step is the 

evaluation of a superscalar core; this evaluation involves different configurations, 

similar to those in Chapter 4 for the five-stage cores. This means that the 

configuration of both the RSs and RoBs are varied to determine how RS and RoB size 

affect the number of execution cycles and cell count. In addition to these standard 

metrics RoB utilization will also be examined, because it dictates the number of 

instructions that can be in the process of being executed at a given time, but also has 

implications on cell count because RoBs larger than 16 entries will require two 4-bit 

data bundles to address the instruction and increase the cells required for the 

comparators needed in the RSs. 
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To complete this evaluation a program has been written that similar to the 

five-stage simulator take a MIPS trace file and calculates the number of cycles 

required to execute all the instructions in a benchmark trace file. Some changes were 

made to the original approach to more accurately calculate the total execution cycles. 

The first change is that a floating-point unit was added to the core based on designs 

from [3] for the 32 (.00083%) floating point instructions in the 5 benchmarks. The 

other change made was the addition of a yet to be designed division module that 

requires 320 cycles to compute (identical to the delay penalty of the five-stage cores), 

this then allows the other modules to keep processing data but causes a delay when 

the division instruction becomes the oldest instruction in the RoB. It should be noted 

that when making cell count comparisons the size of the floating-point and Division 

units are not included because they are not present in the five-stage models and 

would increase the required number of cells for all cores by equal amounts.  

Before the results can be detailed the range of configurations must be 

determined for both RS and RoB sizes. The key factor when coming up with 

configurations for testing is that the size of the RoB directly affects the size of the RSs' 

instruction ID, renamed register pointers, and comparator components. To minimize 

the impact on the RS modules and ensure that only 1 cycle was needed to read or 

write from the RoB memory bank the range of RoB size was chosen to be 16, 32, and 

64 slots. Similarly the RS configurations were chosen to include 2, 4, and 8 instruction 

slots, which minimize the time a modules output has to be transmitted over the 
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output bus. The first evaluation is the number of execution cycles required to execute 

the SPEC integer benchmarks. This is followed by an analysis of the cell counts and 

resource utilization and how they are related to the number of execution cycles 

required.  

The required number of cycles for execution of the varying core 

configurations is shown in Table 6.1. The base configuration has RS = 2 and RoB = 16; 

larger RS and RoB configurations are compared to this one. 

It can be observed that the performance of the core actually decreases for RS 

sizes of 8, ranging from a 7.08% to 9.56% decrease in performance. This is due to the 

time and output is required to be held on the output bus. Conversely when RS slots 

are increased to four this provides a measurable performance boost, averaging a speed 

up of 1.06. While the increase in performance of the configurations with 4 RS slots is 
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not a huge increase it leads to the question of which configuration best utilizes the 

hardware. 

To determine the configuration that best utilizes the hardware an analysis of 

the usage of the RoB had to be undertaken. To determine how the RoB was used the 

simulator was modified to monitor how many slots were reserved in the RoB and 

then report the average and maximum usage. The results are shown in Table 6.2 and 

Figure 6.6, which show that RoB utilization is highest when large RSs are paired with 

the smaller RoBs. The reason behind this is that most of the benchmark instruction 

relies on the MAC-2 unit so the more space there is to issue instructions to that unit 

the more the RoB will be used. For RoB sizes of 32 and 64 the best utilization occurs 

for RS sizes of 8, but the cellular increase for RSs of 8 slots versus 4 is 240 cells. 

Overall when examining Table 6.2 it can be observed that the highest average 

use is obtained with RS sizes of 8, but come with a large overhead to the cell count. 

The increased RoB utilization does not necessarily mean better performance as shown 

in Figure 6.7. An optimal core when it comes to performance and utilization is when 

the RoB and RSs contain 16 and 4 slots, respectively. The next best core is actually the 

16 slot RoB and 2 slot RS since the cells required is much smaller when compared to 

other cores. 
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6.4 Power and Energy Evaluation 

The next aspect of the superscalar core and its various configurations that has 

been examined is the energy consumption. Similar to the work done in Chapter 5 the 

approach followed to characterize the power consumed in a superscalar core was a 

hybrid approach first focused on characterizing the modular power consumption and 
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then on how the varying benchmarks would consume power based on instruction 

type. Using the power required for each module would then allow for the energy 

consumed when executing a benchmark to be calculated.  

To determine the appropriate energy consumption rates for the reservation 

station and reorder buffer blocks, pessimistic estimates of switching activity were 

made that would equate to comparators requiring the same energy as the worst 

performing logic and comparator blocks from Section 5.2. This was done to account 

for the continual processing of random data as both modules ensure the up to date 

statuses of each instruction. The results of this characterization is detailed in Table 6.3 

and Figure 6.8 and show that energy required for operation increases more rapidly as 

the RS size increases (62%), than as when the RoB increases (54%), when 

transitioning from RS sizes of 4 to 8.  

!
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Using these energy consumption rates and the execution modules (functional 

units) consumption rates from section 5.2 the energy to execute any of the previously 

described benchmark trace files could be calculated. The result of this evaluation is 

shown in Figure 6.9 and Table 6.4 for the execution of all of the benchmarks or 

roughly 3.85 million instructions. The results demonstrate that RS modules of 2 or 4 

TABLE 6.3: Cycle and Energy Requirements for Varying  

Reservation Station and Reorder Buffer Configurations  

!"#$ ! !"#$%%& &$'!(
%"#$ ) ))'$*+% +$+)(
&"#$ " ''+$&"& +$*"(
%"'! ) '&#$#+% +$'#)
&"'! " +!%"$)!& %$+&*
%"$% ) '&#$#+% +$'#)
&"$% " +!%"$)!& %$+&*

()"*(+, -./012*
345627

892:;4*.2:*
34562*<=>?

)101@5*
892:;4*<=>?

 

 

Figure 6.8: Power Requirements for Varying Reservation Station 

 and Reorder Buffer Configurations 
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slots offer much better energy consumption characteristics than with 8 slots and that 

the RoB utilizing 16 locations. More specifically an increase in RS size from 2 to 4 

offers a 4.74% improvement in execution time while increasing the energy by 47%. 

Similarly as the RoB increases in size the energy consumption more than doubles 

while realizing increasingly smaller improvements in performance. 

 

 
Figure 6.9: Energy Required for Executing 3.85 Million Instructions 

TABLE 6.4: Superscalar Energy and Cycle Requirements 
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6.5 Comparison with Five-Stage Cores 

Having investigated how the varying configurations of the superscalar core 

affect its performance, overall hardware utilization and energy consumption this 

section focuses on how the superscalar and five-stage cores compare. To do this the 

most appealing cores from each approach will be used, including the superscalar core 

with a 16 slot RoB and RS sizes of 2, and 4. The five-stage cores that have been chosen 

for comparison are the !MAC core and ExCore, with the majority of the focus being 

on the !MAC core utilizing the MwLF scheme. The metrics that will be examined 

are: cell count requirements, CPI and energy consumed for execution. The reason 

why CPI is used here instead of the execution cycles is that the nop instructions were 

eliminated from the superscalar core's benchmark trace files because the majority of 

the nops in the trace files were used to fill branch delay slots, which in the current 

configuration do not serve a purpose.  

The CPI for each of the cores selected for comparison is shown in Table 6.5. As 

is shown the five-stage cores best case CPI is 13.24, while the optimal configuration 

that minimizes the number of cells is 13.88 for the !MAC and 15.03 for the ExCore. 

Comparatively the optimal superscalar core configurations provide a near two times 

increase in performance yielding a CPI of 8.1 and 7.72 for configurations with a RS 

size of 2 and 4 respectively and a 16 location RoB. This comparison shows that if 

performance is critical then the only acceptable core should be a superscalar core.  
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When examining the size of the varying cores there is a very noticeable 

overhead for the superscalar architecture that far surpasses the overhead for the more 

advance M2MwLF scheme. The M2MwLF scheme requires that 48 more cells be 

added to the optimal five-stage core, while the superscalar core requires at least 87 

more cells and that increases to 197 cells for the most optimal superscalar 

configuration. When evaluating the cores solely by cells required, the five-stage cores 

may be optimized while still maintaining a significantly smaller footprint than the 
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superscalar cores and provide a reasonable level of performance for a small number of 

cells required. 

The next comparison that must be examined is the energy consumed by each 

core during execution. Figure 6.11 shows how the total energy consumed versus the 

CPI are related. The figure shows that although the superscalar cores consume a 

comparable amount of energy to execute the same benchmarks, 22% less than average 

for RSs of 2 and 14% more for RSs of 4, they provide a much higher level of 

performance by reducing the CPI by an average 45% compared to the five-stage 

cores. The figure also includes a data point for the superscalar core configured for a RS 

size of 4 with 32 RoB slots, and shows that the power increase versus performance 

 

Figure 6.11: Superscalar and Five-Stage Energy vs. CPI 
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increase is not a reasonable tradeoff, which would also eliminate all configurations 

with 8 RSs. 

Lastly, by using the execution cores’ energy characterizations and their total 

execution cycles, along with the clock cycle time of .2 ns for 21 nm FinFETs from 

Table 4.4, a calculation of the energy-delay product may be computed. The results of 

this computation are shown in Figure 6.12 for the 3.85 million instructions contained 

in the benchmarks. When examining the figure it becomes apparent that although 

the superscalar cores use more energy on average than the five-stage cores, the energy 

is used much more effectively to reduce the overall delay.  This can be seen by 

 

Figure 6.12: Superscalar and Five-Stage Energy-Delay Product  
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comparing the cores with the lowest energy-delay product for each architecture, the 

2 slot RS and 16 location RoB superscalar core’s product is 0.044 compared to the 

!MAC core utilizing MF’s product of 0.092 even thought it requires 0.24 μJ more 

energy.  

This study provides a design space where designers of reconfigurable processor 

cores can choose a core that fits the computational, power, and cell count 

requirements. If a designer is looking for a good balance of area, performance, and 

power, Figures 6.10 and 6.11 can be used to find this core. The figures show the 

average CPI versus both the required cells and energy consumed for all of the !MAC 

and ExCore configurations, as well as the superscalar cores utilizing 2 and 4 RS sizes 

with a 16 location RoB. Using these figures along with Figure 6.12 it can be observed 

that the best processor to balance performance, cell count, and energy is the 

Superscalar core with 2 RS slots and a 16 location RoB, because it offers a speedup of 

1.71 compared to the optimal !MAC core, while offering a performance level within 

6.4% of the best performing superscalar configurations. This core only requires 30% 

more area (that is 87 additional cells) than the optimal five-stage cores, while using 

23% (110) fewer cells than the best superscalar core. Lastly, the selected core 

consumes only 3% more energy than the execution core with the lowest energy 

requirements and requires just 8.05 μJ for 3.85 million instructions to be computed. 
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Chapter 7 

Concluding Remarks 
This dissertation has focused on implementing an execution core for a novel 

medium-grain reconfigurable hardware. The research began seeking to characterize 

FPGA power consumption for the AES encryption algorithm when used for wireless 

sensor networks, but found the power demands too onerous for use. As a result the 

study transitioned to focus on the homogenous medium-grain reconfigurable 

hardware, which offers a promising architecture for more than just the DSP 

applications it was designed and includes: integrated pipelining, rapid technology 

adoptions, faster clock speeds, and flexible four input, two output cells. 

Throughout the research the development of autonomous modular execution 

units have been detailed, which are not only scalable but provide all the functionality 

needed to ensure MIPS compatibility. These units have served as the foundation upon 

which the research has been built to characterize how the target hardware could be 
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best utilized for the implementation of a general-purpose processing core, and how to 

balance the performance, energy, and cellular requirements of the cores. The 

remainder of this chapter will discuss the contributions of this research and propose 

future directions for continuing this research. 

7.1 Contributions 

This research has offered many insights into how to harness the target 

hardware through the building of MIPS compatible execution cores that include: 

• Modular Design: Modular execution units, termed the shift, comparator, 

logic, and MAC-2 modules, have been designed to provide the needed 

operations for a MIPS ISA compliant processor. These execution units can 

extend the instruction set to include operations such as logical NOR, NAND 

and XNOR, as well as left and right rotate. By utilizing these modular and 

autonomous designs the components may even be used in superscalar and 

vector processors that requires multiple cores for a given instruction type 

without having to duplicate the other unneeded units. 

• Four Novel Execution Cores: Four executions cores have been proposed, 

three of which, !MAC, Shift Centric, and Comparator Centric, are optimized 

for a specific instruction type, while the fourth, the ExCore, has been designed 

to provide a consistent level of performance to all of the instructions. These 
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cores provide a building block that can serve as the core component of a 

standard five-stage pipeline, multi-cycle or single cycle processor. 

• Five-Stage Architecture: In addition to detailing the organization of the 

execution stage a method for adapting the five-stage architecture to the target 

hardware has been detailed for use with the execution cores. This includes the 

ability to dynamically resize the CSF window size to eliminate wasted cycles 

and allow for optimized forwarding between execution modules. 

• Highly Interchangeable cores and forwarding schemes: Using the 

four execution cores and three forwarding schemes an in-depth analysis of the 

performance characteristics could be carried out including how different 

forwarding mechanisms affect the size and performance of a core when 

executing different SPEC benchmarks. This study shows that 11.55% of the 

total cycles could be saved at a 20% increase in cell count or that a 15.69% 

cycle savings at a 40% cell count increase could be achieved. This also 

provided means to investigate how partitioning the clock through the control 

synchronization factor would affect the cores in terms of minimizing the 

number clock cycles required for completing a program execution and 

eliminating wasted cycles. As shown in Table 3, a CSF increase from 10 to 11 

for some cores resulted in a savings of almost 10.3 million cycles or a reduction 

in execution time of roughly 15.72%. 
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• Scalability: A 32-bit processor has been studied in-depth. However, using 

the modular nature of the medium-grain reconfigurable hardware cores and 

the parallel nature of many operations, the proposed designs can be easily 

extended to accommodate any data path width that is a multiple of 4. For 

example, a 16-bit core requires 89 cells while a 32-bit core requires 239 cells; 

even so the difference in total delay changes by less than a factor of 2. 

• High system clock frequency: One of the most appealing aspects of the 

target hardware is the ease with which it can move from one technology to 

another. This leads to steady increases in performance without the need for 

significant design modification, and is shown in that the !MAC can run at 

speeds of 2GHz on 45 nm CMOS technology, but when the same configuration 

is used with FinFET technology [35] clock speeds in excess of 5 GHz can be 

conservatively realized. 

• Comparable or Better Performance than existing soft-processors: 

The proposed designs (using similar CMOS technology) offer comparable 

levels of performance with soft processors offered by Xilinx and Altera while 

out pacing other custom designed MIPS processors for FPGAs when using 

similar implementation technologies. 

• Hardware Evaluation: An evaluation of the hardware’s cellular 

architecture has also been completed. This showed that as the number of 

elements in a cell is increased the execution time for complex operations 
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would see a small decrease, but this resulted in a sharp increase in unused 

elements within a cell, which would lead to less than optimal power 

consumption characteristics. 

• Power Characterization: Using a hierarchical model, that combines 

switching activities and data from ongoing research in transitioning the 

hardware to FinFET technology, a characterization of how the five-stage cores 

would consume power was developed. The model showed that as the 

execution modules scaled to service larger path widths at worst the cell count 

increased by 2.5!, while the best-case modules scaled at the same rate as the 

path width. It was also found that to utilize the MwLF or M2MwLF schemes 

with a five-stage execution core an increase in energy of 36% is required over 

the MF scheme.  

• Superscalar Execution: An investigation into the ability of the execution 

modules and hardware to be used for a superscalar-processing core was 

completed. The results show that with the addition of the configurable 

reservation station and reorder buffer modules the CPI of a five-stage core can 

almost be halved while minimizing the cell count increase to 30.3% for a 

superscalar core. This investigation also demonstrated that pairing a 

reservation station utilizing 2 or 4 slots and a reorder buffer of 16 slots 

provided the highest levels of speedup while minimizing the cellular increase 

and maximizing hardware utilization. 
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Using the contributions of this research the core of any general-purpose 

processor, the execution core, may be designed to best fit the parameters required. 

This can take into account the number of cells available, maximum power 

consumption, performance characteristics, and processor type. This work also helps to 

increase the number and diversity of application that take advantage of the target 

hardware. 

7.2 Future Directions 

To continue this work there are a number of areas that should be investigated. 

The most obvious of which is the implementation of the control logic and the stages 

that surround the execution core. This includes memory controllers to connect to 

external devices and multi-level cache architectures that can take advantage of the 

target hardware to provide an optimal balance of size and delay.  

It is also important that the model used to characterize energy consumption be 

refined. This should include using the most up-to-date numbers from the current 

FinFET and CNFET research. Once the cell decoder is implemented it will also be 

important to refine how the energy is calculated since energy characterizations may 

become less pessimistic as more of the hardware is modeled and accurately described. 

Lastly, the execution modules should be examined and evaluated for use in a 

vector-processing unit that could become a co-processor. As previously mentioned 

the architecture of vector processors is particularly well suited to take full advantage 
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of the target hardware and its built-in pipeline, but is not well suited for general-

purpose processors. Uses for this research may be applied to high throughput 

encryption/decryption modules, SIMD co-processors for multimedia applications, and 

matrix mathematics. 
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Appendix A 

Cellular Configurations 
In this appendix the cellular configurations used to implement the modules 

presented in chapter 2 will be detailed. Modules that require more than a single cell 

being used in parallel will first have the module’s structure detailed with a diagram 

detailing the cellular organization. Each cell configuration will include a diagram 

detailing what elements are used for computation and how data flows through the 

cell, along with a written description of the cell’s function and input/output usage and 

assignment. Each cell configuration will also include a table detailing the elemental 

configurations indexed by row from the top left to bottom right, which includes an 

explanation of the element’s use, and memory configuration. 
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Cell Elemental Naming Convention

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

D
e
c
o
d
e
r

clk
WA7:0

RA7:0

wi3  ri3 wi2  ri2 wi1  ri1 wi0  ri0

ro3 ro2 ro1 ro0

MATH CELL

MEMORY CELL
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Element 
ID

Description or Function Y Config Z Config

0,0 Bitwise Block 0000 63E8
0,1 Bitwise Block 0000 63E8
0,2 Bitwise Block 0000 63E8
0,3 Bitwise Block 0000 63E8
1,0 Pass or Invert AAAA 3C3C
1,1 Pass or Invert 0000 5A5A
1,2 Pass or Invert 0000 5A5A
1,3 Pass or Invert 0000 5A5A
2,0 Route AAAA CCCC
2,1 Route AAAA CCCC
2,2 Route 0000 AAAA
2,3 Route 0000 AAAA
3,0 Route AAAA CCCC
3,1 Route AAAA CCCC
3,2 Route AAAA CCCC
3,3 Route 0000 AAAA

Description
This cell computes the bitwise logic 
functions of: AND, NAND, OR, NOR, 
XOR, XNOR, and NOT.

 Ctrl    |    Operation
                 An   B0 |   B1=0    B1=1
                  0    0  |    AND   NAND
                  0    1  |    OR      NOR
                  1    0  |   NOT     Pass
                  1    1  |   XOR    XNOR

Inputs
A3:0 - Control Signal  
B1:0 - Control Signals
C3:0 - Input 1
D3:0 - Input 2

Outputs
Y3:0 - unused
Y7:4 - Result

 Bitwise Logic Cell

Logic

Pass 
or 

Invert

Logic Logic Logic

Pass 
or 

Invert

Pass 
or 

Invert

Pass 
or 

Invert

C3 C2 C0C1D3 D2 D1 D0

B0

B1

A3 A2 A1 A0
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!1 !1 !1 !1 !1 !1 !1 !1!2

"1 !1 !1 !1 !1 !1 !1 !1#3

!1 "1 !1 !1 !1 !1 !1 !1#3

!1 !1 "1 !1 !1 !1 !1 !1#3

!1 !1 !1 "1 !1 !1 !1 !1#3

!1 !1 !1 !1 "1 !1 !1 !1#3

!1 !1 !1 !1 !1 "1 !1 !1#3

!1 !1 !1 !1 !1 !1 "1 !1#3

"2 "2 "2 "2 "2 "2 "2 #2$1
Bi

ts
 3

1:
0

Bits 63:32

MAC-2 Module

With sign extension or zero padding this unit 
computes a 32-bit Multiply and accumulate 

function of the form: A*B+C+D

The Delta cell in the lower left corner is not 
needed
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Alpha 1 Cell
Description

This Cell is used to build signed or 
unsigned MAC units.  If the unit is 
unsigned all cells are alpha cells.  The 
functional output is:

(A*B)+C+D -> Y7:4 = +, Y3:0 = +

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Element 
ID

Description or Function Y Config Z Config

0,0 Alpha Element 9666 E888
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Alpha Element 9666 E888
1,1 Alpha Element 9666 E888
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Alpha Element 9666 E888
2,1 Alpha Element 9666 E888
2,2 Alpha Element 9666 E888
2,3 Alpha Element 9666 E888
3,0 Alpha Element 9666 E888
3,1 Alpha Element 9666 E888
3,2 Alpha Element 9666 E888
3,3 Alpha Element 9666 E888
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Alpha 2 Cell
Description

This Cell is used to build signed MAC 
units. The functional output is:

(-A*B)-C-D -> Y7:4 = -, Y3:0 = -

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Element 
ID

Description or Function Y Config Z Config

0,0 Alpha Element 9666 E888
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Gamma Element 9666 D444
1,1 Beta Element 9666 B222
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Gamma Element 9666 D444
2,1 Alpha Element 9666 E888
2,2 Beta Element 9666 B222
2,3 Alpha Element 9666 E888
3,0 Gamma Element 9666 D444
3,1 Alpha Element 9666 E888
3,2 Alpha Element 9666 E888
3,3 Beta Element 9666 B222
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Beta 1 Cell

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Description
This Cell is used to build signed MAC 
units.  The functional output is:

(A*B)-C+D -> Y7:4 = +, Y3:0 = -

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

Element 
ID

Description or Function Y Config Z Config

0,0 Beta Element 9666 B222
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Alpha Element 9666 E888
1,1 Beta Element 9666 B222
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Alpha Element 9666 E888
2,1 Alpha Element 9666 E888
2,2 Beta Element 9666 B222
2,3 Alpha Element 9666 E888
3,0 Alpha Element 9666 E888
3,1 Alpha Element 9666 E888
3,2 Alpha Element 9666 E888
3,3 Beta Element 9666 B222



 125 

Beta 2 Cell

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Description
This Cell is used to build signed MAC 
units.  The functional output is:

(A*-B)+C-D -> Y7:4 = -, Y3:0 = +

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

Element 
ID

Description or Function Y Config Z Config

0,0 Gamma Element 9666 D444
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Alpha Element 9666 E888
1,1 Beta Element 9666 B222
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Alpha Element 9666 E888
2,1 Alpha Element 9666 E888
2,2 Beta Element 9666 B222
2,3 Alpha Element 9666 E888
3,0 Beta Element 9666 B222
3,1 Beta Element 9666 B222
3,2 Beta Element 9666 B222
3,3 Gamma Element 9666 D444
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Gamma 2 Cell

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Description
This Cell is used to build signed MAC 
units.  The functional output is:

(A*-B)-C+D -> Y7:4 = -, Y3:0 = +

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

Element 
ID

Description or Function Y Config Z Config

0,0 Beta Element 9666 B222
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Alpha Element 9666 E888
1,1 Beta Element 9666 B222
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Alpha Element 9666 E888
2,1 Alpha Element 9666 E888
2,2 Beta Element 9666 B222
2,3 Alpha Element 9666 E888
3,0 Beta Element 9666 B222
3,1 Beta Element 9666 B222
3,2 Beta Element 9666 B222
3,3 Gamma Element 9666 D444
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Description
This Cell is used to build signed MAC 
units.  The functional output is:

(-A*B)-C+D -> Y7:4 = -, Y3:0 = +

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

Gamma 3 Cell

Element 
ID

Description or Function Y Config Z Config

0,0 Gamma Element 9666 D444
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Gamma Element 9666 D444
1,1 Alpha Element 9666 E888
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Gamma Element 9666 D444
2,1 Alpha Element 9666 E888
2,2 Alpha Element 9666 E888
2,3 Alpha Element 9666 E888
3,0 Gamma Element 9666 D444
3,1 Alpha Element 9666 E888
3,2 Alpha Element 9666 E888
3,3 Alpha Element 9666 E888



 128 

Delta Cell

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Y3:0

Y7:4

Description
This Cell is used to build signed MAC 
units.  The functional output is:

(-A*-B)-C-D -> Y7:4 = -, Y3:0 = +

Inputs
A3:0 - Multiplicand
B3:0 - Multiplicand
C3:0 - Addend
D3:0 - Addend

Outputs
Y3:0 - 4 LSB of result
Y7:4 - 4 MSB of result

Element 
ID

Description or Function Y Config Z Config

0,0 Alpha Element 9666 E888
0,1 Alpha Element 9666 E888
0,2 Alpha Element 9666 E888
0,3 Alpha Element 9666 E888
1,0 Gamma Element 9666 D444
1,1 Beta Element 9666 B222
1,2 Alpha Element 9666 E888
1,3 Alpha Element 9666 E888
2,0 Gamma Element 9666 D444
2,1 Alpha Element 9666 E888
2,2 Beta Element 9666 B222
2,3 Alpha Element 9666 E888
3,0 Delta Element 9666 8EEE
3,1 Beta Element 9666 B222
3,2 Beta Element 9666 B222
3,3 Gamma Element 9666 D444



 129 

Shift Module

Shift Left
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Shift Right
Unit

Sh
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 L
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t C
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l Shift R
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MUX/OR Unit

Op Code Shift AmountData

Result
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Shift 
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Shift 
Cell

Shift 
Cell

Shift 
Cell

Shift 
Cell

Shift 
Cell

Shift 
Cell

Shift 
Cell

Shift 
Cell

Shift 
Cell

Fill

Output

Shift
LUT A

Shift 
Op 
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Shift
LUT B

Shift
LUT A

Shift
LUT B

Shift
LUT A

Shift
LUT B

... ...

Row 0
Ctrl

Row 1
Ctrl

Row N
Ctrl

xN-1
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Shift Cell
Description

This Cell implements 4-bit Shifting
 SHFT     A        B           Output
    0      0000  0000   {C3, C2, C1, C0} 
    1      0001  1000   {D0, C3, C2, C1} 
    2       1111  0000   {D1, D0, C3, C2} 
    3       1111   1111   {D2, D1, D0, C3} 
    4      0000   0001  {D3, D2, D1, D0} 

Inputs
A3:0 - Control
B3:0 - Control
{D0:3, C0:3} - Data

Outputs
Y3:0 - unused
Y7:4 - Result of Shift

Element 
ID

Description or Function Y Config Z Config

0,0 Bit Choice 0000 CCAC
0,1 Bit Choice 0000 ACAC
0,2 Bit Choice 0000 AAAC
0,3 Bit Choice 0000 AAAC
1,0 Routing CA0A AC0C
1,1 Routing 0000 AAAA
1,2 Routing 0000 AAAA
1,3 Routing 0000 AAAA
2,0 Routing AC0A CA0C
2,1 Routing CC0A AA0C
2,2 Routing 0000 AAAA
2,3 Routing 0000 AAAA
3,0 Routing/Output AACA CCAC
3,1 Routing/Output ACCA CAAC
3,2 Routing/Output CCCA AAAC
3,3 Routing 0000 AAAA

Y7:4

B0

B1

B2

B3

C0C1C2C3 A0A1A2A3 D0D1D2D3
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Description
This unit take in the Op and Shift Amount 
signals and generates the LUT control 
signals for the shift/rotate module.

Inputs
A3:0 - Operation Control
             A3 - Enable  (0/1 - off/on)
             A2 - Rotate Enable  (0/1 - off/on)
             A1 - Rotate Dir.  (0/1 - right/left)
             A0 - Shift Dir.  (0/1 - right/left)
B3:0 - Shift Input Lower 4-bits
C3:0 - unused
D3:0 - Shift Input High 4-bits

Outputs
Y3:0 - LUT_Control3:0
Y7:4 - LUT_Control7:4

 Shift Op Val Cell

Element 
ID

Description or Function Y Config Z Config

0,0 unused 0000 0000
0,1 unused 0000 0000
0,2 Data Forward 0000 AAAA
0,3 Ctrl Output/Data Forward F0F0 AAAA
1,0 unused 0000 0000
1,1 Forward Rotate Enable FF00 0000
1,2 Data Forward 0000 AAAA
1,3 Ctrl Output/Data Forward F0F0 AAAA
2,0 unused 0000 0000
2,1 Data Forward AAAA 0000
2,2 Choose Between Shift or Rotate 0000 EE22
2,3 Ctrl Output/Data Forward F0F0 AAAA
3,0 Ctrl Output AAAA FF00
3,1 Ctrl Output AAAA FF00
3,2 Ctrl Output AAAA CCCC
3,3 Ctrl Output/Data Forward F0F0 AAAA

D -> Z B -> Y
D -> Z

A -> Y D -> Z B -> Y
D -> Z

D -> Y
(C AND A) 

OR 
(!C AND D)

B -> Y
D -> Z

A -> Z
D -> Y

A -> Z
D -> Y

A -> Z
D -> Y

B -> Y
D -> Z

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3
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Shift Control LUTs

Function
The LUT configurations serve to 
generate the control signals for the Shift 
cell Modules.

Inputs
WA7:0 - disabled
RA7:0 - Shift Op Val output
                Merge of Shift Amount and Op
 wi3:0  - unused
  ri3:0  - unused

Outputs

  ro3:0 - 1 of 2 Shift Row Control Signals

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

D
e
c
o
d
e
r

clk
WA7:0

RA7:0

wi3  ri3 wi2  ri2 wi1  ri1 wi0  ri0

ro3 ro2 ro1 ro0

Shift
LUT A

Shift 
Op 
Val

Shift
LUT B

Shift
LUT A

Shift
LUT B

Shift
LUT A

Shift
LUT B

... ...

Row 0
Ctrl

Row 1
Ctrl

Row N
Ctrl

xN-1
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Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0000 0060 0000 00A0 0000 00C0 0000 00A0
0,1 0000 0060 0000 0020 0000 00C0 0000 0080
0,2 0000 0060 0000 0020 0000 00C0 0000 0080
0,3 0000 00E0 0000 003F 0000 00E0 FFFF FF80
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 0C00 0000 0A00 0000 0000 00C0 0000 00A0
2,1 0C00 0000 0800 0000 0000 00C0 0000 0080
2,2 0C00 0000 0800 0000 0000 00C0 0000 0080
2,3 0E00 0000 F800 0000 0000 00E0 FFFF FF80
3,0 0000 0060 0000 00A0 0600 0000 0A00 0000
3,1 0000 0060 0000 0020 0600 0000 0200 0000
3,2 0000 0060 0000 0020 0600 0000 0200 0000
3,3 0000 00E0 0000 003F 0E00 0000 03FF FFFF

Left A: Level 1Element 
ID

Left B: Level 1 Right A: Level 1 Right B: Level 1

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0000 0600 0000 0A00 0000 0C00 0000 0A00
0,1 0000 0600 0000 0200 0000 0C00 0000 0800
0,2 0000 0600 0000 0200 0000 0C00 0000 0800
0,3 0000 0E00 0000 03FF 0000 0E00 FFFF F800
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 00C0 0000 00A0 0000 0000 0C00 0000 0A00
2,1 00C0 0000 0080 0000 0000 0C00 0000 0800
2,2 00C0 0000 0080 0000 0000 0C00 0000 0800
2,3 00E0 0000 FF80 0000 0000 0E00 FFFF F800
3,0 0000 0600 0000 0A00 0060 0000 00A0 0000
3,1 0000 0600 0000 0200 0060 0000 0020 0000
3,2 0000 0600 0000 0200 0060 0000 0020 0000
3,3 0000 0E00 0000 03FF 00E0 0000 003F FFFF

Left A: Level 2Element 
ID

Left B: Level 2 Right A: Level 2 Right B: Level 2

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0000 0006 0000 000A 0000 000C 0000 000A
0,1 0000 0006 0000 0002 0000 000C 0000 0008
0,2 0000 0006 0000 0002 0000 000C 0000 0008
0,3 0000 000E 0000 0003 0000 000E FFFF FFF8
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 C000 0000 A000 0000 0000 000C 0000 000A
2,1 C000 0000 8000 0000 0000 000C 0000 0008
2,2 C000 0000 8000 0000 0000 000C 0000 0008
2,3 E000 0000 8000 0000 0000 000E FFFF FFF8
3,0 0000 0006 0000 000A 6000 0000 A000 0000
3,1 0000 0006 0000 0002 6000 0000 2000 0000
3,2 0000 0006 0000 0002 6000 0000 2000 0000
3,3 0000 000E 0000 0003 E000 0000 3FFF FFFF

Left A: Level 0Element 
ID

Left B: Level 0 Right A: Level 0 Right B: Level 0

Shift Control LUTs
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Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0006 0000 000A 0000 000C 0000 000A 0000
0,1 0006 0000 0002 0000 000C 0000 0008 0000
0,2 0006 0000 0002 0000 000C 0000 0008 0000
0,3 000E 0000 0003 FFFF 000E 0000 FFF8 0000
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 0000 C000 0000 A000 000C 0000 000A 0000
2,1 0000 C000 0000 8000 000C 0000 0008 0000
2,2 0000 C000 0000 8000 000C 0000 0008 0000
2,3 0000 E000 FFFF 8000 000E 0000 FFF8 0000
3,0 0006 0000 000A 0000 0000 6000 0000 A000
3,1 0006 0000 0002 0000 0000 6000 0000 2000
3,2 0006 0000 0002 0000 0000 6000 0000 2000
3,3 000E 0000 0003 FFFF 0000 E000 0000 3FFF

Left A: Level 4Element 
ID

Left B: Level 4 Right A: Level 4 Right B: Level 4

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0060 0000 00A0 0000 00C0 0000 00A0 0000
0,1 0060 0000 0020 0000 00C0 0000 0080 0000
0,2 0060 0000 0020 0000 00C0 0000 0080 0000
0,3 00E0 0000 003F FFFF 00E0 0000 FF80 0000
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 0000 0C00 0000 0A00 00C0 0000 00A0 0000
2,1 0000 0C00 0000 0800 00C0 0000 0080 0000
2,2 0000 0C00 0000 0800 00C0 0000 0080 0000
2,3 0000 0E00 FFFF F800 00E0 0000 FF80 0000
3,0 0060 0000 00A0 0000 0000 0600 0000 0A00
3,1 0060 0000 0020 0000 0000 0600 0000 0200
3,2 0060 0000 0020 0000 0000 0600 0000 0200
3,3 00E0 0000 003F FFFF 0000 0E00 0000 03FF

Left A: Level 5Element 
ID

Left B: Level 5 Right A: Level 5 Right B: Level 5

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0000 6000 0000 A000 0000 C000 0000 A000
0,1 0000 6000 0000 2000 0000 C000 0000 8000
0,2 0000 6000 0000 2000 0000 C000 0000 8000
0,3 0000 E000 0000 3FFF 0000 E000 FFFF 8000
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 000C 0000 000A 0000 0000 C000 0000 A000
2,1 000C 0000 0008 0000 0000 C000 0000 8000
2,2 000C 0000 0008 0000 0000 C000 0000 8000
2,3 000E 0000 FFF8 0000 0000 E000 FFFF 8000
3,0 0000 6000 0000 A000 0006 0000 000A 0000
3,1 0000 6000 0000 2000 0006 0000 0002 0000
3,2 0000 6000 0000 2000 0006 0000 0002 0000
3,3 0000 E000 0000 3FFF 000E 0000 0003 FFFF

Left A: Level 3Element 
ID

Left B: Level 3 Right A: Level 3 Right B: Level 3

Shift Control LUTs
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Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 0600 0000 0A00 0000 0C00 0000 0A00 0000
0,1 0600 0000 0200 0000 0C00 0000 0800 0000
0,2 0600 0000 0200 0000 0C00 0000 0800 0000
0,3 0E00 0000 03FF FFFF 0E00 0000 F800 0000
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 0000 00C0 0000 00A0 0C00 0000 0A00 0000
2,1 0000 00C0 0000 0080 0C00 0000 0800 0000
2,2 0000 00C0 0000 0080 0C00 0000 0800 0000
2,3 0000 00E0 FFFF FF80 0E00 0000 F800 0000
3,0 0600 0000 0A00 0000 0000 0060 0000 00A0
3,1 0600 0000 0200 0000 0000 0060 0000 0020
3,2 0600 0000 0200 0000 0000 0060 0000 0020
3,3 0E00 0000 03FF FFFF 0000 00E0 0000 003F

Left A: Level 6Element 
ID

Left B: Level 6 Right A: Level 6 Right B: Level 6

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 6000 0000 A000 0000 C000 0000 A000 0000
0,1 6000 0000 2000 0000 C000 0000 8000 0000
0,2 6000 0000 2000 0000 C000 0000 8000 0000
0,3 E000 0000 3FFF FFFF E000 0000 8000 0000
1,0 0000 0000 0000 0000 0000 0000 0000 0000
1,1 0000 0000 0000 0000 0000 0000 0000 0000
1,2 0000 0000 0000 0000 0000 0000 0000 0000
1,3 0000 0000 0000 0000 0000 0000 0000 0000
2,0 0000 000C 0000 000A C000 0000 A000 0000
2,1 0000 000C 0000 0008 C000 0000 8000 0000
2,2 0000 000C 0000 0008 C000 0000 8000 0000
2,3 0000 000E FFFF FFF8 E000 0000 8000 0000
3,0 6000 0000 A000 0000 0000 0006 0000 000A
3,1 6000 0000 2000 0000 0000 0006 0000 0002
3,2 6000 0000 2000 0000 0000 0006 0000 0002
3,3 E000 0000 3FFF FFFF 0000 000E 0000 0003

Left A: Level 7Element 
ID

Left B: Level 7 Right A: Level 7 Right B: Level 7

Shift Control LUTs
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Description
This Cell Takes a four bit input and 
generates the 6-bits (2x4-bit) inputs to 
control the Mux/OR cell.

Inputs
A3:0 - unused
B3:0 - Original Control Bits
          (B0 = Mux Select, B2 = OR enable)
C3:0 - unused
D3:0 - unused

Outputs
Y3:0 - B input of MuxOR Cell
Y7:4 - A input of MuxOR Cell

 Mux/OR Control Cell

Element 
ID

Description or Function Y Config Z Config

0,0 unused 0000 0000
0,1 unused 0000 0000
0,2 unused 0000 0000
0,3 Output Select F0F0 0000
1,0 unused 0000 0000
1,1 unused 0000 0000
1,2 unused 0000 0000
1,3 unused 0000 0000
2,0 unused 0000 0000
2,1 unused 0000 0000
2,2 unused 0000 0000
2,3 unused 0000 F0F0
3,0 OR Enable AAAA AAAA
3,1 OR Enable AAAA AAAA
3,2 OR Enable AAAA AAAA
3,3 Or Enable Forward 0000 AAAA

B -> Y

B -> Z

D -> Y
D -> Z

D -> Y
D -> Z

D -> Y
D -> Z D -> Z

C3        A3      D3 C2        A2      D2 C1        A1      D1 C0        A0      D0

B0

B1

B2

B3
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Comparator Module
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Top (Information) Cell
Description

This is the cell generates a > and = 
comparison for each of the 4 input bits 
for use with the decision cell. 

Inputs
A3:0 - unused
B3:0 - Signed/Unsigned Compare
            B0 - 0/1 - unsigned/signed
C3:0 - Value being Compared
D3:0 - Reference Value

Outputs
Y3:0 - Bitwise C = D comparison
Y7:4 - Bitwise C > D comparison
            Reversed Order 
                         {Bit0, Bit1, Bit2, Bit3}

Element 
ID

Description or Function Y Config Z Config

0,0 Comparison Cell 9999 2424
0,1 Comparison Cell 9999 4444
0,2 Comparison Cell 9999 4444
0,3 Comparison Cell 9999 4444
1,0 Routing CCCC AAAA
1,1 Routing CCCC AAAA
1,2 Routing CCCC AAAA
1,3 Routing CCCC AAAA
2,0 Routing CCCC AAAA
2,1 Routing CCCC AAAA
2,2 Routing CCCC AAAA
2,3 Routing CCCC AAAA
3,0 Routing CCCC AAAA
3,1 Routing CCCC AAAA
3,2 Routing CCCC AAAA
3,3 Routing CCCC AAAA

Compare

     >  =

Compare

    >  =

Compare

    >  =

Compare

    >  =

Si
gn

ed
/U

ns
ig

ne
d

C3 C2 C0C1D3 D2 D1 D0

Bit3> Bit3=

Bit2=

Bit1=

Bit0=

Bit2>Bit1>Bit0>
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Bottom (Decision) Cell
Description

This cell takes the output of the 
information cell and combines the bitwise 
comparisons into a single 4-bit 
comparison.

Inputs
A3:0 - Bitwise > comparisons from   
              information cell (reversed order)
B3:0 - Bitwise = comparison from 
              information cell
C3:0 - unused
D3:0 - unused

Outputs
Y3:0 - unused
Y7:4 - 4-bit comparison result
            formated {>, =, >, =}

Element 
ID

Description or Function Y Config Z Config

0,0 Bit 0 comparisons 0F00 F0F0
0,1 unused 0000 0000
0,2 unused 0000 0000
0,3 unused 0000 0000
1,0 Bits 1:0 Equal Comparison C0C0 C0C0
1,1 Bits 1:0 Greater Comparison 0FC0 0000
1,2 unused 0000 0000
1,3 unused 0000 0000
2,0 Bits 2:0 Equal Comparison C0C0 C0C0
2,1 Bits 2:0 Equal Comparison C0C0 0000
2,2 Bits 2:0 Greater Comparison 0FC0 0000
2,3 unused 0000 0000
3,0 Bits 3:0 Equal and Output C0C0 AAAA
3,1 Bits 3:0 Equal and Output AAAA AAAA
3,2 Bits 3:0 Equal and Output C0C0 AAAA
3,3 Bits 3:0 Greater Comparison 0000 CFC0

=0

=1:0

=2:0 =2:0

=1:0

>0

>1:0

>2:0

>3:0

Bi
t 0

=
Bi

t 1
=

Bi
t 2

=
Bi

t 3
=

Bit 0> Bit 1> Bit 2> Bit 3>
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Collector Cell
Description

This cell takes the output of up to four of 
the decision cells or other collector cells 
and determine the result of larger 
comparisons. The input order of 
precedence is A, B, C, then D.

Inputs
A3:0 - Input with 1st  highest precedence

B3:0 - Input with 2nd highest precedence

C3:0 - Input with 3rd  highest precedence

D3:0 - Input with 4th  highest precedence
Outputs

Y3:0 - unused
Y7:4 - Comparison Result
            formated {>, =, >, =}

Element 
ID

Description or Function Y Config Z Config

0,0 Lowest 8-bit Merge AAAA CCCC
0,1 Lowest 8-bit Merge FF00 CCCC
0,2 unused 0000 0000
0,3 Equal Detection 0000 8000
1,0 Lowest 8-bit Merge EEEE 0000
1,1 Lowest 8-bit Merge 0000 8888
1,2 Final Decision Merge 0000 FFC0
1,3 Equal Forwarding 0000 AAAA
2,0 Output Bank AAAA AAAA
2,1 Final Decision Merge 0000 EAAA
2,2 Final Decision Merge 0000 AAAA
2,3 Equal Forwarding 0000 AAAA
3,0 Output Bank AAAA CCCC
3,1 Output Bank CCCC AAAA
3,2 Output Bank AAAA AAAA
3,3 Equal Forwarding 0000 AAAA

Lowest 8 bit Merge Equal
Detection

Final Decision Merge

Output Bank

Merged Result {>,=>,=}

> >

>

>

= =

=

=
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Description
This cell implements a 2:1 multiplexer.

Inputs
A3:0 - unused
B3:0 - Control
                    (B0=0 -> D, B1=0 -> C)
C3:0 - Input 1
D3:0 - Input 2

Outputs
Y3:0 - Selected Data
Y7:4 - unused

Mux Cell

Element 
ID

Description or Function Y Config Z Config

0,0 Bit Select CACA 0000
0,1 Bit Select CACA 0000
0,2 Bit Select CACA 0000
0,3 Bit Select CACA 0000
1,0 Unused 0000 0000
1,1 Routing CCCC 0000
1,2 Routing CCCC 0000
1,3 Output CCCC 0000
2,0 Unused 0000 0000
2,1 Unused 0000 0000
2,2 Routing CCCC 0000
2,3 Output CCCC 0000
3,0 Unused 0000 0000
3,1 Unused 0000 0000
3,2 Unused 0000 0000
3,3 Output CCCC 0000

Select 
A or B

Select 
A or B

Select 
A or B

Select 
A or B

C3 C2 C0C1D3 D2 D1 D0

B0
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Description
This cell is a 3:1 mux, with the ability to 
set, reset, and invert the chosen input.

Inputs
A, C, D - Inputs  
B - Control Signals
      B0 -  Select C or D
      B1 -  Select A or B0  Mux Out
      B2 -  Reset
      B3 -  Invert (set if B2 & B3)

Outputs
Y3:0 - unused
Y7:4 - Result of Muxing/Reset/Invert/Set

TriMux Cell

Element 
ID

Description or Function Y Config Z Config

0,0 MUX C,D CACA 0000
0,1 MUX C,D CACA 0000
0,2 MUX C,D CACA 0000
0,3 MUX C,D CACA 0000
1,0 MUX C,A    PASS D AAAA FC0C
1,1 MUX C,A 0000 FC0C
1,2 MUX C,A 0000 FC0C
1,3 MUX C,A 0000 FC0C
2,0 Pass or Reset, PASS D - !B AND C AAAA OCOC
2,1 Pass or Reset, PASS D - !B AND C AAAA OCOC
2,2 Pass or Reset 0000 0A0A
2,3 Pass or Reset 0000 0A0A
3,0 Pass or Invert AAAA FCFC
3,1 Pass or Invert AAAA FCFC
3,2 Pass or Invert AAAA FCFC
3,3 Pass or Invert 0000 FAFA

MUX 
C,D

MUX  
C,A

pass D

Pass    
or  Reset

Pass    
or Invert

MUX 
C,D

MUX  
C,A

Pass    
or  Reset

Pass    
or Invert

MUX 
C,D

MUX  
C,A

Pass    
or  Reset

Pass    
or Invert

MUX 
C,D

MUX  
C,A

Pass    
or  Reset

Pass    
or Invert

C3 C2 C1 C0A3 A2 A1 A0D3 D2 D1 D0

B0

B1

B2

B3

Y0

Y1

Y2

Y3Y4Y5Y
6Y7
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Description
This cell is a 2:1 mux that can also OR 
the two inputs.

Inputs
A3:0 - OR enable
B3:0 - Output Select 
                     (B0=0 -> D, B1=0 -> C)
C3:0 - Input 1
D3:0 - Input 2

Outputs
Y3:0 - Result
Y7:4 - unused

 MUX/OR Cell

Element 
ID

Description or Function Y Config Z Config

0,0 Bit Select / OR EECA 0000
0,1 Bit Select / OR EECA 0000
0,2 Bit Select / OR EECA 0000
0,3 Bit Select / OR EECA 0000
1,0 Unused 0000 0000
1,1 Routing CCCC 0000
1,2 Routing CCCC 0000
1,3 Output CCCC 0000
2,0 Unused 0000 0000
2,1 Unused 0000 0000
2,2 Routing CCCC 0000
2,3 Output CCCC 0000
3,0 Unused 0000 0000
3,1 Unused 0000 0000
3,2 Unused 0000 0000
3,3 Output CCCC 0000

Select 
or OR

Select 
or OR

Select 
or OR

Select 
or OR

C3 C2 C0C1D3 D2 D1 D0

B0

A3 A3 A3 A3
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S-BOX Module

LSB A

MSB B LSB B

Translate
(MSB 

Inversion)

MSB A

Value

Transformed Value
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S-BOX MSB Inversion Cell
Description

This cell is used to facilitate the 256 
location 8-bit memory bank that 
completes the substitution or inverse 
substitution transform. This is done by 
inverting the most significant bit.

Inputs
A3:0 - Upper 4 bits of Input
B3:0 - Lower 4 bits of Input 
C3:0 - unused
D3:0 - unused

Outputs
Y3:0 - LSB Ctrl bits for LSB LUT
Y7:4 - MSB Ctrl bits for LSB LUT

Element 
ID

Description or Function Y Config Z Config

0,0 unused 0000 0000
0,1 unused 0000 0000
0,2 unused 0000 0000
0,3 LSBs Output F0F0 0000
1,0 unused 0000 0000
1,1 unused 0000 0000
1,2 unused 0000 0000
1,3 LSBs Output F0F0 0000
2,0 unused 0000 0000
2,1 unused 0000 0000
2,2 unused 0000 0000
2,3 LSBs Output F0F0 0000
3,0 MSB Inversion and MSBs Output AAAA 00FF
3,1 MSBs Output AAAA FF00
3,2 MSBs Output AAAA FF00
3,3 LSBs Output F0F0 FF00

Z<=0
Y<=B

Z<=0
Y<=B

Z<=0
Y<=B

Z<=!A
Y<=D

Z<=A
Y<=D

Z<=A
Y<=D

Z<=A
Y<=B

B 3
:0

 <
= 

Va
lu

e 3
:0

A3:0 <= Value7:4
Translate Cell
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S-BOX LUTs

Function
The use of 4 memory cells with two in 
parallel connected serially to two other 
cells forms the core of the S-BOX 
transform. The inverse transform can be 
done by simply changing the LUT 
values.

Inputs
WA7:0 - unused
RA7:0 - Input value being transformed
           or Output of S-BOX LUT CTRL
 wi3:0  - unused
  ri3:0  - Connects MSB LUTS 
                  to LSB LUTs

Outputs

  ro3:0 - Output of LUTs

LSB A

MSB B LSB B

MSB A

Transformed Value
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S-BOX LUT CONFIG

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 96CA 0329 BF97 7090 F6AC 6C1B 193D 586A
0,1 B30D B559 C2FD B4FF 3B0C 3FFB 3B48 B4C6
0,2 0631 9E08 6D98 DD7F F334 86B4 4C53 FC7D
0,3 BC48 ECB4 52B8 B11E C006 EAB5 096C 6EED
1,0 4CB3 7701 5CAA 2EC7 E9DA 849C 1090 20A2
1,1 3F6B CB91 980A 3CC2 577D 64E0 A163 87FB
1,2 7D8D CC47 F804 5F7B 6A45 0B2E 7BAE 007D
1,3 2624 B286 C2B0 F977 10BD B210 B14E DE67
2,0 B844 E3E1 866A AC82 C892 FB1B FFA8 527D
2,1 2559 1782 F3AB 2560 D6CE 2EFC A428 C424
2,2 0B4F 256F 0D78 7AA4 94EA D8A9 9781 6F7A
2,3 CE47 2E53 4CE3 0F58 6F24 7A04 8ACB 7A13
3,0 5237 9DE7 E7BA C28F 4E9D DB76 2568 EA2E
3,1 21E0 B833 E485 1B3B AC39 B6C0 23A8 69A2
3,2 54B2 4813 6BC2 AA4E C870 9740 E61A 4C5E
3,3 F210 A3AE F7F1 7A49 4F1E AD39 68AB 4BFA

MSB BITS 255:128Element 
ID

MSB BITS 127:0 LSB BITS 255:128 LSB BITS 127:0

Forward Transform

Inverse Transform

Y Config Z Config Y Config Z Config Y Config Z Config Y Config Z Config
0,0 4BB3 7FC2 F2DA FD48 DA22 0CD1 E275 8986
0,1 EB14 DEF8 FC43 E2OD F4F7 6D70 3BE1 4968
0,2 AF7E F2A1 4167 A5F4 C519 CFB1 A6FA ED25
0,3 7645 B347 2155 E9B9 66F0 853E C4F6 F54A
1,0 AF31 52C2 64A4 6534 7B4D F9B4 3A33 AB82
1,1 FE7B 054B 5B28 F323 A817 4B51 914A 8795
1,2 98C5 572A 95DE 21DA 4B3E DF05 278A F97A
1,3 DB67 E21E 43A0 248F 2248 83FB FA24 4CC2
2,0 FA28 6156 F0F0 CB56 EDDC C817 61F5 1C62
2,1 A647 C842 0DBF 3D2F CBA4 D063 FF31 7F9C
2,2 872D 518C 1073 622F 9C44 9269 1D80 C095
2,3 5C36 8F8B 4BDA D5C7 BBBE 99EB 7A70 3000
3,0 0150 57D3 4719 3377 C21A 4F3C C67E 14B6
3,1 9B68 A34A 8111 4742 D4ED 0858 066E CB30
3,2 ABBA 8EF7 8622 3324 08FB 3634 EAFC A1C4
3,3 9479 6CC4 2425 3563 BB23 F64C BF68 6944

MSB BITS 255:128Element 
ID

MSB BITS 127:0 LSB BITS 255:128 LSB BITS 127:0
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Mix Column Module

X2X3 
Hi

X2X3 
Lo

X2 X3

Input

4 input 
XOR

4 input 
XOR

Inputs

Outputs

Scaling Component

Summation Component
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x2x3 High Cell
Description

This module generates the upper 4-bits 
of the x2 and x3 factors for the Mix 
Column Transform. 

Inputs
A3:0 - Original Value7:4
B3:0 - Original Value3:0
C3:0 - Original Value7:4 
                  Delayed by 1 cycle
D3:0 - x2 Result

Outputs
Y3:0 - x3 Result
Y7:4 - x2 Result

C XOR D C XOR D C XOR D C XOR D

A3 A2

A1

B xor C
A0

C3       A3       D3 C2       A2       D2 C1       A1       D1 C0       A0       D0

B0

B1

B2

B3

Element 
ID

Description or Function Y Config Z Config

0,0 Generate x3 6666 0000
0,1 Generate x3 6666 0000
0,2 Generate x3 6666 0000
0,3 Generate x3 6666 0000
1,0 Forward A3 and A2 FF00 AAAA
1,1 Forward A2 CCCC FF00
1,2 Route Data CCCC 0000
1,3 Route Data CCCC 0000
2,0 Route Data AAAA CCCC
2,1 Route Data CCCC AAAA
2,2 Forward A1 CCCC FF00
2,3 Route Data CCCC 0000
3,0 Output A2 and A1 AAAA CCCC
3,1 Output A0 AAAA CCCC
3,2 Output A3 XOR B3 3C3C AAAA
3,3 Forward A0 CCCC FF00
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x2x3 Lower Cell
Description

This module generates the lower 4-bits 
of the x2 and x3 factors for the Mix 
Column Transform. 

Inputs
A3:0 - Original Value3:0
B3:0 - Original Value7:4
C3:0 - Original Value7:4 
                  Delayed by 1 cycle
D3:0 - x2 Result

Outputs
Y3:0 - x3 Result
Y7:4 - x2 Result

C XOR D C XOR D C XOR D C XOR D

A2

A1

C xor D B xor D B
A0

C3       A3       D3 C2       A2       D2 C1       A1       D1 C0       A0       D0

B0

B1

B2

B3

Element 
ID

Description or Function Y Config Z Config

0,0 Generate x3 6666 0000
0,1 Generate x3 6666 0000
0,2 Generate x3 6666 0000
0,3 Generate x3 6666 0000
1,0 Route Data 0000 AAAA
1,1 Forward A2 CCCC FF00
1,2 Route Data CCCC 0000
1,3 Route Data CCCC 0000
2,0 Route Data AAAA CCCC
2,1 Route Data 0000 AAAA
2,2 Forward A1 CCCC FF00
2,3 Route Data CCCC 0000
3,0 Output (A2 xor B3), and A1 AAAA 3C3C
3,1 Output A0 xor B3 5A5A CCCC
3,2 Output B3 F0F0 AAAA
3,3 Forward A0 CCCC FF00
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4 Input 4-bit XOR
Description

This cell computes A xor B xor C xor D.

Inputs
A3:0 - Input 1
B3:0 - Input 2
C3:0 - Input 3
D3:0 - Input 4

Outputs
Y3:0 - unused
Y7:4 - Result

A XOR B 
XOR C

A XOR B 
XOR C

A XOR B 
XOR C

A XOR B 
XOR C 
XOR D

C XOR B

C XOR B

C XOR B

C3   A3   D3 C2   A2   D2 C1   A1   D1 C0   A0   D0

B0

B1

B2

B3

Element 
ID

Description or Function Y Config Z Config

0,0 Generate x3 9966 0000
0,1 Generate x3 9966 0000
0,2 Generate x3 9966 0000
0,3 Generate x3 6996 0000
1,0 Route Data 0000 0000
1,1 Forward A2 CCCC 0000
1,2 Route Data CCCC 0000
1,3 Route Data 3C3C 0000
2,0 Route Data 0000 0000
2,1 Route Data 0000 0000
2,2 Forward A1 CCCC 0000
2,3 Route Data 3C3C 0000
3,0 Output (A2 xor B3), and A1 0000 0000
3,1 Output A0 xor B3 0000 0000
3,2 Output B3 0000 0000
3,3 Forward A0 3C3C 0000
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Add Round Key Module
(8-bit XOR)

Module

Module With Mix Column Bypass

MUX MUX

8-Bit
XOR

CA B

8-Bit
XOR

A       B

Result
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8-Bit XOR
Description

This module computes an 8-bit XOR 
operation.

Inputs
A3:0 - MSBs of Input 1
B3:0 - MSBs of Input 2
C3:0 - LSBs of Input 1
D3:0 - LSBs of Input 2

Outputs
Y3:0 - LSBs of Result
Y7:4 - MSBs of Result

Element 
ID

Description or Function Y Config Z Config

0,0 XOR 6666 0000
0,1 XOR 6666 0000
0,2 XOR 6666 0000
0,3 XOR 6666 0FF0
1,0 unused 0000 0000
1,1 Routing CCCC 0000
1,2 XOR and Routing CCCC 0FF0
1,3 Routing CCCC AAAA
2,0 Routing AAAA 0000
2,1 XOR and Routing AAAA 0FF0
2,2 Routing CCCC AAAA
2,3 Routing CCCC AAAA
3,0 XOR and Routing AAAA 0FF0
3,1 Routing AAAA CCCC
3,2 Routing AAAA CCCC
3,3 Routing AAAA CCCC

A3

B3

B2

D3 D2 D1 D0C3 C2 C1 C0

B1

B0

A2 A1 A0

C
 X

O
R

 D

A XOR B
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Appendix B 

Control Logic 
In Chapters 4 and 5 the focus has been directed primarily toward the 

execution modules and their organization into the execution core of a five-stage 

processor and how the five-stage architecture could be adapted to the target 

hardware. During this research the practice of partitioning multiple clock cycles into 

windows during which the operations could be completed and termed the control 

synchronization factor, or CSF, has been investigated. In chapter 5 analyses have been 

provided detailing to how the different CSFs could change the performance of a 

processor. It also mentions that different CSFs would affect the area requirements of a 

processor by affecting the size and complexity of the control logic. In the remainder 

of this appendix an overview of how the control logic could be implemented is 

presented, which would work for CSFs greater than 9. 
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B.1 Control Logic at ID Stage 

The first aspect of the control logic that will be presented is the core of the ID 

stage, which ensures data is transmitted to the correct location and that the proper 

control signals are generated. The processes for routing data to its target module can 

easily be carried out using a network of multiplexers surrounding the register 

memory bank, which have previously been discussed. The critical component of the 

ID stage then becomes the control signal generation because it also allows for data to 

be transmitted through the multiplexer network to the correct module and for the 

execution modules to be instructed to carry out the designated function. Control 

signal generation can be accomplished using a series of LUTs, which can be easily 

implemented in the target hardware by using a group of cells in memory mode and 

disconnecting the write inputs. A scheme for doing this is shown in Figure B.1 and 

would require four cycles of delay for the data and control signals to be finalized, 

which is fewer than the minimum number of cycles required to implement the PC+4 

operation ensuring that the ID stage would not increase the minimum CSF factor or 

delay for the processor.  
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B.2 Forwarding control logic 

Another important control logic component is forwarding. In this subsection a 

method by which forwarding can be managed is presented. This will allow for the 

filter block in Figure 3.1 to dynamically increase the CSF window size and control 

any necessary multiplexers used for forwarding. The most straightforward method for 

implementation is shown in Figure B.2. Using this architecture the two possible 

source registers are compared to the past 2 destination registers and if a match is 

found the forward detect block identifies and communicates the forwarding to occur 

to the LUT components. The LUT then generates the forwarding mux control signals 

and alerts the filter block to increase the CSF window size. This method requires only 

3 cycles to complete and can be computed in parallel with the other control logic 

 

Figure B.1: Control Logic and ID Stage 
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once the instruction type is known and the sources have been identified, which 

occurs after the second machine cycle. This means that the forwarding control signals 

will be generated after the fifth machine cycle and can be computed during any of the 

examined CSF windows.  

 

 

Figure B.2: Forward Detection and Control 
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Appendix C 

Cell Utilization 
In the course of completing the hardware analysis in Chapter 5 the utilization 

of each of the execution modules had to be determined to compute the overall five-

stage core utilization. Chapter 5 detailed only the overall core utilization, so in this 

appendix the cell and module utilization is detailed for the cells configured in math 

mode. The first table, which spans 2 pages, shows the computational, forwarding, and 

total utilization for the different cell types that are the core of the execution modules 

for varying cell configurations ranging from 4!4 to 32!32 elements. A figure 

displaying the average cell usage characteristics then is provided which further 

illustrates that as the cell size is increased the computational utilization rapidly 

declines while the forwarding and not in use allocations increase in a similar manner.  

Lastly a Table and Figure detailing the operational delay for the execution 

modules is provided and as expected most of the module execution times increased for 
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larger cell configurations.  The logic, shift, and comparator module all increase their 

processing time by over a 100% as the cell size grew. The MAC-2 unit was the only 

execution module not to see a decrease in execution time, but yielded a 17.5% 

maximum reduction in operation delay for 32-bit operations or a 15% maximum 

reduction in 64-bit operational delay. 

Used % Used % Used %
Logic 8 50.0% 8 50.0% 16 100.0%

MAC Cells 16 100.0% 0 0.0% 16 100.0%
Shift Cell 10 62.5% 6 37.5% 16 100.0%

Op Val Cell 8 50.0% 4 25.0% 12 75.0%
MUX/OR Ctrl 4 25.0% 2 12.5% 6 37.5%

Info Cell 4 25.0% 12 75.0% 16 100.0%
Decision Cell 10 62.5% 0 0.0% 10 62.5%
Collector Cell 12 75.0% 3 18.8% 15 93.8%

MUX Cell 4 25.0% 6 37.5% 10 62.5%
TriMux Cell 16 100.0% 0 0.0% 16 100.0%

MUX/OR Cell 4 25.0% 6 37.5% 10 62.5%
Logic 12 33.3% 24 66.7% 36 100.0%

MAC Cells 36 100.0% 0 0.0% 36 100.0%
Shift Cell 21 58.3% 15 41.7% 36 100.0%

Op Val Cell 12 33.3% 6 16.7% 18 50.0%
MUX/OR Ctrl 4 11.1% 2 5.6% 6 16.7%

Info Cell 6 16.7% 30 83.3% 36 100.0%
Decision Cell 21 58.3% 0 0.0% 21 58.3%
Collector Cell 12 33.3% 14 38.9% 26 72.2%

MUX Cell 6 16.7% 15 41.7% 21 58.3%
TriMux Cell 24 66.7% 12 33.3% 36 100.0%

MUX/OR Cell 6 16.7% 15 41.7% 21 58.3%
Logic 16 25.0% 48 75.0% 64 100.0%

MAC Cells 64 100.0% 0 0.0% 64 100.0%
Shift Cell 36 56.3% 28 43.8% 64 100.0%

Op Val Cell 16 25.0% 8 12.5% 24 37.5%
MUX/OR Ctrl 4 6.3% 2 3.1% 6 9.4%

Info Cell 8 12.5% 56 87.5% 64 100.0%
Decision Cell 36 56.3% 0 0.0% 36 56.3%
Collector Cell 12 18.8% 29 45.3% 41 64.1%

MUX Cell 8 12.5% 28 43.8% 36 56.3%
TriMux Cell 32 50.0% 32 50.0% 64 100.0%

MUX/OR Cell 8 12.5% 28 43.8% 36 56.3%

6
x6

8
x8

Cell Configuration 
and Type

Element Allocation
Computation Forwarding Total

4
x4
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Used % Used % Used %
Logic 32 12.5% 224 87.5% 256 100.0%

MAC Cells 256 100.0% 0 0.0% 256 100.0%
Shift Cell 136 53.1% 120 46.9% 256 100.0%

Op Val Cell 32 12.5% 16 6.3% 48 18.8%
MUX/OR Ctrl 4 1.6% 2 0.8% 6 2.3%

Info Cell 16 6.3% 240 93.8% 256 100.0%
Decision Cell 136 53.1% 0 0.0% 136 53.1%
Collector Cell 12 4.7% 129 50.4% 141 55.1%

MUX Cell 16 6.3% 120 46.9% 136 53.1%
TriMux Cell 64 25.0% 192 75.0% 256 100.0%

MUX/OR Cell 16 6.3% 120 46.9% 136 53.1%
Logic 64 6.3% 960 93.8% 1024 100.0%

MAC Cells 1024 100.0% 0 0.0% 1024 100.0%
Shift Cell 528 51.6% 496 48.4% 1024 100.0%

Op Val Cell 64 6.3% 32 3.1% 96 9.4%
MUX/OR Ctrl 4 0.4% 2 0.2% 6 0.6%

Info Cell 32 3.1% 992 96.9% 1024 100.0%
Decision Cell 528 51.6% 0 0.0% 528 51.6%
Collector Cell 12 1.2% 521 50.9% 533 52.1%

MUX Cell 32 3.1% 496 48.4% 528 51.6%
TriMux Cell 128 12.5% 896 87.5% 1024 100.0%

MUX/OR Cell 32 3.1% 496 48.4% 528 51.6%

1
6

x1
6

3
2

x3
2

Cell Configuration 
and Type

Element Allocation
Computation Forwarding Total
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Cyc. Time Cyc. Time Cyc. Time Cyc. Time Cyc. Time
Logic 1 5.0E-10 1 7.0E-10 1 9.0E-10 1 1.7E-09 1 3.3E-09
Shift/Rot 11 5.5E-09 9 6.3E-09 7 6.3E-09 5 8.5E-09 4 1.3E-08
Compare 4 2.0E-09 4 2.8E-09 3 2.7E-09 3 5.1E-09 2 6.6E-09
32B MAC 8 4.0E-09 6 4.2E-09 4 3.6E-09 2 3.4E-09 1 3.3E-09
64B MAC 16 8.0E-09 12 8.4E-09 8 7.2E-09 4 6.8E-09 3 9.9E-09

Operation Timing (sec)
4x4 6x6 8x8 16x16 32x32
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