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ISSUES REGARDING SYNCHRONIZATION PROBLEMS

FOR NETWORKS AND INTERNAL STABILITY OF

LINEAR SYSTEMS WITH CONSTRAINTS

Abstract
by Tao Yang, Ph.D.

Washington State University
August 2012

Co-Chairs: Ali Saberi, Anton A. Stoorvogel, and H̊avard Fjær Grip

My Ph.D. thesis research accomplishments span two different disciplines. The first one is

synchronization in multi-agent systems and the other one is internal stabilization of linear systems

with constraints. These two disciplines are studied respectively in Part I and Part II in this thesis.

In Part I, I solve the synchronization problems toward generality of network structure, from ho-

mogeneous networks (i.e., the agent models in the network are identical) to heterogeneous networks

(i.e., the agent models in the network are non-identical). For homogeneous networks, I propose

different design methodologies for solving the state synchronization problems for both full-state

coupling (i.e., each agent measures its own state relative to that of neighboring agents) and partial-

state coupling (i.e., each agent measures its own output relative to that of neighboring agents).

For heterogeneous networks, I consider the output synchronization problem and the output regu-

lation problem for two scenarios based on the information available for each agent: introspective

agents and non-introspective agents. While in both cases, each agent collects information of its

own output relative to that of neighboring agents, an introspective agent also acquires some sort

of self-knowledge. I also consider the semi-global regulation of output synchronization for hetero-

geneous networks of introspective, invertible linear agents subject to actuator saturation. Finally,

v



I consider the case that the network communications are subject to unknown uniform constant

communication delay.

In Part II, I study the issues regarding the internal stabilization of linear systems subject to

actuator saturation. I design saturated globally stabilizing linear static state feedback control

laws for continuous-time linear systems mixed with single integrators, double integrators, and

neutrally stable dynamics. I also completely characterize the dynamic behavior of the discrete-

time double integrator with a saturated locally stabilizing linear state feedback law. These are

the first step toward my further goal: to completely characterize under what conditions one can

utilize a linear static/dynamic state feedback control laws to globally asymptotically stabilize linear

systems subject to actuator saturation.
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Chapter 1

Introduction

1.1 Synchronization in Multi-agent Systems

The problem of achieving synchronization among agents in a network—that is, asymptotic

agreement on the agents’ state or output trajectories—has received substantial attention in recent

years (see [2, 44, 55, 100] and references therein). The essential difficulty of the synchronization

problem is the lack of a central authority with the ability to control the network as a whole.

Instead, each agent must implement a controller based on limited information about itself and its

surroundings—typically in the form of measurements of its own state or output relative to that of

neighboring agents in the network.

The research on synchronization can be generally divided into two categories: one studies

homogeneous networks (i.e., networks where the agent models are identical) and the other one

studies heterogeneous networks (i.e., networks where the agent models are non-identical).
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1.1.1 Homogeneous Networks

Much of the attention has been directed toward state synchronization in homogeneous net-

works. Depending on the information the agents collect from the network, the study on the state

synchronization for homogeneous network can be bifurcated into two categories. The case where

each agent receives information about its own state relative to that of neighboring agents, which is

referred to as full-state coupling, have been considered in [44–46,52,54,56,61,83]. Roy, Saberi, and

Herlugson [62], Tuna [83], and Yang, Roy, Wan, and Saberi [103] considered this type of problem for

more general observation topologies and more complex identical agent models than previously con-

sidered. Others have studied the case where the agents receive relative information about their own

partial-state output, which is referred to as partial-state coupling, see for example, [32,48,49,84]. A

key idea in the work of [32], which was expanded upon by [107], is the development of a distributed

observer. This observer makes additional use of the network by allowing the agents to exchange

information with their neighbors about their own internal estimates. Many of the results on the

synchronization problem are rooted in the seminal work of [98,99].

1.1.2 Heterogeneous Networks

A limited amount of research has also been conducted on heterogeneous networks. The syn-

chronization literature for heterogeneous networks can be further divided into two categories. One

studies the state synchronization while the other one studies the output synchronization.

1.1.2.1 State Synchronization

In [50], the authors presented a robust state-synchronization design for networks of nonlinear

systems with relative degree one, where each agent implements a sufficiently strong feedback based
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on the difference between its own state and that of a common reference model. In the work of [101],

it is assumed that a common Lyapunov function candidate is available, which is used to analyze

stability with respect to a common equilibrium point. Depending on the system, some agents may

also implement feedbacks to ensure stability, based on the difference between those agents’ states

and the equilibrium point. [114] analyzed state synchronization in a network of nonlinear agents

based on the network topology and the existence of certain time-varying matrices. Controllers can

be designed based on this analysis, to the extent that the available information and actuation allows

for the necessary manipulation of the network topology.

1.1.2.2 Output Synchronization

The above-cited works focus on synchronizing the agents’ internal states. In heterogeneous

networks, however, the physical interpretation of one agent’s state may be different from that of

another agent. Indeed, the agents may be governed by models of different dimensions. In this case,

comparing the agents’ internal states is not meaningful, and it is more natural to aim for output

synchronization—that is, agreement on some partial-state output from each agent. The study on

output synchronization for heterogeneous networks can be further classified into two categories

depending on the information the agents collect, that is, introspective agents and non-introspective

agents. The agent is introspective if it possesses some sort of self-knowledge, while the agent is non-

introspective if it have no knowledge of their own state or output separate from what is received via

the network. This distinction is significant because introspective agents have much greater freedom

to manipulate their internal dynamics (e.g., through the use of pre-feedbacks) and thus change the

way that they present themselves to the rest of the network. The notion of a non-introspective agent

is also practically relevant; for example, two vehicles in close proximity may be able to measure
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their relative distance without either of them having knowledge of their absolute position.

Introspective Agents Chopra and Spong [10] focused on output synchronization for weakly

minimum-phase systems of relative degree one, using a pre-feedback within each agent to create

a single-integrator system with decoupled zero dynamics. Pre-feedbacks were also used by [2] to

facilitate passivity-based designs. The authors have previously considered output synchronization

for right-invertible agents, using pre-compensators and an observer-based pre-feedback within each

agent to yield a network of asymptotically identical agents [104]. Kim, Shim, and Seo [25] studied

output synchronization for uncertain single-input single-output, minimum-phase systems, by em-

bedding an identical model within each agent, the output of which is tracked by the actual agent

output. A similar approach was taken by [97], which showed that a necessary condition for output

synchronization in heterogeneous networks is the existence of a virtual exosystem that produces a

trajectory to which all the agents asymptotically converge. If one knows the model of an observable

virtual exosystem without exponentially unstable modes, which each agent is capable of tracking,

then it can be implemented within each agent and synchronized via the network. The agent can

then be made to track the model with the help of a local observer estimating the agent’s states.

Non-introspective Agents In this aspect, the results are very limited. In [113], the authors

solve the output synchronization problem for a well-defined class of heterogeneous networks of non-

introspective agents is by [113]. In their work, the only information available to each agent is a

linear combination of outputs received over the network. However, the agents are assumed to be

passive—a strict requirement that, among other things, requires the agents to be weakly minimum-

phase and of relative degree one. Grip et al. [17] study the output synchronization problem for

heterogeneous networks of non-introspective linear agents. In [17], the author assume, in the spirit

4



of [32], that the agents can exchange information about their internal estimates using the network’s

communication infrastructure besides a linear combination of their own output relative to that of

neighboring agents.

1.1.3 Organization

Part I is composed of eleven chapters and can be divided into several subparts:

• Chapter 2 consists of the article Yang, Roy, Wan, and Saberi [103] while Chpater 3 consists

of the article Yang, Stoorvogel, and Saberi [107]. Chapter 2 and 3 consider the synchroniza-

tion problem for homogeneous networks with full-state coupling and partial-state coupling

respectively.

• Chapter 4 consists of the article Yang, Saberi, Stoorvogel, and Grip [104] while Chpater 5

consists of the article Wang, Saberi and Yang [95]. Chapter 4 and 5 study the synchro-

nization problems for heterogeneous networks of introspective right-invertible linear agents in

continuous-time setting and discrete-time setting respectively.

• Chapter 6 consists of the article Grip, Yang, Saberi, and Stoorvogel [17]. Chapter 6 studies

the output synchronization problem and the regulation of output synchronization problem for

heterogeneous networks of non-introspective right-invertible linear time-invariant agents.

• Chapter 7 consists of the article Yang, Stoorvogel, Grip, and Saberi [105]. This chapter con-

sider the semi-global regulation of output synchronization problem for heterogeneous networks

of non-introspective, invertible linear time-invariant agents subject to actuator saturation.

• Chapter 8 consists of the article Wang, Saberi, Stoorvogel, Grip, and Yang [92]. This chapter

studies the state synchronization problem for homogeneous networks with uniform constant
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communication delay.

• Chapter 9 consists of the article Wang, Saberi, Stoorvogel, Grip, and Yang [93]. This chapter

studies the output synchronization problem and the output regulation problem for heteroge-

neous networks of introspective right-invertible linear agents with uniform constant commu-

nication delay.

Some notations are different among chapters in Part I. I apologize for any inconvenience they may

cause.

1.2 Internal Stabilization of Linear Systems subject to Actuator

Saturation

Constraints on inputs and other variables of a dynamic system are ubiquitous. Often they occur

in the form of magnitude as well as rate saturation of a variable. Clearly, the capacity of every

device is capped. Valves can only be operated between fully open and fully closed states, pumps and

compressors have a finite throughput capacity, and tanks can only hold a certain volume. Force,

torque, thrust, stroke, voltage, current, flow rate, and so on, are limited in their activation range

in all physical systems. Servers can serve only so many consumers. In circuits, transistors and

amplifiers are saturating components. Every physically conceivable actuator, sensor, or transducer

has bounds on the magnitude as well as on the rate of change of its output. Thus, the saturation

of a device presents a hard constraint.

Part II of the thesis is concerned with the case where there is magnitude constraint on the linear

system’s actuator/input. Linear systems subject to actuator saturation have been the subject of

extensive study. See for instance two special issues [4, 69], and references therein. One of the
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fundamental goal is to design a feedback such that the closed-loop system is globally asymptotically

stable. Internal stabilization for this class of systems has a long history. The negative result given

by Fuller [14] established that a chain of integrators with order greater or equal to three cannot be

globally stabilized by any saturating linear static state feedback control law with only one input

channel. Sontag and Sussmann [78] and Yang, Sontag and Sussmann [109] established that, global

stabilization of linear systems subject to actuator saturation can be achieved if and only if the

linear system in the absence of actuator saturation is stabilizable, and has all its open-loop poles in

the closed left-half plane for continuous-time linear systems and in the closed unit disc for discrete-

time linear systems (equivalently, asymptotically null controllable with bounded control). In general,

this requires nonlinear feedback control laws. We have only very limited insight into which linear

controller yields global stability and which one does not. For certain cases, global stabilization

can be achieved by linear static state feedback control laws. For example, in both continuous-time

and discrete-time settings, it is well-known that there exist linear static state feedback control

laws which globally stabilize neutrally stable linear systems subject to actuator saturation, see for

instance [76]. The extension of the above result in continuous-time setting has been established

in [87]. More precisely, the paper [87] shown that systems which are asymptotically null controllable

with bounded inputs can be globally stabilized by linear static state feedback control laws if all

non-zero eigenvalues on the imaginary axis are semi-simple (geometric and algebraic multiplicities

are equal) while zero is allowed to be an eigenvalue whose Jordan blocks can be at most of size

2× 2 (which are associated with double integrators).

One of the goal of Part II is to investigate under what condition the linear static state feedback

controllers can be designed to globally asymptotically stabilize the linear system subject to actuator

saturation.
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Also in continuous-time setting, it is well-known that a linear static state feedback law which

locally stabilizes the double integrator subject to actuator saturation1 also globally stabilizes the

system in the presence of actuator saturation, see for instance, [75, 87]. However, similar result

has not yet been obtained for the discrete-time case. The goal of Part II is to investigate whether

the equivalent of the double integrator subject to actuator saturation in discrete-time is globally

asymptotically stable when a locally stabilizing linear state feedback law is used. The answer turns

out to be no.

1.2.1 Organization

Part II is composed of two chapters that are organized as follows:

• Chapter 10 consists of the article [106]. This chapter reexamines the classical issue whether

linear or nonlinear static state feedback control laws are needed for globally stabilizing linear

systems subject to actuator saturation.

• Chapter 11 consists of the article [108]. This chapter completely characterizes the dynamic

behavior of the discrete-time double integrator with a saturated locally stabilizing linear state

feedback law.

1Note that a linear state feedback law with arbitrary negative feedback gains locally stabilizes the double integrator.
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Chapter 2

Constructing Consensus Controllers

for Networks with Identical General

Linear Agents

2.1 Introduction

A multitude of networks in nature automatically synchronize, that is, states of individual net-

work components or agents dynamically evolve toward a common value or trajectory. In com-

plement, control-theorists have recently sought to develop a decentralized protocol that brings a

network’s components into consensus, that is, to deliberately drive the states of network compo-

nents to a common value that depends on the initial component states in a prescribed manner.

Thus far, most studies on consensus control have been limited to the case that the agents’

open-loop internal dynamics are described by an integrator chain (e.g., single- or double-integrator

models [44–46, 52, 54, 56, 61]). Very recently, a few researchers have begun to consider consensus

10



control among agents with general identical linear internal dynamics, see [83–85].

In this chapter, we address consensus control for networks whose agents have identical but

arbitrary multi-input LTI open-loop dynamics, and a quite-general observation topology. Specifi-

cally, we exploit a high-gain decentralized control scheme to obtain consensus for this general agent

model, and for a broad class of network topologies.

Let us briefly overview the literature on consensus. We note that the consensus problem actually

has a long history in the computer science community [37]. The control-theoretic approach to

consensus - i.e., the use of a feedback methodology to synchronize agents’ local states in a network

to a prescribed function of their initial states - is relatively new, but has been extensively studied

in the control community during the last five years and has yielded some advances in e.g., sensor

networking ( [44–46, 60]) and autonomous vehicle control applications ( [52, 54, 56, 61]). Although

this literature is extensive, however, much of it fundamentally derives from a classical work of Chua

( [98, 99]) that gives conditions on a network’s topology and agent dynamics for synchronization.

Pogromsky ( [48, 49]) has given a control-theoretic interpretation of the classical synchronization

result, that captures the essence of the consensus problem. Recently, Li ( [32]) and Tuna ( [84,85])

gave conditions for consensus, for networks with agents having identical but general linear internal

dynamics and with topology described by directed Laplacian matrices. Also, Tuna ( [83]) has

considered the consensus control problem in the case that agents have general internal dynamics,

using an optimal-control approach. Other than these recent results, explicit design of controllers

for consensus (i.e., design of controllers such that the closed-loop meets Chua’s condition) has been

achieved only for very simple agent models (integrator chains). Also, the efforts on consensus

control have focused on network interactions described by a Laplacian matrix [44–46,52,54,56], see

our studies [60–62] for analysis of a more general network model. We also note that consensus in
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networks with time-varying topologies has been studied extensively; we refer the reader to Blondel’s

summary [6], which shows that general results in the time-varying case can be extracted from an

early result of Tsitsiklis [82]. Yet another focus of the consensus literature has been on prescribing

the dependence of the agreed-upon value on the initial conditions, or agreement-law design, see [61].

Finally, cursory studies of consensus under delay ( [29, 44–46]) and actuator saturation [51] are

available.

Noting that the ongoing research on consensus is progressing toward models of increasing gen-

erality (from first- [44–46,54,62] to second-order and integrator-chain internal dynamics [52,56,61],

and recently to general agents’ internal dynamics [32, 83–85]), we view the problem of construct-

ing consensus controllers for a network with a general network-topology model along with general

linear models for the agents’ dynamics as a key open problem. In pursuing this aim, here we

develop decentralized controllers for consensus in a network of identical agents which have gen-

eral multi-input LTI internal dynamics and rather general interaction topology. Importantly, our

design extends existing efforts in that in our development it permits consensus for a very broad

class of sensing/communication topologies (not only ones specified by Laplacian matrices). Also,

we show how the agreement law can be assigned while achieving consensus. To solve the consensus

problem for general multi-input LTI agents, we apply a high-gain controller design methodology.

This methodology provides a general approach to solving the consensus problem, and so in essence

shows how the simultaneous-stabilization condition of Chua can be met when feedback control for

the agents is permitted.

The remainder of the chapter is organized as follows. In section 2.2, we model in detail the agent

internal dynamics, sensing/communication topology, controller architecture, and the consensus

task considered in our development. In doing so, we also describe the sense in which our model

12



generalizes and encompasses those in the literature. In section 2.3, we give network and agent

theoretic conditions for completion of the consensus tasks using the described controller architecture

for time invariant topology. In doing so, we draw extensively on the classical time-scale-based design

of control systems, which permits us to study consensus in the broad class of network models

introduced here. In section 2.4, we give network and agent theoretic conditions for completion of

the consensus task problem with varying topologies.

2.2 Problem Formulation

In this section, we introduce a general model for networked autonomous agents (Section 2.2.1),

for which we seek consensus control. We then comprehensively introduce the consensus control

problem, and present a controller architecture for achieving consensus (Section 2.2.2).

2.2.1 A Model for Networked Autonomous Agents

We study a network of identical agents with general linear time-invariant (LTI) internal dynam-

ics, that interact through an arbitrary linear observation topology. The autonomous agent network

model that we introduce encompasses and generalizes many of the models considered in the con-

sensus literature and more generally the autonomous-agent control literature (with respect to both

the agents’ internal dynamics and their interactions). Of particular interest, it encompasses models

for both distributed computational processes in networks (such as those used in sensor network-

ing applications, see e.g. [44–46,60]) and networks with mechanical or electromechanical hardware

(such as autonomous-vehicle teams [51,54,56,61]).

Here, let us describe the agents’ internal dynamics, their networked observations, and the

framework for control in the model. Subsequently, for convenience, we also assemble the agents’
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dynamics into a single state-space representation, and introduce some terminologies regarding the

network model’s dynamics.

2.2.1.1 The Agent Model

We consider a network of N identical multiple input linear time-invariant (LTI) agents of the

form

˙̂xi = Âx̂i + B̂ûi,

for i ∈ {1, . . . , N}, where xi ∈ Rn is agent i’s local state, and ûi ∈ Rm is agent i’s local input. For

ease of presentation, let us assume that the matrix B̂ has full column rank, and the pair (Â, B̂) is

controllable.

2.2.1.2 Network Interactions

In many application areas, the fundamental challenge in achieving consensus among autonomous

agents stems from the decentralization of the agents’ observations, that is, from the fact that each

agent only has partial and complex information about the local states in the network. To permit

consensus control for a broad family of applications, we thus consider a quite-general model for the

observations made by the agents.

In particular, we consider the rather general case that each agent observes a linear combination

of multiple agents’ local states. That is, we assume that each agent i makes the observation

ŷi =

N∑
j=1

gij x̂j , (2.1)

where we term ŷi ∈ Rn as the agent i’s observation and term the scalars gij as observation weights.

Noting that the observation weight gij represents the influence (through sensing or networked

communication) of each agent j’s state on agent i’s observation, we find it natural to assemble the
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weights into an N × N topology matrix G = [gij ]. We note that the topology matrix G entirely

describes the observation model of the agents. In the literature, the topology matrix is often

assumed to be a Laplacian matrix, which has properties that signs of nonzero off-diagonal entries

are identical and the sum of the entries on each row is equal to zero. In this case, each observation

can be interpreted as a positive combination of relative differences between the local agent’s state

and each neighbor’s state. Here, we allow observations that are arbitrary combinations of multiple

agents’ states, and so can capture measurement capabilities (including e.g. of absolute and relative

states, averages of multiple agents’ states, differences between relative-state measurements, etc).

We will consider both the general case where the topology matrix can have arbitrary row sums,

and the special case that the topology matrix has zero row sums. Even in the zero-row-sum case,

we note that the sign pattern of the topology matrix’s entries may be arbitrary, in distinction with

the directed-Laplacian case. Using this more general formulation, we will clarify that consensus

can be achieved for a wide family of observation capabilities, including those captured by certain

broad classes of matrices such as D-stable ones.

Variations in network’s observation topology are ubiquitous in a range of autonomous agent

applications, because of the harsh environments in which the agents operate or because of limita-

tions in the agents’ sensing/communication capabilities, among other causes. Numerous articles

have studied autonomous agent control and/or synchronization under topological variation, using

both deterministic and stochastic models for the variation. Here, we also study consensus control

under topological variation, using a classical deterministic model for the variation. In particular,

we consider the case where each agent i makes the observation

ŷi =

N∑
j=1

gij(t)x̂j

at time t, where the time-t topology matrix G(t) = [gij(t)] is selected from the a finite set of N ×N
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matrices G1, . . . , Gz (i.e., G(t) ∈ G1, . . . , Gz at all times t). For convenience, we also impose the

technical condition that G(t) is right-continuous. Thus, we notice that there exists a (either finite or

infinite) sequence of times such that, between any two subsequent times (and including the earlier

one), the time-t topology matrix is a constant matrix Gi, i ∈ {1, . . . , z}.

2.2.1.3 Framework for Control

A decentralized feedback control paradigm is required, that is, agent i only has the observation

ŷi available and can only set the input ûi. In the broadest sense, we assume that agent i determines

its input ûi(t) at time t from concurrent and past observations: ŷi(τ), 0 ≤ τ ≤ t. That is, the agent

i’s controller constitutes a functional mapping from the signal ŷi(τ), τ ∈ [0, t], to the vector ûi(t).

In achieving consensus, we will consider the family of static (memoryless) linear controllers. We

will describe this specific controller architecture once we have introduced the agreement problem.

2.2.1.4 Assembled Dynamics and Terminology

We find it convenient to assemble the agents’ individual dynamics and observations into a single

state-space equation. To this end, we define the full state vector as x̂ = [x̂T
1 , . . . , x̂

T
N ]T, the full input

vector as û = [ûT
1 , . . . , û

T
N ]T, and the full observation vector as ŷ = [ŷT

1 , . . . , ŷ
T
N ]T. In terms of these

quantities, we obtain the following representation of the dynamics when the sensing topology is

fixed:

˙̂x = (IN ⊗ Â)x̂+ (IN ⊗ B̂)û, (2.2a)

ŷ = (G⊗ In)x̂, (2.2b)

where the notation ‘⊗’ represents the Kronecker product. We refer to whole model—the dynamics

(2.2) together with the decentralized feedback control paradigm—as a sensing-agent network, or
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SAN.

In the case where the topology may vary, the dynamics of the networks are as follows:

˙̂x = (IN ⊗ Â)x̂+ (IN ⊗ B̂)û, (2.3a)

ŷ = (G(t)⊗ In)x̂, (2.3b)

where the characteristics of the evolving topology matrix G(t) were described above. We refer to

the model in this as a sensing-agent network with topological variation, or SAN-VT.

2.2.2 The Consensus Control Problem and Static LTI Feedback Architecture

2.2.2.1 The Consensus Control Problem

At its essence, consensus control has to do with feedback design to achieve synchronization

among networked agents. That is, we seek controllers for the SAN that make the manifold in which

all the agents’ states are identical asymptotically stable. Beyond this fundamental goal, consensus

control applications sometimes require more refined shaping of dynamics (for instance, designing

the trajectory on the asymptotically stable manifold). Here, let us introduce the core consensus

task, and then discuss the design of the trajectory on the asymptotically stable manifold.

Since consensus has to do with asymptotic stability of the manifold where all the agents’ states

are identical, it is convenient for us to define relative state vectors that are nil when the agents’ states

are identical. Formally, let us define the relative state vectors as q̂i = x̂i− x̂N , for i ∈ {1, . . . , N−1}

(where we have chosen to measure the states relative to x̂N for notational simplicity). Now that

we have defined the relative state vectors, we are ready to formally define the consensus task:

Definition 2.1. An SAN is said to achieve consensus, if its feedback controller has been designed

so that the manifold q̂1 = . . . = q̂N−1 = 0 is asymptotically stable.
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Let us make several comments on the definition for consensus:

1) Consensus controls are needed in a variety of application areas, ranging from satellite antenna

alignment to vehicle-group formation and sensor fusion, see [44, 61, 102] for just some of the

relevant literature.

2) Conceptually, an SAN essentially achieves consensus if the local states of the agents reach

the same value or the same trajectory, or in other words agree. Formally, however, we note

that consensus is a stronger condition in that we require not only attractivity to the manifold

where the local states are identical, but stability in the sense of Lyapunov of this manifold;

this stronger definition is natural in feedback controller design, and matches with the existing

literature on consensus. We kindly ask the reader to see the broad literature on nonlinear

control for a careful deconstruction of the difference between attractivity and stability. For

the linear dynamics that we study here, the notions are identical.

3) Asymptotic stability of the state x̂(t) (with the origin as the equilibrium point) is sufficient

for consensus. However, consensus is possible even when stability is not: only equalization of

the various agents’ states is needed. In fact, our definition does not enforce any condition on

the dynamics on the manifold where the states are equal; the dynamics on the manifold may

depend on the initial conditions in an arbitrary way, and may be time-varying. Thus, our

definition encompasses both the concepts of consensus and tracking-consensus introduced in

the literature [44–46,51,52,54,56,60].

In contrast to the traditional studies of synchronization, we explicitly allow for controller design

in seeking consensus in SANs. This design freedom can potentially allow not only for stabilization

of the manifold of interest, but shaping of the trajectory on the manifold. Motivated by numerous
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applications (in particular, computational applications such as sensor fusion ones), we are especially

interested in shaping the dependence of the asymptotic dynamics on its initial conditions. This task

of shaping the dependence of the asymptotic dynamics on the initial conditions has been termed

agreement law design, see the initial work of Olfati-Saber and co-workers [44–46] as well as the

systematic treatment in our earlier work [60]. Here, let us formalize the notion of an agreement

law (and of agreement law design) for SANs.

Definition 2.2. Consider an SAN that achieves consensus upon use of a particular feedback con-

troller. Now consider a functional mapping from the initial states of the agents and time to an

n-component vector, say f(x̂1(0), . . . , x̂N (0), t). This function is said to be the agreement law of the

SAN (upon use of the particular controller), if

lim
t→∞

(x̂i(t)− f(x̂1(0), . . . , x̂N (0), t)) = 0, ∀i ∈ {1, . . . , N} .

We note that, when an SAN achieves consensus using a particular controller, it has a unique

agreement law. We will be interested in characterizing and designing the agreement laws of SANs

that achieve consensus.

Finally, let us discuss the controller architecture that we propose for achieving consensus.

2.2.2.2 Static LTI Control Architecture

Our goal is to design a controller for an SAN, so as to achieve consensus and (additionally)

set the agreement law. Classical research on state feedback controller design, together with our

recent efforts on stabilization through decentralized control [89–91], suggest that a linear static

controller design should permit consensus under broad conditions on the network topology. Thus,

we focus in this chapter on a linear static (memoryless) feedback control architecture. We note that

observer-type dynamical controller and non-linear control architecture have also been considered,
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see [3, 32]. In particular, we consider applying the controller ûi = K̂iŷi, where K̂i ∈ Rm×n, for

each agent i ∈ {1, . . . , N}. We will study how the gain matrices K̂i can be designed, to achieve

consensus and shape the agreement law.

We find it convenient to assemble the control laws for each agent into a single relation. Doing

so, we find that û = K̂ŷ, where K̂ = blkdiag(K̂1, . . . , K̂N ).

We notice that the control architecture that we consider is fundamentally a decentralized ar-

chitecture, in that each agent can only use its own observation and govern local actuator’s input.

2.3 Constructing Controllers for Consensus

In this section, we develop broad conditions under which the SAN achieves consensus, in the

process explicitly specifying the static decentralized controllers that can achieve consensus. Our

efforts here significantly enhance existing research on consensus control, in that 1) consensus is

achieved for general agent internal dynamics, 2) a systematic high-gain methodology for designing

consensus control is obtained, and 3) connections to ongoing research on synchronization and

dynamical-network control/design are made explicitly.

Let us first present a key implicit condition on the network topology under which consensus can

be achieved for an SAN, where the proof allows construction of the high-gain consensus controller.

After doing so, we will show that this condition encompasses a very broad range of network topolo-

gies, including not only the Laplacian topology matrices commonly considered in the literature but

a wide family of asymmetric topology matrices.

Theorem 2.1. Consider an SAN with topology matrix G. A static LTI decentralized controller

can be designed for the SAN to achieve consensus, if there exists a diagonal matrix D such that

either 1) all the eigenvalues of DG are in the open left-half complex plane; or 2) all the eigenvalues
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of DG are in the closed left-half complex plane, and the only eigenvalue on the jω-axis is at the

origin, with the corresponding right eigenvector 1.

Proof. We prove this theorem by first transforming the (identical) agent’s open-loop system dynam-

ics into a special form, which facilitates the design of a high-gain controller and the use of time-scale

ideas to achieve consensus. For case 1) of the theorem, we use a time-scale design technique [26,67]

to show that we can place the closed-loop eigenvalues in the open left-half complex plane, thus

proving that consensus is achieved. For case 2) of the theorem, we consider the dynamics of the

relative state, and then the time-scale analysis tells us that we can place the eigenvalues of the

relative state’s closed-loop system matrix in the open left-half complex plane. Thus, we prove that

consensus is also achieved.

From [64], we know that for any controllable pair (Â, B̂), there exist non-singular state transfor-

mation Ts and input transformation Ti, such that xi = Tsx̂i, ui = Tiûi, xi = [xT
i,1, . . . , x

T
i,m]T ∈ Rn,

xi,j = [xi,j,1, xi,j,2, . . . , xi,j,lj ]
T ∈ Rlj , and ui = [ui,1, ui,2, . . . , ui,m]T ∈ Rm satisfy

ẋi,j = Ajxi,j +Bj

ui,j +
m∑

l=1,l 6=j
Ej,lxi,l

 , j = 1, 2, . . . ,m,

where matrices Aj ∈ Rlj×lj , Bj ∈ Rlj×1 have the following special structures:

Aj =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
...

. . .
. . .

. . . 0

0 . . . . . .
. . . 1 0

0 . . . . . . . . . 0 1

Ej,j,1 Ej,j,2 . . . . . . Ej,j,lj−1 Ej,j,lj



, Bj =



0

0

...

...

0

1



,
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and

Ej,l =

[
Ej,l,1 Ej,l,2 . . . Ej,l,ll

]
.

We note that the state transformation Ts and input transformation Ti transform each agent’s

model into m integrator chains, with the length of the j-th chain being lj . The triple subindex

xi,j,lj denotes the state variable of the i-th agent, j-th chain and lj-th level. The chains for each

agent are coupled only at the bottom layer, and the input signal ui,j is injected into the bottom

layer of each integrator chain.

Now let us consider the design of feedback controller architecture. The controller in the new

coordinates for agent i can be expressed as

ui = Ki

N∑
j=1

gi,jxj ,

where Ki = TiK̂iT
−1
s ∈ Rm×n. Here we design a high-gain controller Ki of the following form:

Ki =


β1,1
ε1

. . .
β1,l1
ε1

. . .

βm,1

εm
. . .

βm,lm
εm

 di,

where εj is sufficiently small and di ∈ R is a scalar. We limit ourselves to the case where Ki

is block diagonal so that the scalar input ui,j of j-th chain of the agent i, only feeds back the

state information of its local chain. Also, the gain matrix Ki for different agents only differs by a

scalar factor di. We find it convenient to assemble the agents’ individual states and inputs into a

single-space equation. By defining the full state vector as x = [xT
1 , . . . , x

T
N ]T, the full input vector

as u = [uT
1 , . . . , u

T
N ]T, and introducing a diagonal matrix D = diag(d1, . . . , dN ), we express the
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feedback law for the SAN as

u =

DG⊗

β1,1
ε1

. . .
β1,l1
ε1

. . .

βm,1

εm
. . .

βm,lm
εm



x.

Now, let us consider case 1), where all the eigenvalues of DG are in the open left-half complex

plane. We will use the time-scale technique to show that the high-gain controller can stabilize the

SAN and hence consensus is achieved. First, let us assemble the last state variable of each chain

of all agents’ into a vector η ∈ RNm,

η =

[
x1,1,l1 , x1,2,l2 , . . . , x1,m,lm , . . . , . . . , xN,1,l1 , xN,2,l2 , . . . , xN,m,lm

]T
,

and the rest of state variables into another vector ζ ∈ RN(n−m),

ζ =

[
x1,1,1, . . . , x1,1,l1−1, . . . , x1,m,1, . . . , x1,m,lm−1, . . . , xN,1,1, . . . , xN,m,lm−1

]T
.

With some algebra, we express the closed-loop system dynamics separated in the slow and fast

time scales as

ζ̇ = (IN ⊗R)ζ + (IN ⊗ S)η,

η̇ =

DG⊗

β1,1
ε1

. . .
β1,l1−1

ε1

. . .

βm,1

εm
. . .

βm,lm−1

εm

+ IN ⊗ P

 ζ

+

DG⊗

β1,l1
ε1

. . .

βm,lm
εm

+ IN ⊗Q

 η,

where

R = blkdiag(R1, . . . , Rm) ∈ R(n−m)×(n−m), S = blkdiag(S1, . . . , Sm) ∈ R(n−m)×m,
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Rj =

0(lj−2)×1 Ilj−2

0 01×(lj−2)

 ∈ R(lj−1)×(lj−1), Sj =

0(lj−2)×1

1

 ∈ R(lj−1)×1,

P =


E1,1,1 . . . E1,1,l1−1 . . . E1,m,1 . . . E1,m,lm−1

...
...

...
...

...
...

...

Em,1,1 . . . Em,1,l1−1 . . . Em,m,1 . . . Em,m,lm−1

 , Q =


E1,1,l1 . . . E1,m,lm

...
...

...

Em,1,l1 . . . Em,m,lm

 .

Since εj for j = 1, . . . ,m are sufficiently small and DG is nonsingular, the time-scale methodology

[26] shows that the Nm fast eigenvalues can be divided into m groups, and for each group j =

1, . . . ,m, the eigenvalues are located at

λfj =
βj,lj
εj

λ(DG) +O(1).

Since the eigenvalues ofDG are in the open left-half complex plane, we can choose all the parameters

β1,l1 , . . . , βm,lm to be positive to ensure that the fast eigenvalues are in the open left-half complex

plane.

Now, let’s consider the N(n −m) slow eigenvalues. From [26], since εj are sufficiently small,

we know that the slow eigenvalues are the eigenvalues of matrix A0 shown below plus some small

perturbation.
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A0 = IN ⊗R− (IN ⊗ S)

DG⊗

β1,l1
ε1

. . .

βm,lm
εm





−1

×

DG⊗

β1,1
ε1

. . .
β1,l1−1

ε1

. . .

βm,1

εm
. . .

βm,lm−1

εm





= IN ⊗R− (IN ⊗ S)

(DG)−1 ⊗


ε1
β1,l1

. . .

εm
βm,lm





×

DG⊗

β1,1
ε1

. . .
β1,l1−1

ε1

. . .

βm,1

εm
. . .

βm,lm−1

εm





= IN ⊗R− (IN ⊗ S)

IN ⊗

β1,1
β1,l1

. . .
β1,l1−1

β1,l1

. . .

βm,1

βm,lm
. . .

βm,lm−1

βm,lm





= IN ⊗


A0,1

. . .

A0,m

 ,
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where the matrix A0,j ∈ R(lj−1)×(lj−1) for j = 1, . . . ,m has the following special structure:

A0,j =



0 1 0 . . . 0

...
. . . 1

. . . 0

...
. . .

. . .
. . . 0

0 . . . . . . 0 1

− βj,1
βj,lj

. . . . . . −
βj,lj−2

βj,lj
−
βj,lj−1

βj,lj


.

Therefore, the slow eigenvalues can be placed arbitrarily close to n−m locations, and there are N

eigenvalues at each location. For each j = 1, . . . ,m, we can choose βj,1, . . . , βj,lj−1 such that the

slow eigenvalues

λsj = λ(A0,j) +O(εj)

are in the open left-half complex plane. Since all the eigenvalues of the closed-loop system are in

the open left-half complex plane. We have proved that the consensus is achieved for the SAN.

Now, let us consider case 2) of the theorem. To begin, we find it convenient to give the closed-

loop dynamics:

ẋ =

IN ⊗A+DG⊗


F1

. . .

Fm



x, (2.4)

where matrix A ∈ Rn×n is the system matrix of the (identical) local agent

A =



A1 B1E1,2 . . . B1E1,m

B2E2,1 A2 . . . B2E2,m

...
...

. . .
...

BmEm,1 BmEm,2 . . . Am


,

26



and

Fj =



0 . . . 0

...
. . .

...

0 . . . 0

βj,1
εj

. . .
βj,lj
εj


∈ Rlj×lj .

Next, let us study the dynamics of relative state vectors for the system. Specifically, let us define a

transformed relative state vector qi = xi − xN , for i = 1, . . . , N − 1 (where, incidentally, qi can be

obtained from q̂i, see Definition 2.1 from Section 2.1, through the same transformation Ts). To do

so, we find it convenient to assemble all the transformed relative state vectors into a single global

relative vector q = [qT1 , . . . , q
T
N−1]T. Through a state transformation of (2.4), we find that the global

relative vector satisfies an autonomous differential equation (see e.g. [46, 98] for similar analysis).

In particular, with some algebra similar to that of [12,98,100], we can express the dynamics of the

global relative vectors as

q̇ =

IN−1 ⊗A+DG⊗


F1

. . .

Fm



 q, (2.5)

where DG is formed by removing the last row and column from DG−DN1gT
N , and gT

N is the last

row of G. Equivalently, DG can be viewed as being formed by subtracting the last row of DG

from all other rows, and then removing the last row and column. It is easy to see that DG has

N − 1 eigenvalues, which are the non-zero eigenvalues of DG. Thus all the eigenvalues of DG are

in the open left-half complex plane, and we automatically see that the problem of stabilizing the

relative state dynamics is identical to the stabilization of the state dynamics achieved for case 1).

Specifically using a high-gain controller, we can place all (N − 1)n eigenvalues of the state matrix

of dynamics (2.5) in the open left-half complex plane. Hence, the manifold where the agents’ states
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are identical is made asymptotically stable. We have proved the consensus is achieved for the

SAN.

Let us make a couple remarks about the implicit condition for consensus:

• We note that the first case of Theorem 2.1 is a condition for stabilization of the dynamics,

since in this case the invariant manifold comprises only the origin.

• The proof of Theorem 2.1 provides a high-gain methodology for achieving consensus, under

the condition that a diagonal D can be found to place the eigenvalues of DG either in the open

left-half complex plane or in the closed left-half complex plane with a single zero eigenvalue

on the jω-axis and corresponding eigenvector 1. We stress that this time-scale assignment (or

high gain) approach is in analogy with the classical designs used for centralized plants, and

is needed for agents with general models (rather than only integrator-chain dynamics); this

need for a time-scale assignment design becomes clear from certain classical representations

of linear systems, such as the Brunovsky canonical form and the special coordinate basis

(e.g., [67]). We also stress that the time-scale assignment design (like all controller designs)

must be tuned/refined with several performance metrics in mind, including disturbance- and

noise- response metrics and robustness measures. In this first effort, we focus solely on shaping

the network’s internal dynamics, and leave further refinement of the design to future work.

• We note that our design methodology for case 1) of Theorem 2.1, allows us to place N(n −

m) eigenvalues arbitrarily close to n − m locations in the complex plane, in groups of N .

Meanwhile, the remaining Nm eigenvalues are within O(1) of the eigenvalues of
βj,lj
εj
DG.

• A simple eigen-analysis for case 2) of Theorem 2.1, where DG has one zero eigenvalue, shows

that the state matrix of the closed-loop system (2.4) has n eigenvalues that are exactly the
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same as those of local agents’ open-loop system matrix A. This remark will be useful for

agreement law design.

• The consensus control problem has been considered in [32, 83, 85] for identical but general

open-loop dynamics, for the case where the poles of the open-loop system are all in the

closed left-half complex plane. In our development, since we allow arbitrary dynamics on the

consensus manifold (including possibly unstable dynamics), we do not constrain the location

of the open-loop poles.

• With just a little effort, Theorem 2.1 can be extended to the case that the pair (Â, B̂) is

stabilizable (rather than controllable). We exclude the details.

The condition and controller construction given in Theorem 2.1 makes it clear that consensus

can be achieved, whenever a diagonal scaling D can be found to place the eigenvalues of DG in

a single half plane. The problem of finding a diagonal D to shape the spectrum of DG has been

explored in both the classical numerical-methods and control literature [13,61], as well as in recent

works on dynamical network control [59,88]. Let us therefore recall a useful result from Fisher and

Fuller’s paper [13].

Lemma 2.1. There exists a diagonal matrix D such that the eigenvalues of DG are all in the

open left-half complex plane (or, alternatively, in the open right-half complex plane) if there exists

a permutation matrix P1 such that all the leading principal minors of P1GP
−1
1 are nonzero.

Based on Lemma 2.1 given in [13], we can obtain a broad explicit condition on the network

topology matrix G for an SAN to achieve consensus. This condition encompasses those given in

the literature. Here is the result:
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Theorem 2.2. Consider an SAN with topology matrix G. A static decentralized controller can be

designed for the SAN to achieve consensus, if either 1) G has a nested sequence of N principal

minors (of dimensions 1 × 1, 2 × 2, . . . , N × N) all of full rank or 2) G has a nested sequence of

N − 1 principal minors (of dimensions 1× 1, 2× 2, . . . , N − 1×N − 1) of full rank and further the

vector 1 is in the null space of G.

Proof. Let us consider case 1) of the theorem. In the case that G has a nested sequence of N

principal minors all of full rank, the papers [13] and [61] give a systematic method for constructing

a diagonal matrix D, such that all the eigenvalues of DG are in the open left-half complex plane.

Hence, the result follows from case 1) of Theorem 2.1.

For case 2) of the theorem, we can design a diagonal matrix D such that N − 1 eigenvalues of

DG are in the open left-half complex plane. Also the vector 1 is in the null space of DG, since

the vector 1 is in the null space of G. Thus another eigenvalue of matrix DG is zero and the

corresponding right eigenvector is 1. Hence, the result follows from case 2) of Theorem 2.1.

Notice that the first condition of Theorem 2.2, that is, the sequential-full-rank condition, is in

fact satisfied for a broad class of matrices, including grounded Laplacian ones and more generally

diagonally-dominant matrices. The second condition of Theorem 2.2 encompasses a broad class of

matrices, including Laplacian matrices of connected undirected graph, or a digraph which contains a

directed spanning tree, as well as a class of matrices known as D-semistable matrices with additional

property that the matrix has no eigenvalues on the jω-axis other than the single eigenvalue at the

origin with the corresponding right eigenvector 1. For the definition of D-semistability, please

see [19,61]. Since this notion is not very widely used, let us recall that D-semistability is defined as

follows: a matrix G is said to be D-semistable if the eigenvalues of the matrix DG are in the closed

left half plane and the eigenvalues of DG on the jω-axis are simple, for all positive diagonal matrix
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D. This broad class includes a wide family of matrices with more general entry sign pattern than

the Laplacian matrix, and hence admits consensus control for a wider set of observation capabilities.

We have constructed a high-gain controller for identical but general agents’ internal dynamics

to achieve consensus. In many cases, the agreement law – the dependence of the consensus value or

trajectory on the initial conditions – is of importance. Let us characterize the agreement law, when

a particular controller is used under the conditions of Theorem 2.2. We will do so by characterizing

the dynamics on the consensus manifold through eigen-analysis.

In case 1) of Theorem 2.2, we see automatically that agreement law is f(x1(0), . . . , xN (0), t) = 0,

that is, the final state is nil for all initial conditions.

Now, let us consider case 2) of Theorem 2.2. Without loss of generality, assume that the local

agent’s system matrix A has k ≤ n distinct eigenvalues, λ1, . . . , λk, each with algebraic multiplicity

pi, where i = 1, . . . , k. Using the Jordan form representation, we find that

A = V JV −1,

where the Jordan canonical form of A is J = blkdiag(J1, J2, . . . , Jk), and each Jordan Block Ji can

be subpartitioned as

Ji = blkdiag(Ji,1, Ji,2, . . . , Ji,pi),

where each nij × nij subblock Ji,j is of the form below:

Ji,j =



λi 1 0 . . . 0

0 λi 1
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 λi 1

0 . . . . . . 0 λi


.
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V = [V1, V2, . . . , Vk] is the matrix whose columns are right eigenvectors and generalized right eigen-

vectors of A, the rows of V −1 are left eigenvectors and generalized left eigenvectors of A, the

partitioning of V and V −1 matches that of J , blkdiag( ) represents a block diagonal matrix with

entries specifying the blocks.

Let ωT be the normalized left eigenvector of G associated with the zero eigenvalue. From the

proof of Theorem 2.2, we know that DG has all except a single zero eigenvalue in the open left-half

complex plane, the right eigenvector of DG associated with zero eigenvalue is 1, and the normalized

left eigenvector associated with the zero eigenvalue is ωT
0 = (1/ωTD−11)ωTD−1, where we have

assumed that an invertible D is being used. For i = 1, . . . , k and j = 1, . . . , pi, let us denote

the j-th right eigenvector of A associated with λi as vi,j,1, and the associated generalized right

eigenvectors as vi,j,2, . . . , vi,j,nij . Similarly, let us denote the j-th left eigenvector of A associated

with λi as ωT
i,j,1, and the associated generalized left eigenvectors as ωT

i,j,2, . . . , ω
T
i,j,nij

.

With just a little algebra, we find that the closed-loop system matrix (3.7) has an eigenvalue

λi, i = 1, . . . , k with algebraic multiplicity pi. Further, the j-th left eigenvector associated with λi

is ωT
0 ⊗ ωT

i,j,1, and the corresponding generalized left eigenvectors are ωT
0 ⊗ ωT

i,j,2, . . . , ω
T
0 ⊗ ωT

i,j,nij
.

Similarly, the j-th right eigenvector associated with λi is 1⊗vi,j,1, and the corresponding generalized

right eigenvectors are 1⊗ vi,j,1, . . . ,1⊗ vi,j,nij .

Without loss of generality, let us assume that the first k1 ≤ k ≤ n eigenvalues of the local agent

system matrix A, λ1, . . . , λk1 are in the closed right-half complex plane. From the analysis in the

proof of Theorem 2.1, we immediately find that

lim
t→∞

(
x(t)−

k1∑
i=1

(1⊗ Vi)eJit(ωT
0 ⊗WT

i )x(0)

)
= 0,

where for i = 1, . . . , k1 and j = 1, . . . , pi,

eJit = blkdiag(eJi,1t, eJi,2t, . . . , eJi,pi t),
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eJi,jt = eλit



1 t . . . . . . tnij−1

(nij−1)!

0 1 t
. . . tnij−2

(nij−2)!

...
. . .

. . .
. . .

. . .

... . . .
. . . 1 t

0 . . . . . . 0 1


,

Vi =

[
Vi,1 . . . Vi,pi

]
, Vi,j =

[
vi,j,1 . . . vi,j,nij

]
,

WT
i =


WT
i,1

...

WT
i,pi

 , and WT
i,j =



ωT
i,j,nij

ωT
i,j,nij−1

...

ωT
i,j,1


.

Hence, for ` = 1, . . . , N :

lim
t→∞

(
x`(t)−

k1∑
i=1

Vie
Jit(ωT

0 ⊗WT
i )x(0)

)
= 0.

Hence, the agreement law of the SAN (upon use of a particular high-gain controller with matrix

D) is

f(x1(0), . . . , xN (0), t) =
1

ωTD−11

k1∑
i=1

Vie
Jit
(
(ωTD−1)⊗WT

i

)
x(0).

When DG has a zero eigenvalue, we thus see that the asymptotic trajectory depends on the initial

conditions of all the agents. Notice that the agreement law - the dependence of the asymptotic

dynamics on initial conditions - in general is a time varying function, which depends on the closed

right-half complex plane modes of the agent’s internal dynamics; thus, tracking in consensus is also

possible.

By selecting D, we see that the agreement law can be designed. In [60], Roy and co-workers

studied selection of D so that a desired agreement law is achieved while the eigenvalues of DG
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are left in the closed left-half complex plane. We can apply these results to achieve agreement

assignment in the general case studied here.

2.4 Consensus Controller Design under Topological Variation

In this section, we will consider controller design for consensus in the SAN-VT, that is, for

a sensing-agent network model that is subject to variations in the observation topology. Such

controller design for consensus under topological variation is relevant in several application domains,

including for control of autonomous vehicle teams and sensor networks (which both tend to operate

in harsh environments with limited actuation/power, and so maybe routinely subject to sensing

failures and other topological variations). Our work on controller design under topological variation

is complementary to numerous studies on modeling and analyzing synchronization/consensus under

topological variation, see e.g. Blondel and co-workers’ recent article for a succinct overview [6]. We

also note the connection of our work to several recent works on design of network controllers under

arbitrary and stochastic topological variation [58]; in comparison, the results presented here permit

design for much more general agent models and a broad class of network topologies.

In our efforts to design controllers for the SAN-VT, we distinguish between two paradigms

regarding information dissemination on the topology changes. The first case is that the controller

can detect when the network topology changes, and so (formally) the controller has available the

index of the topology at the current time; in this case, (switching) gain parameters that depend

on the index of the current topology can be used. The second is that current network topology is

unknown to the controller, and so a single set of gain parameters is used.

Here, we develop conditions under which the SAN-VT achieves consensus, for both information

paradigms. As in our earlier development, we separately consider the case where the stable manifold
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is only the origin (i.e., all agents’ states converge to the origin) and the case of a more general

consensus manifold.

Let us consider the paradigm that the current topology is known to the controller, and present

two conditions under which consensus can be achieved. Here is the first:

Theorem 2.3. Consider an SAN-VT, and assume that the controller has available the index of the

current topology at each instant. A linear decentralized controller that switches with the network

topology can be designed for the SAN-VT to achieve consensus, if the following two assumptions

hold:

(1) Assumption 1: At least one of the possible topologies Gi, i = 1, . . . , z has a nested sequence of

N principal minors that all have full rank.

(2) Assumption 2: Time epochs during which no topology satisfies the premise of Assumption 1 are

upper bounded in duration (say by T1), while time epochs during which any particular possible

topology Gi that satisfies Assumption 1 is in force are lower bounded by T2.

To prove Theorem 2.3, we first find it convenient to develop the following lemma regarding

controller design during a time interval when a particular topology (that is amenable to control) is

in force.

Lemma 2.2. Consider a particular topology Gi of an SAN-VT such that Assumption 1 of Theorem

2.3 is in force, i.e., Gi has a sequence of n nested principal minors all of full rank. Say that there

is an epoch T = [tA, tB) of duration greater than T2 such that G(t) = Gi for all t ∈ T . Then,

for any γ > 0, a controller can be designed for the SAN-VT so that ||x(t)|| ≤ 1
γ ||x(tA)|| for

all t ∈ [tA + T2, tB). Furthermore, for each such design, there exists γ1 and λ1 > 0 such that

||x(t)|| ≤ γ1e
−λ1(t−tA)||x(tA)|| for all t ∈ T .

35



Let us first prove the lemma:

Proof of Lemma 2.2. Consider application of a high-gain stabilizing controller for consensus, as

developed in Theorem 2.1, during the epoch [tA, tB). Notice that, since Gi has a sequence of

leading principal minors all of full rank, we will design the controller based on the first assumption

in Theorem 2.1. For any such controller, classical results on high-gain state feedback control clarify

that, for any sufficiently high gain, ||x(t)|| can be made less than 1
γ ||x(tA)|| for any γ and after

any fixed interval of time (while the model remains in force). Thus, we immediately recover that

a controller can be designed to achieve ||x(t)|| ≤ 1
γ ||x(tA)|| for all t ∈ [tA + T2, tB). Whatever

asymptotically-stabilizing high gain controller is used, the state x(t) is bounded in the interim

and the state approaches the origin exponentially (from properties of linear systems), and so the

theorem is proved.

We notice that reduction of the state’s norm to an arbitrary level within an interval is possible

for any stabilizing controller developed through Theorem 2.1, and is achieved for any sufficiently

high gain.

Let us now apply the lemma to prove Theorem 2.3.

Proof of Theorem 2.3. Let us label the sequence of switching times for the observation topology

as t0, t1, . . .. We consider applying a feedback control of the following form: during the intervals

[ti, ti+1] such that the corresponding topology matrix Gj satisfies the sequential full rank condition

(which we call the “good” intervals), we apply a stabilizing linear high-gain controller as per

Theorem 2.1. During the remaining intervals (which we call “bad” intervals), we set the feedback

control to nil. If the gains during the good intervals are chosen sufficiently large, we claim that

asymptotic stability and hence consensus is achieved.
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To formalize this, let us first consider ||x(t)|| at the end of each good interval; for convenience,

we label these times as t̂1, t̂2, . . ., and also label the initial time as t̂0 = t0. We will bound ||x(t̂i+1)||

with respect to ||x(t̂i)||, for i = 0, 1, 2, . . .. To do so, we note that, during the epoch [t̂i, t̂i+1) the

concluding good interval of interest (which has duration of at least T2) may be preceded by several

bad intervals with total duration of at most T1. Using exponential bounds on the transition matrix

norm during each bad interval and noting the bound on the total duration, we immediately can

bound ||x(t)|| before the beginning of the good interval (say t∗i ) as follows: ||x(t)|| ≤ µ||x(t̂i)|| for

t̂i ≤ t ≤ t∗i , for some µ > 0. Next, from Lemma 2.2, we see that the high-gain controller during the

concluding good interval can be selected so that ||x(t̂i+1)|| ≤ 1
γ ||x(t∗i )|| for any γ > 0. Choosing the

controller to achieve γ = 2µ, we immediately recover that ||x(t̂i+1)|| ≤ 1
2 ||x(t̂i)||. Thus, we see that

||x(t̂i)|| ≤ (1
2)i||x(t0)||.

Now let us consider ||x(t)|| for t ∈ [t̂i, t̂i+1). Noting the bound on the state during the bad

intervals and noting the exponential bound during the good intervals (from Lemma 2.2), we recover

that ||x(t)|| ≤ µγ1||x(t̂i)|| for some fixed γ1 > 0 (which for convenience we can take to be the largest

among those given by Lemma 2.2 for the topologies satisfying Assumption 1), for t̂i ≤ t < t̂i+1.

Thus, we automatically find that ||x(t)|| ≤ (1
2)iµγ1||x(t0)|| for t̂i ≤ t < t̂i+1.

Now consider two cases. The first case is that there is an infinite sequence of topologies, in

which case we obtain asymptotic stability directly from the expression ||x(t)|| ≤ (1
2)iµγ1||x(t0)||.

Alternately, if a (good) interval persists beyond a particular time t̃, we can directly invoke the

exponentially-decaying bound on the response upon stabilizing control together with boundedness

in the earlier time period to verify asymptotic stability.1

1Our proof here is for asymptotic stability rather than uniform asymptotic stability, as per the definition of

consensus. However, uniform asymptotic stability can also be proved here with a little more effort, by exploiting the

exponential decay of ||x(t)|| in long-duration “good” intervals.
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We note that Theorem 2.3 holds whether or not the open-loop agent plant has closed left-half

complex plane eigenvalues; in the case where it has open right-half complex plane or unstable

eigenvalues, stabilization is still possible because the state can be driven to the consensus manifold

at a faster rate during the good intervals than it escapes during the bad ones. In practice, various

constraints may limit that capability to rapidly drive the state to the consensus manifold in short

periods, and so the result is most apt for the (typical) case of open-loop poles in the closed left-half

complex plane.

Theorem 2.3 is concerned with the case that the consensus manifold is only the origin. We also

seek to verify consensus for the more general case, i.e., in the case of a general consensus manifold.

Here is the result:

Theorem 2.4. Consider an SAN-VT, and assume that the controller has available the index of the

current topology at each instant. A linear decentralized controller that switches with the network

topology can be designed for the SAN-VT to achieve consensus, if the following two assumptions

hold:

(1) Assumption 1: At least one of the possible topologies Gi, i = 1, . . . , z, has a nested sequence of

N −1 principal minors of full rank and further the vector 1 is in the null space of that topology

matrix.

(2) Assumption 2: Time epochs during which no topology satisfies the premise of Assumption 1 are

upper bounded in duration (say by T1), while time epochs during which any particular possible

topology Gi that satisfies Assumption 1 is in force are lower bounded by T2.

Proof. Let us label the sequence of switching times for the observation topology as t0, t1, . . .. We

consider applying a feedback control of the following form: during the intervals [ti, ti+1] such that
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the corresponding topology matrix Gj satisfies the sequential full rank condition (which we call the

“good” intervals), we apply a linear high-gain controller that achieves consensus as per Theorem

2.1.

To show that such a controller achieves consensus, we progress as follows. We consider each

interval such that the network topology is fixed. In the proof of Theorem 2.1, we have shown that

the global relative vector q = [qT1 , . . . , q
T
N−1]T has the following dynamics:

q̇ =

IN−1 ⊗A+DG⊗


F1

. . .

Fm



 q, (2.6)

where DG can be viewed as being formed by subtracting the last row of DG from all other rows and

then removing the last row and column, and G is the particular Gi in force during that interval.

We see that DG has N − 1 eigenvalues, which are the non-zero eigenvalues of DG. We thus

automatically see that the stabilization of the relative state dynamics for the time varying topology

is identical to the stabilization of the state dynamics for time varying topology achieved in Theorem

2.3. That is, during the good intervals, we apply a linear high-gain controller as per Theorem 2.1.

During the remaining intervals (which we call “bad” intervals), we set the feedback control to nil.

Then, following the proof of Theorem 2.3, we see that the relative state is asymptotically stable

and hence the consensus manifold where all the agents’ states are identical is made asymptotically

stable for the time varying topology.

Now, let us consider the paradigm that current network topology is unknown to the controller,

and so a single set of gain parameters is used. To achieve stabilization/consensus in this case, we

seek for a single set of gain parameters that causes the state during each constant-topology interval

to either be exponentially decrescent at a fast rate or to be only slowly growing. We argue that such
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gains can be found if all the topology matrices Gi either fall in the broad class of D-stable matrices

or are nil. This model for the observation topology is a broadly applicable one, for instance in the

case that the network has one or more designed modes of operation and also may be subject to

global network failures.

Theorem 2.5. Consider an SAN-VT, and assume that the current network topology is unknown

to the controller. A linear time-invariant decentralized controller can be designed for the SAN-VT

to achieve consensus, if the following two assumptions hold:

(1) Assumption 1: At least one of the possible topology matrices Gi, i = 1, . . . , z, is D-stable, and

all topology matrices are either D-stable or the zero matrix.

(2) Assumption 2: Time epochs during which the topology remains the zero matrix are upper

bounded in duration (say by T1), while time epochs during which any particular possible topology

Gi that is D-stable is in force are lower bounded by T2.

Proof. Let us label the sequence of switching times for the observation topology as t0, t1, . . .. We

consider applying a time-invariant high-gain feedback control, and then show than the SAN-VT

can achieve consensus with this controller.

Let us consider the dynamics during the intervals [ti, ti+1] such that the corresponding topology

matrix Gj is D-stable (which we call the “good” intervals). For any particular good interval, all

the eigenvalues of DGi for an arbitrary positive definite matrix D, are in the open left-half complex

plane. Therefore, we can choose a single diagonal matrix D for all good intervals so as to place

the eigenvalues of the DGi in the open left-half complex plane. From Lemma 2.2, we notice that

reduction of the state’s norm to an arbitrary level within an interval is possible for any stabilizing

controller developed through Theorem 2.1, and is achieved for any sufficiently high gain. It is thus
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clear that an LTI controller can be designed that reduces that state by any desired fraction during

each good interval. Let us consider applying this controller.

During the remaining “bad” intervals (for which the topology matrices are zero matrices), the

closed-loop dynamics are entirely independent of the control used. Thus, we immediately recover

that the norm of the state at the ends of these intervals (which are also upper-bounded in duration)

can be bounded as a fixed multiple of the norm at the beginning. The remainder of the proof thus

follows as in Theorem 2.3.

Theorem 2.5 only develops the case that the consensus manifold is the origin. Next, we consider

the case of a more general consensus manifold. We find that the result is related to the notion of

D-semistablity [60].

Now, we are ready to present the result:

Theorem 2.6. Consider an SAN-VT, and assume that the current network topology is unknown

to the controller. A linear time-invariant decentralized controller can be designed for the SAN-VT

to achieve consensus, if the following two assumptions hold:

(1) Assumption 1: At least one of the possible topology matrices Gi, i = 1, . . . , z is D-semistable,

and all topology matrices are either D-semistable or the zero matrix. Furthermore, there exists

a single positive diagonal matrix D such that, for each Gi that is D-semistable, DGi has no

eigenvalue on the jω-axis other than the single eigenvalue at the origin, and the corresponding

right eigenvector is 1.

(2) Assumption 2: Time epochs during which the topology remains the zero matrix are upper

bounded in duration (say by T1), while time epochs during which any particular possible topology

Gi that is D-semistable is in force are lower bounded by T2 .
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Proof. The proof closely follows the proofs of Theorem 2.4 and Theorem 2.5, and so we omit the

details. Notice here Assumption 1 means that there must exists a diagonal matrix D for all possible

topologies Gi that satisfies D-semistable condition such that the condition is satisfied.

Let us make a couple remarks about our results:

• In general, it is hard to test whether a given matrix is D-stable or D-semistable. How-

ever, there are several important classes of matrices that are known to be D-stable or D-

semistable, and are representative of many common network interactions: these include

Laplacian, grounded Laplacian, diagonally-dominant, and symmetric positive-definite ma-

trices, among others. We strongly refer the reader to [60] for details.

• Regarding Theorem 2.4 and Theorem 2.6, we note that the network dynamics on the consensus

manifold may be quite complex, and may be persistently dependent on the particular sequence

of the underlying network topologies. We leave it to future work to pursue design of the

trajectory on the consensus manifold in this case.

• We note that Theorem 2.5 and Theorem 2.6 encompass the case without network failure,

i.e. the case that none of the topologies are zero matrices. In this case, of course the upper

bound on the duration of time epochs such that the network topology matrix is a zero matrix

may be ignored.

• We notice that our results (Theorem 2.5 and Theorem 2.6) are connected with results in

[6,45,46,54], however, we consider a broad network sensing model and local agent model. And

our results differ from those, in the sense that we design the controller to achieve consensus

rather than checking the stability of the existing algorithm.
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Chapter 3

Consensus for Networks of Identical

Agents

In Chapter 2, we have studied the consensus problem for network of general multiple-input linear

time-invariant (LTI) identical agents and quite general time-invariant (fixed) network topologies,

including the well-studied Laplacian topologies in the literature. The available information that

we use to design the decentralized controller comes from the network. More specifically, each

agent has access to a linear combination of multiple agents’ states. However, in certain cases, such

information is not available; instead, each agent has access to a linear combination of its own partial

state output relative to that of neighboring agents. Li, Duan, Chen, and Huang [32] designed an

observer-type protocol to solve consensus problem for such a case.

In this Chapter, we extend their result to the case that each agent has access to a linear combi-

nation of multiple agents’ partial state output. We consider three problems, namely, the consensus

problem, the model-reference consensus problem, and the regulation of consensus problem, for a

network of identical linear time-invariant (LTI) multiple-input and multiple-output (MIMO) agents.
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We propose a distributed LTI protocol to solve each problem for a broad class of time-invariant

network topologies including not only Laplacian topologies, but a wide family of asymmetric topolo-

gies.

3.1 Background and Introduction

The consensus literature can be categorized according to various types of network observation

models and internal models for each agent. Regarding the network observation model, the efforts

on consensus have focused on Laplacian topologies. Along this line, most work assume that the

relative state of the agent and its neighbors is available for each agent, see [44–46, 51, 52, 54]. A

more realistic scenario, that is, the relative output rather than the relative state is available, has

been considered in [32]. We refer the reader to [61, 62, 103] for a more general network model.

Also, consensus for networks with time-varying topologies has been studied extensively; we refer

the reader to Blondel’s summary [6], which shows that general results in the time-varying case can

be extracted from an early result of Tsitsiklis [82].

Regarding the internal model of each agent, the ongoing research is progressing toward increas-

ing complexity. For a network of identical LTI agents, the consensus problem has been solved for

first-order dynamics, [44–46,54,62], second-order dynamics [52,61], integrator-chain dynamics [56]

and general dynamics [32,83–85,103].

The consensus by itself does not impose any requirements on the consensus trajectory. In many

applications, the goal is to design a protocol such that the states of each agent asymptotically

approach an, a priori given, reference trajectory, generated by a reference model (virtual leader).

This is called the model-reference consensus problem in the literature and has been considered

in [56] for identical LTI agents with purely integrator dynamics and in [32] for identical LTI agents
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with general dynamics.

In this chapter, we extend the results given in [32] for the consensus problem and the model-

reference consensus problem to general time-invariant network topologies. We also consider the

regulation of the consensus problem, where the objective is to design a distributed protocol such

that the controlled output of each agent tracks the same trajectory, generated by an arbitrary

autonomous exosystem.

3.2 Preliminaries and Notations

Let us first give some notations which we use throughout the chapter. For a set of vectors

x1, . . . , xn, we denote by col(x1, . . . , xn) the column vector obtained by stacking the elements of

x1, . . . , xn. Rn×n and Cn×n represent the set of n × n real matrices and complex matrices, re-

spectively. A∗ denotes the conjugate transpose of the matrix A ∈ Cn×n. IN denotes the identity

matrix of dimension N × N ; we sometimes drop the subscript if the dimension is clear in the

context. Similarly, 0N represents the square matrix of dimension N ×N with all entries equal to

zero. 1 denotes the column vector with all entries equal to one. A matrix A ∈ Cn×n is Hurwitz

stable if all its eigenvalues have negative real parts. λ(A) is an eigenvalue of the matrix A ∈ Cn×n.

diag(a1, . . . , an) denotes the diagonal matrix with diagonal entries a1, . . . , an. In this chapter, we

use some known results on stabilizing a matrix by scaling. A useful result has been given in Fisher

and Fuller’s paper [13], which was quoted as Lemma 2.1 in Chapter 2. Recently, generalizations

of Lemma 2.1 were given in [57]. Also, note that the proofs of Lemma 2.1 given in [13] and the

generalizations of Lemma 2.1 given in [57] are constructive.
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3.3 Consensus Problem

In this section, we will consider the consensus problem for a network of multiple input multiple

output linear time-invariant (LTI) agents under time-invariant (fixed) network topology.

3.3.1 Problem Formulation

We consider a network of N identical linear time-invariant (LTI) multiple-input multiple-output

(MIMO) agents of the form

ẋi = Axi +Bui, (3.1a)

yi = Cxi, (3.1b)

for i ∈ { 1, . . . , N }, where xi ∈ Rn is agent i’s local state, ui ∈ Rm is agent i’s local input, and yi ∈ Rq

is agent i’s output. Our goal is to achieve (state) consensus among the agents asymptotically; that

is, to ensure that limt→∞ (xi(t)− xj(t)) = 0 for all i, j ∈ { 1, . . . , N }.

The available information comes from the network, which provides each agent with a linear

combination of multiple agents’ partial state outputs. In particular, agent i has access to the

quantity

ζi =

N∑
j=1

gijyj , (3.2)

where gij ∈ R are scalars, referred as observation weights. The observation weight gij represents

the influence (through sensing or networked communication) of agent j’s output on agent i’s obser-

vation. gij 6= 0 if and only if agent i can obtain information from agent j, and gij = 0 if and only

if agent i cannot obtain information from agent j. We find it natural to assemble the observation

weights into an N ×N network topology matrix G = [gij ].

We also assume that the agents can exchange the information about their protocols’ states using
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the network’s communication infrastructure. Specifically, agent i is presumed to have access to the

quantity

ζci =

N∑
j=1

gijηj , (3.3)

where ηj ∈ Rp is a variable produced by agent j as part of the consensus protocol. This variable

will be specified as we proceed with the protocol design.

3.3.1.1 Assumptions

We make the following assumptions about the network topology and the identical agent model.

Assumption 3.1. The matrix G has only one zero eigenvalue, with the right eigenvector 1.

Remark 3.1. If the matrix G is a Laplacian matrix corresponding to a digraph which contains a

directed spanning tree, then Assumption 3.1 is satisfied. However, Assumption 3.1 includes other

zero-row-sum matrices whose off-diagonal entries have arbitrary sign patterns.

Assumption 3.2. For the identical agent model (3.1),

1) the pair (A,B) is stabilizable; and

2) the pair (C,A) is detectable.

3.3.2 Protocol Design

In this section, we design a slightly different distributed observer-type protocol based on the

proposed protocol in [32] for solving the consensus problem for general network topologies.

For each agent i ∈ {1, . . . , N}, we construct the distributed observer-type protocol

˙̂xi = (A+BF )x̂i +Kdi(ζ
c
i − ζi), (3.4a)

ui = Fx̂i, (3.4b)
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where x̂i ∈ Rn is the state of the protocol of agent i, which is an estimate of the deviation of

the state xi from the consensus trajectory. The matrices F ∈ Rm×n, K ∈ Rn×q, and di ∈ R are

parameters to be designed shortly.

In the protocol (3.4), we have made use of the quantity ζci =
∑N

j=1 gijηj , which is presumed to be

available to agent i via the network, as described in Section 3.3.1. To complete the protocol design,

we must define the values ηi, i ∈ { 1, . . . , N }. We do this by setting ηi = Cx̂i for i ∈ {1, . . . , N}.

The following lemma gives a sufficient condition under which the consensus problem is solvable

with the distributed observer-type protocol of the form (3.4). Moreover, it also gives the consensus

trajectory – the dependence of the asymptotic dynamics on the initial conditions.

Lemma 3.1. Consider a homogeneous network of N agents of the form (3.1). Let Assumption 3.1

and condition 1) of Assumption 3.2 hold. Then the distributed observer-type protocol (3.4), where F

is chosen such that the matrix A+BF is Hurwitz stable, and matrices K and D = diag(d1, . . . , dN )

are chosen such that all the matrices A+ λiKC are Hurwitz stable for all λi, i ∈ {2, . . . , N} which

are nonzero eigenvalues of the matrix DG, 1 solves the consensus problem. Moreover,

lim
t→∞

(
ξi(t)− (ωT

0 ⊗ eÃt)ξ(0)
)

= 0, (3.5)

where Ã =

A BF

0 A+BF

, ξi = col(xi, x̂i), ξ = col(ξ1, . . . , ξN ), and ωT
0 is the normalized left

eigenvector of the matrix DG associated with the zero eigenvalue.

Proof. We first define a relative state vector as

x̄i = xi − xN , ∀i ∈ {1, . . . , N − 1}.

To prove the first part of the theorem, we need to prove the asymptotic stability of the manifold

x̄1 = . . . = x̄N−1 = 0.

1We assume without loss of generality that λ1 = 0
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Since Assumption 3.1 is satisfied, we get G1 = 0, thus it is clear that DG1 = 0. Next, let us

define ¯̂xi = x̂i−x̂N for i ∈ {1, . . . , N−1}. We then assemble all variables x̄i and ¯̂xi into single vectors

x̄ = col(x̄, . . . , x̄N−1), ¯̂x = col(¯̂x1, . . . , ¯̂xN−1), and define a single relative state vector q = col(x̄, ¯̂x).

With some algebra, we find that the dynamics of the relative state vector q is governed by

q̇ =

 IN−1 ⊗A IN−1 ⊗ (BF )

−(DG)⊗ (KC) IN−1 ⊗ (A+BF ) + (DG)⊗ (KC)

 q, (3.6)

where DG is formed by removing the last row and column from DG− dN1gT
N , and gT

N is the last

row of the matrix G. We see that DG has N − 1 eigenvalues, which are the nonzero eigenvalues of

DG.

Consider a state transformation, q̄ = Tq, where

T =

I(N−1)n −I(N−1)n

0(N−1)n I(N−1)n

 .
With just a little bit algebra, we find that the dynamics of q̄ satisfy the following equation

˙̄q =

IN−1 ⊗A+ (DG)⊗ (KC) 0

−(DG)⊗ (KC) IN−1 ⊗ (A+BF )

 q̄. (3.7)

Since the system matrix of the closed-loop dynamics (3.7) is a block lower-triangular matrix, its

eigenvalues are the union of the eigenvalues of the matrices IN−1 ⊗A+ (DG)⊗ (KC) and IN−1 ⊗

(A+BF ). It is clear that the eigenvalues of the matrix IN−1⊗ (A+BF ) are the eigenvalues of the

matrix A+BF repeated N−1 times, which are in the open left-half complex plane due to the choice

of F . With some algebra, we can show that the eigenvalues of the matrixIN−1⊗A+ (DG)⊗ (KC)

are the union of the eigenvalues of A+ λiKC for all the eigenvalues λi of the matrix DG (that is,

all the nonzero eigenvalues of DG). It then follows that all the poles of the closed-loop system (3.6)

are in the open left-half complex plane, thus, asymptotic stabilization of the closed-loop system

(3.6) is achieved. Hence, consensus is achieved.

49



Next let us try to figure out the consensus trajectory. From (3.1), (3.2), and (3.4), we obtain

that

ξ̇i = Ãξi +

N∑
j=1

digijH̃ξj ,

where

Ã =

A BF

0 A+BF

 , and H̃ =

 0 0

−KC KC

 .
It is easy to see that ξ satisfy the following dynamics:

ξ̇ = (IN ⊗ Ã+ (DG)⊗ H̃)ξ.

Using Jordan canonical representation, DG can be written as

J̃ = V −1(DG)V =

0 0

0 J

 ,
where J are the Jordan blocks associated with the nonzero eigenvalues of DG. Note that

V =

[
1 Y

]
, V −1 =

ωT
0

W

 ,
where ωT

0 is the normalized left eigenvector of DG associated with zero eigenvalue, that is, ωT
0DG =

0 and ωT
0 1 = 1, Y ∈ RN×(N−1) is a matrix whose columns are right eigenvectors and generalized

right eigenvectors associated with the nonzero eigenvalues of DG, and W ∈ R(N−1)×N is a ma-

trix whose rows are left eigenvectors and generalized left eigenvectors associated with the nonzero

eigenvalues of DG, With some algebra, we get

ξ(t) = e(IN⊗Ã+(DG)⊗H̃)tξ(0)

= (V ⊗ I2n)

eÃt 0

0 e(IN−1⊗Ã+J⊗H̃)t

 (V −1 ⊗ I2n)ξ(0)

=
(

(1⊗ I2n)eÃt(ωT
0 ⊗ I2n) + (Y ⊗ I2n)e(IN−1⊗Ã+J⊗H̃)t(W ⊗ I2n)

)
ξ(0). (3.8)
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Notice that the eigenvalues of IN−1 ⊗ Ã + J ⊗ H̃ are the union of the eigenvalues of Ã + λiH̃ for

all the eigenvalues λi of the matrix J (that is, all the nonzero eigenvalues of DG). Also note that

Ã+ λiH̃ =

 A BF

−λiKC A+BF + λiKC

 .
We also note thatIn −In

0 In


 A BF

−λiKC A+BF + λiKC


In In

0 In

 =

A+ λiKC 0

−λiKC A+BF

 .
It follows that the matrix Ã+ λiH̃ is similar to the matrixA+ λiKC 0

−λiKC A+BF

 .
Therefore, it is easy to see that all the eigenvalues of the matrix Ã+ λiH̃ are in the open left-half

complex plane, which implies that all the eigenvalues of IN−1⊗ Ã+ J ⊗ H̃ are in the open left-half

complex plane, which implies that

lim
t→∞

e(IN−1Ã+J⊗H̃)t = 0.

Therefore, from (3.8), we obtain that

lim
t→∞

(
ξ(t)− ((1ωT

0 )⊗ eÃt)ξ(0)
)

= 0.

This implies that for all i ∈ {1, . . . , N},

lim
t→∞

(
ξi(t)− (ωT

0 ⊗ eÃt)ξ(0)
)

= 0.

Also notice that given the upper block-triangular structure of Ã and asymptotic stability of A+BF ,

limt→∞ x̂i(t) = 0.
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Next, we show that how to choose the matrices K and D such that all the matrices A+ λiKC,

for i ∈ {2, . . . , N}, are Hurwitz stable. In order to present our result, let us first recall the following

lemma, which is Proposition 1 of [32] and then we give an alternative proof.

Lemma 3.2. Given the agent dynamics (3.1), there exists a matrix K such that A+ (x+ yj)KC

is Hurwitz stable for all x ∈ [1,∞) and y ∈ (−∞,∞), if and only if the pair (C,A) is detectable.

Proof. The necessity is trivial by setting x = 1 and y = 0.

Now, let us show the sufficiency. Since the pair (C,A) is detectable, we know that the

continuous-time algebraic Riccati equation (CARE) defined as

AP + PAT − PCTCP + In = 0 (3.9)

has a unique solution P = PT > 0.

Now, choose K = −PCT, we then get that

[A+ (x+ yj)KC]P + P [A+ (x+ yj)KC]∗ = AP + PAT − 2xPCTCP

= AP + PAT − PCTCP + (1− 2x)PCTCP < 0,

where the last inequality follows from (3.9), PCTCP ≥ 0, and x ≥ 1.

Thus, A + (x + yj)KC, where K = −PCT and the matrix P > 0 is the solution of (3.9), is

Hurwitz stable.

Combining the results of Lemma 2.1, Lemma 3.1, and Lemma 3.2, we see that the consensus

problem is solvable by the distributed protocol (3.4) if the following Assumption 3.3 is satisfied.

Assumption 3.3. There exists a permutation matrix P1 such that all the leading principal minors

of P1GP
−1
1 of size less than N are nonzero.
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The following theorem formally states such a result and moreover gives design procedure on

how to choose the parameters of the distributed protocol (3.4).

Theorem 3.1. Consider a homogeneous network of N agents of the form (3.1). Let Assumptions

3.1, 3.2 and 3.3 hold. Then the distributed observer-type protocol (3.4), where F is chosen such

that the matrix A+ BF is Hurwitz stable, a diagonal matrix D = diag(d1, . . . , dN ) is chosen such

that all the nonzero eigenvalues of DG have the real parts greater than or equal to 1, K = −PCT,

and P = P T > 0 is the unique solution of the continuous-time algebraic Riccati equation (CARE)

(3.9), solves the consensus problem.

Proof. Since Assumption 3.3 is satisfied, following the constructive proof of Lemma 2.1 given in [13],

we design a diagonal matrix D such that DG has all its eigenvalue in the closed right-half complex

plane, except only one eigenvalue at the origin. We can further place all the nonzero eigenvalues

of DG with real parts greater than or equal to 1 while the single zero eigenvalue is unchanged by

positively scaling the matrix D. Since the pair (C,A) is detectable, and K = −PCT, where the

matrix P = PT > 0 is the unique solution of (3.9), following Lemma 3.2, we see that A+(x+yj)KC

is Hurwitz stable for all x ∈ [1,∞) and y ∈ (−∞,∞). Finally, we choose F such that A + BF is

Hurwitz, the rest of the proof follows from Lemma 3.1.

Let us make several comments regarding to Theorem 3.1:

• As a special case, it is easy to see that the condition given in Theorem 3.1 is satisfied when

G is a Laplacian matrix associated with a directed graph which contains a directed spanning

tree. Hence, the above theorem recovers the result in [32].

• The condition given in Theorem 3.1 is satisfied for a broad class of matrices known as D-

semistable matrices with additional property that the matrix has no eigenvalues on the jω-axis
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other than the single eigenvalue at the origin with the corresponding right eigenvector 1. For

the definition of D-semistability, please see [19, 61]. It is clear that D-semistable matrices

includes a wide family of matrices with more general entry sign pattern than the Laplacian

matrix, and hence admits consensus control for a wider set of observation capabilities.

• Furthermore, the condition can be weakened if we use the generalizations of Fisher and Fuller’s

Theorem given in [57].

3.4 Model-reference Consensus Problem

In Section 3.3, we considered the state consensus problem. State consensus by itself does not

impose any requirements on the consensus trajectory. In other words, we do not impose any

conditions on the asymptotic behavior of the state of an individual agent as long as the asymptotic

behavior is the same for all agents.

However, in many applications, the scenario is that given a reference trajectory, we are trying

to design a distributed protocol such that all agents states asymptotically approach such a prior

given reference trajectory. This is called the model-reference consensus problem in the literature.

Such a problem was first solved in [10] for a network of identical agents with a purely integrator

dynamics under Laplacian topologies. Recently, Li and co-worker [32] solved such a problem for a

network of general identical agents internal dynamics under Laplacian topologies. In this section,

we extend the results in [32] to general time-invariant (fixed) topologies.

3.4.1 Problem Formulation

For the model-reference consensus problem, our goal is to make the state of each agent asymp-

totically approach the reference state of the reference model (virtual leader), which has the same
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dynamics as each individual agent, given by

ẋr = Axr +Bur, (3.10a)

yr = Cxr, (3.10b)

where xr ∈ Rn is a reference trajectory, which all the xi need to approach asymptotically, ur ∈ Rm

is the input variable and yr ∈ Rq is the output variable of the reference model, respectively. That

is, we want to ensure that limt→∞(xi(t)−xr(t)) = 0 for each i ∈ {1, . . . , N}. Equivalently, we wish

to regulate the synchronization error variable

xe,i = xi − xr

to zero.

In order to achieve our goal, in addition to ζi given by (3.2) and ζci given by (3.3) provided by

the network, some information must be available to the agents about their outputs relative to that

of the reference trajectory. Specifically, let I ⊂ {1, . . . , N} be a set of indices corresponding to a

subset of agents in the network which observe its output relative to that of the reference-model.

That is, we assume that each agent i ∈ {1, . . . , N} has access to the quantity

ψi = ιi(yi − yr), where ιi =


1, i ∈ I,

0, i /∈ I.

(3.11)

3.4.2 Protocol Design

In this section, we design a slight different distributed observer-type protocol based on the pro-

posed protocol in [32] for solving the model-reference consensus problem for general time-invariant

(fixed) network topologies.
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Consider a distributed observer-type protocol given by

˙̂xe,i = (A+BF )x̂e,i +Kdi(ζ
c
i − ζi) +Kdi(ιiCx̂e,i − ψi), (3.12a)

ui = Fx̂e,i + ur, (3.12b)

where x̂e,i ∈ Rn is the state of the protocol of the agent i, which is an estimate for xe,i = xi − xr.

The matrices F ∈ Rm×n, K ∈ Rn×q, and di ∈ R are parameters to be designed shortly.

In the protocol (3.12), we have made use of the quantity ζci =
∑N

j=1 gijηj , where ηj = Cx̂e,j .

We also notice in our protocol design, each agent has to have the access to the input ur of the

reference model (3.10).

Let us make the following assumption regarding the network topology.

Assumption 3.4. There exists a permutation matrix P1 such that all the leading principal minors

of P1(G+ diag(ι1, . . . , ιN ))P−1
1 are nonzero.

The following theorem states that the model-reference consensus problem is solvable by the

distributed observer-type protocol. of the form (3.12) if Assumption 3.4 is satisfied.

Theorem 3.2. Consider a homogeneous network of N agents of the form (3.1) and the ref-

erence model given by (3.10). Let Assumptions 3.1, 3.2 and 3.4 hold. Then the distributed

observer-type protocol (3.12), where F is chosen such that the matrix A + BF is Hurwitz sta-

ble, D = diag(d1, . . . , dN ) is a diagonal matrix chosen such that all the nonzero eigenvalues of

D(G+diag(ι1, . . . , ιN )) have the real parts greater than or equal to 1, K = −PCT, and P = P T > 0

is the unique solution of the continuous-time algebraic Riccati equation (CARE) (3.9), solves the

model-reference consensus problem.
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Proof. Let us first assemble all variables xe,i and x̂e,i for i = 1, . . . , N into single vectors

xe =


xe,1

...

xe,N

 , x̂e =


x̂e,1

...

x̂e,N−1

 ,

and define a single relative state vector

q =

xe
x̂e

 .
Since G1 = 0, we obtain that

ζi =
N∑
j=1

gijCxj =
N∑
j=1

gijC(xe,j + xr) =
N∑
j=1

gijCxe,j . (3.13)

Using (3.13) and properties of the Kronecker product, we find the dynamics of the state vector q1

is governed by

q̇ =

IN ⊗A IN ⊗BF

−Q IN ⊗ (A+BF ) +Q

 q, (3.14)

where Q = (D(G+ diag(ι1, . . . , ιN )))⊗KC. Now, let us consider the state transformation q̄ = Tq,

where

T =

INn −INn

0Nn INn

 .
With just a little bit algebra, we find that the dynamics of q̄ satisfy the following equation:

˙̄q =

IN ⊗A+Q 0

−Q IN ⊗ (A+BF )

 q̄. (3.15)

Since the system matrix of the above system (3.15) is a block lower-triangular matrix, its eigenvalues

are the union of the eigenvalues of IN ⊗ A + Q and IN ⊗ (A + BF ). It is easy to see that the

eigenvalues of IN⊗(A+BF ) are the eigenvalues of A+BF , which are in the open left-half complex
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plane, repeated N times. Similar to the proof of Lemma 3.1, we can show that the eigenvalues of

IN ⊗ A + Q are the union of the eigenvalues of A + λiKC for all the eigenvalues λi of the matrix

D(G+ diag(ι1, . . . , ιN )).

Finally, since Assumption 3.4 is satisfied, following the constructive proof of Lemma 2.1 given

in [13], we design a diagonal matrix D such that D (G+ diag(ι1, . . . , ιN )) has all its eigenvalue in the

open right-half complex plane. We can further place all the eigenvalues of D (G+ diag(ι1, . . . , ιN ))

with real parts greater than or equal to 1 by positively scaling the matrix D. It then follows

from the similar analysis as the proof of Theorem 3.1 that all the eigenvalues of A+ λiKC, where

K = −PCT and the matrix P = PT > 0 is the unique solution of (3.9) are in the open left-half

complex plane. Therefore, all the eigenvalues of the system (3.14) are in the open left-half complex

plane. Hence, the model-reference consensus problem is solved.

Remark 3.2. Note that if the network topology matrix G is a Laplacian matrix associated with a

digraph which contains a directed spanning tree with a root agent K, and ιK = 1 for the root agent

agent K, then Assumption 3.4 is satisfied. Hence, Theorem 3.2 recovers the result in [32].

3.5 Regulation of Consensus Problem

The main disadvantage of the result in Section 3.4 is that the input to the reference model needs

to be known by each agent. Moreover, the reference model has to have the same dynamics as all

the agents. Both of these conditions are quite restrictive. In this section, we consider the regulation

of consensus problem, where the objective is to design a distributed protocol to make the output

of each agent asymptotically track the same polynomial, sinusoidal signal, or the combination of

these generated by an arbitrary autonomous.
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3.5.1 Problem Formulation

Consider a network of N identical linear time-invariant (LTI) multiple-input multiple-output

(MIMO) agents of the form

ẋi = Axi +Bui, (3.16a)

yi = Cxi, (3.16b)

zi = Czxi, (3.16c)

for i ∈ { 1, . . . , N }, where the new term zi ∈ Rp compared to (3.1) is agent i’s local controlled

output.

Our goal is to make the controlled output zi of each agent asymptotically track the same

trajectory, generated by an arbitrary autonomous exosystem given by

ω̇ = Sω, ω(0) = ω0, (3.17a)

zr = Crω, (3.17b)

where ω ∈ Rr is the state of the exosystem, and zr ∈ Rp is the output of the exosystem, which

is the consensus trajectory. That is, we want to ensure that limt→∞(zi(t) − zr(t)) = 0 for each

i ∈ { 1, . . . , N },

Note that the regulation of consensus problem is different from classical consensus problem in

that it does not strive to regulate the state of each agent but only the output of each agent. In

that sense, the requirements are weaker than classical consensus problems. On the other hand, the

conditions are stronger in the sense that instead of only requiring the outputs of each agent having

the same asymptotic behavior, we actually impose the asymptotic behavior of each agent’s output

through the exosystem.
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Assumption 3.5. For the exosystem (3.17), we make the classical assumptions that S is anti-

Hurwitz stable, and the pair (Cr, S) is detectable.

Similarly to the model-reference consensus problem considered in Section 3.4, in order to solve

the regulation of consensus problem, in addition to ζi given by (3.2) and ζci given by (3.3) provided

by the network, it is clear that a non-empty subset of agents should observe its output relative to the

output variable zr of the exosystem (3.17) in order for the network of agents to follow the reference

trajectory. Specifically, let I ⊂ {1, . . . , N} denotes such a subset. Then, agent i ∈ {1, . . . , N} has

access to the quantity

ψi = ιi(zi − zr), whereιi =


1, i ∈ I,

0, i /∈ I.

(3.18)

Let us first check whether it is even possible for the controlled output of one individual agent

of the form (3.16) to track the output of the exosystem when the agent has access to both its own

state and the state of the exosystem. The following lemma, recalled from [70, Theorem 2.3.1], gives

a sufficient condition under which such a problem is solvable.

Lemma 3.3. Consider one agent of the form (3.16) and the exosystem (3.17). If the following

equations with unknown Π ∈ Rn×r and Γ ∈ Rm×r, commonly known as the regulator equations:

ΠS = AΠ +BΓ, (3.19a)

Cr = CzΠ, (3.19b)

are solvable, then the state feedback controller

u = Fxi + (Γ− FΠ)ω,

where F is a matrix chosen such that A+BF is Hurwitz stable, ensures that

lim
t→∞

(zi(t)− zr(t)) = 0.
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Moreover,

Πω(t)− xi(t)→ 0, and Γω(t)− ui(t)→ 0 as t→∞.

Lemma 3.3 implies that, whenever the regulator equations (3.19) are solvable, output consensus,

where all the outputs zi must converge to the output zr, is equivalent to state consensus, where all

the states xi must converge to Πω. However, for cases where the regulator equations (3.19) are not

solvable, output consensus does not require state consensus.

Remark 3.3. We note that our problem – to design a protocol such that the controlled output

zi tracks the output zr of the exosystem (3.17) – is different from the output regulation problem

considered in [70] in that the internal stability of the closed-loop system when the ω dynamics is

non-existence is not required in our problem. Therefore, Lemma 3.3 only gives only a sufficient

condition under which our problem is solvable, while [70, Theorem 2.3.1] gives the necessary and

sufficient conditions under which the regulation problem is solvable.

The following lemma gives the conditions under which the regulator equations (3.19) are solv-

able.

Lemma 3.4. In addition to Assumptions 3.2 and 3.5, if we assume that the triplet (Cz, A,B) is

right-invertible, and has no invariant zeros in the closed right-half complex plan that coincide with

the eigenvalues of S, then the regulator equations (3.19) are solvable.

Proof. From [70, Corollary 2.5.1], the regulator equations are solvable if, for each λ that is an

eigenvalue of S,

rank

A− λI B

Cz 0

 = n+ p. (3.20)

The matrix in (3.20) is the Rosenbrock system matrix of the triplet (Cz, A,B), which has normal

rank n + p due to right-invertibility (see [68, Property 3.6.1]). Since this triplet has no invariant
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zeros in the closed right-half complex plane that coincide with eigenvalues of S, it follows that the

rank of the Rosenbrock system matrix is equal to the normal rank for each λ that is an eigenvalue

of S.

We make the following additional assumption for the rest of Section 3.5.

Assumption 3.6. The triplet (Cz, A,B) is right-invertible, and has no invariant zeros in the closed

right-half complex plan that coincide with the eigenvalues of S.

3.5.2 Protocol Design

Our protocol design for the regulation of consensus will achieve state consensus. However, as

noted before, this is not necessary. On the other hand, we will show that solving the regulation of

consensus problem including state consensus requires only weak additional conditions in addition

to the solvability condition of the regulator equations (3.19) given by Assumption 3.6.

Consider a distributed observer-type protocol given by

˙̂xi = Ax̂i +Bui +Kdi(ζ
c
i − ζi) +Kdi(ιiCrω̂i − ψi), (3.21a)

˙̂ωi = Sω̂i + F1ω̂i + Ldi(ζ
c
i − ζi) + Ldi(ιiCrω̂i − ψi), (3.21b)

ui = F2x̂i + Γω̂i, (3.21c)

where x̂i ∈ Rn and ω̂i ∈ Rr are states of the protocol, which are the estimates for xi − xr and

ωi−ω, and F1 ∈ Rr×r, F2 ∈ Rm×n, K ∈ Rn×q, L ∈ Rr×q and di ∈ R are designed parameters to be

determined shortly.

Note that the fact that in addition to a differential equation for the state x̂i, we also need the

differential equation for ω̂i actually follows directly from the internal model principle [70].

In the protocol (3.21), we have made use of the quantity ζci =
∑N

j=1 gijηj , where ηj = Cx̂j .
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The following theorem gives an implicit condition under which the regulation of consensus

problem can be solved by protocol of the form (3.21).

Theorem 3.3. Consider a homogeneous network of N agents of the form (3.1) and the exosystem

given by (3.17). Let Assumptions 3.1, 3.2, 3.5, and 3.6 hold. If A and S have no common

eigenvalues, and the pair (CΠ, S) is detectable, where Π is the solution of the regulator equations

(3.19), then the distributed observer-type protocol (3.21), where F1 and F2 are chosen such that

S +F1 and A+BF2 are both Hurwitz stable, matrices K, L, and D = diag(d1, . . . , dN ) are chosen

such that

IN ⊗Af + (DG)⊗ (KfCf ) + (D diag(ι1, . . . , ιN ))⊗ (KfCz,f ) (3.22)

is Hurwitz stable, where

Af =

 S 0

BΓ A

 , Cf =

[
0 C

]
, Cz,f =

[
0 Cz

]
, and Kf =

L
K

 , (3.23)

solves the regulation of consensus problem.

Proof. Let us first expand the exosystem (3.17):

ω̇ = Sω, (3.24a)

ẋr = Axr +BΓω, (3.24b)

zr = Czxr, (3.24c)

with xr(0) = Πω(0). It is then easy to verify that xr(t) = Πω(t) for all t and

zr(t) = Crω(t).

The reason behind this expansion is that the exosystem also contains a target for the state of the

individual agents.
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Next, for each i ∈ {1, . . . , N}, we expand its dynamics:

ω̇i = Sωi + ui,1, (3.25a)

ẋi = Axi +BΓωi +Bui,2, (3.25b)

yi = Cxi, (3.25c)

zi = Czxi, (3.25d)

where we have used ui = Γωi + ui,2.

Note that the first state equation for ωi is basically part of our consensus protocol, but it is

useful to write this in the above manner since we now have a reference model which is identical to

the individual agent’s dynamics.

Define

xf,i =

ωi
xi

 , xf,r =

ω
xr

 , uf,i =

ui,1
ui,2

 , and uf,r = 0,

we then obtain an expanded reference model

ẋf,r = Afxf,r +Bfuf,r, (3.26a)

yr = Cfxf,r (3.26b)

zr = Cz,fxf,r, (3.26c)

where

Bf =

I 0

0 B

 ,
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and N individual agents

ẋf,i = Afxf,i +Bfuf,i, (3.27a)

yi = Cfxf,i, (3.27b)

zi = Cz,fxf,i, (3.27c)

where we have used in the above the following relationship

Cz,fxf,r = Czxr = CzΠω = Crω = zr.

Note that (Cf , Af ) is detectable since A and S have no common eigenvalues, and (C,A) and

(CΠ, S) are detectable. This follows from the fact that I 0

−Π I

Af
I 0

Π I

 =

S 0

0 A

 , and Cf

I 0

Π I

 =

[
CΠ C

]
.

It is also clear that (Af , Bf ) is stabilizable since (A,B) is stabilizable.

With just a bit algebra, the distributed observer-type protocol (3.21) can be rewritten as

˙̂xe,i = (Af +BfFf )x̂e,i +Kfdi(ζ
c
i − ζi) +Kfdi(ιiCz,f x̂e,i − ψi), (3.28a)

uf,i = Ffxe,i, (3.28b)

where x̂e,i = col(ωi, xi) is the state of the protocol, which is an estimate for

xe,i = xf,i − xf,r,

and

Ff =

F1 0

0 F2

 .
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Define xe = col(xe,1, . . . , xe,N ) and x̂e = col(x̂e,1, . . . , x̂e,N ). Using the fact that G1 = 0 and some

other algebra, we obtain that

ẋe − ˙̂xe = (IN ⊗Af + (DG)⊗ (KfCf ) + (D diag(ι1, . . . , ιN ))⊗ (KfCz,f )) (xe − x̂e) .

Therefore, if the matrix (3.22) is Hurwitz stable, then xe(t) − x̂e(t) → 0 exponentially as t → ∞.

We note that

ẋe = (IN ⊗ (Af +BfFf ))xe − (IN ⊗ (BfFf )) (xe − x̂e) .

It follows that xe(t)→ 0 as t→∞ since Af +BfFf is Hurwitz stable. This yields that

lim
t→∞

(zi(t)− zr(t)) = lim
t→∞

Cz,fxe,i(t) = 0,

which implies that the output of each individual agent asymptotically tracks the output of the

exosystem. Hence, the regulation of consensus problem is solved. Note that the above also implies

that the state consensus is achieved in that limt→∞(xi(t)− xr(t)) = 0 for all i ∈ {1, . . . , N}.

In general it is quite hard to design matrices K, L, and D = diag(d1, . . . , dN ) such that the

matrix (3.22) is Hurwitz stable. However, there is one case where this can be verified quite easily

and we have a constructive proof. Moreover in this case, the detectability of the pair (CΠ, S) is

equivalent to the detectability of the pair (Cr, S).

Theorem 3.4. Consider a homogeneous network of N agents of the form (3.1) and the exosystem

given by (3.17). Let Assumptions 3.1, 3.2, 3.4, 3.5, and 3.6 hold. For the case Cz = C, the

distributed observer-type protocol (3.21), where F1 and F2 are chosen such that S + F1 and A +

BF2 are both Hurwitz stable, D = diag(d1, . . . , dN ) is a diagonal matrix chosen such that all the

eigenvalues of D(G+ diag(ι1, . . . , ιN )) have the real parts greater than or equal to 1, Kf = −PfCT
f ,

and Pf = P T
f > 0 is the unique solution of the continuous-time algebraic Riccati equations (CARE)
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defined as:

AfPf + PfA
T
f − PfCT

fCfP + In+r = 0. (3.29)

Proof. Since Cz = C, it is clear that Cz,f = Cf . We then find that (3.22) is equal to

IN ⊗Af + (D(G+ diag(ι1, . . . , ιN ))⊗ (KfCf ). (3.30)

In order to solve the regulation of consensus problem, we need to show that the matrix (3.30) is

Hurwitz stable.

Similar to the analysis in proof of Lemma 3.1, it is easy to show that the eigenvalues of the

matrix (3.30) are the union of the eigenvalues Af + λiKfCf , for all λi which are eigenvalues of

(D(G+ diag(ι1, . . . , ιN )).

Since Assumption 3.4 is satisfied, following the constructive proof of Lemma 2.1 given in

[13], we design a diagonal matrix D = diag(d1, . . . , dN ) such that all the eigenvalues of D(G +

diag(ι1, . . . , ιN )) have real parts greater than or equal to 1.

Also note that the pair (Cf , Af ) is detectable since A and S have no common eigenvalues and

(C,A) and (Cr, S) are detectable.

Since K = −PfCT
f , where Pf = PT

f > 0 is the unique is the unique solution of the continuous-

time algebraic Riccati equations (CARE) (3.29), it follows from Lemma 3.2 that all the eigenvalues

of the matrix (3.30) are in the open left-half complex plane. The rest of the proof follows from

Theorem 3.3.
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Chapter 4

Output Synchronization for

Heterogeneous Networks of

Introspective Right-invertible Agents

Our focus so far (Chapter 2 and Chapter 3) has been on achieving consensus for networks of

identical agents. In this chapter, we consider the case that the agents in the network have different

internal dynamics.

4.1 Introduction

The synchronization problem in a network has received substantial attention in recent years

(see [2, 44, 55, 100] and references therein). Active research is being conducted in this context and

numerous results have been reported in the literature, to name a few see [32, 45, 46, 48, 51, 52, 54,

73,83,84].
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Much of the attention has been devoted to achieving state synchronization in homogeneous

networks (i.e., networks where the agent models are identical), where each agent has access to a

linear combination of its own state relative to that of neighboring agents (e.g., [44–46, 52, 54, 83]).

Roy, Saberi, and Herlugson [62], Tuna [83], and Yang, Roy, Wan, and Saberi [103] considered the

state synchronization problem for more general network topologies. A more realistic scenario—

that is, each agent receives a linear combination of its own partial-state output relative to that

of neighboring agents—has been considered in [32, 49, 84, 85]. The results of [32] were expanded

by [107] to more general network topologies. Many of the results on the synchronization problem

are rooted in the seminal work of Wu and Chua [98,99].

4.1.1 Heterogeneous Networks and Output Synchronization

Recent activities in the synchronization literature have been focused on achieving synchro-

nization in heterogeneous networks (i.e., networks where the agent models are non-identical). This

problem is challenging and only some partial results are available, see for instance [10,20,25,97,101].

In heterogeneous networks, the agents’ states may have different dimensions. In this case,

the state synchronization is not even properly defined, and it is more natural to aim for output

synchronization—that is, asymptotic agreement on the agents’ partial-state outputs. Chopra and

Spong [10] studied the output synchronization problem for weakly minimum-phase nonlinear sys-

tems of relative degree one, using a pre-feedback to create a single-integrator system with decoupled

zero dynamics. Kim, Shim, and Seo [25] considered the output synchronization problem for uncer-

tain single-input single-output, minimum-phase linear systems, by embedding an identical model

within each agent, the output of which is tracked by the actual agent output.

The designs mentioned in this section generally rely on some sort of self-knowledge that is
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separate from the information transmitted over the network. More specifically, the agents know

their own state, their own output, or their own state/output relative to that of the reference

trajectory. We shall refer to agents that possess this type of self-knowledge as introspective agents, to

distinguish them from non-introspective agents – that is, agents that have no knowledge of their own

state or output separate from what is received via the network. The output synchronization problem

for a heterogeneous network of non-introspective agents have been considered in [17] and [113].

4.1.2 Organization of this Chapter

The remainder of this chapter is organized as follows. In this rest of Section 4.1, we introduce

some notations and recall some results of algebraic graph theory. Section 4.2 presents the heteroge-

neous network considered in this chapter. In Section 4.3, we propose a decentralized controller to

solve the output synchronization problem. The design is applied for solving the output formation

problem in Section 4.4. The regulation of output synchronization problem is considered in Section

4.5. The results are illustrated by examples in Section 4.6.

4.1.3 Preliminaries and Notations

Given a matrix A ∈ Cm×n, A∗ denotes its conjugate transpose, and λi(A) is its i’th eigenvalue.

A ∈ Cn×n is said to be Hurwitz stable if all its eigenvalues are in the open left-half plane. ⊗ denotes

the Kronecker product between two matrices of appropriate dimensions. Given a matrix A ∈ Cm×n

and a matrix B ∈ Cp×q the Kronecker product A⊗B is defined as the Cmp×nq matrix

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 ,
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where aij denotes element (i, j) of A. In denotes the identity matrix of dimension n, similarly, 0n

denotes the square matrix of dimension n with all zero elements; we sometimes drop the subscript if

the dimension is clear in the context. 1 denotes a column vector with all entries equal to one whose

dimension should be clear from the context. For column vectors x1, . . . , xn, [x1; · · · ;xn] denotes

the column vector by stacking the elements of x1, . . . , xn.

4.2 Heterogeneous Network Structure

Consider a heterogeneous network of N linear agents
ẋi = Aixi +Biui,

yi = Cixi

(4.1)

for i ∈ {1, . . . , N}, where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rp.

The agents are introspective, meaning that the agents have access to their own local information.

Specifically, each agent has access to the quantity

zi = Cmi xi. (4.2)

where zi ∈ Rqi .

The network infrastructure provides each agent with a linear combination of its own output

relative to that of other agents. In particular, each agent i has access to the quantity

ζi =

N∑
j=1

aij(yi − yj), (4.3)

where aij ≥ 0 and aii = 0 with i, j ∈ {1, . . . , n}. This network can be described by a weighted

directed graph (digraph) G with nodes corresponding to the agents in the network and edges with

weight given by the coefficients aij . In particular, aij > 0 means that there exists an edge with

weight aij from agent j to agent i.
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We also define a matrix G = [gij ], where gii =
∑N

j=1 aij and gij = −aij for j 6= i. The matrix

G, known as the weighted Laplacian matrix of the digraph G has the property that the sum of the

coefficients on each row is equal to zero. In terms of the coefficients gij of G, ζi given by (4.3) can

be rewritten as

ζi =
N∑
j=1

gijyj . (4.4)

With the local information zi given by (4.2) and the information ζi given by (4.4) provided by

the network, the agent i, where i ∈ {1, . . . , N}, has the following dynamical equations:

ẋi = Aixi +Biui,

yi = Cixi,

zi = Cmi xi,

ζi =
∑N

j=1 gijyj .

(4.5)

We make the following assumption regarding the network communication topology:

Assumption 4.1. The digraph G has a directed spanning tree.

From [53, Lemma 3.3], it is well known that under Assumption 4.1, the weighted Laplacian

matrix G associated with network topology G has a simple eigenvalue at the origin, with the

corresponding right eigenvector 1, and all the other eigenvalues are in the open right-half complex

plane. We then let λ1, . . . , λN denote the eigenvalues of G, such that λ1 = 0 and 0 < re(λ2) ≤

. . . ≤ re(λN ).

Let us now introduce the following definition to characterize a set of network communication

topologies:

Definition 4.1. For any given γ ≥ β > 0, let Γβ,γ denote the set of digraphs that satisfy Assump-

tion 4.1 and for which the corresponding Laplacian matrix has the following properties: re(λ2) ≥ β,

and maxi=2,...,N |λi| < γ for i ∈ {2, . . . , N}.
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Assumption 4.2. For each agent i ∈ {1, . . . , N}, we make the following assumption:

1) (Ai, Bi) is stabilizable;

2) (Ci, Ai) is detectable;

3) (Ci, Ai, Bi) is right-invertible; and

4) (Cmi , Ai) is detectable.

Remark 4.1. Right-invertibility of a triple (Ci, Ai, Bi) means that, given a reference output yr(t),

there exist an initial condition xi(0) and an input ui(t) such that yi(t) = yr(t) for all t ≥ 0. For

example, every single-input single-output system is right-invertible, unless its transfer function is

identically zero.

4.3 Output Synchronization

In this section, we consider the output synchronization problem for a heterogeneous network.

The output synchronization is defined as follows:

Definition 4.2. A heterogeneous network of N agents is said to achieve output synchronization if

lim
t→∞

(yi(t)− yj(t)) = 0, ∀i, j ∈ {1, . . . , N}.

Let us now formally formulate the output synchronization problem for a heterogeneous network.

Problem 4.1 (Output Synchronization). Consider a heterogeneous network of N agents (4.5).

For any given γ ≥ β > 0, and the resulting set Γβ,γ of communication topologies, the output

synchronization problem is to find, if possible, a linear dynamical controller
ẋi,c = Ai,cxi,c +Bi,cζi + Ei,czi,

ui = Ci,cxi,c +Di,cζi +Mi,czi,

(4.6)
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for each agent i ∈ {1, . . . , N}, such that output synchronization is achieved for any network com-

munication topology represented by the digraph G ∈ Γβ,γ.

Remark 4.2. Since (Cmi , Ai) is detectable for i ∈ {1, . . . , N}, one can, without any communication

among agents, simply asymptotically stabilize each individual agent by utilizing zi, and hence achieve

the output synchronization with zero synchronization trajectory, that is limt→∞ yi(t) = 0, i ∈

{1, . . . , N}. In this chapter, we are not interested in such a case. We are aiming to achieve output

synchronization with non-trivial synchronization trajectories.

Theorem 4.1. Consider a heterogeneous network of N agents (4.5). Let Assumptions 4.1 and 4.2

hold. Then the output synchronization problem with Γβ,γ for any γ ≥ β > 0 as defined in Problem

4.1, is solvable via N decentralized controllers of the form (4.6).

We shall prove Theorem 4.1 by explicit construction of synchronization controllers for each

agent. The fundamental challenge of the output synchronization problem for heterogeneous net-

works is that the agent models are non-identical. Therefore, we first design a local pre-compensator

to make all the agents almost identical, which we refer to as homogenization of network. Next, we

show that the output synchronization problem with respect to the new almost identical models

can be converted into a simultaneous stabilization problem. Finally, we design controllers via a

low-gain approach to solve the reformulated simultaneous stabilization problem in the homogenized

network.

4.3.1 Homogenization of the Network

Since each agent is introspective, we use the local information zi to manipulate the agent

dynamics such that all the agents’ models are almost identical to the rest of network. This is

shown in the following lemma.
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Lemma 4.1. Consider a heterogeneous network of N agents (4.5). Let Assumption 4.2 hold, and

let n̄d denote the maximal order of infinite zeros of (Ci, Ai, Bi), i ∈ {1, . . . , N}. Suppose a triple

(C,A,B) is given such that

1) rank(C) = p,

2) (C,A,B) is invertible, of uniform rank nq ≥ n̄d, and has no invariant zeros.

Then for each agent i ∈ {1, . . . , N}, there exist a pre-compensator of the form
ξ̇i = Ai,hξi +Bi,hzi + Ei,hvi,

ui = Ci,hξi +Di,hvi,

(4.7)

such that the interconnection of (4.5) and (4.7) can be written in the following form:

˙̄xi = Ax̄i +B(vi + ρi),

yi = Cx̄i,

ζi =
∑N

j=1 gijyj ,

(4.8)

where ρi is given by 
ω̇i = Ai,sωi,

ρi = Ci,sωi,

(4.9)

and Ai,s is Hurwitz stable.

Proof. The proof of Lemma 4.1 will be given in Appendix 4.B by explicit construction of a pre-

compensator of the form (4.7).

Remark 4.3. We would like to make several observations:

1) The property that the triple (C,A,B) is invertible and has no invariant zero implies that

(A,B) is controllable and (C,A) is observable.
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2) The triple (C,A,B) is arbitrarily assignable as long as the conditions are satisfied. They play

a role as design parameters. We shall use this freedom in various places in this chapter.

Remark 4.4. Without loss of generality, we assume that the triple (C,A,B) has the following

form:1

A = A0 +BH, A0 :=

0 Ip(nq−1)

0 0

 , B = B0 :=

 0

Ip

 , C = C0 :=

[
Ip 0

]
, (4.10)

where H is such that the matrix A0 +B0H has desired eigenvalues. The existence of such an H is

guaranteed by the fact that (A0, B0) is controllable.

Lemma 4.1 shows that we can design a pre-compensator based on local information zi to trans-

form each non-identical agent model given by (4.5) into a new model given by (4.8) and (4.9). The

new agent models (4.8) are almost identical except for different exponentially decaying signals ρi

in the range space of B, generated by (4.9). We shall solve the output synchronization problem

with respect to the new almost identical models (4.8) and (4.9), and then combine the result with

Lemma 4.1 to prove Theorem 4.1.

4.3.2 Connection to Simultaneous Stabilization Problem

In this section, we show that the exponentially decaying signals ρi are irrelevant for solving the

output synchronization problem with respect to the new almost identical models (4.8) and (4.9),

and that the problem is essentially reduced to a simultaneous stabilization problem.

For solving the synchronization problem for a network of N agents (4.8) and (4.9) with a set

of possible communication topologies Γβ,γ , we consider N general decentralized controllers of the

1If (C,A,B) is not in this form, from [71], which is also reviewed in Appendix 4.A.1, there exist nonsingular state

and input transformations, such that the transformed system is in this form.
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form (4.11) 
χ̇i = Akχi +Bkζi,

vi = Ckχi,

(4.11)

for i ∈ {1, . . . , N}, where χi ∈ Rnc , which should be independent of the specific communication

topology G ∈ Γβ,γ .

With x̃i := [x̄i;χi], the closed-loop system of (4.8) and (4.11) for each individual agent can be

written as 

˙̃xi =

A BCk

0 Ak

 x̃i +

 0

Bk

 ζi +

B
0

 ρi,
yi =

[
C 0

]
x̃i,

ζi =
∑N

j=1 gijyj .

(4.12)

Define x̃ := [x̃1; · · · ; x̃N ], ρ := [ρ1; · · · ; ρN ],

Ā =

A BCk

0 Ak

 , B̄ =

 0

Bk

 , C̄ =

[
C 0

]
, and Ē =

B
0

 . (4.13)

We then obtain the overall dynamics of N agents:

˙̃x = [IN ⊗ Ā+G⊗ (B̄C̄)]x̃+ (IN ⊗ Ē)ρ.

Let U be a nonsingular matrix such that J = U−1GU is the Jordan canonical form of G with

J(1, 1) = λ1 = 0. Define η = [η1; · · · ; ηN ] = (U−1 ⊗ Ipnq+nc)x̃. We then obtain the following

dynamical equations for η:

η̇ = [IN ⊗ Ā+ J ⊗ (B̄C̄)]η + (U−1 ⊗ Ē)ρ. (4.14)

Lemma 4.2. Let Assumption 4.1 hold. If Ā+ λiB̄C̄ is Hurwitz stable for all i ∈ {2, . . . , N}, then

the output synchronization problem for a network of N agents of the form (4.8) and (4.9) is solved

via N decentralized controllers of the form (4.11).
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Proof. The proof is carried out in two stages. In the first stage, we shall show that the output

synchronization problem for a network N agents (4.8) and (4.9) via controllers of the form (4.11)

is solved if

lim
t→∞

ηi(t) = 0

for all i ∈ {2, . . . , N}. We then show that this is guaranteed if Ā+ λiB̄C̄ is Hurwitz stable for all

i ∈ {2, . . . , N}.

Suppose that

lim
t→∞


η(t)−



η1(t)

0

...

0




= 0,

for some η1(t) ∈ Cpnq+nc . Then

lim
t→∞

(x̃(t)− 1⊗ η1(t)) = lim
t→∞

[(U ⊗ I)η − (U ⊗ I)(U−1 ⊗ I)(1⊗ η1(t))]

= (U ⊗ I) lim
t→∞

[η(t)− (U−11)⊗ η1(t)]

= (U ⊗ I) lim
t→∞


η(t)−



η1(t)

0

...

0




= 0,

where we have used that U−11 =

[
1 0 . . . 0

]′
, which follows from the fact that U−1U = IN and

that U consists of all the (generalized) right eigenvectors of G, with the first column being 1. Hence,

the output synchronization is achieved. So far, we have shown that the output synchronization is

achieved if limt→∞ ηi(t) = 0 for all i ∈ {2, . . . , N}. Next, we shall show that this is ensured if

A+ λiB̄C̄ is Hurwitz stable for all i ∈ {2, . . . , N}.
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Define η̄ := [η2; · · · ; ηN ] and ω := [ω1; · · · ;ωN ], from (4.14) and (4.9), we obtain that ˙̄η

ω

 =

IN−1 ⊗ Ā+ J̄ ⊗ (B̄C̄) ((ĪU−1)⊗ Ē)Cs

0 As


η̄
ω

 , (4.15)

where

Ī =

[
0 IN−1

]
, Cs = blkdiag{Ci,s}Ni=1, As = blkdiag{Ai,s}Ni=1, J = blkdiag{0; J̄}.

Since IN−1 ⊗ Ā and J̄ ⊗ (B̄C̄) are block upper triangular, the eigenvalues of IN−1 ⊗ Ā+ J̄ ⊗ (B̄C̄)

are the union of eigenvalues Ā+ λiB̄C̄ for i ∈ {2, . . . , N}, which are in the open left-half complex

plane by the assumption. Together with the fact that As is Hurwitz stable, it is clear that the

system (4.15) is asymptotically stable, that is, limt→∞ η̄(t) = 0 for any initial conditions η̄(0) and

ω(0).

Remark 4.5. In view of Lemma 4.2, the dynamics of η1(t) is governed by

η̇1(t) = Āη1(t) + (v′ ⊗ Ē)ρ(t), η1(0) = (v′ ⊗ Ipnq+nc)x̃(0),

where v′ is the first row of the matrix U−1, i.e., the left eigenvector corresponding to the eigenvalue

of G at zero. Since ρ(t) is exponentially decaying, from [96, Lemma B.1] and Lemma 4.2, we see

that for each i ∈ {1, . . . , N},

lim
t→∞

(x̃i(t)− eĀtη̃1) = lim
t→∞

[(x̃i(t)− η1(t)) + (η1(t)− eĀtη̃1)] = 0, (4.16)

for some η̃1 ∈ Rpnq+nc.

From Lemma 4.2, we see that the output synchronization problem for a network of agents (4.8)

and (4.9) is achieved if Ā+ λiB̄C̄ is Hurwitz stable, for all i ∈ {2, . . . , N}, which is a simultaneous

stabilization problem. More specifically, we need to design the parameters Ak, Bk, and Ck in (4.11),
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such that the following compensator 
χ̇ = Akχ+Bkz,

u = Ckχ,

(4.17)

simultaneously stabilizes all the N − 1 systems given by
ẋ = Ax+Bu,

z = λiCx, i ∈ {2, . . . , N}.
(4.18)

Due to the linearity, it is easy to see that the compensator (4.17) simultaneously stabilizes (4.18)

if it simultaneously stabilizes all the N − 1 systems given by
ẋ = Ax+ λiBu,

z = Cx, i ∈ {2, . . . , N}.
(4.19)

Lemma 4.3. The output synchronization for a heterogeneous network of N agents (4.5) as defined

in Problem 4.1 is solvable if (4.17) simultaneously stabilizes all the N − 1 systems (4.19).

Proof. If (4.17) simultaneously stabilizes all the N−1 systems (4.19), then the composition of (4.7)

and (4.11), which is of the form (4.6), solves Problem 4.1.

Lemma 4.3 converts the output synchronization problem for a heterogeneous network of N

agents (4.5) as defined in Problem 4.1 to a simultaneous stabilization problem.

4.3.3 Simultaneous Stabilization via a Low-gain Approach

In this section, we design the parameters Ak, Bk and Ck of the compensator (4.11), such that

the compensator (4.17) simultaneously stabilizes all the N − 1 systems (4.19).

It is clear that we can choose the matrix H in (4.10) such that the matrix A has all the

eigenvalues on the imaginary axis.
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Given a β > 0, such that re(λ2(G)) ≥ β for any G ∈ Γβ,γ , let P (ε) = P ′(ε) > 0 be the unique

solution of the continuous-time algebraic Riccati equation

A′P (ε) + P (ε)A− βP (ε)BB′P (ε) + εIpnq = 0. (4.20)

We then design the controller of the form (4.11) as:
χ̇i = Akχi +Bkζi := (A+KC)χi −Kζi,

vi = Ckχi := B′P (ε)χi, i ∈ {1, . . . , N},
(4.21)

where the matrix K is such that A + KC is Hurwitz stable, and ε > 0 is a low-gain parameter.

Note that (4.21) is of CSS type observer, see [9].

Following the proof of [73, Theorem 4], with just a little bit modification, we see that there exists

an ε∗, which depends on γ, such that for ε ∈ (0, ε∗], the compensator (4.17) with the parameters

Ak, Bk and Ck given by (4.21) simultaneously stabilizes all the N − 1 systems (4.19).

Remark 4.6. Note that the matrix Ak in the controller (4.21) is Hurwitz stable and the matrix Ā

given by (4.13) is block upper triangular. It is then follows from the result of [96, Lemma B.1] and

Remark 4.5 that the output synchronization trajectory is given by

lim
t→∞

(yi(t)− CeAtd) = 0, ∀i ∈ {1, . . . , N}.

for some d ∈ Rpnq .

4.4 Application to Output Formation

In this section, we consider the output formation problem to be formally defined shortly. We

shall show that the output formation problem can be solved by slightly modifying the design

procedure for solving the output synchronization problem as defined in Problem 4.1.
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Definition 4.3. An output formation is a family of vectors {h1, · · · , hN}, hi ∈ Rp, i ∈ {1, . . . , N}.

The heterogeneous network of N agents (4.5) is said to achieve the output formation if

lim
t→∞

[(yi(t)− hi)− (yj(t)− hj)] = 0, ∀i, j ∈ {1, . . . , N}. (4.22)

For this problem, we assume that the network infrastructure provides each agent with the

following information

ζ̂i =

N∑
j=1

aij [(yi − hi)− (yj − hj)] =

N∑
j=1

gij(yj − hj), (4.23)

With the local information zi given by (4.2) and the information ζ̂i given by (4.23) provided by

the network, the agent i, where i ∈ {1, . . . , N}, has the following dynamical equations:

ẋi = Aixi +Biui,

yi = Cixi,

zi = Cmi xi,

ζ̂i =
∑N

j=1 gij(yj − hj).

(4.24)

Let us formally formulate the output formation problem for a heterogeneous network.

Problem 4.2 (Output formation). Consider a heterogeneous network of N agents (4.24). For any

given γ ≥ β > 0 and the resulting set Γβ,γ, and an arbitrarily given family of vectors {h1, · · · , hN},

where hi ∈ Rp for i ∈ {1, . . . , N}, the output formation problem with a set of communication

topologies Γβ,γ is to find, if possible, a linear dynamical controller
ẋi,c = Ai,cxi,c +Bi,cζ̂i + Ei,czi,

ui = Ci,cxi,c +Di,cζ̂i +Mi,czi,

(4.25)

such that the output formation as defined in Definition 4.3 is achieved for any network communi-

cation topology G ∈ Γβ,γ.
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Theorem 4.2. Consider a heterogeneous network of N agents (4.24). Let Assumptions 4.1 and

4.2 hold. Then the output formation problem with a set of communication topologies Γβ,γ for any

γ ≥ β > 0, and any formation vectors {h1, · · · , hN}, where hi ∈ Rp for i ∈ {1, . . . , N}, as defined

in Problem 4.2, is solvable via N decentralized controllers of the form (4.25).

The proof of Theorem 4.2 is very similar to the proof of Theorem 4.1 by explicit construction

of a formation controller of the form (4.25). We first design a local pre-compensator of the form

(4.7) for each agent such that the resulting systems are almost identical, that is, all the resulting

systems are characterized by the same triple (C,A,B) for which the output formation is always

achievable. The following lemma shows the existence of such a triple (C,A,B).

Lemma 4.4. For an arbitrarily given family of vectors {h1, · · · , hN}, hi ∈ Rp, i = 1, . . . , N and

an integer nq > 0, there exist a triple (C,A,B) and another family of vectors {h̄1, · · · , h̄N} of

appropriate dimensions, such that

1) rank(C) = p,

2) (C,A,B) is invertible, of uniform rank nq, and has no invariant zero,

3) A has all its eigenvalues in the closed left-half complex plane,

4) Ah̄i = 0,

5) Ch̄i = hi.

Proof. Since we have freedom to chose the triple (C,A,B) in Lemma 4.1, let us choose the triple

(C,A,B) as follows:

A = A0 +B0H, B = B0, C = C0,
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where A0, B0, C0 are given in (4.10), H =

[
0 H0

]
, and the matrix H0 is such that the matrix

Ā0 + B̄0H0, where

Ā0 :=

0 Ip(nq−2)

0 0

 , B̄0 :=

 0

Ip

 ,
has all the eigenvalues in the closed left-half complex plane. Such an H0 exists due to the fact that

(Ā0, B̄0) is controllable. It is then easy to see that the matrix A0 +B0H has p(nq − 1) eigenvalues,

which are the eigenvalues of Ā0 + B̄0H0, and the remaining p eigenvalues are simple eigenvalues at

zero. Therefore, the third condition is satisfied.

We then define a family of vectors {h̄1, · · · , h̄N} as follows:

h̄i =

hi
0

 , i = 1, . . . , N.

It is then easy to see that

Ch̄i = C0

hi
0

 =

[
Ip 0

]hi
0

 = hi,

and

Ah̄i = (A0 +B0H)

hi
0

 =

0 Ip(nq−1)

0 H0


hi

0

 = 0.

Proof of Theorem 4.2. For any triple (C,A,B) which satisfies the condition of Lemma 4.4, from

Lemma 4.1, it is clear that we can design a pre-compensator of the form (4.7) for each agent, such

that the interconnection of (4.5) and (4.7) can be written in the following form:

˙̄xi = Ax̄i +B(vi + ρi),

yi = Cx̄i,

ζ̂i =
∑N

j=1 gij(yj − hj),

(4.26)
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where ρi is given by (4.9).

Define x̄i,s = x̄i − h̄i, since Ah̄i = 0 and Ch̄i = hi for i = 1, . . . , N , (4.26) can be rewritten in

term of x̄i,s as: 

˙̄xi,s = Ax̄i,s +B(vi + ρi),

yi = Cx̄i,s + hi,

ζ̂i =
∑N

j=1 gij(yj − hj).

(4.27)

Following the design procedure given in Section 4.3.3, we then design the following decentralized

controller for each agent 
χ̇i = (A+KC)χi −Kζ̂i,

vi = B′P (ε)χi,

(4.28)

where the matrix K is such that A + KC is Hurwitz stable, ε > 0 is a low-gain parameter, and

P (ε) = P ′(ε) > 0 is the unique solution of the algebraic Riccati equation (4.20).

It then follows from the analysis in Section 4.3.3 that there exists an ε∗, which depends on γ,

such that for all ε ∈ (0, ε∗], the controller (4.28) solve the output synchronization for a network of

N the models (4.27). Hence, limt→∞[(yi(t)− hi)− (yj(t)− hj)] = limt→∞(Cx̄i,s(t)−Cx̄j,s(t)) = 0

for all i, j ∈ {1, . . . , N}.

4.5 Regulation of Output Synchronization

Note that the output synchronization problem does not impose any conditions on asymptotic

behavior of the outputs of the agent models as long as they are asymptotic identical. In this section,

we consider the related problem of regulating the output towards a desired reference trajectory yr(t),

generated by an autonomous exosystem
ẋr = Arxr, xr(0) = xr0,

yr = Crxr,

(4.29)
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where xr ∈ Rr and yr ∈ Rp.

We make the following assumption about the exosystem (4.29):

Assumption 4.3. For the exosystem (4.29),

1) (Cr, Ar) is observable,

2) All the eigenvalues of Ar are on the imaginary axis.

Definition 4.4. A heterogeneous network of N agents is said to achieve the regulation of output

synchronization if

lim
t→∞

(yi(t)− yr(t)) = 0, ∀i = {1, . . . , N}.

For solving the regulation of output synchronization problem, we consider a subset Γs of Γ,

where Γ is the set of all the network topologies, each of which contains a directed spanning tree.

We assume that all the topologies in the set Γs have a common root. Without loss of generality,

we assume that the common root is node (agent) 1. This (root) agent 1 measures its own output

relative to the output of the exosystem, that is, agent 1 has access to a quantity ψ1 = d(y1 − yr),

where d > 0, while ψi = 0 for all i ∈ {2, . . . , N}.

With the local information zi given by (4.2), the information ζi given by (7.2) provided by the

network, and information ψi, the agent i for i ∈ {1, . . . , N} has the following dynamical equations:

ẋi = Aixi +Biui,

yi = Cixi,

zi = Cmi xi,

ζ̄i =
∑N

j=1 gijyj + ψi.

(4.30)

Let us now formally formulate the regulation of output synchronization problem.
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Problem 4.3 (Regulation of Output Synchronization). Consider a heterogeneous network of N

agents (4.30) and the autonomous exosystem (4.29). . For any given set Γs ⊂ Γ, the regulation of

output synchronization problem is to find, if possible, a linear dynamical controller
ẋi,c = Ai,cxi,c +Bi,cζ̄i + Ei,czi,

ui = Ci,cxi,c +Di,cζ̄i +Mi,czi,

(4.31)

for each agent i ∈ {1, . . . , N}, such that regulation of output synchronization is achieved for any

network communication topology represented by the digraph G ∈ Γs.

We present some preliminary work which are needed for presenting the result for the regulation

of output synchronization problem as defined in Problem 4.3. Let Ḡ denote an expanded network

constructed from G ∈ Γs by adding the exosystem as node 0 and the edge from exosystem to agent

1 with weight d. It is then easy to see that the Laplacian matrix of the network Ḡ is given by

Ḡ = [ḡij ] =



0 0 0 · · · 0

−d g11 + d g12 · · · g1N

0 g21 g22 · · · g2N

...
... · · ·

...
...

0 gN1 gN2 · · · gNN


. (4.32)

In view of (4.32), ζ̄i in (4.30) can be rewritten as

ζ̄i =

N∑
j=1

gijyj + ψi =

N∑
j=0

ḡijyj . (4.33)

Also note that the expanded network also contains a directed spanning tree rooted at the node

0. It is then easy to see from [53, Lemma 3.3] that all the eigenvalues of Ḡ are in the closed

right-half complex plane. Let λ̄1, · · · , λ̄N+1 denote the eigenvalues of Ḡ, such that λ̄1 = 0 and

0 < re(λ̄2) ≤ . . . ≤ re(λ̄N+1).
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Assumption 4.4. There exist γ̄ ≥ β̄ > 0, such that for each expanded network, the corresponding

Laplacian matrix has following properties:

1) re(λ̄2) ≥ β̄ > 0;

2) maxi=2,...,N+1 |λ̄i| ≤ γ̄.

We are now ready to present our result for the regulation of output synchronization.

Theorem 4.3. Consider a heterogeneous network of N agents (4.30) and the autonomous exosys-

tem (4.29). Let Assumptions 4.1, 4.2, 4.3 and 4.4 hold. Then the regulation of output synchro-

nization problem as defined in Problem 4.3 is solvable via N decentralized controllers of the form

(4.31).

Proof. For an exosystem given by (4.29), it is shown in Appendix 4.C that there exist another

exosystem given by 
˙̃xr = Ãrx̃r, x̃r(0) = x̃r0,

yr = C̃rx̃r,

(4.34)

such that for all xr0 ∈ Rr there exists x̃r0 ∈ Rr̃ for which (4.34) generates exact the same output

yr as the original exosystem (4.29). Furthermore, we can find a matrix B̃r such that the triple

(C̃r, Ãr, B̃r) is invertible, of uniform rank nq, and has no invariant zero, where nq is an integer

greater than or equal to maximal order of infinite zeros of (Ci, Ai, Bi), i ∈ {1, . . . , N} and all the

observability index (see [8] for the definition) of (Cr, Ar). Note that as seen from Appendix 4.C,

the eigenvalues of Ãr consists of all the eigenvalues of Ar and additional zero eigenvalues, which

are degenerate.

The new exosystem can be rewritten as:
˙̃xr = Ãrx̃r + B̃r(vr + ρr), x̃r(0) = x̃r0,

yr = C̃rx̃r,

(4.35)
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where vr(t) = 0 and ρr(t) = 0.

Following from the constructive proof of Lemma 4.1, we then design a pre-compensator (4.7)

for each agent i ∈ {1, . . . , N} such that the interconnection of (4.5) and (4.7) are almost identical

to the exosystem system (4.35), that is, for each agent i ∈ {1, . . . , N},

˙̄xi = Ãrx̄i + B̃r(vi + ρi),

yi = C̃rx̄i,

ζ̄i =
∑N

j=0 ḡijyj ,

(4.36)

where ρi is given by (4.9).

It is then easy to see that regulation of output synchronization for a heterogeneous network of

N agents is converted to the output synchronization problem for an expanded network of N + 1

agents by adding the exosystem system as agent 0 and the edge from agent 0 to agent 1 with

weight d. More specifically, define x̄0 := x̃r, y0 := ỹr, v0 := vr, and ρ0 := ρr, the agent i, where

i ∈ {0, 1, . . . , N} has the following dynamics:

˙̄xi = Ãrx̄i + B̃r(vi + ρi),

yi = C̃rx̄i,

ζ̄i =
∑N

j=0 ḡijyj .

(4.37)

Following the design procedure given in Section 4.3.3, we design the following controller for each

agent i ∈ {0, 1, . . . , N} 
χ̇i = (Ãr +KC̃r)χi −Kζ̄i,

vi = B̃′rP (ε)χi,

(4.38)

where the matrix K is such that A + KC is Hurwitz stable, ε > 0 is a low-gain parameter, and

P (ε) = P ′(ε) > 0 is the unique solution of the following continuous-time algebraic Riccati equation

Ã′rP (ε) + P (ε)Ãr − β̄P (ε)B̃rB̃
′
rP (ε) + εIpnq = 0. (4.39)
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Note that in the controller (4.38), we choose χ0(0) = 0 for agent 0. It is then clear that v0(t) = 0

as desired since ζ̄0(t) = 0.

It then follows from the analysis in Section 4.3.3 that there exists an ε∗, which depends on γ̃,

such that for all ε ∈ (0, ε∗], the controller (4.38), solves the output synchronization for a set of the

expanded network topologies. Hence, limt→∞(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . , N}.

4.6 Illustrative Examples

4.6.1 Output Synchronization

We illustrate our design procedure on a network of four agents. The agents dynamics are of

form (4.1) with

A1 =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


, B1 =



0 1

0 0

1 0

0 1


, C1 =

[
1 0 0 0

]
, Cm1 =

[
1 1 0 0

]
,

A2 =


0 1 0

0 0 1

0 0 0

 , B2 =


0

0

1

 , C2 =

[
1 0 0

]
, Cm2 =

[
1 1 0

]
,

Ai =



−1 0 0 −1 0

0 0 1 1 0

0 1 −1 1 0

0 0 0 1 1

−1 1 0 1 1


, Bi =



0 0

0 0

0 1

0 0

1 0


, Ci =

[
0 0 0 1 0

]
, Cmi =

[
1 1 0 0 0

]
,
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for i = 3, 4.

Given β = 2.8 and γ = 4.1, we have the resulting set Γ2.8,4.1. Two network topologies in this

set are given by Figure 9.1.
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Figure 4.1: Network Topologies

Note that n̄d = 3, which is the degree of the infinite zeros of (C2, A2, B2). We then choose

nq = 3, and matrices A,B,C as below

A =


0 1 0

0 0 1

0 −1 0

 , B =


0

0

1

 , C =

[
1 0 0

]
.

It is easy to see that the above matrices A,B,C satisfy the conditions of Lemma 4.1. Let us choose

ε = 0.01 and

K =


−6

−10

0


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and design the dynamic low-gain controller as follows:

χ̇i(t) =


−6 1 0

−10 0 1

0 −1 0

χi(t)−

−6

−10

0

 ζi(t)

vi(t) = −
[
0.0598 0.0183 0.1423

]
χi(t)

. (4.40)

Figure 4.2 and Figure 4.3 show that the output synchronization is achieved for Network 1 and

Network 2, respectively.

0 20 40 60 80 100 120 140 160 180 200
−300

−250

−200

−150

−100

−50

0

50

100

150

200

Time

Ag
en

t o
ut

pu
ts

 y
1,y

2,y
3,y

4

 

 
Agent 1
Agent 2
Agent 3
Agent 4

Figure 4.2: Outputs for Network 1

4.6.2 Output Formation

Consider the same two networks as in Section 4.6.1, our goal is to achieve output formation.

We choose h1 = 10, h2 = 20, h3 = 30, and h4 = 40. Figure 4.4 and Figure 4.5 show that the output
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Figure 4.3: Outputs for Network 2

formation is achieved 2 for Network 1 and Network 2, respectively.

4.6.3 Regulation of Output Synchronization

Consider the same network as in Section 4.6.1, however, our goal now is to ensure that each

agent’s output follows the output yr of the following exosystem
ẋr =

0 1

0 0

xr,
yr =

[
1 0

]
xr,

with xr(0) = [1; 1].

2Note that xd1, xd2, and xd3 is the coordinate where all the agents are almost identical
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Figure 4.4: Formation for Network 1

We first expand the system to the following form

˙̃xr = Ãrx̃r :=


0 1 0

0 0 1

0 0 0

 x̃r,

yr = C̃rx̃r :=

[
1 0 0

]
x̃r,

with x̃r(0) = [1; 1; 0].

Let us now choose B̃r =

[
0 0 1

]′
. We then follow the same design procedure to design

precompensator to make all the agents almost identical with different exponentially decaying signals.

We then add a link with weight 10 from the exosystem to the root agent 1 for Networks 1 and 2

whose topologies are given by Figure 4.1. The resulting network topologies are shown in Figure

4.6.
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Figure 4.5: Formation for Network 2

Choose β̄ = 0.77, γ̄ = 14.18, and ε = 10−8. Figures 4.7 and 4.8 show the regulation of output

synchronization is achieved for Network 1 and Network 2, respectively.

4.A Preliminary

In order to better understand our design methodology, the readers need to get familiar with

special coordinate basis (SCB) [71], how to square down the right invertible system, and how to

make the invertible system uniform rank. Therefore, we will briefly review these materials.
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Figure 4.6: Expanded Network Topologies

4.A.1 Review of SCB

Consider a strictly proper linear system given by
ẋ = Ax+Bu,

y = Cx,

(4.41)

with B injective where x ∈ Rn, u ∈ Rm, and y ∈ Rp. There exist nonsingular transformations Γs,

Γo, and Γi, such that

x = Γsx̃, y = Γoỹ, u = Γiũ,

x̃ =



xa

xb

xc

xd


, ỹ =

yd
yb

 , ũ =

ud
uc

 ,
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Figure 4.7: Outputs for expanded Network 1

xd =



xd,1

xd,2

...

xd,md


, yd =



yd,1

yd,2

...

yd,md


, ud =



ud,1

ud,2

...

ud,md


,

and that in the new coordinate, (4.41) can be rewritten as

ẋa = Aaaxa + Labyb + Ladyd,

ẋb = Abbxb + Lbdyd,

ẋc = Accxc +Bc(uc + Ecaxa) + Lcbyb + Lcdyd,

ẋd,j = Ad,jxd,j +Bd,j(ud,j + Ed,j,axa + Ed,j,bxb + Ed,j,cxc) + Ld,jyd,

yd,j = Cd,jxd,j , j = 1, . . . ,md

yb = Cbxb.

(4.42)
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Figure 4.8: Outputs for expanded Network 2

Here the states xa, xb, xc, and xd are respectively of dimensions na, nb, nc, and nd =
∑md

j=1 nd,j ,

while the state xd,j is of dimension nd,j for each j = 1, . . . ,md. The inputs ud and uc are respectively

of dimensions md and mc = m −md, while the outputs yd and yc are respectively of dimensions

md and p−md. The matrices Ad,j , Bd,j and Cd,j have the form

Ad,j =

0 Ind,j−1

0 0

 , Bd,j =

0

1

 , Cd,j =

[
1 0

]
.

Some important properties of SCB are summarized as follows:

1) The invariant zeros of the system (4.41) are the eigenvalues of Aaa.

2) (Acc, Bc) is controllable, and (Cb, Abb) is observable.

3) If the system (4.41) is right-invertible, then xb, and hence yb are nonexistence, and Γo = I.
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4) If the system (4.41) is left-invertible, then xc, and hence uc are nonexistence, and Γi = I.

5) The system (4.41) has md zeros at the infinity with the order nd,j , j = 1, . . .md.

4.A.2 Squaring-down for a Right-invertible System

Let us now recall the following result from [66]:

Lemma 4.5. Assume that for the system (4.41), (A,B) is stabilizable, (C,A) is detectable, and

(C,A,B) is right-invertible, then there exists a precompensator of the form
χ̇1 = A1χ1 +B1u1,

u = C1χ1 +D1u1,

(4.43)

such that the resulting system of (4.41) and (4.43) is invertible.

The proof was given in [66] by explicit construction of such a precompensator. To be self

contained, we briefly review such a design procedure.

If the system (4.41) is right-invertible, then xb, and hence yb are nonexistence. Therefore, with

nonsingular transformations Γs and Γi, the system (4.41) can be transformed into the following

SCB form: 

ẋa = Aaaxa + Ladyd,

ẋc = Accxc +Bc(uc + Ecaxa) + Lcdyd,

ẋd,j = Ad,jxd,j +Bd,j(ud,j + Ed,j,axa + Ed,j,cxc) + Ld,jyd,

yd,j = Cd,jxd,j , j = 1, . . . ,md

(4.44)

Consider the following precompensator for the system (4.44)
χ̇1 = N ′χ1 +G′u1,

ũ = [WE′c,M ]′χ1 + [I, J ]′u1,

(4.45)
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where Ec = [E′d,1,c, E
′
d,2,c, · · · , E′d,md,c

]′ ∈ Rnc×md , χ1 ∈ Rnc−mc ,

WA′cc = NW +MB′c, rank

W
B′c

 = nc, [G, J ]′ =

W
B′c


−1

K,

and N and Acc − KEc are Hurwitz stable. Such a matrix K exists since (Acc, Ec) is detectable,

which follows from the fact that (C,A) is detectable.

In [66], it is shown that the resulting system of (4.44) and (4.45) is invertible, and has the same

infinize zero structure as the system (4.44). Moreover, the design procedure introduced additional

invariant zeros, which are eigenvalues of N and Acc−KEc, and hence can be assigned to the open

left-half plane.

It is then easy to see that the precompensator of the form (4.43) for the system (4.41) is given

by 
χ̇1 = N ′χ1 +G′u1,

u = Γi[WE′c,M ]′χ1 + Γi[I, J ]′u1.

(4.46)

4.A.3 Rank-equalization for a Invertible System

Let us now recall the following result from [65]:

Lemma 4.6. Assume that the system (4.41) is invertible, then there exists a precompensator of

the form 
χ̇2 = A2χ2 +B2u2,

u = C2χ2 +D2u2,

(4.47)

such that the resulting system of (4.41) and (4.47) is uniform rank.

The proof is given in [65]. The idea is to add an appropriate number of integrators to each

scalar input ud,j for j = 1, . . . ,md. Let us briefly review such a design.
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Since the system (4.41) is invertible, with a nonsingular transformation Γs, the system (4.41)

can be transformed into the following SCB form:

ẋa = Aaaxa + Ladyd,

ẋd,j = Ad,jxd,j +Bd,j(ud,j + Ed,j,axa) + Ld,jyd,

yd,j = Cd,jxd,j , j = 1, . . . ,md.

(4.48)

Let r̄ ≥ maxj=1,...,md
nd,j . We then design the following pre-compensator for the system (4.48)

χ2
j = A2

jx
2
j +B2

ju
2
j ,

ud,j = C2
j x

2
j +D2

ju
2
j .

(4.49)

Here for the chain j where nd,j < r̄,

A2
j =

0 Ir̄−nd,j−1

0 0

 , B2
j =

0

1

 , C2
j =

[
1 0

]
, D2

j = 0,

while for the chain j where nd,j = r̄, χ2
j , and hence A2

j , B
2
j and C2

j are nonexistence, while D2
j = 1,

that is ud,j = u2
j .

It is then easy to see that the precompensator of the form (4.47) for the system (4.41) is given

by 
χ̇2 = A2χ2 +B2u2,

u = C2χ2 +D2u2,

where χ2 = [χ2
1; · · · ;χ2

md
], u2 = [u2

1; · · · ;u2
md

],

A2 = blkdiag{A2
j}
md
j=1, B

2 = blkdiag{B2
j }
md
j=1, C

2 = blkdiag{C2
j }
md
j=1, D

2 = blkdiag{D2
j}
md
j=1.

4.B Proof of Lemma 4.1

We will prove Lemma 4.1 by explicit construction of the precompensator (4.7) for each agent.

The design is carried in three steps.
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Step 1: Squaring-down precompensator

In this step, we design a compensator for each agent i ∈ {1, . . . , N} such that the resulting system

is invertible. Since the triple (Ci, Ai, Bi) is right-invertible, in order to do so, we only need to design

a pre-compensator of the form: 
χ̇1
i = A1

iχ
1
i +B1

i u
1
i ,

ui = C1
i χ

1
i +D1

i u
1
i ,

(4.50)

where u1
i ∈ Rp, such that the resulting system of (4.5) and (4.50) is invertible. The design proce-

dure was developed in [71] and reviewed in Appendix 4.A.2.

Step 2: Rank-equalizing precompensator

It is clear that the resulting system of (4.5) and (4.50) is invertible. For a given nq ≥ n̄d, where n̄d

is the maximal order of infinite zero of (Ci, Ai, Bi) for all i = 1, . . . , N , we design a rank-equalizing

precompensator of the form 
χ̇2
i = A2

iχ
2
i +B2

i u
2
i ,

u1
i = C2

i χ
2
i +D2

i u
2
i ,

(4.51)

where u2
i ∈ Rp, such that the resulting system of (4.5), (4.50) and (4.51) is invertible and has

uniform rank nq. The design procedure was developed in [65] and reviewed in Appendix 4.A.3.

Step 3: Observer-based pre-feedback

The third stage is to design a observer-based controller such that the resulting system is given by

(4.8) and (4.9).

It is clear that the resulting system of (4.5), (4.50) and (4.51) is invertible and has uniform rank
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nq. It is easy to see that there exists a nonsingular state transformation Γ̃i,s such that
xi

χ1
i

χ2
i

 = Γ̃i,sχ̃i, χ̃i =

χ̃i,a
χ̃i,d

 ,

such that the resulting system of (4.5), (4.50) and (4.51) can be written in the SCB form:

˙̃χi,a = Ãi,aχ̃i,a + L̃i,adyi,

˙̃χi,d = Ãdχ̃i,d + B̃d(u
2
i +Di,aχ̃i,a +Di,dχ̃i,d),

yi = C̃dχ̃i,d,

(4.52)

where

Ãd =

0 Ip(nq−1)

0 0

 , B̃d =

 0

Ip

 , C̃d =

[
Ip 0

]
.

Note that the information z̃i := [zi;χ
1
i ;χ

2
i ] is available for agent i, and z̃i can be represented in

terms of χ̃i,a and χ̃i,d as:

z̃i = C̃i

χ̃i,a
χ̃i,d

 ,
where

C̃i =


Cmi 0 0

0 I 0

0 0 I

 Γ̃i,s.

Define

Ãi =

 Ãi,a L̃i,adC̃d

B̃dDi,a Ãd + B̃dDi,d

 , B̃i =

 0

B̃d


It is clear that (C̃i, Ãi) is detectable which follows from the fact that (Cmi , Ai) is detectable. We
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then design the observer-based pre-feedback for the system (4.52) as:
˙̂
χ̃i = Ãi ˆ̃χi + B̃ivi − K̃i(z̃i − C̃i ˆ̃χi)

u2
i =

[
−Di,a F̃d −Di,d

]
ˆ̃χi + vi,

(4.53)

where vi ∈ Rp is a new input which will be designed in Section 4.3.3, K̃i is such that Ãi + K̃iC̃i is

Hurwitz stable, and F̃d is such that Ãd + B̃dF̃d has desired eigenvalues. It is easy then to see that

the observer error dynamics ωi = χ̃i− ˆ̃χi is asymptotically stable, therefore, the injection term χ̃i,a

into the dynamics χ̃i,d is asymptotically canceled. Hence, the mapping from vi to yi is given by
˙̃xi,d = (Ãd + B̃dF̃d)χ̃i,d + B̃d(vi + ρi),

yi = C̃dχ̃i,

(4.54)

where 
ω̇i = (Ãi + K̃iC̃i)ωi,

ρi =

[
Di,a Di,d − F̃d

]
ωi.

(4.55)

It is clear that the system (4.54) is invertible, of uniform rank nq, and has no invariant zero.

Moreover, the system (4.54) is of the form (4.8) with x̄i := x̃i,d, the parameters

A = Ãd + B̃dF̃d, B = B̃d, C = C̃d,

and (4.55) is of the form (4.9) with Ai,s = Ãi + K̃iC̃i and Ci,s =

[
Di,a Di,d − F̃d

]
.

Note that the observer-based pre-feedback (4.53) for the system in the original coordinate

[xi;χ
1
i ;χ

2
i ] can be written as 

˙̂
χ̃i = Ãi ˆ̃χi + B̃ivi − K̃i(z̃i − C̃i ˆ̃χi),

u2
i =

[
−Di,a F̃d −Di,d

]
Γ̃i,s ˆ̃χi + vi.

(4.56)

It is easy to see that the composition of (4.50), (4.51), and (4.56), yields a pre-compensator of the

form (4.7) with the parameters defined in obvious ways.
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4.C Manipulation of Exosystem

Consider an arbitrary exosystem given by
ẋ = Ax, x(0) = x0,

y = Cx,

(4.57)

where x ∈ Rr, y ∈ Rp, (C,A) is observable, and C is full column rank.

From [8, Theorem 4.3.1], we know that there exist nonsingular transformations Ts ∈ Rr×r and

To ∈ Rp×p, such that, in the transformed state and output, x = Tsx̃, y = Toỹ, where

x̃ =


x̃1

...

x̃p

 , x̃i =


x̃i,1

...

x̃i,ki

 , i = 1, . . . , p, ỹ =


ỹ1

...

ỹp

 ,

we have 
˙̃xi = Aix̃i + Liỹ,

ỹi =

[
1 0

]
x̃i, i = 1, . . . , p,

(4.58)

with an initial condition x̃i(0) related to x(0) in an obvious way, Li is a constant matrix of an

appropriate dimension and

Ai =

0 Iki−1

0 0

 ∈ Rki×ki

The set of integers {k1, k2, . . . , kp} is the observability index of (C,A). Note that ki for i = 1, . . . , p

are in general different. In order for the system to have uniform rank nq, we then add an appropriate

number of integrators to the bottom of each chain. In particular, define

x̄ =


x̄1

...

x̄p

 , x̄i =

x̃i
x2
i

 ∈ Rnq , i = 1, . . . , p, x2
i (0) = 0.
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we then obtain that 
˙̄xi = Āix̄i + L̄iỹ, x̄i(0) = [x̃i(0); 0],

ỹi = C̄ix̄i, i = 1, . . . , p,

(4.59)

where

Āi =

0 Inq−1

0 0

 , L̄i =

Li
0

 , C̄i =

[
1 0 · · · 0

]
.

It is easy to see that the system (4.58) and the system (4.59) generate exactly the same output

ỹ. The system (4.58) can be rewritten in a more compact form as follows:
˙̄x = Āx̄, x̄(0) = [x̄1(0); · · · ; x̄p(0)],

ỹ = C̄x̄,

(4.60)

where

Ā =



Ā1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 Āp


+


L̄1

...

L̄p

 C̄, C̄ =



C̄1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 C̄p


and where ? represents a matrix of less interest, generates the same output as (4.57). Note that

the eigenvalues of the matrix Ā consists of all the eigenvalues of A and additional zero eigenvalues,

which are degenerate.

Next, let us define

B̄ =



B̄1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 B̄p


where B̄i =



0

...

0

1


∈ Rnq .

It is then easy to see that (C̄, Ā, B̄) is invertible, of uniform rank nq, and has no invariant zero.
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We then restore the output transformation To back to the system (4.60) as follows:
˙̄x = Āx̄, x̄(0) = [x̄1(0); · · · ; x̄p(0)],

y = ToC̄x̄.

(4.61)

Note that the system (4.61) generate the same output as (4.57). Since the nonsingular output

transformation does not change the zero structure and invertibility of the system, the system

(ToC̄, Ā, B̄) is also invertible, of uniform rank nq, and has no invariant zero. Finally, there exist a

nonsingular state transformation that transforms the system (4.61) into the form of (4.10).
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Chapter 5

Synchronization for Heterogeneous

Networks of Discrete-time

Introspective Right-invertible Agents

Chapter 4 studies synchronization problems for heterogeneous networks of non-identical intro-

spective right-invertible linear time-invariant agents. The agent models are continuous-time. In

this chapter, we will consider the same problems for discrete-time agent models. Let us first briefly

review the literature on the synchronization problem for discrete-time agent models.

5.1 Literature Review

Although the research on synchronization is primarily focused on networks of continuous-time

agent models, synchronization in homogeneous networks of discrete-time agents has been studied in

[31,46,84] (also see the references therein). A distributed observer-based synchronization controller
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was developed in [31] which communicates the information about the protocol states over the same

network communication topology. In [84], the author considered a very special case of neutrally

stable agent with full actuation (B = I). A network of first-order agents with switching Laplacian

communication topology was studied in [46]. All the aforementioned work only consider the case

where all the agents models are identical, or in other word, homogeneous networks.

In this chapter, we will consider a heterogeneous network of non-identical introspective right-

invertible linear time-invariant agents1. Both output synchronization and regulation of output

synchronization problems are studied. We show that exchange of information among controllers

is not needed. Depending on the desired frequencies in synchronization trajectories, different de-

centralized control schemes are proposed to achieve synchronization for a set of communication

topologies. The chapter is organized as follows: In the remainder of this section, we declare several

notations and recall some classical concept in graph theory. The network structure and preliminary

assumptions and definitions are given in Section 5.2. The output synchronization and regulation

of output synchronization problems are solved in Section 5.3 and 5.4 respectively. Technical devel-

opment is given in the Appendix.

5.1.1 Notations and Preliminaries

The stacking column vector of column vectors x1, . . . , xn, x1, . . . , xn is denoted by [x1; . . . ;xn].

For arbitrary matrix X ∈ Cn×m, X ′, X−1 and ‖X‖ denote respectively the transpose, inverse and

induced 2-norm of X. For square matrix X ∈ Cn×n, det(X) and λ(A) represent its determinant and

eigenvalue. The notation 1 denotes a column vector with element 1 whose dimension is indicated

by the context and 0 represents a zero number, a zero row/column vector or a zero matrix also

1The definition of right-invertibility of a linear system can be found in [40].
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depending on the context. We will specify their dimensions when the need arises.

For A ∈ Cn×m and B ∈ Cp×q, the Kronecker product of A and B is defined as

A⊗B =


a11B · · · a1mB

...
...

...

an1B · · · anmB

 .

The following property of the Kronecker product will be particularly useful:

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

A graph G is defined by a pair (N , E) where N = {1, . . . , N} is a vertex set and E is a set of

pairs of vertices (i, j). Each pair in E is called an arc. A directed path from vertex i1 to ik is a

sequence of vertices {i1, . . . , ik} such that (ij , ij+1) ∈ E for j = 1, ..., k − 1. A directed graph G

contains a directed spanning tree if there is a node r such that a directed path exists between r and

every other node.

A matrix D = {dij}N×N is called a row stochastic matrix if

1) dij ≥ 0 for any i, j;

2)
∑N

j=1 dij = 1 for i = 1, ..., N .

A row stochastic matrix D has at least one eigenvalue at 1 with right eigenvector 1. D can be

associated with a graph G = (N , E). The number of nodes in N is the dimension of D and an arc

(j, i) ∈ E if dij > 0. It is shown in [53] that 1 is a simple eigenvalue of D if and only if G contains

a directed spanning tree. Moreover, the other eigenvalues are in the open unit disk if dii > 0 for

all i.
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5.2 Network Structure

Consider a heterogeneous network of N introspective agents

xi(k + 1) = Aixi(k) +Biui(k),

yi(k) = Ciyx
i(k),

zi(k) = Cizx
i(k),

ζi(k) =
∑N

j=1 dij(y
i(k)− yj(k)),

(5.1)

where xi ∈ Rni , yi ∈ Rp, zi ∈ Rqi and ui ∈ Rmi . The matrix D = {dij} ∈ RN×N is a row-stochastic

matrix that satisfies dii > 0, dij ≥ 0 and
∑

j dij = 1. This D matrix defines a communication

topology that can be captured by a directed graph G = (N , E). The set N contains all the node

and E is the edge set such that an arc (j, i) ∈ E if dij > 0.

Assumption 5.1. The communication topology G contains a directed spanning tree.

Under Assumption 5.1, D has a simple eigenvalue at 1 associated with right eigenvector 1 and

the other eigenvalues strictly inside the unit disk. Let λ1, ..., λN denote the eigenvalues of D such

that λ1 = 1 and |λi| < 1, i = 2, ..., N . We can define a set of communication topology as follows:

Definition 5.1. For δ ∈ (0, 1], let Gδ denote a set of communication topologies such that for any

topology G ∈ Gδ:

1) Assumption 5.1 holds;

2) |λi| < δ, i = 2, ..., N .

Remark 5.1. For δ = 1, G1 is the set of all communication topologies that satisfies Assumption

5.1. In this case, we shall drop the subscription 1 and simply denote it as G but it implies δ = 1.

In the network (5.1), each agent collects two measurements:
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1) a network measurement ζi ∈ Rp which is a combination of its own output relative to that of

neighboring agents;

2) a local measurement zi ∈ Rqi of its internal dynamics.

For each agent, we make the following standard assumption.

Assumption 5.2. The agents possess the following properties:

1) (Ai, Bi) is stabilizable;

2) (Ai, Ciz) is detectable;

3) (Ai, Ciy) is detectable;

4) (Ai, Bi, Ciy) is right-invertible.

5.3 Output Synchronization

The first problem studied in this chapter is the output synchronization problem. The output

synchronization in a heterogeneous network of the form (5.1) is defined as follows:

Definition 5.2. The agents in the network achieve output synchronization if

lim
k→∞

(yi(k)− yj(k)) = 0, ∀i, j ∈ {1, . . . , N}.

The output synchronization problem is formulated below:

Problem 5.1. Consider a heterogeneous network of the form (5.1). For δ ∈ (0, 1] and a given set

Gδ, the output synchronization problem with a set of communication topologies Gδ is to design a
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local linear dynamical controller
x̂i(k + 1) = Aicx̂

i(k) +Bi
cζ
i(k) + Eicz

i(k),

ui(k) = Cicx̂
i(k) +Di

cζ
i(k) +M i

cz
i(k),

(5.2)

such that the output synchronization can be achieved in the network with any communication topol-

ogy belonging to Gδ.

Remark 5.2. Since (Ai, Ciz) is detectable, one can always design a local stabilizing measurement

feedback controller so that the network achieves output synchronization in the sense that yi(k)→ 0

as k → ∞. Such a case is not interested in this chapter. We are aiming to reach synchronization

with a non-trivial and possibly desirable synchronization trajectory.

The synchronization trajectories considered in most applications are either bounded or polyno-

mially increasing. We shall also present the main results respectively for these two cases. The first

theorem is concerned with bounded synchronization trajectories.

Theorem 5.1. For the set G, Problem 5.1 with bounded synchronization trajectories is always

solvable via a decentralized dynamic controller (5.2).

Remark 5.3. Theorem 5.1 indicates that in the case of bounded synchronization trajectories, a

universal synchronization controller can be constructed which solves Problem 5.1 for any commu-

nication topology satisfying Assumption 5.1.

If unbounded synchronization trajectories are demanded, the admissible set of communication

topologies has to be more restricted. This is stated in the next theorem:

Theorem 5.2. For δ ∈ (0, 1) and a given set Gδ, Problem 5.1 with unbounded increasing synchro-

nization trajectories is solvable via a decentralized dynamic consensus controller (5.2).
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We shall prove Theorem 5.1 and 5.2 by explicitly constructing the synchronization controllers.

The design and analysis is done in the next three subsections. First, by exploiting the self-

measurement of each agent, we design a local pre-compensator such that the agent model can

be re-shaped as asymptotically identical, which we refer to network homogenizing. Next, in the

resulting (asymptotically) homogeneous network, solvability of the output synchronization problem

can be connected to that of a robust stabilization problem. Finally, the last step is to solve this

robust stabilization problem by designing a compensator using a low-gain approach. In this stage,

depending on different types of synchronization trajectories, two controllers can be constructed.

5.3.1 Homogenization of the Network

For introspective agents, their self-reflection of internal dynamics provides us with additional

freedom to manipulate the agent models so as to disguise them as being almost identical to the

rest of the network viewed from their output. This is shown in the next lemma.

Lemma 5.1. Consider a heterogeneous network of the form (5.1). Let nd denote the maximum

order of infinite zeros of (Ai, Bi, Ci). Suppose a triple (A,B,C) is given such that

1) rank(C) = p.

2) (A,B,C) is invertible, of uniform rank nq ≥ nd and has no invariant zeros.

There exists a compensator
ξi(k + 1) = Aihξ

i(k) +Bi
hz
i(k) + Eihv

i(k),

ui(k) = Cihξ
i(k) +Di

hv
i(k),

(5.3)
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such that the closed-loop system of (5.1) and (5.3) can be written in the following form:

x̄i(k + 1) = Ax̄i(k) +B
(
vi(k) + di(k)

)
,

yi(k) = Cx̄i(k),

ζi(k) =
∑N

j=1 dij(y
i(k)− yj(k)),

(5.4)

where di are generated by 
ei(k + 1) = Aise

i(k), i = 1, ..., N,

di(k) = Cise
i(k).

(5.5)

and Ais are Schur stable.

Proof. Proof and detailed design procedure can found in Appendix 5.A.

Remark 5.4. We have the following observations

1) The first condition of Lemma 5.1 is natural in the sense that the new model much maintain

the same interface with the network.

2) The condition that (A,B,C) is invertible and has no invariant zero implies that (A,B) is

controllable and (A,C) is observable.

3) We have a substantial freedom in choosing the eigenvalues of A which, as will be seen, deter-

mine the modes in the synchronization trajectories.

Remark 5.5. It should also be noted that such a triple (A,B,C) always exists and, without loss

of generality, takes the following form:

A = A0 +BF, A0 =

0 I(nq−1)p

0 0

 , B =

 0

Ip

 , C =

[
Ip 0

]
, (5.6)

and F is such that A0 +B0F has desired eigenvalues. Such an F exists due to the fact that (A0, B0)

is controllable.
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5.3.2 Connection to Robust Simultaneous Stabilization Problem

In this subsection, we shall show that the output synchronization in an (asymptotically) ho-

mogeneous network (5.4) and (5.5) can be solved by equivalently solving a robust stabilization

problem.

Suppose the synchronization problem for network (5.4) and (5.5) with any communication

topology in Gδ can be solved by a compensator
χi(k + 1) = Acχ

i(k) +Bcζ
i(k),

vi(k) = Ccχ
i(k).

(5.7)

Let x̃i = [x̄i;χi]. Then the closed-loop of each agent can be written as

x̃i(k + 1) =

A BCc

0 Ac

 x̃i(k) +

 0

Bc

 ζi(k) +

B
0

 di(k),

yi(k) =

[
C 0

]
x̄i(k),

ζi(k) = yi(k)−
∑N

j=1 dijy
j(k).

(5.8)

Define x̃ = [x̃1; · · · ; x̃N ],

Ā =

A BCc

0 Ac

 , B̄ =

 0

Bc

 , C̄ =

[
C 0

]
and Ē =

B
0

 .
The overall dynamics of the N agents can be written as

x̃(k + 1) =
[
IN ⊗ Ā+ (IN −D)⊗ B̄C̄

]
x̃(k) + (IN ⊗ Ē)d(k).

Define η = [η1; · · · ; ηN ] = (T ⊗ In)x̃, where ηi ∈ Cn and T is such that JL = T (IN − D)T−1 is

in the Jordan canonical form and JL(1, 1) = 0. In the new coordinates, the dynamics of η can be

written as

η(k + 1) =
[
IN ⊗ Ā+ JL ⊗ B̄C̄

]
η(k) + (T ⊗ Ē)d(k).
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Lemma 5.2. The network of the form (5.8) achieves output synchronization if ηi(k)→ 0 as k →∞

for i = 2, ..., N .

Proof. Let

π(k) =



η1(k)

0

...

0


=



1

0

...

0


⊗ η1(k)

If η(k)→ π(k), then x̃(k)→ (T−1 ⊗ In)π(k). Note that the columns of T−1 comprise all the right

eigenvectors and generalized eigenvectors of I −D. The first column of T−1 is vector 1. Hence the

fact that x̃(k)→ (T−1 ⊗ In)π(k) implies that

x̃(k)→ 1⊗ η1(k).

Remark 5.6. It also becomes clear from Lemma 5.2 that the synchronization trajectory is given

by η1(k) which is governed by

η1(k + 1) = Aη1(k) + (w ⊗ Ē)d(k), η1(0) = (w ⊗ In)x̃(0),

where w is the first row of T , that is, the left eigenvector associated with eigenvalue 1. Note that

d(k) → 0 as k → ∞. This shows that the modes of the synchronization trajectory are determined

by the eigenvalues of A and the complete dynamics depends on both A and a weighted average of

the agents’ initial conditions.

Define η̄ = [η2; · · · ; ηN ]. Taking the dynamics of d into account, we can writeη̄(k + 1)

e(k + 1)

 =

IN−1 ⊗ Ā+ J̄L ⊗ B̄C̄ (ĪT ⊗ Ē)C̄s

0 Ās


η̄(k)

e(k)

 , (5.9)
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where e = [e1; . . . ; eN ],

C̄s = blkdiag{Cis}Ni=1, Ī = [0, IN−1], Ās = blkdiag{Ais}Ni=1,

and J̄L is such that

JL =

0

J̄L

 .
Clearly η̄ → 0 for any initial condition if the system (5.9) is globally asymptotically stable. Since

Ās is Schur stable, the next lemma is straightforward:

Lemma 5.3. The network of the form (5.8) achieves output synchronization if the system

η̃(k + 1) = (IN−1 ⊗ Ā+ J̄L ⊗ B̄C̄)η̃(k), (5.10)

is globally asymptotically stable.

Due to upper-triangular structure of IN−1 ⊗ Ā and J̄L ⊗ B̄C̄, the system (5.10) is essentially a

family of N − 1 subsystems:

η̃i(k + 1) = (Ā+ (1− λi)B̄C̄)η̃i(k), i = 2, ..., N, (5.11)

where λi, i = 2, ..., N are those eigenvalues of D that are not equal to 1.

Lemma 5.4. The network of the form (5.8) achieves output synchronization if (5.11) is globally

asymptotically stable for λi, i = 2, ..., N .

Note that (5.11) can be viewed as the closed-loop of
x(k + 1) = Ax(k) +Bu(k),

z(k) = (1− λ)Cx(k).

(5.12)
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and a compensator 
χ(k + 1) = Acχ(k) +Bcz(k),

u(k) = Ccχ(k),

(5.13)

with unknown λ satisfying |λ| < δ. It is easy to see that owing to linearity, (5.13) stabilizes (5.12)

if it stabilizes 
x(k + 1) = Ax(k) + (1− λ)Bu(k),

z(k) = Cx(k).

(5.14)

Therefore, we arrive at the following conclusion by the end of this subsection.

Lemma 5.5. Problem 5.1 is solved via a composite controller of (5.3) and (5.7) if the closed-loop

of (5.14) and (5.13) is globally asymptotically stable for all |λi| < δ.

Proof. By establishing Lemma 5.2-5.4, we have shown that if the closed-loop of (5.14) and (5.13)

is globally asymptotically stable for all |λ| < δ, then the interconnections of the closed-loop of

compensator (5.7) and (5.4), which is the network (5.8), will reach synchronization. This implies

that the composite controller of (5.3) and (5.7) solves Problem 5.1.

So far, we have converted the output synchronization problem to a simultaneous stabilization

problem. Next, depending on different types of synchronization trajectories, the design bifurcates

into two approaches.

5.3.3 Bounded Synchronization Trajectories

It has been shown that the eigenvalues of A dictate the modes in the synchronization trajectories.

If the trajectories are required to be bounded, we can choose A matrix in Lemma 5.1 to have only

semi-simple eigenvalues on the unit circle. This can be done by choosing proper F matrix in (5.6).

Note that in this case, we can always assume without loss of generality that A′A = I. The controller
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designed based on this type of A matrix can be easily modified by a state transformation so as to

be applicable to the agents with a more general form.

Based on the analysis in the preceding subsection, to prove Theorem 5.1, we need to design

data (Ac, Bc, Cc) in the compensator (5.7) for which the closed-loop of (5.14) and (5.13) is globally

asymptotically stable with any |λ| < 1. To do this, we construct (5.7) in the following form:
χi(k + 1) = (A+KC)χi(k)−Kζi(k)

vi(k) = −εB′Aχi(k),

(5.15)

where K is such that A + KC is Schur stable and ε > 0 is a design parameter to be chosen later.

In other words, we choose Ac = A + KC, Bc = −K and Cc = −εB′A. With this set of data, the

closed-loop (5.14) and (5.13) can be written as
x(k + 1) = Ax(k)− (1− λ)εBB′Aχ(k),

χ(k + 1) = (A+KC)χ(k)−KCx(k).

(5.16)

Lemma 5.6. There exists an ε∗ > 0 such that for ε ∈ (0, ε∗], (5.16) is globally asymptotically stable

for |λ| ∈ (0, 1).

Proof. Define e(k) = x(k)−χ(k). The system (5.16) can be rewritten in terms of x and e as follows:
x(k + 1) = (A− (1− λ)εBB′A)x(k) + (1− λ)εBB′Ae(k),

e(k + 1) = (A+KC + (1− λ)εBB′A)e(k)− (1− λ)εBB′Ax(k).

(5.17)

Let Q be the positive definite solution of Lyapunov equation

(A+KC)′Q(A+KC)−Q+ 4I = 0.

Since |λ| ∈ (0, δ), there exists an ε1 such that for ε ∈ (0, ε1],

(A+KC + (1− λ)εBB′A)∗Q(A+KC + (1− λ)εBB′A)−Q+ 3I ≤ 0.
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Consider V1(k) = e(k)∗Qe(k). Let µ(k) = εB′Ax(k). To ease our presentation, we shall omit the

time label (k) whenever this causes no confusion.

V1(k + 1)− V1(k)

≤− 3‖e‖2 + 2
∣∣∣re((1− λ)∗µ∗B′Q[A+KC + (1− λ)BB′A]e

)∣∣∣+ |1− λ|2µ∗B′QBµ

≤− 3‖e‖2 + |1− λ|M1‖µ‖‖e‖+ |1− λ|2M2‖µ‖2,

where

M1 = 2‖B′Q‖‖A+KC‖+ 4‖B′Q‖‖BB′A‖, M2 = ‖B′QB‖.

It should be noted that M1 and M2 are independent of ε and λ.

Consider V2(k) = ‖x(k)‖2. Note that

[A− (1− λ)εBB′A]′[A− (1− λ)εBB′A]− I

=− 2 re(1− λ)εA′BB′A+ |1− λ|2ε2A′BB′BB′A

There exists an ε2 such that for ε ∈ (0, ε2], εB′B ≤ 1
2I. Since |1− λ|2 ≤ 2 re(1− λ) for |λ| < 1, we

get for ε ∈ (0, ε2],

[A− (1− λ)εBB′A]∗[A− (1− λ)εBB′A]−A′A ≤ −1
2 |1− λ|

2εABB′A.

Hence

V2(k + 1)− V2(k)

≤− 1
2ε |1− λ|

2‖µ‖2 + 2 re
(
(1− λ∗)e∗A′Bµ− |1− λ|2εe∗A′BB′Bµ

)
+ |1− λ|2ε2e∗A∗BB′BB′Ae

≤− 1
2ε |1− λ|

2‖µ‖2 + θ1|1− λ|‖e‖‖µ‖+ θ3|1− λ|2‖e‖‖µ‖+ θ2‖e‖2,

where

θ1 = 2‖A′B‖, θ3 = 2‖A′BB′B‖, θ2 = 4‖A′BB′B′A‖.
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Define a Lyapunov candidate V (k) = V1(k) + εκV2(k) with

κ = 4 + 2M2 + 2M2
1 .

We get that

V (k + 1)− V (k) ≤ −(3− εθ2κ)‖e‖2 − (2 +M2
1 )|1− λ|2‖µ‖2

+ (M1 + εθ1κ)|1− λ|‖µ‖‖e‖+ εθ3κ|1− λ|2‖µ‖‖e‖.

There exists an ε3 such that for ε ∈ (0, ε3],

3− εθ2κ ≥ 2.5, M1 + εθ1κ ≤ 2M1, and εθ3κ ≤ 1.

This yields that

V (k + 1)− V (k)

≤− 2.5‖e‖2 − (2 +M2
1 )|1− λ|2‖µ‖2 + (2M1|1− λ|+ |1− λ|2)‖µ‖‖e‖

≤ − 0.5‖e‖2 − |1− λ|2‖µ‖2 − (‖e‖ −M1|1− λ|‖µ‖)2 − |1− λ|2(1
2‖e‖ − ‖µ‖)

2

≤− 0.5‖e‖2 − |1− λ|2‖µ‖2.

Since (A,B) is controllable, it follows from LaSalle’s invariance principle that system (5.17) is

globally asymptotically stable.

5.3.4 Unbounded Synchronization Trajectories

We proceed to consider synchronization trajectories that are possibly unbounded. In most

applications, those unbounded synchronization trajectories are normally polynomially increasing.

This can be achieved by choosing an A matrix that has all the eigenvalues on the unit circle, some

of which may be degenerate. It should be pointed out we can not only assign the eigenvalues of A
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to arbitrary locations, but we are also able to assign the multiplicity structures of the eigenvalues

as long as they are compatible, that is, the summation of all algebraic multiplicities equals to the

dimension of A.

Our design is built upon the solution of the following discrete algebraic Riccati equation (DARE)

which is also used in [31]:

Pε = A′PεA+ εI − (1− δ2)A′PεB(B′PεB + I)−1B′PεA. (5.18)

The next lemma can be proven following the work in [72,77] (see also [31]).

Lemma 5.7. For any ε > 0 and δ ∈ (0, 1), the DARE (5.18) has a unique positive definite solution

Pε and moreover A− (1− λ)B(B′PεB + I)−1B∗PεA is Schur stable for |λ| < δ.

The compensator (5.7) can be designed as follows
χi(k + 1) = (A+KC)χi(k)−Kζi(k),

vi(k) = Fεχ
i(k),

(5.19)

where K is such that A+KC is Schur stable and

Fε = −(B′PεB + I)−1B′PεA. (5.20)

In this case, Ac = A + KC, Bc = −K and Cc = Fε. We shall prove that with this set of data,

the closed-loop of (8.34) and (5.13) is globally asymptotically stable for |λ| < δ. The closed-loop

system can be written as: 
x(k + 1) = Ax(k) + (1− λ)BFεχ(k),

χ(k + 1) = (A+KC)χ(k)−KCx(k).

(5.21)

Lemma 5.8. Let δ ∈ (0, 1) be given. There exists an ε∗ such that for ε ∈ (0, ε∗], the system (5.21)

is globally asymptotically stable for |λ| < δ.

123



Proof. Define e = x− χ. The (5.21) can be written in terms of x and e as follows:
x(k + 1) = [A+ (1− λ)BFε]x(k)− (1− λ)BFεe(k),

e(k + 1) = [A+KC − (1− λ)BFε]e(k) + (1− λ)BFεx(k).

Let Q be the positive definite solution of Lyapunov equation

(A+KC)′Q(A+KC)−Q+ 4I = 0.

Since Fε → 0 as ε→ 0, there exists an ε1 such that for ε ∈ (0, ε1]

(A+KC − (1− λ)BFε)
′Q(A+KC − (1− λ)BFε)−Q+ 3I ≤ 0.

Consider V1(k) = e(k)∗Qe(k). Let µ(k) = Fεx(k). To ease our presentation, we shall omit the

time label (k) whenever this causes no confusion.

V1(k + 1)− V1(k)

≤− 3‖e‖2 + 2 re
(

(1− λ)∗µ∗B′Q[A+KC − (1− λ)BFε]e
)

+ |1− λ|2µ∗B′QBµ

≤− 3‖e‖2 +M1‖µ‖‖e‖+M2‖µ‖2, (5.22)

where

M1 = 4‖B′Q‖‖A+KC‖+ 8‖B′Q‖ max
ε∈[0,1]

{‖BFε‖)}, M2 = 4‖B′QB‖.

It should be noted that M1 and M2 are independent of ε and λ provided that ‖λ‖ < δ.

Consider V2(k) = x(k)′Pεx(k). We have that

V2(k + 1)− V2(k) ≤ −ε‖x‖2 − (1− δ)2‖µ‖2 + 2 re
(

(1− λ)∗e∗F ′εB
′Pε[A+ (1− λ)BFε]x

)
+ |1− λ|2e∗F ′εBPεBFεe.
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Note that

e∗F ′εB
′Pε[A+ (1− λ)BFε]x = e∗F ′εB

′PεAx+ (1− λ)e∗F ′εB
′PεBµ

= −e∗F ′ε(B′PεB + I)µ+ (1− λ)e∗F ′εB
′PεBµ

= e∗[F ′ε +−λF ′εB′PεB]µ,

and hence

V2(k + 1)− V2(k) ≤ −ε‖x‖2 − (1− δ)2‖µ‖2 + θ1(ε)‖e‖‖µ‖+ θ2(ε)‖e‖2, (5.23)

where

θ1(ε) = 4(‖F ′ε‖+ 3‖F ′εB′PεB‖), θ2(ε) = 4‖F ′εBPεBFε‖.

Consider a Lyapunov candidate V (k) = V1(k) + κV2(k) with

κ =
M2 +M2

1

1− δ2
.

In view of (5.22) and (5.23), we get

V (k + 1)− V (k) ≤ −εκ‖x‖2 −M2
1 ‖µ‖2 − [3− κθ2(ε)]‖e‖2 + [M1 + κθ1(ε)]‖µ‖‖e‖.

There exists an ε∗ ≤ ε1 such that for ε ∈ (0, ε∗],

3− κθ2(ε) ≥ 2, M1 + κθ1(ε) ≤ 2M1.

This yields that

V (k + 1)− V (k) ≤ −εκ‖x‖2 − ‖e‖2 − (‖e‖ −M1‖µ‖)2.

Therefore, for ε ∈ (0, ε∗], the system (5.21) is globally asymptotically stable.
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5.3.5 Application to Output Formation

The formation problem is closely related to synchronization. The design procedure in preceding

subsections can be easily modified to solve the output formation problem.

Definition 5.3. An output formation is a family of vectors {h1, . . . , hN}, hi ∈ Rp. The network

of the form (5.1) is said to achieve output formation if

lim
k→∞

[(yi(k)− hi)− (yj(k)− hj)] = 0.

Theorem 5.3. Consider a heterogeneous network of the form (5.1). For any δ ∈ (0, 1], a given

set of communication topologies Gδ and a formation vector {h1, ..., hN}, the output formation is

always achievable via a local compensator in the form (5.2) in the network with any communication

topology in Gδ.

The proof and controller design follows a similar procedure as in the output synchronization

problem. First, we design a pre-compensator in the form of (5.3) for each agent to homogenize

the network utilizing its local measurements so that the agents are asymptotically identical to a

new model characterized by (A,B,C) for which the output formation is always achievable. The

existence of such a triple (A,B,C) is shown in the next lemma.

Lemma 5.9. For a given family of vectors {h1, ..., hN} and integer nq > 0, hi ∈ Rp, there exists a

triple (A,B,C) and another set of vectors {h̄1, ..., h̄N} of appropriate dimensions such that

1) rank(C) = p,

2) (A,B,C) is invertible, of uniform rank nq and has no invariant zero,

3) Ch̄i = hi, i = 1, ..., N ,
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4) Ah̄i = h̄i, i = 1, ..., N , i.e. A has some semi-simple eigenvalues at 1 with eigenvectors h̄i,

5) the other eigenvalues of A are at desired locations on the unit circle.

Proof. Choose h̄i = hi ⊗ 1 with 1 ∈ Rnq and let

A0 = blkdiag{Aii}pi=1, B = blkdiag{Bii}pi=1, C = blkdiag{Cii}pi=1,

and

Aii =

0 I(nq−1)

0 0

 , Bii =

0

1

 , Cii =

[
1 0

]
,

and A = A0 + BF for some matrix F of appropriate dimension. Obviously, Conditions 1,2 and 3

are satisfied. What remains is to choose an F such that conditions 4 and 5 can be satisfied.

Let F = blkdiag{F11, . . . , Fpp} where Fii is such that Ai + BiFii has all its eigenvalues on the

unit circle and at least one eigenvalue at 1. Then we get

A = A0 +B0F = blkdiag{Aii +BiiFii}pi=1. (5.24)

and hence Condition 5 is satisfied.

It remains to show Condition 4. In view of the structure of h̄i and A, we find that Ah̄i = h̄i

if 1 is an eigenvector of Aii + BiiFii associated with eigenvalue 1. Suppose Fii = [fnq , ..., f1]. We

observe that

(Aii +BiiFii)1 = 1⇔
nq∑
i=1

fi = 1.

On the other hand, the characteristic polynomial of Aii +BiiFii is given by

C(λ) = det(λI −Aii −BiiFii) = λnq − f1λ
nq−1 − · · · − fnq−1λ− fnq

Since Aii +BiiFii has at least one eigenvalue at 1, we get C(1) = 1−
∑nq

i=1 fi = 0 and
∑nq

i=1 fi = 1.

Therefore, 1 is an eigenvector of Aii +BiiFii for i = 1, ..., p and Condition 4 is satisfied.
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Based on Lemma 5.9 and its proof, we can place p semi-simple eigenvalues of A at 1 with eigen-

vectors {h̄1, ..., h̄N} (at most p of them can be linearly independent). We have have a complete

freedom to choose the locations of the other eigenvalues and a relative freedom to assign their mul-

tiplicity structures. Similarly as in preceding subsections, we can put only semi-simple eigenvalues

on the unit circle to ensure bounded synchronization trajectories or allow degenerate eigenvalues

to have unbounded synchronization trajectories. Next, depending on the type of synchronization

trajectories and the resulting choice of A, a local formation controller can be constructed for the

new model as follows:
χi(k + 1) = (A+KC)χi(k)−K

[∑N
j=1 dij [(y

i(k)− hi)− (yj(k)− hj)]
]
,

vi(k) = Ccχ
i(k),

(5.25)

where

Cc =


−εB′A, A only has semi-simple eigenvalues on the unit circle;

−(B′PεB + I)−1B′PεA, A has degenerate eigenvalues on the unit circle,

where Pε is the positive definite solution of (5.18).

Proof of Theorem 5.3. For any triple (A,B,C) satisfying the conditions in Lemma 5.9, there exists

a shaping pre-compensator in the form of (5.3) such that the interconnection of the agents and

shaping pre-compensator can be written in the following form:
x̄i(k + 1) = Ax̄i(k) +B

(
vi(k) + di(k)

)
,

yi(k) = Cx̄i(k).

(5.26)

Let x̄is = x̄i− h̄i. In view of Condition 3 and 4 in Lemma 5.9, the closed-loop system of (5.26) and

controller (5.25) can be written in terms of x̄is and χi as
x̄is(k + 1) = Ax̄is(k) +BCcχ

i(k) +Bdi(k),

χi(k) = Acχ
i(k) +BcC

[∑N
j=1 dij(x̄

i
s(k)− x̄js(k))

]
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We have already proved that the above network synchronizes. Hence

lim
k→∞

[
Cx̄is(k)− Cx̄js(k)

]
= lim

k→∞
[(yi(k)− hi)− (yj(k)− hj)] = 0.

Remark 5.7. We would like to emphasize that thanks to the freedom we have in choosing appro-

priate (A,B,C), no restriction on formation vector needs to be imposed.

5.4 Output Regulation

Despite a freedom in choosing the mode or frequencies of the synchronization trajectories, we

can not plan the trajectories arbitrarily because they are partially determined by the weighted

average of initial conditions. On the other hand, it is important in some scenario to regulate the

output of the agents to desired trajectories when the output synchronization is reached. Suppose

the objective trajectories are generated by an exo-system
x0(k + 1) = A0x0(k), x0(0) = xr,

y0(k) = C0x0(k),

(5.27)

where A0 has all its eigenvalues in the closed unit disc and (A0, C0) is observable. It is reasonable

to assume that the synchronization trajectories are not geometrically increasing.

We want to regulate each agent’s output to y0. Instead of disseminating the information of exo-

system to every agent, we assume that only the root, which is agent 1, receives such information.

In this case, the root measures its output relative to y0 besides what it originally receives from the
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network. To be precise, agent 1 takes the following form:

x1(k + 1) = A1x1(k) +B1u1(k),

z1(k) = C1
zx

1(k),

y1(k) = C1
yx

1(k),

ζ1(k) =
∑N

j=1 d1j(y
1(k)− yj(k)) + δ(y1(k)− y0(k)),

(5.28)

where δ = d11
2 > 0.

Definition 5.4. The agents in the network achieve output regulation if

lim
k→∞

(yi(k)− y0(k)) = 0, ∀i ∈ {1, . . . , N}.

We then formulate the regulation problem as follows:

Problem 5.2. Consider a heterogeneous network of the form (5.1). For a given exo-system (5.27),

a set Gδ, the output regulation problem with exo-system (5.27) and a set of communication topologies

Gδ is to design a local linear dynamical controller (5.2) such that the output regulation can be

achieved in the network with any communication topology belonging to Gδ.

Before we present the result for output regulation problem, some preparatory work needs to be

done. First, we augment the network by including the exo-system as agent 0. In this augmented

network, the agent 0 does not have any network measurement. We can write network measurement

of all the agents uniformly as

ζ̃i(k) =
N∑
j=0

d̃ij(y
i(k)− yj(k)), i = 0, ..., N,
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where

D̄ = {d̄ij} =



1 0 0 · · · 0

d11
2

d11
2 d12 · · · d1N

0 d21 d22 · · · d2N

...
...

...
. . .

...

0 dN1 dN2 · · · dNN


. (5.29)

This D̄ is also an row stochastic matrix and defines an augmented topology Ḡ. Moreover,

since agent 0 (exo-system) is connected to the root of the original network via an out-coming arc

(0, 1), this Ḡ also has a directed spanning tree with a new root at agent 0 (exo-system). Suppose

eigenvalues of D̄ are denoted by λ̄i, i = 0, ..., N with λ̄0 = 1 and λ̄i, i = 1, ..., N are in open unit

disc. For a given set Gδ, the set of augmented topologies by including agent 0 and the arc (0, 1)

can be denoted by Ḡδ̄ such that for any Ḡ ∈ Ḡδ̄,

|λ̄i| < δ̄, i = 1, ..., N.

We have the following theorem:

Theorem 5.4. Consider a heterogeneous network of the form (5.1) and an exo-system (5.27). For

a given set Gδ, Problem 5.2 is solvable via a decentralized dynamic consensus controller (5.2).

Proof. For a given exo-system (5.27), it is shown in Appendix 5.B that there exists another system

and initial condition: 
x̃0(k + 1) = Ã0x̃0(k), x̃0(0) = x̃0

0

y0(k) = C̃0x̃0(k)

(5.30)

that produces the same output as the original exo-system (5.27). Moreover, we can find a B̃0

matrix such that (Ã0, B̃0, C̃0) is invertible, of uniform rank nq and has no invariant zero where nq

131



is an integer greater than the maximal order of infinite zeros of all the agent and the observability

index of (C0, A0). We can view this system as the exo-system.

It is shown in Lemma 5.1 that a pre-compensator of the form (5.3) can be designed for agent

1, ..., N such that their internal model can be shaped as asymptotically identical to the exo-system

(5.30).

Then, depending on the eigenvalues of Ã0, a synchronization controller (5.15) or (5.19) can be

designed for all the agents in the homogenized augmented network with communication topologies

belonging to Ḡδ̄. If such a controller were applied to all the agents, output synchronization could

be achieved. However, the exo-system does not have any input. In fact, this is not a problem. We

can assume the controller that should be applied to exo-system has zero initial condition and the

network should still synchronize regardless. Moreover, it should be noted that the exo-system is not

associated with any network measurement either. Consequently, the controller would produce zero

input if it were applied to the exo-system. This implies that we actually need not apply controller

to the exo-system but only to the agents 1, ..., N in order for the network to synchronize. Since

all the agent output yi, i = 1, ..., N will synchronize with the output of exo-system, the output

regulation is achieved.

5.5 Conclusion

In this chapter, a decentralized control scheme is developed to solve the output synchronization

and output regulation problems in a heterogeneous network of discrete-time introspective right-

invertible agents. The essence of the proposed design is two-folds: first, by exploiting the intro-

spection and right-invertibility property of each agent, we design a local shaping pre-compensator

to manipulate the agent’s internal dynamics as being asymptotically identical to a new model in
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which we enjoy a substantial freedom in assigning its eigenstructures. Then, different synchroniza-

tion controllers depending on the two types of synchronization trajectories can be constructed on

top of the new model so that the output synchronization can be achieved for a set of communication

topologies.

5.A Shaping Pre-compensator Design

In the appendix, we develop the proof of Lemma 5.1 and present a detailed procedure for the

design of the shaping pre-compensator. In the venture to achieve this, a Special Coordinate Basis

(SCB) of linear system developed in [71] plays a fundamental role. We shall first review this canon-

ical decomposition form and based on that develop some technical results that are instrumental to

our proof.

5.A.1 Review of Special Coordinate Basis (SCB)

Consider a discrete-time strictly proper system
x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k).

(5.31)

There exist state, input and output transformation

Γsx = x̃ =



xa

xb

xc

xd


, Γoy = ỹ =

yb
yd

 , Γiu = ũ =

uc
ud

 , (5.32)
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such that in the new coordinate, (5.31) can be rewritten as

xa(k + 1) = Aaaxa(k) + Labyb(k) + Ladyd(k),

xb(k + 1) = Abbxb(k) + Lbdyd(k),

xc(k + 1) = Accxc(k) +Bcuc(k) + Ecaxa(k) + Lcbyb(k) + Lcdyd(k),

xd,j(k + 1) = Ad,jxd,j(k) + Ld,jyd(k) +Bd,j [ud,j(k) +Gj x̃(k)],

yd,j(k) = Cd,jxd,j(k), j = 1, ..., r,

yb = Cbxb,

(5.33)

and

xd =


xd,1

...

xid,r

 , ud =


ud,1

...

uid,r

 , yd =


yd,1

...

yid,r

 ,

where the dimension of xa, xb, xc, xd, xd,j , yb, yd, uc and ud have dimensions na, nb. nc, nd, nd,j ,

p− r, r, m− r and r (nd =
∑r

j=1 nd,j) respectively and

Ad,j =

0 Ind,j−1

0 0

 , Bd,j =

0

1

 , Cd,j =

[
1 0

]
.

Some important properties of SCB are summarized as follows:

1) The invariant zeros of system (5.31) are given by the eigenvalues of Aaa.

2) xb is nonexistent and Γo = I if (5.31) is right-invertible.

3) xc is nonexistent and Γi = I if (5.31) is left-invertible.

4) (Acc, Bc) is controllable and (Abb, Cb) is observable.

5) system (5.31) has r zeros at infinity with order nd,j , j = 1, ..., r.
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5.A.2 Technical Lemmas

Lemma 5.10 (Squaring down of right-invertible systems). Suppose that system (5.31) is right-

invertible, then there exists a pre-compensator
χ1(k + 1) = A1χ1(k) +B1u1(k),

u(k) = C1χ1(k) +D1u1(k),

(5.34)

such that the interconnection of (5.31) and (5.34) is invertible.

Proof. Since (5.31) is right invertible, there exist state and input transformations Γs and Γi such

that (5.31) can be transformed into its SCB form (5.33) while xb is nonexistent. To make this

explicit, we write its SCB form as follows

xa(k + 1) = Aaaxa(k) + Lay(k),

xc(k + 1) = Accxc(k) +Bcuc(k) + Eaxa(k) + Lcy(k),

xd,j(k + 1) = Ad,jxd,j(k) + Ld,jy(k) +Bd,j [ud,j(k) +Ga,jxa(k) +Gc,jxc(k) +Gd,jxd(k)],

yj(k) = Cd,jxd,j(k), j = 1, ..., p,

(5.35)

Let Gc = [Gc,1; · · · ;Gc,p]. Since (A,C) is observable, we find that (Acc, Gc) is observable. Let

F and K be such that Acc + BcF and Acc + KGc are Schur stable. A pre-compensator can be

constructed as 

χ1(k + 1) = (Acc +BcF )χ1(k) +Kν(k),uc(k)

ud(k)

 =

0

I

 ν(k) +

 F

−Gc

χ1(k)
(5.36)

We proceed to show that the interconnection (5.36) and (5.35) is invertible. Suppose ν =
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[ν1; · · · ; νp] and define e1 = xc − χ1. Then

xa(k + 1) = Aaaxa(k) + Lay(k), (5.37)

xc(k + 1) = (Acc +BcF )xc(k)−BcFe1(k) + Eaxa(k) + Lcy(k), (5.38)

e1(k + 1) = Acce1(k) + Eaxa(k) + Lcy(k)−Kν(k), (5.39)

and

xd,j(k + 1) = Ad,jxd,j(k) + Ld,jy(k) + Bd,j [ν
i
j(k) + Ga,jxa(k) + Gc,je1(k) + Gd,jxd(k)], (5.40)

while

yj(k) = Cd,jxd,j(k). (5.41)

Note that (5.37), (5.38), (5.40) and (5.41) are already in SCB form, but (5.39) is not. We need to

eliminate ν from (5.39). Define x̃d = [xd,1,nd,1
; · · · ;xd,p,nd,p

]. We get

x̃d(k + 1) = ν(k) + L1y(k) +Gax
i
a(k) +Gce

i
1(k) +Gdxd(k),

where Ga = [Ga,1; · · · ;Ga,p], Gd = [Gd,1; · · · ;Gd,p] and L1 is of appropriate dimension. Let e2 =

e1 +Kx̃d whose dynamics are given by

e2(k + 1) = (Acc +KGc)e2(k) + L2y(k) +KGaxa(k) + G̃dxd(k),

where G̃ is an appropriate matrix. Define x̄a = [xc; e2;xa]. We get

x̄a(k + 1) = Āaax̄a(k) + L̄ay(k) + Ḡdxd(k), (5.42)

where

Āaa =


Acc +BcF −BcF Ea

0 Acc +KGc KGa

0 0 Aaa

 , L̄a =


Lc

Lc

L2


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and Ḡd is an appropriate matrices. Finally, we need to eliminate xd from (5.42). According to [71],

there exists a matrix Md such that

x̃a = x̄a +Mdxd

and xd satisfy

x̃a(k + 1) = Āaax̃a(k) + L̄ay(k),

xd,j(k + 1) = Ad,jxd,j(k) + Ld,jy(k) +Bd,j [νj(k) + G̃ax̃a(k) +Gd,jxd(k)],

yj(k) = Cd,jxd,j(k),

(5.43)

with appropriate G̃a. Clearly, (5.43) is in the SCB form and is square invertible. Note that in the

original coordinate, the pre-compensator takes the form

χ1(k + 1) = (Acc +BcF )χ1(k) +Kν(k),

u(k) = Γ−1
i

0

I

 ν(k) + Γ−1
i

 F

−Gc

χ1(k).
(5.44)

Lemma 5.11 (Rank equalizing of invertible system). Suppose that system (5.31) is invertible, then

there exists a pre-compensator 
χ2(k + 1) = A2χ2(k) +B2v(k),

w(k) = C2χ2(k),

(5.45)

such that the interconnection of (5.45) and (5.31) is of uniform rank.

Proof. Since (5.31) is invertible, with only a nonsingular state transformation Γs, we can put it in

the following form:

xa(k + 1) = Aaaxa(k) + Lay(k),

xd,j(k + 1) = Ad,jxd,j(k) + Ld,jy(k) +Bd,j [uj(k) +Ga,jxa(k) +Gd,jxd(k)],

yj(k) = Cd,jxd,j(k), j = 1, ..., p.

(5.46)
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We can add more delays to uj so that all the infinite zeros have the same order. Let r > maxj nd,j .

For xd,j with nd,j < r, a pre-compensator can be constructed as
χ2,j(k + 1) = A2,jχ2,j(k) +B2,jvj(k),

uj(k) = C2,jχ2,j ,

where

A2,j =

0 Ir−nd,j−1

0 0

 , B2,j =

0

1

 , C2,j =

[
1 0

]
.

By adding these pre-compensators to uj , all the infinite zeros will have the same order of r. We

can write them together as

χ2(k + 1) = A2χ2(k) +B2v(k),

where χ2 = [χ2,1; · · · ;χ2,p], v = [v1; · · · ; vp], u = [u1; · · · ;uj ] and

A2 = blkdiag{A2,j}, B2 = blkdiag{B2,j}, C2 = Γi blkdiag{C2,j}.

5.A.3 Proof of Lemma 1

Proof. Given Assumption 5.1, there exist non-singular state transformation Γis and input trans-

formation Γic such that (Ai, Bi, Ciy) can be transformed into SCB. Without loss of generality, we

assume in the first place that the agent i is of the following form

The design of compensator (5.3) can be accomplished in three steps.

Step 1: Squaring down.

It follows from Lemma 5.10 that for each agent i, there exists a pre-compensator
χi1(k + 1) = Ai1χ

i
1(k) +Bi

1u
i
1(k),

ui(k) = Ci1χ
i
1(k) +Di

1u
i
1(k),

(5.47)

such that the interconnection of (5.1) and (5.47) is invertible.
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Step 2: Rank equalizing.

Lemma 5.11 shows that a rank-equalizing compensator can be constructed as
χi2(k + 1) = Ai2χ

i
2(k) +Bi

2u
i
2(k),

ui1(k) = Ci2χ
i
2(k),

(5.48)

such that the interconnection of (5.1), (5.47) and (5.48) is invertible and of uniform rank nq > nd.

Step 3: Zero decoupling and Pole placement.

Using a non-singular state transformation

Γis


xi

χi1

χi2

 = χ̃i =

χ̃i0
χ̃id

 ,

the interconnection of (5.1), (5.47) and (5.48) can be written in the following form:

χ̃i0(k + 1) = Ãi0χ̃
i
0(k) + L̃i0y

i(k),

χ̃id(k + 1) = Ãidχ̃
i
d(k) + B̃i

d[u
i
2(k) +Di

0χ̃
i
0(k) +Di

dχ̃
i
d(k)],

yi(k) = C̃idχ̃
i
d(k),

where

Ãid =

0 I(nq−1)p

0 0

 , B̃i
d =

 0

Ip

 , C̃id =

[
Ip 0

]
.

Note that each agent also has a local measurement z̃i which consists of the original zi and com-

pensator states χi1 and χi2. This z̃i can be written in terms of χ̃0 and χ̃d as

z̃i(k) = C̃i1χ̃
i
0(k) + C̃i2χ̃

i
d(k).

Let

Ãi =

 Ãi0 C̃iL̃i0

B̃i
dD

i
0 Ãid + B̃i

dD
i
d

 , B̃i =

 0

B̃i
d

 , C̃i =

[
C̃i1 C̃i2

]
.
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Clearly, (Ãi, C̃i) is detectable. Then an observer based pre-feedback is designed as follows
χ̂i(k + 1) = Ãiχ̂i(k) + B̃ivi(k)− K̃i(z̃i(k)− C̃iχ̂i(k)),

ui2(k) = −D̃iχ̂i(k) + F̃ iχ̂i(k) + vi(k),

(5.49)

where Ãi + K̃iC̃i is Schur stable, D̃i = [Di
0 Di

d], F̃
i = [0 F̃ id] and Ãid + B̃i

dF̃
i
d has a set of pre-

specified eigenvalues. It is easy to see that the error dynamics ei = χ̃i− χ̂i is asymptotically stable.

Therefore, the coupling between χ̃0 and χ̃d is canceled asymptotically. The mapping from vi to yi

is described by the following dynamics:
χ̃id(k + 1) = (Ãid + B̃i

dF̃
i
d)χ̃

i
d(k) + B̃i

dv
i(k) + B̃i

dd
i(k),

yi(k) = C̃idχ̃(k),

and 
ei(k + 1) = (Ãi + K̃iC̃i)ei(k),

di(k) = (D̃i − F̃ i)ei(k).

Note that (Ãid+B̃iF̃ i, B̃i
d, C̃

i
d) is invertible, of uniform rank nq and has no invariant zeros. Moreover,

Ãid + B̃i
dF̃

i
d has pre-selected eigenvalues.

In the original coordinate, (5.49) can be written as
χ̂i(k + 1) = Ãiχ̂i(k) + B̃iK̃i(z̃i(k)− C̃iχ̂(k)),

ui2(k) = −D̃iΓsχ̂
i(k) + F̃ iΓsχ̂

i(k) + vi(k).

(5.50)

5.B Manipulation of Exo-system

Consider an arbitrary exo-system
x(k + 1) = Ax(k), x(0) = x0,

y(k) = Cx(k),

(5.51)
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There exists a non-singular state transformation x = Tsx̃ and y = Toỹ where

x̃ =


x̃1

...

x̃p

 , x̃i =


x̃i,1

...

x̃i,ni

 , ỹ =


ỹ1

...

ỹp

 ,

we have

x̃i(k + 1) = Aix̃i(k) + Liỹ, ỹi(k) =

[
1 0

]
x̃i(k), (5.52)

where

Ai =

0 Ini−1

0 0


and Li is of appropriate dimension. The set of integers {n1, ..., np} is the observability index of

(C,A) (see [8]).

Note that we can equalize the size of Ai to nq by adding shift registers to the bottom of each

chain x̃i with zero initial conditions. Define

x̄ =


x̄1

...

x̄p

 , x̄i =

x̃i
si

 ∈ Rnq , si(0) = 0,

and

x̄i(k + 1) = Āix̄i(k) + L̄iỹ, ỹi(k) =

[
1 0

]
x̄i(k), (5.53)

with

Āi =

0 Inq−1

0 0

 , L̄i =

Li
0

 .
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By adding si, we introduce several zero eigenvalues to the system. It is easy to see that (5.52) and

(5.53) generate exactly the same output ỹ. We can write system (5.53) in a compact form as


x̄(k + 1) = Āx̄(k),

ỹ(k) = C̄x̄(k),

x̄(0) =


x̄1(0)

...

x̄p(0)

 . (5.54)

where

Ā =



? Inq−1 · · · ? 0

? 0 · · · ? 0

...
...

. . .
...

...

? 0 · · · ? Inq−1

? 0 · · · ? 0


, C̄ =


1 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0

 .

Choose

B̄ =



0 · · · 0

1 · · · 0

...
. . .

...

0 · · · 0

0 · · · 1


.

Then (Ā, B̄, C̄) is invertible, of uniform rank nq and has no invariant zero.

Finally we restore the output transformation in system (5.54) as


x̄(k + 1) = Āx̄(k),

y(k) = ToC̄x̄(k),

x̄(0) =


x̄1(0)

...

x̄p(0)

 . (5.55)

This system produces the same output as (5.52). Since non-singular output transformation does

not change invertibility and zero structure. Therefore, the triple (Ā, B̄, ToC̄) is still invertible, of
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uniform rank nq and has no invariant zero. According to the property of SCB, there exists a state

transformation that put it in the form of (5.6).
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Chapter 6

Output Synchronization for

Heterogeneous Networks of

Non-introspective Right-invertible

Agents

6.1 Introduction

The problem of achieving synchronization among agents in a network—that is, asymptotic

agreement on the agents’ state or output trajectories—has received substantial attention in recent

years. The essential difficulty of the synchronization problem is the lack of a central authority with

the ability to control the network as a whole. Instead, each agent must implement a controller based

on limited information about itself and its surroundings—typically in the form of measurements of

its own state or output relative to that of neighboring agents in the network.
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Much of the attention has been directed toward state synchronization in homogeneous networks

(i.e., networks where the agent models are identical), with each agent receiving information about

its own state relative to that of neighboring agents (e.g., [44–46,52,54,56,61,83]). Roy, Saberi, and

Herlugson [62], Tuna [83], and Yang, Roy, Wan, and Saberi [103] considered this type of problem

for more general observation topologies and more complex identical agent models than previously

considered. Others have studied the case where the agents receive relative information about their

own partial-state output, see for example, [32, 48, 49, 84]. A key idea in the work of [32], which

was expanded upon by [107], is the development of a distributed observer. This observer makes

additional use of the network by allowing the agents to exchange information with their neighbors

about their own internal estimates. Many of the results on the synchronization problem are rooted

in the seminal work of [98,99].

6.1.1 Heterogeneous Networks and Output Synchronization

A limited amount of research has also been conducted on heterogeneous networks (i.e., networks

where the agent models are non-identical). [50] presented a robust state-synchronization design for

networks of nonlinear systems with relative degree one, where each agent implements a sufficiently

strong feedback based on the difference between its own state and that of a common reference model.

In the work of [101] it is assumed that a common Lyapunov function candidate is available, which

is used to analyze stability with respect to a common equilibrium point. Depending on the system,

some agents may also implement feedbacks to ensure stability, based on the difference between

those agents’ states and the equilibrium point. [114] analyzed state synchronization in a network of

nonlinear agents based on the network topology and the existence of certain time-varying matrices.

Controllers can be designed based on this analysis, to the extent that the available information and
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actuation allows for the necessary manipulation of the network topology.

The above-cited works focus on synchronizing the agents’ internal states. In heterogeneous

networks, however, the physical interpretation of one agent’s state may be different from that of

another agent. Indeed, the agents may be governed by models of different dimensions. In this

case, comparing the agents’ internal states is not meaningful, and it is more natural to aim for

output synchronization—that is, agreement on some partial-state output from each agent. Chopra

and Spong [10] focused on output synchronization for weakly minimum-phase systems of relative

degree one, using a pre-feedback within each agent to create a single-integrator system with de-

coupled zero dynamics. Pre-feedbacks were also used by [2] to facilitate passivity-based designs.

The authors have previously considered output synchronization for right-invertible agents, using

pre-compensators and an observer-based pre-feedback within each agent to yield a network of

asymptotically identical agents [104]. Kim, Shim, and Seo [25] studied output synchronization for

uncertain single-input single-output, minimum-phase systems, by embedding an identical model

within each agent, the output of which is tracked by the actual agent output. A similar approach

was taken by [97], which showed that a necessary condition for output synchronization in heteroge-

neous networks is the existence of a virtual exosystem that produces a trajectory to which all the

agents asymptotically converge. If one knows the model of an observable virtual exosystem without

exponentially unstable modes, which each agent is capable of tracking, then it can be implemented

within each agent and synchronized via the network. The agent can then be made to track the

model with the help of a local observer estimating the agent’s states.
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6.1.2 Introspective Versus Non-introspective Agents

The designs mentioned in the previous section rely—explicitly or implicitly—on some sort of

self-knowledge that is separate from the information transmitted over the network. In particular,

the agents may be required to know their own state, their own output, or their own state/output

relative to that of a reference trajectory. In this chapter, we shall refer to agents that possess this

type of self-knowledge as introspective agents, to distinguish them from non-introspective agents—

that is, agents that have no knowledge of their own state or output separate from what is received

via the network. This distinction is significant because introspective agents have much greater

freedom to manipulate their internal dynamics (e.g., through the use of pre-feedbacks) and thus

change the way that they present themselves to the rest of the network. The notion of a non-

introspective agent is also practically relevant; for example, two vehicles in close proximity may be

able to measure their relative distance without either of them having knowledge of their absolute

position.

To the authors’ knowledge, the only result that solves the output synchronization problem for a

well-defined class of heterogeneous networks of non-introspective agents is by [113]. In their work,

the only information available to each agent is a linear combination of outputs received over the

network. However, the agents are assumed to be passive—a strict requirement that, among other

things, requires the agents to be weakly minimum-phase and of relative degree one.

6.1.3 Contributions of this Chapter

In this chapter we consider heterogeneous networks of non-introspective linear agents that re-

ceive, via the network, a linear combination of their own output relative to that of neighboring

agents. In the spirit of [32], we also assume that the agents can exchange information about their
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internal estimates using the network’s communication infrastructure. We design decentralized con-

trollers for achieving output synchronization under a set of straightforward assumptions about the

agents and the topology of the network.

Based on the output-synchronization results we also consider the slightly different problem of

regulated output synchronization. Here, the goal is not only to achieve output synchronization, but

to make the synchronization trajectory follow an a priori given reference. When considering this

problem we assume that some of the agents are introspective in the sense that they know their own

output relative to that of the reference output.

6.1.4 Notation

Given a matrix A, A′ denotes its transpose and A∗ denotes its conjugate transpose. We denote

by A ⊗ B the Kronecker product between matrices A and B. When clear from the context, 0

denotes a matrix of appropriate dimensions with all zero elements.

6.2 Problem Formulation

We consider a network of N multiple-input multiple-output agents of the form

ẋi = Aixi +Biui, (6.1a)

yi = Cixi +Diui, (6.1b)

where xi ∈ Rni , ui ∈ Rmi , and yi ∈ Rp. Our goal is to achieve output synchronization among the

agents, meaning that limt→∞(yi − yj) = 0 for all i, j ∈ {1, . . . , N}.

The agents are non-introspective; hence, agent i does not have access to its own output yi.

The only available information comes from the network, which provides each agent with a linear
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combination of its own output relative to that of the other agents. In particular, agent i has access

to the quantity

ζi =

N∑
j=1

aij(yi − yj),

where aij ≥ 0 and aii = 0. The topology of the network can be described by a directed graph

(digraph) G with nodes corresponding to the agents in the network and edges given by the coef-

ficients aij . In particular, aij > 0 implies that an edge exists from agent j to i. Agent j is then

called a parent of agent i, and agent i is called a child of agent j. The weight of the edge equals

the magnitude of aij .

We shall frequently make use of the matrix G = [gij ], where gii =
∑N

j=1 aij and gij = −aij for

j 6= i. This matrix is known as the Laplacian matrix of the digraph G and has the property that

all the row sums are zero. In terms of the coefficients of G, ζi can be rewritten as

ζi =
N∑
j=1

gijyj .

We also assume that the agents can exchange relative information about their internal estimates

using the network’s communication infrastructure. Specifically, agent i is presumed to have access

to the quantity

ζ̂i =
N∑
j=1

aij(ηi − ηj) =
N∑
j=1

gijηj ,

where ηj ∈ Rp is a variable produced internally by agent j as part of the controller. This variable

will be specified as we proceed with the control design.

6.2.1 Assumptions

We make the following assumptions about the network topology and the individual agents.
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Assumption 6.1. The digraph G has a directed spanning tree with root agent K ∈ {1, . . . , N},

such that for each i ∈ {1, . . . , N} \K,

1) (Ai, Bi) is stabilizable

2) (Ai, Ci) is observable

3) (Ai, Bi, Ci, Di) is right-invertible

4) (Ai, Bi, Ci, Di) has no invariant zeros in the closed right-half complex plane that coincide with

the eigenvalues of AK

Remark 6.1. A directed tree is a directed subgraph of G, consisting of a subset of the nodes

and edges, such that every node has exactly one parent, except a single root node with no parents.

Furthermore, there must exist a directed path from the root to every other agent. A directed

spanning tree is a directed tree that contains all the nodes of G. A digraph may contain many

directed spanning trees, and thus there may be several choices of root agent K. Fig. 6.1 illustrates

a digraph containing multiple directed spanning trees.

Remark 6.2. Right-invertibility of a quadruple (Ai, Bi, Ci, Di) means that, given a reference output

yr(t), there exist an initial condition xi(0) and an input ui(t) such that yi(t) = yr(t) for all t ≥ 0.

For example, every single-input single-output system is right-invertible, unless its transfer function

is identically zero.

Let the matrix ḠK = [gij ]i,j 6=K be defined from G by removing row and column number K,

corresponding to the root of a directed spanning tree of G. We shall need the following result,

which is proven in Appendix 6.A.

Lemma 6.1. All the eigenvalues of ḠK are in the open right-half complex plane.
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Figure 6.1: The depicted digraph contains multiple directed spanning trees, rooted at nodes 2, 3, 4, 8, and

9. One of these, with root node 2, is illustrated by bold arrows.

6.3 Control Design

In this section we describe the construction of decentralized controllers that achieve output

synchronization. Before embarking on the actual design procedure, however, we shall describe the

motivation behind the design.

The main idea is to set the control input of the root agent K to zero (i.e., uK = 0) and to also set

ηK = 0. We then design controllers for all the other agents such that their outputs asymptotically

synchronize with the trajectory yK(t). That is, for each i ∈ {1, . . . , N} \ K we wish to achieve

limt→∞(yi − yK) = 0. Equivalently, we wish to regulate the synchronization error variable

ei := yi − yK
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to zero, where the dynamics of ei is governed by ẋi
ẋK

 =

Ai 0

0 AK


 xi
xK

+

Bi
0

ui, (6.2a)

ei =

[
Ci −CK

] xi
xK

+Diui. (6.2b)

The system (6.2) is in general not stabilizable. If xi and xK were available to agent i as measure-

ments, then the problem of making ei converge to zero would nevertheless be solvable by standard

output-regulation methods (see, e.g., [70]). But alas, the only information available to agent i is ζi

and ζ̂i. To achieve our objective with such limited information, we carry out our design for each

agent i ∈ {1, . . . , N} \K in three steps.

In Step 1 we construct a new state x̄i, via a transformation of xi and xK , so that the dynamics

of the synchronization error variable ei can be described by the alternative equations

˙̄xi = Āix̄i + B̄iui :=

Ai Āi12

0 Āi22

 x̄i +

Bi
0

ui, (6.3a)

ei = C̄ix̄i + D̄iui :=

[
Ci −C̄i2

]
x̄i +Diui. (6.3b)

The purpose of this state transformation is to reduce the dimension of the model underlying ei

by removing redundant modes that have no effect on ei. In particular, the model (6.2) may be

unobservable, but the model (6.3) is always observable.

The properties of the model (6.3) also allow us, in Step 2 of the design, to construct a controller

that regulates ei to zero by using state feedback from x̄i. This controller is not directly imple-

mentable, however, because x̄i is not known to agent i. This brings us to Step 3 of the design,

where we construct an observer that makes an estimate of x̄i available to agent i. This observer

152



is based on the information ζi and ζ̂i received via the network, and it works in a distributed man-

ner together with the observers for the other agents to achieve convergence. The observer design

is based on previous results on distributed observer design for homogeneous networks. Since our

network is heterogeneous, we first perform a second state transformation of x̄i to χi, in order to

obtain a dynamical model that is substantially the same as for the other agents. In particular,

the model differences now occur only in particular locations where they can be suppressed by us-

ing high-gain observer techniques. By combining the observer estimates with the state-feedback

controller designed in Step 2, we achieve output synchronization.

6.3.1 Design Preliminaries

Due to the design strategy of setting uK = 0, the trajectory yK(t) becomes the unforced response

of agent K, consisting of a linear combination of the observable modes of the pair (AK , CK).

Asymptotically stable modes vanish as t→∞, and they therefore play no role asymptotically. For

simplicity of presentation, we therefore assume that all the eigenvalues of AK are in the closed

right-half complex plane and that (AK , CK) is observable. We make this assumption without any

loss of generality since, if AK does contain unobservable or asymptotically stable modes, we can

always create an auxiliary model excluding those modes for the purpose of control design (see

Appendix 6.C for details).

Below we describe the three steps of the design procedure that must be carried out for each

agent i ∈ {1, . . . , N} \K. In addition to agent i’s system matrices (Ai, Bi, Ci, Di), the information

needed to carry out these three steps for agent i is as follows:

• the matrices AK and CK of the root agent
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• a common integer n̄ such that n̄ ≥ ni + nK for all i ∈ {1, . . . , N} \K1

• a common matrix L ∈ Rp×pn̄, freely chosen2

• a common high-gain parameter ε ∈ (0, 1]

• a common number τ > 0 that is a lower bound on the real part of the eigenvalues of the

matrix ḠK

Based on this information, we can define the matrices A ∈ Rpn̄×pn̄, C ∈ Rp×pn̄, Ωε ∈ Rpn̄×pn̄, and

Lε ∈ Rpn̄×pn̄ as

A =

0 Ip(n̄−1)

0 0

 , C =

[
Ip 0

]
,

Ωε =


Ipε
−1

. . .

Ipε
−n̄

 , Lε =

 0

εn̄+1LΩε

 .

The pair (A+Lε, C) is always observable; hence, we can define a matrix Pε = P ′ε > 0 as the unique

solution of the algebraic Riccati equation

(A+ Lε)Pε + Pε(A+ Lε)′ − 2τPεC′CPε + Ipn̄ = 0. (6.4)

The matrices A, C, Ωε, Lε, and Pε will be used during the design procedure.

1The integer n̄ can be defined less conservatively as a bound on ni + ri for i ∈ {1, . . . , N} \K, where ri is defined

during Step 1 of the design procedure for each agent.
2See Section 6.3.4 for an explanation of the purpose of L.
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6.3.2 Design Procedure for Agent i ∈ {1, . . . , N} \K

Step 1: State Transformation

Let Oi be the observability matrix corresponding to the system (6.2):

Oi =


Ci −CK
...

...

CiA
ni+nK−1
i −CKAni+nK−1

K

 . (6.5)

Let qi denote the dimension of the null space ofOi, and define ri = nK−qi. Next, define Λiu ∈ Rni×qi

and Φiu ∈ RnK×qi such that

Oi

Λiu

Φiu

 = 0, rank

Λiu

Φiu

 = qi. (6.6)

Because (Ai, Ci) and (AK , CK) are observable, Λiu and Φiu have full column rank (see Appendix

6.D). Let therefore Λio and Φio be defined such that Λi := [Λiu,Λio] ∈ Rni×ni and Φi := [Φiu,Φio] ∈

RnK×nK are nonsingular. We define a new state variable x̄i ∈ Rni+ri as

x̄i =

xi − ΛiMiΦ
−1
i xK

−NiΦ
−1
i xK

 ,
where Mi ∈ Rni×nK and Ni ∈ Rri×nK are defined as

Mi =

Iqi 0

0 0

 , Ni =

[
0 Iri

]
.

The following lemma, which is proven in Appendix 6.A, shows how the synchronization error ei is

given in terms of x̄i.

Lemma 6.2. The synchronization error variable ei is governed by dynamical equations of the form

(6.3), where (Āi, C̄i) is observable and the eigenvalues of Āi22 are a subset of the eigenvalues of

AK .
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Step 2: State-Feedback Control Design

We now design a controller as a function of x̄i to regulate ei to zero. Consider the following

equations with unknowns Πi ∈ Rni×ri and Γi ∈ Rmi×ri , commonly known as the regulator equations:

ΠiĀi22 = AiΠi + Āi12 +BiΓi, (6.7a)

CiΠi − C̄i2 +DiΓi = 0. (6.7b)

Based on Πi and Γi, we define a matrix

F̄i =

[
Fi Γi − FiΠi

]
, (6.8)

where Fi is chosen such that Ai + BiFi is Hurwitz. The following lemma, which is proven in

Appendix 6.A, shows that the regulator equations (6.7) are always solvable and that the matrix F̄i

can be used to define a state-feedback controller.

Lemma 6.3. The regulator equations (6.7) are solvable, and the state-feedback controller ui = F̄ix̄i

ensures that limt→∞ ei = limt→∞(yi − yK) = 0.

Step 3: Observer-Based Implementation

Our last step is to design an observer to produce an estimate of x̄i, denoted by ˆ̄xi. Define

χi = Tix̄i, where

Ti =


C̄i

...

C̄iĀ
n̄−1
i

 .
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Note that Ti is not necessarily a square matrix; however, due to observability of (Āi, C̄i), Ti is

injective, which implies that T ′iTi is nonsingular. In terms of χi, we can write the system equations

as

χ̇i = (A+ Li)χi + Biui, χi(0) = Tix̄i(0), (6.9a)

ei = Cχi +Diui, (6.9b)

where

Li =

 0

Li

 , Bi = Ti

Bi
0

 , Di = Di,

and where Li = C̄iĀ
n̄
i (T ′iTi)

−1T ′i . We construct the observer

˙̂χi = (A+ Li)χ̂i + Biui + ΩεPεC′(ζi − ζ̂i), (6.10a)

ˆ̄xi = (T ′iTi)
−1T ′i χ̂i. (6.10b)

Based on the observer estimate, we define the variable ηi = Cχ̂i + Diui to be shared with the

other agents via the network’s communication infrastructure as described in Section 6.2, and the

observer-based control law

ui = F̄i ˆ̄xi. (6.11)

Together, the observers for agents i ∈ {1, . . . , N}\K form a distributed observer parameterized

by a common high-gain parameter ε. The following lemma, which is proven in Appendix 6.A, shows

that all the observation errors vanish asymptotically if ε is chosen sufficiently small.

Lemma 6.4. There exists an ε∗ ∈ (0, 1] such that, if ε is chosen such that ε ∈ (0, ε∗], then for each

i ∈ {1, . . . , N} \K, limt→∞(x̄i − ˆ̄xi) = 0.
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6.3.3 Main Result

By implementing the observer-based control law (6.11) for each agent i ∈ {1, . . . , N} \K, we

obtain a decentralized controller structure that achieves output synchronization. The following

theorem formalizes this result.

Theorem 6.1. There exists an ε∗ ∈ (0, 1] such that, if ε is chosen such that ε ∈ (0, ε∗], then for

each i, j ∈ {1, . . . , N}, limt→∞(yi − yj) = 0.

Proof. Since the systems are linear, the result follows from Lemmas 6.3 and 6.4 and the separation

principle.

6.3.4 Remarks on the Design Procedure

Having presented the design procedure, some remarks are in order.

The purpose of Step 1 is to reduce the dimension of the model (6.2) by removing redundant

modes that cannot be observed from ei. Such modes exist if agent i and agent K share particular

unforced solutions. Consider, for example, the case where agents i and K are identical. Then the

states xi and xK cannot be individually observed from ei = yi− yK , since there are infinitely many

initial conditions that yield the unforced solution ei = 0. If, on the other hand, we define the state

x̄i = xi − xK , then we obtain the model ˙̄xi = Aix̄i + Biui, ei = Cix̄i + Diui, which is observable.

Indeed, it is easily verified that in our design procedure, identical agents yield qi = ni = nK and

ri = 0, and that Λi = Ini and Φi = InK are valid choices; thus, one obtains precisely x̄i = xi − xK .

In the general case, Step 1 yields a model (6.3) that incorporates the difference between modes

that are shared between agents i and K in addition modes from both agent i and K that are not

shared.
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In Step 2 we must find the solutions Πi and Γi of the regulator equations (6.7). A special

situation arises when ri = 0, which implies that Āi22, Āi12, and C̄i2 are empty matrices. In this

case, Πi and Γi are also empty matrices, and the need to solve the regulator equations vanishes.

This situation occurs, in particular, if agent i and agent K are identical.

In Step 3, we introduce a state transformation from x̄i to χi, where χi has dimension pn̄.

Since the dimension of x̄i may be less than pn̄, the transformation to χi may involve an over-

parameterization. In this case, (6.9) is not the only possible dynamical model of χi, but it is

always one of the possible representations. After performing the state transformation, we proceed

to construct an observer that depends on a high-gain parameter ε. Following the proof of Lemma

6.4, it can be seen that ε must be chosen to stabilize the dynamics (6.15) by making the matrix

IN−1 ⊗ (A + Lε) − ḠK ⊗ (PεC′C) − L̃ε Hurwitz. This works because the nonzero elements of L̃ε

are on the form εn̄+1(L − Li)Ωε (meaning that ‖L̃ε‖ = O(ε)), and L̃ε is therefore dominated by

the Hurwitz matrix IN−1 ⊗ (A+ Lε)− ḠK ⊗ (PεC′C) as ε→ 0. The freely chosen matrix L plays

a role in determining how small ε needs to be chosen, because the difference L − Li affects the

nonzero elements of L̃ε. If sufficient information is available about the agent models, L can be

chosen to make the differences L − Li small, in order to reduce the need for high gain. If all the

agents are identical, then Li is the same for all the agents and one can choose L = Li. In this case,

L̃ε vanishes and ε can be chosen arbitrarily. It is therefore evident that the role of ε is to suppress

the differences in agent models that exist in heterogeneous networks.

6.3.4.1 Information Required About the Network

When designing the controller for agent i, it is necessary to know the model (Ai, Bi, Ci, Di) of

agent i, but it is not necessary to know the models of all the other agents or the exact topology
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of the network. Some additional information is nevertheless required, as specified in Section 6.3.1.

To justify the required level of information, we note that most of the required information is also

assumed available in the literature on homogeneous networks, albeit implicitly. In a homogeneous

network, knowledge of Ai and Ci implies knowledge of AK and CK , since the models are identical.

Moreover, n̄ = 2ni is a known bound on ni + nK , since the agents are of the same order.3 As

described above, the matrices Li are all the same in a homogeneous network; hence one can choose

L = Li, which means that ε = 1 is always a valid choice. The lower bound τ > 0 on the real part

of the eigenvalues of ḠK can be viewed as a measure of the connectivity of the network. Similar

measures of connectivity are typically assumed available in the literature on general homogeneous

networks [32,83,103].

Even though exact information about the network is not required in the design process, it is

nevertheless useful, as it is then possible to search for a non-conservative ε that makes IN−1⊗ (A+

Lε)− ḠK ⊗ (PεC′C)− L̃ε Hurwitz. One can also define τ as a tight lower bound on the real part of

the eigenvalues of ḠK and n̄ as a tight bound on ni+ ri in accordance with footnote 1 on page 154.

6.3.5 Computational Complexity

The controllers constructed in this chapter contain internal dynamics in the form of an observer

for χ. The internal dynamics introduces additional computational complexity compared to the

static control laws that have previously been used for synchronization of of single and double

integrators (e.g., [45,45,52]) to general homogeneous networks with relative-state information (e.g.,

[83, 103]). The need for internal dynamics arises for two reasons. First, since only relative-output

information is exchanged, the agents need internal observer dynamics to estimate unmeasured

3In fact, according to footnote 1 on page 154 one can choose n̄ less conservatively as n̄ = ni in the case of identical

agents, since one always has ri = 0.
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states. Second, since the agents are non-identical, the agreement manifold may contain modes

that are not contained within all the agents, and which must therefore be replicated by internal

dynamics according to the internal model principle.

The order of the internal dynamics is n̄, which is an upper bound on ni+nK for i ∈ {1, . . . , N}\

K. Alternatively, as remarked in footnote 1 on page 154. n̄ can be defined less conservatively as

a bound on ni + ri. The integer ri can be viewed as representing the order of the part of the root

agent dynamics that is not contained within agent i. Hence, the computational complexity is in

this case dependent on how similar the agents are to one another. Indeed, in the case of identical

agents, one always has ri = 0, so n̄ = ni, meaning that each agent implements an observer of order

equal to that of its own dynamics.

An interesting topic of future work is the reduction of computational complexity by finding

ways to reduce the order of the internal dynamics within each agent.

6.4 Regulated Output Synchronization

Our focus so far has been on achieving agreement on a common output trajectory, without

regard to the particular properties of that trajectory. In this section we consider the related

problem of regulating the outputs toward a desired reference trajectory yr(t), which is defined as

the output of an autonomous exosystem

ω̇ = Sω, (6.12a)

yr = Rω, (6.12b)
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where ω ∈ Rnω and yr ∈ Rp. Our goal is to achieve limt→∞ ei = 0 for each i ∈ {1, . . . , N}, where

ei is now defined as

ei := yi − yr.

By the same argument as in Section 6.3.1, we assume without loss of generality that (S,R) is

observable and that all the eigenvalues of S are in the closed right-half complex plane.

In order for the agents to follow the reference trajectory, some information must be available

to the network about agent outputs relative to the reference trajectory. In particular, let I ⊂

{1, . . . , N} be a set of indices corresponding to a subset of agents in the network. We assume that

each agent i ∈ {1, . . . , N} has access to the quantity

ψi = ιi(yi − yr), ιi =


1, i ∈ I,

0, i /∈ I.

That is, each agent in the index set I knows the difference between its own output and that of the

reference trajectory. To proceed with the design, we need to replace Assumption 6.1 with a slightly

modified assumption.

Assumption 6.2. Every node of G is a member of a directed tree with the root contained in I.

Furthermore, for each i ∈ {1, . . . , N},

1) (Ai, Bi) is stabilizable

2) (Ai, Ci) is observable

3) (Ai, Bi, Ci, Di) is right-invertible

4) (Ai, Bi, Ci, Di) has no invariant zeros in the closed right-half complex plane that coincide with

the eigenvalues of S
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We define the matrix Ḡ := G + diag(ι1, . . . , ιN ). It then follows from Lemma 6.7 in Appendix

6.B that all the eigenvalues of Ḡ are in the open right-half complex plane.

6.4.1 Control Design

The control design starts in the same way as in Section 6.3.2, except that the exosystem now

plays the role of agent K, and we carry out three steps for each agent i ∈ {1, . . . , N}. In addition

to agent i’s system matrices (Ai, Bi, Ci, Di), the information needed to carry out these three steps

is as follows:

• the matrices S and R of the exosystem

• a common integer n̄ such that n̄ ≥ ni + nω for all i ∈ {1, . . . , N} (see footnote 1 on Page 4

for a less conservative definition).

• a common matrix L ∈ Rp×pn̄, freely chosen

• a common high-gain parameter ε ∈ (0, 1]

• a common number τ > 0 that is a lower bound on the real part of the eigenvalues of the

matrix Ḡ

Based on this information, the matrices A, C, Ωε, Lε, and Pε can be defined in the same way as in

Section 6.3.1.

6.4.1.1 Design Procedure for Agent i ∈ {1, . . . , N}

We follow the exact procedure of Steps 1 and 2 in Section 6.3.2, with xK = ω, yK = yr, and

(AK , CK) = (S,R).4 This yields a state x̄i such that the dynamics of the synchronization error ei
4We note that Assumption 6.2 ensures that Properties 1–4 of Assumption 6.1 now hold for each i ∈ {1, . . . , N},

which facilitates the design in Steps 1 and 2.
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is governed by the system (6.3), with the same properties as those shown in Lemma 6.2. Similar

to Lemma 6.3, we can therefore state the following result.

Lemma 6.5. The regulator equations (6.7) are solvable, and the state-feedback controller ui =

F̄ix̄i, where F̄i = [Fi,Γi − FiΠi] and Fi is chosen such that Ai + BiFi is Hurwitz, ensures that

limt→∞ ei = limt→∞(yi − yr) = 0.

We continue by constructing an observer. Let χi be defined in the same way as in Step 3 of

Section 6.3.2, to obtain the dynamic equations (6.9). We construct the observer

˙̂χi = (A+ Li)χ̂i + Biui + ΩεPεC′(ζi − ζ̂i) + ΩεPεC′(ψi − ιi(Cχ̂i +Diui)), (6.13a)

ˆ̄xi = (T ′iTi)
−1T ′i χ̂i. (6.13b)

Finally, we define ηi = Cχ̂i +Diui and ui = F̄i ˆ̄xi as before.

The following lemma, which is proven in Appendix 6.A, shows that all the estimation errors

vanish asymptotically if the high-gain parameter ε is chosen sufficiently small.

Lemma 6.6. There exists an ε∗ ∈ (0, 1] such that, if ε is chosen such that ε ∈ (0, ε∗], then for each

i ∈ {1, . . . , N} we have limt→∞(x̄i − ˆ̄xi) = 0.

Based on Lemmas 6.5 and 6.6, we can state the following result, which shows that regulated

output synchronization is achieved.

Theorem 6.2. There exists an ε∗ ∈ (0, 1] such that, if ε is chosen such that ε ∈ (0, ε∗], then for

each i ∈ {1, . . . , N}, limt→∞(yi − yr) = 0.
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6.5 Example

We illustrate the results from Section 6.3 on a network of ten agents. Agents 1 and 2 are

composed as the cascade of a second-order oscillator and a single integrator:

Ai =


0 1 0

0 0 1

0 −1 0

 , Bi =


0

0

1

 , Ci =

[
1 0 0

]
, Di = 0.

Agents 3, 4, and 5 are double integrators:

Ai =

0 1

0 0

 , Bi =

0

1

 , Ci =

[
1 0

]
, Di = 0.

Agents 6, 7, and 8 are single integrators: Ai = 0, Bi = 1, Ci = 1, Di = 0. Finally, agents 9 and 10

are second-order mass-spring-damper systems:

Ai =

 0 1

−2 −2

 , Bi =

0

1

 , Ci =

[
1 0

]
, Di = 0.

The topology of the network is given by the digraph depicted in Fig. 6.1, which contains multiple

directed spanning trees. One of these is rooted at node 2, and we therefore choose K = 2 for our

design. The real part of the eigenvalues of the matrix Ḡ2, constructed by removing row and

column 2 from the Laplacian of the digraph in Fig. 6.1, are lower bounded by approximately 0.33.

We assume that a bound τ = 0.3 is known during the design process. We also assume that a bound

n̄ = 6 on n2 +ni, i ∈ {1, . . . , 10}\2, is known. The matrix L is chosen as the zero matrix. Following

the design procedure in Section 6.3.2, we set u2 = 0 and proceed with Steps 1–3 for each of the

other agents.
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For illustrative purposes, we give the details for agent 3. In Step 1, we first compute O3 as

O3 =



1 0 −1 0 0

0 1 0 −1 0

0 0 0 0 −1

0 0 0 1 0

0 0 0 0 1


=⇒ q3 = 1, r3 = 2.

We may choose Λ3u = [1, 0]′ and Φ3u = [1, 0, 0]′, and hence we can set Λ3 = I2 and Φ3 = I3. It

follows that

x̄3 =



1 0

0 1

0 0

0 0


x3 −



1 0 0

0 0 0

0 1 0

0 0 1


x2.

It can be confirmed that the dynamics of x̄i with output ei takes the form of (6.3) with

Ā312 =

1 0

0 0

 , Ā322 =

 0 1

−1 0

 , C̄32 =

[
0 0

]
.

In Step 2, the regulator equations (6.7) are found to have the solution

Π3 =

 0 0

−1 0

 , Γ3 =

[
0 −1

]
.

We select the matrix F3 = [−2− 3] to place the poles of A3 +B3F3 at −1 and −2. Thus, we obtain

the matrix F̄3 = [−2,−3,−3,−1].

In Step 3 we design the observer according to the procedure in Section 6.3.2, with the high-gain
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Figure 6.2: Outputs from the simulation example

parameter ε = 0.3. The relevant matrices for the model (6.9) are

A =

0 I5

0 0

 , C =

[
1 0 0 0 0 0

]
,

B3 =

[
0 1 0 · · · 0

]′
, L3 =

[
0 0 0.5 0 −0.5 0

]
.

We perform the same procedure for the other agents. For agent 1, we obtain qi = 3 and ri = 0;

for agents 6, 7, and 8, we obtain qi = 1 and ri = 2; and for agents 9 and 10, we obtain qi = 0 and

ri = 3. Fig. 6.2 shows the resulting simulated output for all ten agents.
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6.6 Concluding Remarks

The designs presented in this chapter rely on a set of conditions about the agents and the

network that are straightforward to verify. However, they are not all strictly necessary. Inspecting

the proofs of our results we see, for example, that the condition on the invariant zeros in Assumption

6.1 (and 1′) is used only in the proof of Lemma 6.3 (6.5) to guarantee that no invariant zeros of

(Ai, Bi, Ci, Di) coincide with the eigenvalues of Āi22. Since the eigenvalues of Āi22 are only a subset

of the eigenvalues of AK (S), the quadruple (Ai, Bi, Ci, Di) can be allowed to contain certain

invariant zeros of AK (S). Indeed, in the special case of identical agents, the matrix Āi22 vanishes,

so the condition on the invariant zeros is not needed. Similarly, the condition of right-invertibility

is used only to guarantee solvability of the regulator equations (6.7), which vanish for identical

agents. Hence, if agent i is identical to AK , then it does not need to be right-invertible.

Finally, we also note that by choosing uK = 0 and ηK = 0 in the design for output synchro-

nization, we discard agent K’s actuation capability and the information that it receives from the

network. It is possible that the assumptions made in this chapter can be relaxed by letting all

the agents participate actively in the synchronization process (as is done in the regulated output

synchronization problem), although this is yet to be investigated. Current research is focused on

relaxing the assumptions with respect to right-invertibility and invariant zeros.
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6.A Proof of Lemmas 6.1, 6.2, 6.3, 6.4, and 6.6

Lemma 6.1. The set of nodes {1, . . . , N} \K can be grouped into directed subgraphs G1, . . . ,GM ,

each of which has a directed spanning tree rooted at a child of node K. We can assume that there

are no edges from Gk to Gj if k > j (if such an edge exists, then the child node in Gj can be moved

to Gk). With this permutation, the matrix ḠK takes the block-triangular form

ḠK =


G̃11 · · · 0

...
. . .

...

G̃M1 · · · G̃MM

 .

Each submatrix G̃ii, i ∈ 1, . . . ,M , can be written as G̃ii = Gi + Di, where Gi is the Laplacian

of Gi and Di is a diagonal matrix whose j’th entry is the total weight of all the edges to node j

of Gi from nodes outside of Gi. Since Gi contains a directed spanning tree whose root is the child

of node K, the diagonal element in Di corresponding to that root is positive. It therefore follows

from Lemma 6.7 in Appendix 6.B that all the eigenvalues of G̃ii are in the open right-half complex

plane. The same is true for ḠK , due to its block-triangular form.

Lemma 6.2. The definitions of Λiu and Φiu imply that the columns of [Λ′iu,Φ
′
iu]′ span the unob-

servable subspace of the model (6.2), which is invariant with respect to blkdiag(Ai, AK). Hence,

there exists a matrix Ui ∈ Rqi×qi such thatAi 0

0 AK


Λiu

Φiu

 =

Λiu

Φiu

Ui, [Ci −CK]
Λiu

Φiu

 = 0. (6.14)

Let x̄i be partitioned as x̄i = [x̄′i1, x̄
′
i2]′, where

x̄i1 = xi − ΛiMiΦ
−1
i xK , x̄i2 = −NiΦ

−1
i xK .
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Using the equality CiΛiu = CKΦiu, derived from (6.14), we calculate ei in terms of x̄i1 and x̄i2:

ei = Cixi − CKxK +Diui

= Cixi − CK
[
Φiu Φio

]
Φ−1
i xK +Diui

= Cixi −
[
CiΛiu CKΦio

]
Φ−1
i xK +Diui

= Cixi − (CiΛiMi + CKΦiN
′
iNi)Φ

−1
i xK +Diui

= Ci(xi − ΛiMiΦ
−1
i xK)− CKΦiN

′
iNiΦ

−1
i xK +Diui

= Cix̄i1 + CKΦiN
′
i x̄i2 +Diui.

From (6.14), we also have that AiΛiu = ΛiuUi and AKΦiu = ΦiuUi. We therefore easily derive that

there exist matrices Qi and Ri on the form

Qi =

Ui Qi12

0 Qi22

 , Ri =

Ui Ri12

0 Ri22

 ,
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such that AiΛi = ΛiQi and AKΦi = ΦiRi. For x̄i1 we can now calculate the state equations as

˙̄xi1 = Aixi − ΛiMiΦ
−1
i AKxK +Biui

= Aixi − ΛiMiRiΦ
−1
i xK +Biui

= Aixi − Λi

Ui Ri12

0 0

Φ−1
i xK +Biui

= Aixi − Λi

Ui 0

0 0

Φ−1
i xK − Λi

0 Ri12

0 0

Φ−1
i xK +Biui

= Aixi − ΛiQiMiΦ
−1
i xK − Λi

Ri12

0

NiΦ
−1
i xK +Biui

= Ai
(
xi − ΛiMiΦ

−1
i xK

)
− Λi

Ri12

0

NiΦ
−1
i xK +Biui

= Aix̄i1 + Λi

Ri12

0

 x̄i2 +Biui.

For x̄i2 we have ˙̄xi2 = −NiΦ
−1
i AKxK = −NiRiΦ

−1
i xK = −Ri22NiΦ

−1
i xK = Ri22x̄i2. Defining

Āi12 = Λi

Ri12

0

 , Āi22 = Ri22, C̄i2 = −CKΦiN
′
i ,

we see that ei is governed by the dynamical equations (6.3). To see that (Āi, C̄i) is observable,

note that the observability matrix Oi of the system (6.2) has rank ni + ri, which is precisely the

order of the system (6.3). To see that the eigenvalues of Āi22 are a subset of the eigenvalues of AK ,

note that, due to the block-triangular form of Ri, the eigenvalues of Āi22 = Ri22 are a subset of the

eigenvalues of Ri. Since Ri is obtained from AK via a similarity transform Ri = Φ−1
i AKΦi, it has

the same eigenvalues as AK .
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Lemma 6.3. Using the notation of the proof of Lemma 6.2, the task of achieving limt→∞ ei = 0 can

be viewed as an output regulation problem, where the subsystem ˙̄xi2 = Āi22x̄i2 is the exosystem and

˙̄xi1 = Aix̄i1 + Āi12x̄i2 +Biui is the system to be regulated to achieve ei = Cix̄i1− C̄i2x̄i2 +Diui = 0.

Since (Ai, Bi) is stabilizable and the eigenvalues of Āi22 are in the closed right-half complex plane,

[70, Theorem 2.3.1] shows that the state-feedback controller ui = F̄ix̄i solves the regulation problem,

assuming the regulator equations (6.7) are solvable. From [70, Corollary 2.5.1], the regulator

equations are solvable if, for each λ that is an eigenvalue of Āi22, the Rosenbrock system matrix[
Ai−λI Bi
Ci Di

]
has rank ni + p. The Rosenbrock system matrix has normal rank ni + p due to right-

invertibility of the quadruple (Ai, Bi, Ci, Di) (see [68, Property 3.1.6]). Since this quadruple has no

invariant zeros coinciding with eigenvalues of AK and the eigenvalues of Āi22 are a subset of the

eigenvalues of AK , it follows that the rank of the Rosenbrock system matrix is equal to the normal

rank for each λ that is an eigenvalue of Āi22.

Lemma 6.4. Let χ̃i = χi − χ̂i. Then

˙̃χi = (A+ Li)χ̃i − ΩεPεC′(ζi − ζ̂i)

= (A+ L)χ̃i − L̃iχ̃i − ΩεPεC′(ζi − ζ̂i),

where L = [0, L′]′ and L̃i := L − Li. Noting that for each i ∈ {1, . . . , N},
∑N

j=1 gij = 0, we have

ζi =
N∑
j=1

gijyj =
N∑
j=1

gij(yj − yK)

=
∑

j∈{1,...,N}\K

gijej =
∑

j∈{1,...,N}\K

gij(Cχj +Djuj).

Also, since ηK = 0, ζ̂i =
∑

j∈{1,...,N}\K gij(Cχ̂j +Djuj). It follows that

˙̃χi = (A+ L)χ̃i − L̃iχ̃i − Ωε

∑
j∈{1,...,N}\K

gijPεC′Cχ̃j .
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Introducing the state transformation ξi = ε−1Ω−1
ε χ̃i, it can be confirmed that

εξ̇i = (A+ Lε)ξi − L̃iεξi −
∑

j∈{1,...,N}\K

gijPεC′Cξj ,

where

L̃iε =

 0

εn̄+1(L− Li)Ωε

 .
Define

ξ =

[
ξ′1 · · · ξ′K−1 ξ′K+1 · · · ξ′N

]′
,

L̃ε = blkdiag(L̃1ε, . . . , L̃(K−1)ε, L̃(K+1)ε, . . . , L̃Nε),

and note that ‖L̃ε‖ = O(ε). The overall dynamics of ξ is

εξ̇ = (IN−1 ⊗ (A+ Lε)− ḠK ⊗ (PεC′C)− L̃ε)ξ. (6.15)

We shall show that the dynamics in (6.15) can be stabilized by making ε small, in order to diminish

L̃ε.

Following the methodology of [98], we define U such that J = U−1ḠKU , where J is the Jordan

form of ḠK , and introduce the transformation ξ = (U ⊗ Ipn̄)ν. Then

εν̇ = (IN−1 ⊗ (A+ Lε)− J ⊗ (PεC′C)− W̃ε)ν, (6.16)

where W̃ε := (U−1⊗ Ipn̄)L̃ε(U ⊗ Ipn̄). Note that ‖W̃ε‖ = O(ε). Partitioning ν = [ν∗1 , . . . , ν
∗
N−1]∗ in

the same way as ξ, we have that

εν̇i = Riνi − ρiPεC′Cνi+1 −
N−1∑
j=1

w̃εijνj , i ∈ 1, . . . , N − 2,

εν̇N−1 = RN−1νN−1 −
N−1∑
j=1

w̃ε(N−1)jνj ,
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where Ri = A+Lε−λiPεC′C; λi is the i’th eigenvalue along the diagonal of J ; ρi ∈ {0, 1}; and w̃εij

is the (i, j)’th pn̄× pn̄ block of W̃ε. Following the results of [104], we can show that Ri is Hurwitz:

RiPε + PεR∗i = (A+ Lε)Pε + Pε(A+ Lε)′ − 2Re(λi)PεC′CPε

= (A+ Lε)Pε + Pε(A+ Lε)′ − 2τPεC′CPε − 2(Re(λi)− τ)PεC′CPε ≤ −Ipn̄.

Next, note that there exists an MP > 0 such that for all sufficiently small ε > 0, ‖Pε‖ < MP . To

see this, let P be the solution of the Riccati equation AP+PA′−2τPC′CP+ 2Ipn̄ = 0 and let ε be

small enough that LεP + PL′ε ≤ Ipn̄. Then clearly (A+ Lε)P + P(A+ Lε)′ − 2τPC′CP + In̄p ≤ 0

and it then follows from standard lq theory that Pε ≤ P (see, e.g., [27]).

Define a Lyapunov function V = ε
∑N−1

i=1 `iv
∗
iP−1

ε vi, where the `i’s are defined recursively by

`N−1 = 1 and `i = `i+1/(9M
4
P ) for i ∈ 1, . . . , N − 2. Then

V̇ =

N−1∑
i=1

`iν
∗
i P−1

ε (RiPε + PεR∗i )P−1
ε νi − 2Re

(
N−2∑
i=1

`iρiν
∗
i P−1

ε (PεC′CPε)P−1
ε νi+1

)

− 2Re

N−1∑
i=1

N−1∑
j=1

`iν
∗
i P−1

ε (w̃εijPε)P−1
ε νj


≤ −

N−1∑
i=1

`iυ
2
i + 2

N−2∑
i=1

`iM
2
Pυiυi+1 + 2

N−1∑
i=1

N−1∑
j=1

`i‖w̃εijPε‖υiυj ,

where υi := ‖P−1
ε νi‖. Note that the first two terms can be written as

−1

3

N−1∑
i=1

`iυ
2
i −

1

3
`1υ

2
1 −

1

3
`N−1υ

2
N−1 −

N−2∑
i=1

 `iM
2
P√

1
3`i+1

υi −
√

1

3
`i+1υi+1

2

−
N−2∑
i=1

(
1

3
`i −

`2iM
4
P

1
3`i+1

)
υ2
i .

From the definition of `i, it can be confirmed that the last term is zero. It follows that V̇ ≤

−1
3

∑N−1
i=1 `iυ

2
i + 2

∑N−1
i=1

∑N−1
j=1 `iMP ‖w̃εij‖υiυj , Since ‖w̃εij‖ = O(ε) and the `i’s are independent

of ε, the first quadratic term dominates the second quadratic term for all sufficiently small ε, and

hence V̇ is negative definite. It now follows that limt→∞ ν = 0, which implies limt→∞ ξ = 0. This

in turn implies that χ̂i converges to χi = Tix̄i, and hence ˆ̄xi converges to (T ′iTi)
−1T ′iTix̄i = x̄i.
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Lemma 6.6. Let χ̃i = χi − χ̂i. Then

˙̃χi = (A+ L)χ̃i − L̃iχ̃i − ΩεPεC′(ζi − ζ̂i)− ΩεPεC′(ψi − ιi(Cχ̂i +Diui)),

where L = [0, L′]′ and L̃i := L − Li. Note that

N∑
j=1

gijyj =
N∑
j=1

gij(yj − yr) =
N∑
j=1

gij(Cχj +Djuj).

Also, ζ̂i =
∑N

j=1 gij(Cχ̂j +Djuj) and ψi = ιiei = ιi(Cχi +Diui). It follows that

˙̃χi = (A+ L)χ̃i − L̃iχ̃i − Ωε

 N∑
j=1

gijPεC′Cχ̃j + ιiPεC′Cχ̃i

 ,

or, after introducing the state transformation ξi = ε−1Ω−1
ε χ̃i,

εξ̇i = (A+ Lε)ξi − L̃iεξi −

 N∑
j=1

gijPεC′Cξj + ιiPεC′Cξi

 ,

where L̃iε is defined in the same way as in the proof of Lemma 6.4. Defining ξ = [ξ′1, . . . , ξ
′
N ]′ and

L̃ε = blkdiag(L̃1ε, . . . , L̃Nε), the overall dynamics becomes

εξ̇ = (IN ⊗ (A+ Lε)− Ḡ⊗ (PεC′C)− L̃ε)ξ.

The proof can now be completed in the same way as the proof of Lemma 6.4.

6.B A Useful Lemma

We here give a slightly extended version of [32, Lemma 5].

Lemma 6.7. Suppose that G is a weighted digraph with N nodes, and suppose that I ⊂ {1, . . . , N}

represents a subset of nodes such that every node of G is a member of a directed tree with its root

contained in I.5 Let G be the Laplacian of G and let D = diag(d1, . . . , dN ) be a diagonal matrix

5A special case is when I consists of a single element corresponding to the root of a directed spanning tree of G.
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with non-negative elements. If for each i ∈ I, di > 0, then all the eigenvalues of Ḡ := G + D are

in the open right-half complex plane.

Proof. Let Ĝ denote an expanded digraph constructed from G by adding a node 0 and edges from

node 0 to node i ∈ {1, . . . , N} with weigth di, whenever di > 0. Then the Laplacian of Ĝ is given by

Ĝ =
[

0 0
−d Ḡ

]
, where d = [d1, . . . , dN ]′. Since Ĝ contains edges from 0 to every node in I, it contains

a directed spanning tree rooted at node 0. Hence, from [53, Lemma 3.3], Ĝ has a simple eigenvalue

at the origin, and all the other eigenvalues are in the open right-half complex plane. Due to the

block-triangular form of Ĝ, its eigenvalues consist of the zero element (1, 1) and the eigenvalues of

Ḡ. It therefore follows that the eigenvalues of Ḡ must be in the open right-half complex plane.

6.C Auxiliary Model for (AK , CK)

Suppose that the model ẋK = AKxK , yK = CKxK contains unobservable or asymptotically

stable modes. We show here how to construct an observable auxiliary model without asymptotically

stable modes, whose output converges to that of the original model. Let Γ1 be a nonsingular matrix

such that the state transformation Γ1zK = xK yields the stability structural decomposition ( [8])żK1

żK2

 =

Â11 0

0 Â22


zK1

zK2

 , yK =

[
Ĉ1 Ĉ2

]zK1

zK2

 ,
where Â11 has all its eigenvalues in the closed right-half complex plane and Â22 has all its eigenvalues

in the open left-half complex plane. Since zK2 vanishes asymptotically, the system żK1 = Â11zK1,

yK1 = Ĉ1zK1 has the property that limt→∞(yK1 − yK) = 0 for zK1(0) = [I, 0]Γ−1
1 xK(0). Next,

let Γ2 be a nonsingular matrix such that the state transformation Γ2qK = zK1 yields the Kalman
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observable canonical form:q̇K1

q̇K2

 =

Ã11 Ã12

0 Ã22


qK1

qK2

 , yK1 =

[
0 C̃2

]qK1

qK2

 .
The reduced-order system q̇K2 = Ã22qK2, yK1 = C̃2qK2 is clearly observable and yields the same

output for qK2(0) = [0, I]Γ−1
2 zK1(0).

6.D Proof of Column Rank of Λiu and Φiu

In this section we demonstrate that the matrices Λiu and Φiu must have full column rank. For

the sake of establishing a contradiction, suppose that one of the matrices, say Λiu, has linearly

dependent columns. Then there are nonzero vectors z ∈ Rqi and z̄ ∈ RnK such that

Λiu

Φiu

 z =

0

z̄

 =⇒ Oi

0

z̄

 = 0 =⇒


CK

...

CKA
nK−1
K

 z̄ = 0.

The last statement implies that (AK , CK) is unobservable, thus establishing the contradiction.
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Chapter 7

Semi-global Regulation of Output

Synchronization for Heterogeneous

Networks of Non-introspective,

Invertible Agents subject to Actuator

Saturation

7.1 Introduction

The synchronization problem in a network has received substantial attention in recent years

(see [2, 44, 55, 100] and references therein). Active research is being conducted in this context and

numerous results have been reported in the literature, to name a few see [32, 45, 46, 48, 51, 52, 54,
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73,83,84].

Much of the attention has been devoted to achieving state synchronization in homogeneous

networks (i.e., networks where the agent models are identical), where each agent has access to a

linear combination of its own state relative to that of neighboring agents (e.g., [44–46,52,54,56,61,

83]). Roy, Saberi, and Herlugson [62] and Yang, Roy, Wan, and Saberi [103] considered the state

synchronization problem for more general network topologies. A more realistic case—that is, each

agent receives a linear combination of its own partial-state output relative to that of neighboring

agents—has been considered in [32,48,49,84,85]. A key idea in the work of [32], which was expanded

upon by Yang, Stoorvogel, and Saberi [107], is the development of a distributed observer. This

observer makes additional use of the network by allowing the agents to exchange information with

their neighbors about their own internal estimates. Many results on the synchronization problem

are rooted in the seminal work [98,99].

7.1.1 Heterogeneous Networks and Output Synchronization

Recent activities in the synchronization literature have been focused on achieving synchroniza-

tion for heterogeneous networks (i.e., networks where the agent models are non-identical). This

problem is challenging and only some results are available, see for instance [10,20,25,39,97,101].

In heterogeneous networks, the agents’ states may have different dimensions. In this case, the

state synchronization is not even properly defined, and it is more natural to aim for output syn-

chronization—that is, asymptotic agreement on some partial-state output from each agent. Chopra

and Spong [10] studied the output synchronization for weakly minimum-phase nonlinear systems of

relative degree one, using a pre-feedback to create a single-integrator system with decoupled zero

dynamics. Kim, Shim, and Seo [25] considered the output synchronization for uncertain single-input
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single-output, minimum-phase linear systems, by embedding an identical model within each agent,

the output of which is tracked by the actual agent output. The authors have previously consid-

ered the output synchronization problem for right-invertible linear agents, using pre-compensators

and an observer-based pre-feedback within each agent to yield a network of substantially identical

agents [104].

7.1.2 Introspective versus Non-introspective Agents

The designs mentioned in Section 7.1.1 generally rely on some sort of self-knowledge that is

separate from the information transmitted over the network. More specifically, the agents may

be required to know their own states or their own outputs. In [16, 17], we refer to agents that

possess this type of self-knowledge as introspective agents to distinguish them from non-introspective

agents—that is, agents that have no knowledge about their own states or outputs separate from

what is received via the network.

To our best knowledge, the only result besides [16, 17] that clearly applies to heterogeneous

networks of non-introspective agents is by Zhao, Hill and Liu [113]. However, the agents are

assumed to be passive—a strict requirement that, among other things, requires that the agents are

weakly minimum-phase and of relative degree one.

7.1.3 Contributions of this Chapter

The regulation of output synchronization problem, where the objective is not only to achieve

output synchronization, but to make the synchronization trajectory follow an a priori given ref-

erence trajectory generated by an arbitrary autonomous exosystem, has been considered in [17].

In [17], we assume that the agents in the network are non-introspective except for some of the
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agents, which know their own outputs relative to the reference trajectory. However, we do not have

any constraints on the magnitude of the agent’s input. In the real world, every physically conceiv-

able actuator has bounds on its input, and thus actuator saturation is a common phenomenon. In

this chapter, we extend the results in [17] to the case where all the agents are subject to actuator

saturation, which introduces significant complexities in terms of the analysis and design.

7.1.4 Notations

Let A ∈ Rm×n denote the matrix with complex entries. Given a matrix A ∈ Rm×n, A′ denotes

its transpose. A ∈ Rn×n is said to be Hurwitz stable if all its eigenvalues are in the open left-half

complex plane. The Kronecker product between A ∈ Rm×n and a matrix B ∈ Rp×q is defined as

the Rmp×nq matrix

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 ,

where aij denotes element (i, j) of A. In denotes the identity matrix of dimension n. Similarly, 0n

denotes the square matrix of dimension n with all zero elements. We sometimes drop the subscript

if the dimension is clear in the context. When clear form the context, 1 denotes the column vector

with all entries equal to one.

181



7.2 Problem Formulation and Main Result

7.2.1 Problem Formulation

Consider a network of N multiple-input multiple-output invertible agents of the form

ẋi = Aixi +Biσ(ui), (7.1a)

yi = Cixi +Diσ(ui), (7.1b)

for i ∈ {1, . . . , N}, where xi ∈ Rni , ui ∈ Rp, yi ∈ Rp, and

σ(ui) = [σ1(ui,1), . . . , σ1(ui,p)]
′,

where σ1(u) is the standard saturation function

σ1(u) = sgn(u) min {1, |u|} ,

and where the quadruple (Ai, Bi, Ci, Di) is invertible.

The network provides each agent with a linear combination of its own output relative to that

of other agents. In particular, each agent i has access to the quantity

ζi =

N∑
j=1

aij(yi − yj), (7.2)

where aij ≥ 0 and aii = 0 with i, j ∈ {1, . . . , N}. This network can be described by a weighted

directed graph (digraph) G with nodes corresponding to the agents in the network and edges with

weight given by the coefficients aij . In particular, aij > 0 means that there exists an edge with

weight aij from agent j to agent i, where agent j is called a parent of agent i, and agent i is called

a child of agent j.

We also define a matrix G = [gij ], where gii =
∑N

j=1 aij and gij = −aij for j 6= i. The matrix

G, known as the weighted Laplacian matrix of the digraph G has the property that the sum of the
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coefficients on each row is equal to zero. In terms of the coefficients gij of G, ζi given by (7.2) can

be rewritten as

ζi =

N∑
j=1

gijyj . (7.3)

In addition to ζi given by (7.3), we assume that the agents exchange information about their own

internal estimates via the same network. That is, agent i has access to the quantity

ζ̂i =
N∑
j=1

aij(ηi − ηj) =
N∑
j=1

gijηj , (7.4)

where ηj ∈ Rp is a variable produced internally by agent j. This value will be specified as we

proceed with the design.

Our goal is to regulate the outputs of all agents towards an a priori specified reference trajectory

yr(t), generated by an arbitrary autonomous exosystem

ω̇ = Sω, ω(0) = ω0 ∈ Ω0, (7.5a)

yr = Crω, (7.5b)

where ω ∈ Rr, yr ∈ Rp, and Ω0 is a compact set of possible initial conditions for the exosystem.

That is, for each agent i ∈ {1, . . . , N}, we wish to achieve limt→∞(yi − yr) = 0. Equivalently, we

wish to regulate the synchronization error variable

ei := yi − yr

to zero asymptotically, where the dynamics of ei is governed byẋi
ω̇

 =

Ai 0

0 S


xi
ω

+

Bi
0

σ(ui), (7.6a)

ei =

[
Ci −Cr

]xi
ω

+Diσ(ui). (7.6b)
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In order to achieve our goal, in addition to ζi given by (7.3) and ζ̂i given by (7.4) provided by

the network, it is clear that a non-empty subset of agents should observe its output relative to the

reference trajectory yr generated by (7.5) in order for the network of agents to follow the reference

trajectory. Specifically, let I ⊂ {1, . . . , N} denotes such a subset. Then, each agent i ∈ {1, . . . , N}

has access to the quantity

ψi = ιi(yi − yr), ιi =


1, i ∈ I,

0, i /∈ I.

(7.7)

Clearly, we need to restrict the initial conditions of the exosystem since, due to the input satura-

tion, the agents will only be able to track a limited set of reference trajectories. This is formulated

in the above by assuming that ω(0) ∈ Ω0 with the set Ω0 a prior known. Regarding the initial

conditions of the agents, we would ideally like to design a controller that achieves limt→∞ ei(t) = 0

for all initial conditions subject to ω(0) ∈ Ω0, a problem that can be referred to as global regula-

tion of output synchronization. However, from the literature on linear systems subject to actuator

saturation, we know that global regulation of output synchronization in general requires nonlinear

controllers. In this chapter, we would like to use linear dynamical controllers

ẋci = Ai,cx
c
i +Bi,c


ζi

ζ̂i

ψi

 , (7.8a)

ui = Ci,cx
c
i , ∀i ∈ {1, . . . , N} , (7.8b)

where xci ∈ Rqi is the state of the controller for agent i. Thus, we restrict attention to the semi-global

regulation of output synchronization problem, which is defined as follows.

Problem 7.1 (Semi-global regulation of output synchronization). Consider a network of N agents

as given by (7.1) and the reference model given by (7.5) with initial conditions in an a priori given

184



compact set Ω0 ⊂ Rr. The semi-global regulation of output synchronization problem is to find, if

possible, integers qi, i ∈ {1, . . . , N}, such that for any arbitrarily large bounded sets Xi ⊂ Rni and

Pi ⊂ Rqi, i ∈ {1, . . . , N}, there exist linear dynamical controllers (7.8) such that

lim
t→∞

ei(t) = 0, ∀i ∈ {1, . . . , n} , (7.9)

for all initial conditions xi(0) ∈ Xi, xci (0) ∈ Pi, and ω(0) ∈ Ω0.

Remark 7.1. We would like to emphasize that our definition of the above semi-global regulation of

output synchronization problem does not view the set of initial conditions of the agents’ model (7.1)

and their controllers (7.8) as given data. The set of given data consists of the models of the agent

(7.1), the exosystem (7.5), and the set Ω0 of possible initial conditions for the exosystem. Therefore,

the solvability conditions must be independent of the set of initial conditions of the agents, Xi, and

the set of initial conditions for the controllers, Pi.

7.2.2 Assumptions

In this section, we present the assumptions about the network topology, the individual agents,

and the reference model for solving the semi-global regulation of output synchronization problem

as defined in Problem 7.1.

Assumption 7.1. Every node of the digraph G is a member of a directed tree with the root contained

in I.

Remark 7.2. It is possible for I to consist of a single node, in which case Assumption 7.1 requires

this node to be the root of a directed spanning tree of G.

Assumption 7.2. For each agent i ∈ {1, . . . , N} as given in (7.1)

1) all the eigenvalues of Ai are in the closed left-half complex plane;
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2) the pair (Ai, Bi) is stabilizable; and

3) the pair (Ci, Ai) is observable.

Remark 7.3. Conditions 2 and 3 are natural assumptions. Condition 1 is a necessary condi-

tion, since if Ai has one observable eigenvalue in the open right-half complex plane for some

i ∈ {1, . . . , N}, then for sufficiently large initial conditions xi(0), the output of that system yi

will be exponentially growing, and the bounded input σ(ui) can influence this exponentially growing

signal only in a limited sense. Therefore, we cannot substantially alter that output to track yr.

Assumption 7.3. For the reference model (7.5),

1) the pair (Cr, S) is observable;

2) all the eigenvalues of S are in the closed right-half complex plane; and

3) the matrix S is neutrally stable.

Remark 7.4. Condition 1 is a natural assumption. Condition 2 is made without loss of gener-

ality because, asymptotically stable modes vanish asymptotically, and they therefore play no role

asymptotically. Condition 3 is reasonable since the output of an agent cannot be expected to track

exponentially growing signals with a bounded input. Polynomially growing reference signals can be

easily included but it requires very restrictive solvability conditions and hence, for ease of presenta-

tion, we have excluded this case.

Assumption 7.4. The following equations with unknowns Πi ∈ Rni×r and Γi ∈ Rp×r, commonly

known as the regulator equations

ΠiS = AiΠi +BiΓi, (7.10a)

Cr = CiΠi +DiΓi (7.10b)
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are solvable, and there exists a δ > 0 such that for each agent i ∈ {1, . . . , n},

‖Γiω(t)‖∞ ≤ 1− δ, (7.11)

for all t > 0 and all ω(t) with ω(0) ∈ Ω0.

Remark 7.5. Note that if the regulator equations (7.10) have a solution, then the solution is

unique, as a consequence of invertibility of the quadruple (Ai, Bi, Ci, Di). Therefore, one can easily

verify (7.11).

7.2.3 Necessity of Assumption 7.4

All Assumptions 7.1, 7.2, and 7.3 are natural as discussed in Remarks 7.3 and 7.4, however

Assumption 7.4 is critical. Essentially, this assumption is necessary for solving the semi-global

regulation of output synchronization problem as defined in Problem 7.1. The following lemma,

which is proven in Appendix 7.A, shows this fact and gives the necessary condition for solving

Problem 7.1.

Lemma 7.1. Suppose that each agent i ∈ {1, . . . , N} has access to full information. Assume that

Ω0 contains 0 in its interior. Then for any initial condition ω(0) ∈ Ω0, there exist initial conditions

xi(0) and an input ui(t) that leads to ei(t) → 0 as t → ∞ exists only if the regulator equations

(7.10) are solvable, and moreover the solution must satisfy

‖Γiω(t)‖∞ ≤ 1 (7.12)

for all t > 0.
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7.2.4 Main Result

Theorem 7.1. Consider a network of N agents as given by (7.1) and the reference model given

by (7.5). Let Assumptions 7.1, 7.2, 7.3, and 7.4 hold. Then the semi-global regulation of output

synchronization problem as defined in Problem 7.1 is solvable.

Proof. The proof of Theorem 7.1 is given in Section 7.3 by explicit construction of a controller for

each agent.

7.3 Design of Control Law for Each Agent

In this section, we describe the construction of a controller for each agent to solve the semi-

global regulation of output synchronization problem as defined in Problem 7.1. The construction

is carried out in three steps.

In Step 1, we construct a new state x̄i, via a transformation of xi and ω, such that the dynamics

of the synchronization error variable ei can be described by equations

˙̄xi = Āix̄i + B̄iσ(ui) :=

Ai 0

0 Āi22

x̄i +

Bi
0

σ(ui), (7.13a)

ei = C̄ix̄i + D̄iσ(ui) :=

[
Ci −C̄i2

]
x̄i +Diσ(ui). (7.13b)

The purpose of this state transformation is to reduce the dimension of the model underlying ei—the

dimension of x̄i is generally lower than that of [x′i, ω
′]′—by removing redundant modes that have

no effect on ei. In particular, the model (7.6) may be unobservable, but the model (7.13) is always

observable.

In Step 2, we construct a low-gain state feedback from x̄i, parameterized in ε, that regulates ei

to zero for any arbitrarily large bounded set of initial conditions of the agent’s models by suitably
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choosing the low-gain parameter ε. Moreover, by properly choosing the low-gain parameter ε, the

amplitude of the control law can be made to be less than any given α, where 1 − δ < α < 1.

Since the agent i has neither the internal state xi nor the state ω of the exosystem available, this

controller is not directly implementable. This brings us to Step 3 of the design.

In Step 3, we follow the procedure as given in our previous paper [17], that is, we construct

a decentralized high-gain observer that makes an estimate of x̄i available to agent i. However, as

we shall see later that our state feedback design and high-gain observer are coupled. This will be

illustrated in Section 7.3.1.

7.3.1 Design Procedure for Agent i

Step 1: State transformation

Let Oi be the observability matrix corresponding to the system (7.6).

Oi =


Ci −Cr
...

...

CiA
ni+r−1
i −CrSni+r−1

 .

Let qi denote the dimension of the null space of matrix Oi, and define ri = r − qi. Next, define

Λiu ∈ Rni×qi and Φiu ∈ Rr×qi such that

Oi

Λiu

Φiu

 = 0, rank

Λiu

Φiu

 = qi.

Since the pair (Ci, Ai) and the pair (Cr, S) are observable, it is easy to see that Λiu and Φiu

have full column rank (see [17, Appendix A]). Let therefore Λio and Φio be defined such that

Λi := [Λiu,Λio] ∈ Rni×ni and Φi := [Φiu,Φio] ∈ Rr×r are nonsingular.
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From the proof of [16, Lemma 1], we know that

SΦi = ΦiRi, (7.14)

where

Ri =

Ui Ri12

0 Ri22

 .
Since S is anti-Hurwitz stable and neutrally stable, we know that S is diagonalizable, and hence

Ri is diagonalizable. This implies that Ri has r independent right eigenvectors. Let vi,1, · · · , vi,r

be r independent right eigenvectors of Ri, such that

vi,j =

ṽi,j
0


for j = 1, . . . , qi, where ṽi,j are right eigenvectors of Ui. In that case we choose Vi11 ∈ Rqi×qi such

that

ImVi11 = span{re vi,j , im vi,j | j = 1, · · · , qi}

and we choose Vi12 ∈ Rqi×ri and Vi22 ∈ Rri×ri such that

Im

Vi12

Vi22

 = span{re vi,j , im vi,j | j = qi + 1, · · · , r}.

We then construct:

Vi =

Vi11 Vi12

0 Vi22

 ,
We then have

RiVi = Vi

Λi1 0

0 Λi2

 = ViΛi (7.15)

From (7.15), we obtain that

V −1
i11 UiVi11 = Λi1, V −1

i22 Ri22Vi22 = Λi2, (7.16)
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and

UiVi12 − Vi12Λi2 = −Ri12Vi22. (7.17)

We then define

Φ̄i := [Φ̄iu, Φ̄io] = Φi

Iqi Vi12V
−1
i22

0 Iri

 . (7.18)

We then define a new state variable x̄i ∈ Rni+ri as

x̄i =

x̄i1
x̄i2

 :=

xi − ΛiMiΦ̄
−1
i ω

NiΦ̄
−1
i ω

 ,
where Mi ∈ Rni×r and Ni ∈ Rri×r are defined as

Mi =

Iqi 0

0 0

 , Ni =

[
0 Iri

]
.

With this state transformation, the system (7.6) can be transformed into the system (7.13). The

following lemma, which is proven in Appendix 7.B, shows this.

Lemma 7.2. The synchronization error variable ei is governed by dynamical equations of (7.13),

where the pair (C̄i, Āi) is observable and the eigenvalues of Āi22 are a subset of the eigenvalues of

S.

Remark 7.6. If the unforced system for an agent i is the same as the exosystem, i.e., if Ci = Cr

and Ai = S, then it is easy to see that the dynamics of system (7.13) reduces to the dynamics of

system (7.1).

Step 2: State feedback control design

For any arbitrarily large bounded set Xi, we design a controller as function of x̄i such that
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limt→∞ ei(t) = 0 for all xi(0) ∈ Xi and ω(0) ∈ Ω0. Consider the following regulator equations

with unknowns Πr
i ∈ Rni×ri and Γri ∈ Rp×ri for system (7.13)

Πr
i Āi22 = AiΠ

r
i +BiΓ

r
i , (7.19a)

C̄i2 = CiΠ
r
i +DiΓ

r
i . (7.19b)

The following lemma shows that the regulator equations (7.19) are solvable if and only if the

regulator equations (7.10) are solvable, and gives the mapping between the solutions of the two

regulator equations. Note that if the regulator equations (7.19) (or the regulator equations (7.10))

have a solution, then it is unique due to the invertibility of the quadruple (Ai, Bi, Ci, Di).

Lemma 7.3. The regulator equations (7.19) have a solution (Πr
i ,Γ

r
i ) if and only if the regulator

equations (7.10) have a solution (Πi,Γi). Moreover,

Πi = Πr
iNiΦ̄

−1
i + ΛiMiΦ̄

−1
i , Γi = ΓriNiΦ̄

−1
i , (7.20)

or equivalently

Πr
i = ΠiΦ̄io, Γri = ΓiΦ̄io. (7.21)

Proof. To show the sufficiency, suppose that the regulator equations (7.10) have a solution and

(7.20) is satisfied.

Define Wi =

[
Iqi 0

]
, from (7.20), it is easy to see that

Πi =

[
Πr
i 0

]Ni

Wi

 Φ̄−1
i + ΛiMiΦ̄

−1
i , Γi =

[
Γri 0

]Ni

Wi

 Φ̄−1
i .
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With some algebra, we obtain that

ΠiSΦ̄i =

[
Πr
i 0

]Ni

Wi

 Φ̄−1
i SΦ̄i + ΛiMiΦ̄

−1
i SΦ̄i

=

[
0 Πr

i

]Ui 0

0 Āi22

+

[
Λiu 0

]Ui 0

0 Āi22


=

[
ΛiuUi Πr

i Āi22

]
, (7.22)

where we have used that SΦ̄i = Φ̄iR, and that

(AiΠi +BiΓi)Φ̄i = Ai

[
Πr
i 0

]Ni

Wi

+AiΛiMi +Bi

[
Γri 0

]Ni

Wi


=

[
0 AiΠ

r
i

]
+

[
AiΛiu 0

]
+

[
0 BiΓ

r
i

]
=

[
ΛiuUi AiΠ

r
i +BiΓ

r
i

]
, (7.23)

where we have used that AiΛiu = ΛiuUi.

From (7.10a), (7.22), and (7.23), it is then easy to see that Πr
i Āi22 = AiΠ

r
i + BiΓ

r
i , that is,

(7.19a) is satisfied.

With a little bit algebra, we also obtain that

CrΦ̄i =

[
CrΦ̄iu CrΦ̄io

]
=

[
CiΛiu C̄i2

]
, (7.24)

where we have used that CrΦ̄iu = CiΛiu and C̄i2 = CrΦ̄iN
′
i = CrΦ̄io and that

(CiΠi +DiΓi)Φ̄i = Ci

[
Πr
i 0

]Ni

Wi

+ CiΛiMi +Di

[
Γri 0

]Ni

Wi


=

[
CiΛiu CiΠ

r
i +DiΓ

r
i

]
. (7.25)
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From (7.10b), (7.24), and (7.25), it is then easy to see that C̄i2 = CiΠ
r
i +DiΓ

r
i , that is, (7.19b)

is satisfied. Hence, (Πr
i ,Γ

r
i ) is the solution of the regulator equations (7.19).

Next we show the necessity. Suppose that the regulator equations (7.19) have a solution and

(7.21) is satisfied. With just a little bit algebra, we obtain that

AiΠ
r
i +BiΓ

r
i = AiΠΦ̄io +BiΓiΦ̄io (7.26)

and

Πr
i Āi22 = ΠiΦ̄ioĀi22 = ΠiSΦ̄io, (7.27)

where we have used that SΦ̄io = Φ̄ioĀi22, which follows from the fact that SΦ̄i = Φ̄iRi.

From (7.19a), (7.26), and (7.27), it is easy to see that ΠiS = AiΠi + BiΓi, that is, (7.10a) is

satisfied.

With just a little bit algebra, we also obtain that

CiΓ
r
i +DiΓ

r
i = CiΠiΦ̄io +DiΓiΦ̄io. (7.28)

This together with the fact that C̄i2 = CrΦ̄iN
′
i = CrΦ̄io and (7.19b) yields Cr = CiΠi +DiΓi, that

is, (7.10b) is satisfied. Hence, (Πi,Γi) is the solution of the regulator equations (7.10).

Remark 7.7. In view of Lemma 7.3 and (7.11) of Assumption 7.4, we see that ‖Γri x̄i2‖ = ‖Γiω‖ ≤

1− δ. �

Since agent i is subject to actuator saturation, we design the state feedback controller by using a

low-gain technique, which is widely used for the semi-global stabilization problem for linear systems

subject to actuator saturation, see for instance, [35, 70]. There exist in the literature several low-

gain design algorithms. For conceptual clarity, we use here the one based on the solution of a

continuous-time algebraic Riccati equation, parameterized in a low-gain parameter ε ∈ (0, 1]. More
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specifically, we form a family of parameterized state feedback gain matrices Fi,ε for x̄i1 as

Fi,ε = −B′iPi,ε,

where Pi,ε = P ′i,ε > 0 is the unique solution of the continuous-time algebraic Riccati equation

defined as

Pi,εAi +A′iPi,ε − Pi,εBiB′iPi,ε + εIni = 0. (7.29)

It follows from Lemma 7.3 and and Condition 1 of Assumption 7.4 that the regulator equations

(7.19) have a unique solution (Πr
i ,Γ

r
i ). We use the unique (Πr

i ,Γ
r
i ) and the feedback gain matrix

Fi,ε to define a family of parameterized state feedback controllers in terms of x̄i as

ui =

[
Fi,ε Γri − Fi,εΠr

i

]
x̄i. (7.30)

Then for any given arbitrarily large bounded set of initial conditions, there exists an ε∗ ∈ (0, 1],

such that for all ε ∈ (0, ε∗], the family of linear state feedback controllers of the form (7.30) ensures

that limt→∞ ei(t) = 0 for all initial conditions belong to the given arbitrarily large bounded set and

ω(0) ∈ Ω0. This is a well known result, see [70, Theorem 3.3.2].

Remark 7.8. If the unforced system for an agent i is the same as the exosystem, i.e., if Ci = Cr

and Ai = S, then it is easy to see that Πi = I and Γi = 0 is the solution of regulator equations

(7.10). Thus, Assumption 7.4 is always satisfied for that agent.

Step 3: Observer-based implementation

Following the design procedure given in the proof of [70, Theorem 3.3.4], one can obtain, for a given

set of initial conditions, suitable state feedback controllers for which input saturation is not active.

This is done by properly choosing the low-gain parameter ε. Then such a state feedback law must

be implemented by a suitable designed distributed observer. This will be done next.
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We will design a high-gain decentralized observer to produce an estimate of x̄i, denoted by ˆ̄xi.

We follow the procedure as given in our previous paper [17], to be self-contained, we reproduce the

design here.

Let n̄ denotes the maximum order among the all the systems (7.13) for i ∈ {1, . . . , N}, that is,

n̄ = maxi=1,...,n(ni + ri). Define χi = Tix̄i, where

Ti =


C̄i

...

C̄iĀ
n̄−1
i

 .

Note that Ti is injective since the pair (C̄i, Āi) is observable, which implies that T ′iTi is nonsingular.

In term of χi, we can write the system equations

χ̇i = (A+ Li)χi + Biσ(ui), χi(0) = Tix̄i(0), (7.31a)

ei = Cχi +Diσ(ui), (7.31b)

where

A =

0 Ip(n̄−1)

0 0

 , C =

[
Ip 0

]
, Li =

 0

Li

 , Bi = Ti

Bi
0

 , Di = Di,

for some matrix Li ∈ Rp×n̄p. Note that the matrices A and C are the same for all the agents

i ∈ {1, . . . , n}, and the special form of these matrices implies that (C,A) is observable.

Next, define the matrix Ḡ = G + diag(ι1, . . . , ιn) and τ = mini=1,...,n Re(λi(Ḡ)) > 0. Let

P = P ′ > 0 be the unique solution of the algebraic Riccati equation

AP + PA′ − τPC′CP + In̄p = 0. (7.32)
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We then we design the observer

˙̂χi = (A+ Li)χ̂i + Biσ(ui) + S(`)PC′(ζi − ζ̂i) + S(`)PC′(ψi − ιi(Cχ̂i +Diσ(ui))), (7.33a)

ˆ̄xi = (T ′iTi)
−1T ′i χ̂i, (7.33b)

where S(`) = blkdiag(Ip`, Ip`
2, . . . , Ip`

n̄) and ` > 1 is a high-gain parameter.

Based on the observer estimate, we define the variable ηi = Cχ̂i + Diσ(ui) to be shared with

the other agents via the networks communication infrastructure as described in Section 7.2.1, and

the observer-based control law

ui =

[
Fi,ε Γri − Fi,εΠr

i

]
ˆ̄xi. (7.34)

Together, the observers for agents i ∈ {1, . . . , N} form a distributed observer parameterized by a

high-gain parameter `. It has been shown in [17, Lemma 4] that the estimation errors dynamics are

globally exponentially stable, that is, limt→∞(x̄i − ˆ̄xi) = 0, by choosing the high-gain parameter `

sufficiently large.

Remark 7.9. If all the agents have the same dynamics, it is not necessary to design an observer

based on the high-order system (7.31) and one can design an observer based on the original system

(7.13).

In summary, for any given arbitrarily large bounded sets Xi ⊂ Rni and Pi ⊂ Rpn̄, there exist

ε∗ with the property that for any ε ∈ (0, ε∗] there exists `∗ such that for ` ≥ `∗, the observer-based

implementation (7.33) and (7.34), ensure that

lim
t→∞

ei(t) = 0, ∀i ∈ {1, . . . , N} , (7.35)

for all initial conditions xi(0) ∈ Xi, χ̂i(0) ∈ Pi, and ω(0) ∈ Ω0.
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7.3.2 Comparison with the case where the agents have no actuator magnitude

constraints

Let us make several comments to compare our result to the case where the agents do not have

actuator saturation.

• The regulator equations (7.10) have to be solvable for the case with actuator magnitude

constraints. In our previous work for the case without saturation we assumed existence of a

solution of the regulator equations but in that case this existence is not necessary.

• For the case with actuator magnitude constraints, we only achieve semi-global regulation of

output synchronization.

• For the case with actuator magnitude constraints, it is required that all the eigenvalues of

agents’ system matrices are in the closed left-half complex plane.

• For the case with actuator magnitude constraints, we have constraints on the size of the

synchronized output trajectory as given by (7.11).

7.4 Example

In this section, we illustrate our design procedure by considering a network of ten agents. Agents

1 and 2 are composed as the cascade of a second-order oscillator and a single integrator:

Ai =


0 1 0

0 0 1

0 −1 0

 , Bi =


0

0

1

 , Ci =

[
1 0 0

]
, Di = 0.
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Agents 3, 4, and 5 have the following dynamics:

Ai =

0 1

0 0

 , Bi =

0

1

 , Ci =

[
1 0

]
, Di = 2.

Agents 6, 7, and 8 have the following dynamics:

Ai = 0, Bi = 1, Ci = 1, Di = 1.

Finally, Agents 9 and 10 are second-order mass-spring-damper systems:

Ai =

 0 1

−2 −2

 , Bi =

0

1

 , Ci =

[
1 0

]
, Di = 0.

The reference trajectory yr is generated by an exosystem with

S =


0 1 0

0 0 1

0 −1 0

 , Cr =

[
1 0 0

]
,

and initial conditions Ω0 =
{
ω ∈ R3 : ‖ω‖ ≤ 0.1

}
.

The communication topology of the network is given by the digraph depicted in Figure 7.1, and

the agent 2 has access to the information y2 − yr.

Step 1

For illustrative purpose, we give the details for agent 3. In Step 1,

O3 =



1 0 −1 0 0

0 1 0 −1 0

0 0 0 0 −1

0 0 0 1 0

0 0 0 0 1


=⇒ q3 = 1, r3 = 2,
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We may choose

Λ3u =

1

0

 , Φ3u =


1

0

0

 ,

and hence we can set Λ3 = I2 and Φ3 = I3. Following the design procedure, we have

V311 = 1, V312 =

[
0 1

]
, and V322 =

1 0

0 −1


for (7.16) and (7.17). Therefore, from (7.18), we obtain that

Φ̄3 = Φi

Iq3 V312V
−1

322

0 Iri

 =


1 0 −1

0 1 0

0 0 1

 ,

thus, it follows that

x̄3 =



1 0

0 1

0 0

0 0


x3 −



1 0 1

0 0 0

0 −1 0

0 0 −1


ω,

then the dynamics of x̄i with output ei takes the form of (7.13) with

Ā322 =

 0 1

−1 0

 , C̄32 =

[
0 −1

]
.

Step 2

We now need to solve the regulator equations (7.19), which are easily found to have the unique

solution

Πr
3 =

 0 1

−1 0

 , Γr3 =

[
0 −1

]
.
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We then select the matrix F3,ε = −B′3P3,ε, where P3,ε = P ′3,ε is the unique solution of (7.29), and

the value of ε will be determined later.

We perform the same procedure for the other agents, to identify appropriate state feedbacks.

For agents 1 and 2, there is no need for solving the regulator equations (7.19); for agents 6, 7, and

8, we obtain

Πr
6 =

[
−1

2 −1
2

]
, Γr6 =

[
1
2 −1

2

]
,

and for agents 9 and 10, the system (7.6) is observable, moreover x̄i2 = ω. We then find the unique

solution of the regulator equations (7.10) as

Π9 = Πr
9 =

1 0 0

0 1 0

 , Γ9 = Γr9 =

[
2 2 1

]
.

Note that

Γ9ω ≤ 0.5,

therefore, we choose δ = 0.5, such that

Γ9ω ≤ 1− δ

for all ω(0) ∈ Ω0. It is also easy to check that δ = 0.5 works for all other agents.

Step 3

In Step 3 we design the decentralized observer that allows the feedbacks to be implemented based

on observer estimates. It is easy to check that n̄ = 5, then we have

A =

0 I4

0 0

 , C =

[
1 0 · · · 0

]
.

Note that in order to implement the observer-based feedback (7.33) and (7.34), we need to determine

the value of the low-gain parameter ε ∈ (0, ε∗], for the set given by Xi = {xi ∈ Rni : ‖xi‖ ≤ 1} and
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Figure 7.1: Network topology

Pi = {xi ∈ Rqi : ‖xci‖ ≤ 1}, we can confirm that ε∗ = 0.1, thus we choose ε = ε∗ = 0.1. Now, we

construct the weighted Laplacian G from the digraph in Figure 7.1, note that the digraph contains

a directed spanning tree with agent 2 being the root. Given fact that ι2 = 1 while ιi = 0 for all

other i. we find that τ = mini=1,...,10 re(λi(G + diag(ι1, . . . , ι10))) ≈ 0.2749. Solving the algebraic

Riccati equation (7.32) and implementing observer-based feedback (7.33) and (7.34), we find that

we achieve stability with ` = 2. Figure 7.2 shows the resulting simulated output of four agents and

the synchronization trajectory, while Figure 7.3 shows the resulting simulated input of four agents.

7.A Proof of Lemma 7.1

Proof. If the quadruple (Ai, Bi, Ci, Di) has no invariant zeros which are eigenvalues of the matrix

S, then the existence of solutions to the regulator equations follows from the fact that the system

is right-invertible (see Corollary 2.5.1 of [70]).

On the other hand, assume that the quadruple (Ai, Bi, Ci, Di) has an invariant zero λ which is
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Figure 7.2: Output trajectories for agents 1, 3, 6, 9 and reference model

an eigenvalue of the matrix S. In that case let (v, w) be such that

(
v′ w′

)Ai − λI Bi

Ci Di

 = 0 (7.36)

and ω0 such that

Sω0 = λω0.

Since Ω0 contains 0 in its interior, we can, without loss of generality, assume that ω0 ∈ Ω0.

We first assume that w′Crω0 6= 0 and we will establish a contradiction with the fact that there

exists for ω(0) = ω0, an input ui and an appropriate initial condition xi(0) such that ei(t)→ 0 as

t→∞.

Since (Ai, Bi, Ci, Di) is right-invertible, we note that the subsystem from u to z = w′y (which

has a scalar output) can be described by a polynomial description:

d

(
d

dt

)
z(t) = N

(
d

dt

)
u(t),
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Figure 7.3: Input trajectories for agents 1, 3, 6 and 9

where N(s) is a non-zero polynomial row vector while d(s) is a scalar polynomial. Since, the

subsystem from u to z is right-invertible and has a zero in λ, we find that N has a zero in λ.

Moreover, if d also has a zero in λ then N has a zero in λ whose order is at least one higher than

the zero in λ of d. We define:

z̄(t) = e−λtz(t), ū(t) = e−λtu(t),

and

d̄(s) = d(s+ λ), N̄(s) = N(s+ λ).

We note that (
d

dt
+ λ

)
z̄(t) = e−λt

d

dt
z(t),

and similarly for u, ū. Hence,

d̄

(
d

dt

)
z̄(t) = e−λtd

(
d

dt

)
z(t),
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and

N̄

(
d

dt

)
ū(t) = e−λtN

(
d

dt

)
u(t).

Assume that the input u is such that tracking is achieved, then we have:

z(t)→ w′Crω(t) = eλtw′Crω0

as t→∞ and hence

z̄(t)→ w′Crω0

as t → ∞. Without loss of generality we assume that w′Crω0 = δ > 0. In that case, there exists

t0 > 0 such that we have

1
2δ ≤ z̄(t) ≤

3
2δ

for all t > t0. On the other hand, given that λ is on the imaginary axis and that u(t) is bounded,

we have that there exists an M > 0 such that

‖ū(t)‖ ≤M

for all t > 0. We have

d̄

(
d

dt

)
z̄(t) = N̄

(
d

dt

)
ū(t)

Define

d̄(s) = dis
i + di+1s

i+1 + · · ·+ dns
n,

and

N̄(s) = Ni+1s
i+1 + · · ·+Nns

n,

such that di 6= 0. Here we used that N had a zero in λ and, if d has a zero as well in λ then it is
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of strictly lower order. We find that∣∣∣∣∣∣∣∣
∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

d̄

(
d

dt

)
z̄(t)

∣∣∣∣∣∣∣∣ ≥
|di|(t2 − t1)n−i − 3

n∑
j=i+1

|dj |(t2 − t1)n−j

 1
2δ

for all t2, t1 > t0. On the other hand,∣∣∣∣∣∣∣∣
∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

N̄

(
d

dt

)
ū(t)

∣∣∣∣∣∣∣∣ ≤M
n∑

j=i+1

‖Ni‖(t2 − t1)n−j

for all t2, t1 > t0. This yields a contradiction as t2 →∞ since we have:∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

d̄

(
d

dt

)
z̄(t) =

∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

N̄

(
d

dt

)
ū(t)

and our inequalities imply that the left-hand side grows like (t2 − t1)n−i while the right-hand side

can at most grow like (t2 − t1)n−i−1.

Since, assuming that w′Crω0 6= 0, we obtain a contradiction we must have that w′Crω0 = 0.

Using this property we will establish that (7.10) has a solution. Without loss of generality and

using Assumption 7.3, we can assume that:

S =



ω1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 ωr


, Cr =

(
Cr,1 · · ·Cr,r

)
,

and we also decompose the potential solutions of the regulator equations as:

Πi =

(
Πi,1 · · ·Πi,r

)
, Γi =

(
Γi,1 · · ·Γi,r

)
.

We obtain that (7.10) is equivalent to:

Πi,jωj = AiΠi,j +BiΓi,j ,

Cr,j = CiΠi,j +DiΓi,j
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for j = 1, . . . , r. This can be rewritten as:Ai − ωjI Bi

Ci Di


Πi,j

Γi,j

 =

 0

Cr,j

 ,

which is solvable if

Im

 0

Cr,j

 ⊂ Im

Ai − ωjI Bi

Ci Di

 ,

and the latter condition is equivalent to:

(
v′ w′

)Ai − ωjI Bi

Ci Di

 = 0 =⇒
(
v′ w′

) 0

Cr,j

 = 0.

Since the latter is equivalent to w′Crej = 0 where Sej = ωjej , we note that this implication is

exactly the condition that we have proven above.

The fact that we need (7.12) is a consequence of Corollary 3.3.1 in [70].

7.B Proof of Lemma 7.2

Proof. Let us first assume that Φ̄i = Φi, then from the proof of [16, Lemma 1], we know that ei is

governed by the following dynamical equations

˙̄xi = Āix̄i + B̄iσ(ui) :=

Ai Āi12

0 Āi22

x̄i +

Bi
0

σ(ui), (7.38a)

ei = C̄ix̄i + D̄iσ(ui) :=

[
Ci −C̄i2

]
x̄i +Diσ(ui), (7.38b)

where

Āi12 = Λi

Ri12

0

 , Āi22 = Ri22, C̄i2 = CrΦiN
′
i .

1

1Note that the variable x̄i2 has a sign difference from that of [17].

207



The matrices Ri12 and Ri22 are such that (7.14) holds. Let

Vi =

Vi11 Vi12

0 Vi22

 .
Note that Āi of the system (7.38) is block-upper triangular, however, Āi in the system (7.13) is

block-diagonal. In order to obtain the system (7.13), we need to show that we can make Ri12 = 0

such that SΦ̄i = Φ̄iRi by using Φ̄i given by (7.18).

From (7.16) and (7.17), it is easy to obtain that

V −1
i

Ui Ri12

0 Ri22

Vi =

Λi1 0

0 Λi2

 . (7.39)

From (7.16) and (7.39), it is easy to show thatUi Ri12

0 Ri22


Iqi Vi12V

−1
i22

0 Iri

 =

Iqi Vi12V
−1
i22

0 Iri


Ui 0

0 Ri22

 . (7.40)

Now post multiplying both sides of (7.14) byIqi Vi12V
−1
i22

0 Iri

 ,
we obtain that SΦ̄i = Φ̄iRi, where

Ri =

Ui 0

0 Ri22

 . (7.41)

Hence, Ri12 = 0 and Āi12 = 0.
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Chapter 8

Consensus for Homogeneous

Networks with Uniform Constant

Communication Delay

8.1 Introduction

The consensus problem in a network has received substantial attention in recent years, partly

due to the wide applications in areas such as sensor networks and autonomous vehicle control. A

relatively complete coverage of earlier work can be found in the survey paper of [44], the recent

books by [55,100] and references therein.

Consensus in the network with time delay has been extensively studied in the literature. Most

results consider the agent model as described by single-integrator dynamics [5, 46, 80], or double-

integrator dynamics [7, 34, 81]. Specifically, it is shown by [46] that a network of single-integrator

agents subject to uniform constant communication delay can achieve consensus with a particular
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linear local control protocol if and only if the delay is bounded by a maximum that is inversely

proportional to the largest eigenvalue of the graph Laplacian associated with the network. This

result was later on generalized in [5] to non-uniform constant or time-varying delays. Sufficient

conditions for consensus among agents with first order dynamics were also obtained in [80]. The

results in [46] were extended in [7, 34] to double integrator dynamics. An upper bound on the

maximum network delay tolerance for second-order consensus of multi-agent systems with any

given linear control protocol was obtained.

In this chapter, we study the multi-agent consensus problem with uniform constant communi-

cation delay. The agents are assumed to be at most critically unstable, i.e. each agent has all its

eigenvalues in the closed left half plane. The contribution of this chapter with respect to [5,7,34,46]

is twofold: first, we find a sufficient condition on the tolerable communication delay for agents with

high-order dynamics, which has an explicit dependence on the agent dynamics and network topol-

ogy. For undirected network, this upper bound can be independent of network topology provided

that the network is connected. Moreover, in a special case where the agents only have zero eigen-

values, such as single- and double-integrator dynamics, arbitrarily large but bounded delay can be

tolerated. Another layer of contribution is that for delay satisfying the proposed upper bound, we

present a controller design methodology without exact knowledge of network topology so that the

multi-agent consensus in a set of unknown networks can be achieved. When the network topology

is precisely known, the controller design can be modified to be topology-dependent and a larger

delay tolerance is attainable.

The rest of the chapter is organized as follows: notations and some preliminary results are

declared in the remainder of Section 8.1. System and network configuration and consensus problem

formulations are given in Section 8.2. The consensus problems with full-state coupling are solved in
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Section 8.3 both for a set of unknown communication topologies and for a known communication

topology. Corresponding problems with partial-state coupling are dealt with in Section 8.4. Some

illustrative examples are given in Section 8.5. A technical lemma is appended at the end of this

chapter.

8.1.1 Notations and Preliminaries

The following notations will be used in this chapter. For a matrix X ∈ Cn×m,

X ′ : transpose of X;

X∗ : conjugate transpose of X;

X−1 : inverse of X if it exists

σ̄(X) : maximal singular value of X;

σ(X) : minimal singular value of X;

‖X‖ : induced 2 norm;

det(X) : determinant of X.

For a transfer function H(s) : C→ Cn×m,

‖H(s)‖∞ : H∞ norm of H(s).

For a vector d, we denote a diagonal matrix by D=diag{d} whose diagonal is specified by d. For

column vectors x1, . . . , xn, the stacking column vector of x1, . . . , xn is denoted by [x1; . . . ;xn].

For A ∈ Cn×m and B ∈ Cp×q, the Kronecker product of A and B is defined as

A⊗B =


a11B · · · a1mB

...
...

...

an1B · · · anmB


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The following property of the Kronecker product will be used in this chapter:

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

A graph G is defined by a pair (N , E) where N = {1, . . . , N} is a vertex set and E is a set of pairs of

vertices (i, j). Each pair in E is called an arc. G is undirected if (i, j) ∈ E ⇒ (j, i) ∈ E . Otherwise,

G is directed. A directed path from vertex i1 to ik is a sequence of vertices {i1, . . . , ik} such that

(ij , ij+1) ∈ E for j = 1, ..., k − 1. A directed graph G contains a directed spanning tree if there is a

node r such that a directed path exists between r and every other node.

The graph G is weighted if each arc (i, j) is assigned with a real number aij . For a weighted

graph G, a matrix L = {`ij} with

`ij =


∑N

j=1 aij , i = j

−aij , i 6= j,

is called Laplacian matrix associated with graph G. In the case where G has non-negative weights,

L has all its eigenvalues in the closed right half plane and at least one eigenvalue at zero associated

with right eigenvector 1, see for example [63]. If G has a directed spanning tree, L has a simple

eigenvalue at zero and all the other eigenvalues have strictly positive real parts, see for example [53].

8.2 Problem Formulation

Consider a network of N identical agents
ẋi(t) = Axi(t) +Bui(t), i = 1, ..., N,

zi(t) = −
∑N

j=1 `ijx
j(t− τ).

(8.1)

where xi ∈ Rn, ui ∈ Rm and zi ∈ Rn, τ > 0 is an unknown constant satisfying τ ∈ [0, τ̄ ]. The

coefficients `ij are such that `ij ≤ 0 for i 6= j and `ii = −
∑N

j 6=i `ij . In (8.1), each agent collects a
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delayed information zi of the state of neighboring agents through the network, which we refer to

as full-state coupling.

It is also common that zi may consist of the output of neighboring agents instead of the complete

state which can be formulated as follows:

ẋi(t) = Axi(t) +Bui(t),

yi(t) = Cxi(t), i = 1, ..., N,

zi(t) = −
∑N

j=1 `ijy
j(t− τ),

(8.2)

where xi ∈ Rn, ui ∈ Rm and yi, zi ∈ Rp. We refer to the agents in this case as having partial-state

coupling.

The matrix L = {`ij} ∈ RN×N defines the communication topology which can be captured by

a weighted graph G = (N , E) where (j, i) ∈ E ⇔ `ij < 0 and aii = 0 and aij = −`ij for i 6= j. The

G is directed in general. However, in a special case where L is symmetric, G is undirected. This L

is the the Laplacian matrix associated with G.

Assumption 8.1. The following assumptions are made throughout the chapter:

1) The agents are at most critically unstable, that is, A has all its eigenvalues in the closed left

half plane;

2) (A,B) is stabilizable and (A,C) is detectable;

3) The communication topology G contains a directed spanning tree.

It should be noted that in practice, perfect information of the communication topology is usually

not available for controller design and that only some rough characterization of the network can be

obtained. Using the non-zero eigenvalues of L as a “measure” for the graph, we can introduce the

213



following definition to characterize a set of unknown communication topologies. Let λ1, · · · , λN

denoted the eigenvalues of L and assume λ1 = 0.

Definition 8.1. For any γ ≥ β ≥ 0 and π
2 > ϕ ≥ 0, Gβ,γ,ϕ is the set of directed graphs whose

associated Laplacian satisfies that

|λi| ∈ (β, γ) and arg λi ∈ [−ϕ,ϕ]

for i = 2, ..., N .

Definition 8.2. The agents in the network achieve consensus if

lim
t→∞

(xi(t)− xj(t)) = 0, ∀i, j ∈ {1, . . . , N}.

Two consensus problems for agents with full-state coupling (8.1) and partial-state coupling (8.2)

respectively can be formulated in this set of networks as follows:

Problem 8.1. Consider a network of agents (8.1) with full state coupling. The consensus problem

given a set of possible communication topologies Gβ,γ,ϕ and a delay upper bound τ̄ is to design

linear static controllers ui = Fzi for i = 1, . . . , N such that the agents (8.1) with ui = Fzi achieve

consensus with any communication topology belonging to Gβ,γ,ϕ for τ ≤ τ̄ .

Problem 8.2. Consider a network of agents (8.2) with partial state coupling. The consensus

problem with a set of possible communication topologies Gβ,γ,ϕ and a delay upper bound τ̄ is to

design linear dynamical control protocols
χ̇i = Akχ

i +Bkz
i,

ui = Ckχ
i,

(8.3)

for i = 1, . . . , N such that the agents (8.2) with controller (8.3) achieve consensus with any com-

munication topology belonging to Gβ,γ,ϕ for τ ≤ τ̄ .
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As will be shown in the sequel, under Assumption 8.1 and certain condition on the upper bound

τ̄ , we are able to design a decentralized local controller without exact knowledge of the network

topology so that Problem 8.1 and 8.2 can be solved. On the other hand, we shall also observe

that such robustness against uncertainties in the communication topology is not free. In general,

a cost is incurred in terms of a more conservative condition on τ̄ . When perfect information of

the network topology is known, a larger delay tolerance may be attainable. Therefore, we also

formulate the consensus problems in a known network as follows:

Problem 8.3. Consider a network of agents (8.1) with full-state coupling. The consensus problem

with a known communication topology and a delay upper bound τ̄ is to design local linear static

consensus controllers ui = Fzi for i = 1, . . . , N , such that the agents (8.1) with ui = Fzi achieve

consensus with the given topology for all τ ≤ τ̄ .

Problem 8.4. Consider agents (8.2) with partial-state coupling. The consensus problem with a

known communication topology and a delay upper bound τ̄ is to design a local linear dynamical

consensus controllers (8.3) for i = 1, . . . , N such that the agents (8.2) with controller (8.3) and

with the given topology achieve consensus for all τ ≤ τ̄ .

8.3 Consensus with Full-state Coupling

In this section, we with consider agents with full-state coupling as given in (8.1) and solve

Problems 8.1 and 8.3.

8.3.1 Consensus in Networks with Unknown Communication Topology

We first consider Problem 8.1.
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8.3.1.1 Consensus Controller Design and Main Results

For a given set of networks Gβ,γ,ϕ, we design a decentralized local consensus controller for any

network in Gβ,γ,ϕ as follows:

ui = 1
βFεz

i, (8.4)

where Fε = B′Pε. Here Pε is the positive definite solution of the Algebraic Riccati Equation (ARE)

A′Pε + PεA− PεBB′Pε + εI = 0. (8.5)

and ε is a tuning parameter which will be chosen according to β and γ so that the multi-agent

consensus can be achieved with any communication topology belonging to Gβ,γ,ϕ. Let

ωmax = max{ω ∈ R | det(jωI −A) = 0}.

The first main result of this chapter is stated in the next theorem which solves the network consensus

problem with respect to Gβ,γ,ϕ.

Theorem 8.1. For a given set Gβ,γ,ϕ and τ̄ > 0, consider the agents (8.1) and any coupling network

belonging to the set Gβ,γ,ϕ. In that case Problem 8.1 is solvable if,

ϕ < π/3 and τ̄ <
π
3 − ϕ
ωmax

. (8.6)

Moreover, it can be solved by the consensus controller (8.4) if (8.6) holds. Specifically, for given

0 ≤ β ≤ γ and given ϕ and τ̄ satisfying (8.6), there exists an ε∗ such that for any ε ∈ (0, ε∗], the

agents (8.1) with controller (8.4) achieve consensus for any communication topologies in Gβ,γ,ϕ and

τ ∈ [0, τ̄ ].

Remark 8.1. In order to have non-zero delay tolerance, here we require ϕ < π/3. However,

if τ̄ = 0, in other words, the communication delay is absent from the network, ϕ < π/3 is not
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necessary. In that case, it is a known result that the agents (8.1) with consensus controller (8.4)

achieve consensus for any communication topology whose Laplacian eigenvalues satisfy re(λi) ≥

β/2, i = 2, ..., N , see for example [111]. In this chapter, we restrict ourselves to the case τ̄ > 0.

However, it remains an interesting open question that whether ϕ < π/3 is indeed needed for τ̄ > 0.

Remark 8.2. The consensus controller design depends only on agents and parameters τ̄ , β, γ and

ϕ and is independent of specific network topology provided that the network satisfies Assumption

8.1.

In the special case where A has all the eigenvalues at zero, an arbitrarily bounded communication

delay can be tolerated.

Corollary 8.1. For a given set Gβ,γ,ϕ and τ̄ > 0, consider the agents (8.1) and any communication

topology belonging to the set Gβ,γ,ϕ. Suppose A has all the eigenvalues at zero. In that case, Problem

8.1 is solvable via the consensus controller (8.4) if ϕ < π
3 . Specifically, for given 0 ≤ β ≤ γ, ϕ < π

3

and τ̄ > 0, there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.1) with controller (8.4)

achieve consensus for any communication topologies in Gβ,γ,ϕ and τ ∈ [0, τ̄ ].

Remark 8.3. In the previous study of network consensus problem, agents are normally assumed

as having single- or double-integrator type dynamics. Based on Corollary 8.1, we find that the

delay tolerance in such cases is independent of network topology and can be made arbitrarily large

provided that ϕ < π
3 . This result in no way contradicts that in [7, 34, 46] since the goal here is to

find the maximal achievable delay tolerance by controller design whereas obtained in [7, 34, 46] are

the conditions on delay for which the consensus with certain given controller is not spoiled.

If the communication topology is undirected, the Laplacian associated with G is symmetric and

has only real eigenvalues, i.e. ϕ = 0. A set of undirected networks can be denoted as Gβ,γ,0. From
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Theorem 8.1, we immediately have the following result:

Corollary 8.2. For a given set of undirected networks Gβ,γ,0 and τ̄ > 0, consider the agents (8.1)

and any communication topology belonging to the set Gβ,γ,0. In that case, Problem 8.1 is solvable if

τ̄ <
π

3ωmax
. (8.7)

Moreover, it can be solved by the consensus controller (8.4) if (8.7) holds. Specifically, for given

0 ≤ β ≤ γ and given τ̄ satisfying (8.7), there exists an ε∗ such that for any ε ∈ (0, ε∗], the

agents (8.1) with controller (8.4) achieve consensus for any communication topologies in Gβ,γ,0 and

τ ∈ [0, τ̄ ].

Remark 8.4. Note that for undirected and connected networks, the upper bound of tolerable delay

is independent of network topology. However, in directed networks, we have to sacrifice some

robustness in the delay tolerance in order to cope with the complex part of Laplacian eigenvalues.

The proof of Theorem 8.1 will be carried out in the next two subsections. We will proceed in two

steps: first, we convert the network consensus problem to the robust stabilization problem subject

to input delay via state feedbacks; then we shall show that controller (8.4) solves this equivalent

stabilization problem and thus solves the network consensus problem.

8.3.1.2 Connection to a Robust Stabilization Problem

Assume that the condition (8.6) in Theorem 8.1 holds. We choose a consensus controller for

agent i as

ui = Fzi.
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for some matrix F ∈ Rm×n. Define x̃ = [x1; · · · ;xN ]. The overall dynamics of N agents can be

written as

˙̃x(t) = (IN ⊗A)x̃(t)− (L⊗BF )x̃(t− τ).

Define ξ = [ξ1; · · · ; ξN ] = (T ⊗In)x̃ where ξi ∈ Cn and T is such that JL = TLT−1 is in the Jordan

canonical form and JL(1, 1) = 0. In the new coordinates, the dynamics of ξ can be written as

ξ̇(t) = (IN ⊗A)ξ(t)− (JL ⊗BF )ξ(t− τ).

Lemma 8.1. The network consensus problem is solved if ξi → 0 as t→∞ for i = 2, ..., N .

Proof. Let η(t) = [ξ1(t); 0; · · · ; 0]. If ξ(t) → η(t), then x̃(t) → (T−1 ⊗ In)η(t). Note that the

columns of T−1 comprise all the right eigenvectors and generalized eigenvectors of L. The first

column of T−1 is vector 1. This implies that for i = 1, ..., N

xi(t)→ ξ1(t).

The result of Lemma 8.1 follows.

The sub-dynamics of ξ̄(t) = [ξ2(t); · · · ; ξN (t)] are

˙̄ξ(t) = (IN−1 ⊗A)ξ̄(t)− (J̄L ⊗BF )ξ̄(t− τ) (8.8)

where J̄L is such that

JL =

0

J̄L

 .
The eigenvalues of system (8.8) are given by the roots of its characteristic equation

H(s) = det
{
sI − (IN−1 ⊗A) + e−sτ (J̄L ⊗BF )

}
= 0,
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which, due to the upper-triangular structure of IN−1 ⊗ A and J̄L ⊗ BF , are the union of the

eigenvalues of the N − 1 systems:

ξ̇i(t) = Aξi(t)− λiBFξi(t− τ), i = 2, ..., N.

We immediately have the following conclusion

Lemma 8.2. For any given positive β, γ, ϕ and τ̄ , Problem 8.1 is solvable if there exists an F

such that the system

ẋ(t) = Ax(t)− λejψBFx(t− τ) (8.9)

is globally asymptotically stable for any λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ].

8.3.1.3 Robust Stabilization via a Low-Gain State Feedback

Next, we shall show that the consensus controller in (8.4) satisfies the condition from Lemma

8.2. It remains to show that with properly chosen ε, the system (8.9) with F = 1
βFε given by

(8.4) is globally asymptotically stable for all λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ]. The following

(slightly modified) lemma of [112] is fundamental.

Lemma 8.3. Consider a linear time-delay system

ẋ = Ax+ ejψAdx(t− τ). (8.10)

Assume A + Ad is Hurwitz and Ad = BF where B and F have full rank. We have that (8.10) is

globally asymptotically stable for τ ∈ [0, τ̄ ] and |ψ| ∈ [0, ψ̄] if

det [I −G(jω)(Dψ(jω)− I)] 6= 0

for all ω ∈ R, τ ∈ [0, τ̄ ] and |ψ| ∈ [0, ψ̄] where

G(s) = F (sI −A−Ad)−1B and Dψ(s) = e−τs+jψI.
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Using Lemma 8.3, we can prove the following result:

Lemma 8.4. For any γ ≥ β > 0, τ̄ > 0 and ϕ such that

τ̄ <
π
3 − ϕ
ωmax

, (8.11)

there exists an ε∗ such that for ε ∈ (0, ε∗], the closed-loop system (8.9) with F = 1
βFε given by (8.4)

is asymptotically stable for all τ ∈ [0, τ̄ ], λ ∈ (β, γ) and ψ ∈ [−ϕ,ϕ].

Proof. With F = 1
βFε, (8.9) can be rewritten as

ẋ = Ax− λ
β e

jψBB′Pεx(t− τ). (8.12)

Since λ
β ≥ 1, (9.17) can be rewritten as

A′Pε + PεA− λ
βPεBB

′Pε +Qε = 0, (8.13)

where

Qε = εI +
(
λ
β − 1

)
PεBB

′Pε > 0.

Let

Fε,λ = −λFε = −λ
βB
′Pε, (8.14)

Gε,λ(s) = Fε,λ(sI −A−BFε,λ)−1B. (8.15)

Note that Fε,λ is a linear quadratic regulator with associated Riccati equation (8.13), and

lim
ε↓0

Fε,λ = 0

for any λ > β. Moreover, from [1], the following holds, for any λ > β and ε > 0

σ(I − Fε,λ(jωI −A)−1B) ≥ 1, ∀ω ∈ R.
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By applying Sherman-Morrison-Woodbury formula, also known as the matrix inversion lemma, see

for example [15], to the left-hand side, we obtain that for any λ > β and ε > 0

σ̄(I +Gε,λ(jω)) ≤ 1, ∀ω ∈ R, (8.16)

and hence

σ̄(Gε,λ(jω)) ≤ 2, ∀ω ∈ R. (8.17)

The closed-loop system (8.12) can also be written as

ẋ = Ax+ ejψBFε,λx(t− τ). (8.18)

It follows from Lemma 8.3 that (8.18) is globally asymptotically stable if

det [I −Gε,λ(jω)(Dψ(jω)− I)] 6= 0, (8.19)

for all ω ∈ R, τ ∈ [0, τ̄ ], λ ∈ (β, γ) and ψ ∈ [−ϕ,ϕ].

Although (8.19) has to hold for all ω ∈ R, thanks to Lemma 8.9, we only need to verify (8.19)

for those ω’s in a finite number of small intervals if ε is chosen sufficiently small.

Assume A has r distinct eigenvalues on the imaginary axis which are denoted by jωk, k = 1, ..., r.

Given (8.11), there exists a δ > 0 such that

1) The neighborhoods Ek := (ωk − δ, ωk + δ), k = 1, ..., r around these eigenfrequencies, are

mutually disjoint;

2) We have:

−π
3 < ωτ̄ + ψ < π

3

for ψ ∈ [−ϕ,ϕ] and ω ∈ ∪rk=1Ek.
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It is shown in Lemma 8.9 that there exists an ε∗ such that for ε ∈ (0, ε∗],

‖Gε,λ(jω)‖ ≤ 1
3 , ∀ω ∈ Ω := R\ ∪rk=1 Ek, λ ∈ (β, γ).

Since ‖Dψ(jω)− I‖ ≤ 2 for any ω, ψ ∈ R, the above inequality implies that (8.19) holds if

det [I −Gε,λ(jω)(Dψ(jω)− I)] 6= 0, (8.20)

for all ω ∈ ∪rk=1Ek, λ ∈ (β, γ) and ψ ∈ [−ϕ,ϕ]. Note that

I −Gε,λ(jω)(Dψ(jω)− I) = Dψ(jω)− (I +Gε,λ(jω))(Dψ(jω)− I)

and Dψ(jω) is unitary. Combined with (8.16), we have that (8.20) holds if

σ̄(Dψ(jω)− I) < 1, ∀ω ∈ ∪rk=1Ek, ψ ∈ [−ϕ,ϕ]. (8.21)

This is guaranteed by definition of Ek. Therefore, we conclude that for any ε ∈ (0, ε∗], the closed-

loop system is asymptotically stable for all τ ∈ [0, τ̄ ], λ ∈ (β, γ) and ψ ∈ [−ϕ,ϕ].

8.3.1.4 Neutrally Stable Agents

We observe that the consensus controller design in Theorem 8.1 for general critically unstable

agents depends on β explicitly. We next consider a special case where the agents have neutrally

stable dynamics, i.e. those eigenvalues of A on the imaginary axis are semi-simple. Without loss

of generality, we assume that A′ +A = 0. In this case, we shall show that the consensus controller

design no longer requires the knowledge of β and hence allows us to deal with a larger set of unknown

communication topologies. Moreover, less restrictive conditions on ϕ and τ̄ can be obtained.

Consider the agents (8.1). Assume A′+A = 0. A local consensus controller can be constructed

as

ui = εB′zi. (8.22)
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We have the following theorem:

Theorem 8.2. For a given set G0,γ,ϕ and τ̄ > 0, consider the agents (8.1) and any communication

topology belonging to the set G0,γ,ϕ. Suppose A′ +A = 0. In that case, Problem 8.1 is solvable if,

τ̄ <
π
2 − ϕ
ωmax

. (8.23)

Moreover, it can be solved by the consensus controller (8.22) if (8.23) holds. Specifically, for given γ

and given ϕ and τ̄ satisfying (8.23), there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.1)

with controller (8.22) achieve consensus for any communication topology in G0,γ,ϕ and τ ∈ [0, τ̄ ].

Remark 8.5. Note that we always have φ < π
2 provided that Assumption 8.1 holds. Hence, we

find that the restriction ϕ < π/3 in (8.6) can actually be removed for neutrally stable agents and a

larger τ̄ is permitted.

Proof of Theorem 8.2. We have proved in Section 8.3.1.2 that (8.22) solves Problem 8.1 with a set

of unknown communication topology G0,γ,ϕ for τ ≤ τ̄ if the system

ẋ = Ax− λεejψBB′x(t− τ) (8.24)

is globally asymptotically stable for λ ∈ (0, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ].

To show this, we shall need the following lemma adapted from [112].

Lemma 8.5. The time-delayed system (8.10) is globally asymptotically stable for τ ∈ [0, τ̄ ] if and

only if

det(jωI −A−Ade−jωτ ) 6= 0, ∀ω ∈ R, τ ∈ [0, τ̄ ].

It can be concluded from Lemma 8.5 that (8.24) is globally asymptotically stable for λ ∈ (0, γ),

ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ] if and only if

det
[
jωI −A+ λεejψ−jωτBB′

]
6= 0, ∀ω ∈ R, λ ∈ (0, γ), ψ ∈ [−ϕ,ϕ], τ ∈ [0, τ̄ ]. (8.25)
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Assume A has r distinct eigenvalues on the imaginary axis which are denoted by jωk, k = 1, ..., r.

Given (8.23), there exists a δ > 0 such that

1) The neighborhoods Ek := (ωk − δ, ωk + δ), k = 1, ..., r around these eigenfrequencies, are

mutually disjoint;

2) We have:

−π
2 < ωτ̄ + ψ < π

2

for ψ ∈ [−ϕ,ϕ] and ω ∈ ∪rk=1Ek.

For given γ, we can show with a similar argument as we use to prove Lemma 8.9 in the Appendix

that there exists a µ > 0 and a ε1 such that for ε ∈ (0, ε1] and λ ∈ (0, γ)

σ(jωI −A+ λεejψ−jωτBB) > µ, ∀ω ∈ R/ ∪kr=1 Ek.

Hence, (8.25) is satisfied for ε ∈ (0, ε1] and ω ∈ R/ ∪kr=1 Ek.

It remains to show (8.25) for ω ∈ ∪kr=1Ek. Note that ψ − ωτ ∈ (−π
2 ,

π
2 ) by definition of Ek and

hence cos(ψ − ωτ) > 0. Then

[A− λεejψ−jωτBB′]∗ + [A− λεejψ−jωτBB′] = −2λε cos(ψ − ωτ)BB′ ≤ 0

Since (A,B) is controllable, we conclude that A−λεejψ−jωτBB′ is Hurwitz for ω ∈ ∪rk=1Ek. Hence

(8.25) also holds for ω ∈ ∪kr=1Ek.

Similar results as in Corollaries 8.1 and 8.2 also carry over here for undirected communica-

tion topologies and neutrally stable agents that only have zero eigenvalues (a collection of single

integrators).

Corollary 8.3. For a given set G0,γ,ϕ and τ̄ > 0, consider the agents (8.1) and any communication

topology belonging to the set G0,γ,ϕ. Suppose A+ A′ = 0 and A has all the eigenvalues at zero. In
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that case, Problem 8.1 is always solvable via the consensus controller (8.22). Specifically, for given

G0,γ,ϕ and τ̄ > 0, there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.1) with controller

(8.22) achieve consensus for any communication topologies in G0,γ,ϕ and τ ∈ [0, τ̄ ].

Corollary 8.4. For a given set of undirected networks G0,γ,0 and τ̄ > 0, consider the agents (8.1)

and any communication topology belonging to the set G0,γ,0. Suppose A + A′ = 0. In that case,

Problem 8.1 is solvable if

τ̄ <
π

2ωmax
. (8.26)

Moreover, it can be solved by the consensus controller (8.22) if (8.26) holds. Specifically, for given

G0,γ,0 and given τ̄ satisfying (8.26), there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.1)

with controller (8.22) achieve consensus for any communication topologies in G0,γ,0 and τ ∈ [0, τ̄ ].

8.3.2 Consensus in Networks with Known Communication Topology

It is clear from Theorem 8.1 that in the case where the network is directed and its associated

Laplacian has complex eigenvalues, we have to yield some delay tolerance to accommodate the

uncertainty of complex Laplacian eigenvalues. However, it will be shown in this section that if the

network topology is exactly known, we can achieve a larger delay tolerance as in the undirected

network case shown in Corollary 8.2. In this section, we shall study the multi-agent consensus

problem in a known network which can be either directed or undirected.

From the work of [13], we have that for the given Laplacian matrix L and any positive real

number β, there exists a diagonal matrix D = diag{di}, where di is a scalar for i = 1, . . . , N , such

that the eigenvalues of DL, denoted by λi(DL), i = 1, ..., N , are real and satisfy

λ1(DL) = 0, λi(DL) > β, i = 2, ..., N.
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Note that D depends on L and hence the network topology. Let γ > 0 be such that λi(DL) < γ,

i = 2, ..., N . For each agent i, we apply a controller

ui = di
β Fεz

i, (8.27)

where di is the ith diagonal element of D and Fε is the same as in (8.4). The design depends on

the network G through the choice of D.

Theorem 8.3. Consider a network of agents (8.1). Suppose the network topology G defined by

matrix L is known. Problem 8.3 is solvable with consensus controller (8.27) if τ̄ < π
3ωmax

. Specifi-

cally, for the given L, there exists an ε∗ such that for ε ∈ (0, ε∗], (8.1) with controller (8.27) achieve

consensus for any τ ∈ [0, τ̄ ].

Proof. Using the same notations declared in the preceding section, we can write the overall dynamics

of N agents as

˙̃x(t) = (IN ⊗A)x̃(t)− 1
β (DL⊗BFε)x̃(t− τ).

Since all the eigenvalues of DL are real and λi(DL) ∈ (β, γ), i = 2, ..., N , the rest follows from the

same argument as used in the proof of Theorem 1. Therefore, given τ̄ < π
3ωmax

, we can find an ε∗

such that for ε ∈ (0, ε∗], consensus is achieved with respect to G for all τ < τ̄ .

8.3.2.1 Neutrally Stable Agents

For neutrally stable agents, where the communication topology is known, the design in Section

8.3.1.4 can also be modified to be topology-dependent so that the impact of ϕ on τ̄ can be removed.

Consider the agents (8.1) with a known communication topology defined by matrix L. Suppose

A′+A = 0. For the given L and any β > 0, choose the same D = diag{di}, where di is a scalar for
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i = 1, . . . , N as in the preceding subsection so that DL only has real eigenvalues and

λ1(DL) = 0, λi(DL) > β, i = 2, ..., N.

The consensus controller for each agent can be designed as

ui = diεB
′zi, (8.28)

where di is the ith diagonal element of the matrix D.

Theorem 8.4. Consider a network of agents (8.1). Suppose A′ + A = 0 and the communication

topology G defined by matrix L is known. Problem 8.3 is solvable with consensus controller (8.28)

if τ̄ < π
2ωmax

. Specifically, for the given L, there exists an ε∗ such that for ε ∈ (0, ε∗], (8.1) with

controller (8.28) achieve consensus for any τ ∈ [0, τ̄ ].

8.4 Consensus with Partial-state Coupling

Next, we proceed to the case of partial-state coupling and design a dynamic consensus controller

(8.3) which solves Problem 8.2 and 8.4.

8.4.1 Consensus in Networks with Unknown Communication Topology

8.4.1.1 Controller Design and Main Result

In this subsection, a dynamic low-gain consensus controller in the form of (8.3) is constructed

to solve the consensus problem for agents (8.2) with a set of unknown communication topologies.

For ε > 0, let Pε be the positive definite solution of the ARE (8.5). A dynamic low-gain

consensus controller can be constructed as
χ̇i = (A+KC)χi −Kzi,

ui = 1
βB
′Pεχ

i,

(8.29)
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where K is such that A+KC is Hurwitz stable. We shall prove that the consensus controller solves

Problem 8.2.

Theorem 8.5. For a given set Gβ,γ,ϕ and τ̄ > 0, consider the agents (8.2) with any communication

topology belonging to Gβ,γ,ϕ. In that case, Problem 8.2 is solvable if,

ϕ <
π

3
and τ̄ <

π
3 − ϕ
ωmax

. (8.30)

Moreover, it can be solved by the consensus controller (8.29) if (8.30) holds. Specifically, for given

β and γ and given ϕ and τ̄ satisfying (8.30), there exists an ε∗ such that for any ε ∈ (0, ε∗], the

agents (8.2) with controller (8.29) achieve consensus for any communication topology in Gβ,γ,ϕ and

τ ∈ [0, τ̄ ].

The next corollary is concerned with the case where A only has zero eigenvalues.

Corollary 8.5. For a given set Gβ,γ,ϕ and τ̄ > 0, consider the agents (8.2) with any communication

topology belonging to Gβ,γ,ϕ. Suppose A has all the eigenvalues at zero. In that case, Problem 8.2

is solvable if,

ϕ <
π

3
. (8.31)

Moreover, it can be solved by the consensus controller (8.29) if (8.31) holds. Specifically, for given

β, γ, τ̄ > 0 and ϕ < π
3 , there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.2) with

controller (8.29) achieve consensus for any communication topology in Gβ,γ,ϕ and τ ∈ [0, τ̄ ].

If we are only interested in undirected graphs, the following corollary can be utilized:

Corollary 8.6. For a given set of undirected topologies Gβ,γ,0 and τ̄ > 0, consider the agents (8.2)

with any communication topology belonging to Gβ,γ,0. In that case, Problem 8.2 is solvable if,

τ̄ <
π

3ωmax
. (8.32)
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Moreover, it can be solved by the consensus controller (8.29) if (8.32) holds. Specifically, for given

0 < β ≤ γ, τ̄ > 0 and given ϕ < π
3 , there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.2)

with controller (8.29) achieve consensus with any communication topology in Gβ,γ,0 and τ ∈ [0, τ̄ ].

We adopt a similar two-step strategy as we proved Theorem 8.1, which will be presented in the

next two subsections.

8.4.1.2 Connection to a Robust Stabilization Problem

In the partial-state coupling case, the network information zi of each agent can be fed into the

input ui through a compensator (8.3).

Let x̄i = [xi;χi]. Then for each agent, the closed-loop dynamics are

˙̄xi(t) =

A BCk

0 Ak

 x̄i(t) +

 0

Bk

 zi(t),
yi(t) =

[
C 0

]
x̄i,

zi(t) = −
∑N

j=1 `ijy
j(t− τ).

Define x̃ = [x̄1; · · · ; x̄N ], ỹ = [y1; · · · ; yN ],

A =

A BCk

0 Ak

 , B =

 0

Bk

 and C =

[
C 0

]
.

The overall dynamics of the N agents can be written as

˙̃x(t) = (IN ⊗A)x̃(t)− (L⊗ BC)x̃(t− τ).

Similarly as in Section 8.3.1.2, we can prove the following lemma.

Lemma 8.6. For any given set Gβ,γ,ϕ and τ̄ ≥ 0, Problem 8.2 is solvable via consensus controller

(9.2) if the system

ξ̇(t) = Aξ(t)− λejψBCξ(t− τ) (8.33)
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is globally asymptotically stable for any λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ].

Define an auxiliary system 
ẋ(t) = Ax− λejψBu(t− τ),

z(t) = Cx(t),

(8.34)

and a compensator 
χ̇(t) = Akχ(t) +Bkz(t),

u(t) = Ckχ(t),

(8.35)

where Ak, Bk and Ck are the same as in (8.3).

Lemma 8.7. For any given set Gβ,γ,ϕ and τ̄ ≥ 0, Problem 8.2 is solvable via consensus controller

(9.2) if the closed-loop system of (8.34) and (8.35) is globally asymptotically stable for any λ ∈

(β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ].

Proof. It is easy to see from the definitions of A, B and C that (8.33) is globally asymptotically

stable for any λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ] if the closed-loop system of (8.35) and
ζ̇(t) = Aζ(t) +Bu(t),

z(t) = −λejψCx(t− τ),

(8.36)

is globally asymptotically stable for any λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ]. λ ∈ (β, γ) and

ψ ∈ [−ϕ,ϕ].

The closed-loop system of (8.36) and (8.35) has a set of eigenvalues determined by

det

 sI −A −BCk

λesτBkC sI −Ak

 = 0. (8.37)

On the other hand, the eigenvalues of closed-loop system of (8.34) and (8.35) are given by

det

sI −A λesτBCk

−BkC sI −Ak

 = 0. (8.38)
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Note that − 1
λe
−sτI

I


sI −A λesτBCk

−BkC sI −Ak


−λesτI

I

 =

 sI −A −BCk

λesτBkC sI −Ak

 .
We find that the two closed-loop systems have the same set of eigenvalues. Therefore, (8.33) is

globally asymptotically stable if the closed-loop of (8.35) and (8.34) is globally asymptotically

stable for any λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ]. The result in Lemma 8.7 then follows from

Lemma 8.6.

8.4.1.3 Robust Stabilization via a Low-gain Compensator

Let Ak, Bk and Ck be given by the consensus controller (8.29). Then (8.35) can be written as
χ̇(t) = (A+KC)χ(t)−Kz(t),

u(t) = 1
βB
′Pεχ(t).

(8.39)

In this subsection, we show that (8.39) globally asymptotically stabilizes (8.34) for any λ ∈ (β, γ),

ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ]. Hence the low-gain consensus controller (8.29) solves Problem 8.2.

Lemma 8.8. Let ωmax = max{ω | det(jωI −A) = 0}. For given 0 < β ≤ γ and ϕ, τ̄ satisfying the

conditions (8.30), there exists an ε∗ such that for ε ∈ (0, ε∗], the closed-loop system of (8.34) and

(8.39) is globally asymptotically stable for any λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ] and τ ≤ τ̄ .

Proof. Let Fε,λ = −λ
βB
′Pε and

Ā1 =

 A BFε,λ

−KC A+KC

 .
It follows from the work of [73] that there exists an ε0 such that for ε ∈ (0, ε0], Ā1 is Hurwitz.

Define

Gmε,λ(s) =

[
0 Fε,λ

]
(sI − Ā1)−1

B
0

 .
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Lemma 8.3 shows that the closed-loop of (8.34) and (8.39) is globally asymptotically stable for all

τ ≤ τ̄ , ψ ∈ [−ϕ,ϕ] and λ ∈ (β, γ) if

det
{
I −Gmε,λ(jω)[Dψ(jω)− I]

}
6= 0, ∀ω ∈ R, τ ≤ τ̄ , λ ∈ (β, γ), ψ ∈ [−ϕ,ϕ]. (8.40)

Let’s consider Gmε,λ(s). Define

Ā2 =

 A BFε,λ

−KC A+KC +BFε,λ

 .
Note that Ā1 = Ā2 + Γ, where

Γ =

0 0

0 −BFε,λ

 = −

 0

B

[0 Fε,λ

]
.

Then

(sI − Ā1)−1 =
[
I − (sI − Ā2)−1Γ

]−1
(sI − Ā2)−1.

Hence

Gmε,λ(s) =

[
0 Fε,λ

]
(sI − Ā1)−1

B
0



=

[
0 Fε,λ

] [
I − (sI − Ā2)−1Γ

]−1
(sI − Ā2)−1

B
0


=
[
I +Gdε,λ(s)

]−1
Gfε,λ(s),

where we use the definition of Γ and the property that (I +AB)−1A = A(I +BA)−1 to obtain the
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last equality and

Gfε,λ(s) =

[
0, Fε,λ

]
(sI − Ā2)−1

B
0

 ,

Gdε,λ(s) =

[
0 Fε,λ

]
(sI − Ā2)−1

 0

B

 .
We next evaluate Gdε,λ(s) and Gfε,λ(s). By a simple transformation of Ā2, we obtain

Gfε,λ(s) =

[
0 Fε,λ

]sI −A−KC 0

KC sI −A−BFε,λ


−1 B

0

 ,

Gdε,λ(s) =

[
0 Fε,λ

]sI −A−KC 0

KC sI −A−BFε,λ


−1 −B

B

 .
It is not difficult to get that

Gfε,λ(s) = −Fε,λ(sI −A−BFε,λ)−1KC(sI −A−KC)−1B,

Gdε,λ(s) = Fε,λ(sI −A−BFε,λ)−1B −Gfε,λ(s) = Gε,λ(s)−Gfε,λ(s),

where Gε,λ has been defined in (8.15). Therefore,

Gmε,λ(s) =
[
I +

(
Gε,λ(s)−Gfε,λ(s)

)]−1
Gfε,λ(s). (8.41)

It is clear that if ‖Gfε,λ − Gε,λ‖∞ → 0 as ε → 0, then ‖Gmε,λ → Gε,λ‖∞ → 0 as ε → 0. In other
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words, Gmε,λ(jω) converges to Gε,λ(jω) uniformly in ω as ε→ 0. Let’s consider Gfε,λ. We have:

Gε,λ(s)−Gfε,λ(s) =Fε,λ(sI −A−BFε,λ)−1
[
I +KC(sI −A−KC)−1

]
B

=Fε,λ(sI −A−BFε,λ)−1
[
I −KC(sI −A)−1

]−1
B

=Fε,λ(sI −A−BFε,λ)−1(sI −A)(sI −A−KC)−1B

=Fε,λ
[
I − (sI −A)−1BFε,λ

]−1
(sI −A−KC)−1B

=Fε,λ
[
I + (sI −A−BFε,λ)−1BFε,λ

]
(sI −A−KC)−1B

=
[
I + Fε,λ(sI −A−BFε,λ)−1B

]
Fε,λ(sI −A−KC)−1B

= [I +Gε,λ(s)]Fε,λ(sI −A−KC)−1B.

Since A+KC is Hurwitz stable and (8.16) is satisfied, we have

‖Gε,λ −Gfε,λ‖∞ → 0 as ε→ 0. (8.42)

Hence ‖Gmε,λ → Gε,λ‖∞ → 0 as ε → 0. From the proof of Lemma 8.4, for given ϕ and τ̄ satisfying

(8.30), there exists an ε1 such that for ε ∈ (0, ε1], (8.19) holds. With (8.42), this implies that there

exists an ε∗ ≤ ε1 such that for ε ∈ (0, ε∗], (8.40) also holds. This completes the proof.

8.4.1.4 Neutrally stable agents

Corresponding to Section 8.3.1.4, we shall also consider here the special case where agents have

neutrally stable dynamics. Assume A′ + A = 0. In this case, a low-gain consensus controller can

be designed as 
χ̇i = (A+KC)χi −Kzi

ui = εB′χi,

(8.43)

where K is such that A+KC is Hurwitz.
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Theorem 8.6. For a given set G0,γ,ϕ and τ̄ > 0, consider the agents (8.2) with any communication

topology belonging to G0,γ,ϕ. Suppose A+A′ = 0. In that case, Problem 8.2 is solvable if,

τ̄ <
π
2 − ϕ
ωmax

. (8.44)

Moreover, it can be solved by the consensus controller (8.43) if (8.44) holds. Specifically, for given γ

and given ϕ and τ̄ satisfying (8.44), there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.2)

with controller (8.43) achieve consensus for any communication topology in G0,γ,ϕ and τ ∈ [0, τ̄ ].

Remark 8.6. As expected, the restriction ϕ < π
3 in (8.30) for general critically unstable agents

disappears and a larger τ̄ is obtained.

Proof of Theorem 8.6. Define

Ak =

 A 0

−KC A+KC

 , Ad,ε =

0 −λεejψBB′

0 0

 .
It has been proven that (8.43) solves Problem 8.2 if the system

ξ̇(t) = Akξ(t) +Ad,εξ(t− τ), (8.45)

is globally asymptotically stable for λ ∈ (0, γ), ψ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ]. From Lemma 8.5, (8.45)

is globally asymptotically stable if and only if

det
(
jωI −Ak −Ad,εe−jωτ

)
6= 0, ∀ω ∈ R, λ ∈ (0, γ), ψ ∈ [−ϕ,ϕ], τ ∈ [0, τ̄ ]. (8.46)

Let δ and Ek be defined as in the proof of Theorem 8.2. For given γ, we can show with a similar

argument as we use to prove Lemma 8.9 that there exists a µ > 0 and an ε1 such that for ε ∈ (0, ε1]

and γ ∈ (0, γ)

σ
(
jωI −Ak −Ad,εejωτ

)
> µ, ∀ω ∈ R/ ∪kr=1 Ek.
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Hence, (8.46) is satisfied for ε ∈ (0, ε1], ω ∈ R/ ∪kr=1 Ek and λ ∈ (0, γ).

It remains to show that (8.46) holds for ω ∈ ∪kr=1Ek. It suffices to show that there exists an

ε∗ ≤ ε1 such that for ε ∈ (0, ε∗], Ak +Ad,εe−jωτ is Hurwitz for ω ∈ ∪rk=1Ek.

Note that there exists a non-singular transformation Γ such that

Āψ(ω) = Γ−1(Ak +Ade−jωτ )Γ =

A− λεejψ−jωτBB′ λεejψ−jωτBB′

−λεejψ−jωτBB′ A+KC + λεejψ−jωτBB′

 .
Let Q be the positive definite solution of Lyapunov equation

(A+KC)′Q+Q(A+KC) = −2I.

There exists an ε2 such that for ε ∈ (0, ε2],

(A+KC + λεejψ−jωτBB′)∗Q+Q(A+KC + λεejψ−jωτBB′) ≤ −I.

Define

P =

I 0

0 Q

 .
We have that

Āψ(ω)∗P + P Āψ(ω) ≤

−2λε cos(ψ − ωτ)BB′ −λεBB′Mψ(ω)

−λεM∗ψ(ω)BB′ −I

 ,
where

Mψ(ω) = e−jψ+jωτQ− ejψ−jωτI.

Note that ‖Mψ(ω)‖ ≤ ‖Q‖ + 1 and cos(ψ − ωτ) > 0 for ω ∈ ∪rk=1Ek. Let ε3 be such that for

ε ∈ (0, ε3],

λε

cos(ψ − ωτ)
M∗ψ(ω)BB′Mψ(ω) ≤ 1

2I.
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Then, for ε ∈ (0, ε3],

Ā∗ψ(ω)P + P Āψ(ω) ≤

−λε cos(ψ − ωτ)BB′ 0

0 −1
2I

 ≤ 0.

Since cos(ψ − ωτ) > 0 for ω ∈ ω ∈ ∪rk=1Ek and (A,B) is controllable, we find that for ε ∈ (0, ε3],

Āψ(ω) is Hurwitz for ω ∈ ∪rk=1Ek. Let ε∗ = min{ε1, ε2, ε3}. Therefore, (8.46) holds for ε ∈

(0, ε∗].

The following corollaries follow immediately:

Corollary 8.7. For a given set G0,γ,ϕ and τ̄ > 0, consider the agents (8.2) with any communication

topology belonging to G0,γ,ϕ. Suppose A + A′ = 0 and A has all its eigenvalues at zero. In that

case, Problem 8.2 is always solvable. Moreover, it can be solved by the consensus controller (8.43).

Specifically, for given γ, ϕ and τ̄ , there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.2)

with controller (8.43) achieve consensus for any communication topology in G0,γ,ϕ and τ ∈ [0, τ̄ ].

Corollary 8.8. For a given set of undirected communication topologies G0,γ,0 and τ̄ > 0, consider

the agents (8.2) with any communication topology belonging to G0,γ,0. Suppose A+A′ = 0. In that

case, Problem 8.2 is solvable if

τ̄ <
π

2ωmax
. (8.47)

Moreover, it can be solved by the consensus controller (8.43) if (8.47) holds. Specifically, for given γ

and given ϕ and τ̄ satisfying (8.47), there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents (8.2)

with controller (8.43) achieve consensus for any communication topology in G0,γ,0 and τ ∈ [0, τ̄ ].

8.4.2 Consensus in Networks with Known Communication Topology

When the perfect information of communication topology is available, the design in preceding

subsection can be modified to be topology-dependent, so that a less restrictive condition on τ̄
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compared with Theorem 8.5 can be achieved.

Similar as in Section 8.3.2, for a given Laplacian matrix L and a positive real number β > 0,

we can find a diagonal matrix D such that the eigenvalues of DL, denoted by λi(DL), i = 1, ..., N ,

are real and satisfy

λ1(DL) = 0, λi(DL) > β, i = 2, ..., N.

Let γ > 0 be such that λi(DL) < γ, i = 2, ..., N . For each agent i, we apply a controller
χ̇i(t) = (A+KC)χi(t)−Kzi(t),

ui(t) = di
β B
′Pεχ

i(t),

(8.48)

where di is the ith diagonal element of D and Pε is the positive definite solution of (9.17). We can

prove the following theorem:t

Theorem 8.7. For given τ̄ > 0, consider a network of agents (8.2) with a known communication

topology defined by matrix L. Problem 8.4 is solvable if,

τ̄ <
π

3ωmax
. (8.49)

Moreover, it can be solved by the consensus controller (8.48) if (8.49) holds. Specifically, for a

given L and a τ̄ ≥ 0 satisfying (8.49), there exists an ε∗ such that for any ε ∈ (0, ε∗], the agents

(8.2) with controller (8.48) achieve consensus in the network.

8.4.2.1 Neutrally stable agents

Consider the agents (8.2) with a known communication topology defined by matrix L. Suppose

A′ + A = 0. For the given L and any β > 0, choose the same D = diag{d} as in the preceding

subsection so that DL only has real eigenvalues and

λ1(DL) = 0, λi(DL) > β, i = 2, ..., N.
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The consensus controller for each agent can be designed as
χ̇i(t) = (A+KC)χi(t)−Kzi(t),

ui(t) = diεB
′χi(t).

(8.50)

Theorem 8.8. Consider a network of agents (8.2). Suppose A′ + A = 0 and the communication

topology G defined by matrix L is known. Problem 8.4 is solvable with consensus controller (8.50)

if τ̄ < π
2ωmax

. Specifically, for the given L, there exists an ε∗ such that for ε ∈ (0, ε∗], (8.2) with

controller (8.50) achieve consensus for any τ ∈ [0, τ̄ ].

8.5 Illustrative Examples

8.5.1 Consensus with Full-state Coupling with a Set of Communication Topolo-

gies

Consider the 4 identical agents

ẋi(t) =



0 1 1 0

0 0 0 1

0 0 0 1

0 0 −1 0


xi(t) +



0 0

1 0

0 0

0 1


ui(t), i = 1, ..., 4,

zi(t) = −
∑N

j=1 `ijx
j(t− τ),

(8.51)

with full-state coupling as given in (8.1). The communication topologies defined by L = {`ij}

belong to the set G3,5,π/6. We have ωmax = 1 in this case. For this given set of data, we can choose

the parameter ε to be 2× 10−4 and design a consensus controller according to (8.4) and (8.5)

ui = 1
βFεz

i =

0.0045 0.0540 −0.0536 0.0091

0.0015 0.0091 −0.0087 0.0155

 zi.
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We apply this ui to two networks in the set G3,5,π/6 as shown in Fig. 8.1 and 8.2. The communication

delay in these two networks is τ = 0.5. The corresponding simulation results are shown in Fig 8.3

and Fig 8.4.

1
1.2

3.3 1.7

2

3 4

2.3

2.8

Figure 8.1: Network 1

1
1.2

3.3 1.7

2

3 4

2.8

Figure 8.2: Network 2

8.5.2 Consensus with Full-state Coupling with a Known Communication Topol-

ogy

Consider a network of 4 identical agents given by (8.51). The network topology is described by

a weighted and direct graph shown in Fig. 8.5. The delay in this network is τ = 1. Note that for
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Figure 8.3: Evolution of the first state element of all four agents in Network 1

this network, we have ϕ = 0.4086. It is easy to see that the condition in Theorem 8.1 does not

hold.

However, since the network topology is known, we can choose β = 1 and a diagonal matrix

D = diag{[1, 1, 1, 0.01]}

such that DL only has real eigenvalues and the non-zero eigenvalues of DL are greater than β.

Then for this D, we get γ = 4. The parameter ε is chosen to be 10−3. We can construct the

following consensus controller for Network 3:

ui = di
β Fεz

i = di

0.0281 0.2319 −0.2262 0.0587

0.0145 0.0587 −0.0512 0.1120

 zi.
The simulation result is given in Fig 8.6.
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Figure 8.4: Evolution of the first state element of all four agents in Network 2

8.5.3 Consensus with Partial-state Coupling with a Set of Communication

Topologies

Consider a network of 4 identical agents

ẋi(t) =



0 1 1 0

0 0 0 1

0 0 0 1

0 0 −1 0


xi(t) +



0 0

1 0

0 0

0 1


ui(t),

yi(t) =

[
1 0 0 0

]
xi(t),

zi(t) = −
∑N

j=1 `ijy
j(t− τ),

(8.52)

with τ = 0.5 and the same set of communication topology G3,5,π/6 as in Section 8.5.1.

We can choose ε = 10−6 and

K =

[
−10 −29 −5 −20

]′
, (8.53)
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Figure 8.5: Network 3

and design the dynamic low-gain consensus controller as follows:

χ̇i(t) =



−10 1 1 0

−29 0 0 1

−5 0 0 1

−20 0 −1 0


χi(t) +



−10

−29

−5

−20


zi(t)

ui(t) =

0.0003 0.0149 −0.0149 0.0007

0.0000 0.0007 −0.0007 0.0009

χi(t).
Consider the same two communication topologies depicted in Fig. 8.1 and 8.2. The respective

simulation results are shown in Fig. 8.7 and Fig. 8.8.

8.5.4 Consensus with Partial-state Coupling with a Known Communication

Topology

Consider the agents (8.52) with τ = 1 and the communication topology is given in Fig. 8.5.

Let β = 1. Following the same procedure as in Section 8.5.2, we can design

D = diag{1, 1, 1, 0.01} (8.54)
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Figure 8.6: Evolution of xi1

such that DL has real eigenvalues and non-zero eigenvalues of DL are greater than β. In this

case, γ = 4. We choose ε = 10−4 and K the same as in (8.53). The dynamic low-gain consensus

controller is 

χ̇i(t) =



−10 1 1 0

−29 0 0 1

−5 0 0 1

−20 0 −1 0


χi(t) +



−10

−29

−5

−20


zi(t),

ui(t) = di

0.0096 0.1377 −0.1371 0.0195

0.0027 0.0195 −0.0189 0.0319

χi(t),
where di is given by (8.54). The simulation result is shown in Fig. 8.9.

8.6 Conclusion

In this chapter, we study the multi-agent consensus with uniform constant communication delay

for agents with high-order dynamics. A sufficient condition on delay is derived under which the
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Figure 8.7: Evolution of xi1

multi-agent consensus is attainable. Whenever this condition is satisfied a consensus controller

without the exact knowledge of network topology can be constructed such that consensus can be

achieved in a set of network. Furthermore, a larger delay tolerance is possible if the topology

information is available in the controller design.

We consider identical agents with uniform constant delay in this chapter. Future research will

continuous in two directions: 1. extend the results to non-identical agents; 2. consider non-uniform

and time-varying delay.

8.A A Useful Lemma

Lemma 8.9. There exists ε∗ such that for ε ∈ (0, ε∗],

‖Gε,λ(jω)‖ ≤ 1
3 , ∀ω ∈ Ω := R\ ∪rk=1 Ek, λ ∈ (β, γ).

Proof. By definition, det(jωI −A) 6= 0 for all ω ∈ Ω. There exists a µ such that

σ(jωI −A) > µ, ∀ω ∈ Ω.
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Figure 8.8: Evolution of xi1

After all assume this is not the case. Then there exists a sequence ωi ∈ Ω such that

σ(jωiI −A)→ 0

as i→∞. We can ensure that this sequence ωi is bounded since for ω satisfying |ω| > ‖A‖+ 1 we

have:

σ(jωI −A) > |ω| − ‖A‖ > 1.

But it follows from the Bolzano-Weierstrass theorem that a bounded sequence ωi has a convergent

subsequence whose limit, denoted by ω̄, is in Ω (since Ω is closed). The limit ω̄ would have the

property

σ(jω̄I −A) = 0.

This implies ω̄ is an eigenvalue of A which is in contradiction with definition of Ω. Choose ε∗ such

that for any ε ∈ (0, ε∗], ‖Fε,λ‖ ≤ µ
4‖B‖

−1 for any λ ∈ (β, γ). In that case:

σ(jωI −A−BFε,λ) > µ− ‖B‖‖Fε,λ‖ > 3µ
4 , ∀ω ∈ Ω, λ ∈ (β, γ),
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Figure 8.9: Evolution of xi1

and hence

‖(jωI −A−BFε,λ)−1‖ < 4
3µ ,∀ω ∈ Ω, λ ∈ (β, γ),

but then

‖Fε,λ(jωI −A−BFε,λ)−1B‖ ≤ ‖Fε,λ‖‖(jωI −A−BFε,λ)−1‖‖B‖ ≤ 1
3

for all ω ∈ Ω and λ ∈ (β, γ).
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Chapter 9

Synchronization for Heterogeneous

Networks of Introspective

Right-invertible Agents with Uniform

Constant Communication Delay

9.1 Introduction

The synchronization analysis and design in networks has received substantial attention from

researchers in recognition of its wide applications in a variety of areas (see [44,55,100] and references

therein).

The study on state synchronization in homogeneous network, that is–network consists of iden-

tical agents, has been quite fruitful. Depending on what information the agents collect from the

network, synchronization in homogeneous networks can be classified into two categories. In some
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networks, each agent measures its own state relative to that of neighbors, which is referred to

as full-state coupling [45, 46, 51, 52, 54, 83]; In other networks, the agents may collect information

of its output relative to that of its neighboring agents, which we refer to as partial-state cou-

pling [32, 48,73,84].

In contrast to the flourishing research on synchronization in homogeneous networks, relatively

limited results have been obtained for heterogeneous networks, as we refer to networks comprising

non-identical agents. For heterogeneous networks, the notion of state synchronization may no longer

make sense as each agent possesses a set of state information which may be inherently different from

others. In this case, it is more natural to study an alternative problem of output synchronization,

that is, all the agents should agree on a set of pre-selected outputs (see, for example, [10,25,104]).

In this body of work, it is commonly assumed that each agent has a local measurement of its own

states, which we refer to as introspective agents. The synchronization problem is more difficult for

non-introspective agents, yet effort has already been made in this direction [17,113].

Due to the ubiquity of communication delay during the transmission of information, the research

has also been directed to synchronization in networks with time delay. Most work assumes the

agents as described by first order [5,33,43,46,74,80] or second order dynamics [21,34,41,47,81,110].

Single-input and single-output agents are considered in [42]. The authors also previously study

multi-input multi-output agents that are at most critically unstable in [94]. Both time and frequency

domain approaches have been utilized. In the time-domain, the design and analysis are usually

based on the Lyapunov-Krasovskii or Lyapunov-Razumikhin function [22, 33, 41, 47, 74]. In the

frequency domain, they rely on the Nyquist criteria or small gain theorem [7, 34, 41, 42, 80, 81, 94].

Despite aforementioned advances, this research is still largely situated in a limited framework –

that is, homogeneous networks of simple agents mostly with first order or second order dynamics.
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To the best of the authors’ knowledge, the results that explicitly consider heterogeneous networks

of higher-order agents and time-delay are [29, 30]. The single-output synchronization is studied

in [29]. A frequency-domain approach based on Geršgorin’s theorem and spectral radius stability

theorem is proposed to design a decentralized linear consensus controller. However, the consensus

condition obtained in [29] is very conservative (see [80]). [30] studies single-input single-output

agents and undirected communication topologies. A consensus condition is derived based on the

notion of S-hull.

9.1.1 Contribution

In this chapter, we consider heterogeneous networks of introspective multi-input multi-output

agents with uniform constant communication delay. We assume that the agents are right-invertible.

Two problems are studied in this chapter, namely the output synchronization problem and output

regulation problem. The underlying idea is to shape the agent dynamics into a particular form

by exploiting the self-knowledge and right-invertibility property of the agents. Specifically, in the

output synchronization problem, the agents are manipulated to imitate a neutrally stable system

and as such can tolerate arbitrary bounded delay and accommodate more network uncertainties

under standard assumption on the communication topology. However, when one is more concerned

with the synchronization trajectories as in the output regulation problem, we can re-shape the

agent to be the same with exo-system and regulate the agents’ outputs by providing relative output

measurement of the exo-system only to one particular agent. Moreover, we propose a decentralized

controller design methodology that does not require exact knowledge of communication topologies

so that these two problems can be solved for a set of unknown networks. Finally, we show that the

design proposed in this chapter also applies to a formation control problem.
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9.1.2 Notations and Preliminaries

The following notations will be used in this chapter. For column vectors x1, . . . , xn, the stacking

column vector of x1, . . . , xn is denoted by [x1; . . . ;xn]. For arbitrary matrix X ∈ Cn×m, X ′, X−1

and ‖X‖ denote respectively the transpose, inverse and induced 2-norm of X. For square matrix

X ∈ Cn×n, det(X) and λ(A) represent its determinant and eigenvalue.

For A ∈ Cn×m and B ∈ Cp×q, the Kronecker product of A and B is defined as

A⊗B =


a11B · · · a1mB

...
...

...

an1B · · · anmB


The following property of the Kronecker product will be used in this chapter:

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

A graph G is defined by a pair (N , E) where N = {1, . . . , N} is a vertex set and E is a set of

pairs of vertices (i, j). Each pair in E is called an arc. G is undirected if (i, j) ∈ E ⇒ (j, i) ∈ E .

Otherwise, G is directed. A directed path from vertex i1 to ik is a sequence of vertices {i1, . . . , ik}

such that (ij , ij+1) ∈ E for j = 1, ..., k − 1. A directed graph G contains a directed spanning tree if

there is a node r such that a directed path exists between r and every other node.

The graph G is weighted if each arc (i, j) is assigned with a real number aij . For a weighted

graph G, a matrix L = {`ij} with

`ij =


∑N

j=1 aij , i = j

−aij , i 6= j,

is called Laplacian matrix associated with graph G. In the case where G has non-negative weights,

L has all its eigenvalues in the closed right half plane and at least one eigenvalue at zero associated
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with right eigenvector 1 (see e.g. [63]). If G has a directed spanning tree, L has a simple eigenvalue

at zero and all the other eigenvalues have strictly positive real parts (see e.g. [53]).

9.2 Problem Formulation

Consider a heterogeneous network of N introspective agents

ẋi(t) = Aixi(t) +Biui(t),

yi(t) = Ciyx
i(t),

zi(t) = Cizx
i(t),

ζi(t) =
∑N

j=1 `ijy
j(t− τ),

(9.1)

where xi ∈ Rni , ui ∈ Rmi , yi, ζi ∈ Rp, zi ∈ Rqi and τ > 0 is an unknown constant satisfying

τ ∈ [0, τ̄ ]. The coefficients `ij are such that `ij ≤ 0 for i 6= j and `ii = −
∑N

j 6=i `ij .

The matrix L = {`ij} ∈ RN×N defines the communication topology which can be captured by

a weighted graph G = (N , E ,A) where (j, i) ∈ E ⇔ `ij < 0 and aii = 0 and aij = −`ij for i 6= j.

Assumption 9.1. The communication topology G contains a directed spanning tree whose root

(without loss of generality) is agent N .

In this case, L has a simple eigenvalue at zero and the rest are located in the open right

half plane. Let λ1, · · · , λN denote the eigenvalues of L and assume λ1 = 0. When the perfect

information of the communication topology is not available, we can use the non-zero eigenvalues of

L as a rough “metric” of the graph and introduce the following definition to characterize a set of

unknown communication topologies.

Definition 9.1. For any γ ≥ β > 0 and π
2 > ϕ ≥ 0, Gβ,γ,ϕ is the set of networks whose Laplacian
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eigenvalues satisfy that

|λi| ∈ (β, γ), arg λi ∈ [−ϕ,ϕ] for i = 2, . . . , N.

In this network, each agent collects two measurements:

1) a network measurement ζi ∈ Rp which is a combination of its own output relative to that of

neighboring agents and is subject to a uniform constant communication delay;

2) a local measurement zi ∈ Rqi of its internal dynamics to which the agent has an instantaneous

access.

Assumption 9.2. The agents satisfy the following properties:

1) (Ai, Bi) is stabilizable;

2) (Ai, Ciy) is detectable;

3) (Ai, Bi, Ciy) is right-invertible;

4) (Ai, Ciz) is detectable.

The output synchronization in a heterogeneous network of agents (9.1) can be defined as follows:

Definition 9.2. The agents in the network achieve output synchronization if

lim
t→∞

(yi(t)− yj(t)) = 0, ∀i, j ∈ {1, . . . , N}.

With the above defined notations, the first problem studied in this chapter is formally stated

below:

Problem 9.1. Consider a heterogeneous network of the form (9.1). For a given set Gβ,γ,ϕ and

τ̄ ≥ 0, the output synchronization problem with a set of communication topologies Gβ,γ,ϕ for all

254



τ ≤ τ̄ is to design a local linear dynamical controller
χ̇i = Aicχ

i +Bi
cζ
i + Eicz

i,

ui = Cicχ
i +Di

cζ
i +M i

cz
i,

(9.2)

such that the synchronization can be achieved in the network with any communication topology

belonging to Gβ,γ,ϕ for τ ≤ τ̄ .

Note that the above synchronization problem does not impose any restriction on the synchro-

nization trajectories. The focus here is to solve this problem for as a large set of communication

topologies and delay as possible. On the other hand, it is important in some scenario to regulate

the output of the agents to desired trajectories when the output synchronization is reached. Let

an exo-system be given as 
ẋr = Arxr, xr(0) = xr,

yr = Crxr,

(9.3)

where Ar has all its eigenvalues in the closed left half complex plane and (Ar, Cr) is observable.

We want to regulate each agent’s output to yr. It is reasonable to assume that the synchronization

trajectories are not exponentially increasing. In this case, we assume the root of network also

measures its own output relative to yr of the exo-system. To be precise, the root agent, which is

the agent N , takes the following form:

ẋN = ANxN (t) +BNuN (t),

zN = CNz x
N (t),

yN = CNy x
N (t),

ζN =
∑N

j=1 `Njy
j(t− τ) + δ

[
yN (t− τ)− yr(t− τ)

]
,

(9.4)

with δ > 0.
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Definition 9.3. The agents in the network achieve output regulation if

lim
t→∞

(yi(t)− yr(t)) = 0, ∀i ∈ {1, . . . , N}.

We can formulate the regulation problem as follows:

Problem 9.2. Consider a heterogeneous network of the form (9.1). For a given exo-system (9.3), a

set Gβ,γ,ϕ and τ̄ ≥ 0, the output regulation problem with exo-system (9.3) and a set of communication

topologies Gβ,γ,ϕ for all τ ≤ τ̄ is to design a local linear dynamical controller (9.2) such that the

output regulation can be achieved in the network with any communication topology belonging to

Gβ,γ,ϕ for τ ≤ τ̄ .

9.3 Main Result

The first main result of this chapter is stated in the following theorem:

Theorem 9.1. For a given set G0,γ,ϕ and τ̄ ≥ 0, the Problem 9.1 is always solvable via a decen-

tralized dynamic consensus controller (9.2).

Before we present the result for output regulation problem, some preparatory work needs to

be done. For any communication topology G, an augmented graph Ḡ can be defined by including

the exo-system denoted by e and an arc (e,N) with weight δ into the topology. The Laplacian

associated with Ḡ is

L̄ = {¯̀ij} =



`11 `12 · · · `1N 0

`21 `22 · · · `2N 0

...
... · · ·

... 0

`N1 `N2 · · · `NN + δ −δ

0 0 · · · 0 0


, (9.5)
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whose eigenvalues are denoted by λ̄i, i = 1, ..., N + 1 with λ̄1 = 0. Obviously, this Ḡ also has a

directed spanning tree and thus λ̄i, i = 2, ..., N + 1 are in the open right half plane. For a given set

Gβ,γ,ϕ, the set of augmented topologies can be denoted by Ḡᾱ,β̄,ϕ̄ such that for any Ḡ ∈ Ḡβ̄,γ̄,ϕ̄,

|λ̄i| ∈ (β̄, γ̄), arg(λ̄i) ∈ [−ϕ̄, ϕ̄], i = 2, ..., N.

We have the following theorem:

Theorem 9.2. For a given set Gβ,γ,ϕ and τ̄ ≥ 0, the Problem 9.2 is solvable via a decentralized

dynamic consensus controller (9.2) if the set of augmented topologies Ḡβ̄,γ̄,ϕ̄ satisfies:

1) ϕ̄ < π
3 ;

2) τ̄ <
π
3−ϕ̄
ωmax

,

where ωmax = max{ω ∈ R | det(jωI −Ar) = 0}.

We shall prove Theorem 9.1 and 9.2 by explicitly constructing a synchronization or regula-

tion controller in the form of (9.2) via a progressive design approach. First, we design a local

pre-compensator to make the agents quasi-identical to a new common model, which we refer to

as homogenization of network ; Next, we show that for this new network, both problems can be

reduced to a robust stabilization problem. Finally, we shall design a controller that solves the

reformulated stabilization problem so that synchronization or output regulation can be achieved in

the homogenized network.

9.3.1 Homogenization of the Network

For introspective agents, their self-reflection of internal dynamics provides us with additional

freedom to manipulate the agent models so as to disguise them as being almost identical to the

rest of the network viewed from their output. This is shown in the next lemma.
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Lemma 9.1. Consider a heterogeneous network of the form (9.1) with communication topologies

given by Gβ,γ,ϕ and communication delay τ ≤ τ̄ . Let nd denote the maximum order of infinite zeros

of (Ai, Bi, Ci). Suppose a triple (A,B,C) is given such that

1) rank(C) = p.

2) (A,B,C) is invertible, of uniform rank nq ≥ nd and has no invariant zero.

There exists a compensator 
ξ̇i(t) = AiHξ

i(t) +Bi
Hz

i(t) + EiHv
i(t),

ui(t) = CiHξ
i(t) +Di

Hv
i(t),

(9.6)

such that the closed-loop system of (9.1) and (9.6) can be written in the following form:

˙̄xi(t) = Ax̄i(t) +B
(
vi(t) + di(t)

)
,

yi(t) = Cx̄i(t),

ζi(t) =
∑N

j=1 `ijy
j(t− τ),

(9.7)

where di are generated by 
ω̇i(t) = Aisω

i(t), i = 1, ..., N,

di(t) = Cisω
i(t),

(9.8)

and Ais are Hurwitz stable.

Proof. See [104].

Remark 9.1. Lemma 1 shows that we can design a compensator (9.6) to make the agent identical

to a new common model characterized by a priori given triple (A,B,C) except for an exponentially

decaying exogenous signal injected in the range space of B. Moreover, we have a complete freedom

to choose the modes of A which is fundamental in proving Theorems 9.1 and 9.2.
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The resulting network (9.7) can be viewed as a homogeneous network affected by the exponen-

tially decaying disturbances di generated by (9.8). The injection of such exponentially decaying di

turns out to be irrelevant and the output synchronization problem in the original heterogeneous

network of agents (9.1) can be reduced to the output synchronization problem in a homogeneous

network with the same communication topology.

9.3.2 Synchronization in Homogeneous Networks

Next, we consider the synchronization problem for the agents (9.7) as formulated in Problem

9.1. We can choose in Lemma 9.1 the triple (A,B,C) satisfying additional properties

A+A′ = 0, |λ(A)| <
π
2 − ϕ
τ̄

. (9.9)

Such a triple (A,B,C) always exists and in fact can be chosen in the following form:

A = Γ(A0 +B0H)Γ−1, B = ΓB0, C = C0Γ−1,

and

A0 =

0 I(nq−1)p

0 0

 , B0 =

 0

Ip

 , C0 =

[
Ip 0

]
,

where H is such that A0 +B0H only has semi-simple eigenvalues on the imaginary axis satisfying

(9.9). H exists due to the fact that (A0, B0) is controllable. Then a transformation Γ can be found

such that Γ(A0 +B0H)Γ−1 is in the real Jordan canonical form and thus A+A′ = 0.

For the above (A,B,C), a low-gain compensator can be constructed as
χ̇i(t) = (A+KC)χi(t)−Kζi(t),

vi(t) = −εB′χi(t),
(9.10)

where K is such that A+KC is Hurwitz stable. The existence of K is due to the fact that (A,C)

is observable.
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Define x̃i = [x̄i;χi]. Then for each agent, the closed-loop dynamics of (9.7) and (9.10) are

˙̃xi(t) = Āx̃i(t) + B̄ζi(t) + Ēdi(t),

yi(t) = C̄x̃i(t),

ζi(t) =
∑

j∈N `ijy
j(t− τ),

where

Ā =

A −εBB′

0 A+KC

 , B̄ =

 0

−K

 , C̄ =

[
C 0

]
, Ē =

B
0

 . (9.11)

Define x̃ = [x̃1; · · · ; x̃N ] and d = [d1; · · · ; dN ]. The overall dynamics of N agents can be written as

˙̃x(t) = (IN ⊗ Ā)x̃(t) + (L⊗ B̄C̄)x̃(t− τ) + (IN ⊗ Ē)d.

Let T be a non-singular matrix such that J = TLT−1 is in the Jordan Canonical Form with

J(1, 1) = λ1 = 0 and η = [η1; · · · ; ηN ] = (T ⊗ In)x̃ where n is the dimension of A. The dynamics

of η are governed by

η̇(t) = (IN ⊗ Ā)η(t) + (J ⊗ B̄C̄)η(t− τ) + (T ⊗ Ē)d.

Lemma 9.2. The interconnections of (9.7) and (9.10) reach output synchronization if ηi → 0 as

t→∞ for i = 2, ..., N .

Proof. Let π(t) = [η1(t); 0; · · · ; 0]. If η(t) → π(t), then x̃(t) → (T−1 ⊗ In)π(t) where n is the

dimension of A. Note that the columns of T−1 comprise all the right eigenvectors and generalized

eigenvectors of L. The first column of T−1 is vector 1. This implies that for i = 1, ..., N

x̃i(t)→ η1(t).

Define η̄ = [η2; · · · ; ηN ] and take the dynamics of d into account. We will get ˙̄η(t)

ω̇(t)

 =

IN−1 ⊗ Ā (ĪT ⊗ Ē)C̄s

0 Ās


η̄(t)

ω(t)

+

J̄ ⊗ B̄C̄ 0

0 0


η̄(t− τ)

ω(t− τ)

 , (9.12)
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where ω = [ω1; . . . ;ωN ], C̄s = blkdiag{Cis}Ni=1, Ī = [0, IN−1] and Ās = blkdiag{Ais}Ni=1 is Hurwitz.

Clearly η̄ → 0 for any initial condition if the system (9.12) is globally asymptotically stable. Note

that the system (9.12) is globally asymptotically stable if and only if

det

sI −
IN−1 ⊗ Ā (ĪT ⊗ Ē)C̄s

0 Ās

−
J̄ ⊗ B̄C̄ 0

0 0

 e−sτ
 6= 0, ∀s ∈ C+. (9.13)

Due to the upper triangular structure of both matrices in (9.13) and the fact that Ās is Hurwitz,

it is easy to see that (9.13) holds if and only if

det
[
sI − (IN−1 ⊗ Ā)− (J̄ ⊗ B̄C̄)e−sτ

]
6= 0, ∀s ∈ C+. (9.14)

Therefore, we have the following lemma.

Lemma 9.3. The interconnections of agents (9.7) and (9.10) achieve output synchronization if the

system

˙̃η(t) = Āη̃(t) + λB̄C̄η̃(t− τ), (9.15)

is globally asymptotically stable for |λ| ∈ (0, γ), arg λ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ].

The next lemma is proved in [94].

Lemma 9.4. Let Ā, B̄ and C̄ be given in (9.11). For γ ≥ β > 0, ϕ ∈ (−π
2 ,

π
2 ) and τ̄ > 0,

there exists an ε∗ such that for ε ∈ (0, ε∗], the systems (9.15) are globally asymptotically stable for

|λ| ∈ (0, γ), arg λ ∈ [−ϕ,ϕ] and τ ∈ [0, τ̄ ].

Proof of Theorem 9.1. For given set G0,γ,ϕ and τ̄ ≥ 0, it follows from Lemma 9.1, 9.3 and 9.4 that

there exists an ε∗ such that for ε ∈ (0, ε∗], the composition of (9.6) and (9.10) will solve Problem

1.
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9.3.3 Output Regulation in Homogeneous Networks

Now we consider the output regulation problem. It is shown in the Appendix that without loss

of generality, we can always manipulate the internal dynamics of exo-system (9.3) and find a matrix

Br such that (Ar, Br, Cr) is invertible, of uniform rank nq > nd and has no invariant zero. Therefore,

according to Lemma 9.1, there exists a pre-compensator (9.6) such that the interconnection of (9.6)

and agent (9.1) can be written in the form of (9.7) with A,B and C replaced by Ar, Br and Cr.

Next, we design a controller for the homogenized network (9.7). By the definition of L̄ in (9.5),

we can define an augmented homogenized network by including the exo-system into (9.7) as follows:

˙̄xi(t) = Arx̄
i(t) +Br

(
vi(t) + di(t)

)
, i = 1, ..., N + 1

yi(t) = Crx̄
i(t),

ζi(t) =
∑N+1

j=1
¯̀
ijy

j(t− τ),

(9.16)

where agent N + 1 is the exo-system and dN+1(t) = 0. We can not control the exo-system, i.e.

vN+1(t) = 0. Obviously, the output regulation problem is solved if this augmented network reaches

synchronization for any communication topology in Ḡβ̄,γ̄,ϕ̄ and τ ≤ τ̄ . We shall design a controller

to achieve this goal.

For ε > 0, let Pε be the positive definition solution of Algebraic Riccati Equation (ARE)

A′rPε + PεAr −BεBrB′rPε + εI = 0, (9.17)

and K be such that Ar +KCr is Hurwitz stable. A low-gain compensator can be constructed for

agent i = 1, ..., N as 
χ̇i(t) = (Ar +KCr)χ

i(t)−Kζi(t), i = 1, ..., N.

vi(t) = − 1
β̄
B′rPεχ

i(t).

(9.18)

We can imagine that (9.18) also apply to agent N + 1 (exo-system) but with initial condition

χN+1(0) = 0. Since ζN+1(t) = 0, we shall have vN+1(t) = 0. In view of this, we can write the
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dynamics of the whole augmented network as

˙̃x(t) = (IN ⊗ Ā)x̃(t) + (L̄⊗ B̄C̄)x̃(t− τ) + (IN ⊗ Ē)d,

where

Ā =

Ar − 1
β̄
BrB

′
rPε

0 Ar +KCr

 , B̄ =

 0

−K

 , C̄ =

[
Cr 0

]
, Ē =

Br
0

 . (9.19)

Similarly as in preceding subsection, we can prove

Lemma 9.5. The interconnections of agents (9.16) and controller (9.18) achieve synchronization

for any communication topology in Ḡβ̄,γ̄,ϕ̄ and τ ≤ τ̄ if the following system

˙̃η(t) = Āη̃(t) + λ̄B̄C̄η̃(t− τ) (9.20)

is globally asymptotically stable for |λ̄| ∈ (β̄, γ̄), arg(λ̄) ∈ [−ϕ̄, ϕ̄] and τ ∈ [0, τ̄ ], where Ā, B̄ and C̄

is given by (9.19).

The next lemma is shown in [94]:

Lemma 9.6. For a given set Ḡβ̄,γ̄,ϕ̄ and τ̄ > 0, let the conditions in Theorem 9.2 be satisfied. There

exists an ε∗ such that for ε ∈ (0, ε∗], the system (9.20) with (9.19) is globally asymptotically stable

for |λ̄| ∈ (β̄, γ̄), arg(λ̄) ∈ [−ϕ̄, ϕ̄] and τ ∈ [0, τ̄ ].

9.4 Application to Formation

In this section, we show that the design method presented in preceding sections is also applicable

to formation problem.
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Definition 9.4. A formation is a family of vectors {h1, . . . , hN}, hi ∈ Rp. The agents are said to

achieve output formation if

lim
t→∞

[(yi(t)− hi)− (yj(t)− hj)] = 0.

Suppose a set of communication topologies G0,γ,ϕ and τ̄ > 0 are given. Let nq be the maximum

order of infinite zeros of all the agents. The controller design follows a similar procedure as in the

synchronization problem. First, we design a pre-compensator (9.6) for each agent to homogenize

the network utilizing its local measurement so that the agents are quasi-identical to a new common

model characterized by a given trip (A,B,C) which satisfies the following conditions:

1. rank(C) = p.

2. (A,B,C) is invertible, of uniform rank nq and has no invariant zero,

3. A+A′ = 0,

4. The eigenvalues of A satisfy

|λ(A)| <
π
2 − ϕ
τ̄

.

Moreover, there exists a family of vectors {h̄1, . . . , h̄N} of appropriate dimension such that for

i = 1, ..., N ,

5. Ch̄i = hi,

6. Ah̄i = 0.

Remark 9.2. For arbitrary given vectors {h1, . . . , hN}, such a triple (A,B,C) always exists. One

particular choice which satisfies the above conditions is the following

A = T (A0 +B0H)T−1, B = TB0, C = C0T
−1,
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and

A0 =

0 I(nq−1)p

0 0

 , B0 =

 0

Ip

 , C0 =

[
Ip 0

]
, H =

[
0 H0

]
,

where H0 is such that

Ā0 + B̄0H0 =

0 I(nq−2)p

0 0

+

 0

Ip

H0

is non-singular and only has semi-simple eigenvalues on the imaginary axis. H0 exists due to the

fact that (Ā0, B̄0) is controllable. It is easy to see that A0 +B0H has (nq−1)p semi-simple non-zero

eigenvalues on the imaginary axis and p semi-simple eigenvalues at zero. Then a transformation T

can be found such that T (A0 +B0H)T−1 is in the real Jordan canonical form and thus A+A′ = 0.

For this triple (A,B,C), a family of vector {h̄1, . . . , h̄N} can be found as

h̄i = T

hi
0


so that

Ch̄i =

[
Ip 0

]hi
0

 = hi.

Next, a local formation controller can be designed as follows:
χ̇i(t) = (A+KC)χi(t)−K

[∑N
j=1 `ij(yj(t− τ)− hj)

]
,

vi(t) = −εB′χi(t).
(9.21)

We can prove the following result:

Theorem 9.3. For a given set G0,γ,ϕ, a formation {h1, . . . , hN} and τ̄ ≥ 0, there exists ε∗ such

that for ε ∈ (0, ε∗], the agents (9.1) with controller (9.6) and (9.21) achieve formation for any

communication topology belonging to G0,γ,ϕ and τ ≤ τ̄ .
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Proof. It follows from Lemma 9.1 that the interconnection of the agents and (9.6) can be written

in the following form: 
˙̄xi(t) = Ax̄i(t) +B

(
vi(t) + di(t)

)
,

yi(t) = Cx̄i(t).

(9.22)

Let x̄is = x̄i − h̄i. Then the closed-loop system of (9.22) and controller (9.21) can be written in

terms of x̄is and χi as
˙̄xis(t) = Ax̄is(t) +B

(
vi(t) + di(t)

)
+Ah̄i,

χi(t) = (A+KC)χi(t)−K
[∑N

j=1 `ij(Cx̄
j
s(t− τ))

]
.

Since Ah̄i = 0, i = 1, ..., N , the rest of the proof is exactly the same as in the preceding section.

Remark 9.3. One thing that should be noted is that owing to the freedom we have in choosing

appropriate (A,B,C), no restriction on formation vector needs to be imposed.

9.5 Illustrative Examples

9.5.1 Output Synchronization

We illustrate our design procedure on a network of four agents. The agents dynamics are of

form (1) with

A1 =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


, B1 =



0 1

0 0

1 0

0 1


, C1

y =

[
1 0 0 0

]
, C1

z =

[
1 1 0 0

]
,

266



A2 =


0 1 0

0 0 1

0 0 0

 , B2 =


0

0

1

 , C2
y =

[
1 0 0

]
, C2

z =

[
1 1 0

]
,

Ai =



−1 0 0 −1 0

0 0 1 1 0

0 1 −1 1 0

0 0 0 1 1

−1 1 0 1 1


, Bi =



0 0

0 0

0 1

0 0

1 0


,
Ciy =

[
0 0 0 1 0

]
, Ciz =

[
1 1 0 0 0

]
,

i = 3, 4.

The topology of the network is given by Figure 9.1. The delay in this network is τ = 1. Note

that for this network, we have φ = 0.1913. It is easy to see that we need to choose A such that

|λ(A)| < 1.3795. Note that nd = 3, which is the degree of the infinite zeros of (C2
y , A

2, B2). It is

1
1.2

3.3 1.7

2

3 4

2.3

2.8

Figure 9.1: Network topology
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easy to check that the following matrices A,B,C satisfy the conditions of Lemma 9.1.

A =


0 1 0

0 0 1

0 −1 0

 , B =


0

0

1

 , C =

[
1 0 0

]
.

For Agent 1, we design the following compensator of the form (3) with

A
1
H =



0 1 −59 0 0 0 0 0 0 0 0 0

−2 −3 12 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 −1 −5.0911 −4.9967 −6.3138 −8.9545 −660 96 −12

15.0583 70.2666 −2.3301 −0.3403 0 −5.8764 2.3364 6.0692 −4.2506 −10.6208 −1.7534 0.3403

1.6903 74.5116 6.9615 0.5860 0.1601 −2.4165 −0.5098 −0.4044 −0.7834 −0.8056 0.0704 −0.5860

1.7525 25.5179 −6.8358 −0.5645 0.3925 −2.3798 −5.4126 0.0499 −1.4955 −2.6122 0.0613 0.5645

−12.0815 −84.2475 34.0778 2.9156 −0.8085 5.6036 −3.3072 −7.9601 4.1533 6.8159 0.9090 −2.9156

17.9032 8.5467 −61.9838 −5.3051 −1.0801 −12.8002 2.5078 1.7113 −8.4662 −2.2577 −1.6775 5.3051

0.9197 4.0411 −4.3035 −0.4548 0 0.0877 −0.2802 0.5091 −0.0489 −4.0878 −0.1545 0.4548

0.7415 11.8220 16.7633 0.9295 0 −1.2706 0.8942 −0.0789 −0.6650 −0.9267 −5.6090 0.0705

9.2182 56.1777 73.4222 14.0479 0 −11.4014 −2.8270 −3.6974 −12.9563 −666.0774 94.1525 −14.0479



B1
H =



0

0

0

0

60.9069

73.1961

17.7097

−79.1320

6.7245

2.3336

13.8082

54.2374



, E1
H =



0

0

0

1

0

0

0

0

0

0

0

1



,
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C1
H =

−7 −7 −35 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

 , D1
H =

0

0


Then the interconnection of (1) and (3) is in the form of (4) with d1 generated by (5) with

A1
s =



0 −5.8764 2.3364 6.0692 −4.2506 −10.6208 −1.7534 0.3403

0.1601 −2.4165 −0.5098 −0.4044 −0.7834 −0.8056 0.0704 −0.5860

0.3925 −2.3798 −5.4126 0.0499 −1.4955 −2.6122 0.0613 0.5645

−0.8085 5.6036 −3.3072 −7.9601 4.1533 6.8159 0.9090 −2.9156

−1.0801 −12.8002 2.5078 1.7113 −8.4662 −2.2577 −1.6775 5.3051

0 0.0877 −0.2802 0.5091 −0.0489 −4.0878 −0.1545 0.4548

0 −1.2706 0.8942 −0.0789 −0.6650 −0.9267 −5.6090 0.0705

1.0000 −6.3103 2.1697 2.6163 −4.0018 −6.0774 −1.8475 −2.0479



,

C1
s =

[
1 5.0911 4.9967 6.3138 8.9545 660 −96 12

]
.

For agent 2, we design the following compensator of the form (3) with

A2
H =


−721 −720 0

691 691 1

−990 −991 0

 , B2
H =


721

−691

990

 , E2
H =


0

0

1

 ,

C2
H =

[
0 −1 0

]
, D2

H = 1.

Then the interconnection of (1) and (3) is in the form of (4) with d2 generated by (5) with

A2
s =


−721 −720 0

691 691 1

−990 −990 0

 , C2
s =

[
0 1 0

]
.
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For agent 3 and agent 4, we design the following compensator of the form (3) with

AiH =



0 1.2 −0.2 0.2 4 −3 −2

−170.2 −179.7 −65.9 112.9 −97.1 −340.4 170.2

758.9 727.5 220.4 −504.4 577.2 1517.8 −758.9

233. 172.7 16 −156 280 466 −233

300.9 284.2 83.5 −200.6 234.2 602.9 −300.9

740.8 680.4 186.5 −493.9 614.7 1481.6 −739.8

1623.4 1514.4 432.1 −1082.3 1300.3 3245.9 −1623.4



,

Bi
H =



0

−122.5903

474.2431

93.5599

183.8460

433.4444

973.2716



, EiH =



1

0

0

0

0

0

1



,

CiH =

1 0 0 0 0 0 0

2 0 0 0 0 0 0

 , Di
H =

0

0

 .
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Then the interconnection of (1) and (3) is in the form of (4) with di generated by (5) with

Ais =



−179.7 −65.9 112.9 −97.1 −340.4 170.2

727.5 220.4 −504.4 577.2 1517.8 −758.9

172.7 16 −156 280 466 −233

284.2 83.5 −200.6 234.2 602.9 −300.9

680.4 186.5 −493.9 614.7 1481.6 −739.8

1513.2 432.4 −1082.5 1296.3 3248.9 −1621.4



,

Cis =

[
−1.2440 0.2440 −0.2440 −4 3 2

]
.

Note that the following state transformation

V =


1 0 1

0 0 1

0 −1 0

 ,

such that

V AV −1 =


0 0 0

0 0 1

0 −1 0

 , V B =


1

1

0

 , CV −1 =

[
1 −1 0

]
.

Let us choose ε = 0.02 and

K =


−6

−10

0

 ,
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and design the dynamic low-gain controller as follows:

χ̇i(t) =


−6 1 0

−10 0 1

0 −1 0

χ
i(t) +


−6

−10

0

 ζ
i(t),

vi(t) = −
[
0.02 0.02 0

]
χi(t)

. (9.23)

Figure 9.2 shows the resulting simulated output for all four agents.
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Figure 9.2: Outputs from the simulation example

9.5.2 Output Regulation

Consider the same network as in Section 9.5.1, however, our goal now is to ensure that each

agent’s output follows the output yr of the following exosystem
ẋr =

0 1

0 0

xr,
yr =

[
1 0

]
xr,

with xr(0) = [1; 1].
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We first expand the system to the following form

˙̄xr = Ax̄r :=


0 1 0

0 0 1

0 0 0

 x̄r,

yr = Cx̄r :=

[
1 0 0

]
x̄r,

with x̄r(0) = [1; 1; 0].

Let us now choose B =

[
0 0 1

]′
. We then follow the same design procedure to design

precompensator to make all the agents almost identical with different exponentially decaying signals.

We then add a link with weight δ = 10 from the exosystem to the root agent 1 in Figure 9.1. The

resulting network topology is shown in Figure 9.3.

1
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Exo-
system

10

Figure 9.3: Network topology with the exosystem

Choose β̄ = 0.77, τ = 1, and ε = 10−11. Figure 9.4 shows the resulting simulated output for all

four agents and the exosystem.
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Figure 9.4: Outputs from the simulation example

9.5.3 Output Formation

Consider the same network as in Section 9.5.1, our goal is to achieve output formation. We

choose h1 = 10, h2 = 20, h3 = 30, and h4 = 40. Figure 9.5 shows that the output formation is

achieved 1.

9.A Manipulation of Exo-system

For a given exo-system (9.3), there exists a non-singular transformation x̃r = Txr such that

(9.3) can be transformed in the following canonical form [36]:
˙̃xr = Ãrx̃r,

yr = C̃rx̃r,

(9.24)

1Note that xd1, xd2, and xd3 is the coordinate where all the agents are almost identical.
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Figure 9.5: Output formation

where

Ãr = TArT
−1 =



Ã1 0 0 0 · · · 0

? ? ? ? · · · ?

0 Ã2 0 0 · · · 0

? ? ? ? · · · ?

...
...

...
...

...
...

0 0 0 0 · · · Ãp

? ? ? ? · · · ?



, (9.25)

C̃r = CrT
−1 =



C̃1 0 0 · · · 0 0

0 C̃2 0 · · · 0 0

...
...

... · · ·
...

...

0 0 0 · · · 0 C̃p


, (9.26)
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and

Ãi =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 1


,

C̃i =

[
1 0 · · · 0 0

]
.

Here ? denotes a possible non-zero row. Note that for the original system (9.3), Ãi may not have

the same size. However, by adding integrators to the bottom of each block and setting the initial

conditions of those extended states to zero, we can extend the dimension of Ãi to nq > nd while

system (9.24) still produces the same output as the original exo-system (9.3).

Eventually, we can choose

B̃r =



B̃1 0 0 · · · 0 0

0 B̃2 0 · · · 0 0

...
...

... · · ·
...

...

0 0 0 · · · 0 B̃p


, B̃i =



0

...

0

1


.

We find that (Ãr, B̃r, C̃r) is invertible, of uniform rank nq > nd and has no invariant zero.
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Issues regarding Internal Stability of

Linear Systems subject to Actuator

Saturation



Chapter 10

Issues on Global Stabilization of

Linear Systems Subject to Actuator

Saturation

10.1 Introduction and Contribution

Linear systems subject to actuator saturation are ubiquitous and have been the subject of exten-

sive study. See for instance two special issues [4, 69], and references therein. Internal stabilization

for this class of systems has a long history. Fuller [14] established that a chain of integrators with

order greater or equal to three cannot be globally stabilized by any saturating linear static state

feedback control law with only one input channel. Sontag and Sussmann [78] established that,

global stabilization of continuous-time linear systems with bounded input can be achieved if and

only if the linear system, in the absence of actuator saturation, is stabilizable and critically unstable

(equivalently, asymptotically null controllable with bounded control). In general, this requires non-
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linear control laws. However, for certain cases, global stabilization can be achieved by linear control

laws. More precisely, the paper [87] noted that systems which are asymptotically null controllable

with bounded inputs can be globally stabilized by linear static state feedback control laws if all

non-zero eigenvalues on the imaginary axis are semi-simple (geometric and algebraic multiplicities

are equal) while zero is allowed to be an eigenvalue whose Jordan blocks can be at most of size

2 × 2 (which are associated with double integrators). The quoted paper [87] does not give a full

proof of this result. In this chapter we prove this result. Moreover, our proof is constructive.

Another issue is that in the literature, there is this general belief that if there are Jordan

blocks of size greater or equal to three associated to an eigenvalue in zero then one need nonlinear

control laws to globally stabilize such linear systems subject to actuator saturation. This is a

misconception. Such a misconception is possibly based on a misreading of the result of [14]. One

should emphasize that the beautiful result of Fuller does not claim anything beyond linear static

state feedback control laws for chains of integrators. In this chapter we illustrate this issue by

showing that a triple-integrator with multiple inputs subject to actuator saturation can be globally

stabilized by linear static state feedback control laws. This is clearly a first step towards a better

understanding when nonlinear static state feedback control laws are needed.

Two general open problems are still unresolved: (1) under what conditions one can utilize a

linear static state feedback control law to globally stabilize a linear system subject to actuator

saturation?, and (2) under what conditions one can utilize a linear dynamic state feedback control

law to globally stabilize a linear system subject to actuator saturation?
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10.2 Design Linear Static State Feedback Control Laws for Mixed

Case

In this section, we investigate when a linear static state feedback control law can globally

asymptotically stabilize linear systems subject to actuator saturation. It is well known that both

double-integrator and neutrally stable systems subject to actuator saturation can be globally sta-

bilized by linear static state feedback control laws. However, the mixture of these cases is not well

studied. For the mixed case, Tyan and Bernstein [87] gave a sufficient condition that guarantees

global stability of the closed-loop system by using linear static state feedback control laws, but

this result is not studied from a design point of view. In contrast, we design a linear static state

feedback control law to globally stabilize the mixed system subject to actuator saturation.

In this section, we first formulate our problem—to design a linear static state feedback control

law to globally stabilize the mixed systems consisting of double integrators, single integrators and

neutrally stable dynamics subject to actuator saturation. We then present an algorithm which gives

us a methodology for designing such globally stabilizing linear static state feedbacks in Section

10.2.2. Next, we prove that such a control law globally stabilizes the mixed system subject to

actuator saturation via a Lyapunov argument in Section 10.2.3. Finally, an illustrative example is

given in Section 10.2.4.

10.2.1 Problem Formulation

Consider a continuous-time linear system subject to actuator saturation described by

˙̃x = Ãx̃+ B̃σ(u) (10.1)
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where x̃ ∈ Rn, ũ ∈ Rm, and

σ(u) =



σ1(u1)

σ1(u2)

...

σ1(um)


,

where σ1(ui) is the standard saturation function

σ1(ui) = sgn(ui) min {1, |ui|} .

We assume that the pair (Ã, B̃) is stabilizable, and eigenvalues of Ã are all located in the closed left-

half complex plane (i.e., the pair (Ã, B̃) is asymptotically null controllable with bounded control).

Furthermore, we assume that Ã has eigenvalue zero with geometric multiplicity m and algebraic

multiplicity m+ q with no Jordan blocks of size larger than 2 while the remaining eigenvalues are

simple purely imaginary eigenvalues. Obviously, for such systems, stabilizability of the pair (Ã, B̃)

is equivalent to controllability of the pair (Ã, B̃).

10.2.2 Algorithm

The algorithm for designing a linear static state feedback control law to globally stabilize the

system described in (10.1) is carried out in three steps:

Step 1: We can obviously find a basis transformation Γx such that

A = Γ−1
x ÃΓx =


Ad 0 0

0 As 0

0 0 Aω


with

Ad =

0 I

0 0


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while As = 0 and Aω satisfies Aω +AT
ω = 0. With respect to this basis transformation we obtain:

B = Γ−1
x B̃ =


Bd

Bs

Bω


with

Bd =

Bd,1
Bd,2


compatible with the structure of Ad. The system in the new coordinates is given by:

ẋ = Ax+Bσ(u). (10.2)

Step 2: Design K such that

K =



K1

K2

...

Km


satisfies

KA+BTΛ = 0,

KB + (KB)T < 0,

where Λ is a diagonal matrix such that:

Λ =


Λ1 0 0

0 0 0

0 0 I


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with

Λ1 =

0 0

0 I


compatible with the structure of Ad. The existence of such K is shown in the proof of Theorem

10.1.

Step 3: The linear static state feedback control law

u = K̃x̃, (10.3)

where K̃ = KΓ−1
x globally stabilizes the system described in (10.1).

10.2.3 Theorem

In order to show our main theorem, we need the following lemmas. These two lemmas are very

well-known and can be found in [28] and [24] respectively.

Lemma 10.1. Given two matrices X and Y , there exists a matrix Z such that

ZX = Y,

if and only if

kerX ⊂ kerY,

where kerA is the null space of a matrix A ∈ Rm×n defined as

kerA := {x ∈ Rn | Ax = 0} . (10.4)

Here, we present a special case of LaSalle’s invariance principle, where V (x) is positive definite,

which is also known as Krasovskii Theorem.
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Lemma 10.2. Consider the system

ẋ = f(x)

where f : Rn → Rn.

Let x = 0 be an equilibrium point. Let V : Rn → R be a continuously differentiable, radially

unbounded, positive definite function such that V̇ (x) ≤ 0 for all x ∈ Rn. Let S = {x ∈ Rn | V̇ (x) =

0 } and suppose that no solution can stay in S for all t ≥ 0, other than the trivial solution x(t) = 0

for all t ≥ 0. Then, the origin is globally asymptotically stable.

Now, we show that the control law constructed above in (10.3) can globally stabilize the system

(10.1).

Theorem 10.1. Consider a linear system as given in (10.1). Assume that the pair (Ã, B̃) is

controllable. Moreover, we assume that Ã has eigenvalue zero with geometric multiplicity m and

algebraic multiplicity m+ q with no Jordan blocks of size larger than 2 while the remaining eigen-

values are simple purely imaginary eigenvalues. The linear state feedback control law u = K̃x̃ given

in (10.3) with appropriate gain matrix K̃ can globally stabilize the system (10.1).

Proof. Through step 1 of the algorithm, we can transfer the system (10.1) into (10.2) as

ẋ = Ax+Bσ(u).

The state vector has a decomposition:

x =


xd

xs

xω

 .
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compatible to the decomposition of A. Moreover,

xd =

xd,1
xd,2

 .
We prove the theorem via Lyapunov argument, consider a Lyapunov candidate

V (x) =
1

2
xT
ωxω +

1

2
xT
d,2xd,2 +

m∑
i=1

∫ Kix

0
σ1(y)dy. (10.5)

The evaluation of V̇ (x) along the trajectories of the closed-loop system, yields,

V̇ (x) = xT
ωẋω + xT

d,2ẋd,2 + σ(Kx)Kẋ.

With some algebra, we can write the above equation in the matrix form as

V̇ (x) = σT(Kx)(KAx+BTΛx) + σT(Kx)KBσ(Kx). (10.6)

In order to make V̇ (x) non-positive, it is sufficient to guarantee that the gain matrix K satisfies

KA+BTΛ = 0, (10.7a)

KB + (KB)T < 0. (10.7b)

Let us write the equation (10.7) in matrix equality form

K

[
A B

]
=

[
−BTΛ S

]
(10.8)

where S is any matrix satisfying S + ST < 0, we get:

KB + (KB)T = S + ST < 0.

Now, let us show that a K which satisfies the equation (10.8) exists. From Lemma 10.1, we see

that to show the solvability of equation (10.8) is equivalent to show

[
−BTΛ S

]x
u

 = 0, (10.9)
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given [
A B

]x
u

 = 0. (10.10)

Since the pair (A,B) is controllable, from the Hautus test [18], we know that

rank

[
A B

]
= n,

Moreover, from the structure of matrices A and B, we know rankA = n − m and rankB = m.

Thus

ImA ∩ ImB = 0,

where ImZ is the range space of a matrix Z ∈ Rm×n defined as

ImZ := {Zx | x ∈ Rn} .

Therefore, the equation (10.10), implies Ax = 0 and Bu = 0. Clearly Ax = 0 implies xd,2 = 0 and

xω = 0 which yields Λx = 0. Hence

−BTΛx = 0.

Moreover rankB = m while B has m columns yields that B is injective. Therefore Bu = 0 implies

u = 0 and therefore Su = 0. Hence (10.9) is satisfied and we have shown that the equation (10.8) is

solvable. Since

[
A B

]
is surjective, for any given S, we have a unique solution K for the equation

(10.8) such that

V̇ (x) = σT(Kx)KBσ(Kx) ≤ 0

provided S+ST < 0. In order to prove asymptotic stability we apply Lemma 10.2. Clearly our Lya-

punov candidate function V (x) given in (10.5) is continuously differentiable, radially unbounded,

positive definite function.
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Next, we note that the V̇ (x) = 0 if and only if Kx = 0. When Kx = 0, the dynamics obviously

becomes ẋ = Ax. We need to show that there exists no initial condition x(0) = x0 6= 0 such that

Kx(t) = 0 for all t > 0 while ẋ(t) = Ax(t). We have:

x(t) =



xd,1(0) + txd,2(0)

xd,2(0)

xs(0)

xω(t)


.

Since xω(t) is only related to non-zero eigenvalues, we get from Kx(t) = 0 for all t ≥ 0 that:

K



xd,2(0)

0

0

0


= 0, K



xd,1(0)

xd,2(0)

xs(0)

0


= 0. (10.11)

The first equality in (10.11) implies:

0 = K



xd,2(0)

0

0

0


= KA



0

xd,2(0)

0

0


= −BT



0

xd,2(0)

0

0


,

which yields BT
d,2xd,2(0) = 0. Controllability of the pair (A,B) implies that Bd,2 must be surjective.

Hence BT
d,2 is injective and we obtain xd,2(0) = 0. Next, we note that the second equality in (10.11)

yields: 

xd,1(0)

0

xs(0)

0


= Ax+Bu, where x =



x1

x2

x3

x4


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for suitably chosen x and u since

[
A B

]
is surjective (because of controllability). Obviously, this

implies that 0 = Bd,2u while x4 satisfies:

x4 = −A−1
ω Bωu.

We find:

0 = uTK



xd,1(0)

0

xs(0)

0


= uTK [Ax+Bu]

= −uTBTΛx+ uTSu

= −uTBT
d,2x2 − uTBT

ωx4 + uTSu

= uTBT
ωA
−1
ω Bωu+ uTSu

= uTSu

where we used that Bd,2u = 0 and the fact that A−1
ω is skew-symmetric. Since S + ST < 0, we find

u = 0. But this immediately yields that xs(0) = 0. Using that xs(0) = 0 and xd,2(0) = 0, we get

from the second equality in (10.11) that

0 = K



xd,1(0)

0

0

0


= KA



0

xd,1(0)

0

0


= −BT



0

xd,1(0)

0

0


,

which yields BT
d,2xd,1(0) = 0. As noted before, BT

d,2 is injective and therefore xd,1(0) = 0.
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It remains to show that xω(0) = 0. We note that

K



0

0

0

xω(0)


= Kωxω(0) = 0,

where Kω is the gain matrix associated with neutrally stable dynamics. We know that x(t) remains

in the kernel of K with u(t) = 0. Hence:

KA



0

0

0

xω(0)


= KωAωxω(0) = 0.

But since KA = −BTΛ this yields:

BT
ωxω(0) = 0.

Hence if xω(0) 6= 0, we have a non-trivial Aω-invariant subspace which is contained in kerBT
ω . Using

the skew-symmetry of Aω we find that this subspace is also AT
ω-invariant. However, the existence of

a non-trivial AT
ω invariant subspace contained in kerBT

ω yields a contradiction with the observability

of the pair (BT
ω , A

T
ω) or, equivalently a contradiction with the controllability of the pair (Aω, Bω).

Therefore xω(0) = 0.

Hence, the origin is the only solution within the subset of Rn for which V̇ (x) = 0. Hence, the

global asymptotic stability of the closed-loop system follows from LaSalle’s Invariance Principle.
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10.2.4 Example

In this section, our methodology for designing a globally stabilizing linear static state feedback

control law will be illustrated by an example. Let us consider an example in form of (10.2), which

contains two double integrators, one single integrator and neutrally stable dynamics with A and B

as follows:

A =



0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0



, B =



0 1 3

0 0 5

1 2 4

0 1 6

0 0 1

1 1 0

1 0 1



.

It is easy to check that the pair (A,B) is controllable. Also we notice that since S is an arbitrary

such that S+ST < 0, the solution for the equation (10.8) is not unique, therefore, the linear static

state feedback control laws which can globally stabilize the closed-loop system is not unique either.

However, for a given S, we have a unique solution for the equation (10.8), therefore, we have a

unique linear static state feedback control laws which can globally stabilize the closed-loop system.

For this example, we choose

S =


−1 −1 1

1 −3 1

−1 −1 −53

 .

Then the unique possible globally stabilizing linear static state feedback control law is u = Kx,
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where

K =


K1

K2

K3


with K1, K2 and K3 given as below:

K1 =

[
−1 0 −1 3 −11 −1 1

]
,

K2 =

[
−2 −1 0 −1 17 0 1

]
,

and K3 =

[
−4 −6 0 4 −35 −1 0

]
.

For the initial condition

x0 =

[
100 −100 −100 100 100 −100 100

]T
,

the dynamics are shown in Figure 10.1, which clearly shows that the closed-loop system is asymp-

totically stable.

10.3 Triple Integrator with Multiple Inputs

In the saturation literature, it is a general belief that for a system which has an eigenvalue in

zero with associated Jordan block of size greater or equal to three, there does not exist a saturating

linear static state feedback control law which can globally stabilize the system. We claim that this

is a misconception. More precisely, whether a saturating linear static state feedback control law

exists does not only depend on the size of Jordan block. The following triple-integrator example
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Figure 10.1: Global stabilization via a linear static state feedback

illustrate this. 
ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

0 0 0




x1

x2

x3

+


0 0

0 1

1 0


σ1(u1)

σ1(u2)

 (10.12)

We will prove that there exists a saturating linear static state feedback control law which can

globally asymptotically stabilize the system. However, we will first present a useful lemma, see

[78,79], that we will use later:

Lemma 10.3. Assume that ζ̇ = f(ζ, v) has a globally Lipschitz right-hand side, and that the origin

is a globally asymptotically stable state for ζ̇ = f(ζ, 0). Then there exists some λ > 0 such that

every solution of ζ̇ = f(ζ, v) converges to zero, for every v such that ||v(t)|| ≤ κe−λt.

Theorem 10.2. Consider a triple-integrator subject to actuator saturation, with two input chan-

nels, described by (10.12) A linear static state feedback control law can globally asymptotically

stabilize the system (10.12).
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We will present two proofs for Theorem 10.2. Let us present the first one based on Lemma 10.3.

Proof. Consider a linear static state feedback control law

u1 = −γx3,

u2 = −αx1 − βx2,

where α > 0, β > 0, and γ >> 0. Applying this particular state feedback control law, yields the

closed-loop system

ẋ1 = x2, (10.13a)

ẋ2 = x3 + σ1(−αx1 − βx2), (10.13b)

ẋ3 = σ1(−γx3). (10.14)

The asymptotic stability of the closed-loop system follows from the fact that the poles of the lin-

earized system are in the open left half complex plane. In order to prove global asymptotic stability

of the closed-loop system, we need to show that the closed-loop system is globally attractive.

We can view the system as two subsystems, where the dynamics of subsystem 2 (equation

10.14) x3(t) is decoupled from the dynamics of subsystem 1, x1(t) and x2(t), and the dynamics of

subsystem 2, x3(t) is viewed as a disturbance into subsystem 1.

We further proceed our proof by applying Lemma 10.3. Let us first check all the conditions of

the Lemma 10.3.

Consider the subsystem 1. let us define

f(x) =

 x2

x3 + σ1(−αx1 − βx2)

 .
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Thus, we can write the dynamics of subsystem 1 as ζ̇ = f(ζ, v), where

ζ =

x1

x2

 ,
and v = x3.

Clearly, the origin is globally asymptotically stable for ζ̇ = f(ζ, 0), since for v = 0, it becomes

a double-integrator subject to actuator saturation with arbitrary negative linear state feedback

control law, for which is well known that the closed-loop system is globally asymptotically stable.

It is also easily verified that f is globally Lipschitz.

In order to apply lemma 10.3, we know that we must guarantee ‖x3(t)‖ ≤ κe−λt for some λ

determined by the dynamics of subsystem 1.

Obviously, we see that for big initial condition ‖x3(0)‖, i.e. the subsystem 2 given by (10.14) is

subject to actuator saturation at the beginning, ‖x3(t)‖ decays linearly up to certain point, once

it gets out of saturation region, ‖x3(t)‖ decays exponentially fast to zero, depending on γ, thus,

we can design γ > λ, such that ‖x3(t)‖ ≤ κe−λt. We automatically see that all the conditions of

Lemma 10.3 are satisfied, therefore, every solution of the first subsystem converges to zero. Thus,

the closed-loop system is globally attractive. Hence, we have proved that the closed-loop system is

globally asymptotically stable.

Now, we present the second proof by constructing a Lyapunov function. This also demonstrates

the fact that searching for the Lyapunov function even for simple (low order) linear system subject

to actuator saturation is very complicated. Also, the Lyapunov approach guarantees stability for

all α, β, γ > 0 while Lemma 10.3 only proves stability for γ sufficiently large.
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Proof. Let us partitioning the R3 into 4 regions. The partitions are:

R1 =
{

(x1, x2, x3) ∈ R3|x2x3 > 0, |γx3| > 1
}
,

R2 =
{

(x1, x2, x3) ∈ R3|x2x3 < 0, |γx3| > 1
}
,

R3 =
{

(x1, x2, x3) ∈ R3|x2x3 > 0, |γx3| < 1
}
,

and R4 =
{

(x1, x2, x3) ∈ R3|x2x3 < 0, |γx3| < 1
}
.

Consider a Lyapunov candidate

V (x) =

∫ αx1+βx2

0
σ1(y)dy +

α

2
x2

2 + α
γ max { 0, x2x3, x2x3|γx3| }+ rmax

{
(γx3)2, (γx3)4

}
. (10.15)

We want to show that the Lyapunov candidate shown in (10.15) is indeed a Lyapunov function,

thus, the global asymptotic stability of the closed-loop system follows. First, it is easy to see that

V (x) is continuous and positive definite. Also, V (x) is radially unbounded.

In order to show globally asymptotically stable of the closed-loop system, we need to show that

V̇ (x) in each region is negative.

In regions R1 and R2, the system is described by

ẋ1 = x2,

ẋ2 = x3 + σ1(−αx1 − βx2),

ẋ3 = − sgn(γx3).

295



For region R1, the evaluation of V̇ (x) along the trajectories of the closed-loop system, yields:

V̇ =σ1(αx1 + βx2)[αx2 + β(x3 − σ1(αx1 + βx2))] + αx2[x3 − σ1(αx1 + βx2)]

+ α[x3 − σ1(αx1 + βx2)]x3|x3| − 2αx2x3 − 4rγ|γx3|3

=βx3σ1(αx1 + βx2)− βσ2
1(αx1 + βx2)− αx2x3

+ α|x3|3 − ασ1(αx1 + βx2)x3|x3| − 4rγ|γx3|3.

Since for |γx3| > 1, the following hold

x3σ(αx1 + βx2) ≤ |x3| ≤
1

γ
|γx3| ≤

1

γ
|γx3|3,

−σ1(αx1 + βx2)x3|x3| ≤ |x3|2 =
1

γ2
|γx3|2 ≤

1

γ2
|γx3|3.

We get

V̇ ≤ −βσ2
1(αx1 + βx2)− αx2x3 − (4rγ − α

γ2
− α

γ3
− β

γ
)|γx3|3.

Choosing r such that:

4rγ4 > αγ + α+ βγ2, (10.16)

then yields V̇ < 0.

For region R2, the evaluation of V̇2 along the trajectories of the closed-loop system, yields,

V̇ = σ1(αx1 + βx2)[αx2 + β(x3 − σ1(αx1 + βx2))]

+ αx2[x3 − σ1(αx1 + βx2)]− 4rγ|γx3|3

= βx3σ1(αx1 + βx2)− βσ2
1(αx1 + βx2) + αx2x3 − 4rγ|γx3|3

≤ −βσ2
1(αx1 + βx2) + αx2x3 − (4rγ − β

γ
)|γx3|3.

Choosing r such that:

4rγ2 > β, (10.17)
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then yields V̇ < 0.

In regions R3 and R4, the system is described by

ẋ1 = x2,

ẋ2 = x3 + σ1(αx1 − βx2),

ẋ3 = −γx3.

For region R3, the evaluation of V̇3 along the trajectories of the closed-loop system, yields,

V̇ =σ1(αx1 + βx2)[αx2 + β(x3 − σ1(αx1 + βx2))] + αx2[x3 − σ1(αx1 + βx2)]

+
α

γ
[x3 − σ1(αx1 + βx2)]x3 − αx2x3 − 2rγ3x2

3

= (β − α

γ
)x3σ1(αx1 + βx2)− βσ2

1(αx1 + βx2) + (
α

γ
− 2rγ3)x2

3.

In this case, we choose ε small enough such that:

ε

2
|β − α

γ
| ≤ β

2
.

Next, using

|x3σ1(αx1 + βx2)| ≤ ε

2
σ2

1(αx1 + βx2) +
1

2ε
x2

3,

we get

V̇ ≤ −β
2
σ2

1(αx1 + βx2) +

(
1

2ε
|β − α

γ
|+ α

γ
− 2rγ3

)
x2

3.

Choosing r such that:

2rγ3 >
1

2ε
|β − α

γ
|+ α

γ
, (10.18)

then yields V̇ < 0.
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For region R4, the evaluation of V̇4 along the trajectories of the closed-loop system, yields,

V̇ = σ1(αx1 + βx2)[αx2 + β(x3 − σ1(αx1 + βx2))] + αx2[x3 − σ1(αx1 + βx2)]− 2rγ3x2
3

= βx3σ1(α1 + βx2)− βσ2
1(αx1 + βx2) + αx2x3 − 2rγ3x2

3

≤ β

2
[x2

3 + σ2
1(αx1 + βx2)]− βσ2

1(αx1 + βx2) + αx2x3 − 2rγ3x2
3

= −β
2
σ2

1(αx1 + βx2) + αx2x3 − (2rγ3 − β

2
)x2

3.

Choosing r such that:

4rγ3 > β, (10.19)

then yields V̇ < 0.

Thus, choosing r sufficiently large such that all inequalities (10.16)-(10.19) are satisfied, then

yields V̇ (x) < 0 for all four different regions. Therefore, V̇ (x) is negative along all trajectories

unequal to zero. And for the origin, from the analysis above, we see that V̇ (0) = 0. Thus, the

closed-loop system is globally asymptotically stable. Hence, the triple-integrator subject to actuator

saturation can be globally asymptotically stabilized via linear static state feedback control laws.

10.4 Conclusions

In this chapter, we reexamine the classical issue of requiring linear or nonlinear static state

feedback control laws for globally stabilizing asymptotically null controllable with bounded control

systems subject to actuator saturation. We resolve here the general misconception that the size of

Jordan block associated with a zero eigenvalue determines whether linear control laws or nonlinear

control laws are needed for globally stabilizing a linear system subject to actuator saturation.

Also, we present here constructive linear static globally stabilizing saturated state feedback control

laws for linear systems mixed with double integrators, single integrators, and neutrally stable
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dynamics. This is our first step towards our future goals of (1) completely characterizing the class

of linear systems subject to actuator saturation which can be globally stabilized by linear static

state feedback control laws, and similarly (2) completely characterizing the class of linear systems

subject to actuator saturation which can be globally stabilized by linear dynamic state feedback

control laws.
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Chapter 11

Dynamic Behavior of the

Discrete-time Double Integrator with

Saturated Locally Stabilizing Linear

State Feedback Laws

11.1 Introduction

Linear systems subject to actuator saturation are ubiquitous and have been the subject of

extensive study, see for instance two special issues, [4, 69], and references therein.

Internal stabilization for this class of systems has a long history. Let us briefly review the

literature on linear systems subject to actuator saturation. Sontag and Sussmann [78] and Yang,

Sontag and Sussmann [109] established that, global stabilization of linear systems subject to actua-

tor saturation can be achieved if and only if the linear system in the absence of actuator saturation
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is stabilizable, and has all its open-loop poles in the closed left-half plane for continuous-time linear

systems and in the closed unit disc for discrete-time linear systems (equivalently, asymptotically

null controllable with bounded control). In general, this requires nonlinear feedback control laws.

We have only very limited insight into which linear controller yields global stability and which

one does not. For certain cases, global stabilization can be achieved by linear static state feedback

control laws. For example, in both continuous-time and discrete-time settings, it is well-known that

there exist linear static state feedback control laws which globally stabilize neutrally stable linear

systems subject to actuator saturation, see for instance [76]. Some extensions have been established

in [86,106].

In discrete-time setting, the stabilization in a specific region subject to actuator saturation was

studied in [11]. Also, the anti-windup design for linear discrete-time control systems guaranteeing

regional and global stability and performance was addressed in [38]. In contrast, in this chapter we

consider the global stabilization problem for a simple discrete-time linear system, namely, double-

integrator, subject to actuator saturation with linear static feedbacks.

In continuous-time setting, it is well-known that a linear static state feedback law which locally

stabilizes the double integrator subject to actuator saturation1 also globally stabilizes the system

in the presence of actuator saturation, see for instance, [75, 87]. However, similar result has not

yet been obtained for the discrete-time case. The goal of this chapter is to investigate whether

the equivalent of the double integrator subject to actuator saturation in discrete-time is globally

asymptotically stable when a locally stabilizing linear state feedback law is used. The answer turns

out to be no.

In this chapter we completely characterize the global behavior of the discrete-time double in-

1Note that a linear state feedback law with arbitrary negative feedback gains locally stabilizes the double integrator.
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tegrator subject to actuator saturation under all possible linear, locally stabilizing state feedback

laws. We establish that the class of linear controllers which achieve local asymptotic stability

splits into two parts. One part does not yield global stability of the closed-loop system, which

is shown by explicitly constructing nontrivial limit cycles. The other part yields global stability

of the closed-loop system. Although we only study a specific system, this discrete-time double

integrator is well-known as a key benchmark for the global internal stabilization problem for linear

systems subject to actuator saturation. By fully understanding this system we make a key step in

understanding the abilities of linear controllers for global stabilization.

11.2 Problem Formulation

Consider the discrete-time double integrator subject to actuator saturation described by
x1(k + 1) = x1(k) + x2(k),

x2(k + 1) = x2(k) + σ(u(k)),

(11.1)

where σ(u) is the standard saturation function: σ(u) = sgn(u) min {1, |u|}. We consider linear state

feedbacks with feedback gains f1 and f2 of the form:

u(k) = f1x1(k) + f2x2(k). (11.2)

Let us first consider system (11.1) with a feedback control law (11.2) in the absence of actuator

saturation. From Jury’s test (see [23] and references therein), we see that any feedback control law

(11.2), where f1 and f2 satisfy the following condition

1
2f1 − 2 < f2 < f1 < 0, (11.3)

stabilizes the system (11.1) in the absence of actuator saturation or, in other words, achieves

local asymptotic stability for the closed-loop system. The question arises is whether such locally
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stabilizing linear state feedbacks also globally stabilize system (11.1) in the presence of actuator

saturation. In this chapter, we will establish that this question has a negative answer. Based on

this negative result, we then completely characterize which feedback laws achieve global asymptotic

stability for the closed-loop system.

11.3 Main Results

In this section, we present our results on the dynamic behavior of the discrete-time double

integrator with saturated locally stabilizing linear state feedback laws.

Theorem 11.1. If f1 and f2 satisfy the Jury’s condition (11.3) plus the following condition

f2 >
3
2f1, (11.4)

then the closed-loop system exhibits non-zero limit cycles, that is, there exist initial conditions that

yield non-zero periodic solutions, hence, the closed-loop system is not globally asymptotically stable.

Proof. We will prove Theorem 11.1 by explicitly constructing non-zero periodic solutions. The

periodic solution with an even period T = 2m that we will construct is such that the system is

always in saturation, and the saturated input sequence is composed of 1 for the first m steps,

followed by −1 for the next m steps. For such a solution, we always have x2(T ) = x2(0). In order

to have x1(T ) = x1(0), it is easily verified that we must have that x2(0) = −m
2 .

Clearly, this will yield the required periodic solution if x1(0), f1 and f2 satisfy the following 2m

inequalities: u(k) ≥ 1 for k = 0, . . . ,m− 1 and u(k) ≤ −1 for k = m, . . . , 2m− 1, which guarantee

that the periodic solution has the required characteristic of the saturated input being 1 for the first

m steps and −1 for the next m steps. We basically have three unknowns x1(0), f1 and f2. However,

if we view f1x1(0), f1 and f2 as the unknown variables, then the above inequalities become linear
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inequalities. Next, we note that the above 2m inequalities can be reduced to only two inequalities.

Note that for k = 1, . . . ,m,

x1(k) = x1(0) + kx2(0) + k(k−1)
2 ,

x2(k) = x2(0) + k,

since by construction the input saturate to 1 for the first m steps. We then note that the Jury

conditions (11.3) imply that f2 < f1 and f1 < 0. This implies that f2 < f1 − 1
2kf1 for k =

0, . . . ,m−1. This yields f1x2(0)+f2 <
1
2f1(−m−k+2) since x2(0) = −m

2 . We know m−k−1 ≥ 0

and multiplying the above inequality on both sides with m− k − 1 yields:

f1(m− k − 1)x2(0) + f2(m− k − 1) ≤ f1

[
k(k−1)

2 − (m−1)(m−2)
2

]
.

This is equivalent to

u(m− 1) = f1x1(m− 1) + f2x2(m− 1) ≤ f1x1(k) + f2x2(k) = u(k)

for k = 0, . . . ,m − 1. Hence u(m − 1) ≥ 1 implies that u(k) ≥ 1 for k = 0, . . . ,m − 1. A similar

argument shows that u(2m− 1) ≤ −1 implies that u(k) ≤ −1 for k = m, . . . , 2m− 1.

Therefore, we have a periodic solution for given f1 and f2 provided there exists x1(0) such that

u(m− 1) = f1[x1(0) + (m− 1)x2(0) + (m−1)(m−2)
2 ] + f2[x2(0) + (m− 1)] ≥ 1,

u(2m− 1) = f1[x1(0)− x2(0)− 1] + f2[x2(0) + 1] ≤ −1.

Using that x2(0) = −m
2 we find a periodic solution if we can find x1(0) such that the following two

inequalities are satisfied:

f1[x1(0)− (m− 1)] + f2[m2 − 1] ≥ 1,

f1[x1(0) + m
2 − 1] + f2[−m

2 + 1] ≤ −1,
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which is equivalent to:

1 + f1(m− 1)− f2[m2 − 1] ≤ f1x1(0) ≤ −1− f1[m2 − 1] + f2[m2 − 1]. (11.5)

Clearly, a suitable x1(0) exists if and only if

1 + f1(m− 1)− f2[m2 − 1] ≤ −1− f1[m2 − 1] + f2[m2 − 1].

This implies that

f1(3m− 4)− f2(2m− 4) ≤ −4,

which, for m > 2, is equivalent to

3m−4
2m−4f1 + 2

m−2 ≤ f2. (11.6)

From (11.4), it is clear that

lim
m→∞

(3m−4
2m−4f1 + 2

m−2) = 3
2f1 ≤ f2.

Therefore for any f1, f2 which satisfy Jury’s condition (11.3) and the additional condition (11.4),

there exists m sufficiently large such that (11.6) is satisfied. But in the above we have seen that

this implies that the system (11.1) with a feedback control law (11.2) exhibits periodic behavior

for certain initial conditions with period 2m. Hence, the system (11.1) can never be globally

asymptotically stabilized by the feedback control law (11.2) if f1 and f2 satisfy (11.3) and (11.4).

Theorem 11.2. If f1 and f2 satisfy the Jury’s condition (11.3) plus the following condition

f2 <
3
2f1, (11.7)

then the closed-loop system is globally asymptotically stable.

The above results can be illustrated by Figure 11.1. Note that in Figure 11.1, line AB is f2 = f1,

line BC is f2 = 1
2f1 − 2, line AD is f2 = 3

2f1 and line AC is f1 = 0. The Jury test establishes that

305



−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

III

II

I

I

A

B

C

D

f1

f 2

III

II

I

I

A

B

C

D

III

II

I

I

A

B

C

D

III

II

I

I

A

B

C

D

Figure 11.1: Stability characteristics as a function of f1 and f2

whenever f1 and f2 take their values within the triangle ABC, the closed-loop system is locally

asymptotically stable; otherwise unstable. The triangle ABC can be bisected into two regions,

triangle ABD (Region II) and triangle ADC (Region III). As shown by Theorem 11.1, whenever f1

and f2 take their values within the triangle ABD, there exist initial conditions that lead to non-zero

periodic solutions and hence the closed-loop system is not globally asymptotically stable. On the

other hand, as shown by Theorem 11.2, whenever f1 and f2 take their values within the triangle

ADC, the closed-loop system is globally asymptotically stable. The results of Theorem 11.1 and

Theorem 11.2 will be illustrated by simulation examples in Section 11.4.

In order to prove Theorem 11.2, we need to establish asymptotic stability of the closed-loop

system whenever f1 and f2 take their values in the Region III depicted in Figure 11.1. A basis

transformation turns out to be useful for establishing this result. We define y1(k) = u(k) and

y2(k) = f1x2(k). The closed-loop system is then given by:
y1(k + 1) = y1(k) + y2(k) + f2σ(y1(k)),

y2(k + 1) = y2(k) + f1σ(y1(k)).

(11.8)
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We sometimes denote:

y(k) =

y1

y2


and y, y1 or y2 without explicitly indicating time will refer to y(k), y1(k) or y2(k) respectively.

Without loss of generality, we assume the closed-loop system is given by (11.8). We will prove

Theorem 11.2 by classical and modified Lyapunov argument by splitting the Region III into the

following three parts:

• Case 1: {(f1, f2)|(f2 − f1 + 1)2 − 1 < f1}, which is Region IV depicted in Figure 11.2.

• Case 2: {(f1, f2)|(f2 − f1 + 1)2 − 1 > f1, f1 ≥ −1.6},

• Case 3: {(f1, f2)|f1 < −1.6}.

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

IV

V

A

B

C

D

f1

f 2

Figure 11.2: Stability characteristics as a function of f1 and f2

Proof of Theorem 11.2 in case (f2 − f1 + 1)2 − 1 < f1. We consider the following Lyapunov candi-

date

Vk = V (y(k)) = 2y1(k)σ(y1(k))− σ2(y1(k))− 2σ(y1(k))y2(k)− 1
f1
y2

2(k).
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Then with some algebra, we get

Vk+1 = 2y1σ(ỹ1) + 2(f2 − f1)σ(y1)σ(ỹ1)− σ(ỹ1)2 − 1
f1
y2

2 − 2y2σ(y1)− f1σ
2(y1),

where to simplify notation we have used ỹ1 = y1(k + 1), while y1(k) and y2(k) are abbreviated to

y1 and y2 respectively. We find:

∆V = Vk+1 − Vk = 2y1σ(ỹ1) + 2(f2 − f1)σ(y1)σ(ỹ1)− σ(ỹ1)2 − 2y1σ(y1)− (f1 − 1)σ2(y1).

Next, we show ∆V ≤ 0 by considering three different cases: Case 1.1: y1 ≥ 1, Case 1.2: y1 ≤ −1,

and Case 1.3: |y1| < 1.

In Case 1.1, we get:

∆V = 2y1σ(ỹ1) + 2(f2 − f1)σ(ỹ1)− σ(ỹ1)2 − 2y1 − (f1 − 1)

= 2(y1 − 1)(σ(ỹ1)− 1)− (σ(ỹ1)− f2 + f1 − 1)2 + (f2 − f1 + 1)2 − (f1 + 1)

≤ (f2 − f1 + 1)2 − (f1 + 1) < 0.

In Case 1.2, we get:

∆V = 2y1σ(ỹ1)− 2(f2 − f1)σ(ỹ1)− σ(ỹ1)2 + 2y1 − (f1 − 1)

= 2(y1 + 1)(σ(ỹ1) + 1)− (σ(ỹ1) + f2 − f1 + 1)2 + (f2 − f1 + 1)2 − (f1 + 1)

≤ (f2 − f1 + 1)2 − (f1 + 1) < 0.

Finally, in Case 1.3, we get:

∆V = 2(f2 − f1 + 1)y1σ(ỹ1)− σ(ỹ1)2 − (f1 + 1)y2
1

= −[σ(ỹ1)− (f2 − f1 + 1)y1]2 + [(f2 − f1 + 1)2 − (f1 + 1)]y2
1 ≤ 0.

We also see that equality holds only if y1 = 0 and ỹ1 = 0 which implies that x1 = x2 = 0. Hence,

the global asymptotic stability of the closed-loop system follows.
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In remains to prove Theorem 11.2 for Cases 2 and 3, that is, Region V as depicted in Figure

11.2. Let us first derive a candidate Lyapunov candidate for the closed-loop system. To do so,

we consider a Lyapunov candidate in the presence of saturation, which is based on the linearized

system as follows:

Vk = V (y(k)) = 2y1(k)σ(y1(k))− σ2(y1(k)) + 2bσ(y1(k))y2(k)− 1
f1
y2

2(k), (11.9)

where

b =


2
f2

f2
2 + 4f1 ≥ 0,

− f2
2f1

f2
2 + 4f1 < 0.

(11.10)

It is easily verified that in the triangle ADC of Figure 11.2 we have b ∈ [−1,−0.5) while for b = −1

we get the Lyapunov function used in Case 1, and b ∈ (−1,−0.5) for Case 2 and Case 3 We

sometimes refer to the first case, when f2
2 +4f1 ≥ 0 as the real case since in that case the linearized

system has real eigenvalues while the second case, when f2
2 + 4f1 < 0, is referred to as the complex

case since in that case the linearized system has complex eigenvalues.

It is easy to see that the Lyapunov candidate (11.9) works for the linearized closed-loop system.

In order to be a valid Lyapunov function, it is necessary that it must work when σ(y1) stays at 1

or at −1 in two consecutive time instants. It is easy to verify that in that case:

∆V = (2b− 1)f1 + 2f2, (11.11)

where (∆V )(k) = Vk+1 − Vk, while Vk = V (y(k)). Thus, ∆V = (f2
2 + 4f1)/f2 + (f2 − f1) < 0 in

the real case while ∆V = f2 − f1 < 0 in the complex case.

Therefore, the Lyapunov candidate (11.9) has the required properties when σ(y1) is in saturation

for two consecutive time instants or is out of saturation for two consecutive time instants. Note that

for a continuous-time problem, we would be done, since y1 is continuous. However, for discrete-
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time systems, y1 obviously jumps from one time to the other and hence if σ(y1(k)) saturates then

it might well be that σ(y1(k + 1)) is out of saturation or conversely. This is intrinsically different

from the continuous-time case. Thus, we have to show that the Lyapunov candidate (11.9) also

decreases when y1 jumps. The traditional Lyapunov argument is to show that Vk+1−Vk < 0 for all

initial conditions. However, this approach does not work here. For the real case, if f2 < −2, there

exist initial conditions, such that Vk+1 − Vk > 0. A similar problem can arise in the complex case.

Thus, we need a different technique. The main idea is to show that V decreases over a specifically

chosen number of time steps, and V is bounded in the interim. In order to proceed with this idea,

we first choose suitable time instants ki. The formal definition of ki is given below:

Definition 11.1. k0 = 0, and ki is the smallest integer larger than ki−1, such that either

• |y1(ki)| < 1; or

• y1(ki)y1(ki + 1) < 0 and |y1(ki + 1)| ≥ 1.

In other words, ki is defined as the first time instant k > ki−1 where y1(k) either gets out of

saturation, or where y1(k) switches the sign. It is easily seen that ki is well defined for a given ki−1

since the only way ki would not be well defined is if y1(k) > 1 for all k > ki−1 or if y1(k) < −1 for

all k > ki−1. It is easily seen from the dynamics (9.15) that this is not possible.

Proof of Theorem 11.2 in case (f2 − f1 + 1)2 − 1 > f1 and f1 ≥ −1.6. We consider the Lyapunov

candidate V defined in (11.9) and assume the feedback gains f1 and f2 are in the region {(f1, f2)|(f2−

f1 + 1)2 − 1 > f1, f1 ≥ −1.6}. In appendix 11.A, it is established that if Vki−1
6= 0, then

Vki − Vki−1
< 0. (11.12)

We already know that the system is locally asymptotically stable from Jury’s test. It remains to

show global attractivity of the origin.
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We first note that (11.9) can be rewritten as:

V (y) = 2σ(y1) [y1 − σ(y1)] + [σ(y1) + by2]2 −
(
b2 + 1

f1

)
y2

2.

It is easy to show that for f2
2 + 4f1 6= 0 we have b2 + 1

f1
> 0. This immediately implies V (y) > 0

if y 6= 0. Using (11.12) implies that we have a sequence {ki} such that Vki+1
< Vki for all i. This

clearly implies that Vki is bounded and hence ki+1−ki is bounded as well. This implies that Vki → 0

as i→∞. Local asymptotic stability implies that if Vki is small enough for some i then y(k)→ 0

as k →∞ and therefore we have global attractivity.

For the case that b2 + 1
f1

= 0, we have V (y) ≥ 0 and V (y) = 0 implies y1 + by2 = 0 and

y1 ∈ [−1, 1]. We still have that (11.12) is satisfied and hence V (k) → 0 as k → ∞. Let W denote

the compact set of y ∈ R2 for which V (y) = 0. Then it is easily verified that y(k) ∈ W implies that

y(k + 1) ∈ W and, moreover y(k0) ∈ W implies that y(k)→ 0 as k →∞. Then a minor variation

of the classical LaSalle argument implies that the system is globally attractive.

Proof of Theorem 11.2 in case f1 < −1.6. Again, we consider the Lyapunov candidate V defined

in (11.9) and assume the feedback gains f1 and f2 satisfy f1 < −1.6. In that case it is proven in

Appendix 11.B that if Vki−1
6= 0, then

Vki − Vki−1
< 0 or Vki+1

− Vki−1
< 0. (11.13)

As before, we already know that the system is locally asymptotically stable from Jury’s test. It

remains to show global attractivity of the origin which can be done in a similar way as in Case

2.

Remark 11.1. Note that if the feedback gains f1 and f2 take their values with the triangle ABD

(Region II) in Figure 11.1, there actually exist initial conditions for which Vki+1
− Vki−1

= 0 since
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ki+1 − ki−1 is precisely the period of the periodic behavior as constructed in the proof of Theorem

11.1.

11.4 Illustrative Examples

In this section, we give two simulation examples to illustrate our results. The first example is

the simulation example where the gain parameters f1 and f2 take their values within triangle ABD

(Region II) of Figure 11.1, which clearly shows the periodic behavior of the closed-loop system for

some initial conditions. The second example is the simulation example where the gain parameters

f1 and f2 take their values within triangle ADC (Region III) of Figure 11.1, which clearly shows

that the closed-loop system is globally asymptotically stable.

Example 11.1. Consider system (11.1) with a state feedback control law (11.2) with gain parame-

ters f1 = −1 and f2 = −1.2. The system has a periodic solution of period T = 56 for the following

initial conditions: 3.6 ≤ x1(0) ≤ 10.4 and x2(0) = −14. The state trajectory for x1(0) = 10.4 and

x2(0) = −14 is given in Figure 11.3, where we clearly see the symmetric period orbit. Note that
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Figure 11.3: Periodic orbit of period 56
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the state trajectory moves clockwise along the periodic orbit shown in Figure 11.3.

Example 11.2. Consider system (11.1) with a state feedback control law (11.2) with gain pa-

rameters f1 = −1.5 and f2 = −2.5. The simulation result for initial condition x1(0) = 10 and

x2(0) = −8 is given in Figure 11.4, where clearly shows that the closed-loop system is globally

asymptotically stable.
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Figure 11.4: Simulation Example

11.A Proof of Theorem 11.2 in case (f2 − f1 + 1)2 − 1 > f1 and

f1 ≥ −1.6

In this appendix, we will establish that (11.12) is satisfied. For simplicity we denote y1(ki−1)

and y2(ki−1) by y1 and y2 respectively while y1(ki) and y2(ki) are denoted by ỹ1 and ỹ2 respectively.

We will prove that Lyapunov candidate will decay for the following cases depending on whether

y1 and ỹ1 is saturated or not.

• Case 2.1: |y1| ≥ 1 and ỹ1 ∈ [−1, 1],
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• Case 2.2: y1 ∈ [−1, 1] and ỹ1 ∈ [−1, 1],

• Case 2.3: y1 ∈ [−1, 1] and |ỹ1| ≥ 1.

• Case 2.4: |y1| ≥ 1 and |ỹ1| ≥ 1.

We first note that (11.3), (11.7) and the following equation (11.14)

(f2 − f1 + 1)2 − 1 > f1 (11.14)

imply that b as defined in (11.10) satisfies b ∈ (−1,−2
3) in the real case and b ∈ (−1,−3

4) in the

complex case.

11.A.1 Case 2.1

Without loss of generality, we only consider the case y1 ≥ 1 (the other case where y1 ≤ −1 is

completely symmetric).

In the case where y1 ≥ 1 we have

ỹ1 = y1 + ky2 + e1,

ỹ2 = y2 − (k − 2)f1,

where we denote k = ki − ki−1 while

e1 = f2 + (k − 1)(f1 − f2)− f1
2 (k − 1)(k − 2). (11.15)

We will prove the Lyapunov function defined in (11.9) will decay if y1 ≥ 1 and ỹ1 ∈ [−1, 1]. In

doing this, we ignore the other constraints which follow from the definition of ki, namely that

y1(ki−1 + j) ≤ −1 for j = 1, . . . , k − 1. However, if the Lyapunov function always decays without

these constraints then it will definitely still decay when these additional constraints are imposed.
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We get

Vki − Vki−1
= ỹ2

1 + 2bỹ1ỹ2 −
1

f1
ỹ2

2 − 2y1 + 1− 2by2 +
1

f1
y2

2.

This can be rewritten completely in terms of ỹ1 and y1. We obtain:

Vki − Vki−1
= (1 + 2 bk )ỹ2

1 +
[
−2 bk (ỹ1 − 1)− 4k−1

k

]
y1

+
[
−2 bke1 + 2(2− k)bf1 + 2− 2(2 + b) 1

k

]
ỹ1 − 2e1 + 2(2 + b) 1

ke1 − (k − 2)2f1 + 1.

We need to show this is negative for all y1 ≥ 1 and all ỹ1 ∈ [−1, 1]. However, this is a linear function

of y1 whose coefficient is negative and hence Vki − Vki−1
is maximal for y1 = 1. We find:

Vki − Vki−1
≤ (1 + 2 bk )ỹ2

1 +
[
−2 bke1 + 2(2− k)bf1 + 2− 4(1 + b) 1

k

]
ỹ1

− 2e1 + 2(2 + b) 1
ke1 + 2 bk − 4k−1

k − (k − 2)2f1 + 1. (11.16)

The upper bound is a quadratic function which we need to maximize. Clearly, the sign of the

quadratic term is crucial here. For k = 1 the coefficient of the quadratic term is negative and the

maximum is obtained by setting the derivative equal to zero (if we ignore that ỹ1 ∈ [−1, 1]). We

obtain for k = 1:

Vki − Vki−1
≤ (1 + 2b)ỹ2

1 + [2b(f1 − f2)− 2(1 + 2b)]ỹ1 + 2b+ 1− f1 + 2(1 + b)f2. (11.17)

For the real case (f2
2 + 4f1 > 0), since b = 2f−1

2 and using (11.3), we obtain from (11.17) that

Vki − Vki−1
≤ (f2

2 + 4f1)(4 + 2f2 − f1)f−1
2 /(f2 + 4) < 0.

For the complex case (f2
2 + 4f1 < 0), since b = −f2f

−1
1 /2 and again using (11.3), we obtain from

(11.17) that

Vki − Vki−1
≤ (f2 − f1)(f2

2 + 4f1)f−1
1 /4 < 0.
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Finally, if f2
2 + 4f1 = 0 then it is easily verified from (11.17) that Vki − Vki−1

< 0 unless y1 = 1 and

ỹ1 = 1 + f2/2. However, it can be seen that in that case Vki−1
= 0.

Next, we return to the case where k > 1. In that case, the upper bound (11.16) has a quadratic

term with a positive coefficient. Therefore, the maximum is attained on the boundary, i.e. ỹ1 = 1

or ỹ1 = −1. For ỹ1 = 1 we obtain:

Vki − Vki−1
≤ (k − 2)

[
−2bf1 − 4

k (f2 − f1)− 3f1 + 2f2

]
≤ (k − 2) [−2bf1 − 2(f2 − f1)− 3f1 + 2f2]

≤ (2− k)(2b+ 1)f1

≤ 0,

where we used k ≥ 2 and b < −0.5. Note that we have that the upper bound is negative unless

k = 2 in which case it easily verified that the decay equals zero only if ỹ1 = 1 and y1 = 1. The

latter is inconsistent with k = 2 since we then get

y(ki−1 + 1) = y1 + y2 + f2 = 1− 1
2f1 + f2 ≥ −1,

where we used f2 >
1
2f1 − 2 for the inequality, while we should have y(ki−1 + 1) ≤ −1. Next, we

need to investigate the other boundary where ỹ1 = −1. We get

Vki − Vki−1
≤ [2b− (k − 2)]

[
(3f1 − 2f2)− 4

k (f1 − f2 − 1)
]
< 0. (11.18)

The first inequality is a simple rewriting of our upper bound for ỹ1 = −1. The second inequality

is more subtle. It is easy to see that 2b − (k − 2) < 0. If f1 − f2 − 1 ≤ 0, we immediately find

that the expression is negative since we know from (11.7) that 3f1 − 2f2 > 0. On the other hand

if f1 − f2 − 1 > 0 then we find that

(3f1 − 2f2)− 4
k (f1 − f2 + 1) ≥ (3f1 − 2f2)− 2(f1 − f2 − 1) = f1 + 2 > 0,
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and the inequality (11.18) is satisfied. The fact that f1 > −2 follows from (11.3) and (11.7).

11.A.2 Case 2.2

In this case we have:

y1 ∈ [−1, 1] and ỹ1 ∈ [−1, 1]. (11.19)

The proof is split into two cases: the real case where f2
2 + 4f1 ≥ 0 and the complex case where

f2
2 + 4f1 ≤ 0.

11.A.2.1 The real case: f2
2 + 4f1 ≥ 0

In this case we have

ỹ1 = y1(ki) = d4y1 + ky2 + e4, (11.20)

ỹ2 = y2(ki) = f1y1 + y2 − (k − 1)f1, (11.21)

where we denote k = ki − ki−1 and

d4 = 1 + f2 + (k − 1)f1, (11.22)

e4 = −(k − 1)
(
f2 − f1 + 1

2f1k
)
. (11.23)

Given (11.19), we find that:

Vki − Vki−1
= ỹ2

1 + 2bỹ1ỹ2 − 1
f1
ỹ2

2 − y2
1 − 2by1y2 + 1

f1
y2

2.

We can eliminate ỹ2 and y2 from the above expression by using (11.20) and (11.21):

Vki − Vki−1
= ỹ2

1 + 2bỹ1

[
f1y1 + 1

k (ỹ1 − d4y1 − e4)− (k − 1)f1

]
− 1

f1

[
f1y1 + 1

k (ỹ1 − d4y1 − e4)− (k − 1)f1

]2 − y2
1 − 2 bky1 [ỹ1 − d4y1 − e4]

+ 1
k2f1

[ỹ1 − d4y1 − e4]2 . (11.24)
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Our objective is now to prove that (11.24) is negative. We first note that for k = 1 we only need

to study the unsaturated linear system and it is easily verified that we have:

Vki − Vki−1
< 0 (11.25)

provided Vki−1
6= 0. For k = 2 we will show that (11.24) is negative for all

−1 ≤ y1 ≤ 1, −1 ≤ ỹ1 ≤ −1− (1 + f2 − f1)(y1 + 1)− f1, (11.26)

where the upper bound for ỹ1 follows from the constraint that y1(ki − 1) ≤ −1. For k > 2 we

consider all

−1 ≤ y1 ≤ 1, −1 ≤ ỹ1 ≤ −1, (11.27)

and we ignore all other constraints which follow from the definition of ki namely that y1(ki−1 +j) ≤

−1 for j = 1, . . . , k − 1.

The quadratic term in ỹ1 in (11.24) is equal to

1 + 2b 1
k

which is positive for k ≥ 2 since b > −1. Therefore, we know (11.24) is maximal in a boundary

point, that is,

ỹ1 = −1 or ỹ1 = −1− (1 + f2 − f1)(y1 + 1)− f1

for k = 2 and

ỹ1 = −1 or ỹ1 = 1

for k > 2. For the lower bound ỹ1 = −1 we do not need to distinguish between k = 2 and k > 2

and we obtain that

Vki − Vki−1
= 1− 2bf1 [y1 − (k − 1)]− 2b

k (1 + y1) [−1− d4y1 − e4]

− 2
k [y1 − (k − 1)] [−1− d4y1 − e4]− f1 [y1 − (k − 1)]2 − y2

1 (11.28)
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and we need to show this expression is negative. The expression has the form:

āy2
1 + b̄y1 + c̄. (11.29)

Here we have:

ā = (2b+ 1)f1 − 1 + 2
k (b+ 1)(1 + f2 − f1), (11.30)

b̄ = −(1 + b)f1k + [(1 + b)(3f1 − 2f2)− 2(1 + f2 − f1)] + 4
k (1 + b)(1 + f2 − f1),

c̄ = [(1 + b)f1 − (3f1 − 2f2)]k + [1− (2b+ 1)f1 + (b+ 1)(3f1 − 2f2)− 2(1 + f2 − f1)]

+ 2
k (1 + b)(1 + f2 − f1).

We note that ā < 0. After all if 1 + f2 − f1 ≤ 0 we have that:

ā ≤ (2b+ 1)f1 − 1 ≤ (2b+ 1)(−1
4f

2
2 )− 1 = −(1

2f2 + 1)2 < 0

where we used that 2b+ 1 < 0, the fact that in the real case f2
2 + 4f1 ≥ 0 and the definition of b.

If 1 + f2 − f1 > 0 then we obtain that ā is maximal for k = 2 and we obtain:

ā ≤ bf1 + (1 + b)f2 + b ≤ b(−1
4f

2
2 ) + (1 + b)f2 + b = 1

2f2
(f2 + 2)2 < 0.

We need to verify that (11.29) is negative for all y1 ∈ [−1, 1]. We first verify it is negative in the

boundary points. We get for y1 = −1 that (11.29) equals:

ā− b̄+ c̄ = [2(1 + b)f1 − (3f1 − 2f2)] k < 0.

In the proof of Case 2.1, we already established that for y1 = 1,

Vki − Vki−1
< 0.

Finally, (11.29) may attain its maximum in the interior where

y1 = − b̄

2ā
with

∣∣∣∣ b̄2ā
∣∣∣∣ < 1,

319



but then the maximum is less than c̄− ā and we get

c̄− ā = [(1 + b)f1 − (3f1 − 2f2)] k + (3− b)f1 − (2b+ 4)f2.

Note that the above expression is a linear function of k whose coefficient is negative since b > −1,

f1 < 0, and 3f1 − 2f2 > 0, and hence it is maximal for all k ≥ 2 when k = 2 and we get:

c̄− ā ≤ (b− 1)f1 − 4 = 1
f2

[2f1 − f2(f1 + 4)] ≤ 1
f2

[2f1 + 2(f1 + 4)] = 4
f2

(f1 + 2) < 0.

In other words, for ỹ1 = −1 we have that (11.24) is negative.

It remains to check whether (11.24) is negative for the upper bound for ỹ1. Unfortunately, here

we have to distinguish between k = 2 and k > 2. For k = 2 we have

ỹ1 = −1− (1 + f2 − f1)(y1 + 1)− f1

for the upper bound. We obtain that

Vki − Vki−1
= ây2

1 + b̂y1 + ĉ. (11.31)

Here we have:

â = (1 + 2b)(f1 − f2 − 1)2 − (f1 + 1) + 2(1 + b)(f2 + 1),

b̂ = −2(1 + b)(f1 − f2 − 1)(f2 + 2)− 2b(f1 − f2 − 1)(1 + f1) + 2(1 + b) + 2(f1 − f2 − 1),

ĉ = (f2 + 2)2 + 2b(f2 + 2)(f1 + 1) + 2(f1 − f2 − 1) + 2f2 − 3f1.

Using −4f1 ≤ f2
2 we get:

â ≤ (1 + 2b)(f1 − f2 − 1)2 + 1
4f2

(f2 + 4)(f2 + 2)2 < 0

since 1 + 2b < 0 and −3 < f2 < −2. Therefore the maximum is attained on the boundary or in the

interior. We show that − b̂
2â ≥ 1. Since â < 0, it is equivalent to show that b̂ + 2â > 0 and, with
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some algebra, we get:

b̂+ 2â = 2(2f2 − f1 + 4)[−(f1 − f2 − 1) + 1](1 + 2
f2

) > 0.

Thus, for case k = 2, Vki − Vki−1
in equation (11.29) is maximal for all y1 ∈ [−1, 1] when y1 = 1,

and the maximum is â+ b̂+ ĉ. Next, we show that this is indeed negative. We get:

â+ b̂+ ĉ = 4(f2 − 1
2f1 + 2)(f2 + 4

f2
− 1

2f1 + 3)

< 4(f2 − 1
2f1 + 2)(−1

2f1 − 1) < 0.

The following step is to check the upper bound ỹ = 1 for k > 2. We obtain that

Vki − Vki−1
= 1 + 2bf1 [y1 − (k − 1)] + 2b

k (1− y1) [1− d4y1 − e4]

− 2
k [y1 − (k − 1)] [1− d4y1 − e4]− f1 [y1 − (k − 1)]2 − y2

1, (11.32)

and we need to show this expression is negative. The expression has the form:

ãy2
1 + b̃y1 + c̃. (11.33)

Here we have:

ã = (2b+ 1)f1 − 1 + 2
k (b+ 1)(1 + f2 − f1),

b̃ = −(b+ 1)kf1 + b(3f1 − 2f2)− 2− 4f2 + 5f1 + 1
k (−4b− 4f1 + 4f2),

c̃ = k(−bf1 + 2f2 − 2f1) + 3 + 4f1 − 4f2 + b(2f2 − f1) + 2
k (b− 1)(1− f2 + f1).

Since ã = ā and we already showed that ā is negative, ã is negative. In Subsection 11.A.1 we

already established that for y1 = 1 we have:

Vki − Vki−1
< 0.
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On the other hand for y1 = −1 we have:

ã− b̃+ c̃ = k(2f2 − f1) + 2b(2f2 − f1) + 4 +
8b

k
.

For k = 3 we get:

6f2 − 3f1 + 12− 4
f2
f1 + 16

3f2
= 6f2 − (3 + 4

f2
)f1 + 12 + 16

3f2
< 6f2 − 2f1 + 12 + 16

3f2
.

This upper bound equals to:

2
3(2f2 − 3f1) + 1

3f2
(f2 + 2)(14f2 + 8) < 0.

For k > 3 we have:

ã− b̃+ c̃ < k(2f2 − f1) + 2b(2f2 − f1) + 4

≤ 4(2f2 − f1) + 2b(2f2 − f1) + 4 = 8f2 − 4(1 + 1
f2

)f1 + 12

< 8f2 − 8
3f1 + 12 < 0.

It remains to show that if the maximum of (11.33) is attained in the interior, i.e. y1 ∈ (−1, 1), the

maximum of (11.33) is also negative. As before, we note that the maximum is less than c̃− ã and

we get

c̃− ã = k[−(b+ 2)f1 + 2f2] + 3(1− b)f1 + 2(b− 2)f2 + 4 + 4
k [b(f1 − f2)− 1].

For k = 3 we get:

c̃− ã = −( 28
3f2

+ 3)f1 + 2f2 + 4 < 1
9f1 + 2f2 + 4 < 0,

while for k > 3 we get:

c̃− ã < 4[−(b+ 2)f1 + 2f2] + 3(1− b)f1 + 2(b− 2)f2 + 4 = −(7b+ 5)f1 + 4(f2 + 2).
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If 7b + 5 < 0 then this expression is negative since f1 < 0 and f2 < −2. On the other hand, if

7b+ 5 > 0 then

−(7b+ 5)f1 + 4f2 + 8 < 28
f2

+ 4f2 + 18 < 22
f2

+ 4f2 + 16 = 2
f2

(
2(f2 + 2)2 + 3

)
< 0

since f1 ∈ (−2, 0) and f2 ∈ (−3,−2).

11.A.2.2 The complex case: f2
2 + 4f1 ≤ 0

Next, we study the complex case. We again want to establish that Vki −Vki−1
< 0. However, in

this case, it is not sufficient to consider the case ỹ1 ∈ [−1, 1] and y1 ∈ [−1, 1] since in that case the

result is simply not true for f1 and f2 sufficiently small. But recall that we ignored the constraints

that y1(ki−1 + j) ≤ −1 for j = 1, . . . , k − 1. In this case we actually ignore the constraint that

ỹ1 < 1 and replace it by the constraint that y1(ki − 1) < −1. Note that

y1(ki − 1) = d3y1 + (k − 1)y2 + e3 ≤ −1, (11.34)

where

d3 = 1 + f2 + (k − 2)f1,

e3 = −(k − 2)[f2 − f1 + 1
2f1(k − 1)].

We also recall (11.20) and (11.21) and we again obtain (11.24). However, this time we want to

prove that (11.24) is negative for all y1 and ỹ1 for which y1 ∈ [−1, 1] and

−1 ≤ ỹ1 ≤ −1− (1 + f2 − f1) 1
k−1(y1 + 1)− 1

2f1k,

where the upper bound for ỹ1 follows from (11.34). We note that (11.24) is a quadratic function in

ỹ1 and the quadratic term has coefficient 1 + 2b 1
k which is positive for k ≥ 2 (note that, like in the

real case, for k = 1 we have a linear system without saturation and hence we can trivially verify
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Vki − Vki−1
< 0). Hence for k ≥ 2, (11.24) attains its maximum on the boundary where either

ỹ1 = −1 or

ỹ1 ≤ −1− (1 + f2 − f1) 1
k−1(y1 + 1)− 1

2f1k.

On the boundary ỹ1 = −1 we have that (11.24) is equal to:

ã1y
2
1 + b̃1y1 + c̃1, (11.35)

where

ã1 = (2b+ 1)f1 − 1 + 2
k (b+ 1)(1 + f2 − f1), (11.36)

b̃1 = −kf1(1 + b)− 2(1− f1 + f2) + (b+ 1)(3f1 − 2f2) + 4
k (b+ 1)(1 + f2 − f1),

c̃1 = 2k(f2 − f1) + kbf1 − 1 + 4f1 − 4f2 + b(f1 − 2f2) + 2
k (1 + b)(1 + f2 − f1).

We have

ã1 ≤ (1 + b)f2 + bf1 + b = f2
2f1

(f1 − f2 − 1) < 0,

where we used that ã1 is maximal for k = 2 and that in the complex case, where f2
2 + 4f1 ≤ 0, we

have that 2bf1 = −f2 and

1 + f2 − f1 > 0. (11.37)

We note that

b̃1 − 2ã1 = −kf1(1 + b) + (1 + b)(3f1 − 2f2) > 0

since b > −1, f1 < 0, k > 0 and 3f1 − 2f2 > 0. This implies that

− b̃1
2ã1

> −1,

which implies that (11.35) attains its maximum for y1 > −1 (recall that y1 ∈ [−1, 1]). Next we

assume that the maximum is attained for y1 ∈ (−1, 1) which implies that y1 = − b̃1
2ã1

. The maximum
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is then equal to

c̃1 −
b̃21

4ã1
< c̃1 − ã1,

where we used that ã1 < 0 and | b̃12ã1
| < 1. In that case, we obtain:

c̃1 − ã1 = k[(1 + b)f1 − (3f1 − 2f2)] + [−1 + 3f1 − 4f2 − b(f1 + 2f2)],

which is maximal for k = 2 and hence we obtain:

c̃1 − ã1 ≤ −1− f1 + b(f1 − 2f2) = −1− f1 − 1
2f2 + f2

f1
f2 < −1− f1 + f2 < 0,

where we used that 2f2 < 3f1. It remains to show that (11.35) is negative if the maximum is

attained for y1 = 1. In that case the maximum equals to

ã1 + b̃1 + c̃1 = k(2f2 − 3f1)− 4 + 10f1 − 8f2 + 2b(3f1 − 2f2) + 8
k (1 + b)(1 + f2 − f1),

which is maximal for k = 2 and hence less than or equal to:

b(4 + 2f1)

which is negative. The above establishes that Vki − Vki−1
< 0 if it attains its maximum on the

boundary where ỹ1 = −1. It remains to show that Vki − Vki−1
< 0 if it attains its maximum on the

other boundary where

ỹ1 = −1− (1 + f2 − f1) 1
k−1(y1 + 1)− 1

2f1k.

In that case we get that Vki − Vki−1
as given in (11.24) is equal to:

ã2(y1 + 1)2 + b̃2(y1 + 1) + c̃2, (11.38)
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where

ã2 = (1 + 2b)
[

1
k−1(1 + f2 − f1)

]2
+ 2

k−1(b+ 1)(1 + f2 − f1)− (1 + f2 − f1),

b̃2 = 1
k−1(1 + f2 − f1) [(1 + b)f1 + b(3f1 − 2f2)] + (1 + f2 − f1)f1(1 + 2b)

+ (b+ 1)(3f1 − 2f2)− (1 + b)f1(k − 1),

c̃2 = (f2 − f1)
[
−1

4k
2f1 + k(1 + 1

2f2)
]
.

It is easily verified that in the region of interest we have that c̃2 < 0 since:

−1
4k

2f1 + k(1 + 1
2f2) > −1

4k
2f1 + k(1 + f1) = −1

4(k − 2)2f1 + k + f1 > 0.

Secondly, for b̃2 it is easily verified that the coefficient of 1/(k − 1) is negative while the coefficient

of (k − 1) is positive which implies that b̃2 is increasing in k and attains its maximum for k = 2.

Moreover for k = 2 we find that b̃2 is equal to:

2(b+ 1)(f1 − f2)(2 + f2 − f1) > 0.

We therefore note that b̃2 > 0 for k ≥ 2. Finally, ã2 < 0 in the region of interest since 1 + 2b < 0

while b+ 1 > 0 and 1 + f2 − f1 > 0 imply:

2
k−1(b+ 1)(1 + f2 − f1)− (1 + f2 − f1) < 2(b+ 1)(1 + f2 − f1)− (1 + f2 − f1) < 0.

We need to show that (11.38) is negative for all y1 ∈ [−1, 1]. We use the following two bounds:

ã2 < ā2 = −1
2

[
1

k−1(1 + f2 − f1)
]2
− 1

2(1 + f2 − f1),

b̃2 < b̄2 = (1 + f2 − f1) 1
k−1(f1 − 1

2f2) + (1 + f2 − f1)(f1 − f2)− 2f2 + 3f1 − (f1 − 1
2f2)(k − 1),

where we used that 2bf1 = −f2 and we note that 2f1 − f2 < 0 in our region of interest.

We get that (11.38) is negative for y1 = −1 since c̃2 < 0. For k = 2, it is also negative for y1 = 1

since:

4ã2 + 2b̃2 + c̃2 = 1
f1

(f1 − f2)(f1 − f2 − 2)(f1 − 2f2 − 4) < 0.
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For y1 = 1 and k = 3 we get

4ã2 + 2b̃2 + c̃2 = 1
4(4− 2f2

2 + f2f1 + f2
1 )− 1

f1
(3f2 + f2

2 )

< 1
4(−14− 6f2 − 2f2

2 + f2f1 + f2
1 )

< 1
4(−14− 8f2 − 2f2

2 + f2
1 )

= 1
4(f2

1 − 4)− 1
2(1 + (f2 + 2)2) < 0,

where in the first inequality we used that 3f1 > 2f2 and f2 > −3 while for k > 3 we have:

4ã2 + 2b̃2 + c̃2 ≤ 4ā2 + 2b̄2 + c̃2

and

4ā2 + 2b̄2 + c̃2 = −2
[

1
k−1(1 + f2 − f1)

]2
− 1

4k(f2 − f1)(kf1 − 2f2) + (k − 2)(2f2 − 3f1)

+ 2(f1 − 1
2f2) + 2(1 + f2 − f1)

[
1

k−1(f1 − 1
2f2)− (1 + f2 − f1)

]
< 0.

It remains to prove that if the maximum of (11.38) is also negative if (11.38) attains its maximum

in the interior of the interval (−1, 1). We get

ã2(y1 + 1)2 + b̃2(y1 + 1) + c̃2 ≤ c̃2 −
b̃22

4ã2
< c̃2 + b̃2 < c̃2 + b̄2,

where we used that the maximum is attained in the interior and hence

− b̃2
2ã2

< 2.

We find that

c̃2 + b̄2 = −1
4(f2 − f1)(k2f1 − 2kf2)− 2k(f1 − 3

4f2) + (1 + f2 − f1) 1
k−1(f1 − 1

2f2)

− (f1 − f2)2 + (5f1 − 7
2f2).
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The first term is decreasing in k for k ≥ 2 since 2f1 − f2 < 0 and f2 − f1 < 0. It is then easy to

verify that this complete upper bound is decreasing in k and therefore is maximal for k = 2 and

we get:

c̃2 + b̄2 ≤ (f1 − 1
2f2)(2− f1 + f2) < 0.

11.A.3 Case 2.3

We consider the case when |ỹ1| ≥ 1. Due to the symmetry, we only need to consider the case

that ỹ1 ≤ −1. The case where ỹ1 ≥ 1 then follows trivially. As before we define

k = ki − ki−1.

By definition, we have k ≥ 1. On the other hand, k = 1 would imply:

y1(ki − 1) ≥ −1, y1(ki) ≤ −1, y1(ki + 1) ≥ 1

and it is easily verified, given the system dynamics (9.15), that this can only happen if f1 > 2f2 + 4

which contradicts the Jury conditions (11.3). Therefore we only need to address the case where

y1(ki−1 + j) = −1 for j = 1, . . . , k with k ≥ 2.

The proof is split into two cases: the real case where f2
2 + 4f1 ≥ 0 and the complex case where

f2
2 + 4f1 ≤ 0.

11.A.3.1 The real case: f2
2 + 4f1 ≥ 0

From the system equations (9.15), we have

y1(ki + 1) = y1(ki−1 + k + 1) = d5y1 + (k + 1)y2 + e5,

where d5 = 1 + f2 + kf1 and e5 = −k(f2 + 1
2(k − 1)f1). Since y1(ki + 1) ≥ 1, we get

y2 ≥ 1
k+1(1− e5 − d5y1). (11.39)
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As argued before, our Lyapunov has a constant decay, which is given in (11.11), if we are in −1 for

two consecutive time instants, thus we analyse Vki − Vki−1
as:

Vki − Vki−1
= Vki−1+1 − Vki−1

+ (k − 1)[(2b− 1)f1 + 2f2]

= −2(1 + bf1 + f2)y1 − 2(1 + b)(1 + y1)y2 − 1− (f1 + 1)y2
1

+ (k − 1)[(2b− 1)f1 + 2f2].

Since b > −1 and −1 < y1 < 1, the term −2(1 + b)(1 + y1)y2 is maximal for minimal y2 and using

the bound (11.39), we get:

Vki − Vki−1
≤ −2(1 + bf1 + f2)y1 − 2(1 + b)(1 + y1) 1

k+1(1− e5 − d5y1)

− 1− (f1 + 1)y2
1 + (k − 1)[(2b− 1)f1 + 2f2]

= ā3y
2
1 + b̄3y1 + c̄3, (11.40)

where

ā3 = [(2b+ 1)f1 − 1] + 2
k+1(1 + b)(f2 − f1 + 1),

b̄3 = −(1 + b)f1k + (1 + b)(4f1 − 2f2)− 2(1 + bf1 + f2) + 4
k+1(1 + b)(f2 − f1),

c̄3 = [(1 + b)f1 + 2f2 − 3f1]k + 2(1 + b)(f1 − f2)− (2b− 1)f1 − 2f2 − 1

+ 2
k+1(1 + b)(f2 − f1 − 1).

Note that ā3 < 0 since it is the same as ā given in (11.30) (with k replaced by k + 1), which

has been shown to be negative. Next, let us show that Vki − Vki−1
< 0.

We show that − b̄3
2ā3

> 1 for all k ≥ 1, which implies that our bound for Vki − Vki−1
for all k ≥ 1
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is maximal at y1 = 1. Since ā3 < 0 this implies that we need to show that b̄3 + 2ā3 > 0. We get

b̄3 + 2ā3 = −(1 + b)f1k + (1 + b)(4f1 − 2f2)− 2(1 + bf1 + f2) + 2[(1 + 2b)f1 − 1]

+
4

k + 1
(1 + b)(2f2 − 2f1 + 1).

Since 2f2 − 2f1 + 1 < 0 and 1 + b > 0 in the region of interest we find:

b̄3 + 2ā3 > −(1 + b)f1 + (1 + b)(4f1 − 2f2)− 2(1 + bf1 + f2) + 2[(1 + 2b)f1 − 1]

+ 2(1 + b)(2f2 − 2f1 + 1)

= (1 + b)(2 + f1) > 0,

where we used that bf2 = 2 and 1 + b > 0 and f1 > −2. We find that our bound for Vki − Vki−1
for

all k ≥ 1 is maximal at y1 = 1 and hence:

Vki − Vki−1
≤ ā3 + b̄3 + c̄3,

and we find:

ā3 + b̄3 + c̄3 = k(2f2 − 3f1) + 4(2f1 − 2f2 − 1) + 4b(f1 − f2)− 8

k + 1
(1 + b)(f1 − f2). (11.41)

It can be verified that it is negative provided f1 ≥ −1.6.

11.A.3.2 The complex case: f2
2 + 4f1 ≤ 0

Similarly as in the proof for the real case we obtain (11.40) with the same expressions for ā3,

b̄3 and c̄3. This time the fact that ā3 < 0 follows from the fact that it is the same as ã1 as defined

in (11.36) (with k replaced by k + 1) which has been shown to be negative.

We first show that the bound in (11.40) is negative for y1 = −1 and y1 = 1 respectively. We

get for y1 = −1:

ā3 − b̄3 + c̄3 = (f2 − f1)k < 0.

330



On the other hand for y1 = 1 we get the same expression (11.41) as in the real case. It can be

verified that it is negative provided f1 ≥ −1.6 since (11.40) is less than:

3(2f2 − 3f1) + 4(2f1 − 2f2 − 1) + 4b(f1 − f2) = 2f2 − f1 − 4 + 4b(f1 − f2)

which is negative for f1 ≥ −1.6. It remains to check that, if f1 ≥ −1.6, then (11.40) is also negative

if the maximum is attained in the interior. Using the same arguments as before and the fact that

ā3 < 0, we find that the maximum is less than:

c̄3 − ā3 = k(3
2f2 − 2f1) + 2f1 − 3f2 − 2bf2 −

4

k + 1
(1 + b)

and we find that:

c̄3 − ā3 < (3
2f2 − 2f1) + 2f1 − 3f2 − 2bf2 = b(3f1 − 2f2) < 0.

11.A.4 Case 2.4

We again investigate the real and complex case separately:

11.A.4.1 The real case: f2
2 + 4f1 ≥ 0

From the system equations (9.15), we have

y1(ki + 1) = y1(ki−1 + k + 1) = y1 + (k + 1)y2 + e2.

where e2 = f2 + k(f1 − f2)− f1
2 k(k− 1) and, for ease of presentation, we denote y1(ki−1) = y1 and

y2(ki−1) = y2. Since y1(ki + 1) ≥ 1, we get

y2 ≥ 1
k+1(1− y1 − e2). (11.42)
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As noted before, if σ(y1) stays at 1 for two consecutive time instants, our Lyapunov candidate

actually have a constant decay, which is given in (11.11). Therefore, we obtain:

Vki − Vki−1
= Vki−1+1 − Vki−1

+ (k − 1)[(2b− 1)f1 + 2f2]

= −4y1 − 4(1 + b)y2 − (1 + 2b)f1 − 2f2 + (k − 1)[(2b− 1)f1 + 2f2].

Since b > −1, the term −4(1 + b)y2 is maximal for minimal y2, i.e. (11.42), thus, we get:

Vki − Vki−1
≤ [−4 + 4(1 + b) 1

k+1 ]y1 − 4(1 + b) 1
k+1(1− c)

− (1 + 2b)f1 − 2f2 + (k − 1)[(2b− 1)f1 + 2f2].

Since b < 0, we have that −4+4(1+ b) 1
k+1 < 0 for all k ≥ 2 and hence the upper bound is maximal

for minimal y1, i.e., y1 = 1. With some algebra, we get

Vki − Vki−1
≤ ā4k + b̄4 + c̄4

1
k+1 , (11.43)

where

ā4 = 2f2 − 3f1,

b̄4 = −4 + 4(b+ 2)(f1 − f2),

c̄4 = 8(1 + b)(f2 − f1).

This is equal to the upper bound found in (11.41) and it can be verified that, in the real case, this

bound is negative provided f1 ≥ −1.6.

11.A.4.2 The complex case: f2
2 + 4f1 ≤ 0

We get the same expressions as in the proof for the real case f2
2 + 4f1 ≥ 0 resulting in (11.43).

This is equal to the upper bound found in (11.41) and it can be verified that, in the complex case,

this bound is negative provided f1 ≥ −1.6.
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11.B Proof of Theorem 11.2 in case f1 < −1.6

In this appendix, we will establish that (11.13) is satisfied. For simplicity we denote y1(ki−1)

and y2(ki−1) by y1 and y2 respectively while y1(ki) and y2(ki) are denoted by ỹ1 and ỹ2 respectively.

We will prove that Lyapunov candidate will decay for the following cases depending on whether

y1, ỹ1, and y1(ki+1) is saturated or not.

• Case 3.1: |y1| ≥ 1 and |ỹ1| ≤ 1,

• Case 3.2: |y1| ≤ 1 and |ỹ1| ≤ 1,

• Case 3.3: |y1| ≥ 1, |ỹ1| ≥ 1 and |y1(ki+1)| ≥ 1.

• Case 3.4: |y1| ≥ 1, |ỹ1| ≥ 1 and |y1(ki+1)| ≤ 1.

• Case 3.5: |y1| ≤ 1, |ỹ1| ≥ 1 and |y1(ki+1)| ≥ 1.

• Case 3.6: |y1| ≤ 1, |ỹ1| ≥ 1 and |y1(ki+1)| ≤ 1.

For Case 3.1 and 3.2 we can establish that (11.12) is satisfied using the arguments in Subsections

11.A.1 and 11.A.2. This immediately implies (11.13). However, we still need to address the last

four cases.

However, in the last four cases, where f1 < −1.6, the problem we have is that the Lyapunov

candidate given in (11.9) increases during the interval [ki−1, ki], for some initial conditions y1 and

y2, i.e.

Vki − Vki−1
= −4y1 − 4(1 + b)y2 − (1 + 2b)f1 − 2f2 + (k − 1)[(2b− 1)f1 + 2f2] > 0 (11.44)
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when y1 = y1(ki−1) > 1 or

Vki − Vki−1
= −2(1 + bf1 + f2)y1 − 2(1 + b)(1 + y1)y2 − 1− (f1 + 1)y2

1

+ (k − 1)[(2b− 1)f1 + 2f2] > 0 (11.45)

when y1 = y1(ki−1) ∈ [−1, 1], where k = ki − ki−1. We will show that if (11.44) or (11.45) is

positive then V (ki+1) − V (ki−1) < 0. We proceed to show this all the last four cases and we will

use the notation that ` = ki+1 − ki.

11.B.1 Case 3.3

Due to the symmetry, we only need to consider the case where y1(ki) ≤ −1 (or equivalently

y1(ki−1) ≥ 1), and then σ(y1) switches from +1 to −1, and stays at −1 for k steps, after which it

switches to +1 and stays at +1 for ` steps, and finally y1(ki+1 + 1) ≤ −1. Clearly for this case, we

need k ≥ 2, and ` ≥ 2.

We obtain

Vki+1
− Vki = 4y1(ki) + 4(1 + b)y2(ki)− (1 + 2b)f1 − 2f2 + (`− 1)[(2b− 1)f1 + 2f2]. (11.46)

Combining (11.44) and (11.46), we get

Vki+1
− Vki−1

= 4[ky2 + e1]− 4(1 + b)(k − 2)f1 − 2(1 + 2b)f1 − 4f2

+ (k + `− 2)[(2b− 1)f1 + 2f2]. (11.47)

where e1 is defined in (11.15). We need to show that Vki+1
− Vki−1

< 0 given (11.44) and the
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following constraints on y1 and y2:

y1(ki−1) = y1 ≥ 1 (11.48)

y1(ki−1 + 1) = y1 + y2 + f2 ≤ −1 (11.49)

...
...

y1(ki) = y1 + ky2 + e1 ≤ −1 (11.50)

y1(ki + 1) = y1 + (k + 1)y2 + e5 ≥ 1 (11.51)

...
...

y1(ki+1) = y1 + (k + `)y2 + e1 + e6 − (k − 2)`f1 ≥ 1 (11.52)

y1(ki+1 + 1) = y1 + (k + `+ 1)y2 + e1 + e7 − (k − 1)(`+ 1)f1 ≤ −1 (11.53)

where k = ki − ki−1 and ` = ki+1 − ki and

e5 = f2 + k(f1 − f2)− f1
2 k(k − 1),

e6 = −f2 − (`− 1)(f1 − f2) + f1
2 (`− 1)(`− 2), (11.54)

e7 = −f2 − `(f1 − f2) + f1
2 `(`− 1),

We first note that if k = 2 we get

y1(ki−1) = y1 ≥ 1, y1(ki + 2) = y1 + 4y2 ≥ 1

and then

−1 ≥ y1(ki) = y1 + 2y2 + f1 > 1 + f1,

which yields a contradiction with f1 > −2. Therefore we have k ≥ 3. We claim that ` ≥ k − 4.

335



Since ` ≥ 2 we only need to prove this property for k ≥ 6. We have:

y1(ki + j) = y1 + (k + j)y2 + (k − j)(f1 − f2)− f1
2 (k − 1)(k − 2) + f1

2 (j − 1)(j − 2)

− (k − 2)jf1

= k+j−1
k (y1 + (k + 1)y2)− j−1

k (y1 + y2) + (k − j)(f1 − f2)

− f1
2 (k − 1)(k − 2) + f1

2 (j − 1)(j − 2)− (k − 2)jf1.

Using the inequalities (11.49) and (11.51) in the above we get:

y1(ki + j) ≥ k+j−1
k (1− e5) + j−1

k (1 + f2) + (k − j)(f1 − f2)− f1
2 (k − 1)(k − 2)

+ f1
2 (j − 1)(j − 2)− (k − 2)jf1

= k+2j−2
k − f2 − (2j − 1)(f1 − f2) + 1

2f1k + 1
2f1j

2 − 1
2f1kj + 1

2f1.

Note that this lower bound is a concave function in j. Therefore, if this larger bound is larger than

or equal to 1 for j = 1 and j = k − 4 then it is larger than for all j satisfying 1 ≤ j ≤ k − 4 and

this implies that ` ≥ k − 4. For j = 1 the lower bound is actually equal to 1, while for j = k − 4

we find:

y1(ki + k − 4) ≥ 3k−10
k + (k − 5)(2f2 − 7

2f1).

For f1 < −1.6, we have 2f2 − 7
2f1 > 0 and hence this expression is increasing in k. The minimum

is achieved for k = 6 and we get

y1(ki + k − 4) ≥ 4
3 + 2f2 − 7

2f1,

which is larger than 1 in the critical region. This completes the proof that ` ≥ k − 4.

Using (11.48) and (11.50) in (11.47) we get:

Vki+1
− Vki−1

≤ −8− 4(1 + b)(k − 2)f1 − 2(1 + 2b)f1 − 4f2

+ (k + `− 2)[(2b− 1)f1 + 2f2].
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If we use ` ≥ k we get:

Vki+1
− Vki−1

≤ −8− 4(1 + b)(k − 2)f1 − 2(1 + 2b)f1 − 4f2

+ (2k − 2)[(2b− 1)f1 + 2f2]

= −8 + 8f1 − 8f2 + k(−6f1 + 4f2)

< −8− 4f1

< 0

for k ≥ 2. Therefore, it only remains h = k − ` ∈ {1, 2, 3, 4}. Inequality (11.53) combined with

inequality (11.48) yields:

(k + `+ 1)y2 ≤ −2 + (k − 1)(`+ 1)f1 − (e1 + e7)

and working this out using the definitions of e1 and e7 we get:

(2k − h+ 1)y2 ≤ −2 +
[
k2 − k + 1− 1

2h(h+ 1)
]
f1 + (h− 1)f2.

Using this bound in (11.47) we get:

Vki+1
− Vki−1

≤ −2k2f1 + 4kf1 + hf1 − 2hf2 − 2hbf1

+ 4k
2k−h+1

[
−2 +

[
k2 − k + 1− 1

2h(h+ 1)
]
f1 + (h− 1)f2

]
.

Rewriting this equation we obtain:

Vki+1
− Vki−1

≤ −4 + 2kf1 + (2− h2)f1 − 2f2 − 2hbf1

+ 2h−2
2k−h+1

[
−2 +

[
k2 − k + 1− 1

2h(h+ 1)
]
f1 + (h− 1)f2

]
.

It is easily verified that this upper bound is negative in the specified region for h = 1. For

h = {2, 3, 4} we want to show this upper bound is decreasing in k and therefore we differentiate
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the upper bound with respect to k. This results in:

2(h− 1)

(2k − h+ 1)2

[(
4

h−1 + 2
)
k2f1 − (2 + 2h)kf1 + 4 + (2− 2h)f2 + (h2 + 3h− 4)f1

]
.

This is clearly negative provided that

(
4

h−1 + 2
)
k2f1 − (2 + 2h)kf1 + 4 + (2− 2h)f2 + (h2 + 3h− 4)f1 (11.55)

is negative. This is a simple quadratic function in k which achieves its maximum for k = (h−1)/2 <

3. In our case, we know k = `+ h ≥ 2 + h. Using that in (11.55) we get:

4− 2(h− 1)f2 +

[
(h+ 4)(h+ 5) +

36

h− 1

]
f1,

which is easily checked to be negative in the specified region for h = 2, 3, 4. This proves that our

upper bound for Vki+1
− Vki−1

is decreasing in k and hence we only need to verify the worst case

when k = h+ 2. In that case, we find

Vki+1
− Vki−1

≤ 1

h+ 5

[
−8h− 16 + (h2 + 17h+ 24)f1 + (2h2 − 6h− 8)f2 − 2(h2 + 5h)f1b

]
.

It is then straightforward to verify that for the three remaining cases h = 2, 3, 4 we have that

Vki+1
− Vki−1

is negative. This completes the proof.

11.B.2 Case 3.4

Again, due to the symmetry, we only need to consider the case where y1(ki) ≤ −1 (or equiva-

lently y1(ki−1) ≥ 1), and then σ(y1) switches from +1 to −1 and stays at −1 for k steps, then it

switches to +1 and stays at +1 for `− 1 steps, and finally y1(ki+1) ∈ [−1, 1]. Clearly for this case,

we need k ≥ 2, and ` ≥ 1.

The arguments used in the case where y1(ki−1) and y1(ki+1) are both saturated immediately

imply that we have ` ≥ k − 3 for k ≥ 4. Note that ` = k − 4 is in our case not possible since in
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the earlier argument it was shown that y1(ki + k− 4) > 1 while we currently consider the case that

y1(ki+1) is unsaturated. We claim that we also have that ` ≤ k. We first note that the bounds

(11.48)-(11.51) are still valid when y(ki+1) is unsaturated. However (11.52) and (11.53) no longer

hold and instead we have:

y1(ki+1 − 1) = y1 + (k + `− 1)y2 + e1 + e8 − (k − 2)(`− 1)f1 ≥ 1

y1(ki+1) = y1 + (k + `)y2 + e1 + e6 − (k − 2)`f1 ≥ −1 (11.56)

y1(ki+1) = y1 + (k + `)y2 + e1 + e6 − (k − 2)`f1 ≤ 1 (11.57)

where

e8 = −f2 − (`− 2)(f1 − f2) + f1
2 (`− 2)(`− 3).

Now if we assume that ` > k then we have:

y1(ki) = y1 + ky2 + e1 ≤ −1 (11.58)

y1(ki + k) = y1 + 2ky2 − (k − 2)kf1 ≥ 1 (11.59)

together with (11.48). We obtain from (11.59) that:

ky2 ≥ 1
2(1− y1 + (k − 2)kf1).

Using this combined with (11.48) in (11.58) we get that

1 + 1
2(k − 2)kf1 + e1 ≤ −1,

which yields that

f1 + 1
2(k − 2)(3f1 − 2f2) ≤ −2.

We obtain a contradiction since k ≥ 2, f1 > −2 and 3f1 − 2f2 > 0 and hence we must have that
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` ≤ k. We obtain

Vki+1
− Vki = (y1(ki) + `y2(ki) + e6)2 + 2b(y1(ki) + `y2(ki) + e6)[y2(ki) + (`− 2)f1]

− 2(`− 2)y2(ki)− (`− 2)2f1 + 2y1(ki) + 1 + 2by2(ki),

which yields:

Vki+1
− Vki−1

= {y1 + ky2 + e1 + `[y2 − (k − 2)f1] + e6}2

+ 2b {y1 + ky2 + e1 + `[y2 − (k − 2)f1] + e6} [y2 + (`− k)f1]

− 2(`− 2)[y2 − (k − 2)f1]− (`− 2)2f1

+ 2[y1 + ky2 + e1] + 1 + 2b[y2 − (k − 2)f1]

− 4y1 − 4(1 + b)y2 − (1 + 2b)f1 − 2f2 + (k − 1)[(2b− 1)f1 + 2f2]. (11.60)

We will show that Vki+1
−Vki−1

< 0 for all y1 and y2 satisfying (11.48), (11.56) and (11.57). By

ignoring some of the constraints we actually prove that Vki+1
− Vki−1

< 0 for a larger class of y1

and y2.

Note that the coefficient of y2
2 term in (11.60) is (k + `)2 + 2b(k + `) which is positive since

b > −1 and k + ` ≥ 3. Thus, Vki+1
− Vki−1

is maximal as a function of y2 if y2 takes a boundary

value. Recall that we ignore all contraints on y1 and y2 except (11.48), (11.56) and (11.57). Hence

a boundary value for y2 implies that either (11.56) or (11.57) is an equality.

In case (11.56) is an equality we get:

(2k − h)y2 = −1 + (−1
2h

2 − 1
2h+ k2 − 2k)f1 + hf2 − y1,

where ` = k − h with h ∈ {0, 1, 2, 3}. This yields:

Vki+1
− Vki−1

= 2− 2y1 +
2h− 4b

2k − h
[
−1 + (−1

2h
2 − 1

2h+ k2 − 2k)f1 + hf2 − y1

]
+ 2hbf1 − h2f1.
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We note that this expression is linear in y1 with a negative coefficient and hence it is maximal for

y1 = 1 given (11.48). We obtain:

Vki+1
− Vki−1

≤ 2h− 4b

2k − h
[
−2 + (−1

2h
2 − 1

2h+ k2 − 2k)f1 + hf2

]
− (h− 2b)if1

≤ h− 2b

2k − h
[
−4 + (2k2 − 2(2 + h)k − h)f1 + 2hf2

]
.

The sign of the above upper bound is determined by the sign of

−4 + (2k2 − 2(2 + h)k − h)f1 + 2hf2.

This expression is decreasing in k given that k ≥ 2 and k ≥ h + 1 and hence the maximum is

obtained for k = max{2, h+ 1} and it is then easily verified that this expression is negative in the

region of interest for h ∈ {0, 1, 2, 3} which establishes that

Vki+1
− Vki−1

< 0 (11.61)

if (11.56) is an equality. The only other possible alternative was that (11.57) is an equality. In that

case we obtain:

(2k − h)y2 = 1 + (−1
2h

2 − 1
2h+ k2 − 2k)f1 + hf2 − y1,

where ` = k − h with h ∈ {0, 1, 2, 3}. This yields:

Vki+1
− Vki−1

= 2− 2y1 +
2h

2k − h
[
1 + (−1

2h
2 − 1

2h+ k2 − 2k)f1 + hf2 − y1

]
− 2hbf1 − h2f1.

We note that this expression is linear in y1 with a negative coefficient and hence it is maximal for

y1 = 1 given (11.48). We obtain:

Vki+1
− Vki−1

≤ 2h

2k − h
[
(−1

2h
2 − 1

2h+ k2 − 2k)f1 + hf2

]
− 2hbf1 − h2f1

≤ h

2k − h
[
(2k2 − 2(2b+ h+ 2)k + (2b− 1)h)f1 + 2hf2

]
. (11.62)
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For h = 0 this establishes that

Vki+1
− Vki−1

≤ 0. (11.63)

An equality would imply y1 = 1 and 2y2 = (k − 2)f1 in which case we obtain that:

y1(ki) = 2(f2 − f1 + 1)− 1 + k
2 (3f1 − 2f2) ≥ f1 + 1 > −1,

where in the first inequality we used that 3f1−2f2 > 0 and k ≥ 2. This yields a contradiction with

(11.50) and hence we must have a strict inequality in (11.63) for h = 0.

The sign of the upper bound in (11.62) for h ∈ {1, 2, 3} is determined by the sign of

(2k2 − 2(2b+ h+ 2)k + (2b− 1)h)f1 + 2hf2.

This expression is decreasing in k given that k ≥ 2 and k ≥ h + 1 and hence the maximum is

obtained for k = h+ 1 and it is then easily verified that for h ∈ {1, 2, 3} the choice k = h+ 1 yields

2f2 − (5 + 6b)f1, 4f2 − (8 + 8b)f1 and 6f2 − (11 + 10b)f1 respectively which are all negative in the

area of interest. This establishes that

Vki+1
− Vki−1

< 0

which completes the proof.
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11.B.3 Case 3.5

Clearly in this case, we have k ≥ 2 and ` ≥ 2. The following constraints are satisfied.

y1(ki−1) = y1 ∈ (−1, 1) (11.64)

y1(ki−1 + 1) = (1 + f2)y1 + y2 ≤ −1 (11.65)

...
...

y1(ki) = d4y1 + ky2 + e4 ≤ −1 (11.66)

y1(ki + 1) = (d4 + f1)y1 + (k + 1)y2 + e4 − (k − 1)f1 − f2 ≥ 1 (11.67)

...
...

y1(ki+1) = y1(ki) + `y2(ki) + e6 ≥ 1 (11.68)

y2(ki+1) = y2(ki) + (`− 2)f1 (11.69)

y1(ki+1 + 1) = y1(ki) + `y2(ki) + e6 + y2(ki) + (`− 2)f1 − f2 ≤ −1 (11.70)

Notice that y1(ki) and y2(ki) are given in equation (11.20) and (11.21) respectively, d4 and e4 are

defined in (11.22) and (11.23), while e6 is defined in (11.54).

We will show that ` satisfies k − 4 ≤ ` < k. We first establish that ` ≥ k − 4. Since ` ≥ 2, we

only need to show this property for k ≥ 6.

Using (11.67) to obtain a lower bound for y2, we get

y1(ki + j) = y1(ki) + jy2(ki)− f2 − (j − 1)(f1 − f2) + f1
2 (j − 1)(j − 2)

≥ (f1−f2−1)(j−1)
k+1 y1 + (k + j)

(
f1−f2+1
k+1 + f2 − f1 + f1

2 k
)

+ e4 − j(k − 1)f1 − f2

− (j − 1)(f1 − f2) + f1
2 (j − 1)(j − 2).

Note that this lower bound is concave function in j. Therefore, if this lower bound is larger than
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or equal to 1 for j = 1 and j = k − 4, then it is larger than 1 for all j satisfying 1 ≤ j ≤ k − 4 and

this implies that ` ≥ k − 4. For j = 1, the lower bound is actually equal to 1, while for j = k − 4,

we find using that y1 ∈ (−1, 1) that:

y1(ki + j) ≥ −
∣∣∣ (f1−f2−1)(k−5)

k+1

∣∣∣+ 2k−4
k+1 (f1 − f2 + 1)− f1(4k − 19) + f2(2k − 9).

If f1 − f2 − 1 > 0 we get:

y1(ki + j) ≥ 2(f2 − 2f1)k + 20f1 − 10f2 + 3− 12
k+1

≥ 2(f2 − 2f1) + 9
7 > 1,

where we have used that f2 > 2f1 and that k ≥ 6. On the other hand, if f1 − f2 − 1 < 0 we get:

y1(ki + j) ≥ 2(f2 − 2f1)k + 22f1 − 12f2 + 1− 12(f1−f2)
k+1

≥ 12
7 (f2 − 2f1)− 2

7f1 + 1 > 1,

where we have used that 2f1 < f2 < f1 and that k ≥ 6. Next, we establish that ` ≤ k. We show

this by contradiction. Assume that ` ≥ k, then we have

y1(ki + k) = y1(ki) + ky2(ki)− f2 − (k − 1)(f1 − f2) + f1
2 (k − 1)(k − 2) ≥ 1.

Using this we obtain that:

2ky2 ≥ 1− (d4 + kf1)y1 − e4 + k(k − 1)f1 + f2 + (k − 1)(f1 − f2)− f1
2 (k − 1)(k − 2).

Applying this lower bound in (11.66) we get that

(1 + f2 − f1)y1 + 3(f2 − f1) + 1− k(2f2 − 3f1) ≤ −2. (11.71)

Now, let us show that from the above equation, we obtain a contradiction. Let us first consider the

case 1 + f2 − f1 < 0. Since y1 ≤ 1, we obtain that

(1 + f2 − f1)y1 + 3(f2 − f1) + 1− k(2f2 − 3f1) ≥ 2(f1 + 1) + (k − 2)(3f1 − 2f2) > −2,
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where we used that k ≥ 2, f1 > −2 and 3f1 − 2f2 > 0 and we obtain a contradiction with (11.71).

Next let us consider the case 1 + f2 − f1 > 0. Using that y1 ≥ −1, we obtain that

(1 + f2 − f1)y1 + 3(f2 − f1) + 1− k(2f2 − 3f1) ≥ f1 + (k − 1)(3f1 − 2f2) > −2

because k ≥ 2, f1 > −2 and 3f1 − 2f2 > 0 and we again obtain a contradiction with (11.71).

Therefore we can conclude that ` < k.

Returning to our Lyapunov function, we note that, for this case, we have

Vki+1
− Vki = 2[y1(ki) + `y2(ki) + e6] + 2b[y2(ki) + (`− 2)f1]

− 2(`− 2)y2(ki)− (`− 2)2f1 + 2y1(ki) + 2by2(ki).

Therefore, together with equation (11.45), we have

Vki+1
− Vki−1

= 2[y1(ki) + `y2(ki) + e6] + 2b[y2(ki) + (`− 2)f1]− 2(`− 2)y2(ki)

− (`− 2)2f1 + 2y1(ki) + 2by2(ki)− 2(1 + bf1 + f2)y1

− 2(1 + b)(1 + y1)y2 − 1− (f1 + 1)y2
1 + (k − 1)[(2b− 1)f1 + 2f2].

Note that the coefficient of y2 term is

2(k + `) + 2b− 2(`− 2) + 2k + 2b− 2(1 + b)(1 + y1) = 4k + 2(1 + b)(1− y1) > 0,

where we have used that b > −1 and y1 < 1. Therefore, Vki+1
−Vki−1

is maximal for maximal value

of y2.

For the upper bound for y2 we use (11.70) while ignore all other constraints except for y1 ∈

[−1, 1]. We note that (11.70) implies that:

y2 ≤ −f1y1 + 1
2(2k−h+1)

[
−2(1 + f2 − f1)y1 − 2 + (2k2 − h− h2)f1 + (4 + 2h)f2

]
,

where h = k − ` ∈ {1, 2, 3, 4}.
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Since we know Vki+1
− Vki−1

is maximal for maximal value of y2 we can replace y2 by its upper

bound to obtain:

Vki+1
− Vki−1

≤ a5y
2
1 + b5y1 + c5, (11.72)

where

a5 = (1 + 2b)f1 − 1 + 2
2k−h+1(b+ 1)(1 + f2 − f1),

b5 = 2(h−1)
2k−h+1(f1 − f2 − 1) + 1+b

2k−h+1

[
2(f1 − f2)− (2k2 − h− h2)f1 − (4 + 2h)f2

]
,

c5 = f1[1− 2b(h+ 1)− h2] + 2f2 − 3 + b+h
2k−h+1 [−2 + (2k2 − h− h2)f1 + (4 + 2h)f2].

We first note that a5 is equal to ā defined in (11.30) witb k replaced by 2k − h+ 1 ≥ 3. Therefore

the earlier argument also implies that a5 < 0. The upper bound (11.72) is a quadratic function in

y1. We will show that 2a5 + b5 > 0. This implies that the upper bound given y1 ∈ [−1, 1] takes it

maximum for y1 = 1. On the other hand, we have already shown that Vki+1
− Vki−1

only subject

to y1(ki+1 + 1) ≤ −1 and y1 ≥ 1 is negative in Appendix 11.B.1. It remains to establish that

2a5 + b5 > 0. We have:

2a5 + b5 = 1
2k−h+1

[
−2(1 + b)f1(k − 1)2 + 4(bf1 − 1)k

+ f1

(
(1 + b)(h2 − 3h+ 4) + 4(h− 1)

)
− f2

(
2(1 + b)(1 + h)− 2(1− h)

)
+ 4(1 + b)

]
.

Clearly the factor 1/(2k − h+ 1) is irrelevant for the sign of 2a5 + b5. Remains to establish that:

− 2(1 + b)f1(k − 1)2 + 4(bf1 − 1)k + f1

(
(1 + b)(h2 − 3h+ 4) + 4(h− 1)

)
− f2

(
2(1 + b)(1 + h)− 2(1− h)

)
+ 4(1 + b) > 0. (11.73)

We note that k = h+ ` ≥ h+ 2. By taking the derivative of (11.73) with respect to k, we obtain:

−4(1 + b)f1(k − 1) + 4(bf1 − 1) > 0
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since 1 + b > 0, f1 < 0, k > 1, and

bf1 − 1 > −3
4f1 − 1 = −3

4(f1 + 4
3) > 0,

where we have used that b ≥ −3
4 and f1 < −1.6 in the region of interest. This implies that (11.73)

is minimal for the smallest possible k, i.e. k = h+ 2. Setting k = h+ 2 in (11.73) we get:

f1

(
(1 + b)(−h2 − 3h+ 10)− 12

)
− f2

(
2(1 + b)(1 + h)− 2(1− h)

)
− 4h− 8 + 4(1 + b) > 0

Next, we note that the derivative with respect to h equals

−3f1(1 + b)− 2(f2 + 2)− 2hf1(1 + b)− 2(1 + b)f2 > 0,

where we have used that f1 < 0, f2 < −2, 1+b > 0, and h > 0. Therefore the expression is minimal

for h = 1 and we obtain:

6(b− 1)f1 − 4(1 + b)f2 + 4(b− 2),

which is positive in the region of interest. Therefore, we conclude that b5 + 2a5 > 0. As noted

before this yields that Vki+1
− Vki−1

is negative and the proof is complete.
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11.B.4 Case 3.6

Clearly in this case, we have k ≥ 2 and ` ≥ 1. The following constraints are satisfied.

y1(ki−1) = y1 ∈ [−1, 1] (11.74)

y1(ki−1 + 1) = (1 + f2)y1 + y2 ≤ −1 (11.75)

...
...

y1(ki) = d4y1 + ky2 + e4 ≤ −1 (11.76)

y1(ki + 1) = (d4 + f1)y1 + (k + 1)y2 + e4 − (k − 1)f1 − f2 ≥ 1 (11.77)

...
...

y1(ki+1) = y1(ki) + `y2(ki) + e6 ≥ −1 (11.78)

y1(ki+1) = y1(ki) + `y2(ki) + e6 ≤ 1 (11.79)

Notice that y1(ki) and y2(ki) are given in equation (11.20) and (11.21) respectively, d4 and e4 are

defined in (11.22) and (11.23), while e6 is defined in (11.54). Finally

y2(ki+1) = y2(ki) + (`− 2)f1

The argument used in the case where y1(ki−1) is unsaturated and y1(ki+1) is saturated immediately

imply that we have ` ≥ k − 3 for k ≥ 4, and ` ≤ k. We will show that

Vki+1
− Vki−1

< 0.

Let us define

ŷ1 = y1(ki+1) = (d4 + `f1)y1 + (k + `)y2 + e4 + e6 − `(k − 1)f1,

ŷ2 = y2(ki+1) = f1y1 + y2 + (`− k − 1)f1. (11.80)
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Then, we have

Vki+1
− Vki = ŷ2

1 + 2bŷ1ŷ2 − 1
f1
ŷ2

2 + 2y1(ki) + 1 + 2by2(ki) + 1
f1
y2

2(ki).

Combining this with equation (11.45) and eliminating y1(ki) and y2(ki) by using equation (11.20)

and (11.21) and eliminating ŷ2 using (11.80) we obtain:

Vki+1
− Vki−1

= ŷ2
1 + 2bŷ1 [f1y1 + y2 + (`− k − 1)f1]− (`− 2)2f1

− 2(`− 2) [f1y1 + y2 − (k − 1)f1] + 2(d4y1 + ky2 + e4)− 2(b+ 1)y1y2

− 2(1 + f2)y1 − 2y2 − (f1 + 1)y2
1 + (k − 1) [2f2 − f1] .

Let us write this expression in terms of y1 and ŷ1 by eliminating y2 using that:

(k + `)y2 = ŷ1 − (d4 + `f1)y1 + `(k − 1)f1 − e4 − e6

We get:

Vki+1
− Vki−1

= ŷ2
1 + 2bŷ1 [f1y1 + (`− k − 1)f1]− (`− 2)2f1 + 2(d4y1 + e4)− (f1 + 1)y2

1

− 2(`− 2)f1 [y1 − (k − 1)]− 2(1 + f2)y1 + (k − 1) [2f2 − f1]

+ 1
k+` [2bŷ1 + 2(k − `+ 1)− 2(1 + b)y1] [ŷ1 − (d4 + `f1)y1 + `(k − 1)f1 − e4 − e6] . (11.81)

Our objective is now to prove that this expression is always negative. We only consider the con-

straints (11.74), (11.78) and (11.79), that is,

−1 ≤ y1 ≤ 1, −1 ≤ ŷ1 ≤ 1. (11.82)

while we ignore all other constraints. Note that the coefficient of the term ŷ2
1 is equal to

1 + 2b
k+` ,
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which is positive for k+ ` ≥ 2 and b > −1. Therfore, we know (11.81) is maximal at the boundary

of ŷ1, that is, either ŷ1 = −1 or ŷ1 = 1. Define h = k − ` = {0, 1, 2, 3}.

Let us first consider the boundary ŷ1 = −1. We obtain that

Vki+1
− Vki−1

= 1 + 2b(h+ 1)f1 − (h+ 1)2f1 + [(1 + 2b)f1 − 1] y2
1

− 1
2k−h [(1 + b)(y1 + 1)− (h+ 2)]×

[
−2− 2(1 + f2 − f1)y1 + 2f2(h+ 1) + f1(2k2 − h2 − 3h− 2)

]
. (11.83)

Note that the coefficient of the term y2
1 is

a6 = (1 + 2b)f1 − 1 + 2
2k−h(b+ 1)(1 + f2 − f1),

which is negative as it is the same as ā given in (11.30), with k replaced by k+ `. Let us now derive

the coefficient of the term y1:

b6 = −2(1+f2−f1)
2k−h (h+ 2)− 1+b

2k−h
[
h(2f2 − 3f1) + f1(2k2 − h2)− 4

]
.

We will show that 2a6+b6 > 0. This implies that the upper bound given the constraints (11.82) takes

it maximum for y1 = 1 and ŷ1 = −1. On the other hand, we have already shown that Vki+1
−Vki−1

only subject to y1(ki+1) ∈ [−1, 1] and y1 ≥ 1 is negative in Appendix 11.B.2. Therefore, we have

b6 + 2a6 = 1
2k−h [−2(1 + f2 − f1)(h+ 2)− (1 + b)[h(2f2 − 3f1) + f1(2k2 − h2)− 4]

+ 2(2b+ 1)f1(2k − h)− 2(2k − h) + 4(1 + b)(1 + f2 − f1)].

Note that the term 1
2k−h does not affect the sign of b6 + 2a6. Therefore, to show b6 + 2a6 > 0 is

equivalent to show that

− 2(1 + f2 − f1)(h+ 2)− (1 + b)[h(2f2 − 3f1) + f1(2k2 − h2)− 4]

+ 2(2b+ 1)f1(2k − h)− 2(2k − h) + 4(1 + b)(1 + f2 − f1) > 0. (11.84)
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We first show that the left-hand side of the above inequality is increasing in k and therefore we

differentiate the left-hand side with respect to k.This results in:

−4(1 + b)f1(k − 1) + 4(bf1 − 1),

which is positive since 1 + b > 0, f1 < 0, k > 1, and bf1− 1 > 0. Thus, the left-hand side of (11.84)

achieves its minimum for

k = 1 + bf1−1
(1+b)f1

< 1,

where we have used that 1+b > 0, f1 < 0 and bf1−1 > 0. In our case, we know that k = `+h ≥ h+1

and k ≥ 2. Therefore, we have k ≥ max {2, h+ 1}. Thus, the left-hand side of (11.84) achieves its

minimal for k = 2 when h = 0, while for h = 1, 2, 3, it achieves it minimal when k = h+ 1.

For the case where k = 2 and h = 0, the left-hand side of (11.84) is

4bf2 + 4bf1 + 4(2b− 1) = 4b(f2 + 2) + 4(bf1 − 1) > 0,

where we have used that b < 0, f2 < −2, and bf1 − 1 > 0.

For the case where k = h+ 1 and h = 1, 2, 3. Using k = h+ 1 in the left-hand sider of (11.84)

yields

− 2(1 + f2 − f1)(h+ 2)− (1 + b)[h(2f2 − 3f1) + f1(h2 + 4h+ 2)− 4]

+ 2(2b+ 1)f1(h+ 2)− 2(h+ 2) + 4(1 + b)(1 + f2 − f1). (11.85)

We first show that this is increasing in h and therefore we differentiate with respect to h. This

results in:

−4 + 3(1 + b)f1 − 2(b+ 2)f2 − 2(1 + b)f1h > (1 + b)(3f1 − 2f2)− 2(f2 + 2) > 0,

where for the first inequality we have used that 1 + b > 0, f1 < 0, and h > 0, while for the second

inequality we have used that 1 + b > 0, 3f1 − 2f2 > 0 and f2 < −2. Therefore, (11.85) is minimal
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for minimal value of h, that is h = 1. When h = 1, we have

−4(1− 2b) + 4(1 + b)f1 + 2(b− 2)f2

which is positive in the region of interest. Therefore, we conclude that b6 + 2a6 > 0, which as

argued before implies that Vki+1
− Vki−1

< 0.

The only other possible alternative is that ŷ1 = 1. In that case, we obtain that

Vki+1
− Vki−1

= 1− 2b(h+ 1)f1 − (h+ 1)2f1 + [(1 + 2b)f1 − 1] y2
1

+ 1
2k−h [(1 + b)(1− y1) + h]×

[
2− 2(1 + f2 − f1)y1 + 2f2(h+ 1) + f1(2k2 − h2 − 3h− 2)

]
. (11.86)

Note that the coefficient of the term y2
1 is

a7 = (1 + 2b)f1 − 1 + 2
2k−h(b+ 1)(1 + f2 − f1),

which is equal to a6, and thus, it is negative. Let us now derive the coefficient of the term y1:

b7 = 1
2k−h

[
−2(1 + f2 − f1)(h+ 2 + 2b)− (1 + b)h(2f2 − 3f1)− (1 + b)f1(2k2 − h2)

]
.

We will show that 2a7 + b7 > 0. This implies that the upper bound given the constraints (11.82)

takes it maximum for y1 = 1 and ŷ1 = 1. As argued before, we have already shown that Vki+1
−Vki−1

only subject to y1(ki+1) ∈ [−1, 1] and y1 ≥ 1 is negative in Appendix 11.B.2.

With just a little bit algebra, we obtain that

b7 + 2a7 = 1
2k−h [(2f1(1 + 2b)− 2)(2k − h)

− 2(1 + f2 − f1)h− (1 + b)h(2f2 − 3f1)− (1 + b)f1(2k2 − h2)].

Note that the term 1
2k−h does not affect the sign of b7 + 2a7. Therefore, to show b7 + 2a7 > 0 is

equivalent to show that

[2f1(1 + 2b)− 2](2k− h)− 2(1 + f2− f1)h− (1 + b)h(2f2− 3f1)− (1 + b)f1(2k2− h2) > 0. (11.87)
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We first show that the left-hand side of the above inequality is increasing in k and therefore we

differentiate the left-hand side with respect to k. This results in:

−4(1 + b)f1(k − 1) + 4(bf1 − 1),

which is positive since 1 + b > 0, f1 < 0, k > 1, and bf1− 1 > 0. Thus, the left-hand side of (11.87)

achieves its minimum for

k = 1 + bf1−1
(1+b)f1

< 1,

where we have used that 1+b > 0, f1 < 0 and bf1−1 > 0. In our case, we know that k = `+h ≥ h+1

and k ≥ 2. Therefore, we have k ≥ max {2, h+ 1}. Thus, the left-hand side of (11.84) achieves its

minimal for k = 2 when h = 0, while for h = 1, 2, 3, it achieves it minimal when k = h+ 1.

For the case where k = 2 and h = 0, the left-hand side of (11.87) is

8(bf1 − 1) > 0,

where we have used that bf1 − 1 > 0.

For the case where k = h + 1 and h = 1, 2, 3. Using k = h + 1 in the left-hand side of (11.87)

yields

[2f1(1 + 2b)− 2](h+ 2)− 2(1 + f2 − f1)h− (1 + b)h(2f2 − 3f1)− (1 + b)f1(h2 + 4h+ 2). (11.88)

We first show that this is increasing in h and therefore we differentiate with respect to h. This

results in:

−4 + 3(1 + b)f1 − 2(b+ 2)f2 − 2(1 + b)f1h > (1 + b)(3f1 − 2f2)− 2(f2 + 2) > 0,

where for the first inequality we have used that 1 + b > 0, f1 < 0, and h > 0, while for the second

inequality we have used that 1 + b > 0, 3f1 − 2f2 > 0 and f2 < −2. Therefore, (11.88) is minimal
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for minimal value of h, that is h = 1. When h = 1, we have

−8 + 4(1 + 2b)f1 − 2(b+ 2)f2,

which is positive in the region of interest. Therefore, we conclude that b7 + 2a7 > 0, , which as

argued before implies that Vki+1
− Vki−1

< 0. This completes the proof for the case when both

y1(ki−1) and y1(ki+1) unsaturated.
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