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EFFECTS OF ZN DOPING AND HIGH ENERGY BALL MILLING ON THE 

PHOTOCATALYTIC PROPERTIES OF TIO2

 

Paula C. Algarín 

 

ABSTRACT 

 TiO2 photocatalysis is been widely studied for air and water purification 

applications; titanium dioxide is the most used semiconductor principally because 

its low cost, stability and chemical properties. However it only utilizes the UV 

portion of the solar spectrum as an energy source (less than 4% of the total 

sunlight energy). This behavior is due to its high band gap value of 3.2 eV. The 

modification of light harvesting properties of TiO2 by doping has become an 

important research topic to achieve an efficient operating range under UV and 

visible light. In addition, the structure and surface properties of photocatalysts 

play an important role. 

 This thesis explores the effects of Zn doped TiO2, prepared by the sol-gel 

method, on its photocatalytic activity to decompose organics and the 

characterization of the doped samples. Since this study is part of a collaborative 

initiative, the samples were synthesized and provided by Dr. A. R. Phani from the 



 x 

Department of Physics, University of L’Aquila. Preliminary examination revealed 

a relatively low photocatalytic efficiency of the samples. The objective is to 

modify/improve its properties by high energy ball milling which is expected to 

generate accumulations of defects, particle size reduction and an increase in the 

active surface area.   

 The characterization of doped and mechanochemically treated materials 

will be analyzed by optical diffuse reflectance measurements and optical 

absorption calculations using the Kubelka-Munk approach.  The phase structure 

and particle size of the materials will be determined using X-ray diffraction (XRD). 

The BET surface area of the samples will be obtained using an Autosorb 

instrument. The photocatalytic properties will be studied by the analysis of 

decomposition of Methyl Orange in an aqueous solution. An aqueous 

photocatalytic tubular reactor with capability of operation using UV and/or 

fluorescent light will be designed and built.    
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CHAPTER 1: INTRODUCTION 

 Water pollution is one of the main problems affecting the environment due 

to waste products generated by industries and households. Detoxification and 

purification of water, to achieve drinking water quality for human use, has 

become the main focus of today’s scientific research. The main causes of 

surface and groundwater contamination are the industrial effluents (even in small 

amounts), excessive use of pesticides, fertilizers (agrochemicals) and domestic 

waste landfills. The pollution is caused mainly by non-degradable organic 

pollutants that are not treatable by conventional techniques due to their high 

chemical stability and/or low biodegradability [1]. 

 Today, one of the greatest health threats to humans is the lack of potable 

water because without it life on Earth would be non-existent. This has lead to 

research on methods to disinfect polluted water at low cost by using cheap 

sources of energy, i.e. the sun. Solar photochemical processes have been 

proposed over the years and are currently being employed to destroy toxins in 

water by decomposing organic pollutants using sun light and semiconductors.  

 Solar photochemical technology can be defined as the technology that 

efficiently collects solar photons and uses them to promote specific chemical 

reactions [2]. In other words, this technology will allow us to take advantage of 
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the energy from the sun by means of a photochemical process called 

photocatalysis [1].  

 The titanium dioxide (TiO2) photocatalyst is being widely studied for air 

and water purification applications and has emerged as an excellent 

photocatalytic material for environmental purification because of its high stability, 

low cost, non toxicity, high oxidation potential and chemically favorable 

properties. [3]. However it only utilizes the UV portion of the solar spectrum as an 

energy source (less than 4% of the total sunlight energy). This behavior is due to 

its high band gap value of 3.2 eV. The modification of light harvesting properties 

of TiO2 by doping has become an important research topic to achieve an efficient 

operation range under UV and visible light. In addition, structural and surface 

properties of photocatalysts play an important role. 

 This thesis explores the effects of Zn doped TiO2 by prepared by the sol-

gel method on its photocatalytic activity to decompose organics and the 

characterization of the doped samples. The objective is to modify/improve their 

properties by high energy ball milling which is expected to generate 

accumulations of defects, particle size reduction and an increase in the active 

surface area.   
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CHAPTER 2: TITANIUM DIOXIDE 

 Titanium dioxide (TiO2) is a wide-band gap semiconductor used in solar 

and chemical processes that has emerged as an excellent material for 

environmental purification [3, 4]. Titanium dioxide is an n-type semiconductor 

with electrons as the majority carriers and exists in three different polymorphic 

phases: anatase, rutile, and brookite.   Anatase and rutile are the most common 

polymorphs that crystallize in a tetragonal lattice and their structure is described 

in chains of TiO6 octahedra with different physical and chemical behavior [5, 6].   

 TiO2 is non-toxic, chemically stable and low cost material that has a 

positive impact on the environment [4]. It has attracted more attention in 

environmental studies and applications due to its applicability to the treatment of 

pollutants and waste using photocatalysis. The term photocatalysis can be 

explained simply as a reaction where “light and a substance (the catalyst, in this 

case TiO2) are necessary entities to influence a reaction” [7]. This definition will 

be explained further in the next chapter.  

 When TiO2 is irradiated with light (photons), the chemical result can be 

applied to chemical processes to create or degrade specific compounds [4]. 

Investigations have concluded that the anatase particles with a large surface 

area are very efficient for the decomposition of pollutants in air and water [8]. 
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2.1 Titanium Dioxide Lattice Structure 

 TiO2 occurs in nature in three forms, has a stable phase called rutile and 

two metastable phases called anatase and brookite. Only anatase and rutile 

have characteristics that can be used as photocatalysts. The lattice structure for 

anatase and rutile is described in terms of distorted TiO6 octahedra, this 

configuration consists of Ti4+ ions surrounded by six O2− ions [5, 6], and in both 

structures, each titanium ion is at the centre of an oxygen octahedron and each 

of the oxygen has three coplanar near neighbour titanium cations.  

 In rutile, the oxygen ions form a slightly distorted hexagonal compact 

lattice; the three Ti-O-Ti angles are roughly equal to 120°. In anatase, the oxygen 

forms a fcc lattice and one Ti-O-Ti angle is about 180° while the two others are 

close to 90° [9], both structures are shown in Fig. 1.  

 According to band theory, semiconductors are characterized by two 

energetic bands: the valence band, VB, completely filled with electrons and a 

conduction band, CB, with higher energy and no electrons. The energetic 

distance between them (0.7-3.5 eV) is called the band gap and determines 

electronic and electric properties of the solid [10]. The band gap of anatase is 3.2 

eV whereas the band gap of rutile is 3.0 eV.  The difference in the bandgap value 

for these two phases is explained by small structural differences which affect 

electronic band properties [10].  Despite the higher energy required for electron-

hole pair creation, anatase is reported to be more active than rutile for solar 

applications [6].  



 Band gap values also determine the color of the semiconductor, because 

they absorb light having energy equal to or higher than the band energy. The 

energy of visible light lies in the region of 1.5 (red) - 3.0 eV (violet). Thus, the 

semiconductors having a narrow band gap of about 1.5 eV are black, those 

having a band gap of about 3.0 eV  are white [10]. 

(a) 

                              (b)

Figure 1. Stick and Ball Model Structures of TiO2 (a) Anatase (b) Rutile. [Red balls are oxygen 
atoms and white balls are titanium]. 

2.2 TiO2 Applications 

 Titanium dioxide (TiO2) is a multifaceted compound that has a high 

number of industrial applications. TiO2 is also a potent photocatalyst that can 

break down almost any organic compound when exposed to sunlight, and a wide 
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range of environmentally beneficial products are being designed such as  self-

cleaning fabrics, auto body finishes, and ceramic tiles. It remains to be seen, 

however, whether the formation of undesirable intermediate products during 

these processes outweigh the benefits offered by TiO2's photocatalytic properties 

[4].  

 TiO2 is used in the production of hydrogen and electric energy, as a gas 

sensor, as white pigment (e.g. in paints and cosmetic products), for corrosion-

protective coatings, as an optical coating, in ceramics, and in electric devices 

such as varistors. Because of its non-toxicity, it plays a role in the biocompatibility 

of bone implants and is being discussed as a gate insulator for the new 

generation of MOSFETS [11]  

 By far, the most actively pursued applied research on TiO2 is its use for 

photo-assisted degradation of organics. TiO2 is a semiconductor and the 

electron–hole pairs that are created upon irradiation with sunlight can separate 

and the resulting charge carriers migrate to the surface where they react with 

adsorbed water and oxygen to produce radical species. These can attack any 

adsorbed organic molecules and, ultimately, lead to the complete decomposition 

into CO2 and H2O [11]. 

 Applications of TiO2 range from purification of wastewater (e.g. in 

operating rooms in hospitals) [12]; in the use of self-cleaning coatings on car 

windshields [13], to protect coatings of marble (preservation of ancient Greek 
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statues against environmental damage). Research is been done and future 

applications for TiO2 are growing exponentially.  

2.3 Degussa P-25 TiO2

 Degussa P-25 is generally considered the most photoactive commercially 

available form of TiO2 structure which contains both separately, anatase and 

rutile phases in a ratio of about 3:1. P-25 is usually 20-25% rutile phase and 75-

80% anatase. The average sizes of the anatase and rutile particles are 25nm 

and 85 nm, respectively [8]. Degussa P-25 has a surface area of approximately 

50 m2/g with anatase particles having a larger surface area than rutile particles.   

 Ohno et al. concluded that the larger surface area of anatase particles 

“improves the efficiency of decomposition of the pollutant in air and water”. 

Bickley et al. concluded that the increased photocatalytic activity was, in part, 

due to this anatase-rutile particle configuration. Anatase phase and rutile phase 

particles exist completely separate from one another [8, 14]; a well developed 

crystallinity is responsible for the high efficiency because of the low density of 

recombination centers, which will be explored in the following chapters [14].  
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CHAPTER 3: TiO2 PHOTOCATALYSIS  

3.1 Photocatalysis 

 A catalyst can be defined as a substance that facilitates an increase in the 

rate of reaction of a chemical process, which otherwise is thermodynamically 

favored but kinetically slow, maintaining the catalyst unaltered after the reaction. 

The process can be described as: 

 A  B    (1) 

A + Catalyst    B + Catalyst   (2) 

where A and B represent the reactants and products respectively.  

 The term photocatalysis is used when photons are involved as the 

mechanism to accelerate the catalyst reaction, combining the concepts of 

photochemistry and catalysis. Photocatalysis can be defined as a reaction where 

a substance (the catalyst) and a source of light (sun or an artificial light) are 

needed to influence a response in a reactant where the chemical structures of 

the reactants are modified and the catalyst remains unaltered [7]  The process 

can be described as: 

A + hν +Catalyst    B + Catalyst    (3) 
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where hν is a quantum of energy from the incident photons that cause the 

reaction.  

 In recent years, applications to environmental clean up have been one of 

the most active areas in heterogeneous photocatalysis. It has become a potential 

technology for the treatment of organic pollutants in water such as aromatic 

compounds products of industrial waste that present a potential hazard to the 

environment and can not be treatrd by conventional techniques [15].  

3.2 Basic Concepts of a Semiconductor 

3.2.1 Band Gap  

 Semiconductors are solids whose electrical conductivity is determined by 

the amount of energy that is required to move electrons from the valence band to 

the conduction band, whereas metals have a “sea of electrons” available for 

conduction and insulators have no electrons. The conduction band is separated 

from the valence band by the defined energy gap Eg. The energy gap Eg 

generally refers to the energy difference between the top of the valence band 

and the bottom of the conduction band as shown in Figure  2 [16].  

 The energy gap varies from 0.7-3.5 eV and determines the electronic 

properties of the solid such as conductivity. When there is light absorption with 

sufficient energy, an electron is transferred from the valence band to the 

conduction band. The energy of visible light varies from 1.5 eV (red) to 3.0 eV 

http://en.wikipedia.org/wiki/Valence_band
http://en.wikipedia.org/wiki/Conduction_band


(violet), and can define the color of the material; a band gap of 1.5 eV is black 

and 3.0 eV is white [10].   

 In a heterogeneous photocatalysis system, after the initial excitation takes 

place, the generated electron-hole pairs lead to chemical reactions and 

molecular transformations that take place at the surface of a catalyst. The term 

heterogeneous photocatalysis is used to describe the charge transfer to the 

adsorbed species if the semiconductor catalyst remains intact during a 

continuous exothermic process [16]. 

 

Figure 2 Semiconductor Band Gap Structure [48] 

3.2.1 Electron Hole Pair, Trapping and Recombination 

 The most important process of photocatalysis is the photo-induced charge 

separation. Absorption of a photon with an energy hν greater than or equal to the 

bandgap energy Eg (eV) excites an electron from the valence band to the 

conduction band, leading to the formation in the semiconductor of an 

electron/hole pair as shown in Figure. 3 [17]. 
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Figure 3 Electron-hole Generation [4] 

 For photocatalytic processes to occur, these photogenerated electrons 

and holes must migrate to the surface of the catalyst where they can be 

transferred to the adsorbed organic or inorganic pollutants. However, migration to 

the surface is not the only pathway the electron-hole pairs can follow as shown in 

Fig. 4. Once excitation occurs across the band gap the life time of the electron-

hole pair is on the order of nanoseconds, which is sufficient time for them to 

undergo charge transfer to adsorbed species (organic or inorganic pollutants) on 

the semiconductor surface [16-18].  
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Figure 4 Schematic Photoexcitation in a Solid followed by Deexcitation Events [16]. 

 Both surface and volume recombination can also occur, as denoted by 

pathways A and B.  If the electron-hole recombination rate is too high it can 

degrade or even halt photocatalysis [16].  The concept of charge separation, by 

any number of means, is an important idea as it relates to doped semiconductor 

catalysts, and is explored further in this study. While at the surface, the 

semiconductor can donate electrons to reduce an electron acceptor (usually 

oxygen in an aerated solution, pathway C); also a hole can migrate to the surface 

where an electron from a donor species can combine with the surface hole 

oxidizing the donor species (pathway D) [16].  

 The efficiency of the photocatalyst in degrading the pollutant is based on 

different factors such as the diffusion of the electron-hole pair in the surface and, 

as a quantum yield, the number of events occurring per photon absorbed. In an 

ideal case the diffusion of the products into the solution occurs quickly without 
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the reverse reaction of electrons recombining with donors and holes recombining 

with acceptors. However, in a real system recombination does occur and the 

concentration of both holes and electrons is not equal. Charge separation or 

charge trapping is used to increase the photocatalytic effect and maintain an 

efficient process [16].  

 Since the crystal structure of the photocatalyst is not pure, but instead has 

both surface and bulk defects, it is expected that surface states (or charges) exist 

across the surface.  These surface states, which differ in energy from the bulk, 

serve as charge carrier traps.  The carrier lifetimes of the electrons and holes are 

therefore increased since these traps stop the recombination of electrons and 

holes as shown in Figure 5 [16]. 

 

Figure 5 Surface and Bulk Electron Carrier Trapping [16]. 

 Modifications to semiconductor surfaces such as addition of metals, 

dopants, or combinations with other semiconductors are beneficial in decreasing 

the electron-hole recombination rate and thereby increasing the quantum yield of 

the photocatalytic process [16].  
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3.3 TiO2 in Photocatalysis 

 Photocatalytic reactions on TiO2 powders have attracted much attention 

because of their applicability to the treatment of a variety of organic (dyes, 

phenols, etc.) and biological pollutants (viruses, bacteria, fungi, algae, and 

cancer cells), which can be totally degraded to CO2, H2O, and other harmless 

inorganic anions, eliminating their toxicity [21]. Whenever different semiconductor 

materials have been tested under comparable conditions for the degradation of 

the same compounds, TiO2 has generally been demonstrated to be the most 

active [20]. 

 When a photon is absorbed and produces energy greater than the band 

gap then an electron/hole pair is formed and creates an active surface site where 

the valence band holes can oxidize an organic compound to CO2, H2O and 

mineral acid [19]. When in contact with water, hydroxyl radicals (OH) are created 

and help retarding the recombination of the electron hole pairs.  

 

Figure 6 Photoinduced Processes in TiO2 [4] 
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 The photoelectrochemical properties of different structures of TiO2, rutile 

and anatase, have been reported [22, 23]. The anatase form appears to be the 

most photoactive and the most practical for environmental applications [24]. The 

band gap of the anatase is 3.2 eV and is larger than the rutile band gap.  

 The photocatalytic activity of TiO2 is influenced by many factors such as 

the preparation method, particle size, crystal microstructure, specific surface 

area, porosity and so on. In order to obtain a TiO2 powder with highly 

photocatalytic activity for a practical purification system, these factors must be 

taken into consideration. 

3.4 Modification to TiO2 

 As mentioned previously, modifications of semiconductor surfaces by the 

addition of metals, dopants, or combinations with other semiconductors can play 

an important role in science and technology.   The modified materials with their 

unique optical, electrical, magnetic, catalytic, and chemical properties are widely 

used in fields such as photoluminescence, photocatalysis, and nanoelectronics 

[25]. Particularly, people have tried to improve the photocatalytic activity of TiO2 

through a number of modification methods, such as noble metal doping, 

composite semiconductors and transition metal doping. 

 Many researches have focused in enhancing the photocatalytic activity of 

TiO2 in the whole spectrum. Among the most widely used modification methods, 

transition metal doping has aroused great interest since this method can 
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enhance the activities of a TiO2 photocatalyst in many types of photocatalytic 

reactions [26]. Another reason for the surface modification of TiO2 is to inhibit 

recombination of photogenerated electrons and holes by increasing the charge 

separation and therefore enhancing the efficiency of the photocatalytic process. 

Zhao et. al. found that the photodegradation activity can be enhanced by doping 

by an appropriate amount of Zn which enhances the electron injection into the 

conduction band of TiO2 by capturing electrons and promoting the formation of 

reactive oxygen species. Hence, the enhanced photodegradation of dyes under 

visible irradiation can be realized [32].  

 The modification of TiO2 by doping with metal ions and coupling with other 

semiconductors can significantly influence the process of photodegradation. 

Marci et. al. [33] found that Zn can considerably enhance the photocatalytic 

performance of TiO2 under UV irradiation, due to an increase in the separation 

rate of photoinduced charges because of the difference in the energy band 

position. The dynamic processes of photoinduced charges are affected by 

oxygen vacancies, and can be determined by the metal ions present on the 

surface of TiO2 nanoparticles.  

 For this study, TiO2 has been modified by Zn doping to improve the 

visible-light absorption, prevent or delay charge carrier recombination and 

improve its surface properties. 
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CHAPTER 4: EXPERIMENTAL METHODS AND PROCEDURES 

4.1 XRD: X-ray Diffractometer 

 X-ray Powder Diffraction (XRD) is an efficient analytical technique used to 

characterize and identify unknown crystalline materials. The most widespread 

use of XRD is the identification of compounds by their diffraction pattern [34]. 

Monochromatic x-rays, electromagnetic radiation similar to light, but with a much 

shorter wavelength is used to determine the interplanar spacing of the unknown 

materials.  

 X-rays are produced when electrically charged particles of sufficient 

energy are deccelerated; these charges are electrons that are formed when the 

filament of a cathode ray tube is heated. These electrons are accelerated by 

means of a high voltage that draws them to a metal target. The points of impact 

of the electrons (anode), produce the X-rays that are radiated in all directions.  

Figure 7 shows the X-ray tube component mentioned earlier [35]. 



 

Figure 7 X-ray Tube Components [35] 

 For XRD analysis the X-ray beam interacts with the planes of atoms of the 

sample; part of the beam is transmitted, part is absorbed by the sample, part is 

refracted and scattered, and part is diffracted. Diffraction of an X-ray beam by a 

crystalline solid is analogous to diffraction of light by droplets of water, producing 

the familiar rainbow. X-rays are diffracted by each mineral differently, depending 

on what atoms make up the crystal [34]  

 With this technique the samples are analyzed as powders with grains in 

random orientations to insure that all crystallographic directions are "sampled" by 

the beam. The basic principle of operation of the XRD spectrometer is based on 

Bragg’s law. When the Bragg conditions for constructive interference are 

obtained, a "reflection" is produced, and the relative peak height is generally 

proportional to the number of grains in a preferred orientation. 
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 According to Bragg’s law, to obtain constructive interference the path 

difference between the incident and the scattered waves, which is 2.d.sinθ, has 

to be a multiple of the wavelength λ. For this case, the Bragg law  gives the 

relation between interplanar distance d and diffraction angle θ [34]: 

2.d.sinθ = n.λ     (4) 

 Where n is an integer, λ is the wavelength of X-rays, d is the spacing 

between the planes in the atomic lattice, and θ is the angle between the incident 

ray and the scattering planes; Since λ is known, θ can be measured, the d-

spacing can be calculated using the Bragg’s equation. Figure 8 shows the basic 

principles of constructive interference of the scattered X-rays. 

 

Figure 8 Constructive Interference of Reflected Waves [34] 
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 The basic geometry of an X-ray diffractometer is shown in Figure.9; it has 

a source of monochromatic radiation and an X-ray detector situated on the 

circumference of a graduated circle centered on the powder specimen. The 

detector and specimen holder are mechanically coupled with a goniometer so 

that a rotation of the detector through 2θ degrees occurs in conjunction with the 

rotation of the specimen through θ degrees, a fixed 2:1 ratio. Divergent slits, 



located between the X-ray source and the specimen, and between the specimen 

and the detector, limit scattered (non-diffracted) radiation, reduce background 

noise, and collimate the radiation.  

 

Figure 9 Basic Geometry of an X-ray Diffractometer [34] 

 The phase structure of the TiO2 samples was characterized by X-ray 

diffraction (XRD).  A Philips X’pert pro PreFix powder X-ray diffractomerter with 

CuKα radiation (λ=1.54060 Å) was employed for this purpose.  The incident and 

diffraction slit width used for all the experiments are 1° and 2°, respectively, and 

the incident beam mask used corresponds to 10 mm.  The sample preparations 

for the XRD measurement are strictly followed to obtain maximum signal to noise 

ratio. 

4.2 BET Surface Area and Pore Size Distribution 

 Catalysts and photocatalysts are often characterized by their interaction 

with gases. The tendency of all solid surfaces to attract surrounding gas 

molecules gives rise to a process called gas sorption. Monitoring the gas sorption 

process provides a wealth of useful information about the characteristics of solids 
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such as surface area and pore size. At low temperatures, non-reactive gases 

(nitrogen, argon, krypton, etc.) are physisorbed by the surface. Through gas 

physisorption the total surface area of the sample can be calculated by the BET 

method [36].  

 Before performing a surface area analysis or pore size measurement, 

solid surfaces must be freed from contaminants such as water and oils. The 

process is call outgassing and is carried out by placing a sample in a glass cell 

and heating it under vacuum, or a flow of dry, inert gas. Once clean, the sample 

is brought to a constant temperature by means of an external bath, typically a 

Dewar flask containing a cryogen like liquid nitrogen. Then, small amounts of a 

gas (the absorbate) are admitted in steps into the evacuated sample chamber 

[36].  

 Absorbate molecules quickly find their way to the surface of every pore in 

the solid (the adsorbent). These molecules can either bounce off or stick to the 

surface. Gas molecules that stick to the surface are said to be adsorbed. The 

strength with which adsorbed molecules interact with the surface determines if 

the adsorption process is to be considered physical (weak) or chemical (strong). 

 In the present study, Autosorb-1C from Quantachrome Instruments has 

been employed to determine the surface area and pore size distribution of the 

samples. Each of them was placed in a glass tube and was outgassed at 300° C 

for 3 hours. The external bath for the sample was liquid nitrogen (77 K) and a 

http://www.quantachrome.com/gassorption/physisorption.html
http://www.quantachrome.com/chemisorption/chemisorption.html
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multi point BET method using nitrogen as the adsorbate gas was used to analyze 

these samples [36].  

4.3 SEM: Scanning Electron Microscope 

 The Scanning Electron Microscope (SEM) is a type of microscope capable 

of producing high resolution images of a sample surface using electrons rather 

than light to form an image. Electron microscopy takes advantage of the wave 

nature of rapidly moving electrons. Where visible light has wavelengths from 

4,000 to 7,000 Angstroms, electrons accelerated to 10,000 KeV have 

wavelengths of 0.12 Angstroms. Optical microscopes have their resolution limited 

by the diffraction of light to about 1000 diameters magnification. The Hitachi 

S800 scanning electron microscope, in the present study, is limited to 

magnifications of around 3,000,000 [34]. 

 The SEM uses secondary electrons when a focused electron beam is 

incident on the specimen to form the image. The secondary electron signal 

provides information about the surface of a specimen. Since secondary electrons 

do not diffuse much inside the specimen, they are most suitable for observing 

fine structure of the specimen surface. Figure 10 shows the signals generated in 

an electron beam and specimen interaction. 



 

Figure 10 Electron Beam and Specimen Interaction Signals [37] 

 The basic diagram of the operation of the Hitachi S800 SEM is shown in 

Figure 11. Electrons from a filament in an electron gun are beamed at the 

specimen inside a vacuum chamber. The beam is collimated by electromagnetic 

condenser lenses, focused by an objective lens and then swept across the 

specimen at high speed. The secondary electrons are detected by a scintillation 

material that produces flashes of light from the electrons. The light flashes are 

then detected and amplified by a photomultiplier tube. 

 The microstructures of the samples in the different stages were observed 

by Hitachi S800 scanning electron microscope (SEM) and local phase 

composition was determined in the energy dispersive X-ray spectrometry (EDS) 

mode using the same instrument. A fixed voltage of 25 KV and resolution of 

1100X and 20000X were used. Genesis software was used to analyze the SEM 

images and EDS mappings. 
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Figure 11. Schematic Working Principle Diagram for a SEM [38] 

4.4 Energy Dispersive X-ray Spectroscopy (EDS)  

 Another important signal that can be analyzed by the Hitachi S800 SEM, 

when the electron beam- specimen interaction occurs is the x-ray emission. EDS 

identifies the elemental composition of materials imaged in a Scanning Electron 

Microscope (SEM) for all elements with an atomic number greater than boron 

(B). Most elements are detected at concentrations of the order of 0.1% excluding 

hydrogen. When the electron beam of the SEM hits the sample surface, it 

generates x-ray fluorescence from the atoms in its path. The energy of each x-

ray photon is characteristic of the element which produced it. The EDS 

microanalysis system collects the x-rays, sorts and plots them by energy, and 

automatically identifies and labels the elements responsible for the peaks in this 

energy distribution. The liquid nitrogen cooled detector is used to capture and 

map the x-ray counts continuously [34]. 
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4.5 Optical Absorption 

 The optical absorption data was deduced from the Kubelka–Munk 

function. The Kubelka Munk method is a diffuse reflectance technique that uses 

a salt, NaCl in this case, mixed with the powder being measured.  This technique 

accounts for the difference in transmission and reflectance measurements due to 

absorption of certain wavelengths by powders. The material was diluted to about 

1% by weight in NaCl and ground using a mortar and pestle. Transmission 

measurements were made of the powders, which were lightly packed into small 

sample holders, using a spectrometer. A Kubelka-Munk conversion was applied 

to a diffuse reflectance spectrum to compensate for any differences. Figure 12 

shows the basic concept of the technique. The Kubelka-Munk equation is: 

( ) ( )
s
k

R
RRf =

−
=

2
1 2

 ,  (5) 

where R is the absolute diffuse reflectance of the sampled layer, k is the molar 

absorption coefficient, and s is the scattering coefficient [6]. 

 

Figure 12 Kubelka-Munk Theory Basics 
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 A linear relationship is created between the spectral intensity and the 

sample concentration. This equation assumes that the diluting salt is non-

absorbing, that the scattering coefficient of the salt is constant, and that the 

sample thickness is infinite. These assumptions can be made for samples 

greater than 1 millimeter of highly diluted small particles. Given that we used 

nanoparticles and had a sample thickness of 3mm, our packing technique was 

the only variable that could affect the scattering coefficient.   

 The optical band gap, Eg, of the material can be calculated on the basis of 

the optical spectral absorption using the well-known formula, 

                                                    υ
υ
h

EhA
k

m
g )( −

=
    (6)                                     

where A is a constant, hν is the incident photon energy, and m depends on the 

nature of band transition, m = ½ for direct and m = 2 for indirect allowed 

transitions. Taking into account Equation. 6, for the purpose of determining the 

bandgap, extrapolating the f(Rd)2 and f(Rd)1/2  versus energy curve to f(Rd)2= 0 is 

equivalent to carrying out the same procedure with the k2  and  k1/2, respectively. 

4.6 Photocatalytic Reactor  

 The photocatalytic experiments were performed using a tubular reactor 

that was fabricated by Mr. Chuck Garretson, who is the CERC’s Project 

Coordinator.  Figures 13 and 14 show the general configuration of the system. A 

one liter Pyrex beaker is used to hold the solution that was mixed by a magnetic 
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stirrer that also suspended the photocatalytic particles. The solution flow through 

the reactor casing was pumped by a peristaltic system. An aerating stone was 

used to diffuse either compressed air or oxygen into the suspension.  

Experiments were conducted using breathing quality compressed air, which was 

metered through gas specific flow meters. 

 Six UV lamps or Fluorescence lights were mounted in the reactor casing. 

The lights used were RPR 3500 UV fluorescent lamps that emit a gaussian 

distribution of light from λ 300 to 400 nm with λmax = 350 nm with a nominal 

power of 14W and 1.5W of UV Radiation.  A thermocouple, also mounted 

through the top plate, monitored the temperature of the solution.  

 

Figure 13 Tubular Reactor for Photocatalytic Experiments 
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Figure 14 Reactor Casing and UV Light Irradiation 

4.7 Experimental Procedures for Photocatalytic Measurements 

 Photocatalytic experiments were performed using a glass batch reactor 

system, which was described in detail above.  A 20 ppm methyl orange solution 

using de-ionized water was prepared using (A.C.S. Reagent) MO from Sigma-

Aldrich.  Methyl orange was dissolved into the solution using a magnetic stirrer 

for 15 minutes.  Samples were drawn and the initial concentration was measured 

and calculated in accordance with Beers Law using an Ocean Optics USB2000 

spectrometer. 
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 Once the 20 ppm solution was prepared, 100 milliliters of the MO solution 

was reserved in a beaker.  The prepared catalyst was ground in a crucible with 2 

milliliters of MO solution to de-agglomerate the material.  Portions of the reserved 

MO solutions were added to dilute the catalyst paste that was then poured back 

into the beaker.  This process was repeated with the remaining MO solution until 

the maximum amount of the catalyst was recovered from the crucible. 

 To further de-agglomerate the particles and achieve Langmuir equilibrium, 

the MO-catalyst solution was then sonicated using a Fisher-Scientific Sonic 

Dismembrator Model 100. Sonication was performed at 5 watts (RMS) for 15 

minutes while being magnetically stirred.  It is important to note that during this 

time, adsorption of the pollutant onto the surface of the catalyst also took place 

altering the initial concentration of the MO solution. The solution was then moved 

to the experimental area where it again was placed on a magnetic stirrer [6]. 

Figures 15 shows the experimental set up. 

 

 



 

Figure 15 Tubular Reactor Experimental Set Up. 

 A thermocouple was placed where? to monitor and control the solution 

temperature. The photocatalytic experiments were conducted in a range from 

22°C to 38°C. Breathing Quality Air was used as an oxygen source. The flow rate 

was controlled by flow meters and bubbled into the solution by aerating stones at 

a rate of 0.5 liters per minute. 

 2.0 milliliter samples, representing zero time, were drawn using Micromate 

5cc glass syringes and placed into micro-centrifuge tubes.  The solution was then 

irradiated using the light sources detailed above.  Spectrum experiments were 

conducted with duration of three hours.  Samples were drawn at 30 minute 

intervals for the first hour, followed by one hour intervals until the 3 hours were 

completed. 
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 At the completion of the experiment, the samples collected were 

centrifuged using an Eppendorf 5414C centrifuge at 8,000 rpm for 10 minutes.  

The samples were then syringed to new tubes then centrifuged again at 8000 

rpm for 10 minutes. 

 The concentrations of the samples were then calculated by measuring the 

absorbance of the samples using a spectrometer. The results were compiled and 

the rate constant for the material was calculated [6]. 
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CHAPTER 5: METHYL ORANGE AS POLLUTANT 

 Methyl Orange (MO) is a common industrial dye that is categorized as an 

azo-dye. Azo compounds are synthetic inorganic chemical compounds that 

account for about 50-70% of the world’s production of dyes. In the textile 

industry, it is estimated that 10–15% of the dye is lost during the dyeing process 

and released as effluent  waste causing contamination [27]. The main problem is 

that dye wastes can also generate dangerous by-products through oxidation 

chemical reactions taking place in the wastewater phase or through generation of 

hazard products in the cleaning process. 

 The chemical formula and molecular composition for methyl orange is 

C14H14N3SO3Na.  It is a very stable compound due to the large proportion of 

aromatics in the dye and the presence of the benzene rings, which keep this 

pollutant from decomposing easily by chemical or biological methods [6]. In this 

study, methyl orange was used because of its visible color that allows optical 

measurements for the evaluation of its degradation. This compound is an acid-

base indicator showing orange in basic medium and red in acidic medium. 

5.2 TiO2 Photocatalytic degradation  

 For the purpose of this thesis, titanium dioxide (TiO2) was used as a 

photocatalyst for the detoxification of water containing methyl orange (MO) as a 



model compound. The experimental technique for evaluating MO degradation is 

similar to the experimental technique described by M. Schmidt in his thesis work 

[6]. The experiments were conducted using de-ionized water as the solvent, to 

determine the optical absorption spectra of methyl orange. To establish the 

calibration curves, aqueous solutions of methyl orange were prepared in varying 

concentrations from 0.3125 ppm to 20 ppm as shown in Figure. 16. 
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Figure 16.  Methyl Orange Optical Absorption Calibration. 

 For this work the 20 ppm solution was chosen and its spectrum is shown 

in Figure 17. This chart shows two absorption peak maxima, one at 

approximately 272 nm and a second with a higher absorption magnitude at 451 

nm.  Consistent with published work in this area, the second maximum peak at 

451 nm was used to calculate the concentration changes as a function of time for 
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methyl orange [6,15,27]. These peaks and corresponding spectra are in line with 

published results depicting absorption peaks at 270 nm and 458 nm [20]. 

 UV and fluorescence lights were used as an irradiation source in the 

experimental set up.  An additional test was made to measure the degradation 

Mo due to TiO2 without light sources.  
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Figure 17. Spectra of 20 ppm Methyl Orange Solution [6] 

 The test was conducted using a 20 ppm MO solution prepared in a glass 

beaker loaded with 1 g/L of TiO2 and stirred in the dark with samples taken after 

30 minute intervals.  The results are depicted in Fig. 18 and showed that there 

was no degradation for the MO in the presence of TiO2.  
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 Consistent with the literature, there was no degradation of the MO in the 

presence of TiO2 without UV lights [15, 27] and the complete disappearance of 

the dye is only observed in the presence of both UV light source (320nm – 

400nm) and catalyst (TiO2). Consistent with Guettai et. al. [27] as well as other 

published data on the degradation of methyl orange by TiO2, the peak at 451nm 

was used as the evaluation point for the absorption measurements of the MO 

solution.  
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Figure 18. Concentration as a Function of Time for Methyl Orange in the Presence of Degussa P-
 25 TiO2 without an Irradiation Source 

 The value of 451 nm was derived using a box car smoothing method for 

values between 449-453 nm to account for the fluctuation of data points recorded 

by the spectrometer at the moment of the measurements.  The ratio of the 

concentration versus initial concentration was then plotted as a function of time.   
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 For the development of the plot of concentration versus initial 

concentration a rate constant for first order kinetics was calculated.  The method 

used here is similar to the technique employed by both Guettai et al. and Al-

Qaradawi et al. for determining rate constants for first order kinetics of the de-

colorization of MO [15, 27]. 

5.3 Catalyst loading  

 The effect of catalyst loading was tested to determine the optimal loading 

for both UV light and florescence lights for the tubular reactor designed for this 

process which will be explained in the following chapters. MO photodegration for 

different TiO2 loading was conducted for this study in a natural pH solution.   It 

should also be noted that significant adsorption of the pollutant occurs during the 

initial 15 minutes of the loading of the MO solution with the catalyst. Therefore, to 

allow adsorption-desorption equilibration, the solution irradiation by a light source 

was started with a delay at least 15 minutes in the all experiments described in 

this work.   

5.3.1 UV Light Source  

 MO photodegradation of TiO2 was performed using UV lights and a 

loading in the range of 0.01g/L to 1g/L. The test was conducted using a 20 ppm 

MO solution prepared in a glass beaker loaded with  different amounts of TiO2 

and stirred; samples were taken at 15 minute intervals the first hour and then 30 

minutes intervals.  The results are depicted in Figure 19. 
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Figure 19. Effects of Catalyst Loading (Grams per Liter) on the Rate of Discoloration for 
Untreated Degussa P-25 TiO2 Under UV Irradiation.  

 

 The results for the experiments were conducted to find the apparent rate 

constants for different catalyst loadings for Degussa P-25 TiO2 under UV 

irradiation are shown in Figure. 20. From this curve one can see that the 

degradation rate increases insignificantly as the catalyst loading increases from 

0.25 g/L to 1.0 g/L. The optimum catalyst loading found in this study was 

determined to be 0.25 g/L, with no further increase or decrease in the 

performance due to increased loading. Choosing an efficient loading is important 

because an increase in the loading limits the light penetration through the TiO2 

suspension.  
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Figure 20. Aparent Rate Constant for Catalyst Loading (Grams per Liter) for Untreated Degussa 
 P-25 TiO2 Under UV Irradiation 

 

5.3.2 Fluorescence Light Source  

 MO photodegradation of TiO2 was also performed using fluorescent light 

with loading in the range of 0.25 g/L to 4 g/L. The test is similar to the one 

described in the previous section.  A 20 ppm MO solution was prepared in a 

glass beaker loaded with different amounts of TiO2 and stirred; samples were 

taken at 30 minute intervals for the first 2 hours and then at 60 minute intervals. 

The results are depicted in Figure. 21. 
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Figure 21. Effects of Catalyst Loading (Grams per Liter) on the Rate of Discoloration for 
Untreated Degussa P-25 TiO2 Under Fluorescence Irradiation.  

 Apparent rate constants for differing catalyst loadings for Degussa P-25 

TiO2 under Fluorescent irradiation are shown in Figure 22. The degradation rate 

for visible-light increases significantly as the catalyst loading increases from 0.25 

g/L to 2 g/L with a further decrease at 4g/L. The results above indicate that the 

catalyst loading concentration is a function of the type of reactor used, its 

geometry, type of source and the incident irradiation.  
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Figure 22 Aparent Rate Constant for Catalyst Loading (Grams per Liter) for Untreated Degussa 
 P-25 TiO2  Under Fluorescent Irradiation. 

 

 Initially, an increase in the concentration of MO increases the probability of 

a reaction between the pollutant and the oxidizing species.  This in turn results in 

an increase in the discoloration rate.  As the concentration of MO increases, the 

active sites on the catalyst surface are more fully covered reducing the 

photogeneration of holes or hydroxyl radicals. It has been concluded that the 

hydroxyl radical is responsible for most heterogeneous photocatalytic oxidations.  

The hydroxyl radical is formed by the reduction reactions of holes with either 

water or hydroxide ions [22]. 
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 There are many factors that affect the photocatalytic activity of TiO2.  

These include the lattice structure and phase of the material, specific surface 

area, adsorption of the pollutant, electron–hole generation and recombination, 

carrier lifetime and trapping, solution pH, method of synthesis, catalyst loading, 

and initial pollutant concentration, among many others.  M.Schimdt [6] research 

showed the profound difference that the design and materials of the reactor itself 

can have on the photocatalytic effect or rate. The general conclusion is that the 

optimum catalyst loading is a function of the active surface area and the pollutant 

concentration, and therefore is not necessarily static [27]. Similarly, Al-Qaradawi 

et al. also found that an increase in initial catalyst concentration ultimately 

decreases the overall degradation efficiency [15]. 
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CHAPTER 6: STUDY OF Zn DOPED TiO2 NANOPOWDERS 

 The first part of this thesis work explores the effects of Zn doped TiO2 by 

the sol-gel method on the photocatalytic activity and the characterization of the 

doped samples. Since this study is part of a collaborative initiative, the samples 

have been synthesized and are provided by Dr. A. R. Phani from the Department 

of Physics, University of L’Aquila. The characterization of the doped and 

mechano-chemically treated materials will be analyzed by optical diffuse 

reflectance measurements and optical absorption calculations using the Kubelka-

Munk approach. The photocatalytic properties will be studied by the analysis of 

decomposition of Methyl Orange in an aqueous solution. An aqueous 

photocatalytic tubular reactor with capability of operation under UV and/or 

fluorescent light was designed, UV light was used for the Photocatalytic portion 

of this study.  

6.1 Sol gel process on Zn doped TiO2

 Untreated TiO2 can utilize less than 4% of the available solar energy for 

photocatalysis. Given the exceptional photocatalytic properties of TiO2, a great 

deal of study has gone into decreasing the band gap to allow visible-light 

activated photocatalysis.  Doping TiO2 by metals or transition metals and anion 

doping have dominated this area of research.  One of the primary goals of this 
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research was to investigate the characteristics of treated TiO2 with zinc. If 

successful it would account for a relatively inexpensive way to lower the band 

gap of Degussa P-25 TiO2 and improving its photocatalytic efficiency. Doping 

TiO2 can alter the conductivity and optical properties by creating new surface 

states that are believed to lie near the conduction band or valence band of TiO2 

[5]. Also, doping of TiO2 with transitional ions offers a way to trap charge carriers 

and extend the lifetime of both charge carriers. Consequently, dopants enhance 

the photocatalytic activity [30] 

 In the present investigation Zn doped TiO2 nanopowders supplied by Dr. 

A.R. Phani, have been prepared by simple and cost effective sol-gel process. 

The sol-gel process has been used to obtain particles with higher purity and 

homogeneity at lower processing temperatures. Recently, the sol–gel process 

has become a novel technique for the preparation of nanocrystalline TiO2. It has 

been demonstrated that through the sol–gel process, the physico-chemical and 

electrochemical properties of TiO2 can be modified to improve its efficiency. It 

provides a simple and easy means of synthesizing nanoparticles at ambient 

temperature under atmospheric pressure and this technique does not require a 

complicated set-up. Since this method is a solution process, it has all the 

advantages over other preparation techniques in terms of purity, homogeneity 

and flexibility in introducing dopants in large concentrations, stoichiometry 

control, ease of processing and composition control [39]. 
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 Phani et. al. prepared the samples used for this study  using a calculated 

quantity of titanium dissolved in ethanol (99.98%) solvent along with acetyl-

acetone as a chelating agent and cetyltrimethyl ammonium bromide (as 

surfactant to control the growth of TiO2 crystallites). This had been dissolved in 

ethanol solvent in a beaker and the contents were added drop-wise to the 

titanium butoxide sol under vigorous stirring for 6 hours at room temperature. 

Calculated quantities of HCl and deionized water were added to increase the rate 

of reaction [40]. 

 In addition, the contents were refluxed at 60 °C for 4 h to complete the 

reaction and cooled down to room temperature. The contents were filtered using 

Whatman filter paper in order to remove any particulates formed during the 

reaction and then dried at 100 °C for 1h.  At the end, the powders were calcined 

at different temperatures ranging from 500°C to 800°C for 3 h in air in order to 

enhance the photocatalytic activity. Zn was used to dope (Zn acetate as a 

source) the TiO2 base material. Figure 23 shows the flow-chart of the sol gel 

process [40, 41].  



Titaniumbutoxide ( 0.1M)
(in ethanol solvent)

Mix and stirring (6 h in air ambient)

Refluxing and heating (60 oC for 4 h) 

Filtration  
Drying at 100°C for 1 h 

Characterization

Cetyl trimethyl
ammonium bromide

(in ethanol)

Annealing (500°C – 800°C for 3 h)

stabilising agent
(in  ethanol)

Zinc acetate
(in ethanol)

DI H2OHCl

 

Figure 23 Preparation of Zn Doped TiO2 Nanopowders by Sol Gel Process [40] 

 Doping of TiO2 with transitional ions offers a way to trap charge carriers 

and extend the lifetime of both charge carriers. Consequently, dopants enhance 

the photocatalytic activity. Zn doped TiO2 was prepared with different 

concentrations of Zn. Table 1 shows the list of the nanopowders received.  

6.2 Characterization of TiO2-Xwt.% Zn Nanopowders  

 The as-prepared and annealed nanopowders from the process explained 

above have been examined for their phase identification and surface morphology 

by employing the X-ray diffraction and scanning electron microscopy (SEM) 

techniques. Photocatalytic activity studies have been conducted in collaboration 
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with the information of the samples already sent. The samples received are: TiO2 

nanopowders (sol-gel method) annealed at 500 °C and 600 oC for 3h with a Zn 

concentration of 1.3 wt%, 2.2 wt%, 3.1 wt%, 4.0 wt%, 4.9 wt%.  

6.2.1 X-ray Diffraction Characterization and SEM Measurements  

 XRD and SEM measurements of the samples were carried out in Italy by 

Dr. A.R. Phani and are reproduced in Figures 24, 25 and 26. 

 

Figure 24. XRD Spectra of TiO2 Zn Annealing at 500°C at 3h [30] 
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Figure 25. XRD Spectra of TiO2 Zn Annealing at 600°C at 3h [30] 

 The study of XRD and SEM results by Phani et. al. [30] concluded that 

pure TiO2 and Zn doped TiO2 powders annealed at 500 °C for 3 hours have 

shown the formation of crystalline phase of anatase TiO2, independent of Zn 

concentration. In addition, the variation in the peaks intensity indicates a variation 

in the anatase phase proportion. The XRD of the nanopowders annealed at 

600°C for 3 hours also showed the formation of crystalline phase of anatase TiO2 

accompanied with the formation of rutile phase, the content of which is increased 

with increasing Zn concentration. In addition, at 3.1wt% and higher,,there exists 

the formation of ZnTiO3. Phani et. al. [30] concluded that by increasing the Zn 

concentration (1.3 wt% to 4.9 wt%) the crystallite size of TiO2 was drastically 
 47 
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reduced from 40 nm to 25 nm and had an effect on the formation of pores with 

diameter dimensions of 100 -120 nm for the 500°C annealed samples. For the 

600 oC annealed samples the crystallite size of TiO2 was drastically reduced from 

55 nm to 30 nm and was accompanied with the formation of pores with diameter 

dimensions of 80 -100 nm. 

 Figure 26 represents the SEM microstructures of TiO2 doped with different 

concentrations of Zn. It is clearly seen from these microstructures that particle 

fragmentation, homogenization and agglomeration effects, at different loading 

concentrations of Zn, the TiO2 matrix nanopowder. 
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Figure 26. SEM Images of Different Concentrations of Zn Doping of TiO2 [30] 

 

 



6.2.2 BET Surface Area Measurements  

 Autosorb-1C from Quantachrome Instruments has been employed to 

determine the surface area and pore size distribution of the Zn doped samples. 

Each of these samples was placed in a glass tube and was out gassed at 300 °C 

for 3 hours. The external bath for the sample was liquid nitrogen (77 K) and a 

multi point BET method using nitrogen as the adsorbate gas were used to 

analyze these samples [36].  

 Autosorb-1C uses the Brunauer-Emmet-Teller (BET) method for the 

determination of the surface area of solid materials using the BET equation:  
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where W is he weight of gas adsorbed at a relative pressure, P/Po, and Wm is the 

weight of the adsorbate constituting a monolayer of surface coverage. The term 

C is a constant related to the energy of absorption in the first adsorbed layer and 

its value is an indication of the magnitude of the adsorbent/adsorbate interactions 

[42]. Table 1, shows the surface area of the data collected for the Zn doped 

samples. 

 The total pore volume is derived from the amount of vapor adsorbed at a 

relative pressure close to unity, by assuming that pores are then filled using liquid 

adsorbate. Figure 27 and Figure 28 show the relationship between pore diameter 

and total pore volume of the samples. The pore volume of TiO2-Xwt.% Zn varies 
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with the value of X. For X=1.3 wt.% (lower doping level of Zn), the pore volume 

increases two times when compared to pure TiO2, however, it decreases with an 

increase in concentration of Zn. The pore diameter of around 18-20 Å was 

uniformly obtained irrespective of the Zn concentration in the sample. 

Table 1 BET Surface Area Results  

Sample # Description Surface Area (m2/g) 
8 Nanopowders (sol-gel) 500C 3h 33.27 
9 Nanopowders (sol-gel) 1.3% 500C 3h 73.14 
10 Nanopowders (sol-gel) 2.2% 500C 3h 40.80 
11 Nanopowders (sol-gel) 3.1% 500C 3h 37 
12 Nanopowders (sol-gel) 4.0% 500C 3h 53.98 
13 Nanopowders (sol-gel) 4.9% 500C 3h 35.18 
14 Nanopowders (sol-gel) 600C 3h 12.48 
15 Nanopowders (sol-gel) 1.3% 600C 3h 26.41 
16 Nanopowders (sol-gel) 2.2% 600C 3h 15.81 
17 Nanopowders (sol-gel) 3.1% 600C 3h 13.68 
18 Nanopowders (sol-gel) 4.0% 600C 3h 17.80 
19 Nanopowders (sol-gel) 4.9% 600C 3h 13.14 

 

 

 



 

Figure 27. Pore Volume vs Pore Diameter of Zn Doped TiO2 Annealed at 500°C 3h 

 

Figure 28. Pore Volume vs Pore Diameter of Zn Doped TiO2 Annealed at 500°C 3h 
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6.3 Photocatalytic Activity of TiO2 Nanopowders 

 Photocatalytic activity for this study was performed using a Tubular 

Reactor and 6 UV lights, the experimental set up will be explained in the 

following chapters. Methyl Orange is the pollutant of choice; its degradation in the 

suspension with the photocatalyst is shown in the initial stages of the reaction 

(during the first two hours). Figures 29 to 31 show the plots for photocatalytic 

degradation of methyl orange using TiO2 with different Zn doping concentration. 

Both 500°C and 600°C annealed photocatalysts revealed relatively low 

photocatalytic efficiency as compared to the industrial TiO2 P-25 Degussa 

catalyst (see Figures. 30 and 32).  This may be due to the different preparation 

conditions and the obtained phase proportion of anatase TiO2 structure. 
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Figure 29 MO Photodegradation of TiO2 Zn 500C 3h 
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Figure 30. Comparision of Photocatalytic of TiO2 Degussa and TiO2 Zn 500C 3h 

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100 120
Time (min)

C
/C

o

0 wt%

1.3 wt%

2.2 wt%

3.1 wt%

4 wt%

4.9 wt%

600C 3h

 

Figure 31 MO Photodegradation of TiO2 Zn 600C 3h 
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Figure 32. Comparision of Photocatalytic of TiO2 Degussa and TiO2 Zn 600C 3h 
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 Figure 33. Apparent Rate Constant for Zn Doped TiO2 500C 3h using a Tubular Reactor and a 

UV Light Irradiation  
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Figure 34 Apparent Rate Constant for Zn Doped TiO2 600C 3h using a Tubular Reactor and a UV 
 Light Irradiation 

 

 The results above (Figures 30 and 32) show that the TiO2-Zn doped 

photocatalysts prepared by the sol gel method show lower performance 

compared to TiO2 Degussa. There is no significant variation in the photocatalytic 

materials prepared with the increased Zn correlation. In addition, there is no 

significant difference in the performance of the photocatalysts prepared by and 

annealed at 500C and 600C; nevertheless the samples have different phase 

content (anatase at 500C and anatase+rutile at 600C). 

 In addition, we can notice that the optical absorption measurements of 3.1 

wt.% Zn 500C material do not exhibit any changes in the bandgap as compared 

to the undoped TiO2 (Figure 35). However, for 600°C, 3.1 wt% Zn TiO2, there is a 
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red shift in the band gap of the doped material, which can be seen in Figure 36.  

Such a difference in the effect of the annealing temperature can be explained by 

the presence of the rutile phase in the samples annealed at 600C.   
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Figure 35. Plot of Optical Absorption (F(R’)*hν)1/2 vs. Incident Photon Energy, hν, for the Sol Gel 
Samples Annealed at 500C. 
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Figure 36. Plot of Optical Absorption (F(R’)*hν)1/2 vs. Incident Photon Energy, hν, for the Sol Gel 
Samples Annealed at 600C. 

 

 The results described in this chapter indicate that there is no significant 

change in the photocatalytic efficiency for TiO2-X wt.% Zn at two different 

calcination temperatures (500 and 600 oC). The reason for this may be due to the 

large crystallite sizes and the lower surface area of these initial samples 

observed from XRD and BET analysis.  In the next chapter, we will describe our 

strategy to improve photocatalytic properties of sol gel Zn doped TiO2 materials. 

 58 



59 

 

 

CHAPTER 7: BALL MILL INDUCED TRANSFORMATIONS 

 Researchers are interested in the application of nanomaterials to 

environmental applications. Nanocrystalline materials exhibit a variety of unique 

properties, such as high surface area, short interface migration distance and 

visible light activity that can enhance photocatalytic performance [39]. The sol–

gel process is considered to be  a novel technique for the preparation of 

nanocrystalline TiO2 and it has been demonstrated that by using this technique 

the physico-chemical and electrochemical properties of TiO2 can be modified to 

improve photocatalytic  efficiency [39].  

 In this study, an attempt has been made to enhance the photocatalytic 

activity of Zn doped TiO2 by variying the calcination temperature at different 

concentrations. However, as it was shown in the previous chapter, Zn doping has 

not demonstrated a significant change in the photocatalytic efficiency of TiO2-X 

wt% Zn compared to the regular TiO2. In this chapter, we discuss a. new strategy 

for the modification of the catalysts, namely the mechano-chemical milling of 

TiO2-X wt% Zn materials in a high energy planetary mill.  As it will be seen below, 

this procedure can optimize the micropore size distribution and increase the 

surface area of the photocatalytic material.    
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7.1 High Energy Ball Mill   

 McCormick et. al. [43], explains that Ball Mill can be defined as a 

mechano-chemical process (MCP) that uses mechanical energy to activate 

chemical reactions and structural changes. It has been demonstrated that the 

activation of chemical reactions by mechanical energy can lead to many 

interesting applications, like waste processing. High energy ball milling is an 

alternative technique to obtain nanosized materials through the application of 

high pressure.   

 The objectives of the ball milling process include particle size reduction, 

mixing or blending, and particle shape changes. The most common mill used for 

these purposes has been a planetary ball mill; a bowl sits on a grinding platform 

and rotates in a direction opposite to the direction of the base fixture. This action 

is a lot like the "teacup and saucer" rides commonly found in amusement parks. 

In planetary action, centrifugal forces alternately add and subtract. The grinding 

balls roll halfway around the bowls and then are thrown across the bowls, 

impacting on the opposite walls at high speed. Grinding is further intensified by 

interaction of the balls and sample. Planetary action gives up to 10g acceleration 

[34]. The schematic cross-section of the planetary ball mill principle is illustrated 

in Figure 37, 



 

Figure 37. Schematic Cross-section of a Planetary Ball Mill [52] 

 The mechano-chemical milling of semiconductor oxide materials, 

particularly TiO2 and its photocatalytic behavior has been extensively 

investigated in the past years. Mechanochemical milling is known to generate 

accumulations of defects, particle size reduction and local temperature increases 

which contribute to the activation of solid compounds so that they store additional 

energy which facilitates chemical reactions or transformations [43].  

 Another important factor in the success of this instrument is its economy; it 

is an inexpensive and rapid process when compared with other synthesizing 

methods such as induction melting, quenching, sintering, etc. The present study 

shows the effect of the ball-mill process on the photocatalytic activity of TiO2-X 

wt% Zn samples, which was evaluated by the photocatalytic oxidation of methyl 

orange as a model organic compound. Pore size, surface area, crystallite size 

and phase formation are parameters that were studied in this work.  
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7.2 Ball Milling Transformation of TiO2-X wt% Zn 

 Many studies have reported the relation between crystallographic 

structure and surface properties and the effect of these properties on the catalytic 

properties of TiO2 [45–47].  We noticed that Zn doped TiO2 composite materials 

prepared by sol-gel method and annealed at 500°C and 600°C were 

agglomerated in relatively large (crude) dense particles. Therefore, we treated 

these samples by the ball milling process for 2h.  Our preliminary results indicate 

that wet mechano-chemical synthesis increases the surface area as well as 

improves the photocatalytic activity of the Zn doped TiO2 samples, as it is seen 

from the results below. 

 Figure 38-41 show plots of photocatalytic degradation of methyl orange 

using TiO2 with different Zn doping concentration. Both 500°C and 600°C 

annealed photocatalysts revealed lower photocatalytic efficiency as compared to 

the industrial TiO2 P-25 Degussa catalyst (see Fig. 39 and 41).   

However, from Figs. 42 and 43, one can see that the rate of degradation 

of methyl orange in an aqueous solution is more than 2 times higher as 

compared with the unmodified catalyst. The ball milling process results show a 

two fold increase in the average improvement of the photocatalytic activity, which 

can be related to an increase in the surface area and a decrease in the crystal 

size by the same proportion. 
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              Figure 38. MO Photodegradation of TiO2 Zn 500C 3h After Ball Milling for 2h.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 1
Time (min)

C
/C

o

20

0 wt%

1.3 wt%

2.2 wt%

3.1 wt%

4 wt%

4.9 wt%

TiO2 

 

         Figure 39 Comparision of Photocatalytic activity of TiO2 Degussa and TiO2 Zn 500C 3h  
  After Ball Milling for 2h 
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           Figure 40. MO Photodegradation of TiO2 Zn 600C 3h After Ball Milling for 2h.  
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Figure 41. Comparision of Photocatalytic Activity of TiO2 Degussa and TiO2 Zn 600C 3h After Ball 
Milling for 2h 
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Figure 42. Apparent Rate Constant for Zn doped TiO2 500C 3h Before and After Ball Milling, 
using a Tubular Reactor and a UV Light Irradiation. 
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Figure 43 Apparent Rate Constant for Zn doped TiO2 600C 3h Before and After Ball Milling, using 
a Tubular Reactor and a UV Light Irradiation. 
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 These results are supported by the decrease of the crystalline particle size 

obtained by XRD measurements (see Figures. 44-45) that correlate with the 

apparent rate constants of Figures. 42 and 43. For an increase in surface area 

there is a decrease of particle size as can be seen in Figure. 46 when compared 

with Figures. 42 and 43, respectively. 
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                 Figure 44. XRD Spectra of TiO2 Zn Annealing at 500°C 3h After Ball Milling  
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               Figure 45. XRD Spectra of TiO2 Zn Anneling at 600°C 3h After Ball Milling  
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                    Figure 46 Crystall Size Concentration for 500C and 600C After Ball Milling. 
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 These results seems to be a good agreement between increasing BET 

surface area and pore size distribution of ball milled samples as shown in Fig. 

47-50. 
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Figure 47. Comparision BET Surface Area Measurement Before and After Ball Milling for 500C 

3h  
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Figure 48. Comparision BET Surface Area Measurement Before and After Ball Milling for 600C 

3h  

 

Figure 49 Pore Volume vs Pore Diameter of Zn Doped TiO2 Annealed After Ball Mill at 500°C 3h 
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Figure 50. Pore Volume vs Pore Diameter of Zn Doped TiO2 Annealed After Ball Mill at 600°C 3h 

 In addition, we can see that the optical absorption measurements of 

samples prepared by annealing at 500C do not present any variation in the 

bandgap with the increase of Zn dopant concentration (see Figure 51).  However, 

for Zn doped TiO2 annealed at 600C, the highest red shift in the band gap of the 

doped material is observed for 3.1 wt.% Zn doping concentration, which can be 

seen in Figure 52. Again, such a difference in the effect of the annealing 

temperature can be explained by the presence of the rutile phase in the samples 

annealed at 600C (compare Figures 48 and 49). By comparing the optical 

absorption spectra in Figures. 35 and 51 and Figures. 36 and 52, we can see a 

blue shift as high as 0.1 – 0.15 eV in the optical absorption, which may be 

explained by  the presence of the quantum size effect.  
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Figure 51 Plot of Optical Absorption (F(R’)*hυ)1/2 vs Incident Photon Energy, hυ, for the Sol Gel 
 Samples Annealed at 500C. and Ball Milled for 2 h. 
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Figure 52. Plot of Optical Absorption (F(R’)*hυ)1/2 vs Incident Photon Energy, hυ, for the Sol Gel 

Samples Annealed at 600C.and Ball Milled for 2h  
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 Finally, the SEM microstructural investigations reveal the variation in the 

surface morphology with different Zn doping concentrations in the TiO2-Xwt.% 

Zn nanoparticulates (Figs. 53-65). EDS spectra of these samples confirm the 

stoichiometric concentration of Zn. Images of SEM are shown in the Figures. 66 

and 67.   

                  

                      Figure 53. SEM Image of TiO2 Annealed 500C 3h Before and After Ball Mill. 

                

             Figure 54 SEM Image of TiO2 Zn Doped at 1.3 wt% 500C 3h Before and After Ball Mill. 
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   Figure 55 SEM Image of TiO2 Zn Doped at 2.2 wt% 500C 3h Before and After Ball Mill 

            

Figure 56 SEM Image of TiO2 Zn Doped at 3.1 wt% 500C 3h Before and After Ball Mill 

             

Figure 571 SEM Image of TiO2 Zn Doped at 4.0 wt% 500C 3h Before and After Ball Mill 
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     Figure 58 SEM Image of TiO2 Zn Doped at 4.9 wt% 500C 3h Before and After Ball Mill        

       

           Figure 59 SEM Image of TiO2 Annealed 600C 3h Before and After Ball Mill 

             

        Figure 60 SEM Image of TiO2 Zn Doped at 1.3 wt% 600C 3h Before and After Ball Mill 
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Figure 61. SEM Image of TiO2 Zn Doped at 2.2 wt% 600C 3h Before and After Ball Mill 

             

Figure 62. SEM Image of TiO2 Zn Doped at 3.1 wt% 600C 3h Before and After Ball Mill 

             

Figure 63. SEM Image of TiO2 Zn Doped at 4.0 wt% 600C 3h Before and After Ball Mill 
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Figure 64. SEM Image ofTiO2 Zn Doped at 500C 3h After Ball Mill at 20000X. Starting Left: 
0wt%, 1.3wt%, 2.2 wt%, 3.1 wt%, 4.0 wt% and 4.9 wt%  
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Figure 65. SEM Image ofTiO2 Zn Doped at 600C 3h After Ball Mill at 20000X. Starting Left: 
0wt%, 1.3wt%, 2.2 wt%, 3.1 wt% and 4.0 wt%  
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Figure 66. EDS Spectra for 500C 3h Zn Doped TiO2 After Ball Milling 
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Figure 67. EDS Spectra for 600C 3h Zn Doped TiO2 After Ball Milling 
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Table 2. EDS values for TiO2 Xwt% Zn 500C After Ball Milling 

  1100X 20000X Sample # (Theorical wt%) 
Element Wt% At% Wt% At% 

8 (0wt%) OK 35.97 62.71 33.64 60.49
  TiK 64.03 37.29 64.19 38.55

9 (1.3 wt%) OK 29.11 55.33 31.68 58.27
  TiK 68.9 43.74 66.91 41.1
  ZnK 1.99 0.92 1.41 0.63

10  (2.2 wt%) OK 35.69 62.8 33.95 61.07
  TiK 60.51 1.64 4.77 2.1
  ZnK 3.8 35.56 61.28 36.83

11  (3.1 wt%) OK 35.1 62.11 34.9 61.9
  TiK 61.91 36.59 2.98 1.3
  ZnK 2.99 1.29 62.12 36.8

12  (4.0 wt%) CK 5.17 11.4 5.11 11.3
  OK 33.08 54.75 32.86 0.95
  ZnK 2.03 0.82 2.34 33.14
  TiK 59.73 33.02 59.7 54.61

13  (4.9 wt%) CK 6.53 13.35 5.36 10.66
  OK 38.34 58.87 42.77 63.86
  ZnK 3.54 26.46 2.9 24.42
  TiK 51.59 1.33 48.97 1.06

 

Table 3. EDS values for TiO2 Xwt% Zn 500C After Ball Milling 

  1100X 20000X Sample (Theorical Zn wt%) 
Element Wt% At% Wt% At% 

14 (0wt%) OK 28.98 54.99 28.91 54.9
  TiK 71.02 45.01 71.09 45.1

15 (1.3 wt%) OK 34.62 61.42 32.7 59.39
  TiK 64.34 38.13 66.03 40.05
  ZnK 1.04 0.45 1.26 0.56

16 (2.2 wt%) OK 40.28 67.03 - -
  SiK 0.64 0.6 36.84 63.91

  TiK 55.92 31.08 59.86 34.69
  ZnK 3.17 1.29 3.3 1.4

17  (3.1 wt%) OK 35.36 62.19 32.54 59.2
  SiK 0.65 0.66 0.71 0.74
  TiK 61.21 35.95 63.69 38.7

  ZnK 2.78 1.19 3.06 1.36
18  (4.0 wt%) TiL 26.47 16.6 27.44 17.4

  OK 30.25 56.79 29.34 55.72
  ZnL 1.79 0.82 1.85 0.86
  TiK 40.13 25.16 40.07 25.42
  ZnK 1.36 0.62 1.3 0.6
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 Comparing Figures 46 and 51 one can see that Zn concentration of 1.3 wt 

% is an optimum for obtaining higher photocatalytic efficiency for the ball milled 

TiO2-Xwt.% Zn samples calcinated at 500°C with an optimum pore volume size. 

The correlation between the increase of photocatalytic activity and the BET 

surface area implies that the liquid-solid interface of ball- milled samples plays an 

important role in the improvement of the  photocatalytic activity for the Zn doped 

TiO2. For the samples calcinated at 600°C, the maximum photocatalytic activity 

was observed for the samples with 4.9 wt.% Zn doping.  

 Thus we can conclude that  the proposed new strategy to reduce the 

average crystallite size and optimize the micropore size distribution by mechano-

chemically milling TiO2-Xwt.% Zn in a high energy planetary mill has resulted in 

average improvement of the photocatalytic activity by a two fold increase as it 

can be seen in Figures 42 and 43. 
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

The Results of this study are as follows: 

1. Attempts were made to improve the photocatalytic behavior of TiO2 by 

doping with various concentrations of Zn (0, 1.3, 2.2, 3.1, 4.0 and 4.9) in a 

sol-gel process. 

2.  There is no significant change in the photocatalytic efficiency for TiO2-

Xwt.% Zn processed at two different calcination temperatures (500 and 

600 °C). 

3. The reason for this may be due to the large crystallite sizes and the lower 

surface area of these initial samples observed from XRD and BET 

analysis. 

4. Pursued a new strategy to reduce the average crystallite size and optimize 

the micropore size distribution by mechano-chemically milling TiO2-Xwt.% 

Zn in high energy planetary mill. 

5. This approach resulted in average improvement of the photocatalytic 

activity by a two fold increase which can be explained by:  a) increase in 

the surface area by two times and b) decrease in average cyrstallite size 

by two times. 
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6. Zn concentration of 1.3 wt.% is optimum for obtaining higher 

photocatalytic efficiency for the ball milled TiO2-Xwt.% Zn samples 

calcined at 500°C. 

7. For the case of samples calcined at 600°C, the maximum photocatalytic 

behavior was observed for TiO2 -  4.9 wt.% Zn. 

8. The above photocatalytic enhancement of TiO2-Xwt.% Zn  can be 

explained by the increase in the surface area and the optimized size of the 

particles. 

9.  Comparing the Kubelka-Munk spectra of pristine and ball milled samples 

revealed a blue shift (increase in Eg) from 3.2 eV to 3.35 eV, which may 

be because of the presence of quantum size effects. 

10.  SEM microstructural investigations revealed variations in the surface 

morphology with different Zn doping concentrations in the TiO2-Xwt.% Zn 

nanoparticulates. EDS spectra of these samples confirmed the 

stoichiometric concentration of Zn. 

Experimental observations also suggest that the average crystallite size 

measurements obtained from the XRD analysis and BET surface area 

calculations are in good agreement with each other. 
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