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Silicon Carbide Biocompatibility, Surface Control and 
Electronic Cellular Interaction for Biosensing Applications 

 
Camilla Coletti 

 
ABSTRACT 

Cell-semiconductor hybrid systems are a potential centerpiece in the scenery of 

biotechnological applications. The selection and study of promising crystalline 

semiconductor materials for bio-sensing applications is at the basis of the development of 

such hybrid systems. In this work we introduce crystalline SiC as an extremely appealing 

material for bio-applications. For the first time we report biocompatibility studies of 

different SiC polytypes whose results document the biocompatibility of this material and 

its capability of directly interfacing cells without the need of surface functionalization. 

Since the successful implementation of biosensors requires a good understanding and 

versatile control of the semiconductor surface properties, the chemistry, crystallography 

and electronic status of different SiC surfaces are extensively studied while their surface 

morphologies are thoroughly controlled via hydrogen etching. Also, investigations of the 

effect of cell surface charge on the electronic status of SiC surfaces are attempted 

adopting a contactless surface potential monitoring technique. The results obtained from 

these contactless measurements lead to the development of theoretical models well-suited 

for the description of cell-semiconductor hybrid systems electronic interactions.  
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Chapter 1.     Introduction 

 
1.1. Research objective and motivation 

Cell-semiconductor hybrid systems represent an emerging topic of research in the 

biotechnological area with intriguing possible applications. A comprehensive 

understanding of the interactions governing such systems is the basis of present and 

future development of biologically interfaced device performance. To date, very little is 

known about the main processes that govern the communication between cells and the 

surfaces they adhere to. When cells adhere to an external surface an eterophilic binding is 

generated between the cell adhesion proteins and the surface molecules. After they 

adhere, the interface between them and the substrate becomes a dynamic environment 

where surface chemistry, topology, and electronic properties have been shown to play 

important roles [1-3]. Although previous works have demonstrated that cells display a net 

charge on their external surface [4-7] little is known about cell-semiconductor electronic 

interactions. Studying how and in which magnitude the electronic properties of biological 

entities such as cells may influence and interact with the electronic status of a crystal, and 

describing it with the means provided by solid-state physics would be an enormous step 

forward in science and would represent the foundation for successful future 

implementation of electrically based bio-sensors. 

For this purpose, a suitable crystalline material displaying both biomedical and 

sensing potentialities should be selected and its properties fully characterized. A direct 
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interfacing of cells with the selected semiconductor is a requirement for the detection, 

study and modeling of electronic signals. However, to date, the biocompatibility of only a 

few crystalline semiconductors has been investigated, with Si and titanium dioxide (TiO2) 

drawing most of the attention [3, 8-12]. In fact, since the present trend in research is the 

functionalization and polymer coating of semiconducting surfaces, simple 

biocompatibility studies of crystalline semiconductor materials have been mostly 

neglected. Both Si and Ti are unsuitable for the purpose of studying cellular electronic 

interactions with semiconductors. Si has been shown to display different degrees of 

cytotoxicity, mostly due to its instability in aqueous solutions with subsequent formation 

of silica and silicates, which are known for their harmful effects on cells [9, 13, 14]. On 

the other hand, TiO2, which can become a semiconductor upon ion implantation [3], does 

not display sufficiently satisfying electronic properties that may justify its adoption for 

electronic sensing applications. Therefore, it appears evident that there is a need for the 

introduction of a different semiconducting material that, displaying both biocompatibility 

and great sensing potentiality may fill the existing gap. 

Single-crystal silicon carbide (SiC) is a wide band gap semiconductor with vast 

sensing potentiality, very resistant to wear and corrosion, and with optimal tribological 

properties. In the past, because of its chemical inertness and superior resistance, the 

amorphous phase (a-SiC) of this promising material has been suggested for prosthesis 

and implant coating [15, 16]. For the same reasons, a-SiC biocompatibility has been 

widely studied yielding promising results [17-19]. Also, a-SiC has been found to be 

highly haemocompatible and an optimal coating for heart stents [20]. Although 

amorphous SiC has been widely characterized by bio-medical research, surprisingly, to 
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date, no studies report on the biocompatibility of crystalline SiC, which, because of its 

wide electronic energy band gap, appears particularly appealing for bio-sensing 

applications.  

For the reasons listed above, we selected crystalline SiC as the ideal substrate 

material for bio-sensing investigations which may uncover the complex nature of 

semiconductor-cell electronic communication. Since the degree of success in the use of a 

semiconductor material for biosensing applications strongly depends on its 

biocompatibility and surface properties, we exhaustively studied crystalline SiC 

biocompatibility and characterized SiC surfaces at a chemical, crystallographic and 

morphological level. The interesting and insightful results obtained in the course of these 

studies are reported in the next chapters and, for the most part, are novel contributions 

that range from surface science to biomedical fields. 

Cell-semiconductor electronic interaction investigations were also part of this 

project. For these studies, we used fully characterized SiC surfaces in combination with a 

contactless surface potential monitoring technique: contact potential difference (CPD) 

measurements. The CPD technique was selected because of its extremely appealing 

capability of monitoring the potential of a surface without discharging it. The main idea 

at the basis of this experiment was to monitor the effect that the cell charge has on the 

electronic status (e.g., energy band bending → surface potential) of a semiconductor. 

Specifically, its implementation consists of monitoring, via CPD, the surface potential 

variation caused by the presence of cells cultured or deposited directly on SiC substrates. 

The success of such measurements would, as mentioned before, greatly impact the 

modeling and design of electronic biosensors. However, to the extent that the final goal is 
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attractive, its implementation is equally challenging. One of the major obstacles involved 

with the CPD monitoring of cell-semiconductor systems resides in the fact that cells need 

to be immersed in liquid (e.g., culturing media) to be kept alive. This requirement 

introduces a significant challenge since the few CPD measurement attempts in the past 

using objects immersed in liquid have provided conflicting results [21-23]. Another issue 

related with the design of these CPD experiments is the very limited knowledge that we 

have presently on the effective charge of a cell immersed in an electrolyte. The only 

experimental technique currently used with success which is capable of detecting the cell 

surface charge is electrophoresis [5, 24, 25]. However, because of theoretical and 

modeling problems, the electrophoretic data do not allow a direct calculation of the cell 

charge. As a result, except for erythrocytes, no estimations of the surface charge of cells 

are found in the existent literature. The lack of a definite quantification of this charge 

adds difficulty to the proper design of CPD experiments.  

Thanks to a suitable experimental approach we were able to overcome electrolyte-

related experimental issues and to successfully perform CPD measurements on surfaces 

immersed in liquids. This allowed us to electronically characterize the semiconductor-

electrolyte interface and move towards the desired cell-semiconductor electronic 

interaction investigations. Our attempts to monitor possible changes in the semiconductor 

band bending due to the presence of live cells are also reported in this work and provide 

interesting information and the basis for future cell-semiconductor electronic interaction 

studies.  

In this chapter we first describe the general characteristics of single-crystal SiC and 

the present knowledge of the bio-medical potentialities of its amorphous phase (§ 1.2). 
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We then give a brief overview of all techniques used in our work to characterize SiC 

surfaces (§ 1.3) and focus in particular on the CPD monitoring technique which is used 

later in this work for cell-semiconductor electronic interaction investigations (§ 1.4). 

 
1.2. Silicon carbide: a promising material for bio-sensing applications 

To the best of our knowledge, this is the first work that introduces crystalline SiC as 

a promising biomaterial for bio-sensing applications. In the following sections we review 

the basic properties of this interesting semiconductor (§ 1.2.1) and the background 

information related to the use of its amorphous form, a-SiC, in biomedical research (§ 

1.2.2). 

 
1.2.1. SiC general properties 

Naturally occurring silicon carbide (SiC), which has the gem name of moissianite, 

was first observed in 1893 by Henri Moissan in the Canyon Diablo meteorite in Arizona. 

SiC is, in fact, extremely rare in nature and typically found only in minute quantities in 

corundum deposits, kimberlite, and meteorites. Analysis of SiC grains contained in 

meteorites revealed that this material originated from stars evolved in higher-metallicity 

regions than our galaxy and suggested that SiC is older than our solar system [26]. To 

date, more than 170 crystalline forms of SiC can be synthesized, which is a property 

called polytypism. A tetrahedron of four carbon atoms covalently bonded to a silicon 

atom in the centre is at the basis of every SiC crystal (Fig. 1.1). Each carbon atom is 

located 3.08 Å from the others, while the distance between the silicon and the carbon 

atom is 1.89 Å. 
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Figure 1.1. Tetrahedron building block of all SiC crystals showing the bond lengths
between Si and C atoms. 

 
 

An interesting feature of SiC is that it displays a two-dimensional polymorphism 

called polytypism. All the SiC crystals have a hexagonal frame of Si and C bilayers. The 

stacking order between succeeding double layers of carbon and silicon atoms is a variable 

that defines the different polytypes of SiC. Specifically, in Fig. 1.2 the three different 

positions that the hexagonal frame can assume in the lattice are reported and referenced 

as A, B, and C. 

 

 
Figure 1.2. Illustration of the three different positions that the hexagonal frame of SiC
bilayers can assume in the lattice (top) and stacking sequence of the three most common
polytypes (bottom). 
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What is defined as the cubic polytype (β- or 3C-SiC) in SiC presents a stacking 

sequence ABCABC.... The hexagonal polytypes, 4H- and 6H-SiC (α-SiC), have stacking 

sequences of ABCBABCB… and ABCACBABCACB…, respectively (Fig. 1.2). Due to 

the different crystallographic structure, different polytypes present different electronic 

and optical characteristics. The electron energy band gap is 2.39 eV for 3C-SiC, 3.023 eV 

for 6H-SiC, and 3.265 eV for 4H-SiC [27]. 

The properties that make this material particularly promising for biosensing 

applications are: 1) the wide bandgap that, as mentioned before, increases the sensing 

capabilities of a semiconductor; 2) the chemical inertness that suggests the material 

resistance to corrosion in harsh environments such as body fluids (e.g. SiC does not react 

with any known material at room temperature, the only efficient etch being molten KOH 

at 400-600 ºC); 3) the high hardness (5.8 GPa), high elastic modulus (424 GPa), and low 

friction coefficient (0.17) that make it an ideal material for smart-implants and in-vivo 

biosensors [15, 28, 29].  

As we mentioned above, the three major polytypes of SiC present different 

properties. For completeness in this work we characterized the surfaces and evaluated the 

biocompatibility of the most studied SiC polytype (e.g., 3C-, 4H-, 6H-SiC). 

 
1.2.2. SiC as a biomaterial: background information 

Even though crystalline SiC biocompatibility has not been investigated in the past, 

information exists concerning the biocompatibility of the amorphous phase of this 

material (a-SiC). First, it is important to mention that a-SiC is one of the principal 

materials of choice for cardiovascular applications. In fact, a-SiC haemocompatibility has 
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been not only suggested by numerous studies [29-31] but also greatly proved by the 

successful use of a-SiC coated heart stents in in-vivo clinical trials. In fact, to date, 

hydrogen rich amorphous SiC (a-SiC:H, also known as Tenax) coated stents have been 

implanted in thousands of moderate-to-high risk patients yielding only a minor incidence 

of adverse events [20, 32-35]. At present, a-SiC:H is known for its high 

thromboresistance induced by the optimal barrier that this material presents for protein 

(and therefore platelet) adhesion. Also, amorphous SiC superior tribological and 

mechanical properties, together with the fact that it exhibits hydroxyapatite-like 

osseointegration, make it an excellent candidate material for medical prosthetic implants 

[16, 36]. Although in-vivo trials of SiC coated hip or oral prostheses have not been 

performed (or at least reported) to date, in-vitro preliminary studies have shown 

promising results [16, 17, 37]. On the other hand, one of the possible drawbacks that may 

be associated with the use of SiC in-vivo is related to the unclear and highly debated 

cytotoxic level of SiC particles [38, 39, 17, 18]. Nonetheless, we believe that the potential 

cytotoxicity of SiC particles does not represent a dramatic issue as much as it does for Si, 

since the great tribological properties of SiC make it less likely to generate debris.  

In conclusion, most of the studies conducted in the past on a-SiC provide evidence 

of the attractive bio-potentialities of this material and hence suggest similar properties for 

crystalline SiC. The promising information found in the literature combined with the 

well-known sensing potentiality of single-crystal SiC are at the basis of our choice to 

investigate the potentialities of this material for bio-sensing applications. 

 



9 

1.3. Surface characterization tools 

We previously mentioned that a successful implementation of a material for bio-

sensing applications largely depends on the chemical, crystallographic and morphological 

properties of its surface. In fact, it is present knowledge that the bonding of cell adhesion 

proteins to the molecules of a foreign surface is mostly influenced by the chemistry, 

hydrophilicity, morphology, and electrostatics of the surface itself [1-3]. For these 

reasons, this work also focused on the characterization of the surface of the 

semiconducting material that we propose as ideal for bio-sensing applications, namely 

SiC. In order to study SiC surfaces, we used different characterization techniques whose 

main features are reported below: 

Atomic force microscopy (AFM) operates by measuring the atomic forces between a 

sharp probing tip (typically a few nm in radius) and a sample surface. Even though it can 

be updated for different uses (e.g., magnetic characterization in magnetic force 

microscopy (MFM), doping profiling in scanning spreading resistance microscopy 

(SSRM), etc.) the basic AFM system is used for morphological characterization of 

surfaces. The AFM can operate in several modes: contact (the cantilever contacts the 

surface while experiencing repulsive van der Waals forces), non contact (the cantilever is 

held above the surface and senses the attractive van der Waals forces), and tapping mode 

(e.g., the cantilever vibrates at or near its resonant frequency and ‘taps’ the surface). The 

AFM basic principle of operation is the following: a cantilever with a sharp tip is dragged 

across the sample surface while a laser is focused on the back side of the cantilever. The 

vertical probe motion is then sensed by a position-sensitive photodetector and a feedback 

loop adjusts the probe-sample separation to maintain a constant amplitude and force on 
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the probe. Hence, the feedback loop gives a measurement of the sample height variation. 

The measurements are typically performed in atmosphere but, with proper equipment, 

can also be performed in vacuum. All the AFM results presented in this work were 

obtained working under atmosphere and, if not otherwise specified, in tapping mode. For 

the imaging in liquid, the contact mode was used. 

Scanning electron microscopy (SEM) is a technique for qualitative morphological 

characterization of a sample surface. An electron beam with electron energies ranging 

from 10 to 30 keV is raster-scanned across the sample surface and the resulting electrons 

emitted from the sample are collected to form an image of the surface. SEM resolution is 

lower than that obtainable from AFM. Therefore, for high resolution and quantitative 

information the AFM method is preferred. SEM is typically used in this work to obtain 

large-scale characterization of sample surfaces followed by quantitative evaluation via 

AFM. 

Low energy electron diffraction (LEED) is used to investigate the crystallography 

of sample surfaces. Specifically, low energy (10-1000 eV) electrons incident on the 

sample are diffracted by the periodic arrangement of the atoms. The diffracted electrons 

emerge from the surface in directions satisfying interference conditions from the crystal 

periodicity and strike a fluorescent screen, forming a distinct array of diffraction spots 

due to the orientation of the crystal lattice of the sample [40]. Obviously, because of their 

low energy, the incident electrons penetrate only a few atomic layers into the surface. The 

LEED results presented in Chapter 2 were obtained in an ultra-high vacuum (UHV) 

analysis chamber at the Max Planck Institute (Stuttgart, DE) equipped with LEED optics, 
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an electron spectrometer for AES, a Si evaporator and sample heating facilities. The 

pressure in the chamber during the measurements was in the 10-11 mbar range. 

Auger electron spectroscopy (AES) is a chemical characterization technique based 

on the Auger effect which describes the phenomenon in physics for which the emission 

of an electron from an atom causes the filling of a vacancy in an inner electron shell. 

Specifically, primary electrons with typically 1-5 keV energy are emitted from an 

electron gun and impinge on the studied surface. If its energy is sufficient, an incident 

electron can remove a core state electron from a surface atom. This now empty core state 

can be filled by an outer shell electron from the same atom, in which case the electron 

moves to a lower energy state. The energy associated with this transition is typically 

imparted to a second outer shell electron, the Auger electron, which hence is ejected from 

the atom. The characteristic energy of this ejected electron defines the originating atom. 

By analyzing the resulting energy spectra it is possible to determine the chemical 

composition of the studied surface with the exception of hydrogen and helium, which, 

having less than three electrons, cannot be detected by this technique. The sampling 

depth of AES ranges from 0.5 to 5 nm [40]. The AES results presented in Chapter 2 were 

obtained in the same ultra-high vacuum (UHV) analysis chamber used for the LEED 

investigations. The energy of the incident electron beam was 2.25 keV. The pressure in 

the chamber during the measurements was again in the 10-11 mbar range. 

X-ray photoelectron spectroscopy (XPS) is a chemical characterization technique 

based on the photoelectric effect which allows, as AES, identification of elements and 

their chemical status, with the exception of hydrogen and helium (in theory hydrogen and 

helium could be detected by using a very good spectrometer). Primary X-rays with 
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energies of 1 to 2 keV (e.g., Mg Kα radiation or Al Kα radiation) impinge on the sample 

surface causing ejection of electrons from any orbital. Obviously, photoemission occurs 

only for X-ray energies exceeding the electron binding energy. Therefore, each element 

generates a characteristic set of peaks in the photoelectron spectrum at kinetic energies 

determined by the photon energy and the respective binding energies. Analysis of the 

peaks allows determination of the composition of the sample surface. Like AES, XPS 

allows sampling depths in the 0.5-5 nm range. All the XPS results presented in this work 

were obtained working at a maximum pressure of 10-9 mbar. 

Total attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

is a chemical characterization technique which uses IR to determine the molecular 

composition of a surface. The FTIR principle of operation is based on the fact that part of 

the incident infrared radiation is absorbed by molecules only if the frequency of the 

radiation provides energy in the exact quantity required by the bonds to vibrate. The 

infrared spectra collected after the beam has passed through the sample is indicative of 

the chemical bonds present at the surface (i.e., different molecules absorb at different 

characteristic frequencies). Unlike AES and XPS, this technique is capable of detecting H 

and its compounds. Attenuated total reflectance (ATR) is used in particular for obtaining 

IR spectra of difficult samples such as the solid/liquid interface. ATR occurs when the 

incident beam enters from a more-dense (with a higher refractive index) into a less-dense 

(with a lower refractive index) medium. The evanescent wave from the primary optical 

beam penetrates a very short distance beyond the interface and into the less-dense 

medium before the complete reflection occurs (typically a few µm). The wave intensity is 

reduced by the sample in regions of the IR spectrum where molecular absorption takes 
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place. To utilize the ATR effect, the sample is placed in close contact with a high-

refractive-index optical crystal. A 45 º beveled zinc selenide (ZnSe) crystal was used in 

the ATR-FTIR experiments performed in this work. Atmospheric CO2 and H2O 

absorption lines were reduced by purging the apparatus with dry nitrogen [41].  

Other surface characterization techniques and experimental apparatus were 

sporadically used during the course of this research project, and will be introduced as the 

corresponding results are presented. 

 
1.4. Contact potential difference technique for cell-semiconductor electronic 

interaction studies 

Contact potential difference (CPD) measurement is the technique selected in this 

research project for investigation of cell-semiconductor electronic interactions. In this 

section we first introduce semiconductor energy band diagrams, which are of primary 

importance for a complete understanding of the CPD technique (§ 1.4.1), and then 

discuss the principle of operation behind CPD measurements (§ 1.4.2). In § 1.4.3, we 

describe how CPD measurements can be used to detect charges on a semiconducting 

surface. Also, since the CPD investigations we intend to perform involve a liquid layer 

which wets the semiconductor surface, it is important to discuss energy band diagrams 

for liquids and the existent theory for semiconductor/electrolyte interfaces (§ 1.4.4) and 

to use this information to model the CPD measurements of semiconductor-electrolyte 

systems (§ 1.4.5). 
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1.4.1. Semiconductor energy band diagrams 

The energy spectrum of an ideal semiconductor presents two different typologies of 

energy levels: the allowed energy levels, situated within the conduction and the valence 

bands, and the forbidden energy levels, situated within the so-called band gap. Energy 

band diagrams of semiconductors are characterized by: the conduction band edge, Ec, 

which is the lowest unfilled energy level in the conduction band; the valence band edge, 

Ev, which is the uppermost filled energy level in the valence band; the Fermi level, EF, 

which represents the maximum energy occupied by an electron at 0 K; the energy band 

gap, Eg, which is given by Ec – Ev and contains all the forbidden energy levels; and the 

vacuum energy level, E0, which is a reference level representing the energy of a free 

electron. The basic band diagram for a semiconductor is sketched in Fig. 1.3. Besides 

those already listed, different quantities appear in this figure: the difference between E0 

and EF is called the work function, qφ, and represents the average energy required to 

extract an electron from the semiconducting surface; while the difference between E0 and 

Ec is called the electron affinity, qX, and is the energy necessary to free an electron from 

the conduction band edge. In an intrinsic semiconductor (where electrons and holes are 

present in equal amounts), the Fermi level is near the middle of the forbidden gap and is 

called the intrinsic Fermi level (Ei). However, for n-type semiconductors (i.e., electrons 

are majority carriers) EF > Ei and for a p-type semiconductors (i.e., holes are majority 

carriers) EF < Ei. This basic information will help the reader to understand better the 

energy band diagrams presented in the remainder of this work. 
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Figure 1.3. Energy band diagram for an ideal n-type semiconductor. 

 
 

Fig. 1.3 represents the energy band diagram of an ideal semiconductor, where it is 

assumed that the allowed energy states at the surface are not different from those in the 

bulk. However this assumption is not valid for a real semiconductor, where the 

asymmetric nature of the crystal at the surface (atoms at the surface are only single-side 

bonded) and the existence of crystal defects and foreign bonded atoms introduce extra-

allowed energy states. These allowed energy states are known as surface states and vary 

in energy and typology. For example, states that are neutral when occupied by electrons 

and positively charged when unoccupied are classified as donor states. States that are 

negative when occupied but neutral when empty are classified as acceptor states. This 

nomenclature will be often used in the following chapters. The major effect that surface 

states have on an energy band diagram, and therefore on the electronic status of a 

semiconductor, is that of generating a band bending (e.g., the surface is naturally 

charged). In fact it is the change in the band bending near semiconductor surfaces that is 

typically exploited in sensing applications and thus the key physical concept to take away 

from this introductory discussion. 
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Now that we have presented the basics of semiconductor energy band diagrams, we 

introduce the concept of surface potential that is the quantity measured by the dark/light 

CPD technique to be presented later. The surface potential, φs, is a measure of the 

semiconductor surface departure from the state of electrical neutrality, and is measured as 

the energy difference between the conduction band (valence band) edge at the surface 

and the conduction band (valence band) edge in the undisturbed part (e.g., the bulk) of 

the semiconductor. From this definition it is clear that an ideal semiconductor presents a 

null surface potential, while the surface potential of a real semiconductor is not zero 

because of the existence of surface states. In fact surface states cause a natural charging 

of the semiconductor surface with subsequent depletion or accumulation of majority 

carriers within the surface region. The band diagram for a real n-type semiconductor, and 

its relative surface potential, is reported in Fig. 1.4. 

 

 
Figure 1.4. Energy band diagram of a real n-type semiconductor which contains an 
amount of band bending at the surface. The dotted lines (small dots) represent the ideal 
condition for Ec/q, Ev/q and φi. The surface potential φs is indicated. 

 
 

As is evident from Fig. 1.4, the surface potential can equally be defined using as a 

reference level the intrinsic potential, φi. The surface region where depletion or 

accumulation of the majority carriers take place is named the space charge region (SCR). 
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The electronic condition where the SCR is depleted of majority carriers is called 

depletion and corresponds to an upward bending of the bands for n-type (φs < 0, Fig. 1.4) 

and a downward bending of the bands (φs > 0) for p-type semiconductors. In the case 

where the majority carriers accumulate at the surface (e.g., the condition named 

accumulation), the bands bend down (φs > 0) for n-type and up (φs < 0) for p-type 

semiconductors. The condition for which the intrinsic potential and the surface potential 

coincide is called flatband and obviously in this case φs = 0. The treatment of these 

concepts will be resumed later in Chapter 4.  

 
1.4.2. CPD principles of operation 

Surface potentials of a semiconductor are commonly measured via dark/light 

contact potential difference (CPD) measurements. In a CPD apparatus, a pick-up 

electrode (i.e., probe) is placed near the semiconductor surface, whose back-side is 

grounded, hence forming a capacitor, C, with the semiconductor. Either a Monroe or 

Kelvin probe can be used for this purpose [42]. Since in the apparatus implemented for 

this work we used a Monroe probe [43], which typically presents a low sensitivity to 

external vibrations, we now describe the Monroe probe-CPD principle of operation. 

The final value obtained from a CPD measurement is the contact potential 

difference, Vcpd, between the probe and the sample. This voltage can be easily detected 

by a Monroe probe-electrostatic voltmeter combination in the fashion we now describe. 

In the Monroe probe, the electrode is fixed and a grounded shutter, mounted in front of 

the electrode, is vibrated horizontally, varying the area of the capacitor plates and thereby 

modulating the probe-to-wafer capacitance as shown in Fig. 1.5 (e.g., C = ε·A/d where C 



18 

is the capacitance, A is the area of each plate, d is the separation between the plates and ε 

is the permittivity of the insulator between the plates). 

 

 
Figure 1.5. Schematic representation of a Monroe probe-grounded sample system. 

 
 

Because of the vibrating shutters the capacitance is time variable. Since I = Vcpd 

dC/dt, an alternating current (ac) is generated in the electrode. The contact potential 

difference Vcpd is determined by the electronics of the electrostatic voltmeter by applying 

the null-arrangement, initially proposed by Kelvin [44]. Specifically, the current 

generated in the probe is nullified by adjusting the bias voltage VB until I = 0, in which 

case VB = Vcpd. Summarizing, a CPD apparatus determines the contact potential 

difference that exists between the probing electrode and the investigated semiconductor 

by means of a current-nulling method applied on the current signal generated by a 

variable capacitor. 

Let us now introduce the principle of operation of dark/light CPD measurements 

and explain how this technique yields the surface potential of the analyzed sample. In 

dark/light CPD two contact potential difference values are measured: Vcpd,dark which is 

the value measured as described before in dark, and Vcpd,light which is the value obtained 
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under deep illumination of the sample. Assuming that the chuck-semiconductor contact is 

ohmic the CPD value measured in dark is a sum of different contributing potentials: 

Vcpd,dark = VFB + Vair + φs (1) 

where the flatband voltage, VFB, is a function of the metal-semiconductor work function 

difference and Vair is the voltage drop associated with the air. Moreover, if an oxide is 

present at the semiconductor surface the contact potential difference measured at the 

probe is given by: 

Vcpd,dark = VFB + Vair + Vox + φs (2) 

where Vox is the voltage drop associated with the oxide. As is evident from (1) and (2), a 

single CPD measurement is insufficient to determine the surface potential of a 

semiconductor. This is why measurements under deep illumination are performed. Light-

CPD measurements are performed using a light source with a photon energy higher than 

the energy band gap of the semiconductor under study. Therefore, electrons are excited 

from the valence band to the conduction band (i.e., electron hole pair (EHP) generation) 

and force the semiconductor to a flatband condition (φs → 0). Hence the contact potential 

difference measured by the probe under intense illumination is: 

Vcpd,light = VFB + Vair + Vox (3) 

Therefore the surface potential can be easily calculated as the difference between these 

two measurements: 

φs = Vcpd,dark – Vcpd,light (4) 

 
1.4.3. CPD measurements for charge detection: general considerations 

It is now clear what a surface potential is and how dark/light CPD measurements 

detect it. Presently, this technique is widely used for the determination of the effect of 
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chemical treatments and ionic charges on a semiconductor surface. In fact, charges 

deposited or trapped on the semiconductor surface induce a bending of the energy bands. 

The entity of this band bending, and therefore the sign and magnitude of the charge at the 

surface, can be determined by performing CPD measurements of the surface not charged 

and comparing the measured φs value with the one obtained for the same charged surface. 

Let us now consider an n-type semiconductor in a naturally depleted condition (e.g., 

majority carrier absence in the SCR) as the one depicted in Fig. 1.6(a). By adding 

negative charges on its surface we will enhance the magnitude of the band bending (e.g., 

majority carriers are pushed deeper into the semiconductor bulk because of repulsion 

from the negative charge at the surface, Fig. 1.6(b)). CPD measurements of the surface in 

these two different conditions will yield different values of φs. Supposing that we did not 

know the sign of the deposited charge, a shift of φs towards more negative values upon 

charge addition would have been a direct indication that the charge deposited was 

negative. Upon previous corona charge characterization of the specific semiconducting 

surface we would also be able, by comparing the two measured φs values, to define the 

magnitude of the deposited charge [45]. 
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Figure 1.6. Energy band diagram of an n-type semiconductor (a) not charged and (b) 
with the negative charges on the surface. Note the difference in magnitude of the two φs
values. 

 
 

Only one thing could actually impede an estimation of the amount of charge 

deposited on the surface: surface state density. In fact, when measuring the surface 

potential via CPD we are actually measuring the capacitor formed between the probe and 

the semiconductor surface. On the semiconductor surface (e.g., one plate of the 

capacitor), the charge is a sum of the charge in the SCR and that in the surface states. 

Therefore the capacitance measured via CPD is a parallel combination of the surface state 

capacitance Css and the space charge capacitance Csc. The presence of a high density of 

surface states may cause Fermi level pinning [13, 46], in which case charge addition on 

the semiconducting surface will not result in a response of excess charge in the SCR and 

the value of Css will be predominant in the capacitance measured via CPD. 

As we already pointed out our goal is to implement the CPD technique for detecting 

the charge associated with cells once they are cultured/deposited on SiC surfaces. 

Obviously, this can be achieved only if the surfaces we use present a reduced amount of 

surface states. This issue will be treated later in Chapters 2 and 4. 
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1.4.4. The electrolyte-semiconductor interface 

As explained in the previous section, CPD dark/light measurements of a bare 

semiconductor surface allow determination of the semiconductor surface potential. 

However, in this project we aim to perform CPD measurements of a more complex 

structure, the semiconductor-cell-electrolyte system, for the determination of the surface 

potential variation induced in a semiconductor by the presence of charged cells. For this 

purpose we will perform CPD measurements of the semiconductor-electrolyte and 

semiconductor-cell-electrolyte systems and compare the surface potentials calculated for 

the two cases. Eventual differences in these values would allow us to define the effect of 

the charge of cells on the electronic status of a semiconductor. To be able to understand 

the results obtained from CPD measurements of semiconductors immersed in electrolytes 

we first need to model the semiconductor/electrolyte interface. For this purpose we 

introduce an existent model that electronically characterizes this complex interface and 

subsequently apply it for the modeling of our CPD measurements (§ 1.4.4). 

Let us first introduce the distribution of energy levels within an electrolyte as we 

did for a semiconductor in § 1.4.1. An electrolyte is electronically characterized by: a 

redox energy level, ERedOx, which defines the average energy level at equilibrium of all 

the individual redox species; the most probable energy level of the reduced species, ERed; 

and the most probable energy level of the oxidized species, EOx. A schematic 

representation of the energy band diagram for an electrolyte is reported in Fig. 1.7 and, 

also in this case, referenced to the energy vacuum level, E0. 
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Figure 1.7. Electron energy levels for an electrolyte with respect to the vacuum level. 

 
 

Immersion of a semiconductor in an electrolyte results in a charge transfer process 

(i.e., electron exchange) between the two phases until equilibrium is obtained, that is 

when the Fermi level in the semiconductor and the redox level in the electrolyte are equal 

(EF = ERedOx). This produces an electric field at the semiconductor/electrolyte interface 

which generates an electrical double layer well described by the Stern model depicted in 

Fig. 1.8. 

 

 
Figure 1.8. Electrical double layer model describing the charge distribution at an n-type 
semiconductor/electrolyte interface. 

 
 

On the electrolyte side the position of the closest approach of mobile ions is called 

the outer Helmholtz plane (OHP). The Helmholtz layer is the region between the 
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semiconductor surface and the OHP and contains ions attracted to the semiconductor 

surface by the excess charge in the space charge region and by polar water molecules. 

Outside of the Helmholtz layer a region with excess ions of one sign whose thickness 

depends on the electrolyte concentration exists, the so-called Gouy layer [13, 47]. As is 

evident from Fig. 1.9, the Gouy layer is a diffuse space charge region with excess ions of 

the same sign as those accumulating in the OHP. 

 
1.4.5. Modeling of CPD measurements of electrolyte-semiconductor systems 

Now that we have introduced the existent model for semiconductor/electrolyte 

interfaces we can apply this knowledge to model the CPD measurements in liquid that we 

will describe in Chapter 5 and that may lead to a better understanding of the 

semiconductor-cell electronic interaction. 

When measuring, via CPD, a semiconductor-electrolyte system different voltage 

drop contributions will sum to yield the Vcpd value measured by the Monroe probe. To 

ensure that the value obtained from the difference of dark and light measurements is the 

surface potential (i.e., φs = Vcpd,dark - Vcpd,light) all the additional voltage drops should be 

constant values independent of the illumination. Furthermore, we must define their 

magnitude to ensure that their contribution is not predominant in the measured Vcpd 

value. An equivalent circuit for the electrical components at the 

semiconductor/electrolyte interface is reported in Fig. 1.9. 
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Figure 1.9. Equivalent circuit at the semiconductor/electrolyte interface where CH, CSS
and CSC are the Helmholtz, surface state and space-charge capacitance, respectively. 

 
 

The voltage drop between the semiconductor bulk and its surface is the value φs, 

which for a dry semiconductor can be directly calculated via dark/light CPD. As 

discussed in § 1.4.3, this voltage drops across two capacitances in parallel, the space 

charge capacitance, Csc, and the surface states capacitance, Css. In a semiconductor-

electrolyte system φs will also be in series with the voltage drops associated with air 

(Vair), with the Helmholtz layer (VH) and with the Gouy layer (VG). However, for 

electrolyte concentrated solutions (e.g., above 10-2 M), the value of VG is negligible [48]. 

Therefore the final electronic equivalent circuit in terms of the relevant capacitances will 

be given by the series of the Helmholz capacitance CH with the parallel of the space 

charge capacitance Csc and the surface states capacitance Css, as shown in Fig. 1.9 and 

described by equation (5). 

scssH

ssscH
cpd CCC

)CC(CC
++
+

=  (5) 

Therefore it is evident that in order to monitor the effect that the charge associated with 

cells has on the electronic status of a semiconductor (e.g., changes to its space charge 

region) we need: Css<<Csc and Csc<<CH. Since typical values of CH for a concentrated 
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solution like the ones used in this work are close to 20 µF/cm2 [49] and typical values of 

Csc for SiC samples range from 10-2 to 10-1 µF/cm2 (depletion to accumulation, 

respectively) the latter condition can be considered satisfied. Also, the value of Csc is 

influenced by the doping density in the SiC crystals and, therefore, can be controlled. 

However Css, which is determined by the surface state density, is another matter and is 

highly dependent on how the crystals are prepared and their surfaces treated. Therefore 

reduction of surface state density on SiC surfaces was attempted using hydrogen etching 

(Chapter 2) in order to ensure that the above condition was met. 

 
1.5. Summary and dissertation organization 

The electronic interactions that exist between biological cells and semiconductors 

are, to date, unknown. In this work we aim to move towards a better understanding of 

how, and in which magnitude, the charge of a cell may influence the electronic status of a 

semiconductor. In order to accomplish this very ambitious objective a semiconductor that 

combines both biocompatibility and sensing potentialities needs to be selected and fully 

characterized. In this chapter we introduced crystalline SiC as a promising material for 

this task: its wide band gap is extremely appealing for sensing applications and the well-

known biocompatibility of amorphous SiC likely suggests that the crystalline phase may 

display similar properties. In order to characterize SiC surfaces different techniques were 

used in the course of this work, which have been introduced in this chapter. Moreover we 

suggested an apparently promising technique to investigate cell-semiconductor electronic 

interactions: contact potential difference (CPD) measurements. Since, to date, no studies 

report on the direct investigation of the effect of cell charges on semiconductors, the 

implementation of successful measurements that may lead to uncover the electronic 
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communication ongoing between the biological and the semiconductor world is 

pioneering and extremely challenging. Also, although the CPD technique appears to be 

ideal for our goal because of its contactless nature, its implementation for hybrid system 

monitoring is not trivial. In particular, the necessary presence of an electrolyte during the 

measurements complicates the matter and accurate modeling of both the hybrid system, 

which is the object of measurements, and of the measurement itself due to such artifacts, 

are required to better design and understand the investigations we performed. 

The organization of the dissertation, based on the individual chapters, is as follows. 

In Chapter 2 we introduce hydrogen etching as an ideal technique for obtaining high 

quality, atomically flat SiC surfaces with resulting low surface state charge densities. The 

H-etched surfaces are also perfectly suitable (e.g., well prepared) for surface science 

studies. This allowed us to characterize in a comprehensive fashion the morphological, 

chemical, and crystallographic features of SiC surfaces by using AFM, AES, and LEED 

methods, respectively.  

Chapter 3 reports an exhaustive study on the biocompatibility of SiC. Fluorescence 

microscopy, viability assays and atomic force microscopy were used to characterize the 

morphology, adhesion quality and proliferation of mammalian cells on SiC substrates. 

This study, besides offering, for the first time, quantitative and qualitative information on 

the biocompatibility of SiC, also describes the possibility of directly interfacing cells with 

SiC surfaces. This result definitely confirms the potentialities of SiC as a biomaterial and 

an ideal substrate for cell-semiconductor electronic interaction studies. 

Chapter 4 describes the implementation of a CPD apparatus for cell-semiconductor 

electronic interaction studies and reports on the electronic characterization of SiC 
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surfaces. The effect of charges on SiC substrates is exhaustively investigated and the 

possibility of passivating electronically the surface of 3C-SiC is presented and discussed. 

Chapter 5 reports the procedures developed for CPD measurements of 

semiconductors immersed in liquids and investigates the effect that different electrolytes 

have on the electronic status of SiC surfaces. Also, in this chapter we report the 

procedure and results for CPD measurements of semiconductor-cell-electrolyte systems. 

Chapter 6 summarizes the results reported in the previous chapters and uses the 

knowledge acquired in the course of this research to suggest future developments and 

possible implementations of cell-semiconductor electronic interaction studies. 
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Chapter 2.     SiC Surface Preparation and Characterization 

 
In order to succeed in the implementation of sensors for biomedical applications the 

surfaces of the semicoducting materials that are going to be interfaced with cells have to 

fulfill several requirements. First, they need to be fully characterized at a chemical, 

crystallographic, and morphological level. It is in fact well known that cell adhesion to a 

surface is regulated by a combination of chemical, morphological and energetic 

properties of the surface [1-3]. Also, atomically flat surfaces may be preferable, 

depending on the targeted application. Specifically, for the investigation of cell-

semiconductor electronic interactions that we aim to perform, working with atomically 

flat surfaces is particularly appealing: the reduction of surface defects and hence of 

associated surface states surely simplifies the task by reducing trapping at the 

cell/semiconductor interface.  

In this section we present the processes developed for producing atomically flat SiC 

surfaces, and their chemical and crystallographic characterization. Commercially 

available SiC crystals present slicing and polishing scratches at the surface as a result of 

the wafer preparation processes, which imply a high density of surface states in addition 

to a high surface roughness. Moreover, these surfaces are not feasible for chemical and 

crystallographic studies, which would allow for their accurate characterization. A 

comprehensive understanding of the chemical, structural and morphological surface 

characteristics is of primary importance for all those biosensing applications which, as 
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the CPD measurements proposed later in this work, rely on the direct interfacing of 

biological cells and semiconducting material. Hence, the need for a full characterization 

of the surfaces that will be used in the rest of this work becomes clear. 

Scratch-free, passivated SiC surfaces suitable for surface science studies can be 

obtained by using an appropriate surface preparation technique. The chemical inertness of 

SiC makes it impossible to use wet chemical etchants to remove the slicing and polishing 

damage. To date, the SiC surface preparation techniques which have been developed and 

used with different degrees of success are: oxidation [50, 51], sublimation etching [52], 

photoelectrochemical etching [53], chemomechanical polishing (CMP) [54], plasma 

etching [55], and hydrogen etching (H-etching) [56-58]. Among these, the latter has been 

shown to be the most effective to completely remove polishing scratches while producing 

atomically flat surfaces perfectly suitable for surface science studies [58-61]. 

This section focuses on the production and characterization of well-ordered 3C-, 

4H- and 6H-SiC surfaces via H-etching in a hot-wall chemical vapor deposition (CVD) 

reactor. Morphological, crystallographic and chemical analyses are performed via atomic 

force microscopy (AFM), low energy electron diffraction (LEED) and auger electron 

spectroscopy (AES), respectively.  

 
2.1. H-etching of SiC surfaces 

H-etching of SiC surfaces has been primarily used in the past to improve the surface 

quality of bulk substrates prior to epitaxial growth [62-64]. It is usually performed in a 

chemical vapor deposition (CVD) reactor (either hot-wall or cold-wall) flowing variable 

hydrogen fluxes at high temperatures (typically in the range of 1000-1700 ºC), and at a 

pressure varying between 100-760 Torr. 
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Hydrogen etching of SiC is believed to be a two-step process [59, 63], which can be 

simplified as follows. The high temperature characteristics of the process cause the 

evaporation of Si atoms from the surface and the subsequent exposure of the underlying 

C atoms. At this stage, hydrogen atoms from the etching gas bond to the surface C atoms 

forming hydrocarbons which in turn desorb from the crystal uncovering the next layer of 

Si which then evaporates, and so on. However, the removal of many monolayers (up to 

several hundred nanometers) of SiC material not always produces atomically flat and 

ordered surfaces. First, the morphology of the surface obtained after etching is highly 

dependent on the original surface condition. If the surface has a high density of hidden 

defects or presents heavy polishing damage, the etching will expose and enlarge the 

subsurface defects and worsen the surface morphology. Also, one of the most common 

problems in SiC H-etching is the condensation of Si droplets on the surface due to the 

preferential hydrocarbon evaporation caused by the higher equilibrium pressure of C-H 

groups with respect to Si [62]. Also, over-etching of the SiC surfaces, which results in 

step-bunching and defect enlargement, must be prevented to achieve an atomically-flat 

surface. In the following sections, we will use the terminology ‘optimum process’ to 

designate an etching process which improves the surface morphology and the atomic 

order of the starting surface without causing the aforementioned drawbacks. Careful 

planning of the etching experiment, together with an understanding of hydrogen etching 

kinetics allowed us to develop ‘optimum’ H-etching processes for 3C-, 4H- and 6H-SiC. 

 
2.2. 3C-SiC 

In the past, the lack of sufficiently large high-quality 3C-SiC substrates has led to a 

delay in the development of growth techniques for this polytype and a subsequent lack of 
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good quality 3C-SiC epilayers. As a consequence, the chemical, morphological and 

crystallographic characteristics of 3C-SiC epilayers have been investigated on a smaller 

scale than those of the SiC hexagonal polytypes (i.e., 4H/6H-SiC described in § 2.3). 

Since no reports on H-etching of 3C-SiC surfaces were found in the literature, we 

had no references to help us define the optimal etching parameters. Therefore, in order to 

develop the ‘optimum’ etching process, we first studied the effect of H-etching on the 

morphology of 3C-SiC epilayers for different etching parameters (§ 2.2.1). Etching rates 

of 3C-SiC(001) for different etching temperatures are reported in § 2.2.2. 

Crystallographic studies of the 3C-SiC surfaces etched under optimum conditions showed 

a surface reconstruction (e.g., (5×1)) which has not been investigated previously in the 

literature and was therefore thoroughly examined in § 2.2.3. Also, the ‘optimum’ H-

etching process presented in § 2.2.1 may be helpful in the development of a H-etching 

process for the removal of damage and scratches on polished 3C-SiC surfaces after CMP 

treatment. 

 
2.2.1. Effect of H-etching on the morphology of 3C-SiC surfaces and development of 

an ‘optimum’ etching process 

The 3C-SiC(001) epilayers used in this work were grown on 8x10 mm Si(001) dice 

in a low-pressure, hot-wall, horizontal chemical vapor deposition (CVD) reactor [65] 

using a chlorinated growth chemistry [66]. The film crystallinity was confirmed by x-ray 

diffraction (XRD) rocking curves [66]. Non-contact doping profiling measurements were 

also performed which assessed the film doping to be n-type and in the low 1015 cm-3 

range [67]. The thickness of the studied epilayers varied between 2 and 6 µm, as 

measured by Fourier transform infrared spectroscopy (FTIR). Only the epilayers which 
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showed, during AFM inspection, similar morphological characteristics were used in this 

work. AFM micrographs representative of these as-grown 3C-SiC(001) surfaces are 

shown in Figures 2.1 and 2.2. 

 

 
Figure 2.1. 10×10µm AFM micrograph showing the typical surface morphology of 3C-
SiC epilayer before H-etching treatment. Note the presence of APDs. AFM data taken in 
tapping mode. 

 
 

Figure 2.1 reveals that the as-grown surfaces presented anti-phase domain 

boundaries (APDs), which are typical features of 3C-SiC films heteroepitaxially grown 

on Si and are due to the large lattice mismatch (~20%) between the 3C-SiC and the Si 

crystals. 
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Figure 2.2. 5×5µm AFM micrograph and 2×2µm (inset) of as-grown 3C-SiC(001) 
epilayers showing atomic steps. Step height and terrace width along the [110] direction
are depicted in the higher resolution image and extracted by line profile. AFM data taken
in tapping mode. 

 
 

As is evident from the 5×5 µm micrograph in Fig. 2.2, the samples exhibited the 

atomic structure of the SiC crystal even immediately after growth. Within individual 

APDs the AFM images revealed atomically flat terraces with small steps. However, the 

steps were only loosely aligned along the low-Miller index directions [110] and [110] 

and were rather wavy. Nevertheless, typical step heights, as determined from the higher 

resolution micrograph and the line profile also displayed in Fig. 2.2, were in the 2-3 Å 

regime which corresponds well to biatomic steps (2.18 Å) in the 3C-SiC crystal structure 

which in the <001> direction is characterized by alternating C and Si layers. For 

reference the trenches observed between different APDs were at least 15 nm deep. 

Four parameters can be varied in a H-etching process: temperature (T), pressure (p), 

hydrogen flow (Hf), and etching time (tetch). In the set of experiments that will be 

described in this section, which has been designed with the double aim of studying the 

effect of H-etching on cubic SiC surfaces and developing an ‘optimum’ etching process, 
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only temperature was varied from experiment to experiment, while the other parameters 

were kept constant. Since the epilayers to be etched presented APDs, aggressive etching 

had to be avoided in order to prevent preferential etching and subsequent enlargement of 

the trenches (i.e. sites with higher surface energy are subjected to higher etch rates). Low 

pressure (LP) etching is known to increase the etch rate (Si diffuses better through the 

thinner boundary layer caused by lower pressures): therefore, the whole set of 

experiments was performed at atmospheric pressure (AP) while Pd-purified hydrogen 

was flown at the moderate rate of 10 SLM (standard liters per minute). H-etching of a 

crystal operates in an opposite fashion than growth, therefore etching temperatures are 

typically comparable to those used for growth. The 3C-SiC epilayers studied in this work 

were grown on Si(001) (whose melting temperature is 1410 ºC) at temperatures around 

1385 ºC. However, for our experiments, we opted for a lower range of etching 

temperatures (between 1200 and 1350 ºC) since a low processing temperature has fewer 

requirements on the reactor, lower cost and reduced contamination. An etching time of 30 

min was chosen as a constant in all the experiments performed. 

To summarize, all the etching experiments were performed at AP, flowing 10 SLM 

of Pd-purified hydrogen, for 30 min and with temperatures ranging between 1200 and 

1350 ºC in a hot-wall CVD reactor specifically designed for 3C-SiC growth and 

processing [68]. The reactor hot-zone graphite and parts used were not exposed to growth 

in order to minimize the possibility that particles removed during the growth would 

deposit on the SiC surface. In order to remove the native oxide present on the 3C-SiC 

epilayers, the samples were dipped in a 50:1 mixture of de-ionized (DI) water and 

hydrofluoridic acid (HF), rinsed with DI water, and dried with nitrogen. The samples 
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were then immediately loaded into the reactor and brought under vacuum so as to 

minimize the growth of any native oxide on the crystal surface. AFM micrographs 

representative of the surfaces obtained after etching at 1200, 1300 and 1350 ºC are 

reported in Figures 2.3 and 2.4. 

 

 
Figure 2.3. 5×5µm AFM micrograph and 2×2µm inset of a typical 3C-SiC surface after 
H-etching at 1200 ºC. Step height and terrace width along the [110] direction are depicted
in the higher resolution image and extracted by line profile. AFM data taken in tapping
mode. 

 
 

As is immediately evident by comparison of the three AFM micrographs shown in 

Figures 2.3 and 2.4, the best surface morphology was obtained after etching at 1200 ºC. 

The samples etched at this temperature, in fact, presented a well-defined cubic 

morphology with steps perfectly aligned along the [110] and [110] directions, as shown 

in Figure 2.3. The more clear alignment of the atomic steps along the low-Miller index 

directions represent an evident improvement of the processed surface with respect to the 

as-grown (un-etched) surface of Figure 2.2. Again the terraces are atomically flat, 50–100 

nm wide, and typically separated by 2–3 Å steps as seen from the higher resolution image 

and corresponding line profile in Figure 2.3. Step bunching to multiples of the 2.18 Å 
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value was only occasionally observed, while the trenches of the APDs did not appear to 

be enlarged or deepened when compared to the as-grown (un-etched) samples. 

 

Figure 2.4. 2×2µm AFM micrographs of the morphology of 3C-SiC surfaces etched at 
1350 ºC (a) and 1300 ºC (b), respectively. Note the highly damaged surface after etching 
at 1350 ºC. As a reference, Rq = 35 nm for image (a) while is 0.88 nm for image (b). The 
line profile along the [110] direction is extracted from figure (b) and depicts the step
height and terrace width. AFM data taken in tapping mode. 

 
 

On the other hand, a significant enlargement of defects (generally in the form of 

square-shaped pits) was observed in samples etched at 1300 °C. At this temperature, step 

bunching becomes evident, as indicated by the higher step heights (0.8-1.2 nm) and larger 

terrace widths (150-400 nm) depicted in Fig. 2.4(b) and in the extracted line profile. At 

1350 °C, a drastic change of the surface morphology into a highly mosaic cubic structure 

was observed (Fig. 2.4(a)). As a reference, the root mean square roughness (Rq) of a 

2×2µm AFM micrograph of samples etched at 1300 °C was typically less than 1 nm and 

comparable to the roughness of samples either as-grown or H-etched at 1200 °C. Instead, 

the highly damaged samples etched at 1350 °C presented a Rq higher than 30 nm. 

SEM studies, while adding new information in a more macroscopic scale, 

confirmed what was revealed by AFM analysis. SEM micrographs of samples etched at 

a) b) 
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1200, 1250, 1300 and 1350 °C are shown in Figure 2.5. For as-grown samples, SEM 

analysis revealed a significant presence of two defect types on the surface: SiC cluster 

hillocks and film cracks. A micrograph of the surface crack feature is shown in Figure 

2.5(a). In samples etched at 1200 °C we found a surface pit density similar to the original 

surface crack density. Since the pit defects (Fig. 2.5(b)) were never found on as-grown 

surfaces it is logical to assume that these are enlargements of the surface cracks caused 

by hydrogen etching. In support of this assumption are the SEM micrographs of samples 

etched at 1300 °C presenting very large and deep pits extending down to the Si substrate 

(Fig. 2.5(c)). Fig. 2.5(d) shows the highly damaged mosaic structure, already observed 

via AFM, of surfaces etched at 1350 °C, which is caused by the aggressive preferential 

etching of surface defects and grain boundaries that takes place at this temperature. It has 

to be mentioned that surfaces etched at 1250 ºC were also studied via AFM and SEM. 

While AFM micrographs revealed no evident morphological differences with respect to 

the samples etched at 1200 ºC, SEM analysis showed a higher density of pits and defects 

on these surfaces. 
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Figure 2.5. Plan-view SEM micrographs of typical defects observed on as-grown (a) and 
H-etched samples at 1200 (b), 1300 (c) and 1350 °C (d), respectively. A growth hillock is 
present in the center of the highly damaged mosaic surface morphology depicted in (d)
for reference [69]. 

 
 

From the reported results we can conclude that the ‘optimum’ process parameters 

for the 3C-SiC(001) epilayers studied in this work are the following: p = 760 torr, T = 

1200 ºC, Hf = 10 SLM, and tetch = 30 min. However, for a more complete study of the 

effect of H-etching on 3C-SiC(001) we also performed etching processes where either the 

pressure or the etching time were varied with respect to the ‘optimum’ values. An etching 

time of 10 to 20 min seemed to produce little or no differences on the macroscopic 

surface morphology. However, the resulting atomic steps appeared to be less clearly 

aligned with the [110] and [110] directions for shorter etching processes. Also, as 

expected, LP processes provoked a more aggressive etching of the surface defects and 

APD trenches. 
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2.2.2. H-etching rates of 3C-SiC(001) 

The etching rate of 3C-SiC(001) was evaluated at different temperatures by 

measuring the thickness of the epilayers before and after etching via Fourier Transform 

Infrared Spectroscopy (FTIR). For this experiment the etching time was fixed at 1 hour, 

the pressure at 760 torr, Hf was 10 SLM while the etching temperature was varied 

between 1200 and 1375 ºC. From this set of experiments we observed an exponential 

dependence of the etching rate on temperature as shown in Fig. 2.6. The mean etch rate 

and standard deviations were calculated from three etching experiments conducted at 

each temperature and are reported in Table 2.1. Very small etch rates were observed 

when etching at temperatures below 1300 °C. Also, it appears that the ‘optimum’ etching 

process (1200 °C for 30 min) was actually removing just few monolayers of material. It 

has to be pointed out that while the thickness variation for samples etched at temperatures 

higher than 1300 °C was easily resolved by FTIR measurement, the etch rate 

determination at lower temperatures was affected by the limited sensitivity of the FTIR, 

the relative flatness of the samples, and the difficulty to perform the measurement always 

in the same position on the sample. 

 
Table 2.1. Etch rates of 3C-SiC(001) at different temperatures as resolved by FTIR 
measurement [69]. Values reported as mean ± standard deviation. 

T (°C) 1200 1250 1300 1325 1350 1375 

Etch rate ± sd 
(nm/hr) 17.5 ± 6.2 21.3 ± 11.8 75.1 ± 9.9 170 ± 2.8 344.5 ± 25.9 580.5 ± 45.9
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Figure 2.6. Etch rates of 3C-SiC(001) versus H-etch temperature as measured by FTIR.
Note exponential dependence of etch rate vs. temperature with only a few monolayers of
material removed at the optimum temperature of 1200 °C [69]. 

 
 
 

2.2.3. Crystallographic studies and chemical analysis of the near surface region: 

LEED, AES 

The surface structure and the chemical composition of the near surface region of the 

3C-SiC(001) samples etched with the ‘optimum’ process were investigated in a ultra-high 

vacuum (UHV) analysis chamber at the Max-Planck-Institute (Stuttgart, DE). This was 

accomplished via low-energy electron diffraction (LEED) and Auger electron 

spectroscopy (AES) analysis conducted on a set of 4 samples. The UHV chamber was 

equipped with LEED optics, an electron spectrometer for AES, a Si evaporator and 

sample heating facilities. The pressure in the chamber during the measurements was in 

the 10-11 mbar range. The symmetry and location of the diffraction spots in the LEED 

pattern were used to reveal surface order and superstructure periodicities. Comparison of 

peak intensities of the differentiated AES spectra served to determine relative 

concentrations of elements in the near surface region. The samples were investigated in 

UHV in their native state after hydrogen etching and subsequently after Si deposition and 
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annealing at different temperatures. As-grown samples, cooled down under Ar flow, were 

also studied for comparison. 

After loading into the UHV chamber and without any intermediate treatment, the 

samples revealed a sharp LEED pattern of approximate (5×1) periodicity. Fig. 2.7(a) 

shows the superposition of the diffraction patterns of two domain orientations of this 

structure rotated by 90° with respect to each other. A similar LEED pattern has been 

briefly noted by Kaplan [70] to occur during the partial reduction of a strongly oxidized 

3C-SiC(001) surface, however, without being further interpreted. In our study we 

observed that the long unit vector of the supercell was not exactly an integer multiple of 

the substrate (1×1) unit vector. Rather, the superstructure was incommensurate and its 

unit vector varied on different samples of nominally equal preparation. We found 

supercell sizes varying in the range from (4.5×1) to (6.5×1). It appeared that the substrate 

and the overlayer fail to have a precise epitaxial relationship. For convenience, the 

periodicity of the structure is denoted as “5x1” from this point forward in the text. The 

chemical composition of the “5×1” structure was investigated using the AES spectra 

shown in Fig. 2.7(c). Most notably, the as introduced surface contained oxygen as seen in 

the bottom curve, indicating either the formation of a thin oxide layer after air exposure 

or, similar to the case of the SiC(0001) and SiC(0001) surfaces, silicate layer formation 

during the etching process [56]. The significant intensities of the Si and C peaks suggest 

the oxide thickness to be limited to one or a few atomic layers at most. As inferred from 

the AES spectra in Fig. 2.7(c) (top curve), the oxygen was completely removed from the 

surface by flashing the sample in UHV to about 1120 ˚C for 5 min. Concurrently, the 

“5×1” diffraction spots disappeared from the LEED pattern in favor of a poorly ordered 
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version of the known (2×1) reconstruction [71]. Evidently, the “5×1” phase represents an 

ultra-thin reconstructed oxidic layer on the 3C-SiC(001) surface. It should be noted that 

this “5×1” pattern was found on both H-etched and as-grown epi-layers, and even after 

RCA cleaning of an as-grown sample. 

 

 
Figure 2.7. UHV analysis of hydrogen etched 3C-SiC(001) samples. (a) LEED pattern 
of the “5x1” phase as observed after hydrogen etching (without any further treatment). 
(b) LEED pattern of the (3×2) phase obtained after Si deposition and annealing to 1070
˚C in UHV. (c) AES spectra with the Si, C and O transitions indicated for the hydrogen
etched and the annealed sample, and (d) for the (3×2), (2×1) and c(2×2) phases [72]. 

 
 

The composition of this oxide phase was determined from a comparison with 

established surface phases on 3C-SiC(001) prepared by Si deposition and subsequent 

annealing. After stepwise (5 min each) annealing of the Si enriched surface to 

temperatures in the range of 700-1100 °C, the LEED pattern showed a (3×2) surface 
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reconstruction with sharp and intense 1/3 order spots on the integer rows, i.e. (m/3,n) 

spots, and streaky contributions on half order position, i.e. the (m/3,n+1/2) spots, the 

latter of which were best developed at about 1070 °C (Fig. 2.7(b)). The AES spectra in 

this temperature range revealed that the surface was still Si-rich (Fig. 2.7(d), bottom 

curve). At 1170 °C the (3×2) transformed into a well-ordered (2×1) phase. The AES 

spectrum indicated a lower concentration of Si for this phase (Fig. 2.7(d), middle curve). 

Annealing to 1230 °C provoked further preferential desorption of Si from the 3C-SiC 

surface and produced a C-rich surface (top curve in Fig. 2.7(d)) with a c(2×2) LEED 

pattern. All three phases are well known on 3C-SiC(001) [71]. The (3×2) structure is 

believed to be strongly Si-rich [73], as also shown by our results. The (2×1) 

reconstruction is also reported as a Si-rich phase [74], while the c(2×2) phase is usually 

interpreted as a C-terminated structure [75, 76], which again is consistent with the AES 

development in our studies. 

 
Table 2.2. AES data for the different structures observed on 3C-SiC(001). Peak-to-peak 
amplitudes evaluated for differentiated Si, C and O AES signals and element intensity
ratios. For comparison data are listed for the so-called silicate layer reconstructions on the 
basal plane surfaces SiC(0001) and SiC(0001) taken from ref. [56]. 

 H-etched 
“5×1” 

1120 °C 
diffuse (2×1) (3×2) (2×1) c(2×2) SiOx-Si-

face[56] 
SiOx-C-
face[56] 

Si 1 0.9 1.2 0.6 0.7 1.4 1.7 

C 1.3 0.9 0.3 0.5 0.75 0.75 1.4 

O 0.35 - - - - 0.225 0.10 

Si/C 0.77 1.0 4.0 1.2 0.95 1.9 1.2 

O/Si 0.35 - - - - 0.16 0.06 
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Table 2.2 summarizes the peak-to-peak amplitudes of the differentiated Si, C and O 

AES signals and element intensity ratios for all structures observed here on 3C-SiC(001). 

In addition data are recalled for the so-called silicate layer reconstructions on the basal 

plane surfaces SiC(0001) and SiC(0001) taken from ref. [56]. Consideration of the Si/C 

intensity ratio clearly places the “5×1” reconstruction on the less Si rich side of the phase 

diagram. With some caution one might even favor a carbon termination underneath the 

oxidic layer. On the other hand the surface might contain some hydrocarbon 

contamination and the observed C enrichment may not be entirely due to the SiC 

structure. However, the data definitely rules out that the observed “5×1” structure is a 

derivative of the UHV prepared (5×2) phase which is known to be strongly Si rich and is 

characterized by a Si-dimer reconstruction layer [77]. The O/Si ratio observed is slightly 

higher than for the silicate reconstructions on the basal plane surfaces, which at a first 

glance suggests the presence of more than one monolayer of oxide. However, on the 

basal plane surfaces the Si/C ratio is larger than in our hydrogen etched case which, 

applying the above argument again, could suggest that, after correction for possible 

carbon contamination, the oxide thickness is similar, i.e. one monolayer in our case. 

Thus, as a feasible scenario for the oxide related “5×1” reconstruction we suggest the 

presence of a nearly bulk terminated SiC surface with an oxygen containing 

reconstruction layer of the observed “5×1” periodicity. The varying interface periodicity 

suggests a relatively weak bonding relationship between the substrate and the oxide 

overlayer, which in turn might be due to an (at least partially) internally passivated SiOx 

network with a certain energetic degeneracy for the distance of adjacent oxide-substrate 

bonds. 
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Finally, we should recall the presence of the two-domain superposition in the “5×1” 

LEED pattern. Due to the alternating layer stacking sequence in the crystallographic 

<001> direction of 3C-SiC(001), the substrate surface possesses only a two-fold 

symmetry, which would necessarily imply that only one of the domains can be present. 

Provided that the interface does not form arbitrarily on both Si and C surface terminating 

layers, the presence of both domains can only indicate that the 3C-SiC APD’s can have 

both possible epitaxial orientations with respect to the Si(001) substrate, [100] || [100] or 

[100] || [010]. This is an important observation for possible further optimization of the 

growth process. 

 
2.3. 4H/6H SiC 

Unlike 3C-SiC, H-etching of the SiC hexagonal polytypes (4H- and 6H-SiC) has 

been largely studied and practiced during the past couple of decades [56-59, 62-64, 78, 

79]. Typical etching apparatus are tantalum strip heaters [80], vapor phase epitaxial 

(VPE) reactors [81], hot-wall [62] and cold-wall CVD reactors [58] where the SiC 

etching temperatures range between 1400 and 1600 ºC. Low pressure etching or 

chlorinated chemistry (HCl addition) can be used to increase the etch rate [59]. However, 

HCl addition has been found to cause preferential etching at low etching temperatures 

(e.g. 1400 ºC) [59, 81], and in general higher etching rates can worsen the resulting 

surface if the original substrate is highly scratched or defective. Because of the large 

amount of information which can be found in the existent literature [56-59, 62-64, 80, 81] 

the design of the etching processes for 4H- and 6H-SiC has been more straightforward 

than for 3C-SiC. This implies that no studies of the effect of temperature and pressure on 

the crystals was necessary in this work. In fact atomically flat surfaces were obtained 
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both for 4H- and 6H-SiC after the first etching attempt, which was probably due to an 

accurate choice of the etching parameters based on careful studies of the data found in the 

existent literature and insightful considerations concerning the kinetics in the CVD 

reactor used for the processing. 

 
2.3.1. H-etching processes for hexagonal SiC polytypes 

Hydrogen etching of both 4H and 6H-SiC samples was performed in a hot-wall 

CVD reactor mostly used for SiC epilayer growth [65]. The hydrogen flown during the 

process was Pd-purified. The substrates used in this study were: eight 4H-SiC(0001) 8º 

off-axis, of which half were chemo-mechanical polished (CMP) by Novasic; two on-axis 

4H-SiC(0001); two 3º off-axis 6H-SiC(0001); two on-axis 6H-SiC(0001). All the 

samples were 8×10 mm diced from SiC bulk crystals purchased from Cree Research, Inc, 

with n-type doping ranging from 10-18 to 10-19 cm-3. Also in this case the samples were 

dipped in H2O:HF (50:1) and rinsed in DI water just prior to the etching experiments. 

Etching of off-axis surfaces is known to be more problematic than for on-axis. 

Theoretically, one would expect a faster material removal on off-axis surfaces where 

there is a higher density of high surface energy zones (e.g. steps edges, because of the 

narrower terraces). Instead, several studies report higher etching rates for on-axis rather 

than for off-axis SiC surfaces and suggest the use of higher temperatures or more 

aggressive etching processes to completely remove the polishing scratches from off-axis 

surfaces [58, 59, 62, 82]. Also, the morphology of off-axis surfaces is reported to be less 

ordered than that of on-axis, with terraces much narrower (because of the larger off-axis 

angle) and steps not perfectly oriented along the low-index Miller directions [59, 62]. 
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In this work, we first tried to develop two etching processes, one for off-axis 4H-

SiC and one for off-axis 6H-SiC, and successfully adopted them also for etching on-axis 

samples. Surprisingly, both the designed etching processes produced, independently from 

the presence of a miscut, atomically flat 4H- and 6H-SiC surfaces, which are described in 

the next section. Even though the on-axis surfaces present some triangular peninsulas 

between steps, which may be caused by the use of an etching process specifically 

designed for off-axis surfaces and therefore more aggressive, their surface quality after 

etching is still satisfactory. This suggests that the presented etching processes are quite 

versatile for the etching of both on-axis and off-axis hexagonal SiC surfaces. Also, it has 

to be pointed out that all the samples used presented polishing scratches prior to H-

etching and that those scratches were completely removed by the adopted etching 

processes. 

The etching parameters for the off-axis processes were chosen in an attempt to 

minimize the etching temperature and based on the following considerations. Successful 

etching processes in hot-wall CVD reactors were reported to operate at temperatures 

between 1500 and 1600 ºC for off-axis 4H-SiC and above 1600 ºC for off-axis 6H-SiC, 

with a pressure of 760 Torr, and an etching time between 10 and 80 minutes [62, 64]. The 

higher etching temperatures needed for 6H-SiC may be explained by the different growth 

conditions adopted for the two polytypes. The CVD reactor used in our etching processes 

presents a peculiar tapering of the susceptor, which has been designed to avoid the 

preferential consumption of growth precursors at the susceptor entrance and to maintain a 

constant gas concentration throughout the whole growth-zone by increasing the velocity 

of the gases along the flow direction [83]. As a result, the higher gas flow generates, for 
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the same etching parameters, a more effective etching. Hence, we chose etching 

temperatures of 1400 ºC for 4H-SiC and of 1550 ºC for 6H-SiC, while the pressure was 

fixed at 760 Torr, the H-flow at 10 SLM, and the etching time at 30 min for both 

processes. 

As pointed out at the beginning of this section, the CVD reactor used for etching 

hexagonal SiC was mostly a ‘growth-dedicated’ reactor. In order to prevent the formation 

of the typical defects (e.g., Si-droplets, particulate deposition, undulate surface patterns) 

usually found in the crystal surface after etching with a ‘growth-dedicated’ CVD reactor, 

clean susceptor and poly-crystalline SiC sample support plates (e.g., not exposed to 

growth) were used. However, the graphite foam used in these experiments was also used 

in the past for growth experiments, increasing the risk of particle contamination which 

can nucleate triangular surface defects during etching. The presence of residual growth 

precursors in the reactor can in fact interfere with the initial stage of etching causing an 

initial localized growth at some areas on the substrate either due to the incomplete 

deposition of species or to localized etching of the surface. Initial localized growth can 

then result in triangular (or ‘undulate’) patterns on the surface as reported in [62]. For 

these reasons, the precaution of baking the CVD reactor in hydrogen with all its etching 

components was taken. The baking was performed for 1 hour at atmospheric pressure and 

1400 ºC before each 4H/6H etching experiment. 
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2.3.2. Surface morphology: AFM 

The 4H off-axis samples which underwent the H-etching process presented 

different initial morphological features: half, chemo-mechanical polished by Novasic, 

displayed during AFM analysis an extremely flat surface but no atomic steps (Fig. 2.8(b)) 

while the remaining presented typical polishing scratches (Fig. 2.8(a)). 

 

 
Figure 2.8. AFM micrographs of 4H-SiC(0001) before H-etching. (a) typical polishing 
scratches on the ‘regularly’ polished surfaces; (b) flat surfaces of the chemo-mechanical 
polished samples. Note the smaller scale in (b) helps to visualize the absence of atomic
steps. As a reference, the deepest scratches in (a) are 20 nm deep. AFM micrographs
taken in tapping mode. 

 
 

After etching, both sets of samples presented atomically flat surfaces with terraces 

50-100 nm in width and steps half a unit cell in height (5 Å) (Fig. 2.9). The steps were 

aligned along the [1100] direction while unit cell steps were seldom observed. 
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Figure 2.9. AFM micrograph and extracted line profile showing the presence of atomic
steps on the surface of H-etched 4H-SiC(0001) surfaces. 
 Etch parameters were: T = 1400 °C, Hf = 10 SLM, p = 760 Torr and tetch = 30 min. AFM 
micrographs taken in contact mode. 

 
 

On the other hand, the on-axis 4H-SiC samples, which before etching presented a 

morphology like the one depicted in Fig. 2.8 (a), presented much wider atomic terraces 

after being etched with the same process used for the off-axis surfaces. This result is in 

total agreement with what has been reported in the literature [62]. The terraces observed 

for the on-axis surfaces were 1 µm wide, while the steps had unit cell height (Fig. 2.10). 

Also in this case the steps were aligned along the [1100] direction. In Fig. 2.10 it is 

evident the presence of triangular peninsulas protruding from the steps onto the terraces 

below them. Their height was assessed to be half a unit cell via AFM. These peninsulas 

are explained in [63] in terms of “fast-etch” and “slow-etch” directions. We suggest that 

they may be an indication of a slight over-etching of the 4H-SiC on-axis surfaces. 
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Figure 2.10. AFM micrograph of the surface morphology of on-axis 4H-SiC(0001) after 
H-etching. Relative line profile defines the step height to be 1 nm and the terrace width 1
µm. Note the presence of triangular peninsulas. Etch parameters were: T = 1400 °C, Hf = 
10 SLM, p = 760 Torr and tetch = 30 min. AFM micrographs taken in tapping mode. 

 
 

Similarly to the 4H-SiC surfaces, both the on-axis and off-axis 6H-SiC(0001) 

surfaces displayed a morphology as the one reported in Fig. 2.8(a) before etching. After 

etching at 1550 ºC for 30 minutes both the off-axis and on-axis 6H-SiC(0001) presented 

atomic steps during AFM inspection. Also in this case, as for 4H-SiC, the steps were 

observed to be aligned along the [1100] direction and the ones on off-axis surfaces were 

much narrower than the ones for on-axis crystals, as expected. A typical AFM 

micrograph of the atomically flat surfaces obtained after etching off-axis 6H-SiC samples 

is reported in Fig. 2.11. The extracted line profile indicates that the steps are between 5 

and 7.5 Å high and the terraces are 40-80 nm wide. These values are comparable to those 

reported in [59, 64] for off-axis 6H-SiC surfaces. Since one unit cell of 6H-SiC is 15.12 

Å high in the direction perpendicular to the (0001) plane, the steps observed after etching 

were most certainly half a unit cell high (7.5 Å). The 5 Å high steps observed in Fig. 2.11 

are probably an underestimation of half a unit cell steps due to the difficulty to resolve 

with precision the height of narrow terraces with the software analysis program used. 



53 

 

 
Figure 2.11. Morphology and line profile of H-etched off-axis 6H-SiC(0001) surfaces.
Etch parameters were: T = 1550 °C, Hf = 10 SLM, p = 760 Torr and tetch = 30 min. AFM 
micrograph taken in contact mode. 

 
 

The typical morphology observed for H-etched on-axis 6H-SiC(0001) samples is 

reported in Fig. 2.12. As is evident, the steps are half a unit cell high and terraces are 150 

nm wide. The same values have been reported by Owman [64] for H-etched on-axis 6H-

SiC(0001) surfaces. The two particles observed in Fig. 2.12 are probably caused by the 

‘growth-dedicated’ carbon insulating foam used during the etching process to support the 

clean graphite susceptor. It has to be mentioned that particulate is often found on the 

surface of samples etched with the CVD reactor described in this section even after 

baking of the system. This finding strongly confirms the need of an ‘etch-process 

dedicated’ foam insert for the aforementioned CVD reactor. 
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Figure 2.12. AFM micrograph and line profile showing the atomically flat on-axis 6H-
SiC(0001) surfaces obtained after H-etching. The presence of particulate is due to the use 
of a ‘growth-dedicated’ foam in the CVD reactor. Etch parameters were: T = 1550 °C, Hf
= 10 SLM, p = 760 Torr and tetch = 30 min. AFM micrograph taken in tapping mode. 

 
 
 

2.4. Summary 

As discussed in Chapter 1, SiC is a promising candidate for biotechnological 

applications. A successful implementation of these applications puts specific demands on 

the quality and surface properties of SiC. In particular the CPD measurements proposed 

later in this work, which may help uncover cell-semiconductor electronic interactions, 

require well-ordered, chemically passivated and fully characterized surfaces. For this 

reason, this chapter reports on the control and understanding of the major polytypes of 

SiC via H-etching and surface characterization techniques. H-etching is shown to be a 

successful technique able to produce atomically flat and repeatable SiC surfaces. Exciting 

possibilities such as functionalization and nano-patterning of SiC surfaces with bio-

molecules become more feasible thanks to the morphological atomic order revealed by 

H-etching treatment. Also, for those applications which require a direct interface between 

the biological cell and the semiconducting material, as the CPD measurements described 
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in this work, a comprehensive chemical and crystallographic characterization of the 

semiconducting surface, as reported in § 2.2.3, becomes of primary importance. In 

conclusion, the preparation and complete characterization of atomically ordered SiC 

surfaces may lead to the successful implementation of a large variety of biotechnological 

applications and, in particular, of the CPD studies proposed in this work and presented 

later in Chapters 4 and 5. 
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Chapter 3.     SiC Biocompatibility Studies 

 
In Chapter 2 we have discussed how suitable surface preparation and accurate 

surface characterization are of fundamental importance for semiconducting materials 

used in bio-sensing applications. However, besides properties such as low surface 

roughness and surface state densities there is another requirement that a semiconductor 

that is going to interface cells needs to fulfill: biocompatibility. 

As we already mentioned in Chapter 1, despite the promising potentiality for bio-

sensing applications, no studies are found in the literature which investigate crystalline 

SiC biocompatibility. In this chapter, we study single-crystal SiC biocompatibility by 

culturing mammalian cells directly on SiC substrates and by evaluating the resulting cell 

adhesion quality and proliferation. We also compare SiC biocompatibility to the one of 

the leading crystalline semiconductor in biotechnology, Si, whose cytotoxicity has been 

reported by several studies [84-86]. Nonetheless, Si continues to be widely used because 

of the ease of electronic integration with biological systems (e.g., arrays for retina 

implant, micro resonator probes for cortical recording, etc.). The results of this 

biocompatibility study show that crystalline SiC is indeed a very promising material for 

bio-applications, with better bio-performance than crystalline Si. This result opens up 

exciting perspectives for the use of SiC for bio-technological applications. In particular 

3C-SiC, which can be directly grown on Si substrates, appears to be an especially 

promising bio-material: the Si substrate used for the epi-growth would in fact allow for 
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cost-effective and straightforward electronic integration, while the SiC surface would 

constitute a more biocompatible and versatile interface between the electronic and 

biological world. Also, the excellent capability of SiC in directly interfacing with 

biological cells without the need of any surface functionalization is of primary 

importance for the successful implementation of the CPD measurements proposed later in 

this work and an optimum starting point for the investigation of cell-semiconductor 

electronic interactions. Since a material’s biocompatibility is influenced by chemical, 

morphological and electrostatic factors we also explore, in this chapter, the effect that 

different surface chemistries, morphologies and wettabilities have on cell adhesion and 

proliferation. The importance of using an appropriate cleaning procedure for the SiC 

samples before their use as substrates for cell cultures is also discussed. 

 
3.1. Cell culture on 3C-, 4H-, 6H-SiC surfaces 

A reliable and relatively easy way to define a material’s cytotoxic level, 

biostability, possible bioactivity and overall biocompatibility is by culturing cells directly 

on it while monitoring the cell adhesion quality and proliferation. In this section we 

evaluate the biocompatibility of different SiC polytypes by culturing three lines of 

mammalian cells directly on 3C-, 4H and 6H-SiC surfaces and by using MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and optical imaging to 

monitor cell proliferation and adhesion quality, respectively. In § 3.1.1 we describe 

sample characteristics and cleaning prior to cell seeding. Section 3.1.2 reports on the 

experimental procedure adopted for culturing cells and evaluating the material 

biocompatibility while § 3.1.3 discusses the MTT assay and fluorescent microscopy 

results. Additional studies investigating differences in cell adhesion morphology for Si 
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and SiC samples were performed via optical microscopy and atomic force microscopy 

(AFM) and are discussed in § 3.1.4. 

 
3.1.1. Sample characteristics and cleaning 

The samples used as substrates for cell culture were as follows: three 3C-SiC(001) 

epilayers grown on Si(001) in the CVD reactor described in § 2.2; three 4H-SiC(0001) 

off-axis bulk crystals H-etched with the process reported in § 2.3.1 and originally 

purchased from Cree, Inc.; three 6H-SiC(0001) bulk crystals and Si(001) bulk crystals 

also purchased from Cree, Inc. All samples were diced to have a dimension of 8x10 mm. 

The doping was n-type for all the samples and in the range of: 1015 atoms/cm3 for 3C-

SiC; 1018 atoms/cm3 for 4H-SiC; and 1019 atoms/cm3 for 6H-SiC and Si. The surface 

characteristics of the 3C-SiC epilayers were those of the as-grown samples described in § 

2.2.1. The 4H- and the 6H-SiC samples presented surfaces as described in § 2.3.1 for 

etched 4H- and un-etched 6H-SiC samples, respectively. The morphologies of these 

surfaces are depicted in Fig. 3.1 while their root mean square roughness (Rq), measured 

via AFM for an area of 25 μm2, are listed in Table 3.1. 

 

Figure 3.1. AFM micrographs of (a) Si, (b) 3C-SiC grown on (100)Si, (c) 4H-SiC and 
(d) 6H-SiC surfaces. All the micrographs are 2×2 µm in dimension. AFM data taken in
tapping mode. 
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Table 3.1. Surface roughness of semiconductor surfaces used in the biocompatibility
study. Surface roughness estimated from AFM measurements taken in tapping mode. 

Substrate 
material Si(001) 3C-SiC(001) 4H-SiC(0001) 6H-SiC(0001) 

qR (5×5 µm) 0.8 nm 1.4 nm 0.5 nm 1.2 nm 
 
 

As is evident from Table 3.1, all the samples presented similar roughness values 

(0.5 nm < Rq (25 µm2) < 1.4 nm) and, therefore, eventual differences in measured cell 

adhesion quality and proliferation cannot be explained in terms of differences in surface 

topology. Some minor experiments whose results are reported in the following sections 

also involved gallium arsenide (GaAs) and 4H- and 6H-SiC(0001) (nominally C-face) 

samples. For reference, these samples presented surface roughness values comparable to 

the ones reported in Table 3.1 but since the majority of data presented here does not 

involve these samples they have not been included in the table to avoid confusion. 

All the samples which were repeatedly used as substrates for cell culture were 

cleaned of any organic residue by immersion in a piranha solution (2:1 H2SO4:H2O2) for 

5 minutes. After a rinse in de-ionized (DI) water, the surface oxide generated by the 

immersion in Piranha was removed by dipping the samples in a hydrofluoric acid 

solution (50:1 H2O:HF) for 2 minutes. The samples were then thoroughly rinsed in DI 

water, dipped in ethanol, rinsed again and finally dried with dry nitrogen. All H2O was 

deionized (DI) with a resistivity of at least 16 MΩ·cm. 

 
3.1.2. Cell culture and experimental procedure 

The mammalian cells used were as follows: 1) B16-F10 mouse melanoma cells 

(ATCC CRL6475); 2) BJ human fibroblasts (ATCC CRL2522) and 3) human 
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keratinocytes cells (HaCaT). The B16 and BJ cells were purchased from ATCC. 

Different media were used in the culture of the different cell lines: Eagle’s Minimum 

Essential Medium (EMEM) supplemented with 10% fetal bovine serum (FBS) for the BJ 

cells; McCoy’s Modified Medium supplemented with 10% FBS for the B16 cells; and 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS for the 

HaCaT. Prior to cell plating on the semiconductor surfaces, all the cells were cultured in 

25 cm2 culture flasks (Corning), incubated at 37 ºC in an air atmosphere containing 5% 

CO2 and 95% relative humidity, and split and/or used at confluence.  

Immediately before cell plating, three samples for each substrate material / polytype 

examined in the assay (e.g Si, 3C-, 4H- and 6H-SiC) were cleaned as described in the 

previous section and then placed in a 15.6 mm diameter cell culture well within a multi-

well ultra-low cell-attachment plate (Corning). A schematic representation of the sample 

positioning in the multi-well plate is sketched in Fig. 3.2. Three empty wells, like the one 

represented in Fig.3.2. only belonging to a multi-well culturing plate (Corning), were 

used as controls for each MTT assay performed. It is evident that the plating areas are 

different for the semiconducting samples and the control wells. As a point of reference of 

the 200 mm2 well area less than 2/5 were covered by the 80 mm2 semiconductor samples. 

Therefore, the seeding density values were scaled accordingly for the plating area as 

described in [87]. Cells were seeded in the wells with the semiconducting samples at the 

following densities: 40x103 cells/cm2 for the BJ cells; 15x103 cells/cm2 for the B16 cells; 

and 20x103 cells/cm2 for the HaCaT. Obviously, separate experiments were conducted 

for the three different cell lines. After seeding, all the plated cells were incubated at 37 ºC 

for 1 to 8 days in an air atmosphere containing 5% CO2 and 95% relative humidity. 
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Figure 3.2. Schematic representation of the sample positioning in the multi-well plate 
for cell plating. A multi-well ultra-low cell-attachment plate was used during all 
experiments reported in this dissertation with a well area of 200 mm2. Seeding was 
performed in triplicate to allow statistical analysis of the resulting cell viability and
adhesion. A separate multi-well plate was seeded with cells and used as control. In the
schematic all the seeded wells are drawn within the same multi-well plate for ease of 
representation. 

 
 

Cell proliferation was typically evaluated on the third day via MTT assay. MTT 

assays were also performed on the first, second, fifth and eighth day to better investigate 

possible cytotoxic effects of the substrate materials used. In each MTT assay the media 

was reduced from the original value of 2 ml to 0.5 ml and 75 µl of MTT reagent were 

added to each well. After the yellow tetrazolium MTT reagent was completely converted 

into intracellular purple formazan by the metabolically active cells (required time ~ 2 

hours), all the media was removed from each well and the semiconducting substrates 

were transferred to new wells. In order to solubilize the formazan, 0.3 ml of dimethyl 

sulfoxide (DMSO) were added to each well and the absorbance of the solutions was 

determined spectrophotometrically with a plate reader (Bio Kinetics Microplate Reader 

EL 340, Bio-Tek Instruments) operating at a wavelength of 595 nm. Readings were 

corrected for the formazan formation due to the semiconducting surfaces alone. It should 

be pointed out that all the numeric values reported in the text above are for the wells 

containing semiconducting samples; values for the control wells were appropriately 



62 

scaled. The MTT assays were repeated three times for all the cell lines and, as explained 

above, performed in triplicate for the controls and for each different substrate. The 

obtained results are reported in the next section as sampling distribution of the mean ( x ) 

± standard error of the mean (σm) and normalized with respect to the control readings. 

The adherent cell morphology was studied using fluorescence microscopy. 

Semiconducting samples and control wells were plated as described above and the cell 

morphology was inspected after 4, 24, 48, 72, 96, 120 and 216 hours (the latter only for 

BJ and HaCaT cells). Two hours before the optical inspection was performed using a 

Leica DM IL inverted microscope, the cells were fluorescently labeled with 2 μL of 

CMFDA (5-chloromethylfluorescein diacetate) cell tracker dye. 

 
3.1.3. SiC superior biocompatibility: MTT and fluorescent microscopy results 

MTT assays and fluorescent microscopy were used to evaluate the biocompatibility 

of the different SiC polytypes. Cell proliferation and adhesion quality of cells cultured on 

SiC surfaces were compared to the ones of cells cultured on control wells (which 

represent an ideal surface for cell growth). Adopting the same procedure, SiC 

biocompatibility was compared to that of Si, which is at present the leading crystalline 

semiconductor for biotechnological applications. The histogram in Fig. 3.3 reports the 

results of MTT assays performed on the third day for three different mammalian cell lines 

and clearly shows that SiC is, in all its phases, a high-quality surface for cell culture with 

significantly better performance than Si. No statistically significant differences were 

found among the cell proliferation on different SiC polytypes. An extremely satisfying 

proliferation was observed for BJ cells on SiC, in average the same obtained for the 
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culture-well readings. In this case, a slight bioactivity of the SiC substrate could even be 

hypothesized. The smaller difference in B16 cell proliferation observed between Si and 

SiC substrates can be easily justified by the cell line nature. B16 melanoma cells are in 

fact extremely aggressive cancer cells capable of indifferently adhering to substrates of 

diverse biocompatibility: therefore a reduced selectivity was expected. 

 

 
Figure 3.3. Cell proliferation of B16, BJ and HaCaT cells expressed as x  ± σm
measured via MTT assays at the third day. Note that cell proliferation is greater on SiC 
than on Si surfaces for all the cell lines studied. 

 
 

As mentioned in the previous section, MTT assays were also performed at the first, 

second, fifth and eighth day of culture. Cell seeding values for this particular set of assays 

were lower than the ones reported in § 3.1.2 to avoid cell confluence before the eighth 

day of culture. The results obtained for MTT assays performed on the first and eighth day 

of culture of HaCaT cells are reported in Fig. 3.4. 
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Figure 3.4. HaCaT cell proliferation on Si and SiC substrates measured via MTT at the 
first and eighth day of culture expressed as x  ± σm. Note that cell proliferation is greater 
on SiC than on Si surfaces after eight days of culture. 

 
 

The MTT readings were approximately the same for all the samples studied (Si, 

SiC, and control wells) after 24 hours from seeding. This result suggests that no 

preferential initial adhesion is observed on SiC samples compared to Si and that, 

apparently, all the seeded cells adhered to the semiconducting substrates. On the other 

hand, the cell proliferation at the eight day of culture was significantly lower on Si 

substrates than on SiC: calculations showed the reduction to be, with respect to SiC, as 

high as 56%. It should be noted that at the eighth day the cells reached confluence on the 

SiC substrates and control wells. 

The optical inspection results obtained using fluorescence microscopy supported 

the MTT quantitative results while providing additional useful information regarding cell 

morphology and adhesion quality. Fluorescent microscopy revealed that all the seeded 

cells were well distributed on SiC surfaces after 4 hours of incubation, elongated and 

flattened against the surface after 24 hours, and confluent (for the seeding density 

reported in § 3.1.2) after 4 days (B16 and HaCaT), and 5 days (BJ). On the other hand, a 

lower density and generally inferior morphology were observed for cells cultured on Si 
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substrates. Fluorescence microscopy images of adherent cells on Si and SiC substrates at 

the third day of culture are reported in Figures 3.5 and 3.6 at lower and higher 

magnification, respectively. 

 

Figure 3.5. Morphology of B16 ((a), (d)), BJ ((b), (e)) and HaCaT ((c), (f)) cells at the 
third day of culture on SiC and Si substrates, respectively. Images by flourescence
microscopy [88]. 

 
 

As is evident from images (a), (b), and (c) in Figures 3.5 and 3.6, cells on SiC 

substrates were well-distributed and flattened (the maximization of the contact area with 

the substrate is always an indicator of good biocompatibility) at the third day of culture. 

Moreover, their morphology was found to be identical to that of the cells in the control 

wells: stellate for B16, elongated for BJ fibroblasts and cuboidal for HaCaT cells. Even 

when imaged on the fifth or eighth day of culture (in experiments with lower cell seeding 

density), all the cells cultured on SiC substrates displayed an excellent morphology. This 
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finding, together with the fact that the cells could be cultured to confluence on all the SiC 

samples, confirms the lack of cytotoxicity of SiC substrates at least within the first eight 

days of culture. 

 

Figure 3.6. Higher magnification images of the morphology of B16 ((a), (d)), BJ ((b),
(e)) and HaCaT ((c), (f)) cells at the third day of culture on SiC and Si substrates,
respectively. Images by flourescence microscopy. 

 
 

On the other hand, the morphology of the cells cultured on Si substrates appeared to 

be inferior: typically a reduction in the cell dimension was observed for all three cell 

lines. The reduced contact area of the adherent cells (low adhesion force) confirms the 

lower biocompatibility of the Si substrates. Specifically, B16 cells appeared rounded with 

a tendency to form clusters when cultured on Si (image (d) in Figures 3.5, 6). HaCaT and 

BJ cells were, at least during the first three days of culture, morphologically similar to the 

control cells but smaller and of a lower density (images (f) and (e) in Figures 3.5, 6). In 



67 

particular, the morphology of BJ cells cultured on Si degenerated at the fifth day of 

culture (Fig. 3.7(b)), while high-quality cell morphology was observed on all of the SiC 

surfaces (Fig. 3.7(a)). The observed morphological degeneration on Si surfaces was most 

probably caused by a not-null level of cytotoxicity of the Si substrates. 

 

 
Figure 3.7. Cell morphology of BJ fibroblasts at the fifth day of culture on a (a) SiC and 
(b) Si substrates as measured with flourescence microscopy. Clearly the optimal 
morphology was observed on SiC substrates due to the uniform distribution and elongate
shape of the adherent cells. 

 
 

Another semiconducting material whose cytotoxic effect is well known is gallium 

arsenide (GaAs) [89, 90]. Since its deleterious effects on cells are well-known, we used it 

as a negative control to demonstrate the validity of our measurements. MTT assays were 

performed on GaAs and 6H-SiC samples after two days of B16 cell culture and the 

obtained results, reported in Fig. 3.8, clearly show the toxicity of this substrate material 

while again confirming the superior performances of SiC. 
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Figure 3.8. B16 cell proliferation measured via MTT at the second day of culture on 6H-
SiC and GaAs substrates and expressed as x  ± σm. Note that cell proliferation is greater 
on SiC than on GaAs which is known to be cytotoxic (GaAs used as a negative control in 
this experiment). 

 
 

The fact that even the aggressive B16 melanoma cells did not proliferate and stay 

viable when cultured on GaAs substrates confirmed the high toxicity of this material and 

the validity of the procedure used to assess the biocompatibility of SiC and Si. 

Fluorescent images of cells cultured on GaAs substrates showed a morphological 

degeneration of the cells (see Fig. 3.9(b)). Like in the case of Si, cytotoxicity provokes 

cytostructural changes and eventually leads to cell death. 

 

 
Figure 3.9. Morphology of healthy B16 cells cultured on 6H-SiC (a) vs. cytostructural 
degeneration of B16 cells cultured on GaAs as measured with fluorescence microscopy. 
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In conclusion, the MTT and fluorescence microscopy results show the superiority 

of SiC as a bio-surface for cell-culture while confirming a not-null level of cytotoxicity 

for Si. Also, the fact that different SiC polytypes, which display different band gaps and 

different doping levels (i.e., free charge density), performed in a similar way as substrates 

for cell culture suggests that the influence of the electronic properties of the material on 

cell adhesion and proliferation is not relevant in this case (at least for the SiC material 

system). However in Chapter 4 we will discuss more carefully the electronic interface 

between cells and semiconductor surfaces and final judgment of the influence of material 

electronic properties on cell viability should be reserved till then. 

 
3.1.4. SiC vs. Si: evaluation of cell protrusions via AFM and optical microscopy 

Additional studies were performed on cells cultured on SiC and Si surfaces using 

AFM and optical microscopy to quantitatively describe the presence of any cell 

extensions such as filopodia and lamellipodia. Lamellipodia are broad flat cell 

protrusions which surge forward and adhere to surfaces, allowing cells to gain traction 

and move on surfaces. Filopodia are rod-like cell surface projections extending several 

micrometers ahead of the cells where they explore the extracellular surface. The presence 

and extension of filopodia and lamellipodia indicate the quality of the cell response to a 

substrate material. Typically, numerous and extended filopodia and lamellipodia are 

indicative of good substrate biocompatibility. Therefore their measurement and 

quantification is an additional way to assess a material’s degree of biocompatibility. 

For these experiments B16 melanoma cells were seeded at a density of 40x103 

cells/cm2 on 6H-SiC(0001) and Si(001) samples as described in § 3.1.2. After 24 hours 

the cells were fixed in 4% PFA (Paraformaldehyde) for 20 minutes at room temperature 
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(RT) and successively in a series of ethanol solutions with increasing concentration 

(17%, 35%, 70%, and 95%) for 2 minutes each. After the fixation, platinum-gold was 

sputtered on the cell / surfaces in a gold deposition chamber as is typically done to 

prepare cells for scanning electron microscopy (SEM) analysis. The cells were then 

imaged using the XE-100 AFM system and its resident optical microscope at the PSIA 

facility in Santa Clara (CA). 

The optical inspection revealed, confirming what was described in § 3.1.3, a greater 

cell spreading and proliferation on the SiC substrates. Cells on SiC appeared to be stellate 

in shape and interconnected through a bridging network (Fig. 3.10(a)). Cell bridges were 

found to be typically 5-10 µm wide and 500 nm high (Fig. 3.10(b)). Typically, cells 

appeared to have reduced dimensions on Si substrates (as evident by comparison between 

Figures 3.10(c) and (e)). In general, extended lamellipodia, which indicate the formation 

of stable adhesion contacts, were observed on SiC surfaces (Fig. 3.10(d)). Instead, cells 

on Si had typically smaller or no lamellipodia present on their surfaces (Fig. 3.10(f)). 

Filipodia were present on cells cultured on both substrates and were typically 2-4 µm 

wide and 5-15 nm high as reported by the line profile in Fig. 3.10(f). Note that the two 

holes present in the cell in Fig. 3.10(f) are most likely nuclei in the mitotic phase which 

exploded during the gold sputtering process, which is done under vacuum. The missing 

nuclei allow one to see some beaded features 1 to 2 µm in diameter which are probably, 

because of their central location, fibrillar adhesions of the cells to the substrate. 
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Figure 3.10. Optical (left) and AFM (right) micrographs of (a-d) B16 cells on SiC and (e, 
f) Si surfaces. In particular: (a) the observed bridging network of cells with (b) ‘bridge’
dimensions; cells presenting (c) extended lamellopodia on SiC and (d) single
lamellopodia with relative dimensions; (e) cells presenting filopodia on Si and (f) a single
cell with relative filopodia dimensions. AFM micrographs (b), (d) and (f) are 30×30 µm,
40×40 µm and 45×45 µm, respectively. 

 
 
 
3.2. Influence of surface properties on cell adhesion and proliferation 

The previous section reports an evident greater biocompatibility of SiC with respect 

to Si. In § 3.2.1 we search for the reasons at the basis of the observed greater 

biocompatibility by investigating the chemistry and the wettability of SiC and Si 
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substrates. Sections 3.2.2 and 3.2.3 focus on the effect that the topography and chemistry 

of SiC surfaces have on cell proliferation, respectively. 

 
3.2.1. Surface chemistry and wettability as possible explanations of SiC greater 

biocompatibility 

It has been already pointed out that the SiC and Si samples used in § 3.1 present 

similar topographical characteristics: therefore substrate topography can be excluded as a 

cause of the reported SiC superior biocompatibility with respect to Si. We identify three 

main remaining reasons that could be the basis of the enhanced cell proliferation 

observed on SiC substrates: 1) influence of the different surface chemistry on cell 

adhesion / proliferation; 2) differences between Si and SiC surface wettability. 3) reduced 

electronic interaction (e.g., charge exchange) between cell adhesion proteins and SiC 

surfaces (SiC has a larger energy bandgap, Eg, than Si and therefore a lower density of 

unoccupied states in the energy range of the transfer level, i.e. Eg > 1.8 eV [30]). Since 

(3) is a rather complicated issue which may find an answer only after the electronic 

interaction between semiconducting substrates and biological cells will be exhaustively 

understood (and therefore goes beyond the purpose of this work), we investigate (1) and 

(2) here with preliminary studies pertaining to (3) presented in Chapter 4. 

For this purpose, XPS and contact angle studies were performed on the same Si and 

SiC surfaces used in the MTT assay described in § 3.1.3 after they were cleaned as 

described in § 3.1.1. Representative XPS surveys of as-introduced Si and SiC samples are 

shown in Fig. 3.11. 
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Figure 3.11. XPS surveys of two of the Si and SiC samples used in § 3.1.3. No 
comparison has to be made between the peak magnitudes of the two samples; only 
elemental percents within an individual sample are significant. Note the expected greater
C-concentration on the SiC surface. 

 
 

From the chemical analysis of the near surface region it appears that both Si and 

SiC present the same elements at the surface, namely Si, C, and O. However, the 

(graphitic) carbon present on Si is in lower concentration (typically < 25%) than the 

carbon on SiC (typically > 50%). The higher C-concentration on SiC surfaces is a likely 

explanation for the greater biocompatibility of SiC. It is in fact well-known that surfaces 

with a normal electrochemical potential close to the one of the cells are more 

biocompatible [11]. Since the electrochemical potential of carbon is comparable to that of 

living tissue, the higher carbon concentration of the SiC surfaces most likely justifies SiC 

greater biocompatibility. 

Wettability of Si and SiC samples was evaluated using the sessile drop method at 

the IFN-CNR of Trento, IT [91]. A 1 µL droplet of DI water was deposited on the surface 

of each analyzed sample by using a biological pipette. The droplet contact angle (θ) was 

imaged using a contact angle goniometer and estimated by measuring the angles between 
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the baseline of the drop and the tangent at the drop boundary using the ImageJ 1.37v 

software. At least two droplets were deposited on different areas of each sample. The 

analysis of each droplet produced two contact angle values (e.g., left and right). 

Therefore the contact angle value was calculated for each sample as the mean of four 

values. Contact angle images for the SiC and Si samples analyzed are reported in Fig. 

3.12. The contact angle values reported in Table 3.2 are expressed as the sampling 

distribution of the mean (θ ) ± the standard error of the mean (σm) from a three samples 

distribution for each substrate material / polytype. 

 

Figure 3.12. Measured water contact angles on Si, 3C-, 4H-, and 6H-SiC surfaces. Note 
the higher hydrophobicity of Si. In this experiment surface roughness does not influence
the contact angle values since all the samples display similar values of Rq. 

 
 

Table 3.2. Wettability of SiC and Si surfaces as measured via sessile drop method. 
Substrate 
Material Si(001) 3C-SiC(001) 4H-SiC(0001) 6H-SiC(0001) 

θ  (º) ± σ (º) 88.28 ± 1.92 28.32 ± 2.27 20.27 ± 3.00 25.2 ± 2.13 
 
 

From the images and the values reported we can infer that Si surfaces are 

considerably more hydrophobic than SiC surfaces. No relevant differences were found in 

the wettability level of the different SiC polytypes studied. As demonstrated by the tight 

standard deviation values, the surface wettability properties of the different samples used 

in the MTT assays in § 3.1 were similar for each substrate material / polytype. The high 

level of hydrophilicity exhibited by the SiC surfaces may also be a likely explanation for 
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its better performance as a substrate for cell culture. In fact, even though cell adhesion 

proteins adhere better to hydrophobic surfaces, mammalian cells are known to 

preferentially adhere to hydrophilic surfaces [92]. 

In conclusion, the lower biocompatibility of Si could be due to a competitive 

mechanism where both the electrochemical potential (e.g., absence of carbon from the 

surface) and the surface energy (e.g., higher hydrophobicity) play an important role. It 

has also to be pointed out that Si exhibits much poorer tribological properties than SiC, 

which means a higher density of debris formation. Cell phagocytosis of the toxic debris 

may likely lead to the cytostructural degeneracy reported for cells cultured on Si for more 

than 4 days (see Fig. 3.7). 

 
3.2.2. Influence of SiC surface topography on cell adhesion and proliferation 

Several studies report that surface roughness influences cell adhesion and 

migration. Typically, higher values of root mean square roughness yield higher osteoblast 

proliferation [93, 94], while flatter surfaces have been shown to enhance fibroblast 

proliferation and adhesion quality [95]. For this reason we investigated the influence that 

varying surface roughness of SiC may have on cell morphology and proliferation. For 

this purpose we selected SiC samples with different surface characteristics: three as-

grown (Fig. 3.13(a)) and three over-etched (Fig. 3.13(b)) 3C-SiC samples whose surface 

features were exhaustively described in § 2.2.1. As a point of reference Rq was roughly 

1.4 nm for a 25 µm2 area of the as-grown samples and 35 nm for the same area of the 

over-etched samples. The substrates were cleaned as described in § 3.1.1, which excludes 

any possibility of H-termination due to the etching process on the over-etched surfaces. 

Both B16 melanoma cells and BJ fibroblasts were cultured on those substrates. MTT and 
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optical inspection were performed at the third day as described in § 3.1.2. The results of 

both analyses showed no difference in cell proliferation and adhesion quality on the two 

different sets of samples. 

 

 
Figure 3.13. AFM micrographs showing the morphology of the 3C-SiC samples used to 
evaluate the effect of surface roughness on cell adhesion and proliferation. As-grown (a) 
and over-etched (b) 3C-SiC with Rq values of 1.4 nm and 35 nm, respectively. AFM data
taken in tapping mode. 

 
 

This result may be explained by the fact that the roughness variation between the 

two types of 3C-SiC surfaces studied was one to two orders of magnitude smaller than 

the cell adhesion plaques which are responsible for cell adhesion (34 nm of surface 

roughness variation against the 500-3200 nm of the adhesion complexes [96]). A study of 

Zhu et al. reports that patterned substrates need to have features ranging between 100 and 

3000 nm in order to influence the plaque dynamic and therefore the cell adhesion pattern 

[96].  

To verify this finding, BJ fibroblast cells were cultured on a 3C-SiC sample whose 

edge, after it was accidentally slivered, displayed macroterraces which were 2000 to 4000 

nm wide. Optical inspection was performed after 24 hours and showed that the cells had 

spread in a patterned fashion within the slivered edge. The majority of the fibroblasts 

were well-spread and elongated along the macrosteps as shown in Fig. 3.14. 
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Figure 3.14. Patterned fibroblasts adhesion on the slivered edge of a 3C-SiC sample
which displays macroterraces 2000 to 4000 nm wide. Image by fluorescence microscopy.

 
 

Summarizing, surface micropatterning seems to have a bigger effect on the 

morphology of fibroblast adhesion than surface nanopatterning. Variations of roughness 

in the nanometric scale seem to have little or no effect on the morphology and 

proliferation of B16 melanoma cells and BJ fibroblasts. This result is in agreement with 

what was reported by Richards [97]. Nonetheless, atomically flat surfaces like the ones 

produced via H-etching and described in Chapter 2, may be preferable to the 

commercially polished ones not only for biomolecular surface science studies but 

possibly also for implantable biosensors, since their smoothness reduces the chance of 

bacterial adhesion and therefore infection (e.g., common infectious bacteria diameter ~ 

2µm).  

 
3.2.3. Influence of SiC surface chemistry on cell adhesion and proliferation 

Multiple studies have shown that the surface chemistry of biomaterials strongly 

influences cell adhesion and proliferation and may regulate the cellular behavior at the 

molecular level [98, 1, 18]. A previous work conducted on polyacrylamide surfaces has 
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shown a preferential adhesion of mammalian cells on hydroxylic group (-OH) and 

carboxylic acid (-COOH) terminations [99]. Curtis et al. report that hydroxylic groups 

considerably increase cell attachment on a large number of polymeric surfaces such as 

polypropylene and polystyrene [100]. We initially thought that H2-etching of SiC samples 

may have terminated the surfaces in such a fashion. Since the AES studies reported in 

Chapter 2 were inadequate to detect hydrogen on the etched surfaces, we performed total 

attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

measurements, which we describe in Chapter 4, to probe whether –OH groups are present 

on H-etched 3C-SiC. Indeed, the ATR-FTIR results indicated the presence of C-H 

bonding at the surface while –OH groups where detected on regularly HF dipped 

surfaces. To probe whether the different surface terminations had an influence on cell 

proliferation we cultured HaCaT cells on H2-etched and HF treated 3C-SiC samples and 

observed their behavior. Cell proliferation was evaluated through MTT assays while 

culture wells were used as controls. It has to be pointed out that both the H-etched and the 

HF treated samples were 8×10 mm diced from the same 2 inch wafer and therefore 

presented comparable surface characteristics. The etching was performed for 5 minutes at 

1200 °C, at atmospheric pressure and with a hydrogen flow equal to 10 SLM in the CVD 

reactor described in § 2.2. H-etching did not produce any change of the surface 

morphology of the 3C-SiC samples while hydrogen was detected on the surface by ATR-

FTIR analysis. The etched samples were not cleaned to preserve the H-termination while 

the un-etched samples were cleaned as described in § 3.1.1. The MTT assay was 

performed at the third day and in triplicate for the etched and HF treated 3C-SiC 
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substrates and the controls. The obtained results are reported in Fig. 3.15 and expressed 

as x  ± σm. 

 

 
Figure 3.15. Comparison in HaCaT cell proliferation between etched and un-etched 3C-
SiC substrates at the third day of culture expressed as x  ± σm measured via MTT assay.
Note no difference in proliferation was observed despite the detection of hydrogen on the
etched surface via ATR-FTIR. 

 
 

As is evident from the histogram above, cells proliferated at the same rate on H-

etched and un-etched 3C-SiC surfaces. Fluorescence microscopy confirmed this result 

which may be explained considering that the elapsed time between cell seeding and 

adhesion is roughly four hours and that during this time numerous chemical changes take 

place at the semiconductor surface. More probably the surface oxide layer, caused by the 

immersion in media, is formed before the cell attachment is finalized. At that point the 

un-etched and etched surfaces will present most likely similar chemical characteristics 

(i.e., any hydrogen effect on the surface is eliminated by the oxide). 

We already discussed that a higher C-concentration on the SiC surfaces is a 

possible cause of the SiC greater biocompatibility and that, in general, a C-rich surface is 

believed to enhance cell adhesion. For this reason we decided to study the proliferation of 

HaCaT cells cultured on the C-face of SiC samples. In this experiment three 4H-
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SiC(0001) and\ three 4H-SiC(0001) surfaces, nominally Si- and C-face, respectively, 

where used as substrates for cell culture after being cleaned as described in § 3.1.1. No 

differences in surface morphology were observed among the different samples. The MTT 

assay, performed at the third day of cell culture, showed a surprisingly reduced cell 

proliferation on the C-face samples (Fig. 3.16). 

 

 
Figure 3.16. HaCaT cell proliferation at the third day on Si- and C-face 4H-SiC expressed 
as x  ± σm measured via MTT assay. Higher proliferation is observed on the Si-face. 

 
 

However, light was shone on this puzzling result by XPS analysis performed on 

4H-SiC(0001) and (0001) substrates cut from the same wafer and cleaned at the same 

time as the samples used for the MTT assay. Surface elemental ratio values, as calculated 

from the surveys, are reported in the first three rows of Table 3.3. The percents of C and 

Si elemental concentration on the surfaces, reported on the last two rows, are calculated 

from the high resolution scans. 
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Table 3.3. Elemental concentrations and ratios for 4H-SiC(0001) and 4H-SiC(0001). 

 4H-SiC(0001) Si face 4H-SiC(0001) C face 

C/Si 1.62 1.71 

O/Si 0.34 0.35 

F/O 0.33 1.30 

C % HR 60.05 63.14 

Si % HR 39.95 36.86 
 
 

While the values in Table 3.3 confirm the higher C-concentration of the C-face 

surfaces, the most striking result is the high concentration of fluorine (F) found on 4H-

SiC(0001). It has to be noted that such a high concentration of F was never found on all 

the other SiC (always the Si-face was studied) surfaces examined in the past after being 

cleaned as in § 3.1.1. Low F concentrations were found rarely and were mostly caused by 

a shortened rinsing time after the HF dip. Since both fluorine and fluoride ions are toxic, 

a high F-concentration on the 4H-SiC(0001) is a likely explanation for the reduced cell 

proliferation observed on those surfaces. However, at this time it is unclear why the C-F 

bond should be more resistant to a DI water rinse than the Si-F bond. Fluorine is known 

as the most highly electronegative element on earth (e.g., 3.95 in the Pauling scale), and 

will therefore create stronger bonds with elements exhibiting a lower electronegativity. Si 

electronegativity is lower than that of C (1.90 versus 2.55 in the Pauling scale): therefore 

the silicon-fluorine bond, which presents an energy of 582 kJ mol-1, is extremely stable 

and evidently stronger than the carbon-fluorine bond, whose energy is 452 kJ mol-1. 

Therefore, a higher fluorine residue would not be expected on C-face samples after DI 

water rinse. However, Jacobsohn et al. [101] report that the incorporation of CFn groups 
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on the surface of SiC make it much more hydrophobic while the presence of Si-F bonds 

doesn’t change the material wettability. Therefore, the way the fluorine atoms are 

incorporated on the SiC surface may play an important role: the increased hydrophobicity 

on the C-face surfaces could likely reduce the effectiveness of the DI rinse step. Also, a 

lower fluorine concentration on Si faces immediately after HF exposure and prior to the 

DI rinse step could be another possible explanation for the reduced presence of fluorine 

in Si rather than in C faces. In fact, Si surfaces have been found to present mostly silicon 

hydride species and very little oxide or fluoride after HF treatment [102]: because of the 

high electronegativity of fluorine, Si-F bonds are prone to polarize Si atoms which may 

become much more susceptible to nucleophilic attack than Si-H bonds. In any case, the 

DI rinse step duration should be increased for 4H-SiC(0001). 

 
3.3. Cleaning of SiC surfaces for bio-applications: RCA vs. Piranha 

The previous section has drawn attention to the importance of choosing appropriate 

cleaning procedures when preparing surfaces for biological evaluation. In this section we 

compare the effectiveness of two standard cleaning procedures used to remove organic 

residue from SiC surfaces prior to cell growth: RCA (Radio Corporation of America) and 

Piranha cleaning. The efficacy of these two procedures was evaluated through optical and 

chemical analysis, and Piranha was shown to be the one capable of completely removing 

the organic contaminants (residue after cell exposure) and, therefore, best able to produce 

chemically reproducible surfaces. However, the ineffectiveness of RCA cleaning, which 

leaves bio-residue on the surface, may be useful for identifying the chemistry and shape 
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of the cell focal adhesions (§ 3.3.2). Thus in § 3.3.3 we report on the effects of repeated 

Piranha cleanings on surface chemistry and wettability, which affect cell proliferation. 

 
3.3.1. Effect of RCA and Piranha cleans on semiconductor surface morphology and 

chemistry 

A total of six 4H-SiC(0001) and four 3C-SiC(001) samples, all of them presenting 

atomically flat surfaces and constantly used as substrates for cell growth, were used to 

evaluate RCA and Piranha effectiveness in organic residue removal. The methodology 

adopted was the following: first, HaCaT cells were grown on the surfaces of those 

samples; second, half of the samples were cleaned with Piranha and half with RCA; last, 

their surface morphology and chemistry was evaluated. The Piranha procedure adopted 

was the one described in § 3.1.1. The steps of the RCA cleaning procedure were as 

follows: immersion in a 1:1:6 mixture of NH4OH:H2O2:H2O heated to 65 °C for 10 

minutes; rinse with DI water; dip in a 50:1 H2O:HF for 30 seconds; rinse in DI water; 

immersion in a 1:1:6 mixture of HCl:H2O2:H2O heated to 65 °C for 10 minutes; rinse in 

DI water. The oxide generated by the oxidizing steps of RCA was removed and the 

samples were sterilized by using the same procedure adopted after Piranha clean and 

described in § 3.1.1. Which means, dip in hydrofluoric acid solution (50:1 H2O:HF) for 2 

minutes; thoroughly rinse in DI water; ethanol dip followed by DI water rinse; nitrogen 

dry. 

The surface morphology of the samples was inspected using the optical camera of 

the XE-100S PSIA AFM system. 
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Figure 3.17. Optical images showing the surface morphology of 4H-SiC(0001) after cell 
growth and subsequent cleaning with (a) Piranha and (b) RCA cleans. Note the higher 
level of residue after RCA cleaning indicating that Piranha is superior in producing
chemically repeatable surfaces. 

 
 

Fig. 3.17(a) and Fig. 3.17(b) show the surface morphology of 4H-SiC(0001) 

cleaned with Piranha and with RCA, respectively. While the surface of the Piranha-

cleaned sample appears completely spotless, the surface of the RCA-cleaned sample is 

heavily contaminated by organic residue. It surprisingly appears that even dead cells are 

present on the surface after RCA cleaning (see center of Fig 3.14(b)). Similar results were 

obtained for the 3C-SiC surfaces.  

The surface chemistry of the samples was analyzed via XPS. XPS surveys and high 

resolution scans of the RCA cleaned samples displayed spectral lines whose kinetic 

energy was clearly associated to nitrogen (N) and sodium (Na) (Fig. 3.18), while 

elements other than C, Si and O were not detected in samples cleaned with Piranha. Since 

N is the key atom in the amines of the adhesion proteins, its presence indicates the 

existence of proteins on the surface. 
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Figure 3.18. Presence of nitrogen (N) and sodium (Na) in the XPS survey of 3C-
SiC(0001) after cell growth and subsequent RCA clean. These elements are indicators of
residual biomatter on the surface and N, in particular, is a key component of adhesion
proteins. 

 
 

The reported results lead to the conclusion that Piranha clean is much more 

effective in removing organic residue than RCA clean. For this reason, Piranha solution 

was constantly used in the sample cleaning procedure prior to cell deposition (§ 3.1.2). 

 
3.3.2. RCA clean as a promising surface pre-treatment for the study of cell-SiC 

adhesion sites 

When an epithelial cell adheres to a surface three typical types of adhesions may 

take place: focal complexes, focal adhesions and fibrillar adhesions, which are 

characterized by different molecular constituents and dimensions. In-vivo, these 

adhesions exist between the cells and the extra-cellular-matrix (ECM), which is a fibrous 

mesh of proteins that serves as both structural scaffold and substrate for the display of 

signaling ligands. At present, many studies are focusing on rebuilding ECM surrogates in 

synthetic materials to engineer cell-surface interactions [96, 103, 104]. However, when 

cells come into contact with a substrate that naturally does not present ECM proteins, 
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they may or may not produce ECM depending on the substrate level of biocompatibility. 

Formation and secretion of ECM proteins, including fibronectin and type I collagen, are 

required for cell spreading and anchorage, so biocompatible material will enhance ECM 

production. 

We used the presence of bio-residuals on the surface after RCA cleaning to study 

the nature of the HaCaT adhesion sites on SiC surfaces. The identification, by 

topographical exam, of the typology of adhesions could help identify the adhesion 

proteins that have an active role in SiC-HaCaT cells interaction.  

Typical optical images of RCA-cleaned SiC surfaces were observed to be similar to 

the one of Fig. 3.19. Dead cells are present in the centre of the image, while dot-shaped 

particles, which are possible adhesion sites, are visible in the right hand side (RHS) of the 

figure. The height of the cell residue was measured to be 200-500 nm (Fig. 3.19(b)) by 

AFM. Also, elongated fibrillar elements, whose nature is explained further on in this 

section, were observed frequently (see upper LHS of Fig. 3.19(b)). 

 

Figure 3.19. Analysis of RCA cleaned surface. (a) optical micrograph and (b) AFM 
micrograph of a cell observed in (a) with cell dimension shown via the relative line
profile. 
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A better analysis of the dot-shaped features can be performed from Fig. 3.20(a) 

which probably represents (considering the scale bar and that the size of an extended 

HaCaT cell is ~ 20 µm) a site for multiple cell adhesion. 

 

 
Figure 3.20. Analysis of different adhesion sites found on SiC surfaces after RCA clean.
(a) optical micrograph and (b) AFM micrograph of a particular feature in (a) depicting 
what are believed to be podosomes on the surface. 

 
 

We identified, by analyzing their dimensions, three different typologies of cell 

adhesions that may still be present on the SiC surface after RCA cleaning (see labeling in 

Fig. 3.20(a)). Fibrillar adhesions are beaded features of variable dimensions ranging from 

1 to 10 µm. Smaller dot-like features are either focal complexes (~ 1 µm) or podosomes 

(<1 µm, Fig. 3.20(b)) [105, 106].  

In many samples a fibrillar network like the one in Fig. 3.21 was observed. This 

suggests massive ECM production on SiC substrates, which also confirms the material’s 

biocompatibility. In the ECM net were often observed circular shaped holes, which 

probably indicate the original presence of cells on those sites (see circle in Fig. 3.21(a)). 

In fact, if the ECM net-cell is a stronger bond than ECM net-SiC substrate, when the cell 

is detached by the chemical cleaning, the fibrillar net will also be removed. AFM 
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micrographs and related line profiles, like the ones in Fig. 3.21(b), reported the fibrillar 

elements to be up to 300 nm high and 0.5-1.5 µm wide. 

 

Figure 3.21. (a) Optical image and (b) AFM micrograph, with related line profile,
showing a fibrillar network on the SiC surface after RCA cleaning. The circle in (a) 
indicates an area of missing fibers and therefore a possible cell site before RCA cleaning.
Cellular residue are visible in the upper RHS and lower LHS of the optical image. 

 
 
3.3.3. Effect of repeated Piranha cleanings on chemistry, wettability and cell 

proliferation 

While performing the biocompatibility studies whose results are reported in § 3.1 

and 3.2, we noticed that the cell proliferation was significantly lower on samples cleaned 

with Piranha several times (e.g., more than ten) than for samples cleaned only a few 

times. As a consequence, we decided to investigate if this difference in cell proliferation 

was caused by changes in surface properties induced by the Piranha clean chemistry. For 

this purpose, XPS studies and contact angle analysis were performed on a series of 3C-

SiC(001) and 4H-SiC(0001) samples cleaned in Piranha from a minimum of zero to a 

maximum of twelve times. Fig. 3.22 reports the HaCaT cell proliferation on samples 

never treated with Piranha and treated ten times, respectively. The results, calculated 

from a series of three MTT assays, showed that the cell proliferation for samples never 

treated with Piranha was up to 23% higher than for the over-treated samples. 
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Figure 3.22. HaCaT cell proliferation at the third day on 3C- and 4H-SiC samples never 
cleaned with Piranha and cleaned with Piranha 10 times expressed as x ± σm measured 
via MTT assay. [88] 

 
 

Contact angle studies performed on the differently treated 3C- and 4H-SiC surfaces 

gave the results listed in Table 3.4. 

 
Table 3.4. Piranha effect on surface wettability assessed by sessile drop method. 

 # piranha treatments 3C-SiC(001) 4H-SiC(0001) 

0 52.53 ± 1.83 53.78 ± 3.38 

3 35.2 ± 1.7 - θ  (º) ± σ (º) 

>10 22.8 ± 2.1 20.65 ± 3.35 
 
 

It appears that Piranha cleaning tends to increase the surface hydrophilicity. By 

comparing the results in Table 3.4 and Fig. 3.22, we can state that in this case, differently 

than in § 3.2.1, a higher hydrophilicity does not correspond to a greater cell proliferation. 

This apparently contradictory result (e.g., mammalian cells should preferentially adhere 

and proliferate on more hydrophilic surfaces) was explained by the results of XPS 

analysis. In Table 3.5 we report the data extracted from XPS survey and high resolution 

scans of 4H-SiC sample never treated with Piranha and treated 10 times. 
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Table 3.5. Si and C elemental concentration* and C/Si ratio** for 4H-SiC samples 
treated with Piranha zero and ten times. 
 *  as calculated from the XPS high resolution scans 
** as calculated from the XPS survey 

 No Piranha Piranha 10 times 

C/Si ** 1.62 1.56 

C % * 60.05 56.28 

Si % * 39.95 43.72 
 
 

It must be noted that the 4H-SiC surfaces examined with XPS were of vicinal 

samples cut from the same two inch wafer and therefore presented similar chemical 

characteristics before the Piranha treatment. It is evident in Table 3.5 that repeated 

Piranha cleanings reduce the C-concentration on the near surface region in a sensitive 

way. This result suggests that, even though SiC is well-known to be chemically inert to 

the most widely used acids and liquid etchants, it is likely that repeated piranha cleans of 

SiC surfaces may decrease the carbon concentration in the near surface region. Piranha is, 

in fact, a strong oxidizer and highly effective in removing organic matter. Its extremely 

reactive atomic oxygen species, that form during H2O2 dehydration, allows the Piranha 

solution to dissolve elemental carbon, which is notoriously resistant to room temperature 

aqueous reactions. A decreased C-concentration in the Piranha over-treated surfaces is a 

likely explanation for the increased hydrophilicity observed on these surfaces. Ab-initio 

molecular dynamic simulations reported in [107] have, in fact, shown that carbon-

terminated SiC surfaces have a hydrophobic character, while Si-terminated SiC surfaces 

are hydrophilic. Also, other sources report that a surface covered with a substantial 

amount of carbon bonded to oxygen is hydrophobic [13]. Therefore it is likely to assume 
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that a reduced C-concentration on the SiC surface may lead to a consequently increased 

hydrophilicity. Also, since surfaces richer in carbon are more biocompatible, the reduced 

C-concentration observed for Piranha over-treated samples is very likely the cause for the 

decreased cell proliferation reported in Fig. 3.22. 

Summarizing, the repeated use of Piranha cleaning changes the SiC surface 

chemistry and subsequently its wettability and biocompatibilty. In order to obtain 

consistent results in biocompatibility studies the Piranha cleans of a specific sample have 

to be limited to a maximum of five. This particular precaution was used when performing 

all the MMT assays and optical inspections described in § 3.1.3. 

 
3.4. Summary 

The presented studies report the significant finding that SiC surfaces are a better 

substrate for mammalian cell culture than Si in terms of both cell adhesion and 

proliferation. In the past, the fact that cells could be directly cultured on Si crystalline 

substrates led to a widespread use of these materials for biosensing applications [108-

110]. Therefore, the results reported in § 3.1 define SiC an even more promising substrate 

for future cell-semiconductor hybrid systems.  

The main factors that have been shown to define SiC biocompatibility are its 

hydrophilicity and surface chemistry (§ 3.2.1). SiC surface morphology is shown to 

influence cell adhesion only when macropatterned (§ 3.2.2), while SiC polytypism and 

doping concentration seem to have no influence on cell proliferation (§ 3.2.3). 

The importance of using an appropriate cleaning procedure to obtain repeatable and 

clean surfaces after each cell culture cycle is discussed in § 3.3.1 and in § 3.3.3. In § 3.3.2 
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we show how the finding that RCA cleaning leaves bio-residuals on the surface can be 

used to analyze the properties and morphology of the adhesion sites. 

Many more analysis techniques may be used to analyze SiC biocompatibility. In 

particular, primary cell lines could be cultured on SiC surfaces in the future since their 

behavior would be a closer description of the in-vivo performance of the material. Also, 

since cell adhesion is known to be influenced by the electrostatic properties of the 

substrate in the specific media where cells are grown, zeta potential measurements of SiC 

particles in media could be attempted to define its charge. The adhesion sites of cells on 

SiC surfaces could be analyzed by using specific dies which would allow for a more 

accurate adhesion typology differentiation than the one presented in § 3.3.2. Once the 

adhesion sites are well characterized a more precise identification of the adhesion 

proteins would be possible using XPS and FTIR. The identification of the organic 

chemical groups that bind to the SiC surface, together with the calculation of SiC zeta 

potential in media, could be used to better understand the electronic interaction between 

cell and SiC surfaces. 
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Chapter 4.     CPD Apparatus and Characterization of Surfaces for Cell-Semiconductor 

Electronic Interaction Studies 

 
The surface characteristics and biocompatibility of silicon carbide (SiC) have been 

extensively studied in Chapters 2 and 3, respectively. Thanks to the knowledge acquired 

through these studies we can now move forward and characterize cell-semiconductor 

electronic interactions via contact potential difference (CPD) measurements. To date, 

dark/light CPD measurements have been proven to be a powerful technique which allows 

one to investigate the electronic band banding naturally present at the surface of a 

semiconductor or which occurs as a result of chemical or ionic charging [40, 42, 45]. The 

measurements that we aim to perform and that will be extensively described in Chapter 5 

intend to investigate the band bending induced in a semiconductor by the charge 

associated with biological cells residing on the semiconductor surface. However, there is 

a potential complication that these measurements intrinsically present: the necessity of a 

liquid layer (i.e., culturing cell media) around the cells which implies immersion of the 

semiconductor in an electrolyte.  

In order to perform successful CPD measurement of a semiconductor immersed in 

liquid, the CPD apparatus has to be carefully assembled and calibrated and the samples 

selected for the liquid measurements have to fulfill several requirements: (i) 

biocompatibility to allow cell adhesion during the experiment with adherent cells; (ii) low 

surface state density to impede pinning of the Fermi level in liquid; (iii) complete 
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electronic characterization in air via CPD. All the SiC surfaces fulfill requirement (i), as 

shown by Chapter 3, while we suggested in Chapter 2 that a low surface state density (ii) 

can be obtained on damaged SiC surfaces by processing them with suitable H-etching 

processes. In this chapter we therefore concentrate on requirement (iii).  

After describing the CPD apparatus and its calibration, we present the experimental 

procedure designed to perform the CPD measurements which are used to electronically 

characterize semiconducting surfaces (§ 4.1). Suitable samples for cell-semiconductor 

electronic interaction studies are carefully selected (§ 4.2) and electronically 

characterized via CPD measurements (§ 4.3-5). In particular their electronic ‘steady state’ 

is studied in § 4.3, while the effect of H-etching and selected chemical treatments is 

described in § 4.4 and § 4.5, respectively. 

 
4.1. CPD apparatus, calibration and experimental procedure for CPD measurements in 

air 

The CPD apparatus was properly assembled to reduce stray capacitances and 

electromagnetic, mechanical and noise interference and calibrated to obtain the maximum 

possible accuracy of the instrument. § 4.1.1 describes the experimental apparatus and its 

assembly while § 4.1.2 particularly focuses on the apparatus calibration and suggests 

several precautions that may be taken while performing CPD measurements. In § 4.1.3, 

we describe the classical procedure adopted when measuring the surface potential (Φs) of 

a dry semiconductor.  
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4.1.1. Experimental apparatus 

As explained in Chapter 1, the components of a basic CPD system are a vibrating 

Monroe probe connected to an electrostatic voltmeter for the detection of CPD voltages 

and a grounded chuck for sample backside grounding. To facilitate the reader in the 

understanding of the next sections we recall from § 1.4 the following concepts: (i) a 

Monroe probe measures a voltage that is defined as the CPD voltage (Vcpd); (ii) in dark-

light measurements two different voltages are acquired by the CPD system, one in dark 

(Vcpd,dark) and one under deep illumination (Vcpd,light); (iii) the difference between these 

two values yields a semiconductor surface potential (e.g., Φs = Vcpd,dark – Vcpd,light). 

The Monroe probe used in our system is a 1017AEL-5 model from Monroe 

Electronics (ME) [111]. The 1017 AEL-5 probe presents a large diameter sensing 

aperture (i.e., 3.30 mm) which enables low noise measurements at a probe-to-surface 

spacing as large as 6 mm. Its output was connected to an SDI (Semiconductor Diagnostic, 

Inc.) PDM-40 electrostatic voltmeter which resolved the CPD voltage (Vcpd) sensed by 

the probe by applying the null-method suggested by Kelvin [44]. The same voltmeter 

provided the ground reference potential for the gold-coated vacuum chuck, which is the 

platform where the sample was positioned during the measurements. In order to exclude 

external electromagnetic field and possible noise sources the probe and the chuck were 

situated inside a Faraday cage which was properly grounded. An image of the basic 

experimental apparatus inside the Faraday cage is shown in Fig. 4.1. 
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Figure 4.1. Experimental CPD apparatus housed inside a Faraday cage (probe, sample, 
chuck and LED shown). Note: probe is shown protruding out of the probe holder arm for
display purposes only. 

 
 

The output of the PDM-40, which displays, when properly calibrated, voltages with 

a maximum accuracy of 1 mV, was connected to a Keithley 2000 voltmeter which was 

interfaced to a computer for automated data collection through an IEEE GPIB interface 

card. A suitable program was coded in the measurement control software Labview for 

data collection and storage. The CPD voltage as output from the Labview program after 

each measurement was calculated from an average of 25 samples taken with a sampling 

period of 10 ms. A Tektronix TDS 1002B oscilloscope was used as a diagnostic aid for 

the PDM-40 calibration. 

In order to perform the dark/light measurements necessary for the determination of 

the semiconductor surface potential two ultraviolet (UV) light emitting diodes (LEDs) 

with a 370 nm primary emission wavelength were positioned within the terminal part of 

the probe holder with an angle that allowed proper illumination of the semiconductor 

surface for a fixed range of probe-sample distances (Fig. 4.1). To allow proper 

illumination of the sample the Monroe probe was used while retracted in the probe holder 
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(e.g., a different arrangement than that shown in Fig. 4.1). UV light was chosen because 

the photon energy of the light needs to be greater than the SiC energy band gap (i.e. Euv > 

3.23 eV) in order to generate enough electron hole pairs (EHP) for the semiconductor 

surface to approach flatband. 

 
4.1.2. CPD system calibration and measurement precautions 

Since surface potential is highly dependent on the semiconductor material 

morphological and electronic properties, CPD measurements are sample variable and 

definitely non-trivial to make with a high enough level of precision to gain useful 

information. Therefore several precautions have to be used when performing these types 

of measurements. In this section we describe the calibration procedure and precautions 

which allowed us to perform good-quality CPD measurements in air and that, in the end, 

made possible a successful characterization of the cell-semiconductor electronic 

interaction. 

Measuring distance selection. Even though the AEL1017-5 Monroe probe model 

allows measuring distances as large as 6 mm, the choice of operating at small probe-to-

sample distances was made based on the fact that larger distances make the measurement 

more susceptible to external noise and decrease the electrostatic voltmeter response 

speed. The PDM-40 voltmeter was periodically calibrated to ensure spacing-independent 

measurements for a probe-to-sample distance ranging from 0 to 2.5 mm. Even though 

this precaution was constantly taken we opted to work at a constant probe-to-sample 

distance to avoid the effect of stray capacitances, which are known to be distance 

dependent [42]. The optimal operating probe-to-sample distance was selected to 

maximize both the sample illumination (e.g., maximization of the light intensity on the 
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area below the measuring electrode) and the measurement accuracy (e.g., minimization of 

the standard deviation of a series of readings from the same surface). While the 

maximization of the sample illumination was straightforward (we selected the range of 

distances for which the two discs of light originating from the UV diodes would intersect 

on the sample surface), the determination of the measurement accuracy required us to 

take several Vcpd readings of the grounded chuck at different probe heights and to 

calculate the measurement standard deviation at each specific distance. Mean ( cpdV ) and 

standard deviation (σ) for a three measurement distribution at each analyzed distance are 

listed in Table 4.1. The probe-to-sample distances analyzed are the ones which allowed 

the maximization of the light coverage on the sample surface. 

 
Table 4.1 CPD voltage mean ( cpdV ) and standard deviation (σ) measured for the 
grounded chuck in the dark and at different probe-to-sample distances. 

Probe-to-sample 
distance (mm) 1 mm 1.6 mm 2.3 mm 

cpdV  ± σ (mV) 0.42 ± 0.24 1.08 ± 1.34 0.28 ± 1.96 
 
 

As expected, the smallest standard deviation was obtained for the smallest probe-to-

sample distance which was therefore selected as the optimal measuring distance. Hence, 

all the measurements described in this chapter were performed with the probe 1 mm 

above the sample surface. 

Verification of the signal transient detection capability. Besides reading the CPD 

voltage of a semiconductor in equilibrium (e.g., Vcpd is constant since no photo-

excitation, electric field , or chemical charging of the surface is applied), the CPD system 

has to be able to detect quick variations in the CPD voltage without significant delay. 
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This is because when light shines on the semiconductor surface the voltage quickly shifts 

from Vcpd,dark to Vcpd,light. The capability of the apparatus to detect fast signal transients 

was checked by applying a square waveform to the metallic chuck using a Clarke-Hess 

748 function generator and by comparing, using the Tektronix oscilloscope, the original 

applied waveform and the Vcpd signal detected by the system (Fig. 4.2). The period of 

the applied waveform was 10 ms while its amplitude was 220 mV (the amplitude of the 

signal reported in Fig. 4.2 is 100 times attenuated). 

 

 
Figure 4.2. Comparison between the Vcpd signal detected by the CPD system and the 
original voltage signal as observed via oscilloscope. This result confirms the possibility 
to measure fast (sub-ms range) transients with our CPD apparatus. 

 
 

As is evident from Fig. 4.2, the CPD system was able to perfectly detect the square 

waveform applied to the metal chuck. Rise and fall times of the detected signal were 

below 15 µs. 

Stray capacitance. During preliminary measurements performed with the CPD 

apparatus we observed the capacitive coupling of metallic cable connectors to the 

Monroe probe plates. After this finding, most of the metallic connections in the apparatus 

were properly insulated to reduce stray capacitances.  
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Sample charging operated by the vibrating Monroe probe. Leaving a 

semiconducting sample under the CPD probe for long times may cause an evident 

charging effect on the semiconductor surface. This charging effect is probably generated 

by the chemical species deposited by the vibrating shutters of the probe on the 

semiconductor surface. Hence, in all the experiments described in this and the next 

chapter, samples were never left under the vibrating probe for long time spans. For the 

case of long recovery times (e.g., typically required by hexagonal SiC) samples were 

removed from the apparatus and repositioned later. If vibrating probes are to be used for 

time-continuous CPD measurements we strongly recommend the active use of the 

nitrogen purge insert which many of them incorporate. A plot of a significant charging 

effect caused by the probe on a 3C-SiC sample is reported in Fig. 4.3. 

 

 
Figure 4.3. Probe charging effect on the surface of a 3C-SiC epilayer within the first 18 
hours. Note the decay in the observed CPD voltage caused by continuous measurement
over the sample surface. 

 
 

Instrument performance verification. As a final step in the calibration procedure, 

the instrument performance was compared to that of a similar commercial CPD apparatus 

from SDI. A comparison between the readings obtained at USF and SDI for 4H-SiC 
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epitaxial samples are listed in Table 4.2. Considering that surface potentials may vary 

significantly (up to tens of millivolts) on different areas of the same semiconductor 

because of small topographical differences, crystal defects and impurities the results 

reported in Table 4.2 can be considered highly satisfactory. In conclusion, the USF CPD 

apparatus used in this work was well calibrated and, therefore, measurements made with 

this tool are reliable. 

 
Table 4.2 Comparison of CPD measurements of 4H-SiC epilayers using two CPD 
tools. Values obtained with the USF CPD system are compared to those obtained with a 
similar system at SDI. 

SDI CPDM apparatus USF CPDM apparatus 
Sample ID Doping type 

Φs (mV) Φs (mV) 

USF-b-003 n -330 -340 

USF-b-005 p 380 370 
 
 

 
4.1.3. Procedure for CPD measurements of semiconductors in air ambient 

A specific procedure was developed to perform CPD measurements of 

semiconductors in air ambient. The procedure, described below, was used to perform all 

the CPD measurements that were used to characterize the electronic behavior in ‘steady 

state’ and upon charging of the samples selected for the semiconductor-cell-electrolyte 

measurements.  

 

1) Sample positioning over the vacuum chuck 

2) Vacuum pump activation 

3) Probe lowering at 1 mm from the sample surface 
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4) Faraday cage closure 

5) Measurement in dark → Vcpd,dark 

6) Switch on UV light 

7) 10 second wait 

8) Measurement in light → Vcpd,light 

9) Switch off UV light 

10) Calculation of surface potential: Φs = Vcpd,dark - Vcpd,light 

11) Repetition of steps (5) to (10) for a second time 

 

In step (1) we always used metallic tweezers because charging effects were 

observed when handling the samples with Teflon or plastic tweezers. Since the Vcpd,light 

value was reached with different time intervals for different samples and it mostly 

depends on the quality of the crystal material (e.g., trapping effects may increase the time 

necessary to get to Vcpd,light), we selected the 10 second time interval between 

measurements after preliminary experiments indicated it as the ideal illumination time. 

The surface potential values reported in the next sections are expressed as mean ( Sφ ) ± 

standard deviation (σ) and are calculated from a two measurements distribution. 

 
4.2. SiC and Si for cell-semiconductor interaction studies: sample selection and 

description 

The final objective of this work is to study the electronic interactions between 

biological cells and SiC samples via CPD. In order to perform successful CPD 

measurements of the complex semiconductor-cell-electrolyte system the CPD apparatus 
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has been properly assembled and calibrated (§ 4.1). In this section we first discuss how 

we selected suitable samples for cell-semiconductor CPD investigations (§ 4.2.1) and 

then describe their characteristics (§ 4.2.2). Besides SiC samples, Si samples were also 

selected for cell-semiconductor interaction studies and are therefore electronically 

characterized via CPD in this chapter. Si samples are mostly used as controls to ensure 

the validity of the performed CPD measurements, since the surface potential of this 

material in response to different chemical processes has been characterized by past 

studies [112-114].  

 
4.2.1. Sample requirements for dry and wet CPD measurements 

The choice of suitable samples for the cell-semiconductor electronic interaction 

studies we aim to perform is of primary importance. In this section we describe which 

sample characteristics may negatively affect the dry (sample in air) and wet (sample in 

liquid) CPD measurements and how they influenced our sample selection. 

Doping concentration. High doping concentration in a semiconductor reduces the 

possible band bending range and, therefore, the sensing potentiality when a charge is 

deposited on its surface. Therefore, we chose to work only with samples that presented 

doping concentrations NA,D < 1017 atoms/ cm3. 

Epilayer thickness. The penetration depth of the UV light used in our apparatus to 

generate the SiC flatband condition (hν = 3.4 eV) is approximately 8 µm for the cubic 

and 11 µm for the hexagonal polytype [115]. If the epilayer thickness is lower than these 

values the possibility of having interference in the CPD measurements caused by the 

generation of EHPs in the substrate underlying the epilayer is significant. We found that 

for hexagonal p-type SiC epilayers grown on n+ bulk crystals the presence of a p-n 
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junction relatively close (typically < 20 µm) to the sample surface affected the dark-light 

CPD measurements by causing Vcpd,light oscillation and a typical n-type behavior which 

was probably generated by majority carrier injection from the substrate into the epilayer. 

To avoid this problem, all the p-type samples selected for the CPD studies reported in the 

rest of this work were bulk crystals. On the other hand, the presence and depth of SiC-Si 

heterojunctions in the 3C-SiC epilayers grown on Si seemed not to constitute a problem 

for CPD measurements. A specific experiment was designed to evaluate the effect of the 

heterojunction depth on the Vcpd readings: 3C-SiC epilayers whose Si substrates were 

removed and a series of 3C-SiC epilayers on Si with thickness varying from 3 to 20 µm 

were chemically charged and their surface potentials then measured. No significant 

differences were found among the magnitudes of their surface barriers which indicated an 

irrelevant effect of the heterojunction on the final CPD readings. Therefore the 3C-SiC 

epilayers used in the rest of this work present variable thickness. 

Sample dimensions. In several instances we noticed that measurements of samples 

with areas smaller than 1 cm2 were less accurate and repeatable than measurements of 

samples with larger areas. This result can be easily justified by the existence of fringing 

effects arising from the fact that the sample dimensions are close to the measuring 

electrode dimensions. Therefore, samples with areas larger than 1 cm2 were used for all 

the experiments described in this chapter. 

 
4.2.2. Selected SiC and Si samples for cell-semiconductor CPD investigations 

The samples selected to perform the cell-semiconductor electronic interaction 

studies, and which therefore will be electronically characterized in the next sections with 

different chemical charging procedures, were as follows: 3º off-axis n-type 6H-SiC(0001) 
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epilayers grown on 6H-SiC and doped in the low 1016 cm-3 range; 3.5º off-axis pure grade 

p-type bulk 6H-SiC(0001) doped in the low 1015 cm-3 range; 3C-SiC(001) epilayers 

grown on Si(001) and unintentionally doped n-type in the 1015 cm-3 range; n-type bulk 

Si(001) doped in the low 1015 cm-3 range; p-type bulk Si(111) doped 2×1015 cm-3. The 

samples were at least five for each category reported. All the samples had dimensions of 

at least 4.9 cm2 (e.g., a quarter of a two inch wafer) and presented extremely flat surfaces 

(see Fig. 4.4). In particular, all the SiC surfaces presented atomic steps: the ones that 

originally presented polishing scratches were H-etched with processes suitable for the 

specific polytype (Chapter 2) to generate atomically flat surfaces and subsequently 

reduce the surface state density. 

 

 
Figure 4.4. AFM micrographs (2×2 µm scans taken in tapping mode) reporting the
morphologies of the samples selected for CPD measurements: (a) n-type Si(111), (b) 3C-
SiC(001), (c) n-type 6H-SiC(0001). P-type Si(111) and 6H-SiC(0001) (not shown) 
presented surface morphologies similar to (a) and (c), respectively. 

 
 
 

4.3. Surface potential of SiC and Si in ‘steady state’ 

As we already pointed out in the introductory section, it is of primary importance to 

electronically characterize, via CPD, the samples selected for cell-semiconductor 

electronic interaction studies. If the pattern of the typical electronic behavior of these 
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samples in response to different chemical charging processes is defined, it should be 

easier to understand the more complex electronic response that they may have in relation 

to electrolytes or cells. It is therefore of primary importance to define the initial band 

bending of these surfaces before any kind of surface charging or hydrogen etching 

process is applied. Since, in many instances after chemical treatment, the initial states 

(i.e. band bending) were also the ones to which each specific sample had the tendency to 

come back to, we defined them as ‘steady states’. The samples analyzed in this section 

and in the rest of the chapter reached their ‘steady state’ after being treated with RCA 

cleaning in the past. 

To facilitate the reader in the analysis of the CPD results reported further in the text 

we recall that when a surface is charged positively the bands bend down (Φs > 0) and 

when is charged negatively the bands bend up (Φs < 0). Hence, for an n-type 

semiconductor the surface potential Φs is zero for flatband, negative for depletion and 

positive for accumulation. The opposite is true for p-type. Table 4.3 contains an 

elucidation of these concepts. 

 
Table 4.3 Semiconductor surface potential versus the overall surface charge. 

 Surface charge > 0 Surface charge < 0 

n-type Φs > 0, accumulation Φs < 0, depletion 

p-type Φs > 0, depletion Φs < 0, accumulation 
 
 

The ‘steady state’ conditions for the samples studied were the following: 

accumulation for p-type Si(111); depletion for n-type Si(111) as well as for p- and n-type 

SiC(001). The observed conditions were in agreement with what has been reported in the 
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literature [114, 116] and suggest that all the samples were depleted of their majority 

carriers at the surface with the exception of p-type Si(111). The results obtained for Si 

and n-type SiC may be explained by the predominance of filled acceptor states near the 

surface. Instead, we suggest the presence of unoccupied donor states on p-type SiC 

surfaces. Fig. 4.5 is a band diagram representation of the ‘steady state’ condition for both 

Si and SiC surfaces. Obviously, the fact that the surface appeared to be negatively 

(positively) charged for n- and p-type Si and for n-type SiC (p-type SiC) does not mean 

that only filled acceptor (unfilled donor) states were present on the surface of these 

semiconductors, but that probably their effect was the predominant one. 

 

 
Figure 4.5. Band diagram representation of the ‘Steady state’ condition for n- and p-type 
(a) Si and (b) SiC surfaces, respectively. 
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4.4. Effect of hydrogen etching on the surface potential of SiC surfaces 

Besides producing atomically flat surfaces, H-etching should also terminate most of 

the dangling bonds of SiC surfaces with H atoms [117, 118], which should cause 

significant changes in the measured value of Φs. Moreover, if a complete chemical 

passivation of the SiC surface is achieved with H-atoms, the resulting measured surface 

potential should be null [119]. From an electronic point of view this happens because 

hydrogenation replaces the surface states with Si-H bonding and antibonding states, 

which are positioned below the valence-band maximum and above the conduction band 

minimum, respectively. Hence, no charge is transferred, which results in flatband (Φs=0) 

[117, 118]. Therefore H-etching represents an additional technique, besides wet chemical 

treatment (§ 4.5), that can be used to modify the electronic properties of a surface and 

therefore to define its electronic behavioral pattern. The H-etching processes used to 

modify the surface potentials of 3C- and 6H-SiC samples were similar to the ones 

specifically developed in Chapter 2 for these polytypes, with the only difference that the 

etching times were reduced in a way that would ensure maximum H-termination but 

minimum surface morphology modification. Since all the SiC samples, selected for this 

experiment from the groups reported in § 4.2.2, were already atomically flat at the 

moment of etching we did not want to risk surface over-etching which would increase 

surface state density. In fact, we are only interested in the chemical effect that processes 

have on the electronic state of the selected surfaces, and not on the influence of other 

variables such as surface morphology. We therefore reduced the etching time of 3C-SiC 

to 10 minutes and of 6H-SiC to 5 minutes.  
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After H-etching, we found that 3C-SiC(001) was in a flatband condition. This is a 

promising result because it shows the possibility of a complete electronic passivation of 

3C-SiC surfaces which was never reported before. Complete passivation of hexagonal 

SiC surfaces was reported by Seyller for n-type 6H-SiC(0001) and p-type 6H-SiC(0001) 

[118]. In this section we first report the results obtained by time-monitoring, via CPD, the 

H-etched 3C-SiC(001) surfaces (§ 4.4.1) and we then investigate, via XPS and ATR-

FTIR, the possible causes of the observed electronic passivation (§ 4.4.2). We also 

studied via CPD the effect of H-etching on n-type and p-type 6H-SiC(0001) (§ 4.4.3). 

However, in this case, electronic passivation was not observed.  

 

4.4.1. Electronic passivation by H-etching of n-type 3C-SiC epilayers 

N-type 3C-SiC(001) epilayers were treated with 10 SLM of ultra-pure (grade 8.0) 

hydrogen for 10 minutes at 1200 ºC and AP. They were kept under hydrogen flow until a 

few minutes before their extraction from the CVD reactor, which took place at 400 ºC . 

Just before the sample extraction the CVD reactor was purged with Ar to avoid 

dangerous combustion which otherwise may take place when opening the reactor door. 

The surface potential of these samples was measured before hydrogen treatment, 

immediately after and then monitored periodically over time. All the samples used in this 

experiment presented ‘steady state’ depletion values of Φs between -160 and -180 mV. 

All of them displayed, immediately after H-etching, values of Φs between 0 and -7 mV 

which is indicative of complete electronic passivation. Fig. 4.6 reports the surface 

potential monitoring for different 3C-SiC epilayers up to 1000 hours after the etching 

process. 
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Figure 4.6. Surface potential vs. time of several H-etched 3C-SiC(001) epilayers 
presenting similar characteristics. A quasi-null surface potential was observed 
immediately after etching on all the surfaces. 

 
 

It is evident that the surface potential changed quite rapidly during the first few 

days after H-etching. In average, after 10 days (i.e., 240 hours), the surface potentials of 

these samples were within 10 mV from their final values, which have larger magnitudes 

than the initially measured quasi-null Φs. We confirmed these results over a large number 

of samples.  

Other experiments were performed to study the effect of the final hydrogen cooling 

temperature on the magnitude and time variation of Φs. Besides 400 ºC, the final 

hydrogen cooling temperatures studied were 550, 1000 and 1200 ºC. The basic etching 

process applied was identical to the one described above with the only difference that 

after the hydrogen flow was interrupted (at 550, 1000 and 1200 ºC, respectively) all the 

samples were cooled down in Ar until their extraction from the CVD reactor which was 

performed at 400 ºC. We found that the surface potential time dependence of samples 

cooled down in hydrogen to a final temperature of 550 ºC was completely similar to what 
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was reported in Fig. 4.6. In fact, immediately after H-etching, those samples displayed 

quasi-null Φs values and reached, in roughly 10 days, the final Φs value. On the other 

hand, although all the samples cooled down in hydrogen to higher final temperatures 

presented quasi-null Φs values immediately after H-etching, they very quickly abandoned 

this condition. The ones cooled under hydrogen to 1000 ºC displayed surface potential 

values of roughly 20 mV after 2 hours of air exposure (Fig. 4.7, filled squares). In a more 

dramatic way, samples cooled down under hydrogen only to 1200 ºC presented surface 

potentials of roughly 20 mV after only 20 minutes in air ambient (Fig. 4.7, filled 

triangles). 

 

 
Figure 4.7. Surface potential vs. time of H-etched 3C-SiC(001) epilayers with final 
hydrogen cooling temperatures of 400 ºC (unfilled squares), 550 ºC (filled diamonds),
1000 ºC (filled squares) and 1200 ºC (filled triangles). Note that the time axis is 
logarithmic. 

 
 

From these results we can conclude that the stability of the electronic passivation of 

3C-SiC(001) epilayers strongly depends on the final hydrogen exposure temperature. In 

another instance we also demonstrated that etching processes which cause drastic surface 
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morphology variations will not lead to electronic passivation. Specifically, an atomically 

flat 3C-SiC epilayer treated with 10 SLM of hydrogen for 1 minute at low pressure and 

1200 ºC and which presented, after the process, a much rougher and less ordered surface, 

did not display a quasi-null surface potential.  

The effect of Ar annealing on 3C-SiC(001) epilayers was also investigated. Several 

samples with ‘steady state’ surface potentials of roughly -180 mV were Ar-annealed in 

the same CVD reactor used for H-etching at 1200 ºC and atmospheric pressure for 10 

minutes. The results obtained are reported in Fig. 4.8. 

 

 
Figure 4.8. Surface potential time monitoring, via CPD, of two Ar-annealed 3C-
SiC(001) samples with similar characteristics. Note that the time axis is logarithmic. 

 
 

It is evident from Fig. 4.8 that Ar-annealing did not provoke a quasi-null surface 

potential. However, the potential measured immediately after annealing was significantly 

lower than the one presented by the same surfaces before the process and was totally 

comparable to the final Φs reported above for H-etched surfaces (which was in average -

50 mV). We also observed that all the as-grown 3C-SiC epilayers (e.g., never treated 

chemically after the growth process) displayed the same Φs values and time dependence 
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than those reported in Fig. 4.8. This evidently indicates that the oxide layer that forms as 

soon as the sample is extracted from the CVD reactor is very stable and provides a much 

better electronic passivation than the oxide formed on the same surfaces after chemical 

treatment (e.g., after chemical treatment Φs < -100 mV for 3C-SiC always, as shown by 

Tables 4.6 and 4.7). This is also confirmed by the fact that some of the H-etched samples, 

which where HF dipped while they still presented a very low Φs, displayed, after HF 

treatment, less electronically passivated and more negatively charged surfaces (results 

reported in Table 4.4). 

 
Table 4.4 Charging effect of HF dip on H-etched n-type 3C-SiC epilayers. Before HF 
dip the surfaces displayed a small |Φs| and an almost flatband condition. After HF dip the
surfaces were evidently in a depleted condition. 

 USF2-07-063b USF2-07-054.2 

Φs before HF dip (mV) -29.6 -27.0 

Φs after HF dip (mV) -140.9 -151.1 
 
 
 

4.4.2. Characterization of passivated 3C-SiC surfaces via XPS and ATR-FTIR 

Since electronic passivation typically implies complete H-termination [118, 120], 

we decided to investigate the surface chemistry of the etched samples to probe if this was 

the case for our surfaces. Moreover, chemical studies can be used to motivate the 

differences in electronic behavior observed between H-etched and HF treated samples. 

The chemical characterization techniques used for this purpose were X-ray photoelectron 

spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR). We performed XPS studies, whose results are reported below, 

on an n-type 3C-SiC(001) sample before and after H-etching. The data obtained from the 
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analysis performed before H-etching refer to an HF dipped surface which presented Φs = 

-202.8 mV, while after H-etching the sample presented Φs = -7.1 mV. Surprisingly, a 

relatively high amount of oxygen was found on the etched surface (Fig. 4.9), which was 

comparable to the amount observed before etching (not reported). The magnitude of the 

O peak excludes the possibility that the oxygen observed is a minor contamination. 

 

 
Figure 4.9. XPS spectrum of a H-etched 3C-SiC(001) epilayer and relative elemental 
concentrations as calculated from the survey. A relatively high concentration of O was 
observed on the surface. 

 
 

However, the high resolution (HR) XPS scans showed the existence of differences 

on the surface before and after etching. In particular, the graphitic carbon concentration 

appeared to be lower for the etched surface (as is shown by the smaller shoulder in the 

HR C1s peak of the etched sample in Fig. 4.10(b)).  

Since it is quite easy to determine differences in band bending by photoelectron 

spectroscopy, we used the obtained HR spectra to confirm what was measured via CPD. 

Shifts in band bending can be measured via XPS because core level binding energies 

(e.g., Eb
C1s) referenced to the Fermi level (EF) vary with surface band bending and 
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because the sampling depth of XPS (2 nm) is much smaller than the width of the space-

charge layer. As is evident from Figure 4.10(a) and (b) which report, respectively, the 

Si2p and C1s HR spectra obtained for etched and un-etched 3C-SiC, the core level binding 

energies of the two samples are shifted by roughly 0.315 eV. The Si2p and C1s core level 

spectra of the H-etched sample shifted to higher binding energies, which is consistent 

with what was reported by Seyller [118] for n-type hydrogenated 6H-SiC(0001) surfaces. 

From the energy band shifts observed with XPS we could deduce that the magnitude of 

the surface potential change between HF dipped and H-etched samples was around 300 

mV, which is ~100 mV higher than the one measured via CPD. This is possibly because 

the value was roughly calculated from XPS spectra which were not performed with the 

aim of detecting band bending energy shifts. However, the shifts observed in the XPS 

spectra strongly confirm the existence of a different electronic behavior caused by 

different treatments on the same sample. 

 

 
Figure 4.10. Si2p and C1s core level spectra obtained for the same 3C-SiC epilayer before 
etching (bold line) and after etching (light line). The core level spectra are shifted to 
higher binding energies after H-etching treatment indicating a modification in surface
potential. 
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We should mention that even though the quasi-null surface potential measured for 

H-etched 3C-SiC epilayers may have strongly suggested the presence of a complete 

chemical passivation operated by H atoms in a similar fashion to Si surfaces [120], the 

LEED data presented in § 2.2.3 for 3C-SiC epilayers treated with the same etching 

process provide evidence of a different situation. In fact, if the etching process applied on 

3C-SiC had produced a completely H-terminated surface, the resulting LEED pattern 

should have been an unreconstructed (1×1), where instead we observed a (5×1) (§ 2.2.3).  

To better understand the causes of the peculiar electronic behavior observed for the 

etched epilayers, we performed ATR-FTIR studies which, differently than XPS, can 

provide interesting information regarding the presence and bonding of hydrogen on the 

surface. In these studies, performed under a constant nitrogen purge using a 45º beveled 

ZnSe crystal, we analyzed etched and HF dipped 3C-SiC samples with characteristics 

similar to those of the sample analyzed via XPS. The major differences that were 

observed by comparing the FTIR spectra of the etched and un-etched, HF treated, 

samples were the following: the spectra of the etched sample exhibited peaks due to C-H 

bonds (Fig. 4.11), while the spectra of the un-etched sample presented a signal at 

wavenumbers corresponding to Si-OH bonds (Fig. 4.12). No peaks in the wavelength 

range of 2000-2100 cm-1 that could be associated to Si-H bonds were observed on either 

sample. However, the absence of Si-H peaks from the FTIR spectra of the H-etched 

sample, where they would be mostly expected, does not imply that Si-H bonds were not 

present on the sample surface. In fact, since the ATR-FTIR apparatus used was not 

equipped with a polarizer, we could not perform p-polarized analysis, which can reveal 

bonds perpendicularly oriented to the surface as Si-H on SiC surfaces may be [121]. 
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Figure 4.11. ATR-FTIR spectra of H-etched 3C-SiC in a C-H stretch region indicating 
the existence of different typologies of C-H bonds. 

 
 

The major peak frequencies of the H-etched 3C-SiC epilayer in the C-H stretch 

region were located at 2849, 2917 and 2952 cm-1 and assigned to CH3 asymmetric, CH2 

asymmetric, and CH3 symmetric bonds, respectively (Fig. 4.11). However, we also 

observed, by deconvoluting the spectra, sp3CH and CH2 symmetric stretching modes. 

From a joint analysis of the XPS and FTIR data, it appears that the 3C epilayer surface 

contains, after H-etching, both oxygen and hydrogen, the latter being directly bonded to 

C. Amy et al. reported that hydrogenation of 3C-SiC(001) surfaces with a (3×2) LEED 

pattern leads to passivation of the topmost dangling bonds but creates and stabilizes 

others below the top surface. Once the hydrogenated surface was exposed to molecular 

oxygen they observed oxygen incorporation below the top surface without any loss in the 

H coverage [120]. Even though our 3C-SiC(001) surfaces presented a different surface 

reconstruction (i.e. (5×1)), it is still likely that, upon molecular oxygen exposure, O 

atoms were incorporated below the top surface without affecting the H-terminated 

topmost dangling bonds. Further studies are needed to investigate these interesting 

findings. However, the fact that H-etched 3C-SiC presented a high density of C-H 



118 

bonding, sustains the suggestion made in § 2.2.3 that the H-etched 3C-SiC epilayers may 

be C-terminated underneath the oxidic layer. 

 

 
Figure 4.12. ATR-FTIR spectra of un-etched, HF treated 3C-SiC in a Si-OH stretch 
region displaying the existence of Si-OH bonds. 

 
 

The Si-OH peak observed for the HF dipped samples (Fig. 4.12) confirms that this 

chemical treatment leaves the SiC surface essentially covered with -OH groups [118]. 

The hydroxylic groups are probably the cause of the depletion (i.e., Φs < 0) observed on 

the n-type surfaces after HF dip. 

Summarizing, the results presented in the last two sections indicate that the 3C-SiC 

surfaces are, after an appropriate H-etching process, electronically passivated. However, 

at a chemical level the surface does not present only hydrogen atoms, which is the case 

for Si [120], but also significant amounts of oxygen. The electronic passivation tends to 

deteriorate over time and under ambient conditions. However, the final Φs value at which 

the H-etched epilayers tend to stabilize is much lower in magnitude than the one 

measured for the same surfaces after HF treatment, which evidently tends to add negative 

charges to the sample surfaces. 
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4.4.3. Surface potential of H-etched 6H-SiC 

In this section we describe the effect of H-etching on n- and p-type 6H-SiC(0001) 

surfaces. H-etching was performed at 1550 ºC for 5 minutes at atmospheric pressure and 

with a hydrogen flow of 10 SLM. Before the etching process both the n-and p-type 

samples were found to be in depletion, which is a typical condition for SiC surfaces (§ 

4.3). After etching, however, n-type 6H-SiC(0001) became more depleted while p-type 

6H-SiC(0001) was characterized by a strong accumulation. Hence, H-etching seems to 

charge the surface of 6H-SiC samples negatively by probably filling acceptor states. The 

surface potential observed after etching did not vary significantly within the first 1000 

hours (Fig. 4.13), which indicates that, even if the surface of these hexagonal SiC 

samples was not electronically passivated, it was stable over time. 

 

 
Figure 4.13. Surface potential time monitoring, via CPD, of H-etched n-type (triangles) 
and p-type (circles) 6H-SiC surfaces. Note that the x axis is logarithmic. 
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4.5. Effect of chemical treatments on SiC and Si substrates 

Different chemical treatments were used to study the electronic behavior of Si and 

SiC samples upon charging. Specifically, Si and SiC surfaces were treated with HF and 

potassium permanganate (KMnO4) solutions and the magnitude of the band bending 

generated by the specific treatment on these samples was evaluated. Since HF dip is the 

last cleaning step performed before cell deposition (§ 5.1.3), determination of its effect on 

the band energy level is significant. The information obtained in this section is used to 

model the general surface potential behavior of the samples selected for the 

semiconductor-electrolyte/semiconductor-cell-electrolyte systems and as a possible aid 

for understanding the results presented in Chapter 5. Si substrates were used not only to 

study the surface potential of smaller bandgap materials after chemical treatment but also 

to verify the validity of the obtained results since the electronic status of Si surfaces upon 

chemical treatment is partially already known [112-114]. § 4.5.1 describes the 

experimental procedure used for charging the Si and SiC surfaces while § 4.5.2 reports 

and discusses the results. 

 
4.5.1. Chemical charging experimental procedure 

The HF treatment was executed in the following manner: sample dip in a 50:1 

HF:H2O solution for 1 minute; thoroughly rinse in DI water; nitrogen dry. To charge the 

surface by using potassium permanganate the samples were immersed, after the oxide 

was removed, in a 2:3 KMnO4:H2O solution warmed at ~ 35 ºC for 10 minutes, rinsed in 

DI water, and nitrogen dried. The charging processes and the subsequent CPD 

measurements, whose results are reported below, were repeated for at least three samples 

of each typology listed in § 4.2.2.  



121 

 
4.5.2. Band bending operated by chemical charging of the surface: results and 

discussion 

Before chemical treatment all the samples were in the ‘steady state’ condition 

described in § 4.3. Upon HF treatment, the p-type Si surfaces abandoned the 

accumulation condition and became depleted while the depletion of the n-type Si surfaces 

became less significant (Table 4.5). These results definitely show that HF treatment adds 

positive charges on Si surfaces which agrees with what was reported in [114]. This also 

indicates that the surface passivation is not complete and that, even if the surface is very 

likely largely H-terminated (which is confirmed by the higher hydrophobicity of these 

surfaces), oxygen is still present (as confirmed by XPS analysis). However, it has to be 

mentioned that the significant Φs reduction observed for n-type Si(111) is likely an effect 

of the better passivation operated by a partial H-termination of the surface.  

Upon HF treatment, n-type and p-type SiC samples were still found to be depleted 

as they were before. However, as can be seen in Table 4.5, n-type SiC showed a greater 

depletion (e.g., more negative Φs value → larger depletion width) while p-type SiC 

tended towards a less depleted state. This is indicative of a higher negative charge on SiC 

surfaces after the HF dip. It is known that HF treatment on SiC surfaces does not produce 

the passivating results that it does for Si: thin native oxides (~10 Å) are typically present 

on the surfaces of each SiC polytype immediately after HF exposure [116]. This was 

confirmed by the ATR-FTIR and XPS analysis performed on HF treated 3C-SiC samples 

and whose results are reported in § 4.4.2. The presence of hydroxilic groups -OH, 

detected on 3C-SiC surfaces via ATR-FTIR (Fig. 4.13), is a likely explanation for the 

increase in negative charge observed after HF treatment.  
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In conclusion, all of the SiC and Si samples displayed different degrees of surface 

depletion after an HF dip: the overall effect at the surface was probably the one of 

occupied acceptor states for n-type samples and of unoccupied donor states for p-type 

samples. 

 
Table 4.5 Effect of HF dip on Si and SiC surface potential as measured via CPD. 

Sample Si  
n-type  

Si  
p-type  

3C-SiC  
n-type 

6H-SiC  
n-type 

6H-SiC  
p-type 

( Sφ ) ± (σ) (mV) 
before HF 

-219.9 ± 0.6 -60.3 ± 2.8 -119.5 ± 1.1 -207.8 ± 3.2 250.1 ± 7.1 

( Sφ ) ± (σ) (mV) 
after HF 

-78.2 ± 2.5 114.9 ± 5.9 -168.3 ± 0.1 -240.7 ± 1.9 108.3 ± 3.8 

 
 

Upon potassium permanganate treatment, which was performed after an HF dip, the 

Si(111) surfaces appeared to have acquired a more negative charge: n-type surfaces 

showed a greater depletion while p-type surfaces displayed a decrease in depletion (Table 

4.6). On the other hand, the SiC response to potassium permanganate was conflicting: 

both n-type and p-type surfaces tended to a more depleted state (Table 4.6). 

 
Table 4.6 Effect of potassium permanganate on Si and SiC surface potential as
measured via CPD. 

Sample Si  
n-type 

Si  
p-type 

3C-SiC  
n-type 

6H-SiC  
n-type 

6H-SiC  
p-type 

( Sφ ) ± (σ) (mV) 
before KMnO4 

-78.2 ± 2.5 114.9 ± 5.9 -300.9 ± 7.1 -339.9 ± 11.8 189.5 ± 14.8

( Sφ ) ± (σ) (mV) 
after KMnO4 

-188 ± 4 70.3 ± 0.9 -345 ± 12.8 -1405.6 257.3 ± 13.8
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Because of the oxidizing nature of potassium permanganate, an oxide is present on 

both Si and SiC after the treatment. This oxide introduces additional surface states, and 

therefore additional charge, Qit, at the interface with the semiconductors. Thus, the 

surface potential measured after permanganate treatment is probably largely influenced 

by the charge associated with Qit. Also in this case we can conclude that filled acceptor 

states were predominant at the oxide-semiconductor interface of n-type Si and SiC while 

unoccupied donor states defined the response of p-type Si and SiC surfaces. 

Although the results reported above could be repeated at different times, it has to be 

considered that the effect of chemical charging on both Si and SiC samples is extremely 

dependent on the topographical and electronic characteristics of the particular substrate 

used. It is possible that two samples presenting the same doping and orientation may still 

have a different response to a specific chemical treatment. Still, the results presented 

were confirmed over a sufficiently large selection of samples (especially for 3C-SiC), 

which makes them statistically relevant. Table 4.7 summarizes what is reported in this 

section. 

 
Table 4.7 Summary of the effect of HF and KMnO4 on Si and SiC surfaces: charge 
added by the chemical treatment with respect to the initial state and sign of the surface
potential measured. 

 Si  
n-type 

Si  
p-type 

3C-SiC  
n-type 

6H-SiC  
n-type 

6H-SiC  
p-type 

HF Add + charge. 
Φs < 0. depl 

Add + charge. 
Φs > 0. depl 

Add - charge. 
Φs < 0. depl 

Add - charge. 
Φs < 0. depl 

Add - charge 
Φs > 0. depl 

KMnO4 
Add - charge. 
Φs < 0. depl 

Add - charge. 
Φs > 0. depl 

Add - charge. 
Φs < 0. depl 

Add - charge. 
Φs < 0. depl 

Add + charge. 
Φs > 0. depl 
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Both the HF treatment, which is performed before cell deposition, and the 

potassium permanganate treatment, which helps to reproduce the case when an oxide is 

present (e.g., immersion in cell culture media), depleted the Si and SiC surfaces of 

majority carriers. The presence of a depletion layer is ideal for sensing charges added on 

the surface and therefore is a good starting surface condition for performing 

semiconductor-cell-electrolyte measurements. In fact, the addition of a fixed amount of 

charge on the semiconductor surface would cause a much larger signal variation in 

surface potential when starting from a depletion condition as opposed to accumulation of 

the semiconductor. 

 
4.6. Summary 

This chapter forms the basis for the semiconductor-cell-electrolyte CPD 

investigations that will be presented next in Chapter 5. The CPD apparatus has been 

properly assembled and calibrated while several preliminary measurements have allowed 

one to define the possible challenges that may be encountered when performing CPD 

measurements and to find suitable solutions. Samples for the cell-semiconductor 

interaction studies have been selected, described, and their electronic behavior upon 

chemical charging has been analyzed via CPD measurement. Thanks to the results 

presented in this and in previous chapters we are now ready to implement semiconductor-

cell-electrolyte CPD measurements for the investigation of electronic interactions 

between the biological world and semiconducting materials. 
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Chapter 5.     CPD Studies of the Semiconductor-Cell-Electrolyte System 

 
At this stage of the research SiC crystals with atomically-flat surfaces have been 

prepared and selected (Chapter 2, § 4.2.2), their surfaces have been characterized 

morphologically (2.2.1, 2.3.1), crystallographically (2.2.3), chemically (2.2.3, 3.2), and 

electronically (4.3-5), while their biocompatibility has been largely assessed (Chapter 3). 

Since all of the requirements listed in Chapter 1 for the successful investigation of hybrid 

systems have been discussed and fulfilled, we can now describe the results obtained in 

the final part of this research. 

Understanding how the presence of charges on the surface of a biological cell may 

affect the electronic band bending in a semiconductor would open a wide range of 

possibilities in the bio-sensing application area and is therefore one of the primary 

objectives of this work. In fact, up to date, even though the possibility of electronic 

communication between electrogenically active cells and semiconductors has been 

proved by cell electrical recordings operated by transistors [122-125], the mechanisms 

underlying the electronic communication have not been studied. In this chapter we report 

the methodology and results that we used in the attempt to describe the effect of the cell 

charge on the energy bands of a semiconductor. For this purpose, we selected dark/light 

non-contacting CPD measurement as a suitable technique capable of detecting the band 

bending at a semiconductor surface without discharging it (§ 1.4). However, as we 

already pointed out in the introductory section of Chapter 4, the necessary presence of 
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liquid in the CPD measurements we aim to perform highly complicates these 

measurements. Nonetheless, thanks to the accurate calibration of our CPD system, we 

report how we were able to obtain valid and repeatable CPD readings from 

semiconductor surfaces immersed in an electrolyte. Unfortunately, the results obtained 

from the CPD investigations of cell-semiconductor systems reported in this chapter did 

not display any measurable influence of the cell charge on the semiconductor band 

bending. However, the models and explanations used to describe the obtained results are 

of primary importance for the future implementation of successful techniques for the 

investigations of cell-semiconductor electronic interactions. Indeed in Chapter 6 we will 

discuss the possibilities to continue this work, based largely on the knowledge gained 

from the results presented hereafter. 

Specifically, in this section we first describe the experimental procedures developed 

for performing CPD measurements of semiconductor-cell-electrolyte systems (§ 5.1). 

Subsequently, we report the CPD characterization results obtained during investigations 

of semiconductor-electrolyte interactions (§ 5.2). In this section, in addition to SiC, which 

was selected at the beginning of this research as the ideal substrate material for our CPD 

studies (§ 1.2), Si substrates were also used (i.e., the ones selected and electronically 

characterized in Chapter 4). The results presented confirm that SiC is preferred over Si 

for the CPD measurements we intend to perform. In § 5.3 we explain the reasons that 

brought us to choose the cell lines used in this chapter for cell-semiconductor electronic 

interaction studies. Subsequently, in § 5.4 we present the results obtained studying, via 

CPD, the effect of adherent cells on semiconductor surfaces. Interestingly, no electronic 

effect operated by the cells on the energy bands of the semiconductor was observed. For 
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this reason we modified the approach and used, in the CPD investigations, non-adherent 

cells that are well known for their electronic charge: red blood cells (RBC or 

erythrocytes). In this instance, an evident cell-concentration-dependent band bending was 

observed on SiC surfaces (§ 5.5). Unfortunately, the apparent positive result obtained 

using RBCs was most likely caused by an optical effect associated with the nature of the 

erythrocytes rather than by their electronic charge. Theoretical models and possible 

explanations for the results reported in sections 5.2, 5.4 and 5.5 are presented in § 5.6. 

 
5.1. Experimental procedure for CPD measurements of the semiconductor-cell-

electrolyte system 

There are several steps that have to be performed to prepare the complex 

semiconductor-cell-electrolyte system which is going to be measured via CPD. First, 

each selected semiconducting sample has to be cleaned with an optimized procedure 

which eliminates any organic residue from its surface and which leaves the 

semiconductor in a depleted condition (§ 5.1.1). Second, the sample has to be processed 

in a way that allows one to culture/deposit cells on its surface and that, at the same time, 

ensures good electrical contact of the sample backside with the metallic chuck (§ 5.1.2). 

Third, cells have to be seeded/cultured on the semiconductor surface (§ 5.1.3). Finally, 

the CPD measurements can be performed (§ 5.1.4). In this section we describe all the 

procedures developed for each part of this experiment. 

 
5.1.1. Chemical preparation 

Each sample that was used for cell-semiconductor interaction studies presented bio-

residue on its surface at the end of the experiment. Since throughout this work we re-use 
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the same samples over and over to ensure result repeatability and to lower experimental 

cost, it is of fundamental importance to use a cleaning technique which ensures complete 

bio-residue removal. Moreover, the chemistry used in the cleaning procedure has to leave 

the semiconductor in a depleted condition since a depleted electronic status increases the 

sensing potentiality of the semiconductor. The cleaning procedure that was selected for 

this purpose was Piranha followed by HF. In fact, as we demonstrated in § 3.3, Piranha is 

the only chemical procedure that was found effective in complete bio-residue removal. 

The HF dip is used as a final step to ensure oxide removal (§ 3.1.1) and to generate a 

depletion region in the semiconductor surface (§ 4.5.2). Specifically, the applied 

procedure was constituted by the following steps: immersion in Piranha (2:1 

H2SO4:H2O2) for 5 minutes; de-ionized (DI) water rinse; dip in hydrofluoric acid solution 

(50:1 H2O:HF) for 2 minutes; thorough DI water rinse. Sterilization of the samples via 

ethanol dip was considered unnecessary for two main reasons: 1) in many experiments 

cells were only deposited on the semiconductor surface and not cultured, the CPD 

measurements being immediately performed; 2) the strength of the Piranha and HF 

cleaning applied before cell deposition were found to be enough to avert the danger of 

bacterial contamination even for the longest culturing time which was fixed at 24 hours. 

It should be mentioned that in all of the experiments performed and that will be reported 

in the next sections we never encountered contamination problems. 

 
5.1.2. Sample processing 

In the final CPD measurement that we aim to perform a Monroe probe will be 

lowered on a semiconductor (typically SiC) whose surface, wet by an electrolyte, 

presents deposited/cultured cells and whose backside forms a quasi-ohmic contact with 
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the metallic chuck of the CPD apparatus (§ 1.4.2). Therefore, the sample should be 

processed to ensure good electrical backside contact and a clean platform for cell 

culture/deposition. Obviously, since cells survive in aqueous environments and since 

aqueous environments oxidize semiconductors, a first requirement is to physically 

separate the platform for cell culture (e.g., sample surface) from the sample backside so 

that the electrolyte (e.g., cell media) will not come into contact with it. Moreover, a way 

has to be found to avoid the sample backside oxidation which would surely take place for 

experiments where incubation of the samples in an atmosphere with 95% of humidity 

was required. For this purpose, prior to cell deposition, the samples were processed in 

two different ways. This gave rise to two different experimental approaches that we have 

defined as the ‘free-standing’ sample approach and the ‘PEEK’ approach. In the free 

standing sample approach the liquid was confined in the top part of the sample by 

bordering the semiconductor edges with epoxy (i.e., crystal glue, see Fig. 5.1(a)) while 

Cu-Au contacts, evaporated on the backside of the sample, provided a stable electrical 

contact with the chuck. In the PEEK approach a machinable, autoclavable and 

biocompatible sample holder, made with Polyetheretherketone (PEEK), was designed 

and fabricated. The backside of the sample was epoxied to the PEEK container while a 

hole with threads machined in the holder allowed electrical back-side contact via a brass 

screw (Fig. 5.1(b)). The seal provided by the epoxy around the backside contact 

significantly slowed down the semiconductor oxidation process that took place every 

time the sample and the sample holder were stored in the incubator for cell culturing. 
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Figure 5.1. Sample configuration for cell-CPD experiments showing (a) the free-
standing sample approach and (b) the PEEK approach. In (a) the subdivision of the 
samples in parts with smaller area is represented. 

 
 

For experimental consistency cells and media (and media only for the experiments 

with electrolytes reported in § 5.2), were deposited on a sample with an area of 4.9 cm2. 

For the PEEK experiments samples with this area were used while for the free-standing 

experiments samples with larger areas were partitioned using epoxy as described earlier 

(Fig. 5.1(a)). 

The two methods presented different advantages and drawbacks. In the free-

standing sample approach the disadvantage was the toxicity of the epoxy which was in 

close contact with the cells while the advantage was quick sample processing. The 

drawbacks of the PEEK approach were longer processing times and higher costs while 

the positive point was the biocompatibility of the sample holder. The morphology of B16 

cells cultured on 3C-SiC samples processed in the two different ways is shown in Fig. 

5.2. As expected, a higher quality cell morphology was found for the sample mounted on 

the PEEK sample holder (Fig. 5.2(a)). Cells cultured on the free-standing samples and 

located at sufficient distance from the epoxy displayed morphologies totally comparable 
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to the ones of Fig. 5.2(a). However, we observed a poor morphology (i.e., minimization 

of the adhesion area) for cells cultured in the vicinity of the epoxy, as expected (Fig. 

5.2(b)). For this reason, CPD measurements of free-standing samples were performed far 

away from the epoxy, in areas where the cell morphology was equivalent to that observed 

on samples mounted in the PEEK holder. 

 

 
Figure 5.2. Cell morphology on (a) a sample mounted within the PEEK sample holder, 
(b) a free-standing sample in the vicinity of an epoxy drop (b). Note the different scale 
bar in the two fluorescence microscopy images. In (b) an epoxy drop with a rounded area
was present in the centre resulting in non-adherent cells in this region. 

 
 

The choice of using two different experimental approaches eliminated the 

possibility that systematic errors in the approach chosen would affect the final results. 

Both the approaches were successfully used and yielded the same results as will be 

shown in the next sections. 

 
5.1.3. Cell deposition / culture 

After the samples were cleaned and processed (e.g., mounted in the PEEK container 

or bordered with epoxy), cells were either deposited (i.e., short-time experiments) or 

cultured (e.g., 24 hour experiments) on the semiconductor surface. The mammalian cells 

used in our studies were: B16-F10 mouse melanoma, HaCaT human keratinocytes and 
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pig red blood cells (RBC or erythrocytes). While the first two listed cell lines are 

epithelial cells that need to adhere to the substrate to survive, RBC will not adhere to the 

SiC substrate. Therefore, two different experimental procedures were designed for the 

two cell categories. In the adherent cell experiment cells were deposited on each sample 

at a density that allowed complete coverage of the sample within the first 24 hours. 

McCoy’s Modified Medium and Dulbecco’s Modified Eagle’s Medium (DMEM), both 

supplemented with 10% FBS, were the culture media used for the B16 and the HaCaT 

cells, respectively. Typical seeding densities were of 10×104 cells / cm2. After seeding, 

cells and samples (either epoxied to the PEEK container or free standing) were incubated 

at 37 ºC from a minimum of 4 hours (minimum time to ensure cell adhesion to the 

substrate) to a maximum of 24 hours in an atmosphere containing 5% CO2 and 95% 

relative humidity. In preliminary experiments, CPD measurements were also performed 

after incubation times longer than 24 hours but they were found to be highly unrepeatable 

and hence will not be reported. In the RBC experiments, erythrocytes were collected 

from pig blood after centrifugation at 200 ×g and subsequent plasma pellet extraction. 

Subsequently, they were re-suspended at a high concentration in phosphate buffered 

saline (PBS). The estimated density in PBS was 6.4×109 cells/ml. In this case the CPD 

measurements were performed immediately after cell deposition on the semiconductor 

surface. As mentioned in § 5.1.2, all the seeding densities reported in this section refer to 

a sample area of 4.9 cm2. 
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5.1.4. Experimental procedure for CPD measurements of semiconductor-cell-

electrolyte systems 

The procedure used to measure the surface potential (Φs) of a semiconductor 

immersed in an electrolyte and with adherent cells cultured on top was identical to the 

one reported in § 4.1.3. Steps (1)-(10) were performed immediately after the sample 

(either free-standing or within the PEEK container) was removed from the incubator and 

the media was reduced to a minimum amount. To ensure that differences in media pH 

(e.g., media becomes acidic over time because of cell byproducts) would not influence 

the surface potential of the sample under study, the culturing media was changed 

frequently and in particular 1 hour before the execution of the CPD measurements. In this 

occasion the new media that was added did not contain fetal bovine serum (FBS) since it 

has been shown in electrophoretic measurements that the presence of FBS may modify 

the charge associated with cells [25]. 

For RBC studies the free-standing approach was adopted because of its short 

processing time. The drawback of this approach, which was represented by the toxicity of 

the crystal glue, was not an issue in this case since cell culturing on the semiconductor 

surface was not required and because of the very short duration of the experiment. For 

CPD measurements of the semiconductor-RBC-electrolyte system a different procedure, 

which is reported below, was designed. 

 

1rbc) Perform steps (1)-(10) reported in § 4.1.3 for the free-standing sample 

2rbc) Add 100 µL of PBS on the sample surface 
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3rbc) Perform steps (1)-(10) reported in § 4.1.3 for the sample-electrolyte system 

(taking care not to immerse the Monroe probe in the liquid) 

4rbc) Add 1% of RBC concentrated solution  

5rbc) Perform steps (1)-(10) reported in § 4.1.3 for the sample-RBC-electrolyte 

system (taking care not to immerse the Monroe probe in the liquid) 

6rbc) Repeat steps (4rbc) and (5rbc) for higher concentrations of RBCs 

 

The surface potential values reported in the next sections are expressed as mean 

( Sφ ) and calculated from a two measurement distribution. The standard deviation values 

for measurements in liquid were similar to those of measurements in air, typically below 

15 mV. 

 
5.2. Electrolyte semiconductor systems 

Before studying the effect of cells on semiconductor band bending, we investigated 

the modification in surface potential that the presence of an electrolyte would cause on 

SiC and Si surfaces. The chemical behavior of Si in aqueous solution has already been 

investigated by several past studies [13, 14, 48, 102], which facilitates the understanding 

of the results that will be reported. All the semiconductor-electrolyte interaction studies 

were performed using the free-standing sample approach, repeated several times (i.e., the 

results reported below within the tables are representative values), and depositing 100 µL 

of liquid on the sample surface (unless otherwise specified). Almost in every instance the 

electrolyte spread in a hydrophilic fashion over the sample surface. If not, a pipette tip 

was used to obtain a uniform coverage of liquid below the measuring electrode. In the 
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presence of non-flat, high contact angle media drops on the surface (i.e., only obtained 

for one semiconductor-electrolyte combination, reported below), no valid CPD 

measurements could be performed. 

First, we evaluated the behavior of n-type Si(111) and 3C-SiC(001) in water and in 

sucrose solution by adding 100 µL of these liquids over the sample surfaces using a 

pipette. Before being in contact with the electrolyte, both the samples presented the 

typical depletion ‘steady state’ described in § 4.3. CPD measurements were taken at 

several time intervals: immediately after the liquid deposition, after 5 minutes, after 10 

minutes and finally after liquid removal. We observed a different time-dependent 

behavior for Si and SiC CPD values. In both cases aqueous solutions tended to reduce the 

initial depletion state, obtained after HF treatment, and caused the bands to shift towards 

a flat-band condition. On Si this was more evident being that the initial depletion region 

is thinner (e.g., in general smaller band bending amplitudes were observed for Si after HF 

treatment probably because of the better H-passivation, see § 4.5.2). However, we 

observed that longer times were required for the Si sample to reach its final Φs value 

while for SiC the transient was immediate (see Table 5.1). Also, after water removal, the 

Φs of SiC tended to come back towards the initial depletion value while Si remained in a 

basically flatband condition. 
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Table 5.1 Effect of water on the surface potential of Si(111) and 3C-SiC(001) as 
measured via CPD. 

 Φs (mV) of 
bare sample 

Φs (mV) after 
H2O at 0’’ 

Φs (mV) after 
H2O at 5’ 

Φs (mV) after 
H2O at 10’ 

Φs (mV) after 
H2O removal

n-type Si(111) -135.5 -50.2 -35.1 -7.7 -10.1 

n-type 3C-
SiC(001) -253.3 -117.2 -101.1 -108.3 -184 

 
 

Even though Table 5.1 reports only the results obtained with water, completely 

similar results were obtained for the sucrose solutions. The flatband condition observed 

on Si is probably justified by the smaller initial |Φs| value. However, the fact that Si 

surfaces did not tend to recover to the initial Φs value after liquid removal indicates that 

whatever caused the quasi-null observed Φs was still affecting the dry surface. It is 

known that when Si is immersed in water a passivating oxide forms within the first 5-10 

minutes [13]. Therefore, rather than an effect associated with the redox couples present in 

the liquid, the flatband condition observed is most probably related to the presence of the 

oxide that grows on the surface during the sample immersion in liquid. Very likely 

surface states which develop at the Si-oxide interface cause Fermi level pinning and yield 

to the observed behavior. The same quasi-null Φs was observed also when different 

electrolytes (e.g., culturing media, phosphate buffer saline (PBS)) were contacting the Si 

surface. Therefore, whether the final Φs observed for Si was due to Fermi level pinning or 

to a complete surface passivation, it is impossible to use Si as a substrate for cell-

semiconductor electronic interaction studies.  

On the other hand, the existence of a still measurable depletion region on SiC 

surfaces contacting aqueous solutions encouraged us to proceed with these studies. The 
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electrolytes that were used in the experiments with cells, namely McCoy, DMEM and 

PBS (§ 3.1.2), were deposited on the selected SiC samples with different polytypism and 

different majority carrier types (e.g., n- or p-type) (§ 4.2.2). CPD measurements of the 

semiconductor-electrolyte systems were taken a few seconds after the liquid came into 

contact with the semiconductor and repeated within the first 10 minutes. Also in this case, 

no time dependent behavior was observed for the surface potential of SiC samples 

contacting electrolytes. Typical results obtained for 100 µL of deposited McCoy 

culturing media and PBS are reported in Tables 5.2 and 5.3, respectively. However, 

preliminary studies demonstrated that the amount of liquid per surface area was irrelevant 

within reasonable concentrations (e.g., 50-150 µL over an area of 4.9 cm2, see Table 5.4). 

The results obtained for DMEM culturing media were totally comparable to those in 

Table 5.2.  

 
Table 5.2 Effect of McCoy culturing media on surface potential of SiC and Si surfaces
as measured via CPD. Values for Si reported for comparison purposes only. 

Sample Si(111) 
n-type 

Si(111) 
p-type 

3C-SiC(001) 
n-type 

6H-SiC(0001) 
n-type 

6H-SiC(0001) 
p-type 

Φs (mV) of bare 
sample -228.4 113.1 -301.9 -337.6 287.7 

Φs (mV) with 100 
µL of McCoy -16.1 26.1 -169.7 -131.4 180.8 
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Table 5.3 Effect of phosphate buffer saline (PBS) on surface potential of SiC and Si 
surfaces as measured via CPD. Values for Si reported for comparison purposes only. 
  * not measured 
  £ double values reported due to conflicting behavior in repeated measurements 

Sample Si(111) 
n-type 

Si(111) 
p-type 

3C-SiC(001) 
n-type 

6H-SiC(0001) 
n-type 

6H-SiC(0001) 
p-type 

Φs (mV) of bare 
sample -129.8 100.5 -244.7 -354.2 222.7 / 214.2£

Φs (mV) with 100 
µL of PBS -14.9 0.8 -174.1 – * 221.6 / 364.7£

 
 

Table 5.4 Effect of different amounts of McCoy culturing media on surface potential 
of 3C-SiC(001) as measured via CPD. 

 Φs (mV) of 
bare sample 

Φs (mV) with 50 
µL of McCoy 

Φs (mV) with 100 
µL of McCoy 

Φs (mV) with 150 
µL of McCoy 

3C-SiC(001) -301.9 -169.7 -165.7 -171 
 
 

In Tables 5.2 and 5.3 surface potentials of n- and p-type Si before and after 

electrolyte deposition are reported for comparison purposes and also to confirm what was 

reported in Table 5.1. It is evident that the final quasi-null Φs value displayed by Si 

surfaces after electrolyte deposition is independent of the amplitude of the initial Φs value 

(e.g., even an initial Φs value as large as -228.4 mV approaches 0 mV when the surface is 

in contact with water). This indipendency strongly supports the hypothesis of a Fermi 

level pinning operated by surface states developing at the oxide-semiconductor interface. 

The presence of surface states at such a high density to cause Fermi level pinning on Si 

rather than on SiC surfaces could be due to the fact that Si samples were not prepared via 

H-etching and that they were not flat at an atomic level (see § 4.2.2).  
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It appears, that both McCoy and PBS tend to have the same effect of reducing the 

value of |Φs| (i.e., bands shifting away from depletion) for all the SiC polytypes studied, 

with the exception of PBS on p-type 6H-SiC(0001). For n-type 6H-SiC(0001), Φs values 

could not be calculated because of the hydrophobic reaction that these substrates had with 

PBS: all the attempts to deposit any amount of PBS on the surface resulted in the 

formation of a high contact angle drop that made it impossible to perform CPD 

measurements. On the other hand the result obtained for p-type 6H-SiC were conflicting: 

either no effect on band bending or a shift of bands toward depletion upon PBS exposure 

was observed. These results will be modeled in § 5.5.  

 
5.3. Cell line selection and properties 

For the cell-semiconductor electronic interaction studies three different cell lines 

with different characteristics were chosen. Unfortunately, to date, no clear estimation of 

the cell charge of adherent mammalian cells has been reported, with the exception of 

RBCs. This is one of the main reasons why our investigations are truly pioneering and, at 

the same time, particularly challenging. The only technique that currently reports the 

evidence of the existence of a net cell surface charge is electrophoresis, which determines 

the mobility of cells in aqueous solution upon application of an electric field between two 

electrodes. Thanks to these studies it is nowadays accepted that mammalian cells display 

a negative surface charge. Once the electrophoretic mobility is defined, it is possible to 

calculate the potential at the cell shear plane (i.e., zeta potential (ζ)) by using the von 

Smoluchowski equation ζ = 4πην/D where η is the fluid viscosity, ν is the electrophoretic 

mobility of the particle (i.e., cell) and D is the dielectric constant of the fluid [6, 24]. 

Clearly, the value of ζ by itself is meaningless if not associated with a pH and an 
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electrolyte. The von Smoluchowski equation has been long debated in the past and 

presents major interpretative difficulties [126]. The first issue in the adoption of this 

equation, for the determination of the zeta potential, resides in the fact that the relation 

was created for spherical particles whereas cells generally deviate from this assumption 

[6]. Also, this equation seems to be reliable only for zeta potential values < 120 mV and 

electrolytes containing more than 10-3 molar salt [127]. However, since it has been 

reported that erythrocytes made spherical by saponin have electric mobility, within the 

limit of experimental error, identical to the ones of the disc-shaped cells suspended in the 

same buffer, the von Smoluchowski equation has been largely adopted in the past for the 

determination of ζ of erythrocytes [6, 24, 128]. Typical values of ζ for erythrocytes vary 

between -15 mV and -30 mV, depending on the electrolyte of suspension [6, 24, 128, 

129]. In general, for small values of ν, the Debye approximation for the calculation of an 

erythrocyte charge density (σ) can be used and the relation between ζ and σ is 

straightforward: σ = Dζ/4π. As is intuitive, high electrophoretic mobilities lead to high 

zeta potentials and, therefore, are indicative of a high cell surface charge. Thanks to 

electrophoretic experiments and theoretical calculations performed using the 

aforementioned equations, the surface charge density of mammalian RBCs has been 

estimated to range between 63 and 188.8×10-8 C/cm2 [6, 128].  

On the other hand, values of ζ for other mammalian cells have not been calculated 

due to their incompatibility with the von Smoluchowski equation. Therefore, all 

knowledge about the possible charge associated with a specific cell comes from chemical 

studies. From a chemical point of view, it is well known that the negative charge of 

mammalian cells is mainly caused by sialic acid, hyaluronic acid and chondroitin sulfate 
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which are all present in the external part of the cellular membrane [130]. In particular, 

sialic acid is the only major constituent with negative charge in RBCs. Also, medical 

reviews in the past have reported results that tend to display higher electrophoretic 

mobilities for malignant cells [7]. The reduction of electrophoretic mobility observed for 

different malignant cell lines upon X-irradiation tends to confirm this belief [5]. Known 

charge-related characteristics of the cells used in this work, together with a motivation for 

their use, are summarized below. 

1)   HaCaT human keratyinocytes. No known surface charge density. Estimated 

mobility comparable to those of healthy mammalian cells and therefore largely lower 

than erythrocytes mobility in saline solutions [7]. Fast growing cell line, good for 

preliminary experiments. 

2)  B16-F10 mouse melanoma cells. No known surface charge density. 

Electrophoresis experiments performed for another B16 sub-line (B16-C2W) report 

mobility values comparable to those measured for human erythrocytes (e.g., μ = -1.05µs-

1V-1cm) [5]. This could lead to the assumption that the σ is similar for the two cell lines. 

However, an approximately 7 times larger diameter for the mouse melanoma cells (i.e., 

40 µm for B16 vs. 6 µm for RBC) complicates the matter. Moreover, aggregation of B16 

in clusters is often observed which may lead to the conclusion of limited electrostatic 

cell-to-cell repulsion and therefore a lower σ than the one measured for RBCs. Malignant 

cell line, possible higher negative surface charge with respect to HaCaT. Fast growing 

cell line. 

3)   Pig RBCs. Zeta potential and surface charge density in saline estimated to be 

roughly -13 mV and 11.2×10-7 C/cm2, respectively [6, 128]. Possibility of obtaining 
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significant electronic effect on the energy bands of SiC semiconductors. In fact, the total 

charge necessary to significantly deplete a 4H-SiC epilayer is on the order of 10-7-10-8 

C/cm2. Depositing a monolayer of RBCs above the semiconductor surface would 

generate a uniform charge density well above the minimum value necessary to generate a 

measurable band bending on SiC (e.g. 11.2×10-7 C/cm2 > 10-7 C/cm2, which is required to 

completely deplete a 4H-SiC epilayer) [45]. Easy to obtain in large quantities. 

 
5.4. CPD investigations of adherent mammalian cells-SiC systems 

§5.1 perfectly described the protocols used in the different stages that characterize 

CPD investigations of cell-semiconductor systems. In this section, before reporting the 

results obtained in the case of mammalian adherent cells, we will first describe the 

adopted experimental approach. In these experiments, when using the PEEK approach, 

we first evaluated the surface potentials of two identical samples after the cleaning 

process (Φs1,2 in Fig. 5.3), and then we probed whether the adopted sample processing 

technique (e.g., epoxy to PEEK in this case, § 5.1.2) had an effect on these values (Φs1’,2’ 

in Fig. 5.3). We always observed that the sample processing technique did not modify the 

surface potential values measured before processing (Φs1,2 = Φs1’,2’). Subsequently, B16-

F10 mouse melanoma and HaCaT cells were deposited, as described in § 5.1.3, on only 

one SiC substrate and cultured for different times ranging from 4 to 24 hours. The other 

sample was incubated only with culturing media (e.g., no cells) for the same amount of 

time. The CPD measurements were performed at regular intervals within this time range 

and the readings obtained for the substrate with cultured cells (Φs1’’) were compared to 

the one obtained for the identical substrate (always cut from the same original wafer and 

treated in an identical fashion) which was exposed to the electrolyte but no cells (Φs2’’). 
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In particular, the difference between the surface potentials measured when cells+media 

(or media only) were present and immediately before cell seeding (e.g., after processing) 

was calculated for each sample (Δ1,2 = Φs1’’,2’’– Φs1’,2’) and compared. Fig. 5.3 contains a 

flow chart describing the experimental procedure used when adopting the PEEK 

approach. For the free-standing approach the only difference was that typically half of a 

two inch sample (i.e., area A = 9.8 cm2) was partitioned in two subdivisions (similarly to 

Fig. 5.1(a) but only for a half wafer) displaying an area of 4.9 cm2 each: one half was 

seeded with cells and media and the other only with media. Therefore, we used one 

sample divided in two parts instead of two identical samples. The latter approach 

eliminated the possibility that two different samples would undergo other surface 

modifications than the ones caused by cells when stored separately in the incubator. 
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Figure 5.3. Flow chart describing the experimental procedure adopted to investigate the
effect of cell charge on semiconductor band bending. Φs1,1’,1’’ (Φs2,2’,2’’) are the surface 
potentials for the sample with cells+media (media only); Δ1 (Δ2) is the surface potential 
difference between the sample with cells+media (media only) and after processing. The
procedure reported is for the PEEK approach. For the free-standing approach all the steps 
are the same only, instead of using two identical samples, we operate on two parts of the
same sample partitioned by epoxy. 

 
 

Typical surface potential values obtained for B16 and HaCaT cells are reported in 

Tables 5.5 and 5.6, respectively. In Table 5.5 results are reported for 24 hour inspection 

of 3C-SiC(001) samples mounted on PEEK. However, they were also confirmed for n- 



145 

and p-type 6H-SiC(0001), using the free-standing sample approach, and for different 

incubation times. The experiment was repeated at least 10 times yielding always the same 

results. The media used for this cell line was DMEM throughout the experiment. Fresh 

DMEM (without FBS) was replaced for both the samples, with seeded cells and without, 

one hour before the CPD measurements as described in § 5.1.4. The results reported in 

Tables 5.5 and 5.6 clearly show that no measurable differences in surface potentials were 

observed between the samples with cells+media and the samples with only media. 

 
Table 5.5 Non-detected electronic interaction between HaCaT cells and 3C-SiC(001) 
after 24 hours from seeding (standard deviation σ < 15 mV). 

Sample ID 
Φs (mV) after 

cleaning + sample 
processing 

Φs (mV) of 
sample w/ media 

only 

Φs (mV) of 
sample w/ media 

and cells 
Δ (mV) 

n-type 3C-SiC 
USF-06-271.1: 
media + cells 

-211.4 (Φs1’) – -109.6 (Φs1’’) 101.8 (Δ1) 

n-type 3C-SiC 
USF-06-271.2: 

media only 
-207.6 (Φs2’) -111.5 (Φs2’’) – 96.1 (Δ2) 

 
 

It appears evident from Table 5.5 that no significant differences were observed 

between the Δ values calculated for the two samples. In fact, Δ1 – Δ2 = 5.7 mV which is 

within the standard deviation range for these measurements (e.g., 0 mV < σ < 15 mV, as 

reported in § 5.1.4). 

Table 5.6 illustrates the typical values obtained on different polytypes of SiC 

processed with the free-standing sample approach after 4 hours from B16-F10 cells 

seeding. The same results were obtained also when using the PEEK approach and after 

different incubation times. 
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Table 5.6 Non-detected electronic interaction between B16-F10 cells and n-type 3C-
SiC, n-type 6H-SiC and p-type 6H-SiC 4 hours after seeding (σ < 15 mV). 

 
Φs (mV) after 

cleaning + sample 
processing 

Φs (mV) of 
sample w/ media 

only 

Φs (mV) of 
sample w/ media 

and cells 
Δ (mV) 

n-type 3C-SiC 
USF-07-039a: 
media + cells 

-276.1 (Φs1’) – -175.4 (Φs1’’) 100.7 (Δ1) 

USF-07-039b: 
media only -284.4 (Φs2’) -178 (Φs2’’) – 106.4 (Δ2) 

n-type 6H-SiC 
CO24a: media + 

cells 
-323.5 (Φs1’) – -594.6 (Φs1’’) -271.1 (Δ1)

n-type 6H-SiC 
CO24b: media 

only 
-349.8 (Φs2’) -614 (Φs2’’) – -264.2 (Δ2)

p-type 6H-SiC 
BQ02a: media + 

cells 
215.6 (Φs1’) – 252.6 (Φs1’’) 37 (Δ1) 

p-type 6H-SiC 
BQ02b: media 

only 
232.2 (Φs2’) 281.7 (Φs2’’) – 49.5 (Δ2) 

 
 

Also in this case, no statistically significant differences were observed between the 

Δs calculated for each pair of samples of the same polytype. Therefore, no electronic 

interaction of adherent B16-F10 mouse melanoma cells with the SiC samples was 

observed. 

In every experiment, after the 24 hour CPD measurements were taken, all samples 

with seeded cells were inspected via fluorescence microscopy to evaluate cell 

morphology and coverage. We observed satisfying morphologies and a coverage of at 

least one monolayer in all cases. The obtained results are justified and modeled in § 5.6. 
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5.5. CPD investigations of RBC-SiC systems 

The CPD studies performed for B16-F10 melanoma and HaCaT cells on SiC 

surfaces did not display an evidence of band bending on the semiconductor surface. As 

we already mentioned in § 5.3, the surface charge density associated with these adherent 

cells may not be sufficient to induce a measurable effect on the electronic status of the 

semiconductor. On the other hand, the presence of a significant, and therefore easily 

measurable, electronic charge on RBCs and the fact that these cells are obtainable in 

large numbers brought us to choose them as an alternative, and hopefully more 

successful, cell line for the CPD experiments. 

We started the RBC experiments by depositing, on bare free-standing SiC samples 

already fully characterized via CPD, only the electrolyte for our experiments (PBS), 

repeating what was done in § 5.2, only this time not for modeling purposes but to obtain a 

specific surface potential value for each sample to compare with the ones obtained after 

cell deposition. After this, we proceeded by adding gradually increasing densities of 

RBCs and by measuring, after each addition of cells, at least two surface potential values 

to ensure statistical relevance of the data (as done in the rest of this chapter, e.g. § 5.1.4). 

The amount of RBC concentrated solution (estimated cell density: 6.4×109 cells/ml, (§ 

5.1.3)) deposited via pipette each time were 1, 10, 20 and 50% of the PBS solution. The 

experiment was performed on at least three selected samples for each polytype and was 

repeated two times. 

The results obtained apparently showed a strong dependence of the surface 

potential on the amount of cells present in solution and, in all cases, the bands of the 

semiconductor appeared to shift away from depletion and towards flatband. The observed 
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surface potential behavior is plotted in Figures 5.4, 5.5 and 5.6 for n-type 3C-SiC, n-type 

6H-SiC and p-type 6H-SiC, respectively. 

 

 
Figure 5.4. Measured CPD surface potential for increasing amounts of RBCs for
different 3C-SiC(001) samples. The surface potential values of the bare samples and of 
the samples with PBS are also reported for comparison. 

 
 

As is evident from Fig. 5.4, the behavior of the band bending upon PBS deposition 

was consistent with what was reported in § 5.2. A significant variation in the measured 

surface potential was observed even after addition of only 1% of RBC concentrated 

solution in PBS. However, this major effect could be easily justified by the fact that the 

total amount of cells deposited in this case was significantly high: approximately 6.4×106 

cells were present in the saline at the moment of the measurement. When adding an 

amount of cells equivalent to roughly 3.2×108 cells (50% RBC in Fig. 5.4) the calculated 

surface potential value approached zero. 

 



149 

 
Figure 5.5. Measured CPD surface potential for increasing amounts of RBCs for two n-
type 6H-SiC(0001) samples and data repeatability in two different experiments (DAY 1
and DAY 2) as calculated for one sample. The surface potential values of the bare 
samples are reported for comparison. 

 
 

Very similar results were observed for n-type 6H-SiC (Fig. 5.5). However, in this 

case, as explained in § 5.2, we could not monitor the effect of PBS on the electronic 

status of the semiconductor because of the high contact angle of the PBS drop with n-

type 6H-SiC and the impossibility to flatten it. However, once the RBCs were added in 

the solution, we observed a significant change in the electrolyte behavior that, this time, 

flattened on the semiconductor surface without resistance (i.e., lower contact angle). This 

was probably due to a modification in the electrostatic interactions between the n-type 

6H-SiC surface and the saline buffer once RBCs were added, implying that RBCs were 

the main cause of the observed modification. In Fig. 5.5 the repeatability of the surface 

potential values obtained for the same n-type 6H-SiC sample in two different experiments 

can be also observed. 
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Figure 5.6. Measured CPD surface potential for increasing amounts of RBCs for two p-
type 6H-SiC(0001) samples. The surface potential values of the bare samples and of the
samples with PBS are also reported for comparison. 

 
 

As is evident from Fig. 5.6, PBS alone tended to shift the bands of p-type 6H-SiC 

towards depletion while even the smallest amount of cells drastically changed the trend 

and apparently shifted the bands away from depletion and towards flatband. 

It has to be mentioned that the cause of the quasi-null surface potential observed for 

SiC samples in the presence of a high number of RBC’s (i.e., ~ 3.2×108) was surely 

different than the one that generated the quasi-null surface potential on Si surfaces wetted 

by electrolytes (§ 5.2). In fact, for the SiC-RBC system, we observed that, immediately 

after PBS-RBC solution removal, the SiC energy bands shifted back towards the initial 

values that they presented prior to liquid deposition: this indicates that the effect observed 

via CPD is strictly related to the presence of cells over the surface and not on absorbates 

or passivating layers forming on the semiconductor surface.  

The results reported were repeatable and always consistent. An example of the data 

repeatability is shown in Fig. 5.7 for two samples of 3C-SiC(001). 
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Figure 5.7. Repeatability of the surface potential values calculated for two different 3C-
SiC(001) samples from two different experiments (DAY 1 and DAY2). 

 
 

Although appealing at first glance, the results obtained in the RBC-SiC CPD 

investigations presented some basic incongruencies. The most striking resides in the fact 

that RBCs are well known to display a negative total charge: the CPD readings obtained 

for p-type surfaces agree with this (shift towards accumulation indicates negative charge 

on the surface), while the results obtained for n-type surfaces suggests the presence of 

positive charges. Also, the fact that the surface potential values calculated from the 

readings tended to zero both for p-type and n-type seemed somewhat suspicious. For 

these reasons, different hypotheses were evaluated to yield satisfactory answers to the 

observed conflicting behavior. As will be discussed shortly, the results reported in this 

section do not, unfortunately, describe the effect of cell charge on semiconductors, but 

are caused by optical issues induced by the erythrocytes. 
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5.6. Discussion and modeling of the obtained results 

In this section we will discuss the results presented in § 5.2, 5.4 and 5.5 and we will 

also introduce and develop theoretical models which may help to better understand what 

was observed while performing CPD measurements of the SiC-electrolyte-cell system.  

First, we will find reasonable explanations for the results obtained in § 5.2. In order 

to understand what is reported further in the text the reader should refer to § 1.4. As 

already discussed in Chapter 1, the semiconductor-electrolyte interface is extremely 

complex and can be modeled by using the electric double layer model. Maintaining the 

approximation of negligibility of the Helmholtz capacitance and of the surface state 

capacitance, which is reasonable in the studied case (Csc << CH and Csc >> Css → Ccpd = 

Csc, § 1.4.5), we can attribute the CPD voltages measured entirely to the excess of charge 

present in the space charge layer (e.g., Vcpd = Vsc). Recalling the basic principles from § 

1.4.4, there are two diffuse layers present at the semiconductor/electrolyte interface: the 

Gouy layer in the liquid and the space charge layer in the solid. On the solution side, ions 

distribute over the semiconductor surface at a minimum distance of ~ 3Å (e.g., outer 

Helmholtz plane) as opposed to the excess charge present in the space charge layer, and 

then diffuse within the Gouy layer until charge neutrality is reached at a distance 

OHP+WGouy. It has been estimated that the maximum distance at which charge 

equilibrium is reached within an aqueous solution, and therefore where the potential drop 

entirely occurs, is roughly 30 nm [13]. Using the electrical double layer model, the result 

obtained in § 5.2, where depletion was observed in all instances upon electrolyte 

deposition on the semiconductor surface, can be schematically represented by an overall 

negative (positive) charge present on the ionic side for the depleted n-type (p-type). 



153 

Schematic representations of the charge distribution in the electrical double layer for n-

type SiC and of the associated potential variation in the electrolyte are reported in Fig. 

5.8. 

 

 
Figure 5.8. Schematic illustration of the electronic status at the n-type SiC/electrolyte 
interface and relative potential variation in the fluid. 

 
 

From an energy band diagram perspective, the obtained results indicate that the 

redox energy levels (ERedOx) of the media used were below the Fermi levels of the n-type 

semiconductors and above the ones of p-type samples, which is likely (see Fig. 5.9). 

However, this explanation is not sufficient to describe the obtained results. This is 

because the Fermi level of n- and p-type SiC samples typically lie only within 200 meV 

from the conduction band minimum (CBM) and the valence band maximum (VBM), 

respectively. Therefore, if we assume that the redox energy level of the specific 

electrolyte lies in the middle of the SiC bandgap this would cause, once the electrolyte 

and the semiconductor are brought into contact, a shift of the bands of roughly 1 V of 

magnitude towards depletion both for n-type and p-type samples. The energy band shifts 

reported in § 5.2 upon electrolyte deposition on the sample surfaces were of much 
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smaller magnitude (~ 100 mV) and, most important, in almost all the instances (with 

exception of the p-type SiC-PBS combination) away from depletion, which suggest that 

other factors, besides the positioning of ERedOx, influence the final CPD readings. 

Adsorbed ions and charges trapped by surface states at the surface are possible 

explanations for the decrease in the positive excess charge in the space charge region that 

otherwise should be observed. 

 

 
Figure 5.9. Energy band diagram for n-type (LHS) and p-type (RHS) 6H-SiC/electrolyte 
interface assuming that the Fermi level position in the semiconductor is 200 meV from 
the conduction and the valence band edges, respectively. Top: band diagrams before 
contact. Bottom: band diagrams after contact. 

 
 

Let us now develop a valid model to explain the results obtained in § 5.4. First 

consider the situation where only the electrolyte is present above the media which will 

cause a limited surface depletion like the one depicted in Fig. 5.8.  

Let us now perturb this situation by introducing a cell. As we already reported in § 

5.3, the surface charge of mammalian cells is negative. The cell membrane is highly 
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insulating [131, 132], which allows us to neglect the influence of the internal charge and 

to model the cell as a solid body with a charge density, σ, concentrated on its surface. 

First we will consider the cell floating in the liquid, before cell adhesion to the substrate 

starts (e.g., time required for a mammalian cell of the lines used to adhere to a substrate is 

roughly 4 hours). Again, for a solid/liquid interface (cell membrane/electrolyte) we will 

observe an electrical double layer with an associated potential decreasing with increasing 

distance from the cell outer membrane. The potential at the cell shear plane is known in 

the literature as the particle’s zeta potential (ζ) as shown in Fig. 5.10. 

 

 
Figure 5.10. Schematic representation of a negatively charged cell suspended in liquid
and the system relative potential diagram. Note an electrical double layer forms on the 
cell surface. 

 
 

Next we will provide the best case estimation of the zeta potential and of the 

potential decay (e.g., best case = higher values), which will allow us to develop a model 

capable of explaining the results presented in § 5.3. For this purpose we will use the data 
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found in the existent literature relative to red blood cells which, as explained in § 5.3, are 

most likely the cells with the higher charge density and therefore the ones presenting 

higher zeta potentials and electrostatic effects in the outer region. Several studies agree in 

reporting that the zeta potential of RBCs in saline solution is approximately -15 mV and 

that this potential decays within the first 20 nm from the cell surface [6, 24, 129]. The 

negatively charged cell surface immersed in media and surrounded by counter-ions and 

the potential variation associated with it are schematically represented in Fig. 5.10. 

Let us now consider the case where the cell adheres to our semiconducting surface. 

As explained in Chapter 3, mammalian cells adhere to substrates via adhesion plaques 

which are approximately 15-20% of the cell contact area [131]. With an optimistic 

assumption we can approximate the contact area of a cell to be 50% of its whole area (see 

Fig. 5.11), which makes the adhesion plaque 7.5-10% of the total cell area. Apart from 

the contacts, the average gap between the cell and the substrate surface has been reported 

to be in the range of 50-150 nm [131]. The situation is schematized in Fig. 5.11. 

 

 
Figure 5.11. Schematic illustrating the limited electronic effect of the cell charge on the
semiconductor. The Gouy layers for the cell-media (~ 20 nm) and for the semiconductor-
media (30 nm) systems are indicated. 
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It appears that, for the assumptions previously made and in the most optimistic 

case, only 10% of the total cell charge has a direct effect on the semiconducting substrate. 

The remaining charge is too far away from the semiconductor surface to possibly have 

any effect on its electronic status. As explained in § 5.3, it is reasonable to assume that 

the charge associated with the adherent cells used is significantly lower than the one that 

erythrocytes display. This causes even lower zeta potentials and shorter potential decays 

which, combined with the reduced cell-substrate contact area, may lead to the non-

detected electronic interaction between adherent mammalian cells and SiC surfaces. 

Last in this section we will discuss the results presented in § 5.5. As we already 

mentioned, the results obtained from CPD investigations of RBC-SiC systems differ from 

the ones we would theoretically expect because the surface potentials observed for n- and 

p-type samples upon addition of RBC did not behave in a fashion consistent with the 

addition of negative charges. Moreover, the tendency of the measured potentials to 

converge to a null value upon addition of increasing RBC concentrations both for n- and 

p-type samples did suggest that the obtained results were probably caused by a 

measurement-related deficiency rather than by the electrical charge associated with 

RBCs. We identified two possible causes of the observed behavior: 1) a pH related 

decrease of the Helmholtz capacitance contribution; 2) a decreased light penetration 

within the erythrocyte solution. Since the Helmoholtz capacitance (CH) is strongly 

dependent on the pH of the electrolyte solution [13], a decrease in its value influenced by 

an increase in the pH, which could have been caused by the addition of erythrocytes in 

PBS, may have affected the final measured Vcpd by making the Helmholtz layer 

contribution non-negligible. However, this possibility was soon eliminated after the pH 
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of erythrocytes was found to be extremely close to the one of the PBS solution (e.g, 7.33 

for the erythrocytes compared to 7.4 for PBS) [133]. Since the Helmholtz potential varies 

by 60 mV per pH unit, such a small pH variation would not cause the significant effects 

observed in § 5.5. On the other hand, the reduction of light penetration within the 

erythrocyte solution immediately appeared as a valid explanation for the obtained results. 

In fact, it has been reported in optical studies of intravascular structures that the refractive 

index (η) mismatch between erythrocyte cytoplasm and blood plasma causes strong light 

scattering [134, 135]. Specifically, the refractive index of the erythrocyte is η = 1.4 vs. η 

= 1.337 presented by the blood plasma. The main component in the erythrocyte that 

influences the final refractive index of the cell is hemoglobin, which presents η = 1.615 

and makes up roughly 97% of the entire erythrocyte dry content [136]. The same 

scattering mechanism exists for erythrocytes suspended in saline solution, which presents 

a refractive index equal to that of water (η = 1.33). Since all the experiments with RBCs 

were performed using PBS and since the calculation of the CPD voltage under deep 

illumination was made by shining light through the erythrocyte containing solution, it 

appears very likely that part of the light shone did not reach the semiconductor surface 

due to photon scattering by the RBCs. Moreover, another light related phenomenon, that 

probably has an even stronger effect on the final CPD results reported in § 5.5, takes 

place upon illumination of erythrocytes: light absorption. Also in this case, hemoglobin is 

mainly responsible, causing major absorption at lower wavelengths (λ), specifically for λ 

< 400 nm [137]. Since the wavelength of the LEDs used in our CPD system was λ = 370 

nm, and the hemoglobin penetration depth at these wavelengths is at most 20.6 µm, it is 

correct to assume that part of the light shone through the PBS-erythrocyte solution was 
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absorbed and a portion, as aforementioned, was scattered. This combined mechanism is 

the most likely cause of the apparent decrease in the surface potentials measured in § 5.5 

upon addition of increasing amounts of RBCs. In fact, the higher the concentration of 

RBCs in PBS solution, the more likely it is that a single photon will not reach the 

semiconductor surface because of scattering or absorption mechanisms. Hence, the low 

light intensity reaching the sample surface was probably not sufficient to create the 

flatband condition that characterized the measurement upon strong illumination and the 

Vcpd,light value tended to match the Vcpd,dark value. 

Specifically, we observed a φs reduction upon addition of 1% RBCs in PBS: in this 

case the cell density (ρc) in the solution was 64×103 cells/µL. Ideally assuming that the 

cells are points equally spaced within the solution we can calculate a total of 3
cρ  = 40 

cells along one of the dimensions of a 1 mm3 cube. This assumption implies that the 

average distance between RBCs would be dc = 1 mm / 40 = 25 µm. Considering their 

biconcave shape and assuming an average diameter of 6 µm and thickness of 1.2 µm 

[138] their average distance is found to be 23.2 µm. Because of the concave shape of the 

cells, the probability that the plane of incidence and of exit for a single incident photon 

are parallel strongly decreases, which, applied for a large number of cells, leads to a 

significant scattering mechanism (Fig. 5.12). Furthermore, hemoglobin is a high 

percentage within the erythrocytes cytoplasm. Assuming a maximum light penetration 

depth within the intracellular hemoglobin solution of 20.6 µm and a minimum 

erythrocyte dimension of 1.2 µm, the probability that a light photon will pass through 

more than 16 cells is extremely low. For a cell density of 3.2×106 cells/µL the measured 

φs was null. Proceeding as above we obtain that in this case the average distance of the 
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cells (considered as points) is dc = 1mm / 3
cρ  = 6.8 µm which therefore indicates a 

close-packed structure in the real case and a practical impossibility for photons to reach 

the semiconductor surface. 

 

 
Figure 5.12. Schematic representation of the scattering and absorption of photons by the
hemoglobin contained in the cell. 

 
 

Summarizing, the cell concentration dependent φs measured in § 5.4 is, 

unfortunately, not caused by the electrical charge of cells but by the light scattering and 

absorption operated by hemoglobin. While the effect of cells on semiconductor surfaces 

may be present, other methods for measuring this interface electrically are needed and 

will be discussed in the next chapter. 

 
5.7. Summary 

In conclusion we have reported pioneering and challenging work that has been done 

to this point to try to investigate the electronic interactions between a semiconductor and 

a biological cell. We have described the experimental procedures developed for 



161 

performing CPD measurements of semiconductor-electrolyte systems and we have shown 

that, thanks to an appropriate calibration of the system and to suitable experimental 

approaches, CPD measurements of semiconductors in liquid are not only possible but 

highly repeatable. Despite the success reached in the preparatory phase necessary for the 

implementation of CPD measurements of semiconductor-cell-electrolyte systems, the 

results obtained from the final measurements did not yield the desired results. It appears 

that the electronic effect of cell charge on the semiconductor energy bands is lower in 

magnitude than expected and therefore not detectable with the implemented CPD system 

which displayed a maximum accuracy of roughly 15 mV. In addition we have developed 

a theoretical model that identifies a major issue in the cell adhesion morphology: since 

cells are in strict contact with the semiconducting surface only in the proximity of 

adhesion plaques, the quantity of charge that, in a liquid environment, can affect the 

electronic status of the semiconductor is drastically reduced. For CPD investigations of 

RBC-SiC systems, where a stronger cell electronic effect might have been expected, 

optical issues complicated the matter making it impossible to probe the effect of cell 

charges on the semiconductor electronic state with a method utilizing illumination. A 

careful examination of the results and insightful determination of their possible causes 

kept us from mistakenly associating the observed promising results with the effect of 

erythrocytes’ charge on the semiconductor surface potential. 

We believe that the results presented in this section, revealing many of the possible 

problems that may be encountered when studying cell-semiconductor systems via CPD, 

may be extremely helpful for the future implementation of improved apparatus suitable 

for cell-semiconductor electronic interaction investigations. In fact, we do not exclude a 
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priori the possibility that, by increasing the measuring sensitivity of the CPD apparatus 

used (e.g., lowering the average standard deviation of measurements in liquid below 15 

mV)) and by using cells that display a higher charge than the ones used in this work, an 

effect of the cell charge on the electronic status of the semiconductor substrate may be 

monitored. However, since still very few data presently exist regarding the surface charge 

of biological cells, and since the surface charge is dependent on the media where cells are 

suspended, it may be particularly difficult to select the right cell-media combination 

which may yield successful results. CPD monitoring of electrogenically active cells (e.g., 

neurons) cultured on SiC surfaces may be a study approach that could possibly lead to the 

detection of measurable electronic signals (e.g., observation of the electric extracellular 

‘spikes’ which offers the possibility of an AC measurement technique and thus higher 

signal to noise ratio). Also, other techniques may be tried in the future to study the still 

unknown cell-semiconductor electronic interactions. However, this interesting matter 

goes beyond the purpose of this chapter and hence will be exhaustively treated in Chapter 

6. 
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Chapter 6.     Conclusion and Future Work 

 
6.1. Conclusion 

This work is an extensive study which investigates the properties of crystalline SiC 

(e.g., 3C-, 4H-, and 6H) for bio-sensing applications. In Chapter 2, we have described 

how we prepared SiC surfaces for morphological, chemical and crystallographic 

characterization by using H-etching. An optimum etching process has been developed for 

each SiC polytype, yielding well-ordered, atomically flat surfaces perfectly suitable for 

surface science studies. This allowed us to characterize in depth the surfaces of all the 

studied polytypes and in particular H-etched 3C-SiC surfaces that have displayed, upon 

LEED analysis, a surface reconstruction (e.g., (5×1)) never investigated in the past. The 

SiC surfaces presented and characterized in Chapter 2 are extremely appealing for bio-

research applications. In fact, several biomolecular surface science studies are presently 

investigating the interaction of cell proteins with well-prepared, atomically flat surfaces 

for achieving a better understanding of the semiconductor/cell interface [139, 140]. In 

Chapter 3 we have shown, for the first time, that single-crystal SiC is biocompatible and 

capable of directly interfacing cells without the need for surface functionalization. Also, 

SiC has been shown to be significantly better than Si as a substrate for cell culture, with a 

noticeably reduced toxic effect and enhanced cell proliferation. This result opens up 

exciting perspectives for the use of SiC in bio-technological applications, suggesting that 

SiC should be preferred to Si which, at present, is the leading crystalline semiconductor 
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for bio-applications. The main factors that have been shown to define SiC 

biocompatibility are its hydrophilicity and surface chemistry. SiC surface morphology is 

shown to influence cell adhesion only when macropatterned while SiC polytypism and 

doping concentration seem to have no influence on cell proliferation. We have also 

brought to attention how the cleaning chemistry may affect cell proliferation and 

emphasized the importance of the selection of an appropriate cleaning procedure for bio-

substrates. From the results reported in Chapter 3 it can be easily concluded that SiC is an 

ideal substrate for bio-applications such as smart-implants, drug delivery and cellular 

electronic interaction studies. The latter possibility has been particularly investigated in 

Chapters 4 and 5 leading to interesting results. Specifically, in Chapter 4, a CPD 

apparatus has been implemented and calibrated for measurements of semiconductors 

immersed in liquid, that in the past have been shown to be particularly challenging. This 

measurement apparatus has been used to characterize the electronic status of SiC surfaces 

upon different chemical charging processes and has also been used to investigate the 

effect that H-etching has on the electrical properties of SiC polytypes (e.g., measurements 

in air, Chapter 4). From these studies we have obtained an accurate description of the 

response of SiC surfaces to added charges and the novel result that H-etching 

electronically passivates 3C-SiC(001) surfaces. The latter finding may be a topic for 

future studies both in the surface science and in the bio-medical fields. In Chapter 5, CPD 

measurements of SiC surfaces immersed in electrolytes have been performed and the 

obtained results have been discussed with the aid of existent theoretical models to define 

the electronic effect of different electrolytes on SiC surfaces. Unfortunately, CPD 

measurements of semiconductor-cell-electrolyte systems did not reveal a measurable 
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effect of mammalian cell charge on the electronic status of SiC surfaces. However, this 

acquired knowledge has allowed us to create a model where cell adhesion morphology 

and electric field decay are of primary importance in defining the amount of charge 

actively influencing the semiconductor surface. Because of this model, it appears that the 

cell charge effect on semiconducting surfaces is smaller in magnitude than initially 

estimated and cannot be detected with a measuring system which presents a maximum 

accuracy of 15 mV.  

Summarizing, this work exhaustively investigated SiC’s surface characteristics and 

bio-potentialities and for the first time introduced crystalline SiC as a biomaterial. At the 

same time a pioneering first step which helps to move towards a better understanding of 

cell-semiconductor electronic interactions was made, leading to interesting results that 

may help to select new approaches for successful future investigations (§ 6.2). 

 
6.2. Future work 

The impossibility of detecting the charge associated with cells while performing 

CPD measurements (§ 5.4-6) has been explained by a suitable model (§ 5.6) that 

identifies cell adhesion morphology and cell charge electrical decay as two of the major 

causes. However, the initial idea of detecting, using a contactless technique, the band 

bending induced by cells in semiconducting surfaces is still extremely appealing and 

should not be abandoned. Possible modifications that could be made to the presented 

CPD measurements and hence lead to successful results are as follows: 1) elimination of 

the deep illumination feature that has been shown to complicate the measurement 

(Chapter 5); 2) monitoring of adherent electrogenically active cells such as neurons, heart 

muscle cells, or toad bladder epithelial cells [122, 141, 142] since their electrical activity 
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has been well characterized by previous studies [132]. Hence, time-dependent monitoring 

of the electrical activity of these cells and its influence on the semiconductor electronic 

state could be attempted. The observation of the effect of an AC signal on the 

semiconductor space charge would be most likely facilitated by the higher signal to noise 

ratio of the experiment.  

Also, completely different approaches may be attempted to investigate the 

electronic effect of cells on semiconducting surfaces. One possibility would be, for 

example, to use XPS measurements of semiconducting surfaces whose molecules are 

bonded to adhesion proteins to define the entity of band bending introduced by the 

biological matter. In fact, as already discussed in Chapter 4, core level binding energies 

in XPS spectra vary with the energy band bending and can be used to quantify energy 

band shifts. Furthermore, XPS studies could be performed to identify the chemical 

components of the adhesion proteins remaining on sample surfaces after trypsinization or 

RCA cleaning (Chapter 3). We actually have already started, in collaboration with Dr. 

Starke’s group (Max Planck Institute, Stuttgart, DE), the aforementioned XPS 

investigations which have provided promising preliminary results. Specifically, two 3C-

SiC substrates were used in these preliminary experiments. HaCaT human keratinocytes 

cells were cultured on one, while the other was used as control. Both samples were 

immersed in media during cell culture and then the cells were trypsinized (Trypsin + 

EDTA, (ATCC)) after a thorough rinse in PBS. Subsequently, the samples were 

immersed in DMEM culturing mdia (10 % of FBS added) to block the trypsinization 

process and leave part of the adhesion proteins attached to the substrate, and then rinsed 

in DI water. XPS analysis of the two surfaces provided interesting results. The sample 
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with adhesion proteins displayed a higher content of carbon with several unknown 

components (see Fig. 6.1). 

 

 
Figure 6.1. XPS spectra of 3C-SiC samples with and without cell adhesion
proteins.Several unknown C-peaks are present in both the spectra. No comparison should
be made between the peak magnitudes of the two samples; only elemental percents
within an individual sample are significant. 

 
 

The identification of the different carbon chemical components present on the 

spectra may yield precious information regarding the binding mechanism between SiC 

and mammalian cells. Also, in-depth studies of core binding energy levels for these 

samples may lead to the quantification of energy band shifts induced by the presence of 

biological material. 

The interesting passivating effect that hydrogen etching has on 3C-SiC surfaces will 

surely be a rich topic for future investigations. Scanning tunneling microscopy (STM) 

could be used to finalize a model to describe the surface structure of H-etched 3C-

SiC(001) samples. Also, additional ATR-FTIR or infrared absorption spectroscopy 

(IRAS) studies may be performed to investigate in depth the molecular binding present at 
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this surface which are a probable cause of the observed electronic passivation [143]. 

Since it has been suggested that transfer of electrons from the occupied valence band of 

proteins into free states of the semiconductor may cause protein modifications [30, 12], 

the electronic passivation observed on etched 3C-SiC surfaces may lead to different 

enlightening experiments. Proteins (e.g., fibrinogen) could be deposited on electronically 

passivated and standard 3C-SiC surfaces. A direct comparison of the protein behavior 

(e.g., if electronic exchange occurs, fibrinogen decomposes into fibrin monomer and 

fibrino-peptide) would allow detection of differences in the electronic behavior of the two 

substrates. If, for example, proteins do not decompose on the H-etched surfaces (as might 

be expected due to the electronic passivation), H-etched 3C-SiC surfaces would represent 

an ideal material for blood sensing devices. It is in fact known that a high charge 

exchange between blood proteins and contacting surfaces leads to thrombo-formation. 

Zeta potential measurements of SiC surfaces could also be attempted to better 

understand the electronic behavior of this material within electrolytes. The results 

obtained from these studies would be of fundamental importance for a better definition of 

the potentiality of this material for in-vivo applications and may facilitate future cell-

electronic interactions studies. 
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