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AUTOMATED FUNCTIONAL ASSESSMENT

OF SMART HOME RESIDENTS

Abstract

by Prafulla Nath Dawadi, Ph.D.
Washington State University

May 2015

Chair: Diane J. Cook

This dissertation proposes smart home-based intelligent techniques that perform

automated assessment of a resident’s well-being by monitoring their behavior inside

the home. We hypothesize that the everyday behavior of smart home residents can

be estimated by tracking residents’ activities using smart home sensors and that

machine learning algorithms can predict their cognitive and physical health utilizing

behavioral information.

We first describe a cross-sectional study where we compare behavior differences

across an entire population sample to assess activity quality and the individual’s

cognitive health. For this study, we introduce a machine learning-based framework

for assessing the quality of eight different activities and one complex activity with

interweaved sub-activities, called the Day Out Task. We compare our automated
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assessment of task quality with direct observation scores and assess the ability of

machine learning techniques to classify an individual’s cognitive health using the

same machine learning-based framework.

We then describe a longitudinal study where we use an individual as their own

baseline to identify behavioral changes that can predict cognitive health and mobility.

We first introduce a Clinical Assessment using Activity Behavior (CAAB) approach

to model a smart home resident’s daily behavior and predict the corresponding stan-

dard clinical assessment scores utilizing longitudinal smart home sensor data. CAAB

extracts statistical features that describe characteristics of a resident’s daily activity

performance and trains the machine learning algorithms to predict the standard clini-

cal assessment scores. We then introduce an activity curve to represent an abstraction

of an individual’s normal daily routine based on automatically recognized activities.

We develop algorithms to detect changes in behavioral routines by comparing activ-

ity curves and use these changes to analyze the possibility of changes in cognitive

or physical health. We evaluate all of our algorithms using real-world longitudinal

smart home sensor data. We conclude that it is possible to assess the health and

well-being of a smart home resident utilizing smart home sensor data and machine

learning algorithms.
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CHAPTER 1. INTRODUCTION

The Alzheimer’s Association estimates that nearly 5.2 million Americans, one in

eight people who are 65 or older, have Alzheimer’s dementia and related dementia-like

diseases [6]. Providing health care and support for these groups of older adults calls

for huge health care and economic resources. Furthermore, the Alzheimer’s Associ-

ation estimates that treatment costs for individuals with such diseases will increase

from $183 billion in 2011 to $1.1 trillion in 2050 (in 2011 dollars). Additionally,

such diseases affect caregivers both emotionally and financially. The Association esti-

mates that 70% of people with Alzheimer’s live in their homes. The above-mentioned

estimates, the economic impact, and the expected number of people that will be im-

pacted are expected to massively increase in the next few decades. Therefore, we

need to develop technologies that help older adults “age in place”, meaning that the

functionality will help senior residents live longer in their own homes than before

[6, 118, 119, 120].

The long-term goal of this project is to design smart home technologies to offer

functionalities that enable senior residents to age in place. The smart homes help

older adults live independently for a longer time by providing following three main

functionalities [28, 119]:
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1. By assuring them that they are safe and they complete the activities of daily

living.

2. By compensating for their sensory and cognitive impairments, for example, by

reminding them to take medications.

3. By assessing their cognitive and physical health, for example, by detecting early

indications of cognitive and physical decline.

Given the functionalities that smart homes offer, the possibilities of using these

technologies for monitoring and assisting older adults are perceived as extraordinary

and timely given the aging of population [101]. In this dissertation, we focus on

developing the third smart home functionality listed above. We design algorithms

to perform cognitive and physical assessment of a resident by monitoring everyday

behavior using smart home technologies. Below we explain why smart home systems

can effectively provide such functionality.

1. Smart homes technologies continuously monitor the everyday abilities of resi-

dents in their own home environment without governing, changing, or manipu-

lating the individual’s daily routines. Therefore, the smart home sensor data is

ecologically valid [130].

2. Smart home sensor data provides clinicians and caregivers with rich behavioral

information that is very difficult to gather otherwise. For example, sensor data
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reflects behavioral information such as when a resident goes to bed and the

number of times they wake up to go to the bathroom.

There are two main motivations for the dissertation. First, clinicians and care-

givers consider the individual’s ability to complete activities of daily living (or ev-

eryday behavior) such as cooking, eating, and sleeping as an important behavioral

construct. Understanding everyday behavior helps clinicians identify difficulties a

patient is having in real life, so that they can recommend measures to overcome

the difficulties. Therefore, we develop machine learning algorithms that enhance the

understanding of a person’s everyday behavior by utilizing smart home sensor data.

The second motivation is that changes in the everyday behavior are frequently

associated with decline in cognitive or physical health. Therefore, we develop algo-

rithms to understand the cognitive and physical health of a smart home resident by

continuously monitoring everyday behavior utilizing smart home sensor data.

The primary goal of this dissertation is to propose machine learning-based algo-

rithms to perform automated cognitive and physical health assessment by monitoring

everyday behavior using smart home sensor data. We make the following two hy-

potheses. First, we hypothesize that we can model the everyday behavior of a smart

home resident using smart home sensor data. Second, we also hypothesize that there

exists a relationship between everyday behavior and cognitive/physical health and

that the learning algorithms can learn these relationships and use them to predict
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the cognitive and physical health.

Based on these two hypotheses, we ask the following four research questions.

1. How can we characterize everyday behavior of a smart home resident using data

from smart home sensors and learning algorithms such that the characterizations

correlate with the clinical measures of everyday behavior using cross-sectional

and longitudinal smart home sensor data?

2. How can we predict cognitive or physical health using such sensor-based char-

acterization of everyday behavior?

3. How can we model the daily routine of a smart home resident using longitudinal

sensor data?

4. How can we detect changes in the daily routine of a smart home resident?

Researchers have demonstrated methods to characterize simple scripted activ-

ities using data from smart home sensors [34, 63]. However, characterizing real-life

activities using sensors has not previously been addressed. This is an important

question because real life activities are often complex, and their characterizations are

essential to understanding an individual’s everyday behavior. We will answer this

question first using cross-sectional data in Chapters 4 and 5 and using longitudinal

data in Chapters 6 and 7.
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First, we utilize the sensor data from the cross-sectional study to model the

quality of simple and complex real life-like activities. This is an important research

question because it allows us to validate the relationship between the sensor-based

characterizations of activity quality and clinicians-measured activity quality measure-

ments in a controlled experimental setting. In such studies, we can ask participants to

perform a given set of activities and clinicians can “rate” the quality of the activities

by directly observing them.

Extending the relationship between sensor-based measurements and clinical

measurements obtained from the cross-sectional setting to a similar relationship in

longitudinal setting is an important research problem because the actual smart home

sensor data collected by monitoring an individual over a period of time will be longi-

tudinal in nature. In addition, the changes in everyday behavior of an individual are

more likely to be reflected in longitudinal data than in cross-sectional data [137]. We

validate our approach by correlating longitudinal sensor-based measures of everyday

behavior with longitudinal clinical measures of everyday behavior.

We explore how we can use learning algorithms to learn the differences in pat-

terns of everyday functioning to predict cognitive and physical health scores. This

is an important research question because it is the first step toward developing in-

home intelligent systems that help clinicians and caregivers by predicting the health

and well-being of an individual. While we lay out the framework of the cognitive
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assessment agent in chapter 3, we answer this research question by providing evi-

dence that differences in patterns in everyday day behavior can be used to predict

cognitive health in Chapters 4, 5, 6, and 7. We answer the first two questions using

both cross-sectional and longitudinal data.

We propose to design algorithms to detect changes in a person’s everyday be-

havior by collecting sensor data of individuals longitudinally over a period. This is an

important research question because it allows clinicians and caregivers to understand

the actual daily routine of smart home resident and allows researchers to study the

relationship between course of decline in completing activities and decline in cognitive

health over a period. We limit the scope of the current research to the following three

topics.

1. We focus on modeling measures of everyday behavior, especially activities of

daily living. We exclude other measures such as gait parameters and other

physiological signals such as heartbeat.

2. We only use data collected from unobtrusive environmental sensors to charac-

terize measures of everyday behavior.

3. In an unconstrained setting, we develop algorithms for homes with single res-

idents. The algorithms can be extended to multiple residents by tracking and

identifying multiple residents based on the research effort by researchers includ-
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ing Crandall [36].

In this work, we offer several contributions to the field. First, we present cog-

nitive and physical assessment systems as intelligent agents, in which agents perceive

everyday behavior using sensors and use this information to make predictions regard-

ing the cognitive and physical health of a smart home resident.

Second, we introduce the design of a smart home-based cross-sectional experi-

mental study in which we bring a large pool of participants into the smart home to

perform different real life-like activities. We extend this cross-sectional study to a

longitudinal study in which we monitor multiple individuals over two years in their

own home using smart home sensors.

Using the sensor data collected from these two studies, we propose machine

learning algorithms to characterize everyday activities. First, we propose algorithms

to model the set of simple and complex activities when participants performed these

activities in the smart home apartment. We utilize the information of how other

people in the population performed the same activities to predict their cognitive

health. Next, we propose algorithms to model everyday behavior of a smart home

resident when the resident performs activities in their own home environment. We

use automatically recognized activities using smart home sensors to characterize their

everyday behavior. In both of these studies, we demonstrate that such characteriza-

tions are clinically relevant by correlating them with standard clinical measurements
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of everyday behavior and provide evidence that they can be used for predicting cogni-

tive/physical health scores. Finally, we propose an activity curve to model the daily

activity routines of a smart home resident and demonstrate how activity curves can be

used to detect changes in daily routine. We use a smart home resident’s past behavior

as a baseline to better understand their current cognitive and physical health.
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CHAPTER 2. BACKGROUND

All of the smart home testbed described in this dissertation make use of the

CASAS Technology Platform (CTP). CTP is a smart home implementation designed

to sense the home environment. It uses motion, door, and object sensors to sense the

space, middleware to collect and record the sensor events, and the database to store

the sensor events [36].

2.1 Smart home testbed

2.1.1 CASAS Smart home testbed

The WSU CASAS1 team has deployed multiple CASAS smart home testbeds.

The testbeds are used to conduct various studies related to assisted living. Some

examples of these studies are detection and recognition of Activities of Daily Living

[138], tracking residents [36], studying energy usage [25], and prompting individuals

to perform needed activities [39]. Below, we first describe the smart home testbeds,

including the sensor technologies that are used in those testbeds and the middleware

1casas.wsu.edu
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that collects and stores sensor data on in a relational database.

2.1.2 The Kyoto smart home testbed

The Kyoto smart home testbed is an on-campus testbed located at Washington

State University. This smart home testbed is an apartment that has a living room,

a dining area, and a kitchen on the first floor, and two bedrooms, an office, and a

bathroom on the second floor. The apartment is instrumented with motion sensors on

the ceiling, door sensors on cabinets and doors, and item sensors on selected kitchen

items. The testbed also has temperature sensors in each room, sensors to monitor

water and burner use, and a power meter to measure electricity consumption. Item

sensors are placed on different items in the apartment to monitor their usage. Figure

2.1 shows the sensor layout in the CASAS smart home testbed. The experiments

are performed in the first floor of the apartment while the experimenter monitors

each participant upstairs via a web camera and remotely communicates with the

participant using an intercom system.

Sensor events are generated and stored while participants perform the activities.

Each sensor events is represented by four fields: date, time, sensor identifier, and

sensor message. By examining data files and testbed floor plans, our team members

annotate the sensor events with the activity that was being performed when the sensor
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event was generated. A sample of collected sensor events and their corresponding

labeled activities are shown in Figure 2.2. The CASAS middleware collects sensor

events and stores the data in an SQL database. All software runs locally using a

small Dream Plug computer.

The Kyoto testbed was used to perform two sets of tasks: Eight Activities and

Day Out task. Participants in our cross-sectional study first completed the Eight

Activities tasks and then completed the complex Day Out Task. These two set of

tasks, the related studies, and their corresponding results are explained in Chapters

4 and 5

2.1.3 CASAS longitudinal smart home testbeds

The CASAS smart home testbeds that are used for the longitudinal study are

actual single-resident apartments, each with at least one bedroom, a kitchen, a dining

area, and at least one bathroom. The sizes and layouts of these apartments vary

between homes. The homes are equipped with combination motion/light sensors

on the ceilings and combination door/temperature sensors on cabinets and doors.

These sensors in the smart home testbeds unobtrusively and continuously monitor

the daily activities of its residents. The CASAS middleware collects these sensor

events and stores the data on a database server. Appendix C shows the layout of all
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Figure 2.1: The Kyoto smart home testbed floor plan and sensor layout.

18 longitudinal smart home testbeds and the sensor placements in those apartments

[29].

The residents perform their normal activities in these smart apartments, unob-

structed by the smart home instrumentation. CASAS middleware that runs locally

and is installed in the apartments collects the sensors events and uploads the data

to the main database server. The format of the sensor events from the longitudinal

smart home testbed is similar to those generated from the Kyoto testbed as shown

in Figure 2.2.
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Date Time Id Message Activity

2009-07-11 09:00:41.05 M042 ON Bus/Map-end

2009-07-11 09:00:41.09 M025 OFF Change-start

2009-07-11 09:00:42.05 M002 ON

2009-07-11 09:00:42.82 T008 23

2009-07-11 09:00:42.82 P001 23

2009-07-11 09:03:58.82 M012 OFF

2009-07-11 09:04:42.82 D001 OPEN Magazine-end

2009-07-11 09:05:02.82 M009 ON Change-end

Figure 2.2: Sensor file format from the Kyoto smart home testbed and sample anno-

tations. Sensor IDs starting with M are motion sensors, D are door sensors, T are

temperature sensors, and P are power usage sensors. The data is annotated with the

start and ends of the subtasks.
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2.1.4 Smart home sensors

The smart home testbeds that we describe here use almost identical sensor

setup and middleware design to the Kyoto testbed that was described earlier. The

sensors continuously generate sensor events when they monitor human activities. The

middleware collects and records the sensor events in the database. We explain the

three major types of sensors that these testbeds use in the following section.

Passive infrared motion detector

A PIR motion detector (Figure 2.3) detects the presence or absence of motion.

Two types of motion sensors, area sensors and downward facing sensors, are used in

the CASAS smart home testbeds. The area sensors are installed in a room such that

their field of view is limited to a single room. While they can signal when an occupant

enters the room, they cannot signal identification and location of the occupants in the

room. In contrast, the downward facing sensors are mounted on the ceiling with the

lens facing downwards such that their field of view is limited to directly below them.

This arrangement allows achieving a more focused view of the space. To cover the

maximum possible space, multiple downward facing motion detectors are placed in

the rooms. Therefore, when they are triggered, they can provide information about

the occupant’s location. They send ON and OFF events to the middleware. An

ON message indicates that motion was sensed in the sensor field of view. An OFF
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Figure 2.3: Passive infrared motion detector used on CASAS smart home testbeds

(adapted from [36]).

message indicates that sensed motion ceased in that field of view. Figure 2.3 shows

the passive infrared motion sensors.

Magnetic door sensors

Magnetic door sensors are installed on bedroom, kitchen cabinet, and refriger-

ator doors to detect a door “OPEN” or “CLOSE” event. Magnetic door sensors are

magnet driven reed switches that send “OPEN” events to the middleware when the

magnet moves away from the reed switch. Similarly, a door sensor sends a “CLOSE”

event when the magnet moves back into place. Figure 2.4 illustrates examples of

magnetic door sensor usage in the Kyoto smart home testbed.
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Figure 2.4: Magnetic door sensors on the door (left) and cupboard (right) (adapted

from [36]).

Item sensor

Item sensors (Figure 2.5) detect presence or absence of important items such

as medicine dispensers and cookware in the home. They were designed using con-

tact switches and plates. When an item is removed from the plate, the switch is

depressed which sends an “ABSENT” event to the middleware. Similarly, it sends a

“PRESENT” event when the object is placed on the plate.

2.1.5 CASAS middleware

The CASAS middleware software architecture components are shown in Figure

2.6. Control flows up from physical components through the middleware to soft-

ware applications when a signal is received. Similarly, control moves down from the
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Figure 2.5: Item sensor(top) and use of item sensors in kitchen cupboard in smart

home testbed (adapted from [36]).

application layer to the physical components while taking actions [29].

The CASAS physical layer contains hardware components including sensors

and actuators. Examples of these sensors are motion sensors, item sensors, and

object sensors. The architecture utilizes a ZigBee wireless mesh, which communicates

directly with the hardware components.

The CASAS middleware provides services and information flow between various

software and hardware components comprising the smart home. The middleware

layer is governed by a manager. The manager provides named broadcast channels

that allow component bridges to publish and receive messages. When a raw event

is published, the manager assigns the event an id and adds a time stamp. Similarly,
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other channels are used to publish or receive messages corresponding to actuator

control commands or to identify entities (e.g., people, pets, other movable items) at

the site.

Every hardware and software component of the CASAS Smart Home in a Box

(SHiB) architecture communicates via a customized XMPP bridge to the manager.

Examples of such bridges are the ZigBee bridge, the Scribe bridge which records sen-

sor readings in a relational database, and bridges for various applications such as

visualization, learning, and decision making. The Zigbee agent encompasses mecha-

nisms that are necessary to connect and manage the ZigBee network. The CASAS

smart home components use a Zigbee network to communicate by publishing and sub-

scribing messages sent along various channels. Similarly, the Scribe agent archives

messages in permanent storage. The data is organized and stored in a PostgreSQL

database [29, 36].

2.1.6 Activity recognition algorithm

Activity recognition algorithms label activities based on readings (or events)

that are collected from smart environment sensors. The challenge of activity recog-

nition is to map a sequence of sensor events onto a value from a set of predefined

activity labels. These activities may consist of simple ambulatory motion, such as
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Figure 2.6: CASAS software middleware architecture.

walking and sitting, or complex basic or instrumental activities of daily living, de-

pending upon what type of underlying sensor technologies and learning algorithms

are used. For example, to recognize posture [93], gesture [79], or ambulatory activi-

ties such as walking, running, and sitting, researchers use data from wearable sensors

such as accelerometers that are attached to the body [91]. Similarly, researchers use

data from environmental sensors such as infrared motion sensors and pressure mats

to recognize complex activities such as sleeping, eating, and cooking [138]. For ac-

tivities that involve interacting with objects such as washing hands, researchers use

data from RFID tags or shake sensors [19, 108, 116].
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A number of survey articles provide an overview of method for activity recog-

nition [3, 20, 26, 125, 150, 151] on simulated and real-world datasets. For example,

Cook [31] explore activity recognition using Naive Bayes classifier and smart home

sensor data and Bao et al. [85] and Ravi et al. [124] for accelerometer data. Hid-

den markov models [7, 83, 138, 158] and conditional random fields [16, 31, 76] have

also widely been used or activity recognition. Other researchers have used decision

trees [85] and discriminative learning algorithm such as support vector machines [21].

These underlying learning algorithms have been combined using boosting and other

ensemble methods to create a robust activity recognition algorithm [84, 123, 156]. To

evaluate the performance of the activity recognition algorithm, Ward et al.[158] and

Bulling et al. [21] introduce a number of time-based and event-based performance

metrics and Reiss etal.[125] discuss the effectiveness of hold-one-activity-out evalu-

ation of activity recognition algorithms. Approaches to the activity spotting using

data from wearable sensors is described in Ogris et al. [102] and Amft [8].

2.1.7 AR

Our activity recognition algorithm, AR [33, 78], recognizes activities of daily

living, such as cooking, eating, and sleeping using streaming sensor data from envi-

ronmental sensors such as motion sensors and door sensors. These motion and door
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sensors are discrete-event sensors with binary states (On/Off, Open/Closed). Human

annotators label one month of sensor data from each smart home with predefined

activity labels to provide the ground truth activity labels for training and evaluating

the algorithm. The inter-annotator reliability (Cohen’s Kappa) values of the labeled

activities in the sensor data ranged from 0.70 to 0.92, which is considered moderate

to substantial reliability. We use the trained model to generate activity labels for all

of the unlabeled sensor data.

AR identifies activity labels in real time as sensor event sequences are observed.

We accomplish this by moving a sliding window over the data and using the sensor

events within the window to provide a context for labeling the most recent event

in the window. The window size is dynamically calculated based on the current

sensor. Each event within the window is weighted based on its time offset and mutual

information value relative to the last event in the window. This allows the events to

be discarded that are likely due to other activities being performed in an interwoven

or parallel manner. We calculate a feature vector using accumulated sensor events in

a window from the labeled sensor data collected over a month. The feature vector

contains information such as time of the first and last sensor events, temporal span

of the window, and influences of all other sensors on the sensor generating the most

recent event based on mutual information. Currently, AR recognizes the activities

we monitor in this project with 95% accuracy based on 3-fold cross validation. An
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2009-05-15 09:00:41.05 M042 ON 2009-05-15 09:00:41.05 M042 ON Cook

2009-05-15 09:00:41.09 M025 OFF 2009-05-15 09:00:41.09 M025 OFF Eat

2009-05-15 09:00:42.05 M002 ON −→ 2009-05-15 09:00:42.05 M002 ON Relax

2009-05-15 09:00:42.82 M028 ON 2009-05-15 09:00:42.82 M028 ON Cook

2009-05-15 09:00:43.16 M027 ON 2009-05-15 09:00:42.82 M028 ON Cook

Figure 2.7: Activity annotated sensor data. Sensors IDs starting with M are mo-

tion/light sensors and IDs starting with D are door/temperature sensors. The sensor

events on the left describe the individual sensor readings while the sensor events on

the right are annotated with activity labels.

example of activity-labeled sensor data is presented in Figure 2.7 [33, 78]. More details

on this and other approaches to activity recognition are found in the literature [32].

We use the AR activity recognition algorithm to label individual sensor events with

corresponding activity labels in sensor data collected from the longitudinal smart

home studies.

2.2 Clinical screening

Participants for all of the studies used in this dissertation underwent compre-

hensive clinical tests in a laboratory setting. As detailed in Tables 2.1 and 2.2, the
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initial screening procedure for the middle age and older adult participants consisted

of a medical interview, the clinical dementia rating (CDR) instrument [97], and the

telephone interview of cognitive status (TICS) [18].

Interview, testing and collateral medical information (results of laboratory and

brain imaging data when available) were carefully evaluated to determine whether

participants met clinical criteria for MCI or dementia. Inclusion criteria for MCI

(see Table 2.1) were consistent with the criteria outlined by the National Institute

on Aging-Alzheimer’s Association work group [5] and the diagnostic criteria defined

by Petersen and colleagues [114, 115]. The participants met criteria for amnestic

MCI, non-amnestic, as determined by scores falling at least 1.5 standard deviations

below age-matched (and education when available) norms on at least one memory

measure (see Table 2.1). Participants with both single-domain and multi-domain MCI

(attention and speeded processing, memory, language, and/or executive functioning)

are represented in this sample. Participants in the dementia group met diagnostic

and statistical manual of mental disorders (DSM-IV-TR) criteria for dementia [10]

and scored 0.5 or higher on the clinical dementia rating instrument. The TICS scores

for individuals with dementia ranged from 18 to 29 (M= 24, std= 3.71).
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2.2.1 Clinical tests

Additionally, clinicians administered standardized clinical, cognitive, and mo-

tor tests every six months to residents of the longitudinal smart home testbeds. As

detailed in Table 2.3, these tests included Timed Up and Go Test (TUG) and a global

measure of cognitive status (RBANS). The administered clinical tests are standard-

ized and validated measures that provide indication of mobility-based health and

cognitive health. Table 2.3 provides a brief description of each clinical test and the

measure that was employed from each test.
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Table 2.1: Inclusionary and exclusionary criteria for the MCI group.

Inclusion criteria for MCI group:

1. Self-report or knowledgeable informant report of subjective memory impair-
ment for at least 6 months, as assessed by direct questioning during initial
screening interview.

2. Objective evidence of impairment in single or multiple cognitive domains
(memory, executive, speeded processing, and/or language), with scores falling
at least 1.5 standard deviations below age-matched (and education when avail-
able) norms. Test listed by domain with reference to norms used in parenthe-
ses:

• Memory: Memory Assessment Scale list learning and long-delayed free
recall [161]; Brief Visual Memory Test learning and long-delayed free
recall [14]

• Executive: Delis-Kaplan Executive Functioning Scale total correct from
the Letter Fluency and Design Fluency subtests [42] ; Trail Making Test,
Part B total time [67];Wechsler Adult Intelligence Scale-Third Edition
Letter-Number Sequencing subtest total correct [160]

• Speeded processing: Trail Making Test, Part A total time [67]; Symbol
Digit Modalities Test total correct written and oral [139]

• Language: Boston Naming Test total correct [160] ; Delis-Kaplan Exec-
utive Functioning Scale Category Fluency subtest total correct [42]

3. Preserved general cognitive functions as confirmed by a score of 27 or above
on the TICS (equivalent to the normality cutoff score of 24 on the Mini Mental
Status Exam) [95] .

4. No significant impact of cognitive deficits on the participant’s daily activities,
as confirmed by a total CDR score of no greater than 0.5, which is consistent
with minimal change in the participant’s habits.

5. Nonfulfillment of the DSMIV-TR criteria for dementia (American Psychiatric
Association, 2000), confirmed by reviewing screening data, neuropsychological
testing data, and any available medical records.
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Table 2.2: Inclusionary and exclusionary criteria for the healthy older adult and
dementia groups.

Initial screening for all middle age and older adult participants:

1. Medical interview to rule out exclusionary criteria of history of brain
surgery, head trauma with permanent brain lesion, current or recent (past
year) self-reported history of alcohol or drug abuse, stroke, or a known
medical, neurological or psychiatric cause of cognitive dysfunction (e.g.,
epilepsy, schizophrenia).

2. Clinical dementia rating instrument to assess dementia staging [163] .

3. Telephone interview of cognitive status [18] to assess cognitive status
and exclude significantly impaired participants who would be unable to
complete the assessment.

Inclusion criteria for healthy older adult controls:

1. Reported no history of cognitive changes.

2. Scored within normal limits on the TICS.

3. Scored a 0 on the clinical dementia rating.

Inclusion criteria for dementia patients:

1. Met DSM IV-TR criteria for dementia [10]

2. Scored 0.5 or higher on the clinical dementia rating.
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Table 2.3: Variables in our standard longitudinal clinical dataset.

Variable name Description

Repeatable Battery

for the Assessment of

Neuropsychological

Status (RBANS)

RBANS [121]. This global mea-

sure of cognitive status identifies

and characterizes cognitive de-

cline in older adults.

Timed Up and Go

(TUG)

TUG [117]. This test measures

basic mobility skills. Partici-

pants are tasked with rising from

a chair, walking 10 feet, turning

around, walking back to the chair,

and sitting down. The TUG mea-

sure represents the time required

for participants to complete the

task at a comfortable pace.
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CHAPTER 3. MONITORING EVERYDAY ABILITIES

AND COGNITIVE HEALTH USING PERVASIVE

TECHNOLOGIES: CURRENT STATE AND PROSPECT

3.1 Introduction

Recent advancements in pervasive sensor technologies and learning algorithms

have made continuous and unobtrusive monitoring and analysis of human activities

in the home environment a reality [30]. For example, sensors are embedded in a per-

son’s home environment and in everyday objects. These sensors often unobtrusively

monitor and collect human behavior data. By analyzing and visualizing such sensor

data with algorithms, we can understand a person’s behavior. For example, we can

determine their sleep pattern by analyzing when they go to sleep at night and when

they wake up in the morning, or we can identify the typical timing for activities of

daily living such as eating breakfast and washing dishes. Understanding everyday

cognitive abilities and performing cognitive assessments are two major uses for this

sensor data.

Sensors that continuously collect everyday data of an individual offer a wealth
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of information about their everyday behavioral events. Analysis of sensor data can

reveal patterns of daily activities that can be studied to identify regularly completed

activities and activities that were completed with difficulty. Similarly, information

about whether the individual is regularly taking their medication or is having difficul-

ties with sleep can be found. Furthermore, sensor data collected over a time period

provides insights on day-to-day changes and trends in activity patterns. The fact

that smart homes collect information-rich behavior data under real life circumstances

makes them invaluable tools to understand an individual’s real life everyday abilities.

In this chapter, we review pervasive in-home technologies to monitor everyday

behavior in the home environment and perform cognitive assessment using these tech-

nologies. In particular, our goal is to highlight current practices for in-home sensor

technologies that monitor everyday behavior and perform cognitive assessment, and

to identify future research directions of these technologies and present the challenges

that lie ahead.

3.2 Cognitive assessment systems

Clinicians use cognitive assessment systems to assess the cognitive health of an

individual. They diagnose the type and severity of cognitive difficulties. Clinicians can

use outcomes of the assessment systems to recommend treatments and decide on the
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Figure 3.1: Traditional cognitive assessment systems.

required level of care and support. In addition, the treatments for cognitive decline

are more effective when treated at early stages, before a cognitive disease causes

irreversible damage to the brain. Thus, cognitive assessment systems can be used for

early detection and management of cognitive decline. This slows the progression of

the disease and consequently prolongs the individual’s independent living and allows

family members and caregivers more time to make appropriate decisions [165, 141].

In traditional cognitive assessment systems, conventional methodologies such as

pen and paper-based tests are used to diagnose the type of cognitive difficulties [165].

Patients often visit the clinician who evaluates their cognitive health by administering

various tests and using different scoring methods. Figure 3.1 illustrates this concept.

Some examples of such standardized and validated tests are the Mini Mental State

Examination [55] and the Modified Mini-Mental State Examination [148]. However,

traditional clinical tests are administered in a laboratory. As a result, they require

an individual to travel to clinics. They are often administered at an advanced stage
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Table 3.1: Everyday functioning measures affected by cognitive health.

Categories Everyday functioning measures affected by cognitive health

Computer usage Keyboard and mouse usage, typing speed, performances in

computer games

Mobility Ability to move around, climb stairs, stride length

Gait Gait velocity, gait balance,

Everyday functioning Ability to initiate and complete activities of daily living

such as bathing, toileting, eating etc.

when there are concerns of severe difficulties. In addition, they are administered

infrequently since they have a long testing time and are expensive to administer.

Since they are administered outside of the individual’s home environment, i.e., in

laboratories, they have limited ability to capture everyday difficulties of an individual.

In another word, many of these tests are not considered to be ecologically valid [23].

These limitations in traditional settings have prompted researchers to pursue new

directions of more ecologically valid methods of detecting difficulties in individuals in

real life settings using pervasive computing solutions. Table 3.1 lists various examples

of everyday functioning measures affected by cognitive health.
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3.3 Cognitive health and everyday functioning

Everyday functioning in an individual is an important neuropsychological con-

struct that clinicians try to understand. Several clinical studies support a relationship

between daily behavior and cognitive or physical health [35, 132, 130]. While func-

tional decline in at least one of the domains is a criterion for diagnosing dementia,

individuals diagnosed with Mild Cognitive Impairment, a transition between normal

cognition and dementia, also have difficulties completing complex activities of daily

living such as managing finances. In addition, decline in everyday functioning is asso-

ciated with reduced quality of life, risk of institutionalization, caregiver burden, and

financial costs [142, 65]. The systematic characterization of everyday functioning and

understanding the course of decline improve understanding of cognitive deficits that

affect everyday abilities. This can pave the way for development of new methods to

overcome the difficulties associated with impairments that can consequently prolong

independent living [68]. Thus, early detection of decline in everyday functioning has

important clinical and research applications that help clinicians understand patients’

difficulties in everyday life and the decline in their cognitive health.

Table 3.1 lists various everyday functioning measures that are affected by decline

in cognitive health. With decline in cognitive health, patterns of decline in these

measures such as difficulties in completing activities independently and diminished
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ability to move around can be observed.

3.4 Technology and cognitive assessment system

Information source such as environmental, motion, and object sensors and video

cameras can be installed in an individual’s home. They can continuously collect ev-

eryday behavior data that is rich in information. For example, analyzing this data

can provide detailed information about the individual’s sleep pattern such as when

and for how long the individual sleeps, and how many times he goes to the restroom

during the night (bed to toilet transition). The insights that smart home technologies

provide help researchers and clinicians better understand a person’s everyday abilities

and make informed decision about their cognitive health. In addition, electronic de-

vices such as smart phones, tablets, and computers are technological gadgets that we

continuously use in our daily routines. The embedded sensors including accelerome-

ters, gyroscopes, and touch pads collect data when the individual interacts with these

devices [70]. Analyzing the collected data reveals how the person behaves daily as

well as fluctuations in routine behavior. These concepts are illustrated in Figure 3.2.

The information that technologies collect in real-life settings has motivated re-

searchers to use pervasive in-home technologies to measure a person’s everyday abil-

ities and glean insights on their cognitive health. Formally, we define a technology-
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(a) Technology-augmented agent assessment system

(b) Fully automated technology-assisted agent assessment sys-

tem

Figure 3.2: Technology based cognitive assessment system.

assisted cognitive assessment system as a cognitive assessment system that uses tech-

nology to measure everyday functioning measures in-home and assists clinicians to

make informed decision by providing in-depth real life data. Typically, in-home cog-

nitive assessment systems use sensor technologies to collect the data. Intelligent

algorithms analyze this data to provide valuable insights.

We can view a technology-assisted cognitive system as an intelligent agent in
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which modern technologies enhance the traditional testing environment providing

new perceptions to the learning agent, clinician, or intelligent learning algorithm, as

illustrated in Fig 3.3. [30, 128]. Table 3.2 lists various components of the agent.

Based on the role of technology, we classify them into three different categories:

1. In a traditional agent assessment system, clinicians are the agents who adminis-

ter clinical tests and collect information. They perceive this information, reason

and interpret them using their own expertise, and take actions such as conduct-

ing diagnosis and planning treatments.

2. In a technology-augmented agent assessment system, sensors are added to the

traditional clinical environment. Intelligent algorithms provide their own per-

ception of the individual’s task performance based on sensor data, which ex-

pands the set of information passed to the reasoning/learning agent. Clinicians

or caregivers act as learning agents. Fig. 3.2a illustrates this concept.

3. In a fully automated technology-assisted agent assessment system, the agent

perceives information from its environment (sensors) and uses this knowledge

to take actions (perform assessment) without human assistance. For example,

these agents perceive sensor information related to an individual’s everyday

behavior in their home environment and alert the residents or caregivers when

they detect significant deviations in everyday behavior. Fig. 3.2b illustrates
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this concept.

Figure 3.3: Technology based assessment agent.

3.5 Technology-assisted cognitive assessment

3.5.1 Cognitive assessment using computing devices

Cognitive assessment using computing devices can be an alternative to the tra-

ditional pen and pencil based tests. Clinicians can perform cognitive assessments by

(i) utilizing data collected from computerized cognitive test suites that a participant

completes on those devices, and (ii) by monitoring the personal cognitive digital be-

havior of a participant. These systems utilize sensor technologies present in the device
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Table 3.2: Elements of technology assisted assessment agent.

Traditional agent Technology aug-

mented agent

Automated agent

Agents Clinicians, nurses Clinicians, nurses Learning algorithms

Perception Standardized tests,

Care giver question-

naires

Standardized tests,

Sensor data, Tablet

and smart phone

data

Sensor data related

to daily behavior,

Tablet usage data

Actions Diagnosis, medica-

tion, level of care

diagnosis, medica-

tion, Level of care

Interventions, diag-

nosis, alerts

Environment Clinical labs Traditional environ-

ment enriched with

technology

Home
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and make assessment process flexible by making it accessible at home. Individuals

can complete them online and multiple times on any supported platform with limited

cost and burden.

Compared with traditional testing systems, computerized cognitive assessment

testing systems offer several advantages [99]. In contrast to traditional paper-based

interface, computerized test systems can leverage digital interface to present end

users with interactive and dynamic contents. The test systems can be customized

according to end users requirements or testing methodologies. For example, tests can

be adapted based on how a user responds to test questions, or they can be geared

toward testing a particular cognitive difficulty. Furthermore, algorithms can minimize

the errors caused by human biases and judgments by automating various steps in the

tests, including scoring, and administration. Measurement constructs such as reaction

time can be accurately measured while the system collects additional test metadata

such as time spent in each component of the tests and the total number of pauses

and breaks taken [99]. Overall, the computerized cognitive assessment tests offer the

flexibility of taking the tests at home, enhancing the traditional testing environment

with resources, and supplementing measurements with metadata. Therefore, they are

in-home alternatives to traditional clinic-based pen and paper tests.

The other class of assessment systems that uses computing platforms performs

non-traditional assessment based on an individual’s cognitive digital behavior. The



39

cognitive digital behavior data are everyday computer usage behavior characterized

according to how the individual interacts with the computer. Examples of these be-

haviors may include the person’s keyboard or mouse usage patterns and their playing

games on tablets and computers. We explain both of these methods next.

Cognitive assessment systems can use computers to perform cognitive assess-

ments. Generally, the traditional pen and paper tests are adapted to computers. For

example, the Finger-tapping test, the Stroop Interference test, and the CERAD Word

List Learning Test are implemented as part of the computerized assessment battery.

However, these tests have different sensitivity and specificity in classifying cognitive

health of the participants. They also have different completion times. Some of these

tests can be completed online while others require trained clinicians to be present

[99, 141].

Cognitive assessment systems can utilize mobile platforms such as tablets and

smart phones. Researchers have developed both tablet versions of the traditional pen

and paper based tests and completely new test suites on mobile computing platforms.

Using these portable devices, users can complete tests at any place and at any time.

For example, users can complete the CANTAB test suite that includes tests for at-

tention, visual memory, and executive functioning on their mobile devices. Often,

these tests provide information that traditional pen and paper tests cannot. For ex-

ample, in addition to the information about the correctness of the clock elements, the
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tablet version of a clock drawing test provides “real-time pen interaction” data such

as pausing tendency, pen pressure exerting patterns, and drawing sequences [77].

In addition, these devices are equipped with sensor technologies that provide

additional methods of input. Possibilities include sensor-based inputs such as stylus,

digital pen, and digital paper. One can exploit different sensors in the phone to

develop a generic assessment suite or test suites that measure specific constructs. For

example, Fouchenette [56] developed an iPod application to test long term memory.

In this application, users can either use the touch screen to tap the correct answer,

or type on a virtual keyboard, or use the microphone on the iPod to record the

answer. These devices offer a sensor rich platform that provides researchers with an

opportunity to develop tests that target specific cognitive domains while providing

accurate measurements of the underlying constructs.

Virtual reality-based assessment systems represent another category of cognitive

assessment systems that use computing devices. In virtual reality-based methods,

participants wear special devices to manipulate entities in a virtual environment.

Participants complete everyday activities in the virtual environment or complete the

virtual reality based cognitive tests [74, 166]. A comprehensive review of virtual

reality-based assessment systems are out of the scope of this work as they require

specialized equipment and are not readily available at home.

Similarly, another variant of computerized cognitive assessment systems uses
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cognitive digital behavior data. The data is collected during the time individuals

use computers in their home environment playing computer games or using their

keyboard and mouse. Assessments can be performed by deriving computer cognitive

metrics, which serve as proxy measures to standardized neuropsychological tests [73].

For example, the Finger Tap Test measures motor control. In this test, participants

repeatedly press a switch at a given time. The Finger Tap test can be simulated

based on how individuals use keyboards at home. Typing speed during login can be

used as a consistent and reliable proxy for measuring motor speed [71]. It was re-

ported that individuals with cognitive difficulties have lower average scores and higher

variability in typing speed compared with healthy individuals. Similarly, mouse and

keyboard usage data can serve as a proxy for motor speed measurements. Cognitive

digital behavior data collected over a period of time can be used to identify cognitive

health trends, day-to-day variability, and comparing within subjects measured across

a period of time [71].

Cognitive computer games are another approach to computerized assessment

of cognitive health. Cognitive computer games are computer games with embedded

algorithms to infer cognitive processes. Often, popular computer games such as Free-

Cell and Solitaire are modified to create cognitive computer games. When users play

those games, the algorithms calculate different cognitive metrics that possibly corre-

late with measures obtained from traditional clinical measures. For example, Jimison
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et al. [71, 72, 73] designed word games to obtain proxy measures correlating with the

measures obtained from verbal fluency test. A verbal fluency test measures a per-

son’s ability to recall from long-term memory and their semantic processing ability

by asking individuals to produce as many words as possible. To simulate this test, a

computer game presents user with letters of scrambled words and asks them to make

as many words as possible with incentives on longer words. The authors argue that

game metrics such as word complexity (a mix of word length and frequency of use in

the English language), the total number of words created, and the speed of generation

of words approximate the standard verbal fluency measures. Using a similar concept,

one can approximate other cognitive parameters such as memory, planning, and di-

vided attention [70]. Such approximations can classify cognitively healthy subjects

and those with mild cognitive impairment [72]. Cognitive computer games have also

been implemented in mobile devices to assess the cognitive health of astronauts, who

operate in a complex environment.

We categorize computer assessment systems as intelligent agents. The sensor

technologies such as touch displays, mouse, stylus, and keyboards enhance (or substi-

tute) the traditional pen and paper environment with several added capabilities and

expand the perception of the agent by collecting diverse information from the envi-

ronment. The clinicians are the agents who take necessary actions after interpreting

their perception (the collected data) using their own experience. Alternatively, the
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intelligent algorithms can study the data history and provide real time feedbacks and

recommendations to the user or the caregiver.

3.6 Cognitive assessment using smart home sensors

Smart home sensors continuously monitor and collect data related to everyday

abilities, for example, completion of activities of daily living, circadian rhythms of

daily behavior, and the ability to move around. Clinicians can use sensor data to

better understand the course of decline in everyday abilities. Such understanding

helps them to design treatment plans, develop measures to overcome difficulties, and

prolong an individual’s independent living. In addition, using the sensor data, one

can develop a more ecologically valid assessment system using data collected from

real life events and predict a person’s ability to live independently.

We explain smart home-based assessment systems using the agent framework

as shown in Fig. 3.2a. The environment in the framework is the participant’s home

enhanced with sensors. These sensors continuously monitor everyday behavior of the

resident and provide data and precepts to the learning and reasoning agent. Agents

act and reason by interpreting this data and recommend or administer treatments.

The agents can be clinicians, caregivers, or intelligent algorithms. Smart home sensors

can perform cognitive assessment by monitoring key features of daily routines such
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as mobility and activities of daily living.

3.6.1 Monitoring mobility

Mobility is the ability of an individual to move around their home environment

and the community, while completing activities of daily living and maintaining an

active social life [159]. Mobility impairments limit an individual’s ability to maintain

independence and quality of life and are one of the predictors of institutionalization

among older adults [65].

Several cross-sectional and longitudinal clinical studies have investigated the re-

lationship among mobility, gait disorders, and cognitive decline. They have shown a

relationship between gait speed and risk of lower 3MSE score [54], gait abnormalities,

such as unsteadiness and frontal gait disorders, and non-Alzheimer dementia [152],

and time to walk 30 ft. and the onset of cognitive impairment [88]. Similarly, other

studies have investigated relationships among cognitive dysfunction, risk of disability,

ability to walk a few feet and climb stairs, ability to get out of bed and chair, and

upper extremity strength [54, 155]. These studies concluded that mobility and gait

impairment are associated with cognitive decline and prediction of dementia, future

risk of hospitalization [144] and disability [60], and loss of executive function [35].

These studies demonstrate the importance of mobility and their relationship with



45

cognitive health. However, the data in clinical studies are usually collected using tra-

ditional methods of self-report, informant report, and performance-based measures.

In contrast, sensors continuously monitor in-home mobility for longer duration and

provide frequent measurements. Therefore, they can be valuable in understanding

mobility in real life [61].

The mobility of individuals can be monitored using wearable sensors such as

accelerometers and gyroscopes [61] as well as pressure sensor-wired shoe insoles [162].

The possibilities to recognize mobility and gait parameters also include ambient sen-

sors such as passive motion sensors [12], indoor sensor mats [96], laser scanners [57]

and [143] video cameras. The measured parameters using PIR motion sensors have

been validated with the standard systems. Hagler et al.[61] collected in-home walking

speeds using PIR motion sensors and validated it using GAITRite system. Ambient

sensors are preferable to wearable sensors since they are unobtrusive. However, in-

stalling ambient sensors requires prior knowledge of the layout of the room and may

pose difficulties for multiple-resident homes [61, 72].

The initial work that monitored mobility and predicted possible cognitive de-

cline using mobility parameters analyzed continuously monitored sensor data using

Semi Markov Model to make estimations [109]. Other researchers predict decline in

cognitive health based on the gait speed estimated from sensor data [11]. In the home

environment gait speed is estimated based on the timing of sensor events arranged in
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a straight line down a hallway or narrow corridor. Studies have shown evidence for a

relationship between in-home gait speed and abrupt changes in health condition, as

well as a relationship between weighted correlation estimates of the gait speed and

cognitive health [13]. However, estimating gait velocity using this technique poses

challenges in multiple-resident homes. As one solution, Austin et al. [11] proposed

modeling gait speeds using Gaussian Mixture Models for multiple residents in a smart

home. They show the effectiveness of their technique by correlating the results from

sensor data with the standard clinical assessment data. Researchers have also stud-

ied the relationship between the longitudinal trajectories of walking speed and speed

variability and the cognitive health using latent trajectory modeling technique [45].

These modeling techniques use passive infrared motion sensor systems and re-

quire explicit arrangements of sensor systems to measure walking speed. Alterna-

tively, one can use a Kinect system to measure walking speed, stride length, and

stride time. The measurements using Kinect sensors were validated using marker-

based motion capture system [143]. Such measurements can be used to detect fall

and early onset of functional decline.
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3.6.2 Monitoring everyday functioning (Activities of daily living)

Everyday functioning is the functional ability of an individual to complete daily

activities to live competently and independently. Functional abilities such as eating,

maintaining hygiene, and using bathroom are called basic activities of daily living.

They are cognitively less demanding but are fundamental to living. Similarly, instru-

mental activities of daily living (IADLs) are another set of functional abilities. These

cognitively demanding activities include driving, using telephones, and managing fi-

nances. For independent living, a person needs to complete activities of daily living.

Measuring and understanding difficulties in everyday functional abilities are therefore

important parts of gerontology research.

Previously, clinical studies have shown that individuals diagnosed with cogni-

tive difficulty have more difficulties in completing IADLs when compared with healthy

controls [9, 53, 110]. With incidence of more severe cognitive problems such as AD,

individuals have difficulty in both initiating and completing basic activities as com-

pared with healthy and MCI controls. Often, with progression of cognitive difficulty,

a pattern of decline in abilities to complete higher order functional abilities (IADL)

followed by basic functional abilities is observed [59]. Such pattern indicates that

detection of functional changes may help detect early stages of cognitive decline or

identify individuals with greater risk of decline [110]. Predicting cognitive health
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based on the performance of activities of daily living is an active research area in

neuropsychology and clinical research [130, 131].

Activity recognition and discovery algorithms can be used to study a person’s

everyday functioning using sensor data. The raw sensor data does not contain activ-

ity labels, and therefore it requires annotation before it can be used further. Activity

recognition and discovery algorithms can annotate sensor events with activity labels.

While activity recognition [27] algorithms map a sequence of raw sensor readings to

a label indicating the activity that is being performed, activity discovery [122] algo-

rithms discover sensor patterns of frequently conducted activities but cannot provide

specific activity labels. These algorithms can accommodate various sensor modalities

including environmental sensors, wearable sensors, and object sensors. They can also

recognize complex and interweaved activities of daily living [138]. The output from

activity recognition and discovery algorithms can be used to develop activity-tracking

algorithms to track an individual’s daily behavior.

Activity tracking algorithms monitor activities in daily life. They flag abnormal

changes in activity patterns after discovering frequently completed activities [122].

They may also use domain specific rules to detect changes in circadian rhythms of

the daily activities [153]. These abnormalities and changes in circadian rhythms

are hypothesized to indicate problems in cognitive health. The activity tracking

algorithms are particularly useful to track an individual’s activity over a long period
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of time and detect decline in their everyday abilities.

In other works, researchers hypothesized that individuals with cognitive diffi-

culties have significantly lower activity quality than healthy controls. This hypothesis

was drawn assuming that individuals with cognitive difficulties commit more signifi-

cant errors while completing activities. The focus of this research is on development

of intelligent algorithms that can predict activity quality and study the relationship

between cognitive health and quality of activities of daily living. The data is usually

collected under a constrained laboratory environment while groups of people with

different cognitive difficulties perform predefined set of activities.

In one of such works, Hodges et al. [63] hypothesized that patterns of errors

made while completing daily activities correlate with type and severity of cognitive

difficulty. The authors assumed coffee-making activity as a proxy to everyday func-

tioning and monitored the object usage using wireless RFID sensors while individuals

with TBI completed the activity. They found a correlation between extracted set

of features that characterized the task performance based on the object usage data

and neuropsychological assessments tests. Researchers have also used ambient sen-

sors to derive the quality of completed activities. Cook & Schmitter-Edgecombe [34]

developed a Markov model to assess the completeness of five different activities of

daily living: telephone use, hand washing, meal preparation, eating and medication

use, and cleaning. Their model detected certain types of step errors, time lags, and
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missteps. Both of these studies were conducted while participants performed simple

daily activities. Researchers have also developed algorithms to monitor a specific

activity such as dressing [92].

Monitoring activities with sensors have shown that activity quality and cognitive

health are related in complex and real life activities [40, 41]. The authors classify

individuals into cognitively healthy and cognitively unhealthy using activity quality

as an input to learning algorithms. They also show a fairly strong correlation between

direct observational scores that were observed on a set of activities of daily living and

the sensor measurements of the same activities by trained neuropsychologists. The

latter indicates that by using sensor data, learning algorithms can predict activity

quality of both simple and complex activities, and that such predictions correlate

with activity quality measurements performed by trained clinicians.

All the above-mentioned studies present tracking everyday functioning using

sensor technologies as a promising candidate to monitor cognitive health. The short-

coming of these studies is that they were conducted under a laboratory setting using

a limited set of predefined activities. Future research in this area must be focused on

investigating the relationship between everyday functioning and cognitive health in

real and unconstrained environments.
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3.7 Longitudinal monitoring

In contrast to the cross-sectional studies of everyday functioning in which re-

searchers collect data from a population at a certain time point, longitudinal stud-

ies collect repeated observations of everyday functioning of individuals continuously

over a long period. These studies are better suited to address the questions related

to within-individual changes and inter-individual differences in changes, trends, and

trajectories [137]. Using longitudinal data, one can detect changes in data by taking

a person’s past as a baseline. Thus, to detect early indications of cognitive decline

based on continuous monitoring of everyday behavior, analysis of longitudinal every-

day functioning data is ideal. However, longitudinal analyses require data collected

over a long period and pose additional challenges such as missing data and dropouts.

Previously, clinical researchers have studied patterns of changes and their tra-

jectories in everyday functioning measures and their relationship to cognitive health.

For example, Artero et al. studied the relationship between the ability to perform

everyday activities (functional abilities) and cognitive disorder in 368 participants

for three years. They found that individuals with mild cognitive deficits have more

difficulties completing everyday activities when compared with cognitively healthy

individuals. In a similar work, Wadley et al. [154] examined trajectories of changes

in everyday functioning of 2358 participants over a three-year period and found that
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the rate of decline of everyday functioning is higher in individuals with cognitive

difficulties (mild cognitive impairment). Similarly, Peres et al. [112] followed nearly

1000 healthy individuals and individuals with dementia for ten years and found that

among those healthy individuals, the ones who developed dementia at a later time

had worse performance in complex IADLs compared with the healthy controls that

did not develop dementia. They conclude that changes in daily pattern may consti-

tute early markers of decline in cognitive health. The relationship between changes

in mobility patterns and cognitive difficulties has also been studied in O’Connor et

al [100].

However, clinical studies often use self-report and informant report-based meth-

ods since behavior simulation and direct observation methods of data collection pro-

cedures are expensive and labor intensive to carry out repeatedly. In contrast to

self-report scoring, smart home sensor systems can continuously monitor and collect

measurements of everyday behavior of the residents in their home environment.

A limited number of studies have investigated longitudinal monitoring of ev-

eryday functioning parameters using sensor data and studied their relationships with

cognitive health. While some researchers have developed techniques to visualize gait,

sleep, activity densities, and circadian rhythm over a long period, other researchers

have used statistical modeling techniques to model the relationship between longitu-

dinal sensor data and cognitive health. We discuss both of these approaches next.
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Visualization techniques represent sensor data in a way that clinicians and care-

givers can comprehend and visually detect changes in activity patterns and activity

rhythms of the patient. In one of such works, Wang et al. [157] used motion sensor

data to plot an activity density map, which is a visualization plot that represents

levels of activities with different colors. Using a dissimilarity metric among activity

density maps, the authors demonstrated techniques to track changes both in daily

activity patterns over time and in physical and cognitive health. In another work,

Virone et al. [153] presented techniques to model and visualize daily circadian rhythm

of the activities and their deviations. They calculated time spent in each room of

the smart home and the number of motion sensor events triggered per room. Such

visualization technique has also been developed to visualize deviations in activities of

daily living. Similarly, Kanis et al. [75] developed techniques to visualize activities

in order to detect early indications of diseases with feedback from medical experts.

These works focus solely on the development of an effective visualization tool for long

term data monitoring [167].

While visualization techniques are helpful tools for both caregivers and clinicians

to derive quick conclusions, they neither model the statistical relationship between

health events and sensor data, nor do they generalize the relationship across the

population. Thus, other researchers have quantified the relationship between sensor

data and standard clinical scores. In one such work, Paavilainen et al. [106] found
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lower daytime and higher nocturnal activity levels in individuals with dementia com-

pared with healthy individuals. They also found statistically significant correlations

between self-assessment of sleep quality and daytime vigilance. The activity signal

data was collected using IST Vivago Wrist care system. Similarly, Paavilainen et al.

[107] study changes in circadian activity rhythm using the same technologies as clin-

ical observations of health status of the subjects and concluded a relationship exists

between the two.

Researchers have also investigated the direct relationship between sensor data

and standard clinical scores. For example, while Robben and Krose [126, 127] found

a correlation between data obtained from the motion sensors and standard clinical

assessment. The Assessment of Motor and Process Skills (AMPS) scores, Dodges et

al. [45] studied the relationship between longitudinal trajectories of walking speed

and speed variability and cognitive health using latent trajectory modeling technique.

Suzuki and Murase [146] have shown a relationship between MMSE scores, health,

and in-house movements. All these studies provide valuable evidence that longitudinal

monitoring data can be used to make inferences about cognitive health.
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3.8 Discussion

The recent advancements in sensor technologies and learning algorithms have

made continuous monitoring of daily human behavior in their home environment a

reality. We presented cognitive assessment systems as intelligent agents and discussed

in-home technologies to monitor an individual’s cognitive health. We highlighted clin-

ical findings that suggested a relationship between everyday behavior and cognitive

health and discussed smart home-based approaches to monitor everyday functioning.

Interdisciplinary research effort among clinicians, neuropsychologists, and engineers

is required to move this field forward.

In particular, future work on cognitive assessment based on computing plat-

forms can utilize mobile platforms. By exploiting this sensor-rich platform, scientists

can develop test suites that can be completed in an individual’s home environment

and can accurately measure the underlying cognitive construct. One can also adopt

novel platforms such as full body gaming systems (e.g., Nintendo Wii and Microsoft

Kinect) to perform cognitive assessments. Recent research suggests that full body

gaming systems are becoming widely accepted among older adults [2]. Previous re-

searchers have studied the acceptance of these gaming systems and their applications

for physical rehabilitation for older adults. Future research should address the ques-

tion of whether or not the data from these gaming systems can be used for cognitive
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assessment or to simulate standard clinical tests.

Similarly, monitoring everyday abilities with smart home sensors have several

research possibilities given the importance of understanding everyday abilities of older

adults and the immense amount of information that sensor data contains. The initial

studies have shown potential for sensor technologies to monitor daily activities in

constrained laboratory setting and predict their quality. However, how their methods

extend to unconstrained settings remains unanswered. In addition, extending activity

recognition algorithms, which are well studied problems in pervasive computing, to

develop activity tracking algorithms to track changes in activity patterns for a period

of time is an open research question that needs to be addressed.

Recently, with the availability of longitudinal data, researchers have focused on

development of algorithms to analyze long-term sensor monitoring data and detect

early indications of cognitive decline [46]. Modeling of everyday functioning parame-

ters and types of statistical and learning models required for detection of early indica-

tions of cognitive decline is an active area of research. The outputs from the models

are valuable to end-users, especially to clinicians and caregivers, as they allow them to

better understand a person’s behavior. In addition, the data from large-scale studies

can be used to answer questions about the population behavior. For example, one can

answer the questions of whether or not an observed trend for a dementia group can

be generalized across the population, or if MCI and dementia groups exhibit similar
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trends.

Cognitive decline is a gradual and slow process. Researchers require continu-

ously monitored data over a long period of time to detect cognitive decline. Currently,

there are very few openly available long-term behavior sample data that researchers

can use to develop algorithms. Very few of them have instances of known incidence

of cognitive decline. Such lack of publicly available data complicates algorithm de-

velopment and is an ongoing challenge for the field.

Ideally, a cognitive decline detection algorithm performs trend detection on

longitudinal behavioral data. Such algorithms would take an individual’s history as a

baseline and perform the analysis. This algorithm requires convergence of traditional

time series and longitudinal data analysis techniques and machine learning algorithms.

In addition to analyzing each individual separately, it is also desirable to generalize

the trend to the overall population and to observe if a detected individual trend can be

generalized to the population. Still, this poses a great challenge since it requires large

datasets. Thus, we stress the necessity of publicly available clinical ground truth data

along with long-term sensor monitoring data to advance and motivate researchers to

develop algorithms for performing in-home cognitive assessments.

After analyzing the results obtained from sensor measurements, the final step is

to verify that the obtained results align with the results obtained from clinical data

that are accepted by the community. This step ensures that the results have indeed
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captured some existing underlying trends on a validated standard clinical dataset (see

Appendix A).

In the next two chapters, we will first discuss two cross-sectional studies: the

Eight Activities study and the Day Out Task study. These cross-sectional studies will

allow us to compare activity performance across populations and to automate activity

quality categorization based on activity performance differences. We will introduce

algorithms to predict the activity quality of these activities and to automatically cat-

egorize cognitive health using collected smart home sensor data and machine learning

algorithms. After discussing the cross-sectional studies, we will discuss a longitudinal

study in which smart home sensor data is collected for over two years in a real life

setting. We will discuss algorithms to model everyday behavior of a smart home

resident and detect changes in the everyday behavior. We will then use this model to

predict the cognitive and physical health of a smart home resident.
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CHAPTER 4. CROSS-SECTIONAL ANALYSIS OF EIGHT

ACTIVITIES

In this chapter, we first discuss the design of the smart home-based cross-

sectional study in which a pool of participants performed eight different activities

in our smart home testbed. We then present a machine learning algorithm that au-

tomatically predicts the activity quality of these activities utilizing sensor data that

is collected while participants perform activities in the smart home testbed. We also

present algorithm to perform cognitive health assessment to classify participants as

cognitively healthy, MCI, or dementia based on activity quality modeled from sensor

data.

4.1 The smart home testbed

Data are collected and analyzed using the Washington State University CASAS

on-campus smart home testbed, an apartment that contains a living room, a dining

area, and a kitchen on the first floor and two bedrooms, an office, and a bathroom

on the second floor. For more details on smart home test bed, refer to Section 2.1.
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4.1.1 Smart home activities

During the experiment, each participant was introduced to the smart home

testbed and guided through a preliminary task in order to familiarize the participant

with the layout of the apartment (see Chapter 2). The participant was then asked to

perform a sequence of eight activities. Instructions were given before each activity and

no further instructions were given unless the participant explicitly asked for assistance

while performing the activity. The eight activities are:

1. Household chore: Sweep the kitchen and dust the dining/living room using

supplies from the kitchen closet.

2. Medication management : Retrieve medicine containers and a weekly medicine

dispenser. Fill the dispenser with medicine from the containers according to

specified directions.

3. Financial management : Complete a birthday card, write monetary check, and

write an address on the envelope.

4. General activity : Retrieve the specified DVD from a stack and watch the news

clip contained on the DVD.

5. Household Chore: Retrieve the watering can from the closet and water all of

the plants in the apartment.
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6. Telephone use/conversation: Answer the phone and respond to questions about

the news clip that was watched previously.

7. Meal preparation: Cook a cup of soup using the kitchen microwave and following

the package directions.

8. Everyday planning : Select clothes appropriate for an interview from a closet

full of clothes.

These activities represent instrumental activities of daily living (IADLs) [64]

that can be disrupted in MCI, and are more significantly disrupted in AD. As there is

currently no gold standard for measuring IADLs, the IADL activities were chosen by

systematically reviewing the literature to identify IADLs that can help discriminate

healthy aging from MCI [111, 149]. All IADL domains evaluated in this study rely on

cognitive processes and are commonly assessed by IADL questionnaires [81] and by

performance-based measures of everyday competency [44, 163]. Successful completion

of IADLs requires intact cognitive abilities, such as memory and executive functions.

Researchers have shown that declining ability to perform IADLs is related to decline

in cognitive abilities [55].

In this chapter, we examine whether sensor-based behavioral data can correlate

with the functional health of an individual. Specifically, we hypothesize that an

individual without cognitive difficulties will complete our selected IADLs differently
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than an individual with cognitive impairment. We further postulate that sensor

information can capture these differences in quality of activities of daily living and

machine learning algorithms can identify a mapping from sensor-based features to

cognitive health classifications.

4.1.2 Experimental setup

Participants for this study completed a three hour battery of standardized and

experimental neuropsychological tests in a laboratory setting, followed approximately

one week later by completion of everyday activities in the smart home. The partici-

pant pool includes 263 individuals (191 females and 72 males), with 50 participants

under 45 years of age (YoungYoung), 34 participants age 45 − 59 (MiddleAge), 117

participants age 60 − 74 (YoungOld), and 62 participants age 75+ (OldOld). Of

these participants, 16 individuals were diagnosed with dementia, 51 with MCI, and

the rest were classified as cognitively healthy. For the inclusion and exclusion cri-

teria for participants, refer to Tables 2.1 and 2.2. Participants took 4 minutes on

average to complete each activity while the testing session for eight activities lasted

approximately 1 hour.

Before beginning each of the 8 IADL activities in the smart home, participants

were familiarized with the apartment layout (e.g., kitchen, dining room, living room)
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and the location of closets and cupboards. Materials needed to complete the activities

were placed in their most natural location. For instance, in the sweeping task a broom

was placed in the supply closet and the medication dispenser along with cooking tools

were placed in the kitchen cabinet.

As participants completed the activities, two examiners remained upstairs in the

apartment, watching the activities through live feed video. As the participant com-

pleted the activities, the examiners observed the participant and recorded the actions

based on the sequence and accuracy of the steps completed. The experimenters also

recorded extraneous participant actions (e.g., searching for items in wrong locations).

Experimenter-based direct observation scores were later assigned by two coders who

had access to the videos. The coders were blind to diagnostic classification of the older

adults. Each activity was coded for six different types of errors: critical omissions,

critical substitutions, non-critical omissions, non-critical substitutions, irrelevant ac-

tions and inefficient actions. The scoring criteria listed in Table 4.1 were then used to

assign a score to each activity. A correct and complete activity received a lower score,

while an incorrect, incomplete, or uninitiated activity received a higher score. The

final direct observation score was obtained by summing the individual activity scores

and ranged from 8 to 32. Agreement between coders for the overall activity score

remained near 95% across each diagnostic group, suggesting good scoring reliability.

Figure 4.1 shows the distribution of the direct observation scores grouped by
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Table 4.1: Coding scheme to assign direct observation scores to each activity.

Score Criteria

1 Task completed without any errors

2 Task completed with no more than two of the following errors: non-critical

omissions, non-critical substitutions, irrelevant actions, inefficient actions

3 Task completed with more than two of the following errors: non-critical

omissions, non-critical substitutions, irrelevant actions, inefficient actions

4 Task incomplete, more than 50% of the task completed, contains critical

omission or substitution error

5 Task incomplete, less than 50% of the task completed, contains critical

omission or substitution error

participant age and cognitive classification. As participants completed the activities,

the examiners recorded the time each subtask began and ended. These timings were

later confirmed by watching video of the activity. Using this information, a research

team member annotated raw sensor events in the data with the label of the subtask

that the individual was performing when the event was triggered. Figure 4.2 shows

a sample of the collected raw and annotated sensor data.
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Figure 4.1: Distribution of the direct observation scores grouped by participant’s

cognitive diagnosis. Participants are organized by age on the x-axis and the y-axis

represents the corresponding score.
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4.2 Extracting features from smart home sensor data

We define features that can be automatically derived from the sensor data,

reflect activity performance, and can be fed as input to machine learning algorithms

to quantify activity quality and assess cognitive health status. These features capture

salient information regarding a participant’s ability to perform IADLs. Table 4.2

summarizes the 35 activity features that our computer program extracts and uses as

input to the machine learning algorithms. The last feature, Health status, represents

the target class label that our machine learning algorithm will identify based on the

feature values.

As Table 4.2 indicates, we included the age of the participant as a discriminating

feature because prior research showing age-related effects on the efficiency and quality

of everyday task completion [131, 160] .

During task completion, participants sometimes requested help from the ex-

perimenter triggering a microphone, and this additional help is noted as a feature

value. The experimenters also assigned poorer observed activity quality ratings when

the participant took an unusually long time to complete the activity, the participant

wandered while trying to remember the next step, the participant explored a space

repeatedly (e.g., opened and shut a cabinet door multiple times) as they completed a

step, or the participant performed a step in an incorrect manner (e.g., used the wrong
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Figure 4.2: Sensor file format and sample annotation. Sensor IDs starting with M

represent motion sensors, D represents door sensors, I represents item sensors, and P

represents power usage sensors. The data is annotated with the start and end points

of the activity (in this case, medicine) and the individual step numbers within the

activity.
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tool). The smart features are designed to capture these types of errors. The length

of the event is measured in time (duration) and in the length of the sensor sequence

that was generated (sequence length).

To monitor activity correctness, the number of unique sensor identifiers that

triggered events (sensor count) is captured as well as the number of events triggered

by each individual sensor (motion, door, and item sensor counts). Finally, for each

activity the smart home software automatically determines the sensor identifiers that

are related to the activity, or are most heavily used in the context of the activity,

by determining the probability that they will be triggered during the activity. The

sensors that have a probability greater than 90% of being triggered (based on sample

data) are considered related to the activity the rest are considered unrelated. There-

fore, the number of unrelated sensors that are triggered is noted as well as the number

of sensor events caused by these unrelated sensors while a participant is performing

the activity. These errors can widely be categorized into four different categories [38].

• Omission error: Omission error occurs when a participant does not perform an

important subtask (e.g., failing to retrieve broom for sweeping task).

• Substitution error: Substitution error occurs when a participant uses an alter-

nate object or incorrect gesture while completing the activity (e.g., dusting the

living room instead of the kitchen).
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• Irrelevant action: Irrelevant action happens when a participant carries out an

action that is unrelated to the activity (e.g., opening a cupboard door while

sweeping the kitchen).

• Inefficient action: Inefficient action happens when a participant carries out an

inefficient task (e.g., opening extraneous cupboard doors).

Our feature extraction method does not consider individual “activity steps”

while extracting features from the activities. As a result, the features are generalizable

to any activity and not fine-tuned to the characteristics of a particular task. This

means that the method does not have to be fine-tuned for a particular activity and

its steps, but rather will consider features of any activity as a whole. As a result, the

technique will be more generalizable to new activities. In addition, it is sometimes

difficult to differentiate activity steps from environmental sensors. For example, it

is difficult to detect individual steps of the outfit selection activity (moving to the

closet, choosing and outfit, and laying out clothes) using only motion sensor data.

The list of features shown in Table 4.2 is extracted for all eight activities. Our

machine learning algorithm receives as input a list of values for each of these 35 sensor-

derived features and learns a mapping from the feature values to a target class value

(health status). In order to train the algorithm and validate its performance on unseen

data, ground truth values are provided for the participants in our study. Ground

truth data for a participant is generated from a comprehensive clinical assessment,
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which includes neuropsychological testing data (described previously), interview with

a knowledgeable informant, completion of the clinical dementia rating [80, 97], the

telephone interview of cognitive status [18], and a review of medical records. Figure

4.3 highlights the steps of the automated task assessment.

We observe that participants with cognitive disabilities often leave activities

incomplete. Features of incomplete activities as thus denoted as missing. In the final

dataset, we only include participants completing 5 or more activities (more than half

of the total activities). The final dataset contains 47(2%) missing instances.

4.3 Automated task assessment

4.3.1 Method

The first goal is to use machine learning techniques to provide automated ac-

tivity quality assessment. Specifically, machine learning techniques are employed to

identify correlation between our automatically-derived feature set based on smart

home sensor data and the direct observation scores. To learn a mapping from sen-

sor features to activity scores, two different techniques are considered: a supervised

learning algorithm using a support vector machine (SVM) [140] and an unsupervised

learning algorithm using principal component analysis (PCA) [87]. Support vector

machines are supervised learning algorithms that learn a concept from labeled train-
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Table 4.2: Sensor-based feature descriptors for a single activity.

Feature # Feature Name Feature Description

1 Age Age of the participant
2 Help An indicator that experimenter

help was given so that the partic-
ipant could complete the task

3 Duration Time taken (in seconds) to com-
plete the activity

4 Sequence length Total number of sensor events
comprising the activity

5 Sensor count The number of unique sensors
(out of 36) that were used for this
activity

6...31 Motion sensor count A vector representing the num-
ber of times each motion sensor
was triggered (there are 26 motion
sensors)

32 Door sensor count Number of door sensor events
33 Item sensor count Number of item sensor events
34 Unrelated sensors Number of unrelated sensors that

were triggered
35 Unrelated sensor count Number of unrelated sensor

events
36 Health status Status of the patient : Healthy,

MCI, or Dementia
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Figure 4.3: Steps involved in performing sensor-assisted cognitive health assessment.

The process starts with a comprehensive neuropsychology assessment of the partici-

pant. The participant then performs IADLs in a smart home monitored by trained

clinicians and smart home environmental sensors. The raw sensor data is annotated

with activity labels. From the annotated sensor data, we extract features and ana-

lyze it with machine learning algorithms to derive the quality of the activity. The

results are used by a clinician or by a computer program to perform cognitive health

assessment.
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ing data. They identify boundaries between classes that maximize the size of the gap

between the boundary and the data points. A one vs. one support vector machine

paradigm is used which is computationally efficient when learning multiple classes

with possible imbalance in the amount of available training data for each class.

For an unsupervised approach, PCA is used to model activities. PCA is a

linear dimensionality reduction technique that converts sets of features in a high-

dimensional space to linearly uncorrelated variables, called principal components,

in a lower dimension such that the first principal component has the largest possible

variance, the second principal component has the second largest variance, and so forth.

PCA is selected for its widespread effectiveness for a variety of domains. However,

other dimensionality reduction techniques could also be employed for this task.

The eight activities used for this study varied dramatically in their ability to

be sensed, in their difficulty, and in their likelihood to reflect errors consistent with

cognitive impairment. Therefore, instead of learning a mapping between the entire

dataset for an individual and a cumulative score, we build eight different models,

each of which learns a mapping between a single activity and the corresponding direct

observation score. Because the goal is to perform a direct comparison between these

scores and the direct observation scores, and because the final direction observation

scores represent a sum of the scores for the individual activities, the score output

from our algorithm is also a sum of the eight individual activity scores generated by
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the eight different learning models.

4.3.2 Experimental results

Empirical testing is to evaluate the automated activity scoring and compare

scores with those provided by direct observation. The objective of the first experi-

ment is to determine how well an automatically-generated score for a single activity

correlates with the direct observation score for the same activity. In the second

experiment, similar correlation analyses are performed to compare the automatically-

generated combined score for all activities with the sum of the eight direct observation

scores. In both cases support vector machines with bootstrap aggregation are used

to output a score given the sensor features as input.

In addition to these experiments, a third experiment is performed to compare

the automatically-generated combined score with the sum of the eight direct obser-

vation scores without using demographic and experimenter-provided features (age,

was help provided) in the feature set. This provides greater insight on the role that

only sensor information plays in automating task quality assessment. The bootstrap

aggregation improves performance of an ensemble learning algorithm by training the

base classifiers on randomly-sampled data from the training set. The learner averages

individual numeric predictions to combine the base classifier predictions and generates
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an output for each data point that corresponds to the highest-probability label.

Table 4.3 lists the correlation coefficient between automated scores and direct

observation scores for individual activities and selected participant groups (cognitive

healthy, MCI, and dementia) derived using SVM models. We note that correlation

scores are stronger for activities that took more time, required a greater amount

of physical movement and triggered more sensors such as Sweep as compared to

activities such as Financial management. For activities like Financial management,

errors in activity completion were more difficult for the sensors to capture. Thus,

the correlation scores between automated sensor-based scores and direct observation

scores in these activities are low. Similarly, we note that the correlation score also

varies based on what groups (cognitively healthy, MCI, dementia) of participants are

included in the training set. In almost all activities, the correlation is relatively strong

when the training set contains activity sensor data for all three cognitive groups of

participants.

Next, a combination of all of the performed activities is considered. Table

4.4 lists the correlation between a sum of the individual activity scores generated

by the eight activity SVM models and the direct observation scores. Correlations

between the two variables are relatively strong when the learning algorithm is trained

using data from all three cognitive groups. Differences in correlation strength may

be attributed to diversity present in the data. A majority of the cognitive healthy
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Table 4.3: Pearson correlation between activity sensor-based scores and activity direct

observation scores for sample subsets using SVM. For each sample subset, there are

eight different learning models, each of which learns a mapping between a single

activity and the corresponding direct observation score. The samples are cognitive

healthy (CH) participants, participants with mild cognitive impairment (MCI) and

participants with dementia (D) (*p < 0.05, **p < 0.005, †p < 0.05 with Bonferroni

correction for the three sample groups).

Pearson Correlation coefficient (r)

Sample N Sweep Medicine Card DVD Plants Phone Cook Dress

CH 196 0.50*† 0.02 0.04 0.22**† 0.04 0.31**† 0.18*† 0.22**†

MCI 51 0.58**† 0.01 0.07 0.13 0.01 0.18 0.35*† 0.03

CH,MCI 247 0.58**† 0.08 0.12 0.24**† 0.05 0.33**† 0.31**† 0.24**†

CH,D 212 0.58**† 0.16*† 0.09 0.24**† 0.08 0.31**† 0.28**† 0.22**†

MCI,D 67 0.75**† 0.01 0.21 0.03 0.38* 0.02 0.32**† 0.05

CH,MCI,D 263 0.63**† 0.17*† 0.07 0.27**† 0.09 0.33**† 0.37**† 0.23**†
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participants completed the eight tasks correctly so the training data from this group

contains examples of only “well-performed” activities and thus exhibits less diversity.

Learning algorithms tend to generalize poorly when data contains little variation and

thus classification performance may degrade.

Table 4.4 also lists the correlation between a sum of individual activity scores

generated by the eight SVM models and the sum of the direct observation score with-

out considering non-sensor-based features (age, help provided). Both Pearson linear

correlation and Spearman rank correlation coefficient are calculated to assess rela-

tionship between variables. The correlation coefficients are statistically significant

when correlations are derived only from the sensor-based feature set and duration

does improve the strength of the sensor-based correlation. We conclude that demo-

graphic and experimenter-based features do contribute toward the correlation, but a

correlation does exist as well between purely sensor-derived features and the direct

observation score.

Tables 4.5 and 4.6 list the correlation coefficients between our automated scores

and direct observation scores when we utilize PCA to generate the automated scores

based on sensor features. Similar to the results in Tables 4.3 and 4.4, some activi-

ties have much stronger correlations than others and the strength of the correlations

varies based on which groups are included in the training set. Furthermore, the cor-

relation scores obtained using PCA are statistically significant but not as strong as
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Table 4.4: Pearson correlation and Spearman rank correlation between the summed

sensor-based scores and direct observation scores for sample subsets using SVM. Sam-

ples are cognitive healthy (CH) participants, participants with mild cognitive impair-

ment (MCI), and participants with dementia (D) (*p < 0.05, **p < 0.005, †p < 0.05

with Bonferroni correction for the three sample groups). The first correlation co-

efficient listed is the Pearson correlation coefficient while the second value is the

Spearman rank correlation coefficient.

Sample N r (all features) r (sensor features)
r (sensor features
without duration)

CH 196
0.39**† 0.22**† 0.20**
0.42**† 0.25**† 0.22**

MCI 51
0.50**† 0.35* 0.26*
0.48**† 0.31* 0.20

D,CH 212
0.50**† 0.47**† 0.46**†
0.48**† 0.39**† 0.39**†

MCI,CH 247
0.49**† 0.34**† 0.32**†
0.48**† 0.32**† 0.30**†

MCI,D 67
0.59**† 0.60**† 0.53**†
0.63**† 0.60**† 0.52**†

CH,MCI,D 263 0.54**† 0.51**† 0.49**†
0.52**† 0.44**† 0.43**†

The column r (all features) lists correlation coefficients obtained using all features, r

(sensor features) lists correlation coefficients obtained using only sensor-based features,

and r (sensor features without duration) lists correlation coefficients obtained using all

sensor-based features without the duration feature.
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those obtained from the SVM models. Given the nature of the activities and given

that the dimension of sensor derived features is reduced to a single dimension using

a linear dimensionality reduction technique, it is likely that during the process some

information is lost that otherwise produces a satisfactory correlation performance be-

tween direct observation scores and sensor-based features. Note that experiments are

not performed which involve only participants from the dementia group because the

sample size is small. Table 4.6 list the correlation coefficients between the automated

scores and direct observation scores when PCA is utilized to generate the automated

scores based on sensor features excluding non-sensor-based features. As before, we

note that there is little difference between the sets of correlation coefficients.

These experiments indicate that it is possible to predict smart home task qual-

ity using smart home-based sensors and machine learning algorithms. We observe

moderate correlations between direct observation score, which is a task quality score

assigned by trained clinical coders, and an automated score generated from sensor

features. We also note that the strength of the correlation depends on the diversity

and quantity of training data. Finally, we also note that apart from the age of the

participants, all of the features that are input to the machine learning algorithm are

automatically generated from smart home sensor events.
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Table 4.5: Correlation between activity sensor-based scores and activity direct ob-

servation scores for sample subsets using principal component analysis (PCA). We

standardize the data before applying PCA. Samples are cognitive healthy (CH) par-

ticipants, participants with mild cognitive impairment (MCI), and participants with

Dementia (D) (*p < 0.05,**p < 0.005, †p < 0.05 with Bonferroni correction for the

three sample groups).

Pearson Correlation coefficient (r)

Sample Size(N) Sweep Medicine Card DVD Plants Phone Cook Dress

CH 196 -0.30**† 0.09 0.06 0.23**† 0.04 0.03 0.26**† -0.16*

MCI 51 -0.51**† 0.14 0.08 -0.17 0.38*† 0.20 0.11 -0.15

CH,D 212 -0.37**† 0.26**† -0.02 0.22**† 0.06 0.04 0.18**† -0.14*

CH,MCI 247 -0.36**† 0.13 0.00 0.25**† 0.20**† 0.10 0.23**† 0.08

MCI,D 67 -0.58**† 0.18 0.15 -0.11 0.20 0.19 -0.03 0.12

CH,MCI,D 263 -0.41**† 0.23**† -0.05 0.23**† 0.15*† 0.10 0.17*† 0.07
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Table 4.6: Pearson correlation and Spearman rank correlations between the summed

sensor-based scores and direct observation scores for sample subsets using princi-

pal component analysis. We standardize data before applying PCA. The samples

are cognitive healthy (CH) participants, participants with mild cognitive impairment

(MCI), and participants with dementia (D) (*p < 0.05, **p < 0.005, †p < 0.05 with

Bonferroni correction for the three sample groups). The first value listed is the Pear-

son correlation coefficient while the second value is the Spearman rank correlation

coefficient.

Sample Sample size r (all features) r (sensor features)
r (sensor features
without duration)

CH 196
0.13 0.12 0.11
0.12 0.10 0.08

MCI 51
0.10 0.08 0.09
-0.03 -0.08 -0.08

D,CH 212
0.13 0.11 0.10
0.12 0.09 0.08

MCI,CH 247
0.18**† 0.16*† 0.15*
0.08 0.07 0.05

MCI,D 67
0.12 0.10 0.10
0.09 0.08 0.07

CH,MCI,D 263 0.16* † 0.14* 0.13
0.07 0.05 0.03

The column r (all features) lists correlation coefficients obtained using all features, r

(sensor features) lists correlation coefficients obtained using only sensor-based features,

and r (sensor features without duration) lists correlation coefficients obtained using all

sensor-based features without the duration feature.
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4.4 Automated cognitive health assessment

4.4.1 Method

The second goal of this work is to perform automated cognitive health classi-

fication based on sensor data that is collected while an individual performs all eight

activities in the smart home testbed. Here, a machine learning method is designed to

map the sensor features to a single class label with three possible values: cognitively

healthy (CH), mild cognitive impairment (MCI), or dementia (D).

When sensor data that was gathered for the population is visualized (shown

in Figure 4.4), we see the heterogeneity of the data as well as specific differences in

activity performance across the eight selected activities. As a result, we hypothesize

that a single classifier would not be able to effectively learn a mapping from the entire

data sequence for an individual to a single label for the individual. This is because

individual activities vary in terms of difficulty, duration, and inherent variance. Ma-

chine learning researchers use ensemble methods, in which multiple machine learning

models are combined to achieve better classification performance than a single model

[50]. Here, eight base classifiers are initially created, one for each of the activities,

using both a non-linear classifier (in this case, a support vector machine learning

algorithm) and a linear classifier (in this case, a logistic regression classifier).

We observe that there is a class imbalance in our training set for cognitive health
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Figure 4.4: Scatter plot of sensor features for each of the eight activities. Each grid

cell in the plot represents a combination of two of the sensor features (duration, sensor

frequency, unrelated sensors, and unrelated sensor count).

prediction: there are only 16 individuals in the Dementia group and 51 in the MCI

group, relative to the 196 participants in the cognitively healthy group. We note in
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advance that such imbalance may adversely affect predictive performance as many

classifiers tend to label the points with the majority class label. To address this issue,

cost sensitive versions of the machine learning algorithms are used for each of the

base classifiers. A cost sensitive classifier assigns misclassification costs separately for

individual class labels and reweights the samples during training according to this

cost. This allows the classifier to achieve overall strong performance even when the

training points are not evenly divided among the alternative classes [145], as is the

case with this dataset. A meta-classifier then outputs a label (CH, MCI, or D) based

on a vote from the base learners.

4.4.2 Evaluation metrics

A number of evaluation metrics are utilized to validate the proposed method-

ology. The first, ROC curves, assess the predictive behavior of a learning algorithm

independent of error cost and class distribution. The curve is obtained by plotting

false positives vs. true positive at various threshold settings. The area under the

ROC curve (AUC) provides a measure that evaluates the performance of the learning

algorithm independent of error cost and class distribution.

In a data set with an imbalanced class distribution, g-mean measures the predic-

tive performance of a learning algorithm for both the positive and a negative classes.
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It is defined as:

gmean =
√

(true positive rate× true negative rate) (4.1)

where the true positive rate and true negative rate represents the percentage of

instances correctly classified to their respective classes. Furthermore, we also report

if the prediction performance of a learning algorithm is better than random in both

negative and positive classes. The classifier predicts a class better than random if the

prediction performance, true positive rate, true negative rate, and the AUC value are

all greater than 0.50.

4.5 Experimental results

Several experiments are performed to evaluate our automated cognitive health

classifier. For all of the experiments we report performance based on overall area

under the ROC curve (AUC) and g-mean scores. Values are generated using leave

one out validation. To better understand the differences between each class, this

situation is viewed as a set of binary classification problems in which each class is

individually distinguished from another. The first experiment evaluates the ability of

the classifier to perform automated health assessment using sensor information from

individual activities using the support vector machine and logistic regression classifier

algorithms.
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(h) Dress

Figure 4.5: ROC curves for automated SVM classification of cognitive health status

for each activity.
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Figure 4.6: ROC curves for automated logistic regression classification of cognitive

health status for each activity.
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Table 4.7: AUC (first entry) and G-mean (second entry) values for automated support

vector machine classification of cognitive health status for each activity.

Sample Costs Sweep Medicine Card DVD Plants Phone Cook Dress

D, MCI (3, 1)
0.70* 0.64 0.63 0.63* 0.68 0.54 0.78* 0.66*

0.69 0.61 0.51 0.61 0.55 0.52 0.75 0.68

MCI,CH (5, 1)
0.60 0.68 0.60 0.58 0.57 0.63 0.64 0.65

0.57 0.64 0.62 0.57 0.57 0.62 0.56 0.59

CH,D (23, 1)
0.82* 0.67* 0.81* 0.60* 0.76* 0.63 0.87* 0.76*

0.79 0.69 0.81 0.60 0.79 0.57 0.73 0.69

*Classifier with better than weighted random prediction

Tables 4.7 and 4.8 and Figures 4.5 and 4.6 summarize the results. Classification

performance for cognitively healthy vs. dementia is better than the other two cases.

Similarly, performance for classifying MCI and cognitively healthy using SVM learn-

ing algorithm in all eight activities is not better than random prediction. Figure 4.1

shows that there is overlap between the direct observation scores of the healthy older

adults and those diagnosed with MCI. MCI is often considered as a transition stage

from cognitively healthy to dementia [97, 114]. It is possible that no reliably distinct

differences exist between activity performances, or sensors are not able to capture
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Table 4.8: AUC (first entry) and G-mean (second entry) values for automated logistic

regression classification of cognitive health status for each activity.

Sample Costs Sweep Medicine Card DVD Plants Phone Cook Dress

D, MCI (3, 1)
0.71* 0.53 0.44 0.64 0.59 0.53 0.86* 0.63

0.68 0.58 0.45 0. 62 0.58 0.54 0.75 0.61

MCI,CH (5, 1)
0.61* 0.71* 0.60* 0.58 0.60* 0.64* 0.60 0.65*

0.59 0.64 0.56 0.52 0.55 0.58 0.55 0.60

CH,D (23, 1)
0.77 0.57 0.73 0.61 0.74 0.63 0.93* 0.66*

0.66 0.48 0.58 0.63 0.50 0.57 0.80 0.67

*Classifier with better than weighted random prediction

subtle differences in activity performance between those two cognitive groups. Thus,

additional experiments are not performed to distinguish between these two groups.

Similar to the results summarized in Section 5, we see that prediction perfor-

mance for some activities such as Sweep, Dress, and Cook is better than for other

activities such as DVD and Medicine. As explained previously, some of the activities

took longer to complete and triggered more sensor events than others making it easier

to identify errors, unrelated sensor events, and taking longer to perform the activ-

ity. Thus, differences exist in patterns of activity performance and sensors capture
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Table 4.9: Combined cost-sensitive health classification performance with all activities

classified using a SVM classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (2, 1) 0.56 0.43

MCI,CH 67 (2, 1) 0.62 0.59

D,CH 212 (5, 1) 0.72 0.65

Table 4.10: Combined cost-sensitive health classification performance with all activ-

ities classified using a logistic regression classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (2, 1) 0.53 0.40

MCI,CH 247 (5,1) 0.66 0.62

D,CH 212 (5, 1) 0.83 0.75

them. Our learning algorithm may be able to quantify these differences to distinguish

between the different participant groups.

The second experiment evaluates the ability of the ensemble learner to automate

health assessment using information from the combined activity set. The results are
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Figure 4.7: ROC curves for the combined cost-sensitive health classification with all

activities classified using a SVM (top) and logistic regression classifier (down).
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summarized in Tables 4.9 and 4.10 and Figure 4.7. The classification performance

for classifying dementia and cognitively healthy is better than for classifying MCI vs.

dementia. In addition, in Table 4.7 only a few base classifiers have better than random

prediction. For each of these tables, costs are reported that yield the most promising

results for the classifier. In a third experiment, only base classifiers that have better

than random performance are selected. The results are summarized in Tables 4.11 and

4.12 and Figure 4.8. As shown in Table 4.11, for predicting MCI vs. dementia only

4 base classifiers are selected while for predicting dementia vs. cognitively healthy 5

base classifiers are selected. Similarly, for the results summarized in Table 4.12, only

2 base classifiers are selected for predicting dementia vs. cognitively healthy, while

6 base classifiers are selected for predicting MCI vs. dementia and 2 are selected for

predicting dementia vs. cognitively healthy. The classification performance of MCI

vs. dementia and dementia vs. cognitively healthy improves as compared to the

previous two cases.

These experiments indicate that it is possible to perform limited automated

health assessment of individuals based on task performance as detected by smart

home sensors. The feature extraction technique described here along with the learn-

ing algorithm design achieves good performance at differentiating the dementia and

cognitively healthy groups as compared to the other binary comparisons. This limita-

tion might be due to the current coarse-grained resolution of the environment sensors



93

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

po
si

tiv
e

ra
te

D,CH
D,MCI
MCI,CH

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

po
si

tiv
e

ra
te

D,CH
D,MCI
MCI,CH

Figure 4.8: ROC curve for the combined cost-sensitive health classification with se-

lected activities classified using a SVM (top) and logistic regression classifier (down).
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Table 4.11: Combined cost-sensitive health classification with selected activities clas-

sified using a SVM classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (2, 1) 0.59 0.53

D,CH 212 (6, 1) 0.80 0.73

Table 4.12: Combined cost-sensitive health classification with selected activities clas-

sified using a logistic regression classifier.

Sample Sample size Costs AUC G mean

MCI,D 67 (3, 1) 0.62 0.54

MCI,CH 247 (3,1) 0.65 0.60

D,CH 212 (3, 1) 0.87 0.75

and the current smart home activity design. It might be possible to improve accuracy

using different tasks, additional features, more sensors and those sensors that provide

finer resolution such as wearable sensors.
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4.6 Discussion and observations

In this chapter, we introduced a method to assist with automated cognitive

assessment of an individual by analyzing the individual’s performance on IADLs

in a smart home utilizing a cross-sectional analysis. We hypothesize that learning

algorithms can identify features that represent task-based difficulties such as errors,

confusion, and wandering that an individual with cognitive impairment might commit

while performing everyday activities. The experimental results suggest that sensor

data collected in a smart home can be used to assess task quality and provide a score

that correlates with direct observation scores provided by an experimenter. In addi-

tion, the results also suggest that machine learning techniques can be used to classify

the cognitive status of an individual based on task performance as sensed in a smart

home.

One must carefully interpret the correlation results that are mentioned here.

The correlation (r) between smart home features and direct observation score is sta-

tistically significant. The correlation coefficient is squared to obtain the coefficient

of determination. A coefficient of determination of 0.29 (r = 0.54) means that the

nearly 30% of the variation in the dependent variable can be explained by the varia-

tion in the independent variable. The current results show that this method explains

nearly 30% variations in the direct observational scores. Unexplained variation can
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be attributed to limitations of sensor system infrastructures and algorithms.

We have seen that the predictive performance of a learning algorithm varies

based on the activity being monitored and the condition of the individual performing

the activities. As expected, the prediction accuracies of complex activities that trig-

gered more sensor events were better than the accuracies for activities that trigger

fewer sensor events and required less time to complete. Learning algorithms gener-

alize better when trained from sensor rich data and when they are provided with

data from a large segment of the population. The overall performance of a learning

algorithm can also be improved by giving higher weights to the learning algorithms

that model complicated activities and that take longer time to complete.

In addition, the prediction performance of the learning algorithm is affected

by several factors. A primary factor is the class imbalance in our data set. Another

contributing factor is missing values that are introduced in the cases when individuals

(almost always individuals in the MCI and Dementia groups) do not attempt some

of the activities. Finally, the ground truth values are based on human observation of

a limited set of activities and may be prone to error. Based on these observations,

we conclude that in a testing situation an experimenter needs to select activities with

caution, balancing trade-off between a difficult activity that results in good prediction

performance and one that is easy enough for participants with cognitive impairments

to complete.
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The current approach uses between-subjects differences in activity performance

to perform cognitive health assessment and is based on set of non-obtrusive environ-

mental sensors such as door sensors, motion sensors, and item sensors. The current

work demonstrates that it is possible to automatically quantify the task quality of

smart home activities and assist with assessment of the cognitive health of individ-

ual with a reasonable accuracy given the proper choice of smart home activities and

appropriate training of learning algorithms.

In the next chapter, we will discuss another cross-sectional study in which partic-

ipants completed a complex realistic activity in our smart home testbed. We present

a machine learning algorithm to predict the activity quality of this complex activity

utilizing sensor data that collected while participants perform this activity. This next

study will allow us to look at activity performance across the population for a more

complex, interweaved set of tasks than was discussed in this chapter.
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CHAPTER 5. CROSS-SECTIONAL ANALYSIS OF DAY

OUT TASK

In this chapter, we first discuss the design a smart home-based cross-sectional

study in which participants performed a complex real lifelike activity, a Day Out

Task (DOT), in our smart home testbed. We first introduce a machine learning-

based method to assess the activity quality of DOT utilizing smart home sensor data

collected while participants perform the activity. While participants perform eight

different activities sequentially in the eight activities study, participants complete

DOT activity by multitasking and parallelizing the subtasks of the DOT. Hence,

DOT closely resembles the types of activities that humans perform in their daily life.

5.1 The testbed

Data is collected and analyzed using the Washington State University CASAS

on-campus smart home testbed, an apartment that contains a living room, a dining

area, and a kitchen on the first floor and two bedrooms, an office, and a bathroom on

the second floor (see Section 2.1). A sample of the collected sensor events, together

with the corresponding labeled activities, is shown in Figure 2.2.
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Formally, the input data to our algorithm is a sequence of sensor events, E,

that is generated as an individual performs an activity, A, which is comprised of

subtasks A1 . . . An. A subtask Ai is represented by the corresponding sequence of n

sensor events e1, . . . , en, the start time of the activity, the end time of the activity,

and the activity label. Activity subtasks can be initiated in an arbitrary order and

some activities or activity subtasks can be interwoven or parallelized. We state that

activity A at sensor event ei is parallelized if there is more than one subtask open

(started but not ended) at that time.

5.2 The day out task

The ability to multi-task, or perform concurrent tasks or jobs by interleaving,

has been said to be at the core of competency in everyday life [22]. We therefore

designed a Day Out Task (DOT), a naturalistic task that participants complete by

interweaving subtasks. Participants were told to imagine that they were planning

for a day out, which would include meeting a friend at a museum at 10:00 AM and

later traveling to the friend’s house for dinner. The eight subtasks that need to

be completed to prepare for the day out are explained and participants are told to

multi-task and perform steps in any order to complete the preparation as efficiently

as possible. Participants are also provided with a list and brief description of each
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subtask that they can refer to during DOT completion. The eight subtasks are:

1. Magazine: Choose a magazine from the coffee table to read on the bus ride.

2. Heating pad : Microwave for 3 minutes a heating pad located in the kitchen

cupboard to take on the bus.

3. Medication: Right before leaving, mime taking motion sickness medicine found

in the kitchen cabinet.

4. Bus map: Plan a bus route using a provided map, determine the time that will

be needed for the trip and calculate when to leave the house to make the bus.

5. Change: Gather correct change for the bus.

6. Recipe: Find a recipe for spaghetti sauce in a book and collect ingredients to

make the sauce with a friend.

7. Picnic basket : Pack all of the items in a picnic basket located in the closet.

8. Exit : When all the preparations are made, take the picnic basket to the front

door.
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5.2.1 Experiment setup

Participants initially completed standardized and experimental neuropsycho-

logical tests in a lab. A Neuropsychology faculty member analyzed the test data

to diagnose participants cognitive health. Participants in the dementia group met

DSM-IV-TR criteria for dementia [10], which includes the presence of multiple cogni-

tive deficits that negatively affect everyday functioning and represent a decline from a

prior level of functioning. Inclusion criteria for MCI were consistent with the diagnos-

tic criteria defined by Petersen [114, 115] and with criteria outlined by the National

Institute on Aging-Alzheimer’s Association workgroup [5]. We note that the clinical

tests in DOT study and eight activities study are identical.

After completing the clinical tests, participants attempted the DOT task in our

smart home testbed. While participants were completing the DOT, two experimenters

(trained graduate students) remained upstairs in the apartment, watching participant

performances through live feed video. As participant completed the DOT, the exam-

iners recorded the time each subtask began and ended, events being interweaved, and

subtasks goals being completed (e.g., retrieves magazine). As the individuals perform

activities in the smart home, generated sensors events are recorded. Research team

members (graduate students) annotated the sensor data to relate events with the

label of the subtask that the individual was performing when the event was triggered.
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Figure 2.2 shows a sample of the collected and annotated sensor data. Subtask accu-

racy scores and task sequencing scores were later assigned by coders after watching

the video. Figure 4.3 illustrates this process.

To validate our approach for activity assessment, we include participants (N =

179) who completed at least two of the eight DOT subtasks. Among the participants

included for analysis, 145 were cognitively healthy, 2 were diagnosed with dementia

and 32 were diagnosed with MCI. We excluded 14 dementia participants who could not

complete at least two DOT subtasks. The participant pool included 141 females and

38 males, with 37 (N = 37 CH) participants under 45 years of age (Young Young), 27

participants (N = 4 MCI, N = 23 CH) age 45-59 (MiddleAge), 84 (N = 1 dementia,

N = 20 MCI, N = 63 cognitively healthy) participants age 60− 74 (YoungOld), and

31 (N = 1 dementia, N = 8 MCI, N = 22 CH) participants age 75+ (OldOld). The

participants who completed only two subtasks took 10.4 ± 3.44 minutes in average

to complete DOT while participants who completed all subtasks completed DOT in

9.83 ± 3.26 minutes to complete DOT. In average, participants took 10.33 ± 3.85

minutes to complete DOT task.
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5.2.2 Task scoring

Two trained neuropsychologists watched the video data and, in conjunction with

examiner-recorded data, assigned a task accuracy score and a sequencing score. The

task accuracy score was based on the correctness and completeness of each of the eight

subtasks. A correct and complete subtask received a lower score while an incorrect,

incomplete, or uninitiated subtask received a higher score. The scoring criteria are

listed in Tables 5.1 and 5.2. The final accuracy score was obtained by summing the

individual scores of each task and thus ranged from 8 to 32. The task sequencing

score represents whether the participant sequenced six of the DOT subtasks correctly.

Participants received 1 point for each correct sequence (e.g., put the heating pad in

the microwave for 3 minutes as one of the first four subtasks). The normalized range

of scores is 1 to 6 such that lower score indicates a more correct and/or efficient

sequencing of subtasks. Two coders, blinded to group assignment, independently

assigned scores to participants based on specific criteria as they directly viewed the

participants’ task performance. Inter-rater reliability agreement for the accuracy

and sequencing scores was 97.88% and 99.57%, respectively, and was calculated by

dividing the number of responses by the total discrepancies due to double scoring

[130]. Figure 5.1 shows the distribution of the direct observation scores, accuracy,

and sequencing score grouped by participant cognitive diagnosis.
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Table 5.1: Coding scheme to assign accuracy score to each subtask.

Accuracy score Criteria

1 Complete / Efficient

2 Complete / Inefficient

3 Incomplete / Inaccurate

4 Never Attempted

Table 5.2: Coding scheme to assign sequencing score to each subtask. Total sequenc-

ing score is the count of yes responses to these criteria.

ID Criteria

1 Heating pad started as one of first four activities.

2 Picnic basket retrieved as one of first four activities.

3 Cost of bus fare determined prior to first attempt at retrieving change.

4 Recipe read prior to retrieving first food item.

5 Motion Sickness pill taken near end.

6 Picnic basket moved to front door as one of last two activities.
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Figure 5.1: Distribution of the neuropsychologist direct observation scores, accuracy

scores and sequencing scores, with participant’s cognitive diagnosis indicated by point

type. Individual participants are organized by age on the x-axis and by the corre-

sponding score on the y-axis.
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5.3 Feature extraction

To assess an individual’s performance on the DOT, we derive features from

sensor data that reflect task performance and can be input to a machine learning

algorithm to quantify task quality. We define DOT performance based on the nature

of activity completion and execution of the activity subtasks. A participant efficiently

executes DOT if he multitasks DOT subtasks and sequences them correctly. Similarly,

time taken to complete the entire DOT activity and number of sensors triggered

during activity completion explains the participant’s DOT performance. Features

were chosen based on prior studies which found that, in comparison to cognitively

healthy older adults, individuals with MCI complete everyday activities (e.g., locating

nutrition information on food labels, making toast, medication management) more

slowly and commit more errors, including errors of commission, omission [130], and

task sequencing/tracking [136].We note that in this study the activity start points

and end points were generated by human annotators. However, we can use activity

recognition algorithms to automate this step [138]. These features are explained

below.
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5.3.1 Duration

We use the duration feature to represent the total wall clock time that the

participant takes to complete the entire set of DOT activities. The time to complete

an activity can indicate participant’s age, mobility and overall cognitive health. If

subtasks are executed independently then we can consider the time for each subtask as

a separate feature. For the DOT, subtasks are interleaved and performed in parallel,

so we consider time taken for the entire DOT.

5.3.2 Number of sensors and sensor events

This feature reflects the spatial areas and objects that are manipulated while

DOT is being performed. The number of sensors indicates the number of different

sensor identifiers that generate events during the DOT, while the number of sensor

events keeps track of the number of events that is generated by each unique sensor

in the space. These counts provide insight on the type of activities that are be-

ing performed and how well the participant stays on the task. For example, some

participants wandered out of the normal activity region, used incorrect tools for a

subtask, or explored the same space, cabinet or region repetitively as they attempted

to complete the appropriate subtask.
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5.3.3 Number of complete activities

Not all participants completed all DOT subtasks. We thus introduce an Activ-

itiesCompleted feature which indicates whether the participant completed all of the

DOT subtasks.

5.3.4 Pattern sequencing

In the case of a complex activity such as the DOT, subtasks can be performed

with many order variations. For instance, one participant might choose a magazine

first, while another might start by first looking up a recipe. Participants are expected

to parallelize subtasks for efficiency. However, some subtask sequences and paral-

lelisms are more efficient than others. As an example, if a participant starts the DOT

by microwaving a heating pad, they are able to complete other tasks while waiting for

the microwave to finish. If they wait until the end of the DOT to microwave the heat-

ing pad this parallelism is not possible. We hypothesize that the sequence in which

tasks are performed influences the amount of parallelism that can be achieved and

thereby affects the efficiency of the overall task. To represent task sequencing choices,

we define a DOT sequencing vector s1, s2, .., s8 that encodes the order in which an

individual started various tasks (in the DOT, there are 8 such tasks to choose from).

For example, the sequencing vector (2, 3, 1, 4, 5, 6, 7, 8) indicates that the 2nd task in
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the set was initiated first, followed by the 3rd task, then the 1st task, and so forth. If

an individual does not initiate a particular task, then the corresponding position in

the vector sequence is treated as missing based on the sequences that were performed

by others in the population.

5.3.5 Activity interruptions

In the case of activities that involve waiting for an event (e.g., waiting for the

Heating Pad to warm up), interrupting the activity to finish other tasks is both effi-

cient and is an indication that the participant is capable of generating more complex

plans that interweave multiple activities. However, for activities that take a short

time to complete such as Change and Bus/Map, participants will likely complete the

task without interruptions. To capture differences in interruptions on various activ-

ities, we define activity interruption features based on all DOT subtasks. For long

activities, such interruptions may indicate that the participant is able to generate a

complex and efficient DOT solution.

5.3.6 Parallelism

Participants in our study were encouraged to multitask the DOT subtasks as

much as possible to complete the DOT quickly. The ability to multitask varied
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dramatically among individuals and was expected to present a challenge for those

with dementia and MCI. We were therefore interested in quantifying the amount of

parallelism or multitasking that existed in an individual’s performance of the DOT.

To quantify parallelism, we introduce a variable called activity level, ai, that

represents the number of activities that are open (i.e., that have been started but

not completed), at the time that sensor event ei is generated. A set of activity levels

{a1, a2, .., an} can be defined for all of the sensor events that were generated during the

DOT. To represent this set more succinctly we employ run length encoding (RLE). A

run for an activity level is a string of equal-valued activity levels. RLE encodes runs

of activity levels as activity levels with corresponding counts, as shown in Figure 5.2.

Based on run length encoding, we derive a M ×N run length matrix P , where M is

the maximum activity level and N is the length of the sensor sequence. Each element

of the matrix, P (x, y), represents the number of runs of length y corresponding to

activity level x, or the number of times that activity level x occurs y consecutive times.

A similar technique has been used to analyze computed tomography volumetric data

to capture various text characteristics [47].

We introduce two measures, the High Activity-Level Run Measure (HALRM)

and the Low Activity-Level Run Measure (LALRM), to capture a participant’s level

of task parallelism that occurred over a sequence of sensor events. If a participant

parallelizes subtasks for a longer period of time we expect his HALRM to be high,
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Figure 5.2: Sets of activity levels for three participants. The first item of the set

represents activity level at the initial sensor event. As activity progresses, sets are

augmented with activity levels for different sensor events. For example, during the

eighth sensor event e8, participant III has activity level 3 and participant I has 1.

The run length matrix takes this activity level set as input.
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while if he does not parallelize subtasks his LALRM measure would be high.

HALRM =
M∑
i=1

N∑
j=1

P (i, j)× i× j (5.1)

LALRM =
M∑
i=1

N∑
j=1

P (i, j)× j
i

(5.2)

Based on these two measures, we define the parallelizing index, Pindex, to

represent the amount of task interweaving that is performed. Pindex is computed as

the ratio of HALRM to LALRM, as shown in Equation 5.3.

Pindex =
HALRM

LALRM
(5.3)

As Equation 5.3 indicates, a higher parallelizing index indicates a higher level of

parallelism in the activity. It does not reflect a higher quality of DOT. For example,

a participant may have a high Pindex because he initiated many of the subtasks. On

the other hand, he may leave subtasks incomplete or take a long time to complete the

subtasks. The Pindex does provide particularly useful insights on task quality when

combined with the other task features.

We note that the both parallelism and interruption-based features are calculated

using the DOT subtasks that were manually annotated in the sensor data. For exam-

ple, in the parallelism feature, we calculate an activity level ai which is the number

of activities that are open (started but not yet completed) at the time sensor event
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Table 5.3: DOT feature set.

Feature Set Feature Type

DOT features Duration, sensor counts, sensor events, activity completeness

Interruption features Number of activity interruptions

Sequencing features Sequence vector

Parallelism feature Pindex

ei is generated. To calculate ai, we use all of the DOT subtasks that were annotated

as “started” or “ended” in all of the previous sensor events from a sensor event ei.

Similarly, to calculate the interruption-based feature for a subtask (for example, the

medication subtask), we use all of the sensor events and the activity annotations be-

tween “medication-start” and “medication-end” sensor events. We note that we can

also use an activity recognition algorithm to automatically annotate these activity

labels in the sensor data.

The set of extracted features is summarized and categorized in Table 5.3. We

hypothesize that these smart home features will allow us to provide automated task

quality scores that correlate with task scores obtained by direct observation.
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5.4 Automated scoring

DOT task accuracy and task sequencing scores are derived from direct obser-

vation of participant’s task performance. We used machine learning techniques to

identify correlation between our automated feature set based on smart home sensor

data and the direct observation scores. We describe two approaches to automated

scoring: supervised learning and using unsupervised learning techniques.

5.4.1 Supervised scoring models

We formulate the automated scoring problem as a supervised learning problem

in which a learning algorithm learns a function that maps the sensor-derived fea-

tures to the direct observation scores. We use a support vector machine (SVM) with

sequential machine optimization and bootstrap aggregation or bagging to learn the

mapping. Support vector machines identify class boundaries that maximize the size

of the gap between the boundary and data points. The bootstrap aggregation im-

proves performance of an ensemble learning algorithm by training the base classifiers

on randomly-sampled data from the training set. The learner averages individual nu-

meric predictions to combine the base classifier predictions and generates an output

for each data point that corresponds to the highest-probability label. We use both

supervised regression and classification algorithms in our supervised scoring models.
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5.4.2 Unsupervised scoring models

A score that is generated by a supervised learning algorithm predicts the quality

of an activity in a way that emulates human-assigned scores. In contrast, unsuper-

vised techniques use characteristics of the data itself to identify natural boundaries

between activity performance classes. Here we derive unsupervised scores using a

dimensionality reduction technique. Dimensionality reduction techniques reduce a

high-dimensional dataset to one with a lower dimension. We use this to reduce the

feature set to a single numeric score. While we use Principal Component Analysis

(PCA) to reduce the dimension, many reduction techniques would be appropriate for

this task [87]. PCA is a linear dimensionality reduction technique that converts sets

of features in a high-dimensional space to linearly uncorrelated variables, called prin-

cipal components, in a lower dimension such that the first principal component has

the largest possible variance, the second principal component has the second largest

variance, and so forth. After reducing the dimension, we use min-max normalization

to convert the variables to a uniform range.

5.4.3 Cognitive assessment models

In our final step, we evaluate the use of smart home techniques to automate

the cognitive health assessment of participants based on sensor-based features that
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describe their activity performance. We map each participant to one of the three

cognitive groups: Dementia (D), Mild Cognitive Impairment (MCI), or Cognitively

Healthy (CH). To accomplish this, we extract the same sensor-based activity features

that were used for the earlier experiments, as explained in Section 4. We obtain

ground truth cognitive health labels for each participant from a battery of standard-

ized and experimental neuropsychological tests that were administered in a clinical

setting. We then train learning algorithms to learn a mapping from the sensor-based

activity features to the cognitive health label (CH, MCI or D).

5.5 Evaluation

Our goal is to design smart home technologies to automate assessment of task

quality and of cognitive health. We evaluate our approaches using data collected on

a smart home testbed. We evaluate the two tasks separately. To evaluate the ability

to automate assessment of task quality, we compare scores generated from our smart

home algorithm with direct observation scores generated from neuropsychologists

and to evaluate the ability to automate assessment of cognitive health, we compare

diagnoses generated from our algorithms with diagnoses based on clinical tests.

We perform four experiments to evaluate our smart home-based task quality as-

sessment algorithms. First, we measure the correlation between subsets of our smart
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home sensor features and direct observation scores (Section 5.5.1) . Second, we mea-

sure the correlation between the entire set of sensor features and direct observation

scores (Section 5.5.1). Third, we assess how well a SVM correctly classifies task qual-

ity, using the direct observation scores as ground truth labels (Section 5.5.1). Finally,

we determine how well the scores derived using unsupervised algorithm correlates

with direct observation scores (Section 5.5.2).

In addition, we evaluate learning algorithms using different participant groups

that we construct based on their cognitive diagnosis (D, MCI, and CH) and number of

subtasks they complete. Since the number of cognitively healthy participants is large,

we further divide them to Older adults (Middle Age, Young Old, and Old Old) and

Younger adults (Young Young). These sample groups have different heterogeneity.

We refer to a sample group as heterogeneous if it contains examples of both well-

conducted and poorly conducted activities.

Training set containing instances of cognitively healthy individuals who commit

fewer mistakes tend to be less heterogeneous as compared to training set containing

instances of both cognitively healthy individuals and individuals with MCI who often

commit more mistakes. Similarly, individuals who complete fewer subtasks normally

commit more mistakes than individuals who complete a higher number of subtasks.

By training learning algorithm using these sample subsets, we can understand how

the heterogeneity impacts the performance of the learning algorithms and helps us to
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understand the features of these different groups.

We next evaluate the ability of our learning algorithm to map smart home

activity sensor features to a cognitive health diagnosis. We train learning algorithms

using smart home data and the cognitive health assessments provided by trained

clinicians (Section C) and evaluate them using two metrics: the Area under the ROC

curve (AUC) and the F-score.

ROC curves assess the predictive behavior of a learning algorithm independent

of error cost and class distribution. We plot false positives vs. true positive at

various threshold settings to obtain a ROC curve. The area under the ROC curve

(AUC) provides a measure that evaluates the performance of the learning algorithm

independent of error cost and class distribution [164]. Similarly, the F-score is the

harmonic mean of the precision and recall and is defined as [164]:

F-score = 2× precision× recall

precision + recall
(5.4)

5.5.1 Evaluation of supervised scoring models

Feature subset correlation

For our experiment, we consider alternative feature subsets summarized in Ta-

bles 4 and 5. For each subset, we generate the correlation coefficient between the

feature values derived from smart home sensor data and the experimenter direct
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observation scores (the accuracy score and sequencing score). In addition, we also

analyze varying subsets of participants. Specifically, we consider subgroups of partic-

ipants corresponding to the individuals with dementia (sample D), individuals with

MCI (sample M), older adults (sample OA), and younger adults (sample YA). The

objective of the experiment is to identify the correlation that exists between smart

home task feature subsets for each participant and the activity quality score for the

participant provided by trained clinicians and based on direct observation of the ac-

tivity.

Table 5.4: Correlations between feature subsets, participant groups, and the ac-

curacy direct observation score. Samples are D=Dementia, M=MCI, OA= Cogni-

tively Healthy Older Adult, YA= Cognitively Healthy Younger Adult. (*p < .05,

**p < .005, †p < 0.05 with Bonferroni correction for n sample groups)

Correlation coefficient (r)

Participant sample {D,M,OA,YA} {D,M,YA} {OA,YA} {YA} {M,YA} {M } {M,YA}

Sample Size 179 177 145 37 69 32 140

DOT features 0.58**† 0.57**† 0.57**† 0.52**† 0.54**† 0.44* 0.55**†

Interruption features 0.31**† 0.32*† 0.25* 0.21 0.27 0.4 0.36*

Sequencing features 0.76**† 0.72**† 0.64**† 0.36* 0.78**† 0.79**† 0.68**†

Parallelism feature 0.39**† 0.39**† 0.18* 0.11 0.59**† 0.58**† 0.39**†

From Tables 5.4 and 5.5, we see that correlations between most of the feature
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Table 5.5: Correlations between feature subsets, participant groups, and the se-

quencing direct observation score. Samples are D=Dementia, M=MCI, OA= Cog-

nitively Healthy Older Adult, YA= Cognitively Healthy Younger Adult. (*p < .05,

**p < .005, †p < 0.05 with Bonferroni correction for n sample groups.)

Correlation coefficient (r)

Participant sample {D,M,OA,YA} {M,OA,YA} {OA,YA} {YA} {M,YA} {M} {M,OA}

Sample Size 179 177 145 37 69 32 140

DOT features 0.10 0.01 0.21 0.21 -0.01 -0.27 -0.08

Interruption features 0.43**† 0.42**† 0.45**† 0.47**† 0.28* 0.22 0.34**

Sequencing features 0.46**† 0.42**† 0.50**† 0.20 0.30* -0.12 0.38**†

Parallelism feature 0.12 0.13 0.03 0.32 0.29* 0.01 0.02
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subsets and direct observation accuracy/sequencing scores are statistically significant.

We find that the correlation between the smart home features and the observation-

based accuracy score is stronger than the correlation with observation-based sequenc-

ing scores. A possible reason is that the task accuracy score quantifies the correctness

and completeness of the eight DOT subtasks, which reflects the same type of infor-

mation captured by smart home features. In contrast, the sequencing score quantifies

how the DOT subtasks were sequenced, which is not as extensively captured by smart

home features.

We find that feature subsets correlate differently with different training sample

subsets. For instance, in Table 5.4 DOT features have stronger correlation with task

accuracy score but parallelism feature has weak correlation when we train learning

algorithms with cognitively healthy younger adult group (column YA). This indicates

that a learning algorithm can better predict task accuracy with DOT features than

parallelism features when training set contains examples of cognitively healthy indi-

viduals. Similarly, in Table 5.4 we see that the parallelism features correlates higher

when sample subsets of training data contain individuals with MCI and younger

adults (column M,YA) but does not when it contains cognitively healthy individuals

(column YA) indicating that parallelism features can better represent differences be-

tween younger adults and MCI. Thus, we see that predictive power of a feature set

depends on participant groups.
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In addition, we visualize the relationship between selected feature types and the

direct observation scores. Figure 5.3 plots the order in which subtasks were initiated

within the DOT. As the figure shows, most participants placed Bus Map first in their

sequence and almost all participants initiated the Exit subtask last. There is a fairly

consistent choice of ordering among the subtasks for all participants, with the greatest

variation occurring in positions 3, 6, and 7 of the sequence. We thus conclude that

task sequencing plays an important role in such a complex activity as the DOT and

should be analyzed as a part of overall task quality.

In a separate step, we plot the relationship between Pindex (the parallelism

feature) and the direct observation scores. As shown in the left plot in Figure 5.4,

Pindex consistently increases with accuracy score. The figure also shows a relationship

between Pindex and the sequence score, although it is not as distinct. We note that

when a participant initiates but does not complete subtasks their task quality degrades

which increases their Pindex score. Correspondingly, as mentioned in Table 5.1, their

accuracy score increases as well.

Combined feature correlation

In this experiment, we use the SVM regression and bootstrap aggregation to

learn a regression model that finds a fit between the combined set of feature values and

the accuracy and the sequencing direct observation score. There are two objectives of

this experiment. The first objective is to evaluate the correlation between the smart
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Figure 5.3: DOT subtask order for the participants who completed all eight subtasks.

The x-axis represents the subtask sequence position (1..8). The y-axis represents the

number of participants. Each bar corresponds to the number of participants that put

a particular subtask in the given position of the subtask sequence order.
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(a) Scatter plot of Pindex vs. accuracy score (b) Pindex vs. Sequencing Score

Figure 5.4: Scatter plot of Pindex vs. accuracy score (left) and Pindex vs. sequencing

score (right) with participants cognitive diagnosis indicated by point type. The point

in the upper right represents a participant who started all DOT subtasks but could

only complete two of them.
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home DOT features and direct observation scores (accuracy and sequencing scores).

The second objective is to study how the correlations between the smart home features

and direct observation scores vary as different subsets of participants are considered.

We first analyze the relationship for separate participant groups based on how many

subtasks they completed then we look at the relationship for the participant groups

based on their cognitive diagnosis. The results are summarized in Tables 5.6 and

5.7. In each table, the first row shows the correlation between the entire participant

subgroup and the direct observation scores.

Table 5.6: Correlations based on number of subtasks completed.

#Completed subtasks Sample size (n) Accuracy score Sequencing score

2 179 0.79**† 0.45**†

3 174 0.77**† 0.36**†

4 172 0.76**† 0.41**†

5 167 0.75**† 0.37**†

6 154 0.65**† 0.43**†

7 137 0.57**† 0.48**†

8 83 0.43**† 0.49**†

∗p < .05, ∗ ∗ p < .005, †p < 0.05 with Bonferroni correction for n sample groups
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Table 5.7: Correlations based on cognitive diagnosis.

Cognitive Diagnosis Sample size (n) Accuracy score Sequencing score

{D,M,OA,YA} 179 0.79**† 0.45**†

{M,OA,YA} 177 0.80**† 0.43**†

{OA,YA} 145 0.75**† 0.57**†

{YA} 37 0.70**† 0.41**†

{M,YA} 69 0.81**† 0.27*

{M} 32 0.75**† -0.09

{M,OA} 140 0.78**† 0.34**†

∗p < .05, ∗ ∗ p < .005, †p < 0.05 with Bonferroni correction for n sample groups

We find that the correlation depends on the heterogeneity in the samples. For

example, the strongest correlation is found when examining the population subgroup

that contains both MCI and cognitively healthy younger adults and the weakest cor-

relation is found when examining only cognitively healthy individuals. Similarly, we

find that the correlation decreases as participant subgroups that completed more sub-

tasks are included. This is because having a large number of incorrect and inefficient

tasks helps the learning algorithm to make better predictions due to the variation that
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is present in the data. The variations in the samples of cognitively healthy individuals

who completed all subtasks are relatively low.

We also find that the correlation is consistently stronger for the accuracy score

than the sequencing score. This is because the accuracy score takes into account

the mistakes that an individual makes in a subtask while the sequencing score only

considers how a participant initiated an activity. When we examine the correlation

between the combined set of features and the direct observation scores for the entire

population, we see that the coefficient is fairly high (r = 0.79 for the accuracy score,

p < 0.005). This result indicates that automatically derived feature values generated

from smart home data do provide valuable information that can be used to assess task

quality and that the quality score is fairly consistent with those obtained through

direct observation.

Supervised classification of task quality

In this experiment, we train multiple learning models to classify task quality

score. We choose the accuracy score as our basis of comparison with automated

scores because the correlation coefficients between features derived from sensor data

with the accuracy score were consistently higher than the correlation between features

from the sensor data and the sequencing score. We divide the scores into two classes

using equal-frequency binning. Table 5.8 shows the results of the experiments when

all samples are included. All results are generated using leave one out cross valida-
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Table 5.8: Performance of the classifiers on the classification of task quality.

Learning algorithm Accuracy F-score AUC

Class A Class B

SVM 80.45 0.84 0.76 0.85

Neural Network 79.33 0.82 0.74 0.85

Naive Bayes 82.13 0.85 0.78 0.88

tion. The machine learning models that are tested include an SMO-based support

vector machine, a neural network, and a Naive Bayes classifier. We see that learning

algorithms are indeed effective at classifying task quality based on direct observation

scores.

5.5.2 Evaluation of unsupervised scoring models

In our next experiment, we analyze the correlation between unsupervised learn-

ing model-based generation of a sensor-derived score using Principal Component Anal-

ysis and the direction observation-based accuracy score and sequencing score. The

objective of this experiment is to test the performance of unsupervised learning mod-

els in predicting DOT activity quality scores and determine if the performance of
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(a) PCA score vs. Accuracy score (b) PCA score vs. Sequencing score

Figure 5.5: PCA score vs. Accuracy score (left) and PCA score vs. Sequencing score

(right).
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Table 5.9: Correlations based on number of subtasks that are completed using PCA.

(*p < 0.05, **p < .005, †p < 0.05 with Bonferroni correction for n sample groups.)

#Completed subtasks Sample size (n) Accuracy score Sequencing score

2 179 0.57**† 0.23**†

3 174 0.46**† 0.14

4 172 0.45**† 0.13

5 167 0.50**† 0.13

6 154 0.48**† 0.13

7 137 0.47* † 0.10

8 83 0.43**† 0.10
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Table 5.10: Correlations based on cognitive diagnosis computed using PCA. (*p < .05,

**p < .005, †p < 0.05 with Bonferroni correction for n sample groups.)

#Cognitive Diagnosis Sample size (n) Accuracy score Sequencing score

{D,M,OA,YA} 179 0.57** † 0.23**†

{M,OA,YA} 177 0.56**† 0.23**†

{OA,YA} 145 0.44**† 0.17

{YA} 37 0.06 0.47**†

{M,YA} 69 0.77**† 0.38*

{M} 32 0.79**† 0.32*

{M,OA} 140 0.51**† 0.17*
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an unsupervised algorithm is comparable to that of a supervised learning algorithm.

We first analyze the relationship for separate participant groups based on how many

subtasks they completed then we look at the relationship for the participant groups

based on their cognitive diagnosis. The results are summarized in Tables 5.9 and 5.10.

Figure 5.5 shows the plot of the PCA score that is obtained by reducing the feature

space to a single dimension as a function of the accuracy and sequencing scores.

Similar to previous observations, we find that the correlation depends on the

heterogeneity in the samples. For example, the strongest correlation is found when

examining the population subgroup that contains both MCI and cognitively healthy

younger adults. The correlation coefficient between the unsupervised score and the

direct observation accuracy score is 0.57 (p < 0.005). This indicates that a fairly

strong positive correlation exists between the automated scores and experimenter-

generated scores of task quality. Furthermore, this value is similar to the values

generated for the SVM model, which indicates that task quality can be computed di-

rectly using smart home sensor data without relying on training from human-provided

scores.
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5.5.3 Evaluation of cognitive assessment models

The second goal is to design a learning approach to automate cognitive health

assessment based on smart home features. For this study, we map each participant

to one of three labels: CH, MCI, or Dementia (D). We use labels provided by clinical

testing to train the learning algorithm. Note that this data is based on a battery of

standardized and experimental neuropsychology tests administered in a laboratory

setting and not on the smart home data. We handle the assessment as a set of binary

classification problems.

Class imbalance is a challenge in learning a discriminative model between these

three classes. While there are 145 cognitively healthy individuals, there are 32 indi-

viduals with MCI and only 2 participants with dementia. Part of this imbalance is

because many dementia participants had difficulty completing basic everyday tasks

independently. Class imbalance affects classification performance because machine

learning models tend to label the points with the majority class label. To address

this issue, we use cost sensitive versions of machine learning algorithms for each of

the base classifiers. A cost sensitive classifier assigns misclassification costs separately

for individual class labels and reweights the samples during training according to this

cost. This allows the classifier to achieve overall strong performance even when the

training points are not evenly divided among the alternative classes [145], as is the



134

case with this dataset.

We initially train a learning algorithm to label CH and MCI participants. We

use PCA to reduce the dimensionality of the feature vector and train a cost-sensitive

version of a support vector machine. We compare this with an alternative approach

in which we handled the class imbalance by under-sampling the majority class so that

the ratio of the Cognitively Healthy group to the MCI group is 2 : 1. The results

of this experiment are summarized in Table 5.11. To compare automated diagnosis

based on smart home features with diagnosis based on direction observation features,

we train a learning algorithm to map direct observation scores to cognitive health

diagnosis labels. The AUC value for this mapping is 0.68 in the best case (using

nave Bayes and under sampling). The predictive performance overall is not as strong

as we would like to see for this case, in part because performance of CH and MCI

participants is actually quite similar on familiar activities such as those used in the

DOT. The individuals in these two groups do have quite a bit of overlap in functional

performance as is evident in Figure 5.4.

Our next objective is to compare the Cognitively Healthy group with the De-

mentia group. We have a limited number of data points for the dementia group

because out of 16 dementia participants only 2 completed the DOT. Hence, we per-

form an exploratory experiment to compare these two groups by under-sampling the

Cognitively Healthy class so that the ratio of Cognitively Healthy data points to De-
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mentia data points is 4 : 1 and ensuring that one Dementia participant would be

used each time for training and the other would be used for testing. The results are

averaged and summarized in Table 5.12. As expected, these two groups are much

easier to distinguish. To obtain stronger classification performance, we can include

all participants with dementia and represent the sensor features as missing for partici-

pants with dementia and noting the number of tasks that were completed as 0. These

experiments provide evidence that the learning algorithm can indicate the cognitive

health of an individual based on activity performance.

Table 5.11: Performance of the machine learning classifiers on the supervised classi-

fication of cognitive health (MCI/ Cognitively healthy).

Learning algorithm

F-score

AUC
Class A Class B

PCA + SVM with Cost Sensitive Learning 0.39 0.73 0.64

Under sampling of Majority Class + Bagged SVM 0.34 0.44 0.61

5.6 Disscussion and observations

Researchers have hoped that ubiquitous computing technologies could be used

to support health monitoring and aging in place. This study provides an indication
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Table 5.12: Performance of the machine learning classifiers on the supervised classi-

fication of cognitive health (Dementia/Cognitively healthy).

Learning algorithm

F-score

AUC
Class A Class B

Under sampling + Bagged SVM 0.52 0.52 0.58

Missing Values+ SVM 0.93 0.99 0.94

that with smart home sensor data and machine learning algorithms it is possible to

automatically predict the quality of daily activities.

One must carefully interpret the results that we have mentioned. We note that

the correlation (r) between smart home features and task accuracy scores is statis-

tically significant. We can conservatively analyze the correlation coefficient using a

coefficient of determination. We square the correlation coefficient to obtain the co-

efficient of determination. A coefficient of determination of 0.62 (r = 0.79) means

that the 62% of the variation in the dependent variable can be explained by the vari-

ation in the independent variable. Our current results show that our method explains

nearly 62% variations in the direct observational scores. Unexplained variation can

be attributed to limitations of sensor system infrastructures and algorithms.

This implies that smart home technologies provides valuable information to
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assess the quality of daily activities. On the other hand, predicting cognitive health

based on the performance on activities of daily living is an active research area in

clinical research [130]. Thus, we believe that smart home based technologies can

monitor activities of daily living and predict the cognitive health of an individual.

Our results indicate this as a possibility.

We observe from the experiments that the performance of automatic task qual-

ity prediction depends on the type of training samples. The learning algorithm offers

accurate predictions when the training samples contain heterogeneous data points

of both well-conducted activities and poorly-conducted activities. We observe that

sequencing features are less indicative when all of the participant samples are cogni-

tively healthy, while parallel features are indicative when we include MCI and younger

adult participant samples. We therefore conclude that researchers need to carefully

define and extract appropriate features from sensor data to use in building an as-

sessment model. In addition, for our study the baseline for performance is a direct

observation score based on coders observation of task performance. Two coders in-

dependently assigned scores to participants based on specific criteria as they directly

viewed the participant’s task performance. We cannot ignore that there may be some

error or bias in these direct observation scores. This error can be mitigated by in-

creasing the number of clinicians scoring the activities or by automatically detecting

and correcting for bias.
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Our approach to perform automated cognitive health assessment using smart

home sensors and algorithms has a few limitations. The first limitation is due to the

coarse granularity of the home-based sensors. While environment sensors face fewer

practical issues of user acceptance, placement, and battery charge, our algorithms

would benefit from data provided by wearable, smart phone, and object sensors. Also,

many participants with cognitive difficulties were not able to complete the activities.

We can address this issue by increasing our sample of participants. We note that the

complexity of DOT was necessary to capture differences in task performance between

cognitively healthy and MCI participants, but additional tasks that are less complex

but still involve multi-tasking can be devised for future studies.

Similarly, the limitations of experimental methodology are that assessment tech-

nique relies on participants completing scripted activities in a single smart home set-

ting. These types of methods are argued to be ecologically valid [24] but participants

can perform activities in an unnatural manner due to the unfamiliar environment, the

scripted manner of the activity, or the awareness of being monitored. In addition, we

use direct observation scores and clinician-based cognitive diagnosis as ground truth

labels to train our learning models. Instead, we would like to learn models based

on differences in natural activity performance between individuals who are known

to be cognitive healthy and those who are known to have cognitive difficulties. Fi-

nally, some of the derived features rely on human annotation of sensor data. We can
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avoid this annotation step by using activity recognition algorithms that can recognize

interleaved and parallel activities as well as activity steps.

We showed that machine learning algorithms can be designed to perform auto-

mated assessment of task quality based on smart home sensor data that is collected

during task performance. Our results indicate that smart homes and ubiquitous com-

puting technologies can be useful for monitoring complex everyday functions and to

automate assessment of daily activities. This capability is valuable for monitoring

the well-being of individuals in their own environments.

In this and the previous chapter, we presented two cross-sectional studies in

which participants perform eight different activities and a complex real lifelike activity

in our smart home testbed. We also introduced machine learning methods to model

the quality of these simple activities as well as the complex activity and use that model

to predict the cognitive health of the participants. The sensor data in these two cross-

sectional studies are collected when volunteer participants performed pre-defined set

of activities in our smart home testbed. In contrast to these two chapters, the next two

chapters discuss a smart home-based longitudinal study. In this longitudinal study,

sensor data is collected from 18 single resident smart home apartments for over 2

years without manipulating and altering residents routines. We present algorithms

to model the everyday behavior of a smart home resident and predict their cognitive

and physical health utilizing the longitudinal sensor data.
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CHAPTER 6. LONGITUDINAL ANALYSIS OF SMART

HOME-BASED BEHAVIOR DATA

In this chapter, we discuss a longitudinal smart home study in which we collect

sensor data from 18 single resident smart homes for over 2 years. We propose the

Clinical Assessment Using Activity Behavior (CAAB) algorithm to model everyday

behavior of a smart home resident and use machine learning algorithm to predict

the cognitive and physical health of a smart home resident utilizing this longitudinal

sensor data.

6.1 Background

We investigate whether smart home-based behavior data can be used to predict

an individual’s standard clinical assessment scores. We hypothesize that a relationship

does exist between a person’s cognitive/physical health and his/her daily behavior

as monitored by a smart home. We monitor the daily behavior of a resident using

smart home sensors and quantify their cognitive/physical health status using standard

clinical assessments. To validate this hypothesis, we develop an approach to predict

the cognitive and physical health assessment scores by making use of real-world smart
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home sensor data.

We propose a Clinical Assessment using Activity Behavior (CAAB) approach to

predict the cognitive and mobility scores of smart home residents by monitoring a set

of basic and instrumental activities of daily living. CAAB first processes the activity-

labeled sensor dataset to extract activity performance features. CAAB then extracts

statistical activity features from the activity performance features to train machine

learning algorithms that predict the cognitive and mobility scores. To evaluate the

performance of CAAB, we utilize sensor data collected from 18 real-world smart homes

with older adult residents. An activity recognition (AR) algorithm labels collected

raw sensor data with the corresponding activities.

CAAB utilizes sensor data collected from actual smart homes without altering

the resident’s routine and environment. Therefore, the algorithmic approach offers an

ecologically valid method to characterize the ADL parameters and assess the cognitive

and physical health of a smart home resident [24]. To the best of our knowledge, our

work represents one of the first reported efforts to utilize automatically-recognized

ADL parameters from real-world smart home data to predict the cognitive and phys-

ical health assessment scores of a smart home resident.
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Table 6.1: Major notations and meanings in CAAB

n Number of activities

T Total number of data collection days

A Set of n activities being modeled

Pi Activity performance feature vector for activity i modeled over data

collection period T

Pi,d,t Activity performance feature d for activity i activity on day t

j Time point at which clinical measurements are made

Sj Clinical assessment score measured at time point j

W Sliding window size
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6.2 Problem formulation

We assume that smart home sensors produce a continuous sequence of time-

stamped sensor readings, or sensor events. These sensors continuously generate raw

sensor events while residents perform their routine activities of daily living. We

use an activity recognition algorithm to automatically annotate each of these sensor

events with a corresponding activity label. Activity recognition algorithms map a

sequence of raw sensor events onto an activity label Ai, where the label is drawn

from the predefined set of activities A = {A1, A2, . . . , An}. Our activity recognition

algorithm generates a label that corresponds to the last event in the sequence (i.e., the

label indicates the activity that was performed when the last event was generated).

Activities from set A can be recognized even when the resident interweaves them or

multiple residents perform activities in parallel.

CAAB extracts activity performance features from activity-labeled smart home

sensor data and utilizes these features to predict standard clinical assessment scores.

Therefore, there are two steps involved in CAAB:

• Modeling the ADL performance from the activity-labeled smart home sensor

data.

• Predicting the cognitive and mobility scores using a learning algorithm.

Activity modeling: We extract a d-dimensional activity performance feature
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vector Pi =< Pi,1, . . . , Pi,d > to model the daily activity performance of an activity

Ai. Observation Pi,d,t provides a value for feature d of activity Ai observed on day

t (1 ≤ t ≤ T ). The set of all observations in Pi is used to model the performance of

Ai during an entire data collection period between day 1 and day T .

Additionally, during the same data collection period, standard clinical tests

are administered for the resident every m time units, resulting in clinical assessment

scores S1, S2, . . . , Sp (p = T/m). In our setting, the clinical tests are administered

biannually (m = 180 days). Therefore, the clinical measurements are very sparse

as compared to the sensor observations. The baseline clinical measurement, S1, is

collected after an initial 180 days of smart home monitoring.

Clinical assessment/ Clinical assessment scores prediction: CAAB’s

goal is to accurately predict clinical assessment scores at time k, or Sk, using activity

performance data Pi between time points j and k, j < k.

CAAB relies on an activity recognition (AR) algorithm to generate labeled data

for the performance feature vector that is an integral component of activity modeling.

The method for activity recognition is explained in Section 2.1.6 and explored in detail

elsewhere [32]. Here, we utilize our own AR algorithm and focus on the additional

steps that comprise CAAB.
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6.3 Experimental setup

We use CAAB approach to analyze data collected in our CASAS smart homes2

[29] and in our corresponding clinical measurements. Below, we explain the smart

home testbed, smart home sensor data, and standard clinical data that are collected

as a part of the study.

6.3.1 CASAS Smart home testbed

The CASAS smart home testbeds used in this study are single-resident apart-

ments, each with at least one bedroom, a kitchen, a dining area, and at least one

bathroom. Refer to Section 2.1.3 for more details on CASAS longitudinal smart

home testbed as well as the drawings in Appendix C.

The residents perform their normal activities in their smart apartments, unob-

structed by the smart home instrumentation. Each sensor event is represented by

four fields: date, time, sensor identifier, and sensor value. The raw sensor data does

not contain activity labels. We use our AR activity recognition algorithm, described

in Section 2.1.6, to label individual sensor events with corresponding activity labels

2http://casas.wsu.edu
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as shown in Figure 2.7.

6.3.2 Residents

Residents included 18 community-dwelling seniors (5 females, 13 males) from a

retirement community. All participants are 73 years of age or older (M = 84.71, SD =

5.24, range 73−92) and have a mean education level of 17.52 years (SD = 2.15, range

12−20). At baseline S1, participants were classified as either cognitively healthy (N =

7), at risk for cognitive difficulties (N = 6) or experiencing cognitively difficulties

(N = 5). One participant in the cognitively compromised group met the Diagnostic

and Statistical Manual of Mental Disorders (DSM-IV-TR) criteria for dementia [10],

while the other four individuals met criteria for mild cognitive impairment (MCI) as

outlined by the National Institute on Aging-Alzheimer’s Association work group [5].

Participants in the risk group had data suggestive of lowered performance on one

or more cognitive tests (relative to an estimate of premorbid abilities), along with

sensory and/or mobility difficulties.

6.3.3 Clinical tests

Clinicians biannually administered standardized clinical, cognitive, and motor

tests to the residents. The tests included the Timed Up and Go mobility measure
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(TUG) as well as the Repeatable Battery for the Assessment of Neuropsychological

Status measure of cognitive status (RBANS) as detailed in Table 2.3. We create

a clinical dataset using TUG and RBANS scores obtained from biannual clinical

tests. Figure 6.1 plots the distribution of these two scores against the ages of the

participants.

6.4 Modeling activities and mobility

6.4.1 Modeling performances of activities and mobility performances

The first CAAB step is to model the performance of the activities in set A. We

model activity performance by extracting relevant features from the activity-labeled

sensor data. For each activity Ai ∈ A, we can represent such performance features us-

ing the d-dimensional activity performance feature vector Pi =< Pi,1, Pi,2, . . . , Pi,d >.

Depending upon the nature of the sensor data and the performance window we

want to monitor, we can aggregate activity performance Pi for activity Ai over a day,

week, or other time period. In our experiments, we aggregate activity performance

features over a day period (the time unit is one day). For example, if we calculate

the sleep activity performance Pi,1,t as the time spent sleeping in the bedroom on day

t, the observation Pi,1,t+1 occurs one day after observation Pi,1,t. For each individual,

we calculate activity performance features for the entire data collection period T for
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Figure 6.1: Distribution of RBANS (top) and TUG (down) clinical assessment scores

in the y-axis with respect to age in x-axis. The horizontal line represents a mean

clinical score and the vertical line represents the mean age.
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Table 6.2: Activity performance features extracted from the activity-labeled smart

home sensor data.

Group Variable Features

Mobility Mobility Total distance traveled, #Total sensor events

Sleep
Sleep Sleep duration, #Sleep sensor events

Bed toilet transition Bed toilet transition duration

ADL

Cook Cook duration

Eat Eat duration

Relax Relax duration

Personal hygiene Personal hygiene duration

Leave home Leave home duration
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all activities in the activity set A (1 ≤ t ≤ T ).

For our experiments, we model activity performance using two (d = 2) spe-

cific activity performance features, a time-based feature and a sensor-based feature

{Pi,1, Pi,2}. Feature Pi,1 represents the duration of activity Ai and Pi,2 represents the

number of sensor events generated during activity Ai. We have provided evidence

in previous studies that these two features are generalizable to other activities, are

easily interpretable, and can model how the residents perform their daily activities

[40]. In addition to capturing activity performance, we also represent and monitor

a person’s overall mobility. Mobility refers to movement generated while performing

varied activities (as opposed to representing a single activity of its own) and is there-

fore represented using two different types of features: the number of sensor events

triggered throughout the home and the total distance that is covered by movement

throughout the course of a single day (see Table 6.2).

6.4.2 Selection of ADLs

In this study, we model a subset of automatically-labeled resident daily activi-

ties. These activities are sleep, bed to toilet (a common type of sleep interruption),

cook, eat, relax, and personal hygiene. We also capture and model a resident’s total

mobility in the home.
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Sleep

The effects of aging include changes in sleep patterns that may influence cog-

nitive and functional status. For example, individuals over the age of 75 have been

found to experience greater fragmentation in nighttime sleep (e.g., [98, 103]), which

concurrently causes decreased total sleep time and sleep efficiency [62]. Sleep problems

in older adults can affect cognitive abilities [69, 134] and have been associated with

decreased functional status and quality of life [49, 90]. Moreover, individuals with

dementia often experience significant disruption of the sleep-wake cycle [51]. Thus,

the effects of sleep on the health of older adults are important clinical construct that

both clinicians and caregivers are interested in understanding [43, 135].

Using AR, we recognize sensor events that correspond to sleep (in the bedroom,

as opposed to naps taken outside the bedroom) and bed-to-toilet activities. We then

extract the time spent and number of sensor events features that correspond to these

two activities. As listed in Table 6.2, four features model a smart home resident’s

sleep activity. The value for the time-based sleep feature is calculated as the total

number of minutes spent in sleep on a particular day and the value for the sensor-

based sleep feature is calculated as the number of sensor events that are triggered over

the course of one day while the resident slept. Similarly, the time-based bed to toilet

feature is calculated as the total number of minutes spent in bed to toilet activity

on a particular day. We exclude the sensor-based feature that calculate number of
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times sensor events are triggered on bed to toilet activity because our data shows that

the number of sensor events generated when performing the bed to toilet activity is

often very low. Because of the known importance of sleep and its relationship with

physical and cognitive health, we conduct a separate analysis of sleep and bed to

toilet parameters from the other activities that are analyzed as a group [43, 90].

Mobility

Mobility is the ability of an individual to move around their home environment

and the community. Mobility impairments limit an individual’s ability to maintain

independence and quality of life and are common predictors of institutionalization

among older adults [65]. Evidence supports a close connection between executive

brain function and walking speed [17, 129]. Prior studies have also demonstrated

a relationship between mobility, gait disorders, cognitive decline, and the risk of

disability [35, 60, 144]. Therefore, we separately model mobility as an everyday

behavioral feature. We model the mobility of a smart home resident based on the

number of sensor events they trigger and the total distance they cover in a day while

in the home (estimated based on known distances between motion sensors placed in

the home). As listed in Table 6.2, the value for the distance-based mobility feature

is calculated as the total distance covered by a resident in one day (our aggregation

time period) while inside the home. Similarly, the value for the sensor-based mobility

feature is calculated as the number of sensor events that a resident triggers over the
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course of one day while moving around in the home.

Activities of Daily Living

Basic activities of daily living (e.g., eating, grooming) and the more complex

instrumental activities of daily living (IADLs; e.g., cooking, managing finances), are

fundamental to independent living. Data indicate that increased difficulties in ev-

eryday activity completion (e.g., greater task inefficiencies, longer activity comple-

tion times) occur with older age [94, 131]. Clinical studies have also demonstrated

that individuals diagnosed with MCI experience greater difficulties (e.g., increased

omission errors) completing everyday activities when compared with healthy controls

[9, 53, 110, 133]. Furthermore, individuals with severe cognitive problems, such as

AD, have difficulty in both initiating and completing basic activities [59]. While re-

search has shown that IADLs are affected earlier in dementia than basic self-care tasks

[110], a detailed understanding of the course of functional change between normal ag-

ing and dementia is still a gap in the research [53, 113, 147]. Therefore, clinicians

argue the importance of understanding the course of functional change given the po-

tential implications for developing methods for both prevention and early intervention

[130, 131].

In our work, we consider five activities of daily living (in addition to sleep):

cook, eat, personal hygiene, leave home, and relax. We note that the “relax” activity

represents a combination of watching TV, reading, and napping that typically takes
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place in a single location other than the bedroom where the resident spends time

doing these activities, such as a favorite chair. We focus on these activities because

they are activities of daily living that are important for characterizing daily routines

and assessing functional independence. For each of these activities, we calculate the

total activity duration. Our data shows the number of sensor events generated when

performing these activities is often very low. Thus, for these activities, we exclude

features that calculate number of times sensor events are triggered. As listed in Table

6.2, we calculate the value for the time-based ADL feature as the total number of

minutes spent in an activity on a particular day.

6.4.3 Activity feature extraction

The second CAAB step is to extract statistical features from the activity perfor-

mance vector. CAAB extracts features from the time series-based representation of

activity performance and uses these to train a machine learning algorithm. Namely,

we extract four standard time series features and one new change feature. We will

refer to these five features as statistical activity features. Table 6.3 lists the complete

set of activity features.
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Table 6.3: Statistical activity features (µ is the mean of the activity performance

features p of size n).

Id Statistical

features

Definition Formula

1 Variance Variance is the measure of spread. Var(p) =
∑n

k=1(pi − µ)2

2 Autoco-

rrelation

Autocorrelation(AC) is the similarity be-

tween observations that are displaced in

time. We calculate autocorrelation at lag 1.

AC-lag1(p) =
∑n−1

i=1 (pi−µ)(pi+1−µ)∑n
n=1(pi−µ)2

3 Skewness Skewness measures the degree of asymmetry

in the distribution of values.

skewness(p) =
1
n

∑n
i=1(pi−µ)3

( 1
n

∑n
i=1(pi−µ)2)3/2

4 Kurtosis Kurtosis measures the amount of peakedness

of the distribution toward the mean.

kurtosis(p) =
1
n

∑n
i=1(pi−µ)4

( 1
n

∑n
i=1(pi−µ)2)3

5 Change Change characterizes the amount of change

in an individual’s activity performance over

time.

Algorithm 2
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Statistical activity features

To calculate the first four features, CAAB runs a sliding window (e.g., window

size, W = 30 days) over each of the activity performance features listed in Table 6.2

and calculates variance, autocorrelation, skewness, and kurtosis using the observa-

tions from data that falls within the sliding window. The sliding window starts at

one clinical assessment time point and ends at the next assessment time point, thus

capturing all of the behavior data that occurred between two subsequent assessments.

For example, CAAB calculates the variance, autocorrelation, skewness, and kurtosis

of the duration feature for each activity based on duration observations that fall in-

side each W-sized data window. CAAB repeats the process and calculates these four

statistical activity features for all other activity performance features for all of the

activities in set A.

Before calculating these features, CAAB first removes the time series trend

from the sliding window observations in order to remove the effect of non-stationary

components (e.g. periodic components) in the time series [37]. For this step, CAAB

fits a Gaussian or a linear trend to the data within the sliding window. CAAB

then detrends the data by subtracting the fitted trend from the data. CAAB slides

the window by one day (skip size=1) and re-computes all of the statistical activity

features. For each feature, CAAB slides a window through the sensor home data and

computes the final feature values as an average over all of the windows. Algorithm 1
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Algorithm 1 CAAB approach

1: Input: Activity performance features

2: Output: Statistical activity features

3: Initialize: Feature vector

4: // T1 and T2 are two consecutive clinical testing time points

5: Given: T1, T2

6: Given: skip size = 1

7: while T1 < (T2 −W ) do

8: for each activity performance feature do:

9: Place a window of size W at T1.

10: Remove missing observations and detrend based on the observations that

fall into this window.

11: Calculate the variance, autocorrelation, skewness, kurtosis and change fea-

tures (Algorithm 2) using the observations in the window.

12: Append these values to the feature vector.

13: T2 = T1 + skip size

14: end foreach

15: end while

16: return average(Feature matrix)
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explains the steps.

In addition to these standard four different time series features, we propose

a fifth feature, a change-based feature, to characterize the amount of change in an

individual’s activity performance. Algorithm 2 details the steps in calculating this

new feature. In order to compute this feature, CAAB uses a sliding window of size W

days and divides an activity performance feature observations that fall in W into two

different groups. The first group contains feature observations that fall in the first

half of W and second group contains feature observations that fall in the other half.

CAAB then compares between these two groups of feature observations using a change

detection algorithm. For the current work, we use the Hotelling-T test algorithm [66].

However, we can also apply other change detection algorithms. CAAB then slides

the window by one day (skip size = 1) and re-computes the change feature. CAAB

calculates the final change value as the average over all windows. Similar to the other

four statistical activity features computed in the previous section, CAAB computes

the value of the change feature for each of the activity performance features listed in

Table 6.2.

We note that the change feature is different from the variance feature that

CAAB calculates earlier. While variance measures the variability of samples around

its mean, the change feature empirically calculates the “chance” of observing a change

when two sample groups each of size n from the given activity performance features
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are compared with each other. Here, a higher amount of detected change indicates a

greater chance of detecting changes in the activity performance feature.

6.4.4 Clinical assessment

In the final step, CAAB predicts the clinical assessment scores of the smart

home residents using the activity performance features computed from the activity-

labeled sensor data. CAAB first aligns the sensor-based data collection date with

the clinical assessment-based data collection date before extracting statistical activ-

ity features. After extracting features and aligning the data, CAAB then trains a

supervised machine learning algorithm and predicts the clinical assessment scores.

To accomplish this goal, CAAB extracts statistical activity features from the

activity performance features that lie between any given two consecutive clinical test-

ing points, t1 and t2. Similarly, it obtains the clinical score S2 (or S1) at time point

t2 (or t1) . We consider the pair, statistical activity features and clinical score S2, as

a point in the dataset and repeat the process for all of the smart home residents and

for every pair of the consecutive clinical testing points. Algorithm 3 summarizes the

steps involved to prepare the dataset.

The final step in the CAAB is to predict the clinical assessment scores. CAAB

trains a learning algorithm to learn a relationship between statistical activity features
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Algorithm 2 Calculation of change feature

1: Input: Activity performance features

2: Initialize: CH = [ ]

3: // T1 and T2 are two consecutive clinical testing time points

4: Given: T1,T2

5: Given: skip size = 1

6: W = window size

7: while do T1 < (T2 −W ) :

8: for each activity performance feature do:

9: Place window of size W at T1.

10: Remove missing values that fall into this window.

11: Put first half of W in the group A and second half in the group B.

12: // Returns True or False.

13: change = Hotelling T-test (A,B)

14: append(CH, change)

15: T1 = T1 + skip size

16: end foreach

17: end while

18: return average(CH)
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and the clinical assessment scores using the dataset that is constructed. In this step,

for each resident, at each time point (except the first one), CAAB predicts the clinical

assessment scores using a learning algorithm.

We note that CAAB predicts clinical assessment scores based on the relation-

ship that the learning algorithm models between the clinical assessment scores and

behavior features. We followed this approach because there are very few clinical

observations for a resident. Furthermore, we note that CAAB computes activity per-

formance features by temporally following an individual over a period and computes

statistical activity features by comparing past observations with current observations.

In this way, CAAB uses an individual as their own baseline for predictive assessment.

6.5 Experimental evaluation

6.5.1 Dataset

As explained in Section 6.3.1, the CASAS middleware collects sensor data while

monitoring the daily behavior of 18 smart home senior residents for approximately 2

years. We use the AR activity recognition algorithm to automatically label the sensor

events with the corresponding activity labels. By running CAAB on the (activity-

labeled) sensor data, we compute activity performance features and extract activity

features from them. CAAB then creates a training set by combining the activity
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Algorithm 3 Training set creation

1: Output: Training set to train the learning algorithm

2: Input: Activity performance features for all residents

3: Initialize: Empty training set TrSet

4: for each resident do

5: for each consecutive clinical testing point T1 and T2 do

6: F = CAAB (activity performance features between T1 and T2 )

7: S = clinical score(T1, T2)

8: Append(F ,S,TrSet)

9: end foreach

10: end foreach
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Table 6.4: Details of the training set used in CAAB approach.

#Instances #Features

RBANS 52 50

TUG 50 50

features and the corresponding clinical assessment scores (RBANS and TUG) to train

a learning algorithm. Table 6.4 provides details of the final training dataset.

6.5.2 Prediction

We perform the following four different prediction-based experiments to evalu-

ate the performance of CAAB approach and its components : 1) We first evaluate

the overall CAAB performance in predicting clinical assessment scores. Here, we

train CAAB using the complete set of available features. We compare results from

several representative supervised learning algorithms. 2) We then investigate the im-

portance of different activity feature subsets by observing the resulting performance

of CAAB in predicting the clinical assessment scores. 3) Next, we investigate the

influence of parameter choices on performance by varying CAAB parameter values

and analyzing the impact on prediction performance. 4) In the final experiment, we
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compare CAAB performance utilizing AR-labeled activities with a baseline method

that utilizes random activity labels.

We evaluate all of the above experiments using linear correlation coefficient (r)

and mean squared error (RMSE). All performance values are generated using leave-

one-out cross validation. The data for each participant is used for training or held out

for testing, but is not used for both to avoid biasing the model. We use the following

methods to compute our performance measures.

• Correlation coefficient(r): The correlation coefficient between two continuous

variables X and Y is given as: rX,Y = cov(X,Y )
σxσy

where σx and σy are the standard

deviations of X and Y and cov(X, Y ) is the covariance between X and Y .

In our experiments, we evaluate the correlation between the learned behavior

model and clinical assessment scores. We will interpret the experimental results

based on the absolute value of the correlation coefficient because our learning

algorithm finds a non-linear relationship between statistical activity features

and the clinical assessment scores.

• Root Mean Squared Error (RMSE): If ŷ is a size-n vector of predictions and y is

the vector of true values, the RMSE of the predictor is RMSE =
√

1
n

∑n
i=1(ŷi − yi)2
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Overall CAAB prediction performance

To validate the overall performance of CAAB performance, we compute cor-

relations between the CAAB-predicted clinical assessment scores and the provided

clinical assessment scores using the complete set of activity features and three differ-

ent supervised learning algorithms:

• Support Vector Regression (SVR): Support vector regression uses support vector

machine algorithm to make numeric predictions. The learning model can be

expressed in term of support vectors and kernel functions can be used to learn a

non-linear function. SVR uses the epsilon insensitive loss function that ignores

errors that are smaller than threshold ε > 0. We use a linear kernel to generate

all our prediction-based performance results [164].

• Linear Regression (LR): Linear regression models the relationship between the

class and the features as the weighted linear combination of the features. The

weights are calculated from the training data often using the least square ap-

proach.

• Random Forest (RF): Random forest builds an ensemble learner by creating

multiple decision trees on different bootstrap samples of the dataset. It averages

the predictions from these decision trees to make the prediction [164].
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Table 6.5: Overall prediction performance of the different learning algorithms. (*p <

0.05, **p < 0.005)

Score Type Measure SVR LR RF

RBANS r 0.72** 0.64** 0.52**

RMSE 14.90 20.25 13.66

TUG r 0.45** 0.41* 0.41**

RMSE 5.87 7.62 5.22

As listed in Table 6.5, we observe that the performances of the learning algo-

rithms in predicting the clinical assessment scores are similar. We also observe that

the correlation values are all statistically significant. Because SVR performed best

overall, we will conduct all of the remaining experiments using this approach. Ad-

ditionally, we observe that the overall correlation between the predicted TUG scores

and the actual TUG scores are weaker than the predicted RBANS and actual RBANS

scores. The weaker correlation is likely due to the fact that there are only two activ-

ity performance features (mobility and leave home) that represent the mobility of an

individual. Other activities such as cook, bed to toilet, and relax do not adequately

represent the mobility of a resident.
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CAAB prediction performance based on activity feature subsets

We perform a second set of prediction-based experiments using different subsets

of statistical activity features to study and find the important sets of features as listed

as follows:

1. We evaluate the prediction performances of the learning algorithm when it is

trained using different subsets of statistical activity features.

2. We evaluate the result of using statistical activity features that belong to various

subsets of ADLs.

In the first experiment, we study the significance of five major types of statisti-

cal activity features (autocorrelation, skewness, kurtosis, variance, and change) that

CAAB extracts from the activity performance features. To perform this experiment,

we create five different training sets, each of which contains a subset of the statistical

activity features. For example, the first training set contains all of the variance-based

features; the second training set contains all of the autocorrelation-based features

etc. Using these training sets, we train five separate support vector machines. As

listed in Table 6.6, we note that the performance of the SVR in predicting clinical

assessment scores using the variance of the activity features is strong as compared to

other major types of statistical activity features. Therefore, we hypothesize that the

variance of activity performance is an important predictor. Additionally, we observe
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that skewness-based feature is important for predicting TUG clinical scores while it

was slightly weaker for RBANS predictions.

For the second CAAB feature-based experiment, we study the relationship be-

tween the clinical assessment scores and the statistical activity features subsets that

belong to various groups of ADLs. We create nine different ADL groups, each of which

contains a combination of one or more activities (out of seven activities) and/or mo-

bility. For each combination, we create a training set containing all statistical activity

features belonging to the activities in that combination. In total, we create nine dif-

ferent training sets. As listed in Table 6.7, we make the following three observations:

1. In terms of single variables, sleep had the highest correlation with RBANS

(r = 0.51). In contrast, mobility showed little correlation with either clinical

score.

2. We observe that correlation is higher when we combine variables. Specifically,

including automatically-recognized ADLs improved the correlation further for

both RBANS (r = 0.61) and TUG (r = 0.48). RBANS showed highest correla-

tion when all features are used (r = 0.72). We also note that the mobility-based

features contain information from raw sensor events and do not include activity

information and has a weak correlation with little correlation with either clinical

score.
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3. In the case of TUG, the only two variable combinations that lacked a significant

correlation included mobility. Once again, adding automatically-recognized ac-

tivities generally increases the correlation.

These results show that a relationship exists between RBANS and TUG clinical

assessment scores with combined smart home-based parameters of sleep and ADLs.

Our observations are interesting and align with results from prior clinical studies

that have found relationships between sleep and ADL performance with cognitive

and physical health [69, 111]. Furthermore, we also note that our observations are

computed by making use of automated smart home sensor data and actual clini-

cal assessment scores. The smart home sensor data are ecologically valid because

the smart home collects data from the real world environment and CAAB extracts

features without governing, changing, or manipulating the individual’s daily routines.

CAAB performance using different parameters

We perform two different experiments to study the effect of parameter choices on

CAAB. In these two experiments, we train the learning algorithm using the complete

set of features. We first study how the activity features extracted at different window

sizes will affect the final performances of the learning algorithm. Second, we repeat

the steps of the first experiment to study the effect of using different trend removal

techniques.

In the first experiment, we compare performance using different window sizes
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Table 6.6: Correlation coefficient (r) and RMSE values between SVR predicted

RBANS and TUG scores when SVR is trained using different types of statistical

activity features (*p < 0.05, **p < 0.005).

Score Type Measure Change ACF Skewness Kurtosis Variance All Features

RBANS r 0.29 0.17 0.30* 0.21 0.49** 0.72**

RMSE 25.77 21.39 19.90 25.19 17.76 14.94

TUG r 0.06 0.05 0.43** 0.06 0.31* 0.45*

RMSE 6.05 6.12 5.23 6.60 5.56 5.87

and the SVR learning algorithm. We summarize the results in Figure 6.2. We observe

that the strength of the correlation between the actual clinical assessment scores and

predicted scores using features derived from smaller and mid-sized window is stronger

than the larger-sized windows. One possible explanation is that larger windows en-

capsulate more behavior trends and day-to-day performance variation may be lost.

Therefore, we use mid-sized (30 for RBANS and 55 for TUG) windows for all of our

experiments.

In the second experiment, we compare three different trend removal techniques.

We create three different training sets that result from removing a Gaussian trend, a

linear trend, and no trend removal. The results are showed in Figure 6.2. We observe
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Table 6.7: Correlation coefficient (r) and RMSE values between SVR-predicted

RBANS and TUG scores when the SVR is trained using features from different ac-

tivities (*p < 0.05, **p < 0.005).

Score Type Measure Sleep Mobility ADL Mobility+ Leave Home

RBANS r 0.51** 0.08 0.35* 0.18

RMSE 17.53 21.66 20.15 24.49

TUG r 0.26 0.05 0.35 0.34*

RMSE 6.19 6.18 5.48 5.48

ADL+

Leave

home

Sleep+

Mobility

Sleep+

ADL

Sleep+

ADL+

Leave

home

Mobility+

ADL

All Features

0.27 0.41* 0.61** 0.57* 0.50** 0.72**

22.01 19.55 17.51 19.14 19.47 14.94

0.43* 0.20 0.48** 0.41 0.13 0.45*

5.50 6.57 5.55 6.01 6.79 5.87
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Figure 6.2: The correlation coefficients (top) and RMSE (bottom) between predicted

and actual RBANS (top) and TUG (bottom) scores when we use different trend

removal techniques and window sizes to train a SVR.
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that the strength of the correlation coefficients is stronger and often RMSE values

are smaller when we remove a Gaussian trend from the observations. Thus, in all of

our remaining experiments, we remove a Gaussian trend from the data.

6.5.3 CAAB performance using random activity labels

In our final prediction experiment, we compare CAAB performance using AR-

labeled activities to CAAB performance using random activity labels. There are three

main objectives of this experiment. First, we want to determine the importance of

the role that the AR algorithm plays in CAAB. Second, we want to verify that

CAAB is not making predictions based on random chance. Third, we let prediction

performance based on random activity labels serve as a baseline or lower bound

performance for comparison purposes. We expect CAAB performance using AR-

labeled activities to significantly outperform the baseline performance.

To perform this experiment, we create a training set in which the statistical

activity features (shown in Table 6.2) are calculated from the sensor data that is

randomly labeled with the activity instead of using AR algorithm to automatically

generate activity labels. We performed this experiment using the following three

steps: 1) We label raw sensor events by randomly choosing the activity labels from

the activity set. We choose an activity assuming a uniform probability distribution
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Figure 6.3: Correlation coefficients (top) and RMSE (bottom) between SVR-predicted

and actual RBANS (top) and TUG (bottom) scores when we train SVR using features

derived from randomly-labeled and AR-labeled activities. We use the complete set

of statistical features to train the SVR.
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over all activity classes. 2) We extract statistical activity features from the sensor data

labeled with the random activities. 3) We train SVR using the statistical features and

use clinical assessment scores as ground truth. Performance measures are computed

as described in the previous sections.

As shown in Figure 6.3, we see that the strength of the correlation coefficients

between predicted and actual clinical assessment scores are weak and that the RMSE

values are high for the random approach. We also observed that the performances

of the learning algorithms trained with features obtained from the AR labeled activ-

ities are significantly better than the random labels. Thus, we conclude that activity

recognition plays a vital role in CAAB and that the CAAB predictions using statis-

tical activity features extracted from AR labeled sensor data are meaningful and not

obtained by chance.

6.6 Classification experiments

To evaluate the performance of CAAB using various classification-based exper-

iments to evaluate, we first discretize the continuous clinical assessment scores into

two binary classes and then use a learning algorithm to classify smart home resi-

dents into one of these two clinical groups. Performing these experiments allows us

to use traditional supervised learning-based methods and performance measures to
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evaluate CAAB, in contrast with the regression approaches that are utilized earlier in

the chapter. We train the learning algorithms using the CAAB-extracted statistical

activity features. For all of the classification-based experiments, we use a support

vector machine (SVM) as the learning algorithm [164]. SVM identify class bound-

aries that maximize the size of the gap between the boundary and data points. We

perform the following four different classification experiments: 1) We first evaluate

classification performances of the SVM in classifying discretized RBANS and TUG

clinical assessment scores when they are trained with different subsets of statistical

activity features and activity performance features. 2) In the second experiment,

we repeat the first experiment by discretizing RBANS and TUG scores into binary

classes at different thresholds. 3) Next, we study the classification performances of

the learning algorithms trained using the activity features obtained from the sensor

data labeled with random activities. 4) Finally, we evaluate the classification perfor-

mance (error) by using a permutation-based test to ensure that the accuracy results

are not obtained by a chance.

We evaluate the classification performance of the learning algorithm using area

under the curve, G-mean, accuracy and error and generate them using leave-one-out

cross-fold validation.

• ROC curves assess the predictive behavior of a learning algorithm independent

of error cost and class distribution. The area under the ROC curve (AUC)
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provides a measure that evaluates the performance of the learning algorithm

independent of error cost and class distribution.

• G-Mean is the square root of the product of the true positive and true negative

rate [164].

G−Mean =
√

(true positive rate× true negative rate) (6.1)

• Accuracy is the percent of the correct predictions made by the learning algo-

rithm by the total number of predictions.

Accuracy =
#Correct predictions

#Total predictions
(6.2)

• Error is the percent of the incorrect predictions made by the learning algorithm

by the total number of predictions.

Error = 1− Accuracy (6.3)

CAAB classification performance based on feature subsets

Similar to the prediction-based experiments, we first study the importance of

different subsets of statistical activity features and subsets of activities. For the first

experiment, we discretize clinical assessment scores (RBANS and TUG) into binary

classes using an equal frequency binning technique. We then train multiple SVMs to

learn the relationship between CAAB-extracted activity features and these discretized
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clinical assessment scores. We make three observations based on the classification

performances presented in Tables 6.8 and 6.9.

1. From Table 6.9, we observe that the performance of the learning algorithm that

is trained with the AR-labeled activities including sleep and ADLs performs

generally better than using other single variables.

2. From Table 6.8, we observe that the classification performances of the SVM

when trained with variance-based activity features are better for both RBANS

and TUG scores. It appears that skewness-based feature is only important for

classifying RBANS clinical scores and not for the TUG classifications.

3. We note that the CAAB performance in the classification-based experiments

involving smart home-based parameters of sleep and ADLs are similar to the

performances in the prediction-based experiments.

In the second experiment, we evaluate the impact of CAAB performance of

discretizing the continuous clinical assessment scores into binary classes at differ-

ent cutoff thresholds. The objective of this experiment is to identify the range of

thresholds that the learning algorithm can discriminate. For this experiment, we first

discretize RBANS and TUG scores into binary classes at different thresholds. We use

all the features to train the SVM with AdaBoost and generate performance metrics
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Table 6.8: Classification performance (accuracy and AUC) of the SVM in classify-

ing clinical assessment scores (RBANS and TUG) discretized using equal frequency

binning. We train SVM using statistical activity features from all activities.

Score Type Measure Change ACF Skewness Kurtosis Variance All features

RBANS Accuracy 26.92 57.69 73.07 57.69 63.46 71.75

AUC 0.27 0.58 0.73 0.58 0.63 0.71

TUG Accuracy 66.00 42.00 46.00 62.00 62.00 76.00

AUC 0.65 0.39 0.44 0.60 0.62 0.75

using leave one out cross validation. We use SVM/AdaBoost to handle the class

imbalance in the dataset if there exists one[164]. The AdaBoost algorithm improves

the accuracy of the “weak” learner by assigning greater weight to the examples that

the learning algorithm initially fails to correctly classify [164]. The advantages of

boosting the classifier to learn an imbalanced class is that since boosting weights the

samples, it implicitly performs both up-sampling and down-sampling with little in-

formation loss and is also known to prevent overfitting [164]. As showed in Figure 6.4

we observe some variations in the performance of the learning algorithms when they

are trained with class labels that were discretized at different thresholds; however,

the majority of the classification performances are better than random classification
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Table 6.9: Classification performance (accuracy and AUC) of the SVM in classify-

ing clinical assessment scores (RBANS and TUG) discretized using equal frequency

binning. We train SVM using features from different activities.

Score Type Measure Sleep Mobility ADL Mobility+ LeaveHome

RBANS Accuracy 76.92 57.69 46.15 61.53

AUC 0.76 0.57 0.46 0.62

TUG Accuracy 78.00 62.00 66.00 52.00

AUC 0.77 0.61 0.64 0.52

ADL+Leave home Sleep+

Mobility

Sleep+

ADL

Sleep+

ADL+

Leave

Home

Mobility+

ADL

ALL

61.53 75.00 73.08 75.00 48.05 71.15

0.62 0.75 0.73 0.75 0.49 0.71

52.94 62.00 76.00 80.00 44.00 76.00

0.50 0.62 0.75 0.79 0.43 0.75
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performances (i.e., 50% accuracy for binary classes).

Additionally, based on Figure 6.4, we make four more observations:

• CAAB performance is generally better when the RBANS clinical score is dis-

cretized at thresholds within the lower range of RBANS (85−100) performances

and within the higher range of RBANS (125 − 130) performances. It appears

that the learning algorithm does successfully distinguish between the two ex-

treme groups.

• CAAB classification performance is best when the continuous TUG clinical score

is discretized at scores 12 and 17. We note that a score of 12 and above on the

TUG puts individuals into the falls risk category [1]. Given that the TUG test

measures the time that is required to comfortably complete the Timed Up and

Go task, it appears that the learning algorithm can discriminate between the

“slow performers” and the “fast performers.”

• However, we note that similar to the prediction-based experiment, performance

of the classifier in classifying TUG based scores is weaker than the performance

while classifying RBANS scores. As we mention previously, this weaker per-

formance is likely due to the fact that there are only two activity performance

features (mobility and leave home) that represent the mobility of an individual.

• Additionally, we note that CAAB performance in classifying both TUG and
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RBANS clinical labels are moderate to poor when the clinical scores are dis-

cretized into binary classes at the intermediate thresholds. We obtain moder-

ate classification performances because the two classes are more likely to have

“similar” activity performance and are therefore harder to distinguish from each

other.

In the fourth experiment, we compare classification performance using AR-

labeled activities and random activity labels. Similar to the prediction-based exper-

iment, we expect the classification performance based on AR labeled activities to

outperform the random method. As illustrated in Figure 6.5, we observe that AR-

based classification outperforms classification with random activity labels and that

the results are similar to the earlier regression-based experiments (t-test on g-mean,

p < 0.05).

Permutation-based test

In the final experiment, we determine whether the aforementioned performance

results are obtained because of chance, rather than because of the effectiveness of

CAAB. With the permutation-based evaluation method, we calculate a p-value to

test a null hypothesis about the relationship between the class labels and features.

This p-value is calculated as a fraction of times that the performance of CAAB on

the dataset that is obtained by shuffling (permuting) the class labels exceeded the

performance of CAAB on the original dataset. Similar to the first classification-based
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Figure 6.4: Classification performance (AUC and G-Mean) of the SVM with boosting

in classifying the discretized RBANS (top) and TUG (down) scores. We discretize

the RBANS score into two classes at different thresholds and train the SVM using

the complete feature set.
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Figure 6.5: Classification performance (AUC and G-Mean) of the SVM while classi-

fying RBANS (top) and TUG (down) clinical scores when the SVM is trained using

features that are derived from randomly-annotated activities. We use the complete

feature set to train the SVMs and discretize the clinical assessment scores into two

classes.
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Table 6.10: Average error and p-value for our test using support vector machines

and activity features extracted from the dataset that is derived from AR-annotated

activities (*p < 0.05, **p < 0.005)

Original Test 1

Class label Error Err (std) p

RBANS 0.27 0.52 (0.11) 0.009**

TUG 0.24 0.42 (0.05) 0.019*

experiment, we first discretize RBANS at a threshold of 105.5 and TUG at a threshold

of 12.5 using an equal frequency binning technique. We perform a test proposed in

Ojala and Garriga [104].

H: We randomly permute the class labels to study the relationship between class

labels and the features. The null hypothesis is that there exists no relationship

between the data and the class labels.

Table 6.10 presents the results from the AR annotated data. Based on the

null hypotheses H, we make the following observation: the statistically significant

(p < 0.05) result for the null hypothesis (H) indicates that there exists a relationship

between the sensor-based activity performance and discretized RBANS and TUG

labels.
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Table 6.11: Average error and p-value for our test using support vector machines and

activity features extracted from the dataset that is derived from randomly-labeled

activities.

Original Test

Class label Error Err (std) p

RBANS 0.57 0.53 (0.07) 0.65

TUG 0.38 0.37 (0.11) 0.48

We repeat this experiment using activity features derived from randomly-labeled

activities. Table 6.11 lists the results. Based on the p-values, we fail to reject the

null hypothesis (H) that there exists no relationship between the class labels and

features. Thus, we conclude that there exists a relationship between the smart home

sensors-based activity features and standard clinical assessment scores (RBANS and

TUG) and that the performance results are not obtained by chance.

6.7 Discussion and observations

In this chapter, we described our CAAB approach to modeling a person’s activ-

ity behavior based on smart home sensor data. CAAB collects sensor data, models
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activity performance, extracts relevant statistical features, and utilizes supervised

machine learning to predict standard clinical assessment scores. This represents a

longitudinal approach in which a person’s own routine behavior and changes in be-

havior are used to evaluate their functional and mobility-based health. We validate

our approach by performing several classification and prediction-based experiments.

We found statistically significant correlations between CAAB-predicted and clinician-

provided RBANS and TUG scores.

Our experiments are conducted using smart home data from 18 smart home

residents and the majority of residents are cognitively healthy. Future work will

include validation on larger population sizes encompassing a greater period of time.

We note that CAAB is not intended to replace existing clinical measurements with

the smart home-based predictions but may provide a tool for clinicians to use. We

also note that an advantage of CAAB is that sparsely-measured clinical scores can

be enhanced using the continuously-collected smart home data and predictions.

In the next chapter, we propose an activity curve algorithm to model behavioral

daily routine of a smart home resident using longitudinal smart home sensor data.

We use this activity curve model to detect changes in the daily behavioral routine

and use this information to analyze changes in the cognitive and physical health of a

smart home resident.
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CHAPTER 7. LONGITUDINAL ANALYSIS USING

ACTIVITY CURVE

The main goal of this chapter is to propose an activity curve model to rep-

resent an abstraction of an individuals normal daily behavioral routine based on

automatically-recognized activities. Another goal of this chapter is to develop an

algorithm to detect changes in daily behavioral routines and use this information to

analyze the possibility of changes in cognitive or physical health. We will utilize lon-

gitudinal smart home sensor data collected from 18 smart home apartments to test

our activity curve algorithm.

7.1 Background

Many pervasive computing applications such as home automation, activity

aware interventions, and health assessment require analyzing and understanding activity-

based behavioral patterns. The performance of such applications depends on the abil-

ity to correctly learn a model of general daily activity behavior from a large amount of

data and be able to predict when such daily behavior is likely to continue or change.

These big data-based approaches to activity modeling can then in turn be used to
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provide effective activity-aware services such as improved health care.

Activity recognition lies at the heart of any pervasive computing approach to

modeling behavioral routines. An activity recognition algorithm maps a sensor read-

ing or sequence of readings to a corresponding activity label. In order to answer

general questions related to daily activity patterns, such information needs to be

transformed to a higher-level representation. For example, questions such as how

average daily activity patterns have changed over a year, or generally what hours did

a particular individual sleep last month are difficult to answer using raw output from

activity recognition algorithms. However, many pervasive computing applications

such as home automation and health assessment require answering such questions.

Obtaining higher-level representations or models of activities has several addi-

tional advantages. Higher-level representations can abstract variations in day-to-day

activity routines. For example, wake-up times in the morning may be slightly different

each day even if the overall routine is fairly stable. Additionally, such representations

simplify the task of modeling an individual’s daily routine and at the same time make

visualization and interpretation of daily activity routines easy. Collecting big data

sets over long periods of time allows us to abstract activity models over such daily

variations. As we will demonstrate in this chapter, such representations aid with the

process of identifying long-term changes in a behavioral routine.

For example, consider the following description highlighting aspects of an indi-
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vidual’s routine at two different points in time:

• Month of March 2012 : Sleep at 10:00 PM, get up at 6:00 AM, eat breakfast at

7:00 AM, eat lunch at 12:00 PM, go out for a walk at 4:00 PM, and dine at 8:00

PM.

• Month of September 2013 : Sleep at 8:00 PM, wake up frequently during the

night, get up at 10:00 AM, no breakfast, eat lunch at 11:00 AM, no going out

for a walk, and dine at 7:00 PM.

Note that each of these sample activity-based descriptions is aggregated over a

one-month period and therefore describes a general routine that is maintained over

a prolonged period of time. Based on these descriptions we also note changes in the

routine from the first observation to the second. From this example, we can infer

that by September 2013 the observed individual was experiencing disturbances in

sleep, was skipping meals, and stopped exercising. Determining if the overall daily

activity patterns has changed may be difficult based only on the raw sensor data or

even based on event-by-event labels from an activity recognition algorithm. Such

questions can be more easily answered by comparing two higher-level representations

of these activity patterns.

In this chapter, we propose a novel activity curve to model an individual’s gen-

eralized daily activity routines. The activity curve modeling algorithm uses activity-
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labeled sensor events to learn a higher-level representation of the individual’s regular

routine. These activity labels are automatically-recognized using an activity recogni-

tion algorithm. We also introduce a Permutation-based Change detection in Activity

Routine (PCAR) algorithm to compare activity curves between different time points

in order to detect changes in an activity routine. To validate our algorithm, we make

use of longitudinal smart home sensor data collected by monitoring everyday behavior

of residents over two years. Finally, we demonstrate how the activity curve and the

PCAR algorithm can be used to perform important pervasive computing tasks such

as automated assessment of an individual’s functional health.

7.2 Activity curve

An activity curve is a model that represents an individual’s generalized activity

routine. We are interested in modeling activity routines for a day-long period but

this time period can be changed as needed. The activity curve uses automatically-

recognized activity labels to express daily behavioral characteristics based on the

timing of recognized activities.

We assume that a continuous sequence of time-stamped sensor events is avail-

able. We use an activity recognition algorithm to annotate each of these sensor

events with an activity label. Activity recognition algorithms map a sequence of sen-
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Figure 7.1: An example of activity distributions calculated at 60 minute time inter-

vals. The figure models three possible activities: sleep, bed toilet transition, and an

“other” activity. An activity curve is thus the compilation of all of these activity

distributions.

sor events {e1, e2, . . . , en} onto the corresponding activity label Ai, where the label is

drawn from the predefined set of activity classes A = {A1, A2, . . . , An}.

We note that prevalence of common activities differs by the time of day. For

example, the sleep activity dominates the prevalent distribution of activities at mid-

night and the cook breakfast and eat breakfast activities dominate the early morning

hours. To capture such differences in activity patterns throughout the day, we seg-

ment the day-long observation period into m equal-size consecutive windows, or time

intervals, and define probability distributions over activities, or activity distributions,

for each of these time intervals (see Figure 7.1 for an example). An activity curve is

a compilation of these activity distributions for the entire day-long period.

We also note that our activity routines tend to vary from one day to the next.
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For example, we may wake up at 6:30 AM and eat breakfast at 7:15 AM one day

while we might wake up at 7:30 AM and eat breakfast at 8:00 AM the next day. In

order to generalize our model over such day-to-day variations in activity routines,

we will define the notion of an aggregated activity curve that is calculated over an

aggregation window of x days.

Definition 1. Given a time interval t, an activity distribution models the daily routine

based on the predefined set of activities A as a probability distribution over activities

in A. The probability distribution can be estimated from sample data based on the

normalized time an individual spends on a predefined set of n activities during time

intervals t as observed during one or more days.

An activity distribution for time interval t is a n-element set Dt = {dt,1, dt,2, . . . , dt,n}

whose length is equal to that of the activity set A. The ith element in an activity

distribution, dt,i, represents the probability of performing activity Ai during time

interval t.

To model a person’s overall daily activity routine, we usem activity distributions

corresponding to each of the m time intervals. We can then construct an activity curve

by collecting activity distributions that model daily activity patterns at all different

times of the day.

Definition 2. An activity curve C is the compilation of activity distributions Dt

ordered by time interval t.
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The length of an activity curve ism. We refer to the model that compiles activity

distributions as an “activity curve” because if we consider the activity distribution of

activity Ai for all time intervals 1, 2, . . . ,m, these activity distributions form a curve

that represents the “fraction of a time” that an individual is likely to perform activity

Ai over successive time intervals.

We calculate an aggregated activity distribution D̂t for time interval t by aggre-

gating activity distributions Dk,t(1 ≤ k ≤ x) over an aggregation window of x days. If

D1,t,D2,t, . . . ,Dx,t are activity distributions for the tth time interval aggregated over

a window of x days and they each follow a normal distribution, then we can define

an aggregated activity distribution as follows.

Definition 3. An aggregated activity distribution D̂t at time interval t is the max-

imum likelihood estimate of the mean that is obtained from activity distributions

Dk,t(1 ≤ k ≤ x) that fall within an aggregation window of size x.

We can write the aggregated activity distribution D̂t at time interval t as show

in Equation 7.1.

D̂t =
x∑
k=1

Dk,t

x
(7.1)

Definition 4. An aggregated activity curve is the compilation of aggregated activity

distributions obtained over an aggregation window of size x.

If Σ = {C1, C2, C3, . . . , Cx} is a set of activity curves over an aggregation win-
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Figure 7.2: An example aggregated activity curve that models three different activ-

ities: sleep, bed toilet transition, and an “other” activity. This sample aggregated

activity curve was derived using x = three months of actual smart home data. Ag-

gregated activity distributions were calculated at 5 minute time intervals, (m = 288).

In this graph, the time interval at index 0 represents 12:00 AM.

dow of size = x days, we can represent an aggregated activity curve over Σ as CΣ.

The aggregated activity curve CΣ compiles the aggregated activity distributions, D̂t.

Figure 7.2 illustrates an example of an aggregated activity curve that models three

different activities: sleep, bed toilet transition, and other.
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7.3 Activity distribution distance

We calculate the distance between two activity distributions using the Kullback-

Leibler (KL) divergence measure. We employ the KL divergence measure because it

is a one of the most widely used measures to calculate the distance between two

probability distributions. However, other distance metrics can also be applied for

this step. Some examples of alternative measures are euclidean distance, Aitchison’s

distance [4], and Maximum Mean Discrepancy measure (MMD) [58]. We test one

alternative distance measure, Maximum Mean Discrepancy measure, for comparison

and report on the results with this measure in Section 7.8.5.

We assume that the activity distributions model the same activity set A for

the same time interval size and aggregation window size. The KL divergence be-

tween two activity distributions D1 = {d1,1, d1,2, . . . , d1,i, . . . , d1,n} and D2 = {d2,1,

d2,2, . . . , d2,i, . . . , d2,n} is defined as shown in Equation 7.2.

DKL(D1||D2) =
n∑
i=1

d1,i log
d1,i

d2,i

(7.2)

We note that the standard KL distance metric is a non-symmetric measure of

the differences between two probability distributions D1 and D2. Therefore, we use a

symmetric version of the Kullback-Leibler divergence between activity distributions

D1 and D2, which is defined as shown in Equation 7.3. Throughout the remainder of

the chapter, our discussion of KL divergence will refer to this symmetric version of
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the KL divergence measure.

SDKL(D1||D2) = DKL(D1||D2) +DKL(D2||D1) (7.3)

Before defining the distance between two activity curves C1 and C2 of length

m, we first need to align the activity distributions in the activity curves (this is

described in Section 7.5). As a result of the alignment step, we obtain a vector of

alignment pairs Γ = (p, q) of length l = |Γ| that aligns an activity distribution at

time interval p (1 ≤ p ≤ m) of activity curve C1 with activity distribution at time

interval q (1 ≤ q ≤ m) of activity curve C2.

We calculate the total distance, SDKL(C1||C2), between two activity curves, C1

and C2, as the sum of distances between each aligned activity distribution for the two

activity curves, as shown in Equation 7.4.

SDKL(C1||C2) =
l∑

α=1

SDKL(D1,p||D2,q) such that Γα = (p, q) (7.4)

where D1,p and D2,q are the activity distributions that belong to activity curves C1

and C2 at time intervals p and q, respectively.

7.4 Determining the size of an aggregation window

Daily activity routines are performed differently from one day to the next. As a

result, the daily activity curve that models these activity routines will vary from one
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day to the next. We want to calculate an aggregated activity curve that generalizes

over minor day-to-day variations while still capturing the typical routine behavior.

When determining the appropriate size of an aggregation window, our goal is to

find the smallest possible number of days that is considered stable. We determine

that an aggregated activity curve is stable if the shape of the curve remains mostly

unchanged when more days are added to the aggregation window. By keeping the

aggregation window small, our model can be more sensitive to significant changes

in routine behavior. If the window is too small it will not be general enough to

encompass normal variations in daily routines. We propose Algorithm 4 to determine

the minimum length of an aggregate window that is required to calculate a stable,

representative aggregated activity curve for a particular time interval. We choose the

minimum aggregate window size xmin such that no smaller window would ensure the

stability criterion.

To determine the ideal aggregation window size, we start with a window of

size x = 2 and consider the corresponding aggregated activity curve CΣ, aggre-

gated from the set of individual activity curves Σ = {C1, . . . , Cx}. We estimate

the distance between CΣ
x and CΣ

x+1. If the distance is greater than a predefined

threshold T , we increase the window size. Therefore, if SDKL(CΣ
x ||CΣ

x+1) < T and

SDKL(CΣ
x+1||CΣ

x+2) < T , then x is selected as the representative aggregation window

size, otherwise we increase size of the aggregation window by one and repeat the
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process. This process is shown in Algorithm 4.

Algorithm 4 AggregationSize(Σ)

1: // Calculate the minimum size of an aggregation window.

2: Σ = {C1, C2, . . . , CN} for each of the N days in the input data.

3: // Return the minimum aggregation window size.

4: initialize x = 2

5: repeat:

6: Create CΣ
x , aggregated activity curve for window size x.

7: Create CΣ
x+1, aggregated activity curve for window size x+ 1.

8: Create CΣ
x+2, aggregated activity curve for window size x+ 2.

9: Compute d1 = distance between two aggregated activity curves

SDKL(CΣ
x ||CΣ

x+1).

10: Compute d2 = distance between two aggregated activity curves

SDKL(CΣ
x+1||CΣ

x+2).

11: if d1 < T and d2 < T x = x+ 1

12: else return x

13: until x < N
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7.5 Activity curve alignment

In order to compute similarity (or distance) between two activity curves, we

need to compare each of the activity distributions that belong to these two activity

curves. However, we first need to determine which pairs of distributions to compare

by considering alternative distribution alignment techniques. Activity curve align-

ment can be performed based on aligning the same time of day between two curves.

Alternatively, we can try to maximally align the activity occurrences between two

curves before performing such a comparison. Here we provide details for these two

alignment techniques that we use in our work.

7.5.1 Time interval-based activity curve alignment

The time interval-based activity curve alignment technique presumes that dis-

tributions between two curves should be aligned based on time of day and thus aligns

activity distributions between two activity curves if the time intervals are the same.

In essence, this method does not make any extra effort to align activities that occur

at different times in the distribution, but simply compares the activity distributions

based on time of day alone.

If C1 and C2 are two activity curves of length m, the time interval-based activity

distribution alignment method aligns the corresponding activity distributions using
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a vector of alignment pairs, Γ = (r, s), such that r = s. This technique aligns an

activity distribution at time interval r (1 ≤ r ≤ m) of activity curve C1 with activity

distribution at time interval s (1 ≤ s ≤ m) of activity curve C2.

7.5.2 Dynamic time warping-based activity curve alignment

A person’s routine may be relatively stable, even though there are minute

changes in the time an activity occurs or the duration of a particular activity. For

example, an individual may sleep at 10:00 PM one day, an hour earlier at 9:00 PM

the next day, an hour later at 11:00 PM a few days later, and eventually go back

to sleeping at 10:00 PM. Aligning activity distributions using dynamic time warping

allows us to maximally align common activities before comparing two activity curves.

Such an alignment accommodates activity time changes that are shifted temporally

backward (for example, an hour earlier), forward (for example, an hour later), ex-

panded (longer duration), compressed (shorter duration), or not changed at all from

one day to another. We optimize activity alignment using Dynamic Time Warping

(DTW) to align distributions between two activity curves.

Dynamic time warping finds an optimal alignment or warping path between

activity curves. This optimal warping path has minimal total cost among all possible

warping paths. We use the symmetric KL distance metric that we previously men-
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tioned to compute this warping path. The warping path has the following three main

properties:

• Boundary property : The first and last elements (activity distributions) from the

two activity curves are always aligned with each other.

• Monotonicity property : Paths are not allowed to move backwards.

• Step size property : No activity distributions are omitted from the curve align-

ment.

We also note that due to the monotonicity property, DTW does not allow

backward alignments. However, as we have seen in practice, activity distributions can

be shifted temporally backward and/or temporally forward. Therefore, we modify the

standard approach to perform two independent iterations of DTW:

• In forward dynamic time warping, we start from the first activity distribution

and move forward in time toward the last activity distribution to find an optimal

alignment between activity curves that are similar in the forward time direction.

• In backward dynamic time warping, we start from the last activity distribution

and move backward in time toward the first activity distribution to find an

optimal alignment between activity curves that are similar in the backward

time direction.
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If C1 and C2 are two activity curves of length m, the DTW-based activity

distribution alignment outputs two alignment vectors, Γforward = (u, v) of length

lforward, and Γbackward = (r, s) of length lbackward, respectively. The forward DTW

aligns an activity distribution from curve C1 at time interval u (1 ≤ u ≤ m) with

an activity distribution from curve C2 at time interval v (1 ≤ v ≤ m). Similarly, the

backward DTW aligns an activity distribution from curve C1 at time interval r (1 ≤

r ≤ m) with an activity distribution from curve C2 at time interval s (1 ≤ s ≤ m).

The DTW method outputs whichever vector, Γforward or Γbackward, that results in the

maximal alignment between the two distributions and thus minimize the difference.

We will utilize these two different alignment techniques in our PCAR algorithm to

detect changes between two aggregated activity curves and calculate change scores.

7.6 PCAR

Based on our notion of an activity curve, we now introduce our Permutation-

based Change Detection in Activity Routine (PCAR) algorithm. This algorithm iden-

tifies and quantifies changes in an activity routine. PCAR operates on the assumption

that daily activities are scheduled according to a routine and are not scheduled ran-

domly. For example, we regularly “wake up”,“bathe” and “have breakfast” in the

morning and “dine” and “relax” in the evening. In contrast, we rarely dine in the
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middle of night. Such regularities are useful, for example, to determine if there are

significant changes in lifestyle behavior that might indicate changes in cognitive or

physical health.

7.6.1 Permutation-based two-sample test

PCAR identifies significant changes in an activity routine using a two-sample

permutation test [52]. The permutation-based technique provides a data-driven ap-

proach to calculate an empirical distribution of a test statistic. The empirical distri-

bution of a test statistic is obtained by calculating the test statistic after randomly

shuffling (rearranging) the data a specified number of times. The permutation-based

test is exact if the joint distributions of rearranged samples are the same as the joint

distribution of the original samples. In other words, the samples are exchangeable

when the null hypothesis is true. This type of test allows us to determine the signifi-

cance of a difference between two aggregated activity curves.

We use a permutation-based test to perform a two-sample homogeneity test.

In a two-sample homogeneity test, we test the null hypothesis that the two samples

come from the same probability distribution versus the alternate hypothesis that they

come from different probability distributions. There are three main steps involved in

the permutation-based two-sample test.
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• Calculate the test statistic: Compute the test statistic from the original samples.

• Permutation: Rearrange the samples and compute the test statistic again. Re-

peat this step a specified number of times to obtain an empirical distribution

of the test statistic.

• Significance testing : Compare the test statistic obtained from the original (un-

permuted) set of data with the empirical distribution of the test statistic from

the permuted data to calculate the p-value. The p-value is calculated based on

the relative ranking of the original test statistic in the empirical distribution of

the test statistic (i.e., the ratio of the number of times the test statistic from

the permuted sample is equal to or greater than the original test statistic to the

total number of permutations).

If the p-value is significant (i.e., α < 0.01), the null hypothesis is rejected in the

favor of the alternative hypothesis.

7.6.2 Changes in activity distributions

We use the permutation-based two-sample test to determine whether there is a

significant change among a set of activity distributions at a particular time interval.

We formulate the null hypothesis that the set of activity distributions comprising two

activity curves are identical versus the alternative hypothesis that the set of activity
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distributions is significantly different between the two aggregated activity curves.

We test the hypothesis of a significant change between two aggregated activity

distributions, D̂1,t and D̂2,t .

• Calculate the test statistic: Calculate the test statisticDistt = SDKL(D̂1,t||D̂2,t)

between the two aggregated activity distributions.

• Permutation: Rearrange the order of individual activity distributions that com-

prise each of the aggregated distributions and recalculate the aggregated distri-

butions D̂1,t and D̂2,t . Calculate the KL divergence between the new aggregated

activity distributions ˆDistt = SDKL(D̂1,t||D̂2,t). Repeat the process a specified

number of times to obtain an empirical distribution of KL divergence (the test

statistic), ˆDistt.

• Significance testing : To test if a significant difference exists between D̂1,t and

D̂2,t calculate the p-value based on the ranking of the original test statistic

Distt, in the empirical distribution ˆDistt. If a small p-value is obtained, reject

the null hypothesis in favor of alternative hypothesis. This is shown in Equation

7.5.

pperm =
# ˆDistt > Distt
#permutations

(7.5)

where ˆDistt is the empirical distribution of the test statistic at the tth time interval.

We reject the null hypothesis that no changes have occurred at a significance level of
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α = 0.01.

7.6.3 Changes in activity curves

We now extend the technique of detecting significant changes between activity

distributions to quantify the difference in activity routine observed from two separate

aggregation windows, W1 and W2, each of size x days. To do this, PCAR counts the

total number of significant differences between the individual activity distributions

within window W1 and the distributions within window W2 to output a change score

that quantifies the significant changes observed among the activity curves.

PCAR calculates a sum, S, over changes that are detected between activity

curve distributions for each individual time interval. In order to identify the time

intervals at which changes in the activity distributions comprising the aggregated

activity curves are deemed significant, PCAR performs the following steps:

• Permutation: Calculate the empirical distributions of the test statistic (KL

divergence) by permuting and comparing the individual activity distributions

within the two aggregation windows W1 and W2 at each time interval using the

method summarized in Algorithm 5.

• Alignment : Calculate the two aggregated activity curves C1 and C2 using the

activity distributions aggregated for each time interval over windows W1 and
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W2. Align curves C1 and C2 using one of the alignment techniques described in

the previous section to generate the alignment vector Γ = (u, v).

• Calculate the test statistic: For each alignment pair (u, v) ∈ Γ, calculate the test

statistic Distu,v between the aggregated activity distribution at time interval u

of activity curve C1 and the aggregated activity distribution at time interval v

of C2.

• Significance testing : To test if there is a significant change between activity dis-

tributions at time intervals u and v, calculate the p-value based on the relative

ranking of Distu,v in the empirical distributions. The steps are summarized in

Algorithm 6.

We note that we compare at least m activity distributions during this process

where m is the number of aggregated activity distributions in an activity curve.

To control the False Discovery Rate (FDR) at level α∗(α∗ = 0.01), we apply the

Benjamini-Hochberg (BH) method [15]. The BH method first orders the p-values,

p(1), p(2), . . . , p(k), . . . , p(m), in ascending order and for a given value of α∗, the BH

method finds the largest k such that p(k) ≤ k × α∗

m
. The BH algorithm rejects the

null hypothesis corresponding to p(i) if i ≤ k. If a significant change is detected

between aligned activity distributions, PCAR increments its change score, S, by one.

PCAR generates two different change scores based on the alignment techniques that
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are employed: either the same index alignment or the DTW-based alignment.

7.7 Use of activity curves for smart functional assessment:
A case study

An activity curve model provides a big data-based tool for representing a longer-

term behavioral model. Such a tool is valuable for a variety of applications including

human automation, health monitoring, and automated health assessment. In this

section, we explain how the activity curve model and the PCAR algorithm can be

instrumental in performing automated functional assessment.

Activities of daily living such as sleeping, grooming, and eating are essential

everyday functions that are required to maintain independence and quality of life.

Decline in the ability to independently perform these ADLs has been associated with a

host of negative outcomes, including placement in long-term care facilities, shortened

time to conversion to dementia, and poor quality of life for both the functionally

impaired individuals and their caregivers [86, 89, 105].

We use smart home sensor data to derive activity curves that model the activity

routines of a smart home resident. Our PCAR algorithm detects changes in those ac-

tivity routines. We then analyze the relationship between standard clinical scores and

detected changes in ADL patterns. To validate our automated assessment technique,

we utilize smart home sensor data that was collected from real world smart home
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Algorithm 5 EmpiricalDistribution(Σ1,Σ2, NP )

1: // Build empirical distribution ˆDist of the test statistic.

2: Σ1,Σ2 = two sets of activity curves

3: Np = number of permutations

4: initialize ˆDist as Np ×m matrix . m is # activity distributions in the activity

curves

5: initialize i = 0

6: while i < Np do :

7: Rearrange the activity curves.

8: Generate aggregated activity curves CΣ1 and CΣ2 by aggregating the distri-

butions in Σ1, Σ2

9: Using the time interval-based alignment technique, align the two aggregated

activity curves to obtain an alignment vector Γ.

10: for all alignment pairs (u, u) in Γ do :

11: Find a distance SDKL(D1,u||D2,u) between uth activity distributions in two

activity curves.

12: Insert SDKL(D1,u||D2,u) to empirical distribution ˆDist at location [i, u].

13: end for

14: i = i+1

15: end while

16: return ˆDist
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testbeds with older adult residents. We apply robust activity recognition algorithms

[33, 78] to label these sensor-monitored data with the corresponding activity labels.

Algorithm 6 PCAR(Σ1,Σ2, ˆDist)

1: Σ1,Σ2 = two sets of activity curves

2: //Return a change score S

3: C1 = AggregateActivityCurves(Σ1)

4: C2 = AggregateActivityCurves(Σ2)

5: Γ = AlignCurves(C1, C2)

6: for all alignment pairs (u, v) in Γ do :

7: Calculate SDKL(D1,u||D2,v) between activity distribution D1,u ∈ C1 and

D2,v ∈ C2.

8: Perform significance testing of estimated distance by querying ˆDist.

9: if change is significant :

10: S = S + 1

11: end for

12: return S
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7.7.1 Synthetic dataset

First, we validate the performance of the proposed PCAR algorithm by running

it on a synthetic activity curve. We create a synthetic activity curve by compiling syn-

thetic activity distributions. The synthetic activity distribution models the patterns

of two activities, an arbitrary activity A and an “other” activity.

We generate synthetic activity distributions for each time interval t for N days

by applying the following three steps. Here l represents the length of each time

interval.

• Generate a random value p (0 ≤ p ≤ l), which represents the average time

that is spent in performing activity A during time interval t.

• Generate two vectors, S and S ′, each of length N . Generate the vector S from

a normal distribution i.e. S ∼ Normal(p, 1). Each element of vector S ′ is

generated by subtracting the corresponding value in S from l i.e l − s ∈ S ′.

• Create an activity distribution that models patterns of two activities at a time

interval t. The elements of the activity distribution is [s, l − s]. We combine

these individual synthetic activity distributions at different time intervals into

activity curves. When we introduce an activity change, we multiply the average

time spent performing an activity A by a constant factor in each time interval.
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Using the aforementioned method, we create two different sets of activity curves.

The first set Y does not contain any changes and another different set of daily activity

curves Z contains changes in all activity distributions every 90 days. We run the

PCAR algorithm on an aggregated activity curve of size 90 days using the time

interval index alignment. PCAR successfully detects all changes in the dataset where

activity changes were made and does not produce any false positives in the synthetic

dataset that does not contain changes.

7.7.2 Experimental setup

Next, we demonstrate how PCAR can be used to detect changes in real smart

home data. For this study, we recruited 18 single-resident senior volunteers from a

retirement community and installed smart home sensors in their homes [29]. The

smart home sensors unobtrusively and continuously monitor resident activities. We

continuously collected raw sensor events for an extended period (∼ 2 years) from all

of the residents. At the same time, standardized clinical, cognitive, and motor tests

were administered biannually to the residents. Refer to Section 2.1.3 for more details

on CASAS longitudinal smart home testbed.
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7.7.3 Participants

Participants included 18 senior residents (5 females, 13 males) from a senior

living community. All participants were 73 years of age or older, and had a mean

level of education of 17.52 years. At baseline, participants were classified as cognitively

healthy (N = 7), at risk for cognitive difficulties (N = 7) or experiencing cognitively

difficulties (N = 4). One participant in the cognitively compromised group met the

criteria for dementia [10], while the other three individuals met the criteria for mild

cognitive impairment (MCI) [5].

7.7.4 Smart home testbed

The 18 smart home testbeds are single-resident apartments, each with at least

one bedroom, a kitchen, a dining area, and one bathroom. For more details about

these smart apartments, see Section 2.1.3.

The residents perform their normal activities in their smart apartments, unob-

structed by the smart home instrumentation. While residents carry out their daily

routines, sensors continuously monitor their behavior. The middleware collects the

sensor events and stores them on a database server. Each sensor event is represented

by four fields: date, time, sensor identifier, and sensor message. The raw sensor data

does not contain activity labels. We use an activity recognition algorithm, described
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in the next section, to map individual sensor events to corresponding activity labels

as shown in Figure 2.7.

7.7.5 Activity recognition

Activity recognition algorithms label activities based on readings (or events)

that are collected from the smart environment, mobile device, or other sensors. As

described earlier, the challenge of activity recognition is to map a sequence of sensor

events onto a value from a set of predefined activity labels. These activities may con-

sist of simple ambulatory motion, such as walking and sitting, or complex activities

of daily living, such as cooking and eating, depending upon what type of underlying

sensor technologies and learning algorithms are used. We use our AR activity recog-

nition algorithm, described in Section 2.1.6, to label individual sensor events with

corresponding activity labels as shown in Figure 2.7.

7.7.6 Activities

Using the AR algorithm, we recognize seven different activities of daily living:

sleep, bed-to-toilet, cook, eat, personal hygiene, leave home, relax, and an “other”

activity. In our datasets, the relax activity includes watching television, reading,

and/or napping that typically takes place in a favorite chair or location where the
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resident spends time doing these activities. We note that these activities are sepa-

rately considered for the longitudinal study described in Chapter 6.

One of the activities that we assess in this case study, sleep, is a particularly

important clinical construct that both clinicians and caregivers are interested in un-

derstanding [43]. Sleep problems in older adults can affect cognitive abilities [69, 134]

and have been associated with decreased functional status and quality of life [49, 90].

Moreover, individuals with dementia often experience significant disruption of the

sleep-wake cycle [51].

On the other hand, all basic activities of daily living (e.g., eating, grooming)

and instrumental activities of daily living (IADLs; e.g., cooking, managing finances)

are fundamental to independent living. We postulate that like sleep, changes in any

of these activities may indicate changes in cognitive or physical health. Data indicate

that subtle difficulties in everyday activity completion (e.g., greater task inefficiencies,

longer activity completion times) occur with increased age [131]. Clinical studies have

also demonstrated that individuals diagnosed with MCI experience greater difficulties

(e.g., increased omission errors) completing everyday activities when compared with

healthy controls [9, 53, 110, 133]. Furthermore, with incidence of severe cognitive

problems such as AD, individuals have difficulty in both initiating and completing

basic activities [59]. Thus, clinicians argue the importance of understanding the

course of functional change given the potential implications for developing methods
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for both prevention and early intervention [130, 131].

Finally, our AR algorithms places all other activities into an “other” category.

This category includes all remaining activities that we are not distinguishing and

analyzing separately in this case study. Thus, in our current work, we analyze daily

patterns of 7 activities of daily living and the “other” activity using activity recogni-

tion algorithms and analyze them using the PCAR algorithm.

7.7.7 Standard neuropsychological tests

Clinical tests were administered every six months to residents of our smart home

testbeds. As detailed in Table 2.3, these tests included Timed Up and Go Test (TUG)

and a global measure of cognitive status (RBANS). The administered clinical tests are

standardized and validated measures that provide indication of mobility-based health

and cognitive health. Using repeated measurements obtained from biannual clinical

tests, we create a clinical longitudinal dataset that contains these two measurement

variables (features).
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7.8 Experimental results

7.8.1 Preprocessing

We use two different preprocessing techniques to preprocess activity curves.

• Mean smoothing: We run a mean smoothing filter of size 3 on activity distribu-

tions comprising the activity curve to smooth out noise and minor variations.

In this step, we replace the estimate at time interval t with the average estimate

of activity distributions at times t− 2, t− 1, and t.

• Add-One smoothing: Activity distributions for certain activities can be zero.

For example, we rarely eat and cook at midnight so activity distributions of

these activities at midnight are often zero. We perform add-one smoothing

on all of the elements of activity distributions. In add-one smoothing, we add

a constant α = 1 in every elements of the activity distributions. Add-one

smoothing technique is often used in natural language processing to smooth

unigram estimates and has an effect of removing zero entries.

7.8.2 Studying aggregated activity curve

Figure 7.3 is an example aggregated activity curve that models eight different

activities, including seven recognized activities(i.e., sleep, bed toilet transition, eat,
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Figure 7.3: An example of aggregated activity curve that models eight different ac-

tivities. This sample aggregated activity curve was derived using x = three months

of actual smart home data. Aggregated activity distributions were calculated at 5

minute time intervals, (m = 288)
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cook, relax, personal hygiene) and an “other” activity. This sample aggregated ac-

tivity curve was derived using an aggregation window of size x = three months based

on actual single resident smart home sensor data and 5 minute time intervals. We

observe that this smart home resident usually goes to sleep at around 9:00 PM and

wakes up at around 7:00 AM. We also observe that the resident exhibits a fairly fixed

schedule for eating breakfast, lunch, and dinner.

A primary contribution of this research is the introduction of an activity curve

as a tool for representing behavior aggregated over a specific time period. Therefore,

we want to confirm that the representation is accurate and that it captures the true

behavior of a smart home resident. To perform this experiment, we visually inspect

an aggregated activity curve to obtain the corresponding activity start and end times.

Then, we compare these activity start/end times with the activity start/end times

obtained from manually annotated sensor data. To quantify the accuracy, we calculate

the absolute difference between the respective start and end times obtained from these

two different sources. We consider a time difference of 30 minutes as an acceptable

error margin. This size error margin means that if an activity curve represents an

individual’s sleep start time at 10:00 PM, his true sleep start time is sometime between

9:30 P.M and 10:30 P.M. We consider such a difference as an acceptable given that

the time individuals typically initiate and complete daily activities (e.g., sleep) varies

to at least this extent.
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To perform this experiment, we use seven days of AR-annotated sensor data

and generate aggregated activity curves of two randomly chosen residents (see Figure

7.4). We visually inspect the activity curves and note the most likely start and end

times of the activities. We chose a set of four activities sleep, eat, cook, and bed toilet

transition. We note that individuals typically initiate and complete three of the four

activities (sleep, eat, cook) almost at around a fixed time of a day. While we note

start time and end time for the sleep activity, we note three different start and end

times of the cooking and eating activity (cook/eat breakfast, lunch and dinner). We

note the first occurrence for the bed and toilet transition activity.

Second, we followed the same procedure to obtain the activity start and end

times from the manually annotated sensor data. If there are multiple annotations of

the same activity, we consider the first annotation of the activity. For each activity,

we find an average start and end time.

Next, for each activity, we calculate the absolute difference between activity

curve-based activity start time and manually annotated sensor data-based start time.

Similarly, we repeat the previous step for the activity end times. We find that the

mean absolute difference is about 26 minutes. The activity start/end times obtained

from activity curve representation and manually annotated sensor data with the cor-

responding calculations are listed in Table 7.1. Since, the absolute mean difference of

26 minutes falls below our acceptable error margin of 30 minutes, we conclude that
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Table 7.1: Activity start and end times obtained from activity curve representation

and manually annotated sensor data.

Resident I Resident II

Activity curve-based time Manually annotated time Difference (minutes) Activity curve-based time Manually annotated time Difference (minutes)

Sleep start 10:15:00 PM 10:50:00 PM 35 09:30:00 PM 10:03:00 PM 33

Sleep end 08:15:00 AM 08:04:00 AM 11 06:30:00 AM 05:45:00 AM 45

Eat breakfast start 08:30:00 AM 08:54:00 AM 24 06:30:00 AM 07:02:30 AM 32

Eat breakfast end 09:00:00 AM 09:20:00 AM 20 07:00:00 AM 07:11:00 AM 11

Eat lunch start 12:30:00 PM 12:22:00 PM 8 11:30:00 AM 11:56:00 AM 26

Eat lunch end 01:00:00 PM 12:39:00 PM 21 12:30:00 PM 12:33:00 PM 3

Eat dinner start 05:30:00 PM 06:03:00 PM 33 04:30:00 PM 04:50:00 PM 20

Eat dinner end 07:00:00 PM 06:34:00 PM 26 05:30:00 PM 05:21:00 PM 9

Cook breakfast start 08:30:00 AM 08:44:00 AM 14 07:00:00 AM 06:33:00 AM 27

Cook breakfast end 09:00:00 AM 08:54:00 AM 6 07:30:00 AM 07:04:00 AM 26

Cook lunch start 12:30:00 PM 12:23:00 PM 7 11:30:00 AM 11:34:00 AM 4

Cook lunch end 01:00:00 PM 12:31:00 PM 29 12:30:00 PM 12:19:00 PM 11

Cook dinner start 05:30:00 PM 05:48:00 PM 18 04:15:00 PM 04:42:00 PM 27

Cook dinner end 06:30:00 PM 06:21:00 PM 9 05:30:00 PM 05:16:00 PM 14

Bed to toilet start 02:00:00 AM 03:09:00 AM 69 01:30:00 AM 02:48:00 AM 78

Bed toilet end 02:15:00 AM 03:15:00 AM 60 01:30:00 AM 02:49:00 AM 79

Mean 24.37 Mean 27.81

activity curve correctly represents the activity start and end times of the activities.

7.8.3 Comparing activity distributions

For most individuals, our activities follow a common pattern based on factors

such as time of day. Thus, the activity distributions that model activities at different

time intervals belonging to different times of a day will be different. In our first ex-
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Figure 7.4: Examples of aggregated activity curves that model eight different activ-

ities. These sample aggregated activity curves were derived using seven days of AR

annotated smart home data. Aggregated activity distributions were calculated at 5

minute time intervals (m = 288).
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Figure 7.5: Heat map of the pairwise distance matrix between activity distributions

of an aggregated activity curve using KL distance. The size of the time interval is 5

minutes. Index 0 represents 12:00 AM.

periment, we assess whether our proposed activity curve can capture such differences

in activity distributions. We calculate an aggregated activity curve for five-minute

time intervals using the first three months of activity-annotated sensor data from one

of our smart homes. We calculate a pairwise distance (symmetric KL divergence)

matrix between activity distributions from this aggregated activity curve. We plot

this pairwise distance matrix in a heat map shown in Figure 7.5.



225

From the heat map in Figure 7.5, we observe that the distance between activity

distributions varies according to the time of day. We observe that the darkest colors

appear along the diagonal when we compare activity distributions for the same time

of day. In contrast, we observe that the hottest colors (greatest distance) occurs when

comparing activities at midnight (when the resident typically sleeps) to activities in

mid-afternoon when the resident is quite active. Additionally, we also see different

clusters emerge (for instance, between times 0 and 100) corresponding to times of

day. These observations provide intuitive visual evidence that the activity curve is

capturing generalizable differences in activity routine at various times of the day.

In the next experiment, we study how the activity distribution distances within

an activity curve (the y axis in Figure 7.6) change as a function of the time interval size

(the x axis). For this experiment, we calculated an average pairwise distance between

activity distributions within aggregated activity curve for each time interval size.

We observe that as the time interval increases, the average pairwise distance between

daily activity distributions decreases. Such a decrease in distances is observed because

activity distributions at larger sized time intervals are overwhelmed by activities that

take larger duration (such as sleep). As a result, smaller differences between such

activity distributions are harder to detect.
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7.8.4 Aggregation window Size

In the next experiment, we determine the minimum length of an aggregation

window that is required to calculate a stable aggregated activity curve for our smart

home data. Figure 7.7 shows the variations in the length of an aggregate window

at different interval sizes calculated using all the available sensor data. We observe

that the length of the aggregation window is larger for the smaller interval sizes and

smaller for the larger interval sizes. We can explain such differences in length of the

aggregation window based on the observations we made between average pairwise dis-

tances and interval sizes in Figure 7.7. At larger interval sizes, activity distributions

are dominated by activities that take a long time to complete (such as sleep). Thus,

the distance between two activity distributions for such activity curves are signifi-

cantly lower than the distance between two activity distributions for activity curves

at smaller time intervals. Hence, we obtain a stable activity curve using a smaller

aggregation window size for larger interval sizes.

7.8.5 Change scores and correlations

In this section, we study the strength of the correlations between the changes

detected in activity routines by the PCAR algorithm and the corresponding stan-

dard clinical scores (RBANS and TUG) for a smart home resident. Specifically, we
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calculate correlations between change scores calculated by applying PCAR on activ-

ity curves derived using activity-labelled smart home sensor data and corresponding

clinical scores ensuring that each pair of the smart home change score and clinical

score was observed at around the same time.

To obtain such correlations, we first calculate aggregated activity curves for

two three-month aggregation windows, W1 and W2. Next, we apply PCAR to these

activity curves to obtain a smart home-based change score. We also obtain clinical

scores measured at time points, t1 and t2. We repeat this step for all available pairs

of consecutive testing time points for all 18 residents. Finally, we calculate Pearson

correlation and Spearman rank correlation between the activity change scores and

the corresponding clinical scores to evaluate the strength of the relationship. The

process is summarized in Algorithm 7.

To evaluate our automated health correlation based on smart home data, we

derived correlation coefficients between change scores obtained from the smart home-

based activity curve model with the standard health clinical scores (TUG and RBANS

scores). To conduct this experiment, we ran 1500 permutation iterations and derived

change scores for both alignment techniques. We repeated the experiments for differ-

ent time interval sizes.

As a baseline for comparison, we generated random change scores by randomly

predicting a change between activity distributions instead of using the PCAR algo-
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Algorithm 7 BehaviorAndHealthCorrelation(t)

1: // t = testing time points

2: // Return correlation coefficient

3: BehaviorChangeScores = [ ]

4: ClinicalChangeScores = [ ]

5: i = 0

6: repeat

7: Σi = AggregateActivityCurvesAtTime(ti + 3 months)

8: Σi+1 = AggregateActivityCurvesAtTime(ti+1 − 3 months)

9: ˆDist = EmpiricalDistribution(Σi,Σi+1, NP )

10: S1 = PCAR (Σi,Σi+1, ˆDist)

11: S2 = ClinicalScores(ti, ti+1)

12: Append(S1 , BehaviorChangesScores)

13: Append(S2, ClinicalChangesScores)

14: i = i+ 1

15: until

16: return Correlation(S1, S2)
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Table 7.2: Pearson (r) and Spearman rank (rho) correlations between activity change

scores and RBANS scores.

Time interval change score DTW score Random scores

intervalsize r-RBANS rho-RBANS r-RBANS rho-RBANS r-RBANS rho-RBANS

5 0.00 -0.10 0.11 -0.04 0.10 0.06

6 -0.01 -0.13 0.06 -0.10 0.14 0.14

8 -0.01 -0.16 0.04 -0.08 -0.06 0.00

9 -0.03 -0.19 0.03 -0.09 0.09 0.11

10 -0.03 -0.15 -0.03 -0.13 -0.07 -0.10

12 -0.04 -0.17 -0.03 -0.13 -0.07 -0.07

15 -0.04 -0.14 -0.05 -0.16 0.11 0.26

16 -0.04 -0.13 -0.04 -0.14 -0.19 -0.19

18 -0.06 -0.18 -0.08 -0.13 0.02 0.04

20 -0.04 -0.18 -0.03 -0.12 -0.16 -0.13

24 -0.04 -0.18 -0.03 -0.16 0.05 0.04

30 -0.07 -0.20 -0.01 -0.17 -0.06 -0.11

32 -0.04 -0.20 0.01 -0.19 0.20 0.19

36 -0.04 -0.21 0.01 -0.17 0.06 0.01
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rithm. Table 7.2 and 7.3 list the correlations between these two scores for different

time interval sizes.

We make the following observations:

• We obtain statistically significant correlations between activity change scores

and TUG scores (Table 7.3)

• No correlations exist between activity change scores obtained from random pre-

dictions and TUG scores.

• No correlations exist between smart home based activity change scores and

RBANS scores.

• Often, the strength of correlations at larger time interval sizes is weak because

at larger time intervals activities are either dominated by sleep activity or other

activity. Hence, changes in activity distributions at large time intervals are

comparatively harder to detect.

In the next experiment, we use the Maximum Mean Discrepancy (MMD) dis-

tance measure to perform a two-sample test (Algorithm 6) to compare between ac-

tivity distributions. The objective of this experiment is to determine the influence

that particular distance measure has on the relationships between change scores and

clinical scores. MMD measures a distance between two distributions when the distri-

butions are represented as elements in Reproducing Kernel Hilbert space. We perform
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Table 7.3: Pearson (r) and Spearman rank (rho) correlations between activity change

scores and TUG scores (*p < 0.05, **p < 0.005).

Time interval index score DTW score Random scores

intervalsize r-TUG rho-TUG r-TUG rho-TUG r-TUG rho-TUG

5 0.27 0.28 0.27 0.43** -0.21 -0.06

6 0.28* 0.31* 0.27 0.40** -0.09 -0.03

8 0.32* 0.39** 0.33* 0.37* -0.09 -0.12

9 0.31* 0.35* 0.24 0.25 -0.15 -0.06

10 0.33* 0.31* 0.29* 0.37* 0.10 0.12

12 0.35* 0.33* 0.30* 0.30* 0.18 0.15

15 0.33* 0.34* 0.31* 0.40** 0.06 -0.06

16 0.34* 0.38* 0.30* 0.35* -0.03 -0.10

18 0.32* 0.29* 0.29* 0.27 -0.17 -0.07

20 0.32* 0.35* 0.29* 0.28* 0.19 0.12

24 0.35* 0.29* 0.31* 0.23 -0.10 -0.13

30 0.33* 0.24 0.28 0.27 -0.15 -0.15

32 0.33* 0.28* 0.28* 0.32* -0.15 -0.13

36 0.32* 0.28* 0.28 0.31* 0.01 0.03
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a two-sample test to test the null hypothesis that two activity distributions D1,t and

D2,t for time interval t are obtained from the same distribution against the alterna-

tive that D1,t and D2,t are obtained from different distributions. Given n training

examples from D1,t, m samples from D2,t, and a kernel function k, the MMD can be

empirically estimated as [58]:

MMD(D1,t,D2,t) =
1

nm

n∑
i=1

m∑
j=1

[k(D1,i,t,D1,j,t) + k(D2,i,t,D2,j,t)− k(D1,i,t,D2,j,t)]

(7.6)

Using MMD as a distance metric, we repeat all the steps in Algorithm 7 to

calculate the correlations between change scores and clinical scores. While Tables 7.2

and 7.3 list the correlations between KL-divergence-based change scores and clinical

scores, Table 7.4 lists the correlations between the change scores calculated by using

the MMD-based two-sample test and clinical scores at different window sizes. We note

that we calculate the MMD-based change scores using the time interval index-based

method (see Section 7.5.1). While we observe significant correlations between TUG

and MMD-based change scores, we do not observe significant correlations between

change scores and the RBANS clinical scores. This observation about the strength of

the correlations between MMD-based change scores and clinical scores are similar to

correlations when we use the KL-divergence-based change scores.
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Table 7.4: Pearson (r) and Spearman rank (rho) correlations between activity change

scores calculated by using MMD-based two-sample test and RBANS and TUG scores

(*p < 0.05, **p < 0.005).

Time interval index score

intervalsize r-RBANS r-TUG rho-RBANS rho-TUG

5 0.15 0.23 -0.04 0.36*

6 0.14 0.24 -0.06 0.34*

8 0.12 0.26 -0.08 0.38*

9 0.11 0.28* -0.12 0.43**

10 0.08 0.24 -0.14 0.30*

12 0.09 0.28* -0.14 0.35*

15 0.12 0.22 -0.08 0.30*

16 0.08 0.25 -0.14 0.36*

18 0.11 0.23 -0.07 0.26

20 0.11 0.20 -0.06 0.22

24 0.13 0.20 -0.08 0.22

30 0.14 0.15 -0.09 0.19

32 0.20 0.16 0.00 0.20

36 0.16 0.16 -0.08 0.24
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7.8.6 Continuous change scores

In the previous section, we predicted change scores at six month intervals to

correlate the smart home-based behavior change scores with changes in standard

clinical scores. We can also calculate these change scores more frequently by running

the PCAR algorithm on the activity curves that lies within a sliding window of size

six months and shifting this sliding window by one month (30 days). We will refer

to such frequent change scores as continuous change scores. We can use continuous

change scores to monitor the “performance” of a smart home resident’s everyday

behavior.

Figure 7.8 shows how the continuous change scores of two smart home residents

have varied with time. Each point in a plot represents a total change score obtained

by using the PCAR algorithm to compare behavior six months prior with current

behavior. First, we plot continuous change scores of a resident whose health status

has declined (Figure 7.8). We observe that after a year, the total change score of

this resident started to fluctuate. Such fluctuations indicate changes in the average

daily routines of this resident. Similarly, we plot continuous change scores of another

resident whose health has been in excellent condition for the entire data collection

period (Figure 7.8). We observe that the PCAR algorithm detects very few changes

in the average daily routines of this resident.
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Figure 7.8: The continuous change scores of two residents calculated by running

PCAR algorithm on a sliding window of six months with an aggregation window size

of 30 days.

7.8.7 Individual activity change

The change scores calculated in the previous sections quantify overall changes in

average daily routines for the entire collection of know activities. In this experiment,

we can quantify total changes in the average daily routines of some specific activities

by running PCAR algorithm on a reduced activity set. The elements in this reduced

activity set are activities that we want to monitor and the “other activities” class is

used to represent all of the remaining activities. For example, if we want to monitor

sleep and bed to toilet activities, we put three elements (sleep, bed to toilet and other)

in the reduced activity set. Using this reduced set of activity, we can use PCAR to
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Figure 7.9: The continuous sleep change scores of two residents calculated by running

PCAR algorithm on a sliding window of six months with an aggregation window size

of x = 30 days.

obtain continuous change scores.

Figure 7.9 shows the continuous sleep change scores of the same two smart home

residents for whom we studied the continuous change scores in Figure 7.8. We see

that PCAR detected changes in the overall sleep routine of the first resident while it

does not detect any sleep routine changes for the other resident.

7.9 Discussion and observations

In this chapter, we proposed an activity curve model to represent daily activity-

based behavior routines. The proposed activity curve models the activity distribu-
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tions of the activities at different times of a day. Using the activity curve model, we

developed the PCAR algorithm to identify and quantify changes in the activity rou-

tines. We validated our model by performing experiments using synthetic data and

longitudinal smart home sensor data. PCAR is able to represent behavior patterns

through big data analysis.

The current activity model considers activity distributions using different inter-

val sizes. In the future, we will build a hierarchical activity curve model to combine

the activity distributions at different time interval sizes. We will also investigate tech-

niques to extend the activity curve algorithm to detect acute health care events such

as falls by using a shorter aggregated window size (such as a day or a week). Further,

while performing experiments with an activity curve model, we choose a subset of

activities that are considered important in daily life. In the future, we will extend our

experiments to include a larger pool of daily activities. We also note that the activi-

ties that did not fit into these seven predefined categories were termed “other”. We

note that the “other” data is very large, complex, and represents important activities

that we will add to our activity vocabulary in future work. A major contribution of

this work is the introduction of an activity curve, which is a probabilistic represen-

tation of an aggregated daily routine. In our work, we validated the activity curve

using environment sensors. We can also obtain activity curve representation using

sensor data collected from other sources such as the sensor data from smart phones
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and wearable devices. In the future, we will conduct further studies to explore how

clinicians and caregivers can benefit from the activity curve representation and the

changes in the daily routine that the algorithm detects.

We developed the PCAR algorithm to quantify changes in an activity routine.

PCAR makes use of a smart home sensor data of an individual collected over a

period to quantify changes in the activity routine and outputs change scores. This

algorithmic approach is important because activity routines vary among individuals.

Furthermore, we studied the relationship between the output from the PCAR

algorithm and the standard clinical and physical health scores. We found moderate

correlations between the change scores and standard TUG scores. However, we found

that the correlations between smart home-based change scores and standard cognitive

scores (RBANS) were not as strong as we expected because the majority of the

older adults for whom we analyzed the data are healthy older adults. Similarly, we

also demonstrated methods to evaluate the “average performance” of a smart home

resident by continuously monitoring changes in the overall daily routine as well as a

set of specified activities. This chapter confirms that pervasive computing methods

can be used to correlate an individual’s behavior patterns and clinical assessment

scores.

Unlike Chapters 4, 5 and 6 in which we model the performance of specific

activities, in this chapter we propose an activity curve to model the daily routine
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of a smart home resident using longitudinal smart home sensor data. We developed

the PCAR algorithm to detect changes in the daily routine and use this change

information to analyze the possibility of changes in the cognitive or physical health

of a smart home resident.
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CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

In this dissertation, we explored methods to utilize sensor data to model the

everyday behavior of a smart home resident and apply machine learning algorithms

to predict their well being. To validate the proposed algorithms, we utilized cross-

sectional and longitudinal data collected from different smart home-based studies.

We note that the nature of data that we collect and the type of questions we

answer are different in longitudinal and cross-sectional studies. We perform cross-

sectional studies by observing a population at a single time point. Cross-sectional

studies allow researchers to compare variables of different population groups. For

example, a cross-sectional study allows us to answer if the task quality of the MCI

group is different from the cognitively healthy group. In contrast, longitudinal stud-

ies are conducted by measuring observations of the same individual usually over a

long period of time. The data from longitudinal studies allows researchers to an-

swer questions related to within-individual changes and inter-individual differences

in changes, trends, and trajectories over time. For example, a longitudinal study

allows researchers to answer a question such as how the task quality of a particular

individual has changed over time.
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We first introduced a machine learning-based method for assessing activity qual-

ity in smart homes by utilizing the data collected from a cross-sectional smart home-

based study. In this study, we recruited participants to perform a set of simple and

complex activities. The participants performed simple daily activities such as eating

and cooking. They also performed a complex activity named the Day Out Task in

the smart home. Utilizing the sensor data that is collected while participants were

performing activities, we developed learning algorithms to automatically predict the

activity task quality. We also assessed the ability of learning algorithms to predict

the cognitive health of the participants based on a task quality measure. Our results

suggest that it is possible to automatically quantify the task quality of the smart

home activities and perform limited assessment of the cognitive health of individuals

by properly choosing smart home activities and training learning algorithms.

Using the longitudinal smart home sensor data, we developed algorithms to

monitor the daily behavior of a smart home resident. The longitudinal data is col-

lected for more than two years from 18 smart homes without interrupting or manipu-

lating the residents’ daily routine. We first introduced the Clinical Assessment using

Activity Behavior (CAAB) algorithm to predict the cognitive and mobility scores of

smart home residents by monitoring a set of basic and instrumental activities of daily

living. We evaluate the performance of CAAB utilizing smart home sensor data col-

lected from 18 smart homes over two years using prediction and classification-based
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experiments. Our prediction and classification-based results suggest that it is feasible

to predict standard clinical scores using smart home sensor data and learning-based

data analysis.

Finally, we introduce an activity curve to represent an abstraction of an indi-

vidual’s daily behavioral routines. We propose methods to detect changes in daily

behavioral routines by comparing activity curves and use these changes to analyze

the possibility of changes in cognitive or physical health. We evaluate our change

detection approach using a longitudinal smart home sensor dataset collected from

smart homes with older adult residents. We demonstrate how activity curve-based

change detection can be used to perform functional health assessment and our eval-

uation indicates that correlations do exist between behavior and health changes and

that these changes can be automatically detected.

Future research directions

We identify three possible avenues for future work. First, we note that we

performed longitudinal studies utilizing the data from 18 smart home residents. As a

part of future work, we want to validate the proposed algorithms using a larger pool

of population sizes encompassing a greater period. Additionally, our experiments rely

on set of basic and instrumental activities of daily living. In the future, we would like
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to experiment using wide variety of both shorter and longer-duration activities.

We will also explore the clinical utility of smart home-based predictions and the

role it can play in helping clinicians to make informed decisions. Clinical data points

are often sparse because clinicians administer clinical assessments on patients between

wider intervals. In our smart home-based longitudinal study, the clinical tests were

administered once in every six months. We can augment such sparse clinical datasets

with the smart home-based predictions. We will answer the question of how clinicians

can benefit from these predictions by developing visualization tools and carrying out

additional studies [82].

Finally, we would like to extend the proposed algorithms to develop algorithms

that detect early indications of cognitive and physical decline. The algorithm requires

smart home longitudinal data in which there are known instances of health decline.

Such algorithms will play pivotal roles in prevention and early intervention of cognitive

and physical decline.

We envision this ongoing research as a critical component with smart home

functionality that constantly tracks the behavior of its residents, automatically as-

sesses their health, and provides an environment to senior residents where they can

live independently and safely in their own homes.
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APPENDIX

A Pervasive technological approaches to monitoring every-
day functioning measures

Everday Measures Studies Technologies

Computerized Cognitive Assessment
CERAD,CANTAB CANTAB Mobile [48],[141]
ClockMe [77] Desktop Computers,
Virtual Reality [166] Tablets, Smart Phones

Computer Usage
Typing Speed [72]
Mouse Usage
Computer Games
Solitaire [71], [70],[73]
Word Scramble

Mobility and Gait
[11],[12],[61] Motion Sensors

Gait Velocity

Everyday Functioning
Object Usage [63] RFID
Simple Activities [34],[41],[40] Motion Sensors
Complex Activities [59][60] Motion Sensors

Longitudinal Data
Visualization Tools [143] Motion Sensors
Statistical Models [45][146]
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B Sensor dataset details for the CASAS longitudinal testbeds

Apartment Id Start date End date #Events

A 2012-07-18 2013-07-25 1895875

B 2011-06-13 2014-03-31 6496858

C 2011-06-10 2014-03-31 3608023

D 2011-06-09 2013-09-04 6607015

E 2011-06-09 2014-01-12 3875166

F 2011-06-09 2014-03-10 4418547

G 2011-06-10 2014-03-31 5875856

H 2011-06-10 2014-03-31 8917824

I 2011-06-10 2014-03-31 5505137

J 2011-06-09 2012-11-05 3262762

K 2011-06-10 2014-01-12 4698358

L 2011-06-10 2012-05-25 2263036

M 2011-06-13 2012-05-25 1131009

N 2011-06-10 2014-03-31 7463753

O 2012-01-27 2014-03-31 2612377

P 2013-02-28 2013-09-29 1332811

Q 2013-03-01 2014-03-31 1729474

R 2013-02-28 2014-03-31 1875665
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C Floor plans for the CASAS longitudinal testbeds

Apartment A

Apartment B
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Apartment C

Apartment D
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Apartment E

Apartment F
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Apartment G

Apartment H
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Apartment I

Apartment J
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Apartment K

Apartment L
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Apartment M

Apartment N
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Apartment O

Apartment P
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Apartment Q

Apartment R
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Wagelaar, and Ben Kröse. Sensor Monitoring in the Home : Giving Voice
to Elderly People. In Pervasive Computing Technologies for Healthcare (Per-
vasiveHealth), 2013 7th International Conference on, pages 97–100, Venice,
Italy, 2013.

[76] T. L. M. Kasteren, G. Englebienne, and B. J. A. Kröse. An activity monitoring
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