
 

 

DESIGN TECHNIQUES AND TRADEOFFS OF 

FINFET SRAM MEMORIES 

 

 

 

 

 

by 

MICHAEL ALLEN TURI 

 

 

 

 

 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

WASHINGTON STATE UNIVERSITY 

School of Electrical Engineering and Computer Science 

MAY 2013 

© Copyright by MICHAEL ALLEN TURI, 2013 

All Rights Reserved 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by MICHAEL ALLEN TURI, 2013 

All Rights Reserved 

 



ii 

 

 

 

 

 

 

 

To the Faculty of Washington State University: 

The members of the Committee appointed to examine the dissertation of 

MICHAEL ALLEN TURI find it satisfactory and recommend that it be accepted. 

 

 

 

___________________________________ 

 José G. Delgado-Frias, Ph.D., Chair 

 

 

___________________________________ 

 Deukhyoun Heo, Ph.D. 

 

 

___________________________________ 

 Partha P. Pande, Ph.D. 

  



iii 

 

ACKNOWLEDGEMENTS 

The research in this dissertation has been supported by the Boeing Centennial Endowed Chair, 2011 

IEEE Circuits and Systems Society Pre-doctoral Scholarship #2, School of Electrical Engineering and 

Computer Science (EECS), and Washington State University (WSU).  I wish to extend many thanks for this 

funding which has made this work possible.  This research was conducted in the High Performance Computer 

Systems (HiPerCopS) group at WSU under the direction of Dr. José Delgado-Frias.  I am tremendously 

appreciative of the guidance and encouragement provided by Dr. Delgado-Frias; his involvement and 

assistance greatly influenced the research presented in this dissertation.  I also appreciate the help and 

suggestions from the other members of my dissertation committee: Dr. Partha Pande and Dr. Deuk Heo.  I also 

wish to thank Dr. Jabu Nyathi for his help during the early stages of my research and I want to thank Al Guyer 

for his help with the Linux systems used for this research and for bailing me out when I was having system or 

network problems. 

I greatly appreciated the help, camaraderie, and motivation provided by the HiPerCopS group’s 

graduate students.  I wish to thank Jason Van Dyken and Zhe (Nick) Zhang for their friendship and help during 

the bulk of my research.  I thank Johnathan Cree for his friendship and help during my degree and at our 

internship at IHP-Microelectronics.  I also wish to thank Mitch Myjak and Danny Blum for their help during 

the early stages of my research and my career search.  I thank Gina Sprint, Daniel Iparraguire, and Steve Wang 

for their camaraderie during my final year.  I also want to thank students in EECS for their friendship and help: 

Vic Valgenti, Tao Yang, Sou Sarkar, Sujay Deb, Turbo Majumder, Ding Ma, Xinmin Yu, Kevin Chang,  

Tao Yang, Kylan Robinson, and Guillermo Ramirez-Conejo.  I especially thank Lorie Mochel for her support, 

motivation, and assistance during my time at WSU.  I also want to thank many other friends and students for 

their help and friendship during my time at WSU for both my B.S. and Ph.D. 

I wish to extend a special thank you to my parents, Ray and Donna, my brother Steve, and my 

relatives for their love, support, and encouragement throughout my life; I could not have been successful in my 

educational pursuits without this support.  I also wish to thank my girlfriend Elizabeth Edwards for her love, 

support, encouragement, and providing more balance to my life. 

  



iv 

 

DESIGN TECHNIQUES AND TRADEOFFS OF 

FINFET SRAM MEMORIES 

Abstract 

 

by Michael Allen Turi, Ph.D. 

Washington State University 

May 2013 

 

Chair: José G. Delgado-Frias 

 

 

Nine novel eight-transistor (8T) FinFET SRAM cell schemes using different shorted gate 

(SG) or low power (LP) FinFET configurations are studied and evaluated comprehensively in 

terms of leakage current, delay, read and write energy dissipation, energy delay product (EDP), 

and static noise margin.  Comparisons to conventional 6T SRAM schemes reveal that the 8T 

SRAM schemes perform better, especially for a 32-bit by 1024-word (32×1024) array, since 

leakage current can be reduced by low-power schemes that reverse-bias the inverter transistors’ 

back gates without adversely impacting read speed or read static noise margin.  FinFETs provide 

significantly lower leakage current and higher on-current than bulk-CMOS transistors and allow 

the 8T FinFET SRAM schemes to greatly outperform 8T 32 nm CMOS SRAM cells.  8T SRAM 

configuration choices further affect these performance metrics.  Reverse-biasing the inverter 

FinFETs’ back gates can reduce leakage current by 2-97%.  Additionally, FinFET SRAM cells 

designed for low-leakage are more effective than header and/or footer transistors added to a cell 

to reduce leakage current.  For a 32×1024 array, read delay is dominant and can be minimized by 

using SG configuration for the read transistors.  These two performance metrics are chiefly 

responsible for determining the energy consumption of a SRAM array.  Reverse-biasing the 



v 

 

inverter FinFETs’ back gates also minimizes leakage current and EDP variation due to 

parameter, voltage, and temperature (PVT) variations.  The 8T LP_INV, low-power inverters, 

scheme uses these configurations and is the best-performing FinFET SRAM scheme at a 1 V 

VDD, and in particular the 8T LP_INV1.2 cell has 60% less EDP than the conventional 8T SG 

FinFET SRAM scheme and performs best under PVT variations.  Similar relative performance is 

observed for the cells at 0.6 V near-threshold operation; most cells yield reduced EDP and the 8T 

LP_INV1.2 cell still performs best.  However, these cells suffer increased changes in 

performance due to PVT variations and increased delay.  The LP_INV1.2 cell is also the best-

performing FinFET SRAM cell at near-threshold operation; however, the 8T LP_SGR cell has 

less performance variation for PVT variations.  The tradeoff is that the LP_SGR cell has a 

slightly higher average EDP than the LP_INV1.2 cell. 

  



vi 

 

Table of Contents 

Acknowledgements ...................................................................................................................... iii 

Abstract ......................................................................................................................................... iv 

List of Tables ............................................................................................................................... xii 

List of Figures ............................................................................................................................. xvi 

Chapter 1 Introduction................................................................................................................. 1 

1.1 FinFET Technology ......................................................................................................... 2 

1.1.1 FinFET Back-Gate Biasing Strategies ...................................................................... 2 

1.1.2 FinFET Technology Model....................................................................................... 4 

1.1.3 Simulation Environment ......................................................................................... 14 

1.2 SRAM Memories ........................................................................................................... 14 

Chapter 2 A Background into 6T SRAM Cells ........................................................................ 16 

2.1 6T FinFET SRAM Design Options ................................................................................ 17 

2.2 6T FinFET SRAM Design Schemes .............................................................................. 18 

2.3 Simulation Setup ............................................................................................................ 19 

2.4 6T FinFET SRAM Performance Results ....................................................................... 19 

2.4.1 6T FinFET SRAM Dynamic Performance ............................................................. 21 

2.4.2 6T FinFET SRAM Leakage Current....................................................................... 22 

2.4.3 6T FinFET SRAM Noise Margins .......................................................................... 27 

2.4.4 6T FinFET SRAM Overall Performance Summary ............................................... 28 



vii 

 

Chapter 3 8T SRAM Cells ......................................................................................................... 29 

3.1 8T FinFET SRAM Design Options ................................................................................ 29 

3.2 8T FinFET SRAM Design Schemes .............................................................................. 32 

3.3 Simulation Setup ............................................................................................................ 33 

3.4 8T FinFET SRAM Performance Results ....................................................................... 33 

3.4.1 8T FinFET SRAM Read Operation ........................................................................ 35 

3.4.2 8T FinFET SRAM Write Operation ....................................................................... 37 

3.4.3 8T FinFET SRAM Leakage Current....................................................................... 39 

33.4.3.1 Cross-Coupled Inverter Leakage .................................................................... 43 

33.4.3.2 Write Leakage ................................................................................................. 44 

33.4.3.3 Read Leakage .................................................................................................. 46 

3.4.4 8T FinFET SRAM Noise Margins .......................................................................... 48 

3.4.5 8T FinFET SRAM Overall Performance Summary ............................................... 49 

3.5 8T FinFET SRAM Comparisons to 6T FinFET and 8T CMOS .................................... 50 

3.5.1 Dynamic Performance Comparisons to 6T FinFET Cells ...................................... 50 

3.5.2 Dynamic Performance Comparisons to 32 nm CMOS 8T Cell .............................. 51 

3.5.3 Leakage Current Comparisons to 6T FinFET Cells ............................................... 51 

3.5.4 Leakage Current Comparisons to 32 nm CMOS 8T Cell ....................................... 52 

3.5.5 Noise Margin Comparisons to 6T FinFET Cells .................................................... 53 

3.5.6 Noise Margin Comparisons to 32 nm CMOS 8T Cell ............................................ 53 



viii 

 

Chapter 4 FinFET SRAM under Process Voltage Temperature Variations ........................ 54 

4.1 Performance under Process/Parameter Variations ......................................................... 54 

4.1.1 Read Operation ....................................................................................................... 56 

4.1.2 Write Operation ...................................................................................................... 56 

4.1.3 Leakage Current ...................................................................................................... 58 

4.1.4 Noise Margins ......................................................................................................... 59 

4.1.5 Overall Performance ............................................................................................... 60 

4.2 Performance under Supply Voltage Variations .............................................................. 62 

4.3 Performance under Bias Voltage Variations .................................................................. 67 

4.4 Performance under Temperature Variations .................................................................. 72 

4.5 Summary of FinFET SRAM PVT Variations ................................................................ 78 

Chapter 5 FinFET SRAM Low-Leakage Modifications ......................................................... 79 

5.1 Header/Footer FinFETs per Cell .................................................................................... 80 

5.2 Header/Footer FinFETs per Two Cells .......................................................................... 83 

5.3 Header/Footer FinFETs per Four Cells .......................................................................... 85 

5.4 Summary of SRAM Usage of Header/Footer FinFETs ................................................. 86 

Chapter 6 Near-Threshold FinFET SRAM Operation ........................................................... 88 

6.1 SRAM Performance Results .......................................................................................... 90 

6.2 SRAM Speed Enhancements ....................................................................................... 102 

6.2.1 Word-line Boosting for 6T SRAMs ...................................................................... 104 



ix 

 

6.2.2 Word-line/Write-line and Read-line Boosting for 8T SRAMs ............................. 106 

6.3 Process, Voltage, and Temperature Variations ............................................................ 108 

6.3.1 Process/Parameter Variations ............................................................................... 109 

6.3.2 Supply Voltage Variations .................................................................................... 113 

6.3.3 Bias Voltage Variations ........................................................................................ 118 

6.3.4 Temperature Variations ........................................................................................ 123 

6.3.5 Summary of PVT Variations ................................................................................ 128 

6.4 Low-Leakage Modifications: Header/Footer FinFETs ................................................ 129 

Chapter 7 Conclusions .............................................................................................................. 135 

7.1 Contributions ................................................................................................................ 138 

7.2 Future Work ................................................................................................................. 140 

References .................................................................................................................................. 142 

Appendix A  Simulation Scripts .......................................................................................... 147 

A.1 run_ufdg.pl ................................................................................................................... 147 

A.2 netgen_ufdg.pl .............................................................................................................. 152 

A.3 mkout_ufdg.pl .............................................................................................................. 158 

A.4 init_batch_ufdg.pl ........................................................................................................ 163 

A.5 batchexec_ufdg.pl ........................................................................................................ 184 

A.6 meas_ezwave.pl............................................................................................................ 189 

A.7 meas_stub.tcl ................................................................................................................ 196 



x 

 

Appendix B  FinFET and CMOS Address Decoders ........................................................ 199 

B.1 FinFET NOR Decoder ................................................................................................. 200 

B.1.1 Simulation Setup ................................................................................................... 202 

B.1.2 Dynamic Performance: Delay and Current ........................................................... 203 

B.1.3 Static/Inactive Performance: Leakage Current ..................................................... 204 

B.1.4 Overall Performance ............................................................................................. 205 

B.1.5 Performance under PVT Variations ...................................................................... 206 

B.1.6 Conclusions ........................................................................................................... 208 

B.2 CMOS Memory Address Decoders ............................................................................. 210 

B.2.1 The Conventional NOR Decoder .......................................................................... 210 

B.2.2 The AND-NOR Decoder ...................................................................................... 212 

B.2.3 The Sense-Amp Decoder ...................................................................................... 215 

B.2.4 The AND Decoder ................................................................................................ 220 

B.2.5 Simulation Environment ....................................................................................... 222 

B.2.6 Decoding Scheme Performance ............................................................................ 225 

2B.2.6.1 Decoder Current Consumption ..................................................................... 225 

2B.2.6.2 Peripheral Current Consumption .................................................................. 227 

2B.2.6.3 Total Current, Power, and Energy ................................................................ 228 

B.2.7 Performance with Parameter Variations ............................................................... 230 

B.2.8 Decoder Scalability ............................................................................................... 232 



xi 

 

B.2.9 Conclusions ........................................................................................................... 234 

Appendix C  Complete Data for FinFET SRAM Low-Leakage Modifications .............. 236 

Appendix D  An Exploration into FinFET SRAM Thermal Performance ..................... 252 

D.1 Electro-Thermal Co-Simulation Environment ............................................................. 252 

D.1.1 run_therm_ufdg.pl Perl Script for Thermal FinFET Simulations ......................... 253 

D.2 Simulation Summary .................................................................................................... 256 

Appendix E  Publications ........................................................................................................ 257 

E.1 Journal Publications ..................................................................................................... 257 

E.2 Conference Publications ............................................................................................... 257 

 

  



xii 

 

List of Tables 

Table 1.1.   FinFET device parameters ......................................................................................... 4 

Table 1.2.   LP-mode FinFET Ion and Ioff currents for various back-gate bias voltages ............... 9 

Table 1.3.   N-type FinFET leakage current for SG and LP configurations (pA)....................... 14 

Table 1.4.   P-type FinFET leakage current for SG and LP configurations (pA) ....................... 14 

Table 2.1.   FinFET SRAM design options for 6T cell or 8T storage node/write path .............. 17 

Table 2.2.   FinFET 6T SRAM scheme configuration summary ................................................ 18 

Table 2.3.   FinFET 6T SRAM 16×16 array simulation results summary .................................. 20 

Table 2.4.   FinFET 6T SRAM 32×1024 array simulation results summary .............................. 21 

Table 2.5.   FinFET SG 6T scheme simulation results of read/write leakage (nA) .................... 24 

Table 2.6.   FinFET 6T SRAM simulation results of read/write leakage totals (nA) ................. 26 

Table 3.1.   FinFET SRAM design options for 8T read path ...................................................... 30 

Table 3.2.   Results of read path design options for 8T FinFET SRAM 16×16 array ................ 30 

Table 3.3.   Results of read path design options for 8T FinFET SRAM 32×1024 array ............ 31 

Table 3.4.   Comparisons of normal to larger read-line swings for 8T FinFET SRAM arrays .. 32 

Table 3.5.   FinFET 8T SRAM scheme configuration summary ................................................ 32 

Table 3.6.   FinFET 8T SRAM 16×16 array simulation results summary .................................. 34 

Table 3.7.   FinFET 8T SRAM 32×1024 array simulation results summary .............................. 35 

Table 3.8.   T7 and T8 configurations and read delay ................................................................ 36 

Table 3.9.   T7 and T8 configurations and read energy of 32×1024 array ................................. 37 

Table 3.10.   T1-T6 configurations and write delay...................................................................... 38 

Table 3.11.   T1-T6 configurations and write energy of 32×1024 array....................................... 39 

Table 3.13.   FinFET 8T SRAM simulation results of read/write leakage totals (nA) ................. 43 



xiii 

 

Table 3.14.   T3-T6 configurations and cross-coupled inverter leakage....................................... 44 

Table 3.15.   Transistor configurations and write leakage ............................................................ 46 

Table 3.16.   Transistor configurations and read leakage ............................................................. 47 

Table 3.17.   T3-T6 configurations and SNM ............................................................................... 49 

Table 3.18.   32 nm CMOS 8T SRAM 16×16 array simulation results ....................................... 51 

Table 3.19.   32 nm CMOS 8T SRAM simulation results of read/write leakage totals (nA) ....... 52 

Table 4.1.   FinFET SRAM parameter variation simulation results ........................................... 55 

Table 4.2.   Parameter variation results of FinFET SRAM read/write leakage totals (nA) ........ 59 

Table 4.3.   Supply voltage variation results of FinFET SRAM delay, energy, and EDP .......... 63 

Table 4.4.   Supply voltage variation results of FinFET SRAM leakage and noise margins ..... 64 

Table 4.5.   Supply voltage variations on FinFET SRAM read/write leakage totals (nA) ......... 65 

Table 4.6.   Bias voltage variation results of FinFET SRAM delay, energy, and EDP .............. 68 

Table 4.7.   Bias voltage variation results of FinFET SRAM leakage and noise margins.......... 69 

Table 4.8.   Bias voltage variation results of FinFET SRAM read/write leakage totals (nA) .... 70 

Table 4.9.   Temperature variation results of FinFET SRAM delay, energy, and EDP ............. 73 

Table 4.10.   Temperature variation results of FinFET SRAM leakage and noise margins ......... 74 

Table 4.11.   Temperature variation results of FinFET SRAM read/write leakage totals (nA) .... 75 

Table 5.1.   Leakage, delay, and EDP results of header/footer FinFETs per SRAM cell ........... 82 

Table 5.2.   Noise margin results of header/footer FinFETs per SRAM cell.............................. 83 

Table 5.3.   Leakage, delay, and EDP results of header/footer FinFETs per two SRAM cells .. 84 

Table 6.1.   Near-threshold operation results of FinFET SRAM delay, energy, and EDP ......... 96 

Table 6.2.   Near-threshold operation results of FinFET SRAM leakage and noise margins ..... 97 

Table 6.3.   Near-threshold operation results of FinFET SRAM read and write leakage ......... 100 



xiv 

 

Table 6.4.   Near-threshold operation results with boosting of delay, energy, and EDP .......... 103 

Table 6.5.   Near-threshold operation results with boosting of FinFET 6T SRAM RSNMs .... 103 

Table 6.6.   Near-threshold FinFET SRAM parameter variation simulation results ................ 109 

Table 6.7.   Near-threshold parameter variation results of read/write leakage totals (nA) ....... 110 

Table 6.8.   Near-threshold VDD variation results of FinFET SRAM delay, energy, and EDP 114 

Table 6.9.   Near-threshold VDD variation results of leakage and noise margins ..................... 115 

Table 6.10.   Near-threshold VDD variations on read/write leakage totals (nA) ......................... 116 

Table 6.12.   Near-threshold bias voltage variation results of leakage and noise margins ......... 120 

Table 6.13.   Near-threshold bias voltage variation results of read/write leakage totals (nA) .... 121 

Table 6.14.   Near-threshold temperature variation results of delay, energy, and EDP.............. 124 

Table 6.15.   Near-threshold temperature variation results of leakage and noise margins ......... 125 

Table 6.16.   Near-threshold temperature variation results of read/write leakage totals (nA) .... 126 

Table 6.17.   Leakage, delay, and EDP near-threshold results of headers/footers per cell ......... 130 

Table 6.18.   Noise margin near-threshold results of headers/footers per cell ............................ 131 

Table 6.20.   Leakage, delay, EDP near-threshold results of headers/footers per four cells ...... 133 

Table B.1.   FinFET-based NOR decoder design schemes........................................................ 201 

Table B.2.   FinFET device parameters for NOR address decoders .......................................... 202 

Table B.3.   The performance of the NOR decoder design schemes ......................................... 203 

Table B.4.   NOR address decoder performance variations due to PVT variations .................. 208 

Table B.5.   Current consumption of 4-to-16 decoding schemes .............................................. 224 

Table B.6.   4-to-16 decoder transistor counts ........................................................................... 225 

Table B.7.   Summary of parameter variation effects on 4-to-16 decoders ............................... 231 

Table B.8.   8-to-256 decoder delay and energy summary ........................................................ 233 



xv 

 

Table C.1.   6T leakage, delay, and EDP 1 V VDD results of headers/footers per cell .............. 236 

Table C.2.   6T noise margin and energy 1 V VDD results of headers/footers per cell .............. 237 

Table C.3.   8T leakage, delay, and EDP 1 V VDD results of headers/footers per cell .............. 238 

Table C.4.   8T SNM and energy 1 V VDD results of headers/footers per cell .......................... 239 

Table C.5.   Leakage, delay, and EDP 0.6 V VDD results of headers/footers per cell ............... 240 

Table C.6.   Noise margin and energy 0.6 V VDD results of headers/footers per cell ............... 241 

Table C.7.   6T leakage, delay, and EDP 1 V VDD results of headers/footers per two cells ...... 242 

Table C.8.   6T energy 1 V VDD results of headers/footers per two cells .................................. 242 

Table C.9.   8T leakage, delay, and EDP 1 V VDD results of headers/footers per two cells ...... 243 

Table C.10.   8T energy 1 V VDD results of headers/footers per two cells .................................. 244 

Table C.11.   Leakage, delay, and EDP 0.6 V VDD results of headers/footers per two cells ....... 245 

Table C.12.  Energy 0.6 V VDD results of headers/footers per two cells .................................... 246 

Table C.13.   6T leakage, delay, and EDP 1 V VDD results of headers/footers per four cells ..... 247 

Table C.14.   6T energy 1 V VDD results of headers/footers per four cells ................................. 247 

Table C.15.   8T leakage, delay, and EDP 1 V VDD results of headers/footers per four cells ..... 248 

Table C.16.   8T energy 1 V VDD results of headers/footers per four cells ................................. 249 

Table C.17.   Leakage, delay, and EDP 0.6 V VDD results of headers/footers per four cells ...... 250 

Table C.18.   Energy 0.6 V VDD results of headers/footers per four cells ................................... 251 

  



xvi 

 

List of Figures 

Figure 1.1.   FinFET configuration modes:  (a) Shorted-gate (SG) mode FinFETs (b) Low-

power (LP) mode FinFETs  (c) Independent-gate (IG) mode FinFETs ......................................... 3 

 

Figure 1.2.   I-V curve of an n-type SG-mode FinFET ............................................................... 6 

Figure 1.3.   I-V curve of a p-type SG-mode FinFET ................................................................. 6 

Figure 1.4.   I-V curve of an n-type LP-mode FinFET with a 0 V back-gate bias ...................... 7 

Figure 1.5.   I-V curve of a p-type LP-mode FinFET with a 1 V back-gate bias ........................ 7 

Figure 1.6.   I-V curve of an n-Type LP-mode FinFET with a -0.2 V back-gate bias ................ 8 

Figure 1.7.   I-V curve of a p-type LP-mode FinFET with a 1.2 V (VDD+0.2V) back-gate bias 8 

Figure 1.8.   Characteristic curves of a SG-mode FinFET inverter at different input voltages 10 

Figure 1.9.   Characteristic curves of a SG-mode FinFET inverter at different n:p ratios ........ 10 

Figure 1.10.   Characteristic curves of a LP-mode FinFET inverter using 0 V and 1 V biases .. 11 

Figure 1.11.   Characteristic curves of a LP-mode FinFET inverter using -0.2 V/1.2 V biases . 11 

Figure 1.12.   Curves of LP-mode FinFET inverter n:p ratios using 0 V/1 V biases .................. 12 

Figure 1.13.   Curves of LP-mode FinFET inverter n:p ratios using -0.2 V/1.2 V biases .......... 12 

Figure 1.14.   Characteristic curves of LP-mode FinFET inverter using various biases............. 13 

Figure 1.15.   A block diagram view of a typical memory sub-system....................................... 15 

Figure 2.1.   A 6T SRAM cell ................................................................................................... 16 

Figure 2.2.       6T SRAM cell leakage currents under a write operation to another cell in the 

column........................................................................................................................................... 23 

 

Figure 2.3.   6T SRAM cell write (a) and read (b) leakage currents ......................................... 25 

Figure 3.1.   An 8T SRAM cell ................................................................................................. 29 

Figure 3.2.       8T SRAM cell leakage currents under write and read operations on other cells in 

the column ..................................................................................................................................... 40 

 

Figure 3.3.   8T SRAM cell read leakage currents .................................................................... 42 



xvii 

 

Figure 5.1.   A header and a footer transistor on an 8T SRAM cell .......................................... 80 

Figure 6.1.       Delay, average energy, and average EDP versus VDD value of 8T SG SRAM 

cell ................................................................................................................................................. 89 

 

Figure 6.2.   Average EDP versus VDD value for 6T SRAM cells ............................................ 91 

Figure 6.3.   SNM versus VDD value for 6T SRAM cells ......................................................... 92 

Figure 6.4.   RSNM versus VDD value for 6T SRAM cells ....................................................... 92 

Figure 6.5.   Average EDP versus VDD value for 8T SRAM cells ............................................ 93 

Figure 6.6.   SNM versus VDD value for 8T SRAM cells ......................................................... 94 

Figure 6.7.   Average EDP versus VDD value for the best six SRAM cells .............................. 95 

Figure 6.8.   Read and write delays versus VDD value for the best six SRAM cells ................. 98 

Figure 6.9.   Leakage current versus VDD value for the best six SRAM cells ........................... 99 

Figure 6.10.   Noise margins versus VDD value for the best six SRAM cells ........................... 101 

Figure 6.11.   Delays versus VDD value for the 6T SRAM cells using word-line boosting ...... 105 

Figure 6.12.   EDP versus VDD value for the 6T SRAM cells using word-line boosting .......... 105 

Figure 6.13.   RSNM versus VDD value for the 6T SRAM cells using word-line boosting ...... 106 

Figure 6.14.   8T delays versus VDD value using word-line and read-line boosting ................. 107 

Figure 6.15.   8T EDP versus VDD value using word-line and read-line boosting .................... 107 

Figure B.1.   The schematic of the conventional NOR decoder [22] ....................................... 200 

Figure B.2.   A word-line of a generic FinFET NOR decoder scheme .................................... 201 

Figure B.3.   A simulation of the NOR decoder ...................................................................... 211 

Figure B.4.   The short-circuit currents of the NOR decoder [22] ........................................... 212 

Figure B.5.   The schematic of the AND-NOR decoder .......................................................... 213 

Figure B.6.   A simulation of the AND-NOR decoder ............................................................ 214 



xviii 

 

Figure B.7.   The short-circuit currents of the AND-NOR decoder when the address has the 

same MSBs (for word-line d0, A3 is 0 and A2 is 0)..................................................................... 214 

 

Figure B.8.   The pull-down currents of a previously addressed word-line of the AND-NOR 

decoder when the address has different MSBs (for word-line d0, A3 and A2 are not both 0) ..... 215 

 

Figure B.9.   The schematic of the Sense-Amp decoder .......................................................... 216 

Figure B.10.   The short-circuit currents of the Sense-Amp decoder when the word-line was not 

previously addressed ................................................................................................................... 217 

 

Figure B.11.   The short-circuit currents of the Sense-Amp decoder when the word-line was 

previously addressed ................................................................................................................... 217 

 

Figure B.12.   A simulation of the Sense-Amp decoder ............................................................ 218 

Figure B.13.   The schematic of the AND decoder .................................................................... 220 

Figure B.14.   A simulation of the AND decoder ...................................................................... 221 

Figure B.15.    The total current consumption under different address transitions for each 

decoder ........................................................................................................................................ 229 

 

Figure B.16.    A graph showing the delays and address transition energy dissipation for each 

decoder ........................................................................................................................................ 229 

 

Figure B.17.   A graph showing the impact of parameter variations (via corner simulations) on 

decoder delay.  The FF* and SS* corners influence the speeds of parameters common to both n- 

and p-type transistors as explained in footnote b of Table B.7. .................................................. 232 

 



1 

 

Chapter 1   

Introduction 

For the past four decades CMOS scaling has offered improved performance from one 

technology node to the next.  This in turn has brought smaller and faster digital systems.  

However, future bulk CMOS scaling faces considerable challenges due to material and process 

technology limits [1].  According to the 2011 International Technology Roadmap for 

Semiconductors (ITRS) [2], obstacles to the increased scaling of bulk CMOS include short-

channel effects, sub-threshold leakage, gate-dielectric leakage, and device-to-device variations.  

These obstacles affect circuit and system reliability.  The aforementioned challenges will become 

more prominent as CMOS scaling approaches atomic and quantum-mechanical physics 

boundaries [3].  Efforts to extend silicon scaling through innovations in materials and device 

structure continue. 

FinFETs, which are double-gate field-effect transistors, are able to overcome these 

scaling obstacles [2] [4].  One of the most important features of FinFETs is that the front and 

back gates may be made independent and biased to control the current and the device threshold 

voltage [5].  This ability to control threshold voltage variations offers a temporary means to 

manage the challenge of standby power dissipation.  FinFET is considered a promising 

technology that can impact the immediate future due to its high-performance, low leakage power 

consumption, reduced susceptibility to process variations, and ease of manufacture using current 

processes [1].  Gate lengths of 10 nm and below will be achievable with FinFETs.  These 

features make FinFETs a strong candidate to bridge the technology gap between mainstream 

bulk CMOS and non-Silicon devices, such as carbon nanotubes. 



2 

 

FinFETs can be a replacement for bulk-CMOS transistors in many different designs.  Its 

low leakage/standby power property makes FinFETs a desirable option for memory sub-systems.  

Memory modules are widely used in most digital and computer systems.  Leakage power is very 

important in memory cells since most memory applications access only one or very few memory 

rows at a given time.  The great majority of memory cells draw only leakage power.  In 

microprocessors, the clock network power consumption due to memory devices (i.e., cache 

memory, register, and pipeline registers) accounts for 51% of the total power [6].  The 

application of FinFET technology to memories can save significant power.  Optimizations can 

also be made to other components of memory modules, such as the address decoder and I/O 

buffers, to obtain power savings or a faster system. 

1.1 FinFET Technology 

The following subsections include an introduction to the FinFET technology used in this 

research.  A key benefit of using FinFETs is the ability to configure the back gates of the devices 

to provide greater speed or greater leakage control; this design flexibility is described in the next 

subsection.  Afterwards, the FinFET technology model used in this research is presented as well 

as the scripts used to aid simulating and gathering simulation results. 

1.1.1 FinFET Back-Gate Biasing Strategies 

FinFETs suffer from less leakage current since their geometry allows for better control 

over the channel.  FinFETs may be substituted into a former bulk-CMOS design by merely 

shorting the front- and back-gates together during device fabrication to allow only one gate 

connection per FinFET.  This transistor configuration is often called shorted gate (SG) and is 

illustrated in Figure 1.1(a).  However, the FinFET’s gates may be made independent (also 



3 

 

referred to as a MIGFET, or multiple independent gate FET) to allow for separate control over 

the front- and back-gates [5].  An independent back gate enables greater design flexibility and 

allows novel biasing or control schemes to increase device speed or reduce power consumption.  

In the low-power (LP) operating mode, presented in Figure 1.1(b), a reverse-bias on the back 

gate greatly reduces leakage current (Ioff).  Having a back-gate bias of -0.2V on an n-type 

FinFET reduces Ioff by 90% of a comparable SG FinFET [7].  A reverse-bias negatively affects 

the on current (Ion) of the transistor.  Ion reduces by about 60% in the LP mode when the reverse-

bias is set to -0.2V for an n-type transistor [7].  Smaller reverse-biases have similar effects on Ioff 

and Ion, but to a lesser extent [7].  These properties make FinFETs promising devices for SRAM 

memories.  Back-gate biases for LP-mode transistors can be statically driven by a voltage 

generator circuit [8].  Dynamic driving of back-gate biases is more difficult and requires more 

complex voltage generator circuitry, but could lead to more optimal performance of the biased 

system.  The back-gate can also be tied to another input, leading to independent-gate (IG) 

operating mode, pictured in Figure 1.1(c). 

SG-Mode

Input A

Input A

      

LP-Mode

Input A

Input A

Vbias-low

(≤ GND)

Vbias-high

(≥ VDD)

  

IG-Mode

Input A

Input A Input B

Input B

 
(a)                                          (b)                                                      (c) 

Figure 1.1.  FinFET configuration modes:  (a) Shorted-gate (SG) mode FinFETs 

(b) Low-power (LP) mode FinFETs  (c) Independent-gate (IG) mode FinFETs 

 



4 

 

1.1.2 FinFET Technology Model 

For this research, University of Florida’s Spice3-UFDG (Linux version 3.7) was used to 

model n- and p-type fully-depleted (FD) silicon-on-insulator (SOI) FinFETs.  Spice3-UFDG is a 

physics-based model calibrated to follow predicted results from Synopsys MEDICI and 

measured results from symmetrical double-gate FinFETs fabricated at Motorola [9] [10].  Other 

commonly-used FinFET simulation models available to the research community are the 

predictive technology model (PTM) [11] and BSIM-CMG/BSIM-IMG [12].  Table 1.1 shows the 

values of FinFET parameters used in this research.  The LG, Tox, and RSD values are from the 

“High-performance Logic Technology Requirements” in the 2007 ITRS Process Integration, 

Devices, and Structures report [2]. 

 

Table 1.1.  FinFET device parameters 

 

 

Parameter Value

N-Channel Surface Orientation <110>

Gate length (LG) 30 nm

Gate to source/drain underlap (LSD) 12 nm

Fin height (Hfin) 75 nm

Fin thickness (TSI) 15 nm

Oxide thickness (Tox) 1.2 nm

Gate thickness (TG) 20 nm

Gate work function (ΦG) 4.4 eV (n-type)   4.8 eV (p-type)

565 cm
2
/(V-s) (n-type)

250 cm
2
/(V-s) (p-type)

Fin body doping (NBody) 10
15

 cm
-3

Source/drain doping (NDS) 10
20

 cm
-3

Source/drain resistance (RSD) 170 Ω-µm

Supply voltage (VDD) 1 V

Low-field mobility for thick TSI (µ0)



5 

 

The following figures show the current-voltage (I-V) characteristics of this particular 

FinFET technology sizing.  Figure 1.2 and Figure 1.3 show the I-V characteristics for n- and p-

type SG-mode FinFETs, respectively.  Figure 1.4 and Figure 1.5 show the I-V characteristics for 

n- and p-type LP-mode FinFETs biased at 0 V and 1 V, respectively.  Figure 1.6 and Figure 1.7 

show the I-V characteristics for n- and p-type LP-mode FinFETs biased at -0.2 V and 1.2 V, 

respectively. 

  



6 

 

 
Figure 1.2.  I-V curve of an n-type SG-mode FinFET 

 
Figure 1.3.  I-V curve of a p-type SG-mode FinFET 

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I D
S

(A
)

VDS (V)

Ids @ Vgs = 1.2V

Ids @ Vgs = 1V

Ids @ Vgs = 0.8V

Ids @ Vgs = 0.6V

Ids @ Vgs = 0.4V

Ids @ Vgs = 0.2V

Ids @ Vgs = 0V

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I S
D

(A
)

VSD (V)

Isd @ Vsg = 1.2V

Isd @ Vsg = 1V

Isd @ Vsg = 0.8V

Isd @ Vsg = 0.6V

Isd @ Vsg = 0.4V

Isd @ Vsg = 0.2V

Isd @ Vsg = 0V



7 

 

 
Figure 1.4.  I-V curve of an n-type LP-mode FinFET with a 0 V back-gate bias 

 
Figure 1.5.  I-V curve of a p-type LP-mode FinFET with a 1 V back-gate bias 

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

6.0E-05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I D
S

(A
)

VDS (V)

Ids @ Vgs = 1V Ids @ Vgs = 0.4V

Ids @ Vgs = 0.8V Ids @ Vgs = 0.2V

Ids @ Vgs = 0.6V Ids @ Vgs = 0V

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

1.6E-05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I S
D

(A
)

VSD (V)

Isd @ Vsg = 1V Isd @ Vsg = 0.4V

Isd @ Vsg = 0.8V Isd @ Vsg = 0.2V

Isd @ Vsg = 0.6V Isd @ Vsg = 0V



8 

 

 
Figure 1.6.  I-V curve of an n-Type LP-mode FinFET with a -0.2 V back-gate bias 

 
Figure 1.7.  I-V curve of a p-type LP-mode FinFET with a 1.2 V (VDD+0.2V) back-gate bias 

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

6.0E-05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I D
S

(A
)

VDS (V)

Ids @ Vgs = 1V Ids @ Vgs = 0.4V

Ids @ Vgs = 0.8V Ids @ Vgs = 0.2V

Ids @ Vgs = 0.6V Ids @ Vgs = 0V

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I S
D

(A
)

VSD (V)

Isd @ Vsg = 1V Isd @ Vsg = 0.4V

Isd @ Vsg = 0.8V Isd @ Vsg = 0.2V

Isd @ Vsg = 0.6V Isd @ Vsg = 0V



9 

 

Table 1.2 shows the Ion and Ioff characteristics of single-fin n- and p-type FinFETs in LP-

configuration.  This table shows the current characteristics for varied values of back-gate biases, 

including biases which reverse-bias and forward-bias the back gate.  A small forward-bias on the 

back gate enables a slight linear increase in Ion while Ioff exponentially increases, however, a 

small reverse-bias on the back gate generates a slight linear decrease in Ion while Ioff 

exponentially decreases—this creates a better Ion:Ioff ratio. 

 

Table 1.2.  LP-mode FinFET Ion and Ioff currents for various back-gate bias voltages 

 

 

For more model characterization, the following figures show the current-voltage inverter 

characteristic curves of this particular FinFET technology sizing.  Figure 1.8 and Figure 1.9 

show the curves for SG-mode inverters for different input voltages and different n-type-to-p-type 

(n:p) ratios, respectively.  Figure 1.10 and Figure 1.11 show the curves for different input 

voltages for LP-mode inverters with an n-bias of 0 V and a p-bias of 1 V and for LP-mode 

inverters with a n-bias of -0.2 V and a p-bias of 1.2 V, respectively, and Figure 1.12 and Figure 

1.13 show the curves for different n:p ratios of these two LP-mode inverters.  Figure 1.14 shows 

the character curves for LP-mode inverters using four combinations of back-gate biases. 

I on  (µA) I off  (pA) I on  (µA) I off  (pA)

-0.4 42.6 1 1.4 28.9 0.3

-0.3 46.3 3 1.3 31.7 1

-0.2 50.3 18 1.2 34.7 4

-0.1 54.2 72 1.1 37.7 15

0.0 58.2 387 1.0 40.8 78

0.1 62.3 2658 0.9 44.0 564

0.2 66.1 14824 0.8 47.1 3772

0.3 69.7 22667 0.7 49.6 8532

N-Type FinFET P-Type FinFET

Current CurrentBack-Gate 

Bias (V)

Back-Gate 

Bias (V)



10 

 

 
Figure 1.8.  Characteristic curves of a SG-mode FinFET inverter at different input voltages 

 
Figure 1.9.  Characteristic curves of a SG-mode FinFET inverter at different n:p ratios 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output @ 1V

Output @ 800mV

Output @ 600mV

Output @ 400mV

Output @ 200mV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output for n:p = 1:1

Output for n:p = 1:2



11 

 

 
Figure 1.10.  Characteristic curves of a LP-mode FinFET inverter using 0 V and 1 V biases 

 
Figure 1.11.  Characteristic curves of a LP-mode FinFET inverter using -0.2 V/1.2 V biases 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output @ 1V

Output @ 800mV

Output @ 600mV

Output @ 400mV

Output @ 200mV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output @ 1V

Output @ 800mV

Output @ 600mV

Output @ 400mV

Output @ 200mV



12 

 

 
Figure 1.12.  Curves of LP-mode FinFET inverter n:p ratios using 0 V/1 V biases 

 
Figure 1.13.  Curves of LP-mode FinFET inverter n:p ratios using -0.2 V/1.2 V biases 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output for n:p = 1:1

Output for n:p = 1:2

Output for n:p = 1:3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output for n:p = 1:1

Output for n:p = 1:2

Output for n:p = 1:3



13 

 

 
Figure 1.14.  Characteristic curves of LP-mode FinFET inverter using various biases 

 

In addition, as discussed in Section 1.1.1, back-gate biasing strategies can reduce FinFET 

leakage current and thus, SRAM power consumption.  Table 1.3 and Table 1.4 show the leakage 

values for n- and p-type FinFETs, respectively, in SG and LP configurations.  A single fin n-type 

FinFET has approximately 5X more leakage current than a single fin p-type FinFET; specifically 

4.89X if in LP configuration with biases at -0.2 V for n-type and 1.2 V (VDD + 0.2 V) for p-type, 

4.95X if in LP configuration with biases at 0 V for n-type and 1 V VDD for p-type, and 5.53X if 

in SG configuration.  For FinFETs with multiple fins, the leakage is directly proportional to the 

number of fins, e.g. compared to a single fin n-type SG FinFET, a FinFET with two fins has 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
u

tp
u

t 
(V

)

Input (V)

Output for n-bias=0V; p-bias=1V

Output for n-bias=-0.2V; p-bias=1V

Output for n-bias=0V; p-bias=1.2V

Output for n-bias=-0.2V; p-bias=1.2V



14 

 

twice the amount of leakage (1 nA vs. 0.5 nA) and a FinFET with three fins has three times the 

amount of leakage (1.5 nA vs. 0.5 nA). 

 

Table 1.3.  N-type FinFET leakage current for SG and LP configurations (pA) 

 

Table 1.4.  P-type FinFET leakage current for SG and LP configurations (pA) 

 

 

1.1.3 Simulation Environment 

In addition to the simulator, numerous scripts were written in Perl and tcl to aid the 

simulation and data gathering for this research.  The primary scripts are described and included 

in Appendix A. 

1.2 SRAM Memories 

A block diagram of a typical memory sub-system is provided in Figure 1.15.  In this 

figure, the address bits are An-1-A0, the word-lines are dm-1-d0, and the bit-lines are Dn-1-D0.  The 

memory array is made up of memory cells.  In this research, SRAM memories are studied, and 

so two common types of SRAM cells are analyzed: six-transistor (6T) and eight-transistor (8T) 

SRAM cells.  These cells will be explained and studied in more depth throughout this 

1 2 3

- 17.6 35.3 52.9 0.04

0 387.2 774.4 1161.7 0.77

t 501.4 1002.7 1504.1 --

N-Type 

Config.

Number of Fins Comp. 

vs. t

P-Type Config. Leakage (pA) Comp. vs. t

+ 3.6 0.04

vdd 78.2 0.86

t 90.6 --



15 

 

dissertation.  The memory array relies on a memory address decoder for its word-line inputs and 

input-output (I/O) buffers for its bit-line I/Os; these other circuits are the memory peripheral 

circuitry.  Address decoders translate an address into the correct word-lines to be enabled or 

disabled.  For more information about address decoders, Appendix B includes early research into 

memory address decoders using FinFETs and bulk-CMOS.  I/O buffers drive values to be 

written onto the bit-lines for the memory address and read values from the bit-lines for a read 

operation.  The later operation is more-specifically performed by bit-line sense-amplifiers.  

While this research did not examine FinFET bit-line sense-amplifiers, there is some research 

available about the application of FinFETs to this circuitry [13]. 

 

 

Figure 1.15.  A block diagram view of a typical memory sub-system 

 

 

  



16 

 

Chapter 2   

A Background into 6T SRAM Cells 

The six-transistor (6T) static memory cell, shown in Figure 2.1, is widely accepted as the 

standard memory cell.  It is designed to achieve fast read times with the inclusion of sense 

amplifiers.  The standard 6T cell requires that a logic value and its inverse be placed on the bit 

lines during a write operation.  The word line (WL) is raised to logic 1 and the logic levels on the 

bit lines are passed into the cross-coupled inverter pair.  Reading from the memory cell entails 

pre-charging the bit lines and then asserting logic 1 on the word line.  The complexity of this cell 

is in arriving at the appropriate device sizes for proper functionality.  Device sizing for a CMOS-

based cell is driven primarily by area and functional operation constraints; sizing must be 

carefully performed to maintain a stored value, enable the cell to push a stored value to the bit 

lines with reasonable speed for a read operation, and to correctly transfer and overwrite new 

logic values into the cell for a write operation. 

 

T1 T2

T5 T3

T6 T4

Bit-line NBit-line

Bit-cell

NBit-cell

Word-line (Read/Write-line)

 

Figure 2.1.  A 6T SRAM cell 



17 

 

2.1 6T FinFET SRAM Design Options 

The 6T and eight-transistor (8T) SRAM cells examined in this paper are symmetrical, 

therefore if a 6T cell or an 8T cell’s storage node and write path are to be symmetric and have 

similar performance for a stored “1” or “0,” then each pair of transistors must have the same 

configuration: the Pass transistors (T1 and T2), n-type inverter (Inv-N) transistors (T4 and T6), 

and p-type inverter (Inv-P) transistors (T3 and T5).  Table 2.1 presents all eight possible design 

options for a 6T FinFET cell, or the six-transistor storage node or write path for an 8T FinFET 

cell, when choosing between SG-mode or LP-mode for each type of transistor.  This was used 

when choosing the 6T schemes to be studied, displayed in Table 2.2. 

 

Table 2.1.  FinFET SRAM design options for 6T cell or 8T storage node/write path 

 

Pass Tran.

T1, T2

Inv. N-Tran.

T4, T6

Inv. P-Tran.

T3, T5

I SG SG SG

II SG SG LP

III SG LP SG

IV SG LP LP

V LP SG SG

VI LP SG LP

VII LP LP SG

VIII LP LP LP

Transistor Configurations

Type



18 

 

Table 2.2.  FinFET 6T SRAM scheme configuration summary 

 
* FinFET fin counts are labeled with the configuration mode, SG, LP, 

IG-C (independent gate mode with back gate tied to cell value), and 

LP-WWL (low-power using a write-word-line), for each transistor type 
a
 IG2 [14] uses SG-mode p-type FinFETs for Pass transistors T1, T2 

 

2.2 6T FinFET SRAM Design Schemes 

Twelve 6T FinFET SRAM schemes (with back-gate bias variants) have been simulated.  

The 6T schemes examined in this paper are double-ended write, double-ended read, and have 

one read/write-line (word-line).  Four schemes are from other research.  The Pass Gate Feedback 

(PGFB) and Pull-Up Write Gating (PUWG) (with write word-line swing of 0V to VDD=1V) 

schemes are from [15].  These two schemes connect the back gates of the pass transistors to the 

contents of the cell.  The PUWG scheme also adds an additional write word-line which biases 

the back gates of the p-type inverter transistors to VDD when it is active during a write operation.  

The Independent-Gate 1 (IG1) and Independent-Gate 2 (IG2) schemes are from [14].  The IG1 

scheme is a Type VI SRAM scheme, but the IG2 scheme uses SG-mode p-type transistors for the 

Scheme

Storage 

Node 

Type

Pass Tran.

T1, T2

Inv-N Tran.

T4, T6

Inv-P Tran.

T3, T5

SG I SG / 1 SG / 1 SG / 1

LP VIII LP / 1 LP / 1 LP / 1

LP_INV IV SG / 1 LP / 1 LP / 1

LP_INVN III SG / 1 LP / 1 SG / 1

LP_INVP II SG / 1 SG / 1 LP / 1

PGFB [15] -- IG-C / 1 SG / 1 SG / 1

PUWG [15] -- IG-C / 1 SG / 1 LP-WWL / 1

IG1 [14] -- LP / 1 SG / 1 LP / 1

IG2 [14]
a -- SG / 1 SG / 1 LP / 1

Type5 V LP / 2 SG / 1 SG / 1

Type6 VI LP / 1 SG / 1 LP / 1

Type7 VII LP / 2 LP / 2 SG / 1



19 

 

pass-transistors T1 and T2.  Therefore in addition, the word-line is generated to be active-low for 

this scheme.  The scheme configurations and fin counts were chosen for the best energy-delay 

product (EDP), assuming 80% read and 20% write operations, for the 32×1024 array. 

2.3 Simulation Setup 

In addition to the loading from the other words on the Bit and NBit lines, 4X-sized 

inverters are added to simulate the input capacitance of a pipeline stage’s flip-flop.  The tri-state 

inverters of the write driver and the precharge transistors are 3X-sized.  The read delay is the 

propagation delay from 50% of the read signal to when the Bit (or NBit) line discharges from 

VDD to 50% of VDD.  This is a conservative estimate of the sense margin required for a sense-

amplifier to sense the value of the bit for reading.  The write delay is the propagation delay from 

50% of the write signal (with the Bit and NBit lines already set with the write value) to when the 

cell’s internal Bit and NBit nodes are within 10% of their final values; e.g. for a write “1” 

operation, the value of the cell’s internal Bit node must be at least 90% of VDD and the value of 

the cell’s internal NBit node must be at most 10% of VDD. 

2.4 6T FinFET SRAM Performance Results 

Table 2.3 and Table 2.4 present the performance results of the 6T FinFET SRAM 

schemes for the 16×16 and 32×1024 arrays, respectively.  These results were obtained via 

simulation and contain performance data for the dynamic performance (read and write 

operations), leakage current, and noise margins which will be examined in the following 

subsections.  The last subsection will summarize the performance of the 6T schemes as a whole. 



20 

 

Table 2.3.  FinFET 6T SRAM 16×16 array simulation results summary 

 
* Average energy is calculated as 80% of the read energy plus 20% of the write energy.  The 

average energy-delay product (EDP) is the product of the average energy and the delay. 
+
 Config Key: t = tied/SG; 0 = LP: 0 V bias; - = LP: -0.2 V bias; vdd = LP: VDD=1 V bias; 

+ = LP: 1.2 V bias; IG-C = independent gate: back gate tied to internal cell net; 

wwl = write word line with 0 to VDD=1 V swing; p-t = p-type FinFET in SG; 

2 x - = 2 fins per tran. LP: 0V bias 

Rd Wr Rd Wr Ave*

SG t t t 6 0.59 360 124 4.5 5.6 0.52 3.84 1.19 6.59

LP 0 0 vdd 6 0.47 430 209 9.1 6.4 0.24 2.25 0.64 5.80

LP 0 0 + 6 0.39 414 190 9.1 6.1 0.24 1.87 0.56 5.08

LP - - vdd 6 0.10 443 241 10.6 6.9 0.25 2.34 0.67 7.05

LP - - + 6 0.02 442 222 10.6 6.7 0.24 1.92 0.58 6.14

LP_INV t 0 vdd 6 0.47 430 29 6.3 3.4 0.34 1.17 0.50 3.19

LP_INV t 0 + 6 0.39 414 45 6.3 3.5 0.30 1.05 0.45 2.84

LP_INV t - vdd 6 0.10 443 23 7.0 3.3 0.37 1.13 0.52 3.64

LP_INV t - + 6 0.02 442 37 7.0 3.5 0.33 1.08 0.48 3.35

LP_INVN t 0 t 6 0.48 391 80 6.1 4.2 0.68 2.46 1.04 6.28

LP_INVN t - t 6 0.11 378 81 6.7 4.1 0.75 2.30 1.06 7.07

LP_INVP t t vdd 6 0.58 343 73 4.6 5.1 0.28 1.54 0.53 2.68

LP_INVP t t + 6 0.51 325 56 4.6 5.2 0.27 1.29 0.47 2.45

PGFB [15] IG-C t t 6 0.59 360 194 7.3 11.6 0.42 10.17 2.37 27.61

PUWG [15] IG-C t wwl 6 0.50 302 78 7.3 7.6 0.35 3.10 0.90 6.80

IG1 [14] 0 t vdd 6 0.58 343 207 8.1 9.4 0.20 3.47 0.85 7.97

IG2 [14] p-t t vdd 6 0.58 343 99 6.6 5.8 0.18 1.63 0.47 3.10

Type5 2 x 0 t t 8 0.59 360 200 6.1 7.4 0.45 6.26 1.61 11.95

Type6 0 t + 6 0.51 325 188 8.1 9.0 0.19 2.82 0.71 6.42

Type7 2 x - 2 x - t 10 0.13 398 272 6.1 8.2 0.48 5.71 1.52 12.51

Delay (ps)

R
S

N
M

 (
m

V
)

Energy (fJ)

16 bits × 16 words Array

Ave* 

EDP 

(ps×fJ)

Scheme

Configuration
+

#
 F

in
s

L
ea

k
a

g
e 

/ 

C
el

l 
(n

A
)

S
N

M
 (

m
V

)

P
a

ss

In
v

-N

In
v

-P



21 

 

Table 2.4.  FinFET 6T SRAM 32×1024 array simulation results summary 

 
* Average energy is calculated as 80% of the read energy plus 20% of the write energy.  The 

average energy-delay product (EDP) is the product of the average energy and the delay. 
+
 Config Key: t = tied/SG; 0 = LP: 0 V bias; - = LP: -0.2 V bias; vdd = LP: VDD=1 V bias; 

+ = LP: 1.2 V bias; IG-C = independent gate: back gate tied to internal cell net; 

wwl = write word line with 0 to VDD=1 V swing; p-t = p-type FinFET in SG; 

2 x - = 2 fins per tran. LP: 0V bias 

 

2.4.1 6T FinFET SRAM Dynamic Performance 

Of the twelve simulated 6T SRAM schemes, the LP_INVP scheme has the lowest delay, 

5.1 and 5.2 ps for the 16×16 array and 32 ps for the 32×1024 array, and lowest average EDP, 

2.68 and 2.45 ps×fJ for the 16×16 array and 76 and 69 ps×fJ for the 32×1024 array, for both 

array sizes.  LP_INVP is up to 8.9% faster than the SG scheme (5.6 ps) for the 16×16 array and 

Rd Wr Rd Wr Ave*

SG t t t 6 0.59 360 124 32 5 2.4 9.3 3.8 120

LP 0 0 vdd 6 0.47 430 209 71 6 1.6 5.6 2.4 170

LP 0 0 + 6 0.39 414 190 71 5 1.4 4.7 2.1 146

LP - - vdd 6 0.10 443 241 84 6 0.8 5 1.6 135

LP - - + 6 0.02 442 222 84 6 0.5 3.9 1.2 103

LP_INV t 0 vdd 6 0.47 430 29 49 3 2.3 3.5 2.5 123

LP_INV t 0 + 6 0.39 414 45 49 3 2.1 3.1 2.3 113

LP_INV t - vdd 6 0.10 443 23 56 3 1.3 2.9 1.6 89

LP_INV t - + 6 0.02 442 37 56 3 1.1 2.4 1.3 75

LP_INVN t 0 t 6 0.48 391 80 48 3 3 6.5 3.7 181

LP_INVN t - t 6 0.11 378 81 55 3 2.2 5.5 2.9 157

LP_INVP t t vdd 6 0.58 343 73 32 5 1.9 4.4 2.4 76

LP_INVP t t + 6 0.51 325 56 32 5 1.8 3.8 2.2 69

PGFB [15] IG-C t t 6 0.59 360 194 55 8 2 16.2 4.8 267

PUWG [15] IG-C t wwl 6 0.50 302 78 55 7 1.7 7.8 2.9 161

IG1 [14] 0 t vdd 6 0.58 343 207 62 9 1.6 8.7 3 188

IG2 [14] p-t t vdd 6 0.58 343 99 54 5 1.9 5.5 2.7 144

Type5 2 x 0 t t 8 0.59 360 200 77 6 2.8 13.4 4.9 375

Type6 0 t + 6 0.51 325 188 62 9 1.5 7.3 2.6 163

Type7 2 x - 2 x - t 10 0.13 398 272 79 7 1.3 11.7 3.4 267

Delay (ps)

R
S

N
M

 (
m

V
)

32 bits × 1024 words Array

Ave* 

EDP 

(ps×fJ)

Energy (fJ)Scheme

Configuration
+

#
 F

in
s

L
ea

k
a

g
e 

/ 

C
el

l 
(n

A
)

S
N

M
 (

m
V

)

P
a

ss

In
v
-N

In
v
-P



22 

 

is equally as fast for the 32×1024 array.  The average EDP of the SG scheme is as much as 2.6X 

and 1.7X larger than that of LP_INVP for the 16×16 and 32×1024 array sizes, respectively.  

LP_INVP uses SG configuration for the pass transistors and n-type inverter FinFETs to achieve a 

faster read time, similar to the SG scheme.  For LP_INVP, using an additional voltage of 1.2 V 

to reverse-bias the p-type inverter FinFETs provides additional EDP savings compared to using 

the 1 V VDD, however, this additional voltage must be routed to each SRAM cell.  The LP_INV 

scheme also performs well, but is slower than the LP_INVP scheme by 34-75% (LP_INV’s 

delay is as high as 7.0 ps for the 16×16 array and 56 ps for the 32×1024 array) and does not 

provide any savings in terms of fewer additional voltages required.  The Type5, Type7, and 

PGFB [15] schemes have the highest average EDPs.  For both array sizes, these schemes have 

the highest write energies which cause them to have the highest average energies, and these 

schemes also have among the highest delays.  For the 32×1024 array, the average EDPs of these 

schemes are 3.1X (375 ps×fJ for Type5) and 2.2X (267 ps×fJ for Type7 and PGFB [15]) greater 

than the SG scheme’s EDP of 120 ps×fJ. 

2.4.2 6T FinFET SRAM Leakage Current 

There are four major leakage currents in the 6T SRAM as shown in Figure 2.2.  The most 

commonly reported are the inverters’ leakage currents, as shown in Table 2.3 and Table 2.4.  

These currents flow through transistors T3 and T4 for inverter 1 (in Figure 2.2, T4 is off but 

subthreshold current flows through the transistor).  Inverter 2 formed by transistors T5 and T6 

has T5 off.  These two leakage currents are usually referred as static current (or static power).  In 

this paper these two currents are called Iinv1 and Iinv2.  In addition to the leakage of the memory 

cell inverters, leakage is present when a write or read operation occurs to a different SRAM cell 

in the column.  Memory cells that are not selected for a write or read operation draw current 



23 

 

from (or to) the drivers.  Figure 2.2 shows a SRAM cell with a “0” stored (inverter 1 and 2 

output 1 and 0, respectively).  If a “1” is being written (Bit and NBit are 1 and 0, respectively) 

there is a leakage current from the driver of the Bit line through transistor T1; this leakage 

current is called IT1.  There is another leakage current from the cell to the driver of the NBit line 

through T2; this leakage current is called IT2.  When a read occurs and the cell is not selected, at 

precharge time both Bit and NBit lines are set to “1.”  Using the example of Figure 2.2, current 

IT1 is the same as when there is a write while there is a much smaller current through transistor 

T2. 

 

Figure 2.2.  6T SRAM cell leakage currents under a write operation to another cell in the 

column 

 

Table 2.5 shows the leakage currents for the read and write operations for the 6T SG 

scheme.  This table diagrams the status of the cell’s value and the Bit and NBit values using the 

notation: Bit  [Inv2_output  Inv1_output]  NBit.  The example shown in Figure 2.2 is the status 

 

1 0 0 

B
it  

N
B

it 

0 

1 

T1 T2 

T3 

T4 

T5 

T6 

1 0 

0 

1 

Read/Write-line    0 

Iin
v

1  

Iin
v

2  

IT1 IT2 

0                         1 

Read/Write Drivers 

0          1 



24 

 

1 [0 1] 0.  There is much symmetry in the leakage currents for each 6T scheme.  There are three 

distinct leakage cases: write operation with the bitlines and cell having the same values (0 [0 1] 1 

and 1 [1 0] 0), write operation with the bitlines and the cell having opposite values (0 [1 0] 1 and 

1 [0 1] 0), and the read operation (1 [0 1] 1 and 1 [1 0] 1); each of these cases are diagramed in 

Figure 2.3.  The IT1 and IT2 leakage currents are maximized when the value in the cell is opposite 

that of the Bit or NBit line and this also maximizes the total leakage.  The total leakage current 

for the three cases are presented in Table 2.6 for each 6T scheme. 

 

Table 2.5.  FinFET SG 6T scheme simulation results of read/write leakage (nA) 

 

0 [0 1] 1 1 [0 1] 0 0 [1 0] 1 1 [1 0] 0 1 [0 1] 1 1 [1 0] 1

Iinv1 0.50 0.50 0.09 0.09 0.50 0.09

Iinv2 0.09 0.09 0.50 0.50 0.09 0.50

IT1 0.00 0.50 0.50 0.00 0.50 0.00

IT2 0.00 0.50 0.50 0.00 0.00 0.50

ITO TAL 0.59 1.59 1.59 0.59 1.09 1.09

Write Condition Read ConditionLeakage 

Current



25 

 

T1 T2

T5T3

T6T4B
it

N
B

it

Word-line (Read/Write-line) = 0

0 10 1
off off

off

off

on

on

0 [0 1] 1

T1 T2

T5T3

T6T4B
it

N
B

it
Word-line (Read/Write-line) = 0

1 01 0
off off

on

on

off

off

1 [1 0] 0

T1 T2

T5T3

T6T4B
it

N
B

it

Word-line (Read/Write-line) = 0

1 00 1
off off

off

off

on

on

1 [0 1] 0

T1 T2

T5T3

T6T4B
it

N
B

it

Word-line (Read/Write-line) = 0

0 11 0
off off

on

on

off

off

0 [1 0] 1

IT1 IT2 IT2IT1

IT2 ≈ 0 IT1 ≈ 0 IT2 ≈ 0IT1 ≈ 0

 

(a) 

T1 T2

T5T3

T6T4B
it

N
B

it

Word-line (Read/Write-line) = 0

1 10 1
off off

off

off

on

on

1 [0 1] 1

T1 T2

T5T3

T6T4B
it

N
B

it

Word-line (Read/Write-line) = 0

1 11 0
off off

on

on

off

off

1 [1 0] 1

IT1 IT2 ≈ 0 IT2IT1 ≈ 0

 

(b) 

Figure 2.3.  6T SRAM cell write (a) and read (b) leakage currents 



26 

 

Table 2.6.  FinFET 6T SRAM simulation results of read/write leakage totals (nA) 

 

 

The schemes with cross-coupled transistors T3-T6 in LP configuration have the lowest 

leakage current.  Due to this, the LP and LP_INV schemes have the lowest leakage of 0.02 nA; 

the 0.59 nA leakage of the SG scheme is 29.5X higher.  In addition, read and write leakage 

current is minimized when T1 and T2 are in LP configuration and minimum-sized.  Because of 

this, the LP scheme has the lowest read and write leakage current with its average write leakage 

and read leakage both equaling 0.04 nA.  This is 27X less than the 1.09 nA average write leakage 

and read leakage of the SG scheme.  Type7 also has low write and read leakage, 0.17 nA and 

P
a
ss

In
v
-N

In
v
-P

SG t t t 6 0.59 1.59 1.09

LP 0 0 vdd 6 0.47 1.24 0.85

LP 0 0 + 6 0.39 1.17 0.78

LP - - vdd 6 0.10 0.13 0.11

LP - - + 6 0.02 0.06 0.04

LP_INV t 0 vdd 6 0.47 1.47 0.97

LP_INV t 0 + 6 0.39 1.39 0.89

LP_INV t - vdd 6 0.10 1.10 0.60

LP_INV t - + 6 0.02 1.02 0.52

LP_INVN t 0 t 6 0.48 1.48 0.98

LP_INVN t - t 6 0.11 1.11 0.61

LP_INVP t t vdd 6 0.58 1.58 1.08

LP_INVP t t + 6 0.51 1.51 1.01

PGFB [15] IG-C t t 6 0.59 0.98 0.98

PUWG [15] IG-C t wwl 6 0.50 0.89 0.89

IG1 [14] 0 t vdd 6 0.58 1.35 0.97

IG2 [14] p-t t vdd 6 0.58 0.76 0.67

Type5 2 x 0 t t 8 0.59 2.14 1.37

Type6 0 t + 6 0.51 1.28 0.89

Type7 2 x - 2 x - t 10 0.13 0.20 0.16

Read

1 [0 1] 1
Scheme

Configuration

#
 F

in
s

Write

0 [0 1] 1

Write

1 [0 1] 0



27 

 

0.16 nA respectively, and both values are at least 6.4X less than the SG scheme due to reverse-

biasing the pass transistors T1 and T2. 

2.4.3 6T FinFET SRAM Noise Margins 

Static noise margins (SNM) and read static noise margins (RSNM) of the 6T SRAM 

schemes are presented in Table 2.3 and Table 2.4.  The RSNM is measured similar to the SNM, 

but with the word-line active and the pass-transistors of the 6T cells (T1 and T2) attempting to 

discharge one of the Bit/NBit lines for a read operation.  The SNMs and RSNMs were measured 

using the “maximum squares” simulation method presented in [16].  Each cell’s characteristic 

curves, also referred to as the butterfly-curve, for the write static noise margin were also 

analyzed to ensure no write errors exist [17]. 

The SNM depends on the configuration of the cross-coupled inverter transistors T3-T6.  

The LP and LP_INV schemes have the greatest SNMs of over 440 mV for configurations which 

reverse-bias the back gates of T4 and T6, the Inv-N transistors.  These SNMs are 22% larger 

than the SG scheme’s SNM of 360 mV.  The Inv-P transistors (T3 and T5) must be strong 

relative to the Inv-N transistors (T4 and T6) in order to overcome leakage current from T4 and 

T6 [18]; this can be overdone however, as LP_INVN scheme has a lower SNM than these three 

schemes.  A proper ratio must be in place for the Inv-P transistors (T3 and T5) to overcome 

leakage from the Inv-N transistors (T4 and T6) and vice versa.  The worst-performing schemes, 

PUWG [15], LP_INVP, and Type6, use SG configuration for T4 and T6 while using LP 

configuration for T3 and T5, leading to a low SNM.  PUWG [15] has a SNM of 302 mV which 

is 16% less than the SG scheme and LP_INVP and Type6 have SNMs of 325 mV which are 

9.7% less than the SG scheme. 



28 

 

The RSNM depends on the configuration of the cross-coupled inverters’ transistors (T3-

T6) and the configuration of the Pass transistors (T1 and T2).  For a high RSNM, the Pass 

transistors should be configured to be weaker than the cross-coupled transistors and additionally, 

as for the SNM, T3 and T5 should also be made strong relative to T4 and T6.  Type7 and the LP 

schemes do this and have the highest RSNMs of 272 mV and up to 241 mV, respectively.  These 

RSNMs are 2.1X and 1.9X larger than the SG scheme’s RSNM of 124 mV.  Schemes which use 

SG configuration for the Pass transistors and LP configuration for the cross-coupled inverters 

have lower RSNMs.  In particular, the LP_INV, LP_INVP, PUWG [15], LP_INVN, and IG2 

[14] schemes do this and have RSNMs lower than the SG scheme.  The lowest RSNM of the 

LP_INV scheme, 23 mV, is only 18% of the SG scheme’s RSNM.  IG2 [14] has a larger RSNM 

of 99 mV, but this is only 79% of the SG scheme’s RSNM.  Since the RSNMs of these schemes 

are low, an accidental overwrite during a read operation could occur and this is a serious 

detriment to using these schemes in a 6T SRAM array. 

2.4.4 6T FinFET SRAM Overall Performance Summary 

Compared to the 6T SG scheme, the LP_INV, LP_INVN, LP_INVP, PUWG [15], and 

IG2 [14] schemes have smaller RSNMs; therefore, these schemes are error-prone during a read 

operation.  The PGFB [15], IG1 [14], Type5, Type6, and Type7 schemes have a larger average 

EDP than the SG scheme for the 32×1024 array.  In fact, the 6T LP scheme, with a -0.2 V back 

gate (BG) bias for the Pass and Inv-N transistors and a 1.2 V BG-bias for the Inv-P transistors, is 

the only 6T scheme that has a lower EDP than the 6T SG scheme for the larger 32×1024 6T 

SRAM array and possesses a RSNM larger than the 6T SG scheme.  Of the 6T SRAM cells, only 

this LP cell and the SG cell will be examined further in this dissertation. 

  



29 

 

Chapter 3   

8T SRAM Cells 

An eight-transistor (8T) memory cell is shown in Figure 3.1.  This 8T SRAM cell has a 

similar structure as a 6T cell with two additional transistors that decouple read and write 

operations.  The read operation is performed by setting the read-word line to logic 1; the 

additional transistors (T7 and T8) discharge the RBit line that has been precharged before the 

Read-line is set.  The 8T basic cell provides a more orthogonal design; read and write operations 

are performed by different transistors.  Since the read operation does not affect the contents of 

the cell (the two back to back inverters), the worst-case static noise margin is simply that for two 

cross-coupled inverters.  For a 6T cell, on the other hand, the worst-case static noise margin 

occurs in the read condition. 

T1 T2

T5 T3

T6 T4

W
B

it

W
N

B
it

Bit-cell

NBit-cell

Write-line

T7

Read-line

R
B

it

T8

 

Figure 3.1.  An 8T SRAM cell 

3.1 8T FinFET SRAM Design Options 

The 6T portion of the 8T cell, the storage node and write path, can be designed similar to 

a 6T cell; Table 2.1 highlights the design options for transistors T1-T6.  In addition to the 6T 



30 

 

portion of the cell, an 8T SRAM cell has a dedicated read port comprised of transistors T7 and 

T8 (the Read transistors).  Table 3.1 presents all four possible design options for the read path for 

an 8T FinFET cell when choosing between shorted-gate (SG) mode or low-power (LP) mode for 

each transistor.  The choice of 8T read path design was first analyzed in [19], and Table 3.2 and 

Table 3.3 present the read and write delays, energies, and energy-delay-products (EDPs) for 16-

bit by 16-word (16×16) and 32-bit by 1024-word (32×1024) SRAM arrays, respectively.  These 

8T SRAM arrays use minimum-sized cells with T1-T6 in SG-mode. 

 

Table 3.1.  FinFET SRAM design options for 8T read path 

 

 

Table 3.2.  Results of read path design options for 8T FinFET SRAM 16×16 array 

 

Read Tran. T7

(Cell Data Value at Gate)

Read Tran. T8

(Read Line at Gate)

SG SG SG

Read Line Biased SG LP

Data Biased LP SG

LP LP LP

Transistor Configurations

Config. Type

T
7

(C
el

l 
D

a
ta

)

T
8

(R
ea

d
 L

in
e)

Read 

Delay 

(ps)

Read 

Energy 

(fJ)

Read 

EDP 

(fJ×ps)

Write 

Delay 

(ps)

Write 

Energy 

(fJ)

Write 

EDP 

(fJ×ps)

SG t t 4.4 0.24 1.06 6.3 4.44 27.97

Read Line Biased t 0 7.7 0.06 0.46 6.3 4.90 30.87

Read Line Biased t - 8.8 0.05 0.44 6.3 4.98 31.37

Data Biased 0 t 6.3 0.08 0.50 6.0 4.40 26.40

Data Biased - t 7.0 0.09 0.63 6.0 4.57 27.42

LP 0 0 8.8 0.04 0.35 6.0 4.81 28.86

LP 0 - 9.8 0.04 0.39 6.0 4.87 29.22

LP - 0 9.2 0.05 0.46 6.0 4.82 28.92

LP - - 10.3 0.04 0.41 6.0 4.88 29.28

Config. Type

16 bits × 16 words ArrayConfig.



31 

 

Table 3.3.  Results of read path design options for 8T FinFET SRAM 32×1024 array 

 

 

The two series transistors of the read path are the only transistors involved in the read 

operation, thus the transistor with a lower current drive capability will limit the read speed by 

becoming a bottleneck when discharging the RBit line.  For optimal read speed, and optimal read 

EDP for larger array sizes, both of these transistors should be equally-sized and identically 

configured in SG-mode. 

The swing of the read-line can also be adjusted to obtain faster read times.  Table 3.4 

shows percent comparisons between normal (0 V to VDD = 1 V) read line swing to larger read-

line swings for 16×16 and 32×1024 SG-mode SRAM arrays.  These 8T SRAM arrays use 

minimum-sized cells with all transistors in SG-mode.  Read delay decreases by 17 to 18% when 

the read-line is at 1.2 V, or VDD + 0.2 V, when active.  This increases read energy significantly, 

by 43%, for the 16×16 array, but much less, by 3 to 4%, for the 32×1024 array.  More energy is 

required to generate a higher read-line swing, but this can reduce the read speed and read EDP of 

a large SRAM array. 

T
7

(C
el

l 
D

a
ta

)

T
8

(R
ea

d
 L

in
e)

Read 

Delay 

(ps)

Read 

Energy 

(fJ)

Read 

EDP 

(fJ×ps)

Write 

Delay 

(ps)

Write 

Energy 

(fJ)

Write 

EDP 

(fJ×ps)

SG t t 32 0.9 28.8 6 10.6 63.6

Read Line Biased t 0 61 1.3 79.3 6 11.0 66.0

Read Line Biased t - 71 1.5 106.5 6 11.2 67.2

Data Biased 0 t 48 1.1 52.8 5 10.1 50.5

Data Biased - t 55 1.3 71.5 5 10.1 50.5

LP 0 0 70 1.5 105.0 5 10.5 52.5

LP 0 - 80 1.6 128.0 5 10.7 53.5

LP - 0 74 1.5 111.0 5 10.5 52.5

LP - - 84 1.7 142.8 5 10.7 53.5

Config. Type

32 bits × 1024 words ArrayConfig.



32 

 

Table 3.4.  Comparisons of normal to larger read-line swings for 8T FinFET SRAM arrays 

 

 

3.2 8T FinFET SRAM Design Schemes 

Nine 8T FinFET SRAM schemes (with back-gate bias and read-line swing variants) have 

been simulated.  The configurations of these schemes are displayed in Table 3.5.  The 8T 

schemes examined in this paper are double-ended write, single-ended read, and have one write-

line and one read-line.  As with the 6T cells, the scheme configurations and fin counts were 

chosen for the best energy-delay product, assuming 80% read and 20% write operations, for the 

32×1024 array. 

Table 3.5.  FinFET 8T SRAM scheme configuration summary 

 
*FinFET fin counts are labeled with the configuration mode (SG or LP) for each 

transistor type 

Read Delay (%) Read Energy (%) Read Delay (%) Read Energy (%)

0V to 1.2V -17 43 -18 3

-0.2V to 1V 1 -2 1 1

-0.2V to 1.2V -17 43 -17 4

16 bits × 16 words Array 32 bits × 1024 words Array
Read-Line Swing

Scheme

Storage 

Node 

Type

Pass Tran.

T1, T2

Inv-N Tran.

T4, T6

Inv-P Tran.

T3, T5

Read Tran.

T7, T8

SG I SG / 3 SG / 1 SG / 1 SG / 1

LP VIII LP / 3 LP / 1 LP / 1 LP / 1

LP_SGR VIII LP / 1 LP / 1 LP / 1 SG / 1

LP_INV IV SG / 1 LP / 1 LP / 1 SG / 1

LP_INVN III SG / 1 LP / 1 SG / 1 SG / 1

LP_INVP II SG / 3 SG / 1 LP / 1 SG / 1

Type5 V LP / 3 SG / 1 SG / 1 SG / 1

Type6 VI LP / 3 SG / 1 LP / 1 SG / 1

Type7 VII LP / 3 LP / 1 SG / 1 SG / 1



33 

 

3.3 Simulation Setup 

The simulation setup for the 8T cells is similar to the setup for the 6T cells.  In addition to 

the loading from the other words on the WBit, WNBit, and RBit lines, 4X-sized inverters are 

added to simulate the input capacitance of a pipeline stage’s flip-flop.  The tri-state inverters of 

the write driver and the precharge transistors are 3X-sized.  The read delay is the propagation 

delay from 50% of the read signal to when the RBit line discharges from VDD to 50% of VDD.  

This is a conservative estimate of the sense margin required for a sense-amplifier to sense the 

value of the bit for reading.  The write delay is the propagation delay from 50% of the write 

signal (with the WBit and WNBit lines already set with the write value) to when the cell’s 

internal Bit and NBit nodes are within 10% of their final values; e.g. for a write “1” operation, 

the value of the cell’s internal Bit node must be at least 90% of VDD and the value of the cell’s 

internal NBit node must be at most 10% of VDD. 

3.4 8T FinFET SRAM Performance Results 

Table 3.6 and Table 3.7 present the performance results of the 8T FinFET SRAM 

schemes for the 16×16 and 32×1024 arrays, respectively.  These results were obtained via 

simulation and contain performance data for the read operation, write operation, leakage current, 

and noise margins which will be examined in the following subsections.  The last subsection will 

summarize the performance of the 8T schemes as a whole. 



34 

 

Table 3.6.  FinFET 8T SRAM 16×16 array simulation results summary 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy 
+
 Config Key (SG or LP config): t = tied/SG; t - + = SG: -0.2 to 1.2 V swing; 0 = LP: 0V bias; 

- = LP: -0.2 V bias; vdd = LP: VDD=1 V bias; + = LP: 1.2 V bias; 3 x t = 3 fins per tran. SG 

Rd Wr Rd Wr Ave*

SG 3 x t t t t 12 0.59 360 4.4 4.1 0.11 2.62 0.61 2.71

SG 3 x t t t t 0 + 12 0.59 360 3.7 4.1 0.27 2.49 0.71 2.91

SG 3 x t t t t - vdd 12 0.59 360 4.5 4.1 0.11 2.63 0.61 2.73

SG 3 x t t t t - + 12 0.59 360 3.7 4.1 0.27 2.49 0.71 2.90

LP 3 x 0 0 vdd 0 12 0.47 430 8.8 5.3 0.04 1.98 0.43 3.78

LP 3 x 0 0 + 0 12 0.39 414 8.8 5.5 0.04 1.73 0.38 3.34

LP 3 x - - vdd - 12 0.10 443 10.2 5.3 0.04 2.04 0.44 4.52

LP 3 x - - + - 12 0.02 442 10.2 5.5 0.04 1.78 0.39 3.98

LP_SGR 0 0 vdd t 8 0.47 430 4.4 8.4 0.27 2.59 0.73 6.17

LP_SGR 0 0 + t 8 0.39 414 4.4 8.4 0.27 2.21 0.66 5.52

LP_SGR - - vdd t 8 0.10 443 4.4 9.0 0.28 2.64 0.75 6.72

LP_SGR - - + t 8 0.02 442 4.4 9.0 0.27 2.22 0.66 5.97

LP_INV t 0 vdd t 8 0.47 430 4.4 4.9 0.21 1.28 0.43 2.10

LP_INV t 0 + t 8 0.39 414 4.4 5.0 0.21 1.12 0.40 1.96

LP_INV t - vdd t 8 0.10 443 4.4 4.9 0.21 1.28 0.43 2.08

LP_INV t - + t 8 0.02 442 4.4 5.0 0.21 1.12 0.39 1.95

LP_INVN t 0 t t 8 0.48 391 4.4 4.6 0.21 2.44 0.66 3.00

LP_INVN t - t t 8 0.11 378 4.4 4.4 0.11 2.25 0.54 2.39

LP_INVP 3 x t t vdd t 12 0.58 343 4.4 4.8 0.21 1.29 0.43 2.05

LP_INVP 3 x t t + t 12 0.50 325 4.4 5.1 0.21 1.15 0.40 2.02

Type5 3 x 0 t t t 12 0.59 360 4.4 7.5 0.26 6.33 1.47 10.95

Type6 3 x 0 t + t 12 0.51 325 4.4 8.2 0.25 2.50 0.70 5.74

Type7 3 x - - t t 12 0.11 378 4.4 6.3 0.24 4.45 1.08 6.79

P
a

ss

In
v

-N

In
v

-P

R
ea

d Delay (ps) Energy (fJ) Ave* 

EDP 

(ps×fJ)

Scheme

Configuration
+

#
 F

in
s

L
ea

k
a

g
e 

/ 

C
el

l 
(n

A
)

S
N

M
 (

m
V

) 16 bits × 16 words Array



35 

 

Table 3.7.  FinFET 8T SRAM 32×1024 array simulation results summary 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy 
+
 Config Key (SG or LP config): t = tied/SG; t - + = SG: -0.2 to 1.2 V swing; 0 = LP: 0V bias; 

- = LP: -0.2 V bias; vdd = LP: VDD=1 V bias; + = LP: 1.2 V bias; 3 x t = 3 fins per tran. SG 

 

3.4.1 8T FinFET SRAM Read Operation 

In the 8T SRAM cell, the read delay depends on the biasing and voltage swings of 

transistors T7 and T8.  Table 3.8 shows configurations for transistors T7 and T8 and the delays 

for the 16×16 and 32×1024 arrays.  In this table, delays are compared to the SG-mode with read-

line swing only up to VDD = 1 V.  For both array sizes, the best speed is obtained when T7 and 

Rd Wr Rd Wr Ave*

SG 3 x t t t t 12 0.59 360 32 3 0.9 6.9 2.1 66

SG 3 x t t t t 0 + 12 0.59 360 26 3 0.9 6.8 2.1 54

SG 3 x t t t t - vdd 12 0.59 360 32 3 0.9 6.9 2.1 67

SG 3 x t t t t - + 12 0.59 360 26 3 0.9 6.8 2.1 55

LP 3 x 0 0 vdd 0 12 0.47 430 70 4 1.2 5.3 2.0 139

LP 3 x 0 0 + 0 12 0.39 414 70 5 1.0 4.5 1.7 119

LP 3 x - - vdd - 12 0.10 443 84 4 0.3 4.6 1.2 99

LP 3 x - - + - 12 0.02 442 84 5 0.1 3.8 0.9 73

LP_SGR 0 0 vdd t 8 0.47 430 32 7 0.8 6.2 1.8 58

LP_SGR 0 0 + t 8 0.39 414 32 8 0.7 5.3 1.6 50

LP_SGR - - vdd t 8 0.10 443 32 8 0.4 5.9 1.5 47

LP_SGR - - + t 8 0.02 442 32 8 0.3 5.0 1.2 39

LP_INV t 0 vdd t 8 0.47 430 32 4 0.8 3.7 1.3 42

LP_INV t 0 + t 8 0.39 414 32 5 0.7 3.3 1.2 38

LP_INV t - vdd t 8 0.10 443 32 4 0.4 3.2 0.9 30

LP_INV t - + t 8 0.02 442 32 5 0.3 3.0 0.8 26

LP_INVN t 0 t t 8 0.48 391 32 4 0.8 7.0 2.0 63

LP_INVN t - t t 8 0.11 378 32 4 0.4 6.0 1.5 48

LP_INVP 3 x t t vdd t 12 0.58 343 32 4 0.9 4.0 1.5 47

LP_INVP 3 x t t + t 12 0.50 325 32 4 0.8 3.7 1.4 43

Type5 3 x 0 t t t 12 0.59 360 32 6 0.9 12.6 3.2 102

Type6 3 x 0 t + t 12 0.51 325 32 7 0.8 5.9 1.8 57

Type7 3 x - - t t 12 0.11 378 32 5 0.4 9.7 2.2 71

Ave* 

EDP 

(ps×fJ)

32 bits × 1024 words Array

P
a

ss

In
v

-N

In
v

-P

R
ea

d Delay (ps) Energy (fJ)Scheme

Configuration
+

#
 F

in
s

L
ea

k
a

g
e 

/ 

C
el

l 
(n

A
)

S
N

M
 (

m
V

)



36 

 

T8 are in SG configuration with a read-line swing up to VDD + 0.2 V; delays are 3.7 ps for the 

16×16 array and 26 ps for the 32×1024 array.  The next best delay is when these transistors are 

in SG configuration with a read-line swing only up to VDD; delays are 4.4 and 32 ps for the small 

and large arrays.  This grouping includes a configuration with -0.2 V to VDD read-line swing 

which has no effect on delay (in the 16×16 array, this slightly increases delay due to larger swing 

from -0.2 V).  The worst read delays occur when T7 and T8 are in LP configuration with their 

back gates biased to 0 V (8.8 and 70 ps) and -0.2 V (10.2 and 84 ps).  Using SG configuration for 

T7 and T8 maximizes the current driving capacity of the read path and thus minimizes the read 

delay. 

Table 3.8.  T7 and T8 configurations and read delay 

 
* In parentheses, the delay is compared to shorted gate configuration with 

regular swing 

 

The read energy is mainly determined by the configuration of transistors T7 and T8.  

Table 3.9 shows maximum delays and read energy for the large array (32×1024).  When the back 

gates of T7 and T8 are reverse-biased at -0.2 V, this requires the least energy of 2.6 aJ (69% less 

energy than when the back gates are tied to front gates).  When the back gates are set to 0 V 

(GND), energy increases slightly to 2.8 aJ.  A more significant increase to 7.9-8.7 aJ is seen 

when the front and back gates are tied in SG configuration.  Using a larger read-line swing 

requires the most energy of 12.6-12.7 aJ which is 52% larger than the energy required for 0-to-

16 × 16 32 × 1024

Shorted gate w/ swing to VDD+0.2V t - + / t 0 + 3.7 (0.8) 26 (0.8)

Shorted gate t / t - vdd 4.4-4.5 (1.0) 32 (1.0)

Low power Vbackgate = 0V 0 8.8 (2.0) 70 (2.2)

Low power Vbackgate = -0.2V - 10.2 (2.3) 84 (2.6)

T7, T8 Configuration Description
Read 

Config.

Delay (ps) & Comp*



37 

 

VDD read-line swing.  The read delay is minimized when SG configuration is used for the read 

transistors T7 and T8, but the larger current drive capability of these transistors causes these 

schemes to have larger read energies. 

 

Table 3.9.  T7 and T8 configurations and read energy of 32×1024 array 

 
* In parentheses, energy is compared to shorted gate configuration with 

regular swing 

 

3.4.2 8T FinFET SRAM Write Operation 

Write delay is determined by the relative current driving strength of the pass transistors 

(T1 and T2) over the inverter transistors (T3-T6).  Having larger current drive capability for the 

T1 and T2 transistors leads to shorter write delays.  Table 3.10 shows the write delays for both 

array sizes in ascending order.  The fastest write delays are 4.1 and 3 ps (16×16 and 32×1024 

arrays, respectively) for the SG configuration where there are three fins per pass transistors 

FinFETs and the inverter transistors are minimum-sized.  Using LP configuration to reverse-bias 

the back gates to weaken the Inv-N transistors helps to shorten delays as shown in the table with 

the LP_INVN schemes (the second and third entries).  However, biasing the Inv-P transistor 

back gates increases the write delays since these transistors are needed to set a logic “1” in the 

inverter; this is shown in the table with the LP_INVP schemes (the fourth and seventh entries).  

The LP_SGR scheme uses minimum-sized transistors in LP configuration for T1-T6 which 

presents the longest delays due to low current driving capabilities of the pass transistors which 

T7, T8 Configuration Read Delay (ps) Read Energy (aJ) & Comp*

- 84 2.6 (0.31)

0 70 2.8 (0.34)

t / t - vdd 32 7.9-8.7 (1.00)

t - + / t 0 + 26 12.6-12.7 (1.52)



38 

 

are also coupled with low driving capabilities of the inverters.  Write delays for this scheme are 

8.4 and 9 ps for the 16×16 array and 7 and 8 ps for the 32×1024 array. 

 

Table 3.10.  T1-T6 configurations and write delay 

 
* In parentheses, the delay is compared to the SG scheme. 

 

The cell write energy is determined by the pass transistors, Inv-N, and Inv-P transistors.  

Table 3.11 shows maximum delays and write energy for the large array (32×1024).  The least 

write energy of 72-74 aJ is obtained when the Inv-P transistors’ back gates are reversed biased to 

VDD + 0.2V and the pass transistors are in SG configuration (51% less energy then when the 

back gates are tied to front gates).  From the table, it can be observed that energy has a closer 

dependency on the setting of the Inv-P transistors’ back gates; these transistors limit the short-

circuit current of the inverters.  When the pass transistors are in SG configuration, they have 

higher current driving capability and provide faster write speed which minimizes the time the 

Pass Inv-N Inv-P 16 × 16 32 × 1024

SG 3 x t t t 4.1  (1.00) 3  (1.00)

LP_INVN t - t 4.4  (1.07) 4  (1.33)

LP_INVN t 0 t 4.6  (1.12) 4  (1.33)

LP_INVP 3 x t t vdd 4.8  (1.17) 4  (1.33)

LP_INV t 0 / - vdd 4.9  (1.20) 4  (1.33)

LP_INV t 0 / - + 5.0  (1.22) 5  (1.67)

LP_INVP 3 x t t + 5.1  (1.24) 4  (1.33)

LP 3 x 0 0 / - vdd 5.3  (1.29) 4  (1.33)

LP 3 x 0/- 0 / - + 5.5  (1.34) 5  (1.67)

Type7 3 x - - t 6.3  (1.54) 5  (1.67)

Type5 3 x 0 t t 7.5  (1.83) 6  (2.00)

Type6 3 x 0 t + 8.2  (2.00) 7  (2.33)

LP_SGR 0 0 vdd / + 8.4  (2.05) 7-8  (2.33)

LP_SGR - - vdd / + 9.0  (2.20) 8  (2.67)

Sample 

Scheme

Transistor Configuration Delay (ps) & Comp*



39 

 

cross-coupled inverters dissipate switching/short-circuit current during a write operation.  Using 

LP configuration and reverse-biasing the cross-coupled inverter transistors, especially the Inv-P 

transistors, also helps limit the switching/short-circuit current to reduce write energy. 

 

Table 3.11.  T1-T6 configurations and write energy of 32×1024 array 

 
* In parentheses, the energy is compared to the SG scheme. 

 

3.4.3 8T FinFET SRAM Leakage Current 

There are five major leakage currents in the 8T SRAM as shown in Figure 3.2.  As 

mentioned earlier the 6T SRAM cell has the same structure, but with just six transistors, T1-T6.  

The static current, Iinv1 and Iinv2, are most commonly reported as the cross-coupled inverters’ 

leakage currents.  This 8T SRAM leakage is also similar to the 6T SRAM leakage in that 

memory cells that are not selected for a write or read operation draw leakage current from (or to) 

the drivers.  Figure 3.2 shows a SRAM cell with a “0” stored (inverter 1 and 2 output 1 and 0, 

respectively).  If a “1” is being written (WBit and WNBit are 1 and 0, respectively) there is a 

Pass Inv-N Inv-P

LP_INV t / 3 x t - / 0 / t + 4-5 72-74 (0.49)

LP_INV t / 3 x t - / 0 / t vdd 4 78-82 (0.53)

LP 3 x 0/- 0 / - + 5 92-93 (0.62)

LP 3 x 0/- 0 / - vdd 4 103-109 (0.71)

LP_SGR 0/- 0/- + 8 131-136 (0.89)

LP_INVN t - t 4 146 (0.97)

Type6 3 x 0 t + 7 148 (0.99)

SG 3 x t t t 3 150 (1.00)

LP_SGR 0 / t 0 vdd / t 4-7 153-156 (1.03)

LP_SGR - - vdd 8 160 (1.07)

Type7 3 x - - t 5 256 (1.71)

Type5 3 x 0 t t 6 333 (2.22)

Sample 

Scheme

Transistor Configuration Write 

Delay (ps)

Write Energy (aJ) 

& Comp*



40 

 

leakage current from the driver of the WBit line through transistor T1; this leakage current is 

called IT1.  There is another leakage current from the cell to the driver of the WNBit line through 

T2; this leakage current is called IT2. 

 

 

Figure 3.2.  8T SRAM cell leakage currents under write and read operations on other cells 

in the column 

 

When a read occurs in a 6T SRAM array, at precharge time both Bit and NBit lines are 

set to “1” and leakage currents IT1 and IT2 are present.  However, the 8T SRAM cell has an 

independent read port as shown in Figure 3.2.  In addition to the 6T cell leakage currents (Iinv1, 

Iinv2, IT1, and IT2) there is a leakage current from the read precharge circuitry through transistor 

T8 to the SRAM cell.  This leakage current is called IT8 and shown in Figure 3.2.  If a “0” is 

stored in the SRAM cell transistor T7 is ‘on’; VDS across T8 is approximately VDD.  On the other 

 

1 0 0 

W
B

it 

W
N

B
it 

0 

1 

R
B

it 

Read 
Precharge 

T1 T2 

T3 

T4 

T5 

T6 

T7 

T8 

1 0 

0 

1 

Read-line 0 

Write-line 0 

Iin
v

1  

Iin
v

2  

IT1 IT2 

IT8 

Write Drivers 
0                          1 



41 

 

hand,  if a “1” is stored in the cell transistor T7 is ‘off’; thus, there are two transistors in series 

that are ‘off’ (T7 and T8) presenting a larger resistance to current IT8. 

Table 3.12 shows simulation results of the leakage currents for the read and write 

operations for the 8T SG scheme.  This table diagrams the status of the cell’s value and the WBit 

and WNBit values using the notation: WBit  [Inv2_output  Inv1_output]  WNBit.  The 

example shown in Figure 3.2 is the status 1 [0 1] 0.  There is much symmetry in the leakage 

currents for each 8T scheme.  There are four distinct leakage cases: write operation with the 

bitlines and cell having the same values (0 [0 1] 1 and 1 [1 0] 0), write operation with the bitlines 

and the cell having opposite values (0 [1 0] 1 and 1 [0 1] 0), a read operation with a stored logic 

“0” ([0 1]), and the read operation with a stored logic “1” ([1 0]).  The write leakage cases are 

identical to a 6T SRAM cell and are displayed in Figure 2.3 while the read leakage cases are 

shown in Figure 3.3.  The IT1 and IT2 leakage currents are maximized when the value in the cell is 

opposite that of the WBit or WNBit line and this also maximizes the total leakage.  The total 

leakage current for the four cases are presented in Table 3.13 for each 8T scheme.  The three 

types of leakage, cross-coupled inverter leakage, write leakage, and read leakage, are examined 

in greater detail in the following subsections. 

  



42 

 

Table 3.12.  FinFET SG (normal read-line swing) 8T scheme read/write leakage (nA) 

 
+
 When RBit is not precharged to VDD in the write condition, IT8 leakage is 

negligible. 

* Average values of IT1 and IT2 leakage are used for the read condition.  

These leakage currents are present in the read condition and depend on 

WBit and WNBit lines’ status. 

 

 

NBit-cell = 1

T7

R
e

a
d

-l
in

e
 =

 0

R
B

it

T8

Read 

Precharge 

= 0

on

on

off

IT8

[0 1]

NBit-cell = 0

T7

R
e

a
d

-l
in

e
 =

 0

R
B

it

T8

Read 

Precharge 

= 0

on

off
off

[1 0]

1 1

IT8

 
Figure 3.3.  8T SRAM cell read leakage currents 

 

0 [0 1] 1 1 [0 1] 0 0 [1 0] 1 1 [1 0] 0 [0 1] [1 0]

Iinv1 0.50 0.50 0.09 0.09 0.50 0.09

Iinv2 0.09 0.09 0.50 0.50 0.09 0.50

IT1 0.00 1.50 1.50 0.00 0.75* 0.75*

IT2 0.00 1.50 1.50 0.00 0.75* 0.75*

IT8
+ -- -- -- -- 0.50 0.19

ITO TAL 0.59 3.60 3.60 0.59 2.60 2.29

Write Condition Read ConditionLeakage 

Current



43 

 

Table 3.13.  FinFET 8T SRAM simulation results of read/write leakage totals (nA) 

 

3.4.3.1 Cross-Coupled Inverter Leakage 

The leakage presented in Table 3.6 and Table 3.7, and summarized with the 

configurations of transistors T3-T6 in Table 3.14, is the leakage current from the supplies of the 

cross-coupled inverters, namely Iinv1 and Iinv2.  Schemes, such as LP, LP_SGR, and LP_INV, 

which reverse-bias the back-gates of the cross-coupled inverter transistors, T3-T6, minimize 

P
a
ss

In
v
-N

In
v
-P

R
ea

d

SG 3 x t t t t 12 0.59 3.60 2.60 2.29

SG 3 x t t t t 0 + 12 0.59 3.60 2.60 2.29

SG 3 x t t t t - vdd 12 0.59 3.60 2.10 2.10

SG 3 x t t t t - + 12 0.59 3.60 2.10 2.10

LP 3 x 0 0 vdd 0 12 0.47 2.79 2.01 1.78

LP 3 x 0 0 + 0 12 0.39 2.71 1.94 1.70

LP 3 x - - vdd - 12 0.10 0.20 0.17 0.16

LP 3 x - - + - 12 0.02 0.13 0.09 0.08

LP_SGR 0 0 vdd t 8 0.47 1.24 1.35 1.04

LP_SGR 0 0 + t 8 0.39 1.17 1.28 0.97

LP_SGR - - vdd t 8 0.10 0.13 0.62 0.31

LP_SGR - - + t 8 0.02 0.06 0.54 0.23

LP_INV t 0 vdd t 8 0.47 1.47 1.47 1.16

LP_INV t 0 + t 8 0.39 1.39 1.39 1.08

LP_INV t - vdd t 8 0.10 1.10 1.10 0.79

LP_INV t - + t 8 0.02 1.02 1.02 0.72

LP_INVN t 0 t t 8 0.48 1.48 1.48 1.17

LP_INVN t - t t 8 0.11 1.11 1.11 0.80

LP_INVP 3 x t t vdd t 12 0.58 3.59 2.58 2.28

LP_INVP 3 x t t + t 12 0.51 3.51 2.51 2.20

Type5 3 x 0 t t t 12 0.59 2.92 2.25 1.95

Type6 3 x 0 t + t 12 0.51 2.83 2.17 1.86

Type7 3 x - - t t 12 0.11 0.21 0.66 0.35

Write

0 [0 1] 1

Write

1 [0 1] 0

Read

[0 1]

Read

[1 0]
Scheme

Configuration

#
 F

in
s



44 

 

these leakage currents.  Having the n-type and p-type FinFET back gates biased to -0.2V and 

VDD + 0.2 V, respectively, yields the smallest leakage (0.02 nA) which is just 3% of the largest 

leakage of the SG scheme (0.59 nA).  The n-type FinFETs have roughly 5X more leakage than 

p-type FinFETs, thus the Inv-N, T4 and T6, configuration sets the order of the leakage currents 

reported in Table 3.14.  Inv-N with -0.2 V (-) back-gate bias has the lowest leakage currents, this 

is followed by the Inv-N with 0 V (0) back-gate bias, and lastly the Inv-N with the front and back 

gates tied (t) together in SG configuration (no back-gate bias) is listed.  For a given Inv-N 

configuration, the Inv-P configuration reduces leakage in the following order: VDD + 0.2 V (+), 

VDD, and t.  Table 3.14 includes comparisons, reported in parentheses, which are based on the 

SG scheme, which has the largest leakage current of the schemes reported. 

 

Table 3.14.  T3-T6 configurations and cross-coupled inverter leakage 

 
* In parentheses, the leakage is compared to the SG scheme. 

 

3.4.3.2 Write Leakage 

The write leakage presented in Table 3.13, and summarized with transistor configurations 

in Table 3.15, is the sum of Iinv1 and Iinv2 plus the IT1 and IT2 leakage currents from the write 

Inv-N Inv-P

LP - + 0.02  (0.03)

LP - vdd 0.10  (0.17)

LP_INVN - t 0.11  (0.19)

LP 0 + 0.39  (0.66)

LP 0 vdd 0.47  (0.80)

LP_INVN 0 t 0.48  (0.81)

LP_INVP t + 0.50-0.51  (0.86)

LP_INVP t vdd 0.58  (0.98)

SG t t 0.59  (1.00)

Sample 

Scheme

Configuration Leakage (nA) & 

Comp*



45 

 

drivers through the transmission gate transistors T1 and T2 of an idle cell.  This occurs during a 

write operation to a row of SRAM cells.  All cells on other rows share the WBit and WNBit lines 

with the written cells, so as the write drivers set the bit lines to the write value, these IT1 and IT2 

leakage currents occur.  The write leakage is smaller when the WBit and WNBit values are 

identical to the stored value within an idle cell.  In this case, the write leakage is equal to the 

cross-coupled inverter leakage since the transmission gate leakage is negligible.  It is observed 

that the LP, LP_SGR, and Type7 schemes, which have the lowest Iinv1, Iinv2, IT1, and IT2 leakage 

currents, also have the lowest write leakage.  LP_SGR has the lowest write leakage (0.02 nA and 

0.06 nA), just 3% of the largest write leakage of the SG scheme (0.59 nA and 3.60 nA), since the 

back gates of transistors T1-T6 are reverse-biased and minimum-sized.  As with the cross-

coupled inverter leakage, the configuration of Inv-N, the n-type transistors T4 and T6, sets the 

order of the write leakage with -0.2V (-) back-gate bias having the lowest write leakage currents, 

this is followed by the Inv-N with 0V (0) back-gate bias, and lastly the Inv-N with the front and 

back gates tied (t) together in SG configuration (no back-gate bias) is listed.  For a given Inv-N 

configuration, the pass transistors’ configuration (in the order: -0.2V (-), 0V (0), and tied/SG (t)) 

reduces leakage followed by the configuration of Inv-P in the following order: VDD + 0.2 V (+), 

VDD, and t.  Table 3.15 includes comparisons, reported in parentheses, which are based on the 

SG scheme, which has the largest write leakage current of the schemes reported. 

 



46 

 

Table 3.15.  Transistor configurations and write leakage 

 
* In parentheses, the leakage is compared to the SG scheme. 

 

3.4.3.3 Read Leakage 

The read leakage presented in Table 3.13, and summarized with transistor configurations 

in Table 3.16, is the sum of Iinv1 and Iinv2, plus the average values of IT1 and IT2 for a write value 

of “0” and “1” on the WBit and WNBit lines since the capacitive loads of these lines will 

maintain the write value for multiple cycles after a write operation, plus the IT8 leakage current 

from the read precharge transistor through the two series read transistors T7 and T8 of an idle 

cell.  This occurs during a read operation to a row of SRAM cells.  All cells on other rows share 

the RBit lines with the written cells, so as the read precharge transistors set the RBit lines to VDD, 

the IT8 leakage currents occur.  If the idle cell’s stored value is logic “0,” then T7 will be “on” 

while T8 is “off” and the leakage current IT8 is equal to the leakage of one FinFET, T8.  

However, if the idle cell’s stored value is logic “1,” then both T7 and T8 are “off” and the 

leakage current IT8 is that of the two series n-type FinFETs.  In simulation we have found this 

leakage value to be approximately 60% less than the leakage of one n-type FinFET.  It is 

Pass Inv-N Inv-P 0 [0 1] 1 1 [0 1] 0

LP - / 3 x - - + 0.02 (0.03) 0.06-0.13 (0.03)

LP_SGR - - vdd 0.10 (0.17) 0.13 (0.04)

LP 3 x - - vdd / t 0.10-0.11 (0.18) 0.20-0.21 (0.06)

LP_INV t - + 0.02 (0.03) 1.02 (0.28)

LP_INV t - vdd / t 0.10-0.11 (0.18) 1.10-1.11 (0.31)

LP_SGR 0 0 + / vdd 0.39-0.47 (0.73) 1.17-1.24 (0.33)

LP_INV t 0 + / vdd / t 0.39-0.48 (0.74) 1.39-1.48 (0.40)

LP 3 x 0 0 + / vdd 0.39-0.47 (0.73) 2.71-2.79 (0.76)

Type6 3 x 0 t + / t 0.51-0.59 (0.93) 2.83-2.92 (0.80)

LP_INVP 3 x t t + / vdd 0.51-0.58 (0.92) 3.51-3.59 (0.99)

SG 3 x t t t 0.59 (1.00) 3.60 (1.00)

Sample 

Scheme

Transistor Configuration Leakage (nA) & Comp*



47 

 

observed that the LP, LP_SGR, and Type7 schemes, which have the lowest Iinv1, Iinv2, IT1, and IT2 

leakage currents, also have the lowest read leakage.  LP has the lowest read leakage (0.09 nA and 

0.08 nA), just 3% of the largest read leakage of the SG scheme (2.60 nA and 2.29 nA), since the 

back gates of all eight transistors are reverse-biased.  Once again, the configuration of Inv-N, the 

n-type transistors T4 and T6, sets the order of the read leakage with -0.2 V (-) back-gate bias 

having the lowest write leakage currents, this is followed by the Inv-N with 0 V (0) back-gate 

bias, and lastly the Inv-N with the front and back gates tied (t) together in SG configuration (no 

back-gate bias) is listed.  For a given Inv-N configuration, the ordering for increasing read 

leakage is not as distinct since all eight transistors contribute to read leakage.  From Table 3.12 it 

can be observed that the contributions of the currents other than IT8 outweigh the contribution of 

the IT8 leakage current; IT8 is not the majority of the total read leakage for the SG scheme.  Table 

3.16 includes comparisons, reported in parentheses, which are based on the SG scheme, which 

has the largest read leakage current of the schemes reported. 

 

Table 3.16.  Transistor configurations and read leakage 

 
* In parentheses, the leakage is compared to the SG scheme. 

 

Pass Inv-N Inv-P Read [0 1] [1 0]

LP 3 x - - + / vdd - 0.09-0.17 (0.05) 0.08-0.16 (0.05)

LP_SGR - / 3 x - - + / vdd t 0.54-0.66 (0.23) 0.23-0.35 (0.13)

LP_INV t - + / vdd / t t 1.02-1.11 (0.41) 0.72-0.80 (0.33)

LP_SGR 0 0 + / vdd t 1.28-1.35 (0.51) 0.97-1.04 (0.44)

LP_INV t 0 + / vdd / t t 1.39-1.48 (0.55) 1.08-1.17 (0.49)

LP 3 x 0 0 + / vdd 0 1.94-2.01 (0.76) 1.70-1.78 (0.76)

SG 3 x t t t t - vdd / t - 0 2.10   (0.81) 2.10   (0.92)

Type6 3 x 0 t + / t t 2.17-2.25 (0.85) 1.86-1.95 (0.83)

LP_INVP 3 x t t + / vdd t 2.51-2.58 (0.98) 2.20-2.28 (0.98)

SG 3 x t t t t / t 0 + 2.60   (1.00) 2.29   (1.00)

Sample 

Scheme

Transistor Configuration Leakage (nA) & Comp*



48 

 

3.4.4 8T FinFET SRAM Noise Margins 

Static noise margins (SNM) of the 8T SRAM schemes are presented in Table 3.6 and 

Table 3.7.  The SNMs were measured using the “maximum squares” simulation method 

presented in [16].  In addition, each cell’s characteristic curves, also referred to as the butterfly-

curve, for the write static noise margin were also analyzed to ensure no write errors exist [17].  

The read static noise margin (RSNM) of the 8T cells is equivalent to the SNM.  This is because 

the value on the RBit line will not affect the cell’s contents, unlike 6T SRAM cells.  Nonetheless, 

during a read operation, if more noise than the SNM is present, then the cell can be flipped.  This 

is major advantage for the 8T SRAM cells since for 6T SRAM cells the RSNM is less than the 

SNM. 

The SNM depends on the configuration of the cross-coupled inverter transistors T3-T6.  

The LP, LP_SGR, and LP_INV schemes have the greatest SNMs of over 440 mV (over 22% 

better than the 360 mV SNM of the SG scheme) for configurations which reverse-bias the back 

gates of T4 and T6, the Inv-N transistors.  To achieve a high SNM, the Inv-P transistors (T3 and 

T5) must be strong relative to the Inv-N transistors (T4 and T6) in order to overcome leakage 

current from T4 and T6 [18].  This is apparent in the configuration summary provided by Table 

3.17 which shows the SNM as a result of the configurations of the cross-coupled inverter 

transistors T3-T6 and the number of fins for the Inv-N FinFETs T4 and T6.  This can be 

overdone however, as the LP_INVN scheme has an 11-14% lower SNM of 378-391 mV than 

these three schemes.  A proper ratio must be in place for the Inv-P transistors (T3 and T5) to 

overcome leakage from the Inv-N transistors (T4 and T6) and vice versa.  The worst-performing 

schemes, LP_INVP and Type6, have SNMs of 325 mV (10% worse than the SG scheme) and 



49 

 

use SG configuration for T4 and T6 while using LP configuration for T3 and T5, leading to a 

low SNM. 

Table 3.17.  T3-T6 configurations and SNM 

 
* In parentheses, the SNM is compared to the SG scheme. 

 

3.4.5 8T FinFET SRAM Overall Performance Summary 

The LP_SGR and LP_INV 8T schemes have the two lowest EDPs for a 32×1024 8T 

SRAM array and have higher SNMs than the SG scheme.  In particular, the 8T LP_SGR scheme 

with a -0.2 V back gate (BG) bias for the Pass and Inv-N transistors and a 1.2 V BG-bias for the 

Inv-P transistors, the 8T LP_INV scheme with a -0.2 V BG-bias for the Inv-N transistors and a 

1.2 V BG-bias for the Inv-P transistors, and the 8T LP_INV scheme with a -0.2 V BG-bias for 

the Inv-N transistors and a 1 V BG-bias for the Inv-P transistors have among the lowest average 

EDPs for the larger 32×1024 8T SRAM array and possess SNMs larger than 440 mV.  Of the 8T 

SRAM cells, only these three cells and the SG cell, with normal 0 V to 1 V read-line swing, will 

be examined further in this dissertation. 

Inv-N Inv-P

LP - vdd 443 (1.23)

LP - + 442 (1.23)

LP 0 vdd 430 (1.19)

LP 0 + 414 (1.15)

LP_INVN 0 t 391 (1.09)

LP_INVN - t 378 (1.05)

SG t t 360 (1.00)

LP_INVP t vdd 343 (0.95)

LP_INVP t + 325 (0.90)

Sample 

Scheme

Configuration
SNM (mV) & Comp.



50 

 

3.5 8T FinFET SRAM Comparisons to 6T FinFET and 8T CMOS 

This section will provide comparisons of the 8T FinFET SRAM schemes’ performance 

results to that of the 6T FinFET SRAM schemes and an 8T CMOS SRAM cell.  The dynamic 

performance (read and write operations), leakage current, and noise margins will be examined in 

the following subsections.  The last subsection will summarize the comparisons as a whole. 

3.5.1 Dynamic Performance Comparisons to 6T FinFET Cells 

Overall, the 8T SRAM cells outperform the 6T SRAM cells.  The orthogonal read and 

write operations allow the FinFET 8T SRAM cells to be more optimally sized; the 6T portion of 

the cell can be sized for minimal leakage and the read transistors can be sized for a fast read 

time.  The 8T SRAM cells unanimously outperform the 6T SRAM cells for both the 16×16 and 

32×1024 array sizes.  LP_INVP, the best-performing 6T scheme in terms of average EDP for 

both array sizes (as low as 2.45 ps×fJ for the 16×16 array and 69 ps×fJ for the 32×1024 array), 

has 17-23% (2.02 ps×fJ and 2.05 ps×fJ for a 16×16 array) and 37-38% (43 and 47 ps×fJ for a 

32×1024 array) less average EDP as an 8T scheme. 

The 8T SRAM cells have lower delays due to the dedicated read transistors, T7 and T8, 

which can be optimally configured in SG configuration for the fastest read time.  The 6T SRAM 

cell cannot be optimally sized for the read operation since the write operation and leakage 

current will be negatively affected.  The write times of the 8T SRAM cell are also shorter since 

the T1-T6 can be optimally sized for the write operation.  As an example the fastest 6T scheme, 

the SG scheme, with maximum delays of 5.6 ps for the 16×16 array and 32 ps for the 32×1024 

array is 21% faster for the 16×16 array (4.4 ps) and equally as fast for the 32×1024 array as an 

8T scheme. 



51 

 

3.5.2 Dynamic Performance Comparisons to 32 nm CMOS 8T Cell 

The 8T FinFET SRAM cells unanimously outperform the 32nm bulk-CMOS 8T cell.  

The performance results of a 16×16 array of the CMOS 8T cell is provided in Table 3.18.  The 

CMOS 8T cell has an average EDP of 55.06 ps×fJ, which is 5X larger than the EDP of 10.95 

ps×fJ for Type5, the worst-performing 8T FinFET cell in terms of average EDP for this smaller 

array.  The slowest LP scheme’s maximum delay of 10.2 ps is 35% faster than the 8T CMOS 

cell’s delay of 15.9 ps and the 8T CMOS cell’s leakage current of 5.99 nA is 10X more than the 

highest leakage of 0.59 nA for the SG and Type5 schemes.  FinFETs provide lower leakage 

current and higher on-current than bulk-CMOS and this contributes greatly to the 8T FinFET 

schemes’ outperformance of the 32 nm CMOS 8T cell. 

 

Table 3.18.  32 nm CMOS 8T SRAM 16×16 array simulation results 

 
* CMOS 8T SRAM transistor widths: Pass Tran. (T1, T2) = 5 × 16 nm; 

Inv-N Tran. (T4, T6) = 2 × 16 nm; Inv-P Tran. (T3, T5) = 2 × 16 nm; 

Read Tran. (T7, T8) = 8 × 16 nm 
+
 The average energy is calculated as 80% of the read energy plus 20% of the 

write energy 

3.5.3 Leakage Current Comparisons to 6T FinFET Cells 

The leakage currents of the 8T SRAM cells are very similar to that of the 6T cells.  In 

particular, the cross-coupled inverter leakage and write leakage is the same for 6T and 8T cells 

with the same scheme and configuration.  This is because the 8T cell is a 6T cell plus two 

additional read transistors.  The cross-coupled inverter currents, Iinv1 and Iinv2, are smallest for the 

LP, LP_INV, LP_INVN, and Type7 6T SRAM schemes, similar to the 8T SRAM cells.  The LP 

Rd Wr Rd Wr Ave
+

5.99 15.9 14.6 4.15 0.71 3.46 55.06 289

Leak. /  

Cell 

(nA)

Delay (ps) Energy (fJ)
SNM 

(mV)

Ave
+ 

EDP 

(ps×fJ)



52 

 

and Type7 6T SRAM schemes also have the smallest read and write leakage currents, similar to 

the 8T SRAM schemes.  The read leakage currents are slightly larger for the 8T SRAM schemes 

due to the independent read path.  As shown in Figure 3.2, the total read leakage current of the 

8T cells includes an additional current, IT8, compared to the 6T cells.  As an example, the 6T SG 

scheme has 1.09 nA of read leakage which is 52-58% less the 2.60 nA and 2.29 nA read leakages 

of the 8T SG scheme with normal read-line swing. 

3.5.4 Leakage Current Comparisons to 32 nm CMOS 8T Cell 

The leakage current results of the CMOS 8T cell are provided in Table 3.18 and Table 

3.19; Table 3.18 includes the cross-coupled inverter leakage and Table 3.19 includes the read 

and write leakage currents.  When compared to the 8T bulk-CMOS SRAM cell, the 8T FinFET 

SG scheme with normal read-line swing has 10X less cross-coupled inverter leakage, 4.0-5.3X 

less read leakage, and 2.7-10X less write leakage.  This is due to the FinFETs having better Ioff 

compared to bulk-CMOS.  Additionally, the FinFET schemes which are in LP-configuration 

reduce their leakage current even further and vastly outperform the bulk-CMOS SRAM cell in 

terms of leakage currents.  The bulk-CMOS cell has as much as 299X more cross-coupled 

inverter leakage than the LP, LP_SGR, and LP_INV schemes, as much as 114-154X more read 

leakage than the LP scheme, and as much as 163-300X more write leakage than the LP_SGR 

scheme. 

 

Table 3.19.  32 nm CMOS 8T SRAM simulation results of read/write leakage totals (nA) 

 
* CMOS 8T SRAM transistor widths: Pass Tran. (T1, T2) = 5 × 16 nm; 

Inv-N Tran. (T4, T6) = 2 × 16 nm; Inv-P Tran. (T3, T5) = 2 × 16 nm; 

Read Tran. (T7, T8) = 8 × 16 nm 

Write

0 [0 1] 1

Write

1 [0 1] 0

Read

[0 1]

Read

[1 0]

6.00 9.79 13.86 9.14



53 

 

+
 The average energy is calculated as 80% of the read energy plus 20% of the 

write energy 

 

3.5.5 Noise Margin Comparisons to 6T FinFET Cells 

Since the 8T SRAM cell is comprised of a 6T SRAM cell and two read transistors, the 

SNMs of the 8T schemes are equal to that of the 6T cells for the same configurations of the 

cross-coupled inverter n-type and p-type FinFETs (T3-T6).  The most noticeable difference, 

however, between the 8T and 6T cells is the lower RSNM for the 6T cells.  Due to the 8T SRAM 

cell design, their contents are unaffected by the value on the RBit line during a read operation.  

Thus their RSNM is equal to their SNM.  As discussed in the Appendix, the RSNM, compared to 

the SNM, for the 6T cells is between 40% lower for IG1 [14] and 95% lower for LP_INV.  This 

is significant as the 8T SRAM cells are much less prone to a bit flip during a read operation.  The 

orthogonal design of the 8T SRAM cells is an advantage over 6T SRAM cells in terms of the 

RSNM. 

3.5.6 Noise Margin Comparisons to 32 nm CMOS 8T Cell 

The SNM results of the CMOS 8T cell are provided in Table 3.18.  All of the 8T FinFET 

cells have a larger SNM than the 32 nm bulk-CMOS 8T cell.  The lowest 8T FinFET SNM 

belongs to a LP_INVP cell and a Type6 cell, however, this SNM is 12% larger than the 8T 

CMOS cell’s SNM.  The lower leakage current of the FinFET n- and p-type inverter transistors 

contributes to the larger SNM for almost all configurations of the n- and p-type inverter 

transistors. 

  



54 

 

Chapter 4   

FinFET SRAM under Process Voltage Temperature Variations 

The performance of 32×1024 arrays for the SG and LP 6T SRAM schemes and the SG, 

LP_SGR, and LP_INV (with -0.2 V Inv-N BG biasing and both 1 V and 1.2 V Inv-P BG biasing, 

henceforth abbreviated as LP_INV1 and LP_INV1.2, respectively) 8T SRAM schemes are 

examined and under the effects of process/parameter, voltage, and temperature (PVT) variations.  

The LP 6T scheme is the only 6T scheme that has a lower EDP than the SG 6T scheme for a 

32×1024 6T SRAM array and possesses a RSNM larger than the SG 6T scheme.  The LP_SGR 

and LP_INV 8T schemes have the three of the four lowest EDPs, the LP_INV scheme with 0 V 

Inv-N BG biasing and 1.2 V BG biasing has the third-lowest EDP (but higher than the LP_INV1 

and LP_INV1.2 cells), for a 32×1024 8T SRAM array and the SG scheme is the conventional 8T 

SRAM scheme. 

4.1 Performance under Process/Parameter Variations 

 The performance of the six cells are examined and compared using Monte Carlo 

simulations of process/parameter variations.  Parameter variations are simulated using a quasi-

Monte Carlo (QMC) analysis [20].  We use QMC samples for Monte Carlo simulation to achieve 

a good spread of data points in fewer simulations than with completely random samples.  We 

used QMC and created sets of zero-mean and unit-standard deviation Sobol points to allow for 

completely independent assignment of varied values for all varied device parameters.  These 

points were weighted by each parameter’s mean and standard deviation: X = µ + x * σ.  Similar 

to other research which analyzes effects of parameter variations on FinFETs, each parameter’s 

standard deviation is estimated to be 3σ = 10% * µ [18]; except for the standard deviation of ΦG, 



55 

 

the gate work function, for the front and back gates which is estimated to be 3σ = 50 mV [21].  

From Table 1.1, the following parameters were varied: LG, Hfin, TSI, NBody, NDS, RSD, and Tox, TG, 

ΦG for both the front and back gates.  We obtained the results of 1000 simulations with varied 

parameters. 

Table 4.1 shows the results of parameter variation simulations for the six examined cells.  

The next four subsections will analyze the following performances of the cells: read operation, 

write operation, leakage current, and noise margin.  These subsections are followed by a 

concluding subsection analyzing the overall performance of the cells. 

 

Table 4.1.  FinFET SRAM parameter variation simulation results 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

 

Rd Wr Rd Wr Ave*

1.58 34 6 5.0 12.1 6.4 765 361 198

15.67 3 18 41.8 39.2 40.3 17318 16 14

0.02 87 6 0.6 3.9 1.2 107 433 211

0.01 3 0 0.0 0.2 0.1 7 17 15

1.13 33 4 1.5 8.5 2.9 116 361

11.47 2 8 12.4 19.8 12.8 677 11

0.02 33 8 0.3 5.0 1.2 41 434

0.01 4 1 0.1 0.3 0.1 9 7

0.10 33 5 0.4 3.4 1.0 33 435

0.04 2 0 0.2 0.3 0.2 6 6

0.02 33 5 0.3 3.1 0.8 28 434

0.01 2 1 0.1 0.6 0.1 4 7

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t;

LP_INV1.2

t; -; +; t

Ave* 

EDP 

(ps×fJ)

LP_INV1

t; -; vdd; t

6
T

Leakage /  

Cell (nA)

32 bits × 1024 words Array

SG

t; t; t

Scheme

Pass; Inv-N; 

Inv-P; Read

LP

-; -; +

R
S

N
M

 (
m

V
)

Delay (ps) Energy (fJ)

S
N

M
 (

m
V

)



56 

 

4.1.1 Read Operation 

The mean read delays of each 6T and 8T cell are no more than 7% longer than the 

nominal read delay values.  The standard deviations of the read delays are all below 13% of the 

respective means.  8T LP_SGR has the largest standard deviation of 4 ps, or 12% of its delay of 

33 ps.  6T LP has the smallest standard deviation of 3 ps, or 3.4% of its delay of 87 ps.  The read 

delays are very similar to the nominal values with low variation for all schemes; greater 

variations are seen in the read energy. 

The 6T and 8T SG schemes see the largest deviations in mean read energy when 

compared to their nominal values.  The 6T SG scheme’s mean read energy of 5.0 fJ is 2.1X 

greater than its nominal value of 2.4 fJ.  The 8T SG scheme’s mean read energy of 1.5 fJ is 1.7X 

greater than its nominal value of 0.9 fJ.  These two schemes also have large standard deviations 

for the read energy.  The 6T SG scheme has a standard deviation that is 8.4X greater than its 

mean while the 8T SG scheme has a standard deviation that is 8.3X greater than its mean.  

Conversely, the 8T LP_SGR, 8T LP_INV1, and 8T LP_INV1.2 cells’ mean read energies are 

identical to their nominal values and the 6T LP scheme’s mean read energy of 0.6 fJ is only 20% 

greater than its nominal value of 0.5 fJ.  The standard deviations for these schemes are no greater 

than 50% of the mean read energies.  The schemes using LP configuration see smaller standard 

deviations for read energy.  Since the SG schemes use SG-configured FinFETs which leads to 

more leakage current during a read operation, it sees larger variations in read energy due to 

parameter variations than the other schemes which use LP-configured FinFETs. 

4.1.2 Write Operation 

The mean write delays of 6T LP, 8T LP_SGR, and 8T LP_INV1.2 cells are identical to 

their respective nominal values, while the 8T LP_INV1 cell’s mean write delay is 1 ps longer (a 



57 

 

20% increase) than its nominal write delay.  The standard deviations of the write delays of these 

schemes are no more than 20% of their respective means.  The mean write delay of the 6T SG 

scheme is 1 ps longer (a 20% increase) and the mean write delay of the 8T SG scheme is 1 ps 

longer (a 33% increase) than their respective nominal write delays.  The standard deviation of the 

write delay of the 6T SG scheme is triple its mean and the standard deviation of the 8T SG 

scheme is twice its mean.  For both SG schemes, the strength of the cross-coupled inverter 

transistors, all in SG configuration, vary greatly due to parameter variations; this requires 

varying lengths of time to complete a write depending on the difficultly to overwrite the cell.  

The other schemes all use LP configuration for the cross-coupled inverter transistors and these 

transistors, while affected by parameter variations, usually remain weaker than the SG-

configured Pass transistors and cause less variation in write delay. 

The mean write energies of 6T LP and 8T LP_SGR are identical to their nominal values, 

while the mean write energy of 8T LP_INV1 is only 0.2 fJ larger (a 6.3% increase) and the mean 

write energy of 8T LP_INV1.2 is only 0.1 fJ larger (a 3.3% increase).  The standard deviations 

of the write energies of these schemes are no more than 20% of their respective means.  The 6T 

SG scheme’s mean write energy of 12.1 fJ is 30% larger than its nominal value of 9.3 fJ.  The 

mean write energy of 8.5 fJ for the 8T SG scheme is 23% larger than its nominal value of 6.9 fJ.  

The standard deviation of the write energy of the 6T SG scheme is 3.2X its mean and the 

standard deviation of the write energy of the 8T SG scheme is 2.3X its mean.  These results are 

similar to the results for the write delay.  Greater variations in write delay cause greater 

variations in write energy.  In addition, the varying difficulty, due to parameter variations, to 

write to the cell will increase the variation in power required for the write operation; this in turn 

increases the variation of the write energy. 



58 

 

4.1.3 Leakage Current 

Overall, leakage current is most affected by parameter variations.  The cross-coupled 

inverter leakage per cell means for the 6T LP, 8T LP_SGR, 8T LP_INV1, and 8T LP_INV1.2 

cells are identical to their respective nominal values.  These schemes, however, have standard 

deviations equal to at most 50% of their means, but since their mean leakage per cell is low (at 

0.10 nA for 8T LP_INV1 and at 0.02 nA for 6T LP, 8T LP_SGR, and 8T LP_INV1.2), this is a 

small absolute variation.  The 6T SG scheme’s mean leakage per cell of 1.58 nA is 2.7X its 

nominal value of 0.59 nA.  The 8T SG scheme’s mean leakage per cell of 1.13 nA is 1.9X its 

nominal value of 0.59 nA.  The standard deviation of the leakage per cell of the 6T SG scheme is 

9.9X its mean and the standard deviation of the leakage per cell of the 8T SG scheme is 10.2X its 

mean.  The SG schemes use SG cross-coupled inverter transistors which exhibit greater leakage 

current.  Parameter variations cause this larger leakage current to have larger amounts of 

variation than the smaller leakage currents of the other four cells which use LP-configured cross-

coupled inverter transistors.  These large variations in leakage current per cell for the 6T SG and 

8T SG schemes cause greater variation in their read and write energies, in addition to greater 

variation in their average energy and EDP. 

The simulated effects of parameter variations on read and write leakage is displayed in 

Table 4.2.  All six varied cells have average read and write leakage totals less than or equal to 

their nominal values (the 8T LP_SGR scheme has up to 9% less read leakage current while 6T 

LP scheme has identical read and write leakage totals).  As a percentage of its mean, the 8T SG 

scheme has the smallest standard deviations of 43% and 18% of its mean for write 0 [0 1] 1 and 

write 1 [0 1] 0 leakage, respectively.  Also, as a percentage of its mean, the 8T SG scheme has 

the smallest standard deviations of 19% of its mean for both read leakage conditions.  However, 



59 

 

both the 6T and 8T SG schemes have significantly greater read and write leakage than the other 

schemes which use LP configurations and reverse-bias the FinFET back gates.  Overall, the 

smallest values for total read/write leakage and variation occur for the 6T LP scheme. 

 

Table 4.2.  Parameter variation results of FinFET SRAM read/write leakage totals (nA) 

 

 

4.1.4 Noise Margins 

The mean SNM of 361 mV for the 6T SG and 8T SG schemes is 1 mV larger than their 

nominal value of 360 mV.  The mean SNM of 433 mV for the 6T LP scheme is 9 mV (2.0%) 

less than its nominal value of 442 mV.  The mean SNM of 434 mV for the 8T LP_SGR and 8T 

LP_INV1.2 cells are 8 mV (1.8%) less than their nominal value of 442 mV and the mean SNM 

of 435 mV for the 8T LP_INV1 cell is also 8 mV (1.8%) less than its nominal value of 443 mV.  

Scheme

Pass; Inv-N; 

Inv-P; Read

Write

0 [0 1] 1

Write

1 [0 1] 0

Read

1 [0 1] 1

0.56 1.50 1.03

0.24 0.42 0.33

0.02 0.06 0.04

0.01 0.02 0.01

Scheme

Pass; Inv-N; 

Inv-P; Read

Write

0 [0 1] 1

Write

1 [0 1] 0

Read

[0 1]

Read

[1 0]

0.56 3.39 2.45 2.14

0.24 0.62 0.46 0.40

0.02 0.06 0.52 0.21

0.01 0.02 0.24 0.07

0.10 1.05 1.04 0.74

0.04 0.35 0.29 0.19

0.02 0.97 0.97 0.66

0.01 0.33 0.29 0.18

6
T

LP_INV1.2

t; -; +; t

LP_SGR

-; -; +; t;

SG

3 x t; t; t; t

LP

-; -; +

SG

t; t; t

LP_INV1

t; -; vdd; t

8
T



60 

 

The 8T LP_INV1 cell has the smallest standard deviation of 6 mV, which is 1.4% of its mean, 

while the 8T LP_SGR and 8T LP_INV schemes have a standard deviation of 7 mV, which is 

1.6% of their means, and the 6T LP scheme has a standard deviation of 17 mV, which is 3.9% of 

its mean.  The 8T SG scheme has a standard deviation of 11 mV, which is 3.0% of its mean, 

while the 6T SG scheme has a standard deviation of 16 mV, which is 4.4% of its mean.  The 8T 

schemes have slightly less variation in SNM due to the extra capacitance from the gates of read 

transistor T7 on the NBit-cell node.  This extra capacitance is used to hold the stored bit in the 

cell and increases the difficultly to flip the stored bit.  The 6T SG and 8T SG schemes also have 

slightly more SNM variation due to the larger exhibited leakage current of the SG-configured 

cross-coupled inverter transistors as explained previously. 

The mean RSNM of 198 mV for the 6T SG scheme is 60% larger than its nominal value 

of 124 mV.  The mean RSNM of 211 mV for the 6T LP scheme is 5% smaller than its nominal 

value of 222 mV.  The standard deviations of the RSNM are similar for the 6T SG and LP 

schemes; both are 7.1% of their means.  It is surprising to see the large increase in mean RSNM 

for the 6T SG scheme; however, it is possible to see an increase in RSNM if, due to parameter 

variations, the leakage current of the pass transistor connected to the side holding a logic “0” is 

reduced.  It must also be noted, however, that the nominal RSNM for the 6T SG scheme is more 

than five standard deviations less than the mean RSNM value from the parameter variation 

simulations. 

4.1.5 Overall Performance 

Overall, there is minimal variation in delays for all six examined cells due to parameter 

variations.  Cross-coupled inverter leakage current per cell is chiefly affected by the parameter 

variations.  The 6T SG and 8T SG schemes see large variations in leakage current, and this 



61 

 

causes large variations in energy and EDP.  The mean average energy for the 6T LP, 8T 

LP_SGR, and 8T LP_INV1.2 cells are identical to their nominal values and their standard 

deviations are all less than 10% of their means, while the mean average energy for the 8T 

LP_INV1 cell is only 0.1 fJ larger (an 11.1% increase) and has a standard deviation of 20% of its 

mean.  The 6T SG scheme has a mean average energy of 6.4 fJ, which is 68% than its nominal 

value of 3.8 fJ; its standard deviation is 6.3X more than its mean.  The 8T SG scheme has a mean 

average energy of 2.9 fJ, which is 38% more than its nominal value of 2.1 fJ; its standard 

deviation is 4.4X more than its mean. 

The mean average EDP for the 6T LP, 8T LP_SGR, and 8T LP_INV1.2 cells are no 

larger than 8% of their nominal values, while the 8T LP_INV1 cell has a 10% larger mean 

average EDP than its nominal average EDP.  The 6T LP scheme has the smallest standard 

deviation of 6.5% of its mean average EDP, while the 8T LP_SGR, 8T LP_INV1, and 8T 

LP_INV1.2 standard deviations are 22%, 18%, and 14% of their mean average EDP, 

respectively.  The mean average EDP of 765 ps×fJ for the 6T SG scheme is 6.4X more than its 

nominal value of 120 ps×fJ; its standard deviation is 22.6X more than its mean.  The mean 

average EDP of 116 ps×fJ for the 8T SG scheme is 76% more than its nominal value of 66 ps×fJ; 

its standard deviation is 5.8X more than its mean.  The schemes which use LP configuration for 

the cross-coupled inverter transistors have significantly less variation in average energy and 

average EDP than the SG schemes.  Of the six cells examined using parameter variation 

simulations, the 8T LP_INV1.2 cell has the lowest average EDP for a 32×1024 array and the 

second-largest SNM (only the 8T LP_INV1 cell has a 1 mV larger SNM). 



62 

 

4.2 Performance under Supply Voltage Variations 

For supply voltage (VDD) variation simulations, the supply voltage was studied for 900, 

950, 1000, 1050, and 1100 mV (or -10% to +10% of nominal VDD = 1 V) for the six cells.  Table 

4.3 shows the simulation results of VDD variations on the delays, energies, and average EDP of 

the 32×1024 arrays.  Table 4.4 displays the simulation results of supply voltage variations on the 

leakage current, SNMs, and RSNMs of the SRAM cells.  Table 4.5 summarizes the simulation 

results of VDD variations on the read and write leakage current totals. 

 



63 

 

Table 4.3.  Supply voltage variation results of FinFET SRAM delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

-10% 34 1.06 5 1 1.8 0.75 6.8 0.73 2.8 0.74 95 0.79

-5% 33 1.03 5 1 2.0 0.83 8.0 0.86 3.2 0.84 106 0.88

Nom. 32 -- 5 -- 2.4 -- 9.3 -- 3.8 -- 120 --

+5% 31 0.97 4 0.80 2.9 1.21 10.6 1.14 4.4 1.16 137 1.14

+10% 30 0.94 5 1 3.6 1.50 12.5 1.34 5.4 1.42 163 1.36

-10% 99 1.18 7 1.17 0.4 0.80 2.7 0.69 0.9 0.75 86 0.83

-5% 91 1.08 6 1 0.5 1 3.3 0.85 1.0 0.83 94 0.91

Nom. 84 -- 6 -- 0.5 -- 3.9 -- 1.2 -- 103 --

+5% 79 0.94 6 1 0.6 1.20 4.7 1.21 1.4 1.17 114 1.11

+10% 75 0.89 6 1 0.7 1.40 5.4 1.38 1.6 1.33 123 1.19

-10% 34 1.06 3 1 0.8 0.89 5.6 0.81 1.7 0.81 58 0.88

-5% 33 1.03 3 1 0.8 0.89 6.1 0.88 1.9 0.90 61 0.92

Nom. 32 -- 3 -- 0.9 -- 6.9 -- 2.1 -- 66 --

+5% 31 0.97 3 1 0.9 1 7.8 1.13 2.3 1.10 71 1.08

+10% 30 0.94 3 1 1.0 1.11 8.7 1.26 2.5 1.19 76 1.15

-10% 34 1.06 9 1.13 0.2 0.67 3.5 0.70 0.9 0.75 30 0.77

-5% 33 1.03 8 1 0.3 1 4.2 0.84 1.1 0.92 34 0.87

Nom. 32 -- 8 -- 0.3 -- 5.0 -- 1.2 -- 39 --

+5% 31 0.97 8 1 0.3 1 5.9 1.18 1.4 1.17 44 1.13

+10% 30 0.94 8 1 0.4 1.33 6.8 1.36 1.7 1.42 50 1.28

-10% 34 1.06 5 1.25 0.3 0.75 2.5 0.78 0.7 0.78 25 0.83

-5% 33 1.03 5 1.25 0.3 0.75 2.8 0.88 0.8 0.89 27 0.90

Nom. 32 -- 4 -- 0.4 -- 3.2 -- 0.9 -- 30 --

+5% 31 0.97 4 1 0.4 1 3.7 1.16 1.1 1.22 33 1.10

+10% 30 0.94 4 1 0.5 1.25 4.3 1.34 1.2 1.33 37 1.23

-10% 34 1.06 5 1 0.2 0.67 2.2 0.73 0.6 0.75 21 0.81

-5% 33 1.03 5 1 0.3 1 2.6 0.87 0.7 0.88 23 0.88

Nom. 32 -- 5 -- 0.3 -- 3.0 -- 0.8 -- 26 --

+5% 31 0.97 4 0.80 0.3 1 3.3 1.10 0.9 1.13 28 1.08

+10% 30 0.94 4 0.80 0.4 1.33 3.7 1.23 1.0 1.25 31 1.19

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

8
T

VDD

32 bits × 1024 words Array

SG

3 x t; t; t; t

6
T

SG

t; t; t

LP

-; -; +

Scheme

Pass; Inv-N; 

Inv-P; Read

Delay (ps) Energy (fJ)
Ave* EDP 

(ps×fJ)



64 

 

Table 4.4.  Supply voltage variation results of FinFET SRAM leakage and noise margins 

 

Val Comp Val Comp Val Comp

-10% 0.569 0.96 344 0.96 124 1

-5% 0.580 0.98 352 0.98 124 1

Nom. 0.592 -- 360 -- 124 --

+5% 0.604 1.02 367 1.02 123 0.99

+10% 0.615 1.04 373 1.04 123 0.99

-10% 0.020 0.95 397 0.90 202 0.91

-5% 0.021 1 419 0.95 213 0.96

Nom. 0.021 -- 442 -- 222 --

+5% 0.022 1.05 463 1.05 231 1.04

+10% 0.022 1.05 485 1.10 239 1.08

-10% 0.568 0.96 344 0.96

-5% 0.580 0.98 352 0.98

Nom. 0.592 -- 360 --

+5% 0.604 1.02 367 1.02

+10% 0.615 1.04 373 1.04

-10% 0.020 0.95 397 0.90

-5% 0.021 1 419 0.95

Nom. 0.021 -- 442 --

+5% 0.022 1.05 463 1.05

+10% 0.022 1.05 485 1.10

-10% 0.092 0.96 400 0.90

-5% 0.094 0.98 422 0.95

Nom. 0.096 -- 443 --

+5% 0.098 1.02 464 1.05

+10% 0.100 1.04 484 1.09

-10% 0.020 0.95 397 0.90

-5% 0.021 1 419 0.95

Nom. 0.021 -- 442 --

+5% 0.022 1.05 463 1.05

+10% 0.022 1.05 485 1.10

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

8
T

VDD

Leakage / Cell 

(nA)
SNM (mV)

SG

3 x t; t; t; t

6
T

SG

t; t; t

LP

-; -; +

Scheme

Pass; Inv-N; 

Inv-P; Read

RSNM (mV)



65 

 

Table 4.5.  Supply voltage variations on FinFET SRAM read/write leakage totals (nA) 

 

 

As expected, the read delays of the schemes decrease with increasing VDD.  The 8T 

schemes, as well as the 6T SG scheme, are affected identically, but only by ±6%, by changes in 

Val Comp Val Comp Val Comp

-10% 0.569 0.96 1.532 0.96 1.050 0.96

-5% 0.580 0.98 1.563 0.98 1.072 0.98

Nom. 0.592 -- 1.595 -- 1.093 --

+5% 0.604 1.02 1.626 1.02 1.115 1.02

+10% 0.615 1.04 1.658 1.04 1.137 1.04

-10% 0.020 0.95 0.054 0.95 0.037 0.95

-5% 0.021 1 0.056 0.98 0.038 0.97

Nom. 0.021 -- 0.057 -- 0.039 --

+5% 0.022 1.05 0.058 1.02 0.040 1.03

+10% 0.022 1.05 0.059 1.04 0.040 1.03

Val Comp Val Comp Val Comp Val Comp

-10% 0.569 0.96 3.458 0.96 2.495 0.96 2.202 0.96

-5% 0.580 0.98 3.529 0.98 2.546 0.98 2.245 0.98

Nom. 0.592 -- 3.600 -- 2.597 -- 2.288 --

+5% 0.604 1.02 3.671 1.02 2.649 1.02 2.331 1.02

+10% 0.615 1.04 3.742 1.04 2.700 1.04 2.374 1.04

-10% 0.020 0.95 0.054 0.95 0.519 0.96 0.227 0.98

-5% 0.021 1 0.056 0.98 0.530 0.98 0.229 0.99

Nom. 0.021 -- 0.057 -- 0.540 -- 0.231 --

+5% 0.022 1.05 0.058 1.02 0.551 1.02 0.233 1.01

+10% 0.022 1.05 0.059 1.04 0.561 1.04 0.235 1.02

-10% 0.092 0.96 1.055 0.96 1.055 0.96 0.763 0.97

-5% 0.094 0.98 1.077 0.98 1.077 0.98 0.776 0.98

Nom. 0.096 -- 1.099 -- 1.099 -- 0.789 --

+5% 0.098 1.02 1.120 1.02 1.120 1.02 0.803 1.02

+10% 0.100 1.04 1.142 1.04 1.142 1.04 0.816 1.03

-10% 0.020 0.95 0.984 0.96 0.984 0.96 0.691 0.97

-5% 0.021 1 1.004 0.98 1.004 0.98 0.703 0.98

Nom. 0.021 -- 1.024 -- 1.024 -- 0.715 --

+5% 0.022 1.05 1.044 1.02 1.044 1.02 0.727 1.02

+10% 0.022 1.05 1.064 1.04 1.064 1.04 0.738 1.03

Read [0 1] Read [1 0]

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

VDD

Scheme

Pass; Inv-N; 

Inv-P; Read

8
T

Write 0 [0 1] 1 Write 1 [0 1] 0

Read 1 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read

VDD

Write 0 [0 1] 1 Write 1 [0 1] 0

6
T

SG

t; t; t

LP

-; -; +



66 

 

supply voltage since the read path involves two series SG-mode FinFETs.  The 6T LP scheme is 

more greatly affected, by -11 to +18%, by changes in VDD due to the use of LP-mode Pass 

transistors.  The 8T SG scheme sees the least change in read energy, by ±11%, than the other 

schemes which see comparable changes in read energy due to variations in supply voltage.  This 

is due, in large part, by similarities amongst the schemes in leakage current variations due to 

changes in VDD. 

The write delays for each scheme only slightly vary with changes in VDD; these delays 

are already minimal compared to the read delay and vary by at most 1 ps.  The schemes also see 

comparable variations in write energy with the 6T LP scheme seeing the greatest variation 

between -31% and +38%.  Again, the similarities in leakage current variations yield similar 

variations in write energy for the schemes. 

Leakage current is mildly affected by supply voltage variations.  All six cells see a 4-5% 

reduction in leakage current due to a 10% reduction in VDD and the cells see a 4-5% increase in 

leakage current due to a 10% increase in VDD.  This is also very similar for the read and write 

leakage.  As a whole, the schemes leak within 5% of their nominal values for all read and write 

leakage scenarios. 

The SNMs of 6T and 8T SG schemes vary within 4% of their nominal values.  The other 

schemes use LP configuration for their Inv-N and Inv-P FinFETs whose on-currents are more 

greatly affected by changes in supply voltage.  The SNMs of the other schemes vary within 10% 

of their nominal values.  The 6T SG scheme’s RSNM is only decreased by 1 mV for higher 

values of VDD; this is less variation than this scheme saw for its SNM.  The 6T LP scheme sees 

similar variation in its RSNM, -9% to +8%, as its SNM; this is again due to its use of LP-mode 

for its cross-coupled inverter FinFETs. 



67 

 

Overall, the 8T SG scheme has the least variation in average EDP, -12% to +15%, 

followed by the 6T LP cell at -17% to +19%, 8T LP_INV1.2 cell at ±19%, and the 8T LP_INV1 

cell at -17% to 23%.  As a whole, however, the 6T SG scheme, with average EDP variations 

between -21% and +36%, and the 8T LP_SGR scheme, with variations in average EDP between 

-23% and +28%, are still comparable to the other studied schemes.  This is because all six cells 

see similar variations in leakage current due to changes in supply voltage.  The 8T LP_ INV1.2 

cell has smallest average EDP with low variation and the second-highest SNM, to the 8T 

LP_INV1 cell, with lowest variation at each value of VDD. 

4.3 Performance under Bias Voltage Variations 

For bias voltage variation simulations, the reverse-bias value was studied for 18-22 mV 

(or -10% to +10% of the 0.2 V used throughout this research) for the four cells (6T LP, 8T 

LP_SGR, 8T LP_INV1, and 8T LP_INV1.2) which use LP-mode FinFETs.  The n-type FinFET 

reverse-biases are -0.22 V to -0.18 V and the p-type FinFET reverse-biases are 1.18 V to 1.22 V.  

Table 4.6 shows the simulation results of bias voltage variations on the delays, energies, and 

average EDP of the 32×1024 arrays.  Table 4.7 displays the simulation results of bias voltage 

variations on the leakage current, SNMs, and RSNMs of the SRAM cells.  Table 4.8 summarizes 

the simulation results of bias voltage variations on the read and write leakage current totals. 

 



68 

 

Table 4.6.  Bias voltage variation results of FinFET SRAM delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

SG

t; t; t
Nom. 32 -- 5 -- 2.4 -- 9.3 -- 3.8 -- 120 --

-10% 83 0.99 6 1 0.6 1.20 4.0 1.03 1.3 1.08 104 1.01

-5% 84 1 6 1 0.6 1.20 4.0 1.03 1.2 1 103 1

Nom. 84 -- 6 -- 0.5 -- 3.9 -- 1.2 -- 103 --

+5% 85 1.01 6 1 0.5 1 3.9 1 1.2 1 103 1

+10% 86 1.02 6 1 0.5 1 3.9 1 1.2 1 102 0.99

SG

3 x t; t; t; t
Nom. 32 -- 3 -- 0.9 -- 6.9 -- 2.1 -- 66 --

-10% 32 1 8 1 0.3 1 5.1 1.02 1.3 1.08 40 1.03

-5% 32 1 8 1 0.3 1 5.0 1 1.2 1 39 1

Nom. 32 -- 8 -- 0.3 -- 5.0 -- 1.2 -- 39 --

+5% 32 1 8 1 0.3 1 5.0 1 1.2 1 39 1

+10% 32 1 8 1 0.3 1 5.0 1 1.2 1 39 1

-10% 32 1 4 1 0.4 1 3.3 1.03 1.0 1.11 30 1

-5% 32 1 4 1 0.4 1 3.3 1.03 1.0 1.11 30 1

Nom. 32 -- 4 -- 0.4 -- 3.2 -- 0.9 -- 30 --

+5% 32 1 4 1 0.4 1 3.2 1 0.9 1 30 1

+10% 32 1 4 1 0.4 1 3.3 1.03 1.0 1.11 30 1

-10% 32 1 5 1 0.3 1 3.0 1 0.8 1 27 1.04

-5% 32 1 5 1 0.3 1 3.0 1 0.8 1 26 1

Nom. 32 -- 5 -- 0.3 -- 3.0 -- 0.8 -- 26 --

+5% 32 1 5 1 0.3 1 3.0 1 0.8 1 26 1

+10% 32 1 5 1 0.3 1 3.0 1 0.8 1 26 1

Delay (ps) Energy (fJ)
Ave* EDP 

(ps×fJ)

LP

-; -; +

Scheme

Pass; Inv-N; 

Inv-P; Read

Bias

32 bits × 1024 words Array

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

6
T

8
T

LP_SGR

-; -; +; t



69 

 

Table 4.7.  Bias voltage variation results of FinFET SRAM leakage and noise margins 

 

Val Comp Val Comp Val Comp

SG

t; t; t
Nom. 0.592 -- 360 -- 124 --

-10% 0.028 1.33 441 1 221 1

-5% 0.024 1.14 441 1 222 1

Nom. 0.021 -- 442 -- 222 --

+5% 0.019 0.90 442 1 223 1

+10% 0.016 0.76 443 1 223 1

SG

3 x t; t; t; t
Nom. 0.592 -- 360 --

-10% 0.028 1.33 441 1

-5% 0.024 1.14 441 1

Nom. 0.021 -- 442 --

+5% 0.019 0.90 442 1

+10% 0.016 0.76 443 1

-10% 0.101 1.05 443 1

-5% 0.098 1.02 443 1

Nom. 0.096 -- 443 --

+5% 0.094 0.98 444 1

+10% 0.092 0.96 444 1

-10% 0.028 1.33 441 1

-5% 0.024 1.14 441 1

Nom. 0.021 -- 442 --

+5% 0.019 0.90 442 1

+10% 0.016 0.76 443 1

RSNM (mV)

LP

-; -; +

SNM (mV)
Scheme

Pass; Inv-N; 

Inv-P; Read

Bias

Leakage / Cell 

(nA)

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

6
T

8
T

LP_SGR

-; -; +; t



70 

 

Table 4.8.  Bias voltage variation results of FinFET SRAM read/write leakage totals (nA) 

 

 

The read delays of the 8T schemes are not affected by changes in bias voltages; this is 

expected since they use identical SG read transistor configurations.  However, the 6T LP scheme 

is only minimally affected by changes in bias voltage as its read delay only varies by 3 ps.  Since 

the affect on read delay is negligible, even the variations in leakage current do not cause 

variations in read energy.  The 6T LP scheme only sees an increase of 0.1 fJ of read energy due 

Val Comp Val Comp Val Comp

SG

t; t; t
Nom. 0.592 -- 1.595 -- 1.093 --

-10% 0.028 1.33 0.074 1.30 0.051 1.31

-5% 0.024 1.14 0.065 1.14 0.045 1.15

Nom. 0.021 -- 0.057 -- 0.039 --

+5% 0.019 0.90 0.049 0.86 0.034 0.87

+10% 0.016 0.76 0.043 0.75 0.030 0.77

Val Comp Val Comp Val Comp Val Comp

SG

3 x t; t; t; t
Nom. 0.592 -- 3.600 -- 2.597 -- 2.288 --

-10% 0.028 1.33 0.074 1.30 0.552 1.02 0.243 1.05

-5% 0.024 1.14 0.065 1.14 0.546 1.01 0.237 1.03

Nom. 0.021 -- 0.057 -- 0.540 -- 0.231 --

+5% 0.019 0.90 0.049 0.86 0.535 0.99 0.226 0.98

+10% 0.016 0.76 0.043 0.75 0.531 0.98 0.222 0.96

-10% 0.101 1.05 1.104 1 1.104 1 0.795 1.01

-5% 0.098 1.02 1.101 1 1.101 1 0.792 1

Nom. 0.096 -- 1.099 -- 1.099 -- 0.789 --

+5% 0.094 0.98 1.096 1 1.096 1 0.787 1

+10% 0.092 0.96 1.094 1 1.094 1 0.785 0.99

-10% 0.028 1.33 1.031 1.01 1.031 1.01 0.721 1.01

-5% 0.024 1.14 1.027 1 1.027 1 0.718 1

Nom. 0.021 -- 1.024 -- 1.024 -- 0.715 --

+5% 0.019 0.90 1.021 1 1.021 1 0.712 1

+10% 0.016 0.76 1.019 1 1.019 1 0.710 0.99

Write 0 [0 1] 1 Write 1 [0 1] 0 Read [0 1] Read [1 0]

LP_SGR

-; -; +; t

Bias

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

LP

-; -; +

Scheme

Pass; Inv-N; 

Inv-P; Read

6
T

8
T

Read 1 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read

Bias
Write 0 [0 1] 1 Write 1 [0 1] 0



71 

 

to its slight increase in read delay and leakage current at smaller bias voltage values.  The write 

delays for each scheme are not affected by bias voltage variations, and only slight increases in 

write energy are due to increases in leakage current at smaller bias voltage values. 

Leakage current is most affected by bias voltage variations.  At smaller bias voltage 

levels, the leakage current increases due to less reverse-biasing of LP-mode FinFETs, and vice 

versa.  The 6T LP, 8T LP_SGR, and 8T LP_INV1.2 cells, which use a nominal -0.2 V BG bias 

for the Inv-N FinFETs and a nominal 1.2 V BG bias for the Inv-P FinFETs, see ±33% variation 

in leakage current.  The 8T LP_INV1 cell, which uses a nominal -0.2 V BG bias for the Inv-N 

FinFETs and ties the back gates of the Inv-P FinFETs to VDD, has leakage current variations 

within 5% of its nominal value due to less reliance on bias voltages.  For read and write leakage, 

similar results are seen for the write 0 [0 1] 1 leakage.  In fact, the 6T LP scheme sees similar 

variation in write and read leakage and the 8T LP_SGR scheme sees similar variation in its write 

1 [0 1] 0 leakage; this is due to variations in the leakage current of their LP-configured Pass 

transistors.  The 8T LP_INV1 and 8T LP_INV1.2 cells have similar and negligible variation in 

their write 1 [0 1] 0 leakage, but have larger write 1 [0 1] 0 leakage values, due to their SG-

configured Pass transistors whose leakage does not vary due to bias voltage variations.  Ideally, 

there should be no variation in read leakage for the 8T cells because SG-mode Read FinFETs are 

used; however, the read leakage of the 8T schemes sees only minimal variation due to slight 

variations of simultaneously-occurring write leakage caused by leftover values on the WBit and 

WNBit lines.  Somewhat surprisingly, the variations in leakage current due to bias voltage 

variations do not cause variations in the SNMs or RSNMs for the cells.  The ratios of leakage 

current of the Inv-N and Inv-P are minimally affected since both n-type and p-type FinFET BG 

biases either fall closer to ground and VDD or rise farther from ground and VDD. 



72 

 

Overall, variations in BG bias voltage negligibly affect the average EDP and noise 

margins of the four cells which use reverse-biased LP-mode FinFETs.  At most, the 6T LP 

scheme sees a 2 ps×fJ variation in average EDP.  The 8T LP_ INV1 cell sees the smallest 

variations in leakage current since only its Inv-N transistors use a bias voltage (the back gates of 

its Inv-P FinFETs are tied to VDD).  The other cells see ±33% variation in leakage current, but do 

not affect their noise margins and negligible affect their active energies and EDP. 

4.4 Performance under Temperature Variations 

For temperature variation simulations, the ambient temperature was studied for 0, 27, 50, 

75, and 100°C for the six cells.  Table 4.9 shows the simulation results of temperature variations 

on the delays, energies, and average EDP of the 32×1024 arrays.  Table 4.10 displays the 

simulation results of temperature variations on the leakage current, SNMs, and RSNMs of the 

SRAM cells.  Table 4.11 summarizes the simulation results of temperature variations on the read 

and write leakage current totals. 

 



73 

 

Table 4.9.  Temperature variation results of FinFET SRAM delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

0 31 0.97 5 1 1.5 0.63 9.2 0.99 3.0 0.79 92 0.77

27 32 -- 5 -- 2.4 -- 9.3 -- 3.8 -- 120 --

50 35 1.09 5 1 4.1 1.71 10.5 1.13 5.4 1.42 187 1.56

75 40 1.25 5 1 8.4 3.50 13.9 1.49 9.5 2.50 377 3.14

100 45 1.41 6 1.20 17.5 7.29 21.9 2.35 18.4 4.84 827 6.89

0 79 0.94 6 1 0.5 1 4.0 1.03 1.2 1 94 0.91

27 84 -- 6 -- 0.5 -- 3.9 -- 1.2 -- 103 --

50 89 1.06 7 1.17 0.7 1.40 4.1 1.05 1.4 1.17 123 1.19

75 94 1.12 7 1.17 1.2 2.40 4.6 1.18 1.9 1.58 178 1.73

100 99 1.18 7 1.17 2.6 5.20 6.1 1.56 3.3 2.75 329 3.19

0 30 0.94 3 1 0.4 0.44 6.4 0.93 1.6 0.76 48 0.73

27 32 -- 3 -- 0.9 -- 6.9 -- 2.1 -- 66 --

50 36 1.13 3 1 2.2 2.44 8.3 1.20 3.4 1.62 121 1.83

75 43 1.34 3 1 6.1 6.78 12.0 1.74 7.3 3.48 314 4.76

100 51 1.59 3 1 15.4 17.11 21.5 3.12 16.6 7.90 845 12.80

0 30 0.94 7 0.88 0.3 1 5.0 1 1.2 1 37 0.95

27 32 -- 8 -- 0.3 -- 5.0 -- 1.2 -- 39 --

50 36 1.13 9 1.13 0.4 1.33 5.1 1.02 1.3 1.08 47 1.21

75 43 1.34 9 1.13 0.6 2.00 5.3 1.06 1.6 1.33 68 1.74

100 51 1.59 10 1.25 1.4 4.67 6.2 1.24 2.4 2.00 120 3.08

0 30 0.94 4 1 0.3 0.75 3.5 1.09 0.9 1 28 0.93

27 32 -- 4 -- 0.4 -- 3.2 -- 0.9 -- 30 --

50 36 1.13 5 1.25 0.6 1.50 3.5 1.09 1.2 1.33 43 1.43

75 43 1.34 5 1.25 1.4 3.50 4.2 1.31 2.0 2.22 86 2.87

100 51 1.59 5 1.25 3.6 9.00 6.4 2.00 4.2 4.67 212 7.07

0 30 0.94 5 1 0.3 1 3.1 1.03 0.8 1 25 0.96

27 32 -- 5 -- 0.3 -- 3.0 -- 0.8 -- 26 --

50 36 1.13 5 1 0.4 1.33 3.0 1 0.9 1.13 32 1.23

75 43 1.34 5 1 0.6 2.00 3.1 1.03 1.1 1.38 48 1.85

100 51 1.59 5 1 1.4 4.67 3.8 1.27 1.9 2.38 96 3.69

LP_INV1

t; -; vdd; t

8
T

Energy (fJ)
Ave* EDP 

(ps×fJ)

6
T

Scheme

Pass; Inv-N; 

Inv-P; Read

SG

t; t; t

LP

-; -; +

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

T
em

p
. 
(°

C
)

32 bits × 1024 words Array

Delay (ps)



74 

 

Table 4.10.  Temperature variation results of FinFET SRAM leakage and noise margins 

  

 

Val Comp Val Comp Val Comp

0 0.144 0.24 370 1.03 142 1.15

27 0.592 -- 360 -- 124 --

50 1.626 2.75 352 0.98 113 0.91

75 4.116 6.95 345 0.96 104 0.84

100 9.082 15.34 338 0.94 97 0.78

0 0.004 0.19 448 1.01 228 1.03

27 0.021 -- 442 -- 222 --

50 0.074 3.52 436 0.99 218 0.98

75 0.241 11.48 431 0.98 213 0.96

100 0.671 31.95 425 0.96 209 0.94

0 0.144 0.24 370 1.03

27 0.592 -- 360 --

50 1.626 2.75 352 0.98

75 4.116 6.95 345 0.96

100 9.082 15.34 338 0.94

0 0.004 0.19 448 1.01

27 0.021 -- 442 --

50 0.074 3.52 436 0.99

75 0.241 11.48 431 0.98

100 0.672 32.00 425 0.96

0 0.021 0.22 450 1.02

27 0.096 -- 443 --

50 0.289 3.01 438 0.99

75 0.815 8.49 432 0.98

100 1.995 20.78 426 0.96

0 0.004 0.19 448 1.01

27 0.021 -- 442 --

50 0.074 3.52 436 0.99

75 0.241 11.48 431 0.98

100 0.672 32.00 425 0.96

LP_INV1

t; -; vdd; t

8
T

6
T

Scheme

Pass; Inv-N; 

Inv-P; Read

SG

t; t; t

LP

-; -; +

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

T
em

p
. 

(°
C

)

Leakage / Cell 

(nA)
SNM (mV) RSNM (mV)



75 

 

Table 4.11.  Temperature variation results of FinFET SRAM read/write leakage totals (nA) 

 

 

Val Comp Val Comp Val Comp

0 0.144 0.24 0.392 0.25 0.268 0.25

27 0.592 -- 1.595 -- 1.093 --

50 1.626 2.75 4.350 2.73 2.988 2.73

75 4.114 6.95 10.920 6.85 7.517 6.88

100 9.073 15.33 23.885 14.97 16.480 15.08

0 0.004 0.19 0.010 0.18 0.007 0.18

27 0.021 -- 0.057 -- 0.039 --

50 0.074 3.52 0.196 3.44 0.135 3.46

75 0.241 11.48 0.632 11.09 0.437 11.21

100 0.671 31.95 1.753 30.75 1.212 31.08

Val Comp Val Comp Val Comp Val Comp

0 0.144 0.24 0.886 0.25 0.639 0.25 0.561 0.25

27 0.592 -- 3.600 -- 2.597 -- 2.288 --

50 1.626 2.75 9.798 2.72 7.074 2.72 6.254 2.73

75 4.115 6.95 24.530 6.81 17.724 6.82 15.725 6.87

100 9.075 15.33 53.498 14.86 38.689 14.90 34.416 15.04

0 0.004 0.19 0.010 0.18 0.131 0.24 0.053 0.23

27 0.021 -- 0.057 -- 0.540 -- 0.231 --

50 0.074 3.52 0.196 3.44 1.497 2.77 0.677 2.93

75 0.241 11.48 0.632 11.09 3.839 7.11 1.839 7.96

100 0.671 31.95 1.753 30.75 8.614 15.95 4.341 18.79

0 0.021 0.22 0.268 0.24 0.268 0.24 0.191 0.24

27 0.096 -- 1.099 -- 1.099 -- 0.789 --

50 0.289 3.01 3.013 2.74 3.013 2.74 2.193 2.78

75 0.815 8.49 7.621 6.93 7.620 6.93 5.621 7.12

100 1.995 20.78 16.806 15.29 16.803 15.29 12.530 15.88

0 0.004 0.19 0.251 0.25 0.251 0.25 0.173 0.24

27 0.021 -- 1.024 -- 1.024 -- 0.715 --

50 0.074 3.52 2.798 2.73 2.798 2.73 1.978 2.77

75 0.241 11.48 7.047 6.88 7.046 6.88 5.047 7.06

100 0.672 32.00 15.483 15.12 15.480 15.12 11.207 15.67

Write 0 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read T
em

p
. 

(°
C

)
SG

t; t; t

LP

-; -; +

6
T

Write 0 [0 1] 1 Write 1 [0 1] 0 Read [0 1] Read [1 0]

Write 1 [0 1] 0 Read 1 [0 1] 1

8
T

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

Scheme

Pass; Inv-N; 

Inv-P; Read T
em

p
. 

(°
C

)

SG

3 x t; t; t; t

LP_INV1

t; -; vdd; t



76 

 

The read delays of the schemes increase with increasing temperature; this is expected due 

to increasing resistivity with temperature.  The 8T schemes are affected identically by 

temperature since they use the same SG read transistor configuration.  It is interesting that the 

read delay for the 6T SG scheme experiences less of an increase, 41%, than the 8T schemes, 

59%, for an ambient temperature of 100°C.  However, the 6T SG scheme encounters a greater 

increase of 7.29X in read energy compared to the 8T LP_SGR and LP_INV1.2 cells’ increase of 

4.67X.  This is due to decreased leakage current of the 8T LP_SGR and LP_INV1.2 schemes.  

The 8T LP_INV1 cell’s read energy increases by 9.00X; this is greater than the 8T LP_SGR and 

LP_INV1.2 schemes due to increased leakage current at 100°C.  The 8T SG scheme has 

comparable leakage current to the 6T SG scheme and sees a larger increase of 17.11X in read 

energy at 100°C.  The 6T LP scheme has low leakage current and experiences a low increase of 

5.2X, yet this increase is more than the 8T LP_SGR and LP_INV1.2 schemes due to a greater 

increase in its read delay at higher temperatures. 

The write delays for each scheme only slightly vary with temperature increase; these 

delays are already minimal compared to the read delay and vary by at most 3 ps for the LP_SGR 

scheme.  The schemes with lower leakage, namely the 6T LP, 8T LP_SGR, and 8T LP_INV1.2 

cells, see less increase in write energy at 100°C (24-56%) than the 8T LP_INV1 cell (2.00X), 6T 

SG cell (2.35X), and 8T SG cell (3.12X). 

Leakage current is most affected by temperature variations.  At 100°C an increase of 

15.34X is observed for the 6T and 8T SG schemes, an increase of 20.78X occurs for the 8T 

LP_INV1 cell, and increases of approximately 32X are witnessed for the 6T LP and 8T LP_SGR 

and LP_INV1.2 cells.  The overall leakage of the low-power 6T LP, 8T LP_SGR, and 8T 

LP_INV1.2 schemes is less than one-tenth of the leakage of the SG schemes.  For read and write 



77 

 

leakage, similar results are seen for the write 0 [0 1] 1 leakage.  For write 1 [0 1] 0 leakage, a 

roughly 15X increase at 100°C is seen for schemes with SG-configured pass transistors while a 

roughly 31X increase is observed for schemes with LP pass-transistors.  For the 6T SG and LP 

schemes, the read 1 [0 1] 1 leakage increases comparably to their respective write leakage 

increases.  For example, the write and read leakage of the 6T SG scheme increases by 

approximately 15X at 100°C and the 6T LP scheme’s write and read leakage increases by 

approximately 31X at 100°C.  For the 8T schemes, the read leakage, [0 1] and [1 0] cases, 

increases 15-19X at 100°C due to the SG-configured read transistors used by each scheme. 

The SNMs of the six examined cells all vary within 6% of their nominal 27°C values.  At 

higher temperatures, the noise margins decrease due to increased leakage current.  Temperature 

causes greater variation for the RSNM for the 6T schemes.  The 6T LP scheme’s RSNM still 

varies within 6% of its nominal value, however, the 6T SG scheme’s RSNM varies by 22% of its 

nominal value.  This amount of variation would be a detriment to data fidelity under the effects 

of moderate changes in temperature. 

Overall, the 6T LP scheme and the 8T LP_SGR and LP_ INV1.2 cells have the least 

variation in average EDP; a 3-4X increase at 100°C is witnessed for these schemes.  The 6T SG 

scheme has an increase of 6.89X, the 8T LP_INV1 cell has an increase of 7.07X, and the 8T SG 

scheme has an increase of 12.80X in average EDP at 100°C.  These schemes have larger leakage, 

leading to increased EDP and increased variation in EDP, and the 8T SG scheme has increased 

write 1 [0 1] 0 leakage leading to increased variation in EDP.  The 8T LP_ INV1.2 cell has 

smallest average EDP with low variation and the second-highest SNM, to the 8T LP_INV1 cell, 

with lowest variation at each temperature. 



78 

 

4.5 Summary of FinFET SRAM PVT Variations 

Overall, of the six examined cells, the 8T LP_INV1.2 cell performs the best under PVT 

variations.  The 8T LP_INV1.2 cell has the lowest mean average EDP for a 32×1024 array and 

the second-largest mean SNM (only the 8T LP_INV1 cell has a 1 mV larger SNM) due to 

parameter variations.  Bias voltage variations negligibly affect the average EDP and do not affect 

the noise margins of the four cells which use reverse-biased LP-mode FinFETs.  The 8T LP_ 

INV1.2 cell has smallest average EDP with low variation and the second-highest SNM, to the 8T 

LP_INV1 cell, with lowest variation due to variations in supply voltage and temperature. 

  



79 

 

Chapter 5   

FinFET SRAM Low-Leakage Modifications 

Leakage current is very important in SRAM memories.  At a given instant in a memory, 

the great majority of cells are not accessed, but draw leakage power.  For a digital system, the 

leakage power of embedded memories can use a substantial portion of its power budget.  A 

method to reduce leakage power in SRAM memories is through the use of header and/or footer 

transistors [22] [23].  Header transistors are p-type transistors which separate VDD from the 

SRAM cells and supply them with a virtual VDD.  During normal read, write, and hold operation 

the header transistor is enabled.  When in standby or sleep-mode, where the contents of the cells 

are disposable, the header transistors are disabled and create more resistance along the cross-

coupled inverter leakage path.  Footer transistors are n-type transistors which separate ground 

from the SRAM cells and supply them with a virtual ground.  During normal read, write, and 

hold operation the footer transistor is enabled.  When in sleep-mode the footer transistors are 

disabled and create more resistance along the cross-coupled inverter leakage path.  A header 

transistor, footer transistor, or both can be used to limit leakage current.  Header and footer 

transistors can also be used per SRAM cell or shared amongst two or more SRAM cells.  Figure 

5.1 displays an 8T SRAM cell with a p-type header transistor and an n-type footer transistor. 



80 

 

T1 T2

T5 T3

T6 T4

W
B

it

W
N

B
it

Bit-cell

NBit-cell

Write-line

T7

Read-line

R
B

it

T8

Sleep

Sleep
 

Figure 5.1.  A header and a footer transistor on an 8T SRAM cell 

 

The use of header and footer FinFETs has been examined for the six FinFET SRAM cells 

in this chapter.  In addition to the choice of using header, footer, or both FinFETs, the header and 

footer FinFETs can be in SG-configuration, LP-configuration with a 0 V n-bias and a 1 V p-bias, 

or LP-configuration with a -0.2 V n-bias and a 1.2 V (VDD + 0.2 V) p-bias.  The following 

sections present the performance results when using header and footer FinFETs per SRAM cell, 

per two SRAM cells, and per four SRAM cells. 

5.1 Header/Footer FinFETs per Cell 

Table 5.1 shows the best leakage, delay, and average EDP results of using header and 

footer FinFETs per SRAM cell and Table 5.2 shows the static noise margin (SNM) and read 

static noise margin (RSNM) results of using header and footer FinFETs per SRAM cell.  



81 

 

Appendix C includes more results of lower-performing cells.  If there are a small number of 

32×1024 arrays in the memory, then the percent comparisons of the 32×1024 array average EDP 

are approximate to the percent comparisons of the average EDP for the entire SRAM memory.  

On the other hand, if there are a large number of 32×1024 arrays in the memory, then the percent 

comparisons of the leakage EDP per array in sleep-mode are approximate to the percent 

comparisons of the average EDP of the entire SRAM memory. 

Overall, the best performing cells often use only a header transistor per SRAM cell.  The 

leakage EDP per array in sleep-mode is reduced by up to 92% for the 6T SG and 8T SG cells 

(using header and footer transistors), 79% for the 8T LP_INV1 cell (using header transistors), 

26% for the 6T LP cell (using header and footer transistors), and 10% for the 8T LP_SGR and 

8T LP_INV1.2 cells (using header transistors).  The cells with higher leakage, due to less 

reverse-biasing of the cross-coupled inverter FinFETs, benefit the most from header and footer 

transistors.  However, there are tradeoffs of using header and footer transistors to reduce leakage 

current.  The additional transistors increase the area requirement of the SRAM and require a 

sleep-mode signal, which in turn requires additional area and additional energy to generate.  The 

delays of the SRAM array also increase for the read and write operations, causing the average 

EDP of the 32×1024 arrays to often increase; this limits the effectiveness of header and footer 

transistors for small SRAM memories with few arrays.  Additionally, most cells see a reduction 

in SNM and RSNM with the inclusion of these transistors; up to a 7% reduction in SNM and up 

to a 71% in RSNM is observed. 

 



82 

 

Table 5.1.  Leakage, delay, and EDP results of header/footer FinFETs per SRAM cell 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 5 -- 120 --

Header t 0.592 0.536 0.91 18.0 0.91 1 32 1 5 1 98 0.82

Footer t 0.592 0.283 0.48 18.0 0.90 35 44 1.38 4 0.80 184 1.53

Hdr + Ftr t 0.592 0.227 0.38 14.4 0.72 9 44 1.38 5 1 162 1.35

Header vdd 0.592 0.533 0.90 17.9 0.90 1 32 1 6 1.20 88 0.73

Header + 0.592 0.504 0.85 16.9 0.85 1 32 1 6 1.20 86 0.72

Hdr + Ftr + / - 0.592 0.014 0.02 1.7 0.08 9 60 1.88 6 1.20 260 2.17

Nom. 0.021 0.021 -- 4.9 -- 84 -- 6 -- 103 --

Header t 0.021 0.021 1 4.9 1 1 84 1 6 1 93 0.90

Header vdd 0.021 0.021 1 4.9 1 1 84 1 7 1.17 88 0.85

Header + 0.021 0.019 0.90 4.4 0.90 1 84 1 7 1.17 87 0.84

Hdr + Ftr + / - 0.021 0.008 0.38 3.6 0.74 35 117 1.39 7 1.17 145 1.41

Nom. 0.592 0.592 -- 19.9 -- 32 -- 3 -- 66 --

Hdr + Ftr t 0.592 0.227 0.38 14.4 0.72 10 44 1.38 4 1.33 115 1.74

Header vdd 0.592 0.533 0.90 17.9 0.90 1 32 1 5 1.67 51 0.77

Header + 0.592 0.504 0.85 16.9 0.85 1 32 1 6 2.00 50 0.76

Footer - 0.591 0.102 0.17 11.6 0.59 20 59 1.84 3 1 219 3.32

Hdr + Ftr + / - 0.591 0.014 0.02 1.6 0.08 9 59 1.84 6 2.00 201 3.05

Nom. 0.021 0.021 -- 0.7 -- 32 -- 8 -- 39 --

Header vdd 0.021 0.021 1 0.7 1 1 32 1 10 1.25 33 0.85

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 10 1.25 33 0.85

Nom. 0.096 0.096 -- 3.2 -- 32 -- 4 -- 30 --

Header vdd 0.096 0.048 0.50 1.6 0.50 1 32 1 6 1.50 26 0.87

Header + 0.096 0.020 0.21 0.7 0.21 1 32 1 6 1.50 26 0.87

Nom. 0.021 0.021 -- 0.7 -- 32 -- 5 -- 26 --

Header t 0.021 0.021 1 0.7 1 1 32 1 5 1 23 0.88

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 6 1.20 23 0.88

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

Leak. 

Tran. 

Config.

8
T

6
T

SG

t; t; t

LP

-; -; +

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

Delay (ps) Ave* EDP (ps×fJ)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

32 bits × 1024 words ArrayLeakage / Cell in 

Sleep-Mode (nA)

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)



83 

 

Table 5.2.  Noise margin results of header/footer FinFETs per SRAM cell 

 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

5.2 Header/Footer FinFETs per Two Cells 

Table 5.3 shows the best leakage, delay, and average EDP results of using header and 

footer FinFETs per two SRAM cells.  The SNM and RSNM results are identical to the cells 

using header and footer transistors per one SRAM cell.  Appendix C includes more results of 

lower-performing cells. 

Similar to the previous section, the best performing cells often use only a header 

transistor per two SRAM cells.  The leakage EDP per array in sleep-mode is reduced by up to 

Val Val Comp Val Comp Val Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 360 -- 124 --

Header t 0.592 0.536 0.91 18.0 0.91 1 343 0.95 87 0.70

Footer t 0.592 0.283 0.48 18.0 0.90 35 357 0.99 36 0.29

Hdr + Ftr t 0.592 0.227 0.38 14.4 0.72 9 343 0.95 65 0.52

Header vdd 0.592 0.533 0.90 17.9 0.90 1 336 0.93 74 0.60

Header + 0.592 0.504 0.85 16.9 0.85 1 334 0.93 71 0.57

Hdr + Ftr + / - 0.592 0.014 0.02 1.7 0.08 9 335 0.93 131 1.06

Nom. 0.021 0.021 -- 4.9 -- 442 -- 222 --

Header t 0.021 0.021 1 4.9 1 1 439 0.99 220 0.99

Header vdd 0.021 0.021 1 4.9 1 1 438 0.99 218 0.98

Header + 0.021 0.019 0.90 4.4 0.90 1 438 0.99 218 0.98

Hdr + Ftr + / - 0.021 0.008 0.38 3.6 0.74 35 438 0.99 175 0.79

Nom. 0.592 0.592 -- 19.9 -- 360 --

Hdr + Ftr t 0.592 0.227 0.38 14.4 0.72 10 343 0.95

Header vdd 0.592 0.533 0.90 17.9 0.90 1 336 0.93

Header + 0.592 0.504 0.85 16.9 0.85 1 334 0.93

Footer - 0.591 0.102 0.17 11.6 0.59 20 356 0.99

Hdr + Ftr + / - 0.591 0.014 0.02 1.6 0.08 9 335 0.93

Nom. 0.021 0.021 -- 0.7 -- 442 --

Header vdd 0.021 0.021 1 0.7 1 1 438 0.99

Header + 0.021 0.019 0.90 0.6 0.90 1 438 0.99

Nom. 0.096 0.096 -- 3.2 -- 443 --

Header vdd 0.096 0.048 0.50 1.6 0.50 1 441 1

Header + 0.096 0.020 0.21 0.7 0.21 1 440 0.99

Nom. 0.021 0.021 -- 0.7 -- 442 --

Header t 0.021 0.021 1 0.7 1 1 439 0.99

Header + 0.021 0.019 0.90 0.6 0.90 1 438 0.99

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

Leak. 

Tran. 

Config.

8
T

6
T

SG

t; t; t

LP

-; -; +

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

RSNM (mV)
Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

SNM (mV)
Leakage / Cell in 

Sleep-Mode (nA)

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)



84 

 

24% for the 6T SG and 8T SG cells (using header transistors), 80% for the 8T LP_INV1 cell 

(using header transistors), 16% for the 6T LP cell (using header and footer transistors), and 10% 

for the 8T LP_SGR and 8T LP_INV1.2 cells (using header transistors).  These are slightly less 

percent reductions compared to using header and footer FinFETs per cell, but this is due to the 

increased read and write delays of the cells due to sharing a header or footer transistor.  In 

addition, while the additional transistors increase the area requirement of the SRAM, sharing 

header and footer transistors between two cells halves the number of additional FinFETs 

required. 

 

Table 5.3.  Leakage, delay, and EDP results of header/footer FinFETs per two SRAM cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 5 -- 120 --

Hdr + Ftr t 0.592 0.141 0.24 15.0 0.76 26 57 1.78 6 1.20 238 1.98

Header vdd 0.592 0.520 0.88 17.4 0.88 1 32 1 8 1.60 79 0.66

Header + 0.592 0.503 0.85 16.9 0.85 1 32 1 8 1.60 77 0.64

Nom. 0.021 0.021 -- 4.9 -- 84 -- 6 -- 103 --

Header vdd 0.021 0.021 1 4.9 1 1 84 1 8 1.33 80 0.78

Header + 0.021 0.019 0.90 4.4 0.90 1 84 1 8 1.33 79 0.77

Hdr + Ftr + / - 0.021 0.005 0.24 4.1 0.84 130 158 1.88 8 1.33 201 1.95

Nom. 0.592 0.592 -- 19.9 -- 32 -- 3 -- 66 --

Hdr + Ftr t 0.591 0.141 0.24 14.5 0.73 23 56 1.75 6 2.00 182 2.76

Header vdd 0.592 0.520 0.88 17.4 0.88 1 32 1 7 2.33 47 0.71

Header + 0.592 0.503 0.85 16.9 0.85 1 32 1 8 2.67 46 0.70

Nom. 0.021 0.021 -- 0.7 -- 32 -- 8 -- 39 --

Header vdd 0.021 0.021 1 0.7 1 1 32 1 13 1.63 30 0.77

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 13 1.63 30 0.77

Nom. 0.096 0.096 -- 3.2 -- 32 -- 4 -- 30 --

Header vdd 0.096 0.036 0.38 1.2 0.38 1 32 1 7 1.75 25 0.83

Header + 0.096 0.019 0.20 0.6 0.20 1 32 1 8 2.00 25 0.83

Nom. 0.021 0.021 -- 0.7 -- 32 -- 5 -- 26 --

Header vdd 0.021 0.021 1 0.7 1 1 32 1 7 1.40 22 0.85

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 8 1.60 21 0.81

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T

SG

t; t; t

LP

-; -; +

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



85 

 

5.3 Header/Footer FinFETs per Four Cells 

Table 5.4 shows the best leakage, delay, and average EDP results of using header/footer 

FinFETs per four SRAM cells.  SNM/RSNM results are identical to cells using header and footer 

transistors per one SRAM cell.  Appendix C includes more results of lower-performing cells.   

Similar to the previous sections, the best performing cells often use only a header 

transistor per four SRAM cells.  The leakage EDP per array in sleep-mode is reduced by up to 

74% for the 6T SG cell (using header and footer transistors), 20% for the 8T SG cell (using 

header transistors), 81% for the 8T LP_INV1 cell (using header transistors), 14% for the 6T LP, 

8T LP_SGR, and 8T LP_INV1.2 cells (using header transistors).  These are similar percent 

reductions compared to using header and footer FinFETs per two cells.  In addition, while the 

additional transistors increase the area requirement of the SRAM, sharing header and footer 

transistors between four cells quarters the number of additional FinFETs required. 

  



86 

 

Table 5.4.  Leakage, delay, and EDP results of header/footer FinFETs per four SRAM cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

5.4 Summary of SRAM Usage of Header/Footer FinFETs 

Overall, the cells with higher leakage benefit the most from header and footer transistors 

since they see the largest reductions in leakage current, however, a more efficient method to 

reduce leakage power is to use SRAM cells, such as the LP cells, which reverse-bias the cross-

coupled inverter FinFETs in order to reduce leakage.  The only case when using header or footer 

transistors saves more leakage EDP than LP cells is when using LP-mode header and footer 

transistors per cell with 1.2 V and -0.2 V biases for the 6T SG cell; this saves 91% of leakage 

EDP (compared to 75% savings for the 6T LP cell) but has worse active EDP (2.17X more than 

nominal 6T SG cell), lower SNM (7% worse than the nominal 6T SG cell), and lower RSNM 

than the 6T LP cell.  All LP 8T cells yield less leakage EDP than using header or footer FinFETs 

for the 8T SG cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 5 -- 120 --

Header vdd 0.592 0.512 0.86 17.2 0.86 1 32 1 11 2.20 62 0.52

Header + 0.592 0.502 0.85 16.8 0.85 1 32 1 12 2.40 66 0.55

Hdr + Ftr + / - 0.592 0.004 0.01 5.2 0.26 104 200 6.25 12 2.40 1614 13.45

Nom. 0.021 0.021 -- 4.9 -- 84 -- 6 -- 103 --

Header vdd 0.021 0.020 0.95 4.6 0.95 1 84 1 10 1.67 75 0.73

Header + 0.021 0.018 0.86 4.2 0.86 1 84 1 11 1.83 74 0.72

Nom. 0.592 0.592 -- 19.9 -- 32 -- 3 -- 66 --

Header vdd 0.592 0.512 0.86 17.2 0.86 1 32 1 11 3.67 43 0.65

Header + 0.592 0.502 0.85 15.8 0.80 1 31 1 12 4.00 42 0.64

Nom. 0.021 0.021 -- 0.7 -- 32 -- 8 -- 39 --

Header vdd 0.021 0.020 0.95 0.7 1 1 32 1 19 2.38 28 0.72

Header + 0.021 0.018 0.86 0.6 0.86 1 32 1 21 2.63 27 0.69

Nom. 0.096 0.096 -- 3.2 -- 32 -- 4 -- 30 --

Header vdd 0.096 0.028 0.29 0.9 0.29 1 32 1 11 2.75 23 0.77

Header + 0.096 0.018 0.19 0.6 0.19 1 32 1 12 3.00 23 0.77

Nom. 0.021 0.021 -- 0.7 -- 32 -- 5 -- 26 --

Header vdd 0.021 0.020 0.95 0.7 1 1 32 1 11 2.20 20 0.77

Header + 0.021 0.018 0.86 0.6 0.86 1 32 1 12 2.40 20 0.77

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T

SG

t; t; t

LP

-; -; +

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



87 

 

Sharing header and footer transistors amongst multiple SRAM cells can lead to more 

leakage current savings, but also causes slower read and write speeds; this eliminate the 

effectiveness of some cells if the increase in active operation EDP far outpaces the reduction in 

leakage current.  Another drawback of header and footer transistors is that they increase the area 

requirement of the SRAM memories; for designs requiring minimal die footprints, an increase in 

memory area may not be practical.  Additionally, most cells see reduced noise margins with the 

inclusion of header and footer FinFETs; this can create memory fidelity issues for applications 

that require SRAMs with high resistance to noise.  



88 

 

Chapter 6   

Near-Threshold FinFET SRAM Operation 

Near-threshold operation of SRAMs can be used as a method to obtain additional savings 

in energy and leakage current.  In [24], Dreslinski et. al. propose circuit operation in a region 

near the threshold voltage of the devices.  Compared to full-VDD operation, operating in a near-

threshold region can save about 10X energy while only suffering from an approximate 10X 

increased delay [24].  Compared to near-threshold operation, operating in a sub-threshold region 

can save about 2X energy but suffers from an approximate 50-100X increased delay [24].  Thus, 

near-threshold operation can deliver a majority of the energy savings offered by sub-threshold 

operation, but with less of an increase in delay. 

Figure 6.1 shows the relationship between delay, average energy (using 80% read and 

20% write energy), and VDD value for a 32×1024 FinFET 8T SRAM array using the SG scheme 

with normal 0 V to 1 V read-line swing.  As the supply voltage decreases, the delays increase 

and the average energy decreases until the supply voltage enters the sub-threshold region.  In the 

figure, once VDD drops below 0.5 V, the average energy increases due to the substantial increases 

of the read delay (the worst-case delay).  The average energy delay product (EDP) is 

superimposed on the graph of Figure 6.1.  The optimal operating point, in terms of average EDP, 

is at the minimum of the average EDP curve on the plot.  For this scheme, this occurs near 0.6 V. 



89 

 

 
Figure 6.1.  Delay, average energy, and average EDP versus VDD value of 8T SG SRAM cell 

 

However, there are barriers to near-threshold operation; three potential barriers are 

discussed by [24], these are: performance loss, increased parameter variation, and increased 

functional failure.  A downside to using near-threshold operation, and similarly a problem for 

sub-threshold operation, for SRAMs is that the static noise margins (SNMs) and read static noise 

margins (RSNMs) will be smaller for smaller VDD values; this can lead to increased SRAM 

failure and lower yield.  In addition, write-ability or write static noise margin (WSNM), can also 

suffer due to less current drive from the Pass transistors T1 and T2.  Another issue for near-

threshold operation of FinFET SRAM cells is the impact of parameter variations and supply 

voltage variations.  The performance and noise margins of the SRAMs are more affected by 

these variations when operating at a low supply voltage. 

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

0

50

100

150

200

250

300

350

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

En
e

rg
y 

(f
J)

D
e

la
y 

(p
s)

Supply Voltage (V)

Read Delay

Write Delay

Ave. Energy (80% Read + 20% Write)

Ave. EDP (80% Read + 20% Write)



90 

 

There is much research available about sub-threshold circuits, including SRAMs, 

however, there is much less research available about near-threshold SRAMs.  A few researchers 

have presented work on near-threshold SRAM performance while taking yield and noise margins 

into consideration [25] [26] [27].  FinFETs may outperform planar devices for near-threshold 

and sub-threshold operation due to having a better Ion/Ioff ratio even at these lower supply 

voltages [28] [29].  In [29], bulk-FinFETs are used but SOI FinFETs may also continue to 

outperform planar devices at lower values of VDD.  There is some research available on sub-

threshold FinFET SRAMs.  6T SRAM cells are studied in  [30] and 10T Schmitt Trigger SRAM 

cells are studied in [31].  Both take advantage of FinFET SG and LP transistor configurations for 

improved performance and noise margins; this is a promising result since this can also be done 

for near-threshold operation.  Prior to this study, no research has been performed on near-

threshold FinFET 8T SRAM cells. 

In this chapter, near-threshold operation of FinFET 6T and 8T SRAMs are studied.  The 

following subsections present the near-threshold operation SRAM performance results, speed 

enhancements, PVT variations, and low-leakage modifications. 

6.1 SRAM Performance Results 

All 6T SRAM cells from Chapter 2 and all 8T SRAM cells from Chapter 3 were 

simulated using decreased values of VDD.  Figure 6.2 shows the average EDP (for a 32×1024 

FinFET 6T SRAM array) for all of the 6T SRAM cells across decreasing values of the supply 

voltage.  For a majority of the schemes, the optimal value of VDD to minimize EDP is near 0.8 V; 

however, for the better-performing (in terms of EDP) schemes such as 6T SG and 6T LP_INVP, 

supply voltages as low as 0.6 V minimize EDP. 



91 

 

 
Figure 6.2.  Average EDP versus VDD value for 6T SRAM cells 

 

Noise margins must also be considered for near-threshold operation; Figure 6.3 and 

Figure 6.4 show the SNMs and RSNMs, respectively, for all of the 6T SRAM cells across 

decreasing values of the supply voltage.  The SNM decreases, as a percentage of VDD, as the 

supply voltage decreases for all of the 6T SRAM cells but the 6T SG, 6T Type5, 6T PGFB [15], 

and 6T PUWG [15] schemes.  The behavior of the 6T SRAM cells’ RSNMs is much more 

erratic.  The RSNMs, as a percentage of VDD, of most 6T schemes either decreased slightly with 

decreasing supply voltage or roughly maintained its nominal value.  The largest changes in 

RSNM/VDD is seen for the 6T Type5 (8%), 6T Type6 (8%), 6T IG2 [14] (8%), 6T LP with 0 V 

Inv-N back gate (BG) bias and 1.2 V Inv-P BG bias (13%), 6T IG1 [14] (8%), and 6T PUWG 

[15] (19%) cells. 

1.E-26

1.E-25

1.E-24

1.E-23

1.E-22

200 300 400 500 600 700 800 900 1000 1100

A
ve

. E
D

P
 (

8
0

%
 R

e
ad

 +
 2

0
%

 W
ri

te
) 

(J
*s

)
Supply Voltage (mV)

LP_INVP1

SG

LP_INVP1.2

LP_INV1.2

LP1

Type5



92 

 

 
Figure 6.3.  SNM versus VDD value for 6T SRAM cells 

 
Figure 6.4.  RSNM versus VDD value for 6T SRAM cells 

0

5

10

15

20

25

30

35

40

45

50

200 300 400 500 600 700 800 900 1000 1100

SN
M

/V
D

D
(%

)

Supply Voltage (mV)

Type6

LP_INVP1.2

LP1.2

PUWG [15]
LP1

0

5

10

15

20

25

30

35

200 300 400 500 600 700 800 900 1000 1100

R
SN

M
/V

D
D

(%
)

Supply Voltage (mV)

Type7

Type5

IG1 [14]

PUWG [15]

LP_INV1

LP0Type6



93 

 

Figure 6.5 shows the average EDP (for a 32×1024 FinFET 8T SRAM array) for all of the 

8T SRAM cells across decreasing values of the supply voltage.  The optimal supply voltage, to 

minimize EDP, ranges between 0.5 V to 0.6 V for these schemes.  The optimal supply voltage 

can be set as low as 0.5 V for the better-performing (in terms of EDP) schemes that either use a -

0.2 V BG bias for the Inv-N FinFETs and SG-configure the Pass FinFETs (the LP_INV and 

LP_INVN schemes) or use boost the logic “1” value of the read-line to 1.2 V.  Read-line 

boosting, a method to increase the read speed, will be explored further in the next subsection. 

 

 
Figure 6.5.  Average EDP versus VDD value for 8T SRAM cells 

 

1.E-27

1.E-26

1.E-25

1.E-24

1.E-23

200 300 400 500 600 700 800 900 1000 1100

A
ve

. E
D

P
 (

8
0

%
 R

e
ad

 +
 2

0
%

 W
ri

te
) 

(J
*s

)

Supply Voltage (mV)

LP_INV1.2

LP_INV1

LP_SGR1.2

Type5

Type6

LP_SGR0



94 

 

Figure 6.6 shows the SNMs for all of the 8T SRAM cells across decreasing values of the 

supply voltage.  This figure is very similar to the 6T SRAM SNMs shown in Figure 6.3 since a 

majority of the 8T SRAM cells share the same cross-coupled inverter configurations.  Similar to 

the 6T SRAM cells, the SNM decreases, as a percentage of VDD, as the supply voltage decreases 

for all of the 8T SRAM cells but the 8T SG and 8T Type5 schemes. 

 

 
Figure 6.6.  SNM versus VDD value for 8T SRAM cells 

 

The overall best six SRAM cells, previously examined in greater detail in Chapter 4 and 

Chapter 5, are the 6T SG, 6T LP, 8T SG, 8T LP_SGR, 8T_LP_INV1, and 8T LP_INV1.2 cells.  

These are also the best-performing SRAM cells for near-threshold operation in terms of average 

0

5

10

15

20

25

30

35

40

45

50

200 300 400 500 600 700 800 900 1000 1100

SN
M

/V
D

D
(%

)

Supply Voltage (mV)

Type6

LP_INVP1.2

LP1.2

LP_INVP1

LP0



95 

 

EDP for a 32×1024 FinFET SRAM array, SNM, and RSNM.  The average EDPs for these cells 

when decreasing the supply voltage are shown in Figure 6.7.  Overall, the optimal supply voltage 

chosen for these six cells is 0.6 V; this is the optimal VDD for the 6T SG, 8T SG, and 8T 

LP_INV1 cells.  The optimal supply voltages for the 8T LP_SGR and 8T LP_INV1.2 cells are 

0.55 V and 0.5 V, respectively, while the optimal VDD for the 6T LP cell is 0.8 V.  A near-

threshold operating voltage of 0.6 V was chosen since the average EDP only increases by 16% 

for the 8T LP_SGR cell (from 11 ps×fJ to 13 ps×fJ) and by 35% for the 8T LP_INV1.2 cell 

(from 7 ps×fJ to 9 ps×fJ).  The 6T LP cell has a lower average EDP than the 6T SG cell only for 

supply voltages of 1, 0.9, and 0.8 V; the 6T SG cell is more optimal for near-threshold operation. 

 

 
Figure 6.7.  Average EDP versus VDD value for the best six SRAM cells 

1.E-27

1.E-26

1.E-25

1.E-24

200 300 400 500 600 700 800 900 1000 1100

A
ve

. E
D

P
 (

8
0

%
 R

e
ad

 +
 2

0
%

 W
ri

te
) 

(J
*s

)

Supply Voltage (mV)

6T SG

6T LP (-,+)

8T SG

8T LP_SGR (-,+)

8T LP_INV1 (-,VDD)

8T LP_INV1.2 (-,+)



96 

 

The following two tables provide greater detail about the FinFET SRAM cells’ 

performance at VDD = 0.6 V; Table 6.1 displays the delays, energies, and average EDPs of the 

cells and Table 6.2 presents the leakage currents, SNMs, and RSNMs of the cells.  At this supply 

voltage value, 8T LP_SGR experiences the greatest reduction of 67% in average EDP.  In fact, 

all but the 6T LP cell sees average EDP reductions between 35% and 67%; the 6T LP cell’s 

average EDP increases by 49%.  The other performance metrics presented in Table 6.1 and Table 

6.2 will be discussed throughout this subsection. 

 

Table 6.1.  Near-threshold operation results of FinFET SRAM delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

1 V 32 -- 5 -- 2.4 -- 9.3 -- 3.8 -- 120 --

0.6 V 51 1.59 5 1 0.9 0.38 2.1 0.23 1.1 0.29 57 0.48

1 V 84 -- 6 -- 0.5 -- 3.9 -- 1.2 -- 103 --

0.6 V 463 5.51 20 3.33 0.2 0.40 0.8 0.21 0.3 0.25 153 1.49

1 V 32 -- 3 -- 0.9 -- 6.9 -- 2.1 -- 66 --

0.6 V 50 1.56 4 1.33 0.6 0.67 2.0 0.29 0.9 0.43 43 0.65

1 V 32 -- 8 -- 0.3 -- 5.0 -- 1.2 -- 39 --

0.6 V 50 1.56 32 4.00 0.1 0.33 0.9 0.18 0.3 0.25 13 0.33

1 V 32 -- 4 -- 0.4 -- 3.2 -- 0.9 -- 30 --

0.6 V 50 1.56 10 2.50 0.1 0.25 0.8 0.25 0.3 0.33 14 0.47

1 V 32 -- 5 -- 0.3 -- 3.0 -- 0.8 -- 26 --

0.6 V 50 1.56 18 3.60 0.1 0.33 0.6 0.20 0.2 0.25 9 0.35

Delay (ps) Energy (fJ)
Ave* EDP 

(ps×fJ)

32 bits × 1024 words Array
Scheme

Pass; Inv-N; 

Inv-P; Read

VDD

SG

t; t; t

LP

-; -; +

6
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

8
T



97 

 

Table 6.2.  Near-threshold operation results of FinFET SRAM leakage and noise margins 

 

 

The reason that the 6T LP cell’s average EDP rapidly increases for supply voltages below 

0.8 V is that its read delay greatly increases for these values of VDD.  At the 0.6 V supply 

voltage, the 6T LP cell’s read delay increases by 5.5X.  Figure 6.8 shows the read and write 

delays for the six cells for decreasing supply voltages.  The “8T Read” curve shows the read 

delay for all four 8T cells since each cell uses the same SG configuration for the Read transistors 

T7 and T8.  The maximum delays for the other five cells do not see large increases until the 

supply voltage drops below 0.6 V; at 0.6 V these cells only experience read delay increases of 

56-59% due to their use of SG-configured FinFETs along their read paths for maximum Ion and 

speed.  Write delay is still not the dominant delay at this voltage level, however, compared to the 

read delay, greater increases in the write delay occurred for the 8T LP_SGR, 8T LP_INV1, and 

8T LP_INV1.2 cells.  As mentioned previously, word-line and/or read-line boosting can be used 

to decrease delay and enable lower operating supply voltages for near-threshold operation; the 

performance of these speed enhancements will be presented in the next subsection. 

Val Comp Val Comp % VDD Comp Val Comp % VDD Comp

1 V 0.592 -- 360 -- 36.0 -- 124 -- 12.4 --

0.6 V 0.499 0.84 248 0.69 41.3 1.15 100 0.81 16.7 1.34

1 V 0.021 -- 442 -- 44.2 -- 222 -- 22.2 --

0.6 V 0.018 0.86 254 0.57 42.3 0.96 131 0.59 21.8 0.98

1 V 0.592 -- 360 -- 36.0 --

0.6 V 0.498 0.84 248 0.69 41.3 1.15

1 V 0.021 -- 442 -- 44.2 --

0.6 V 0.018 0.86 254 0.57 42.3 0.96

1 V 0.096 -- 443 -- 44.3 --

0.6 V 0.081 0.84 260 0.59 43.3 0.98

1 V 0.021 -- 442 -- 44.2 --

0.6 V 0.018 0.86 254 0.57 42.3 0.96

RSNM (mV)
Leakage / Cell 

(nA)
SNM (mV)

Scheme

Pass; Inv-N; 

Inv-P; Read

VDD

SG

t; t; t

LP

-; -; +

6
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

8
T



98 

 

 
Figure 6.8.  Read and write delays versus VDD value for the best six SRAM cells 

 

Figure 6.9 shows the leakage current of the six cells for decreasing supply voltages.  As 

shown previously by the effect of supply voltage variations on leakage current presented Table 

4.4, leakage current linearly decreases as the supply voltage decreases.  The percentage decrease 

per reduction in supply voltage is similar for the cells; at 0.6 V VDD, a 24% reduction is observed 

for the 6T LP, 8T LP_SGR, and 8T LP_INV1.2 cells while a 26% reduction is observed for the 

6T SG, 8T SG, and 8T LP_INV1 cells.  Due to their higher nominal leakage currents, the 6T SG 

and 8T SG cells see the largest absolute reductions in leakage current due to decreased supply 

voltages. 

 

0.E+00

1.E-10

2.E-10

3.E-10

4.E-10

5.E-10

6.E-10

200 300 400 500 600 700 800 900 1000 1100

D
e

la
y 

(s
)

Supply Voltage (mV)

6T SG Read

6T SG Write

6T LP (-,+) Read

6T LP (-,+) Write

8T Read

8T SG Write

8T LP_SGR (-,+) Write

8T LP_INV1 (-,VDD) Write

8T LP_INV1.2 (-,+) Write



99 

 

 
Figure 6.9.  Leakage current versus VDD value for the best six SRAM cells 

 

Table 6.3 presents the read and write leakage current totals of the six cells for decreasing 

supply voltages.  The comparisons between full-VDD operation at 1 V and near-threshold 

operation at 0.6 V of the cross-coupled inverter leakage presented by Table 6.2 and Figure 6.9 

and the read and write leakage currents are very similar.  The read and write leakage currents at 

0.6 V for each cell is between 14% and 16% less than the nominal read and write leakage 

currents at a supply voltage of 1 V, except for the read [0 1] current of the 8T cells which is 

slightly less reduced at 8-15% less than the nominal read [0 1] current.  Overall, this read and 

write leakage behavior is expected, since all read and write leakage currents were similarly 

affected by the supply voltage variations presented by Table 4.5. 

0.E+00

1.E-10

2.E-10

3.E-10

4.E-10

5.E-10

6.E-10

200 300 400 500 600 700 800 900 1000 1100

Le
ak

ag
e

 C
u

rr
e

n
t 

(A
)

Supply Voltage (mV)

6T and 8T SG

6T LP (-,+), 8T LP_SGR (-,+), and 8T LP_INV1.2 (-,+)

8T LP_INV1 (-,VDD)



100 

 

Table 6.3.  Near-threshold operation results of FinFET SRAM read and write leakage 

 

 

Figure 6.10 shows the SNMs and RSNMs, as a percentage of VDD, of the six cells for 

decreasing supply voltages.  As expected, as VDD decreases, the noise margins decrease; at the 

0.6 V VDD, the SNMs decrease by 31-43% and the RSNMs decrease by 19% for 6T SG and 41% 

for 6T LP.  It is interesting that as VDD decreases, the 6T SG and 8T SG cells see at first an 

increase, then a decrease in the values relative to VDD (SNM/VDD and RSNM/VDD) of their noise 

margins—all other cells experience a reduction in SNM/VDD and RSNM/VDD as the supply 

voltage decreases.  In particular, at the 0.6 V supply voltage, the 6T and 8T SG cells see a 15% 

increase in SNM/VDD while the other cells witness a 2-4% reduction.  Additionally, at 0.6 V, the 

6T SG cell has a 34% increase in RSNM/VDD while the 6T LP cell has a 2% decrease.  These 

differences in SNM/VDD and RSNM/VDD are due to the differences in Inv-N and Inv-P Ion and 

Ioff at the near-threshold operating voltage of 0.6 V. 

Val Comp Val Comp Val Comp

1 V 0.592 -- 1.595 -- 1.093 --

0.6 V 0.499 0.84 1.344 0.84 0.921 0.84

1 V 0.021 -- 0.057 -- 0.039 --

0.6 V 0.018 0.86 0.048 0.84 0.033 0.85

Val Comp Val Comp Val Comp Val Comp

1 V 0.592 -- 3.600 -- 2.597 -- 2.288 --

0.6 V 0.499 0.84 3.034 0.84 2.189 0.84 1.945 0.85

1 V 0.021 -- 0.057 -- 0.540 -- 0.231 --

0.6 V 0.018 0.86 0.048 0.84 0.456 0.84 0.212 0.92

1 V 0.096 -- 1.099 -- 1.099 -- 0.789 --

0.6 V 0.081 0.84 0.926 0.84 0.926 0.84 0.682 0.86

1 V 0.021 -- 1.024 -- 1.024 -- 0.715 --

0.6 V 0.018 0.86 0.863 0.84 0.863 0.84 0.619 0.87

8
T

SG

t; t; t

LP

-; -; +

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

Read [0 1] Read [1 0]
VDD

Scheme

Pass; Inv-N; 

Inv-P; Read

Write 0 [0 1] 1 Write 1 [0 1] 0

Read 1 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read

VDD

Write 0 [0 1] 1 Write 1 [0 1] 0

6
T



101 

 

 

Figure 6.10.  Noise margins versus VDD value for the best six SRAM cells 

 

Overall, of the six examined cells, the 8T LP_INV1.2 cell has the lowest leakage, lowest 

delay, lowest average EDP for a 32×1024 array, and the second-largest SNM (the 8T LP_INV1 

cell has a 6 mV larger SNM) when operating at the near-threshold operation voltage of 0.6 V.  If 

noise margins are the highest design priority, a higher SNM (a 2.4% increase from 254 mV to 

260 mV) plus one less BG bias voltage can obtained by using the 8T LP_INV1 cell which has 

the third lowest average EDP for a 32×1024 array (a 55% increase from 9 ps×fJ to 14 ps×fJ). 

0

5

10

15

20

25

30

35

40

45

50

200 300 400 500 600 700 800 900 1000 1100

(S
N

M
 o

r 
R

SN
M

)/
V

D
D

(%
)

Supply Voltage (mV)

6T and 8T SG SNM

6T SG RSNM

6T LP (-,+) SNM

6T LP (-,+) RSNM

8T LP_SGR (-,+) and 8T LP_INV1.2 (-,+) SNM

8T LP_INV1 (-,VDD) SNM



102 

 

6.2 SRAM Speed Enhancements 

It is apparent from Figure 6.1 and Figure 6.8 that delay is the largest barrier for near-

threshold operation.  There are a couple techniques that can improve read and write speed, 

especially for operation below the nominal supply voltage.  For 6T SRAM cells, the word-line 

can be boosted; for this research, instead of the word-line signal transitioning between 0 V and 

VDD, the word-line is boosted to transition between 0 V and VDD + 0.2 V.  Boosting the word-

line improves 6T SRAM read and write speeds.  The word-line/write-line can also be boosted for 

8T SRAM cells to improve the write speed, but the read speed can be improved by boosting the 

read-line; for this research, instead of the read-line signal transitioning between 0 V and VDD, the 

read-line is boosted to transition between 0 V and VDD + 0.2 V.  The delay, energy, and EDP 

performance results for the six cells for near-threshold operation at 0.6 V are summarized by 

Table 6.4 and the RSNM results for the 6T SG and 6T LP cells are displayed by Table 6.5.  The 

following two subsections will further analyze the speed improvements provided by boosting for 

the 6T and 8T SRAM cells, respectively. 



103 

 

Table 6.4.  Near-threshold operation results with boosting of delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 
+
 Boosting Key: Nom. = Nominal (no boosting); WL = Word-line boosting; 

RdLn = Read-line boosting; WL+RdLn = Word-line and Read-line boosting 

 

Table 6.5.  Near-threshold operation results with boosting of FinFET 6T SRAM RSNMs 

 
+
 Boosting Key: Nom. = Nominal (no boosting); 

WL = Word-line boosting; RdLn = Read-line boosting; 

WL+RdLn = Word-line and Read-line boosting 

 

 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

Nom. 51 -- 5 -- 0.9 -- 2.1 -- 1.1 -- 57 --

WL 36 0.71 3 0.60 1.1 1.22 1.5 0.71 1.2 1.09 41 0.72

Nom. 463 -- 20 -- 0.2 -- 0.8 -- 0.3 -- 153 --

WL 280 0.60 11 0.55 0.2 1 0.6 0.75 0.3 1 85 0.56

Nom. 50 -- 4 -- 0.6 -- 2.0 -- 0.9 -- 43 --

WL 50 1 3 0.75 0.6 1 1.5 0.75 0.7 0.78 37 0.86

RdLn 35 0.70 4 1 0.5 0.83 1.9 0.95 0.8 0.89 27 0.63

WL+RdLn 35 0.70 3 0.75 0.5 0.83 1.3 0.65 0.6 0.67 22 0.51

Nom. 50 -- 32 -- 0.1 -- 0.9 -- 0.3 -- 13 --

WL 50 1 22 0.69 0.1 1 0.7 0.78 0.2 0.67 10 0.77

RdLn 35 0.70 32 1 0.1 1 0.9 1 0.3 1 10 0.77

WL+RdLn 35 0.70 22 0.69 0.1 1 0.7 0.78 0.2 0.67 9 0.69

Nom. 50 -- 10 -- 0.1 -- 0.8 -- 0.3 -- 14 --

WL 50 1 5 0.50 0.1 1 0.4 0.50 0.2 0.67 10 0.71

RdLn 35 0.70 10 1 0.2 2.00 0.7 0.88 0.3 1 10 0.71

WL+RdLn 35 0.70 5 0.50 0.2 2.00 0.4 0.50 0.2 0.67 8 0.57

Nom. 50 -- 18 -- 0.1 -- 0.6 -- 0.2 -- 9 --

WL 50 1 6 0.33 0.1 1 0.3 0.50 0.1 0.50 6 0.67

RdLn 35 0.70 18 1 0.1 1 0.6 1 0.2 1 8 0.89

WL+RdLn 35 0.70 6 0.33 0.1 1 0.3 0.50 0.2 1 5 0.56

LP_INV1

t; -; vdd; t

8
T

LP_INV1.2

t; -; +; t

Delay (ps) Energy (fJ)
Ave* EDP 

(ps×fJ)

Scheme

Pass; Inv-N; 

Inv-P; Read B
o

o
st

in
g

+ 32 bits × 1024 words Array

SG

t; t; t

LP

-; -; +

6
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

Val Comp % VDD

Nom. 100 -- 16.7

WL 11 0.11 1.8

Nom. 131 -- 21.8

WL 45 0.34 7.5

RSNM (mV)
Scheme

Pass; Inv-N; 

Inv-P; Read B
o
o
st

in
g

+

SG

t; t; t

LP

-; -; +

6
T



104 

 

6.2.1 Word-line Boosting for 6T SRAMs 

Using word-line boosting for the 6T LP and 6T SG cells leads to 29-45% reductions in 

read and write delays.  The maximum delay for both cells is still the read delay, but this is 

reduced by 29% for the 6T SG cell and 40% for the 6T LP cell.  Figure 6.11 shows the read and 

write delays of these two cells for decreasing values of supply voltage.  These reductions in 

delay also lead to reductions in EDP.  The 6T SG cell sees a 28% reduction in average EDP and 

the 6T LP cell sees a 44% reduction in average EDP.  Figure 6.12 shows the EDPs of these two 

cells for decreasing values of supply voltage.  However, the tradeoff for using word-line 

boosting, other than increased power required by the word-line drivers and boosting circuitry, is 

a reduced RSNM.  When the word-line is enabled for a read operation, there is always a risk in 

accidentally overwriting the cell; the RSNM measures this risk.  When the word-line is boosted, 

the Pass transistors are more strongly turned on and this risk increases.  Table 6.5 shows that the 

RSNM is greatly reduced for the 6T cells; the 6T SG cell witnesses an 89% reduction and the 6T 

LP cell witnesses a 66% reduction at VDD = 0.6 V.  The resultant RSNMs are both below 10% of 

VDD.  Figure 6.13 shows the RSNM/VDD of these two cells for decreasing values of supply 

voltage.  Even at full-VDD operation, the 6T SG cell has a 63% reduction and the 6T LP cell has 

a 37% reduction in RSNM at the 1 V supply voltage.  As the supply voltage decreases, each 

cell’s RSNM falls precipitously.  The resultant values of RSNM/VDD are problematic for near-

threshold operation as noise becomes much more likely to corrupt these 6T cells during a read 

operation. 



105 

 

 
Figure 6.11.  Delays versus VDD value for the 6T SRAM cells using word-line boosting 

 
Figure 6.12.  EDP versus VDD value for the 6T SRAM cells using word-line boosting 

0.E+00

5.E-11

1.E-10

2.E-10

2.E-10

3.E-10

3.E-10

200 300 400 500 600 700 800 900 1000 1100

D
e

la
y 

(s
)

Supply Voltage (mV)

6T SG Read

6T SG Write

6T LP (-,+) Read

6T LP (-,+) Write

6T SG Read w/Word Line Boost

6T SG Write w/Word Line Boost

6T LP (-,+) Read w/Word Line Boost

6T LP (-,+) Write w/Word Line Boost

1.E-26

1.E-25

1.E-24

200 300 400 500 600 700 800 900 1000 1100

A
ve

. E
D

P
 (

8
0

%
 R

e
ad

 +
 2

0
%

 W
ri

te
) 

(J
*s

)

Supply Voltage (mV)

6T SG

6T LP (-,+)

6T SG w/Word Line Boost

6T LP (-,+) w/Word Line Boost



106 

 

 
Figure 6.13.  RSNM versus VDD value for the 6T SRAM cells using word-line boosting 

  

6.2.2 Word-line/Write-line and Read-line Boosting for 8T SRAMs 

Using word-line/write-line and/or read-line boosting for the four 8T SRAM cells leads to 

25-67% reductions in read and write delays.  The maximum delay for all cells is still the read 

delay, but this is reduced by 30% using read-line boosting.  Figure 6.14 shows the read and write 

delays of the 8T cells for decreasing values of supply voltage.  These reductions in delay also 

lead to reductions in EDP.  The 8T SG cells undergo 14-49% reductions in average EDP.  Figure 

6.15 shows the EDPs of the 8T cells for decreasing values of supply voltage. 

0

5

10

15

20

25

200 300 400 500 600 700 800 900 1000 1100

R
SN

M
/V

D
D

(%
)

Supply Voltage (mV)

6T SG

6T LP (-,+)

6T SG w/Word Line Boost

6T LP (-,+) w/Word Line Boost



107 

 

 
Figure 6.14.  8T delays versus VDD value using word-line and read-line boosting 

 
Figure 6.15.  8T EDP versus VDD value using word-line and read-line boosting 

0.E+00

1.E-10

2.E-10

3.E-10

4.E-10

5.E-10

6.E-10

200 300 400 500 600 700 800 900 1000 1100

D
e

la
y 

(s
)

Supply Voltage (mV)

8T Read

8T Read w/Read Line Boost

8T SG Write

8T LP_SGR (-,+) Write

8T LP_INV1 (-,VDD) Write

8T LP_INV1.2 (-,+) Write

8T SG Write w/Word Line Boost

8T LP_SGR (-,+) Write w/Word Line Boost

8T LP_INV1 (-,VDD) Write w/Word Line Boost

8T LP_INV1.2 (-,+) Write w/Word Line Boost

1.E-27

1.E-26

1.E-25

1.E-24

200 300 400 500 600 700 800 900 1000 1100

A
ve

. E
D

P
 (

8
0

%
 R

e
ad

 +
 2

0
%

 W
ri

te
) 

(J
*s

)

Supply Voltage (mV)

8T SG 8T LP_SGR (-,+)

8T LP_INV1 (-,VDD) 8T LP_INV1.2 (-,+)

8T SG w/Read Line Boost 8T LP_SGR (-,+) w/Read Line Boost

8T LP_INV1 (-,VDD) w/Read Line Boost 8T LP_INV1.2 (-,+) w/Read Line Boost

8T SG w/Read Line & Word Line Boost 8T LP_SGR (-,+) w/Read Line & Word Line Boost

8T LP_INV1 (-,VDD) w/Read Line & Word Line Boost 8T LP_INV1.2 (-,+) w/Read Line & Word Line Boost

8T SG w/Word Line Boost 8T LP_SGR (-,+) w/Word Line Boost

8T LP_INV1 (-,VDD) w/Word Line Boost 8T LP_INV1.2 (-,+) w/Word Line Boost



108 

 

While read-line boosting reduces the maximum delay of the 8T cells, word-line and read-

line boosting contribute to reductions in average EDP.  Only the 8T SG cell experiences more of 

a reduction in average EDP (37%) due to read-line boosting than word-line boosting (14%).  The 

8T LP_SGR and 8T LP_INV1 cells see equal reductions of 23% and 29%, respectively, and the 

8T LP_INV1.2 cell only experiences an 11% reduction due to read-line boosting and sees a 33% 

reduction due to word-line boosting; this is because these three cells already have low read 

energies at 1 fJ and the word-line boosting reduces their higher write energies which in turn 

plays a part in the reduction of their average energy and EDP.  Boosting both the read-line and 

the word-line reduces the 8T cells’ average EDP by 31-49%.  These are substantial savings, but 

are tempered with more power required for read-line and word-line drivers and boosting 

circuitry.  However, unlike the two 6T SRAM cells, word-line and read-line boosting do not 

decrease noise margins for the 8T cells, therefore better delays, energies, and EDP can be 

obtained without reducing noise margin performance. 

6.3 Process, Voltage, and Temperature Variations 

In this section, the performance of 32×1024 arrays for the 6T SG SRAM cell and the 8T 

SG, LP_SGR, LP_INV1, and LP_INV1.2 SRAM cells are examined and under the effects of 

process/parameter, voltage, and temperature (PVT) variations for near-threshold operation at 

VDD = 0.6 V.  The 6T LP cell is no longer considered since it has a lower average EDP than the 

6T SG cell only for supply voltages of 1, 0.9, and 0.8 V; the 6T SG cell is more optimal for near-

threshold operation scheme since it has a lower average EDP at VDD = 0.6 V.  Word-line 

boosting improved the 6T LP cell’s speed and average EDP, however, using word-line boosting 

for both 6T cells causes their RSNMs to become too small. 



109 

 

6.3.1 Process/Parameter Variations 

The near-threshold performance of the five cells are examined and compared using the 

same quasi-Monte Carlo (QMC) analysis used in Section 4.1 [20].  Table 6.6 shows the near-

threshold performance results of parameter variation simulations on the 32×1024 arrays.  Table 

6.7 summarizes the simulated effects of parameter variations on read and write leakage current 

totals during near-threshold operation. 

 

Table 6.6.  Near-threshold FinFET SRAM parameter variation simulation results 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

 

Rd Wr Rd Wr Ave* Val % VDD Val % VDD

0.47 58 6 1.2 2.7 1.5 115 243 40.5 95 15.8

0.20 9 9 5.6 11.1 5.1 88 9 1.5 18 3.0

0.48 54 6 0.6 3.1 1.1 109 244 40.7

0.30 13 18 1.2 20.2 4.2 1196 15 2.5

0.03 54 34 0.1 0.9 0.3 14 246 41.0

0.12 6 6 0.1 0.1 0.1 7 8 1.3

0.09 54 10 0.2 0.8 0.3 16 251 41.8

0.04 6 2 0.1 0.1 0.1 8 6 1.0

0.03 54 19 0.1 0.6 0.2 12 246 41.0

0.15 5 4 0.4 0.2 0.3 24 8 1.3

Delay (ps) Energy (fJ) S
N

M
 

(m
V

)

R
S

N
M

 

(m
V

)

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t;

LP_INV1.2

t; -; +; t

Ave* 

EDP 

(ps×fJ)

LP_INV1

t; -; vdd; t

6
T

Leakage /  

Cell (nA)

32 bits × 1024 words Array

SG

t; t; t

Scheme

Pass; Inv-N; 

Inv-P; Read



110 

 

Table 6.7.  Near-threshold parameter variation results of read/write leakage totals (nA) 

 

 

The mean read delays of the 6T SG cell is 14% longer than its nominal read delay while 

the mean read delays of the 8T cells are 8% longer than their nominal read delays.  The standard 

deviations of the read delays are all below 13% of the respective means.  The 8T SG cell has the 

largest standard deviation of 13 ps, or 24% of its delay of 54 ps.  The 6T SG cell’s standard 

deviation is 16% of its mean.  As a percentage of their means, the other 8T cells have lower 

standard deviations: 11% for the LP_SGR and LP_INV1 cells and 9% for the LP_INV1.2 cell.  

The read delays are similar to the nominal values, but with higher variation than what was 

observed for VDD = 1 V.  The mean read energy of the 6T SG cell is 33% greater than its 

nominal value of 0.9 fJ.  The mean read energies of the 8T cells are identical to their nominal 

values except for 8T LP_INV1, which only increases by 0.1 fJ.  However, the standard 

deviations of the read energy are high for all five cells.  The standard deviation of the 6T SG 

Scheme

Pass; Inv-N; 

Inv-P; Read

Write

0 [0 1] 1

Write

1 [0 1] 0

Read

1 [0 1] 1

0.47 1.25 0.88

0.21 0.34 0.30

Scheme

Pass; Inv-N; 

Inv-P; Read

Write

0 [0 1] 1

Write

1 [0 1] 0

Read

[0 1]

Read

[1 0]

0.47 2.91 2.09 1.84

0.20 0.45 0.35 0.29

0.02 0.05 0.43 0.19

0.01 0.02 0.19 0.06

0.08 0.88 0.87 0.63

0.04 0.29 0.24 0.16

0.02 0.81 0.81 0.57

0.01 0.28 0.24 0.15

6
T

LP_INV1.2

t; -; +; t

LP_SGR

-; -; +; t;

SG

3 x t; t; t; t

SG

t; t; t

LP_INV1

t; -; vdd; t

8
T



111 

 

cell’s read energy is 4.7X greater than its mean.  The cells standard deviations are no more than 

2X greater than their respective means, except for the 8T LP_INV1.2 cell which is 4X greater.  

However, this is due to its low mean read energy of 0.1 fJ, since small fluctuations can lead to 

large percent changes. 

The mean write delays of the five cells are within 2 ps of their respective nominal values.  

The standard deviations of the write delays of 8T cells which use LP-configured FinFETs are no 

more than 21% of their respective means.  The standard deviation of the write delay of the 6T 

SG scheme is 1.5X greater than its mean and the standard deviation of the 8T SG scheme is 3.0X 

greater than its mean.  These variations are larger than was seen for operation at the 1 V supply 

voltage, however, similar to the parameter variations for VDD = 1 V, the standard deviations of 

the SG cells are significantly larger than that for the LP cells.  Similar versions of these results 

are also seen for the write energies, however, the mean write energies of 6T SG and 8T SG cells 

are 29% and 55% larger than their nominal values, respectively.  The mean write energies of the 

8T LP_SGR, LP_INV1, and LP_INV1.2 cells are identical to their nominal values.  The standard 

deviations of the write energies of 8T cells which use LP-configured FinFETs are no more than 

33% of their respective means.  The standard deviation of the write delay of the 6T SG scheme is 

4.1X greater than its mean and the standard deviation of the 8T SG scheme is 6.5X greater than 

its mean; this is due to the large standard deviations of the write delays for these schemes. 

The means of the cross-coupled inverter leakage currents per cell for all five cells are all 

very similar to their respective nominal values (within 33%).  Somewhat surprisingly, the 

standard deviations of the cross-coupled leakage current are lower for the 6T and 8T SG cells 

than what was observed for VDD = 1 V; these cells have standard deviations of no more than 63% 

of their mean leakage values.  This is similar for the LP_INV1 cell, whose standard deviation is 



112 

 

44% of its mean, but the LP_SGR and LP_INV1.2 cells have standard deviations of 4.0X and 

5.0X of their means, respectively.  The large variations in leakage current per cell for these cells 

are a byproduct of their low mean leakage values of 0.03 nA; small variations can cause large 

percentage changes in the leakage current.  Additionally, all five varied cells have average read 

and write leakage totals less than their nominal values and see similar variations as for the cross-

coupled inverter leakage current. 

The mean SNMs of the five cells are up to 4% less, for the LP_INV1 cell, than their 

nominal values.  The standard deviations, as a percentage of the mean SNM, are also small for 

these cells, at no more than 6% for the 8T SG cell.  Both of these values are slightly greater than 

what was seen for VDD = 1 V operation; the mean SNMs were no more than 2% less than their 

nominal values and the standard deviations were no more than 4.4% of their means.  The mean 

RSNM of the 6T SG cell is 5% less than its nominal value of 100 mV; at VDD = 1 V operation, 

the RSNM increased.  The standard deviation of the 6T SG RSNM is 19% of it mean; greater 

than the 7.1% seen for a 1 V supply voltage. 

The mean average EDP increased for each of the five cells compared to their nominal 

values; the 6T SG cell’s mean average EDP is 2.0X greater, the 8T SG cell’s is 2.5X greater, the 

8T LP_SGR cell’s is 7.7% greater, the 8T LP_INV1 cell’s is 14.2% greater, and the 8T 

LP_INV1.2 cell’s is 33% greater.  The 8T SG cell has the largest standard deviation of 11.0X its 

mean and the LP_INV1.2 cell has a standard deviation of 2.0X its mean.  The other cells, 

however, have standard deviations of no more than 77% of their respective means.  The cells 

which use LP configuration and reverse-bias the cross-coupled inverter transistors have 

significantly less variation in average energy and average EDP than the other cells.  Of the five 

cells examined using parameter variation simulations, the 8T LP_INV1.2 cell has the lowest 



113 

 

average EDP for a 32×1024 array and the second-largest SNM.  However, the 8T LP_INV1.2 

cell also has higher variation in average EDP than the 8T LP_SGR and 8T LP_INV1 cells; these 

cells have 2 ps×fJ and 4 ps×fJ greater average EDP, respectively, and the 8T LP_INV1 cell has a 

5 mV higher SNM. 

6.3.2 Supply Voltage Variations 

For near-threshold supply voltage variation simulations, the supply voltage was studied 

for 540, 570, 600, 630, and 660 mV (or -10% to +10% of VDD = 1 V) for the five cells.  Table 

6.8 shows the simulation results of near-threshold VDD variations on the delays, energies, and 

average EDP of the 32×1024 arrays.  Table 6.9 displays the simulation results of near-threshold 

supply voltage variations on the leakage current, SNMs, and RSNMs of the SRAM cells.  Table 

6.10 summarizes the simulation results of near-threshold VDD variations on the read and write 

leakage current totals. 



114 

 

Table 6.8.  Near-threshold VDD variation results of FinFET SRAM delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

-10% 61 1.20 5 1 0.8 0.89 1.7 0.81 0.9 0.82 57 1

-5% 55 1.08 5 1 0.8 0.89 1.9 0.90 1.0 0.91 57 1

Nom. 51 -- 5 -- 0.9 -- 2.1 -- 1.1 -- 57 --

+5% 48 0.94 5 1 0.9 1 2.5 1.19 1.2 1.09 58 1.02

+10% 45 0.88 5 1 1.0 1.11 2.8 1.33 1.3 1.18 61 1.07

-10% 60 1.20 5 1.25 0.6 1 1.6 0.80 0.8 0.89 46 1.07

-5% 54 1.08 4 1 0.6 1 1.8 0.90 0.8 0.89 44 1.02

Nom. 50 -- 4 -- 0.6 -- 2.0 -- 0.9 -- 43 --

+5% 47 0.94 4 1 0.6 1 2.3 1.15 0.9 1 43 1

+10% 44 0.88 4 1 0.6 1 2.6 1.30 1.0 1.11 44 1.02

-10% 59 1.18 64 2.00 0.1 1 0.6 0.67 0.2 0.67 13 1

-5% 54 1.08 44 1.38 0.1 1 0.8 0.89 0.2 0.67 12 0.92

Nom. 50 -- 32 -- 0.1 -- 0.9 -- 0.3 -- 13 --

+5% 47 0.94 24 0.75 0.1 1 1.1 1.22 0.3 1 13 1

+10% 44 0.88 18 0.56 0.1 1 1.2 1.33 0.3 1 14 1.08

-10% 60 1.20 16 1.60 0.1 1 0.6 0.75 0.2 0.67 13 0.93

-5% 54 1.08 12 1.20 0.1 1 0.7 0.88 0.2 0.67 13 0.93

Nom. 50 -- 10 -- 0.1 -- 0.8 -- 0.3 -- 14 --

+5% 47 0.94 8 0.80 0.2 2.00 0.9 1.13 0.3 1 14 1

+10% 44 0.88 7 0.70 0.2 2.00 1.0 1.25 0.3 1 15 1.07

-10% 59 1.18 35 1.94 0.1 1 0.4 0.67 0.1 0.50 8 0.89

-5% 54 1.08 25 1.39 0.1 1 0.5 0.83 0.2 1 9 1

Nom. 50 -- 18 -- 0.1 -- 0.6 -- 0.2 -- 9 --

+5% 47 0.94 14 0.78 0.1 1 0.7 1.17 0.2 1 10 1.11

+10% 44 0.88 11 0.61 0.1 1 0.8 1.33 0.2 1 11 1.22

Delay (ps) Energy (fJ)
Ave* EDP 

(ps×fJ)

32 bits × 1024 words Array

SG

3 x t; t; t; t

6
T SG

t; t; t

Scheme

Pass; Inv-N; 

Inv-P; Read

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

8
T

VDD



115 

 

Table 6.9.  Near-threshold VDD variation results of leakage and noise margins 

 

Val Comp Val Comp % VDD Comp Val Comp % VDD Comp

-10% 0.485 0.97 222 0.90 41.1 0.99 91 0.91 16.9 1.01

-5% 0.492 0.99 235 0.95 41.2 1 96 0.96 16.8 1.01

Nom. 0.499 -- 248 -- 41.3 -- 100 -- 16.7 --

+5% 0.506 1.01 260 1.05 41.3 1 104 1.04 16.5 0.99

+10% 0.513 1.03 272 1.10 41.2 1 107 1.07 16.2 0.97

-10% 0.484 0.97 222 0.90 41.1 0.99

-5% 0.491 0.99 235 0.95 41.2 1

Nom. 0.498 -- 248 -- 41.3 --

+5% 0.506 1.02 260 1.05 41.3 1

+10% 0.513 1.03 272 1.10 41.2 1

-10% 0.018 1 225 0.89 41.7 0.98

-5% 0.018 1 239 0.94 41.9 0.99

Nom. 0.018 -- 254 -- 42.3 --

+5% 0.018 1 268 1.06 42.5 1

+10% 0.019 1.06 283 1.11 42.9 1.01

-10% 0.078 0.96 231 0.89 42.8 0.99

-5% 0.080 0.99 246 0.95 43.2 1

Nom. 0.081 -- 260 -- 43.3 --

+5% 0.082 1.01 274 1.05 43.5 1

+10% 0.083 1.02 289 1.11 43.8 1.01

-10% 0.018 1 225 0.89 41.7 0.98

-5% 0.018 1 239 0.94 41.9 0.99

Nom. 0.018 -- 254 -- 42.3 --

+5% 0.018 1 268 1.06 42.5 1

+10% 0.019 1.06 283 1.11 42.9 1.01

RSNM (mV)
Leakage / Cell 

(nA)
SNM (mV)

SG

3 x t; t; t; t

6
T SG

t; t; t

Scheme

Pass; Inv-N; 

Inv-P; Read

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

8
T

VDD



116 

 

Table 6.10.  Near-threshold VDD variations on read/write leakage totals (nA) 

 

 

The read delays of the schemes decrease with increasing VDD.  The five cells have similar 

read paths, via two SG-configured FinFETs, and thus see similar changes in read delay of -12% 

to +20%.  Only the 6T SG cell and 8T LP_INV1 cell experiences changes in read energy, but 

these changes are no more than 0.1 fJ. 

Val Comp Val Comp Val Comp

-10% 0.485 0.97 1.306 0.97 0.895 0.97

-5% 0.492 0.99 1.325 0.99 0.908 0.99

Nom. 0.499 -- 1.344 -- 0.921 --

+5% 0.506 1.01 1.362 1.01 0.934 1.01

+10% 0.513 1.03 1.381 1.03 0.947 1.03

Val Comp Val Comp Val Comp Val Comp

-10% 0.485 0.97 2.948 0.97 2.127 0.97 1.893 0.97

-5% 0.492 0.99 2.991 0.99 2.158 0.99 1.919 0.99

Nom. 0.499 -- 3.034 -- 2.189 -- 1.945 --

+5% 0.506 1.01 3.076 1.01 2.219 1.01 1.971 1.01

+10% 0.513 1.03 3.119 1.03 2.250 1.03 1.997 1.03

-10% 0.018 1 0.047 0.98 0.443 0.97 0.209 0.99

-5% 0.018 1 0.048 1 0.449 0.98 0.210 0.99

Nom. 0.018 -- 0.048 -- 0.456 -- 0.212 --

+5% 0.018 1 0.049 1.02 0.462 1.01 0.214 1.01

+10% 0.019 1.06 0.050 1.04 0.468 1.03 0.215 1.01

-10% 0.079 0.98 0.900 0.97 0.900 0.97 0.666 0.98

-5% 0.080 0.99 0.913 0.99 0.913 0.99 0.674 0.99

Nom. 0.081 -- 0.926 -- 0.926 -- 0.682 --

+5% 0.082 1.01 0.939 1.01 0.939 1.01 0.690 1.01

+10% 0.083 1.02 0.952 1.03 0.952 1.03 0.698 1.02

-10% 0.018 1 0.839 0.97 0.839 0.97 0.605 0.98

-5% 0.018 1 0.851 0.99 0.851 0.99 0.612 0.99

Nom. 0.018 -- 0.863 -- 0.863 -- 0.619 --

+5% 0.018 1 0.875 1.01 0.875 1.01 0.627 1.01

+10% 0.019 1.06 0.887 1.03 0.887 1.03 0.634 1.02

Read 1 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read

VDD

Write 0 [0 1] 1 Write 1 [0 1] 0

6
T SG

t; t; t

Scheme

Pass; Inv-N; 

Inv-P; Read

8
T

Write 0 [0 1] 1 Write 1 [0 1] 0 Read [0 1] Read [1 0]

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

VDD



117 

 

The write delays of the SG cells minimally vary with changes in VDD, but the other cells, 

which have higher nominal write delays, see larger variations in write delays.  The 8T LP_SGR 

cell has the largest nominal write delay and experiences the largest variation in write delay 

between -44% and +2X.  The cells have more variation in write energy due to larger nominal 

values, and, as expected, as VDD increases so too does the write energy.  All cells see a similar 

increase in write energy to +25-33% for a +10% change in the supply voltage, but the LP cells 

experience greater decreases in write energy to as much as -33% for a -10% change in VDD.  The 

LP cells see greater variation in write energy due to supply voltage variations at near-threshold 

operation. 

As for VDD = 1 V, leakage current is mildly affected by supply voltage variations.  All 

five cells see a 0-4% reduction in leakage current due to a 10% reduction in VDD and the cells see 

a 2-6% increase in leakage current due to a 10% increase in VDD.  This is also very similar for 

the read and write leakage.  As a whole, the schemes leak within 6% of their nominal values for 

all read and write leakage scenarios. 

The SNMs of the cells vary within 11% of their nominal values; this is greater variation 

than what was observed at VDD =1 V for the SG cells.  For the 6T SG cell, its RSNM varies 

between -9% to +7%; this is more than the 1 mV variation it experiences at VDD = 1 V. 

Overall the SG cells have the least variation in average EDP with at most a 7% increase.  

The 8T LP_SGR and 8T LP_INV1 cells have average EDP variations of ±8% while the 8T 

LP_INV1.2 cell has the greatest variation between -11% and 22%.  The 8T LP_ INV1.2 cell has 

smallest average EDP with variation between -11% and 22% and the second-highest SNM at 

each value of VDD.  The 8T LP_SGR and 8T LP_INV1 cells have slightly higher average EDP, 

but with variations only of ±8%, and the LP_INV1 cell has the highest average EDP. 



118 

 

6.3.3 Bias Voltage Variations 

For near-threshold bias voltage variation simulations, the reverse-bias value was studied 

for 18-22 mV (or -10% to +10% of the 0.2 V used throughout this research) for the three cells 

(8T LP_SGR, 8T LP_INV1, and 8T LP_INV1.2) which use LP-mode FinFETs.  The n-type 

FinFET reverse-biases are -0.22 V to -0.18 V and the p-type FinFET reverse-biases are 1.18 V to 

1.22 V.  Table 6.11 shows the simulation results of near-threshold bias voltage variations on the 

delays, energies, and average EDP of the 32×1024 arrays.  Table 6.12 displays the simulation 

results of near-threshold bias voltage variations on the leakage current, SNMs, and RSNMs of 

the SRAM cells.  Table 6.13 summarizes the simulation results of near-threshold bias voltage 

variations on the read and write leakage current totals. 

  



119 

 

Table 6.11.  Near-threshold bias voltage variation results of delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

6
T SG

t; t; t
Nom. 51 -- 5 -- 0.9 -- 2.1 -- 1.1 -- 57 --

SG

3 x t; t; t; t
Nom. 50 -- 4 -- 0.6 -- 2.0 -- 0.9 -- 43 --

-10% 50 1 29 0.91 0.1 1 0.9 1 0.3 1 13 1

-5% 50 1 30 0.94 0.1 1 0.9 1 0.3 1 13 1

Nom. 50 -- 32 -- 0.1 -- 0.9 -- 0.3 -- 13 --

+5% 50 1 33 1.03 0.1 1 0.9 1 0.2 0.67 12 0.92

+10% 50 1 34 1.06 0.1 1 0.9 1 0.2 0.67 12 0.92

-10% 50 1 10 1 0.2 2.00 0.8 1 0.3 1 14 1

-5% 50 1 10 1 0.1 1 0.8 1 0.3 1 14 1

Nom. 50 -- 10 -- 0.1 -- 0.8 -- 0.3 -- 14 --

+5% 50 1 10 1 0.1 1 0.8 1 0.3 1 13 0.93

+10% 50 1 10 1 0.1 1 0.8 1 0.3 1 13 0.93

-10% 50 1 17 0.94 0.1 1 0.6 1 0.2 1 10 1.11

-5% 50 1 18 1 0.1 1 0.6 1 0.2 1 10 1.11

Nom. 50 -- 18 -- 0.1 -- 0.6 -- 0.2 -- 9 --

+5% 50 1 19 1.06 0.1 1 0.6 1 0.2 1 9 1

+10% 50 1 20 1.11 0.1 1 0.6 1 0.2 1 9 1

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

8
T

LP_SGR

-; -; +; t

Scheme

Pass; Inv-N; 

Inv-P; Read

Bias

32 bits × 1024 words Array

Delay (ps) Energy (fJ)
Ave* EDP 

(ps×fJ)



120 

 

Table 6.12.  Near-threshold bias voltage variation results of leakage and noise margins 

 

Val Comp Val Comp % VDD Val % VDD

6
T SG

t; t; t
Nom. 0.499 -- 248 -- 41.3 100 16.7

SG

3 x t; t; t; t
Nom. 0.498 -- 248 -- 41.3

-10% 0.024 1.33 254 1 42.3

-5% 0.021 1.17 254 1 42.3

Nom. 0.018 -- 254 -- 42.3

+5% 0.016 0.89 254 1 42.3

+10% 0.014 0.78 254 1 42.3

-10% 0.085 1.05 260 1 43.3

-5% 0.083 1.02 260 1 43.3

Nom. 0.081 -- 260 -- 43.3

+5% 0.079 0.98 260 1 43.3

+10% 0.077 0.95 259 1 43.2

-10% 0.024 1.33 254 1 42.3

-5% 0.021 1.17 254 1 42.3

Nom. 0.018 -- 254 -- 42.3

+5% 0.016 0.89 254 1 42.3

+10% 0.014 0.78 254 1 42.3

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

8
T

LP_SGR

-; -; +; t

Scheme

Pass; Inv-N; 

Inv-P; Read

Bias

Leakage / Cell 

(nA)
RSNM (mV)SNM (mV)



121 

 

Table 6.13.  Near-threshold bias voltage variation results of read/write leakage totals (nA) 

 

 

The read delays of the 8T schemes are not affected by changes in bias voltages; this is 

expected since they use identical SG read transistor configurations.  Since the affect on read 

delay is negligible, the variations in leakage current cause minimal variations in read energy; no 

more than a 0.1 fJ difference is observed.  Only the write delays of the 8T LP_SGR and 8T 

LP_INV1.2 cells are affected by bias voltage variations; these differ between -9% and +11%.  

These variations are more than the negligible changes seen at the 1 V supply voltage.  The write 

energy, however, is not influenced by bias voltage variations. 

Val Comp Val Comp Val Comp

6
T SG

t; t; t
Nom. 0.499 -- 1.344 -- 0.921 --

Val Comp Val Comp Val Comp Val Comp

SG

3 x t; t; t; t
Nom. 0.499 -- 3.034 -- 2.189 -- 1.945 --

-10% 0.024 1.33 0.063 1.31 0.466 1.02 0.222 1.05

-5% 0.021 1.17 0.055 1.15 0.460 1.01 0.217 1.02

Nom. 0.018 -- 0.048 -- 0.456 -- 0.212 --

+5% 0.016 0.89 0.042 0.88 0.452 0.99 0.208 0.98

+10% 0.014 0.78 0.037 0.77 0.448 0.98 0.204 0.96

-10% 0.085 1.05 0.930 1 0.930 1 0.687 1.01

-5% 0.083 1.02 0.928 1 0.928 1 0.684 1

Nom. 0.081 -- 0.926 -- 0.926 -- 0.682 --

+5% 0.079 0.98 0.924 1 0.924 1 0.680 1

+10% 0.077 0.95 0.922 1 0.922 1 0.679 1

-10% 0.024 1.33 0.869 1.01 0.869 1.01 0.625 1.01

-5% 0.021 1.17 0.866 1 0.866 1 0.622 1

Nom. 0.018 -- 0.863 -- 0.863 -- 0.619 --

+5% 0.016 0.89 0.861 1 0.861 1 0.617 1

+10% 0.014 0.78 0.859 1 0.859 1 0.615 0.99

Read 1 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read

Bias
Write 0 [0 1] 1 Write 1 [0 1] 0

LP_INV1.2

t; -; +; t

LP_INV1

t; -; vdd; t

Scheme

Pass; Inv-N; 

Inv-P; Read

8
T

Write 0 [0 1] 1 Write 1 [0 1] 0 Read [0 1] Read [1 0]

LP_SGR

-; -; +; t

Bias



122 

 

Leakage current is most affected by bias voltage variations.  The 8T LP_SGR and 8T 

LP_INV1.2 cells, which use a -0.2 V BG bias for Inv-N FinFETs and a VDD + 0.2 V, or 0.8 V,  

BG bias for Inv-P FinFETs, see variations between -22% to +33%; this is slightly less than the 

±33% variation at VDD = 1 V.  The 8T LP_INV1 cell, which uses a nominal -0.2 V BG bias for 

the Inv-N FinFETs and ties the back gates of the Inv-P FinFETs to VDD = 0.6 V, has leakage 

current variations within 5% of its nominal value due to less reliance on bias voltages; this is 

identical to bias voltage variation results at VDD = 1 V.  For read and write leakage, similar 

results are seen for the write 0 [0 1] 1 leakage.  The 8T LP_SGR cell also has similar variation in 

its write 1 [0 1] 0 leakage; as mentioned before, this is due to variations in the leakage current of 

its LP-configured Pass transistors.  Also similar to the bias voltage results for a 1 V supply 

voltage is that the 8T LP_INV1 and 8T LP_INV1.2 cells have similar and negligible variation in 

their write 1 [0 1] 0 leakage, but have larger write 1 [0 1] 0 leakage values, due to their SG-

configured Pass transistors whose leakage does not vary due to bias voltage variations.  Ideally, 

there should be no variation in read leakage for the 8T cells because SG-mode Read FinFETs are 

used; however, the read leakage of the 8T schemes sees only minimal variation due to slight 

variations of simultaneously-occurring write leakage caused by leftover values on the WBit and 

WNBit lines.   

As for VDD = 1 V, the variations in leakage current due to bias voltage variations do not 

cause variations in the SNMs or RSNMs for the cells.  The ratios of leakage current of the Inv-N 

and Inv-P are minimally affected since both n-type and p-type FinFET BG biases either fall 

closer to ground and VDD or rise farther from ground and VDD. 

Overall, variations in BG bias voltage negligibly affect the average EDP and noise 

margins of the three 8T cells which use reverse-biased LP-mode FinFETs.  At most, the 8T 



123 

 

LP_SGR, LP_INV1, and LP_INV1.2 cells see a 1 ps×fJ variation in average EDP.  As for a 

supply voltage of 1 V, the 8T LP_ INV1 cell sees the smallest variations in leakage current since 

only its Inv-N transistors use a bias voltage (the back gates of its Inv-P FinFETs are tied to VDD).  

The 8T LP_SGR and LP_INV1.2 cells see between a -22% and +33% variation in leakage 

current, but this does not affect their noise margins and only negligibly affects their active 

energies and average EDP. 

6.3.4 Temperature Variations 

For near-threshold temperature variation simulations, the ambient temperature was 

studied for 0, 27, 50, 75, and 100°C for the five cells.  Table 6.14 shows the simulation results of 

near-threshold temperature variations on the delays, energies, and average EDP of the 32×1024 

arrays.  Table 6.15 displays the simulation results of near-threshold temperature variations on the 

leakage current, SNMs, and RSNMs of the SRAM cells.  Table 6.16 summarizes the simulation 

results of near-threshold temperature variations on the read and write leakage current totals. 



124 

 

Table 6.14.  Near-threshold temperature variation results of delay, energy, and EDP 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 

 

Rd Comp Wr Comp Rd Comp Wr Comp Ave* Comp Val Comp

0 49 0.96 5 1 0.5 0.56 1.8 0.86 0.7 0.64 35 0.61

27 51 -- 5 -- 0.9 -- 2.1 -- 1.1 -- 57 --

50 54 1.06 6 1.20 1.9 2.11 3.2 1.52 2.1 1.91 114 2.00

75 59 1.16 6 1.20 4.6 5.11 5.9 2.81 4.9 4.45 287 5.04

100 64 1.25 7 1.40 10.5 11.67 11.8 5.62 10.8 9.82 686 12.04

0 48 0.96 4 1 0.2 0.33 1.7 0.85 0.5 0.56 24 0.56

27 50 -- 4 -- 0.6 -- 2.0 -- 0.9 -- 43 --

50 54 1.08 5 1.25 1.5 2.50 3.0 1.50 1.8 2.00 99 2.30

75 61 1.22 5 1.25 4.4 7.33 5.8 2.90 4.7 5.22 283 6.58

100 66 1.32 5 1.25 10.4 17.33 11.9 5.95 10.7 11.89 701 16.30

0 48 0.96 33 1.03 0.1 1 0.9 1 0.2 1 11 0.85

27 50 -- 32 -- 0.1 -- 0.9 -- 0.3 -- 13 --

50 54 1.08 31 0.97 0.1 1 1.0 1.11 0.3 1.00 17 1.31

75 61 1.22 30 0.94 0.3 3.00 1.2 1.33 0.5 1.67 30 2.31

100 66 1.32 30 0.94 0.8 8.00 1.8 2.00 1.0 3.33 67 5.15

0 48 0.96 10 1 0.1 1 0.7 0.88 0.2 1 10 0.71

27 50 -- 10 -- 0.1 -- 0.8 -- 0.3 -- 14 --

50 54 1.08 10 1 0.3 3.00 0.9 1.13 0.5 1.67 24 1.71

75 61 1.22 10 1 0.9 9.00 1.5 1.88 1.0 3.33 64 4.57

100 66 1.32 10 1 2.3 23.00 3.0 3.75 2.5 8.33 163 11.64

0 48 0.96 20 1.11 0.1 1 0.6 1 0.2 1 8 0.89

27 50 -- 18 -- 0.1 -- 0.6 -- 0.2 -- 9 --

50 54 1.08 17 0.94 0.1 1 0.7 1.17 0.2 1 13 1.44

75 61 1.22 16 0.89 0.3 3.00 0.8 1.33 0.4 2.00 26 2.89

100 66 1.32 15 0.83 0.8 8.00 1.4 2.33 0.9 4.50 62 6.89

8
T

Energy (fJ)
Ave* EDP 

(ps×fJ)

6
T

Scheme

Pass; Inv-N; 

Inv-P; Read

SG

t; t; t

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

T
em

p
. 

(°
C

) 32 bits × 1024 words Array

Delay (ps)

LP_INV1

t; -; vdd; t



125 

 

Table 6.15.  Near-threshold temperature variation results of leakage and noise margins 

 

Val Comp Val Comp % VDD Val Comp % VDD

0 0.119 0.24 253 1.02 42.2 107 1.07 17.8

27 0.499 -- 248 -- 41.3 100 -- 16.7

50 1.395 2.80 243 0.98 40.5 95 0.95 15.8

75 3.588 7.19 238 0.96 39.7 91 0.91 15.2

100 8.026 16.08 233 0.94 38.8 86 0.86 14.3

0 0.119 0.24 253 1.02 42.2

27 0.498 -- 248 -- 41.3

50 1.395 2.80 243 0.98 40.5

75 3.585 7.20 238 0.96 39.7

100 7.987 16.04 233 0.94 38.8

0 0.003 0.17 258 1.02 43.0

27 0.018 -- 254 -- 42.3

50 0.064 3.56 250 0.98 41.7

75 0.210 11.67 246 0.97 41.0

100 0.590 32.78 242 0.95 40.3

0 0.017 0.21 264 1.02 44.0

27 0.081 -- 260 -- 43.3

50 0.246 3.04 256 0.98 42.7

75 0.707 8.73 252 0.97 42.0

100 1.752 21.63 248 0.95 41.3

0 0.003 0.17 258 1.02 43.0

27 0.018 -- 254 -- 42.3

50 0.064 3.56 250 0.98 41.7

75 0.210 11.67 246 0.97 41.0

100 0.591 32.83 242 0.95 40.3

8
T

6
T

Scheme

Pass; Inv-N; 

Inv-P; Read

SG

t; t; t

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

T
em

p
. 

(°
C

)

Leakage / Cell 

(nA)
SNM (mV) RSNM (mV)

LP_INV1

t; -; vdd; t



126 

 

Table 6.16.  Near-threshold temperature variation results of read/write leakage totals (nA) 

 

 

The read delays of the schemes increase with increasing temperature; the 6T SG cell’s 

read delay increases up to +25% and the 8T cells increase up to +32%.  This is because of the 

similar read paths for these cells.  The increase in read delay is less than what was observed for 

the cells at VDD = 1 V; the 6T SG scheme experienced a +41% increase and the 8T cells had a 

Val Comp Val Comp Val Comp

0 0.119 0.24 0.324 0.24 0.222 0.24

27 0.499 -- 1.344 -- 0.921 --

50 1.395 2.80 3.736 2.78 2.566 2.79

75 3.583 7.18 9.516 7.08 6.550 7.11

100 7.977 15.99 21.010 15.63 14.494 15.74

Val Comp Val Comp Val Comp Val Comp

0 0.119 0.24 0.733 0.24 0.528 0.24 0.468 0.24

27 0.499 -- 3.034 -- 2.189 -- 1.945 --

50 1.395 2.80 8.416 2.77 6.076 2.78 5.413 2.78

75 3.583 7.18 21.380 7.05 15.448 7.06 13.801 7.10

100 7.978 15.99 47.070 15.51 34.038 15.55 30.477 15.67

0 0.003 0.17 0.009 0.19 0.108 0.24 0.048 0.23

27 0.018 -- 0.048 -- 0.456 -- 0.212 --

50 0.064 3.56 0.169 3.52 1.287 2.82 0.623 2.94

75 0.209 11.61 0.550 11.46 3.346 7.34 1.699 8.01

100 0.589 32.72 1.539 32.06 7.578 16.62 4.017 18.95

0 0.018 0.22 0.222 0.24 0.222 0.24 0.162 0.24

27 0.081 -- 0.926 -- 0.926 -- 0.682 --

50 0.246 3.04 2.587 2.79 2.587 2.79 1.924 2.82

75 0.707 8.73 6.640 7.17 6.640 7.17 4.993 7.32

100 1.751 21.62 14.784 15.97 14.781 15.96 11.221 16.45

0 0.003 0.17 0.208 0.24 0.208 0.24 0.148 0.24

27 0.018 -- 0.863 -- 0.863 -- 0.619 --

50 0.064 3.56 2.404 2.79 2.404 2.79 1.741 2.81

75 0.210 11.67 6.143 7.12 6.142 7.12 4.495 7.26

100 0.590 32.78 13.624 15.79 13.621 15.78 10.060 16.25

8
T

LP_SGR

-; -; +; t

LP_INV1.2

t; -; +; t

Scheme

Pass; Inv-N; 

Inv-P; Read T
em

p
. 

(°
C

)

SG

3 x t; t; t; t

LP_INV1

t; -; vdd; t

Write 1 [0 1] 0 Read [0 1] Read [1 0]

Write 1 [0 1] 0 Read 1 [0 1] 1Write 0 [0 1] 1Scheme

Pass; Inv-N; 

Inv-P; Read T
em

p
. 

(°
C

)
SG

t; t; t6
T

Write 0 [0 1] 1



127 

 

+59% increase for an ambient temperature of 100°C.  The cells experience larger increases in 

read energy at the 0.6 V supply voltage than at VDD = 1 V; the 6T SG scheme encounters a 

greater increase of 11.67X (versus 7.29X for 1 V VDD), the 8T SG scheme has an increase of 

17.33X (versus 17.11X), the 8T LP_SGR and LP_INV1.2 cells have an increase of 8.00X 

(versus 4.67X), and the 8T LP_INV1 cell’s read energy increases by 23.00X (versus 9.00X) at 

100°C. 

The write delays for each scheme only slightly vary with temperature increase; these 

delays are already minimal compared to the read delay and vary by at most 2 ps for the 8T 

LP_INV1.2 scheme.  The cells also see greater increases in write energy at near-threshold 

operation; the LP cells see an increase in write energy at 100°C of at most 3.75X (versus 24-56% 

for VDD = 1 V) and the SG cells see an increase of at most 5.95X (versus at most 3.12X). 

Leakage current is most affected by temperature variations.  At 100°C an increase of 

approximately 16X is observed for the 6T and 8T SG schemes, an increase of 21.63X occurs for 

the 8T LP_INV1 cell, and increases of approximately 33X are witnessed for the 8T LP_SGR and 

LP_INV1.2 cells.  These increases are only slightly more than what was observed at the nominal 

1 V supply voltage.  For read and write leakage, similar results are seen for the write 0 [0 1] 1 

leakage.  For write 1 [0 1] 0 leakage, a roughly 16X increase at 100°C is seen for schemes with 

SG-configured pass transistors while a roughly 32X increase is observed for the 8T LP_SGR 

cell.  The 6T SG cell’s read 1 [0 1] 1 leakage increases comparably to its write leakage increases.  

For the 8T schemes, the read leakage, [0 1] and [1 0] cases, increases 15-19X at 100°C due to the 

SG-configured read transistors used by each scheme.  This behavior is also very similar to what 

was observed for VDD = 1 V. 



128 

 

Additionally, as for a 1 V supply voltage, at the near-threshold operating voltage of 0.6 V 

the SNMs of the five examined cells all vary within 6% of their nominal 27°C values.  

Temperature causes greater variation for the 6T SG cell’s RSNM; the cell’s RSNM varies by 

14% of its nominal value, however, this is less than the 22% variation experienced at VDD = 1 V. 

Overall, the 6T LP scheme and the 8T LP_SGR and LP_ INV1.2 cells have the least 

variation in average EDP; a 5-7X increase at 100°C is witnessed for these schemes.  However, 

this is greater than the 3-4X increase seen at VDD = 1 V.  The 6T SG scheme has an increase of 

12.0X (versus 6.89X at 1 V VDD), the 8T LP_INV1 cell has an increase of 11.6X (versus 7.07X), 

and the 8T SG scheme has an increase of 11.9X (versus 12.80X) in average EDP at 100°C.  The 

8T LP_ INV1.2 cell has smallest average EDP with second-lowest variation, to the 8T LP_SGR 

cell, and the second-highest SNM, to the 8T LP_INV1 cell. 

6.3.5 Summary of PVT Variations 

Overall, of the five examined cells, the 8T LP_INV1.2 cell has the lowest average EDP 

under PVT variations.  The 8T LP_SGR cell boasts the lowest variation in average EDP due to 

PVT variations with only a minor increase in EDP.  The 8T LP_INV1 cell also has low variation 

in average EDP due to parameter and voltage variations, but experiences greater variations for 

changes in temperature; however, this cell does have the highest SNM of the five studied cells.  

In particular, the 8T LP_INV1.2 cell has the lowest average EDP for a 32×1024 array and the 

second-largest SNM due to parameter variations, however, the 8T LP_INV1.2 cell also has 

higher variation in average EDP than the 8T LP_SGR and 8T LP_INV1 cells; these cells have 2 

ps×fJ and 4 ps×fJ greater average EDP, respectively, and the 8T LP_INV1 cell has a 5 mV 

higher SNM.  The 8T LP_ INV1.2 cell has smallest average EDP with variation between -11% 

and 22% and the second-highest SNM for variations in VDD, however, the 8T LP_SGR and 8T 



129 

 

LP_INV1 cells have slightly higher average EDP, but with variations only of ±8%, and the 

LP_INV1 cell has the highest average EDP.  Overall, variations in BG bias voltage negligibly 

affect the average EDP and noise margins of the three 8T cells which use reverse-biased LP-

mode FinFETs.  The 8T LP_ INV1.2 cell has smallest average EDP with second-lowest 

variation, to the 8T LP_SGR cell, and the second-highest SNM, to the 8T LP_INV1 cell, due to 

variations in temperature. 

6.4 Low-Leakage Modifications: Header/Footer FinFETs 

The use of header and footer FinFETs has been examined at near-threshold operation for 

the five FinFET SRAM cells.  In addition to the choice of using header, footer, or both FinFETs, 

the header and footer FinFETs can be in SG-configuration, LP-configuration with a 0 V n-bias 

and a 1 V p-bias, or LP-configuration with a -0.2 V n-bias and a 0.8 V (VDD + 0.2 V) p-bias. 

Table 6.17 shows the best leakage, delay, and average EDP near-threshold results of 

using header and footer FinFETs per SRAM cell and Table 6.18 shows the SNM and RSNM 

near-threshold results of using header and footer FinFETs per SRAM cell.  Appendix C includes 

more results of lower-performing cells.  As explained in Chapter 5, if there are a small number of 

32×1024 arrays in the memory, then the percent comparisons of the 32×1024 array average EDP 

are approximate to the percent comparisons of the average EDP for the entire SRAM memory.  

On the other hand, if there are a large number of 32×1024 arrays in the memory, then the percent 

comparisons of the leakage EDP per array in sleep-mode are approximate to the percent 

comparisons of the average EDP of the entire SRAM memory. 

Overall, the best performing cells often use only a header transistor per SRAM cell.  The 

leakage EDP per array in sleep-mode is reduced by up to 44-45% for the 6T SG and 8T SG cells 

(using header and footer transistors), 81% for the 8T LP_INV1 cell (using header transistors), 



130 

 

and 17% for the 8T LP_SGR and 8T LP_INV1.2 cells (using header transistors).  This is less 

than what was observed for VDD = 1 V for all but the 8T LP_SGR and 8T LP_INV1.2 cells.  

Additionally, most cells see a reduction in SNM and RSNM with the inclusion of these 

transistors; up to a 32% reduction in SNM and up to a 65% in RSNM is observed.  The reduction 

in SNM is larger than the maximum 7% reduction observed at the 1 V supply voltage. 

 

Table 6.17.  Leakage, delay, and EDP near-threshold results of headers/footers per cell 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 51 -- 5 -- 57 --

Header t 0.499 0.455 0.91 23.3 0.91 1 51 1 6 1.20 52 0.91

Hdr + Ftr t 0.499 0.211 0.42 21.5 0.84 8 72 1.41 6 1.20 99 1.74

Header vdd 0.499 0.423 0.85 21.6 0.85 1 51 1 41 8.20 44 0.77

Header + 0.499 0.423 0.85 20.8 0.81 13 50 0.98 107 21.40 151 2.65

Hdr + Ftr + / - 0.499 0.011 0.02 14.1 0.55 43 255 5.00 108 21.60 842 14.77

Nom. 0.498 0.498 -- 24.5 -- 50 -- 4 -- 43 --

Header t 0.498 0.455 0.91 22.4 0.91 1 50 1 6 1.50 40 0.93

Header vdd 0.498 0.423 0.85 20.8 0.85 1 50 1 54 13.50 40 0.93

Hdr + Ftr + / - 0.497 0.012 0.02 13.6 0.56 38 240 4.80 131 32.75 703 16.35

Nom. 0.018 0.018 -- 0.9 -- 50 -- 32 -- 13 --

Header t 0.018 0.018 1 0.9 1 1 50 1 35 1.09 12 0.92

Header vdd 0.018 0.015 0.83 0.7 0.83 34 50 1 77 2.41 21 1.62

Nom. 0.081 0.081 -- 4.0 -- 50 -- 10 -- 14 --

Header vdd 0.081 0.015 0.19 0.7 0.19 1 50 1 41 4.10 11 0.79

Nom. 0.018 0.018 -- 0.9 -- 50 -- 18 -- 9 --

Header vdd 0.018 0.015 1 0.7 0.83 1 50 1 43 2.39 8 0.89

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



131 

 

Table 6.18.  Noise margin near-threshold results of headers/footers per cell 

 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Table 6.19 shows the best leakage, delay, and average EDP near-threshold results of 

using header and footer FinFETs per two SRAM cells.  The SNM and RSNM near-threshold 

results are identical to the cells using header and footer transistors per one SRAM cell.  

Appendix C includes more results of lower-performing cells. 

Similar to the previous section, the best performing cells use only a header transistor per 

two SRAM cells.  The leakage EDP per array in sleep-mode is reduced by up to 19% for the 6T 

SG cell (using header transistors), 15% for the 8T SG cell (using header transistors), 81% for the 

8T LP_INV1 cell (using header transistors), and 17% for the 8T LP_SGR and 8T LP_INV1.2 

cells (using header transistors).  The percent reductions of the 8T cells are slightly smaller 

compared to using header and footer FinFETs per cell, and are slightly smaller than the 

reductions seen for a supply voltage of 1 V; The other cell’s percent reductions are similar. 

Val Val Comp Val Comp Val Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 248 -- 100 --

Header t 0.499 0.455 0.91 23.3 0.91 1 243 0.98 94 0.94

Hdr + Ftr t 0.499 0.211 0.42 21.5 0.84 8 243 0.98 51 0.51

Header vdd 0.499 0.423 0.85 21.6 0.85 1 205 0.83 61 0.61

Header + 0.499 0.423 0.85 20.8 0.81 13 168 0.68 35 0.35

Hdr + Ftr + / - 0.499 0.011 0.02 14.1 0.55 43 168 0.68 119 1.19

Nom. 0.498 0.498 -- 24.5 -- 248 --

Header t 0.498 0.455 0.91 22.4 0.91 1 243 0.98

Header vdd 0.498 0.423 0.85 20.8 0.85 1 205 0.83

Hdr + Ftr + / - 0.497 0.012 0.02 13.6 0.56 38 168 0.68

Nom. 0.018 0.018 -- 0.9 -- 254 --

Header t 0.018 0.018 1 0.9 1 1 254 1

Header vdd 0.018 0.015 0.83 0.7 0.83 34 253 1

Nom. 0.081 0.081 -- 4.0 -- 260 --

Header vdd 0.081 0.015 0.19 0.7 0.19 1 260 1

Nom. 0.018 0.018 -- 0.9 -- 254 --

Header vdd 0.018 0.015 1 0.7 0.83 1 253 1

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

SNM (mV) RSNM (mV)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



132 

 

Table 6.19.  Leakage, delay, EDP near-threshold results of headers/footers per two cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Table 6.20 shows the best leakage, delay, and average EDP near-threshold results of 

using header and footer FinFETs per four SRAM cells.  The SNM and RSNM near-threshold 

results are identical to the cells using header and footer transistors per one SRAM cell.  

Appendix C includes more results of lower-performing cells. 

Similar to the previous sections, the best performing cells often use only a header 

transistor per four SRAM cells.  The leakage EDP per array in sleep-mode is reduced by up to 

22% for the 6T SG cell (using header transistors), 15% for the 8T SG cell (using header 

transistors), 82% for the 8T LP_INV1 cell (using header transistors), 17% for the 8T LP_SGR 

cell (using header transistors), and 20% for the 8T LP_INV1.2 cell (using header transistors).  

Similar to the header and footer transistors per two SRAM cells, the percent reductions of the 8T 

cells are slightly smaller compared to using header and footer FinFETs per cell, and are slightly 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 51 -- 5 -- 57 --

Header t 0.499 0.443 0.89 22.7 0.89 1 51 1 7 1.40 50 0.88

Header vdd 0.499 0.423 0.85 20.8 0.81 4 50 0.98 71 14.20 73 1.28

Header + 0.499 0.423 0.85 20.8 0.81 43 50 0.98 179 35.80 382 6.70

Nom. 0.498 0.498 -- 24.5 -- 50 -- 4 -- 43 --

Header t 0.498 0.443 0.89 21.8 0.89 1 50 1 8 2.00 38 0.88

Header vdd 0.498 0.423 0.85 20.8 0.85 11 50 1 91 22.75 100 2.33

Header + 0.496 0.423 0.85 20.8 0.85 67 50 1 205 51.25 448 10.42

Nom. 0.018 0.018 -- 0.9 -- 50 -- 32 -- 13 --

Header t 0.018 0.018 1 0.9 1 1 50 1 38 1.19 12 0.92

Header vdd 0.018 0.015 0.83 0.7 0.83 136 50 1 137 4.28 46 3.54

Nom. 0.081 0.081 -- 4.0 -- 50 -- 10 -- 14 --

Header t 0.081 0.035 0.43 1.7 0.43 1 50 1 14 1.40 13 0.93

Header vdd 0.081 0.015 0.19 0.7 0.19 3 50 1 71 7.10 20 1.43

Nom. 0.018 0.018 -- 0.9 -- 50 -- 18 -- 9 --

Header t 0.018 0.018 1 0.9 1 1 50 1 22 1.22 9 1

Header vdd 0.018 0.015 0.83 0.7 0.83 18 50 1 70 3.89 13 1.44

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



133 

 

smaller than the reductions seen for a supply voltage of 1 V; The other cell’s percent reductions 

are similar. 

 

Table 6.20.  Leakage, delay, EDP near-threshold results of headers/footers per four cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Overall, compared to the 1 V supply voltage, header and footer FinFETs are slightly less 

effective at near-threshold operation for reducing the leakage of SRAM cells.  The 6T and 8T SG 

cells have the most leakage of the five examined cells, and saw reduced percent reductions of 

leakage EDP per array in sleep-mode at VDD = 0.6 V compared to VDD = 1 V.  The 8T LP cells 

witnessed similar percent reductions in leakage EDP per array in sleep-mode at the 0.6 V supply 

voltage compared to the 1 V supply voltage, but these reductions are smaller since these cells 

already reduce leakage current due to reverse-biasing of the cross-coupled inverter FinFETs.  

Since, for this 0.6 V operating voltage as well as for a VDD of 1 V, all LP 8T cells yield less 

leakage EDP than using header or footer FinFETs for the 8T SG cell, it is more efficient, in 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 51 -- 5 -- 57 --

Header t 0.499 0.434 0.87 22.2 0.87 1 51 1 9 1.80 48 0.84

Header vdd 0.499 0.423 0.85 20.8 0.81 19 50 0.98 123 24.60 192 3.37

Header + 0.501 0.423 0.85 20.0 0.78 98 49 0.96 294 58.80 949 16.65

Nom. 0.498 0.498 -- 24.5 -- 50 -- 4 -- 43 --

Header t 0.498 0.434 0.87 21.3 0.87 1 50 1 12 3.00 38 0.88

Header vdd 0.498 0.423 0.85 20.8 0.85 35 50 1 149 37.25 248 5.77

Nom. 0.018 0.018 -- 0.9 -- 50 -- 32 -- 13 --

Header vdd 0.018 0.015 0.83 0.7 0.83 343 50 1 255 7.97 97 7.46

Nom. 0.081 0.081 -- 4.0 -- 50 -- 10 -- 14 --

Header t 0.081 0.027 0.33 1.3 0.33 1 50 1 17 1.70 13 0.93

Header vdd 0.081 0.015 0.19 0.7 0.19 7 50 1 122 12.20 45 3.21

Header + 0.079 0.015 0.19 0.7 0.18 30 49 0.98 283 28.30 167 11.93

Nom. 0.018 0.018 -- 0.9 -- 50 -- 18 -- 9 --

Header t 0.018 0.018 1 0.9 1 1 50 1 26 1.44 9 1

Header vdd 0.018 0.015 0.83 0.7 0.83 67 50 1 118 6.56 25 2.78

Header + 0.018 0.015 0.83 0.7 0.80 192 49 0.98 271 15.06 65 7.22

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



134 

 

terms of area and leakage current, to instead use the LP cells for low-leakage FinFET SRAMs 

for both near-threshold and full-VDD operation.  



135 

 

Chapter 7   

Conclusions 

Nine novel 8T FinFET SRAM cell schemes and numerous configurations of these 

schemes have been comprehensively studied.  The effects of LP and SG FinFET configurations 

and parameter, voltage, and temperature (PVT) variations on performance metrics are shown.  

Some of most important results of this study include: 

 Reverse-biasing the cross-coupled inverter FinFETs’ back gates reduces leakage 

current by 2-97%, depending on the biasing approach, versus using shorted-gate (SG) 

configuration:  The largest reduction is obtained when the n- and p-back gates are biased 

to -0.2 V and VDD + 0.2 V, respectively.  This also minimizes the magnitude of leakage 

current variations due to parameter or temperature variations, which in turn reduces 

variations in average energy and EDP. 

 Reverse-biasing the cross-coupled inverter FinFETs’ back gates also enables over a 

22% higher SNM than using SG configuration:  The highest SNM is obtained when the 

n- and p-back gates are biased to -0.2 V and VDD, respectively. 

 Reverse-biasing the cross-coupled inverter FinFETs’ back gates and SG-configuring 

the pass transistors also reduces write energy by 47-51%:  The largest reduction is 

obtained when the n- and p-back gates are biased to -0.2 V and VDD + 0.2 V, respectively. 

 For a 32×1024 array, read delay is dominant: This delay can be mitigated by using SG-

configured read transistors. 



136 

 

 8T FinFET schemes outperform both 6T FinFET and 8T CMOS cells:  LP_INVP, the 

best-performing 6T scheme in terms of average EDP for both array sizes, has 17-23% 

and 37-38% less average EDP as an 8T scheme for the 16×16 and 32×1024 array sizes, 

respectively.  The 8T CMOS cell has a 5X larger average EDP than the worst-performing 

8T FinFET cell, the slowest 8T FinFET cell’s maximum delay is 35% faster than the 8T 

CMOS cell’s delay, and the 8T CMOS cell’s leakage current is 10X more than the 

highest 8T FinFET cell leakage of 0.59 nA. 

 The 6T and 8T FinFET SRAM cell delays are not greatly affected by parameter 

variations:  The standard deviations of these cell delays are all below 13% of their 

respective means. 

 Temperature variation greatly affects leakage current, causing increases of up to 32X:  

This increase in leakage causes an increase in average EDP of up to 4X for schemes 

which reverse-bias the cross-coupled inverter FinFETs’ n- and p-back gates to -0.2 V and 

VDD + 0.2 V, respectively, and up to 13X for schemes which do not use reverse-biasing. 

 Similar relative performance is observed for the cells at near-threshold operation:  

When operating at a supply voltage of 0.6 V, a majority of the cells see a reduction in 

EDP and the best-performing cell, 8T LP_INV1.2, still performs the best.  However, the 

cells see increased changes in performance due to PVT variations and increased delay.  

The increased delay can best be mitigated by using read-line boosting; however, word-

line/write-line and read-line boosting can reduce EDP. 

 FinFET SRAM cells designed for low-leakage are more effective than header and/or 

footer transistors added to a cell to reduce leakage current:  At both 1 V and 0.6 V 



137 

 

supply voltages, SRAM cells which use LP-configured FinFETs have larger percentage 

savings in leakage current versus SG-configured SRAM cells than do FinFET SRAM 

cells with header and/or footer FinFETs added to reduce leakage.  Using LP FinFET 

SRAM schemes is more advantageous since minimal area and delay penalties are 

incurred versus SG FinFET SRAM schemes. 

 The application of FinFETs to memory address decoders also provides substantial 

improvement in performance:  Compared to a minimum-sized low power scheme, up to 

a 60% increase in speed and a 99.7% reduction in static/inactive power can be obtained 

with only a 12% increase in dynamic power by using alternative FinFET configurations 

for a NOR address decoder.  This novel work and its results are presented in Appendix B 

in order to not interfere with the flow of the dissertation. 

The 8T LP_INV scheme is the best-performing FinFET SRAM scheme at full-VDD (1 V 

supply voltage) operation.  In particular, the LP_INV1.2 cell has an EDP up to 60% less than the 

conventional 8T SG FinFET SRAM scheme and an EDP up to 62% less than the best-

performing 6T FinFET SRAM scheme for a 32 bit by 1024 word array.  This cell also performs 

best under PVT variations at this supply voltage.  The LP_INV1.2 cell is also the best-

performing FinFET SRAM cell at near-threshold operation with VDD = 0.6 V, however, the 8T 

LP_SGR cell performs better under PVT variations at 0.6 V VDD; at this voltage, the LP_SGR 

cell has less performance variation for parameter and supply voltage variations, and a similar 

change in performance for temperature variations.  The tradeoff is that the LP_SGR cell has a 

slightly higher average EDP than the LP_INV1.2 cell.  The results presented by this research can 

be weighed and assist choosing of a SRAM cell for a high-performance and/or low-power 

FinFET-based memory. 



138 

 

7.1 Contributions 

This research includes a number of contributions concerning SRAM design using FinFET 

technology, including the following: 

 This research is the first to conduct a comprehensive study of 8T SRAM design using 

FinFETs:  A number of FinFET configurations have been proposed, evaluated, and 

analyzed; tradeoffs among the different figures of merit, such as delay, power, leakage 

current, and static noise margin, have been identified and evaluated.   The FinFET-based 

8T SRAM design configurations include:  SG and LP FinFET, BG bias voltage, number 

of FinFETs per transistor. In this study was a thorough investigation for the best 

configurations that provide high speed, low leakage current, low energy, low EDP, high 

SNM, and/or high RSNM.  The changes in performance have been analyzed for the 

SRAM cells under process, voltage, and temperature (PVT) variations to identify resilient 

design configurations. 

 A thorough investigation of the effect of FinFET back-gate bias voltage variability on 

SRAM performance:  Typically for PVT variations, only the supply voltage is varied for 

voltage variations.  However, some FinFET SRAM cells which use LP-configured 

FinFETs require BG bias voltages which are also susceptible to variations voltage values.  

For the best-performing FinFET SRAM cells which require BG bias voltages, these 

voltages were varied for the n-type and p-type FinFETs to discover the impact on cell 

performance. 

 Novel insights of header and footer FinFETs for low-leakage SRAM cells:  Header and 

footer transistors can be added to decrease the leakage current of SRAM cells.  Research 



139 

 

on the use of header and footer transistors for FinFET SRAMs is extremely limited, so 

this research provides new insights of leakage current savings of using header and footer 

transistors and compared them to the reduced leakage current obtained by using LP-

configured FinFET SRAM cells. 

 Study of near-threshold operation of FinFET SRAMs:  The best-performing FinFET 

SRAM cells at the nominal 1 V supply voltage were further examined at a VDD of 0.6 V.  

This near-threshold operation can be used to save substantial energy with a tradeoff of 

moderately longer delays and lower values of noise margins.  To improve speed, boosting 

of the 6T SRAM word-line and 8T SRAM word-line/write-line and read-line were 

examined.  PVT variations were also studied at this lower supply voltage to identify the 

configurations of more-resilient FinFET SRAM cells.  Also for near-threshold operation, 

the use of header and footer FinFETs for low-leakage SRAM cells was analyzed. 

 First, novel design of NOR address decoders using FinFETs:  The novel design of a 

peripheral component of a SRAM memory sub-system, the memory address decoder, was 

studied using FinFETs and is presented in Appendix B.  SG- and LP-configured 

FinFETs, with varying input signal swing from the address lines, were used in the designs 

of NOR address decoders to identify the best configurations to use for highest speed, 

lowest power, and lowest leakage current.  The effect of parameter, bias voltage, and 

temperature variations were studied for the best-performing schemes to identify resilient 

design attributes. 



140 

 

7.2 Future Work 

Future research on FinFET SRAMs can delve into multiple areas, including the 

following: 

 Analyzing the thermal performance of FinFET SRAMs:  FinFETs can be more-densely 

packed in an area footprint than bulk-CMOS transistors.  Because of this, and 

compounded since FinFETs are often manufactured as a silicon-on-insulator (SOI) 

device, FinFETs can suffer from significant self-heating.  Self-heating also generates heat 

dissipation to other FinFETs in the circuit and increases leakage current, delay, energy, 

and changes in performance due to PVT variations.  Electro-thermal co-simulation can be 

used to examine the impact of self-heating on the entire FinFET SRAM array.  This 

research has made an introductory, exploratory study of FinFET SRAM thermal 

performance in Appendix D; however, a more-detailed effort with a more-accurate 

simulation framework should examine this in greater detail. 

 Studying FinFET SRAM performance using a future, scaled FinFET technology 

sizing:  The results obtained for this research used a gate length (LG) of 30 nm and a fin 

height (Hfin) of 75 nm for the FinFET technology.  In Section B.1 of Appendix B, a 

future, scaled technology sizing with LG = 13 nm and Hfin = 30 nm was used for the 

FinFET NOR decoders.  Preliminary results of this research using this smaller technology 

were obtained, however, the performance of the SRAM arrays was significantly worse 

for the smaller technology compared to the larger technology used in this research.  If 

proper values for the other parameters can be found or calculated, then it would be 

interesting to explore the performance of FinFET SRAMs at this smaller technology size 

since the effects of BG biasing and PVT variations would be greater. 



141 

 

 Design of FinFET SRAM peripheral circuitry:  6T and 8T SRAM cells were studied in 

this research using FinFET technology.  While Section B.1 of Appendix B discusses the 

design of NOR address decoders using FinFETs, other memory address designs, 

including those in Section B.2 of Appendix B realized using bulk-CMOS transistors, can 

use FinFETs to obtain savings in delay, leakage, and energy.  In addition, while some 

research is available [13], a more in-depth look at read sense-amplifier design using 

FinFETs can also be explored.  Examining the use of FinFET technology in both memory 

address decoders and read sense-amplifiers can reveal the potential benefits of using 

FinFETs in the design of a complete SRAM sub-system. 

 Design of SRAM sub-system communication architecture and control logic:  In 

conjunction with the previous topic, the design of a complete SRAM sub-system must 

also examine the control logic needed for the required signals and the communication 

architecture of the sub-system.  If adaptive BG biasing is used for the FinFET SRAMs, 

then the control logic and communication architecture become increasingly complex.  

However, the additional circuitry and power may be offset by additional savings from a 

finely-controlled FinFET SRAM memory.  Other research in [32] uses adaptive BG 

biasing in a FinFET-based SRAM sub-system, however, it uses a simpler BG biasing 

strategy of only BG biasing the Pass transistors.  This requires design and analysis at the 

system level in order to efficiently apply FinFET SRAMs to other applications, such as a 

medium-grained reconfigurable architecture for digital signal processing whose basic 

elements are comprised of small SRAM arrays [33]. 

  



142 

 

References 

 

[1]  D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur and H.-S. P. Wong, "Device 

scaling limits of Si MOSFETs and their application dependencies," Proc. of the IEEE, vol. 

89, no. 3, pp. 259-288, Mar. 2001.  

[2]  "International Technology Roadmap for Semiconductors," [Online]. Available: 

www.itrs.net. 

[3]  T.-C. Chen, "Overcoming research challenges for CMOS scaling: Industry directions," in 

Proc. Int. Conf. on Solid-State and IC Technology, pp. 4-7, Oct. 2006.  

[4]  T.-J. King, "FinFETs for nanoscale CMOS digital integrated circuits," in Proc. Int. Conf. 

Computer-Aided Design, pp. 207-210, Nov. 2005.  

[5]  J.-P. Colinge, "The SOI MOSFET: From single gate to multigate," in FinFETs and Other 

Multi-Gate Transistors, 1st ed., J.-P. Colinge, Ed., New York, Springer, 2008, pp. 1-48. 

[6]  D. E. Duarte, N. Vijaykrishnan and M. J. Irwin, "A clock power model to evaluate impact of 

architectural and technology optimizations," IEEE Trans. VLSI Systems, vol. 10, no. 6, pp. 

844-855, Dec. 2002.  

[7]  A. Muttreja, N. Agarwal and N. K. Jha, "CMOS logic design with independent-gate 

FinFETs," in Proc. IEEE Int. Conf. on Computer Design, pp. 560-567, Oct. 2007.  

[8]  C.-Y. Lee and N. K. Jha, "FinFET-based dynamic power management of on-chip 

interconnection networks through adaptive back-gate biasing," in Proc. IEEE Int. Conf. on 

Computer Design, pp. 350-357, Oct. 2009.  

[9]  J. G. Fossum, L. Ge, M.-H. Chiang, V. P. Trivedi, M. M. Chowdhury, L. Mathew, G. O. 

Workman and B.-Y. Nguyen, "A process/physics-based compact model for nonclassical 

CMOS device and circuit design," Solid-State Electronics, vol. 48, no. 6, pp. 919-926, Jun. 

2004.  

[10]  J. G. Fossum, V. P. Trivedi, M. M. Chowdhury, S.-H. Kim and W. Zhang, "Recent upgrades 

and applications of UFDG," in Proc. 2006 NSTI Nanotech. Conf. (Workshop on Compact 

Modeling), pp. 674-679, May 2006.  



143 

 

[11]  W. Zhao and Y. Cao, "New generation of predictive technology model for sub-45nm design 

exploration," in Proc. Int. Symp. Quality of Electronic Design, pp. 585-590, May 2006, 

http://www.eas.asu.edu/~ptm.  

[12]  M. V. Dunga, C.-H. Lin, A. M. Niknejad and C. Hu, "BSIM-CMG: A compact model for 

multi-gate transistors," in FinFETs and Other Multi-Gate Transistors, 1st ed., J.-P. Coligne, 

Ed., New York, Springer, 2008, pp. 113-153. 

[13]  M.-L. Fan, V. P.-H. Hu, Y.-N. Chen, P. Su and C.-T. Chuang, "Variability analysis of 

sense-amplifier for FinFET subthreshold SRAM applications," IEEE Tran. Circuits Syst. II, 

Exp. Briefs, vol. 59, no. 12, pp. 878-882, Dec. 2012.  

[14]  S. A. Tawfik and V. Kursun, "Compact FinFET memory circuits with p-type data access 

transistors for low leakage and robust operation," in Proc. Int. Symp. Quality Electronic 

Design, pp. 855-860, Mar. 2008.  

[15]  A. Carlson, Z. Guo, S. Balasubramanian, R. Zlatanovici, K. Liu T-J and B. Nikolic, "SRAM 

read/write margin enhancements using FinFETs," IEEE Trans. VLSI Systems, vol. 18, no. 6, 

pp. 887-900, Jun. 2010.  

[16]  E. Seevinck, F. J. List and J. Lohstroh, "Static-noise margin analysis of MOS SRAM cells," 

IEEE J. Solid-State Circuits, vol. SC-22, no. 5, pp. 748-754, Oct. 1987.  

[17]  A. Bhavnagarwala, S. Kosonocky, C. Radens, K. Stawiasz, R. Mann, Q. Ye and K. Chin, 

"Fluctuation limits and scaling opportunities for CMOS SRAM cells," in Proc. IEEE Int. 

Electron Devices Meeting, pp. 659-662, Dec. 2005.  

[18]  Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King and B. Nikolic, "FinFET-based 

SRAM design," in Proc. IEEE Int. Symp. on Low Power Electronics and Design, pp. 2-7, 

Aug. 2005.  

[19]  J. G. Delgado-Frias, Z. Zhang and M. A. Turi, "Low-power SRAM cell design for FinFET 

and CNTFET technologies," in Proc. 1st IEEE Workshop of Low Power SoC in Int. Green 

Computing Conf., pp. 547-553, Aug. 2010.  

[20]  A. Singhee and R. A. Rutenbar, "From finance to flip flops: A study of fast quasi-Monte 

Carlo methods from computational finance applied to statistical circuit analysis," in Proc. 

IEEE Int. Symp. on Quality Electronic Design, pp. 685-692, Mar. 2007.  

 
 



144 

 

[21]  S. A. Tawfik and V. K. Kursun, "Work-function engineering for reduced power and higher 

integration density: An alternative to sizing for stability in FinFET memory circuits," in 

Proc. IEEE Int. Symp. Circuits Syst., pp. 788-791, May 2008.  

[22]  J. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A Design 

Perspective, Upper Saddle River, NJ: Prentice Hall, 2003.  

[23]  K. A. Blomster, "Schemes for reducing power and delay in SRAMs," M.S. thesis, 

Washington State University, Aug. 2006. 

[24]  R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester and T. Mudge, "Near-threshold 

computing: Reclaiming Moore’s law through energy efficient integrated circuits," Proc. of 

the IEEE, vol. 98, no. 2, pp. 253-266, Feb. 2010.  

[25]  G. Chen, D. Sylvester, D. Blaauw and T. Mudge, "Yield-driven near-threshold SRAM 

design," IEEE Trans. VLSI Systems, vol. 18, no. 11, pp. 1590-1598, Nov. 2010.  

[26]  V. P.-H. Hu, M.-L. Fan, P. Su and C.-T. Chuang, "Threshold voltage design of UTB SOI 

SRAM with improved stability/variability for ultra-low voltage near subthreshold 

operation," IEEE Trans. Nanotechnology, to appear.  

[27]  J. Mezhibovsky, A. Teman and A. Fish, "Low voltage SRAMs and the scalability of the 9T 

supply feedback SRAM," in Proc. IEEE Int. SoC Conf., pp. 136-141, Sept. 2011.  

[28]  C. Hu, "Thin-body FinFET as scalable low voltage transistor (Keynote)," in Proc. IEEE Int. 

Symp. VLSI Tech., Syst., and Applications, Apr. 2012.  

[29]  F. Crupi, M. Alioto, J. Franco, P. Magnone, M. Togo, N. Horiguchi and G. Groeseneken, 

"Understanding the basic advantages of bulk FinFETs for sub- and near-threshold logic 

circuits from device measurements," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 

7, pp. 439-442, Jul. 2012.  

[30]  M.-L. Fan, Y.-S. Wu, V. P.-H. Hu, P. Su and C.-T. Chuang, "Investigation of cell stability 

and write ability of FinFET subthreshold SRAM using analytical SNM model," IEEE Trans. 

Electron Devices, vol. 57, no. 6, pp. 1375-1381, Jun. 2010.  

[31]  C.-Y. Hsieh, F. M-L, V. P.-H. Hu, P. Su and C.-T. Chuang, "Independently-controlled-gate 

FinFET Schmitt trigger sub-threshold SRAMs," IEEE Trans. VLSI Systems, vol. 20, no. 7, 

pp. 1201-1210, Jul. 2012.  

 



145 

 

[32]  S.-I. O'uchi, K. Endo, M. Masahara, K. Sakamoto, Y. Liu, T. Matsukawa, T. Sekigawa, H. 

Koike and E. Suzuki, "Flex-pass-gate SRAM for static noise margin enhancement using 

FinFET-based technology," Solid-State Electronics, vol. 52, no. 11, p. 1694–1702, Nov. 

2008.  

[33]  M. J. Myjak, "A medium-grain reconfigurable architecture for digital signal processing," 

Ph.D. dissertation, Washington State University, May 2006. 

[34]  B. S. Amrutur and M. A. Horowitz, "Fast low-power decoders for RAMs," IEEE J. Solid-

State Circuits, vol. 36, no. 10, pp. 1506-1515, Oct. 2001.  

[35]  K. W. Mai, T. Mori, B. S. Amrutur, R. Ho, B. Wilburn, M. A. Horowitz, I. Fukushi, T. 

Izawa and S. Mitarai, "Low-power SRAM design using half-swing pulse-mode techniques," 

IEEE J. Solid-State Circuits, vol. 33, no. 11, pp. 1659-1671, Nov. 1998.  

[36]  M. A. Turi and J. G. Delgado-Frias, "High-performance low-power selective precharge 

schemes for address decoders," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 9, pp. 

917-921, Sept. 2008.  

[37]  M. A. Turi and J. G. Delgado-Frias, "High-performance low-power AND and sense-amp 

address decoders with selective precharging," in Proc. IEEE Int. Symp. Circuits Syst., pp. 

1464-1467, May 2008.  

[38]  C. A. Zukowski and S.-Y. Wang, "Use of selective precharge for low-power content-

addressable memories," in Proc. IEEE Int. Symp. Circuits Syst., pp. 1788-1791, Jun. 1997.  

[39]  M. A. Turi, J. G. Delgado-Frias and N. K. Jha, "Low-power FinFET design schemes for 

NOR address decoders," in Proc. IEEE Int. Symp. VLSI Design, Automation, and Test, pp. 

74-77, Apr. 2010.  

[40]  M. A. Turi and J. G. Delgado-Frias, "Decreasing energy consumption in address decoders 

by means of selective precharge schemes," Microelectronics Journal, vol. 40, no. 11, pp. 

1590-1600, Nov. 2009.  

[41]  S. Rodriguez and B. Jacob, "Energy/power breakdown of pipelined nanometer caches 

(90nm/65nm/45nm/32nm)," in Proc. IEEE Int. Symp. Low Power Electronics and Design, 

pp. 25-30, Oct. 2006.  

 

 
 



146 

 

[42]  D. Schmitt-Landsiedel, B. Hoppe, G. Neuendorf, M. Wurm and J. Winnerl, "Pipelined 

architecture for fast CMOS buffer RAM's," IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 

741-747, Jun. 1990.  

[43]  M. A. Turi and J. G. Delgado-Frias, "Reducing power in memory decoders by means of 

selective precharge schemes," in Proc. IEEE Int. Midwest Symp. Circuits Syst., pp. 956-959, 

Aug. 2007.  

[44]  B. Swahn and S. Hassoun, "Electro-thermal analysis of multi-fin devices," IEEE Trans. 

VLSI Systems, vol. 16, no. 7, pp. 816-829, Jul. 2008.  

[45]  E. Pop, R. Dutton and K. Goodson, "Thermal analysis of ultra-thin body device scaling," in 

Proc. IEEE Int. Electron Devices Meeting, pp. 36.6.1-36.6.4, Dec. 2003.  

[46]  M. Fulde, J. P. Engelstädter, G. Knoblinger and D. Schmitt-Landsiedel, "Analog circuits 

using FinFETs: benefits in speed-accuracy-power trade-off and simulation of parasitic 

effects," Advances in Radio Science, vol. 5, pp. 285-290, 2007.  

[47]  University of Florida, SOI Group, "UFDG MOSFET model (Linux ver. 3.7) user's guide," 

Sept. 2009. 

 

 

  



147 

 

Appendix A  

Simulation Scripts 

This appendix includes a sample of the primary Perl and tcl scripts used for simulation 

and data collection for the FinFET SRAM research.  These scripts include: 

 run_ufdg.pl:  A Perl script to more easily run a UFDG FinFET simulation 

 netgen_ufdg.pl:  A Perl script to clean-up a netlist (remove comments, blank lines, insert 

.include files, and make .param substitutions) and assist the “init_batch_ufdg.pl” script 

with variations of .param variables 

 mkout_ufdg.pl:  A Perl script to convert the UFDG simulator’s “.o” output to something 

usable by other programs (e.g. waveform viewers, MS Excel, etc.) 

 init_batch_ufdg.pl:  A Perl script to initialize Spice decks for a Monte Carlo, corner, or 

parameter sweep simulation 

 batchexec_ufdg.pl:  A Perl script to simulate the Spice decks set up by init_vary_ufdg.pl 

 meas_ezwave.pl:  A Perl script to call a tcl script to make measurements from Mentor 

Graphics EZWave waveform viewer 

 meas_stub.tcl:  A tcl script example/template of making measurements from Mentor 

Graphics EZWave waveform viewer 

A.1 run_ufdg.pl 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Version_Date = 'Apr. 15, 2012'; 

my $Script_Name = 'run_ufdg.pl'; 



148 

 

 

# Requires scripts: 

my $Mkout_Ufdg = 'mkout_ufdg.pl'; 

my $Netgen_Ufdg = 'netgen_ufdg.pl -zi'; 

 

# Constants: 

my $Fmt_Input = '.i'; 

my $Fmt_Output = '.o'; 

my $Fmt_Raw = '.raw'; 

 

my $Ufdg_3_7_Spice = 'ngspice3.ufdg-3.7'; 

my $Ufdg_3_6_Spice = 'spice3.ufdg-3.6'; 

 

my $Timer_Tick_Amt = 10; # Number of seconds per 'tick' 

my $Simlen_Filename = 'run_ufdg_simlength.csv'; 

 

# Signal (interrupt) handler for SIGUSR1 (#10): 

my $simtime = 0; 

# Procedure: get_simtime_handler 

# Summary: 

#   Returns the simulation duration upon exiting 

sub get_simtime_handler { 

  exit $simtime; 

} 

$SIG{'USR1'} = \&get_simtime_handler; 

 

# Signal (interrupt) handler for SIGTERM (#15): 

my $ufdg_pid; 

my $timer_pid = -1; 

# Procedure: clean_term_handler 

# Summary: 

#   If the terminate signal is given, also kills each simulation child process (ufdg 

and timer) 

sub clean_term_handler { 

  kill 'TERM', $ufdg_pid if defined $ufdg_pid; 

  kill 'TERM', $timer_pid if defined $timer_pid and $timer_pid > 0; 

  exit 128+15; 

} 

$SIG{'TERM'} = \&clean_term_handler; 

 

# Usage: 

my $Usage = ''. 

'Usage: '.$Script_Name."  [OPTIONS]  ufdg_deck_name\n". 

"Options:\n". 

    "\t-n  Let simulator (instead of ".$Netgen_Ufdg.") insert include files and make 

.param substitutions\n". 

    "\t-o  Run old version of UFDG (Solaris ver. 3.6)\n". 

    "\t-r  Generate ".$Fmt_Raw." output file for simulation output (".$Mkout_Ufdg." 

will not run; only errors/warnings in .o file)\n". 

    "\tFor Timer:\n". 

    "\t\t-#  Run with timer length=\"#\" sec; kill UFDG if timer expires\n". 

    "\t\t-t  Run with no timer\n". 

    "\t\t-p  Print (append) the simulation duration to file 

\"".$Simlen_Filename."\"\n". 

    "\tFor ".$Mkout_Ufdg." (by default, all output formats are generated):\n". 

    "\t\t-m  Do not create additional output formats (do not call ".$Mkout_Ufdg.")\n". 

    "\t\t-c  Create .csv output for Mentor Graphics EZwave\n". 

    "\t\t-s  Create .sti output for Mentor Graphics EZWave\n". 

    "\t\t-x  Create .txt output for Synopsys CosmosScope\n"; 

my $Min_Arg_Num = 1; 

 

# run_ufdg.pl 

#  



149 

 

# Created by Mike Turi 

# Washington State University 

# School of Electrical Engineering & Computer Science 

# High Performance Computer Systems (HiPerCopS) Group 

#  

# Note: Code is semi-tested; may fail under certain conditions 

#  

# This is a Perl script used to more-easily run the 

# University of Flordia Double-Gate (UFDG) MOSFET model 

# (e.g. FinFETs).  Only the spice file's deck name needs to 

# be passed as an argument.  This can also generate the .raw 

# output file for the Nutmeg simulator to use (but if .raw file 

# is generated, then the .o file has only error/warning info and 

# mkout_ufdg.pl will not run).  A timer is also supplied to 

# display the simulation's run-time.  It can also be used to kill 

# the simulation if it runs too long.  This works for UFDG Linux 

# ver. 3.7 and UFDG Solaris ver. 3.6 (but unsure [10/2010] if 

# .raw file creation works in UFDG 3.6). 

#  

# Usage: Provide the UFDG deck name and any additional options. 

#        Creates "ufdg_deck_name.o" (plus .csv and/or .txt output 

#        formats from mkout_ufdg.pl) from "ufdg_deck_name.i". 

 

print "**$Script_Name version date: $Version_Date**\n"; 

die $Usage if scalar @ARGV < 1; 

my $argnum = scalar @ARGV; 

die "Error: Not enough parameters\n\n$Usage" if $argnum < $Min_Arg_Num; 

 

my $ufdg_spice = $Ufdg_3_7_Spice; # Use UFDG Linux ver. 3.7 by default 

 

my $i = 0; 

my $arg = shift; 

my $op_sim_sub; 

my $op_make_raw; 

my $timer_val = 0; 

my $op_print_simlen; 

my $op_no_mkout; 

my $mkout_opts; 

while( $arg =~ m/^-/ ) { 

  die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

    if( $argmatch =~ m/n/i ) { # Let simulator insert include files and make .param 

substitutions 

      $op_sim_sub = 1; 

    } 

    if( $argmatch =~ m/o/i ) { # Use old UFDG version (Solaris ver. 3.6) 

      $ufdg_spice = $Ufdg_3_6_Spice; 

    } 

    if( $argmatch =~ m/r/i ) { # Generate .raw output file 

      $op_make_raw = 1; 

    } 

    if( $argmatch =~ m/(\d+)/ ) { # Set timer to numerical value 

      $timer_val = $1; 

    } 

    if( $argmatch =~ m/t/i ) { # Run with no timer 

      $timer_val = -1 unless defined $op_print_simlen; 

    } 

    if( $argmatch =~ m/p/i ) { # Print the simulation duration to file 

      $op_print_simlen = 1; 

      $timer_val = 0 if $timer_val < 0; 

    } 



150 

 

    if( $argmatch =~ m/m/i ) { # Do not run mkout_ufdg.pl (do not create additional 

output formats) 

      $op_no_mkout = 1; 

    } 

    if( $argmatch =~ m/c/i ) { 

      $mkout_opts = (defined $mkout_opts) ? $mkout_opts.'c' : 'c'; # Create .csv 

output for Mentor Graphics EZwave 

    } 

    if( $argmatch =~ m/s/i ) { 

      $mkout_opts = (defined $mkout_opts) ? $mkout_opts.'s' : 's'; # Create .sti 

output for Mentor Graphics EZwave 

    } 

    if( $argmatch =~ m/x/i ) { 

      $mkout_opts = (defined $mkout_opts) ? $mkout_opts.'x' : 'x'; # Create .txt 

output for Synopsys CosmosScope 

    } 

  }  

  $arg = shift; 

} 

my $deckname = $arg; 

 

# --- Check input file and delete output files --- 

my $infile = $deckname.$Fmt_Input; 

my $outfile = $deckname.$Fmt_Output; 

my $rawfile = $deckname.$Fmt_Raw; 

# Delete output files if it already exists; sometimes UFDG output appends 

system( ('rm', '-f', $outfile) ) == 0 or die 'Error: "rm -f ', $outfile, '" somehow 

failed'; 

system( ('rm', '-f', $rawfile) ) == 0 or die 'Error: "rm -f ', $rawfile, '" somehow 

failed'; 

die 'Error: Cannot find "', $infile, '"' unless -e $infile; 

 

# --- First fork(); the child is UFDG --- 

$ufdg_pid = fork; 

die "Error: Fork of ufdg spice failed" unless defined $ufdg_pid; 

if( $ufdg_pid == 0 ) { # The child 

  # Do I/O redirection manually 

  close( STDIN ); 

  if( defined $op_sim_sub ) { 

    open STDIN, "<$infile" or die 'Error: Cannot redirect UFDG input to "', $infile, 

'"'; 

  } else { 

    open STDIN, "$Netgen_Ufdg $infile |" or die 'Error: Cannot redirect UFDG input to 

"', $Netgen_Ufdg, ' ', $infile, ' |"'; 

  } 

  close( STDOUT ); 

  open STDOUT, ">$outfile" or die 'Error: Cannot redirect UFDG output to "', $outfile, 

'"'; 

  #chmod the output file for write? (used to be required for ver. 3.6) 

  #setenv setup for UFDG? (used to be required for ver. 3.6) 

 

  # Add rawfile option if needed, then exec 

  $ufdg_spice = $ufdg_spice.' -r '.$rawfile if defined $op_make_raw; 

  exec $ufdg_spice or die 'Error: Could not exec "', $ufdg_spice, '"'; 

} 

 

# --- Second fork(); the child is the timer --- 

$timer_pid = fork if $timer_val >= 0; 

die 'Error: Fork of timer failed' unless defined $timer_pid; 

if( $timer_pid == 0 ) { # The child 

  $simtime = 1; 

  if( $timer_val > 0 ) { # Run timer with alarm 

    my $ticks = $timer_val / $Timer_Tick_Amt; 



151 

 

    my $rem = $timer_val % $Timer_Tick_Amt; 

    while( $simtime <= $ticks ) { 

      sleep $Timer_Tick_Amt; 

      print $Timer_Tick_Amt*$simtime++, "s elapsed...\n"; 

    } 

    if( $rem > 0 ) { 

      sleep $rem; 

      print $timer_val, "s elapsed...\n"; 

    } 

  } else { # Just display timer and run forever 

    while(1) { 

      sleep $Timer_Tick_Amt; 

      print $Timer_Tick_Amt*$simtime++, "s elapsed...\n"; 

    } 

  } 

  exit $timer_val; 

} 

 

# --- This (parent) process will wait for ufdg or timer to die --- 

my $pid; 

do { 

  $pid = wait; 

} while( $pid != $ufdg_pid and $pid != $timer_pid ); 

my $retval = $? >> 8; 

 

if( defined $op_print_simlen ) { 

  open OUTAPP, ">>$Simlen_Filename" or die 'Error: Cannot open ', $Simlen_Filename, ' 

for append due to', $!; 

} 

 

# --- Figure out if ufdg or timer died first; kill other child --- 

# --- Also, if timer died first, kill ufdg and exit; sim was not completed --- 

my $simlength; 

if( $pid == $ufdg_pid ) { 

  print 'ufdg "', $deckname, '" died first (status=', $retval, ")--killing timer\n"; 

  if( $timer_val >= 0 ) { # Do a kill -SIGUSR1 "timer" and get sim length (if there is 

a timer) 

    kill 10, $timer_pid; 

    do { 

      $pid = wait; 

    } while( $pid != $timer_pid ); 

    $simlength = $? >> 8; 

    print $deckname, ' ran for approx. ', $simlength*$Timer_Tick_Amt, " seconds\n"; 

    if( defined $op_print_simlen ) { 

      print OUTAPP $deckname, ',', $simlength*$Timer_Tick_Amt, "\n"; 

      close OUTAPP; 

    } 

  } 

} else { 

  print 'timer died first--killing ufdg "', $deckname, "\"\n"; 

  kill 9, $ufdg_pid; # Do a kill - 9 "ufdg" 

  print $deckname, ' ran for ', $timer_val, "+ seconds\n"; 

  if( defined $op_print_simlen ) { 

    print OUTAPP $deckname, ',', $timer_val, "+\n"; 

    close OUTAPP; 

  } 

  die 'Error: UFDG timeout; simulation was killed'; 

} 

 

# --- If ufdg completed without error, make the output file(s) --- 

if( $retval != 0 ) { 

  print 'Warning: UFDG returned with value=', $retval, "\n"; 

  exit $retval; 



152 

 

} 

 

# TODO: Append error messages from ".o" file to run_ufdg output 

# my @spice_errors = "grep -i error $deckname.o |"; 

# #my @spice_errors = ('grep', '-i', 'error', "$deckname.o"); 

# #my $foo = system( @spice_errors ); 

# #print $foo; 

# print @spice_errors; 

 

exit $retval if defined $op_make_raw or defined $op_no_mkout; # Do not run 

mkout_ufdg.pl (cannot run mkout_ufdg.pl using raw file at 

this time) 

 

if( defined $mkout_opts ) { 

  my @mkout = ($Mkout_Ufdg, '-'.$mkout_opts, $deckname); 

  system( @mkout ) == 0 or die 'Error: "', $Mkout_Ufdg, ' -', $mkout_opts, ' ', 

$deckname, '" failed'; 

} else { 

  my @mkout = ($Mkout_Ufdg, $deckname); 

  system( @mkout ) == 0 or die 'Error: "', $Mkout_Ufdg, ' ', $deckname, '" failed'; 

} 

 

exit $retval; 

 

A.2 netgen_ufdg.pl 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Version_Date = 'Apr. 6, 2012'; 

my $Script_Name = 'netgen_ufdg.pl'; 

 

# Constants: 

my $Placeholder_Prefix = 'T'; # Must be a Spice Prefix (so the simulator won't error 

when doing a listing expand) 

my $Init_Placeholder = 1000000; 

 

# Usage: 

my $Usage = ''. 

"Usage: $Script_Name  [OPTIONS]\n". 

"Options:\n". 

    "\t-d           Print parameter details to STDOUT and substitute placeholders for 

parameter expressions\n". 

    "\t               STDOUT format:\n". 

    "\t                 param1=value1\n". 

    "\t                 param2=value2\n". 

    "\t                 ".$Init_Placeholder.$Placeholder_Prefix.'=param_exp1 (using 

"'.$Placeholder_Prefix."\" prefix for placeholder)\n". 

    "\t                 ".($Init_Placeholder+1).$Placeholder_Prefix."=param_exp2\n". 

    "\t                 * Comment (beginning of netlist if no \"-s\" option used)\n". 

    "\t-i filename  Use \"filename\" for input netlist instead of STDIN\n". 

    "\t-o filename  Use \"filename\" for netlist output (with/without STDOUT output--

look at -s)\n". 

    "\t-p           Do not preform parameter substitutions on netlist\n". 

    "\t-s           Do not print netlist output to STDOUT (use -o to print to file 

instead)\n". 

    "\t-z           Suppress output to STDERR (only show output for errors)\n"; 

my $Min_Arg_Num = 0; 

 



153 

 

# Procedure: rm_comments 

# Summary: 

#   Removes all commented lines in a spice netlist (1st line, blank or whitespace only 

lines, 

#   and lines beginning with the comment character "*" or whitespace).  Note: Comments 

with 

#   ";" are ignored and inline comments (e.g. vdd 1 0 dc 1V * Supply Voltage) are 

ignored. 

# Parameter: A reference to an array holding a spice netlist 

sub rm_comments { 

  my $aref = shift; 

  shift @$aref; # Remove first line of the netlist (this is always treated as a 

comment) 

  @$aref = grep !/^\*/, @$aref; # Remove comment lines 

  @$aref = grep !/^\s*$/, @$aref; # Remove blank lines (and lines with only 

whitespace) 

  @$aref = grep !/^\s+/, @$aref; # Remove lines beginning with a whitespace (oddly, 

ngspice ignores these lines anyway) 

} 

 

# netgen_ufdg.pl 

#  

# Created by Mike Turi 

# Washington State University 

# School of Electrical Engineering & Computer Science 

# High Performance Computer Systems (HiPerCopS) Group 

#  

# Note: Code is semi-tested; may fail under certain conditions 

#  

# This is a Perl script used to remove comments, remove whitespace, insert .include 

files, and 

# substitute .param variables into a netlist prior to running a simultation.  This 

script is 

# called by run_ufdg.pl and init_vary_ufdg.pl.  I have seen the University of Flordia 

Double-Gate 

# (UFDG) MOSFET (FinFET) model's Spice3 program, ngspice, incorrectly handle .param 

variable 

# substitutions (results would vary depending on whitespace and comments).  After this 

script is 

# run, ngspice will only need to substitute for subcircuits and compute math 

expressions (where 

# .param variables had been replaced by this script). 

#  

# Usage: By default this script takes an input script through STDIN and outputs the 

resultant 

# script to STDOUT.  Options allow the input and output to come from or go to files.  

Parameter 

# substitutions can be disabled, and details about .param variables can be printed.  

Parameter 

# details are printed to STDOUT, and are made up of sets of parameter names and 

values, then are 

# followed by sets of placeholder names and expressions.  If parameter substitution is 

on, then 

# placeholders are substituted into the netlist, which if output to STDOUT, will 

appear directly 

# following the sets of placeholder names and expressions. 

 

print STDERR "**$Script_Name version date: $Version_Date**\n"; 

my $argnum = scalar @ARGV; 

 

my $i = 0; 

my $arg = shift; 

my $op_param_details; 



154 

 

my $op_in_fname; 

my $op_out_fname; 

my $op_no_param_sub; 

my $op_out_no_stdout; 

my $op_out_no_stderr; 

while( defined $arg and $arg =~ m/^-/ ) { 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

 

    # Check single letter options first 

    if( $argmatch =~ m/d/i ) { 

      $op_param_details = 1; # Print details about .param variables (.param name and 

value plus placeholders) 

    } 

    if( $argmatch =~ m/p/i ) { 

      $op_no_param_sub = 1; # Do not preform parameter substitutions on netlist 

    } 

    if( $argmatch =~ m/s/i ) { 

      $op_out_no_stdout = 1; # Do not print output to STDOUT 

    } 

    if( $argmatch =~ m/z/i ) { 

      $op_out_no_stderr = 1; # Do not print output to STDERR (unless there is actually 

an error) 

    } 

 

    # Check options which require another argument 

    if( $argmatch =~ m/i/i ) { 

      $op_in_fname = shift; # Use this file instead of STDIN for input 

    } 

    if( $argmatch =~ m/o/i ) { 

      $op_out_fname = shift; # Print output to this file (may be in addition to 

STDOUT) 

    } 

  } 

  $arg = shift; 

} 

 

print STDERR $Usage unless defined $op_out_no_stderr; # Print usage unless output to 

STDERR is suppressed 

 

########## 

my @spice; # The spice netlist which will be modified 

########## 

 

if( defined $op_in_fname ) { 

  open IN, "<$op_in_fname" or die 'Error: Cannot open ', $op_in_fname, ' due to: ', 

$!; 

  @spice = <IN>; 

  die 'Error: ', $op_in_fname, ' is an empty file containing no netlist' unless scalar 

@spice > 0; 

} else { 

  open IN, "<-" or die 'Error: Cannot open STDIN due to ', $!; 

  @spice = <IN>; 

  die 'Error: STDIN contains no data to read' unless scalar @spice > 0; 

} 

close IN; 

 

########## 

my $netlist_title = $spice[0]; # Save the netlist title to use for the resultant 

netlist 

########## 

 

rm_comments \@spice; # Remove comments in the netlist 



155 

 

 

########## 

my %params; # A hash of .param variable names (as key) and the respective values 

my @params_ordered; # (for op_param_details) An array of the .param variable names (in 

the order declared in the netlist); use instead of "keys 

%params" to maintain order 

########## 

 

for( $i = 0; $i < scalar @spice; $i++ ) { 

  if( $spice[$i] =~ m/^\.include\s+(\S+)/i ) { # Found an include statement: open the 

include file and splice it into the netlist 

    open IN, "<$1" or die 'Error: Cannot open ', $1, ' due to: ', $!; 

    my @include = <IN>; 

    close IN; 

 

    rm_comments \@include; # Remove comments in the include file before splicing it 

into the netlist 

    splice @spice, $i, 1, @include; 

    redo; # This line number ($i) is now the first line of the spliced in include file 

  } elsif( $spice[$i] =~ m/^\.param\s+(\w+)\s*=\s*\{(.+)\}/i ) { # Found a param 

definition which required other parameter(s) 

    my $name = lc $1; 

    my $expression = $2; 

    if( defined $op_param_details ) { # Don't substitute for the expression, just 

getting details now 

      $params{$name} = '{'.$expression.'}'; # Add this .param name and value (an 

expression) to the hash 

      push @params_ordered, $name; # Add param name in ordered array 

    } elsif( !defined $op_no_param_sub ) { # Now we'll substitute for the expression; 

No reason to do this if $op_no_param_sub is chosen 

      # Split the spice expression by words (.param variable names), and keep the non-

words (i.e. math operators) 

      my @exp_parts = split /(\W)/, $expression; 

      foreach (@exp_parts) { 

        while((my $param_name, my $val) = each %params) { 

          if( m/\w+/ ) { s/^$param_name$/$val/i; } # Substitute the value if a .param 

variable is found 

        } 

      } 

      $expression = join '', @exp_parts; # Combine the parts to form the expression 

again 

      $params{$name} = '('.$expression.')'; # Add parentheses to maintain order of 

operations, and place in the hash 

        # Note: Let .param X=5 and .param Y={1+1}; If another expression .param 

PROD={X*Y}, then {5*1+1} is different than {5*(1+1)} 

    } 

    if( !defined $op_no_param_sub ) { 

      splice @spice, $i, 1; # Remove the definition if we are substituting for .param 

variables 

      redo; # This line number ($i) is now the line directly after the .param 

definition 

    } 

  } elsif( $spice[$i] =~ m/^\.param\s+(\w+)\s*=\s*(\S+)/i ) { # Found a simple param 

definition (.param "name" = "value") 

    $params{lc $1} = $2; # Add this .param name and value to the hash 

    push @params_ordered, $1; # Add param name in ordered array 

    if( !defined $op_no_param_sub ) { 

      splice @spice, $i, 1; # Remove the definition if we are substituting for .param 

variables 

      redo; # This line number ($i) is now the line directly after the .param 

definition 

    } 

  } 



156 

 

} 

 

if( defined $op_param_details ) { # If printing .param details, first print the .param 

names and the respective values 

  foreach my $param_name (@params_ordered) { 

    print $param_name, '=', $params{$param_name}, "\n"; 

  } 

} 

 

########## 

my $spice_line; # A line from the spice netlist 

my @spice_line_parts; # The $spice_line split up around the curly braces {} so 

parameter substitution or details can be done 

my $spice_exp_ref; # A reference to an expression in curly braces {} involving 

possible .param variables 

my @spice_exp_parts; # The $spice_exp_ref split in order to do substitution of .param 

variables in the expression 

my $placeholder = $Init_Placeholder; # The placeholder value, beginning at the initial 

value 

########## 

 

foreach $spice_line (@spice) { 

  if( $spice_line =~ m/\{.+\}/ ) { 

    # Split the spice line by { and } chars. (char. class).  Keep { and } if not 

substituting with placeholders (op_param_details) 

    #   so Spice3 can calculate the math expression (placeholders substitute for the 

entire expression). 

    @spice_line_parts = defined $op_param_details ? split /[{}]/, $spice_line : split 

/([{}])/, $spice_line; 

 

    # Value of $i, given line "m1 d fg s bg psg l={l} w={h} m={np}" 

    #  op_param_details (placeholders):  #0:"m1 d fg s bg psg l="  #1:"l"  #2:" w="  

#3:"h"  #4:" m="  #5:"np"  #6:"\n" 

    #  Normal (make substitution):       #0:"m1 d fg s bg psg l="  #1:"{"  #2:"l"    

#3:"}"  #4:" w="  #5:"{"   #6:"h" ... 

    $i = defined $op_param_details ? 1 : 2; # Location of first expression (see above) 

 

    while( $i < scalar @spice_line_parts ) { # This is a little ugly 

      $spice_exp_ref = \$spice_line_parts[$i]; # Reference the spice expression so $i 

can be incremented 

      $i += defined $op_param_details ? 2 : 4; # Location of next expression, if it 

exists (see above) 

      if( defined $op_param_details ) { 

        print $placeholder, $Placeholder_Prefix, '=', ${$spice_exp_ref}, "\n"; # Print 

the placeholder and the expression it represents 

        ${$spice_exp_ref} = $placeholder.$Placeholder_Prefix unless defined 

$op_no_param_sub; # If .param substitutions ok, then 

substitute in the placeholder 

        $placeholder++; 

        next; # If getting details, don't continue farther in the loop--no need to 

substitute for .param variables in the expression 

      } 

      next if defined $op_no_param_sub; # If not substituting for .param variables, 

don't continue farther in the loop 

 

      # Split the spice expression by words (.param variable names), and keep the non-

words (i.e. math operators) 

      @spice_exp_parts = split /(\W)/, ${$spice_exp_ref}; 

      foreach (@spice_exp_parts) { 

        while((my $param_name, my $val) = each %params) { 

          if( m/\w+/ ) { s/^$param_name$/$val/i; } # Substitute the value if a .param 

variable is found 

        } 



157 

 

      } 

      ${$spice_exp_ref} = join '', @spice_exp_parts; # Replace the original expression 

with numerals and math operators, Spice3 can compute this 

at runtime 

    } 

    $spice_line = join '', @spice_line_parts; # Replace the original spice line of the 

netlist with this line with substituted expressions 

  } 

} 

 

# One more substitution to do, ngspice doesn't like expressions on the .OPTION line 

for some reason. 

# Have Perl try to compute the expression if it hasn't been replaced by a placeholder 

(getting details) and if .param variables are being 

substituted 

if( !defined $op_param_details and !defined $op_no_param_sub ) { 

  foreach (@spice) { 

    if( m/^\.OPTION/i ) { # Found the option line 

      my @option_parts = split /[{}]/; # Split the line by the curly braces {}, but 

don't keep them. 

      my $answer; 

      for( $i=1; $i < scalar @option_parts; $i+=2 ) { # Every other part will be an 

expression (e.g. .OPTION ABSTOL=1E-6 TEMP={tempc} FOO={b*b-

4*a*c}\n) 

        # Not sure if eval will calculate the answer, best to avoid expressions in the 

.option line 

        eval { $answer = $option_parts[$i]; }; # Try to evaluate the expression 

(hopefully Spice3 suffixes are not used (i.e. n=1e-9, p=1e-

12, etc.)) 

        die 'Error: Cannot compute expression {', $option_parts[$i], '} on .option 

line due to: ', $@ if $@; # Not sure if eval will actually 

generate an error though 

        $option_parts[$i] = $answer; # Replace the expression with the answer 

      } 

      $_ = join '', @option_parts; # Replace the .OPTION line with the updated version 

    } 

  } 

} 

 

if( length $netlist_title > 0 and $netlist_title =~ m/\S/ ) { # Use the original 

netlist's title, if available, or make a new title 

  $netlist_title = '* '.$netlist_title unless $netlist_title =~ m/^\*/; 

} else { 

  $netlist_title = "* This netlist generated by $Script_Name\n"; 

} 

 

if( defined $op_out_fname ) { # If the user requested, print the netlist to the output 

file 

  open OUT, ">$op_out_fname" or die 'Error: Cannot open ', $op_out_fname, ' due to: ', 

$!; 

  print OUT $netlist_title; 

  print OUT @spice; 

  print OUT "\n"; 

  close OUT; 

} 

 

if( !defined $op_out_no_stdout ) { # Unless the user wanted no STDOUT, print the 

netlist to STDOUT 

  print $netlist_title; 

  print @spice; 

  print "\n"; 

} 

 



158 

 

A.3 mkout_ufdg.pl 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Version_Date = 'Apr. 15, 2012'; 

my $Script_Name = 'mkout_ufdg.pl'; 

 

my $Fmt_Output = '.o'; 

 

my $Ezwave_Csv_Out_Format = '.csv'; 

my $Ezwave_Sti_Out_Format = '.sti'; 

my $Cscope_Txt_Out_Format = '.txt'; 

 

# Usage: 

my $Usage = ''. 

"Usage: $Script_Name  [OPTIONS]  ufdg_deck_name\n". 

"Options: (by default, all output formats are generated)\n". 

    "\t-c  Create .csv output for Mentor Graphics EZwave\n". 

    "\t-s  Create .sti output for Mentor Graphics EZwave\n". 

    "\t-x  Create .txt output for Synopsys CosmosScope\n"; 

my $Min_Arg_Num = 1; 

 

# mkout_ufdg.pl 

#  

# Created by Mike Turi 

# Washington State University 

# School of Electrical Engineering & Computer Science 

# High Performance Computer Systems (HiPerCopS) Group 

#  

# Note: Code is semi-tested; may fail under certain conditions 

#  

# This is a Perl script used to convert the output from the 

# University of Flordia Double-Gate (UFDG) MOSFET model 

# (e.g. FinFETs) to more usable formats.  The script converts 

# the Spice3 output from the model to ".csv" and ".sti" files 

# for use with Mentor Graphics EZWave and a ".txt" file for use 

# with Synopsys CosmosScope. 

#  

# Usage: Provide the UFDG deck name, and the "deck_name.o" 

# output file will be converted into "deck_name.csv", 

# "deck_name.sti", and "deck_name.txt". 

# 

# Note: If the signal name is too long, UFDG will truncate the 

# signal name when creating the ".o" output file--this will 

# cause an error for this script.  It appears the maximum signal 

# name size is 15 characters (including v() or #branch). 

 

print "**$Script_Name version date: $Version_Date**\n"; 

die $Usage if scalar @ARGV == 0; 

my $argnum = scalar @ARGV; 

die "Error: Not enough parameters\n\n$Usage" if $argnum < $Min_Arg_Num; 

 

my $i = 0; 

my $arg = shift; 

my $op_csv_ezwave; 

my $op_sti_ezwave; 

my $op_txt_cscope; 

my $user_def_output; 

while( $arg =~ m/^-/ ) { 

  die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 



159 

 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

    if( $argmatch =~ m/c/i ) { 

      $op_csv_ezwave = 1; # Create .csv output for Mentor Graphics EZwave 

      $user_def_output = 1; 

    } 

    if( $argmatch =~ m/s/i ) { 

      $op_sti_ezwave = 1; # Create .sti output for Mentor Graphics EZwave 

      $user_def_output = 1; 

    } 

    if( $argmatch =~ m/x/i ) { 

      $op_txt_cscope = 1; # Create .txt output for Synopsys CosmosScope 

      $user_def_output = 1; 

    } 

  }  

  $arg = shift; 

} 

my $deckname = $arg; 

 

# Don't generate output for filetypes that the user doesn't define (unless none are 

defined, then generate all) 

my $no_csv_ezwave; 

if( !defined $op_csv_ezwave and defined $user_def_output ) { 

  $no_csv_ezwave = 1; 

} 

my $no_sti_ezwave; 

if( !defined $op_sti_ezwave and defined $user_def_output ) { 

  $no_sti_ezwave = 1; 

} 

my $no_txt_cscope; 

if( !defined $op_txt_cscope and defined $user_def_output ) { 

  $no_txt_cscope = 1; 

} 

 

# --- Find the signal names and prepare for reading data --- 

my @sig_names; 

my @sig_hdrs; 

my @fhandles; 

$i = 0; 

# Open the UFDG output file 

my $outname = $deckname.$Fmt_Output; 

open IN, "<$outname" or die 'Error: Cannot open ', $outname, ' due to: ', $!; 

my $match; 

while( <IN> ) { 

  $match = 0; 

  if( m/^Index/i ) { # A signal header is found 

    foreach my $hdr (@sig_hdrs) { 

      $match = 1 if $_ eq $hdr; 

    } 

    # Only extract signal names from unique signal headers (sig. headers repeat 

throughout the file) 

    if( $match == 0 ) { 

      my @tmpsigs = split; # Tokenizes $_ (header) to get signals 

      # Ignore "Index" (1st column) and only add "Time"/"Sweep"/etc. (2nd column) once 

      push @sig_names, ((scalar @sig_hdrs == 0) ? splice @tmpsigs, 1 : splice 

@tmpsigs, 2); 

      push @sig_hdrs, $_; # Add this signal header to the list 

      my $dashes = <IN>; # Grab line of dashes "----" 

      # Open a file handle to begin reading from Index 0 of this data 

      # Multiple file handles are used for multiple pieces of data in different 

locations in the file 

      open $fhandles[$i], "<$outname" or die 'Error: Cannot open ', $outname, ' due 

to: ', $!; 



160 

 

      seek $fhandles[$i++], (tell IN), 0; # (tell IN) is the location of Index 0 for 

this data 

    } 

  } 

} 

close IN; 

 

die 'Error: No plotted signals found (is DC op point only present in ', $outname, '?)' 

if scalar @sig_names == 0; 

 

# --- Initialize the new output files with the signal names --- 

my $cs_txt_name = $deckname.$Cscope_Txt_Out_Format; 

open CSCOPE_TXT, ">$cs_txt_name" or die 'Error: Cannot create CosmosScope ', 

$Cscope_Txt_Out_Format, ' output due to ', $! unless 

defined $no_txt_cscope; 

my $ez_csv_name = $deckname.$Ezwave_Csv_Out_Format; 

open EZWAVE_CSV, ">$ez_csv_name" or die 'Error: Cannot create EZWave ', 

$Ezwave_Csv_Out_Format, ' output due to ', $! unless 

defined $no_csv_ezwave; 

print EZWAVE_CSV ".HEADER\n..NAMES\n" unless defined $no_csv_ezwave; 

my @ezwave_csv_names; 

my @ezwave_sti_names; 

my %sig_type; # The type of signal, voltage (V) or current (I), for a given signal 

name (for EZWave .sti output) 

my $sim_type; 

$i = 0; 

foreach (@sig_names) { 

  if( $i++ != 0 ) { # Delimeter beteen signal names 

    print CSCOPE_TXT '  ' unless defined $no_txt_cscope; 

    print EZWAVE_CSV ','  unless defined $no_csv_ezwave; 

  } 

  if( m/^v\((\w+)\)$/i ) { # Found a voltage signal 

    $sig_type{$1} = 'V'; 

    push @ezwave_sti_names, $1; 

    print CSCOPE_TXT "$_`V"  unless defined $no_txt_cscope; 

    print EZWAVE_CSV "V($1)" unless defined $no_csv_ezwave; 

    push @ezwave_csv_names, "V($1)"; 

  } elsif( m/^(\w+)\#branch$/i ) { # Found a current signal 

    $sig_type{$1} = 'I'; 

    push @ezwave_sti_names, $1; 

    print CSCOPE_TXT "i($1)`A" unless defined $no_txt_cscope; 

    print EZWAVE_CSV "I($1)"   unless defined $no_csv_ezwave; 

    push @ezwave_csv_names, "I($1)"; 

  } elsif( m/^time$/i ) { # Found "time" => a TRAN analysis 

    $sim_type = 'TRAN'; 

    print CSCOPE_TXT 't`s'  unless defined $no_txt_cscope; 

    print EZWAVE_CSV 'Time' unless defined $no_csv_ezwave; 

    push @ezwave_csv_names, 'Time'; 

  } elsif( m/^v-sweep$/i ) { # Found "v-sweep" => a DC analysis (ngspice) 

    $sim_type = 'DC'; 

    print CSCOPE_TXT 'VOLTS`V' unless defined $no_txt_cscope; 

    print EZWAVE_CSV 'Voltage' unless defined $no_csv_ezwave; 

    push @ezwave_csv_names, 'Voltage'; 

  } elsif( m/^i-sweep$/i ) { # Found "i-sweep" => a DC analysis (ngspice) 

    $sim_type = 'DC'; 

    print CSCOPE_TXT 'AMPS`A'  unless defined $no_txt_cscope; 

    print EZWAVE_CSV 'Current' unless defined $no_csv_ezwave; 

    push @ezwave_csv_names, 'Current'; 

  } elsif( m/^sweep$/i ) { # Found "sweep" => a DC analysis (spice3f5) 

    $sim_type = 'DC'; 

    print CSCOPE_TXT 'Sweep'  unless defined $no_txt_cscope; 

    print EZWAVE_CSV 'Sweep' unless defined $no_csv_ezwave; 

    push @ezwave_csv_names, 'Sweep'; 



161 

 

  } else { 

    die 'Cannot understand input signal: ', $_, '(was the signal name too long and 

truncated?)'; 

  } 

} 

print CSCOPE_TXT "\n" unless defined $no_txt_cscope; 

 

# Output the plotted signal names 

print 'Plotted signals for "', $deckname, '" are: ', (join ' ', @ezwave_csv_names), 

"\n"; 

 

# More fomatting for EZWave follows: 

if( !defined $no_csv_ezwave ) { 

  print EZWAVE_CSV "\n..UNITS\n"; 

  $i = 0; 

  foreach (@ezwave_csv_names) { 

    if( $i++ != 0 ) { # EZWave .csv is comma deliminated 

      print EZWAVE_CSV ','; 

    } 

    if( m/^V\(/ ) { # Voltage signal measured in Volts 

      print EZWAVE_CSV 'Voltage(V)'; 

    } elsif( m/^I\(/ ) { # Current signal measured in Amps 

      print EZWAVE_CSV 'Current(A)'; 

    } elsif( $_ eq 'Time' ) { # Time is measured in seconds 

      print EZWAVE_CSV 's'; 

    } elsif( $_ eq 'Voltage' ) { # Voltage sweep meas. in V (ngspice) 

      print EZWAVE_CSV 'V'; 

    } elsif( $_ eq 'Current' ) { # Current sweep meas. in A (ngspice) 

      print EZWAVE_CSV 'A'; 

    } elsif( $_ eq 'Sweep' ) { # An old sweep (spice3f5); don't know units 

      print EZWAVE_CSV ' '; 

    } else { 

      die 'Corrupted EZWave input signal for .csv output: ', $_; 

    } 

  } 

  # All data types are doubles 

  print EZWAVE_CSV "\n..DATATYPES\n"; 

  for( $i = 1; $i < scalar @ezwave_csv_names; $i++ ) { 

    print EZWAVE_CSV 'double,'; 

  } 

  print EZWAVE_CSV "double\n..WAVEFORM_TYPES\n"; # Also prints last 'double' 

  $i = 0; 

  foreach (@ezwave_csv_names) { 

    if( $i++ != 0 ) { 

      print EZWAVE_CSV ','; 

    } 

    if( m/^[IV]\(/ ) { # All voltage/current signals are 'analog' type 

      print EZWAVE_CSV 'analog'; 

    } 

  } 

  print EZWAVE_CSV "\n..AXIS_SPACING\nlinear\n..FOLDER_NAME\n$sim_type\n.DATA\n"; 

} 

 

# --- Print the numeric data to each new output file --- 

my @xaxis_vals; # The x-axis (time, sweep, etc.) values for EZWave .sti output 

my %sig_vals; # The space-delimited values for a given signal name (for EZWave .sti 

output) 

my $signum; # Keeps track of what piece of data goes with which signal for EZWave .sti 

output 

$i = 0; # The current "Index" value that the file descriptors are at in the .o file 

my $fnum; # Keeps track of how many file descriptors have been looked at for each 

"Index" value 

while(1) { 



162 

 

  $fnum = 0; 

  $signum = 0; 

  foreach my $fh (@fhandles) { 

    my $data_line; 

    while( <$fh> ) { # Loop until data is found (bypasses duplicate signal headers) 

      if( m/^\d/ ) { # Found an index value (always positive) 

        $data_line = $_; 

        last; 

      } 

    } 

    goto THE_END unless defined $data_line; 

 

    # Tokenize line to get each data value 

    my @data = split ' ', $data_line; 

    # If the index from the output file ($data[0]) is not equal 

    #   to the index $i, then the end of the data has been reached. 

    #   Unless the file is corrupt, $data[0] will equal 0 again when 

    #   the next set of signals are reached, at this point, all data 

    #   has been processed. 

    goto THE_END if $data[0] != $i; 

    if( $fnum++ == 0 ) { # Print "Time"/"Sweep"/etc. only once 

      push @xaxis_vals, $data[1] unless defined $no_sti_ezwave; 

      print CSCOPE_TXT $data[1] unless defined $no_txt_cscope; 

      print EZWAVE_CSV $data[1] unless defined $no_csv_ezwave; 

    } 

    foreach (splice @data, 2) { 

      my $signame = $ezwave_sti_names[$signum++]; 

      $sig_vals{$signame} = (exists $sig_vals{$signame} ? $sig_vals{$signame}.' '.$_ : 

$_) unless $no_sti_ezwave; 

      # Print the data value with appropriate delimiter 

      print CSCOPE_TXT "  $_" unless defined $no_txt_cscope; 

      print EZWAVE_CSV ",$_"  unless defined $no_csv_ezwave; 

    } 

  } 

  print CSCOPE_TXT "\n" unless defined $no_txt_cscope; 

  print EZWAVE_CSV "\n" unless defined $no_csv_ezwave; 

  $i++; 

} 

 

# Close all files when done (we'll do EZWave .sti output next) 

THE_END: foreach (@fhandles) { 

  close $_; 

} 

close CSCOPE_TXT unless defined $no_txt_cscope; 

close EZWAVE_CSV unless defined $no_csv_ezwave; 

 

exit if defined $no_sti_ezwave; 

# Aha, but there's more...print output for EZWave .sti output if necessary 

 

my $ez_sti_name = $deckname.$Ezwave_Sti_Out_Format; 

open EZWAVE_STI, ">$ez_sti_name" or die 'Error: Cannot create EZWave ', 

$Ezwave_Sti_Out_Format, ' output due to ', $!; 

 

foreach (@ezwave_sti_names) { 

  print EZWAVE_STI "\n", $sig_type{$_}, $_, ' ', $_, " 0 PWL (\n"; # E.g., Vbit bit 0 

PWL ( 

  if( !exists $sig_vals{$_} ) { 

    close EZWAVE_STI; 

    die 'Internal Error: Data values of "', $_, '" not captured for EZWave ', 

$Ezwave_Sti_Out_Format, ' output'; 

  } 

  my @data_vals = split ' ', $sig_vals{$_}; 

  if( scalar @xaxis_vals != scalar @data_vals ) { 



163 

 

    close EZWAVE_STI; 

    die 'Internal Error: Number of x-axis values is not equal to the number of data 

values of "', $_, '" for EZWave ', $Ezwave_Sti_Out_Format, 

' output'; 

  } 

  for( $i = 0; $i < scalar @xaxis_vals; $i++ ) { 

    print EZWAVE_STI '+ ', $xaxis_vals[$i], ' ', $data_vals[$i], "\n"; 

  } 

  print EZWAVE_STI "+ )\n"; 

} 

 

close EZWAVE_STI; 

 

A.4 init_batch_ufdg.pl 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Version_Date = 'May. 4, 2012'; 

my $Script_Name = 'init_batch_ufdg.pl'; 

 

# Constants: 

my $Fmt_Input = '.i'; 

my $Default_Std_Dev_Factor = 30; # std_dev = mean/30 (3*std_dev = mean/10) 

 

my $Ufdg_3_7_Spice = 'ngspice3.ufdg-3.7'; # Name of UFDG Spice executable 

my $CMU_QMC_Exec = 'gennorm'; # Name of Carnegie Mellon Quasi-Monte Carlo executable 

my $Default_QMC_Seq = 'S'; # Default sequence-type for CMU QMC (Sobol sequence) 

 

my $Netlist_Offset = 1; # The title (1st comment line) is on line #0, line 1 begins 

code for the netlist 

 

my $Sweep_Sum_Prefix = 'sweepsum_'; # The file prefix for the sweep summary file 

my $Sweep_Sum_Filetype = '.csv'; # The filetype for the sweep summary file 

my $Sweep_Table_Spacing = 15; # The printf spacing for the sweep summary table (for 

display to stdout) 

 

my $Qmc_Sum_Prefix = 'qmcsum_'; # The file prefix for the qmc summary file 

my $Qmc_Sum_Filetype = '.csv'; # The filetype for the qmc summary file 

 

# Requires script: 

my $Netgen_Ufdg = 'netgen_ufdg.pl'; 

 

# Corner names: np (e.g. fs-->n=fast; p=slow) 

my @Corner_Names = ( 'ff', 'fs', 'sf', 'ss' ); 

my $Corner_Count = scalar @Corner_Names; 

# Mult. factors for n- and p-type FinFETs (1=+n std. dev; -1=-n std. dev) 

my @Corner_N_Factors = ( 1, 1, -1, -1 ); 

my @Corner_P_Factors = ( 1, -1, 1, -1 ); 

 

# Usage: 

my $Usage = ''. 

'Usage: '.$Script_Name."  [OPTIONS]  ufdg_deck_name  init_batch_def_file  [#sims]\n". 

"Options\n". 

    "\t-c N  Run N number of corners (+/- N standard deviations, e.g. N=3)\n". 

    "\tFor CMU's QMC point generation:\n". 

    "\t-l    Use \"Latin hypercube sampling (LHS)\"\n". 

    "\t-r    Use \"linear congruential pseudo-random number generator\"\n". 

    "\t-s    Use \"Sobol sequence\" (default)\n"; 



164 

 

my $Min_Arg_Num = 2; 

 

# Procedure: expand_sweep_expression 

# Summary: 

#   Expands a sweep expression by returning (1st) a comma delimited string of values 

#   represented by the sweep expression and returning (2nd) a count of how many 

#   values are in the comma delimited string 

# Parameter: 1st param = sweep expression to expand; 2nd param = descriptive name 

#            to be used in error messages if expansion of sweep expression fails 

sub expand_sweep_expression { 

  my $sw_expression = shift; 

  my $sw_errorname = shift; 

 

  my $sw_vals; # 1st return value, a comma delimited list of the sweep values 

represented by the expression 

  my $sw_vals_cnt = 1; # 2nd return value, the number (count) of sweep values in the 

comma delimited list 

  if( $sw_expression =~ m/^\s*=\s*(\S+\s*,.+)/ ) { # E.g. 5e-9, ... 

    $sw_vals = $1; # Sweep values are already provided as a comma delimited list 

    chomp $sw_vals; 

    my @split_vals = split /[ ,]+/, $sw_vals; 

    $sw_vals_cnt = scalar @split_vals; 

  } elsif( $sw_expression =~ m/^\s*=\s*(\S+)\s*:\s*(\S+)\s*:\s*(\S+)/i ) { # E.g. 2e-

9:0.5e-9:4e-9 (equals 2e-9, 2.5e-9, 3e-9. 3.5e-9, 4e-9) 

    my $s_beg = $1; 

    my $s_end = $3; 

    my $s_inc = $2; # Note: Increment can be positive or negative (for loop 

compensates for this) [E.g. 4e-9:-0.5e-9:2e-9 (equals 4e-9, 

3.5e-9, 3e-9. 2.5e-9, 2e-9)] 

    $sw_vals = $s_beg; 

    die 'Error: Increment value of 0 found for sweeping ', $sw_errorname if $s_inc == 

0; 

    die 'Error: Illegal start:increment:finish for sweeping ', $sw_errorname if 

(($s_beg < $s_end and $s_inc < 0) or ($s_beg > $s_end and 

$s_inc > 0)); 

    # Use start:increment:finish to make comma delimited list of values 

    for( my $j = $s_beg+$s_inc; ($j <= $s_end and $s_inc > 0) or ($j >= $s_end and 

$s_inc < 0); $j+=$s_inc ) { 

      $sw_vals = $sw_vals.','.$j; 

      $sw_vals_cnt++; 

    } 

  } elsif( $sw_expression =~ 

m/^\s*=\s*(\S+)\s*;\s*(\S+)\s*%\s*:\s*(\S+)\s*%\s*:\s*(\S+)

\s*%/ ) { # E.g. 0.2; -10%:5%:10% (equals 0.18, 0.19, 0.2, 

0.21, 0.22) 

    my $s_ave = $1; 

    my $s_beg = $2/100; 

    my $s_end = $4/100; 

    my $s_inc = $3/100; # Note: Increment can be positive or negative (for loop 

compensates for this) [E.g. 0.2; 10%:-5%:-10% (equals 0.22, 

0.21, 0.2, 0.19, 0.18)] 

    $sw_vals = $s_ave + $s_ave * $s_beg; 

    die 'Error: Increment value of 0 found for sweeping ', $sw_errorname if $s_inc == 

0; 

    die 'Error: Illegal start:increment:finish for sweeping ', $sw_errorname if 

(($s_beg < $s_end and $s_inc < 0) or ($s_beg > $s_end and 

$s_inc > 0)); 

    # Use start:increment:finish to make comma delimited list of values 

    for( my $j = $s_beg+$s_inc; ($j <= $s_end and $s_inc > 0) or ($j >= $s_end and 

$s_inc < 0); $j+=$s_inc ) { 

      $sw_vals = $sw_vals.','.($s_ave + $s_ave * $j); 

      $sw_vals_cnt++; 

    } 



165 

 

  } else { 

    die 'Error: Could not understand sweeping "', $sw_expression, '" for ', 

$sw_errorname; 

  } 

  die 'Error: Zero sweep values found in "', $sw_expression, '" for ', $sw_errorname 

unless $sw_vals_cnt > 0; 

  return ($sw_vals, $sw_vals_cnt); 

} 

 

# init_batch_ufdg.pl 

#  

# Created by Mike Turi 

# Washington State University 

# School of Electrical Engineering & Computer Science 

# High Performance Computer Systems (HiPerCopS) Group 

#  

# Note: Code is semi-tested; may fail under certain conditions 

#  

# This is by far the most complex of this suite of scripts. 

# This is a Perl script used to initialize a directory of 

# spice netlists with varied (e.g. for Monte Carlo simulations) or 

# sweeped transistor parameters, supply voltages, or options (such 

# as temperature).  Afterwards, batchexec_ufdg.pl can be used to 

# run all files and a measurement script can be used to summarize 

# results of interest.  This script also supports corner simulations. 

#  

# Usage: Provide the UFDG deck name and the filename of the 

#        init_batch_def_file (the syntax of this is described in the 

#        README-pvt_variations.txt file).  The output from the script 

#        will summarize any varied or swept parameters or variables in 

#        the netlist.  Also, a summary table for swept params/vars will 

#        be output and/or a summary listing of varied params/vars will 

#        be output.  Note, this script requires that the path to the 

#        Carnegie Mellon University quasi-Monte Carlo executable 

#        (CMU QMC) be added to the PATH variable prior to running.  For 

#        more information, refer to the README-pvt_variations.txt file. 

 

print "**$Script_Name version date: $Version_Date**\n"; 

die $Usage if scalar @ARGV < 1; 

my $argnum = scalar @ARGV; 

die "Error: Not enough parameters\n\n$Usage" if $argnum < $Min_Arg_Num; 

 

my $i = 0; 

my $arg = shift; 

my $op_corners; 

my $qmc_seq = $Default_QMC_Seq; # The sequence type to use for CMU's QMC 

while( $arg =~ m/^-/ ) { 

  die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

 

    # Check single letter options first 

    if( $argmatch =~ m/([lrs])/i ) { 

      $qmc_seq = uc $1; # Method to use for CMU's QMC point generation 

    } 

 

    # Check options which require another argument 

    if( $argmatch =~ m/c/i ) { 

      $op_corners = shift; # Set to number of standard deviations to use 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

    } 

  }  

  $arg = shift; 



166 

 

} 

my $deckname = $arg; 

my $init_defs_file = shift; 

my $sim_num = defined $op_corners ? $Corner_Count : shift; 

 

print 'Note: The default std_dev = mean/', $Default_Std_Dev_Factor, ' (3*std_dev = 

mean/', $Default_Std_Dev_Factor/3, ")\n\n"; 

 

########## 

my @sweep_titles; # Holds the names/titles (defined by the user in the 

init_batch_def_file) for the directories to be created for 

a swept netlist 

 

my %sweep_level_to_names; # Holds the model:param (or variable:param) combination(s) 

for a given sweep level number (or "default") 

my %sweep_name_to_level; # Holds the sweep level number (or "default") for a given 

model:param (or variable:param) combination 

my %sweep_level_steps; # Holds the number of steps for a given sweep level number (or 

"default") 

 

my %sweep_params; # Holds the names of swept transistor parameters (as a space 

delimited string) for a given model name 

my %sw_param_vals; # Holds the sweep values (comma delimited) for a given model:param 

combination 

 

my @sweep_vars; # Holds the names of swept .param variables 

my %sw_var_vals; # Holds the sweep values (comma delimited) for a given .param 

variable name 

 

my %sweep_name_to_val_list; # Holds the sweep values (comma delimited) for a given 

model:param (or variable:param) combination 

                            # This is a combination of the %sw_param_vals and 

%sw_var_vals hashes 

 

my @vary_vars; # Holds the names of varied .param variables 

my %vy_var_means; # Holds the mean for a given .param variable name 

my %vy_var_stddevs; # Holds the standard deviation for a given .param variable name 

 

my %vary_params; # Holds the names of varied transistor parameters (as a space 

delimited string) for a given model name 

my %vy_param_means; # Holds the mean for a given model:param combination 

my %vy_param_stddevs; # Holds the standard deviation for a given model:param 

combination 

########## 

 

# Open the init batch definitions file and parse for .param and model variables to 

vary and their means and standard deviations 

open DEFS, "<$init_defs_file" or die 'Error: Cannot open ', $init_defs_file, ' due to: 

', $!; 

$i = 0; 

while( <DEFS> ) { 

  $i++; 

  if( m/^\s*VARY\s+/i ) { # Found start of a VARY block 

    VARY_LOOP: while( <DEFS> ) { 

      $i++; 

      if( m/^\s*END\s+VARY\s+/i ) { last; } # Found end of a VARY block 

      if( m/^\s*(\w+)\.(\w+)(.*)/i ) { # Found a parameter or model 

        my $type = lc $1; # param or model 

        my $name = lc $2; # param_name or model_name 

        my $rest = $3; 

 

        if( $type eq 'param' or $type eq 'params' ) { # Place in ".param variable" 

vary variables 



167 

 

          push @vary_vars, $name; # Add to list of .param variables to vary 

          if( $rest =~ m/^\s*=\s*(\S+)\s*;\s*stddev\s*=\s*(\S+)/i ) { 

            $vy_var_means{$name} = $1; # Use provided mean 

            $vy_var_stddevs{$name} = $2; # Use provided standard deviation 

          } elsif( $rest =~ m/^\s*=\s*(\S+)/ ) { 

            $vy_var_means{$name} = $1; # Use provided mean 

            $vy_var_stddevs{$name} = 'default'; # Use defualt standard deviation 

          } else { 

            $vy_var_means{$name} = 'file'; # Use value from file as mean 

            $vy_var_stddevs{$name} = 'file'; # Use value from file as standard 

deviation 

          } 

        } elsif( $type eq 'model' or $type eq 'models' ) { # Place in "param" vary 

variables for variations in model parameters 

          while( <DEFS> ) { 

            $i++; 

            if( m/^\s*END\s+VARY\s+/i ) { last VARY_LOOP; } # Found end of a VARY 

block 

            if( m/^\s*\w+\.\w+/ ) {  # Found new model, option, or voltage 

              # "Put" this back in <DEFS> stream, so it can be properly refound 

              seek DEFS, -1*length, 1; 

              last; 

            } 

            if( m/^\s*\+?\s*(\w+)(.*)/ ) { 

              my $param = lc $1; 

              my $rest = $2; 

              # Add to list of this model's params to vary 

              $vary_params{$name} = exists $vary_params{$name} ? $vary_params{$name}.' 

'.$param : $param; 

              if( $rest =~ m/^\s*=\s*(\S+)\s*;\s*stddev\s*=\s*(\S+)/i ) { 

                $vy_param_means{$name.':'.$param} = $1; # Use provided mean 

                $vy_param_stddevs{$name.':'.$param} = $2; # Use provided standard 

deviation 

              } elsif( $rest =~ m/^\s*=\s*(\S+)/ ) { 

                $vy_param_means{$name.':'.$param} = $1; # Use provided mean 

                $vy_param_stddevs{$name.':'.$param} = 'default'; # Use default 

standard deviation 

              } else { 

                $vy_param_means{$name.':'.$param} = 'file'; # Use value from file as 

mean 

                $vy_param_stddevs{$name.':'.$param} = 'file'; # Use value from file as 

standard deviation 

              } 

            } 

          } 

        } else { 

          print 'Warning: Type "', $type, '" from ', $init_defs_file, " was not 

understood and was ignored\n\n"; 

        } 

      } 

    } 

  } elsif( m/^\s*SWEEP\s+/i ) { # Found start of a SWEEP block 

    if( m/^\s*SWEEP\s+(NAME|TITLE)S?\s+(.*)/i ) { # Actually just found the titles for 

the swept simulation 

      push @sweep_titles, split /[ ,]+/, $2; 

      next; 

    } 

    my $level = 'default'; 

    $level = $1 if m/^\s*SWEEP\s+LEVEL\s*=\s*(\d+)/; # Grab the sweep level if it is 

defined, else just use "default" 

    my $lvl_steps; 

    SWEEP_LOOP: while( <DEFS> ) { 

      $i++; 



168 

 

      if( m/^\s*END\s+SWEEP\s+/i ) { last; } # Found end of a SWEEP block 

      if( m/^\s*(\w+)\.(\w+)(.*)/i ) { # Found a parameter or model 

        my $type = lc $1; # param or model 

        my $name = lc $2; # param_name or model_name 

        my $rest = $3; 

 

        if( $type eq 'param' or $type eq 'params' ) { # Place in ".param variable" 

sweep variables 

          # Note: It would be nice to both sweep and vary a parameter (e.g. vbias is 

swept to 0.4, 0.2, and 0V and then 

          #   Monte Carlo simulations vary each vbias level: 0.4V +/- x%, and 0.2V +/- 

x%, and 0V +/- x% groups of sims) 

          die 'Error: Cannot both sweep and vary .param variable: ', $name if exists 

$vy_var_means{$name}; 

 

          push @sweep_vars, $name; # Add to list of .param variables to sweep 

          ($sw_var_vals{$name}, $lvl_steps) = expand_sweep_expression $rest, '.param 

variable: '.$name; # Get the sweep values (expand from def. 

file) 

          $sweep_name_to_val_list{'variable'.':'.$name} = $sw_var_vals{$name}; 

 

          die 'Error: Number of sweep steps do not agree (', 

$sweep_level_steps{$level}, ' and ', $lvl_steps, ') for 

sweep level ', $level 

            if (exists $sweep_level_steps{$level} and $lvl_steps != 

$sweep_level_steps{$level}); 

          $sweep_level_steps{$level} = $lvl_steps; # Set the number of steps for this 

sweep level 

          # Add this .param variable to the list of variables/parameters swept at this 

sweep level 

          $sweep_level_to_names{$level} = exists $sweep_level_to_names{$level} ? 

$sweep_level_to_names{$level}.' '.'variable'.':'.$name : 

'variable'.':'.$name; 

          $sweep_name_to_level{'variable:'.$name} = $level; 

 

        } elsif( $type eq 'model' or $type eq 'models' ) { # Place in "param" sweep 

variables for sweeping model parameters 

          while( <DEFS> ) { 

            $i++; 

            if( m/^\s*END\s+SWEEP\s+/i ) { last SWEEP_LOOP; } # Found end of a SWEEP 

block 

            if( m/^\s*\w+\.\w+/i ) {  # Found new model, option, or voltage 

              # "Put" this back in <DEFS> stream, so it can be properly refound 

              seek DEFS, -1*length, 1; 

              last; 

            } 

            if( m/^\s*\+?\s*(\w+)(.*)/i ) { 

              my $param = lc $1; 

              my $rest = $2; 

 

              # Note: It would be nice to both sweep and vary a parameter (e.g. vbias 

is swept to 0.4, 0.2, and 0V and then 

              #   Monte Carlo simulations vary each vbias level: 0.4V +/- x%, and 0.2V 

+/- x%, and 0V +/- x% groups of sims) 

              die 'Error: Cannot both sweep and vary parameter: ', $name, ':', $param 

if exists $vy_param_means{$name.':'.$param}; 

 

              $sweep_params{$name} = exists $sweep_params{$name} ? 

$sweep_params{$name}.' '.$param : $param; # Add to list of 

this model's params to sweep 

              ($sw_param_vals{$name.':'.$param}, $lvl_steps) = expand_sweep_expression 

$rest, 'model '.$name.'\'s parameter '.$param; # Get the 

sweep values (expand from def. file) 



169 

 

              $sweep_name_to_val_list{$name.':'.$param} = 

$sw_param_vals{$name.':'.$param}; 

 

              die 'Error: Number of sweep steps do not agree (', 

$sweep_level_steps{$level}, ' and ', $lvl_steps, ') for 

sweep level ', $level 

                if (exists $sweep_level_steps{$level} and $lvl_steps != 

$sweep_level_steps{$level}); 

              $sweep_level_steps{$level} = $lvl_steps; # Set the number of steps for 

this sweep level 

              # Add this model:param to the list of variables/parameters swept at this 

sweep level 

              $sweep_level_to_names{$level} = exists $sweep_level_to_names{$level} ? 

$sweep_level_to_names{$level}.' '.$name.':'.$param : 

$name.':'.$param; 

              $sweep_name_to_level{$name.':'.$param} = $level; 

            } 

          } 

        } else { 

          print 'Warning: Type "', $type, '" from ', $init_defs_file, " was not 

understood and was ignored\n\n"; 

        } 

      } 

    } 

  } 

} 

close DEFS; 

 

die 'Error: Sweep block missing level (if using levels of hierarchy, all sweep blocks 

must have a level value)' 

  if (exists $sweep_level_to_names{'default'} and scalar (keys %sweep_level_to_names) 

> 1); 

 

# Create the directory for the varied simulations to go (remove prior existing 

directory if neccessary) 

my $deckfile = $deckname.$Fmt_Input; 

die 'Error: "', $deckfile, '" does not exist' unless -e $deckfile; 

my $dirname = './batch_'.$deckname.'/'; 

my $dirtext = 'batch_'.$deckname; 

system( ('rm', '-rf', $dirname) ) == 0 or die 'Error: "rm -rf ', $dirname, '" somehow 

failed'; 

mkdir $dirname or die 'Error: Cannot "mkdir ', $dirname, '" due to: ', $!; 

 

# Call netgen_ufdg.pl to remove comments and insert include files 

#  If .param variables will be varied, then netgen_ufdg.pl will retrieve parameter 

details and substitute parameters with placeholders 

#  If .param variables will not be varied, then netgen_ufdg.pl will substitute the 

proper values for the parameters 

my $deckfile0 = $dirname.'0'.$Fmt_Input; 

# @spice will hold the netlist (modified by netgen_ufdg.pl) 

my @spice = (scalar @vary_vars > 0 or scalar @sweep_vars > 0) ? `$Netgen_Ufdg -zdi 

$deckfile -o $deckfile0` : `$Netgen_Ufdg -zi $deckfile -o 

$deckfile0`; 

die 'Error: "', $Netgen_Ufdg, '" script failed, aborting initialization' unless $? == 

0; 

print "\n"; 

 

########## 

my %spice_params; # Holds the value (from the netlist) for a given .param variable 

name 

my @spice_params_ordered; # An array of the .param variable names (in the order 

declared in the netlist); use instead of "keys 

%spice_params" to maintain order 



170 

 

                          # Must maintain order because there can be .param variable 

dependencies that must be resolved in proper order (e.g. 

.param a = {10*b}) 

my %spice_placeholders; # Holds the expression (of one or more .param variables) for a 

given placeholder (generated by netgen_ufdg.pl) 

########## 

 

if( scalar @vary_vars > 0 or scalar @sweep_vars > 0 ) { # If .param variables are 

swept or varied, must deal with the placeholders that 

netgen_ufdg.pl inserted 

 

  my $detail = shift @spice; # Using shift since .param variable and placeholder 

information is not part of the netlist and should be 

removed 

  chomp $detail; 

  while( $detail =~ m/^([a-z]\w*)=(.+)$/i ) { # First set of lines from netgen_ufdg.pl 

contain: param1=value1 

    $spice_params{lc $1} = $2; 

    push @spice_params_ordered, lc $1; # Place this .param variable name in the order 

declared in the netlist 

    $detail = shift @spice; 

    chomp $detail; 

  } 

  while( $detail =~ m/^(\d\S*)=(.+)$/i ) { # Second set of lines from netgen_ufdg.pl 

contain: placeholder1=param_exp1 (e.g. 1000000T=100p*simlen 

or 1000001T=h) 

    $spice_placeholders{$1} = $2; 

    $detail = shift @spice; 

    chomp $detail; 

  } 

  while( (substr $detail, 0, 1) !~ m/^\*/ ) { # Check to see if the title of the spice 

netlist is next (after the placeholder info from 

netgen_ufdg.pl) 

    print 'Internal Warning: "', $detail, "\" was expected to be title of spice 

netlist; It will be ignored\n"; 

    $detail = shift @spice; 

    chomp $detail; 

  } 

  unshift @spice, $detail."\n"; # Put back the title of the spice netlist so that 

@spice contains the entire netlist 

 

  my @rm_vars; 

  foreach my $pvar (@vary_vars, @sweep_vars) { 

    my $usage = 0; # Flag to check if each .param variable swept or varied is actually 

used in the netlist 

    foreach (grep /^\{.*\}$/, values %spice_params) { # Checking if .param variable is 

used in the definition of another .param variable (e.g. 

.param a = {10*b}) 

      if( m/^\{$pvar\}$/i or m/\W$pvar\W/i ) { 

        $usage = 1; 

        last; 

      } 

    } 

    if( $usage < 1 ) { 

      foreach (values %spice_placeholders) { # Checking if .param variable is used in 

the netlist by looking through the placeholders 

        if( m/^$pvar$/i or m/\W$pvar\W/i ) { 

          $usage = 1; 

          last; 

        } 

      } 

    } 

    if( $usage < 1 ) { # .param variable is not used in the netlist 



171 

 

      print 'Warning: .param "', $pvar, "\" in init batch def. file was not found in 

netlist, so it will not be swept or varied\n"; 

      push @rm_vars, $pvar; # Add this .param variable name to the list for deletion 

 

    } else { # Check if .param variable was declared in the netlist (print a warning 

if was not, but can continue with the sweep or vary) 

      my $declared = 0; 

      foreach (keys %spice_params) { 

        if( $_ eq $pvar ) { 

          $declared = 1; 

          last; 

        } 

      } 

      if( $declared < 1 ) { 

        print 'Warning: .param "', $pvar, "\" in init batch def. file not declared in 

netlist, but will still be swept or varied\n"; 

        $spice_params{$pvar} = 0; 

      } 

    } 

  } 

 

  foreach (@rm_vars) { # Some .param variable names are to be removed (if scalar 

@rm_vars > 0) since they are unused in the netlist 

    for( $i = 0; $i < scalar @vary_vars; $i++ ) { 

      if( $_ eq $vary_vars[$i] ) { 

        splice @vary_vars, $i, 1; 

        last; 

      } 

    } 

    for( $i = 0; $i < scalar @sweep_vars; $i++ ) { 

      if( $_ eq $sweep_vars[$i] ) { 

        splice @sweep_vars, $i, 1; 

        last; 

      } 

    } 

  } 

} 

 

 

# Grab the option, print, and save lines from the original netlist since 

# ngspice's "listing expand" omits these in its output 

# If a line is not present (e.g. no .SAVE line), then grep returns an empty string '' 

my @grep_lines = grep /^\.option/i, @spice; # Format .OPTION ABSTOL=1e-6 ... 

my $option_line = scalar @grep_lines < 1 ? "" : $grep_lines[0]; 

chomp $option_line; 

@grep_lines = grep /^\.print/i, @spice; # Format .PRINT TRAN v(foo) ... 

my $print_line = scalar @grep_lines < 1 ? "" : $grep_lines[0]; 

chomp $print_line; 

@grep_lines = grep /^\.save/i, @spice; # Format .SAVE v(foo) ... 

my $save_line = scalar @grep_lines < 1 ? "" : $grep_lines[0]; 

chomp $save_line; 

print "\nOption line: ", $option_line, "\n"; 

print 'Print line:  ', $print_line, "\n"; 

print 'Save line:   ', $save_line, "\n"; 

 

# Use ngspice to expand the netlist (expand subcircuits prior to duplicating models 

for varied transistors within subcircuit) 

# Save the resultant netlist as 0.i in the simulation directory (will be overwritten 

later) 

system( "echo \"listing expand > $deckfile0\nquit\" | $Ufdg_3_7_Spice -i $deckfile0" ) 

== 0 

  or die 'Error: Listing expansion through ', $Ufdg_3_7_Spice, ' failed'; 

 



172 

 

# Open the resultant netlist 

open IN, "<$deckfile0" or die 'Error: Cannot open ', $deckfile0, ' due to: ', $!; 

@spice = <IN>; 

close IN; 

 

# Remove spacing before * for first line's comment 

$spice[0] =~ s/^\s*\*/\*/; 

# Remove silly line numbers from "listing expand" operation (e.g. "   17 : minvp...") 

foreach (@spice) { 

  s/^\s*\d+\s*:\s*//; 

} 

 

########## 

my %model_linenum; # Holds the line number of the declaration for a given model 

my %model_fettype; # Holds the fet type (nmos or pmos) for a given model 

my %model_inline_param; # Holds if the model:param combination declared inline (with 

each instance of a transistor, e.g. l & w) for a given 

model:param 

########## 

 

# Look through the netlist for the declarations of models with varied parameters 

for( $i = 0; $spice[$i] !~ m/^.end/i and $i < scalar @spice; $i++ ) { 

  my $model; 

  my $param; 

  if( $spice[$i] =~ m/^\.MODEL\s+([\w.]+)\s+([NP]MOS)/i ) { # Format .MODEL NSG NMOS 

LEVEL=17 

    $model = lc $1; 

    $model_fettype{$model} = lc $2; 

    $model_linenum{$model} = $i; 

    if( exists $vary_params{$model} ) { # There are varied parameters for this model 

      foreach (split ' ', $vary_params{$model}) { 

        if( $spice[$i] !~ m/\s+$_\s*=\s*\S+\s*/i ) { # Is each parameter defined in 

the model declaration? 

          # This model:param combination must be declared inline 

          $model_inline_param{$model.':'.$_} = 1; # Or could maybe use: 

$model_inline_param{$model} = (exists 

$model_inline_param{$model}) ? 

$model_inline_param{$model}.' '.$_ : $_; 

        } 

      } 

    } 

    if( exists $sweep_params{$model} ) { # There are swept parameters for this model 

      foreach (split ' ', $sweep_params{$model}) { 

        if( $spice[$i] !~ m/\s+$_\s*=\s*\S+\s*/i ) { # Is each parameter defined in 

the model declaration? 

          # This model:param combination must be declared inline 

          $model_inline_param{$model.':'.$_} = 1; # Or could maybe use: 

$model_inline_param{$model} = (exists 

$model_inline_param{$model}) ? 

$model_inline_param{$model}.' '.$_ : $_; 

        } 

      } 

    } 

  } 

} 

# Overwrite the ".END" in the netlist (will be appending to file) 

$spice[$i] = "\n"; 

# Append the .OPTION line 

push @spice, $option_line."\n" unless length $option_line == 0; 

# Append the .PRINT line 

push @spice, $print_line."\n" unless length $print_line == 0; 

# Append the .SAVE line 

push @spice, $save_line."\n" unless length $save_line == 0; 



173 

 

push @spice, "\n"; 

 

########## 

my %data_column; # Holds the column number for a given model:param (or variable:param) 

combination 

my $col = 0; # Column count for the number of data columns required for this netlist 

########## 

 

print "\nSummary of Spice Deck:\n"; 

 

print "For .param variables\n"; 

print "  Sweep:\n"; 

print "    No .param variables to sweep\n" if scalar @sweep_vars < 1; 

foreach (sort @sweep_vars) { # If .param variables are swept 

  my $sw_lvl = $sweep_name_to_level{'variable'.':'.$_}; 

  print '    ', $_, ': ', $sw_var_vals{$_}, 

        ";\n      (level = ", $sw_lvl, '; # steps = ', $sweep_level_steps{$sw_lvl}, 

")\n"; 

  # Print the .param variable name, its values (comma delimited), the sweep level, and 

how many sweep level steps 

} 

print "  Vary:\n"; 

print "    No .param variables to vary\n" if scalar @vary_vars < 1; 

foreach (sort @vary_vars) { # If .param variables are varied 

  print "    Warning: There is no support to vary .param variables for corner 

simulations\n", 

        "             (.param values will remain unchanged from the netlist)\n" if 

defined $op_corners; 

  last if defined $op_corners; 

 

  # Count this variable in the number of required data columns 

  $data_column{'variable:'.$_} = $col++; # Use "variable" as the fetname (it's ok, 

fetnames begin with m) 

 

  # Print variable summary (its name, mean, and standard deviation) 

  print '    ', $_, ': mean=', $vy_var_means{$_}, '; std_dev=', $vy_var_stddevs{$_}, 

"\n"; 

} 

 

# Print model parameter summary 

foreach (sort keys %model_linenum) { 

  my $model = $_; 

  print 'For ', $model_fettype{$model}, ' model "', $model, "\"\n"; 

  print "  Sweep:\n"; 

  if( exists $sweep_params{$model} ) { 

    foreach (split ' ', $sweep_params{$model}) { 

      my $mpkey = $model.':'.$_; 

      my $sw_lvl = $sweep_name_to_level{$mpkey}; 

      print '    ', $_, ': ', $sw_param_vals{$mpkey}, ';   inst. ', exists 

$model_inline_param{$mpkey} ? 'inline' : 'in model', 

            "\n      (level = ", $sw_lvl, '; # steps = ', $sweep_level_steps{$sw_lvl}, 

")\n"; 

      # Print the parameter name, its values (comma delimited), where it was 

instantiated, the sweep level, and how many sweep level 

steps 

    } 

  } else { 

    print "    No parameters to sweep\n"; 

  } 

  print "  Vary:\n"; 

  if( exists $vary_params{$model} ) { 

    foreach (split ' ', $vary_params{$model}) { 

      my $mpkey = $model.':'.$_; 



174 

 

      print '    ', $_, ': mean=', $vy_param_means{$mpkey}, '; std_dev=', 

$vy_param_stddevs{$mpkey}, 

            ';   inst. ', exists $model_inline_param{$mpkey} ? 'inline' : 'in model', 

"\n"; 

      # Print the parameter name, its mean, its standard deviation, and where it was 

instantiated 

    } 

  } else { 

    print "    No parameters to vary\n"; 

  } 

} 

 

########## 

my %sweep_vals; # A space delimited list of all values to be used for a given 

model:param name or variable:param name (for .param 

variables) 

                # Note, this will include duplicate values for a hierarchical sweep 

(all values for all sweep combinations are included) 

my $sw_num_combos = 1; # The number of sweep combinations (also equal to the number of 

directories required for sweep) 

                       # This is equal to the number of sweep steps for a single sweep 

level defined, but it is the 

                       # product of all sweep steps for a hierarchical sweep (multiple 

sweep levels) 

########## 

 

# This is a bit complicated to find all of the sweep levels.  Here is an example and 

how the code modifies it: 

#   Sweep level = 1: "vdd_val" has values (0.9, 1.0, 1.1) 

#   Sweep level = 2: "l" has values (17e-9, 30e-9) and "h" has values (30e-9, 75e-9) 

 

if( scalar (keys %sweep_level_steps) > 0 ) { # If sweeping values (at least one sweep 

level--even "default"), must figure out sweep combinations 

  my @sw_levels = keys %sweep_level_steps; 

  @sw_levels = sort {$b <=> $a} @sw_levels unless exists 

$sweep_level_steps{'default'}; # Sort numerically 

descending 

 

  foreach my $name (split ' ', $sweep_level_to_names{$sw_levels[0]}) { # Get 

variable:param and model:param names for the lowest level 

sweep 

    $sweep_vals{$name} = join ' ', (split /[ ,]+/, $sweep_name_to_val_list{$name}); # 

Get the values for each param name and space delimit them 

  } 

  my $num_copies = $sweep_level_steps{$sw_levels[0]}; # The number of copies higher 

sweep levels will need of each value 

 

  # Example: %sweep_vals now has: 

  #   $sweep_vals{"vdd_val"} = undefined (no key "vdd_val" yet) 

  #   $sweep_vals{"l"} = "17e-9 30e-9" 

  #   $sweep_vals{"h"} = "30e-9 75e-9" 

 

  for( $i = 1; $i < scalar @sw_levels; $i++ ) { # Go to the next lowest level sweep 

(go one sweep level up each iteration) 

    foreach my $name (split ' ', $sweep_level_to_names{$sw_levels[$i]}) { # Get the 

variable:param and model:param names for this sweep level 

      $sweep_vals{$name} = ''; 

      foreach (split /[ ,]+/, $sweep_name_to_val_list{$name}) { # Get the values for 

each param name 

        $sweep_vals{$name} .= ($_.' ') x $num_copies; # Must make multiple copies of 

each value in order to correctly pair with lower sweep 

level values 

      } 



175 

 

    } 

 

    # Example: %sweep_vals now has: 

    #   $sweep_vals{"vdd_val"} = "0.9 0.9 1.0 1.0 1.1 1.1" 

    #   $sweep_vals{"l"} = "17e-9 30e-9" 

    #   $sweep_vals{"h"} = "30e-9 75e-9" 

 

    for( my $j = 0; $j < $i; $j++ ) { # Go to the lower sweep levels again 

      foreach my $name (split ' ', $sweep_level_to_names{$sw_levels[$j]}) { # Get the 

variable:param and model:param names for this lower sweep 

level 

        # Must make multiple copies of each set of values in order to correctly pair 

with the lower sweep level values 

        $sweep_vals{$name} = ($sweep_vals{$name}.' ') x 

$sweep_level_steps{$sw_levels[$i]};  

      } 

    } 

 

    # Example: %sweep_vals now has: 

    #   $sweep_vals{"vdd_val"} = " 0.9   0.9   1.0   1.0   1.1   1.1" 

    #   $sweep_vals{"l"} =       "17e-9 30e-9 17e-9 30e-9 17e-9 30e-9" 

    #   $sweep_vals{"h"} =       "30e-9 75e-9 30e-9 75e-9 30e-9 75e-9" 

    # 

    # Repeat for higher orders of sweep hierarchy 

 

    $num_copies *= $sweep_level_steps{$sw_levels[$i]}; # Update the number of copies 

required for the next higher sweep level 

  } 

 

  foreach (values %sweep_level_steps) { # Obtain number of sweep combinations 

    $sw_num_combos *= $_; 

  } 

 

  # Print the sweep summary to file and as a table to stdout 

  open SWEEP_SUM, ">$Sweep_Sum_Prefix$dirtext$Sweep_Sum_Filetype" 

       or die "Error: Cannot create $Sweep_Sum_Prefix$dirtext$Sweep_Sum_Filetype for 

output due to ", $!; 

 

  print "\nSummary of Sweep:\n"; 

  foreach (('Name', sort keys %sweep_vals)) { # Print the model:param and 

variable:param names 

    printf '%*s  ', $Sweep_Table_Spacing, $_; 

    print SWEEP_SUM $_, ','; 

  } 

  print "\n"; 

  print SWEEP_SUM "\n"; 

  my $dash = (('-' x $Sweep_Table_Spacing).'  '); 

  print $dash x (1 + scalar keys %sweep_vals); # Make some dashes for clarity 

  print "\n"; 

  for( $i = 0; $i < $sw_num_combos; $i++ ) { 

    if( scalar @sweep_titles > $i ) { # Print the sweep title (if there is one) in the 

first column 

      printf '%*s  ', $Sweep_Table_Spacing, $sweep_titles[$i]; 

      print SWEEP_SUM $sweep_titles[$i], ','; 

      $sweep_titles[$i] .= '/' unless $sweep_titles[$i] =~ m/\/$/; 

    } else { # Use a number if there are not enough sweep titles for the sweep 

combinations 

      printf '%*d  ', $Sweep_Table_Spacing, $i+1; 

      print SWEEP_SUM $i+1, ','; 

      $sweep_titles[$i] = sprintf '%d/', $i+1; 

    } 



176 

 

    mkdir $dirname.$sweep_titles[$i] or die 'Error: Cannot "mkdir ', 

$dirname.$sweep_titles[$i], '" due to: ', $!; # Create 

directory from the sweep title 

    foreach (sort keys %sweep_vals) { # Print the correct value (for the sweep name) 

for each model:param and variable:param name 

      my @vals = split ' ', $sweep_vals{$_}; 

      print ' ' x ($Sweep_Table_Spacing-(length $vals[$i])); # Place spacing for 

stdout table 

      print $vals[$i], '  '; 

      print SWEEP_SUM $vals[$i], ','; 

    } 

    print "\n"; 

    print SWEEP_SUM "\n"; 

  } 

 

  close SWEEP_SUM; 

 

  print "\nWarning: There are ", scalar @sweep_titles, ' sweep titles for ', 

$sw_num_combos, ' sweep combinations; ', 

        "Sweep simulations may not be named as anticipated\n" unless scalar 

@sweep_titles == $sw_num_combos; 

} 

 

########## 

my %var_linenum; # Holds the line number for the declaration of a given .param 

variable 

########## 

 

if( scalar @vary_vars > 0 or scalar @sweep_vars > 0 ) { # If .param variables are 

varied or swept, place their declaration back into the 

netlist 

  my @param_def_code; # Will become all of the .param declarations 

  foreach my $var (@spice_params_ordered) { 

    if( exists $vy_var_means{$var} ) { # Place varied .param variable declaration 

(defined as its mean) and keep track of its line number 

      $var_linenum{$var} = $Netlist_Offset + scalar @param_def_code; 

      push @param_def_code, '.param '.$var.' = '.$vy_var_means{$var}."\n"; 

    } elsif( exists $sw_var_vals{$var} ) { # Place swept .param variable declaration 

(defined as its 1st swept value) and keep track of its line 

number 

      $var_linenum{$var} = $Netlist_Offset + scalar @param_def_code; 

      my @all_vals = split /[ ,]/, $sw_var_vals{$var}; 

      push @param_def_code, '.param '.$var.' = '.$all_vals[0]."\n"; 

    } else { # Place non-varied and non-swept .param variable declaration (defined as 

its appropriate value) 

      push @param_def_code, '.param '.$var.' = '.$spice_params{$var}."\n"; 

    } 

  } 

  splice @spice, $Netlist_Offset, 0, @param_def_code; # Add the .param declarations to 

the spice netlist 

  foreach (keys %model_linenum) { # Must now correct the line numbers that were 

previously stored since @param_def_code was inserted at the 

top of the netlist 

                                  # Only the model line numbers were affected 

    $model_linenum{$_} += scalar @param_def_code; 

  } 

 

  foreach (@spice) { 

    while((my $placeholder, my $expression) = each %spice_placeholders) { # Look 

through the spice netlist, and replace placeholders with 

the proper .param variable expressions 

      s/$placeholder/\{$expression\}/ig; 

    } 



177 

 

  } 

} 

 

########## 

my %fet_linenum; # Holds the line number for the declaration of a given fet 

my %fet_model; # Holds the model name for the declaration of a given fet 

my %model_fets; # Holds the fet names (as a space delimited string) for a given model 

name 

########## 

 

for( $i = 0; $i < scalar @spice; $i++ ) { 

  if( $spice[$i] =~ m/^(m[\w.]*)\s+[\w.]+\s+[\w.]+\s+[\w.]+\s+[\w.]+\s+([\w.]+)/i ) { 

    # Found a transistor 

    my $fetname = lc $1; 

    my $model = lc $2; 

    my $made_phys_copy_model = 0; 

    die 'Error: ', $fetname, ' (line #', $i+1, ') refers to nonexistant model "', 

$model, "\"\n" if not exists $model_linenum{$model}; 

 

    if( exists $vary_params{$model} ) { # This transistor has varied parameters 

 

      if( $spice[$i] =~ m/\s+m\s*=\s*(\d+)/i and $1 > 1 ) { # This transistor has 

multiple fins/fingers (or FinFETs in parallel) 

        my $nfingers = $1; 

        $spice[$i] =~ s/\s+m\s*=\s*\d+/ m=1/i; # Change the transistor to only one 

finger 

        splice @spice, $i+1, 0, ($spice[$i]) x ($nfingers-1); # Add identical copies 

of this transistor to equal the finger count 

        my $j; 

        for( $j = 1; $j <= $nfingers; $j++ ) { 

          $spice[$i+$j-1] =~ s/^$fetname/$fetname.$j/i; # Append the finger number to 

each transistor (e.g. mp.1, mp.2, ... mp.nfingers) 

        } 

        $fetname .= '.1'; # Update the fetname for the FinFET being analyzed in the 

loop (the first finger of the transistor) 

      } 

 

      foreach (split ' ', $vary_params{$model}) { # Iterate through all parameters 

that are varied in this model 

        # Count this fetname:param in the number of required data columns 

        $data_column{$fetname.':'.$_} = $col++; 

        if( exists $model_inline_param{$model.':'.$_} ) { # This parameter is declared 

inline 

          # Append the parameter (with mean) on line if not already there 

          if( $spice[$i] !~ m/\s+$_\s*=\s*\S+\s+/i ) { 

            chomp $spice[$i]; 

            $spice[$i] = $spice[$i].' '.$_.'='.$vy_param_means{$model.':'.$_}."\n"; 

          } 

        } elsif( $made_phys_copy_model == 0 ) { # This parameter is declared in the 

model declaration (and the model dec. must be duplicated) 

          # Make a physical copy of the model and name the copy "fetname" (this is 

only done once) 

          $made_phys_copy_model = 1; 

          my $fet_model_linenum = scalar @spice; 

          # Duplicate the spice model 

          push @spice, $spice[$model_linenum{$model}]; 

          # Change the fet's model name to $fetname 

          die 'Error: The model name ', $model, ' was matched multiple times (net and 

transistor names cannot be equal to model name) on spice 

line ', 

            $i+1, ":\n", $spice[$i], "\n" if ($spice[$i] =~ s/\s+$model\s+/ $fetname 

/ig) > 1; # Note: "s/ / /" returns number of substitutions 

made 



178 

 

          # Change the model's name to $fetname 

          $spice[$fet_model_linenum] =~ s/^\.MODEL\s+$model\s+/\.MODEL $fetname /i; 

          # Update hashes (duplicate entries for this duplication of the model) 

          $model_linenum{$fetname} = $fet_model_linenum; 

          $model_fettype{$fetname} = $model_fettype{$model}; 

          $vary_params{$fetname} = $vary_params{$model}; 

          my @inline_keys = keys %model_inline_param; 

          foreach (@inline_keys) { 

            if( m/^$model:(\w+)$/i ) { 

              $model_inline_param{$fetname.':'.$1} = 

$model_inline_param{$model.':'.$1}; 

            } 

          } 

          if( exists $sweep_params{$model} ) { 

            my @sw_modelparam = keys %sweep_vals; 

            foreach (@sw_modelparam) { 

              if( m/^$model:(\w+)$/i ) { 

                $sweep_vals{$fetname.':'.$1} = $sweep_vals{$model.':'.$1}; 

              } 

            } 

          } 

        } 

      } 

    } 

 

    # Keep track of the models and line numbers for each transistor, plus the names of 

the transistors for each model 

    #  (do this here since the fetname could be modified if the transistor has 

multiple fins/fingers) 

    $fet_linenum{$fetname} = $i; 

    $fet_model{$fetname} = $model; 

    $model_fets{$model} = exists $model_fets{$model} ? $model_fets{$model}.' 

'.$fetname : $fetname; 

  } 

} 

 

push @spice, "\n"; 

push @spice, ".END\n"; # Appending .END at end of netlist 

push @spice, "\n"; 

 

########## 

my $req_col; # The number of data columns required for the netlist 

my %r_data_column; # Holds the model:param (or option:param) combination for a given 

column number 

########## 

 

print "\nSummary of data columns for Parameter Variations:\n"; 

%r_data_column = reverse %data_column; 

for( $i = 0; exists $r_data_column{$i}; $i++ ) { 

  print 'Column ', $i+1, ' --> ', $r_data_column{$i}, "\n"; 

} 

print "\n"; 

 

$req_col = $i; # $i holds the required number of columns from the for loop 

 

# Output the modified netlist to 0.i in the simulation directory (it is functionally 

equivalent to the original netlist) 

open OUT, ">$deckfile0" or die 'Error: Cannot open ', $deckfile0, ' due to: ', $!; 

print OUT @spice; 

close OUT; 

 

if( scalar (keys %sweep_vals) > 0 ) { # Values are swept, so generate netlists for 

each sweep combination 



179 

 

  for( my $sweep_iter = 0; $sweep_iter < $sw_num_combos; $sweep_iter++ ) { 

    while((my $sw_name, my $sw_lst) = each %sweep_vals) { 

      my @sw_vals = split ' ', $sw_lst; 

 

      die 'Internal error: Cannot extract fetname:param from ', $sw_name unless 

$sw_name =~ m/([\w.]+):(\w+)/i; 

      my $model = $1; 

      my $param = $2; 

      if( $model eq 'variable' ) { # Sweeps a .param variable 

        die 'Internal error: line number missing for .param variable: ', $param unless 

exists $var_linenum{$param}; 

        $spice[$var_linenum{$param}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$sw_vals[$sweep_iter]/i; 

 

      } else { # This is a model:param being swept 

        if( !exists $model_inline_param{$sw_name} ) { # Normal fet parameter -- 

defined in .MODEL 

          # Note: model name for a fet parameter defined in .MODEL is renamed to be 

the same as fetname 

          die 'Internal error: line number missing for model: ', $model unless exists 

$model_linenum{$model}; 

          $spice[$model_linenum{$model}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$sw_vals[$sweep_iter]/i; 

 

        } else { # Inline fet parameter 

          die 'Internal error: fetnames missing for model ', $model unless exists 

$model_fets{$model}; 

          foreach my $fet_name (split ' ', $model_fets{$model}) { 

            die 'Internal error: line number missing for fet: ', $fet_name unless 

exists $fet_linenum{$fet_name}; 

            $spice[$fet_linenum{$fet_name}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$sw_vals[$sweep_iter]/i; 

          } 

        } 

      } 

    } 

 

    my $deckfile_sw0 = $dirname.$sweep_titles[$sweep_iter].'0'.$Fmt_Input; # Make a 

0.i for each sweep combination 

    open OUT, ">$deckfile_sw0" or die 'Error: Cannot open ', $deckfile_sw0, ' due to: 

', $!; 

    print OUT @spice; 

    close OUT; 

  } 

} 

 

########## 

my $qmc_line; # The QMC command line to execute 

my $qmc_worked = 0; # A flag to see if CMU QMC generated values; it may not if #sims 

(aka #rows) is too small for the number of columns required 

(aka dimensions) 

########## 

 

if( !defined $op_corners ) { # Run the CMU QMC program to obtain data columns for 

sweep or Monte Carlo initialization (if not doing corner 

simulations) 

  die "Number of Monte Carlo simulations not included in arguments, quitting...\n" 

unless defined $sim_num and $sim_num > 0; 

  $qmc_line = join ' ', $CMU_QMC_Exec, $qmc_seq, $req_col, $sim_num, 1; 

  print 'Using "', $qmc_line, "\" to generate values for Monte Carlo 

simulations...\n"; 

  open VALUES, "$qmc_line |" or die 'Error: "', $qmc_line, '" failed'; 

} 



180 

 

 

print "Generating netlists...\n"; 

########## 

my $copy_num = 0; # The number of the netlist the loop is currently generating 

my @vals; # An array of the randomized values for the current netlist being generated 

my $val_col; # The size of @vals (the number of columns the randomized number set has) 

########## 

 

# Print the QMC values summary to file 

open QMC_SUM, ">$Qmc_Sum_Prefix$dirtext$Qmc_Sum_Filetype" or die "Error: Cannot create 

$Qmc_Sum_Prefix$dirtext$Qmc_Sum_Filetype for output due to 

", $!; 

 

# This gets a little messy for corner simulations: 

# Do the loop for generating corner netlists based on the corner constants, but do not 

read from <VALUES> 

goto LBEGIN if defined $op_corners; 

 

while( <VALUES> ) { 

  next unless m/^\d+/ or m/^-/; # Discards any line(s) of text (e.g. a first line of 

"Sobol") 

 

  # Obtain a line of randomized values from the randomized number set (don't do if 

$op_corners is selected) 

  @vals = split; 

  $val_col = scalar @vals; 

  if( $val_col < $req_col ) { 

    close VALUES unless defined $op_corners; 

    close QMC_SUM; 

    die 'Internal error: Not enough columns (need ', $req_col, ', has ', $val_col, ' 

[value set is: ', $_, ']) in randomized number set for 

sim#', $copy_num+1; 

  } # Incremented copy_num, or else Internal Error message would be one off 

 

 

  LBEGIN: $copy_num++; 

  $qmc_worked = 1; # QMC must have worked, since we entered the while loop 

 

  if( $copy_num == 1 ) { # This is the first varied netlist, so must print column 

headings for the QMC summary file 

    print QMC_SUM 'file number,'; 

    for( $i = 0; exists $r_data_column{$i}; $i++ ) { 

      print QMC_SUM 'value ', $r_data_column{$i}, ','; # The final (weighted) value of 

the variable:param or fetname:param pair 

      print QMC_SUM 'location ', $r_data_column{$i}, ','; # The location of the final 

value relative to the mean (it's the QMC value from file--

zero mean, unit std. dev.) 

    } 

  } 

  print QMC_SUM "\n", $copy_num, ','; # Print the file number for the new row in the 

QMC summary file 

 

  # Cycle through every column of the randomized number set, and appropriately set the 

variable it corresponds to 

  for( $i = 0; exists $r_data_column{$i}; $i++ ) { 

    my $final_val; # The final (weighted) value of the variable:param or fetname:param 

pair 

    my $qmc_val; # The location of the final value relative to the mean (it's the QMC 

value from file--zero mean, unit std. dev.) 

 

    if( $r_data_column{$i} !~ m/([\w.]+):(\w+)/i ) { 

      close VALUES unless defined $op_corners; 

      close QMC_SUM; 



181 

 

      die 'Internal error: Cannot extract fetname:param from ', $r_data_column{$i}; 

    } 

    my $fetname = $1; 

    my $param = $2; 

    if( $fetname eq 'variable' ) { # Modifies a .param variable 

      if( !exists $vy_var_means{$param} or !exists $vy_var_stddevs{$param} ) { 

        close VALUES unless defined $op_corners; 

        close QMC_SUM; 

        die 'Internal error: mean or std_dev missing for .param variable:', $param; 

      } 

      if( !exists $var_linenum{$param} ) { 

        close VALUES unless defined $op_corners; 

        close QMC_SUM; 

        die 'Internal error: line number missing for .param variable: ', $param; 

      } 

      $qmc_val = $vals[$i]; # Note: .param variables are not placed into the 

data_columns hash for corner simulations, so no risk of 

corner sims here 

      if( $vy_var_means{$param} eq 'file' ) { # Directly substitute randomized number 

from randomized number set 

        $final_val = $qmc_val; 

      } elsif( $vy_var_stddevs{$param} eq 'default' ) { # Scale random number from 

random number set with mean and default std. dev. 

        $final_val = $vy_var_means{$param} + $qmc_val * $vy_var_means{$param} / 

$Default_Std_Dev_Factor; 

      } else { # Scale random number from random number set with mean and specified 

std. dev. 

        $final_val = $vy_var_means{$param} + $qmc_val * $vy_var_stddevs{$param}; 

      } 

      $spice[$var_linenum{$param}] =~ s/\s+$param\s*=\s*\S+/ $param=$final_val/i; 

    } else { # Modifies a fet parameter 

      if( !exists $fet_model{$fetname} ) { 

        close VALUES unless defined $op_corners; 

        close QMC_SUM; 

        die 'Internal error: The model for "', $fetname, '" could not be found'; 

      } 

      my $orig_model = $fet_model{$fetname}; 

      if( !exists $vy_param_means{$orig_model.':'.$param} or !exists 

$vy_param_stddevs{$orig_model.':'.$param} ) { 

        close VALUES unless defined $op_corners; 

        close QMC_SUM; 

        die 'Internal error: mean or std_dev missing for ', $orig_model, ':', $param; 

      } 

 

      if( !exists $model_inline_param{$orig_model.':'.$param} ) { # Normal fet 

parameter -- defined in .MODEL 

        # Note: model name for a fet parameter defined in .MODEL is renamed to be the 

same as fetname 

        if( !exists $model_linenum{$fetname} ) { 

          close VALUES unless defined $op_corners; 

          close QMC_SUM; 

          die 'Internal error: line number missing for model: ', $fetname; 

        } 

        # Set the corner value "cval" to the number of specified standard deviations 

with the +/- factor 

        my $cval = ($model_fettype{$orig_model} eq 'nmos' ? 

$op_corners*$Corner_N_Factors[$copy_num-1] : 

$op_corners*$Corner_P_Factors[$copy_num-1]) if defined 

$op_corners; 

        $qmc_val = defined $op_corners ? $cval : $vals[$i]; 

        if( $vy_param_means{$orig_model.':'.$param} eq 'file' ) { # Directly 

substitute randomized number from randomized number set 

          close QMC_SUM if defined $op_corners; 



182 

 

          die 'Error: Param. value from file makes no sense for corner test' if 

defined $op_corners; 

          $final_val = $qmc_val; 

        } elsif( $vy_param_stddevs{$orig_model.':'.$param} eq 'default' ) { # Scale 

random number from random number set with mean and default 

std. dev. 

          $final_val = $vy_param_means{$orig_model.':'.$param} + $qmc_val * 

$vy_param_means{$orig_model.':'.$param} / 

$Default_Std_Dev_Factor; 

        } else { # Scale random number from random number set with mean and specified 

std. dev. 

          $final_val = $vy_param_means{$orig_model.':'.$param} + $qmc_val * 

$vy_param_stddevs{$orig_model.':'.$param}; 

        } 

        $spice[$model_linenum{$fetname}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$final_val/i; 

      } else { # Inline fet parameter 

        if( !exists $fet_linenum{$fetname} ) { 

          close VALUES unless defined $op_corners; 

          close QMC_SUM; 

          die 'Internal error: line number missing for fet: ', $fetname; 

        } 

        # Set the corner value "cval" to the number of specified standard deviations 

with the +/- factor 

        my $cval = ($model_fettype{$orig_model} eq 'nmos' ? 

$op_corners*$Corner_N_Factors[$copy_num-1] : 

$op_corners*$Corner_P_Factors[$copy_num-1]) if defined 

$op_corners; 

        $qmc_val = defined $op_corners ? $cval : $vals[$i]; 

        if( $vy_param_means{$orig_model.':'.$param} eq 'file' ) { # Directly 

substitute randomized number from randomized number set 

          close QMC_SUM if defined $op_corners; 

          die 'Error: Param. value from file makes no sense for corner test' if 

defined $op_corners; 

          $final_val = $qmc_val; 

        } elsif( $vy_param_stddevs{$orig_model.':'.$param} eq 'default' ) { # Scale 

random number from random number set with mean and default 

std. dev. 

          $final_val = $vy_param_means{$orig_model.':'.$param} + $qmc_val * 

$vy_param_means{$orig_model.':'.$param} / 

$Default_Std_Dev_Factor; 

        } else { # Scale random number from random number set with mean and specified 

std. dev. 

          $final_val = $vy_param_means{$orig_model.':'.$param} + $qmc_val * 

$vy_param_stddevs{$orig_model.':'.$param}; 

        } 

        $spice[$fet_linenum{$fetname}] =~ s/\s+$param\s*=\s*\S+/ $param=$final_val/i; 

      } 

    } 

    print QMC_SUM $final_val, ',', $qmc_val, ','; # Print the final value and QMC 

value of this variable:param or fetname:param pair to the 

QMC summary file 

  } 

 

  if( scalar (keys %sweep_vals) > 0 ) { # Values are swept, so generate netlists for 

each sweep combination 

    for( my $sweep_iter = 0; $sweep_iter < $sw_num_combos; $sweep_iter++ ) { 

      while((my $sw_name, my $sw_lst) = each %sweep_vals) { 

        my @sw_vals = split ' ', $sw_lst; 

        if( $sw_name !~ m/([\w.]+):(\w+)/i ) { 

          close VALUES unless defined $op_corners; 

          close QMC_SUM; 

          die 'Internal error: Cannot extract fetname:param from ', $sw_name; 



183 

 

        } 

        my $model = $1; 

        my $param = $2; 

        if( $model eq 'variable' ) { # Sweeps a .param variable 

          if( !exists $var_linenum{$param} ) { 

            close VALUES unless defined $op_corners; 

            close QMC_SUM; 

            die 'Internal error: line number missing for .param variable: ', $param; 

          } 

          $spice[$var_linenum{$param}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$sw_vals[$sweep_iter]/i; 

        } else { # This is a model:param being swept 

          if( !exists $model_inline_param{$sw_name} ) { # Normal fet parameter -- 

defined in .MODEL 

            # Note: model name for a fet parameter defined in .MODEL is renamed to be 

the same as fetname 

            if( !exists $model_linenum{$model} ) { 

              close VALUES unless defined $op_corners; 

              close QMC_SUM; 

              die 'Internal error: line number missing for model: ', $model; 

            } 

            $spice[$model_linenum{$model}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$sw_vals[$sweep_iter]/i; 

          } else { # Inline fet parameter 

            if( !exists $model_fets{$model} ) { 

              close VALUES unless defined $op_corners; 

              close QMC_SUM; 

              die 'Internal error: fetnames missing for model ', $model; 

            } 

            foreach my $fet_name (split ' ', $model_fets{$model}) { 

              if( !exists $fet_linenum{$fet_name} ) { 

                close VALUES unless defined $op_corners; 

                close QMC_SUM; 

                die 'Internal error: line number missing for fet: ', $fet_name; 

              } 

              $spice[$fet_linenum{$fet_name}] =~ s/\s+$param\s*=\s*\S+/ 

$param=$sw_vals[$sweep_iter]/i; 

            } 

          } 

        } 

      } 

 

      # Write varied netlist into the varied simulation directory 

      # Name is taken from the corner names if corner simulations are being generated 

      # else, the name is a numeral (the value of "copy_num") 

      my $deckfile_n = defined $op_corners ? 

$dirname.$sweep_titles[$sweep_iter].$Corner_Names[$copy_num

-1].$Fmt_Input : 

$dirname.$sweep_titles[$sweep_iter].$copy_num.$Fmt_Input; 

      open OUT, ">$deckfile_n" or die 'Error: Cannot open ', $deckfile_n, ' due to: ', 

$!; 

      print OUT @spice; 

      close OUT; 

    } 

  } else { # Not sweeping any values, so just print the varied netlist to file (once) 

    # Write varied netlist into the varied simulation directory 

    # Name is taken from the corner names if corner simulations are being generated 

    # else, the name is a numeral (the value of "copy_num") 

    my $deckfile_n = defined $op_corners ? $dirname.$Corner_Names[$copy_num-

1].$Fmt_Input : $dirname.$copy_num.$Fmt_Input; 

    open OUT, ">$deckfile_n" or die 'Error: Cannot open ', $deckfile_n, ' due to: ', 

$!; 

    print OUT @spice; 



184 

 

    close OUT; 

  } 

 

  goto LEXIT if $copy_num >= $sim_num; # Finished with netlist generation 

  goto LBEGIN if defined $op_corners; # Loop back to top if doing corner sims 

} 

 

LEXIT: print QMC_SUM "\n"; 

 

close QMC_SUM; 

 

if( !defined $op_corners ) { # Corner simulations did not use QMC, so no need to close 

pipe or error check 

  close VALUES; 

  die "Error: CMU QMC ($qmc_line) failed to generate values for Monte Carlo 

simulations (#sims may be too low)" unless $qmc_worked != 

0; 

} 

 

print 'Warning: File terminated prematurely, only ', $copy_num, " files created\n" if 

$copy_num < $sim_num; 

 

A.5 batchexec_ufdg.pl 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Version_Date = 'Sept. 11, 2012'; 

my $Script_Name = 'batchexec_ufdg.pl'; 

 

# Requires script: 

my $Run_Ufdg = 'run_ufdg.pl'; 

 

# Constants: 

my $Default_Run_Opts = 't'; 

my $Failures_Output_Prefix = 'fails_'; 

my $Failures_Output_Filetype = '.txt'; 

my $Netlist_Filetype = 'i'; 

my $Username = $ENV{USER} || $ENV{LOGNAME}; 

my $User_Email = defined $Username ? $Username.'@eecs.wsu.edu' : 'UNDEFINED'; 

 

# Signal (interrupt) handler for SIGUSR1 (#10): 

my $num_complete = 0; 

my $num_total = 0; 

my $last_finishtime = "None"; 

# Procedure: update_handler 

# Summary: 

#   Prints the current progress of the script 

sub update_handler { 

  print 'Update from ', $Script_Name, ': ', $num_complete, ' of ', $num_total, " 

simulations are complete\n", 

        'Last sim finished at ', $last_finishtime, "\n\n"; 

  $SIG{'USR1'} = \&update_handler; 

} 

$SIG{'USR1'} = \&update_handler; 

 

# Signal (interrupt) handler for SIGTERM (#15): 

my %children; 

# Procedure: clean_term_handler 



185 

 

# Summary: 

#   If the terminate signal is given, also kills each simulation child process 

sub clean_term_handler { 

  kill 'TERM', keys %children; 

  exit 128+15; 

} 

$SIG{'TERM'} = \&clean_term_handler; 

 

# Usage: 

my $Usage = ''. 

'Usage: '.$Script_Name."  [OPTIONS]  directory_name\n". 

"Options:\n". 

    "\t-0            Do not simulate the nominal netlist (0.i)\n". 

    "\t-b N          Begin batch simulations with the N'th netlist in the 

directory\n". 

    "\t-e N          End batch simulations with the N'th netlist in the directory\n". 

    "\t-l N          Limit the number of simulations to N; once N sims finish without 

failures, kill all other busy sims\n". 

    "\t-m            Send an email to \"".$User_Email."\" upon \"".$Script_Name."\" 

completion\n". 

    "\t-p N          At a maximum, only run N simulations in parallel (for process 

friendliness on a shared server)\n". 

    "\t-r run_opts   Use \"run_opts\" as the options for \"".$Run_Ufdg."\" [cmd will 

be: ".$Run_Ufdg." -run_opts]\n". 

    "\t                Note: By default, the -t option (no timer) is used.  The 

\"run_opts\" will be used instead\n". 

    "\t-s            Execute all netlists in subdirectories of \"directory_name\"\n". 

    "\t-x exec_name  Batch execute \"exec_name\" instead of \"".$Run_Ufdg."\"\n"; 

my $Min_Arg_Num = 1; 

 

# batchexec_ufdg.pl 

#  

# Created by Mike Turi 

# Washington State University 

# School of Electrical Engineering & Computer Science 

# High Performance Computer Systems (HiPerCopS) Group 

#  

# Note: Code is semi-tested; may fail under certain conditions 

#  

# This is a Perl script used to run a set of simulations from a 

# directory of netlists.  Often used in tandem with init_batch_ufdg.pl. 

#  

# Usage: Provide the directory name, and the netlists in the 

# directory will be simulated using UFDG.  The run_ufdg.pl script will 

# be used unless a different executable name is specified with the 

# -x option. 

print "**$Script_Name version date: $Version_Date**\n"; 

die $Usage if scalar @ARGV < 1; 

my $argnum = scalar @ARGV; 

die "Error: Not enough parameters\n\n$Usage" if $argnum < $Min_Arg_Num; 

 

my $start_time = localtime; 

my $calling_cmd_line = join ' ', $Script_Name, @ARGV; 

my $i = 0; 

my $arg = shift; 

my $op_rm0; 

my $op_begfile; 

my $op_endfile; 

my $op_sim_limit; 

my $op_email; 

my $op_max_parallel; 

my $run_opts = $Default_Run_Opts; 

my $op_subdirs; 



186 

 

my $exec_name; 

while( $arg =~ m/^-/ ) { 

  die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

 

    # Check single letter options first 

    if( $argmatch =~ m/0/i ) { 

      $op_rm0 = 1; # Do not simulate 0.i (if it exists) 

    } 

    if( $argmatch =~ m/m/i and defined $Username ) { 

      $op_email = 1; # Send an email upon script completion (if email address is 

defined) 

    } 

    if( $argmatch =~ m/s/i ) { # Execute netlists in subdirectories 

      $op_subdirs = 1; 

    } 

 

    # Check options which require another argument 

    if( $argmatch =~ m/b/i ) { # Begin batch simulations with netlist #N 

      $op_begfile = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

      $op_begfile--; # Change notation from 1..#files to 0..#files-1 

    } 

    if( $argmatch =~ m/e/i ) { # End batch simulations with netlist #N 

      $op_endfile = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

      $op_endfile--; # Change notation from 1..#files to 0..#files-1 

    } 

    if( $argmatch =~ m/l/i ) { # Use a limit of N sims 

      $op_sim_limit = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

    } 

    if( $argmatch =~ m/p/i ) { # Only run N sims in parallel 

      $op_max_parallel = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

    } 

    if( $argmatch =~ m/r/i ) { # Use the run_opts as the options for run_ufdg.pl 

      $run_opts = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

    } 

    if( $argmatch =~ m/x/i ) { # Batch execute "exec_name" 

      $exec_name = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

    } 

  }  

  $arg = shift; 

} 

my $deck_dir = $arg; 

if( $deck_dir !~ m/\/$/ ) { $deck_dir .= '/'; } # Add the trailing slash if it doesn't 

exist 

 

$exec_name = $Run_Ufdg.' -'.$run_opts unless defined $exec_name; 

 

die 'Error: Cannot find directory "', $deck_dir, '"' unless -d $deck_dir; 

opendir D, $deck_dir; 

# Get a list of all spice input files (.i files) from the deck directory 

#   Note: If traversing subdirectories, then @files will have entire paths, else, 

@files only contain the basenames 

#         This is done so numerical sorting is possible if simulating within the top 

directory 



187 

 

my @files_with_suffix = defined $op_subdirs ? `find $deck_dir -name 

\\*\\.$Netlist_Filetype` : grep /\.$Netlist_Filetype$/i, 

readdir D; 

closedir D; 

# Remove the ".i" suffix from the end of each file (with map and substr) 

my @files = map { substr $_, 0, (rindex $_, '.') } @files_with_suffix; 

# If files have character names, then sort alphabetically, else, sort numerical names 

numerically 

@files = (join '', @files) =~ m/[a-z]/i ? sort @files : sort { $a <=> $b} @files; 

 

if( defined $op_rm0 ) { # Ignore the nominal netlist (0.i) when simulating a directory 

  if( defined $op_subdirs ) { 

    my $deckname0 = $deck_dir.'0'; 

    @files = grep !/^$deckname0$/, @files; # Subdirs are traversed, so must remove 

main directory's 0.i from list of files 

  } else { 

    @files = grep !/^0$/, @files; # No subdirs traversed, so can just remove "0" from 

list of files 

  } 

} 

 

my $op_begfile_print; 

my $op_endfile_print; 

if( defined $op_begfile and defined $op_endfile ) { # Use defined beginning/ending 

boundaries from user if defined 

  $op_begfile = 0 unless $op_begfile >= 0 and $op_begfile < scalar @files; 

  $op_endfile = (scalar @files)-1 unless $op_endfile >= 0 and $op_endfile < scalar 

@files and $op_endfile >= $op_begfile; 

  $op_begfile_print = ($op_begfile+1).' 

('.$files[$op_begfile].'.'.$Netlist_Filetype.')'; 

  $op_endfile_print = ($op_endfile+1).' 

('.$files[$op_endfile].'.'.$Netlist_Filetype.')'; 

  @files = @files[$op_begfile..$op_endfile]; 

} elsif( defined $op_begfile ) { 

  $op_begfile = 0 unless $op_begfile >= 0 and $op_begfile < scalar @files; 

  $op_begfile_print = ($op_begfile+1).' 

('.$files[$op_begfile].'.'.$Netlist_Filetype.')'; 

  $op_endfile_print = 'END ('.$files[-1].'.'.$Netlist_Filetype.')'; 

  @files = @files[$op_begfile..(scalar @files)-1]; 

} elsif( defined $op_endfile ) { 

  $op_endfile = (scalar @files)-1 unless $op_endfile >= 0 and $op_endfile < scalar 

@files; 

  $op_begfile_print = 'BEGIN ('.$files[0].'.'.$Netlist_Filetype.')'; 

  $op_endfile_print = ($op_endfile+1).' 

('.$files[$op_endfile].'.'.$Netlist_Filetype.')'; 

  @files = @files[0..$op_endfile]; 

} 

 

$num_total = scalar @files; 

die 'Error: No spice netlists found in directory "', $deck_dir, '"' unless $num_total 

> 0; 

 

if( defined $op_begfile or defined $op_endfile ) { 

  print 'Files ', $op_begfile_print, ' through ', $op_endfile_print, " will be 

simulated\n"; 

  sleep 2; 

} 

 

my $child_pid; 

my $pid; 

my $cur_parallel = 0; 

my $retval; 

my @failures; 



188 

 

foreach (@files) { 

  if( !(defined $op_max_parallel) or $cur_parallel < $op_max_parallel ) { # Spawn more 

child simulations 

    $child_pid = fork(); 

    die "Error: Fork in $Script_Name failed" unless defined $child_pid; 

    # Keep track of the children pid numbers (hash value is filename, which is 

reported if simulation failure occurs) 

    $children{$child_pid} = $_; 

    $cur_parallel++; 

    if( !$child_pid ) { # The child executes the executable (by default: run_ufdg.pl) 

      my $full_deck_path = defined $op_subdirs ? $_ : $deck_dir.$_; 

      exec "$exec_name $full_deck_path" or die "Error: Couldn't exec \"$exec_name 

$full_deck_path\""; 

    } 

  } else { # Must wait for a child simulation to finish before starting any more 

    do { 

      $pid = wait(); 

    } while( !exists $children{$pid} ); 

    $retval = $? >> 8; 

    if( $retval != 0 ) { # This child simulation died due to an error 

      push @failures, $children{$pid}; 

    } 

    delete $children{$pid}; 

    $cur_parallel--; 

    $num_complete++; 

    $last_finishtime = `date`; 

    if( defined $op_sim_limit and $num_complete >= ($op_sim_limit+(scalar @failures)) 

) { # Limit has been reached, end all other simulations 

      kill 'TERM', keys %children; 

      $cur_parallel = 0; # All children should be dead (do not want to enter the while 

loop below) 

      last; 

    } 

    redo; 

  } 

} 

 

while( $cur_parallel > 0 ) { # Wait if child simulations are still running 

  do { 

    $pid = wait(); 

  } while( !exists $children{$pid} ); 

  $retval = $? >> 8; 

  if( $retval != 0 ) { # This child simulation died due to an error 

    push @failures, $children{$pid}; 

  } 

  delete $children{$pid}; 

  $cur_parallel--; 

  $num_complete++; 

  $last_finishtime = `date`; 

  if( defined $op_sim_limit and $num_complete >= ($op_sim_limit+(scalar @failures)) ) 

{ # Limit has been reached, end all other simulations 

    kill 'TERM', keys %children; 

    last; 

  } 

} 

 

if( scalar @failures > 0 ) { # Some simulation failures occurred, record this 

  my @deck_basename = split /\//, $deck_dir; # The directory name (basename of the 

pathname) is at the end of the array 

  my $failures_outfile = $Failures_Output_Prefix.$deck_basename[-

1].$Failures_Output_Filetype; 

  open OUT, ">$failures_outfile" or die 'Error: Cannot open ', $failures_outfile, ' 

due to: ', $!; 



189 

 

  my $failure_list = join "\n", @failures; 

  print OUT "$failure_list\n"; 

  close OUT; 

} 

 

if( defined $op_email ) { 

  open MAIL, "|/usr/sbin/sendmail -t"; 

  print MAIL 'To: ', $User_Email, "\n"; 

  print MAIL 'From: ', $User_Email, "\n"; 

  print MAIL 'Subject: ', $Script_Name, ' finished (', $calling_cmd_line, ' from ', 

$start_time, '); ', $num_complete, ' sims complete; ', 

scalar @failures, " sims failed\n\n"; 

  close MAIL; 

} 

 

A.6 meas_ezwave.pl 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Script_Name = 'meas_ezwave.pl'; 

my $Version_Date = 'Apr. 24, 2012'; 

 

# Constants: 

my $Default_Fmt_Ezwave = '.csv'; 

my $Meas_Sum_Prefix = 'msum_'; 

my $Meas_Sum_Filetype = '.csv'; 

my $Stat_Sum_Prefix = 'msum_'; 

my $Stat_Sum_Filetype = '.txt'; 

 

my $Works_Keyword = 'works'; 

my $Flag_Keyword = 'flag'; 

my $Filename_Keyword = 'filename'; 

 

# Usage: 

my $Usage = ''. 

"Usage: $Script_Name  deckname_OR_directory_name  tcl_script_name\n". 

"Options:\n". 

    "\t-0      Ignore the nominal simulation (e.g. 0.csv) when computing overall 

statistics\n". 

    "\t-b N    Begin batch simulations with the N'th netlist in the directory\n". 

    "\t-e N    End batch simulations with the N'th netlist in the directory\n". 

    "\t-f fmt  Use another file format \"fmt\" (e.g. \"sti\") for input to EZWave\n". 

    "\t-l N    Use a limit of the first N results for statistics (also omit failed 

sims from the results used)\n". 

    "\t-r      Randomize the simulation results (useful if using a limit of the 

results for statistics)\n". 

    "\t-s      Measure all netlists in subdirectories of \"directory_name\"\n"; 

my $Min_Arg_Num = 2; 

 

# Procedure: sum 

# Summary: 

#   Computes the sum for a passed array 

# Parameter: An array of numbers to sum 

sub sum { 

  my $s = 0; 

  foreach (@_) { 

    $s += $_; 

  } 



190 

 

  return $s 

} 

 

# Procedure: mean 

# Summary: 

#  Computes the mean (average) for a passed array 

# Parameter: An array of numbers to be averaged 

sub mean { 

  return (sum @_)/(scalar @_); 

} 

 

# Procedure: std 

# Summary: 

#   Computes the standard deviation for a passed array 

# Parameter: An array of numbers to be used in finding the standard deviation 

sub std { 

  my $sq_err = 0; 

  my $ave = mean @_; 

  foreach (@_) { 

    $sq_err += ($_ - $ave)**2; 

  } 

  return sqrt ($sq_err/((scalar @_)-1)); 

} 

 

# meas_ezwave.pl 

# Created by Mike Turi 

# WSU EECS: HiPerCopS 

# Note: Code is semi-tested; may fail under certain conditions 

#  

# This is a Perl script used to work with a TCL script to gather measurement data from 

# Mentor Graphics EZWave.  The script expects the TCL script to use STDIN for a 

# carriage returned list of pathnames (to .csv/.sti files) to measure (only one 

pathname 

# if only measuring one file).  The script expects the TCL script to use STDOUT in the 

# following way: first line to STDOUT contains a pipe "|" delimited string of the 

# measurement names/titles, the second line to STDOUT contains a pipe "|" delimited 

# string of measurement data values (1st value on the line corresponds to the 1st 

# measurment name, 2nd value corresponds to the 2nd measurment name, etc.), and 

# additional lines (3rd and on) to STDOUT contain pipe "|" delimited strings of 

# measurement data values for additional pathnames (in order the pathnames were 

# given to the TCL script).  If taking measurments for one file, two lines of STDOUT 

# are generated, the measurement names and the measurement data values.  If taking 

# measurements for N files, N+1 lines of STDOUT are generated, the measurement names 

# and N lines of measurement data values. 

#  

# Usage: Provide the filename (without the .xxx suffix--e.g. .csv or .sti) or a 

# directory name, and the name of the TCL script to run. 

 

print "**$Script_Name version date: $Version_Date**\n"; 

die $Usage if scalar @ARGV < 1; 

my $argnum = scalar @ARGV; 

die "Error: Not enough parameters\n\n$Usage" if $argnum < $Min_Arg_Num; 

 

my $i = 0; 

my $arg = shift; 

my $op_rm0; 

my $op_begfile; 

my $op_endfile; 

my $op_limit; 

my $op_rand; 

my $op_subdirs; 

my $fmt_ezwave = $Default_Fmt_Ezwave; 

while( $arg =~ m/^-/ ) { 



191 

 

  die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

 

    # Check single letter options first 

    if( $argmatch =~ m/0/i ) { 

      $op_rm0 = 1; # Ignore 0.csv or 0.sti (if it exists) when computing overall 

statistics 

    } 

    if( $argmatch =~ m/r/i ) { # Randomize the order of the sim results 

      $op_rand = 1; 

    } 

    if( $argmatch =~ m/s/i ) { # Measure netlists in subdirectories 

      $op_subdirs = 1; 

    } 

 

    # Check options which require another argument 

    if( $argmatch =~ m/b/i ) { # Begin measurements with simulation #N 

      $op_begfile = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

      $op_begfile--; # Change notation from 1..#files to 0..#files-1 

    } 

    if( $argmatch =~ m/e/i ) { # End measurements with simulation #N 

      $op_endfile = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

      $op_endfile--; # Change notation from 1..#files to 0..#files-1 

    } 

    if( $argmatch =~ m/f/i ) { # Use another file format "fmt" instead 

      $fmt_ezwave = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

      $fmt_ezwave = '.'.$fmt_ezwave unless $fmt_ezwave =~ m/^\./; 

    } 

    if( $argmatch =~ m/l/i ) { # Use a limit of N for including simulation results in 

statistics 

      $op_limit = shift; 

      die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

    } 

  } 

  $arg = shift; 

} 

 

my $deckname = $arg; 

my $tcl_name = shift; 

die 'Error: Cannot find tcl script "', $tcl_name, '"' unless -e $tcl_name; 

 

my @files; 

if( -d $deckname ) { # $deckname is actually the name of a directory with simulations 

  if( $deckname !~ m/\/$/ ) { $deckname .= '/'; } # Add the trailing slash if it 

doesn't exist 

  opendir D, $deckname; 

  # Get a list of all converted spice output files (e.g. .csv files) from the deck 

directory (grep /(.csv)$/i, readdir D) 

  #   Note: If traversing subdirectories, then @files will have entire paths, else, 

@files only contain the basenames 

  #         This is done so numerical sorting is possible if simulating within the top 

directory 

  my @files_with_suffix = defined $op_subdirs ? `find $deckname -name \\*$fmt_ezwave` 

: grep /($fmt_ezwave)$/i, readdir D; 

  closedir D; 

  # Remove the ".csv" or ".sti" from the end of each file (with map and substr) 

  @files = map { substr $_, 0, (rindex $_, '.') } @files_with_suffix; 

  # If files have character names, then sort alphabetically, else, sort numerical 

names numerically 



192 

 

  @files = (join '', @files) =~ m/[a-z]/i ? sort @files : sort { $a <=> $b} @files; 

 

  if( defined $op_rm0 ) { # Ignore the nominal simulation (0.csv or 0.sti) when 

simulating a directory 

    if( defined $op_subdirs ) { 

      my $deckname0 = $deckname.'0'; 

      @files = grep !/^$deckname0$/, @files; # Subdirs are traversed, so must remove 

main directory's 0.csv/0.sti from list of files 

    } else { 

      @files = grep !/^0$/, @files; # No subdirs traversed, so can just remove "0" 

from list of files 

    } 

  } 

 

  my $op_begfile_print; 

  my $op_endfile_print; 

  if( defined $op_begfile and defined $op_endfile ) { # Use defined beginning/ending 

boundaries from user if defined 

    $op_begfile = 0 unless $op_begfile >= 0 and $op_begfile < scalar @files; 

    $op_endfile = (scalar @files)-1 unless $op_endfile >= 0 and $op_endfile < scalar 

@files and $op_endfile >= $op_begfile; 

    $op_begfile_print = ($op_begfile+1).' ('.$files[$op_begfile].$fmt_ezwave.')'; 

    $op_endfile_print = ($op_endfile+1).' ('.$files[$op_endfile].$fmt_ezwave.')'; 

    @files = @files[$op_begfile..$op_endfile]; 

  } elsif( defined $op_begfile ) { 

    $op_begfile = 0 unless $op_begfile >= 0 and $op_begfile < scalar @files; 

    $op_begfile_print = ($op_begfile+1).' ('.$files[$op_begfile].$fmt_ezwave.')'; 

    $op_endfile_print = 'END ('.$files[-1].$fmt_ezwave.')'; 

    @files = @files[$op_begfile..(scalar @files)-1]; 

  } elsif( defined $op_endfile ) { 

    $op_endfile = (scalar @files)-1 unless $op_endfile >= 0 and $op_endfile < scalar 

@files; 

    $op_begfile_print = 'BEGIN ('.$files[0].$fmt_ezwave.')'; 

    $op_endfile_print = ($op_endfile+1).' ('.$files[$op_endfile].$fmt_ezwave.')'; 

    @files = @files[0..$op_endfile]; 

  } 

 

  die 'Error: No ', $fmt_ezwave, ' files found in directory "', $deckname, '"' unless 

scalar @files > 0; 

 

  if( defined $op_begfile or defined $op_endfile ) { 

    print 'Files ', $op_begfile_print, ' through ', $op_endfile_print, " will be 

measured\n"; 

    sleep 2; 

  } 

 

  if( !defined $op_subdirs ) { # Using the "find" command for subdirectories already 

includes directory names in the pathname 

    my $tmp = join '|', @files;  # Ugly way to add directory names prior to the 

filenames (assumes pipe "|" isn't in the file name) 

    $tmp =~ s/\|/\|$deckname/g; 

    $tmp = $deckname.$tmp; 

    @files = split /\|/, $tmp; 

  } 

} elsif( -r $deckname.$fmt_ezwave ) { # $deckname is the name of one netlist's .csv or 

.sti file 

  push @files, $deckname; 

} else { 

  die 'Error: Cannot find directory "', $deckname, '" or read from "', $deckname, 

$fmt_ezwave, '"'; 

} 

 

my $echo_names = join "\n", @files; 



193 

 

open EZWAVE, "echo \"$echo_names\" | run_wdb_server -do $tcl_name |" or die 'Error: 

Cannot run EZWave with ', $tcl_name; 

 

my $data_names_str = <EZWAVE>; # Measurement names are on the first line of TCL 

output, data values are on subsequent lines 

my @data_names = split /[,\n]/, $data_names_str; 

my @tcl_data = <EZWAVE>; 

close EZWAVE; 

 

# Determine the indicies of each "special" measurement 

my $works_index = -1; 

my $flag_index = -1; 

my $filename_index = -1; 

for( $i = 0; $i < scalar @data_names; $i++ ) { 

  if( $data_names[$i] eq $Works_Keyword ) { 

    $works_index = $i; 

  } elsif( $data_names[$i] eq $Flag_Keyword ) { 

    $flag_index = $i; 

  } elsif( $data_names[$i] eq $Filename_Keyword ) { 

    $filename_index = $i; 

  } 

} 

 

my @size_errors; # Error in size; either (data_lines != #_of_files --or-- 

#_of_measurements_in_a_line != #_of_measurement_names) 

my @works_errors; # Errors from "works" variable in TCL measurement 

my @flag_warnings; # Warnings from "flag" variable in TCL measurement 

 

if( scalar @tcl_data != scalar @files ) { # Too few lines of data for number of lines 

simulated 

  die 'Error: Failure in EZWave, not all data gathered (', scalar @tcl_data, ' lines 

of data for ', scalar @files, " files)" unless @files > 1; 

  push @size_errors, 'Error: Failure in EZWave, not all data gathered ('.scalar 

@tcl_data.' lines of data for '.scalar @files." files)"; 

} 

 

if( defined $op_rand ) { # Randomize the order of the sim results 

  for( $i = 0; $i < scalar @tcl_data; $i++ ) { 

    my $j = rand scalar @tcl_data; 

    @tcl_data[$i, $j] = @tcl_data[$j, $i]; 

  } 

} 

 

for( $i = 0; $i < scalar @tcl_data; $i++ ) { 

  my @file_data = split /[,\n]/, $tcl_data[$i]; # All measurements for one file, now 

as an array 

  my $this_name = $filename_index >= 0 ? $file_data[$filename_index] : '#'.$i; # This 

file's name 

  my $limit = scalar @data_names; # How many pieces of measurement data this file has 

(assume all pieces of data for now) 

 

  if( scalar @file_data != scalar @data_names ) { # Too few measurements in this line 

for number of measurements expected (# of measurement 

names) 

    push @size_errors, 'Error for file "'.$this_name.'": Has '.scalar @file_data.' 

data measurements (Expected '.scalar @data_names.')'; 

    if( scalar @file_data < scalar @data_names ) { 

      chomp $tcl_data[$i]; 

      $tcl_data[$i] .= ",size mismatch error\n"; # Place error in first missing 

measurement (causes this file to be ignored in overall 

stats and shows up in .csv file) 

      $limit = scalar @file_data; # This file has fewer pieces of data, so change for-

loop limit accordingly 



194 

 

    } 

  } 

 

  for( my $j = 0; $j < $limit; $j++ ) { # Print the measurment name and value to 

stdout 

    print $data_names[$j], ': ', $file_data[$j], "\n"; 

  } 

 

  # Capture (for later printing) the 'works' TCL error and 'flag' TCL warning if they 

exist, are contained in this file's data, and are non-zero 

  if( $works_index >= 0 and $works_index < $limit and ($file_data[$works_index] =~ 

m/error/i or $file_data[$works_index] != 0) ) { 

    push @works_errors, 'Error for file "'.$this_name.'": Works is non-zero 

('.$file_data[$works_index].')'; 

  } 

  if( $flag_index  >= 0 and $flag_index  < $limit and $file_data[$flag_index]  != 0 ) 

{ 

    push @flag_warnings, 'Warning for file "'.$this_name.'": Flag is non-zero 

('.$file_data[$flag_index].')'; 

  } 

} 

 

if( scalar @files > 1 ) { 

  my @deck_basename = split /\//, $deckname; # The directory name (basename of the 

pathname) is at the end of the array 

  open MEAS_SUM, ">$Meas_Sum_Prefix$deck_basename[-1]$Meas_Sum_Filetype" 

       or die "Error: Cannot create $Meas_Sum_Prefix$deck_basename[-

1]$Meas_Sum_Filetype for output due to ", $!; 

 

  # Print the first row to the .csv file (sim_name and the names of all measurements) 

  print MEAS_SUM $data_names_str; 

 

  # Print the row of measurements for each simulation 

  foreach (@tcl_data) { 

    print MEAS_SUM; 

  } 

  print MEAS_SUM "\n"; 

  close MEAS_SUM; 

 

  open STAT_SUM, ">$Stat_Sum_Prefix$deck_basename[-1]$Stat_Sum_Filetype" 

       or die "Error: Cannot open $Stat_Sum_Prefix$deck_basename[-1]$Stat_Sum_Filetype 

due to: ", $!; 

 

  # Removing failed simulations from the overall statistics 

  for( $i = 0; $i < scalar @tcl_data; $i++ ) { 

    if( $tcl_data[$i] =~ m/error/i ) { 

 

      my @file_data = split /[,\n]/, $tcl_data[$i]; # Let's pinpoint where the error 

occurred 

      my $this_name = $filename_index >= 0 ? $file_data[$filename_index] : '#'.$i; # 

This file's name 

      for( my $j = 0; $j < scalar @file_data; $j++ ) { 

        if( $file_data[$j] =~ m/error/i ) { 

          print 'Error for file "', $this_name, '": Measurement "', $data_names[$j], 

"\" failed\n"; 

          print STAT_SUM 'Error for file "', $this_name, '": Measurement "', 

$data_names[$j], "\" failed\n"; 

        } 

      } 

 

      splice @tcl_data, $i, 1; # Remove the failed simulation ($i now indexes the next 

simulation 

      $i--; # Compensate for the for-loop incrementing $i on the next pass 



195 

 

    } 

  } 

  my $complete_sims = $i; # Also == scalar @tcl_data 

  print "\n"; 

 

  my $count; 

  if( $complete_sims < 2 ) { 

    print STAT_SUM "Skipping statistical summary (too few simulations successfully 

completed without errors)\n"; 

    print "Skipping statistical summary (too few simulations successfully completed 

without errors)\n"; 

  } else { 

    # Print the means and standard deviations for each measurement to a summary file 

    my $m; 

    my $s; 

    for( $i = 0; $i < scalar @data_names; $i++ ) { # Not using a foreach since $i is 

used to find correct data in @tcl_data 

 

      next if $data_names[$i] eq $Works_Keyword; # Don't do mean & std. dev. for works 

entry 

      next if $data_names[$i] eq $Flag_Keyword; # Don't do mean & std. dev. for flag 

entry 

      next if $data_names[$i] eq $Filename_Keyword; # Don't do mean & std. dev. for 

filename entry 

      my @meas_data; 

      $count = 0; 

      foreach (@tcl_data) { 

        if( defined $op_limit and ++$count > $op_limit ) { last; } 

        my @file_data = split /[,\n]/; 

        push @meas_data, $file_data[$i]; # @meas_data contains all data for a given 

measurement 

      } 

      $m = mean @meas_data; 

      $s = std @meas_data; 

      print STAT_SUM $data_names[$i], ":\nmean and stddev:\n", $m, "\n", $s, "\n"; 

      print $data_names[$i], ":\nmean and stddev:\n", $m, "\n", $s, "\n"; 

    } 

  } 

 

  print STAT_SUM $complete_sims, " simulations completed without errors\n"; 

  print $complete_sims, " simulations completed without errors\n"; 

  print STAT_SUM 'Statistics computed for ', $count-1, " simulations\n"; 

  print 'Statistics computed for ', $count-1, " simulations\n"; 

 

  foreach (@size_errors, @works_errors, @flag_warnings) { # Now print all of the 

errors and warnings 

    print STAT_SUM $_, "\n"; 

    print $_, "\n"; 

  } 

 

  close STAT_SUM; 

 

} else { 

  # Only one file was simulated, print the data values again for easy copy-paste, then 

print errors or warnings 

  print "\n"; 

  my @file_data = split /[,\n]/, $tcl_data[0]; # All measurements for one file, now as 

an array 

  foreach (@file_data) { 

    print $_, "\n"; 

  } 

  print "\n"; 

 



196 

 

  foreach (@size_errors, @works_errors, @flag_warnings) { # Now print all of the 

errors and warnings 

    print $_, "\n"; 

  } 

} 

 

A.7 meas_stub.tcl 

# meas_stub.tcl 

set Scriptname "meas_stub.tcl" 

set Version_Date "Jun. 1, 2012" 

 

puts stderr "**$Scriptname version date: $Version_Date**\n" 

 

# Expect pathname(s) of deck(s) from stdin (usually by "echo deckpath |") 

# Carriage returned list of pathnames for more than one: path1\npath2\npath3... 

set deckpath [list] 

set deckname [list] 

 

while { [eof stdin] != 1 } { 

  set x [gets stdin] 

 

  if { [regexp "^\W*$" $x] } { # If there is a blank line, assume end of stdin 

    break 

  } 

 

  lappend deckpath $x 

  lappend deckname [lindex [split $x "/"] end] 

} 

 

# Measurement Settings: 

# --------------------- 

# Trigger when Read causes Bit/Nbit discharge to X volts 

set RD_LOW_TRIG 0.5 

set ANOTHER_MEAS_TRIG 0.9 

set meas_setting_names [list "rd_low_trig" "another_trig"] 

set meas_setting_values [list $RD_LOW_TRIG $ANOTHER_MEAS_TRIG] 

 

# Constants: 

# ---------- 

# 1/2 Risetime (RT) or Falltime (FT) 

set HALF_RTFT 1e-12 

set NET_B "bit" 

set V_CELL "vddcell" 

set V_SRC "vdd" 

 

# Netlist Variables 

set VAR_SIMLEN "vsimlen" 

set VAR_ARRAY_SIZE "varray_size" 

set net_var_names [list "sim length" "array size"] 

 

# Loop Variables 

set name_count 0 

append name_print [join $meas_setting_names ","] ",filename,works" 

set data_lst [list] 

 

foreach path $deckpath name $deckname { 

 

  set dataout $meas_setting_values 

  set names $meas_setting_names 



197 

 

 

  lappend names "filename" 

  lappend dataout $path 

 

  if { [file isfile "$path.csv"] == 0 } { 

    puts stderr "Error ($Scriptname): File \"$path.csv\" not found" 

    lappend dataout "error - could not open" 

    lappend data_lst [join $dataout ","] 

    dataset close 

    continue 

  } 

 

  dataset open "$path.csv" 

  # ----------------------------------------------------------------- 

  # begin measurement section 

 

  # Example: Using a voltage source to pass a variable value to the TCL script 

  set simlen [wfc "yval(wf(\"<$name/TRAN>V($VAR_SIMLEN)\"), 0)"] 

  set array_size [wfc "yval(wf(\"<$name/TRAN>V($VAR_ARRAY_SIZE)\"), 0)"] 

  set net_var_values [list $simlen $array_size] 

 

  # Locations: 

  # ---------- 

  set LOC_RD0_BEG [expr 100e-12*$simlen+$HALF_RTFT] 

  set LOC_RD0_END [expr 155e-12*$simlen] 

 

  # For Errors - do some tests and set errors to a meaningful non-zero value for an 

error 

  set rd0_ok [wfc "yval(wf(\"<$name/TRAN>V($NET_B)\"), $LOC_RD0_END)"] 

 

  set works "" 

  if { $rd0_ok > $RD_LOW_TRIG } { 

    append works "Read0 Failed ($rd0_ok); " 

  } 

  lappend names "works" 

  if { $works ne "" } { 

    lappend dataout "error = $works" 

    lappend data_lst [join $dataout ","] 

    dataset close 

    continue 

  } else { 

    lappend dataout 0 

  } 

 

  # Suggested to add netlist variable names and values now after it has been verified 

that the simulation worked 

  set names [concat $names $net_var_names] 

  set dataout [concat $dataout $net_var_values] 

 

  # Example: Using yval to get a leakage value 

  set leakage [wfc "abs(yval(wf(\"<$name/TRAN>I($V_SRC)\"), $LOC_LK))"] 

  lappend names "leakage value" "double leakage" 

  lappend dataout $leakage 

  lappend dataout [expr {$leakage * 2}] 

   

  # Example: Using xval to get a delay 

  set rd_time [wfc "xval(wf(\"<$name/TRAN>V($NET_B)\"), $RD_LOW_TRIG, $LOC_RD0_BEG, 

$LOC_RD0_END) - $LOC_RD0_BEG"] 

  # Caution: There could be 0, 1, or multiple x-values for a given y-interval --> must 

check result before using 

  set testlen [llength $rd_time] 

  if { $testlen == 1 } { 

    # No error: one crossing found 



198 

 

    lappend dataout $rd_time 

  } elseif { $testlen < 1 } { 

    # An error code: no crossings found 

    lappend dataout "error $testlen" 

  } else { 

    # An error code: multiple crossings found 

    lappend dataout "error $testlen" 

  } 

  lappend names "rd_time" 

  # If $rd_time is used elsewhere in the script (e.g. see below) may want to abort the 

rest of the script for this file 

  if { $testlen != 1 } { 

    lappend data_lst [join $dataout ","] 

    # Important!  Must close dataset anytime "continue" is used, or else the same 

file's dataset will be used for all subsequent measurements 

in the foreach loop 

    dataset close 

    continue 

  } 

 

  # Example: Using avg to get an average current value 

  set ave_current [wfc "avg(abs(wf(\"<$name/TRAN>I($V_CELL)\")), $LOC_RD0_BEG, 

$LOC_RD0_BEG + $rd_time)"] 

  lappend names "rd cell current" 

  lappend dataout $ave_current 

 

  # For Warnings -- do some tests and set flag to a meaningful non-zero value for a 

warning 

  set flag "" 

  if { $ave_current > 10e-9 } { 

    append flag "Ave. Current ($ave_current)) > 10nA; " 

  } 

  lappend names "flag" 

  if { $flag eq "" } { 

    set flag 0 

  } 

  lappend dataout $flag 

 

  # end measurement section 

  # ----------------------------------------------------------------- 

  if { [llength $names] > $name_count } { 

    set name_count [llength $names] 

    set name_print [join $names ","] 

  } 

  lappend data_lst [join $dataout ","] 

  dataset close 

} 

 

puts $name_print 

foreach i $data_lst { 

  puts $i 

} 

 

exit 

 

  



199 

 

Appendix B  

FinFET and CMOS Address Decoders 

It is important to examine the power consumption of address decoders since this circuitry 

is always active in a memory sub-system.  The majority of memory cells are often inactive since 

usually only one word is accessed per clock cycle.  This in turn makes it very important to limit 

leakage power in memory cells.  However, address decoders must continuously drive word-lines 

in order to enable one word of memory cells and disable the rest in a memory array.  It is 

especially the case for smaller memories that a reduction in address decoder power consumption 

can significantly reduce the power of the overall memory sub-system. 

While there has been a significant amount of research performed to reduce the power 

consumption of memory cells and of the memory read operation, there has not been much 

research on optimization of address decoders for high-speed and low-power performance.  There 

has been some focus on optimally scaling decoders for larger memories by use of a pre-decoder 

[34].  Special gate-families, such as a half-swing pulse-mode gate family, can be used to design 

the pre-decoders to provide significant power savings when driving intermediate control signals 

to the local decoders [35]. 

Address decoders often function by precharging all word-lines and discharging all lines 

except for the addressed word-line.  Address decoders can also be made more selective by 

precharging fewer word-lines based on the address.  More selective decoders can save power by 

not needlessly charging and discharging all but the addressed word-line [36] [37].  Selective 

precharge has also been studied in other applications, such as to more-selectively precharge the 

match-lines in a content-addressable memory [38]. 



200 

 

B.1 FinFET NOR Decoder 

This work was originally presented in [39].  The NOR decoder uses one p-type transistor 

per word-line for precharging and several n-type transistors per word-line for discharging [22].  

Figure B.1 shows the schematic of the NOR decoder in bulk-CMOS.  In this figure, the variable 

n represents the number of address bits and the variable m indicates the number of address 

locations.  This decoder precharges all of the word-lines and discharges all lines except for the 

addressed word-line. 

pre pre·An-2

pre·An-2

pre·A1

pre·A1

d0

dm-1

...

pre·A0

pre·A0pre·An-1

pre·An-1

...

... TpdTpdTpdTpd

Tpcg

1

1 1 1 1

 

Figure B.1.  The schematic of the conventional NOR decoder [22] 

 

In addition to the decoder circuitry, the transistors that provide the decoder’s 

functionality by charging and discharging the word-lines, the NOR decoder also requires 

peripheral circuitry.  The peripheral circuitry includes the inverters and logic gates that generate 

the signals required to control the decoder circuitry; the NOR decoder requires an inverter for the 

precharge signal to the Tpcg transistors as well as eight NOR gates that control the Tpd transistors 

to eliminate short-circuit currents when precharging so power is greatly reduced.  The peripheral 

circuitry consumes less than a third of the power of the NOR decoder [36].  It should be pointed 



201 

 

out that the peripheral circuitry will also consume power depending on the address transition and 

the amount of circuitry used. 

Table B.1 and Figure B.2 present six different FinFET-based design schemes of the NOR 

decoder.  These design schemes differ in the front and back gates either being shorted or 

independent and differ in terms of the input-signal swing.  All schemes are minimally-sized (one 

fin per p-type FinFET and one fin per n-type FinFET), except for the 2X-LP scheme (two fins 

per p- and n-type FinFET), and have equally-sized p- and n-type FinFETs.  Back-gate biases for 

the LP schemes and high input swing for the SG schemes can be statically driven by a voltage 

generator circuit [8]. 

Table B.1.  FinFET-based NOR decoder design schemes 

 

 

VP-front-gate

dx

... TpdTpd

Tpcg

VP-back-gate

VN-front-gate

VN-back-gate

VN-front-gate

VN-back-gate

Vhigh

Vlow

 

Figure B.2.  A word-line of a generic FinFET NOR decoder scheme 

Scheme Type 
Inputs to Gate 

Input Swing 
Front Back 

Shorted-Gate (SG) 
p prechg tied 0   VDD 

n Ai tied 0  VDD 

Low-Power (LP) 
(min-LP & 2X-LP) 

p prechg Vhigh 0  VDD 

n Ai Vlow 0  VDD 

SG-High Pchg/Adr 

Swing 

p prechg tied 0  Vhigh 

n Ai tied Vlow  VDD 

SG-High Pchg Swing 
p prechg tied 0  Vhigh 

n Ai tied 0  VDD 

SG-High Adr Swing 
p prechg tied 0  VDD 

n Ai tied Vlow  VDD 

SG-Max Input Swing 
p prechg tied Vlow  Vhigh 

n Ai tied Vlow  Vhigh 

 



202 

 

B.1.1 Simulation Setup 

For this study, Spice3-UFDG (Linux version 3.7) was used to model n- and p-type 

FinFETs.  Spice3-UFDG is a physics-based model which is calibrated to follow predicted results 

from Synopsys MEDICI and measured results from symmetrical double-gate FinFETs fabricated 

at Motorola [9] [10].  Table B.2 highlights the chosen parameter values for this research. 

 

Table B.2.  FinFET device parameters for NOR address decoders 

 

 

In simulations we used a 100 ps (10 GHz) period for the precharge signal so as the 

decoder is active, practically all current consumption is dynamic and little due to leakage.  Table 

B.3 presents the performance results for the schemes.  These results are divided into two 

categories:  dynamic and static/inactive performance. 

Parameter Value

N-Channel Surface Orientation <110>

Gate length (LG) 13 nm

Gate to source/drain 2.4 nm (n-type)

underlap (LSD) 3.2 nm (p-type)

Fin height (Hfin) 30 nm

Fin thickness (TSI) 7 nm

Oxide thickness (Tox) 1 nm

Gate thickness (TG) 50 nm

4.47 eV (n-type)

4.75 eV (p-type)

565 cm
2
/V-s (n-type)

250 cm
2
/V-s (p-type)

Fin body doping (NBody) 10
15

 cm
-3

Source/drain doping (NDS) 10
20

 cm
-3

Source/drain resistance (RSD) 170 Ω-µm

Supply voltage (VDD) 1 V

Gate work function (ΦG)

Low-field mobility for

thick TSI (µ0)



203 

 

Table B.3.  The performance of the NOR decoder design schemes 

 

 

B.1.2 Dynamic Performance: Delay and Current 

The reported worst-case precharge delay usually occurs when the word-line is precharged 

and all four Tpd transistors were previously active.  The worst-case discharge delay usually 

occurs when only one Tpd transistor discharges the word-line.  For all schemes, the maximum 

delay is the precharge delay since p-type FinFETs have lower current drive than n-type FinFETs.  

The schemes’ delays are compared to the min-LP scheme.  Percentage is calculated as: 

100 × (Scheme_delay − minLP_delay) / minLP_delay 

The LP schemes are the most affected by the reverse bias as the precharge delays 

increase by 40% for the min-LP scheme and by 25% for the 2X-LP scheme with a reverse-bias 

increase from 0.2 V to 0.4 V.  The other schemes have smaller increases in delay due to high 

input swing except for the SG (which does not use reverse bias) and SG-Maximum Input Swing 

(that has a small decrease in delay) schemes which also provide the shortest delays. 

The minimum, maximum, and average dynamic current consumption are presented for 

one word-line and the average dynamic current consumption is presented for all sixteen word-

lines of the 4-to-16 decoder.  A word-line consumes minimum current when it is discharged from 

Scheme 
 

Parameter 

Shorted-Gate 
(SG) 

min-LP 
(min-sized) 

2X-LP 
(2xp & 2xn) 

SG-High 
Pchg/Adr Swing 

SG-High Pchg 
Swing 

SG-High Adr 
Swing 

SG-Max Input 
Swing 

0.2V 0.4V 0.2V 0.4V 0.2V 0.4V 0.2V 0.4V 0.2V 0.4V 0.2V 0.4V 0.2V 0.4V 

Idyn 

(A) 

1 Decode-
Line 

Min 0.26 0.26 0.12 0.10 0.24 0.22 0.31 0.34 0.31 0.34 0.30 0.32 0.37 0.48 

Max 3.42 3.42 2.87 2.90 3.56 3.53 3.38 3.31 3.36 3.33 3.42 3.43 3.51 3.87 

Ave 2.91 2.91 2.66 2.66 3.32 3.28 2.97 3.02 2.95 2.97 2.97 2.96 3.17 3.33 

16 Decode-
Lines 

Ave 46.64 46.64 42.50 42.48 53.08 52.50 47.48 48.36 47.14 47.54 47.45 47.36 50.74 53.27 

Comp% 9.73 9.78 -- -- 24.90 23.58 11.70 13.83 10.92 11.91 11.64 11.48 19.37 25.39 

    Ilkg (pA) 
16 Decode-Lines 

Ave 198.09 198.09 5.71 0.25 11.41 0.51 0.40 0.0008 0.40 0.0008 198.09 198.09 0.40 0.0017 

Comp% 3371 77611 -- -- 100.00 99.98 -92.96 -99.69 -92.96 -99.69 3371 77611 -92.95 -99.32 

Precharge Delay (ps) 
Max 4.04 4.04 8.71 12.28 6.22 7.83 4.55 4.97 4.52 4.93 4.05 4.07 3.51 3.08 

Comp% -53.59 -67.08 -- -- -28.61 -36.26 -47.74 -59.55 -48.14 -59.86 -53.56 -66.88 -59.75 -74.92 

Discharge Delay (ps) 
Max 2.67 2.67 6.87 8.83 5.16 6.13 2.69 2.49 2.48 1.93 2.98 2.97 2.43 2.23 

Comp% -61.07 -69.72 -- -- -24.88 -30.59 -60.83 -71.84 -63.95 -78.16 -56.66 -66.33 -64.54 -74.75 

16 Dec-Lines  Idyn*Max 

Delay (A*ps) [10-16] 

Ave 1.89 1.89 3.70 5.22 3.30 4.11 2.16 2.40 2.13 2.34 1.92 1.93 1.78 1.64 

Comp% -49.07 -63.86 -- -- -10.83 -21.23 -41.62 -53.96 -42.48 -55.08 -48.16 -63.07 -51.95 -68.55 

16 Dec-Lines  Ilkg*Max 
Delay (pA*ps) [10-24] 

Ave 801.12 801.12 49.72 3.13 70.99 3.99 1.83 0.00 1.81 0.00 801.58 806.03 1.41 0.01 

Comp% 1511. 25484 -- -- 42.78 27.47 -96.32 -99.88 -96.35 -99.88 1512 25641 -97.16 -99.83 

 



204 

 

being previously selected/addressed since the word-line is already at VDD when the precharge 

stage begins and thus does not need to precharge.  Usually, a word-line consumes maximum 

current when it is fully precharged and selected/addressed.  The current consumption of the 

entire 4-to-16 decoder is compared to the min-LP scheme.  The percentage is calculated as: 

100 × (Scheme_current − minLP_current) / minLP_current 

All of the SG schemes, except the SG-Maximum Input Swing scheme, dissipate 

approximately the same amount of current.  When the input swing increases from 0.2 V to 0.4 V, 

these schemes generally dissipate slightly more current.  This increase in input swing (reverse 

bias for LP schemes) reduces the current consumption of the min-LP and 2X-LP schemes.  The 

min-LP scheme consumes the least current of all schemes.  The 2X-LP scheme significantly 

reduces the delay of the min-LP scheme, however, it dissipates significantly more current.  A 

sixteen word-line current-delay product (Idyn × Max Delay) shows the best speed and power 

performance is seen by the SG schemes. 

B.1.3 Static/Inactive Performance: Leakage Current 

In scaled designs, many 4-to-16 decoders may be used to create a larger decoder for 

larger memories.  In these designs, only one 4-to-16 decoder should be active, the decoder that 

has an addressed word-line, while all other 4-to-16 decoders should be inactive.  However, 

inactive decoders will still consume power due to leakage currents. 

FinFETs offer lower leakage due to better control of the channel.  Leakage can be 

significantly reduced if the back-gates of the decoder’s FinFETs are reverse-biased.  Reverse-

biasing the back-gates with 0.4 V yields less leakage current than using a reverse-bias of 0.2 V or 

shorting the front and back gates together.  In particular, the SG-High Precharge Swing, SG-

High Precharge/Address Swing, and SG-Maximum Input Swing schemes consume the least 



205 

 

leakage current.  This is due to the reverse-biasing of the precharge p-type FinFET, Tpcg, since p-

type FinFETs leak more current than n-type FinFETs.  Reverse-biasing the precharge p-type 

FinFET directly results in substantially less leakage since one n-type pull-down is controlled by 

the most-significant address bits (MSBs) and is always active in order to keep the word-line 

unaddressed. 

B.1.4 Overall Performance 

There is no clear best-choice for both dynamic and static/inactive performance.  If a 

system only uses a few, frequently-accessed small memories then the min-LP and SG schemes 

would likely be good choices since they offer the lowest dynamic power dissipation and leakage 

power will be negligible.  However, if a system requires large memories and many address 

decoders, then the SG-High Precharge Swing, SG-High Precharge/Address Swing, and SG-

Maximum Input Swing schemes may be better choices for lowest power due to the reduction of 

leakage power without much sacrifice of dynamic power or delay.  Additionally, in terms of 

area, while FinFETs are much smaller than traditional bulk-CMOS transistors, SG schemes have 

a slight area advantage over LP schemes due to having a much easier wiring layout.  Creating a 

shorted-gate FinFET also requires one less step in the fabrication process, while an independent-

gate FinFET requires more area to be wired and must obey design rules about minimum distance 

between fins. 

For scaled performance and process, voltage, and temperature (PVT) variations, we have 

analyzed the SG, min-LP, and SG-High Precharge Swing schemes.  The SG and min-LP 

schemes are base schemes to compare against the SG-High Precharge Swing scheme, which has 

a good balance of dynamic current, leakage current, and speed.  Plus, this scheme is better than 



206 

 

the SG-High Precharge/Address Swing and SG-Maximum Input Swing schemes since it uses one 

less voltage level and one less voltage generator. 

To analyze the scaled performance for 6-to-64 and 8-to-256 decoders, additional Tpd n-

type FinFETs are added on each word-line to accommodate the additional address bits.  The 

dynamic current increases per word-line as increased capacitance and more short-circuit currents 

are present with either two or four additional pull-down transistors on each word-line.  This 

increase is greater when moving from four to six address bits (a 10-13% increase) than moving 

from six to eight address bits (about a 5% increase).  However, each scheme’s leakage current 

per word-line is the same for four, six, and eight address bits. 

B.1.5 Performance under PVT Variations 

Process/parameter, voltage, and temperature (PVT) variations are simulated using a 

quasi-Monte Carlo (QMC) analysis [20].  We use QMC samples for Monte Carlo simulation to 

achieve a good spread of data points in fewer simulations than with completely random samples.  

We used QMC and created 1000 sets of zero-mean and unit-standard deviation Sobol points to 

allow for completely independent assignment of varied values for all varied device parameters.  

These points were weighted by each parameter’s mean and standard deviation: X = μ + x * σ.  

Similar to other research which analyzes effects of parameter variations on FinFETs, each 

parameter’s standard deviation is estimated to be 3σ = 10% * μ [18].  All parameters in Table 

B.2 were varied, except for LSD, Tox, ΦG, and VDD due to time-consuming simulations or 

convergence issues.  Parameters were varied over a temperature range from 0°C to 100°C and 

over reverse-bias voltage variations of ±5% and ±10% (e.g., a 0.2 V + 5% bias voltage becomes 

-0.21 V and 1.21 V) at 27°C.  Varying the reverse-bias voltage simulates the impact of process 

variations on accompanying voltage generator circuitry [8]. 



207 

 

The three schemes function correctly under PVT variations.  Table B.4 summarizes the 

performance variations.  For all schemes’ parameters, reverse-bias variation has less of an effect 

than temperature variation.  Temperature and reverse-bias variations have a linear effect on 

dynamic current and maximum delay, and have an exponential effect on leakage current.  

Temperature has a small effect on dynamic current (no greater than a 6.7% increase) and a 

moderate effect on delay (at most a 19.8% increase); but, as anticipated, leakage current is 

greatly affected by temperature.  SG leakage current is least affected by temperature variation, 

but still sees a factor of 13 increase in leakage (at 100°C) compared to its nominal average at 

27°C.  Reverse-bias variations have the largest effect on the ±0.4 V-biased min-LP scheme; an 

8.4% speedup is seen for a decrease in bias voltage and a 9.9% slowdown is seen for an increase 

in bias voltage due to constant reverse-biasing regardless of the input signal.  Reverse-bias 

variations affect leakage current the most as more leakage is seen at lower bias voltages and vice 

versa. 



208 

 

Table B.4.  NOR address decoder performance variations due to PVT variations 

 
*%Err = (Mean – Nominal Mean @ 27°C) / (Nominal Mean @ 27°C) * 100% 

 

B.1.6 Conclusions 

Six FinFET-based schemes for the NOR address decoder were presented which differ in 

front- and back-gate connections and input signal swing.  The most promising scheme is the SG-

High Precharge Swing scheme, which has the following features: 

Parameters 
and 

Variations 

SG 
min-LP SG-High Precharge Swing 

0.2V 0.4V 0.2V 0.4V 

Ave %Err* Ave %Err* Ave %Err* Ave %Err* Ave %Err* 
D

yn
am

ic
 C

u
rr

en
t 

(µ
A

) 

T
em

p
 (

°C
) 

0° 46.4 -1.1 42.4 -0.3 42.2 -0.5 46.5 -0.9 46.7 -1.1 

27° 46.9 -- 42.5 -- 42.4 -- 46.9 -- 47.3 -- 

50° 47.6 1.5 42.7 0.4 42.6 0.4 47.7 1.6 47.7 1.0 

75° 48.5 3.4 42.9 1.1 42.8 0.9 49.0 4.5 49.4 4.4 

100° 49.4 5.3 43.4 2.1 43.2 1.7 50.1 6.7 50.2 6.2 

B
ia

s 

-10% -- -- 42.5 -1.9X10-3 42.4 -28X10-3 46.9 -28X10-3 47.2 -120X10-3 

-5% -- -- 42.5 0.5X10-3 42.4 -3.8X10-3 46.9 -21X10-3 47.2 -66X10-3 

5% -- -- 42.5 1.3X10-3 42.4 -34X10-3 46.9 26X10-3 47.3 55X10-3 

10% -- -- 42.5 -8.2X10-3 42.4 -81X10-3 47.0 46X10-3 47.3 98X10-3 

L
ea

ka
g

e 
C

u
rr

en
t 

(p
A

) 

T
em

p
 (

°C
) 

0° 60 -73 1.2 -82 0.04 -87 0.07 -85 0.1X10-3 -89 

27° 223 -- 6.7 -- 0.31 -- 0.49 -- 1.0X10-3 -- 

50° 584 161 23 241 1.34 335 1.95 302 6.2X10-3 505 

75° 1447 547 73 984 5.34 1642 7.28 1398 35X10-3 3279 

100° 3157 1312 199 2879 17.9 5725 23.1 4645 160X10-3 15126 

B
ia

s 

-10% -- -- 9.2 37.0 0.56 83.0 0.90 85.2 3.5X10-3 240.1 

-5% -- -- 7.8 17.0 0.41 35.2 0.66 36.1 1.9X10-3 84.1 

5% -- -- 5.7 -14.5 0.23 -25.9 0.36 -26.5 0.6X10-3 -45.4 

10% -- -- 4.9 -26.9 0.17 -45.0 0.26 -46.0 0.3X10-3 -69.8 

M
ax

im
u

m
 D

el
ay

 (
p

s)
 

T
em

p
 (

°C
) 

0° 8.7 -2.3 8.7 -2.3 11.7 -5.5 4.34 -4.0 4.86 -1.0 

27° 8.9 -- 8.9 -- 12.3 -- 4.52 -- 4.91 -- 

50° 9.5 5.8 9.5 5.8 13.0 5.7 4.56 1.0 4.95 0.9 

75° 9.8 10.0 9.8 10.0 13.9 12.8 4.64 2.7 4.97 1.3 

100° 10.4 16.9 10.4 16.9 14.8 19.8 4.72 4.5 5.05 2.8 

B
ia

s 

-10% -- -- 8.8 -1.6 11.3 -8.4 4.48 -0.9 4.83 -1.7 

-5% -- -- 8.9 -0.9 11.8 -4.4 4.50 -0.4 4.86 -0.9 

5% -- -- 9.0 1.0 12.9 4.7 4.54 0.4 4.95 0.9 

10% -- -- 9.1 2.0 13.6 9.9 4.56 0.9 4.99 1.7 

 



209 

 

 Delay is 48.1% (for 0.2 V reverse-bias) and 59.9% (for 0.4 V reverse-bias) less than the 

min-LP scheme:  The SG-High Precharge Swing scheme shorts the front and back gates 

of the FinFETs for increased speed. 

 Static/inactive power is 93.0% (for 0.2 V reverse-bias) and 99.7% (for 0.4 V reverse-

bias) less than the min-LP scheme:  The SG-High Precharge Swing scheme reverse 

biases the front and back gates of the p-type precharge FinFET for greater reduction of 

leakage current.  In addition, leakage power is reduced by over 510 times from 0.2 V to 

0.4 V reverse-bias in SG-High Precharge Swing. 

 Dynamic power is only 10.9% (for 0.2 V reverse-bias) and 11.9% (for 0.4 V reverse-bias) 

more than the min-LP scheme:  The min-LP scheme reduces short-circuit currents more 

than the SG-High Precharge Swing scheme due to higher transistor impedances by 

continuously reverse-biasing the back-gates of FinFETs. 

 Temperature has an exponential effect on leakage current and small effect on dynamic 

current:  The SG-High Prechange Swing scheme has the largest effect; but, its leakage 

current is still lower than the other schemes. 

There are tradeoffs involved in each performance metric.  The min-LP and SG schemes 

have the lowest dynamic power, the SG-High Precharge Swing and SG-High Precharge/Address 

Swing schemes have the lowest leakage power, and the SG-Maximum Input Swing and SG 

schemes have the shortest delays.  This information can be weighed and can assist in the choice 

of an address decoder when trying to design an optimal memory module for a system. 



210 

 

B.2 CMOS Memory Address Decoders 

This work was originally presented in [40].  Four decoders were designed, simulated, and 

analyzed using a 65 nm CMOS technology.  The next four subsections will discuss the designs 

and operation of the conventional NOR and the novel AND-NOR, Sense-Amp, and AND 

decoding schemes. 

B.2.1 The Conventional NOR Decoder 

The NOR decoder uses one p-type transistor per word-line for precharging and several n-

type transistors per word-line for discharging [22].  Figure B.1 shows the schematic of the NOR 

decoder; for this research, all transistors are minimum-sized.  The variables m and n are used in 

all decoding scheme schematics where n represents the number of address bits and m indicates 

the number of address locations.  This decoder precharges all of the word-lines and discharges all 

lines except for the addressed word-line.  This leads to high power consumption as all but one 

word-line are needlessly charged and discharged. 

In addition to the decoder circuitry, the transistors that provide the decoder’s 

functionality by charging and discharging the word-lines, the NOR decoder also requires 

peripheral circuitry.  Peripheral circuitry includes the inverters and logic gates that generate the 

signals required to control the decoder circuitry.  The NOR decoder’s peripheral circuitry 

includes an inverter for the precharge signal to the Tpcg transistors as well as eight NOR gates 

that control the Tpd transistors to eliminate current dissipation when precharging so power 

consumption is greatly reduced. 

This decoder is designed using a 65 nm CMOS technology and has a minimum delay of 

120 ps.  This decoder was simulated using a 120 ps (8.33 GHz) precharge-evaluate cycle based 

off the precharge signal with equal stage lengths of 60 ps.  In the precharge stage the word-lines 



211 

 

begin to charge.  The NOR decoder uses Tpcg on each word line to nonselectively precharge all 

word-lines [22].  This scheme’s current consumption is directly dependent on the precharge stage 

length; a shorter precharge stage yields lower current consumption as the Tpcg transistors are 

active for a shorter amount of time.  In the evaluate stage the Tpd pull-downs discharge all non-

addressed word-lines using all address bits.  Figure B.3 shows a simulation of a word-line of the 

NOR decoder. 

 

Figure B.3.  A simulation of the NOR decoder 

 

The current consumption of a NOR decoder word-line is measured as the current drawn 

by Tpcg.  Each Tpcg on each word-line draws current since no selective precharging is used.  For a 

4-to-16 decoder, as was designed and tested in this study, 15 of the 16 word-lines (lines not 

previously addressed) draw current when they are precharged from ground to VDD.  The 

previously addressed line remains charged at VDD, however, and requires significantly less 

current.  Every word-line also dissipates short-circuit current when entering the precharge stage 

as shown by Figure B.4.  This dissipation’s magnitude is dictated by the address; as more Tpd 

transistors become active, the lower path resistance results in a greater current.  The total current 



212 

 

consumed by the conventional decoding scheme is the sum of the decoder current of each word-

line, e.g. IPCG, and the current drawn by the peripheral circuitry.  Peripheral current consumption 

depends on the address transition and the amount of peripheral circuitry in the scheme. 

 

 

Figure B.4.  The short-circuit currents of the NOR decoder [22] 

 

B.2.2 The AND-NOR Decoder 

The novel AND-NOR decoder is a selective approach which only charges and discharges 

one-quarter of the word-lines each cycle.  The most significant bits of the address are used to 

select the portion of the decoder that will be charged.  This design choice benefits from the 

principle of locality as changes in the least-significant bits (LSBs) of the address are expected to 

be more frequent than changes in most-significant bits (MSBs) of the address.  The AND-NOR 

decoder design is also similar to the basic selective precharge approach of [38] to precharge the 

match lines in a content-addressable memory.  The basic form of the AND-NOR decoding 

scheme is shown in Figure B.5. 



213 

 

 

Figure B.5.  The schematic of the AND-NOR decoder 

 

This decoder has a minimum delay of 122 ps and is simulated using a 122 ps (8.20 GHz) 

precharge-evaluate cycle with equal stage lengths of 61 ps.  This is the same cycle, albeit at a 

slightly slower frequency, as the NOR decoder.  A simulation of the AND-NOR decoder’s 

operation is provided in Figure B.6.  In the first cycle of the simulation, the word-line is charged 

and addressed.  During the second cycle, the word-line is discharged and unaddressed.  The 

word-line is charged and discharged in the third cycle when it has identical MSBs as the 

addressed word-line (selected MSBs).  Lastly in the fourth cycle the word-line is not charged 

when it has different MSBs than the address (non-selected MSBs).  This case highlights the 

energy savings by not unnecessarily charging and discharging non-addressed word-lines. 



214 

 

 

Figure B.6.  A simulation of the AND-NOR decoder 

 

In the precharge stage the AND-NOR decoder uses Tpcg, TAn-1, and TAn-2 on each word-

line to selectively precharge the lines based on the two address MSBs.  This requires only one-

quarter of the word-lines, the quarter containing the requested address, to be precharged each 

cycle.  In the evaluate stage the Tpd transistors discharge all non-addressed word-lines.  Figure 

B.7 shows short-circuit current dissipation between the precharge and evaluate stages.  The 

AND-NOR decoder uses the two address LSBs to discharge and must also be able to discharge 

via the MSBs with Tmsb if only the address MSBs change as shown by Figure B.8. 

 

 

Figure B.7.  The short-circuit currents of the AND-NOR decoder when the address has the 

same MSBs (for word-line d0, A3 is 0 and A2 is 0) 



215 

 

 

Figure B.8.  The pull-down currents of a previously addressed word-line of the AND-NOR 

decoder when the address has different MSBs (for word-line d0, A3 and A2 are not both 0) 

 

In terms of peripheral circuitry, the AND-NOR decoder requires four NOR gates to 

control all Tpd transistors to eliminate current dissipation in the precharge stage.  The AND-NOR 

decoder also requires four NAND gates to control the Tmsb transistors and a strong inverter for 

precharge as the Tpcg and Tmsb transistors are a large load for the inverted signal. 

B.2.3 The Sense-Amp Decoder 

The Sense-Amp decoder senses when the word-line is being charged and only allows for 

the addressed line to be fully charged.  This novel scheme is shown in Figure B.9.  Similar to the 

AND-NOR decoder, only one-quarter of the word-lines will charge, however, the word-lines 

need not be fully charged during the precharge stage since the sense-amplifier on the addressed 

word-line will charge the line up to VDD.  Therefore this decoder can have a shorter precharge 

stage length and will consume less power than the AND-NOR scheme since only the addressed 

word-line is fully precharged. 



216 

 

 

Figure B.9.  The schematic of the Sense-Amp decoder 

 

The Sense-Amp decoder has a minimum delay of 114 ps and is simulated using a 114 ps 

(8.77 GHz) discharge-precharge-evaluate cycle based off the precharge and discharge signals 

with equal stage lengths of 38 ps.  In the first third of the cycle all word-lines are discharged.  At 

the second third of the cycle one-quarter of the word-lines are precharged.  During the final third 

of the cycle the sense-amplifier on the addressed word-line will charge the addressed line up to 

VDD while the other charged non-addressed lines will discharge. 

Figure B.10 and Figure B.11 illustrate the short-circuit currents of the Sense-Amp 

decoder and a diagram of the operation of this decoder is provided in Figure B.12.  During the 

first cycle of the simulation the word-line is charged and selected.  In the second cycle of the 

simulation the word-line is discharged and deselected.  The third cycle illustrates the word-line 

being charged and discharged when it has identical MSBs as the accessed address.  The fourth 

cycle shows the word-line not being charged when it has different MSBs than the addressed 

word-line. 



217 

 

 

Figure B.10.  The short-circuit currents of the Sense-Amp decoder when the word-line was 

not previously addressed 

 

 

Figure B.11.  The short-circuit currents of the Sense-Amp decoder when the word-line was 

previously addressed 

 



218 

 

 

Figure B.12.  A simulation of the Sense-Amp decoder 

 

In the discharge stage Tdcg grounds all word-lines and only the previously addressed 

word-line is pulled from VDD to ground.  The precharge stage is very short and lines with 

selected MSBs are only partially precharged (at less than VDD).  The design uses Tpcg and Tmsb on 

each line for selective precharging.  In the evaluate stage the addressed line activates its sense-

amplifier to charge the line to VDD while all other word-line sense-amplifiers remain inactive and 

the lines discharge.  



219 

 

The Sense-Amp decoder requires four NAND gates to control the Tmsb transistors.  

Instead of using more peripheral NOR gates, the address lines directly control the Tpd transistors 

resulting in current dissipation.  Since the precharge stage is short (38 ps), the current dissipation 

is limited.  Additionally, strong inverters are not needed for the precharge and discharge signals 

since the signals are not inverted. 

There are three currents which are pulled from the supply: the precharge pull-up current 

at Tpcg (IPCG), the sense-amplifier controlled pull-up current at Tsa (ISA), and the sense-amplifier 

current at Tinv (IINV).  These currents are consumed at specific times during each discharge-

precharge-evaluate cycle due to switching and short-circuits.  Figure B.10 illustrates the short-

circuit currents of a decoder word-line not previously addressed.  In this situation, the short-

circuit current, idcg, is always dissipated when a word-line enters the precharge stage with 

selected MSBs.  While in the precharge stage the three non-addressed word-lines which have 

selected MSBs dissipate current as shown by ilsb.  The addressed word-line dissipates the short-

circuit current, iinv, as the sense-amplifier’s output changes to make Tsa active.  Figure B.11 

displays the short-circuit currents of a previously addressed decoder word-line.  As the discharge 

stage is entered, the charged line dissipates idcg_0 until it is pulled down close enough to ground 

that the sense-amplifier sets Tsa inactive.  Additionally if the LSBs of the address have changed, 

ilsb_0 will also be dissipated, resulting in a faster pull-down of the word-line.  When the line’s 

sense-amplifier changes its output, the short-circuit current iinv_0, is dissipated.  Afterwards, the 

short-circuit current, idcg_1, is always dissipated if the word-line enters the precharge stage with 

selected MSBs.  While in the precharge stage, if this line is one of the three unaddressed word-

lines which have selected MSBs, it will dissipate current as shown by ilsb_1.  If this word-line is 



220 

 

readdressed, the short-circuit current, iinv_1, is dissipated as the sense-amplifier’s output activates 

Tsa. 

B.2.4 The AND Decoder 

The AND decoder is a simpler design which uses negative logic via a NAND gate per 

word-line to produce inverted, intermediate word-line signals.  Each intermediate signal is then 

inverted to drive each word-line or the inverter can be incorporated into a buffer or pipeline 

register to drive the corresponding word-line.  Figure B.13 shows the novel AND decoder 

schematic.  This decoder does not use any clocking signals, therefore the delay of this decoder is 

due to the worst-case delay of the AND gate.  This decoder can operate, and is simulated, at a 

minimum delay of 111 ps (9.01 GHz). 

 

 

Figure B.13.  The schematic of the AND decoder 

 

If an AND decoder word-line is addressed, all of the Tpd transistors will be active and the 

intermediate word-line signal will be discharged.  This causes the inverter to charge the line to 



221 

 

signal it was selected.  If the word-line is deselected or not addressed, then at least one Tpd 

transistor will be inactive and at least one Tpu transistor will be active.  The intermediate word-

line signal is charged to VDD and the word-line output is discharged signifying the line is not 

selected.  Figure B.14 shows a simulation of a word-line of the AND decoder.  From the 

simulation it is observed that current is drawn from the supply by each Tpu (IMSBs, IA0, and IA1) 

and the inverter (IINV).  The greatest current consumption is seen for changes in many address 

bits due to short-circuit and switching currents throughout the design, including the peripheral 

circuitry. 

 

Figure B.14.  A simulation of the AND decoder 

 

The AND decoder uses four NOR gates to create the “and” expressions of the MSBs, e.g. 

An-1∙An-2.  Four inverters also invert both the address MSBs for use by these NOR gates and 

address LSBs for use by the Tpd and Tpu transistors.  Since no clocking signals are used, the AND 

decoder does not need to invert a clock and thus, similar to the Sense-Amp decoder, saves an 

inverter over the NOR decoding scheme. 



222 

 

The current consumption of an AND decoder word-line is measured as the sum of the 

currents drawn by the Tpu transistors plus the current drawn by the word-line inverter.  The Tpu 

currents are only drawn when a word-line is deselected.  Thus for any decoder only one word-

line consumes this current for a change in address bits.  The inverter current is consumed by two 

word-lines per change of address due to one line being deselected and another being selected.  In 

addition, address transitions cause multiple word-lines to dissipate short-circuit currents; a 

change of more address bits cause more word-lines to experience short-circuit currents.  The 

AND decoder is the most selective scheme as the unaddressed word-lines are neither fully nor 

partially precharged unlike the NOR, AND-NOR, and Sense-Amp decoding schemes. 

B.2.5 Simulation Environment 

The Cadence Virtuoso Schematic Editor with a 65 nm CMOS technology was used to 

create the NOR, AND-NOR, Sense-Amp, and the AND 4-to-16 decoders.  Loading was 

simulated on the word-lines by adding inverters with four times the minimum p- and n-type 

transistor widths on each line.  This simulates sufficient loading in order to drive a pipeline 

register as used in high-performance pipelined memories [41] [42].  Interconnects are not taken 

into account in these schematics, however, the distances between transistors in the design and 

pipeline registers is assumed to be small, which greatly reduces the impact of the physical 

characteristics of interconnects. 

Spectre was used to perform extensive circuit simulations in a 65 nm CMOS technology 

using pre-layout data.  The average current consumption for one period of each decoder’s cycle 

was calculated for significant address transitions; these transitions are listed in first column of 

Table B.5.  Note that the total current consumed by each decoding scheme is not limited to only 

the decoder current, e.g. IPCG for the word-lines of the NOR and AND-NOR decoders, but the 



223 

 

current drawn by the peripheral circuitry must also be considered.  The transistor counts of all 

four schemes are shown in Table B.6.  The table separates the scheme circuitry into two 

categories: decoder circuitry and peripheral circuitry.  Decoder circuitry includes the transistors 

that provide the functionality of each decoder, namely charging and discharging word-lines. The 

peripheral circuitry includes the inverters and gates required to control the decoder circuitry. The 

consumed peripheral current depends on the address transition and the amount of peripheral 

circuitry in the scheme.  The current consumption of the decoder and peripheral circuitry was 

computed separately to provide better insight on the consumption patterns of each decoding 

scheme. 



224 

 

Table B.5.  Current consumption of 4-to-16 decoding schemes 

 
a 
The energy percent differences are calculated using: [(NOR_Val – Dec_Val)/NOR_Val] * 100% 

b 
EDP: Energy-Delay Product 

Address 

Transition 
Sch. 

Ave. Current (μA) 
Scheme Current 

Percentages Delay 

(ps) 

Energy 
 EDPb 

(fJXps) 
Dec. Periph. Total 

Dec. 

(%) 

Periph. 

(%) 

Total 

(fJ) 

% Less 

than NOR
a 

00000000 
no change 

NOR 181 121 302 60 40 120 36 — 4348 

A-N 104 149 253 41 59 122 31 15 3772 
S-A 72 8 80 90 10 114 9 75 1043 

AND 1 4 5 19 81 111 1 99 56 

00000011 
change LSBs 

NOR 177 127 305 58 42 120 37 — 4389 
A-N 104 165 270 39 61 122 33 10 4012 

S-A 71 9 80 89 11 114 9 75 1044 

AND 75 6 80 93 7 111 9 76 988 

00110000 
change LSBs 

NOR 180 136 316 57 43 120 38 — 4548 

A-N 105 172 277 38 62 122 34 11 4121 

S-A 72 35 107 67 33 114 12 68 1385 
AND 50 50 100 50 50 111 11 71 1231 

00001100 
change MSBs 

NOR 177 126 303 59 41 120 36 — 4360 

A-N 146 178 324 45 55 122 40 -9 4825 
S-A 80 34 114 70 30 114 13 64 1487 

AND 23 31 53 42 58 111 6 84 659 

11000000 
change MSBs 

NOR 180 132 312 58 42 120 37 — 4489 
A-N 139 219 357 39 61 122 44 -17 5319 

S-A 79 42 120 66 34 114 14 63 1566 

AND 36 48 84 43 57 111 9 75 1037 

00001111 
change all bits 

same dir. 

NOR 175 139 314 56 44 120 38 — 4527 
A-N 144 199 343 42 58 122 42 -11 5109 

S-A 84 36 120 70 30 114 14 64 1555 
AND 62 33 95 66 34 111 11 72 1169 

11110000 
change all bits 

same dir. 

NOR 178 153 332 54 46 120 40 — 4777 

A-N 139 250 389 36 64 122 47 -19 5788 

S-A 80 68 148 54 46 114 17 58 1918 

AND 43 94 137 31 69 111 15 62 1686 

00111100 
change all bits 

diff. dir. 

NOR 176 142 318 55 45 120 38 — 4574 

A-N 145 195 339 43 57 122 41 -9 5051 
S-A 80 57 138 58 42 114 16 59 1788 

AND 61 74 135 45 55 111 15 61 1663 

11000011 
change all bits 

diff. dir. 

NOR 176 140 316 56 44 120 38 — 4549 
A-N 137 236 373 37 63 122 46 -20 5555 

S-A 74 41 115 64 36 114 13 65 1496 

AND 80 48 128 63 37 111 14 63 1575 

Average 

NOR 178 135 313 57 43 120 38 — 4507 
A-N 129 196 325 40 60 122 40 -6 4839 

S-A 77 37 114 68 32 114 13 66 1476 

AND 48 43 91 53 47 111 10 73 1118 

Minimum 

NOR 175 121 302 58 40 120 36 — 4348 

A-N 104 149 253 41 59 122 31 -20 3772 

S-A 71 8 80 89 10 114 9 58 1043 
AND 1 4 5 19 81 111 1 61 56 

Maximum 

NOR 181 153 332 55 46 120 40 — 4777 

A-N 146 250 389 38 64 122 47 15 5788 

S-A 84 68 148 57 46 114 17 75 1918 
AND 80 94 137 59 69 111 15 99 1686 

           

 



225 

 

Table B.6.  4-to-16 decoder transistor counts 

 

 

The average power dissipation is calculated by multiplying the decoder and peripheral 

current consumption by the supply voltage whereas in [43] it was calculated by multiplying the 

total current by each word-line voltage.  This research uses a 1.0 V supply voltage with the 65 

nm CMOS technology.  The decoder energy dissipation is computed by multiplying the average 

power dissipation by the decoder delay. 

B.2.6 Decoding Scheme Performance 

All four decoding schemes are compared with regard to decoder current consumption, 

peripheral current consumption, and total current, power, and energy consumption.  The 

simulated data for all of these metrics is provided in Table B.5, which includes data of the 

average current consumption and energy dissipation without parameter variations; simulations 

are performed using pre-layout circuits. 

B.2.6.1 Decoder Current Consumption 

It can be observed from Table B.5 that the selective precharge schemes outperform the 

nonselective NOR decoder in terms of average decoder current for the listed address transitions.  

This is due to the AND-NOR and Sense-Amp decoders precharging only one-quarter of the 

word-lines and the AND decoder only charging the addressed word-line.  The NOR decoder 

 

Dec. 
Decoder Circuitry Peripheral Circuitry 

Total 
Pchg Dchg 

S-A* or 

Inv.+ 
Inv. 

Col. 

NOR 

Col. 

NAND 

NOR 1 X 16 4 X 16 – 2 X 5 4 X 8 – 122 

A-N 3 X 16 4 X 16 – 2 X 5 4 X 4 4 X 4 154 

S-A 2 X 16 2 X 16 4 X 16* 2 X 4 – 4 X 4 152 

AND 3 X 16 3 X 16 2 X 16+ 2 X 4 4 X 4 – 152 
        



226 

 

consumes decoder current uniformly for all address transitions since the design gives no 

selective preference to MSBs or LSBs during precharging or discharging.  The AND-NOR 

decoder consumes decoder current uniformly for address LSB transitions.  The AND-NOR 

decoder consumes more decoder current for address MSB transitions; especially when the 

address MSBs transition 0011.  This is due to the switching delay of the peripheral circuitry.  

As the address MSBs transition, glitches can occur on the word-lines as they are temporarily 

precharged due to the difference in delay between an inverted and non-inverted MSB input. 

Both the Sense-Amp and AND decoders consume noticeably less decoder current the 

NOR and AND-NOR decoders for all of the address transitions.  While the Sense-Amp decoder 

is equally selective when precharging as the AND-NOR decoder, it is less impacted by precharge 

glitching caused by switching delay in the peripheral circuitry.  Though the control inputs to the 

Tpcg transistors are more delayed in the Sense-Amp decoder due to the use of peripheral NAND 

gates for combining inverted and non-inverted address MSBs, the precharge stage is not the first 

stage of the decoding cycle and these delays have little effect on the word-lines.  The discharge 

stage occurs first during the decoding cycle, and while the word-lines are discharging, the 

NAND outputs which control the Tpcg transistors become stable.  Nonetheless, similar to the 

AND-NOR decoder, the Sense-Amp decoder consumes the most current when the address MSBs 

transition 0011. 

The AND decoder only charges one word-line during the decode cycle and consumes the 

least amount of decoder current for a majority of the address transitions.  The AND decoder 

consumes the most decoder current when the address LSBs transition 0011.  It is observed that 

the AND decoder consumes more decoder current than the Sense-Amp decoder for address 

transitions 00000011 and 11000011.  This is due to glitching of the control inputs to the Tpd 



227 

 

transistors caused by delays in the inverted and non-inverted address LSBs.  These delays can 

cause temporary short-circuit currents if all of the Tpd transistors are temporarily active and at 

least one Tpu transistor is temporarily active due to this peripheral circuitry delay. 

B.2.6.2 Peripheral Current Consumption 

The NOR decoder also displays approximately uniform peripheral current consumption 

with greatest consumption occurring when all of the address bits transition 11110000.  This 

uniformity is caused by the four NOR gates which, regardless of the address transition, switch 

their outputs 01 when the evaluate stage is entered.  The AND-NOR decoder requires the most 

peripheral current and for changes in the address MSBs the AND-NOR decoder consumes the 

most total current.  This is due to the large amount of peripheral circuitry in the design: two 

NAND gates switch output 01 when entering the evaluate stage to control the Tpd transistors, 

one NAND switches output 01 to control Tmsb if a change in MSBs occur, and there is a large 

amount of switching current required by the precharge signal inverter due to the high output 

load.  The large amount of peripheral circuitry actually consumes more current than the decoder 

circuitry. 

The Sense-Amp and the AND decoders have significantly less peripheral circuitry than 

the NOR and AND-NOR decoders and realize large energy gains here.  The Sense-Amp decoder 

uses the least amount of peripheral circuitry compared to the other two decoders and consumes 

the least peripheral current.  At most, one NAND gate switches its output 01 if a change in 

address MSBs occurs.  The large reduction in peripheral circuitry reduces the impact of this 

circuitry on the overall Sense-Amp current consumption.  The AND decoder requires similar 

peripheral circuitry to the Sense-Amp decoder, with the exception that NOR gates are used 

instead of NAND gates to control one pair of Tpu and Tpd transistors on one-quarter of the word-



228 

 

lines.  At most, one NOR gate switches its output 01 if a change in address MSBs occurs, 

however, the p- type transistors in the NOR gate must be sized greater in order to sufficiently 

drive a load twice that of the Sense-Amp decoder’s NAND gates.  For most of the address 

transitions, the AND decoder consumes more peripheral current than decoder current, but this is 

mostly due to its very low decoder current consumption. 

B.2.6.3 Total Current, Power, and Energy 

Not all of the selective decoding schemes outperform the NOR decoder in terms of 

average total current and average power (the supply voltage for each scheme is 1.0 V).  Figure 

B.15 shows that NOR and AND-NOR decoders have similar current consumptions.  It should be 

noticed that the NOR decoder has a very consistent current consumption for all address 

transitions.  The AND-NOR decoder consumes more total current, power, and energy than the 

NOR decoder for address MSB transitions.  On the other end, the AND decoder has the lowest 

current consumption in all transitions except one (11000011).  Figure B.16 summarizes the 

energy dissipation and delays of all four decoding schemes. 



229 

 

 

Figure B.15.  The total current consumption under different address transitions for each 

decoder 

 

 

Figure B.16.  A graph showing the delays and address transition energy dissipation for 

each decoder 

0

50

100

150

200

250

300

350

400

0
0
0
0
-0

0
0
0

0
0
0
0
-0

0
1
1

0
0
1
1
-0

0
0
0

0
0
0
0
-1

1
0
0

1
1
0
0
-0

0
0
0

0
0
0
0
-1

1
1
1

1
1
1
1
-0

0
0
0

0
0
1
1
-1

1
0
0

1
1
0
0
-0

0
1
1

T
o

ta
l 
c

u
rr

e
n

t 
(u

A
)

Address transition

NOR A-N

S-A AND

0

5

10

15

20

25

30

35

40

45

50

110 112 114 116 118 120 122 124

En
e

rg
y 

(f
J)

Delay (ps)

AND S-A

NOR

A-N



230 

 

B.2.7 Performance with Parameter Variations 

In this section the impact of parameter variations on delays and energies of the four 

decoders is quantitatively evaluated.  In the circuit simulations, parameters of the n- and p-type 

transistors, polysilicon, active region, and gate oxide are varied to determine each decoder’s 

susceptibility to process variations.  Each corner is in the form of N-type – P-type transistor 

speed.  These corners impact the oxide thickness, threshold voltage, resistivity, electron/carrier 

mobilities, junction capacitance, and diode current to simulate fast or slow transistors.  The 

corners that impact the polysilicon, active region, and gate oxide speeds manipulate their 

capacitances for high or low speed. 

Table B.7 shows the performance of the decoders in terms of delay and energy under 

different parameter variations.  All decoders operate correctly for each corner tested.  Energy 

consumption varies within approximately 4% of the nominal energy consumption for all 

schemes, but the decoder delays are most affected by parameter variations; this can observed in 

Figure B.17.  The Sense-Amp decoder has the greatest decrease in delay (24%) for fast transistor 

speeds.  On the other hand the AND decoder has the largest increase in delay (28%) for slow 

transistor speeds.  It should be pointed out that different corner variations tend to affect the 

decoder schemes in a similar way with only few exceptions.  For instance, the decoder delays 

deviate from the nominal by 20% to 24% in the fast-fast corner and from -25% to -28% in the 

slow-slow corner as shown in Table B.7.  The only exception in this trend is the slow-fast corner 

where the AND-NOR decoder has an increase in delay; this is due to the larger number of n-type 

transistors in series.  The AND and Sense-Amp decoders perform best in terms of energy; the 

worst energies for these decoders are 16 and 18 fJ, respectively. These energy consumptions are 

significantly smaller than the other two decoder energies. 



231 

 

Table B.7.  Summary of parameter variation effects on 4-to-16 decoders 

 
a 
The delay and energy percent differences are calculated using the following formula: 

[(Nominal_Val – Corner_Val)/Nominal_Val] * 100% 
b 

In addition to modifying the n- and p-type transistor parameters, these fast-fast and slow-slow 

corners also influence the speeds of the parameters common to both transistor types (the 

polysilicon, active region, and gate oxide) by manipulating their capacitances. 

 

Corner 
speed N – 

speed P 

Sch. 
Delay 

(ps) 

Delay diff. 

Nom (%)a 

Ave. Energy 

(fJ) 

Ave. Energy 

diff. Nom (%)
a 

Worst-case 
11110000 
Energy (fJ) 

Fast-Fastb 

FETs and com. 

param. 

NOR 96 20 38 -1 40 

A-N 98 20 38 3 47 

S-A 87 24 13 0 17 
AND 87 22 10 0 15 

Fast-Fast 

NOR 110 8 37 1 39 

A-N 110 10 39 1 47 
S-A 99 13 13 2 16 

AND 99 11 10 1 15 

Slow-Fast 

NOR 118 2 39 -3 41 
A-N 124 -2 41 -3 49 

S-A 105 8 13 -4 18 

AND 107 4 10 -2 15 

Nominal 

Typ.-Typ. 

NOR 120 – 38 – 40 
A-N 122 – 40 – 47 

S-A 114 – 13 – 17 
AND 111 – 10 – 15 

Fast-Slow 

NOR 122 -2 36 3 39 

A-N 128 -5 39 2 47 

S-A 120 -5 12 4 16 
AND 117 -5 10 2 15 

Slow-Slow 

NOR 132 -10 38 -2 40 

A-N 134 -10 40 -1 48 
S-A 129 -13 13 -3 17 

AND 125 -13 10 -1 15 

Slow-Slowb 

FETs and com. 

param. 

NOR 150 -25 38 -2 40 

A-N 152 -25 41 -4 49 

S-A 144 -26 14 -4 18 

AND 142 -28 10 -3 16 
       

 



232 

 

 

Figure B.17.  A graph showing the impact of parameter variations (via corner simulations) 

on decoder delay.  The FF* and SS* corners influence the speeds of parameters common to 

both n- and p-type transistors as explained in footnote b of Table B.7. 

 

B.2.8 Decoder Scalability 

To examine the scalability of the NOR, AND-NOR, Sense-Amp, and AND decoders, the 

4-to-16 decoders are scaled to 8-to-256 decoders.  The 8-to-256 decoder designs use a pre-

decoder which decodes address bits 7-4 and sixteen 4-to-16 decoders which operate using 

address bits 3-0.  The pre-decoder activates only one 4-to-16 decoder depending on bits 7-4 of 

the address by acting as the precharge signal for all sixteen 4-to-16 decoders.  For the NOR, 

AND-NOR, and Sense-Amp 8-to-256 designs, the pre-decoder consists of two two-input NAND 

gates that combine address bits 7-6 and 5-4 and are “OR’ed” with the precharge signal.  Note 

that the designs of the NOR and AND-NOR decoders required modification since the decoders 

are more selectively precharged depending on address bits 7-4.  If an address change in only 

these bits occur, then a previously addressed word-line will not discharge unless additional pull-

down circuitry is included.  An additional n-type pull-down transistor is added to each word-line 

85

95

105

115

125

135

145

155

FF* FF SF Nom FS SS SS*

D
e

la
y 

(p
s)

Corner

NOR

A-N

S-A

AND



233 

 

and each transistor is controlled by an “OR’ing” of address bits 7-4 to alleviate this issue.  Two 

scaled designs of the AND decoder are presented: a four-input AND design (AND4) requiring 

the additional input to be controlled by the “AND’ing” of address bits 7-4 and a five-input AND 

design (AND5) requiring the two additional inputs to be controlled by address bit 7 “AND’ed” 

with bit 6 and bit 5 “AND’ed” with bit 4. 

A summary of the delays and energy dissipations of these designs are presented in Table 

B.8.  The AND4 design performs best as it has the least delay and lowest minimum and 

maximum energies.  It is interesting to study the distribution of energy consumption between the 

pre-decoder, sixteen 4-to-16 decoders, and the accompanying sixteen sets of peripheral logic.  

The pre-decoders for the NOR and AND-NOR schemes consume the least percentage of total 

energy, but this is confounded with overall higher current consumption of the decoder and 

peripheral circuitry for these schemes compared to that of the Sense-Amp and AND decoders.  

The Sense-Amp pre-decoder consumes a high percentage of total energy due to fact that two 

control signals must be driven to a large load: all sixteen 4-to-16 decoders.  The AND4 and 

AND5 pre-decoders consume less of a percentage of total energy since no global precharge or 

discharge signals must be driven to the decoders; only the “AND’ed” 7-4 bits must be driven to 

all decoders. 

Table B.8.  8-to-256 decoder delay and energy summary 

 

 

Dec. 
Delay 

(ps) 

Energy (fJ) Energy Distribution Percentages (%) 

Min. Max. 
Pre-

Decoder 
16 4-to-16 
Decoders 

16 sets of 

Peripheral 

Circuitry 

NOR 230 400 460 21 41 39 

A-N 160 670 690 14 58 29 

S-A 150 370 410 66 18 17 

AND4 130 170 190 24 35 41 

AND5 130 170 300 37 30 33 
       



234 

 

Other pre-decoder schemes could be used to scale the 4-to-16 decoders.  Multi-stage 

designs, where the pre-decoder can be a 4-to-16 decoder, could be used as another hierarchical 

design technique.  Or larger decoders could be designed using MSBs for selective precharging.  

For example, if a 32 or 64-bit address is used, various numbers of MSBs could be used for 

selective precharging.  Using the two MSBs can still result in only 25% of the word-lines to 

precharge, but using additional MSBs can result in greater potential energy savings.  Using three 

or four MSBs can result in only 12.5% or 6.25% of the word-lines to precharge, respectively.  

However, there are limiting returns when using additional MSBs.  For each additional MSB used 

for selective precharging, additional peripheral circuitry is required to control the decoder 

circuitry and the energy consumed by this additional peripheral circuitry can outweigh the 

energy reduction gained by more-selective precharging. 

B.2.9 Conclusions 

Three novel decoding schemes have been presented and compared to the conventional 

NOR decoder.  Of these three, the AND and Sense-Amp decoders are shown to have less delay 

and energy dissipation than the conventional NOR decoder.  These two schemes feature the 

following comparisons with the NOR decoder. 

 The AND decoder consumes between 61% and 99% less energy (73% on average) and 

the Sense-Amp decoder consumes between 58% and 75% less energy (66% on average) 

than the NOR decoder:  The proposed schemes save energy by using selective 

precharging.  The AND decoder is most selective and charges only the addressed word-

line and the Sense-Amp decoder precharges only a quarter of the word-lines.  The NOR 

decoder uses a great amount of energy since it precharges all word-lines and discharges 

all lines except for the addressed word-line. 



235 

 

 The AND decoder is 7.5% and the Sense-Amp decoder is 5.0% faster than the NOR 

decoder:  Both schemes quickly charge the addressed word-line and discharge all other 

lines thus enabling these decoders to be operated at higher frequencies.  The AND 

decoder quickly charges the addressed word-line using a complementary CMOS design.  

The Sense-Amp quickly charges the addressed word-line by using a short precharge stage 

and a sense-amplifier during the evaluate stage, thus charging the addressed word-line for 

two-thirds of the clock period. 

The energy and delay savings do not come without tradeoffs though.  The NOR decoder 

has a very simple implementation which uses fewer transistors than the proposed methods.  For 

systems that can devote only minimal area to address decoding, the NOR decoder may be a 

better choice if the proposed decoders are inadequate.  However, the proposed decoding schemes 

are good choices for high-performance low-power designs due to the greatly decreased energy 

dissipation and reduced delay and these schemes could be used in conjunction with pre-decoders 

for scaling to large memory address decoders [34]. 

  



236 

 

Appendix C  

Complete Data for FinFET SRAM Low-Leakage Modifications 

This appendix contains tables containing complete data for FinFET SRAM low-leakage 

modifications using header and footer transistors.  This data was gathered for both a full-VDD of 

1 V and near-threshold operation at 0.6 V.  Grayed-out rows indicate that convergence errors did 

not allow for the particular cell’s performance data to be gathered. 

 

Table C.1.  6T leakage, delay, and EDP 1 V VDD results of headers/footers per cell 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 5 -- 120 --

Header t 0.592 0.536 0.91 18.0 0.91 1 32 1 5 1 98 0.82

Footer t 0.592 0.283 0.48 18.0 0.90 35 44 1.38 4 0.80 184 1.53

Hdr + Ftr t 0.592 0.227 0.38 14.4 0.72 9 44 1.38 5 1 162 1.35

Header vdd 0.592 0.533 0.90 17.9 0.90 1 32 1 6 1.20 88 0.73

Footer 0 0.592 0.253 0.43 24.2 1.22 -- 54 1.69 4 0.80 253 2.11

Hdr + Ftr vdd / 0 0.592 0.194 0.33 18.5 0.93 78 54 1.69 6 1.20 221 1.84

Header + 0.592 0.504 0.85 16.9 0.85 1 32 1 6 1.20 86 0.72

Footer - 0.592 0.156 0.26 18.4 0.93 122 60 1.88 4 0.80 296 2.47

Hdr + Ftr + / - 0.592 0.014 0.02 1.7 0.08 9 60 1.88 6 1.20 260 2.17

Nom. 0.021 0.021 -- 4.9 -- 84 -- 6 -- 103 --

Header t 0.021 0.021 1 4.9 1 1 84 1 6 1 93 0.90

Footer t 0.021 0.020 0.95 7.5 1.55 -- 107 1.27 6 1 143 1.39

Hdr + Ftr t 0.021 0.020 0.95 7.4 1.52 -- 106 1.26 6 1 133 1.29

Header vdd 0.021 0.021 1 4.9 1 1 84 1 7 1.17 88 0.85

Footer 0 0.021 0.020 0.95 8.7 1.79 -- 115 1.37 6 1 158 1.53

Hdr + Ftr vdd / 0 0.021 0.020 0.95 8.5 1.75 -- 114 1.36 7 1.17 141 1.37

Header + 0.021 0.019 0.90 4.4 0.90 1 84 1 7 1.17 87 0.84

Footer - 0.021 0.011 0.52 4.9 1.02 -- 117 1.39 6 1 163 1.58

Hdr + Ftr + / - 0.021 0.008 0.38 3.6 0.74 35 117 1.39 7 1.17 145 1.41

Leak. 

Tran. 

Config.

6
T

SG

t; t; t

LP

-; -; +

Delay (ps) Ave* EDP (ps×fJ)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

32 bits × 1024 words ArrayLeakage / Cell in 

Sleep-Mode (nA)

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)



237 

 

Table C.2.  6T noise margin and energy 1 V VDD results of headers/footers per cell 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Rd Comp Wr Comp Ave* Comp Val Comp Val Comp

Nom. 2.4 -- 9.3 -- 3.8 -- 360 -- 124 --

Header t 1 2.3 0.96 6.3 0.68 3.1 0.82 343 0.95 87 0.70

Footer t 35 3.3 1.38 7.7 0.83 4.2 1.11 357 0.99 36 0.29

Hdr + Ftr t 9 3.1 1.29 5.8 0.62 3.7 0.97 343 0.95 65 0.52

Header vdd 1 2.2 0.92 5.1 0.55 2.8 0.74 336 0.93 74 0.60

Footer 0 -- 3.9 1.63 7.8 0.84 4.7 1.24 356 0.99 63 0.51

Hdr + Ftr vdd / 0 78 3.8 1.58 5.4 0.58 4.1 1.08 336 0.93 118 0.95

Header + 1 2.2 0.92 4.9 0.53 2.7 0.71 334 0.93 71 0.57

Footer - 122 4.2 1.75 7.9 0.85 4.9 1.29 356 0.99 69 0.56

Hdr + Ftr + / - 9 4.1 1.71 5.3 0.57 4.3 1.13 335 0.93 131 1.06

Nom. 0.5 -- 3.9 -- 1.2 -- 442 -- 222 --

Header t 1 0.6 1.20 3.3 0.85 1.1 0.92 439 0.99 220 0.99

Footer t -- 0.7 1.40 3.8 0.97 1.4 1.17 442 1 189 0.85

Hdr + Ftr t -- 0.8 1.60 3.2 0.82 1.3 1.08 439 0.99 186 0.84

Header vdd 1 0.5 1 3.1 0.79 1.1 0.92 438 0.99 218 0.98

Footer 0 -- 0.8 1.60 3.8 0.97 1.4 1.17 442 1 182 0.82

Hdr + Ftr vdd / 0 -- 0.8 1.60 3.1 0.79 1.2 1 439 0.99 177 0.80

Header + 1 0.5 1 3.1 0.79 1.0 0.83 438 0.99 218 0.98

Footer - -- 0.8 1.60 3.7 0.95 1.4 1.17 442 1 179 0.81

Hdr + Ftr + / - 35 0.8 1.60 3.0 0.77 1.2 1 438 0.99 175 0.79

Leak. 

Tran. 

Config.

6
T

SG

t; t; t

LP

-; -; +

RSNM (mV)
Energy (fJ)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

32 bits × 1024 words Array
SNM (mV)

# Arrays 

for Break-

Even EDP
+



238 

 

Table C.3.  8T leakage, delay, and EDP 1 V VDD results of headers/footers per cell 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 3 -- 66 --

Header t 0.592 0.536 0.91 18.0 0.91 1 32 1 4 1.33 54 0.82

Footer t 0.592 0.283 0.48 18.0 0.90 33 44 1.38 3 1 127 1.92

Hdr + Ftr t 0.592 0.227 0.38 14.4 0.72 10 44 1.38 4 1.33 115 1.74

Header vdd 0.592 0.533 0.90 17.9 0.90 1 32 1 5 1.67 51 0.77

Footer 0 0.591 0.253 0.43 23.3 1.17 -- 53 1.66 3 1 184 2.79

Hdr + Ftr vdd / 0 0.591 0.194 0.33 17.9 0.90 52 53 1.66 6 2.00 168 2.55

Header + 0.592 0.504 0.85 16.9 0.85 1 32 1 6 2.00 50 0.76

Footer - 0.591 0.102 0.17 11.6 0.59 20 59 1.84 3 1 219 3.32

Hdr + Ftr + / - 0.591 0.014 0.02 1.6 0.08 9 59 1.84 6 2.00 201 3.05

Nom. 0.021 0.021 -- 0.7 -- 32 -- 8 -- 39 --

Header t 0.021 0.021 1 0.7 1 1 32 1 9 1.13 34 0.87

Footer t 0.021 0.020 0.95 1.3 1.80 -- 44 1.38 8 1 72 1.85

Hdr + Ftr t 0.021 0.020 0.95 1.3 1.80 -- 44 1.38 9 1.13 67 1.72

Header vdd 0.021 0.021 1 0.7 1 1 32 1 10 1.25 33 0.85

Footer 0 0.021 0.020 0.95 1.8 2.61 -- 53 1.66 8 1 101 2.59

Hdr + Ftr vdd / 0 0.021 0.020 0.95 1.8 2.61 -- 53 1.66 10 1.25 94 2.41

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 10 1.25 33 0.85

Footer - 0.021 0.011 0.52 1.3 1.78 -- 59 1.84 8 1 117 3.00

Hdr + Ftr + / - 0.021 0.008 0.38 0.9 1.30 -- 59 1.84 10 1.25 109 2.79

Nom. 0.096 0.096 -- 3.2 -- 32 -- 4 -- 30 --

Header t 0.096 0.050 0.52 1.7 0.52 1 32 1 5 1.25 27 0.90

Footer t 0.096 0.095 0.99 6.0 1.87 -- 44 1.38 4 1 61 2.03

Hdr + Ftr t 0.096 0.049 0.51 3.1 0.97 259 44 1.38 5 1.25 59 1.97

Header vdd 0.096 0.048 0.50 1.6 0.50 1 32 1 6 1.50 26 0.87

Footer 0 0.096 0.095 0.99 8.7 2.71 -- 53 1.66 4 1 88 2.93

Hdr + Ftr vdd / 0 0.096 0.046 0.48 4.2 1.31 -- 53 1.66 6 1.50 85 2.83

Header + 0.096 0.020 0.21 0.7 0.21 1 32 1 6 1.50 26 0.87

Footer - 0.096 0.085 0.89 9.7 3.01 -- 59 1.84 4 1 105 3.50

Hdr + Ftr + / - 0.096 0.009 0.09 1.0 0.32 33 59 1.84 6 1.50 100 3.33

Nom. 0.021 0.021 -- 0.7 -- 32 -- 5 -- 26 --

Header t 0.021 0.021 1 0.7 1 1 32 1 5 1 23 0.88

Footer t 0.021 0.020 0.95 1.3 1.80 -- 44 1.38 5 1 55 2.12

Hdr + Ftr t 0.021 0.020 0.95 1.3 1.80 -- 44 1.38 5 1 52 2.00

Header vdd 0.021 0.021 1 0.7 1 1 32 1 6 1.20 23 0.88

Footer 0 0.021 0.020 0.95 1.8 2.61 -- 53 1.66 5 1 80 3.08

Hdr + Ftr vdd / 0 0.021 0.020 0.95 1.8 2.61 -- 53 1.66 6 1.20 76 2.92

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 6 1.20 23 0.88

Footer - 0.021 0.011 0.52 1.3 1.78 -- 59 1.84 5 1 94 3.62

Hdr + Ftr + / - 0.021 0.008 0.38 0.9 1.30 -- 59 1.84 6 1.20 90 3.46

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

Leak. 

Tran. 

Config.

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

Delay (ps) Ave* EDP (ps×fJ)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

32 bits × 1024 words ArrayLeakage / Cell in 

Sleep-Mode (nA)

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)



239 

 

Table C.4.  8T SNM and energy 1 V VDD results of headers/footers per cell 

 

Rd Comp Wr Comp Ave* Comp Val Comp

Nom. 0.9 -- 6.9 -- 2.1 -- 360 --

Header t 1 0.9 1 5.1 0.74 1.7 0.81 343 0.95

Footer t 33 2.0 2.22 6.6 0.96 2.9 1.38 357 0.99

Hdr + Ftr t 10 1.9 2.11 5.4 0.78 2.6 1.24 343 0.95

Header vdd 1 0.9 1 4.6 0.67 1.6 0.76 336 0.93

Footer 0 -- 2.6 2.89 6.8 0.99 3.5 1.67 356 0.99

Hdr + Ftr vdd / 0 52 2.6 2.89 5.3 0.77 3.2 1.52 336 0.93

Header + 1 0.8 0.89 4.5 0.65 1.6 0.76 334 0.93

Footer - 20 2.9 3.22 6.9 1 3.7 1.76 356 0.99

Hdr + Ftr + / - 9 2.9 3.22 5.4 0.78 3.4 1.62 335 0.93

Nom. 0.3 -- 5.0 -- 1.2 -- 442 --

Header t 1 0.3 1 4.3 0.86 1.1 0.92 439 0.99

Footer t -- 0.8 2.67 4.9 0.98 1.7 1.42 442 1

Hdr + Ftr t -- 0.8 2.67 4.3 0.86 1.5 1.25 439 0.99

Header vdd 1 0.3 1 4.2 0.84 1.0 0.83 438 0.99

Footer 0 -- 1.1 3.67 4.9 0.98 1.9 1.58 442 1

Hdr + Ftr vdd / 0 -- 1.2 4.00 4.2 0.84 1.8 1.50 439 0.99

Header + 1 0.3 1 4.1 0.82 1.0 0.83 438 0.99

Footer - -- 1.3 4.33 4.9 0.98 2.0 1.67 442 1

Hdr + Ftr + / - -- 1.3 4.33 4.1 0.82 1.9 1.58 438 0.99

Nom. 0.4 -- 3.2 -- 0.9 -- 443 --

Header t 1 0.3 0.75 2.9 0.91 0.9 1 441 1

Footer t -- 1.0 2.50 3.1 0.97 1.4 1.56 441 1

Hdr + Ftr t 259 0.9 2.25 2.9 0.91 1.3 1.44 439 0.99

Header vdd 1 0.3 0.75 2.8 0.88 0.8 0.89 441 1

Footer 0 -- 1.3 3.25 3.1 0.97 1.7 1.89 440 0.99

Hdr + Ftr vdd / 0 -- 1.3 3.25 2.8 0.88 1.6 1.78 438 0.99

Header + 1 0.3 0.75 2.8 0.88 0.8 0.89 440 0.99

Footer - -- 1.4 3.50 3.2 1 1.8 2.00 440 0.99

Hdr + Ftr + / - 33 1.4 3.50 2.8 0.88 1.7 1.89 438 0.99

Nom. 0.3 -- 3.0 -- 0.8 -- 442 --

Header t 1 0.3 1 2.6 0.87 0.7 0.88 439 0.99

Footer t -- 0.8 2.67 2.9 0.97 1.3 1.63 442 1

Hdr + Ftr t -- 0.8 2.67 2.6 0.87 1.2 1.50 439 0.99

Header vdd 1 0.3 1 2.6 0.87 0.7 0.88 438 0.99

Footer 0 -- 1.1 3.67 2.9 0.97 1.5 1.88 442 1

Hdr + Ftr vdd / 0 -- 1.2 4.00 2.6 0.87 1.4 1.75 439 0.99

Header + 1 0.3 1 2.6 0.87 0.7 0.88 438 0.99

Footer - -- 1.3 4.33 2.9 0.97 1.6 2.00 442 1

Hdr + Ftr + / - -- 1.3 4.33 2.6 0.87 1.5 1.88 438 0.99

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t

Leak. 

Tran. 

Config.

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

Energy (fJ)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

32 bits × 1024 words Array
SNM (mV)

# Arrays 

for Break-

Even EDP
+



240 

 

Table C.5.  Leakage, delay, and EDP 0.6 V VDD results of headers/footers per cell 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 51 -- 5 -- 57 --

Header t 0.499 0.455 0.91 23.3 0.91 1 51 1 6 1.20 52 0.91

Footer t 0.499 0.255 0.51 26.0 1.02 -- 72 1.41 5 1 105 1.84

Hdr + Ftr t 0.499 0.211 0.42 21.5 0.84 8 72 1.41 6 1.20 99 1.74

Header vdd 0.499 0.423 0.85 21.6 0.85 1 51 1 41 8.20 44 0.77

Footer 0 0.499 0.229 0.46 90.8 3.56 -- 142 2.78 5 1 318 5.58

Hdr + Ftr vdd / 0 0.499 0.153 0.31 59.8 2.34 -- 141 2.76 41 8.20 301 5.28

Header + 0.499 0.423 0.85 20.8 0.81 13 50 0.98 107 21.40 151 2.65

Footer - 0.499 0.133 0.27 171.4 6.72 -- 256 5.02 5 1.00 872 15.30

Hdr + Ftr + / - 0.499 0.011 0.02 14.1 0.55 43 255 5.00 108 21.60 842 14.77

Nom. 0.498 0.498 -- 24.5 -- 50 -- 4 -- 43 --

Header t 0.498 0.455 0.91 22.4 0.91 1 50 1 6 1.50 40 0.93

Footer t 0.498 0.255 0.51 25.3 1.03 -- 71 1.42 4 1 84 1.95

Hdr + Ftr t 0.498 0.211 0.42 20.9 0.85 8 71 1.42 6 1.50 81 1.88

Header vdd 0.498 0.423 0.85 20.8 0.85 1 50 1 54 13.50 40 0.93

Footer 0 0.498 0.229 0.46 83.3 3.40 -- 136 2.72 4 1 270 6.28

Hdr + Ftr vdd / 0 0.498 0.153 0.31 55.6 2.27 -- 136 2.72 54 13.50 255 5.93

Header + 0.498 0.423 0.85 20.8 0.85 26 50 1 129 32.25 192 4.47

Footer - 0.498 0.088 0.18 99.7 4.07 -- 240 4.80 4 1 736 17.12

Hdr + Ftr + / - 0.497 0.012 0.02 13.6 0.56 38 240 4.80 131 32.75 703 16.35

Nom. 0.018 0.018 -- 0.9 -- 50 -- 32 -- 13 --

Header t 0.018 0.018 1 0.9 1 1 50 1 35 1.09 12 0.92

Footer t 0.018 0.017 0.94 1.7 1.90 -- 71 1.42 32 1 23 1.77

Hdr + Ftr t 0.018 0.017 0.94 1.7 1.90 -- 71 1.42 35 1.09 23 1.77

Header vdd 0.018 0.015 0.83 0.7 0.83 34 50 1 77 2.41 21 1.62

Footer 0 0.018 0.017 0.94 6.3 7.09 -- 137 2.74 32 1 56 4.31

Hdr + Ftr vdd / 0 0.018 0.014 0.78 5.2 5.84 -- 137 2.74 77 2.41 55 4.23

Header + 0.018 0.015 0.83 0.7 0.83 258 50 1 204 6.38 76 5.85

Footer - 0.018 0.010 0.56 11.6 13.12 -- 243 4.86 31 0.97 115 8.85

Hdr + Ftr + / - 0.018 0.007 0.39 8.1 9.19 -- 243 4.86 203 6.34 110 8.46

Nom. 0.081 0.081 -- 4.0 -- 50 -- 10 -- 14 --

Header t 0.081 0.045 0.56 2.2 0.56 1 50 1 12 1.20 13 0.93

Footer t 0.081 0.080 0.99 7.9 1.99 -- 71 1.42 10 1 26 1.86

Hdr + Ftr t 0.081 0.045 0.56 4.5 1.12 -- 71 1.42 12 1.20 26 1.86

Header vdd 0.081 0.015 0.19 0.7 0.19 1 50 1 41 4.10 11 0.79

Footer 0 0.081 0.080 0.99 29.5 7.41 -- 137 2.74 10 1 75 5.36

Hdr + Ftr vdd / 0 0.081 0.014 0.17 5.2 1.30 -- 137 2.74 42 4.20 73 5.21

Header + 0.081 0.015 0.19 0.7 0.19 5 50 1 103 10.30 35 2.50

Footer - 0.081 0.072 0.89 84.3 21.17 -- 244 4.88 10 1 180 12.86

Hdr + Ftr + / - 0.081 0.007 0.09 8.1 2.04 -- 243 4.86 104 10.40 176 12.57

Nom. 0.018 0.018 -- 0.9 -- 50 -- 18 -- 9 --

Header t 0.018 0.018 1 0.9 1 1 50 1 20 1.11 9 1

Footer t 0.018 0.017 0.94 1.7 1.90 -- 71 1.42 18 1 18 2.00

Hdr + Ftr t 0.018 0.017 0.94 1.7 1.90 -- 71 1.42 21 1.17 18 2.00

Header vdd 0.018 0.015 1 0.7 0.83 1 50 1 43 2.39 8 0.89

Footer 0 0.018 0.017 0.94 6.3 7.09 -- 137 2.74 18 1 47 5.22

Hdr + Ftr vdd / 0 0.018 0.014 0.78 5.2 5.84 -- 137 2.74 44 2.44 46 5.11

Header + 0.018 0.015 0.83 0.7 0.83 46 50 1 98 5.44 20 2.22

Footer - 0.018 0.010 0.56 11.6 13.12 -- 243 4.86 18 1 99 11.00

Hdr + Ftr + / - 0.018 0.007 0.39 8.1 9.19 -- 243 4.86 99 5.50 96 10.67

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



241 

 

Table C.6.  Noise margin and energy 0.6 V VDD results of headers/footers per cell 

 

Rd Comp Wr Comp Ave* Comp Val Comp Val Comp

Nom. 0.9 -- 2.1 -- 1.1 -- 248 -- 100 --

Header t 1 0.8 0.89 1.8 0.86 1.0 0.91 243 0.98 94 0.94

Footer t -- 1.2 1.33 2.3 1.10 1.4 1.27 247 1 57 0.57

Hdr + Ftr t 8 1.2 1.33 1.9 0.90 1.4 1.27 243 0.98 51 0.51

Header vdd 1 0.8 0.89 1.2 0.57 0.9 0.82 205 0.83 61 0.61

Footer 0 -- 2.1 2.33 2.9 1.38 2.2 2.00 247 1 15 0.15

Hdr + Ftr vdd / 0 -- 2.1 2.33 2.2 1.05 2.1 1.91 206 0.83 54 0.54

Header + 13 1.4 1.56 1.5 0.71 1.4 1.27 168 0.68 35 0.35

Footer - -- 3.3 3.67 4.0 1.90 3.4 3.09 246 0.99 31 0.31

Hdr + Ftr + / - 43 3.3 3.67 3.2 1.52 3.3 3.00 168 0.68 119 1.19

Nom. 0.6 -- 2.0 -- 0.9 -- 248 --

Header t 1 0.6 1 1.7 0.85 0.8 0.89 243 0.98

Footer t -- 0.9 1.50 2.2 1.10 1.2 1.33 247 1

Hdr + Ftr t 8 0.9 1.50 1.9 0.95 1.1 1.22 243 0.98

Header vdd 1 0.6 1 1.2 0.60 0.8 0.89 205 0.83

Footer 0 -- 1.8 3.00 2.8 1.40 2.0 2.22 247 1

Hdr + Ftr vdd / 0 -- 1.8 3.00 2.3 1.15 1.9 2.11 206 0.83

Header + 26 1.4 2.33 1.8 0.90 1.5 1.67 168 0.68

Footer - -- 2.9 4.83 3.8 1.90 3.1 3.44 246 0.99

Hdr + Ftr + / - 38 2.9 4.83 3.1 1.55 2.9 3.22 168 0.68

Nom. 0.1 -- 0.9 -- 0.3 -- 254 --

Header t 1 0.1 1 0.9 1 0.2 0.67 254 1

Footer t -- 0.2 2.00 0.9 1 0.3 1 254 1

Hdr + Ftr t -- 0.2 2.00 0.9 1 0.3 1 254 1

Header vdd 34 0.2 2.00 0.8 0.89 0.3 1 253 1

Footer 0 -- 0.3 3.00 1.0 1.11 0.4 1.33 254 1

Hdr + Ftr vdd / 0 -- 0.3 3.00 0.9 1 0.4 1.33 253 1

Header + 258 0.3 3.00 0.8 0.89 0.4 1.33 252 0.99

Footer - -- 0.3 3.00 1.0 1.11 0.5 1.67 254 1

Hdr + Ftr + / - -- 0.4 4.00 0.9 1 0.5 1.67 252 0.99

Nom. 0.1 -- 0.8 -- 0.3 -- 260 --

Header t 1 0.1 1 0.7 0.88 0.3 1 260 1

Footer t -- 0.3 3.00 0.8 1 0.4 1.33 260 1

Hdr + Ftr t -- 0.3 3.00 0.8 1 0.4 1.33 260 1

Header vdd 1 0.1 1 0.6 0.75 0.2 0.67 260 1

Footer 0 -- 0.5 5.00 0.9 1.13 0.5 1.67 260 1

Hdr + Ftr vdd / 0 -- 0.5 5.00 0.8 1 0.5 1.67 259 1

Header + 5 0.3 3.00 0.6 0.75 0.3 1 259 1

Footer - -- 0.6 6.00 1.1 1.38 0.7 2.33 260 1

Hdr + Ftr + / - -- 0.7 7.00 0.9 1.13 0.7 2.33 258 0.99

Nom. 0.1 -- 0.6 -- 0.2 -- 254 --

Header t 1 0.1 1 0.6 1 0.2 1 254 1

Footer t -- 0.2 2.00 0.6 1 0.3 1.50 254 1

Hdr + Ftr t -- 0.2 2.00 0.6 1 0.3 1.50 254 1

Header vdd 1 0.1 1 0.5 0.83 0.2 1 253 1

Footer 0 -- 0.3 3.00 0.6 1 0.3 1.50 254 1

Hdr + Ftr vdd / 0 -- 0.3 3.00 0.6 1 0.3 1.50 253 1

Header + 46 0.2 2.00 0.4 0.67 0.2 1 252 0.99

Footer - -- 0.3 3.00 0.7 1.17 0.4 2.00 254 1

Hdr + Ftr + / - -- 0.3 3.00 0.6 1.00 0.4 2.00 252 0.99

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array
SNM (mV) RSNM (mV)

Energy (fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



242 

 

Table C.7.  6T leakage, delay, and EDP 1 V VDD results of headers/footers per two cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Table C.8.  6T energy 1 V VDD results of headers/footers per two cells 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 5 -- 120 --

Header t 0.592 0.523 0.88 17.5 0.88 1 32 1 6 1.20 84 0.70

Footer t 0.592 0.210 0.35 23.1 1.17 -- 58 1.81 4 0.80 274 2.28

Hdr + Ftr t 0.592 0.141 0.24 15.0 0.76 26 57 1.78 6 1.20 238 1.98

Header vdd 0.592 0.520 0.88 17.4 0.88 1 32 1 8 1.60 79 0.66

Footer 0 0.592 0.188 0.32 53.3 2.68 -- 93 2.91 4 0.80 566 4.72

Hdr + Ftr vdd / 0 0.592 0.117 0.20 32.4 1.63 -- 92 2.88 8 1.60 509 4.24

Header + 0.592 0.503 0.85 16.9 0.85 1 32 1 8 1.60 77 0.64

Footer - 0.592 0.155 0.26 57.1 2.87 -- 106 3.31 5 1 688 5.73

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 4.9 -- 84 -- 6 -- 103 --

Header t 0.021 0.021 1 4.9 1 1 84 1 7 1.17 85 0.83

Footer t

Hdr + Ftr t 0.021 0.019 0.90 10.4 2.13 -- 129 1.54 7 1.17 161 1.56

Header vdd 0.021 0.021 1 4.9 1 1 84 1 8 1.33 80 0.78

Footer 0 0.021 0.019 0.90 14.0 2.89 -- 150 1.79 6 1 222 2.16

Hdr + Ftr vdd / 0 0.021 0.018 0.86 13.3 2.73 -- 150 1.79 7 1.17 189 1.83

Header + 0.021 0.019 0.90 4.4 0.90 1 84 1 8 1.33 79 0.77

Footer - 0.021 0.008 0.38 6.5 1.35 -- 158 1.88 6 1 243 2.36

Hdr + Ftr + / - 0.021 0.005 0.24 4.1 0.84 130 158 1.88 8 1.33 201 1.95

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T

SG

t; t; t

LP

-; -; +

Val Val Comp Val Comp Rd Comp Wr Comp Ave* Comp

Nom. 0.592 0.592 -- 19.9 -- 2.4 -- 9.3 -- 3.8 --

Header t 0.592 0.523 0.88 17.5 0.88 1 2.1 0.88 4.8 0.52 2.6 0.68

Footer t 0.592 0.210 0.35 23.1 1.17 -- 4.0 1.67 7.7 0.83 4.8 1.26

Hdr + Ftr t 0.592 0.141 0.24 15.0 0.76 26 3.9 1.63 5.2 0.56 4.1 1.08

Header vdd 0.592 0.520 0.88 17.4 0.88 1 2.0 0.83 4.3 0.46 2.5 0.66

Footer 0 0.592 0.188 0.32 53.3 2.68 -- 5.5 2.29 8.4 0.90 6.1 1.61

Hdr + Ftr vdd / 0 0.592 0.117 0.20 32.4 1.63 -- 5.5 2.29 5.5 0.59 5.5 1.45

Header + 0.592 0.503 0.85 16.9 0.85 1 2.0 0.83 4.1 0.44 2.4 0.63

Footer - 0.592 0.155 0.26 57.1 2.87 -- 6.0 2.50 8.6 0.92 6.5 1.71

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 4.9 -- 0.5 -- 3.9 -- 1.2 --

Header t 0.021 0.021 1 4.9 1 1 0.5 1 2.9 0.74 1.0 0.83

Footer t

Hdr + Ftr t 0.021 0.019 0.90 10.4 2.13 -- 0.8 1.60 2.9 0.74 1.2 1

Header vdd 0.021 0.021 1 4.9 1 1 0.5 1 2.7 0.69 0.9 0.75

Footer 0 0.021 0.019 0.90 14.0 2.89 -- 0.9 1.80 3.7 0.95 1.5 1.25

Hdr + Ftr vdd / 0 0.021 0.018 0.86 13.3 2.73 -- 0.9 1.80 2.7 0.69 1.3 1.08

Header + 0.021 0.019 0.90 4.4 0.90 1 0.5 1 2.7 0.69 0.9 0.75

Footer - 0.021 0.008 0.38 6.5 1.35 -- 1.0 2.00 3.7 0.95 1.5 1.25

Hdr + Ftr + / - 0.021 0.005 0.24 4.1 0.84 130 0.9 1.80 2.7 0.69 1.3 1.08

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Energy (fJ)

6
T

SG

t; t; t

LP

-; -; +



243 

 

Table C.9.  8T leakage, delay, and EDP 1 V VDD results of headers/footers per two cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 3 -- 66 --

Header t 0.592 0.523 0.88 17.5 0.88 1 32 1 5 1.67 49 0.74

Footer t 0.591 0.210 0.35 22.4 1.13 -- 57 1.78 3 1 200 3.03

Hdr + Ftr t 0.591 0.141 0.24 14.5 0.73 23 56 1.75 6 2.00 182 2.76

Header vdd 0.592 0.520 0.88 17.4 0.88 1 32 1 7 2.33 47 0.71

Footer 0 0.591 0.188 0.32 49.9 2.51 -- 90 2.81 3 1 431 6.53

Hdr + Ftr vdd / 0 0.591 0.117 0.20 30.4 1.53 -- 89 2.78 8 2.67 399 6.05

Header + 0.592 0.503 0.85 16.9 0.85 1 32 1 8 2.67 46 0.70

Footer - 0.591 0.096 0.16 33.4 1.68 -- 103 3.22 3 1 529 8.02

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 0.7 -- 32 -- 8 -- 39 --

Header t 0.021 0.021 1 0.7 1 1 32 1 11 1.38 32 0.82

Footer t

Hdr + Ftr t 0.021 0.019 0.90 2.0 2.87 -- 57 1.78 11 1.38 100 2.56

Header vdd 0.021 0.021 1 0.7 1 1 32 1 13 1.63 30 0.77

Footer 0

Hdr + Ftr vdd / 0 0.021 0.018 0.86 4.8 6.78 -- 90 2.81 12 1.50 186 4.77

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 13 1.63 30 0.77

Footer -

Hdr + Ftr + / - 0.021 0.005 0.24 1.8 2.51 -- 104 3.25 13 1.63 217 5.56

Nom. 0.096 0.096 -- 3.2 -- 32 -- 4 -- 30 --

Header t 0.096 0.038 0.40 1.3 0.40 1 32 1 6 1.50 25 0.83

Footer t 0.096 0.094 0.98 10.0 3.11 -- 57 1.78 4 1 96 3.20

Hdr + Ftr t 0.096 0.036 0.38 3.8 1.19 -- 57 1.78 6 1.50 91 3.03

Header vdd 0.096 0.036 0.38 1.2 0.38 1 32 1 7 1.75 25 0.83

Footer 0 0.096 0.094 0.98 25.5 7.92 -- 91 2.84 4 1 191 6.37

Hdr + Ftr vdd / 0 0.096 0.034 0.35 9.0 2.80 -- 90 2.81 8 2.00 184 6.13

Header + 0.096 0.019 0.20 0.6 0.20 1 32 1 8 2.00 25 0.83

Footer - 0.096 0.083 0.86 29.4 9.13 -- 104 3.25 4 1 227 7.57

Hdr + Ftr + / - 0.096 0.006 0.06 2.1 0.66 174 104 3.25 9 2.25 219 7.30

Nom. 0.021 0.021 -- 0.7 -- 32 -- 5 -- 26 --

Header t 0.021 0.021 1 0.7 1 1 32 1 6 1.20 22 0.85

Footer t 0.021 0.019 0.90 2.0 2.87 -- 57 1.78 5 1 87 3.35

Hdr + Ftr t 0.021 0.019 0.90 2.0 2.87 -- 57 1.78 7 1.40 82 3.15

Header vdd 0.021 0.021 1 0.7 1 1 32 1 7 1.40 22 0.85

Footer 0 0.021 0.019 0.90 5.2 7.32 -- 91 2.84 5 1 165 6.35

Hdr + Ftr vdd / 0 0.021 0.018 0.86 4.8 6.78 -- 90 2.81 8 1.60 159 6.12

Header + 0.021 0.019 0.90 0.6 0.90 1 32 1 8 1.60 21 0.81

Footer - 0.021 0.008 0.38 2.8 4.02 -- 104 3.25 5 1 193 7.42

Hdr + Ftr + / - 0.021 0.005 0.24 1.8 2.51 -- 104 3.25 9 1.80 187 7.19

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



244 

 

Table C.10.  8T energy 1 V VDD results of headers/footers per two cells 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Ave* Comp

Nom. 0.592 0.592 -- 19.9 -- 0.9 -- 6.9 -- 2.1 --

Header t 0.592 0.523 0.88 17.5 0.88 1 0.8 0.89 4.4 0.64 1.6 0.76

Footer t 0.591 0.210 0.35 22.4 1.13 -- 2.7 3.00 6.7 0.97 3.5 1.67

Hdr + Ftr t 0.591 0.141 0.24 14.5 0.73 23 2.7 3.00 5.2 0.75 3.2 1.52

Header vdd 0.592 0.520 0.88 17.4 0.88 1 0.8 0.89 4.1 0.59 1.4 0.67

Footer 0 0.591 0.188 0.32 49.9 2.51 -- 4.2 4.67 7.3 1.06 4.8 2.29

Hdr + Ftr vdd / 0 0.591 0.117 0.20 30.4 1.53 -- 4.2 4.67 5.5 0.80 4.5 2.14

Header + 0.592 0.503 0.85 16.9 0.85 1 0.8 0.89 4.0 0.58 1.5 1

Footer - 0.591 0.096 0.16 33.4 1.68 -- 4.6 5.11 7.6 1.10 5.2 2.48

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 0.7 -- 0.3 -- 5.0 -- 1.2 --

Header t 0.021 0.021 1 0.7 1 1 0.3 1 4.0 0.80 1.0 0.83

Footer t

Hdr + Ftr t 0.021 0.019 0.90 2.0 2.87 -- 1.2 4.00 4.0 0.80 1.8 1.50

Header vdd 0.021 0.021 1 0.7 1 1 0.3 1 3.8 0.76 1.0 0.83

Footer 0

Hdr + Ftr vdd / 0 0.021 0.018 0.86 4.8 6.78 -- 1.6 5.33 3.9 0.78 2.1 1.75

Header + 0.021 0.019 0.90 0.6 0.90 1 0.3 1 3.8 0.76 1.0 0.83

Footer -

Hdr + Ftr + / - 0.021 0.005 0.24 1.8 2.51 -- 1.7 5.67 3.9 0.78 2.1 1.75

Nom. 0.096 0.096 -- 3.2 -- 0.4 -- 3.2 -- 0.9 --

Header t 0.096 0.038 0.40 1.3 0.40 1 0.3 0.75 2.7 0.84 0.8 0.89

Footer t 0.096 0.094 0.98 10.0 3.11 -- 1.3 3.25 3.2 1 1.7 1.89

Hdr + Ftr t 0.096 0.036 0.38 3.8 1.19 -- 1.3 3.25 2.8 0.88 1.6 1.78

Header vdd 0.096 0.036 0.38 1.2 0.38 1 0.3 0.75 2.6 0.81 0.8 0.89

Footer 0 0.096 0.094 0.98 25.5 7.92 -- 1.8 4.50 3.3 1.03 2.1 2.33

Hdr + Ftr vdd / 0 0.096 0.034 0.35 9.0 2.80 -- 1.9 4.75 2.8 0.88 2.0 2.22

Header + 0.096 0.019 0.20 0.6 0.20 1 0.3 0.75 2.6 0.81 0.8 0.89

Footer - 0.096 0.083 0.86 29.4 9.13 -- 1.9 4.75 3.4 1.06 2.2 2.44

Hdr + Ftr + / - 0.096 0.006 0.06 2.1 0.66 174 2.0 5.00 2.8 0.88 2.1 2.33

Nom. 0.021 0.021 -- 0.7 -- 0.3 -- 3.0 -- 0.8 --

Header t 0.021 0.021 1 0.7 1 1 0.3 1 2.5 0.83 0.7 0.88

Footer t 0.021 0.019 0.90 2.0 2.87 -- 1.2 4.00 2.9 0.97 1.5 1.88

Hdr + Ftr t 0.021 0.019 0.90 2.0 2.87 -- 1.2 4.00 2.5 0.83 1.4 1.75

Header vdd 0.021 0.021 1 0.7 1 1 0.3 1 2.4 0.80 0.7 0.88

Footer 0 0.021 0.019 0.90 5.2 7.32 -- 1.6 5.33 2.9 0.97 1.8 2.25

Hdr + Ftr vdd / 0 0.021 0.018 0.86 4.8 6.78 -- 1.6 5.33 2.4 0.80 1.8 2.25

Header + 0.021 0.019 0.90 0.6 0.90 1 0.3 1 2.4 0.80 0.7 0.88

Footer - 0.021 0.008 0.38 2.8 4.02 -- 1.6 5.33 2.9 0.97 1.9 2.38

Hdr + Ftr + / - 0.021 0.005 0.24 1.8 2.51 -- 1.7 5.67 2.4 0.80 1.8 2.25

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Energy (fJ)

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



245 

 

Table C.11.  Leakage, delay, and EDP 0.6 V VDD results of headers/footers per two cells 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 51 -- 5 -- 57 --

Header t 0.499 0.443 0.89 22.7 0.89 1 51 1 7 1.40 50 0.88

Footer t 0.499 0.190 0.38 34.4 1.35 -- 96 1.88 5 1 165 2.89

Hdr + Ftr t 0.499 0.134 0.27 24.3 0.95 50 96 1.88 7 1.40 157 2.75

Header vdd 0.499 0.423 0.85 20.8 0.81 4 50 0.98 71 14.20 73 1.28

Footer 0 0.499 0.170 0.34 227.7 8.92 -- 261 5.12 5 1 906 15.89

Hdr + Ftr vdd / 0 0.499 0.094 0.19 125.9 4.93 -- 261 5.12 72 14.40 879 15.42

Header + 0.499 0.423 0.85 20.8 0.81 43 50 0.98 179 35.80 382 6.70

Footer - 0.499 0.132 0.26 590.5 23.14 -- 477 9.35 5 1 2680 47.02

Hdr + Ftr + / - 0.498 0.006 0.01 26.7 1.05 -- 476 9.33 181 36.20 2628 46.11

Nom. 0.498 0.498 -- 24.5 -- 50 -- 4 -- 43 --

Header t 0.498 0.443 0.89 21.8 0.89 1 50 1 8 2.00 38 0.88

Footer t 0.498 0.190 0.38 32.3 1.32 -- 93 1.86 4 1 138 3.21

Hdr + Ftr t 0.498 0.134 0.27 22.8 0.93 33 93 1.86 8 2.00 132 3.07

Header vdd 0.498 0.423 0.85 20.8 0.85 11 50 1 91 22.75 100 2.33

Footer 0 0.497 0.170 0.34 200.6 8.20 -- 245 4.90 4 1 763 17.74

Hdr + Ftr vdd / 0 0.497 0.094 0.19 110.9 4.53 -- 245 4.90 93 23.25 734 17.07

Header + 0.496 0.423 0.85 20.8 0.85 67 50 1 205 51.25 448 10.42

Footer - 0.497 0.082 0.16 302.3 12.35 -- 433 8.66 4 1 2161 50.26

Hdr + Ftr + / - 0.493 0.006 0.01 22.0 0.90 498 432 8.64 209 52.25 2079 48.35

Nom. 0.018 0.018 -- 0.9 -- 50 -- 32 -- 13 --

Header t 0.018 0.018 1 0.9 1 1 50 1 38 1.19 12 0.92

Footer t 0.018 0.017 0.94 2.9 3.27 -- 93 1.86 32 1 34 2.62

Hdr + Ftr t 0.018 0.016 0.89 2.7 3.08 -- 93 1.86 38 1.19 33 2.54

Header vdd 0.018 0.015 0.83 0.7 0.83 136 50 1 137 4.28 46 3.54

Footer 0 0.018 0.016 0.89 19.3 21.87 -- 248 4.96 31 0.97 118 9.08

Hdr + Ftr vdd / 0 0.018 0.013 0.72 15.7 17.77 -- 248 4.96 137 4.28 116 8.92

Header + 0.018 0.015 0.83 0.7 0.83 592 50 1 382 11.94 158 12.15

Footer - 0.018 0.007 0.39 26.5 29.98 -- 439 8.78 31 0.97 247 19.00

Hdr + Ftr + / - 0.018 0.004 0.22 15.2 17.13 -- 439 8.78 381 11.91 235 18.08

Nom. 0.081 0.081 -- 4.0 -- 50 -- 10 -- 14 --

Header t 0.081 0.035 0.43 1.7 0.43 1 50 1 14 1.40 13 0.93

Footer t 0.081 0.079 0.98 13.7 3.45 -- 94 1.88 10 1 41 2.93

Hdr + Ftr t 0.081 0.033 0.41 5.6 1.41 -- 93 1.86 14 1.40 41 2.93

Header vdd 0.081 0.015 0.19 0.7 0.19 3 50 1 71 7.10 20 1.43

Footer 0 0.081 0.079 0.98 96.3 24.19 -- 249 4.98 10 1 186 13.29

Hdr + Ftr vdd / 0 0.081 0.013 0.16 15.7 3.95 -- 248 4.96 72 7.20 182 13.00

Header + 0.081 0.015 0.19 0.7 0.19 14 50 1 173 17.30 79 5.64

Footer - 0.080 0.070 0.86 266.4 66.92 -- 440 8.80 9 0.90 471 33.64

Hdr + Ftr + / - 0.080 0.004 0.05 15.2 3.81 -- 439 8.78 176 17.60 457 32.64

Nom. 0.018 0.018 -- 0.9 -- 50 -- 18 -- 9 --

Header t 0.018 0.018 1 0.9 1 1 50 1 22 1.22 9 1

Footer t 0.018 0.017 0.94 2.9 3.27 -- 93 1.86 18 1 28 3.11

Hdr + Ftr t 0.018 0.016 0.89 2.7 3.08 -- 93 1.86 23 1.28 27 3.00

Header vdd 0.018 0.015 0.83 0.7 0.83 18 50 1 70 3.89 13 1.44

Footer 0 0.018 0.016 0.89 19.3 21.87 -- 248 4.96 18 1 101 11.22

Hdr + Ftr vdd / 0 0.018 0.013 0.72 15.7 17.77 -- 248 4.96 71 3.94 99 11.00

Header + 0.018 0.015 0.83 0.7 0.83 124 50 1 166 9.22 39 4.33

Footer - 0.018 0.007 0.39 26.5 29.98 -- 439 8.78 19 1.06 217 24.11

Hdr + Ftr + / - 0.018 0.004 0.22 15.2 17.13 -- 439 8.78 168 9.33 207 23.00

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



246 

 

Table C.12. Energy 0.6 V VDD results of headers/footers per two cells 

 

Val Val Comp Val Comp Rd Comp Wr Comp Ave* Comp

Nom. 0.499 0.499 -- 25.5 -- 0.9 -- 2.1 -- 1.1 --

Header t 0.499 0.443 0.89 22.7 0.89 1 0.8 0.89 1.6 0.76 1.0 0.91

Footer t 0.499 0.190 0.38 34.4 1.35 -- 1.5 1.67 2.4 1.14 1.7 1.55

Hdr + Ftr t 0.499 0.134 0.27 24.3 0.95 50 1.5 1.67 2.0 0.95 1.6 1.45

Header vdd 0.499 0.423 0.85 20.8 0.81 4 1.0 1.11 1.2 0.57 1.0 0.91

Footer 0 0.499 0.170 0.34 227.7 8.92 -- 3.3 3.67 4.0 1.90 3.5 3.18

Hdr + Ftr vdd / 0 0.499 0.094 0.19 125.9 4.93 -- 3.4 3.78 3.3 1.57 3.4 3.09

Header + 0.499 0.423 0.85 20.8 0.81 43 2.1 2.33 2.1 1 2.1 1.91

Footer - 0.499 0.132 0.26 590.5 23.14 -- 5.5 6.11 6.1 2.90 5.6 5.09

Hdr + Ftr + / - 0.498 0.006 0.01 26.7 1.05 -- 5.6 6.22 5.3 2.52 5.5 5.00

Nom. 0.498 0.498 -- 24.5 -- 0.6 -- 2.0 -- 0.9 --

Header t 0.498 0.443 0.89 21.8 0.89 1 0.6 1 1.6 0.80 0.8 0.89

Footer t 0.498 0.190 0.38 32.3 1.32 -- 1.2 2.00 2.4 1.20 1.5 1.67

Hdr + Ftr t 0.498 0.134 0.27 22.8 0.93 33 1.3 2.17 2.0 1 1.4 1.56

Header vdd 0.498 0.423 0.85 20.8 0.85 11 1.0 1.67 1.5 0.75 1.1 1.22

Footer 0 0.497 0.170 0.34 200.6 8.20 -- 2.9 4.83 3.8 1.90 3.1 3.44

Hdr + Ftr vdd / 0 0.497 0.094 0.19 110.9 4.53 -- 2.9 4.83 3.2 1.60 3.0 3.33

Header + 0.496 0.423 0.85 20.8 0.85 67 2.1 3.50 2.4 1.20 2.2 2.44

Footer - 0.497 0.082 0.16 302.3 12.35 -- 4.8 8.00 5.6 2.80 5.0 5.56

Hdr + Ftr + / - 0.493 0.006 0.01 22.0 0.90 498 4.8 8.00 4.8 2.40 4.8 5.33

Nom. 0.018 0.018 -- 0.9 -- 0.1 -- 0.9 -- 0.3 --

Header t 0.018 0.018 1 0.9 1 1 0.1 1 0.9 1 0.2 0.67

Footer t 0.018 0.017 0.94 2.9 3.27 -- 0.2 2.00 0.9 1 0.4 1.33

Hdr + Ftr t 0.018 0.016 0.89 2.7 3.08 -- 0.2 2.00 0.9 1 0.4 1.33

Header vdd 0.018 0.015 0.83 0.7 0.83 136 0.2 2.00 0.8 0.89 0.3 1

Footer 0 0.018 0.016 0.89 19.3 21.87 -- 0.3 3.00 1.0 1.11 0.5 1.67

Hdr + Ftr vdd / 0 0.018 0.013 0.72 15.7 17.77 -- 0.4 4.00 0.9 1 0.5 1.67

Header + 0.018 0.015 0.83 0.7 0.83 592 0.3 3.00 0.8 0.89 0.4 1.33

Footer - 0.018 0.007 0.39 26.5 29.98 -- 0.4 4.00 1.1 1.22 0.6 2.00

Hdr + Ftr + / - 0.018 0.004 0.22 15.2 17.13 -- 0.4 4.00 0.9 1 0.5 1.67

Nom. 0.081 0.081 -- 4.0 -- 0.1 -- 0.8 -- 0.3 --

Header t 0.081 0.035 0.43 1.7 0.43 1 0.1 1 0.7 0.88 0.3 1

Footer t 0.081 0.079 0.98 13.7 3.45 -- 0.3 3.00 0.8 1 0.4 1.33

Hdr + Ftr t 0.081 0.033 0.41 5.6 1.41 -- 0.3 3.00 0.8 1 0.4 1.33

Header vdd 0.081 0.015 0.19 0.7 0.19 3 0.2 2.00 0.5 0.63 0.3 1

Footer 0 0.081 0.079 0.98 96.3 24.19 -- 0.7 7.00 1.1 1.38 0.7 2.33

Hdr + Ftr vdd / 0 0.081 0.013 0.16 15.7 3.95 -- 0.7 7.00 0.9 1.13 0.7 2.33

Header + 0.081 0.015 0.19 0.7 0.19 14 0.4 4.00 0.6 0.75 0.5 1.67

Footer - 0.080 0.070 0.86 266.4 66.92 -- 1.0 10.00 1.4 1.75 1.1 3.67

Hdr + Ftr + / - 0.080 0.004 0.05 15.2 3.81 -- 1.0 10.00 1.2 1.50 1.0 3.33

Nom. 0.018 0.018 -- 0.9 -- 0.1 -- 0.6 -- 0.2 --

Header t 0.018 0.018 1 0.9 1 1 0.1 1 0.6 1 0.2 1

Footer t 0.018 0.017 0.94 2.9 3.27 -- 0.2 2.00 0.6 1 0.3 1.50

Hdr + Ftr t 0.018 0.016 0.89 2.7 3.08 -- 0.2 2.00 0.6 1 0.3 1.50

Header vdd 0.018 0.015 0.83 0.7 0.83 18 0.1 1 0.4 0.67 0.2 1

Footer 0 0.018 0.016 0.89 19.3 21.87 -- 0.3 3.00 0.7 1.17 0.4 2.00

Hdr + Ftr vdd / 0 0.018 0.013 0.72 15.7 17.77 -- 0.4 4.00 0.6 1 0.4 2.00

Header + 0.018 0.015 0.83 0.7 0.83 124 0.2 2.00 0.4 0.67 0.2 1

Footer - 0.018 0.007 0.39 26.5 29.98 -- 0.4 4.00 0.7 1.17 0.5 2.50

Hdr + Ftr + / - 0.018 0.004 0.22 15.2 17.13 -- 0.4 4.00 0.6 1 0.5 2.50

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Energy (fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



247 

 

Table C.13.  6T leakage, delay, and EDP 1 V VDD results of headers/footers per four cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

 

Table C.14.  6T energy 1 V VDD results of headers/footers per four cells 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 5 -- 120 --

Header t 0.592 0.514 0.87 17.2 0.87 1 32 1 8 1.60 75 0.63

Footer t 0.592 0.160 0.27 39.7 2.00 -- 87 2.72 5 1 512 4.27

Hdr + Ftr t 0.592 0.080 0.14 19.8 1 -- 87 2.72 8 1.60 460 3.83

Header vdd 0.592 0.512 0.86 17.2 0.86 1 32 1 11 2.20 62 0.52

Footer 0 0.592 0.158 0.27 156.7 7.89 -- 174 5.44 5 1 1395 11.63

Hdr + Ftr vdd / 0 0.592 0.065 0.11 63.7 3.21 -- 173 5.41 11 2.20 1290 10.75

Header + 0.592 0.502 0.85 16.8 0.85 1 32 1 12 2.40 66 0.55

Footer - 0.592 0.154 0.26 203.9 10.26 -- 201 6.28 5 1 1727 14.39

Hdr + Ftr + / - 0.592 0.004 0.01 5.2 0.26 104 200 6.25 12 2.40 1614 13.45

Nom. 0.021 0.021 -- 4.9 -- 84 -- 6 -- 103 --

Header t 0.021 0.020 0.95 4.6 0.95 1 84 1 8 1.33 78 0.76

Footer t 0.021 0.018 0.86 18.3 3.76 -- 176 2.10 5 0.83 275 2.67

Hdr + Ftr t 0.021 0.017 0.81 17.3 3.55 -- 176 2.10 8 1.33 229 2.22

Header vdd 0.021 0.020 0.95 4.6 0.95 1 84 1 10 1.67 75 0.73

Footer 0 0.021 0.017 0.81 30.5 6.28 -- 234 2.79 5 0.83 386 3.75

Hdr + Ftr vdd / 0 0.021 0.016 0.76 28.5 5.86 -- 233 2.77 10 1.67 324 3.15

Header + 0.021 0.018 0.86 4.2 0.86 1 84 1 11 1.83 74 0.72

Footer - 0.021 0.006 0.29 13.4 2.76 -- 261 3.11 5 0.83 440 4.27

Hdr + Ftr + / - 0.021 0.003 0.14 6.7 1.38 -- 261 3.11 11 1.83 372 3.61

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T

SG

t; t; t

LP

-; -; +

Val Val Comp Val Comp Rd Comp Wr Comp Ave* Comp

Nom. 0.592 0.592 -- 19.9 -- 2.4 -- 9.3 -- 3.8 --

Header t 0.592 0.514 0.87 17.2 0.87 1 1.9 0.79 4.2 0.45 2.4 0.63

Footer t 0.592 0.160 0.27 39.7 2.00 -- 5.3 2.21 8.1 0.87 5.9 1.55

Hdr + Ftr t 0.592 0.080 0.14 19.8 1 -- 5.3 2.21 5.3 0.57 5.3 1.39

Header vdd 0.592 0.512 0.86 17.2 0.86 1 1.8 0.75 3.5 0.38 2.1 0.55

Footer 0 0.592 0.158 0.27 156.7 7.89 -- 7.6 3.17 9.7 1.04 8.0 2.11

Hdr + Ftr vdd / 0 0.592 0.065 0.11 63.7 3.21 -- 7.7 3.21 6.4 0.69 7.4 1.95

Header + 0.592 0.502 0.85 16.8 0.85 1 1.7 0.71 3.4 0.37 2.1 0.55

Footer - 0.592 0.154 0.26 203.9 10.26 -- 8.2 3.42 10.2 1.10 8.6 2.26

Hdr + Ftr + / - 0.592 0.004 0.01 5.2 0.26 104 8.4 3.50 6.8 0.73 8.1 2.13

Nom. 0.021 0.021 -- 4.9 -- 0.5 -- 3.9 -- 1.2 --

Header t 0.021 0.020 0.95 4.6 0.95 1 0.5 1 2.6 0.67 0.9 0.75

Footer t 0.021 0.018 0.86 18.3 3.76 -- 1.0 2.00 3.6 0.92 1.6 1.33

Hdr + Ftr t 0.021 0.017 0.81 17.3 3.55 -- 1.0 2.00 2.6 0.67 1.3 1.08

Header vdd 0.021 0.020 0.95 4.6 0.95 1 0.5 1 2.4 0.62 0.9 0.75

Footer 0 0.021 0.017 0.81 30.5 6.28 -- 1.2 2.40 3.6 0.92 1.7 1.42

Hdr + Ftr vdd / 0 0.021 0.016 0.76 28.5 5.86 -- 1.1 2.20 2.5 0.64 1.4 1.17

Header + 0.021 0.018 0.86 4.2 0.86 1 0.5 1 2.3 0.59 0.9 0.75

Footer - 0.021 0.006 0.29 13.4 2.76 -- 1.2 2.40 3.7 0.95 1.7 1.42

Hdr + Ftr + / - 0.021 0.003 0.14 6.7 1.38 -- 1.2 2.40 2.5 0.64 1.4 1.17

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Energy (fJ)

6
T

SG

t; t; t

LP

-; -; +



248 

 

Table C.15.  8T leakage, delay, and EDP 1 V VDD results of headers/footers per four cells 

 
* The average EDP is calculated as 80% of the read EDP plus 20% of the write EDP. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.592 0.592 -- 19.9 -- 32 -- 3 -- 66 --

Header t 0.592 0.514 0.87 17.2 0.87 1 32 1 8 2.67 46 0.70

Footer t 0.591 0.159 0.27 37.6 1.90 -- 85 2.66 3 1 390 5.91

Hdr + Ftr t 0.591 0.080 0.14 18.5 0.93 214 84 2.63 9 3.00 357 5.41

Header vdd 0.592 0.512 0.86 17.2 0.86 1 32 1 11 3.67 43 0.65

Footer 0 0.590 0.145 0.24 130.9 6.59 -- 166 5.19 3 1 1107 16.77

Hdr + Ftr vdd / 0

Header + 0.592 0.502 0.85 15.8 0.80 1 31 1 12 4.00 42 0.64

Footer - 0.590 0.094 0.16 112.4 5.66 -- 191 5.97 3 1 1380 20.91

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 0.7 -- 32 -- 8 -- 39 --

Header t 0.021 0.020 0.95 0.7 1 1 32 1 13 1.63 29 0.74

Footer t 0.021 0.018 0.86 4.4 6.19 -- 86 2.69 8 1 185 4.74

Hdr + Ftr t 0.021 0.017 0.81 4.0 5.71 -- 85 2.66 13 1.63 170 4.36

Header vdd 0.021 0.020 0.95 0.7 1 1 32 1 19 2.38 28 0.72

Footer 0 0.021 0.017 0.81 15.7 22.31 -- 168 5.25 8 1 398 10.21

Hdr + Ftr vdd / 0 0.021 0.016 0.76 14.8 21.00 -- 168 5.25 19 2.38 368 9.44

Header + 0.021 0.018 0.86 0.6 0.86 1 32 1 21 2.63 27 0.69

Footer - 0.021 0.006 0.29 7.4 10.50 -- 194 6.06 8 1 463 11.87

Hdr + Ftr + / - 0.021 0.003 0.14 3.7 5.25 -- 194 6.06 21 2.63 430 11.03

Nom. 0.096 0.096 -- 3.2 -- 32 -- 4 -- 30 --

Header t 0.096 0.030 0.31 1.0 0.31 1 32 1 8 2.00 24 0.80

Footer t 0.096 0.093 0.97 22.5 7.00 -- 86 2.69 4 1 176 5.87

Hdr + Ftr t 0.096 0.026 0.27 6.2 1.91 -- 85 2.66 9 2.25 168 5.60

Header vdd 0.096 0.028 0.29 0.9 0.29 1 32 1 11 2.75 23 0.77

Footer 0 0.096 0.092 0.96 85.1 26.41 -- 168 5.25 4 1 414 13.80

Hdr + Ftr vdd / 0 0.095 0.024 0.25 22.2 6.89 -- 168 5.25 13 3.25 404 13.47

Header + 0.096 0.018 0.19 0.6 0.19 1 32 1 12 3.00 23 0.77

Footer - 0.095 0.081 0.84 99.9 31.01 -- 194 6.06 4 1 496 16.53

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 0.7 -- 32 -- 5 -- 26 --

Header t 0.021 0.020 0.95 0.7 1 1 32 1 8 1.60 21 0.81

Footer t 0.021 0.018 0.86 4.3 6.05 -- 85 2.66 5 1 152 5.85

Hdr + Ftr t 0.021 0.017 0.81 4.0 5.71 -- 85 2.66 9 1.80 146 5.62

Header vdd 0.021 0.020 0.95 0.7 1 1 32 1 11 2.20 20 0.77

Footer 0 0.021 0.017 0.81 15.7 22.31 -- 168 5.25 5 1 334 12.85

Hdr + Ftr vdd / 0 0.021 0.016 0.76 14.8 21.00 -- 168 5.25 13 2.60 325 12.50

Header + 0.021 0.018 0.86 0.6 0.86 1 32 1 12 2.40 20 0.77

Footer -

Hdr + Ftr + / -

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



249 

 

Table C.16.  8T energy 1 V VDD results of headers/footers per four cells 

 
* The average energy is calculated as 80% of the read energy plus 20% of the write energy. 
+
 Number of 32×1024 arrays “N” required for the total EDP (for one active array and N-1 in 

sleep-mode) to be less than or equal to the EDP of N arrays of the nominal cell. 

Val Val Comp Val Comp Rd Comp Wr Comp Ave* Comp

Nom. 0.592 0.592 -- 19.9 -- 0.9 -- 6.9 -- 2.1 --

Header t 0.592 0.514 0.87 17.2 0.87 1 0.8 0.89 3.9 0.57 1.5 0.71

Footer t 0.591 0.159 0.27 37.6 1.90 -- 3.9 4.33 7.2 1.04 4.6 2.19

Hdr + Ftr t 0.591 0.080 0.14 18.5 0.93 214 4.0 4.44 5.3 0.77 4.2 2.00

Header vdd 0.592 0.512 0.86 17.2 0.86 1 0.8 0.89 3.5 0.51 1.4 0.67

Footer 0 0.590 0.145 0.24 130.9 6.59 -- 6.2 6.89 8.7 1.26 6.7 3.19

Hdr + Ftr vdd / 0

Header + 0.592 0.502 0.85 15.8 0.80 1 0.8 0.89 3.4 0.49 1.3 0.62

Footer - 0.590 0.094 0.16 112.4 5.66 -- 6.7 7.44 9.2 1.33 7.2 3.43

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 0.7 -- 0.3 -- 5.0 -- 1.2 --

Header t 0.021 0.020 0.95 0.7 1 1 0.3 1 3.7 0.74 0.9 0.75

Footer t 0.021 0.018 0.86 4.4 6.19 -- 1.5 5.00 4.8 0.96 2.2 1.83

Hdr + Ftr t 0.021 0.017 0.81 4.0 5.71 -- 1.5 5.00 3.8 0.76 2.0 1.67

Header vdd 0.021 0.020 0.95 0.7 1 1 0.2 0.67 3.4 0.68 0.9 0.75

Footer 0 0.021 0.017 0.81 15.7 22.31 -- 1.7 5.67 4.8 0.96 2.4 2.00

Hdr + Ftr vdd / 0 0.021 0.016 0.76 14.8 21.00 -- 1.8 6.00 3.6 0.72 2.2 1.83

Header + 0.021 0.018 0.86 0.6 0.86 1 0.2 0.67 3.4 0.68 0.9 0.75

Footer - 0.021 0.006 0.29 7.4 10.50 -- 1.8 6.00 4.9 0.98 2.4 2.00

Hdr + Ftr + / - 0.021 0.003 0.14 3.7 5.25 -- 1.9 6.33 3.6 0.72 2.2 1.83

Nom. 0.096 0.096 -- 3.2 -- 0.4 -- 3.2 -- 0.9 --

Header t 0.096 0.030 0.31 1.0 0.31 1 0.3 0.75 2.5 0.78 0.8 0.89

Footer t 0.096 0.093 0.97 22.5 7.00 -- 1.8 4.50 3.3 1.03 2.1 2.33

Hdr + Ftr t 0.096 0.026 0.27 6.2 1.91 -- 1.8 4.50 2.7 0.84 2.0 2.22

Header vdd 0.096 0.028 0.29 0.9 0.29 1 0.3 0.75 2.4 0.75 0.7 0.78

Footer 0 0.096 0.092 0.96 85.1 26.41 -- 2.2 5.50 3.6 1.13 2.5 2.78

Hdr + Ftr vdd / 0 0.095 0.024 0.25 22.2 6.89 -- 2.3 5.75 2.9 0.91 2.4 2.67

Header + 0.096 0.018 0.19 0.6 0.19 1 0.3 0.75 2.3 0.72 0.7 0.78

Footer - 0.095 0.081 0.84 99.9 31.01 -- 2.3 5.75 3.7 1.16 2.6 2.89

Hdr + Ftr + / -

Nom. 0.021 0.021 -- 0.7 -- 0.3 -- 3.0 -- 0.8 --

Header t 0.021 0.020 0.95 0.7 1 1 0.3 1 2.3 0.77 0.7 0.88

Footer t 0.021 0.018 0.86 4.3 6.05 -- 1.5 5.00 2.9 0.97 1.8 2.25

Hdr + Ftr t 0.021 0.017 0.81 4.0 5.71 -- 1.5 5.00 2.4 0.80 1.7 2.13

Header vdd 0.021 0.020 0.95 0.7 1 1 0.2 0.67 2.2 0.73 0.6 0.75

Footer 0 0.021 0.017 0.81 15.7 22.31 -- 1.7 5.67 3.0 1 2.0 2.50

Hdr + Ftr vdd / 0 0.021 0.016 0.76 14.8 21.00 -- 1.8 6.00 2.4 0.80 1.9 2.38

Header + 0.021 0.018 0.86 0.6 0.86 1 0.2 0.67 2.2 0.73 0.6 0.75

Footer -

Hdr + Ftr + / -

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Energy (fJ)

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



250 

 

Table C.17.  Leakage, delay, and EDP 0.6 V VDD results of headers/footers per four cells 

 

Val Val Comp Val Comp Rd Comp Wr Comp Val Comp

Nom. 0.499 0.499 -- 25.5 -- 51 -- 5 -- 57 --

Header t 0.499 0.434 0.87 22.2 0.87 1 51 1 9 1.80 48 0.84

Footer t 0.499 0.142 0.28 61.2 2.40 -- 148 2.90 5 1 339 5.95

Hdr + Ftr t 0.499 0.078 0.16 33.1 1.30 -- 147 2.88 9 1.80 328 5.75

Header vdd 0.499 0.423 0.85 20.8 0.81 19 50 0.98 123 24.60 192 3.37

Footer 0 0.499 0.134 0.27 622.3 24.39 -- 486 9.53 5 1 2778 48.74

Hdr + Ftr vdd / 0 0.499 0.053 0.11 245.1 9.61 -- 485 9.51 125 25.00 2734 47.96

Header + 0.501 0.423 0.85 20.0 0.78 98 49 0.96 294 58.80 949 16.65

Footer -

Hdr + Ftr + / -

Nom. 0.498 0.498 -- 24.5 -- 50 -- 4 -- 43 --

Header t 0.498 0.434 0.87 21.3 0.87 1 50 1 12 3.00 38 0.88

Footer t 0.497 0.142 0.29 56.3 2.30 -- 142 2.84 4 1 288 6.70

Hdr + Ftr t 0.497 0.078 0.16 30.9 1.26 -- 142 2.84 12 3.00 279 6.49

Header vdd 0.498 0.423 0.85 20.8 0.85 35 50 1 149 37.25 248 5.77

Footer 0 0.496 0.129 0.26 493.3 20.15 -- 441 8.82 4 1 2234 51.95

Hdr + Ftr vdd / 0

Header + 0.469 0.423 0.85 20.8 0.85 149 50 1 31 7.75 948 22.05

Footer -

Hdr + Ftr + / -

Nom. 0.018 0.018 -- 0.9 -- 50 -- 32 -- 13 --

Header t

Footer t 0.018 0.016 0.89 6.3 7.17 -- 142 2.84 31 0.97 58 4.46

Hdr + Ftr t

Header vdd 0.018 0.015 0.83 0.7 0.83 343 50 1 255 7.97 97 7.46

Footer 0 0.018 0.015 0.83 58.9 66.60 -- 447 8.94 31 0.97 253 19.46

Hdr + Ftr vdd / 0 0.018 0.012 0.67 47.1 53.28 -- 447 8.94 254 7.94 248 19.08

Header +

Footer -

Hdr + Ftr + / -

Nom. 0.081 0.081 -- 4.0 -- 50 -- 10 -- 14 --

Header t 0.081 0.027 0.33 1.3 0.33 1 50 1 17 1.70 13 0.93

Footer t 0.081 0.078 0.96 31.4 7.88 -- 143 2.86 10 1 79 5.64

Hdr + Ftr t 0.081 0.024 0.30 9.6 2.42 -- 143 2.86 17 1.70 79 5.64

Header vdd 0.081 0.015 0.19 0.7 0.19 7 50 1 122 12.20 45 3.21

Footer 0 0.080 0.078 0.96 307.8 77.31 -- 448 8.96 9 0.90 485 34.64

Hdr + Ftr vdd / 0 0.080 0.012 0.15 47.4 11.89 -- 448 8.96 125 12.50 473 33.79

Header + 0.079 0.015 0.19 0.7 0.18 30 49 0.98 283 28.30 167 11.93

Footer -

Hdr + Ftr + / -

Nom. 0.018 0.018 -- 0.9 -- 50 -- 18 -- 9 --

Header t 0.018 0.018 1 0.9 1 1 50 1 26 1.44 9 1

Footer t 0.018 0.016 0.89 6.3 7.17 -- 142 2.84 18 1 49 5.44

Hdr + Ftr t 0.018 0.015 0.83 5.9 6.72 -- 142 2.84 26 1.44 49 5.44

Header vdd 0.018 0.015 0.83 0.7 0.83 67 50 1 118 6.56 25 2.78

Footer 0 0.018 0.015 0.83 58.9 66.60 -- 447 8.94 19 1.06 222 24.67

Hdr + Ftr vdd / 0 0.018 0.012 0.67 47.1 53.28 -- 447 8.94 121 6.72 213 23.67

Header + 0.018 0.015 0.83 0.7 0.80 192 49 0.98 271 15.06 65 7.22

Footer -

Hdr + Ftr + / -

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Delay (ps) Ave* EDP (ps×fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



251 

 

Table C.18.  Energy 0.6 V VDD results of headers/footers per four cells 

  

Val Val Comp Val Comp Rd Comp Wr Comp Ave* Comp

Nom. 0.499 0.499 -- 25.5 -- 0.9 -- 2.1 -- 1.1 --

Header t 0.499 0.434 0.87 22.2 0.87 1 0.8 0.89 1.5 0.71 1.0 0.91

Footer t 0.499 0.142 0.28 61.2 2.40 -- 2.1 2.33 2.9 1.38 2.3 2.09

Hdr + Ftr t 0.499 0.078 0.16 33.1 1.30 -- 2.2 2.44 2.4 1.14 2.2 2.00

Header vdd 0.499 0.423 0.85 20.8 0.81 19 1.5 1.67 1.6 0.76 1.6 1.45

Footer 0 0.499 0.134 0.27 622.3 24.39 -- 5.6 6.22 6.2 2.95 5.7 5.18

Hdr + Ftr vdd / 0 0.499 0.053 0.11 245.1 9.61 -- 5.7 6.33 5.4 2.57 5.6 5.09

Header + 0.501 0.423 0.85 20.0 0.78 98 3.2 3.56 3.2 1.52 3.2 2.91

Footer -

Hdr + Ftr + / -

Nom. 0.498 0.498 -- 24.5 -- 0.6 -- 2.0 -- 0.9 --

Header t 0.498 0.434 0.87 21.3 0.87 1 0.6 1 1.6 0.80 0.8 0.89

Footer t 0.497 0.142 0.29 56.3 2.30 -- 1.8 3.00 2.8 1.40 2.0 2.22

Hdr + Ftr t 0.497 0.078 0.16 30.9 1.26 -- 1.9 3.17 2.5 1.25 2.0 2.22

Header vdd 0.498 0.423 0.85 20.8 0.85 35 1.6 2.67 2.0 1 1.7 1.89

Footer 0 0.496 0.129 0.26 493.3 20.15 -- 4.9 8.17 5.7 2.85 5.1 5.67

Hdr + Ftr vdd / 0

Header + 0.469 0.423 0.85 20.8 0.85 149 3.0 5.00 3.2 1.60 3.0 3.33

Footer -

Hdr + Ftr + / -

Nom. 0.018 0.018 -- 0.9 -- 0.1 -- 0.9 -- 0.3 --

Header t

Footer t 0.018 0.016 0.89 6.3 7.17 -- 0.3 3.00 1.0 1.11 0.4 1.33

Hdr + Ftr t

Header vdd 0.018 0.015 0.83 0.7 0.83 343 0.3 3.00 0.8 0.89 0.4 1.33

Footer 0 0.018 0.015 0.83 58.9 66.60 -- 0.4 4.00 1.1 1.22 0.6 2.00

Hdr + Ftr vdd / 0 0.018 0.012 0.67 47.1 53.28 -- 0.5 5.00 1.0 1.11 0.6 2.00

Header +

Footer -

Hdr + Ftr + / -

Nom. 0.081 0.081 -- 4.0 -- 0.1 -- 0.8 -- 0.3 --

Header t 0.081 0.027 0.33 1.3 0.33 1 0.1 1 0.7 0.88 0.3 1

Footer t 0.081 0.078 0.96 31.4 7.88 -- 0.5 5.00 0.9 1.13 0.6 2.00

Hdr + Ftr t 0.081 0.024 0.30 9.6 2.42 -- 0.5 5.00 0.8 1 0.6 2.00

Header vdd 0.081 0.015 0.19 0.7 0.19 7 0.3 3.00 0.6 0.75 0.4 1.33

Footer 0 0.080 0.078 0.96 307.8 77.31 -- 1.0 10.00 1.4 1.75 1.1 3.67

Hdr + Ftr vdd / 0 0.080 0.012 0.15 47.4 11.89 -- 1.0 10.00 1.2 1.50 1.1 3.67

Header + 0.079 0.015 0.19 0.7 0.18 30 0.6 6.00 0.7 0.88 0.6 2.00

Footer -

Hdr + Ftr + / -

Nom. 0.018 0.018 -- 0.9 -- 0.1 -- 0.6 -- 0.2 --

Header t 0.018 0.018 1 0.9 1 1 0.1 1 0.6 1 0.2 1

Footer t 0.018 0.016 0.89 6.3 7.17 -- 0.3 3.00 0.6 1 0.3 1.50

Hdr + Ftr t 0.018 0.015 0.83 5.9 6.72 -- 0.3 3.00 0.6 1 0.3 1.50

Header vdd 0.018 0.015 0.83 0.7 0.83 67 0.2 2.00 0.4 0.67 0.2 1

Footer 0 0.018 0.015 0.83 58.9 66.60 -- 0.4 4.00 0.7 1.17 0.5 2.50

Hdr + Ftr vdd / 0 0.018 0.012 0.67 47.1 53.28 -- 0.4 4.00 0.6 1 0.5 2.50

Header + 0.018 0.015 0.83 0.7 0.80 192 0.2 2.00 0.4 0.67 0.2 1

Footer -

Hdr + Ftr + / -

Leakage EDP / 

Array in Sleep-

Mode (ps×fJ)

Leakage / Cell in 

Sleep-Mode (nA)

Scheme

Pass; Inv-N; 

Inv-P; Read

Leak. 

Tran.

Leak. 

Tran. 

Config.

Leak. / 

Cell (nA)

# Arrays 

for Break-

Even EDP
+

32 bits × 1024 words Array

Energy (fJ)

6
T SG

t; t; t

8
T

SG

3 x t; t; t; t

LP_SGR

-; -; +; t

LP_INV1

t; -; vdd; t

LP_INV1.2

t; -; +; t



252 

 

Appendix D  

An Exploration into FinFET SRAM Thermal Performance 

A potential downside to FinFET devices is they suffer from problems with self-heating.  

FinFETs are often manufactured as a silicon-on-insulator (SOI) device which increases its 

thermal isolation, thus reducing the ability of the devices to dissipate heat through the substrate.  

The geometry of FinFETs is also an obstacle in dealing with self-heating.  The vertical structure 

of FinFETs allows the devices to be more closely packed, reducing area over planar devices but 

also reducing heat dissipation.  A FinFET with many fins experiences an increased temperature 

for the innermost fins as these are thermally insulated by the surrounding fins [44].  As any 

device’s temperature increases, the operational properties of the device also changes. 

At the system level, hotter devices lead to a number of issues.  Power dissipation 

increases, especially leakage power which is troublesome for SRAMs.  Delay also increases, thus 

overall energy consumption is greatly increased.  Over time, hot devices may wear out and fail, 

leading to irreversible system failure unless redundancy is in place.  The following subsections 

present the simulation environment and the simulation summary for an attempt to quantify the 

thermal performance of the FinFET 8T SG SRAM cell. 

D.1 Electro-Thermal Co-Simulation Environment 

FinFET device temperatures can be calculated from the device current and the thermal 

resistances and capacitances of the FinFETs by using one of a few available models [44] [45] 

[46] [46].  In this exploration, a simplification of the self-heating equivalent circuit’s transfer 

function from [46] was used to calculate the change in FinFET temperature; this equation is: 

 



253 

 

ΔT = Idevice * VDD * Rth * e
-Δt/(Rth * Cth)

 

where ΔT is the change in FinFET temperature, Δt is the length of time or time-step length, Idevice 

is the average current through a FinFET during Δt, VDD is the supply voltage, Rth is the thermal 

resistance, and Cth is the thermal capacitance.  The values of Rth and Cth are 5000 K/W and 

1×10
-12

 W*s/K, respectively, and were obtained from [47]. 

Exploratory electro-thermal co-simulation was performed by substituting the effects of 

increased device temperature back into the electrical simulation for a piecewise transient 

simulation.  Due to the limited functionality of the simulator, the global temperature of the 

SRAM array is updated to reflect the maximum temperature increase experienced by a FinFET 

in the circuit.  A time-step was chosen to determine how often to evaluate the device 

temperatures for the electrical transient analysis.  At each evaluation, the global temperature was 

updated to simulate the impact of increasing device temperature, and the transient analysis was 

then allowed to resume.  This is a relatively simple, albeit lower accuracy setup.  It may still 

suffice as an estimation however, as only one SRAM cell is simulated at a time and the device 

self-heating may be similar for the FinFETs in such a small circuit.  The following subsection 

includes the Perl script used to run the thermal simulations. 

D.1.1 run_therm_ufdg.pl Perl Script for Thermal FinFET Simulations 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my $Version_Date = 'Mar. 23, 2013'; 

my $Script_Name = 'run_therm_ufdg.pl'; 

 

# Requires script: 

my $Run_Ufdg = 'run_ufdg.pl'; 

 

# Constants: 

my $Default_Run_Opts = '-c'; 

my $Netlist_Suffix = '.i'; 

my $Tcl_Name = 'meas_8t_thermal.tcl'; 

 



254 

 

my $Rtherm = 5e3; 

my $Ctherm = 1e-12; 

 

# Usage: 

my $Usage = ''. 

'Usage: '.$Script_Name."  deck_name\n"; 

my $Min_Arg_Num = 1; 

 

### 

 

print "**$Script_Name version date: $Version_Date**\n"; 

die $Usage if scalar @ARGV < 1; 

my $argnum = scalar @ARGV; 

die "Error: Not enough parameters\n\n$Usage" if $argnum < $Min_Arg_Num; 

 

my $i = 0; 

my $arg = shift; 

while( $arg =~ m/^-/ ) { 

  die "Error: Not enough parameters\n\n$Usage" if $argnum < (++$i + $Min_Arg_Num); 

  if( $arg =~ m/^-(\S+)/ ) { # Found options 

    my $argmatch = $1; 

 

    # Check single letter options first 

 

    # Check options which require another argument 

  }  

  $arg = shift; 

} 

my $deckname = $arg; 

 

open IN, "<$deckname$Netlist_Suffix" or die 'Error: Cannot open ', 

$deckname.$Netlist_Suffix, ' due to: ', $!; 

my @netlist = <IN>; 

close IN; 

 

my @grep_lines = grep /thermsimlen/i, @netlist; 

my $thermsimlen = 0; 

if( $grep_lines[0] =~ m/\.param\s+thermsimlen\s*=\s*(\d+)/i ) { 

  $thermsimlen = $1; 

} 

@grep_lines = grep /thermstep/i, @netlist; 

my $thermstep = 0; 

if( $grep_lines[0] =~ m/\.param\s+thermstep\s*=\s*(\d+)/i ) { 

  $thermstep = $1; 

} 

@grep_lines = grep /tempc/i, @netlist; 

my $temp = 0; 

if( $grep_lines[0] =~ m/\.param\s+tempc\s*=\s*(\d+)/i ) { 

  $temp = $1; 

} 

@grep_lines = grep /vdd_val/i, @netlist; 

my $vdd_val = 0; 

if( $grep_lines[0] =~ m/\.param\s+vdd_val\s*=\s*(\d+)/i ) { 

  $vdd_val = $1; 

} 

 

my $simbegt; 

my $simendt; 

my $num_thermsteps = $thermsimlen / $thermstep; 

my $tempinc; 

for( $i = 0; $i < $num_thermsteps-1; $i++ ) { 

  $simbegt = $i * $thermstep; 

  foreach (@netlist) { 



255 

 

    s/\.param\s+simbegt\s*=\s*\d+/.param simbegt = $simbegt/i; 

  } 

  $simendt = ($i+1) * $thermstep; 

  foreach (@netlist) { 

    s/\.param\s+simendt\s*=\s*\d+/.param simendt = $simendt/i; 

  } 

 

  open OUT, ">$deckname$i$Netlist_Suffix" or die 'Error: Cannot open ', 

$deckname.$i.$Netlist_Suffix, ' due to: ', $!; 

  print OUT @netlist; 

  close OUT; 

  system( ($Run_Ufdg, $Default_Run_Opts, $deckname.$i) ) == 0 or die "Error: 

\"$Run_Ufdg $Default_Run_Opts $deckname$i\" failed"; 

 

  open EZWAVE, "echo \"$deckname$i\" | run_wdb_server -do $Tcl_Name |" or die 'Error: 

Cannot run EZWave with ', $Tcl_Name; 

  my $data_names_str = <EZWAVE>; # Measurement names are on the first line of TCL 

output, data values are on subsequent lines 

  #my @data_names = split /[,\n]/, $data_names_str; 

  my $tcl_data = <EZWAVE>; 

  close EZWAVE; 

  my @data = split /,/, $tcl_data; 

  print $i, '-->', $data[-1], "\n"; 

 

  $tempinc = $vdd_val*$data[-1]*$Rtherm*exp(-1*$thermstep*1e-12/($Rtherm*$Ctherm)); 

  print $i, '-->', $tempinc, "\n"; 

  $temp += $tempinc; 

  foreach (@netlist) { 

    s/\.param\s+tempc\s*=\s*\d+\.?\d*/.param tempc = $temp/i; 

  } 

} 

 

$simbegt = $i * $thermstep; 

foreach (@netlist) { 

  s/\.param\s+simbegt\s*=\s*\d+/.param simbegt = $simbegt/i; 

} 

$simendt = $thermsimlen; 

foreach (@netlist) { 

  s/\.param\s+simendt\s*=\s*\d+/.param simendt = $simendt/i; 

} 

 

open OUT, ">$deckname$i$Netlist_Suffix" or die 'Error: Cannot open ', 

$deckname.$i.$Netlist_Suffix, ' due to: ', $!; 

print OUT @netlist; 

close OUT; 

 

system( ($Run_Ufdg, $Default_Run_Opts, $deckname.$i) ) == 0 or die "Error: \"$Run_Ufdg 

$Default_Run_Opts $deckname$i\" failed"; 

 

open EZWAVE, "echo \"$deckname$i\" | run_wdb_server -do $Tcl_Name |" or die 'Error: 

Cannot run EZWave with ', $Tcl_Name; 

my $data_names_str = <EZWAVE>; # Measurement names are on the first line of TCL 

output, data values are on subsequent lines 

#my @data_names = split /[,\n]/, $data_names_str; 

my $tcl_data = <EZWAVE>; 

close EZWAVE; 

my @data = split /,/, $tcl_data; 

print $i, '-->', $data[-1], "\n"; 

 

$tempinc = $vdd_val*$data[-1]*$Rtherm*exp(-1*($simendt-$simbegt)*1e-

12/($Rtherm*$Ctherm)); 

print $i, '-->', $tempinc, "\n"; 

$temp += $tempinc; 



256 

 

D.2 Simulation Summary 

Thermal simulations were attempted for the 8T SRAM SG cell.  At a VDD of 1 V and a 

nominal ambient temperature of 27°C, a time-step of 50 ps was used for the simulation to 

reevaluate and update the global temperature of a transient analysis which included read and 

write operations to one cell.  At each time-step, a change in temperature of between 3 and 4 µK 

was calculated.  However, unfortunately, this change in temperature was too small, by trial-and-

error it seems that at least a 100 µK change in temperature is required, to register any change 

with the simulator—the simulator rounded this temperature to the original value, e.g. for a 

simulation beginning at 27°C, the first time-step would reevaluate and update the global 

temperature to 27.000004°C, however, the simulator then rounds this temperature back to 27°C 

effectively negating the attempt at electro-thermal simulation. 

If the changes in temperature at each time-step could be preserved, then over the course 

of the simulation a larger overall change in temperature would be witnessed and the performance 

of the SRAM array could be noticeably affected.  However, for this to happen in a future 

research project, a different simulator or electro-thermal simulation environment must be used.  

More advanced Spice simulators, such as hSpice, have the capability to accommodate this, as 

well as device simulators.  



257 

 

Appendix E  

Publications 

The following subsections list the published journal and conference publications 

produced thus far while working on the research presented in this dissertation. 

E.1 Journal Publications 

1. M. A. Turi and J. G. Delgado-Frias, “Decreasing energy consumption in address 

decoders by means of selective precharge schemes,” Microelectronics Journal, vol. 40, 

no. 11, pp. 1590-1600, Nov. 2009. 

(Invited Paper for Special Issue: Digital and Mixed-Signal Circuits and Systems from 

MWSCAS 2007 publication) 

 

2. M. A. Turi and J. G. Delgado-Frias, “High-performance low-power selective precharge 

schemes for address decoders,” IEEE Transactions on Circuits and Systems II, Express 

Briefs, vol. 55, no. 9, pp. 917-921, Sept. 2008. 

E.2 Conference Publications 

1. C. M. Gerik, M. A. Turi, and J. G. Delgado-Frias, “FinFET 3T and 3T1D dynamic RAM 

cells,” in Proceedings of 55th IEEE International Midwest Symposium on Circuits and 

Systems, pp. 454-457, Aug. 5-8, 2012, Boise, ID. 

 

2. Z. Zhang, M. A. Turi, and J. G. Delgado-Frias, “SRAM leakage in CMOS, FinFET, and 

CNTFET technologies,” in Proceedings of 22nd ACM Great Lakes Symposium on VLSI, 

pp. 267-270, May 3-4, 2012, Salt Lake City, UT. 

 

3. M. A. Turi and J. G. Delgado-Frias, “Performance-power tradeoffs of 8T FinFET SRAM 

cells,” in Proceedings of 54th IEEE International Midwest Symposium on Circuits and 

Systems, Aug. 7-10, 2011, Seoul, South Korea. 

 

4. J. G. Delgado-Frias, Z. Zhang, and M. A. Turi, “Low-power SRAM cell design for 

FinFET and CNTFET technologies,” in Proceedings of 1st IEEE Workshop of Low 

Power SoC in International Green Computing Conference, pp. 547-553, Aug. 18, 2010, 

Chicago, IL. 

 

5. M. A. Turi, J. G. Delgado-Frias, and N. K. Jha, “Low-power FinFET design schemes for 

NOR address decoders,” in Proceedings of 2010 IEEE International Symposium on VLSI 

Design, Automation, and Test, pp. 74-77, Apr. 26-29, 2010, Hsinchu, Taiwan. 

 



258 

 

6. M. A. Turi and J. G. Delgado-Frias, “High-performance low-power AND and sense-amp 

address decoders with selective precharging,” in Proceedings of 2008 IEEE International 

Symposium on Circuits and Systems, pp. 1464-1467, May 18-21, 2008, Seattle, WA. 

 

7. M. A. Turi and J. G. Delgado-Frias, “Reducing power in memory decoders by means of 

selective precharge schemes,” in Proceedings of 50th IEEE International Midwest 

Symposium on Circuits and Systems, pp. 956-959, Aug. 5-8, 2007, Montréal, Canada. 

 


	List of Tables
	List of Figures
	Chapter 1   Introduction
	1.1 FinFET Technology
	1.1.1 FinFET Back-Gate Biasing Strategies
	1.1.2 FinFET Technology Model
	1.1.3 Simulation Environment

	1.2 SRAM Memories

	Chapter 2   A Background into 6T SRAM Cells
	2.1 6T FinFET SRAM Design Options
	2.2 6T FinFET SRAM Design Schemes
	2.3 Simulation Setup
	2.4 6T FinFET SRAM Performance Results
	2.4.1 6T FinFET SRAM Dynamic Performance
	2.4.2 6T FinFET SRAM Leakage Current
	2.4.3 6T FinFET SRAM Noise Margins
	2.4.4 6T FinFET SRAM Overall Performance Summary


	Chapter 3   8T SRAM Cells
	3.1 8T FinFET SRAM Design Options
	3.2 8T FinFET SRAM Design Schemes
	3.3 Simulation Setup
	3.4 8T FinFET SRAM Performance Results
	3.4.1 8T FinFET SRAM Read Operation
	3.4.2 8T FinFET SRAM Write Operation
	3.4.3 8T FinFET SRAM Leakage Current
	3.4.3.1 Cross-Coupled Inverter Leakage
	3.4.3.2 Write Leakage
	3.4.3.3 Read Leakage

	3.4.4 8T FinFET SRAM Noise Margins
	3.4.5 8T FinFET SRAM Overall Performance Summary

	3.5 8T FinFET SRAM Comparisons to 6T FinFET and 8T CMOS
	3.5.1 Dynamic Performance Comparisons to 6T FinFET Cells
	3.5.2 Dynamic Performance Comparisons to 32 nm CMOS 8T Cell
	3.5.3 Leakage Current Comparisons to 6T FinFET Cells
	3.5.4 Leakage Current Comparisons to 32 nm CMOS 8T Cell
	3.5.5 Noise Margin Comparisons to 6T FinFET Cells
	3.5.6 Noise Margin Comparisons to 32 nm CMOS 8T Cell


	Chapter 4   FinFET SRAM under Process Voltage Temperature Variations
	4.1 Performance under Process/Parameter Variations
	4.1.1 Read Operation
	4.1.2 Write Operation
	4.1.3 Leakage Current
	4.1.4 Noise Margins
	4.1.5 Overall Performance

	4.2 Performance under Supply Voltage Variations
	4.3 Performance under Bias Voltage Variations
	4.4 Performance under Temperature Variations
	4.5 Summary of FinFET SRAM PVT Variations

	Chapter 5   FinFET SRAM Low-Leakage Modifications
	5.1 Header/Footer FinFETs per Cell
	5.2 Header/Footer FinFETs per Two Cells
	5.3 Header/Footer FinFETs per Four Cells
	5.4 Summary of SRAM Usage of Header/Footer FinFETs

	Chapter 6   Near-Threshold FinFET SRAM Operation
	6.1 SRAM Performance Results
	6.2 SRAM Speed Enhancements
	6.2.1 Word-line Boosting for 6T SRAMs
	6.2.2 Word-line/Write-line and Read-line Boosting for 8T SRAMs

	6.3 Process, Voltage, and Temperature Variations
	6.3.1 Process/Parameter Variations
	6.3.2 Supply Voltage Variations
	6.3.3 Bias Voltage Variations
	6.3.4 Temperature Variations
	6.3.5 Summary of PVT Variations

	6.4 Low-Leakage Modifications: Header/Footer FinFETs

	Chapter 7   Conclusions
	7.1 Contributions
	7.2 Future Work

	References
	Appendix A  Simulation Scripts
	A.1 run_ufdg.pl
	A.2 netgen_ufdg.pl
	A.3 mkout_ufdg.pl
	A.4 init_batch_ufdg.pl
	A.5 batchexec_ufdg.pl
	A.6 meas_ezwave.pl
	A.7 meas_stub.tcl

	Appendix B  FinFET and CMOS Address Decoders
	B.1 FinFET NOR Decoder
	B.1.1 Simulation Setup
	B.1.2 Dynamic Performance: Delay and Current
	B.1.3 Static/Inactive Performance: Leakage Current
	B.1.4 Overall Performance
	B.1.5 Performance under PVT Variations
	B.1.6 Conclusions

	B.2 CMOS Memory Address Decoders
	B.2.1 The Conventional NOR Decoder
	B.2.2 The AND-NOR Decoder
	B.2.3 The Sense-Amp Decoder
	B.2.4 The AND Decoder
	B.2.5 Simulation Environment
	B.2.6 Decoding Scheme Performance
	B.2.6.1 Decoder Current Consumption
	B.2.6.2 Peripheral Current Consumption
	B.2.6.3 Total Current, Power, and Energy

	B.2.7 Performance with Parameter Variations
	B.2.8 Decoder Scalability
	B.2.9 Conclusions


	Appendix C  Complete Data for FinFET SRAM Low-Leakage Modifications
	Appendix D  An Exploration into FinFET SRAM Thermal Performance
	D.1 Electro-Thermal Co-Simulation Environment
	D.1.1 run_therm_ufdg.pl Perl Script for Thermal FinFET Simulations

	D.2 Simulation Summary

	Appendix E  Publications
	E.1 Journal Publications
	E.2 Conference Publications


