
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2008

Development of an FPGA based autopilot
hardware platform for research and development of
autonomous systems
Wendy Alvis
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Alvis, Wendy, "Development of an FPGA based autopilot hardware platform for research and development of autonomous systems"
(2008). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/118

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Development of an FPGA Based Autopilot Hardware Platform for Research and

Development of Autonomous Systems

by

Wendy Alvis

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Co-Major Professor: Wilfrido Moreno, Ph.D.
Co-Major Professor: Kimon Valavanis, Ph.D.

James T. Leffew, Ph.D.
Paris Wiley, Ph.D.

Richard Wallace, Ph.D.
MaryAnne Fields, Ph.D.

Date of Approval:
March 3, 2008

Keywords: Field Programmable Gate Array, unmanned systems, embedded systems,
analog design, UGV

© Copyright 2008, Wendy Alvis

DEDICATION

To God for giving me the strength to get through many sleepless nights, the

stubborn nature that kept me from ever giving up on my goals and the gift of surrounding

me with such wonderful friends and family who encouraged me along the way.

To the light of my life, my daughter Danielle, who so generously gave up time

with her mother in order for me to realize my dream. Her friendship and love is the

greatest gift in my life.

To my husband, my one and only true love and my sole-mate Jim, for putting his

goals on hold in order to support mine. I could not have completed this dream without

his patience, emotional support and financial sacrifices.

To my parents, Jacqueline and Harry Trietley, for always being there to support

and help me over the years.

To my grandmother, Marjorie Bechtold, for all her prayers and unconditional

love; this gave me the self confidence to succeed.

To my sister and her family, Lisa, Andy and Heather Patterson, their words of

friendship and encouragement were always there to bolster me.

ACKNOWLEDGEMENTS

I thank all the caring and supportive professors that I have had the privilege of

working with during my time at the University of South Florida. In particular:

Dr. Leffew; who never turns away a student in need of help,

Dr. Moreno; for all the years as my advisor, encouraging words along the way and

late nights revising work completed at the last minute,

Dr. Valavanis; for introducing me to robotics and his support and advice while

working on my Ph.D.

I thank the staff of the Army Research Lab for the wonderful summer interning in

Maryland, the financial support through a fellowship and their assistance while working

on the autopilot. In particular: Dr Wilkerson for making everything possible and Dr

Fields for going out of her way to be available for advice and trips to Florida.

I thank my closest friends, Kim Piper, Kim Skinner, Kathy Brown and Shashikala

Murthy for their words of encouragement and understanding. An additional thank-you to

Shashi for all the hours spent working with me and her excellent work with System

Generator.

I thank Xilinx, for their generous contribution of software, Ron, of Advanced

Circuits, for the tedious task of assembling the autopilot board and J H Technology, for

the use of their equipment and electrical components.

This research was supported in part by an appointment to the Student Research

Participation Program at the U.S. Army Research Laboratory administered by the Oak

Ridge Institute for Science and Education through an interagency agreement between the

U.S. Department of Energy and the US ARL. This work was also partially supported by

grant ARO W911NF-06-1-0069 and grant SPAWAR N00039-06-C-0062.

i

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES .. vii

ABSTRACT ... xiii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 RELATED WORK ... 7

2.1 Commercial Autopilots ... 7

2.2 Related State of the Art Research ... 10

2.2.1 Microprocessor/DSP Low Power Autopilots 11

2.2.2 Full Computer Implementations .. 12

2.2.3 Implementations Utilizing FPGAs .. 14

2.3 Overview of Autopilot Implementations .. 16

CHAPTER 3 AUTOPILOT REQUIREMENTS .. 18

CHAPTER 4 AUTOPILOT ENVIRONMENT .. 22

4.1 Hardware Overview .. 22

4.2 Autopilot Software Environment .. 25

4.2.1 Hardware Co-Simulation Timing Issues 27

4.2.2 FPAA Programming and Utilization ... 30

4.2.3 Utilizing Pressure Sensors for Altitude and Velocity 32

4.2.4 Initializing the MicroSD Card ... 32

ii

4.2.5 Disabling RS232 Ports .. 33

4.2.6 Setting Variable Voltage I/O Ports .. 34

4.2.7 Utilizing PWM Output Block ... 34

4.2.8 RS232 Communication Subsystems ... 36

4.2.9 FPGA RAM Data Acquisition Library Block 38

4.2.10 Superstar II GPS Communication Protocol 40

4.2.11 MicroStrain IMU Communication Protocol 41

CHAPTER 5 HARDWARE DESIGN .. 42

5.1 Processing Hardware Selection... 42

5.2 Analog Input Design ... 44

5.3 Communication Voltage Level Circuitry.. 46

5.4 Altitude and Velocity Measurement with Pressure Sensors 48

5.5 Data Acquisition Memory ... 51

5.6 Actuator Control Selector Circuitry .. 51

5.6.1 Safety Switch CPLD Logic ... 53

5.7 Power Supply Circuitry... 55

CHAPTER 6 AUTOPILOT SOFTWARE DESIGN .. 57

6.1 FPAA Program Logic Design ... 60

6.2 FPAA Receive Logic Design .. 62

6.3 Pressure Sensor A/D Logic Design... 64

6.4 Micro Secure Digital Software Design ... 69

6.5 RS232 Logic Design ... 77

6.5.1 RS232 Disable Logic .. 77

iii

6.5.2 RS232 Send Logic Design .. 77

6.5.3 RS232 Receive Logic Design ... 78

6.5.4 RS232 Down-Sample Logic .. 82

6.6 Variable I/O Port Voltage Set Logic ... 83

6.7 Servo PWM Output Logic .. 87

6.8 FPGA RAM Data Acquisition Software Design .. 90

6.9 GPS Unit Communication Protocol .. 92

6.10 IMU Unit Communication Protocol ... 96

CHAPTER 7 RC-TRUCK IMPLEMENTATION ... 99

7.1 RC-Truck Controller Design ... 104

7.1.1 ASCII Data Collection .. 107

7.1.2 Battery Monitoring Design .. 112

7.1.3 Double and Float Conversion to Binary 113

7.1.4 Heading Set Point Control... 117

7.1.5 Velocity Set Point Control .. 120

7.1.6 Servo Control .. 121

7.2 RC-Truck Results.. 125

CHAPTER 8 CONCLUSIONS .. 133

REFERENCES ... 135

APPENDICES .. 140

Appendix A Details of Commercial Autopilots ... 141

Appendix B Port Connections to the FPGA .. 144

iv

Appendix C Detailed Schematics .. 155

Appendix D Safety Switch Code ... 167

ABOUT THE AUTHOR ... End Page

v

LIST OF TABLES

Table 1: Autopilot Specifications .. 24

Table 2: RS232 Send Input Timing ... 38

Table 3: Single Switch Truth Table ... 54

Table 4: RS232 Bit Timing .. 79

Table 5: Port Setting Control Counter ... 85

Table 6: GPS Information Formatting ... 93

Table 7: Kestral by Procerus .. 141

Table 8: MP2028 by Micropilot .. 141

Table 9: Ezi-Nav by Autonomous Unmanned Air Vehicles, (AUAV) 141

Table 10: Phoenix by O-Navi .. 142

Table 11: Piccolo II by Cloudcap .. 142

Table 12: Microbot by Microbotics ... 143

Table 13: LED and Switch Port Assignments ... 144

Table 14: Daughter Board Connector One Safety Switch Connectors 145

Table 15: Daughter Board Connector One .. 146

Table 16: Daughter Board Connector Two .. 147

Table 17: FPAA Connections .. 148

Table 18: TTL I/O Ports One to Three Connections ... 149

Table 19: TTL I/O Ports Four to Six Connections .. 150

vi

Table 20: Flash Memory .. 150

Table 21: Pressure Sensor Connections ... 151

Table 22: FPGA PWM Connections.. 151

Table 23: PWM Output Port Connections ... 152

Table 24: Pilot Input Connections ... 153

Table 25: RS232 Connections ... 154

vii

LIST OF FIGURES

Figure 1: Autopilot Board Overview ... 23

Figure 2: Software Block Diagram .. 26

Figure 3: Autopilot Template ... 28

Figure 4: Simulink System Period Setting ... 30

Figure 5: FPAA Program Settings ... 31

Figure 6: FPAA Configuration M-File .. 31

Figure 7: Disabling Pressure Sensor .. 32

Figure 8: MicroSD Card Template Subsystem .. 33

Figure 9: RS232 Enable ... 33

Figure 10: Variable I/O Port Settings .. 34

Figure 11: PWM Subsystem Settings .. 35

Figure 12: Setting Input Port Timing ... 37

Figure 13: Setting Baud Rate ... 37

Figure 14: RS232 Down-Sample ... 38

Figure 15: Record Data Library Subsystem and Settings .. 39

Figure 16: IMU Communication Library Block .. 41

Figure 17: Voltage Measurement Circuit for Analog .. 46

Figure 18: Adjustable Logic Level Circuitry ... 47

Figure 19: Pressure Sensor Circuitry ... 49

viii

Figure 20: Actuator Control ... 52

Figure 21: Safety Switch Block Diagram .. 54

Figure 22: Single Switch Logic ... 55

Figure 23: FPAA Clock Signal .. 60

Figure 24: Terminating Input Ports.. 61

Figure 25: Program FPAA Logic ... 62

Figure 26: FPAA A/D Communication Protocol .. 63

Figure 27: FPAA Receive Logic.. 63

Figure 28: A/D Communication Block Diagram ... 65

Figure 29: A/D Converter Timing ... 66

Figure 30: Logic to Generate Convert Output ... 67

Figure 31: A/D Clock Generator .. 67

Figure 32: Pressure Sensor A/D Input Logic ... 68

Figure 33: MicroSD Card Response .. 70

Figure 34: MicroSD Card Initialization Logic... 70

Figure 35: CMD0 Subsystem .. 71

Figure 36: CMD0 Logic Output Subsystem .. 73

Figure 37: MicroSD Send CMD8 Subsystem .. 73

Figure 38: MicroSD Receive CMD8 Response Subsystem .. 74

Figure 39: MicroSD CMD1 Subsystem ... 75

Figure 40: MicroSD CMD16 Subsystem ... 76

Figure 41: RS232 Enable Logic ... 77

Figure 42: Send RS232 .. 78

ix

Figure 43: RS232 Receive Diagram .. 78

Figure 44: RS232 Receive One Byte ... 80

Figure 45: RS232 Timer Control Logic ... 81

Figure 46: RS232 Receive Byte Subsystem .. 81

Figure 47: Down-Sampling New Bit Logic ... 83

Figure 48: Down-Sampling RS232 Symbol .. 83

Figure 49: Variable Port Voltage Set Subsystem .. 84

Figure 50: Potentiometer SPI Protocol .. 85

Figure 51: Variable Port Data Output Multiplexer .. 86

Figure 52: PWM Generate Block Diagram ... 87

Figure 53: PWM Generator ... 89

Figure 54: Generated PWM Output ... 89

Figure 55: RAM Data Acquisition Logic .. 90

Figure 56: Receive Superstar II Library Block .. 92

Figure 57: Superstar II Receive Subsystem ... 94

Figure 58: GPS Communication Control Counter Subsystem .. 95

Figure 59: GPS Communication Subsystem Update Output Subsystem......................... 95

Figure 60: IMU Protocol Library Block .. 96

Figure 61: MicroStrain Receive Stabilized Euler Angles Subsystem 97

Figure 62: IMU Control Count Subsystem .. 97

Figure 63: IMU Send Command Subsystem ... 98

Figure 64: RC-Truck Model Block Diagram ... 99

Figure 65: RC-Truck Control System .. 100

x

Figure 66: Modified RC-Truck Control System .. 101

Figure 67: Simulink Implementation of Way Point Generator 102

Figure 68: RC-Truck Simulation Velocity Output .. 103

Figure 69: RC-Truck Simulation Heading and Position .. 103

Figure 70: Hardware RC-Truck Control System ... 105

Figure 71: RC-Truck with Sensors and Power Supply .. 107

Figure 72: Send ASCII Subsystem .. 108

Figure 73: Convert to ASCII Subsystem ... 110

Figure 74: Convert Fraction to ASCII ... 111

Figure 75: FPAA Program for Battery Monitoring ... 112

Figure 76: Program for Battery Monitoring ... 113

Figure 77: Single and Double Representation Word Format ... 114

Figure 78: Double to Binary Conversion ... 116

Figure 79: Heading Set Point Control Subsystem ... 117

Figure 80: Hardware Way Point Generator M-File ... 118

Figure 81: Heading Correction Subsystem .. 120

Figure 82: Velocity Set Point Subsystem .. 121

Figure 83: Servo Control Block Diagram .. 122

Figure 84: Velocity Limiting M-File ... 124

Figure 85: Steering Limiting M-File .. 125

Figure 86: Velocity Response for Trial One .. 126

Figure 87: Trajectory for Trial One ... 127

Figure 88: Velocity Response for Trial Two ... 127

xi

Figure 89: Trajectory for Trial Two ... 128

Figure 90: Velocity Response for Trial Three ... 128

Figure 91: Trajectory for Trial Three ... 129

Figure 92: Velocity Response for Trial Four ... 129

Figure 93: Trajectory for Trial Four .. 130

Figure 94: Velocity Response for Trial Five ... 130

Figure 95: Trajectory for Trial Five ... 131

Figure 96: User LEDs and Switch Locations .. 144

Figure 97: Daughter Board Connector One ... 145

Figure 98: Daughter Board Connector Two .. 147

Figure 99: Analog Input Connectors .. 148

Figure 100: TTL I/O Connector ... 149

Figure 101: PWM Port Connections .. 151

Figure 102: PWM Pilot Input Connector ... 153

Figure 103: RS232 Connector ... 154

Figure 104: Flash Memory Circuit .. 155

Figure 105: Variable I/O Port Potentiometer Circuit ... 155

Figure 106: Variable I/O Port Translator and Connector Circuitry 156

Figure 107: FPAA Circuit .. 156

Figure 108: FPAA Input Circuit .. 157

Figure 109: Safety Switch Power and Clock Circuit ... 157

Figure 110: Safety Switch CPLD and Connector Circuit .. 158

Figure 111: User LED Circuitry .. 158

xii

Figure 112: Daughter Board Connection Circuit ... 159

Figure 113: Pressure Sensor Circuitry ... 159

Figure 114: Power Supply Circuitry .. 160

Figure 115: RS232 Circuit ... 160

Figure 116: FPGA Bank0 Connections ... 161

Figure 117: FPGA Bank1 Connections ... 162

Figure 118: FPGA Bank2 Connections ... 163

Figure 119: FPGA Bank3 Connections ... 164

Figure 120: FPGA VCC Connections ... 165

Figure 121: FPGA JTAG and Clock Circuit.. 166

xiii

DEVELOPMENT OF AN FPGA BASED HARDWARE PLATFORM FOR

RESEARCH AND DEVELOPMENT OF AUTONOMOUS SYSTEMS

WENDY ALVIS

ABSTRACT

Unmanned vehicles, both ground and aerial, have become prevalent in recent

years. The research community has different needs than the industrial community when

designing a finalized unmanned system since the vehicle, the sensors and the control

design are dynamic and change frequently as new ideas are developed and implemented.

Current autopilot hardware, which is available as on-the-market products and

proposed in research, is sufficient for unmanned systems design. However, this

equipment falls short of being able to accommodate the needs of those in the research

community who must be able to quickly implement new ideas on a flexible platform.

The contribution of this research is the realization of a hardware platform, which

provides for rapid implementation of newly developed theory. Rapid implementation is

gained by providing for software development from within the Simulink environment and

utilizing previously unrealized flexibility in sensor selection. In addition to the

development of the hardware platform, research was performed within Simulink’s System

Generator environment in order to complement the hardware. The software produced

consists of a user template that integrates to the selected hardware. The template creates

a user friendly environment, which provides the end user the capability to develop

xiv

software algorithms from within the Simulink environment. This capability facilitates the

final step of full hardware implementation.

The major novelty of the research was the overall FPGA based autopilot design.

The approach provided flexibility, functionality and generality. The approach is also

suitable for and applicable to the design of multiple platforms. This research yielded a

first time approach to the development of an unmanned systems autopilot platform by

utilizing:

• Development of programmable voltage level digital Input/Output (I/O), ports,

• Utilization of Field Programmable Analog Arrays (FPAA),

• Hardware capabilities to allow for integration with full computer systems,

• A full Field Programmable Gate Array (FPGA), implementation,

• Full integration of the hardware within Simulink’s System Generator Toolbox.

1

CHAPTER 1

INTRODUCTION

Unmanned vehicles are better for the performance of tasks that are considered

“dull”, “dirty” and “dangerous” than piloted crafts. There are many potential uses that

will provide a benefit to society such as traffic monitoring, search and rescue and

monitoring of structures such as dams and bridges. The use of Unmanned Aerial

Vehicles (UAVs), in the military dates back to the 1940s when they were used to fly into

radioactive clouds to collect samples. As technology progressed Unmanned Aerial

Vehicles have evolved into smaller and more efficient aircraft. UAVs have increasingly

demonstrated their benefit to the military. Pioneer has flown reconnaissance missions in

the Persian Gulf, Kosovo, and Bosnia since the early nineties. More recently additional

types of crafts have been developed and have continued to fly these types of missions to

the present, [1].

There is a great deal of work taking place in the research community to make

improvements in the existing technologies. The wide diversity in unmanned vehicle

designs and control as well as diversity in existing autopilots has lead to major

compatibility issues among different platforms. The compatibility issues introduce an

additional challenge to the research community. The platforms, sensors and control

algorithms are dynamic and change frequently as new ideas are developed and

implemented.

2

A search was completed for pre-developed hardware that would allow for data

acquisition for system identification, testing/implementation of controller design and

flexibility of platform and sensor selection. It was apparent that what is currently

available requires a considerable knowledge of programming digital processing hardware

and embedded control design. In addition, the hardware available only provides for a

very limited choice of sensor selection with each of the specific autopilots.

Within the research community, there are two prevalent forms of processing

platforms. Digital Signal Processor, (DSP), systems exist such as Mini-ITX and full

computing systems such as PC-104. Neither of these implementations fully meets the

needs of the unmanned system researcher. The DSP implementation requires knowledge

of embedded systems design and lacks parallel processing capabilities. The full

computing system requires knowledge in programming real time operating systems in

order to meet tight timing requirements. Some research has been performed, which

considered the inclusion of Field Programmable Gate Arrays, (FPGAs), for additional

flexibility and parallel processing capabilities. Thus far none have included integration

with software providing a higher level of abstraction than Very-high-speed integrated

circuit Hardware Description Language, (VHDL). In addition, the advantages of

hardware-in-the-loop capabilities for design verification have been explored only

minimally.

The DSP and FPGA implementations have the benefit of allowing for precise real

time control. This is a mandatory requirement with autopilot systems and is very

carefully met with this research. However, in order to take advantage of the flexibility

3

and the parallel processing capabilities that are not available with DSP processors this

precise timing was realized with a FPGA.

The lack of availability of autopilots meeting the research community

requirements was the motivation behind this research. The outcome was a hardware

platform, which provides two major capabilities. The platform provides for a commercial

off-the-shelf, (COT), language to be utilized for both programming and hardware-in-the-

loop simulation. In addition, the platform provides sufficient flexibility to allow a wide

variety of sensors to be available for use with the system under study.

When proposing a new autopilot platform, issues such as sensor integration,

sensor diagnostics, conventional servo and actuator control, as well as switching among,

or modifying control techniques if and when necessary must be taken into consideration.

In other words, consideration should be given to implementing different controllers and

sensor selection based on different mission profiles and selected robotic platforms. Thus,

any proposed design must include an interface module that provides for simulation,

validation and verification before actual implementation. By default, such a design

should be fully interfaced and integrated with MATLAB/Simulink, which provides for a

higher level of abstraction for programming and hardware-in-the-loop capabilities.

Considering vehicle payload limitations, power consumption and requirements,

cost-effectiveness and available ‘space’ on the unmanned vehicle are primary. Given the

fact that real-time control requires very strict and fixed timing for stability purposes, the

embedded system approach is preferred in designing an autopilot. This approach can be

implemented in a much lighter package, which makes it suitable even for miniature

vehicles.

4

Swarm formation and mission planning algorithms have been successfully

designed on standard computing systems such as the Mini-ITX or PC-104. However,

without an additional autopilot, the programmer must have an extensive knowledge of

real-time operating system programming to ensure the signal processing and control

system meets the timing requirements of the vehicle dynamics. The hardware capability

for full integration with these previously developed systems was designed into the

autopilot. When in use with these systems the autopilot can be programmed to become

the “slave” to the “master” computer and follow specified trajectory commands. This

capability provides researchers familiar with software implementations such as C-

programming running on Linux to continue with their work unimpeded by the difficulty

of implementing real-time programming.

The final area of concern is the protection of the hardware and any surrounding

objects or humans. Hardware failure can have catastrophic effects, especially when such

failures are associated with aerial vehicles. A loss of control with an unmanned

helicopter can very easily cause serious injury or even loss of life. Many systems already

allow for emergency takeover by a human pilot. However, this design can be taken even

further when used with an external computing system. Providing the end user the ability

to design fault detection and emergency control algorithms from within an external

computer provides the system with another form of redundancy. In order to achieve this

form of redundancy an additional safety switch circuit was designed into the autopilot

platform. The safety switch circuit provides for emergency takeover by either a human

pilot or a secondary daughter board. The secondary daughter board can be designed to

5

communicate with a computer and take control of the actuators under autopilot failure

conditions.

The developed autopilot hardware platform complements the full computing

systems by providing a separate processing system that handles the sensor signals and

actuator outputs. In addition, it has the ability to be used as a standalone platform for

very small scale vehicles. Some systems have been designed with flexibility and ease of

implementation in mind. However, this research resulted in an improvement over what

has been previously proposed or developed by allowing for full integration with Simulink.

The integration with Simulink provides for a higher level of programming abstraction,

hardware-in-the-loop capabilities and full FPGA implementation. These capabilities

maximize parallel processing capabilities, analog signal conditioning, which can be

predefined and initiated through digital communications from the FPGA processor. In

addition, they provide an additional layer of safety by providing for control of the

actuators by either a pilot utilizing a handheld radio or a daughter board.

The contribution of this research is a flexible, hardware-in-the-loop capable

platform that benefits the area of unmanned systems design by providing for the rapid

prototyping of new theory. Therefore, a reduction in the time it takes the benefits to

become applicable is realized in both the private and military sectors. The improvements

over previous work have resulted from the novelty of utilizing a full Field Programmable

Gate Array, (FPGA), implementation, which provides full integration with Simulink’s

System Generator Toolbox. Surrounding analog circuitry was developed to provide a

more flexible interface than realized by previous work. The flexible interface was

realized through the development of programmable digital ports along with utilization of

6

Field Programmable Analog Arrays for different analog inputs. In addition, software was

produced to provide for a Simulink template, which integrates with the autopilot

hardware. The software provides a user friendly environment, which provides the end

user to more easily integrate the completed algorithms with the sensor and actuator

hardware.

The developed autopilot platform was tested utilizing an RC-Truck like robot.

Existing software for simple way point following of a robot built for a Traxxis RC-Truck

was implemented on the autopilot. The autopilot was integrated to the servo controllers

of a MicroStrain IMU and a Superstar II GPS unit. The RC-Truck was able to

successfully follow way points, which demonstrated the effectiveness of the hardware

design.

7

CHAPTER 2

RELATED WORK

There exist several UAV/VTOL autopilot hardware platforms, which are sold as

fully developed systems. These systems have worked well for those in the private sector.

However, the research community has still felt the necessity to develop their own

processing systems. Some were developed as a portion of the overall research and others

were the subject of the research itself. Each of the, on-the-market, autopilots will be

discussed in the context of flexibility, methods of programming, hardware-in-the-loop

capabilities and inclusion of parallel processing capabilities. The research based

processing systems will be discussed as a generality of the different hardware types in

Section 1.1. A more detailed discussion will be presented of the hardware platforms

developed specifically as the subject of the research in Section 2.2. An overview and

comparison of the types of platforms is presented in Section 2.3.

2.1 Commercial Autopilots

There are several autopilots on the market. Most of these autopilots have not

taken into consideration all of the needs of the research community. These autopilots can

be separated into several categories. Autopilots, which are proprietary and lack user

design capabilities. Autopilots, which are very basic in processing power and possess

limited capabilities. Autopilots, which do have flexibility in reprogramming but do not

have all the capabilities of the design presented in this dissertation.

8

Two autopilots, which were designed for use with specific vehicles sold by the

company marketing the entire system, are available. The Generation II by BAI only

provides for minor modification, [2, 3]. The Rotomotion device provides for no

modifications at all, [4]. Only minor details are provided about these designs due to the

proprietary nature of the entire system. Neither is suitable as a platform for research due

to the built in dependency on the company for airframe specific modifications to the

software.

The Kestral by Procerus, [5], and the MP2028 by Micropilot, [3, 6], include user

flexibility designed into the system. Unfortunately, both of these devices are still

proprietary in nature. There are additional input/output ports included in the system

software sold for reprogramming and hardware-in-the-loop capabilities. However, both

designs only provide reprogramming and hardware-in-the-loop capabilities through

proprietary software, which prevents use with Simulink and limits flexibility. Details on

the Kestral are given in Table 7 and the MP2028 details are given in Table 8. Both tables

are presented in Appendix A.

The Ezi-Nav, by Autonomous Unmanned Air Vehicles, was designed to be a low

cost autopilot with minimal capabilities, [3, 7]. It contains eight separate

microprocessors that share the computational load. The Ezi-Nav operates solely with

handheld GPS units and possesses no additional ports for communications with an

external processor or additional sensors. More details for Ez-Nav are provided in Table

9, Appendix A. While the Ezi-Nav has demonstrated successful flights with fixed wing

vehicles, it does not have the flexibility or processing capabilities required by the

research community.

9

The Phoenix, by O-Navi, is an open source, fully reprogrammable autopilot,

which utilizes a 32MHz, 32-bit Motorola processor, [8, 9]. Phoenix is programmable

through a provided flash kit. However, it still lacks the ability to interact with Simulink

and there is no hardware-in-the-loop capabilities provided for in the design. Details are

presented in Table 10, Appendix A.

The Piccolo II, by Cloudcap, is an open source autopilot designed specifically for

fixed wing vehicles, [3, 10]. Piccolo II possesses sufficient flexibility that

implementation with rotary wing vehicles appears reasonable. Piccolo II is popular with

the research community. The popularity is, most likely, due to its flexibility and ability

to be programmed through Simulink’s Real Time Workshop. In addition, it does allow

for hardware-in-the-loop implementation with Simulink models. However, the computer

running Simulink must be equipped with a CAN interface card. Piccolo II comes close to

meeting the research community’s requirements. However, it lacks the parallel

processing capabilities and flexibility of a full FPGA design. Details of the Piccolo II are

given in Table 11, Appendix A.

Of all the autopilots on the market, the Microbot, by Microbotics, possesses the

most flexibility designed into the system, [11]. It is the only open source design on the

market that includes an FPGA to provide for reconfiguration of up to 32 I/O ports. In

addition, an expansion board provides for two asynchronous serial ports and twelve

analog inputs to be included in the design. Unfortunately, the FPGA is only utilized for

the input and output logic. Most of the autopilot’s programming resides in a single

microprocessor, which does not allow any parallel processing of the main functions.

Another major disadvantage of Microbot is its lack of a design capability for rapid

10

prototyping. While the unit is fully reprogrammable, it does not provide for

programming through Simulink. Additionally, Microbot does not possess any hardware-

in-the-loop capabilities designed into the system. More details are provided in Table 12,

Appendix A.

All of the autopilots, except the Microbot, are limited by a lack of parallel

processing, which is afforded by a FPGA implementation. In addition, none provide

analog input flexibility or have hardware-in-the-loop capabilities with Simulink

specifically incorporated into the design. The Microbot design, with the FPGA being

utilized for sensor sampling and data/servo output, does remove some of the

computational load from the microprocessor. The Microbot design also provides

considerable flexibility across platforms and sensors. While this design is superior to the

others with respect to flexibility, it falls short in simple programming and hardware-in-

the-loop capabilities.

2.2 Related State of the Art Research

The majority of publications studied discussed the processing system as a brief

portion of a larger research project. In these papers two popular methods dominated.

One involved implementing a low power DSP/microprocessor chip such as a Mini-ITX

board. The other involved implementing a full motherboard type system such as the PC-

104 system. The microprocessor and low power DSP chip possess minimal processing

power. Both chips are used primarily for either one specific system, which does not

require complex calculations, or a micro-air vehicle that has minimal payload capacity.

Only the most recent publications have begun to consider the advantages of a FPGA’s

parallel processing and reconfigurable capabilities. Section 2.2.1 will discuss low power

11

processor implementations. Section 2.2.2 will discuss the full motherboard

implementations. Section 2.2.3 will cover what has been accomplished or has been

proposed for full FPGA and hybrid FPGA/DSP implementations.

2.2.1 Microprocessor/DSP Low Power Autopilots

Jung et. al., designed a simplified autopilot for use with a specific fixed wing

aircraft, the Goldberg Decathlon ARF, [12]. The design was performed as a learning lab

tool for undergraduate students at Georgia Tech. A Rabbit 3000 microprocessor was

used along with several sensors. This microprocessor meets the requirements for easy

implementation of simple algorithms, which are used for teaching basic control theory.

However, the Rabbit 3000 does not provide flexibility for use across platforms. A similar

design was developed by Brigham Young University with a fixed wing aircraft fabricated

in foam, [13]. As with the system developed by Georgia Tech, the autopilot was small,

easy to implement and did function properly. However, the autopilot suffered from

inflexibility across platforms. In addition, neither designs provided hardware-in-the-loop

capabilities.

Kahn and Kellogg designed an autopilot system that utilized Microchip’s 16F877

microcontroller for a kite style micro-air vehicle, [14]. Since the system possessed low

dynamics and utilized a minimal amount of sensors, very little processing power was

required. Microchips line of microcontrollers is low cost and easy to program. However,

they possess a maximum clock frequency of 20MHz, a buffer for serial communication

that is limited to three characters and no hardware-in-the-loop capabilities. Microchips

line of products does not meet the requirements specified for the majority of unmanned

systems research.

12

Preliminary designs are presented for an MC68HCS12 microcontroller based

design, [15]. The design focuses on providing a low cost and easy to modify system.

The specific UAV and sensors are not mentioned. However, the processing power and

flexibility across platforms will be limited due to the selection of a microcontroller for

processing as opposed to an FPGA. In addition, there is no mention of intentions to

design, into the system, any hardware-in-the-loop capabilities.

An area of research gaining popularity is the design of micro-air vehicles. The

payload capacity for these systems is quite small, which limits the size and power

consumption of the selected computing system. The majority of researchers in this field

are implementing the algorithms with microcontrollers. The microcontrollers chosen are

primarily from Microchip’s line of processors, [16-18]. Several publications were

studied, which discussed either custom sensor design or vehicle design. However, none

had implemented any onboard processing. Other methods were used for control of the

vehicle. A ground station was used for control processing, [19]. A ground station was

also used for verification of design by simulation, [20-25]. Handheld radio control was

investigated, [26, 27]. A tethered system was connected to a DSP board and MATLAB,

[28]. As new vehicle and sensor designs are developed and become ready for

implementation, a processing platform is required. This requirement further

demonstrates the need for a small research oriented autopilot platform.

2.2.2 Full Computer Implementations

The majority of research publications discussing the design of small scale

unmanned systems present full motherboard systems without dedicated hardware for the

signal processing algorithms and low level controllers. The most popular is the PC-104

13

board running a real-time operating system such as VxWorks® [29] or QNX [30-32].

Lee, et. al., incorporated a full data acquisition card in the design, [32]. Various other

computing systems have been used with real-time operating systems as well, [33, 34].

All of these implementations follow the same basic design principle, external

sensors and hardware with a single standard computing system. This method has been

proven to work successfully. However, great care must be taken in programming the

control system or the precise timing needed for the control of the vehicle dynamics will

not be met. This requires a great deal of knowledge in control systems and in the real-

time programming language. Each function must be given a priority, which allows those

functions with the lowest priorities to be permitted to run only when the highest priorities

have completed. For a final implementation, which is designed only once, this method

may prove acceptable. However, whenever the control system is modified significantly

the entire low level control program changes and the timing issues must be entirely

reconsidered. For example, if PID controllers are replaced by H-infinity feedback

controllers all timing issues would have to be revisited. This potential software redesign

can create longer delays between deriving new theory and implanting it in hardware.

One design did try to solve some of these issues by implementing a two processor

system running on RT-Linux, [35]. The software was designed with a layered approach.

A main board ran an x86 compatible motherboard for the wireless GPS communications

and mission planning. The ATM Mega 163 chip was utilized for real-time flight control

processes. This is the same basic concept of using a dedicated autopilot for the low level

control system, which further argues the need for the hardware platform presented.

14

2.2.3 Implementations Utilizing FPGAs

FPGAs are very slowly gaining popularity due to the recent advances in increased

number of gates and simplification of design by the manufacturer’s providing intellectual

properties, IPs. The IPs provide pre-developed functions such as complicated

mathematical calculations and RAM, which would normally be time consuming to

develop utilizing a HDL. Since these advances are fairly recent, there are only a few

publications following the same philosophy of utilization of FPGAs, [9, 36-40].

Klenke combined a 40K FPGA with an 8-bit microprocessor for control of a fixed

wing aircraft with a GPS unit as the only sensor, [39]. The FPGA array was utilized for

the FM aircraft receiver and the servo control. The system worked successfully and

proved to be a simple to implement, inexpensive design. However, it does not possess

the processing power or flexibility required for research across platforms and sensors.

A proposed FPGA based design to provide a system capable of integrating a

propulsion health system with a control system for VTOLs has been presented, [36].

This design recognized the strength of both a FPGA architecture and integration with

Simulink for programming. However, the proposed design intends to implement the

algorithms running inside the FPGA under a real-time operating system, VxWorks®. In

order to provide user programmability, the intention is to create an ICD along with third

party software for programming. The system will implement a Vibe Card for receiving

some sensor data. With some simple front end analog signal conditioning and A/D

converters, this card can be eliminated and all of the signal processing can be

implemented entirely on the FPGA chip. In addition, the design also includes a Geode

15

DSP processor, which will run a majority of the processes. This aspect of the design

ultimately limits the system to sequential processing for the majority of the processes.

A flexible FPGA/DSP based autopilot has been developed by the Georgia

Institute of Technology, [37, 38]. The project has been completed and tested on two

separate platforms. One system works in conjunction with a “master” computing system

on the GTMax. Another system acts as a stand-alone device on the GTSpy. While a

flexible hardware-proven design is defined, the full strength of the Xilinx line is not

utilized to full advantage. The majority of the processing on-board the Xilinx chip is

performed by a soft core DSP running on the MicroC/OS II real-time operating system.

As a result of the sequential nature of the operating system, many of the tasks cannot be

divided into smaller tasks running in parallel. In addition, the system includes a separate

DSP chip to run any high level processing. This configuration prevents the system from

being fully integrated with Simulink through the use of the System Generator toolbox.

Virginia Commonwealth University has recently demonstrated a successful in

flight test of a FPGA based autopilot. [9]. This autopilot utilized a Suzuku V board

containing a Xilinx II FPGA chip, 32 M Bytes of SDRAM, 8 M Bytes of flash memory

and an Ethernet interface. The FPGA’s on-chip PowerPC runs a Linux kernel for

implementation of the majority of the processing. The goal of the research was to

demonstrate that the software could be developed in commercial off-the-shelf hardware

and then ported to any other hardware running the same Linux kernel. Since the focus of

the research was not a complete hardware autopilot design, the ability to run processes in

parallel, with the exception of the I/O protocol, was not considered. In addition, it did not

take advantage of the Virtex II Simulink capabilities for programming and hardware-in-

16

the-loop verification. However, the design does demonstrate the capabilities of the

FPGA as the processing hardware for an autopilot.

Continuing work on the design of an FPGA based control system for a Micro-

Satellite has demonstrated the potential benefits of FPGAs for autopilots, [40]. The

Xilinx series of FPGAs is utilized and full parallel processing utilized. While in-flight

tests have not yet been demonstrated, lab tests have indicated that good timing and

parallel communication with the devices have been obtained.

2.3 Overview of Autopilot Implementations

While standard computing systems have been proven to work successfully, great

care must be taken in programming the control system or the real-time requirements will

not be met. Whenever the control system is entirely changed, which occurs frequently in

research, the entire low level control program changes and the timing issue must be

entirely reconsidered. This leads to a longer design time between deriving new theory

and implanting it in hardware. A solution to this problem is to include a separate

processor. Such an autopilot is presented in this dissertation. The autopilot provides an

off-board system that follows a given trajectory while handling the tight timing

constraints required for sensor integration and control of the vehicle dynamics.

The majority of the systems presented implement a single processor. The

processing power varies depending on the specific chip selected. The single processer

design is at a disadvantage when compared to implementing either a full FPGA or a

hybrid DSP/FPGA design. Since single processor systems cannot operate with parallel

processing, care must be taken to be sure that each of the asynchronous sensor inputs are

sampled at the correct time while also updating the servo outputs. In addition, the

17

majority of the implementations do not allow for Simulink integration or hardware-in-the-

loop verification of the design.

Several of the FPGA implementations have benefited from the flexibility and

parallel processing capabilities of the FPGA with regard to managing I/O functions.

These designs failed to carry the parallel processing capabilities into the majority of the

processes by implementing most of the algorithms within an on-board or external DSP.

The only work that has utilized the full parallel capabilities for flight control was for the

design of a Micro-Satellite. This work did indicate good timing when utilizing the

parallel capabilities of the FPGA implementation. However, it did not explicitly design

Simulink integration into the system.

This research included the benefit of Simulink integration, as with [10], the

flexibility of inputs resulting from utilizing an FPGA, as with [9, 11, 36, 37], and

produced a significant contribution to the field of unmanned systems by including further

capabilities. These capabilities include full FPGA implementation, full integration with

Simulink for both programming and hardware-in-the-loop, programmable signal

conditioning and hardware so the human pilot can easily regain control under failure

conditions. An additional layer of safety was also included. When in operation with a

daughter board and second processing system, the secondary system is able to take over

control of the aircraft servos when a failure in the autopilot has been detected.

18

CHAPTER 3

AUTOPILOT REQUIREMENTS

There are two primary areas of study, which will utilize the autopilot differently.

Specifications for high level mission planning and vision systems differ considerably

from those for system level applications. System level research includes the development

of control systems for vehicle dynamics, development of methods for filtering and

integrating the sensors and development of new micro-air vehicles.

Navigation researchers work directly with the sensor inputs in order to generate

minimal noise and maximum accuracy of certain variables such as position, velocity and

acceleration. Researchers within the area of controller design are investigating the most

promising methods of controlling the dynamics of the vehicle. Both groups require

certain measurements to be available and accurate. The researcher developing the control

algorithms will require that the underlying autopilot platform provide for completed

sensor filtering and integration. This provision ensures that signals have clearly defined

variables and can be utilized within the control loop without modification to filtering and

integration modules.

Researchers investigating micro-air vehicles are concerned with the development

of new platforms requiring custom controller design. In addition, they are very

concerned with the development of new smaller size and low power sensors. This group

will have the same requirements as the control and navigation researchers. Additionally,

19

they are confronted with requirements of providing for various sensor inputs, which

cannot be predetermined, as well as low power and light weight circuitry demands.

Since both the navigation and control researchers will be implementing and

testing algorithms, many of the requirements, which simplify the process, pertain to both

groups. These capabilities include modularity for separation of algorithms, a high level

of abstraction to allow for simplification of design and the ability for hardware-in-the-

loop verification of the software algorithms. The majority of researchers working in this

area utilize Simulink/MATLAB for testing algorithms. Therefore, the ability to program

directly from Simulink is advantageous. Simulink software design is also well suited for

high levels of abstraction and the type of modularity required between the navigation

system and the vehicle control system. In addition, providing for hardware-in-the-loop

simulation directly with Simulink models is beneficial for testing designs without the risk

of loss of hardware. For these reasons, full integration with Simulink is an extremely

valuable aspect of the autopilot platform developed during this research.

The researchers working with navigation systems and vehicle design will require

that data be collected for system identification of the sensors or the dynamics of the

vehicle. This requires that a significant amount of data be stored while the vehicle is in

flight. In addition, the hardware must have the capability to store this information at a

high sampling rate without interrupting the modules controlling the navigation. This

requirement clearly argues for parallel processing capabilities and creates a further

requirement of additional memory for data collection.

When working with high level mission planning or vision research, it is necessary

to be able to send the way points to the navigation modules and have the vehicle follow

20

the trajectories without consideration for designing around tight timing constraints. In

addition, many of the researchers in this area of research prefer to work with systems

such as the Mini-ITX DSP processor or the PC-104 type microprocessor. In order to

meet the needs of this area of research, interaction with this second processing system

must be included in the design. The autopilot must have the ability to send and receive

commands through serial RS232 communication. The software controlling the dynamics

of the vehicle, which provides for trajectory following, is a platform-specific design. The

autopilot platform must provide for rapid development so that once the vehicle is

selected, the navigation and dynamic control system can be quickly finalized. This

capability provides for timely and efficient development of applications such as vision,

swarm formation and mission planning while running on a complete computing system.

When working with aerial vehicles, safety requirements must be given the highest

of priorities. Safety requirements demand as much redundancy for actuator control as

possible. The autopilot produced during this research was developed to work with an

external processor. Therefore, a redundancy of control hardware was already present.

However, additional hardware was incorporated to provide for transfer of actuator control

to either a human interface or a second processing system.

The list of generalized requirements, which were incorporated in the platform

developed during this research includes:

• Integration with MATLAB/Simulink for a higher level of abstraction and

modularity when programming and the capability for hardware-in-the-loop

verification,

21

• Adequate memory for data collection for use with system identification

research,

• Analog design to allow for reconfigurable cross platform/sensor capabilities,

• RS232 communications to provide for integration with a second computing

system,

• Parallel processing capabilities & hardware level timing control,

• Emergency takeover of servos as an additional layer of safety.

22

CHAPTER 4

AUTOPILOT ENVIRONMENT

When designing the autopilot, careful consideration was given to both hardware

and software capabilities. The hardware was designed to provide for flexibility across

platforms and sensors. The software was designed within the Simulink environment in

order to compliment the hardware. The software provides for both an autopilot hardware

implementation template and an open source library. This chapter presents an overview

of the autopilot hardware and the autopilot’s Simulink software environment. In addition,

a brief description of the templates, available library subsystems and how to implement

them is provided.

4.1 Hardware Overview

The autopilot hardware design included port connections for most standard

hardware utilized on small scale unmanned systems. These include analog inputs,

Transistor-Transistor Logic (TTL) and Input/Output (I/O), ports. In addition, the

autopilot possesses pressure sensors for measuring altitude and forward velocity as well

as Pulse Width Modulated (PWM) outputs for controlling standard servos. The three

analog inputs have additional flexibility. A Field Programmable Analog Array (FPAA)

was incorporated for customized signal conditioning development, which could be

programmed into the FPAA from the FPGA. The TTL I/O ports provide for variable

voltage settings through the use of a digital trim pot, which is also directly programmable

23

from the FPGA. The autopilot board developed and produced during this research is

pictured in Figure 1.

Figure 1: Autopilot Board Overview

In order to both minimize size and provide custom analog and MEMS sensors to

be developed for use with the autopilot, a stacked board design consisting of a main

board and a secondary daughter board was implemented. The daughter board can be

used for inclusion of application-specific hardware such as custom sensors. This is a

necessary requirement for micro-air vehicles since the small payload capacity requires

extremely small on-board sensors to be utilized.

The FPGA outputs PWM logic to control servos through 3.3V TTL ports. The

autopilot’s servo connectors do not directly connect to the FPGA. The waveform is sent

to the input ports through a Complex Programmable Logic Device (CPLD), which is used

in the safety switch circuitry. This circuitry provides for connections from a handheld

radio receiver for human pilot takeover. In addition, the circuitry also includes PWM and

DAUGHTER BOARD CONNECTOR

Altitude & Forward
Velocity Circuitry

Xilinx Spartan
3AN FPGA
Circuitry

uSD Card
(on back)

Power
Supply

Safety
Switch
Circuitry

4.2”

2.8”

ANALOG
INPUTS

VARIABLE
DIGITAL IO

RS232 IO PILOT PWM INPUT

SERVO
PWM
OUTPUT

SAFETY SWITCH
POWER SELECT

+5VCC

DAUGHTER BOARD CONNECTOR
JTAG

USER LEDS

Analog
Input
Circuitry

RS232
Circuitry

Variable I/O Circuitry

24

select lines to the daughter board connectors to provide takeover capability from an

external processing system. When a daughter board is not connected, jumpers are used to

disable the second takeover option. While the safety switch was programmed for the

behavior described, JTAG connectors are available on the back of the autopilot board.

This provides for reprogramming of the CPLD in order to gain additional functionality.

One additional pin has a direct connection to the FPGA in order to send information.

This was provided as a tool to assist the programmer.

In addition to the hardware connectors, three user LEDs, one user switch, a power

LED and a programming completed indicator were included on the board. These

hardware assets provide indicators to assist the software developer and provide an

additional logic input to the board. The hardware specifications for the autopilot

developed and produced during this research is presented in Table 1.

Table 1: Autopilot Specifications

I/0 ports and sensors
On-board pressure sensors for altitude and forward speed
Two large signal, single ended analog inputs
One small signal differential analog input
Twenty-Four variable voltage logic inputs

• Input voltage set in blocks of four
• 1.8V to 5V range

Four Tx and 5 Rx RS232 lines
Forty-Six 3.3V I/O FPGA connections to daughter board
Capabilities
On-board MicroSD card for data acquisition memory
A safety switch for servo control
Twelve servo outputs

• All twelve, selectable in sets of six by daughter board, (if present)
• Six critical servos, which can be taken over by a pilot

Simulink programming and hardware-in-the-loop capable

25

The board contains a Xilinx Spartan3-1400AN FPGA, which serves as the

primary processing platform for the autopilot. By selecting from the Xilinx line of

FPGAs, the autopilot was fully interfaced and integrated with Simulink. The

reconfigurable nature of the FPGA provides the programming capabilities, which are

necessary to compliment the flexibility of the hardware design. The hardware flexibility

incorporates the handling of several types of communication protocol. The hardware

accepts various ranges of analog sensor input and data acquisition. The hardware

provides for measurement of altitude and forward speed through on-board pressure

sensors. In addition, the hardware provides for releasing control of the servos to either a

human pilot or a second processing system through the use of a daughter board.

4.2 Autopilot Software Environment

The user of the autopilot will have available, from within the Simulink

environment, hardware protocol subsystems and the standard System Generator building

blocks. In addition to the Simulink/System Generator software tools, the Xilinx’s EDK

environment can be utilized to develop soft core processors capable of running a user-

selectable operating system. The overview of the autopilot’s software environment is

presented in Figure 2.

The available subsystem building blocks were developed specifically for the

peripheral hardware contained on the autopilot. Other high level signal processing

functions such as filtering, sensor integration and controllers can be developed using

standard System Generator blocks. In addition, the soft core processors can contain a

small operating system such as the Slackware version of Linux or VxWorks®. While

this does seem contradictory to the argument for parallel processing, the ability to utilize

26

a DSP structure provides for the implementation of many algorithms, which have been

developed to operate within a specific software environment, such as a wireless

networking protocol. In addition, hardware may be designed into the system that utilizes

Linux drivers without the additional work of developing custom software.

Figure 2: Software Block Diagram

COMMUNICATION
WITH "MASTER"

PROCESSOR

PWM
OUTPUTS TO

SERVOS

ANADIGM FPAA
CONTROL

LOGIC

PRESSURE SENSOR
A/D

COMMUNICATION
LOGIC

ANADIGM INPUT
COMMUNICATION

LOGIC

VARIOUS
COMMUNICATION
LOGIC BUILDING

BLOCKS

SOFTCORE PROCESSOR WITH REAL
TIME OPERATING SYSTEM

USER DEFINED
AGORITHMS

[DEVELOPED IN XILINX EDK]

PROVIDED
BUILDING BLOCKS

BUILT IN
SIMULINK

C-CODE OR
LINUX DRIVERS

SPARTAN 3AN FPGA

USER DEFINED PROGRAMMING,
SUCH AS MISSION PLANNING,

FILTERING, SENSOR FUSION AND
CONTROL ALGORITHMS

PORT VOLTAGE
CONTROL LOGIC

27

4.2.1 Hardware Co-Simulation Timing Issues

System Generator allows for hardware-in-the-loop simulation by compiling a co-

simulation block that contains the bit stream for programming the FPGA and controls the

JTAG communication. After the hardware co-simulation block is generated, it can be set

to single stepping or free running by double-clicking the block. When single stepping is

selected, Simulink controls the FPGA clock signal and the hardware matches the Simulink

clock cycle, which does not relate to real-time. This is the preferable setting when

communication with external hardware is not required. However, when the autopilot is

to be programmed to interact with external hardware, real-time is required. The ‘free

running’ selection will turn control of the clock over to the FPGA’s 50MHz clock.

Within the system there will be blocks, which must be synchronized by the system clock.

When the System Generator blocks are converted to the FPGA hardware configuration

bit stream, the resulting internal rates are related to the Simulink update rate. The update

rate is provided by equation (1). This relationship was utilized within all the developed

subsystems specifying hardware level timing.

Simulink update rate*hardware clock ratehardware update rate =
Simulink time step

(1)

A Simulink autopilot template was developed. The template contains masked

subsystems to:

• program the FPAA,

• receive data from the A/D outputs from the FPAA,

28

• enable and receive data from the pressure sensors,

• initialize the MicroSD card,

• enable/disable the RS232 ports,

• enable/disable the variable I/O ports,

• set the desired voltage level

• generate the PWM outputs with selectable frequencies and duty cycles.

With the FPAA, the pressure sensors, all the PWM ports in use and the MicroSD

card enabled the amount of slices utilized was 1362, or 12%. By disconnecting the

outputs, connecting the PWM to logic low and deactivating the FPAA program

subsystem, the unused logic is trimmed during hardware generation. Under these

conditions the utilized slices are reduced to just 526, or 4%. The autopilot template is

presented in Figure 3.

Figure 3: Autopilot Template

Programs FPAA with *.bin
file developed in Anadigm’s
graphical software

Variable voltage port
settings:
Six ports with four I/Os
Enables/Disables Ports
Drop-down menu to set
to 1.8, 3.3 or 5 volt
level

Receives readings from
pressure sensor circuitry

Receives output from
FPAA’s three A/D output
ports

Controls twelve servos:
PWM frequency set by
user
Inputs are duty cycles
for each servo control
(0/100)
For servos not in use,
input of ‘0’ will pull
output low 100% of
time

RS232 Enable/Disable Initializes uSD card:
User writes code that
is enabled by the
‘Ready output’
To disable, Inputs set
to logic high with a
constant

29

Several library subsystems were developed to accommodate both basic use of the

on-board hardware and the communication requirements for the sensors utilized by the

RC-Truck robot. The subsystems developed thus far include:

• an RS232 communication protocol,

• initialization the FPGA RAM for data acquisition,

• a communication protocol to receive latitude and longitude from

the Superstar II GPS unit,

• a communication protocol to receive gyro-stabilized Euler angles

from the MicroStrain IMU unit.

While the library is limited, the open source platform provides for continually

increasing functionality as new software is developed over time by end users.

As a result of the pre-developed hardware level timing a variable declared as

SimP, which defines the System Generator time step, must be specified by the end user.

SimP can be defined either in the MATLAB workspace or the model explorer. Once

defined, SimP is entered into the System Generator block. This provides for the

simulation time step to be modified without affecting the final hardware level timing.

The only restriction on the time step is that it must be less than 10usec. This restriction

results from the communication protocol timing and the resolution of the generated PWM

output. The System Generator block is presented in Figure 4.

Each of the template subsystems provided has a user interface, or mask, in order

to enable/disable and select specific settings, with exception to A/D protocol of the

FPAA. Since the FPAA is disabled through the programming subsystem, the outputs

from the receive subsystem are left unconnected when not in use. When Simulink

30

generates the programming bit stream all the unconnected logic is removed and the inputs

are ignored.

Figure 4: Simulink System Period Setting

4.2.2 FPAA Programming and Utilization

The FPAA subsystem program contained in the autopilot template allows the user

to enable the system and enter the name of the workspace variable containing the FPAA

program bit stream. Since the variable is entered into a Simulink block, in the underlying

subsystem, the name must not be left empty. When the FPAA is not utilized, a value of

‘1’ should be entered to prevent a Simulink error flag. When the ‘Enable FPAA’ is not

selected the subsystem holds the outputs constant, which includes the clock signal to the

FPAA. The FPAA program subsystem is presented in Figure 5.

31

Figure 5: FPAA Program Settings

The FPAA subsystem programs the FPAA from a variable, which must be created

within the MATLAB workspace. This is accomplished by first generating a binary

program file with Anadigm’s AnadigmDesigner2 software. Once the binary file is

created an m-file is utilized to read the file into a variable in the workspace. The m-code

is used to create the necessary variable, FPAA, which is displayed in Figure 6.

Figure 6: FPAA Configuration M-File

The binary file is first read into MATLAB and then rearranged from an 8-bit word

length to a 1-bit length. In order to reformat the word length, the ‘1’s and ‘0’s are

declared as binary. After reshaping, they are re-declared as decimal values. The final

step is to add a trailing one that is required to hold the output line high after the last bit is

transmitted.

32

4.2.3 Utilizing Pressure Sensors for Altitude and Velocity

Two on-board pressure sensors were incorporated in the design of the autopilot

platform. The pressure sensors provide for the measurement of altitude and forward

velocity. The pressure sensors produce an analog signal, which is sent to a dual A/D

converter. The template subsystem reads the two 16-bit values into the FPGA. The

resolution of the calculations for altitude and velocity are user dependent. Therefore,

logic was not created to convert altitude and velocity. In addition, the end user may wish

to reduce the number of gates by implementing the 16-bit values directly in the controller

algorithms. The subsystem contains a mask, which will disable the system by tying all

the outputs to the A/D converter to logic high. The subsystem is presented in Figure 7.

Figure 7: Disabling Pressure Sensor

4.2.4 Initializing the MicroSD Card

Since there are many potential uses for the MicroSD card, the only logic included

in the library is the sequence of instructions, which must be sent in order to initialize the

card. The hardware ports were incorporated inside the template subsystem and can be

accessed through the ports of the subsystem. When the card is not in use the input ports

must be connected to a logic high constant. The card will still initialize but it will not

33

receive any further commands. When the card is in use the user must wait for logic high

out of the Ready port before sending any commands. The output from the card is

available through the Dout port. The MicroSD card is presented in Figure 8.

Figure 8: MicroSD Card Template Subsystem

4.2.5 Disabling RS232 Ports

The RS232 ports can be enabled or disabled from within the template. The

mechanism for manipulating RS232 enable is presented in Figure 9.

Figure 9: RS232 Enable

When disabled the FPGA output ports enabling the RS232 IC are held at logic

low. This holds the I/O lines out of the autopilot at high impedance. When in use, the

user can utilize the library blocks provided for the communication protocol.

34

4.2.6 Setting Variable Voltage I/O Ports

The template subsystem, which controls the variable I/O port settings, contains an

enable and a voltage select available in six sets of four communication lines. The

subsystem for I/O control is presented in Figure 10. When disabled, the voltage

translator IC holds the autopilot I/O pins at high impedance. When enabled, the user can

set the voltage to any of the predefined values of 1.8V, 3.3V or 5V.

Figure 10: Variable I/O Port Settings

4.2.7 Utilizing PWM Output Block

The PWM template subsystem controls the generation of the signals to the 12

output ports. The output signals are generated by converting a duty cycle input, 0 to

35

100%, into the output square wave signal. Specification of a specific frequency between

20Hz and 100Hz, an initial duty cycle and specification of hardware or simulation timing,

is user selectable. When simulation is selected the PWM frequency is matched to the

simulation time steps. When hardware implementation is selected a conversion is

included to set the PWM generated to the hardware clock. If the user sets the input to a

constant of 100 the output lines are all held logic high. The PWM subsystem parameters

are presented in Figure 11.

Figure 11: PWM Subsystem Settings

36

4.2.8 RS232 Communication Subsystems

Separate library subsystems were developed for sending and receiving eight bit

data with no parity and a stop bit of one. The receive function provide the user a

capability to select from a list of baud rates, which includes 9600, 57600, 38400, 56200

and 115200 bps. The send function also provides for the same communication baud

rates. However, the rate is set by the inputs to the subsystem.

The receive subsystem over-samples the port at the clock frequency of the

autopilot, which is 50MHz. This prevents an incoming byte from being misread due to

clock drift or jitter. This works well for receiving data. However, it creates a very fast

update rate within the System Generator. In some cases, where the incoming data is

followed by only simple logic, this may not pose an issue. In other cases it sets up a

timing requirement, which the hardware may not be able to meet. Therefore, a library

subsystem was developed, which down-samples the output to the actual baud rate.

The library subsystem that receives the RS232 data from the I/O port has one

input and two output ports. The input is the autopilot hardware port, which receives the

bit level input and must be set to the clock rate under the mask. Entering the variable

SimP will make the necessary clock adjustment for a rate of 20ns. This process is

presented in Figure 12.

The two outputs from the subsystem consist of the received 8-bit character and a

1-bit flag. The 1-bit flag is held logic high for one clock cycle when a new character has

been received. The baud rate is set with the drop-down menu as demonstrated in Figure

13

37

Figure 12: Setting Input Port Timing

Figure 13: Setting Baud Rate

The down-sample RS232 library subsystem has two inputs and two outputs,

which correspond to the outputs of the subsystem receiving the RS232 data. The 8-bit

received data and the flag from the receive RS232 block are down-sampled to the

selected baud rate and passed out of the function. The output rate is selected by the same

style of drop-down menu as the receive subsystem. This process is presented in Figure

14.

38

Figure 14: RS232 Down-Sample

The RS232 library subsystem, which sends the 8-bit data, has two inputs and one

output port. The first input port, termed ascii, holds the 8-bit character to be sent. The

second, termed Out_EN, holds a logic in, which sends the character when equal to one.

The inputs set the rate of the blocks contained within the subsystem and must correspond

correctly to the selected baud rate. The output port, termed BIT, is connected to the

selected hardware port. This includes the RS232 ports and the variable level logic ports,

which can be used with TTL to USB converters for receipt of the RS232 protocol. The

settings are listed in Table 2.

Table 2: RS232 Send Input Timing
Baud Rate, Bits Per Second Input Rate, Seconds
1900 1.042(103)
19,200 5.208(104)
34,800 2.604(104)
56,700 1.736(104)
115,200 8.68(105)

4.2.9 FPGA RAM Data Acquisition Library Block

When developing the correct logic design for communicating with external

hardware the testing of the protocol must be performed with the co-simulation block set

to free running. This setting will insure that the hardware timing is implemented

39

correctly. Since the update of the JTAG port is much slower than any standard

communication rate, this prevents hardware-in-the-loop verification from being utilized.

This library subsystem was developed as a solution to that issue. Values occurring within

the FPGA are stored within RAM memory. When the memory is full the values are sent

to the JTAG port at a rate, which is more acceptable. The rate must be determined by the

end user. This is due to the fact that longer word lengths require more time to receive.

Once the data has been received through the JTAG port, the values can be graphed by

any MATLAB method for analysis.

The library subsystem allows for two inputs to be recorded and also includes an

enable port so that the data can be saved at a specific time. The outputs from the

subsystem are each connected to a JTAG System Generator block, termed Gateway Out.

These outputs are the address, addr, and the two recorded strings of data, data and data1.

These outputs are presented in Figure 15.

Figure 15: Record Data Library Subsystem and Settings

The available settings are the memory length, the number of bits associated with

the length and the down sampling value. The number of bits must be set to correspond to

40

the word length so the associated RAM is compiled correctly. The down-sampling value

is the ratio of the output rate to the input rate.

4.2.10 Superstar II GPS Communication Protocol

The Superstar II GPS has several user selectable settings. The one, which must be

selected through the GPS provided Starview software, used to implement this library

block is receive LLA in binary format at 1900 baud. This sends information

corresponding to the status of the receiver, position and velocity measurements. Not all

of the information received from the GPS unit is sent to subsystem output ports. Output

ports receive only the values of interest for simple navigation. The navigation data

required consists of latitude, longitude, altitude, North velocity, East velocity, vertical

velocity and the number of satellites used. The latitude and longitude are in double

precision format. The altitude and velocities are in single precision format. The number

of satellites exists as a standard 4-bit binary value. The final output is a 1-bit flag, which

is held high for one update clock duration, when new measurement information is

available. Since the baud rate of the communication block is 1900 bps, the corresponding

output from the subsystem has an update rate of 1.042ms, with new measurements

available at 5Hz. The only input to the function is the autopilot port selected to receive

the GPS output. The RS232 library subsystem is utilized inside the GPS subsystem.

Therefore, the port must be set to the hardware clock rate. The GPS unit is one example

where the RS232 protocol is used with a TTL logic level. The correct voltage setting is

3.3V and can be set within the variable port setting of the template.

41

4.2.11 MicroStrain IMU Communication Protocol

The MicroStrain IMU sends information using the RS232 protocol and voltage

levels. The 8-bit value is sent in binary, rather than ASCII. The library subsystem waits

five seconds for the IMU to initialize. After the IMU initializes the library subsystem

requests the IMU to continuously send the gyro-stabilized Euler angles. The 16-bit

values are sent eight bits at a time. A checksum value is included for the 16-bit values.

The subsystem combines the received 8-bit characters into the 16-bit measurement and

calculates the checks sum. If the checksum is correct, the subsystem outputs the 16-bit

values. These values include yaw, pitch, roll, ticks and a checksum error flag.

An RS232 subsystem was utilized to establish the communication protocol

without the down-sample block. Therefore, the Simulink update rate on the subsystem’s

outputs is 50MHz. The information is sent by the IMU as soon as it is available. The

specification sheet guarantees 50Hz. However, for a request of stabilized angles, it tends

to be closer to 70Hz. The user may select any of the RS232 ports to connect to the IMU

send, CMDtoIMU, IMU receive and IMUin, ports. Figure 16 displays the subsystem,

which was used with the RC-Truck control.

Figure 16: IMU Communication Library Block

42

CHAPTER 5

HARDWARE DESIGN

The autopilot requires dedicated hardware surrounding the FPGA in order to

provide use with external devices such as sensors and actuators. In order to provide for

use across multiple platforms, flexible interfaces must exist between the various hardware

modules and specific hardware modules, which provide the necessary spectrum of

capabilities, must exist. Flexible interfaces between the TTL logic inputs and the FPGA

are mandatory. In addition, A/D conversion hardware must exist with flexible interfaces

to the pressure sensors, which measure altitude and velocity. Hardware modules must be

provided to realize a range of customizable analog signal conditioning and provide for

RS232 communication. Dedicated hardware must provide separate circuitry for servo

control selection. In addition, sufficient memory must be provided to satisfy a range of

data acquisition requirements.

5.1 Processing Hardware Selection

An autopilot utilizing a full FPGA implementation is a novelty in the area of

unmanned systems. The full FPGA implementation was selected since it provides a

broader range of design alternatives to satisfy an expanded set of platform capabilities.

Design with full FPGA provides more design versatility than DSP processors or even

hybrid DSP/FPGA implementations. The full FPGA implementation provides flexibility

and the ability to process different algorithms in parallel such as wireless networking,

43

vision algorithms, sensor integration and vehicle control implementation. The processor

hardware architecture is reconfigurable. Therefore, each signal and variable can be

represented using different numbers of bits as required. This allows for higher sampling

rates, better accuracy and high computation speed with low power consumption. FPGAs

operate at a very high frequency. When the FPGA is combined with parallel

computational structures, computational speeds as much as 100 times greater than those

possible with digital signal processors are realizable. The computational speed of the

DSP is limited since its operation is sequential, [41, 42].

An additional advantage of a full FPGA design is the existence of a natural

migration to micro-air vehicles. Once the prototype is developed and the design verified,

the power and size of the processing system can be reduced by implementing the tested

VHDL algorithm in a system-on-chip design.

Xilinx manufactures FPGA products and has had the foresight to work with

Mathworks. This collaboration provides for programming from within Simulink’s

graphical language, which provides hardware-in-the-loop capabilities. Working in

conjunction with Mathworks, Xilinx has developed the System Generator toolbox, which

provides the Xilinx FPGAs the capability of full integration with MATLAB/Simulink.

This functionality facilitates high level abstractions to be directly compiled into an

FPGA. In addition, the toolbox directly provides for hardware-in-the-loop simulation.

The simulation with Simulink requires a standard USB or JTAG parallel port connection

for synchronizing the FPGA clock to Simulink time.

The FPGA selected was the Spartan3-1400AN. This FPGA houses logic building

blocks for 11,264 slices, 32 multipliers, 176K of distributed RAM, a 576K RAM block

44

and 1.4M system gates. Although the Spartan series does not include embedded

PowerPCs, Xilinx’s EDK program can be utilized to provide soft core DSPs.

5.2 Analog Input Design

As with any system involving sensors, there will be analog inputs, which require

signal conditioning before being sampled by an A/D converter, for use in the processor.

This leads to the challenge of including flexibility with the analog circuitry design in

order to allow the same circuit to be used with different sensors. In the recent past this

challenge could have only been accomplished by providing for the physical interchange

of various analog components. However, the recent development of digital

potentiometers, programmable operational amplifiers and Field Programmable Analog

Arrays has facilitated the design of flexible analog circuitry. All of these components

were considered for designing programmable analog signal conditioning. Digital

potentiometers were considered for use along with either a static or programmable

operational amplifier. The disadvantage of this method is the board space required for

the components and the lack of analog filtering. Currently, the selection of digitally

controlled capacitors is also very limited

The FPAA provides for programmable analog filtering and requires less board

space. Two types of FPAAs are currently available. There are FPAAs that operate in

discrete time and those that operate in continuous time. Discrete time FPAAs utilize

switching capacitors to implement the resistance required in the circuit. The continuous

time FPAAs utilize switches to provide for different interconnections of the components,

[43]. It was determined that either would work well for this application. However, after

45

a search of currently available FPAAs it was found that Anadigm produces a discrete

time FPAA, which possesses some desirable features.

The AN231E04 includes 8-bit internal A/D converters, which can directly convert

the conditioned signal to the TTL format required by the FPGA. It also comes with user-

friendly software that allows the design to be tested in simulation and a binary file to be

generated. The binary file can be utilized directly by the FPGA for programming during

autopilot initialization. Each chip provides up to 38 CAMs, which are predefined analog

circuits, and up to three A/D outputs. The CAMs include functions such as filtering,

inverted gain and limited gain.

The chips do have some limitations associated with the input signal. The chip

utilizes a +1.5V internal reference for circuit common in order to provide for AC signal

inputs. In addition, the input is limited to 3V. The +1.5V reference creates an issue with

ground referenced signals. However, with some initial voltage division and software

design, ground referenced signals can be accommodated.

The autopilot design provides one input for small signal, less than 3V, differential

sensors, which can be connected directly to the FPAA’s input ports and two large signals

up to 26V. Voltage division was used to reduce the larger signals by a factor of 8.96.

The FPAA measures the input voltage with respect to the 1.5V reference. However,

since the internal A/D is utilized, this can be compensated for within the FPGA software

when the 8-bit received value is converted to the input voltage.

Figure 17 displays the external circuitry for the two large signal inputs, one small

signal input and the AnadigmDesigner2 software configuration. Vin1 and Vin2 accept two

input voltages, which are ground referenced and less than 26 V. Vin3 accepts one small

46

signal voltage to be measured. The magnitude of the small signal must be less than 3V.

The internal configuration of the FPAA utilizes a low pass filter for the large signal

inputs and a gain stage for the small signal input. These circuits are followed by the three

A/D converters to provide the TTL outputs to the FPGA. The FPAA signal conditioning

blocks can be utilized to remove noise and adjust the gain of the measured voltage in

order to obtain better resolution from the A/D converters.

Figure 17: Voltage Measurement Circuit for Analog

5.3 Communication Voltage Level Circuitry

Two types of communication are available to the user of the autopilot.

TTL/CMOS is available at 5V, 3.3V or 1.8V and the RS232 level. There is no universal

circuitry that can accommodate both RS232 and TTL. The two are defined as a specific

type of I/O port.

The TTL I/O lines interface with a bi-directional voltage level translator, which is

Texas Instrument’s TXB0104. The IC has an electrical requirement for the set of four

I/O signals to be less than or equal to the voltage after translation. By utilizing the

Vin1

27K

215K

Vin2

27K

215K

Vin3

Clock

A/D Output

A/D Output

A/D Output

47

FPGA’s 1.8V logic level ports and treating the input as the higher translation level, any

TTL voltage between 1.8V and 5V can be accepted. A digital potentiometer, which is

programmed through the FPGA processor, is used to set the logic level on the input port.

The process is presented in Figure 18.

Figure 18: Adjustable Logic Level Circuitry

RS232 communication is older than TTL and does not operate at the standard 5V,

3.3V or 1.8V logic levels, which are now much more popular with processors. The

voltage representing logic high can range from +5V to +15V while the logic low

representation varies from -5V to -15V. There are several standard ICs that contain

internal charge pumps to allow for the negative voltage levels from a single 3.3V power

supply. The MAX650 was selected and provides 5 inputs and 4 outputs while requiring

only four external capacitors.

In order to minimize board space, USB connectors were not directly included on

the board. It is important to note that, with custom connectors, USB communication can

be implemented through the variable I/O ports. The board was designed with two five

5V

LEVEL
TRANSLATOR1.8, 3.3 OR 5V

BIDIRECTIONAL
LOGIC LINES

1.8V BIDIRECTIONAL
LOGIC LINES

PROGRAMMABLE LOGIC
LEVEL VOLTAGE

100K DIGITAL
POTENTIOMETER

27.0K
RESISTOR

1.8V LOGIC
LEVEL VOLTAGE

1.8V

48

volt connectors near the TTL I/O ports. This arrangement provides for the supply of the

five volts required to power the USB interface. The TTL port can be programmed for the

3.3V logic required by the USB specifications.

There are three data rates, 1.5Mbps, 12Mbps and 480Mbps, given in the USB

specifications. The third is the high speed data rate specified by USB 2.0. However, to

be compliant with USB 2.0 the highest speed in not required. A full speed interface of

12Mbps is still compatible with USB 2.0 devices, [44]. The autopilot is limited to the

first two data rates due to the 24Mbps limitations of the level translators. USB

communication was not developed for the autopilot template since the bi-directional

communication lines required by the protocol are not yet available within Simulink.

However, the user can still develop the protocol through the ISE program or by

embedding a soft core processor using the EDK program, which contains the required

drivers.

5.4 Altitude and Velocity Measurement with Pressure Sensors

Two pressure sensors were selected for measuring forward velocity and altitude.

The output of these sensors is a voltage ranging from 0.2V to 5V for the altitude and 1V

to 5V for the forward velocity. An A/D converter was selected, which provided for an

input of up to 5V. The A/D converter also required three 5V TTL communication lines.

Since the FPGA cannot produce a logic level above 3.3V, a translator IC was included in

the circuit. In addition, a 4.5V reference IC was utilized in order to provide the stable

reference voltage required by the converter. The pressure sensor circuit is presented in

Figure 19.

49

Figure 19: Pressure Sensor Circuitry

The calculation of altitude is based on the fact that pressure decreases as the

altitude of an aerial vehicle increases. A pressure sensor can be used to measure this

relationship and the altitude calculated. The selected pressure sensor produces a linear

relationship between pressure per square inch and voltage. The pressure range is 2.2psi

to 16.7psi and the voltage range is 0.2V to 4.8V. The vehicle’s height can be calculated

using equation (2) and equation (3). Selecting the sea level value as the initial height, the

range of height measurable by the pressure sensor was calculated to be from 230 feet

below sea level to 26,878 feet above sea level.

()(2000) _initial measuredpsi psi UAV height− = (2)

(0.2)(14.5 / 4.6)measured inpsi v= + (3)

Since a 16-bit A/D converter is present, the resolution of the measurement is

limited by the quantization steps of the A/D converter, which is 68.6656uV/bit. Relating

this value to feet yields the smallest measurable change in height as 0.4329ft. However,

VOLTAGE
FROM
VELOCITY
PRESSURE
SENSOR

4.5 VREF

5V

5V A/D
LOGIC LINES

1 8V FPGA
LOGIC LINES

1.8V

LEVEL
TRANSLATOR

ENABLE

VOLTAGE
FROM
ALTITUDE
PRESSURE
SENSOR

A/D

50

due to noise present within the circuitry this accuracy is better than can be realistically

expected. Since a 4.5V reference IC was selected, the actual measurable distance below

sea level is slightly less than 230 feet.

Calculating velocity using pressure measurement is slightly different. A pitot

tube is used to generate a differential pressure value. The differential pressure value is

derived as the difference between the static pressure, with no velocity, and the dynamic

pressure generated from the wind entering the tube from the aircraft’s forward velocity.

The differential pressure, which is measured by a pressure sensor, is proportional to the

indicated forward air speed of the vehicle. A pressure sensor was selected for this

measurement, which is capable of detecting pressure in the range 0 to 3.92kPa and with

an output between 1V and 4.9V. As with the altitude sensor, the range was limited to the

4.5V reference. Equation (4) gives the relationship between the measured pressure and

indicated air speed in knots,[45]. The asl parameter is the standard speed of sound at

15°C, which is equal to 661.4788kts. The Psl parameter is the standard pressure at sea

level, which is equal to 29.92126in-Hg. The qc parameter is the measured pressure, from

the pitot tube, in-Hg.

2/ 7

5 1 1c
sl

sl

qV a
P

⎡ ⎤⎛ ⎞
⎢ ⎥= + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(4)

The relationship between air speed and measured pressure is non-linear.

Therefore, the amount of quantization error changes with velocity. However, the

smallest theoretical measured step is equal to 2.0381(10-5)in-Hg/bit, which is negligible.

51

5.5 Data Acquisition Memory

The FPGA’s internal RAM could be utilized for data acquisition. However, this

would be inefficient due to the large number of gates, which would be required, and the

fact that the RAM is a volatile memory. Therefore, the use of external memory was

included in the design to provide for data acquisition capabilities. Since flash memory is

available with large amounts of storage capabilities and is non-volatile, it was selected

over RAM memory, which is volatile and requires more board space for the same amount

of capacity. The disadvantage of flash is the limited number of write cycles, which are

usually around 100,000. This limitation was overcome by selecting a MicroSD card.

Therefore, the user can upgrade as write speeds and size are increased and the cards can

easily be replaced should the write cycle limitation be reached.

5.6 Actuator Control Selector Circuitry

The autopilot was designed to control up to twelve servos through the use of the

FPGA’s 3.3V TTL ports. The output from the FPGA is not directly linked to the servo

connector pins. Instead it passes through the onboard safety switch circuitry. This

circuitry provides for a pilot or, when in use, an additional daughter board, to gain control

of the servos in the case of a failure of either the underlying software or the FPGA. The

priority order was established as pilot first, the safety board second and the FPGA third.

In order to achieve this priority, without excessive use of analog switches, a CPLD was

utilized. The CPLD receives each of the control lines from the three sources and selects a

control source, which is outputted to the servos. This configuration is presented in Figure

20.

52

Figure 20: Actuator Control

There are six primary servos for control of the vehicle dynamics and six for

control of any accessories such as a camera pan and tilt motors. It is unrealistic for a

human pilot to control all twelve servos. Therefore, only the six primary servos are

available for the pilot to control. All twelve are available to both a daughter board and

the autopilot with two select lines available to the daughter board. This provides for a

second processing system to control the servos running the accessories while the

autopilot maintains control of the primary servos. This configuration is beneficial to

systems running a second processing system to handle computationally complex

algorithms such as the vision algorithms.

Standard servos run on power supplies in the range of 4.8V to 6V. The power to

the control switch can be supplied by the servo connector, running from a separate

supply, or the on-board 3.3V supply, which is selected by a jumper. The advantage of

providing a separate supply for the servos is the additional isolation gained for the critical

actuator control circuitry. It was decided to utilize a second voltage regulator for the

PWM FROM
SAFETY BOARD

CONTROL LINES
FROM SAFETY
BOARD

CMN

PILOT
CONTROL
LINE

PWM
FROM
RECEIVERS
UNDER
CONTROL
OF PILOT

3.3V Vcc

4.5-9V
SERVO
POWER
SUPPLY

3.3V
AUTOPILOT
Vcc

PWM
TO SERVOS

3.3V
REGULATOR

3.3 PWM FROM
VIRTEX II
PROCESSOR

CMN

XILINX
CPLD

53

safety switch. Since the safety switch is powered by the same supply as the actuators, a

loss of servo power would result in an unrecoverable failure even if the pilot were to

regain control of the actuator logic.

The control line from the pilot is a 3.3V PWM signal from a receiver. The code

in the CPLD monitors the frequency and gives the highest priority to the request of the

pilot for control. The control lines from the daughter board are simply a logic high/low

signal. Logic high on the control line will give control to the safety board but only if the

pilot has relinquished control. Two connections were included in the design in order to

jumper the daughter board select lines to logic low when a second board is not present.

Once the human pilot has relinquished control and the safety board control lines have

been set to logic low, the autopilot gains control of the actuators. The System Generator

is not available for the CPLD. Therefore, the safety switch was preprogrammed as part

of the autopilot design and does not need to be modified by the end user. However, the

JTAG ports are accessible. Therefore, those familiar with VHDL or Verilog can modify

the design for other functionality.

5.6.1 Safety Switch CPLD Logic

The safety switch was programmed within the ISE environment using VHDL.

The safety switch entity has two building blocks, a frequency conversion module,

freq_conv, to convert the pilot select line PWM signal into a single bit and a single switch

module, single_switch, which selects the PWM input to be passed to the servo output.

The safety switch configuration is displayed in Figure 21.

54

Figure 21: Safety Switch Block Diagram

The single switch component is repeated for each of the twelve PWM inputs. The six

servo outputs not affected by the pilot select have the pilot select bit passed into the

module as logic low. The truth table presented in Table 3 was used to derive the logic

function within the architectural structure of the single switch component. The single

switch logic is presented in Figure 22.

Table 3: Single Switch Truth Table
Pilot Select
(ps)

Daughter
Board Select
(dbs)

Pilot Input
(pi)

Daughter
Board Input
(dbi)

Autopilot
Input (ai)

Servo
Output
(servo)

0 0 X X 0 0
0 0 X X 1 1
0 1 X 0 X 0
0 1 X 1 X 1
1 X 0 X X 0
1 X 1 X X 1

freq_conv

single_switch

Pilot Select PWM

Clock

Servo Output
Daughter Board Select

Pilot Input
Daughter Board Input
Autopilot Input

Pilot Select

55

Figure 22: Single Switch Logic

The frequency conversion module converts the signal from the receiver. The

resulting signal is a 50Hz PWM signal, which toggles between a 1ms and a 2ms high

pulse level. The 1ms value corresponds to logic high, and the 2ms value corresponds to

logic low.

The CPLD clock operates at a frequency of 50MHz and is used to calculate the

time the PWM signal is logic high. A counter is utilized to determine the pulse width.

The counter is initialized when the PWM input changes from logic low to logic high and

reset to zero when the PWM changes from logic high to a logic low signal. The counter

value is used to determine the pulse width and set the output flag accordingly.

5.7 Power Supply Circuitry

The design of the power supply circuitry was provided by Xilinx, [46]. This

design was presented in a technical paper, [47]. The design was also utilized and tested

on Xilinx’s Spartan-3AN starter kit. Therefore, it was considered best to utilize the

proven design for the power supply.

The circuitry utilizes National Semiconductor’s LP3906. It is powered by the 5V

autopilot supply voltage input and provides four output voltages. Two of the outputs are

servo

ps
dbs

ai

dbi

pi

56

at 3.3V, one at 1.8V and one at 1.2V. The 1.2V and one of the 3.3V outputs are buck

DC-DC switch mode supplies. These are utilized to supply the FPGA 1.2V core supply

and the 3.3V supply required for the I/O ports bank 0, bank 1 and bank 2. The second

3.3V supply and the 1.8V supply are linear regulator supplies. The 1.8V output is used to

supply the bank 3 I/O ports, which are used for the 1.8 TTL logic protocol. Linear

regulators have a lower noise characteristic than the switch mode types. Therefore, the

linear 3.3V supply was utilized to supply the peripheral analog components. The analog

components are involved in measurements, which could be easily corrupted by noise.

The operating voltage of the autopilot was limited to a range of 4.75V to 5.25V

by the pressure sensors. Therefore, the autopilot is run from a regulated 5V supply.

57

CHAPTER 6

AUTOPILOT SOFTWARE DESIGN

In order for a complete design to be developed within the System Generator

environment, two separate issues must be addressed. These issues are the development

and testing of the software algorithms and the integration of these tested algorithms with

the selected sensors and actuators. The first issue has been studied Murthy and a design

flow developed in, [48]. The development of the hardware interfaces is addressed in this

chapter with the developed autopilot hardware interfaces as design references.

Murthy provides an overview of the System Generator along with a recommended

design flow for converting Simulink tested algorithms to System Generator/hardware

implementation, [48]. The research discussed issues encountered while designing the

algorithms at the gate level. These include quantization and overflow, difficulty

implementing mathematical algorithms and timing issues. Timing issues associated with

algebraic loops are of particular interest and are addressed by Murthy, [48].

Quantization and overflow are issues, which must be addressed with any form of

processor utilizing a fixed word length. The required resolution must be selected along

with the required precision. An advantage of working with FPGAs is that the word

length and assignments of bits to represent the fractional portion can be modified at

anytime within the software. Many of the System Generator building blocks provide for

the re-assigning of the length at the output. In addition, the representation can be

58

modified by utilizing the reinterpret and convert blocks. The reinterpret library block

assigns a different representation without adjusting the bit values. The convert library

block reassigns the word length and number of bits assigned to the fractional portion,

which will affect the individual bit assignment. The convert block provides for the user

to select whether the value is both rounded or truncated and wrapped or saturated.

The mathematical issues addressed are not a lack of availability of System

Generator blocks used for implementation. Rather the mathematical issues are concerned

with the assigning of the precision and delays along the path. Simple mathematical

blocks that introduce very little delay include addition, subtraction, shift, multiply,

scaling by 2n, cosine and sine functions that utilize look up tables. In addition, there are

blocks that implement the division, log, sine, cosine, square root and inverse tangent

functions by utilizing the Coordinate Rotation Digital Computer (CORDIC) algorithms.

The CORDIC algorithms use an iterative approach by performing coordinate rotations in

order to obtain an approximation of more complex functions, [49].

Algebraic loops occur when the output of a mathematical function is returned to

the input of the initial calculation. Algebraic loops can create timing issues for the

hardware designer. These loops require extra consideration with respect to the delay

associated with the gates contained within their path. The delay can result either in an

instability in the system or an incorrect result by performing the mathematical or logical

calculations on samples, which have occurred at different time steps. When developing

the System Generator algorithms these delays must be calculated and compensated for

carefully, [48]

59

The design of hardware interfaces does not focus on the quantization, over flow or

mathematical issues. The design of hardware interfaces focus primarily on the issues of

timing. The communication protocol requires tightly controlled timing at the I/O ports

with signals that require careful synchronization. When developing the communication

protocol the best approach is to first simulate and recreate the waveforms in the Simulink

scope. This provides for an initial determination of whether the timing and

synchronization of the signals were correctly designed. Once the simulation has verified

the design, the hardware implementation can be performed. If the hardware does not

yield the correct results, the FPGA’s RAM can be utilized to store the behavior of the

system within the FPGA. This provides for reading the information through the JTAG

interface and the recreation of the waveforms within the Simulink environment. Since

System Generator is bit and cyclic true, the hardware recreation usually finds either an

issue which existed in the simulation and was originally missed by the designer or an

electrical issue such as an incorrectly assigned hardware port.

The majority of mistakes, which prevent the protocol from functioning, result

from timing issues created by delays from the selected gates. The register library block

can never have less than a delay of one clock cycle. Other gates such as comparators or

logical functions may be set to a delay of zero. It is very important to look at the arrival

times of each individual signal. Comparison to a counter value can be used for

synchronization. Both register and delay blocks are useful for manipulating the arrival

times of signals. The following sections discuss the design of all the hardware for the

communication protocol in detail. The discussions in these sections are useful as a

reference for similar designs.

60

6.1 FPAA Program Logic Design

The PROGRAM FPAA autopilot template subsystem sends the required clock

signal to the FCLK port of the FPAA and programs the chip with the bit stream created

by the AnadigmDesigner2 program. Counters are used to control the timing of the

generated signals with surrounding gates utilized for synchronization. In addition,

Simulink’s ability to allow subsystems to be developed with variables assigned at

initialization through the mask interface was utilized. The mask was utilized for

assigning of the bit stream or sequence of ones and zeros, which contain the

configuration information, and disabling of the outputs to the FPAA when it is not in use.

The clock signal to the FPAA, FCLK, is generated by incrementing a counter

between zero and one at twice the required clock frequency, which is 12.5MHz. This

signal is OR’d with a Boolean value, which is assigned by the variable EnFPAA, set in

the mask. The additional Boolean variable provides for disabling the clock signal out of

the FPGA when the FPAA is not utilized. The FPAA clock signal is presented in Figure

23.

Figure 23: FPAA Clock Signal

Six hardware ports are utilized to program the FPAA. The reset port, FRES,

enables the FPAA when at logic high. The program chip select port FCS2B, which is set

to logic low while the configuration bit stream is sent. The bit stream is clocked out of

the chip on the data port FSI. These output signals are synchronized by the

61

communication clock port FCLK. After the chip has been successfully programmed, the

FPAA outputs FACT and FERRB are pulled t logic high values.

The FACT and FERRB ports are not required within the logic since these inputs

do not affect the output signals. The port hardware blocks cannot be left unconnected or

the compiler will remove the unused logic. This includes the assignment of these ports as

inputs. In order to prevent this removal, the ports are tied into an unused FPGA output

port. This output is not connected to any surrounding hardware and is defined as

TERM1. The configuration is presented in Figure 24. In addition to TERM1, three

additional unused ports TERM2, TERM3 and TERM4 were defined for future use.

Figure 24: Terminating Input Ports

The bit stream varies in length and bit values for different FPAA configurations

must be entered into the subsystem’s mask as a variable. This variable contains a vector

of ones and zeros and is stored in the FPGA’s ROM memory, which is set to a width of

1-bit and a depth equal to the number of bits to be sent. The variable is assigned in the

MATLAB workspace through the use of an m-file, which configures the

AnadigmDesigner2 generated binary file to the required vector. Within the mask’s

initialization commands an intermediate variable, A, is set equal to the user declared

variable to be used within the subsystem’s internal blocks. Then the variable A is entered

into the ROM as the initial value vector. A counter is utilized to increment the ROM

address at the communication rate. When the final value of the bits, to be sent, has been

62

reached, the counter latches at the last address value. This is accomplished by setting a

variable to the length of A less one and compared to the count value. When the

comparison outputs logic high, the communication clock is also disabled. Figure 25

displays an overview the system and the variables utilized within the logic blocks.

Figure 25: Program FPAA Logic

6.2 FPAA Receive Logic Design

The FPAA contains three internal 8-bit A/D converters, which are utilized for

providing the analog information to the autopilot’s FPGA. The protocol utilizes three

output ports data, synch and clk from the FPAA. The synch port is set to logic low

during the time when the FPAA is sending the eight data bits. The individual bits are

updated when clk is logic high and stable for the duration of logic low. The clock

RESET & ENABLE LOGIC

COUNTER CONTROL LOGIC

COMMUNICATION CLOCK SIGNAL

63

frequency, clk, is set to 3.125MHz from within the AnadigmDesigner2. The FPAA

generated waveform is displayed in Figure 26.

Figure 26: FPAA A/D Communication Protocol

Figure 27 displays the System Generator logic for the first A/D input. The

FSYNCH1 port corresponds to synch. The FDATA1 port is set to data. The FSYNCH

port is set to synch. This same logic is repeated for the second and third A/D inputs,

which utilize their individual synch and data ports and the shared clk port as the inputs.

Figure 27: FPAA Receive Logic

A counter is utilized to synchronize storing each of the individual bits arriving

sequentially into the corresponding registers. This counter is held in reset when synch is

data

synch

clk

D7 D6 D5 D4 D3 D2 D1 D0

64

logic high. When synch is logic low the counter increments at the update rate of data.

The subsystem, STORE_BITS, contains eight 1-bit enabled register blocks. The registers

are enabled according to the logic presented in equation (5). The parameter en is the

Boolean input to the register’s enable port. The parameter bit_number is the bit’s

sequential position in the serial input data. The parameter counter is the count value.

(_) AND AND (NOT())en bit number counter synch clk= = (5)

The output from each of the 1-bit registers is concatenated into an 8-bit word by the

concate block. The 8-bit word is stored in a register, which is enabled by the synch input

and is logic high when no data is being received.

6.3 Pressure Sensor A/D Logic Design

The selected A/D converter, the LTC1865, utilizes a standard Serial Peripheral

Interface (SPI) protocol at a clock frequency of 500 KHz. The sdi input to the A/D

converter specifies the settings for the next conversion cycle. In order to set the A/D for

channel 0 with single ended measurements, the sequence ‘1 0’ is written. For the same

setting but with channel 1, the sequence is ‘1 1’. The serial data port, sdo, provides the

readings from the A/D for the previously specified channel. The input line conv, to the

A/D, is held high to start the conversion cycle and is held high for the minimum required

conversion time. The clk signal synchronizes the bit transfer, which is stable when the

clk signal is logic high.

A block diagram, which provides a functional overview of the subsystem for the

A/D communication protocol, is presented in Figure 28.

65

Figure 28: A/D Communication Block Diagram

A control counter is utilized in order to synchronize the output waveforms

required for the communication protocol and storing of the input. The counter

increments from one to thirty-seven and provides the control count value. The required

waveforms from the output with respect to the control count value are presented in Figure

29.

The generation of the sdi and the conv outputs are controlled by utilizing the

System Generator’s relational block. Each of the relational blocks compares the control

counter output to a specific control count value for the required logic high output. The

outputs from the relational blocks are then OR’d in order to produce the required

waveform. The logic is given for the conv output in equation (6)

CONTROL COUNTER
UTILIZED FOR

SYNCHRONIZATION OF
OUTPUT LOGIC PORTS

CLOCK
GENERATOR

CONTROL
LOGIC FOR

conv OUTPUT

CONTROL
LOGIC FOR
sdi OUTPUT

sdo INPUT PORT

conv OUTPUT
PORT

sdi OUTPUT PORT

VELOCITY
INPUT 16-BIT

SHIFT
REGISTER

ALTITUDE
INPUT 16-BIT

SHIFT
REGISTER

clk OUTPUT PORT

16-BIT
VELOCITY
OUTPUT

16-BIT
ALTITUDE
OUTPUT

OR

OR

OR

BOOLEAN
VARIABLE TO

DISABLE

66

(19)OR(20)OR(21)OR(3)conv count count count count= = = = < (6)

and the logic for the sdi output is given by equation (7)

(3)OR(22)OR(23)sdi count count count= = = = . (7)

Figure 29: A/D Converter Timing

In order to produce a stable output, during the time when the clock is logic high, a

register is utilized with an enable port. The register is activated with the inverted value of

the generated clock signal, which is received from the RegEn subsystem input. This

configuration is presented in Figure 30.

tconv tconv

counter
value

sck

sdi

conv

sdoHi-ZHi-Z

0 1 2 3 4

15 14

5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 3530 36 37

13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

67

Figure 30: Logic to Generate Convert Output

The System Generator CEProbe block outputs a logic high pulse equal to the time

when the hardware clock is logic high. These pulses occur at the update rate of the

constant block input. This is used to generate the communication clock signal, clk. The

constant is set to an update rate of twice the required communication clock frequency,

which is 2usec. The generated pulse enables a counter to toggle between 1 and 0 to

produce the required frequency with a 50% duty cycle. The generated clock signal is

converted to a logic value and OR’d with the conv waveform. The or-gate is used in

order hold clock signal logic high for the duration of the A/D conversion cycle. A delay

of half a communication clock cycle, 1usec, is necessary in order to synchronize the sck

logic low signal with the sdi and conv waveforms. This delay is created by utilizing a

register block immediately before the output port. The System Generator implementation

is presented in Figure 31. The PS_SCK hardware port block corresponds to the sck

output.

Figure 31: A/D Clock Generator

conv

68

The 16-bit shift registers contain two of the 8-bit registers, which were created for

use in the FPAA communication logic. The shift registers were modified to collect each

individual bit at the correct counter corresponding to the A/D timing, which was

presented in Figure 29. The outputs of these registers are concatenated to form the 16-bit

word. An enabled register is utilized to store the concate block output. The register is

only permitted to update following the arrival of the last bit. For the 16-bit shift register

collecting the channel 1 input the update occurs when the count value is equal to zero.

This process is presented in Figure 32.

Figure 32: Pressure Sensor A/D Input Logic

69

In order to allow the user to disable this template subsystem, a mask is used to set

a Boolean variable that is OR’d with each of the outputs in order to hold all the outputs

logic high when the system is disabled.

6.4 Micro Secure Digital Software Design

The MicroSD card is included in the hardware design to provide for the storage of

information at run time. With data acquisition, the final selection of the word length and

sampling time are dependent on the individual design, which creates the possibility for

many different logic configurations to exist. Therefore, only the initialization routine was

included in the template. The clock rate is set to 25MHz and the data length to 512, 8-bit

memory locations.

The card must go through a sequence of commands in order to initialize. The first

command CMD0 sets the card to the idle state and SPI protocol. The second command

CMD8 requests information regarding the card state. The third command CMD1 tells the

card to initialize. The fourth command CMD16 sets the data length to 512 bytes. After

each of these commands is received the card sends a specific response, which must be

checked. CMD8 sends a 40-bit response, which is detailed in Figure 33, [50]. CMD0,

CMD1 and CMD16 send back a 7-bit response, which is the highest byte of the CMD8

response.

An individual subsystem was built for each of the commands. As the correct

response is received, a register is latched high to enable the next sequential command.

After the final command has been received successfully the CMD16 response latches an

enable flag, termed Ready. This flag is outputted from the subsystem to indicate that the

70

card is ready to receive the next instruction such as read or write. The subsystem is

presented in Figure 34.

Figure 33: MicroSD Card Response

Figure 34: MicroSD Card Initialization Logic

39 38

start
bit

37 36

erase
reset
illegal
command
com crc error

erase sequence
error
address error
parameter error

35 34 33

in idle state

32 31..........28 37..12 11........8 7......................0

check
pattern

command
version

voltage
accepted

reserved

71

All the commands sent to the card share the same output hardware ports and must

be able to take control, without conflict, when active. Therefore, all of the command

outputs along with an input port to the subsystem are AND’d just before each of the

corresponding hardware ports. The input ports to the subsystem are for user read and

write commands. The subsystems are designed so that the output is logic high when

inactive. The hardware ports uSD_CLK, uSD_CS, uSD_DI, and uSD_DO, given in

Figure 34, correspond to the communication clock port clk, the chip select cs, the data

port to the MicroSD card di, and the data port from the MicroSD card do respectively.

The subsystem that sends CMD0 waits 3ms to provide the memory card time to

power up. After this delay, it sends the correct bit sequence for CMD0, receives the

response and sets the enable flag output. This process is presented in Figure 35.

Figure 35: CMD0 Subsystem

In order to create the 3ms delay a counter is utilized, which counts from 0 to 1

with a 3ms update rate. When the counter has incremented to the value one a register is

latched to logic high. This register output enables the counter utilized as the

communication clock output, clk, and the subsystem that sends CMD0, which is

72

D1_SELECT_LOGIC_HIGH. The subsystem, which receives the card’s response,

RECEIVE_R1, is always enabled. The MicroSD card always sets the first bit sent equal

to zero to indicate the start of the transmission. When this occurs, the RECEIVE_R1

subsystem starts a control counter, which is set at the communication rate. The counter is

used to enable eight registers when the corresponding register enable bits arrive. When

the last bit has been received a register storing the concatenated 8-bit value is enabled.

The relational block is utilized to compare the received word to the correct response,

which is equal to the value one. When the correct response is successfully received a

register is latched logic high, which is the enable output of the subsystem.

The DI_SELECT_LOGIC_HIGH subsystem contains a counter, which counts

from 0 to the value of 147. When the final value is reached, the output is latched to logic

high. The count values of 0 to 100 are required to provide the card with a clock input for

a short time before the command is sent. The count values of 100 to 147 represent the

48-bit word, which is to be sent. The DI_LOGIC subsystem contains relational blocks to

compare the count value to the location of the logic high bits within the 48-bit word and

OR the results. The function given in equation (8),

= = =

= = =

(100)OR(101)OR(140)...
 OR(143)OR(145)OR(147)
di count count count

count count count
=

,
 (8)

produces the signal sent from the di port to the MicroSD card, which is the correct

sequence of logic high pulses.

73

Figure 36: CMD0 Logic Output Subsystem

The next subsystem to be enabled is the CMD8 in Figure 34, which sends the

CMD8 command. This subsystem follows the same design flow as the command CMD0

discussed previously, with three exceptions. The MicroSD subsystem for sending CMD8

is presented in. Figure 37.

Figure 37: MicroSD Send CMD8 Subsystem

The CMD8 subsystem is enabled from the output of CMD0 instead of a timer

delay. The 48-bit command has a different sequence sent than CMD0. The response is

forty bits rather than seven. It was found that if the next command was sent too soon, the

card did not respond properly. Therefore, the command is not sent until 200 clock cycles

after the subsystem is enabled.

74

As with the output of CMD0, the MicroSD send CMD8 subsystem’s di output is

generated with relational blocks to compare the count value to the required logic high

sequence followed by an OR gate. The function, which produces the di output port signal

for CMD8 is given in equation (9) as:

= = = =

= = = =

= = = =

(200)OR(201)OR(204)OR(231)OR...
 (232)OR(234)OR(236)OR(238)OR...
 (240)OR(245)OR(246)OR(247)

di count count count count
count count count count

count count count count

=

 (9)

Contained within the 48-bit word sent to the MicroSD card is an 8-bit value equal to 170.

This value is a pattern check and is returned within the response from the card.

The subsystem that receives the MicroSD response to the CMD8 command,

RECEIVE, checks that the first 8-bit word received from the MicroSD card is equal to 1

and that the pattern check, bits 32 through 39, is equal to 170. The MicroSD subsystem

for receiving the CMD8 response is presented in Figure 38.

Figure 38: MicroSD Receive CMD8 Response Subsystem

75

Once the conditions checked are true a register is latched to logic high. The

register output is the subsystem flag ENnext, which provides the next command to be

sent. When enable input signal Enable is logic high and the di signal is logic low a

counter is enabled. The counter is used to synchronize storing of the arriving bits. The

subsystems, RECEIVE1 and RECEIVE2, contain registers, which are enabled by

corresponding counter values. The values are concatenated to form the 8-bit word, which

is the output of the subsystem.

The next subsystem is MicroSD CMD1, which sends the CMD1 signal. This

subsystem follows the same design as the CMD8 subsystem by utilizing a counter for

synchronizing the sending of the di sequence, which represents the 48-bit command. The

MicroSD CMD1 subsystem is presented in Figure 39.

Figure 39: MicroSD CMD1 Subsystem

The counter is enabled when the Enable input is logic high. Unlike the previous

commands discussed, the response to this command is slightly different. The card reacts

76

by returning an 8-bit response equal to 0 while it is still initializing and equal to 1 when it

is ready for use. The communication protocol requires the card to be polled for the

information. In order to accomplish polling of the card, a reset is included in the circuit,

which restarts the send CMD1 control counter when a response equal to 0 is received.

The subsystem for receiving the MicroSD CMD1 response, RECEIVE, which is depicted

in Figure 39, works the same as the previously discussed MicroSD CMD1 send

subsystem except for one addition. The MicroSD CMD1 receive subsystem performs an

additional comparison to the value 0, which when true, sets the reset output to logic high

in order to resend the command.

The final command is sent by the MicroSD CMD16 subsystem. Once the data is

sent, the subsystem waits for an 8-bit response, which is equal to one. Once the response

is received, a register is latched producing the signal out of the initialization subsystem

that provides the enable flag to the next subsystem, ENnext. The MicroSD CMd16

subsystem is presented in Figure 40.

Figure 40: MicroSD CMD16 Subsystem

77

6.5 RS232 Logic Design

Communication subsystems were created to provide user capability for the RS232

communication protocol. A subsystem is included within the autopilot template to

enable/disable the autopilot ports. In addition, three subsystems are included within the

library for sending, receiving and down-sampling the received data.

6.5.1 RS232 Disable Logic

Communication via RS232 is disabled by setting the enable and the shutdown

pins on the MAX561 transceiver IC to logic low. When these IC control lines are logic

low, the transceiver holds all the I/O pins as high impedance. The subsystem is masked

and the inputs to the ports set as a variable constant. The RS232 disable logic is

displayed in Figure 41.

Figure 41: RS232 Enable Logic

6.5.2 RS232 Send Logic Design

A library subsystem was designed to send ASCII characters utilizing a standard

protocol of no parity and one stop bit. The subsystem for sending RS232 protocol is

presented in Figure 42.

The inputs to the subsystem, ASCII and Out_EN, set the sampling rates to the

following blocks. The ASCII input is the 8-bit character to be sent. It is concatenated to

78

the start bit, equal to 0, and the stop bit, equal to 1. A parallel to serial System Generator

block is used to rotate the 10-bit result, which causes the lowest bit to be sent first. The

parallel to serial converter increases the update rate by a factor equal to the number of

bits being sent. Therefore, the input must be set to one-tenth of the bit rate for the

selected baud rate. The output of the parallel to serial block is converted from a numeric

to a logical representation by utilizing the cast block. The logic output is OR’d with the

up-sampled and inverted Out_EN bit. This forces the output BIT, of the subsystem, to

logic high when a character is not sent.

Figure 42: Send RS232

6.5.3 RS232 Receive Logic Design

A library subsystem was designed to receive 8-bit data utilizing RS232 with no

parity and one stop bit protocol. A functional block diagram of the system is displayed in

Figure 43.

Figure 43: RS232 Receive Diagram

Start/Reset
Timer Logic

RS232 Rx
Port Timer

Input
Bit

Start/Reset
Bit

Timer
Count 8-Bit

Register
&

New Symbol Logic

8-Bit
Symbol

New Symbol
Ready Bit

79

The rate is set by the user selecting the baud value from a drop-down menu,

which is provided through the use of a subsystem mask. The selection sets a variable,

which is used within the subsystem, to synchronize the logic to the corresponding baud

rate.

The System Generator program requires the sampling time on the input port to be

a multiple of the clock rate. This requirement necessitated a more complex design for

this subsystem. Rounding the update rate to the nearest allowable value creates a slight

timing offset for each of the baud rates. The baud rates are listed in Table 4.

Table 4: RS232 Bit Timing
Baud Rate (bps) Used Bit Rate (uSec) Actual Bit Rate (uSec)
 9600 104.20 104.1667
 19200 52.10 52.0833
 38400 26.04 26.0417
 57600 17.36 17.3611
115200 8.68 8.6806

For a single byte the offsets are small enough to be negligible. However, over

time the offset are cumulative, which eventually leads to a communication error.

Therefore, the port was oversampled at the clock rate and a counter, utilized as a timer,

synchronizes the reception of each bit. The timer is started when the input changes from

logic high to logic low, which essentially realigns the timing for each character received.

Figure 44 displays a recorded waveform for one byte.

Notice that the sampling occurs close to the center of the time the bit is available.

This provides for the system to overcome the expected slight offset and any small amount

of jitter, which may occur.

80

Figure 44: RS232 Receive One Byte

The timer that synchronizes the storing of the individual bits is implanted within a

counter block, which is incremented at a sampling rate of 50MHz. The count is started

when the input changes from logic high to logic low, which signals the arrival of a new

byte. This is detected by comparing the input, which is down-sampled to 25MHz, to

itself with a delay of one sample. The down-sampling is required to meet timing

constraints. The two bits are then concatenated and compared to a value of 1. When this

condition is true a register is latched so that the system cannot reset until all eight bits

have been received. The register output is then up-sampled to force the counter to run at

50MHz. After up-sampling the register is inverted in order to hold the counter in the

reset condition while waiting on a byte to arrive. The register controlling the counter is

reset to logic low when the final count value is reached. This value is dependent on the

baud rate selected for the counter and a constant block. The baud rate is set by the baud

variable. The constant is used as a comparison to the count value in order to control the

reset of the system. The variable is set inside the subsystem mask when the user selects

the baud rate from the menu. The logic and use of this variable is presented in Figure 45.

1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
0

0.2

0.4

0.6

0.8

1

RS232 Recieve Timing

Time in mSec

Lo
gi

c

Bit In
Bit Stored

81

Figure 45: RS232 Timer Control Logic

The individual bits are received into one of eight registers when the counter

equals the correct value. This value is calculated by equation (10),

2 _ 1counter baud bit number= + (10)

where baud is the bit rate for the corresponding baud rate and bit_number corresponds to

the order of the received bit. The outputs of these eight registers are then concatenated

into one 8-bit word, which is stored in an additional register. After the last bit has

arrived, the output of the register holding the 8-bit word is then updated and a byte ready

flag, newSym, is set for one clock cycle. The process is presented in Figure 46.

Figure 46: RS232 Receive Byte Subsystem

START TIMER

RESET TIMER 19*baud

82

6.5.4 RS232 Down-Sample Logic

System Generator synchronizes the output of any block to the incoming rate.

Therefore, the output of the RS232 library subsystem, by default, is 50MHz. Attempting

to run complex algorithms at this rate creates unrealizable timing constraints. In order to

avoid such constraints, an additional library subsystem was developed to down-sample

the incoming byte and the bit ready flag to the communication baud rate. This system is

masked with a user selectable drop-down list, which sets a variable, baud, based on the

communication baud rate chosen. The variable is incorporated within the blocks of the

subsystem in order to synchronize the timing to the selected baud rate.

System Generator does supply a down-sample function. However, it cannot be

utilized alone with the bit ready flag. Since the flag is only available for one hardware

clock cycle of 2ns, it will not be down-sampled correctly. The bit ready flag input,

NewSym, is used to control the timer. The timer provides the output, which can be down-

sampled to provide the bit ready flag, newsym. This flag will remain at logic high for a

period of one clock cycle of the communication rate chosen. The timer is implemented

with a counter. The update rate is the hardware clock rate set by the counter’s reset input.

The timer value is controlled by setting the counter to increment to the value baud

reduced by one. Since the counter starts the increment at zero, the reduction of one is

included. The timer enable/reset technique used in the receive subsystem was also

repeated for this implementation. The logic used to down-sample the bit ready flag is

displayed Figure 47.

The 8-bit word is held in a register, which is stable between updates. Therefore, it

can be correctly down-sampled by baud. However, an additional register is required in

83

order to have the updated value transmitted on the same clock cycle as the byte ready

flag. This is due to the delay introduced by the register controlling the counter. The

logic for down-sampling the 8-bit word is illustrated in Figure 48.

Figure 47: Down-Sampling New Bit Logic

Figure 48: Down-Sampling RS232 Symbol

6.6 Variable I/O Port Voltage Set Logic

The logic level setting for the TTL variable voltage ports is controlled by a digital

potentiometer, which sets the voltage control pin on the level translators. A single IC

containing six individual potentiometers was utilized, as discussed in Section 5.3. The

communication protocol to the IC is a standard SPI protocol, which possesses a clock

input line, a data input line and a chip select line. The data is sent serially as an 11-bit

word. The highest three bits specify the potentiometer to be set and the lower eight bits

specify the trim setting in 255 incremental steps. The subsystem is presented in Figure

49.

baud-1

baud

baud

84

Figure 49: Variable Port Voltage Set Subsystem

The subsystem is masked to allow the user to easily select between 1.8V, 3.3V

and 5V logic. Within the mask, the initialization code was written to assign the correct

value to the constant containing the trim setting for each port. If the enable block is not

selected, the corresponding enable output for each level translator is set to zero. This

holds the current unused autopilot I/O ports in a high impedance state. Figure 50

demonstrates the protocol for one potentiometer setting.

The clock frequency is set to 50KHz, and controlled by a counter, which toggles

between zero and one. The 11-bit word is then sent to the data input line through a

parallel to serial converter. In order to allow the potentiometer select and trim setting to

be specified separately, two constant blocks are utilized and then concatenated to a single

11-bit word. This process must be repeated six times for each of the internal

potentiometers. In addition, the chip select must be set to logic low for a short period

after each setting is received. A counter is utilized to control when each of the 11-bit

words is sent. The counter is stopped when it reaches the value of thirteen. This is

Enable Logic for Each Port's Level Translator

Control Clock Logic

Communication Protocol Logic

Potentiometer Voltage
Translator Enable

85

accomplished by channeling the output back through a relational block, which sets the

counter enable input to logic low when the final value is reached. Table 5 displays the

required action for each count value.

Figure 50: Potentiometer SPI Protocol

Table 5: Port Setting Control Counter
Counter value Action
1 Chip not selected
2 Send data for port 1 potentiometer
3 Chip not selected
4 Send data for port 2 potentiometer
5 Chip not selected
6 Send data for port 3 potentiometer
7 Chip not selected
8 Send data for port 4 potentiometer
9 Chip not selected
10 Send data for port 5 potentiometer
11 Chip not selected
12 Send data for port 6 potentiometer
13 Chip not selected, counter is now disabled.

86

The communication protocol is enabled by the logic contained in the SEND_EN

subsystem and is given in equation (11)

= = = = = =(2)OR(4)OR(6)OR(8)OR(10)OR(12)count count count count count count . (11)

When the output is logic high it enables the logic responsible for sending the 11-bits.

The parallel to serial converter is enabled to provide the output data on the IO_SET_SDI

port. The counter, which outputs the clock signal on the IO_SET_CLK port, is enabled

and inverted to directly provide the chip select output on the IO_SET_EN port.

The data sent to the PARALLEL TO SERIAL block is controlled by the

OUT_SEL subsystem. The subsystem is presented in Figure 51.

Figure 51: Variable Port Data Output Multiplexer

87

Individual constant blocks are utilized for specifying each of the individual

potentiometer trim setting. This provides for each setting to be specified through a user

selection variable contained in the subsystem’s mask. The count value is shifted left by

one bit in order to specify the correct multiplexer output. Since the multiplexer’s output

starts with reference 0, a seven input multiplexer was selected. The multiplexer input line

referenced to 0 is tied to the first potentiometer setting. This first value is never sent.

The first value is used to provide for the selection to occur between outputs at every other

count value. This establishes the required delay between each 11-bit word being sent.

6.7 Servo PWM Output Logic

The autopilot is designed to provide for servo control. Therefore, a subsystem

was developed to generate the required PWM signals. The output frequency is specified

by the user to be between 20Hz and 100Hz. The system is designed for an input of

0.00% to 100.00% duty cycle. A functional block diagram of the PWM generate block is

presented in Figure 52.

Figure 52: PWM Generate Block Diagram

Percent to Count
PWM Generate Logic
produces PWM with

0%<duty<100%

Select logic

MUX

Logic high

Logic low

duty
(percent of
 period high)

PWM
output

88

A counter is utilized as a timer for the generation of the PWM output. The

maximum count value for 100% duty cycle is assigned from a variable calculated within

the subsystems mask, which uses the user specified frequency. The select logic controls

the multiplexer output selection. PWM output is logic high when the duty cycle input is

100% and logic low when the duty cycle input is 0%.

The percent duty cycle must be converted to a count value. The ratio given in

equation (12)

update frequency
PWM frequency*100

count duty= (12)

is contained within a multiplier block. The converted value is loaded in the counter at the

start of the clock cycle. When the value is reached the register containing the output bit

is enabled. The register is forced to logic low through the use of an inverter block, which

is contained within a feedback loop. When the counter reaches the final count value the

process is started again. The detailed logic for the generated PWM output is presented in

Figure 53.

The input to the PWM generator is set to fourteen bits. Seven bits are used to

represent the integral portion and seven bits represent the fractional portion. The

quantization error is limited to 1/27, or +/- 0.0078. This provides an accuracy of 1us for

the pulse width. This accuracy was required since the standard operating range of a 50Hz

servo is 1msec to 2msec. The update rate of the duty input is limited to 100Hz in order to

guarantee the multiplication stage will meet the timing constraints.

89

Figure 53: PWM Generator

A test was run for a setting of 15.25% duty for a 100Hz period, which will

produce a 1.525ms pulse output. The generated wave form was stored to RAM at a 1us

sampling rate and retrieved through the JTAG port. A check of the exact time, which the

waveform was logic high, demonstrated the timing requirements were met. This

subsystem was repeated twelve times to provide the control logic for each of the servos

and combined to create a masked subsystem with the required user settings. The

recorded waveform is presented Figure 54.

Figure 54: Generated PWM Output

PWM Generate Logic

Percent to Count
Conversion

Select Logic

90

6.8 FPGA RAM Data Acquisition Software Design

The JTAG port, while efficient when running the hardware under Simulink

control, is unable to send information at most communication protocol rates. Therefore, a

library subsystem was written in order to write data values to two single port RAM

blocks and then read back these values at a much slower rate. The logic design is

presented in Figure 55.

Figure 55: RAM Data Acquisition Logic

The subsystem logic input, EN_Rd, starts the read process under user control.

There are two inputs, DO and DO1, for data acquisition. These values are saved to two

separate RAM blocks at the update rate of the incoming signal. In order to synchronize

the write process correctly, EN_Rd must have the same update rate as DO and DO1. A

counter is incremented at the date input update rate in order to assign the memory

location to both of the single port RAM blocks. When this counter has reached the final

value, a second counter is enabled at a much slower rate in order to increment through the

count to value=mem_len
number of bits=bits

value=mem_len
number of bits=bits

depth=mem_lensampling rate = ds

91

memory locations during the read process. Both counter outputs are multiplexed before

the RAM memory input in order to control the switching between the write and read

processes.

Control logic was utilized in order to synchronize the selection of the multiplexer

output and the write control line to the RAM blocks. Equation (13)

_ and (not (write counter=final value))EN Rd (13)

provides the logic for the enable to the write counter and the read/write select input to the

RAM. Since the counter is disabled as soon as it reaches the final value, the output of

this equation is held constant.

The multiplexer select and the read counter logic is simply a comparison of the

counter value to the final count value. When the write counter reaches its final value the

multiplexer output switches and the read counter starts the increment through the memory

addresses. A down-sample block was placed just before the read counter enable input.

Therefore, the counter rate is reset to a user selectable value. The outputs from the

subsystem are the address, addr, the first set of data, data, and the second set of data,

data1. These are sent to the JTAG port at the slower rate, during the read cycle, to be

stored in Simulink.

The subsystem was masked with user inputs for three variables. The three

variables are memory length of the RAM blocks, mem_len, the associated number of

required bits, bits, and the down-sample rate for reading the RAM, ds. These variables

are then entered into the blocks associated with them.

92

6.9 GPS Unit Communication Protocol

The SuperstarII GPS unit supplies latitude and longitude information. This

information is sent as a series of 8-bit values using the RS232 protocol. The TTL logic

level is selected as 3.3V. The library subsystems for receiving and down-sampling the

RS232 protocol are both set to 1900 baud. The SUPERSTARII block receives and

combines the 8-bit values into the correct format. The last block of the subsystem

prevents the information from being passed out of the subsystem if the correct CRC is not

received. Figure 56 displays the four lower level subsystems that comprise the system.

Figure 56: Receive Superstar II Library Block

The subsystem receiving the down-sampled 8-bit information utilizes a control

counter to keep track of the byte number of the received 8-bit word then combines the

information as necessary.

93

The SuperstarII GPS unit when set to send the latitude/longitude information in

binary format, returns the values listed in Table 6, [51]. The subsystem contains a block

for each piece of information received or each individual line in Table 6.

Table 6: GPS Information Formatting
Byte Description Units Type
1-4 Header N/A Binary
5 Hours, Correction, Reserved N/A Binary
6 UTC Minutes Minutes Binary
7-14 UTC Seconds Seconds Double
15 UTC Day Day Character
16 UTC Month Month Character
17-18 UTC Year Year Unsigned Short
19-26 Latitude Radians Double
27-34 Longitude Radians Double
35-38 Altitude Meters Float
39-42 Ground Speed Meters/Second Float
43-46 Track Angle Radians Float
47-50 North Velocity Meters/Second Float
51-54 East Velocity Meters/Second Float
55-58 Vertical Velocity Meters/Second Float
59-62 HFOM Meters Float
63-66 VFOM Meters Float
67-68 HDOP N/A Unsigned Short
69-70 VDOP N/A Unsigned Short
71 Navigation Information N/A Binary
72 Bits 0-3 Number of SVs

Bits 4-7 Coordinate System
N/A Binary

73 System Mode Information N/A Binary
74 Elapsed Time Hours Character
75 Reserved N/A N/A
76-77 Checksum N/A Unsigned Short

Not all the information received from the GPS unit is passed out of the subsystem.

The only information passed out of the subsystem is data necessary for simple navigation.

This includes position readings, velocity readings and number of satellites available (SV).

The subsystem calculates the CRC checksum as each byte arrives. The checksum format

94

requires that each of the bytes be combined, added, into a 16-bit word with overflow

neglected. As each byte is summed, the addition block output is set to truncate the

sixteen bits with no fractional representation. Each of the subsystems receives the

partially added value, CkSumIn, and passes out the updated value to the next subsystem,

CkSum. The final sixteen bits received is the checksum value sent by the GPS. The

checksum is subtracted from the calculated value and compared to the value of 0 in order

set an error flag out of the subsystem, CkSumError. A comparator is utilized to set a new

value available flag, NewVal, when the counter reaches the value of 77. The blocks,

which make up the receive subsystem are presented Figure 57. The control counter logic

and each of the subsystems for combining the specific measurement values are contained

in the lower level systems for clarity.

Figure 57: Superstar II Receive Subsystem

95

The control counter logic is presented in Figure 58. The first byte sent by the

GPS unit is the beginning of the header and is equal to 1. A relational block is used to

compare the incoming byte to this value. When the value is received a register is latched

to one. Latching of the register to one enables the counter, which will synchronize

storing of the received bytes.

Figure 58: GPS Communication Control Counter Subsystem

The final subsystem prevents the output from updating when a checksum error

occurs by utilizing a series of registers for each of the values sent out of the subsystem.

This subsystem is presented in Figure 59. These registers are enabled when the

checksum error, CkSumErr, is logic low and the new value flag, NewValue, has been set.

Figure 59: GPS Communication Subsystem Update Output Subsystem

96

6.10 IMU Unit Communication Protocol

The MicroStrain communication library subsystem is comprised of two lower

level subsystems. The library subsystem for receiving RS232 protocol is set to a baud

rate of 38400. The MicroStrain subsystem controls the initialization command requesting

the stabilized Euler angles be sent continuously. After initialization, it combines each of

the bytes into the correct format as the information is received. This subsystem also

checks to see if the correct checksum value is received. If the checksum is correct, the

output is updated. If the checksum is incorrect, the error flag, cksumerror, is set to one.

The IMU protocol block is illustrated in Figure 60.

Figure 60: IMU Protocol Library Block

The subsystem receiving the 8-bit data from the RS232 subsystem is made up of

lower level subsystems. The MicroStrain subsystem is presented in Figure 61. The

control counter logic block synchronizes the receiving of the individual bytes by

providing a count value for each one received. The send command subsystem sends the

correct sequence for the requested information. The remaining subsystems combine the

bytes making up each of the measurements received. Logic is included to sum the value

of the bytes received in order to provide the calculated checksum. This value is

97

compared to the received checksum. If the correct value is received, the output registers

are enabled and the output of the subsystem is updated.

Figure 61: MicroStrain Receive Stabilized Euler Angles Subsystem

The subsystem providing the control count contains a counter, which is used to

synchronize the reception of the individual bytes. The counter is enabled by latching a

register to logic high when the first header byte is received, which is equal to 14. When

the counter has incremented to the final count value of 11, the same register is reset back

to the initial value of 0. Reset of the register disables the counter until the next block of

data is received. The control count subsystem is presented in Figure 62.

Figure 62: IMU Control Count Subsystem

98

The subsystem for sending the command sequence is presented in Figure 63. The

subsystem uses a counter to synchronize the sending of three sequential 8-bit commands.

The first value is equal to 16 and indicates to the IMU that a command is coming. The

second value is equal to the value 0 and sets send to continuous mode. The third value is

equal to 14 and requests the stabilized Euler angles to be sent. These values are held in

individual constants, which are applied to a multiplexer. A slight delay is occurs after

each value is sent. Therefore, the counter is increment to the value 6 at the baud rate and

the output shifted right in order to produce the 0 to 3 count values required by the

multiplexer select lines. The library block created for sending the RS232 protocol is

utilized for sending the multiplexer output. This block is enabled by comparing the

counter output to the required constants for sending each of the values.

Figure 63: IMU Send Command Subsystem

99

CHAPTER 7

RC-TRUCK IMPLEMENTATION

In 2007, Murthy developed a control system for an RC-Truck model. The model

was converted to FPGA implementation using System Generator and verified through

hardware-in-the-loop on a Xilinx Virtex II development board, [48]. In order to

demonstrate the effectiveness of the developed autopilot platform, Murthy’s research was

emulated, by implementing the software design of this research on a similar RC-Truck

robot utilizing the autopilot designed and developed in this research.

The simulation RC-Truck model was a simplified mass on wheels model that

included a single motor equation and kinematic equations for Ackermann steering. The

RC-Truck model is illustrated in Figure 64.

Figure 64: RC-Truck Model Block Diagram

Vact is the control input to the motor. Tm is the torque output of the motor. ax is the

forward acceleration along the body reference x-axis. νx is the forward velocity along the

body reference x-axis. X and Y represent the world reference position. ψ is the heading.

αs is the steering angle.

MOTOR FORWARD
DYNAMICS 1/s

ax

αs

KINEMATICS

vx
Robot

ψ

TmVact
Y
X

100

The control system consisted of a simple mission planner to send in a new way

point when the robot was close to the current one. The control system was based on a PI

controller for velocity and a P controller for the heading. The RC-Truck control system

is presented in Figure 65.

Figure 65: RC-Truck Control System

The hardware-in-the-loop verification, performed during Murthy’s research,

utilized various sensors. A 10 Hz IMU unit was used to provide the heading angle. An

encoder was used to provide body reference velocity at 50 Hz. A 10Hz GPS was utilized

for position. However, the conversion to latitude/longitude or ECEF reference frames

was neglected, [48].

The sensor set utilized on the robot for this research did not include an encoder.

The velocity was obtained at 5 Hz from the IMU in the North-East reference frame.

There was an observed delay of 1 to 2 seconds. In addition, the IMU operated at a

guaranteed minimum of 50 Hz. The Latitude/Longitude readings from the GPS unit

arrived at 5 Hz. The Simulink implementation was modified slightly to incorporate the

sampling rates. The sampling time and delay of the velocity readings was of particular

concern. The modified RC-Truck control system is presented in Figure 66.

vx
Robot

ψ
Y

XPI
vx
SET POINT +

-

PATAN2
+ -
+ -

+
-

ψsp
Xtraj

Ytraj

RC-TRUCK
MODELWAY POINT

GENERATOR

101

Figure 66: Modified RC-Truck Control System

The velocity PI controller was implemented with a Simulink PID controller block.

The proportional gain was set to 0.05, the integral gain to 0.001 and the derivative gain to

0. The proportional controller used for the heading control had a gain of one. This

caused the steering angle to equal the heading error. This angle was not limited in the

controller; rather, it was limited to +/- π/6 radians within the RC-Truck model. Including

the limitation within the RC-Truck model best reflected the behavior of the system. The

rate transition blocks were incorporated to reflect the sampling rates of the sensors. The

rate was transitioned back to the Simulink time step just before the PI controller and the

steering angle input to the RC-Truck model. Simulink required that the PI controller to be

run at the Simulink rate. A realistic mathematical representation of the system behavior

was obtained because the update of the error value entering PID block is limited to the

sensor rate.

The way point generator was contained within an m-file that assigned two vectors

of X and Y set points, calculated the Euclidean distance from the position set point in the

X and Y world reference frame and incremented the set points when the RC-Truck was

within one meter of the current set point. The code is presented in Figure 67.

vx
Robot

ψ
Y

XPI
vx
SET POINT +

-

PATAN2
+ -
+ -

+
-

ψspXtraj

Ytraj

5 SECOND
DELAY

RC-TRUCK
MODEL

RATE
TRANSITION

TO 5Hz
RATE

TRANSITION
TO 5Hz

RATE
TRANSITION TO
SIMULINK TIME

RATE
TRANSITION

TO 50Hz

RATE
TRANSITION TO
SIMULINK TIME

RATE
TRANSITION

TO 50Hz

WAY POINT
GENERATOR

RATE
TRANSITION

TO 5Hz

102

Figure 67: Simulink Implementation of Way Point Generator

The velocity response was not ideal due to the slow sampling rate and delay. However,

the controller remained stable for a set point of 1 m/s with the controller proportional

value equal to 0.01 and the integral value equal to 10-5. The velocity of the RC-Truck

during simulation is graphed in Figure 68. The RC-Truck successfully reached each of

the way points. The route established for the RC-Truck to traverse, with way points, is

presented in Figure 69.

103

Figure 68: RC-Truck Simulation Velocity Output

Figure 69: RC-Truck Simulation Heading and Position

0 0.5 1 1.5 2 2.5 3

x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Step (10 mSec)

V
el

oc
ity

 m
/S

ec

Velocity

Velocity
Velocity Set Point

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100
RC-Truck Trajectory

X-Coordinate (meters)

Y
-C

oo
rd

in
at

e
(m

et
er

s)

1

2
3

4

5

6
7

8

9

10 11
12

13

14

15
16

direction
path

104

7.1 RC-Truck Controller Design

The hardware implementation required further revision to incorporate the sensors,

realistic operation of the hardware, and the math related to the latitude/longitude

coordinate system. The Measurements from the GPS unit were received in 64-bit double

representation for the latitude and longitude and 32-bit single representation for the North

and East velocity measurements. The received values were converted to a binary

representation with a fixed word length. Because the double and float precision reflects a

much longer fixed word format, a limitation of the word length providing a sufficient

resolution was incorporated into the logic design. Unlike with the simulated system, the

velocity was rotated to the body reference in order to correctly implement the control of

the RC-Truck motor. A block diagram of the hardware control system for the RC-Truck

is presented in Figure 70.

The servo control was slightly more complex when implemented in hardware.

The additional complexity was necessary to prevent damage to the servo controlling the

steering angle. If the wheels were turned when the RC-Truck was stationary, there

existed a potential for damage due to the additional force needed. In addition, the RC-

Truck had to be stopped when the number of satellites used by the GPS unit dropped

below five. This feature was also incorporated in the servo control.

The battery used to power the autopilot board, sensors and servos was Lithium

Polymer. Therefore, full discharge could incur damage. Battery damage was prevented

by monitoring the battery voltage with the FPAA and using an LED as a low voltage

indicator. A 7.4V battery was selected. Since the voltage was approximately 8.5V at full

105

charge, the low battery flag was set for 7.4V, which provided for some additional time for

the LED indicator to be observed visually by the operator.

Figure 70: Hardware RC-Truck Control System

During the development of the control algorithms, it was necessary to collect both

measurements and calculated values while the vehicle was in motion. This provided for

the observation of these values with respect to the robot’s behavior at that moment. The

JTAG is limited in how much data can be received into Simulink for each time step. This

was due to the limitations of the parallel port integration meeting the timing constraints of

the Simulink program. In order to overcome this, a subsystem was built that converts the

information into ASCII format and then sent the information to one of the autopilot’s

TTL output ports. In order to receive the information through the computer’s USB port,

Acroname’s TTL to USB converter was utilized. The received information was observed

GPS
COMMUNICATION

PROTOCOL

CALCULATE
DISTANCE

CONVERT
DOUBLE

SERVO MOTOR
CONTROLLER

IMU
COMMUNICATION

PROTOCOL

LATITUDE

LONGITUDE

NORTH
VELOCITY

EAST
VELOCITY

NUMBER
SATELLITES

CONVERT
FLOAT

CONVERT
FLOAT

VELOCITY SET
POINT

HEADING

CALCULATE
HEADING

SET POINT +

+

_

_

+

_

+
_

GENERATE
NEXT WAY

POINT

ROTATE TO
BODY

REFERENCE

CONVERT
DOUBLE

106

using Window’s HyperTerminal program. The HyperTerminal program also allowed for

the incoming data to be stored to a text file for further analysis.

RC-Truck platform was provided by the Army Research lab. This platform

included the servos, motor speed controller and motor. A wood box was fabricated to

house the autopilot platform and mounted to the metal framing towards the rear of the

RC-Truck. The required Superstar II GPS receiver, antenna and power supplies were

mounted on a wood platform attached to the top metal framing on the vehicle. The

MicroStrain IMU was mounted directly to the metal frame on the back of the RC-Truck.

The location of the IMU prevented the magnetic field generated by the drive train motor

located at the center of the vehicle from corrupting the measurements.

The motor was powered from a single 7.4V Polymer Lithium battery. The same

type of battery was also utilized to power the autopilot, servos and sensors. The autopilot

and GPS required a 5V regulated input. In order to meet this requirement, a circuit

containing two voltage regulators and heat sinks was included in the hardware

implementation. The servos did not require a regulated voltage, but were limited to a

maximum of six volts. For this reason, the servos were also powered from the regulated

five volt supply. In order to guarantee enough current, the voltage supply to the

electronics was divided between the two regulators. The IMU is powered directly from

the same 7.4V battery. The RC-Truck is presented in Figure 71.

107

Figure 71: RC-Truck with Sensors and Power Supply

7.1.1 ASCII Data Collection

The speed and word length that can realistically be sent through the JTAG is

limited by both the parallel port and Simulink‘s integration with Windows. For this

reason, a subsystem was developed to convert the binary values to decimal ASCII

representation. The ASCII values were then sent utilizing RS232 protocol. This allowed

a TTL-USB converter to be utilized to receive the data from the computer’s USB port

through Window’s HyperTerminal program. The algorithms for converting binary to

ASCII were designed for a specific representation. In order for sufficient resolution, the

subsystem required a 40-bit word length, with the lower twenty-nine bits representing the

fractional portion. The information was sent sequentially with coma inserted before each

value. A line-feed character was the last character to be sent before the subsystem was

reset for the next eight measurement values. The additional characters provided the

GPS ANTENNA

IMU

GPS RECEIVERREGULATORSBATTERY

AUTOPILOT

MOTOR BATTERY

TTL-USB CONVERTER

108

necessary delimitation when stored into a text file through the HyperTerminal program.

Each of the ASCII characters was then sent to the library subsystem, SENDRS232 in

order to rotate the bits out to a TTL port. The design is presented in Figure 72.

Figure 72: Send ASCII Subsystem

A counter was set increment at 1.042(10-3) seconds, which was the required

timing for sending each ASCII character for a baud rate of 9600 bits/sec. The count

value was utilized for synchronizing the sending of the required eight measurement

values and the delimitation characters. The final count value was based on the time it

took all of the ASCII characters to be sent. The eight measurement values were

multiplexed just before the subsystem which inserted the coma and converted the binary

value to ASCII characters, CONV_SEND. The select input to the multiplexer was

controlled by the count value. Equation (14)

5(1) / 2sel count= − (14)

109

was implemented to convert the count value to the required multiplexer select input of 0

to 6. After each of the measurement values were sent, the CONV_SEND subsystem was

reset for the next character. The reset logic in equation (15)

(32)OR(64)OR(96)OR(128)OR...
 (160)OR(192)OR(224)OR(255)
count count count count
count count count count

= = = =
= = = =

 (15)

was contained in the RESET subsystem. When the count was equal to the value 257, the

last value had been sent and a second multiplexer was utilized to send the value 13,

which is equivalent to the line-feed character in ASCII.

The CONV_SEND subsystem contained a counter block utilized as a timer to

synchronize the sending of the ASCII characters. The characters sent by this subsystem

included a starting coma followed by a plus or minus sign, the ASCII characters

representing the decimal form of binary value to be sent, with the decimal point character

inserted before the fractional portion. The counter was reset by the external control

counter after the last character had been sent. The first bit of the value received was the

sign bit which controlled a multiplexer. The multiplexer selected between converting the

binary value to the ASCII characters, for a positive number, or the negated binary value,

for a negative number. The subsystem is presented in Figure 73.

110

Figure 73: Convert to ASCII Subsystem

The CONV_ABOVE0 subsystem calculated the characters which represented the

decimal hundreds value, the tens value and the ones value. The 8-bit values were

calculated with three sequential mathematical operations. Equation (16)

CAST(/100)hvalue bin= (16)

calculated the decimal hundreds placeholder, hvalue, directly. The variable bin is the

highest 11-bits of the 40-bit binary value to be converted to ASCII. The CAST operator

represents the system generator cast block which was set to define the output as an 8-bit

value with the truncate option set. Equation (17)

CAST(() /10)tvalue bin hvalue= − (17)

111

used the output from the first calculation, hvalue, and bin to calculate the decimal tens

placeholder. Equation (18)

CAST()ovalue hvalue tvalue= − (18)

was the final calculation that results in the decimal ones placeholder, ovalue. In order to

obtain the ASCII character, these values were then OR’d with the value of forty-eight.

This set the highest four bits to the required ASCII sequence of ‘0011’.

The CONV_FRACT subsystem utilized a feedback loop to calculate a sequential

series of division by ten. This sequential division was calculated at ten times the

communication baud rate, as required by the subsystem sending the ASCII characters.

Each division by ten resulted in shift of the fractional value by one decimal place holder

to the decimal ones placeholder. The value resulting from this calculation was then

converted to an 8-bit value and OR’d with the value forty-eight to obtain the ASCII

character. After the last character was sent, a comparison to the value of the counter

controlling the CONV_SEND subsystem was used to reset the subsystem. The

CONV_FRACT subsystem is presented in Figure 74.

Figure 74: Convert Fraction to ASCII

112

7.1.2 Battery Monitoring Design

The FPAA IC was utilized for monitoring the battery voltage. The battery voltage

was inputted directly to the FPAA large signal input. The FPAA was programmed for an

internal gain of negative two. The A/D output was assigned to the FPGA port connected

to data1 in the autopilot template’s FPAA_INPUT subsystem. A negative gain was

utilized because the A/D utilized twos compliment formatting. By utilizing the negative

gain, the output was directly inputted as 0 for an internal voltage equal to -1.5 and 255 for

an internal voltage equal to +1.5. The AnadigmDesigner2 environment is presented in

Figure 75.

Figure 75: FPAA Program for Battery Monitoring

The FPAA configuration was saved as a binary file in the folder containing the

Simulink autopilot program. The binary file was then converted to a variable and

assigned within the mask of the autopilot template’s PROGRAM_FPAA subsystem. The

113

output of the autopilot template’s FPAA _INPUT block was connected to a variable for

comparison to the A/D input equal to 7.4V which was equal to 198. Equation (19)

87.4 2 1_ 1.5
8.96 3

flag set −⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (19)

provided the conversion from the 7.4V input to the binary value outputted by the FPAA

A/D. The value 7.4 was the battery voltage that the flag was set for. The 8.96 was the

conversion due to the voltage division ahead of the FPAA input. The value 1.5 was

added to this value because of the voltage offset within the FPAA. The (28-1)/3 was the

conversion factor from the voltage seen at the input to the A/D converter to the 8-bit

binary value entering into the FPGA. The logic used for the battery monitoring is

presented in Figure 76.

Figure 76: Program for Battery Monitoring

7.1.3 Double and Float Conversion to Binary

The formatting of the measurements received from the GPS unit were 64-bit

double precision for latitude and longitude measurements and were 32-bit single point

precision for North and East velocities. Both these formats required conversion into a

fixed binary word length in order to be utilized within standard System Generator blocks.

114

The binary word representation for the double and single precision formats is presented

in Figure 77. The only difference between the two representations is the number of bits

contained the exponent and the fraction. The sign for both formats is represented with

one bit, with a value equal to one representing a negative number. The exponent is eight

bits for single precision and eleven bits for double. The fraction is twenty-three bits for

single precision and fifty-two for double.

Figure 77: Single and Double Representation Word Format

The algorithm for conversion between the single and double precision formats

and the binary fixed word length is obtained in two mathematical steps. First, equation

(20)

e exponent bias= − (20)

results in an intermediate variable, e, from the value contained in the received exponent

bits. The variable, bias, is an offset utilized in the single and double precision formatting

and is equal to 127 for single precision and 1023 for double precision. Second, equation

(21)

2 *1.emagnatude fraction= (21)

sign exponent fraction

115

calculates the magnitude of the single and double precision value represented as a fixed

binary word length, magnatude.

The single precision and double precision to binary conversions could not be

implemented within a single subsystem. This was due to the difference in word length

requiring different values within the logic design. The algorithms for each conversion

were very similar. A shift block was utilized to perform the 2e calculation. In order to

obtain a reasonable word length, the output was limited to forty-five bits, with forty bits

representing the fractional portion, for the latitude and longitude measurements and to

thirty-two bits, with sixteen representing the fractional portion, for the velocities.

The value received from the GPS unit was broken up into three slices, the sign bit,

the exponent and the fraction values. This separation provided for the mathematical

calculation given in equation (20) and equation (21) to be performed.

After equation (20) is implemented the resulting value, e, may be either a negative

or positive value, depending on the size of the numeric value received. A shift right was

required for a positive result, while a shift left was required for a negative result. In order

to accommodate the different logic requirements, a multiplexer block was utilized to

determine the sign and allow the correct calculation to be passed to the next stage of

logic.

The slice containing the fraction value required a one to be added to the value

received. The most efficient implementation was to utilize a System Generator concate

block in order to place a bit equal to 1 in the highest order of the output. The reinterpret

block was then utilized to assign this additional bit as the value 1 with the rest of the bits

assigned to the fractional portion. This provided the required format for the

116

multiplication given in equation (21). In order to limit the delay and number of gates

utilized by the multiply block, a cast block was used to reduce the number of bits. For

the latitude and longitude measurements, the value was limited to forty-one bits with the

lowest forty representing the fractional portion. For the velocity measurements, the value

is limited to nine bits, with the lowest eight representing the fractional portion.

Because the calculated magnitude is always positive, a multiplexer was utilized to

select between a negative and a positive measurement being outputted by the subsystem.

The calculated magnitude was directly connected to the multiplexer’s output selected by

the value 0, while the negated magnitude was connected the multiplexer’s output selected

by the value 1. The selected output of the multiplexer was directly determined by the

sign bit of the value received from the GPS.

The subsystem for converting from double precision to binary is presented in

Figure 78. The single precision to binary design was identical with exception to the

numeric values dependant on the word lengths.

Figure 78: Double to Binary Conversion

Sign Bit

Exponent

Fraction

2e*1.fraction

117

7.1.4 Heading Set Point Control

The heading set point control included an approximation of the distance, an m-file

to store and increment to the next way point, and a calculation of the heading set point.

In addition to the code for incrementing the way points, a multiplexer was included with

the user input switch utilized as a select. This allowed the m-file to be reset to the first

way point by the operator. The heading control subsystem is presented in Figure 79.

Figure 79: Heading Set Point Control Subsystem

The values for latitude and longitude received from the GPS unit were given in

radians and a very small value represented the difference between waypoints. A large

word length would have been required to accurately calculate the Euclidean distance.

The calculation would, not only require a large amount of logic, but also create a

significant latency within a feedback loop. For this reason, equation (22)

()710 sp spd lat lat lon lon= − + −
 (22)

118

calculated an approximation of the distance, d. The value of d that determined the

advancement to the next way point was set to the value 1. The multiplier given in

equation (22) was treated as a tuning parameter and determined through

experimentation.

An m-file was utilized to store two vectors of way points, where one vector

represented latitude and the other longitude. As the vehicle neared the current set point,

the index assigning the values for the latitude and longitude set points was advanced. An

additional comparison to the set point index was also included to hold the index at the

final way point value. The m-file code is given in Figure 80.

Figure 80: Hardware Way Point Generator M-File

119

Equation (23)

error spE longitude longitude= − (23)

calculated the error in the East direction, Eerror. The sign reversal was required because

the longitude values were negative and decreasing for movement in the East direction.

Equation (24)

error spN latitude latitude= − (24)

calculated the error in the North direction. Equation (25)

1tan error
sp

error

EHeading
N

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (25)

calculated the heading set point, Headingsp, from the North and East errors; where a

CORDIC inverse tangent block was used to implement the inverse tangent function. The

block provided the quadrant with the output given from –π/2 to π/2. The formatting of

the value received from the IMU was the same. When the vehicle was aligned South the

measurement changed from –pi/2 to the pi/2 value for a small change in heading. This

sign reversal created errors in the controller. For this reason, an additional subsystem

was inserted just before the heading controller to modify these values to a 0 to 2π

representation. A multiplexer and comparator was used to implement an if-then

120

statement. If the input, AngleIn, was negative then 2π was added to the value, if the input

was positive, then the output was not adjusted. The subsystem is presented in Figure 81.

Figure 81: Heading Correction Subsystem

7.1.5 Velocity Set Point Control

As with the simulation, the velocity set point was a fixed 1m/s, but with additional

control to hold the set point to 0 when the RC-Truck was under the control of the

handheld radio. If a set point of 1m/s was allowed when the RC-Truck was held

stationary by the radio, an error was present. This created an increasing control effort at

the output of the PI controller. When the RC-Truck was finally allowed to enter the

autonomous mode, this control effort created a sudden increase in motor RPMs. By

synchronizing the set point to change to the required 1m/s to the switch to autonomous

mode, the velocity control system presented the required step response. The set point

design is presented in Figure 82. The SS_IN block was an FPGA input port connected to

an output port in the Safety Switch. This port was logic high for manual control and

controlled the multiplexer that selected between the two set points.

121

Figure 82: Velocity Set Point Subsystem

7.1.6 Servo Control

The servo control incorporated the velocity controller, the heading controller, and

two m-files. The m-files were implemented directly before the duty cycle inputs to the

PWM generator for the steering and the drive train servos for additional control. The m-

file that provided additional control to the steering servo prevented a change in the

steering angle when the RC-Truck is stationary and when the number of satellites has

dropped below five. This was necessary to prevent potential damage to the servo caused

by the additional torque generated when the RC-Truck is at a standstill. The m-file

providing additional control to the drive train servo set the duty cycle to neutral when the

number of satellites is below five. This m-file also included a logic output to an onboard

LED to inform the operator when the vehicle had stopped due a lost GPS lock. Since it

was always possible that the control effort would exceed the limits of the servos, both m-

files included code to limit the duty cycle to an acceptable range. A block diagram of the

servo control design is presented in Figure 83.

122

Figure 83: Servo Control Block Diagram

The heading controller utilized a proportional controller with a gain equal to one.

The multiplier block was not implemented, since the output would simply equal the

input. The heading error required a conversion to the 0 to 100% duty cycle. The duty

cycle required for a steering angle of –π/6 radians was approximately equal to 5.5%. For

a steering angle of +π/6 radians the duty cycle was approximately 9.5%. These values

were determined experimentally by slowly increasing and decreasing the duty cycle

while observing the resulting angle of the wheels. Based on this mathematical

relationship, equation (26)

*12 7.5angleduty = +
π

 (26)

implemented the conversion from radians to duty cycle was implemented through.

As with the simulated system the velocity control was implemented with a PI

controller, but slightly different gain values. The gains were modified because, unlike the

simulation model, the drive train motor was being driven from the PWM signal, rather

VELOCITY
LIMITER

PWM
GENERATOR

duty %

duty %heading
error
radians

velocity
error
m/Sec

number of Satellites
LED2GPS

flag

duty %

duty %

STEERING
LIMITER

HEADING
CONTROLLER

VELOCITY
CONTROLLER

123

than the motor voltage. In addition, the characteristics of the motor were not exactly

known, which created a difference in the behavior of the simulated motor and the RC-

Truck motor. Because of the inherent stability of the system, the gain values were easily

found by experimentation. The proportional gain was equal to 0.035 and the integral gain

equal to 3.5(10-5). Because neutral, where the RC-Truck is not was motion, was equal to

a duty cycle input of 7.5%, the output from the controller was subtracted from this value.

The calculation implemented subtraction rather than addition due to the inverse

relationship of duty cycle to motor control. A duty cycle input of less than 7.5% resulted

in forward motion, while a duty cycle of greater than 7.5% resulted in reverse motion.

The m-file providing additional control to the velocity servo, VelocityLimiter.m,

was designed with two if-then-else statements in order to adjust the percent duty cycle

output, PWMout. PWMout was set to neutral when the SV input, which provided the

number of satellites used by the GPS unit, dropped below five. The first if-then-else

statement adjusted the output to the lower and upper bounds if the control effort exceeded

the limits of the servos. The second if-then-else statement set a logic output, SVout, to

true when the number of satellites dropped below five. The output was connected to a

user LED as a flag so the operator was able to observe if the vehicle was stopped due to a

loss of GPS. The m-file code is given in Figure 84.

The steering limiting m-file, SteeringLimiter.m, was designed to prevent the duty

cycle controlling the steering servo from updating when both the velocity duty is set to

neutral and when there are less than five satellites in view. In addition, the duty cycle

input, PWMin, was limited to the maximum or minimum allowed values. In order to

check each of these conditions, an if-then-else statement is utilized. If the number of

124

satellites was adequate and the drive train duty cycle was set for forward motion, but the

maximum or minimum value was exceeded then the duty output, PWMout, was re-

assigned the maximum or minimum value, respectively. The m-file containing this code

is given in Figure 85.

Figure 84: Velocity Limiting M-File

125

Figure 85: Steering Limiting M-File

7.2 RC-Truck Results

Five trials were run with the RC-Truck following the same trajectory each time.

As with the simulation, an approximate figure eight trajectory was assigned. The

position in latitude and longitude and the velocity in the vehicle’s body reference frame

were stored utilizing a laptop’s USB port and the HyperTerminal program. A text file

126

containing the information was created by the HyperTerminal. The information was then

read into MATLAB and the trajectories and velocities plotted for each trial. The

velocities for trial one, trial two, trial three, trial four and trial five are presented in

Figure 86, Figure 88, Figure 90, Figure 92, and Figure 94, respectively. The trajectories

for trial one, trial two, trial three, trial four and trial five are presented in Figure 87,

Figure 89, Figure 91, Figure 93, and Figure 95, respectively.

Figure 86: Velocity Response for Trial One

0 100 200 300 400 500 600 700
-0.5

0

0.5

1

1.5

2

Sample Number

V
el

oc
ity

 (M
et

er
s/

S
ec

on
d)

Velocity Response Trial One

127

Figure 87: Trajectory for Trial One

Figure 88: Velocity Response for Trial Two

-1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

1

2
3

4

5

6

78

9

10

11 12

13

14

15
16

17
18

Trajectory Trial One

Longitude (radians)

La
tit

ud
e

(ra
di

an
s)

Trajectory Set Point
Trajectory

0 100 200 300 400 500 600 700 800
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample Number

V
el

oc
ity

 (M
et

er
s/

S
ec

on
d)

Velocity Response Trial Two

128

Figure 89: Trajectory for Trial Two

Figure 90: Velocity Response for Trial Three

-1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

1

2
3

4

5

6

78

9

10

11 12

13

14

15
16

17
18

Trajectory Trial Two

Longitude (radians)

La
tit

ud
e

(ra
di

an
s)

Trajectory Set Point
Trajectory

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample Number

V
el

oc
ity

 (M
et

er
s/

S
ec

on
d)

Velocity Response Trial Three

129

Figure 91: Trajectory for Trial Three

Figure 92: Velocity Response for Trial Four

-1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

1

2
3

4

5

6

78

9

10

11 12

13

14

15
16

17
18

Trajectory Trial Three

Longitude (radians)

La
tit

ud
e

(ra
di

an
s)

Trajectory Set Point
Trajectory

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sample Number

V
el

oc
ity

 (M
et

er
s/

S
ec

on
d)

Velocity Response Trial Four

130

Figure 93: Trajectory for Trial Four

Figure 94: Velocity Response for Trial Five

-1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

1

2
3

4

5

6

78

9

10

11 12

13

14

15
16

17
18

Trajectory Trial Four

Longitude (radians)

La
tit

ud
e

(ra
di

an
s)

Trajectory Set Point
Trajectory

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sample Number

V
el

oc
ity

 (M
et

er
s/

S
ec

on
d)

Velocity Response Trial Five

131

Figure 95: Trajectory for Trial Five

The velocity responses of the RC-Truck were similar for all trials. The velocities

were held close to one meter, but with some slight oscillation. These oscillations

occurred because the GPS unit contains some error in the measurements. There were

also points in along the path where the robot slowed down. It was visually observed from

the LED indicator that the number of satellites used by the GPS had dropped below four.

Because of the PWM control algorithm, the motors were turned off and the RC-Truck

began to coast to a stop until a GPS lock was re-established. During the time period

where there was no GPS lock, a strong velocity control effort was present due to the

velocity error that was present. Once the GPS lock was regained, this control effort

created a slight increase the duty cycle controlling the motor. This response was

acceptable, as the loss in GPS rarely lasted more than a second. Had the GPS been less

-1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

1

2
3

4

5

6

78

9

10

11 12

13

14

15
16

17
18

Trajectory Trial Five

Longitude (radians)

La
tit

ud
e

(ra
di

an
s)

Trajectory Set Point
Trajectory

132

reliable, code could have been added to force a velocity set point of zero when the

number satellites used by the GPS unit dropped below five.

The RC-Truck followed very similar paths for each of the trials. It was observed

that for each trial the RC-Truck made a sharp turn just past the 10th, 11th, and 12th way

points. Because the robot was operating close to a building, it was quite likely that there

was interference with the heading measurement due to underground power lines, or some

other external contributing factor. Despite this slight wavering from the desired figure

eight trajectory, the robot did successfully reach all the way points along the path.

Although this implementation was very simplistic in nature, it demonstrated the

effectiveness of the autopilot platform as a method rapid system prototyping. In addition,

it demonstrated the flexibility across sensors and platforms. All of the sensors and the

RC-Truck platform were available within the Unmanned System Lab at the University of

South Florida. The autopilot accommodated each piece of hardware without requiring

any circuitry modification or custom sensors to be ordered.

133

CHAPTER 8

CONCLUSIONS

This design of the autopilot produced during this research included all of the best

features of various autopilot platforms such as integration with Simulink, open source to

allow any modification required and full FPGA implementation. In addition, the design

demonstrated its contribution by including additional features, which are unique as far as

the author is aware.

Many of the designs implementing FPGAs such as the Microbot and the GTSpy

still utilize a separate DSP/microcontroller processor for the majority of the processing.

Therefore, these designs do not allow for the benefits of parallel processing. Two of the

full FPGA designs require the programmer to implement the majority of the

programming in a PowerPC, [9, 36]. This restriction requires implementing some or all

of the processing utilizing a real-time operating system, without taking full advantage of

parallel processing capabilities. The research being performed by Wolter et. al., on a

design for the control of a Satellite is still in the initial stages. However, the analysis

performed indicated good timing and showed parallel communication could be

maintained by utilizing the full parallel processing capabilities of the FPGA, [40]. The

only design found that provided for programming directly through Simulink is the Piccolo

autopilot. The Piccolo utilized a DSP processor without parallel processing capabilities

134

and, in addition, required a CAN interface in order to implement the hardware-in-the-

loop verification.

By implementing full FPGA processing design and full Simulink integration, the

benefits of rapid system prototyping, tight timing control and flexibility across platforms

and sensors are realized. The integration with Simulink provides programming and

hardware-in-the-loop capabilities in an environment familiar to researchers in many areas

of engineering. Design within this environment will provide for rapid prototyping of new

ideas. In addition, to hardware-in-the-loop capabilities of Simulink, the software design

capabilities provide for directly integrating the hardware ports and required

communication protocol, which further improves upon the time required to implement a

new design. The autopilot design, produced by this research in this environment,

provides an unrivaled flexibility due the programmable analog and TTL interfaces and

the inherent flexibility of the FPGA processor. There are many systems in use, which

incorporate the mini-ITX or PC-104. The autopilot design produced by this research,

instead of intending to be a replacement, complements these systems. The complement

arises by providing dedicated hardware for real-time controls of the system dynamics

while giving the off board computer the role of a “master” computer when necessary.

The combined functionality and flexibility of the design has produced a novel and well-

needed processing platform for the unmanned systems community.

135

REFERENCES

[1] "Unmanned Aircraft Systems Roadmap 2005-2030",
http://www.acq.osd.mil/usd/Roadmap%20Final2.pdf, 2005

[2] http://www.baiaerosystems.com

[3] D. N. Borys and R. Colgren, "Advances in Intellegent Autopilot Systems for
Unmanned Aerial Vehicles", AIAA Guidance, Navigation, and Control
Conference and Exhibit, San Francisco, California, 2005

[4] http://www.rotomotion.com

[5] http://www.procerusuav.com

[6] http://www.micropilot.com

[7] http://www.ezi-nav.com

[8] http://www.o-navi.com

[9] R. H. Klenke, W. C. S. IV and M. A. Motter, "A High-Throughput Processor for
Flight Control Research Using Small UAVs", 25th AIAA Aerodynamic
Measurement Technology and Ground Testing Conference, San Francisco,
California, 2006

[10] http://www.cloudcaptech.com

[11] http://www.microboticsinc.com

[12] D. Jung, E. J. Levy, D. Zhou, R. Fink, J. Moshe, A. Earl and P. Tsiortras, "Design
and Development of a Low-Cost Test-Bed for Undergraduate Education in
UAVs", 44th IEEE Conference on Decision and Control, and the European
Control Conference, pp. 2739-2744, 2005

136

[13] D. Kingston, R. Beard, T. McLain, M. Larsen and W. Ren, "Autonomous Vehicle
Technologies for Small Fixed Wing UAVs", 2nd AIAA "Unmanned Unlimited"
Systems, Technologies, and Operations, San Diego, California, 2003

[14] A. D. Kahn and J. C. Kellogg, "Low Complexity, Low Cost, Altitude Heading
Hold Flight Control System", IEEE AESS Systems Magazine, pp. 14-18, 2003

[15] A. Sagahyroon, M. A. Jarah, A. Al-Ali and M. Hadi, "Design and
Imeplementation of a Low Cost UAV Controller", IEEE International Conference
on Industrial Technology pp. 1394-1397, 2004

[16] P. Y. Oh and W. E. Green, "CQAR: Closed Quarter Aerial RobotDesign for
Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas",
International Journal of Computational Intelligence, vol. 1, pp. 353-360, 2004

[17] R. J. Wood, S. Avadhanula, E. Steltz, M. Seeman, J. Entwistle, A. Bachrach, G.
Barrows, S. Sanders and R. S. Fearing, "Design Fabrication and Initial Results of
a 2g Autonomous Glider", IEEE, pp. 1870-1877, 2005

[18] S. Bouabdallah, A. Noth and R. Siegwart, "PID vs LQ Control Techniques
Applied to an Indoor Micro Quadrotor", RSJ International Conference on
Intelligent Robots and Systems, pp. 2451-2456, 2004

[19] S. Todorovic and M. C. Nechyba, "A Vision System for Intelligent Mission
Profiles of Micro Air Vehicles", IEEE Transactions on Vehicular Technology,
vol. 53, pp. 1713-1725, 2004

[20] Y.-J. Yang, J.-P. Chen, J.-S. Cheng, C. Zhang and Y.-L. Xiao, "Autonomous
Micro-Helicopter Control Based on Reinforcement Learning with Replacing
Eligibility Traces", Proceedings of the First International Conference on Machine
Learning and Cybernetics, pp. 860-864, 2002

[21] M. D. Bugajska and A. C. Schultz, "Coevolution Form and Function in the
Design of Micro Air Vehicles", IEEE Proceedings, NASA/DOD Conference on
Evolvable Hardware, 2002

[22] S. H. McIntosh, S. K. Agrawal and Z. Khan, "Design of a Mechanism for Biaxial
Rotation of a Wing for a Hovering Vehicle", IEEE/ASME Transactions on
Mechatronics, vol. 11, pp. 145-153, 2006

[23] S. E. Lyshevski, "Distributed Control of MEMS-Based Smart Flight Surfaces",
Proceedings of the American Control Conference, pp. 2351-2356, 2001

137

[24] A. S. Wu, A. C. Schultz and A. Agah, "Evolving Control for Distributed Micro
Air Vehicles", IEEE, pp. 174-179, 1999

[25] J. M. Pflimlim, P. Soueres and T. Hamel, "Hovering Flight Stabilization in Wind
Gusts for Ducted Fan UAV", 43rd IEEE Conference on Decision and Control, pp.
3491-3496, 2005

[26] D. Sun, H. Wu, R. Zhu and L. C. Hung, "Development of Micro Air Vehicles
Based on Aerodynamic Modeling Analysis in Tunnel Tests", Proceedings, IEEE
International Conference on Robotics and Automation, pp. 2235-2240, 2005

[27] H.-y. Wu, D. Sun, Z.-y. Zhou, S.-s. Xiong and X.-h. Wang, "Micro Air Vehicle:
Architecture and Implementation", Proceedings, International Conference on
Robotics & Automation, pp. 534-539, 2003

[28] F. Ruffier, S. Viollet, S. Amic and N. Franceschini, "Bio-Inspired Optical Flow
Circuits for the Visual Guidance of Micro-Air Vehicles", IEEE, pp. III-846-III-
849, 2003

[29] S. Taamallah, A. J. C. d. Reus and J.-F. Boer, "Development of a Rotorcraft Mini-
UAV System Demonstrator", IEEE, vol. 2005, pp. 11.A.2-1-11.A.2-15, 2005

[30] J. Evans, G. Inalhan, J. S. Jang, R. Teo and C. J. Tomlin, "Dragonfly: A Versitile
UAV Platform for the Advancement of Aircraft Navigation and Control", IEEE,
pp. 1.C.3-1-1.C.3-12, 2001

[31] J. L. Campbell and J. T. Kresge, "Brumby Uninhabited Aerial Vehicle Flight
Dynamics-Instrumentation and Flight Test Results", IEEE, 2003

[32] G. Cai, K. Peng, B. M. Chen and T. H. Lee, "Design and Assembling of a UAV
Helicopter System", IEEE International Conference on Control and Automation,
pp. 697-702, 2005

[33] S.-J. Lee, S.-P. Kim, T.-S. Kim, H.-K. Kim and H.-C. Lee, "Development of
Autonomous Flight Control System for 50m Unmanned Airship", IEEE, pp. 457-
462, 2004

[34] E. N. Johnson, S. G. Fontaine and A. D. Kahn, "Minimum Complexity
Unnhabited Air Vehicle Guidance and Flight Control System", AIAA Digital
Avionic Conference, pp. 1-9, 2001

138

[35] W. E. Hong, J. S. Lee, L. Rai and S. J. Kang, "RT-Linux based Hard Real-Time
Software ARchitecture for Unmanned Autonomous Helicopters", 11th IEEE
Conference on Embedded and Real-Time Compute Systems an Applications, 2005

[36] T. Brotherton, R. Luppold, P. Padykula and S. L. Richard Wade, "Generic
Integrated PHM / Controller System", IEEE, 2005

[37] H. B. Christopherson, W. J. Pickell, A. A. Koller, S. K. Kannan and E. N.
Johnson, "Small Adaptive Flight Control Systems for UAVs using FPGA/DSP
Technology", American Institute of Aeronautics and Astronautics

[38] A. A. Proctor, B. Gwin, S. K. Kannan and A. A. Koller, "Ongoing Development
of an Autonomous Aerial Reconnaissance System at Georgia Tech."

[39] R. H. Klenke, "A UAV-Based Computer Engineering Capstone Senior Design
Project", IEEE International Conference on Microelectronic Systems Education,
2005

[40] G. Grillmayer, M. Hirth, F. Huber and V. Wolter, "Development of an FPGA
Based Attitude Control System for a Micro-Satallite", AIAA/AAS Astrodynamics
Specialist Conference and Exhibit, Keystone, Colorado, 2006

[41] F. Krach, B. Frackelton, J. Carletta and R. Veillette, "FPGA-Based
Implementation of Digital Control for a Magnetic Bearing", Proceedings of the
American Control Conference, Denver, Colorado, 2003

[42] Z. Fang, J. E. Carletta and R. J. Veillete, "A Methodology for FPGA-Based
Control Implementation", IEEE Transactions on Control Systems Technology,
vol. Vol 13, pp. 977-987, 2005

[43] T. S. Hall, C. M. Twigg, P. Hasler and D. V. Anderson, "Developing Large-scale
Field-programmable Analog Arrays for Rapid Prototyping", International Journal
of Embedded Systems, vol. 1, 2005

[44] "www.maxim-ic.com", Application Note 3803

[45] http://www.wilkepedia.com

[46] www.xilinx.com, "Spartan-3A/AN Starter Kit Board Schematic", 2007

[47] www.national.com, "Flexible Power Management Units for Low-Power Xilinx
FPGAs", 2007

139

[48] S. N. Murthy, "Implementation of Unmanned Vehicle Control on FPGA Based
Platform Using System Generator", 2007

[49] R. Andraka, "A Survey of CORDIC Algorithms for FPGAs", Proceedings,
ACM/SIGDA Conference, Sixth International Symposium on Field
Programmable Gate Arrays, 1998

[50] "SD Specifications Part 1 Physical Layer Simplified Specification," SD Group,
2006

[51] I. Nov Atel, "Superstar II Firmware Reference Manual," 2005

140

APPENDICES

141

Appendix A Details of Commercial Autopilots

Table 7: Kestral by Procerus

Processing Hardware: 29 MHz, 8-bit Rabbit 3000 processor
Onboard Sensors: IMU unit onboard, does not specify brand

Pressure sensors for altitude and air speed
I/O Ports: 4 RS232 ports for off-shelf components such as GPS

3 12-bit analog inputs provided
Built in support for 2 axis with zoom camera gimbal

Outputs: 4 onboard servo ports, 8 external servo ports
Programming: developers kit and dynamic C
Hardware-in-the-Loop: proprietary software used in conjunction with Aviones

simulator

Table 8: MP2028 by Micropilot
Processing Hardware: Motorola’s 68332 processor 20MHz 32-bit processor
Onboard Sensors: Trimble Lassen SQ GPS receiver

Motorola onboard pressure sensors for air speed and altitude
iMEMS ADXL202 accelerometer
iMEMS ASXRS150 Gyro

I/O Ports: Additional ADC board for 32 analog inputs and compass
Additional AGL board for ultrasonic altimeter and modem

Actuator Outputs: 24 Servos or relays
Programming: XTENDER software can be purchased that allows for

custom programming.
Hardware-in-the-Loop: With proprietary software (Horizon) only

Table 9: Ezi-Nav by Autonomous Unmanned Air Vehicles, (AUAV)
Processing Hardware: 8 micro-processors
Onboard Sensors: Connections for handheld type GPS units only

IMU provided, details not given
I/O Ports: Not disclosed
Outputs: Not disclosed
Programming: Not disclosed
Hardware-in-the-Loop: Not designed for this capability
Additional Functions: Off-board wireless transceiver capable of 900MHz or 2.4

GHz provided

142

Appendix A (Continued)

Table 10: Phoenix by O-Navi

Processing Hardware: 32 MHz Motorola MMC-2114 processor
Onboard Sensors: Unspecified MEMS accelerometers and gyros

On-board pressure sensors for air speed and altitude.
On-board Trimble GPS receiver

I/O Ports: Additional sensors can be connected, but details not
specified

Outputs: 6 PWM servo
Programming: Flash programming kit available
Hardware-in-the-Loop: Not designed for hardware-in-the-loop

Table 11: Piccolo II by Cloudcap
Processing Hardware: Motorola’s MPC555 40MHz 32-bit processor
Onboard Sensors: 3 ADXRS300 rate gyros

2 two-axis ASXL21e
Accelerometers
uBlox TIM LP 4Hz GPS
input port for sonic altimeter
Honeywell HMR-2300 magnetometer,
onboard pressure sensors to provide air speed and altitude

I/O Ports: Additional daughter board provides analog, SPI, serial,
CAN

Outputs: 10 servos
Programming: Simulink using the Real Time Workshop
Hardware-in-the-Loop: Simulink running on a PC equipped with a CAN interface

card
Additional Functions: Wireless capabilities supplied on a daughter board

containing MHX-910/2400

143

Appendix A (Continued)

Table 12: Microbot by Microbotics

Processing Hardware: FPGA for I/O operations
M-Core MMC211 microprocessor for system programming

Onboard Sensors: Expansion board provides temperature sensor and mounting
for Midge series IMU/GPS

I/O Ports: 32 FPGA ports can be configured for various sensors
Expansion board provides 2 asynchronous serial ports and
12 analog ports

Outputs: FPGA lines used with pulse width generator to provide up
to 16 PWM outputs

Programming: Fully reprogrammable, details on required compiler not
given

Hardware-in-the-Loop: Not designed specifically for this
Additional Functions: External board for Aerocomm AC4490 modem available

Expansion board provides mounting for flash memory

144

Appendix B Port Connections to the FPGA

Figure 96: User LEDs and Switch Locations

Table 13: LED and Switch Port Assignments
PORT DESCRIPTION FPGA PORT PORT NAME
User LED 1 B21 LD1
User LED 2 B23 LD2
User LED 3 A22 LD3
User Switch A20 SW1

SWITCH USER
LEDS

145

Appendix B (Continued)

Figure 97: Daughter Board Connector One

Table 14: Daughter Board Connector One Safety Switch Connectors
PORT FPGA PORT CONNECTOR PIN
SEL1 -- 41
SEL2 -- 42
PWM1 -- 43
PWM2 -- 36
PWM3 -- 37
PWM4 -- 38
PWM5 -- 31
PWM6 -- 32
PWM7 -- 33
PWM8 -- 26
PWM9 -- 27
PWM10 -- 28
PWM11 -- 21
PWM12 -- 22

DAUGHTER BOARD
CONNECTOR ONE

CONNECTOR
PIN 45

SEL1
SEL2

CONNECTOR
PIN 2

CONNECTOR
PIN 1

146

Appendix B (Continued)

Table 15: Daughter Board Connector One

PORT FPGA PORT CONNECTOR PIN
IO1 K26 1
IO2 K25 6
IO3 K23 2
IO4 K22 7
IO5 K21 3
IO6 V24 12
IO7 AD26 17
IO8 K20 8
IO9 G22 13
IO10 AC25 18
IO11 AF25 23
IO12 Y22 4
IO13 K18 9
IO14 G23 14
IO15 V18 19
IO16 AC21 24
IO17 AF23 29
IO18 V16 34
IO19 AE23 39
IO20 AE21 44
IO21 K19 5
IO22 L18 10
IO23 G24 15
IO24 V17 20
IO25 V19 25
IO26 V18 30
IO27 AE25 35
IO28 AD22 40
IO29 AE20 45
IO30 V19 11
IO31 AC26 16

147

Appendix B (Continued)

Figure 98: Daughter Board Connector Two

Table 16: Daughter Board Connector Two
CONNECTOR FPGA PORT PORT NAME
1 -- +3.3 Vcc
2 -- Cmn
3 -- +5Vcc
4 A3 IO32
5 F23 IO33
6 G20 IO34
7 B3 IO35
8 F25 IO36
9 F24 IO37
10 A4 IO38
11 E7 IO39
12 C8 IO40
13 B4 IO41
14 B6 IO42
15 D6 IO43
16 C6 IO44
17 B7 IO45
18 A8 IO46

DAUGHTER BOARD CONNECTOR 2

CONNECTOR PIN 1
CONNECTOR PIN 2
CONNECTOR PIN 3

148

Appendix B (Continued)

Figure 99: Analog Input Connectors

Table 17: FPAA Connections
CONNECTOR FPGA PORT PORT NAME
-- H17 FERRB
-- G9 FACT
-- F12 FRES
-- H10 FCS2B
-- J16 FSI
-- H12 FSCLK
-- H15 FACLK
-- F7 FCLK
-- K12 FDATA1
-- K11 FSYNCH1
-- J11 FDATA2
-- K16 FSYNCH2
-- J12 FDATA3
-- H9 FSYNCH3
1 -- CMN
2 -- + SM SIGNAL
3 -- CMN
4 -- + LRG SIGNAL 1
4 -- CMN
5 -- + LRG SIGNAL 2

BOTTOM ROW: PIN 5 TOP ROW: PIN 6
BOTTOM ROW: PIN 3 TOP ROW: PIN 4
BOTTOM ROW: PIN 1 TOP ROW: PIN 2

ANALOG INPUT CONNECTOR

149

Appendix B (Continued)

Figure 100: TTL I/O Connector

Table 18: TTL I/O Ports One to Three Connections
CONNECTOR FPGA PORT PORT NAME
1 V1 IO1 4
2 U1 IO1 3
3 -- CMN
4 Y5 IO1 2
5 AD1 IO1 1
6 -- CMN
-- Y2 IO1 EN
7 AD2 IO2_4
8 AC3 IO2 3
9 -- CMN
10 R3 IO2 2
11 T3 IO2 1
12 -- CMN
-- Y6 IO2 EN
13 T5 IO3_4
14 AA3 IO3 3
15 -- CMN
16 AA2 IO3 2
17 W3 IO3_1
18 -- CMN
-- T4 IO3_EN

TOP ROW: PIN 4 MIDDLE ROW: PIN 5 TOP ROW: PIN 6
TOP ROW: PIN 1 MIDDLE ROW: PIN 2 TOP ROW: PIN 3

 5 VOLT
CONNECTORS TTL PORT CONNECTOR

150

Appendix B (Continued)

Table 19: TTL I/O Ports Four to Six Connections

CONNECTOR FPGA PORT PORT NAME
19 V2 IO4_4
20 U2 IO4 3
21 -- CMN
22 V5 IO4 2
23 U4 IO4 1
24 --- CMN
-- W4 IO4 EN
25 V6 IO5 4
26 W7 IO5 3
27 -- CMN
28 V7 IO5 2
29 U6 IO5_1
30 -- CMN
-- W6 IO5 EN
31 V8 IO6 4
32 U7 IO6 3
33 -- CMN
34 U8 IO6 2
35 U9 IO6_1
36 -- CMN
-- U5 IO6_EN
-- AC2 IO SET CS
-- AB1 IO_SET_SDI
-- Y1 IO SET CLK
-- AC1 IO SET EN

Table 20: Flash Memory
PORT NAME FPGA PORT
uSD CS W10
uSD DI W9
uSD CLK AB7
uSD DO W12

151

Appendix B (Continued)

Table 21: Pressure Sensor Connections

FPGA PORT PORT NAME
B2 PS_CONV
B1 PS SCK
D3 PS SDO
E1 PS SDI

Table 22: FPGA PWM Connections
FPGA PORT PORT NAME
W23 PWM1
W21 PWM2
W20 PWM3
Y25 PWM4
Y24 PWM5
Y23 PWM6
AA25 PWM7
AA24 PWM8
AA23 PWM9
AB26 PWM10
AB23 PWM11
AC20 PWM12
U23 SS IN

Figure 101: PWM Port Connections

TOP ROW: PIN 4 MIDDLE ROW: PIN 5 TOP ROW: PIN 6
TOP ROW: PIN 1 MIDDLE ROW: PIN 2 TOP ROW: PIN 3

PWM OUTPUT
CONNECTOR

152

Appendix B (Continued)

Table 23: PWM Output Port Connections

CONNECTOR PORT NAME
1 SERVO1
2 +6 VCC
3 CMN
4 SERVO2
5 +6VCC
6 CMN
7 SERVO3
8 +6VCC
9 CMN
10 SERVO4
11 +6VCC
12 CMN
13 SERVO5
14 +6VCC
15 CMN
16 SERVO6
17 +6VCC
18 CMN
19 SERVO7
20 +6VCC
21 CMN
22 SERVO8
23 +6VCC
24 CMN
25 SERVO9
26 +6VCC
27 CMN
28 SERVO10
29 +6VCC
30 CMN
31 SERVO11
32 +6VCC
33 CMN
34 SERVO12
35 +6VCC
36 CMN

153

Appendix B (Continued)

Figure 102: PWM Pilot Input Connector

Table 24: Pilot Input Connections
CONNECTOR PORT NAME
1 PWM1
2 +6VCC
3 CMN
4 PWM2
5 +6VCC
6 CMN
7 PWM 3
8 +6VCC
9 CMN
10 PWM4
11 +6VCC
12 CMN
13 PWM5
14 +6VCC
15 CMN
16 PWM6
17 +6VCC
18 CMN
19 PILOT SELECT
20 +6VCC
21 CMN

TOP ROW: PIN 1 MIDDLE ROW: PIN 2 TOP ROW: PIN 3
TOP ROW: PIN 4 MIDDLE ROW: PIN 5 TOP ROW: PIN 6

PWM INPUT
CONNECTOR

154

Appendix B (Continued)

Figure 103: RS232 Connector

Table 25: RS232 Connections
CONNECTOR FPGA PORT NAME

1 AA17 TX1
2 AC19 RX1
3 Y17 TX2
4 AD19 RX2
5 AE17 TX3
6 AF20 RX3
7 AA18 TX4
8 AB18 RX4
9 AD17 RX5
10 -- CMN
-- AE19 RS232EN
-- AF19 RS232SD

TOP ROW: PIN 3 BOTTOM ROW: PIN 4
TOP ROW: PIN 1 BOTTOM ROW: PIN 2

RS232
CONNECTOR

155

Appendix C Detailed Schematics

Figure 104: Flash Memory Circuit

Figure 105: Variable I/O Port Potentiometer Circuit

156

Appendix C (Continued)

Figure 106: Variable I/O Port Translator and Connector Circuitry

Figure 107: FPAA Circuit

157

Appendix C (Continued)

Figure 108: FPAA Input Circuit

Figure 109: Safety Switch Power and Clock Circuit

158

Appendix C (Continued)

Figure 110: Safety Switch CPLD and Connector Circuit

Figure 111: User LED Circuitry

159

Appendix C (Continued)

Figure 112: Daughter Board Connection Circuit

Figure 113: Pressure Sensor Circuitry

160

Appendix C (Continued)

Figure 114: Power Supply Circuitry

Figure 115: RS232 Circuit

161

Appendix C (Continued)

Figure 116: FPGA Bank0 Connections

162

Appendix C (Continued)

Figure 117: FPGA Bank1 Connections

163

Appendix C (Continued)

Figure 118: FPGA Bank2 Connections

164

Appendix C (Continued)

Figure 119: FPGA Bank3 Connections

165

Appendix C (Continued)

Figure 120: FPGA VCC Connections

166

Appendix C (Continued)

Figure 121: FPGA JTAG and Clock Circuit

167

Appendix D Safety Switch Code

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SafetySwitch is
 Port(--CONTROL LOGIC INPUTS
 clk : in STD_LOGIC;
 pSel : in STD_LOGIC;
 dsp_sel1 : in STD_LOGIC:='0';
 dsp_sel2 : in STD_LOGIC:='0';
 --SERVO INPUTS
 pilot1 : in STD_LOGIC:='0';
 fpga1 : in STD_LOGIC;
 dsp1 : in STD_LOGIC:='0';
 pilot2 : in STD_LOGIC:='0';
 fpga2 : in STD_LOGIC;
 dsp2 : in STD_LOGIC:='0';
 pilot3 : in STD_LOGIC:='0';
 fpga3 : in STD_LOGIC;
 dsp3 : in STD_LOGIC:='0';
 pilot4 : in STD_LOGIC:='0';
 fpga4 : in STD_LOGIC;
 dsp4 : in STD_LOGIC:='0';
 pilot5 : in STD_LOGIC:='0';
 fpga5 : in STD_LOGIC;
 dsp5 : in STD_LOGIC:='0';
 pilot6 : in STD_LOGIC:='0';
 fpga6 : in STD_LOGIC;
 dsp6 : in STD_LOGIC:='0';
 fpga7 : in STD_LOGIC;
 dsp7 : in STD_LOGIC:='0';
 fpga8 : in STD_LOGIC;
 dsp8 : in STD_LOGIC:='0';
 fpga9 : in STD_LOGIC;
 dsp9 : in STD_LOGIC:='0';
 fpga10 : in STD_LOGIC;
 dsp10 : in STD_LOGIC:='0';
 fpga11 : in STD_LOGIC;
 dsp11 : in STD_LOGIC:='0';
 fpga12 : in STD_LOGIC;
 dsp12 : in STD_LOGIC:='0';

168

Appendix D (Continued)

 --SERVO OUTPUTS
 servo1 : out STD_LOGIC;
 servo2 : out STD_LOGIC;
 servo3 : out STD_LOGIC:='0';
 servo4 : out STD_LOGIC:='0';
 servo5 : out STD_LOGIC;
 servo6 : out STD_LOGIC;
 servo7 : out STD_LOGIC:='0';
 servo8 : out STD_LOGIC:='0';
 servo9 : out STD_LOGIC;
 servo10 : out STD_LOGIC;
 servo11 : out STD_LOGIC;
 servo12 : out STD_LOGIC;
 SSout : out STD_LOGIC);
end entity SafetySwitch;

architecture Structural of SafetySwitch is

signal pps,s : STD_LOGIC:='0';
component single_switch is

 Port(pilot : in STD_LOGIC;
 fpga : in STD_LOGIC;
 dsp : in STD_LOGIC;
 pilot_select : in STD_LOGIC;
 dsp_select : in STD_LOGIC;
 servo : out STD_LOGIC);

end component single_switch;
component freq_conv is

 Port(f : in STD_LOGIC:='0';
 c: in STD_LOGIC:='0';
 control_bit: out STD_LOGIC);

end component freq_conv;
begin
 fc1: component freq_conv port map
 (f=>pilot6, c=>clk, control_bit=>pps);
 --SERVOS CONTROLLING ROBOT DYNAMICS
 s1: component single_switch port map
 (pilot=>pilot1, fpga=>fpga1,
 dsp=>dsp1, pilot_select=>pps,
 dsp_select=>dsp_sel1,
 servo=>servo1);

169

Appendix D (Continued)

 s2: component single_switch port map
 (pilot=>pilot2, fpga=>fpga2, dsp=>dsp2,
 pilot_select=>pps,
 dsp_select=>dsp_sel1,
 servo=>servo2);
 s3: component single_switch port map
 (pilot=>pilot3, fpga=>fpga3, dsp=>dsp3,
 pilot_select=>pps,
 dsp_select=>dsp_sel1,
 servo=>servo3);
 s4: component single_switch port map
 (pilot=>pilot4, fpga=>fpga4, dsp=>dsp4,
 pilot_select=>pps,
 dsp_select=>dsp_sel1,
 servo=>servo4);
 s5: component single_switch port map
 (pilot=>pilot5, fpga=>fpga5, dsp=>dsp5,
 pilot_select=>pps,
 dsp_select=>dsp_sel1,
 servo=>servo5);
 s6: component single_switch port map
 (pilot=>'0', fpga=>fpga6, dsp=>dsp6,
 pilot_select=>pps,
 dsp_select=>dsp_sel1,
 servo=>servo6);
 --SERVOS CONTROLLING ACCESSORIES SUCH AS CAMERAS
 s7:component single_switch port map
 (pilot=>'0', fpga=>fpga7, dsp=>dsp7,
 pilot_select=>'0',
 dsp_select=>dsp_sel2,
 servo=>servo7);
 s8:component single_switch port map
 (pilot=>'0', fpga=>fpga8, dsp=>dsp8,
 pilot_select=>'0',
 dsp_select=>dsp_sel2,
 servo=>servo8);
 s9:component single_switch port map
 (pilot=>'0',fpga=>fpga9,dsp=>dsp9,
 pilot_select=>'0',
 dsp_select=>dsp_sel1,
 servo=>servo9);

170

Appendix D (Continued)

 s10:component single_switch port map
 (pilot=>'0', fpga=>fpga10, dsp=>dsp10,
 pilot_select=>'0',
 dsp_select=>dsp_sel2,
 servo=>servo10);
 s11:component single_switch port map
 (pilot=>'0', fpga=>fpga11, dsp=>dsp11,
 pilot_select=>'0',
 dsp_select=>dsp_sel2,
 servo=>servo11);
 s12:component single_switch port map
 (pilot=>'0', fpga=>fpga12, dsp=>dsp12,
 pilot_select=>'0',
 dsp_select=>dsp_sel2,
 servo=>servo12);
 SSout<=pps;
end architecture Structural;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity freq_conv is
 Port(f : in STD_LOGIC:='0';
 c: in STD_LOGIC:='0';
 control_bit: out STD_LOGIC);
end entity freq_conv;

architecture Behavioral of freq_conv is

signal count: integer:=0;
signal rst: STD_LOGIC:='0';

begin
process (c) is

 begin
 if (c'event and c='1' and f='1') then
 count<=count+1;
 end if;
 if (f='0' and rst='1') then
 count<=0;
 end if;

end process;

171

Appendix D (Continued)

Process (f) is

 begin
 if (f'event and f='0' and count>40000) then
 if (count>65000) then
 control_bit<='0';
 else
 control_bit<='1';
 end if;
 rst<='1';
 end if;
 if (f='0' and count=0) then
 rst<='0';
 end if;

end process;
end architecture Behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity single_switch is
 Port(pilot : in STD_LOGIC;
 fpga : in STD_LOGIC;
 dsp : in STD_LOGIC;
 pilot_select : in STD_LOGIC;
 dsp_select : in STD_LOGIC;
 servo : out STD_LOGIC);
end entity single_switch;

architecture Architectural of single_switch is
begin
 servo<=(not(pilot_select) and not(dsp_select)
 and fpga) or (not(pilot_select) and
 dsp_select and dsp) or (pilot_select
 and pilot);
end architecture Architectural;

ABOUT THE AUTHOR

Wendy received her Bachelor's degree from the University of South Florida in

1999. She worked part time in the area of embedded systems design for the signal

conditioning industry while completing her master's degree at the University of South

Florida. Wendy’s master's thesis involved utilizing a second order Sliding Mode

controller with DC/DC converters. As a teaching assistant in the Department of

Electrical Engineering, she taught the controls laboratory and lectured in the

undergraduate controls and microprocessor classes. While working on her PhD she

received a fellowship from the Army Research Lab. In addition to embedded design, her

interests include the design of controls for both ground and aerial vehicles and sensor

integration.

	University of South Florida
	Scholar Commons
	2008

	Development of an FPGA based autopilot hardware platform for research and development of autonomous systems
	Wendy Alvis
	Scholar Commons Citation

	tmp.1298569684.pdf.g1k3r

