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DEVELOPMENT OF AN FPGA BASED HARDWARE PLATFORM FOR 

RESEARCH AND DEVELOPMENT OF AUTONOMOUS SYSTEMS 

WENDY ALVIS 

ABSTRACT 

Unmanned vehicles, both ground and aerial, have become prevalent in recent 

years.  The research community has different needs than the industrial community when 

designing a finalized unmanned system since the vehicle, the sensors and the control 

design are dynamic and change frequently as new ideas are developed and implemented. 

Current autopilot hardware, which is available as on-the-market products and 

proposed in research, is sufficient for unmanned systems design.  However, this 

equipment falls short of being able to accommodate the needs of those in the research 

community who must be able to quickly implement new ideas on a flexible platform. 

The contribution of this research is the realization of a hardware platform, which 

provides for rapid implementation of newly developed theory.  Rapid implementation is 

gained by providing for software development from within the Simulink environment and 

utilizing previously unrealized flexibility in sensor selection.  In addition to the 

development of the hardware platform, research was performed within Simulink’s System 

Generator environment in order to complement the hardware.  The software produced  

consists of a user template that integrates to the selected hardware.   The template creates 

a user friendly environment, which provides the end user the capability to develop 
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software algorithms from within the Simulink environment.  This capability facilitates the 

final step of full hardware implementation. 

The major novelty of the research was the overall FPGA based autopilot design.  

The approach provided flexibility, functionality and generality.  The approach is also 

suitable for and applicable to the design of multiple platforms.  This research yielded a 

first time approach to the development of an unmanned systems autopilot platform by 

utilizing: 

• Development of programmable voltage level digital Input/Output (I/O), ports, 

• Utilization of Field Programmable Analog Arrays (FPAA), 

• Hardware capabilities to allow for integration with full computer systems, 

• A full Field Programmable Gate Array (FPGA), implementation, 

• Full integration of the hardware within Simulink’s System Generator Toolbox. 
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CHAPTER 1 

INTRODUCTION 

Unmanned vehicles are better for the performance of tasks that are considered 

“dull”, “dirty” and “dangerous” than piloted crafts.  There are many potential uses that 

will provide a benefit to society such as traffic monitoring, search and rescue and 

monitoring of structures such as dams and bridges.  The use of Unmanned Aerial 

Vehicles (UAVs), in the military dates back to the 1940s when they were used to fly into 

radioactive clouds to collect samples.  As technology progressed Unmanned Aerial 

Vehicles have evolved into smaller and more efficient aircraft.  UAVs have increasingly 

demonstrated their benefit to the military.  Pioneer has flown reconnaissance missions in 

the Persian Gulf, Kosovo, and Bosnia since the early nineties.  More recently additional 

types of crafts have been developed and have continued to fly these types of missions to 

the present, [1]. 

There is a great deal of work taking place in the research community to make 

improvements in the existing technologies.  The wide diversity in unmanned vehicle 

designs and control as well as diversity in existing autopilots has lead to major 

compatibility issues among different platforms.  The compatibility issues introduce an 

additional challenge to the research community.  The platforms, sensors and control 

algorithms are dynamic and change frequently as new ideas are developed and 

implemented. 
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A search was completed for pre-developed hardware that would allow for data 

acquisition for system identification, testing/implementation of controller design and 

flexibility of platform and sensor selection.  It was apparent that what is currently 

available requires a considerable knowledge of programming digital processing hardware 

and embedded control design.  In addition, the hardware available only provides for a 

very limited choice of sensor selection with each of the specific autopilots. 

Within the research community, there are two prevalent forms of processing 

platforms.  Digital Signal Processor, (DSP), systems exist such as Mini-ITX and full 

computing systems such as PC-104.  Neither of these implementations fully meets the 

needs of the unmanned system researcher.  The DSP implementation requires knowledge 

of embedded systems design and lacks parallel processing capabilities.  The full 

computing system requires knowledge in programming real time operating systems in 

order to meet tight timing requirements.  Some research has been performed, which 

considered the inclusion of Field Programmable Gate Arrays, (FPGAs), for additional 

flexibility and parallel processing capabilities.  Thus far none have included integration 

with software providing a higher level of abstraction than Very-high-speed integrated 

circuit Hardware Description Language, (VHDL).  In addition, the advantages of 

hardware-in-the-loop capabilities for design verification have been explored only 

minimally. 

The DSP and FPGA implementations have the benefit of allowing for precise real 

time control.  This is a mandatory requirement with autopilot systems and is very 

carefully met with this research.  However, in order to take advantage of the flexibility 
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and the parallel processing capabilities that are not available with DSP processors this 

precise timing was realized with a FPGA. 

The lack of availability of autopilots meeting the research community 

requirements was the motivation behind this research.  The outcome was a hardware 

platform, which provides two major capabilities.  The platform provides for a commercial 

off-the-shelf, (COT), language to be utilized for both programming and hardware-in-the-

loop simulation.  In addition, the platform provides sufficient flexibility to allow a wide 

variety of sensors to be available for use with the system under study. 

When proposing a new autopilot platform, issues such as sensor integration, 

sensor diagnostics, conventional servo and actuator control, as well as switching among, 

or modifying control techniques if and when necessary must be taken into consideration.  

In other words, consideration should be given to implementing different controllers and 

sensor selection based on different mission profiles and selected robotic platforms.  Thus, 

any proposed design must include an interface module that provides for simulation, 

validation and verification before actual implementation.  By default, such a design 

should be fully interfaced and integrated with MATLAB/Simulink, which provides for a 

higher level of abstraction for programming and hardware-in-the-loop capabilities. 

Considering vehicle payload limitations, power consumption and requirements, 

cost-effectiveness and available ‘space’ on the unmanned vehicle are primary.  Given the 

fact that real-time control requires very strict and fixed timing for stability purposes, the 

embedded system approach is preferred in designing an autopilot.  This approach can be 

implemented in a much lighter package, which makes it suitable even for miniature 

vehicles. 
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Swarm formation and mission planning algorithms have been successfully 

designed on standard computing systems such as the Mini-ITX or PC-104.  However, 

without an additional autopilot, the programmer must have an extensive knowledge of 

real-time operating system programming to ensure the signal processing and control 

system meets the timing requirements of the vehicle dynamics.  The hardware capability 

for full integration with these previously developed systems was designed into the 

autopilot.  When in use with these systems the autopilot can be programmed to become 

the “slave” to the “master” computer and follow specified trajectory commands.  This 

capability provides researchers familiar with software implementations such as C-

programming running on Linux to continue with their work unimpeded by the difficulty 

of implementing real-time programming. 

The final area of concern is the protection of the hardware and any surrounding 

objects or humans.  Hardware failure can have catastrophic effects, especially when such 

failures are associated with aerial vehicles.  A loss of control with an unmanned 

helicopter can very easily cause serious injury or even loss of life.  Many systems already 

allow for emergency takeover by a human pilot.  However, this design can be taken even 

further when used with an external computing system.  Providing the end user the ability 

to design fault detection and emergency control algorithms from within an external 

computer provides the system with another form of redundancy.  In order to achieve this 

form of redundancy an additional safety switch circuit was designed into the autopilot 

platform.  The safety switch circuit provides for emergency takeover by either a human 

pilot or a secondary daughter board.  The secondary daughter board can be designed to 
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communicate with a computer and take control of the actuators under autopilot failure 

conditions. 

The developed autopilot hardware platform complements the full computing 

systems by providing a separate processing system that handles the sensor signals and 

actuator outputs.  In addition, it has the ability to be used as a standalone platform for 

very small scale vehicles.  Some systems have been designed with flexibility and ease of 

implementation in mind.  However, this research resulted in an improvement over what 

has been previously proposed or developed by allowing for full integration with Simulink.  

The integration with Simulink provides for a higher level of programming abstraction, 

hardware-in-the-loop capabilities and full FPGA implementation.  These capabilities 

maximize parallel processing capabilities, analog signal conditioning, which can be 

predefined and initiated through digital communications from the FPGA processor.  In 

addition, they provide an additional layer of safety by providing for control of the 

actuators by either a pilot utilizing a handheld radio or a daughter board. 

The contribution of this research is a flexible, hardware-in-the-loop capable 

platform that benefits the area of unmanned systems design by providing for the rapid 

prototyping of new theory.  Therefore, a reduction in the time it takes the benefits to 

become applicable is realized in both the private and military sectors.  The improvements 

over previous work have resulted from the novelty of utilizing a full Field Programmable 

Gate Array, (FPGA), implementation, which provides full integration with Simulink’s 

System Generator Toolbox.  Surrounding analog circuitry was developed to provide a 

more flexible interface than realized by previous work.   The flexible interface was 

realized through the development of programmable digital ports along with utilization of 
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Field Programmable Analog Arrays for different analog inputs.  In addition, software was 

produced to provide for a Simulink template, which integrates with the autopilot 

hardware.  The software provides a user friendly environment, which provides the end 

user to more easily integrate the completed algorithms with the sensor and actuator 

hardware. 

The developed autopilot platform was tested utilizing an RC-Truck like robot.  

Existing software for simple way point following of a robot built for a Traxxis RC-Truck 

was implemented on the autopilot.  The autopilot was integrated to the servo controllers 

of a MicroStrain IMU and a Superstar II GPS unit.  The RC-Truck was able to 

successfully follow way points, which demonstrated the effectiveness of the hardware 

design. 
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CHAPTER 2 

RELATED WORK 

There exist several UAV/VTOL autopilot hardware platforms, which are sold as 

fully developed systems.  These systems have worked well for those in the private sector.  

However, the research community has still felt the necessity to develop their own 

processing systems.  Some were developed as a portion of the overall research and others 

were the subject of the research itself.  Each of the, on-the-market, autopilots will be 

discussed in the context of flexibility, methods of programming, hardware-in-the-loop 

capabilities and inclusion of parallel processing capabilities.  The research based 

processing systems will be discussed as a generality of the different hardware types in 

Section 1.1.  A more detailed discussion will be presented of the hardware platforms 

developed specifically as the subject of the research in Section 2.2.   An overview and 

comparison of the types of platforms is presented in Section 2.3. 

2.1 Commercial Autopilots 

There are several autopilots on the market.  Most of these autopilots have not 

taken into consideration all of the needs of the research community.  These autopilots can 

be separated into several categories.  Autopilots, which are proprietary and lack user 

design capabilities.  Autopilots, which are very basic in processing power and possess 

limited capabilities.  Autopilots, which do have flexibility in reprogramming but do not 

have all the capabilities of the design presented in this dissertation. 
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Two autopilots, which were designed for use with specific vehicles sold by the 

company marketing the entire system, are available.  The Generation II by BAI only 

provides for minor modification, [2, 3].  The Rotomotion device provides for no 

modifications at all, [4].  Only minor details are provided about these designs due to the 

proprietary nature of the entire system.  Neither is suitable as a platform for research due 

to the built in dependency on the company for airframe specific modifications to the 

software. 

The Kestral by Procerus, [5], and the MP2028 by Micropilot, [3, 6], include user 

flexibility designed into the system.  Unfortunately, both of these devices are still 

proprietary in nature.  There are additional input/output ports included in the system 

software sold for reprogramming and hardware-in-the-loop capabilities.  However, both 

designs only provide reprogramming and hardware-in-the-loop capabilities through 

proprietary software, which prevents use with Simulink and limits flexibility.  Details on 

the Kestral are given in Table 7 and the MP2028 details are given in Table 8.  Both tables 

are presented in Appendix A. 

The Ezi-Nav, by Autonomous Unmanned Air Vehicles, was designed to be a low 

cost autopilot with minimal capabilities, [3, 7].  It contains eight separate 

microprocessors that share the computational load.  The Ezi-Nav operates solely with 

handheld GPS units and possesses no additional ports for communications with an 

external processor or additional sensors.  More details for Ez-Nav are provided in Table 

9, Appendix A.  While the Ezi-Nav has demonstrated successful flights with fixed wing 

vehicles, it does not have the flexibility or processing capabilities required by the 

research community. 
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The Phoenix, by O-Navi, is an open source, fully reprogrammable autopilot, 

which utilizes a 32MHz, 32-bit Motorola processor, [8, 9].  Phoenix is programmable 

through a provided flash kit.  However, it still lacks the ability to interact with Simulink 

and there is no hardware-in-the-loop capabilities provided for in the design.  Details are 

presented in Table 10, Appendix A. 

The Piccolo II, by Cloudcap, is an open source autopilot designed specifically for 

fixed wing vehicles, [3, 10].  Piccolo II possesses sufficient flexibility that 

implementation with rotary wing vehicles appears reasonable.  Piccolo II is popular with 

the research community.  The popularity is, most likely, due to its flexibility and ability 

to be programmed through Simulink’s Real Time Workshop.  In addition, it does allow 

for hardware-in-the-loop implementation with Simulink models.  However, the computer 

running Simulink must be equipped with a CAN interface card.  Piccolo II comes close to 

meeting the research community’s requirements.  However, it lacks the parallel 

processing capabilities and flexibility of a full FPGA design.  Details of the Piccolo II are 

given in Table 11, Appendix A. 

Of all the autopilots on the market, the Microbot, by Microbotics, possesses the 

most flexibility designed into the system, [11].  It is the only open source design on the 

market that includes an FPGA to provide for reconfiguration of up to 32 I/O ports.  In 

addition, an expansion board provides for two asynchronous serial ports and twelve 

analog inputs to be included in the design.  Unfortunately, the FPGA is only utilized for 

the input and output logic.  Most of the autopilot’s programming resides in a single 

microprocessor, which does not allow any parallel processing of the main functions.  

Another major disadvantage of Microbot is its lack of a design capability for rapid 
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prototyping.  While the unit is fully reprogrammable, it does not provide for 

programming through Simulink.  Additionally, Microbot does not possess any hardware-

in-the-loop capabilities designed into the system.  More details are provided in Table 12, 

Appendix A. 

All of the autopilots, except the Microbot, are limited by a lack of parallel 

processing, which is afforded by a FPGA implementation.  In addition, none provide 

analog input flexibility or have hardware-in-the-loop capabilities with Simulink 

specifically incorporated into the design.  The Microbot design, with the FPGA being 

utilized for sensor sampling and data/servo output, does remove some of the 

computational load from the microprocessor.  The Microbot design also provides 

considerable flexibility across platforms and sensors.  While this design is superior to the 

others with respect to flexibility, it falls short in simple programming and hardware-in-

the-loop capabilities. 

2.2 Related State of the Art Research 

The majority of publications studied discussed the processing system as a brief 

portion of a larger research project.  In these papers two popular methods dominated.  

One involved implementing a low power DSP/microprocessor chip such as a Mini-ITX 

board.  The other involved implementing a full motherboard type system such as the PC-

104 system.  The microprocessor and low power DSP chip possess minimal processing 

power.  Both chips are used primarily for either one specific system, which does not 

require complex calculations, or a micro-air vehicle that has minimal payload capacity.  

Only the most recent publications have begun to consider the advantages of a FPGA’s 

parallel processing and reconfigurable capabilities.  Section 2.2.1 will discuss low power 
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processor implementations.  Section 2.2.2 will discuss the full motherboard 

implementations.  Section 2.2.3 will cover what has been accomplished or has been 

proposed for full FPGA and hybrid FPGA/DSP implementations. 

2.2.1 Microprocessor/DSP Low Power Autopilots 

Jung et. al., designed a simplified autopilot for use with a specific fixed wing 

aircraft, the Goldberg Decathlon ARF, [12].  The design was performed as a learning lab 

tool for undergraduate students at Georgia Tech.  A Rabbit 3000 microprocessor was 

used along with several sensors.  This microprocessor meets the requirements for easy 

implementation of simple algorithms, which are used for teaching basic control theory.  

However, the Rabbit 3000 does not provide flexibility for use across platforms.  A similar 

design was developed by Brigham Young University with a fixed wing aircraft fabricated 

in foam, [13].  As with the system developed by Georgia Tech, the autopilot was small, 

easy to implement and did function properly.  However, the autopilot suffered from 

inflexibility across platforms.  In addition, neither designs provided hardware-in-the-loop 

capabilities. 

Kahn and Kellogg designed an autopilot system that utilized Microchip’s 16F877 

microcontroller for a kite style micro-air vehicle, [14].  Since the system possessed low 

dynamics and utilized a minimal amount of sensors, very little processing power was 

required.  Microchips line of microcontrollers is low cost and easy to program.  However, 

they possess a maximum clock frequency of 20MHz, a buffer for serial communication 

that is limited to three characters and no hardware-in-the-loop capabilities.  Microchips 

line of products does not meet the requirements specified for the majority of unmanned 

systems research. 
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Preliminary designs are presented for an MC68HCS12 microcontroller based 

design, [15].  The design focuses on providing a low cost and easy to modify system.  

The specific UAV and sensors are not mentioned.  However, the processing power and 

flexibility across platforms will be limited due to the selection of a microcontroller for 

processing as opposed to an FPGA.  In addition, there is no mention of intentions to 

design, into the system, any hardware-in-the-loop capabilities. 

An area of research gaining popularity is the design of micro-air vehicles.  The 

payload capacity for these systems is quite small, which limits the size and power 

consumption of the selected computing system.  The majority of researchers in this field 

are implementing the algorithms with microcontrollers.  The microcontrollers chosen are 

primarily from Microchip’s line of processors, [16-18].  Several publications were 

studied, which discussed either custom sensor design or vehicle design.  However, none 

had implemented any onboard processing.  Other methods were used for control of the 

vehicle.  A ground station was used for control processing, [19].  A ground station was 

also used for verification of design by simulation, [20-25].  Handheld radio control was 

investigated, [26, 27].  A tethered system was connected to a DSP board and MATLAB, 

[28].  As new vehicle and sensor designs are developed and become ready for 

implementation, a processing platform is required.  This requirement further 

demonstrates the need for a small research oriented autopilot platform. 

2.2.2 Full Computer Implementations 

The majority of research publications discussing the design of small scale 

unmanned systems present full motherboard systems without dedicated hardware for the 

signal processing algorithms and low level controllers.  The most popular is the PC-104 
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board running a real-time operating system such as VxWorks® [29] or QNX [30-32].  

Lee, et. al., incorporated a full data acquisition card in the design, [32].  Various other 

computing systems have been used with real-time operating systems as well, [33, 34]. 

All of these implementations follow the same basic design principle, external 

sensors and hardware with a single standard computing system.  This method has been 

proven to work successfully.  However, great care must be taken in programming the 

control system or the precise timing needed for the control of the vehicle dynamics will 

not be met.  This requires a great deal of knowledge in control systems and in the real-

time programming language.  Each function must be given a priority, which allows those 

functions with the lowest priorities to be permitted to run only when the highest priorities 

have completed.  For a final implementation, which is designed only once, this method 

may prove acceptable.  However, whenever the control system is modified significantly 

the entire low level control program changes and the timing issues must be entirely 

reconsidered.  For example, if PID controllers are replaced by H-infinity feedback 

controllers all timing issues would have to be revisited.  This potential software redesign 

can create longer delays between deriving new theory and implanting it in hardware. 

One design did try to solve some of these issues by implementing a two processor 

system running on RT-Linux, [35].  The software was designed with a layered approach.  

A main board ran an x86 compatible motherboard for the wireless GPS communications 

and mission planning.  The ATM Mega 163 chip was utilized for real-time flight control 

processes.  This is the same basic concept of using a dedicated autopilot for the low level 

control system, which further argues the need for the hardware platform presented. 
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2.2.3 Implementations Utilizing FPGAs 

FPGAs are very slowly gaining popularity due to the recent advances in increased 

number of gates and simplification of design by the manufacturer’s providing intellectual 

properties, IPs.  The IPs provide pre-developed functions such as complicated 

mathematical calculations and RAM, which would normally be time consuming to 

develop utilizing a HDL.  Since these advances are fairly recent, there are only a few 

publications following the same philosophy of utilization of FPGAs, [9, 36-40]. 

Klenke combined a 40K FPGA with an 8-bit microprocessor for control of a fixed 

wing aircraft with a GPS unit as the only sensor, [39].  The FPGA array was utilized for 

the FM aircraft receiver and the servo control.  The system worked successfully and 

proved to be a simple to implement, inexpensive design.  However, it does not possess 

the processing power or flexibility required for research across platforms and sensors. 

A proposed FPGA based design to provide a system capable of integrating a 

propulsion health system with a control system for VTOLs has been presented, [36].  

This design recognized the strength of both a FPGA architecture and integration with 

Simulink for programming.  However, the proposed design intends to implement the 

algorithms running inside the FPGA under a real-time operating system, VxWorks®.  In 

order to provide user programmability, the intention is to create an ICD along with third 

party software for programming.  The system will implement a Vibe Card for receiving 

some sensor data.  With some simple front end analog signal conditioning and A/D 

converters, this card can be eliminated and all of the signal processing can be 

implemented entirely on the FPGA chip.  In addition, the design also includes a Geode 
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DSP processor, which will run a majority of the processes.  This aspect of the design 

ultimately limits the system to sequential processing for the majority of the processes. 

A flexible FPGA/DSP based autopilot has been developed by the Georgia 

Institute of Technology, [37, 38].  The project has been completed and tested on two 

separate platforms.  One system works in conjunction with a “master” computing system 

on the GTMax.  Another system acts as a stand-alone device on the GTSpy.  While a 

flexible hardware-proven design is defined, the full strength of the Xilinx line is not 

utilized to full advantage.  The majority of the processing on-board the Xilinx chip is 

performed by a soft core DSP running on the MicroC/OS II real-time operating system.  

As a result of the sequential nature of the operating system, many of the tasks cannot be 

divided into smaller tasks running in parallel.  In addition, the system includes a separate 

DSP chip to run any high level processing.  This configuration prevents the system from 

being fully integrated with Simulink through the use of the System Generator toolbox. 

Virginia Commonwealth University has recently demonstrated a successful in 

flight test of a FPGA based autopilot. [9].  This autopilot utilized a Suzuku V board 

containing a Xilinx II FPGA chip, 32 M Bytes of SDRAM, 8 M Bytes of flash memory 

and an Ethernet interface.  The FPGA’s on-chip PowerPC runs a Linux kernel for 

implementation of the majority of the processing.  The goal of the research was to 

demonstrate that the software could be developed in commercial off-the-shelf hardware 

and then ported to any other hardware running the same Linux kernel.  Since the focus of 

the research was not a complete hardware autopilot design, the ability to run processes in 

parallel, with the exception of the I/O protocol, was not considered.  In addition, it did not 

take advantage of the Virtex II Simulink capabilities for programming and hardware-in-
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the-loop verification.  However, the design does demonstrate the capabilities of the 

FPGA as the processing hardware for an autopilot. 

Continuing work on the design of an FPGA based control system for a Micro-

Satellite has demonstrated the potential benefits of FPGAs for autopilots, [40].  The 

Xilinx series of FPGAs is utilized and full parallel processing utilized.  While in-flight 

tests have not yet been demonstrated, lab tests have indicated that good timing and 

parallel communication with the devices have been obtained. 

2.3 Overview of Autopilot Implementations 

While standard computing systems have been proven to work successfully, great 

care must be taken in programming the control system or the real-time requirements will 

not be met.  Whenever the control system is entirely changed, which occurs frequently in 

research, the entire low level control program changes and the timing issue must be 

entirely reconsidered.  This leads to a longer design time between deriving new theory 

and implanting it in hardware.  A solution to this problem is to include a separate 

processor.  Such an autopilot is presented in this dissertation.  The autopilot provides an 

off-board system that follows a given trajectory while handling the tight timing 

constraints required for sensor integration and control of the vehicle dynamics. 

The majority of the systems presented implement a single processor.  The 

processing power varies depending on the specific chip selected.  The single processer 

design is at a disadvantage when compared to implementing either a full FPGA or a 

hybrid DSP/FPGA design.  Since single processor systems cannot operate with parallel 

processing, care must be taken to be sure that each of the asynchronous sensor inputs are 

sampled at the correct time while also updating the servo outputs.  In addition, the 
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majority of the implementations do not allow for Simulink integration or hardware-in-the-

loop verification of the design. 

Several of the FPGA implementations have benefited from the flexibility and 

parallel processing capabilities of the FPGA with regard to managing I/O functions.  

These designs failed to carry the parallel processing capabilities into the majority of the 

processes by implementing most of the algorithms within an on-board or external DSP.  

The only work that has utilized the full parallel capabilities for flight control was for the 

design of a Micro-Satellite.  This work did indicate good timing when utilizing the 

parallel capabilities of the FPGA implementation.  However, it did not explicitly design 

Simulink integration into the system. 

This research included the benefit of Simulink integration, as with [10], the 

flexibility of inputs resulting from utilizing an FPGA, as with [9, 11, 36, 37], and 

produced a significant contribution to the field of unmanned systems by including further 

capabilities.  These capabilities include full FPGA implementation, full integration with 

Simulink for both programming and hardware-in-the-loop, programmable signal 

conditioning and hardware so the human pilot can easily regain control under failure 

conditions.  An additional layer of safety was also included.  When in operation with a 

daughter board and second processing system, the secondary system is able to take over 

control of the aircraft servos when a failure in the autopilot has been detected. 
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CHAPTER 3 

AUTOPILOT REQUIREMENTS 

There are two primary areas of study, which will utilize the autopilot differently.  

Specifications for high level mission planning and vision systems differ considerably 

from those for system level applications.  System level research includes the development 

of control systems for vehicle dynamics, development of methods for filtering and 

integrating the sensors and development of new micro-air vehicles. 

Navigation researchers work directly with the sensor inputs in order to generate 

minimal noise and maximum accuracy of certain variables such as position, velocity and 

acceleration.  Researchers within the area of controller design are investigating the most 

promising methods of controlling the dynamics of the vehicle.  Both groups require 

certain measurements to be available and accurate.  The researcher developing the control 

algorithms will require that the underlying autopilot platform provide for completed 

sensor filtering and integration.  This provision ensures that signals have clearly defined 

variables and can be utilized within the control loop without modification to filtering and 

integration modules. 

Researchers investigating micro-air vehicles are concerned with the development 

of new platforms requiring custom controller design.  In addition, they are very 

concerned with the development of new smaller size and low power sensors.  This group 

will have the same requirements as the control and navigation researchers.  Additionally, 
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they are confronted with requirements of providing for various sensor inputs, which 

cannot be predetermined, as well as low power and light weight circuitry demands. 

Since both the navigation and control researchers will be implementing and 

testing algorithms, many of the requirements, which simplify the process, pertain to both 

groups.  These capabilities include modularity for separation of algorithms, a high level 

of abstraction to allow for simplification of design and the ability for hardware-in-the-

loop verification of the software algorithms.  The majority of researchers working in this 

area utilize Simulink/MATLAB for testing algorithms.  Therefore, the ability to program 

directly from Simulink is advantageous.  Simulink software design is also well suited for 

high levels of abstraction and the type of modularity required between the navigation 

system and the vehicle control system.  In addition, providing for hardware-in-the-loop 

simulation directly with Simulink models is beneficial for testing designs without the risk 

of loss of hardware.  For these reasons, full integration with Simulink is an extremely 

valuable aspect of the autopilot platform developed during this research. 

The researchers working with navigation systems and vehicle design will require 

that data be collected for system identification of the sensors or the dynamics of the 

vehicle.  This requires that a significant amount of data be stored while the vehicle is in 

flight.  In addition, the hardware must have the capability to store this information at a 

high sampling rate without interrupting the modules controlling the navigation.  This 

requirement clearly argues for parallel processing capabilities and creates a further 

requirement of additional memory for data collection. 

When working with high level mission planning or vision research, it is necessary 

to be able to send the way points to the navigation modules and have the vehicle follow 
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the trajectories without consideration for designing around tight timing constraints.  In 

addition, many of the researchers in this area of research prefer to work with systems 

such as the Mini-ITX DSP processor or the PC-104 type microprocessor.  In order to 

meet the needs of this area of research, interaction with this second processing system 

must be included in the design.  The autopilot must have the ability to send and receive 

commands through serial RS232 communication.  The software controlling the dynamics 

of the vehicle, which provides for trajectory following, is a platform-specific design.  The 

autopilot platform must provide for rapid development so that once the vehicle is 

selected, the navigation and dynamic control system can be quickly finalized.  This 

capability provides for timely and efficient development of applications such as vision, 

swarm formation and mission planning while running on a complete computing system. 

When working with aerial vehicles, safety requirements must be given the highest 

of priorities.  Safety requirements demand as much redundancy for actuator control as 

possible.  The autopilot produced during this research was developed to work with an 

external processor.  Therefore, a redundancy of control hardware was already present.  

However, additional hardware was incorporated to provide for transfer of actuator control 

to either a human interface or a second processing system. 

The list of generalized requirements, which were incorporated in the platform 

developed during this research includes: 

• Integration with MATLAB/Simulink for a higher level of abstraction and 

modularity when programming and the capability for hardware-in-the-loop 

verification, 

 



21 
 

 

• Adequate memory for data collection for use with system identification 

research, 

• Analog design to allow for reconfigurable cross platform/sensor capabilities, 

• RS232 communications to provide for integration with a second computing 

system, 

• Parallel processing capabilities & hardware level timing control, 

• Emergency takeover of servos as an additional layer of safety. 
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CHAPTER 4 

AUTOPILOT ENVIRONMENT 

When designing the autopilot, careful consideration was given to both hardware 

and software capabilities.  The hardware was designed to provide for flexibility across 

platforms and sensors.  The software was designed within the Simulink environment in 

order to compliment the hardware.  The software provides for both an autopilot hardware 

implementation template and an open source library.  This chapter presents an overview 

of the autopilot hardware and the autopilot’s Simulink software environment.  In addition, 

a brief description of the templates, available library subsystems and how to implement 

them is provided. 

4.1 Hardware Overview 

The autopilot hardware design included port connections for most standard 

hardware utilized on small scale unmanned systems.  These include analog inputs, 

Transistor-Transistor Logic (TTL) and Input/Output (I/O), ports.  In addition, the 

autopilot possesses pressure sensors for measuring altitude and forward velocity as well 

as Pulse Width Modulated (PWM) outputs for controlling standard servos.  The three 

analog inputs have additional flexibility.  A Field Programmable Analog Array (FPAA) 

was incorporated for customized signal conditioning development, which could be 

programmed into the FPAA from the FPGA.  The TTL I/O ports provide for variable 

voltage settings through the use of a digital trim pot, which is also directly programmable 
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from the FPGA.  The autopilot board developed and produced during this research is 

pictured in Figure 1. 

 

 
Figure 1:  Autopilot Board Overview 
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extremely small on-board sensors to be utilized. 

The FPGA outputs PWM logic to control servos through 3.3V TTL ports.  The 

autopilot’s servo connectors do not directly connect to the FPGA.  The waveform is sent 

to the input ports through a Complex Programmable Logic Device (CPLD), which is used 

in the safety switch circuitry.  This circuitry provides for connections from a handheld 
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select lines to the daughter board connectors to provide takeover capability from an 

external processing system.  When a daughter board is not connected, jumpers are used to 

disable the second takeover option.  While the safety switch was programmed for the 

behavior described, JTAG connectors are available on the back of the autopilot board.  

This provides for reprogramming of the CPLD in order to gain additional functionality.  

One additional pin has a direct connection to the FPGA in order to send information.  

This was provided as a tool to assist the programmer. 

In addition to the hardware connectors, three user LEDs, one user switch, a power 

LED and a programming completed indicator were included on the board.  These 

hardware assets provide indicators to assist the software developer and provide an 

additional logic input to the board.  The hardware specifications for the autopilot 

developed and produced during this research is presented in Table 1. 

 
Table 1:  Autopilot Specifications 

I/0 ports and sensors 
On-board pressure sensors for altitude and forward speed 
Two large signal, single ended analog inputs 
One small signal differential analog input 
Twenty-Four variable voltage logic inputs 

• Input voltage set in blocks of four 
• 1.8V to 5V range 

Four Tx and 5 Rx RS232 lines 
Forty-Six 3.3V I/O FPGA connections to daughter board 
Capabilities 
On-board MicroSD card for data acquisition memory 
A safety switch for servo control 
Twelve servo outputs 

• All twelve, selectable in sets of six by daughter board, (if present) 
• Six critical servos, which can be taken over by a pilot 

Simulink programming and hardware-in-the-loop capable 
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The board contains a Xilinx Spartan3-1400AN FPGA, which serves as the 

primary processing platform for the autopilot.  By selecting from the Xilinx line of 

FPGAs, the autopilot was fully interfaced and integrated with Simulink.  The 

reconfigurable nature of the FPGA provides the programming capabilities, which are 

necessary to compliment the flexibility of the hardware design.  The hardware flexibility 

incorporates the handling of several types of communication protocol.  The hardware 

accepts various ranges of analog sensor input and data acquisition.  The hardware 

provides for measurement of altitude and forward speed through on-board pressure 

sensors.  In addition, the hardware provides for releasing control of the servos to either a 

human pilot or a second processing system through the use of a daughter board. 

4.2 Autopilot Software Environment 

The user of the autopilot will have available, from within the Simulink 

environment, hardware protocol subsystems and the standard System Generator building 

blocks.  In addition to the Simulink/System Generator software tools, the Xilinx’s EDK 

environment can be utilized to develop soft core processors capable of running a user-

selectable operating system.  The overview of the autopilot’s software environment is 

presented in Figure 2. 

The available subsystem building blocks were developed specifically for the 

peripheral hardware contained on the autopilot.  Other high level signal processing 

functions such as filtering, sensor integration and controllers can be developed using 

standard System Generator blocks.  In addition, the soft core processors can contain a 

small operating system such as the Slackware version of Linux or VxWorks®.  While 

this does seem contradictory to the argument for parallel processing, the ability to utilize 
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a DSP structure provides for the implementation of many algorithms, which have been 

developed to operate within a specific software environment, such as a wireless 

networking protocol.  In addition, hardware may be designed into the system that utilizes 

Linux drivers without the additional work of developing custom software. 

 

 
Figure 2:  Software Block Diagram 
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4.2.1 Hardware Co-Simulation Timing Issues 

System Generator allows for hardware-in-the-loop simulation by compiling a co-

simulation block that contains the bit stream for programming the FPGA and controls the 

JTAG communication.  After the hardware co-simulation block is generated, it can be set 

to single stepping or free running by double-clicking the block.  When single stepping is 

selected, Simulink controls the FPGA clock signal and the hardware matches the Simulink 

clock cycle, which does not relate to real-time.  This is the preferable setting when 

communication with external hardware is not required.  However, when the autopilot is 

to be programmed to interact with external hardware, real-time is required.  The ‘free 

running’ selection will turn control of the clock over to the FPGA’s 50MHz clock.  

Within the system there will be blocks, which must be synchronized by the system clock.  

When the System Generator blocks are converted to the FPGA hardware configuration 

bit stream, the resulting internal rates are related to the Simulink update rate.  The update 

rate is provided by equation (1).  This relationship was utilized within all the developed 

subsystems specifying hardware level timing. 

 

Simulink update rate*hardware clock ratehardware update rate = 
Simulink time step   

(1) 

 

A Simulink autopilot template was developed.  The template contains masked 

subsystems to: 

• program the FPAA, 

• receive data from the A/D outputs from the FPAA, 
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• enable and receive data from the pressure sensors, 

• initialize the MicroSD card, 

• enable/disable the RS232 ports, 

• enable/disable the variable I/O ports, 

• set the desired voltage level 

• generate the PWM outputs with selectable frequencies and duty cycles. 

With the FPAA, the pressure sensors, all the PWM ports in use and the MicroSD 

card enabled the amount of slices utilized was 1362, or 12%.  By disconnecting the 

outputs, connecting the PWM to logic low and deactivating the FPAA program 

subsystem, the unused logic is trimmed during hardware generation.  Under these 

conditions the utilized slices are reduced to just 526, or 4%.  The autopilot template is 

presented in Figure 3. 

 

 
Figure 3:  Autopilot Template 

 

Programs FPAA with *.bin 
file developed in Anadigm’s 
graphical software

Variable voltage port 
settings:
Six ports with four I/Os
Enables/Disables Ports
Drop-down menu to set 
to 1.8, 3.3 or 5 volt 
level

Receives readings from 
pressure sensor circuitry

Receives output from 
FPAA’s three A/D output 
ports

Controls twelve servos:
PWM frequency set by 
user
Inputs are duty cycles 
for each servo control 
(0/100)
For servos not in use, 
input of ‘0’ will pull 
output low 100% of 
time

RS232 Enable/Disable Initializes uSD card:
User writes code that 
is enabled by the 
‘Ready output’
To disable, Inputs set 
to logic high with a 
constant
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Several library subsystems were developed to accommodate both basic use of the 

on-board hardware and the communication requirements for the sensors utilized by the 

RC-Truck robot.  The subsystems developed thus far include: 

• an RS232 communication protocol, 

• initialization the FPGA RAM for data acquisition, 

• a communication protocol to receive latitude and longitude from 

the Superstar II GPS unit, 

• a communication protocol to receive gyro-stabilized Euler angles 

from the MicroStrain IMU unit. 

While the library is limited, the open source platform provides for continually 

increasing functionality as new software is developed over time by end users. 

As a result of the pre-developed hardware level timing a variable declared as 

SimP, which defines the System Generator time step, must be specified by the end user.  

SimP can be defined either in the MATLAB workspace or the model explorer.  Once 

defined, SimP is entered into the System Generator block.  This provides for the 

simulation time step to be modified without affecting the final hardware level timing.  

The only restriction on the time step is that it must be less than 10usec.  This restriction 

results from the communication protocol timing and the resolution of the generated PWM 

output.  The System Generator block is presented in Figure 4. 

Each of the template subsystems provided has a user interface, or mask, in order 

to enable/disable and select specific settings, with exception to A/D protocol of the 

FPAA.  Since the FPAA is disabled through the programming subsystem, the outputs 

from the receive subsystem are left unconnected when not in use.  When Simulink 
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generates the programming bit stream all the unconnected logic is removed and the inputs 

are ignored. 

 

 
Figure 4:  Simulink System Period Setting 

 

4.2.2 FPAA Programming and Utilization 

The FPAA subsystem program contained in the autopilot template allows the user 

to enable the system and enter the name of the workspace variable containing the FPAA 

program bit stream.  Since the variable is entered into a Simulink block, in the underlying 

subsystem, the name must not be left empty.  When the FPAA is not utilized, a value of 

‘1’ should be entered to prevent a Simulink error flag.  When the ‘Enable FPAA’ is not 

selected the subsystem holds the outputs constant, which includes the clock signal to the 

FPAA.  The FPAA program subsystem is presented in Figure 5. 
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Figure 5:  FPAA Program Settings 

 

The FPAA subsystem programs the FPAA from a variable, which must be created 

within the MATLAB workspace.  This is accomplished by first generating a binary 

program file with Anadigm’s AnadigmDesigner2 software.  Once the binary file is 

created an m-file is utilized to read the file into a variable in the workspace.  The m-code 

is used to create the necessary variable, FPAA, which is displayed in Figure 6. 

 

 
Figure 6:  FPAA Configuration M-File 

 

The binary file is first read into MATLAB and then rearranged from an 8-bit word 

length to a 1-bit length.  In order to reformat the word length, the ‘1’s and ‘0’s are 

declared as binary.  After reshaping, they are re-declared as decimal values.  The final 

step is to add a trailing one that is required to hold the output line high after the last bit is 

transmitted. 
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4.2.3 Utilizing Pressure Sensors for Altitude and Velocity 

Two on-board pressure sensors were incorporated in the design of the autopilot 

platform.  The pressure sensors provide for the measurement of altitude and forward 

velocity.  The pressure sensors produce an analog signal, which is sent to a dual A/D 

converter.  The template subsystem reads the two 16-bit values into the FPGA.  The 

resolution of the calculations for altitude and velocity are user dependent.  Therefore, 

logic was not created to convert altitude and velocity.  In addition, the end user may wish 

to reduce the number of gates by implementing the 16-bit values directly in the controller 

algorithms.  The subsystem contains a mask, which will disable the system by tying all 

the outputs to the A/D converter to logic high.  The subsystem is presented in Figure 7. 

 

 
Figure 7:  Disabling Pressure Sensor 

 

4.2.4 Initializing the MicroSD Card 

Since there are many potential uses for the MicroSD card, the only logic included 

in the library is the sequence of instructions, which must be sent in order to initialize the 

card.  The hardware ports were incorporated inside the template subsystem and can be 

accessed through the ports of the subsystem.  When the card is not in use the input ports 

must be connected to a logic high constant.  The card will still initialize but it will not 
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receive any further commands.  When the card is in use the user must wait for logic high 

out of the Ready port before sending any commands.  The output from the card is 

available through the Dout port.  The MicroSD card is presented in Figure 8. 

 

 
Figure 8:  MicroSD Card Template Subsystem 

 

4.2.5 Disabling RS232 Ports 

The RS232 ports can be enabled or disabled from within the template.  The 

mechanism for manipulating RS232 enable is presented in Figure 9. 

 

 
Figure 9:  RS232 Enable 

 

When disabled the FPGA output ports enabling the RS232 IC are held at logic 

low.  This holds the I/O lines out of the autopilot at high impedance.  When in use, the 

user can utilize the library blocks provided for the communication protocol. 
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4.2.6 Setting Variable Voltage I/O Ports 

The template subsystem, which controls the variable I/O port settings, contains an 

enable and a voltage select available in six sets of four communication lines.  The 

subsystem for I/O control is presented in Figure 10.  When disabled, the voltage 

translator IC holds the autopilot I/O pins at high impedance.  When enabled, the user can 

set the voltage to any of the predefined values of 1.8V, 3.3V or 5V. 

 

 
Figure 10:  Variable I/O Port Settings 

 

4.2.7 Utilizing PWM Output Block 

The PWM template subsystem controls the generation of the signals to the 12 

output ports.  The output signals are generated by converting a duty cycle input, 0 to 
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100%, into the output square wave signal.  Specification of a specific frequency between 

20Hz and 100Hz, an initial duty cycle and specification of hardware or simulation timing, 

is user selectable.  When simulation is selected the PWM frequency is matched to the 

simulation time steps.  When hardware implementation is selected a conversion is 

included to set the PWM generated to the hardware clock.  If the user sets the input to a 

constant of 100 the output lines are all held logic high.  The PWM subsystem parameters 

are presented in Figure 11. 

 

 
Figure 11:  PWM Subsystem Settings 
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4.2.8 RS232 Communication Subsystems 

Separate library subsystems were developed for sending and receiving eight bit 

data with no parity and a stop bit of one.  The receive function provide the user a 

capability to select from a list of baud rates, which includes 9600, 57600, 38400, 56200 

and 115200 bps.  The send function also provides for the same communication baud 

rates.  However, the rate is set by the inputs to the subsystem. 

The receive subsystem over-samples the port at the clock frequency of the 

autopilot, which is 50MHz.  This prevents an incoming byte from being misread due to 

clock drift or jitter.  This works well for receiving data.  However, it creates a very fast 

update rate within the System Generator.  In some cases, where the incoming data is 

followed by only simple logic, this may not pose an issue.  In other cases it sets up a 

timing requirement, which the hardware may not be able to meet.  Therefore, a library 

subsystem was developed, which down-samples the output to the actual baud rate. 

The library subsystem that receives the RS232 data from the I/O port has one 

input and two output ports.  The input is the autopilot hardware port, which receives the 

bit level input and must be set to the clock rate under the mask.  Entering the variable 

SimP will make the necessary clock adjustment for a rate of 20ns.  This process is 

presented in Figure 12. 

The two outputs from the subsystem consist of the received 8-bit character and a 

1-bit flag.  The 1-bit flag is held logic high for one clock cycle when a new character has 

been received.  The baud rate is set with the drop-down menu as demonstrated in Figure 

13 
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Figure 12:  Setting Input Port Timing 

 

 
Figure 13:  Setting Baud Rate 

 

The down-sample RS232 library subsystem has two inputs and two outputs, 

which correspond to the outputs of the subsystem receiving the RS232 data.  The 8-bit 

received data and the flag from the receive RS232 block are down-sampled to the 

selected baud rate and passed out of the function.  The output rate is selected by the same 

style of drop-down menu as the receive subsystem.  This process is presented in Figure 

14. 
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Figure 14:  RS232 Down-Sample 

 

The RS232 library subsystem, which sends the 8-bit data, has two inputs and one 

output port.  The first input port, termed ascii, holds the 8-bit character to be sent.  The 

second, termed Out_EN, holds a logic in, which sends the character when equal to one.  

The inputs set the rate of the blocks contained within the subsystem and must correspond 

correctly to the selected baud rate.  The output port, termed BIT, is connected to the 

selected hardware port.  This includes the RS232 ports and the variable level logic ports, 

which can be used with TTL to USB converters for receipt of the RS232 protocol.  The 

settings are listed in Table 2. 

 

Table 2:  RS232 Send Input Timing 
Baud Rate, Bits Per Second Input Rate, Seconds 
1900 1.042(103) 
19,200 5.208(104) 
34,800 2.604(104) 
56,700 1.736(104) 
115,200 8.68(105) 

 

4.2.9 FPGA RAM Data Acquisition Library Block 

When developing the correct logic design for communicating with external 

hardware the testing of the protocol must be performed with the co-simulation block set 

to free running.  This setting will insure that the hardware timing is implemented 
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correctly.  Since the update of the JTAG port is much slower than any standard 

communication rate, this prevents hardware-in-the-loop verification from being utilized.  

This library subsystem was developed as a solution to that issue.  Values occurring within 

the FPGA are stored within RAM memory.  When the memory is full the values are sent 

to the JTAG port at a rate, which is more acceptable.  The rate must be determined by the 

end user.  This is due to the fact that longer word lengths require more time to receive.  

Once the data has been received through the JTAG port, the values can be graphed by 

any MATLAB method for analysis. 

The library subsystem allows for two inputs to be recorded and also includes an 

enable port so that the data can be saved at a specific time.  The outputs from the 

subsystem are each connected to a JTAG System Generator block, termed Gateway Out.  

These outputs are the address, addr, and the two recorded strings of data, data and data1.  

These outputs are presented in Figure 15. 

 

 
Figure 15:  Record Data Library Subsystem and Settings 

 

The available settings are the memory length, the number of bits associated with 

the length and the down sampling value.  The number of bits must be set to correspond to 
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the word length so the associated RAM is compiled correctly.  The down-sampling value 

is the ratio of the output rate to the input rate. 

4.2.10 Superstar II GPS Communication Protocol 

The Superstar II GPS has several user selectable settings.  The one, which must be 

selected through the GPS provided Starview software, used to implement this library 

block is receive LLA in binary format at 1900 baud.  This sends information 

corresponding to the status of the receiver, position and velocity measurements.  Not all 

of the information received from the GPS unit is sent to subsystem output ports.  Output 

ports receive only the values of interest for simple navigation.  The navigation data 

required consists of latitude, longitude, altitude, North velocity, East velocity, vertical 

velocity and the number of satellites used.  The latitude and longitude are in double 

precision format.  The altitude and velocities are in single precision format.  The number 

of satellites exists as a standard 4-bit binary value.  The final output is a 1-bit flag, which 

is held high for one update clock duration, when new measurement information is 

available.  Since the baud rate of the communication block is 1900 bps, the corresponding 

output from the subsystem has an update rate of 1.042ms, with new measurements 

available at 5Hz.  The only input to the function is the autopilot port selected to receive 

the GPS output.  The RS232 library subsystem is utilized inside the GPS subsystem.  

Therefore, the port must be set to the hardware clock rate.  The GPS unit is one example 

where the RS232 protocol is used with a TTL logic level.  The correct voltage setting is 

3.3V and can be set within the variable port setting of the template. 
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4.2.11 MicroStrain IMU Communication Protocol 

The MicroStrain IMU sends information using the RS232 protocol and voltage 

levels.  The 8-bit value is sent in binary, rather than ASCII.  The library subsystem waits 

five seconds for the IMU to initialize.  After the IMU initializes the library subsystem 

requests the IMU to continuously send the gyro-stabilized Euler angles.  The 16-bit 

values are sent eight bits at a time.  A checksum value is included for the 16-bit values.  

The subsystem combines the received 8-bit characters into the 16-bit measurement and 

calculates the checks sum.  If the checksum is correct, the subsystem outputs the 16-bit 

values.  These values include yaw, pitch, roll, ticks and a checksum error flag. 

An RS232 subsystem was utilized to establish the communication protocol 

without the down-sample block.  Therefore, the Simulink update rate on the subsystem’s 

outputs is 50MHz.  The information is sent by the IMU as soon as it is available.  The 

specification sheet guarantees 50Hz.  However, for a request of stabilized angles, it tends 

to be closer to 70Hz.  The user may select any of the RS232 ports to connect to the IMU 

send, CMDtoIMU, IMU receive and IMUin, ports.  Figure 16 displays the subsystem, 

which was used with the RC-Truck control. 

 

 
Figure 16:  IMU Communication Library Block 
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CHAPTER 5 

HARDWARE DESIGN 

The autopilot requires dedicated hardware surrounding the FPGA in order to 

provide use with external devices such as sensors and actuators.  In order to provide for 

use across multiple platforms, flexible interfaces must exist between the various hardware 

modules and specific hardware modules, which provide the necessary spectrum of 

capabilities, must exist.  Flexible interfaces between the TTL logic inputs and the FPGA 

are mandatory.  In addition, A/D conversion hardware must exist with flexible interfaces 

to the pressure sensors, which measure altitude and velocity.  Hardware modules must be 

provided to realize a range of customizable analog signal conditioning and provide for 

RS232 communication.  Dedicated hardware must provide separate circuitry for servo 

control selection.  In addition, sufficient memory must be provided to satisfy a range of 

data acquisition requirements. 

5.1 Processing Hardware Selection 

An autopilot utilizing a full FPGA implementation is a novelty in the area of 

unmanned systems.  The full FPGA implementation was selected since it provides a 

broader range of design alternatives to satisfy an expanded set of platform capabilities.  

Design with full FPGA provides more design versatility than DSP processors or even 

hybrid DSP/FPGA implementations.  The full FPGA implementation provides flexibility 

and the ability to process different algorithms in parallel such as wireless networking, 
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vision algorithms, sensor integration and vehicle control implementation.  The processor 

hardware architecture is reconfigurable.  Therefore, each signal and variable can be 

represented using different numbers of bits as required.  This allows for higher sampling 

rates, better accuracy and high computation speed with low power consumption.  FPGAs 

operate at a very high frequency.  When the FPGA is combined with parallel 

computational structures, computational speeds as much as 100 times greater than those 

possible with digital signal processors are realizable.  The computational speed of the 

DSP is limited since its operation is sequential, [41, 42]. 

An additional advantage of a full FPGA design is the existence of a natural 

migration to micro-air vehicles.  Once the prototype is developed and the design verified, 

the power and size of the processing system can be reduced by implementing the tested 

VHDL algorithm in a system-on-chip design. 

Xilinx manufactures FPGA products and has had the foresight to work with 

Mathworks.  This collaboration provides for programming from within Simulink’s 

graphical language, which provides hardware-in-the-loop capabilities.  Working in 

conjunction with Mathworks, Xilinx has developed the System Generator toolbox, which 

provides the Xilinx FPGAs the capability of full integration with MATLAB/Simulink.  

This functionality facilitates high level abstractions to be directly compiled into an 

FPGA.  In addition, the toolbox directly provides for hardware-in-the-loop simulation.  

The simulation with Simulink requires a standard USB or JTAG parallel port connection 

for synchronizing the FPGA clock to Simulink time. 

The FPGA selected was the Spartan3-1400AN.  This FPGA houses logic building 

blocks for 11,264 slices, 32 multipliers, 176K of distributed RAM, a 576K RAM block 
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and 1.4M system gates.  Although the Spartan series does not include embedded 

PowerPCs, Xilinx’s EDK program can be utilized to provide soft core DSPs. 

5.2 Analog Input Design 

As with any system involving sensors, there will be analog inputs, which require 

signal conditioning before being sampled by an A/D converter, for use in the processor.  

This leads to the challenge of including flexibility with the analog circuitry design in 

order to allow the same circuit to be used with different sensors.  In the recent past this 

challenge could have only been accomplished by providing for the physical interchange 

of various analog components.  However, the recent development of digital 

potentiometers, programmable operational amplifiers and Field Programmable Analog 

Arrays has facilitated the design of flexible analog circuitry.  All of these components 

were considered for designing programmable analog signal conditioning.  Digital 

potentiometers were considered for use along with either a static or programmable 

operational amplifier.  The disadvantage of this method is the board space required for 

the components and the lack of analog filtering.  Currently, the selection of digitally 

controlled capacitors is also very limited 

The FPAA provides for programmable analog filtering and requires less board 

space.  Two types of FPAAs are currently available.  There are FPAAs that operate in 

discrete time and those that operate in continuous time.  Discrete time FPAAs utilize 

switching capacitors to implement the resistance required in the circuit.  The continuous 

time FPAAs utilize switches to provide for different interconnections of the components, 

[43].  It was determined that either would work well for this application.  However, after 
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a search of currently available FPAAs it was found that Anadigm produces a discrete 

time FPAA, which possesses some desirable features. 

The AN231E04 includes 8-bit internal A/D converters, which can directly convert 

the conditioned signal to the TTL format required by the FPGA.  It also comes with user-

friendly software that allows the design to be tested in simulation and a binary file to be 

generated.  The binary file can be utilized directly by the FPGA for programming during 

autopilot initialization.  Each chip provides up to 38 CAMs, which are predefined analog 

circuits, and up to three A/D outputs.  The CAMs include functions such as filtering, 

inverted gain and limited gain. 

The chips do have some limitations associated with the input signal.  The chip 

utilizes a +1.5V internal reference for circuit common in order to provide for AC signal 

inputs.  In addition, the input is limited to 3V.  The +1.5V reference creates an issue with 

ground referenced signals.  However, with some initial voltage division and software 

design, ground referenced signals can be accommodated. 

The autopilot design provides one input for small signal, less than 3V, differential 

sensors, which can be connected directly to the FPAA’s input ports and two large signals 

up to 26V.  Voltage division was used to reduce the larger signals by a factor of 8.96.  

The FPAA measures the input voltage with respect to the 1.5V reference.  However, 

since the internal A/D is utilized, this can be compensated for within the FPGA software 

when the 8-bit received value is converted to the input voltage. 

Figure 17 displays the external circuitry for the two large signal inputs, one small 

signal input and the AnadigmDesigner2 software configuration.  Vin1 and Vin2 accept two 

input voltages, which are ground referenced and less than 26 V.  Vin3 accepts one small 
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signal voltage to be measured.  The magnitude of the small signal must be less than 3V.  

The internal configuration of the FPAA utilizes a low pass filter for the large signal 

inputs and a gain stage for the small signal input.  These circuits are followed by the three 

A/D converters to provide the TTL outputs to the FPGA.  The FPAA signal conditioning 

blocks can be utilized to remove noise and adjust the gain of the measured voltage in 

order to obtain better resolution from the A/D converters. 

 

 
Figure 17:  Voltage Measurement Circuit for Analog 

 

5.3 Communication Voltage Level Circuitry 

Two types of communication are available to the user of the autopilot.  

TTL/CMOS is available at 5V, 3.3V or 1.8V and the RS232 level.  There is no universal 

circuitry that can accommodate both RS232 and TTL.  The two are defined as a specific 

type of I/O port. 

The TTL I/O lines interface with a bi-directional voltage level translator, which is 

Texas Instrument’s TXB0104.  The IC has an electrical requirement for the set of four 

I/O signals to be less than or equal to the voltage after translation.  By utilizing the 
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FPGA’s 1.8V logic level ports and treating the input as the higher translation level, any 

TTL voltage between 1.8V and 5V can be accepted.  A digital potentiometer, which is 

programmed through the FPGA processor, is used to set the logic level on the input port.  

The process is presented in Figure 18. 

 

 
Figure 18:  Adjustable Logic Level Circuitry 

 

RS232 communication is older than TTL and does not operate at the standard 5V, 

3.3V or 1.8V logic levels, which are now much more popular with processors.  The 

voltage representing logic high can range from +5V to +15V while the logic low 

representation varies from -5V to -15V.  There are several standard ICs that contain 

internal charge pumps to allow for the negative voltage levels from a single 3.3V power 

supply.  The MAX650 was selected and provides 5 inputs and 4 outputs while requiring 

only four external capacitors. 

In order to minimize board space, USB connectors were not directly included on 

the board.  It is important to note that, with custom connectors, USB communication can 

be implemented through the variable I/O ports.  The board was designed with two five 

5V

LEVEL
TRANSLATOR1.8, 3.3 OR 5V

BIDIRECTIONAL
LOGIC LINES

1.8V BIDIRECTIONAL
LOGIC LINES

PROGRAMMABLE LOGIC
LEVEL VOLTAGE

100K DIGITAL
POTENTIOMETER

27.0K
RESISTOR

1.8V LOGIC
LEVEL VOLTAGE

1.8V



48 
 

 

volt connectors near the TTL I/O ports.  This arrangement provides for the supply of the 

five volts required to power the USB interface.  The TTL port can be programmed for the 

3.3V logic required by the USB specifications. 

There are three data rates, 1.5Mbps, 12Mbps and 480Mbps, given in the USB 

specifications.  The third is the high speed data rate specified by USB 2.0.  However, to 

be compliant with USB 2.0 the highest speed in not required.  A full speed interface of 

12Mbps is still compatible with USB 2.0 devices, [44].  The autopilot is limited to the 

first two data rates due to the 24Mbps limitations of the level translators.  USB 

communication was not developed for the autopilot template since the bi-directional 

communication lines required by the protocol are not yet available within Simulink.  

However, the user can still develop the protocol through the ISE program or by 

embedding a soft core processor using the EDK program, which contains the required 

drivers. 

5.4 Altitude and Velocity Measurement with Pressure Sensors 

Two pressure sensors were selected for measuring forward velocity and altitude.  

The output of these sensors is a voltage ranging from 0.2V to 5V for the altitude and 1V 

to 5V for the forward velocity.  An A/D converter was selected, which provided for an 

input of up to 5V.  The A/D converter also required three 5V TTL communication lines.  

Since the FPGA cannot produce a logic level above 3.3V, a translator IC was included in 

the circuit.  In addition, a 4.5V reference IC was utilized in order to provide the stable 

reference voltage required by the converter.  The pressure sensor circuit is presented in 

Figure 19. 
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Figure 19:  Pressure Sensor Circuitry 

 

The calculation of altitude is based on the fact that pressure decreases as the 

altitude of an aerial vehicle increases.  A pressure sensor can be used to measure this 

relationship and the altitude calculated.  The selected pressure sensor produces a linear 

relationship between pressure per square inch and voltage.  The pressure range is 2.2psi 

to 16.7psi and the voltage range is 0.2V to 4.8V.  The vehicle’s height can be calculated 

using equation (2) and equation (3).  Selecting the sea level value as the initial height, the 

range of height measurable by the pressure sensor was calculated to be from 230 feet 

below sea level to 26,878 feet above sea level. 
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( 0.2)(14.5 / 4.6)measured inpsi v= +       (3) 

 

Since a 16-bit A/D converter is present, the resolution of the measurement is 

limited by the quantization steps of the A/D converter, which is 68.6656uV/bit.  Relating 

this value to feet yields the smallest measurable change in height as 0.4329ft.  However, 
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due to noise present within the circuitry this accuracy is better than can be realistically 

expected.  Since a 4.5V reference IC was selected, the actual measurable distance below 

sea level is slightly less than 230 feet. 

Calculating velocity using pressure measurement is slightly different.  A pitot 

tube is used to generate a differential pressure value.  The differential pressure value is 

derived as the difference between the static pressure, with no velocity, and the dynamic 

pressure generated from the wind entering the tube from the aircraft’s forward velocity.  

The differential pressure, which is measured by a pressure sensor, is proportional to the 

indicated forward air speed of the vehicle.  A pressure sensor was selected for this 

measurement, which is capable of detecting pressure in the range 0 to 3.92kPa and with 

an output between 1V and 4.9V.  As with the altitude sensor, the range was limited to the 

4.5V reference.  Equation (4) gives the relationship between the measured pressure and 

indicated air speed in knots,[45].  The asl parameter is the standard speed of sound at 

15°C, which is equal to 661.4788kts.  The Psl parameter is the standard pressure at sea 

level, which is equal to 29.92126in-Hg.  The qc parameter is the measured pressure, from 

the pitot tube, in-Hg. 

 

2/ 7

5 1 1c
sl

sl

qV a
P

⎡ ⎤⎛ ⎞
⎢ ⎥= + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦      

(4) 

 

The relationship between air speed and measured pressure is non-linear.  

Therefore, the amount of quantization error changes with velocity.  However, the 

smallest theoretical measured step is equal to 2.0381(10-5)in-Hg/bit, which is negligible. 
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5.5 Data Acquisition Memory 

The FPGA’s internal RAM could be utilized for data acquisition.  However, this 

would be inefficient due to the large number of gates, which would be required, and the 

fact that the RAM is a volatile memory.  Therefore, the use of external memory was 

included in the design to provide for data acquisition capabilities.  Since flash memory is 

available with large amounts of storage capabilities and is non-volatile, it was selected 

over RAM memory, which is volatile and requires more board space for the same amount 

of capacity.  The disadvantage of flash is the limited number of write cycles, which are 

usually around 100,000.  This limitation was overcome by selecting a MicroSD card.  

Therefore, the user can upgrade as write speeds and size are increased and the cards can 

easily be replaced should the write cycle limitation be reached. 

5.6 Actuator Control Selector Circuitry 

The autopilot was designed to control up to twelve servos through the use of the 

FPGA’s 3.3V TTL ports.  The output from the FPGA is not directly linked to the servo 

connector pins.  Instead it passes through the onboard safety switch circuitry.  This 

circuitry provides for a pilot or, when in use, an additional daughter board, to gain control 

of the servos in the case of a failure of either the underlying software or the FPGA.  The 

priority order was established as pilot first, the safety board second and the FPGA third.  

In order to achieve this priority, without excessive use of analog switches, a CPLD was 

utilized.  The CPLD receives each of the control lines from the three sources and selects a 

control source, which is outputted to the servos.  This configuration is presented in Figure 

20. 
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Figure 20:  Actuator Control 

 

There are six primary servos for control of the vehicle dynamics and six for 

control of any accessories such as a camera pan and tilt motors.  It is unrealistic for a 

human pilot to control all twelve servos.  Therefore, only the six primary servos are 

available for the pilot to control.  All twelve are available to both a daughter board and 

the autopilot with two select lines available to the daughter board.  This provides for a 

second processing system to control the servos running the accessories while the 

autopilot maintains control of the primary servos.  This configuration is beneficial to 

systems running a second processing system to handle computationally complex 

algorithms such as the vision algorithms. 

Standard servos run on power supplies in the range of 4.8V to 6V.  The power to 

the control switch can be supplied by the servo connector, running from a separate 

supply, or the on-board 3.3V supply, which is selected by a jumper.  The advantage of 

providing a separate supply for the servos is the additional isolation gained for the critical 

actuator control circuitry.  It was decided to utilize a second voltage regulator for the 
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safety switch.  Since the safety switch is powered by the same supply as the actuators, a 

loss of servo power would result in an unrecoverable failure even if the pilot were to 

regain control of the actuator logic. 

The control line from the pilot is a 3.3V PWM signal from a receiver.  The code 

in the CPLD monitors the frequency and gives the highest priority to the request of the 

pilot for control.  The control lines from the daughter board are simply a logic high/low 

signal.  Logic high on the control line will give control to the safety board but only if the 

pilot has relinquished control.  Two connections were included in the design in order to 

jumper the daughter board select lines to logic low when a second board is not present.  

Once the human pilot has relinquished control and the safety board control lines have 

been set to logic low, the autopilot gains control of the actuators.  The System Generator 

is not available for the CPLD.  Therefore, the safety switch was preprogrammed as part 

of the autopilot design and does not need to be modified by the end user.  However, the 

JTAG ports are accessible.  Therefore, those familiar with VHDL or Verilog can modify 

the design for other functionality. 

5.6.1 Safety Switch CPLD Logic 

The safety switch was programmed within the ISE environment using VHDL.  

The safety switch entity has two building blocks, a frequency conversion module, 

freq_conv, to convert the pilot select line PWM signal into a single bit and a single switch 

module, single_switch, which selects the PWM input to be passed to the servo output.  

The safety switch configuration is displayed in Figure 21. 
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Figure 21:  Safety Switch Block Diagram 

 

The single switch component is repeated for each of the twelve PWM inputs.  The six 

servo outputs not affected by the pilot select have the pilot select bit passed into the 

module as logic low.  The truth table presented in Table 3 was used to derive the logic 

function within the architectural structure of the single switch component.  The single 

switch logic is presented in Figure 22. 

 

Table 3:  Single Switch Truth Table 
Pilot Select 
(ps) 

Daughter 
Board Select 
(dbs) 

Pilot Input 
(pi) 

Daughter 
Board Input 
(dbi) 

Autopilot 
Input (ai) 

Servo 
Output 
(servo) 

0 0 X X 0 0 
0 0 X X 1 1 
0 1 X 0 X 0 
0 1 X 1 X 1 
1 X 0 X X 0 
1 X 1 X X 1 

freq_conv

single_switch

Pilot Select PWM

Clock

Servo Output
Daughter Board Select

Pilot Input
Daughter Board Input
Autopilot Input

Pilot Select
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Figure 22:  Single Switch Logic 

 

The frequency conversion module converts the signal from the receiver.  The 

resulting signal is a 50Hz PWM signal, which toggles between a 1ms and a 2ms high 

pulse level.  The 1ms value corresponds to logic high, and the 2ms value corresponds to 

logic low. 

The CPLD clock operates at a frequency of 50MHz and is used to calculate the 

time the PWM signal is logic high.  A counter is utilized to determine the pulse width.  

The counter is initialized when the PWM input changes from logic low to logic high and 

reset to zero when the PWM changes from logic high to a logic low signal.  The counter 

value is used to determine the pulse width and set the output flag accordingly. 

5.7 Power Supply Circuitry 

The design of the power supply circuitry was provided by Xilinx, [46].  This 

design was presented in a technical paper, [47].  The design was also utilized and tested 

on Xilinx’s Spartan-3AN starter kit.  Therefore, it was considered best to utilize the 

proven design for the power supply. 

The circuitry utilizes National Semiconductor’s LP3906.  It is powered by the 5V 

autopilot supply voltage input and provides four output voltages.  Two of the outputs are 
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at 3.3V, one at 1.8V and one at 1.2V.  The 1.2V and one of the 3.3V outputs are buck 

DC-DC switch mode supplies.  These are utilized to supply the FPGA 1.2V core supply 

and the 3.3V supply required for the I/O ports bank 0, bank 1 and bank 2.  The second 

3.3V supply and the 1.8V supply are linear regulator supplies.  The 1.8V output is used to 

supply the bank 3 I/O ports, which are used for the 1.8 TTL logic protocol.  Linear 

regulators have a lower noise characteristic than the switch mode types.  Therefore, the 

linear 3.3V supply was utilized to supply the peripheral analog components.  The analog 

components are involved in measurements, which could be easily corrupted by noise. 

The operating voltage of the autopilot was limited to a range of 4.75V to 5.25V 

by the pressure sensors.  Therefore, the autopilot is run from a regulated 5V supply. 
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CHAPTER 6 

AUTOPILOT SOFTWARE DESIGN 

In order for a complete design to be developed within the System Generator 

environment, two separate issues must be addressed.  These issues are the development 

and testing of the software algorithms and the integration of these tested algorithms with 

the selected sensors and actuators.  The first issue has been studied Murthy and a design 

flow developed in, [48].  The development of the hardware interfaces is addressed in this 

chapter with the developed autopilot hardware interfaces as design references. 

Murthy provides an overview of the System Generator along with a recommended 

design flow for converting Simulink tested algorithms to System Generator/hardware 

implementation, [48].  The research discussed issues encountered while designing the 

algorithms at the gate level.  These include quantization and overflow, difficulty 

implementing mathematical algorithms and timing issues. Timing issues associated with 

algebraic loops are of particular interest and are addressed by Murthy, [48]. 

Quantization and overflow are issues, which must be addressed with any form of 

processor utilizing a fixed word length.  The required resolution must be selected along 

with the required precision.  An advantage of working with FPGAs is that the word 

length and assignments of bits to represent the fractional portion can be modified at 

anytime within the software.  Many of the System Generator building blocks provide for 

the re-assigning of the length at the output.  In addition, the representation can be 
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modified by utilizing the reinterpret and convert blocks.  The reinterpret library block 

assigns a different representation without adjusting the bit values.  The convert library 

block reassigns the word length and number of bits assigned to the fractional portion, 

which will affect the individual bit assignment.  The convert block provides for the user 

to select whether the value is both rounded or truncated and wrapped or saturated. 

The mathematical issues addressed are not a lack of availability of System 

Generator blocks used for implementation.  Rather the mathematical issues are concerned 

with the assigning of the precision and delays along the path.  Simple mathematical 

blocks that introduce very little delay include addition, subtraction, shift, multiply, 

scaling by 2n, cosine and sine functions that utilize look up tables.  In addition, there are 

blocks that implement the division, log, sine, cosine, square root and inverse tangent 

functions by utilizing the Coordinate Rotation Digital Computer (CORDIC) algorithms.  

The CORDIC algorithms use an iterative approach by performing coordinate rotations in 

order to obtain an approximation of more complex functions, [49]. 

Algebraic loops occur when the output of a mathematical function is returned to 

the input of the initial calculation.  Algebraic loops can create timing issues for the 

hardware designer.  These loops require extra consideration with respect to the delay 

associated with the gates contained within their path.  The delay can result either in an 

instability in the system or an incorrect result by performing the mathematical or logical 

calculations on samples, which have occurred at different time steps.  When developing 

the System Generator algorithms these delays must be calculated and compensated for 

carefully, [48] 
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The design of hardware interfaces does not focus on the quantization, over flow or 

mathematical issues. The design of hardware interfaces focus primarily on the issues of 

timing.  The communication protocol requires tightly controlled timing at the I/O ports 

with signals that require careful synchronization.  When developing the communication 

protocol the best approach is to first simulate and recreate the waveforms in the Simulink 

scope.  This provides for an initial determination of whether the timing and 

synchronization of the signals were correctly designed.  Once the simulation has verified 

the design, the hardware implementation can be performed.  If the hardware does not 

yield the correct results, the FPGA’s RAM can be utilized to store the behavior of the 

system within the FPGA.  This provides for reading the information through the JTAG 

interface and the recreation of the waveforms within the Simulink environment.  Since 

System Generator is bit and cyclic true, the hardware recreation usually finds either an 

issue which existed in the simulation and was originally missed by the designer or an 

electrical issue such as an incorrectly assigned hardware port. 

The majority of mistakes, which prevent the protocol from functioning, result 

from timing issues created by delays from the selected gates.  The register library block 

can never have less than a delay of one clock cycle.  Other gates such as comparators or 

logical functions may be set to a delay of zero.  It is very important to look at the arrival 

times of each individual signal.  Comparison to a counter value can be used for 

synchronization.  Both register and delay blocks are useful for manipulating the arrival 

times of signals.  The following sections discuss the design of all the hardware for the 

communication protocol in detail.  The discussions in these sections are useful as a 

reference for similar designs. 



60 
 

 

6.1 FPAA Program Logic Design 

The PROGRAM FPAA autopilot template subsystem sends the required clock 

signal to the FCLK port of the FPAA and programs the chip with the bit stream created 

by the AnadigmDesigner2 program.  Counters are used to control the timing of the 

generated signals with surrounding gates utilized for synchronization.  In addition, 

Simulink’s ability to allow subsystems to be developed with variables assigned at 

initialization through the mask interface was utilized.  The mask was utilized for 

assigning of the bit stream or sequence of ones and zeros, which contain the 

configuration information, and disabling of the outputs to the FPAA when it is not in use. 

The clock signal to the FPAA, FCLK, is generated by incrementing a counter 

between zero and one at twice the required clock frequency, which is 12.5MHz.  This 

signal is OR’d with a Boolean value, which is assigned by the variable EnFPAA, set in 

the mask.  The additional Boolean variable provides for disabling the clock signal out of 

the FPGA when the FPAA is not utilized.  The FPAA clock signal is presented in Figure 

23. 

 

 
Figure 23:  FPAA Clock Signal 

 

Six hardware ports are utilized to program the FPAA.  The reset port, FRES, 

enables the FPAA when at logic high.  The program chip select port FCS2B, which is set 

to logic low while the configuration bit stream is sent.  The bit stream is clocked out of 

the chip on the data port FSI.  These output signals are synchronized by the 
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communication clock port FCLK.  After the chip has been successfully programmed, the 

FPAA outputs FACT and FERRB are pulled t logic high values. 

The FACT and FERRB ports are not required within the logic since these inputs 

do not affect the output signals.  The port hardware blocks cannot be left unconnected or 

the compiler will remove the unused logic.  This includes the assignment of these ports as 

inputs.  In order to prevent this removal, the ports are tied into an unused FPGA output 

port.  This output is not connected to any surrounding hardware and is defined as 

TERM1.  The configuration is presented in Figure 24.  In addition to TERM1, three 

additional unused ports TERM2, TERM3 and TERM4 were defined for future use. 

 

 
Figure 24:  Terminating Input Ports 

 

The bit stream varies in length and bit values for different FPAA configurations 

must be entered into the subsystem’s mask as a variable.  This variable contains a vector 

of ones and zeros and is stored in the FPGA’s ROM memory, which is set to a width of 

1-bit and a depth equal to the number of bits to be sent.  The variable is assigned in the 

MATLAB workspace through the use of an m-file, which configures the 

AnadigmDesigner2 generated binary file to the required vector.  Within the mask’s 

initialization commands an intermediate variable, A, is set equal to the user declared 

variable to be used within the subsystem’s internal blocks.  Then the variable A is entered 

into the ROM as the initial value vector.  A counter is utilized to increment the ROM 

address at the communication rate.  When the final value of the bits, to be sent, has been 
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reached, the counter latches at the last address value.  This is accomplished by setting a 

variable to the length of A less one and compared to the count value.  When the 

comparison outputs logic high, the communication clock is also disabled.  Figure 25 

displays an overview the system and the variables utilized within the logic blocks. 

 

 
Figure 25:  Program FPAA Logic 

 

6.2 FPAA Receive Logic Design 

The FPAA contains three internal 8-bit A/D converters, which are utilized for 

providing the analog information to the autopilot’s FPGA.  The protocol utilizes three 

output ports data, synch and clk from the FPAA.  The synch port is set to logic low 

during the time when the FPAA is sending the eight data bits.  The individual bits are 

updated when clk is logic high and stable for the duration of logic low.  The clock 

RESET & ENABLE LOGIC

COUNTER CONTROL LOGIC

COMMUNICATION CLOCK SIGNAL



63 
 

 

frequency, clk, is set to 3.125MHz from within the AnadigmDesigner2.  The FPAA 

generated waveform is displayed in Figure 26. 

 

 
Figure 26:  FPAA A/D Communication Protocol 

 

Figure 27 displays the System Generator logic for the first A/D input.  The 

FSYNCH1 port corresponds to synch.  The FDATA1 port is set to data.  The FSYNCH 

port is set to synch.  This same logic is repeated for the second and third A/D inputs, 

which utilize their individual synch and data ports and the shared clk port as the inputs. 

 

 
Figure 27:  FPAA Receive Logic 

 

A counter is utilized to synchronize storing each of the individual bits arriving 

sequentially into the corresponding registers.  This counter is held in reset when synch is 
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logic high.  When synch is logic low the counter increments at the update rate of data.  

The subsystem, STORE_BITS, contains eight 1-bit enabled register blocks.  The registers 

are enabled according to the logic presented in equation (5).  The parameter en is the 

Boolean input to the register’s enable port.  The parameter bit_number is the bit’s 

sequential position in the serial input data.  The parameter counter is the count value. 

 

( _ ) AND  AND (NOT( ))en bit number counter synch clk= =                   (5) 

 

The output from each of the 1-bit registers is concatenated into an 8-bit word by the 

concate block.  The 8-bit word is stored in a register, which is enabled by the synch input 

and is logic high when no data is being received. 

6.3 Pressure Sensor A/D Logic Design 

The selected A/D converter, the LTC1865, utilizes a standard Serial Peripheral 

Interface (SPI) protocol at a clock frequency of 500 KHz.  The sdi input to the A/D 

converter specifies the settings for the next conversion cycle.  In order to set the A/D for 

channel 0 with single ended measurements, the sequence ‘1 0’ is written.  For the same 

setting but with channel 1, the sequence is ‘1 1’.  The serial data port, sdo, provides the 

readings from the A/D for the previously specified channel.  The input line conv, to the 

A/D, is held high to start the conversion cycle and is held high for the minimum required 

conversion time.  The clk signal synchronizes the bit transfer, which is stable when the 

clk signal is logic high. 

A block diagram, which provides a functional overview of the subsystem for the 

A/D communication protocol, is presented in Figure 28. 



65 
 

 

 
Figure 28:  A/D Communication Block Diagram 

 

A control counter is utilized in order to synchronize the output waveforms 

required for the communication protocol and storing of the input.  The counter 

increments from one to thirty-seven and provides the control count value.  The required 

waveforms from the output with respect to the control count value are presented in Figure 

29.  

The generation of the sdi and the conv outputs are controlled by utilizing the 

System Generator’s relational block.  Each of the relational blocks compares the control 

counter output to a specific control count value for the required logic high output.  The 

outputs from the relational blocks are then OR’d in order to produce the required 

waveform.  The logic is given for the conv output in equation (6) 
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( 19)OR( 20)OR( 21)OR( 3)conv count count count count= = = = <                (6) 

 

and the logic for the sdi output is given by equation (7) 

 

( 3)OR( 22)OR( 23)sdi count count count= = = = .                                           (7) 

 

 
Figure 29:  A/D Converter Timing 

 

In order to produce a stable output, during the time when the clock is logic high, a 

register is utilized with an enable port.  The register is activated with the inverted value of 

the generated clock signal, which is received from the RegEn subsystem input.  This 

configuration is presented in Figure 30. 
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Figure 30:  Logic to Generate Convert Output 

 

The System Generator CEProbe block outputs a logic high pulse equal to the time 

when the hardware clock is logic high.  These pulses occur at the update rate of the 

constant block input.  This is used to generate the communication clock signal, clk.  The 

constant is set to an update rate of twice the required communication clock frequency, 

which is 2usec.  The generated pulse enables a counter to toggle between 1 and 0 to 

produce the required frequency with a 50% duty cycle.  The generated clock signal is 

converted to a logic value and OR’d with the conv waveform.  The or-gate is used in 

order hold clock signal logic high for the duration of the A/D conversion cycle.  A delay 

of half a communication clock cycle, 1usec, is necessary in order to synchronize the sck 

logic low signal with the sdi and conv waveforms.  This delay is created by utilizing a 

register block immediately before the output port.  The System Generator implementation 

is presented in Figure 31.  The PS_SCK hardware port block corresponds to the sck 

output. 

 

 
Figure 31:  A/D Clock Generator 

conv
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The 16-bit shift registers contain two of the 8-bit registers, which were created for 

use in the FPAA communication logic.  The shift registers were modified to collect each 

individual bit at the correct counter corresponding to the A/D timing, which was 

presented in Figure 29.  The outputs of these registers are concatenated to form the 16-bit 

word.  An enabled register is utilized to store the concate block output.  The register is 

only permitted to update following the arrival of the last bit.  For the 16-bit shift register 

collecting the channel 1 input the update occurs when the count value is equal to zero.  

This process is presented in Figure 32. 

 

 
Figure 32:  Pressure Sensor A/D Input Logic 
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In order to allow the user to disable this template subsystem, a mask is used to set 

a Boolean variable that is OR’d with each of the outputs in order to hold all the outputs 

logic high when the system is disabled. 

6.4 Micro Secure Digital Software Design 

The MicroSD card is included in the hardware design to provide for the storage of 

information at run time.  With data acquisition, the final selection of the word length and 

sampling time are dependent on the individual design, which creates the possibility for 

many different logic configurations to exist.  Therefore, only the initialization routine was 

included in the template.  The clock rate is set to 25MHz and the data length to 512, 8-bit 

memory locations. 

The card must go through a sequence of commands in order to initialize.  The first 

command CMD0 sets the card to the idle state and SPI protocol.  The second command 

CMD8 requests information regarding the card state.  The third command CMD1 tells the 

card to initialize.  The fourth command CMD16 sets the data length to 512 bytes.  After 

each of these commands is received the card sends a specific response, which must be 

checked.  CMD8 sends a 40-bit response, which is detailed in Figure 33, [50].  CMD0, 

CMD1 and CMD16 send back a 7-bit response, which is the highest byte of the CMD8 

response. 

An individual subsystem was built for each of the commands.  As the correct 

response is received, a register is latched high to enable the next sequential command.  

After the final command has been received successfully the CMD16 response latches an 

enable flag, termed Ready.  This flag is outputted from the subsystem to indicate that the 
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card is ready to receive the next instruction such as read or write.  The subsystem is 

presented in Figure 34. 

 

 
Figure 33:  MicroSD Card Response 

 

 
Figure 34:  MicroSD Card Initialization Logic 
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All the commands sent to the card share the same output hardware ports and must 

be able to take control, without conflict, when active.  Therefore, all of the command 

outputs along with an input port to the subsystem are AND’d just before each of the 

corresponding hardware ports.  The input ports to the subsystem are for user read and 

write commands.  The subsystems are designed so that the output is logic high when 

inactive.  The hardware ports uSD_CLK, uSD_CS, uSD_DI, and uSD_DO, given in 

Figure 34, correspond to the communication clock port clk, the chip select cs, the data 

port to the MicroSD card di, and the data port from the MicroSD card do respectively. 

The subsystem that sends CMD0 waits 3ms to provide the memory card time to 

power up.  After this delay, it sends the correct bit sequence for CMD0, receives the 

response and sets the enable flag output.  This process is presented in Figure 35. 

 

 
Figure 35:  CMD0 Subsystem 

 

In order to create the 3ms delay a counter is utilized, which counts from 0 to 1 

with a 3ms update rate.  When the counter has incremented to the value one a register is 

latched to logic high.  This register output enables the counter utilized as the 

communication clock output, clk, and the subsystem that sends CMD0, which is 
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D1_SELECT_LOGIC_HIGH.  The subsystem, which receives the card’s response, 

RECEIVE_R1, is always enabled.  The MicroSD card always sets the first bit sent equal 

to zero to indicate the start of the transmission. When this occurs, the RECEIVE_R1 

subsystem starts a control counter, which is set at the communication rate.  The counter is 

used to enable eight registers when the corresponding register enable bits arrive.  When 

the last bit has been received a register storing the concatenated 8-bit value is enabled.  

The relational block is utilized to compare the received word to the correct response, 

which is equal to the value one.  When the correct response is successfully received a 

register is latched logic high, which is the enable output of the subsystem. 

The DI_SELECT_LOGIC_HIGH subsystem contains a counter, which counts 

from 0 to the value of 147.  When the final value is reached, the output is latched to logic 

high.  The count values of 0 to 100 are required to provide the card with a clock input for 

a short time before the command is sent.  The count values of 100 to 147 represent the 

48-bit word, which is to be sent.  The DI_LOGIC subsystem contains relational blocks to 

compare the count value to the location of the logic high bits within the 48-bit word and 

OR the results.  The function given in equation (8), 

 

= = =

= = =

( 100)OR( 101)OR( 140)...  
                                                       OR( 143)OR( 145)OR( 147)
di count count count

count count count
=

,
   (8) 

 

produces the signal sent from the di port to the MicroSD card, which is the correct 

sequence of logic high pulses. 
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Figure 36:  CMD0 Logic Output Subsystem 

 

The next subsystem to be enabled is the CMD8 in Figure 34, which sends the 

CMD8 command.  This subsystem follows the same design flow as the command CMD0 

discussed previously, with three exceptions.  The MicroSD subsystem for sending CMD8 

is presented in. Figure 37. 

 

 
Figure 37:  MicroSD Send CMD8 Subsystem 

 

The CMD8 subsystem is enabled from the output of CMD0 instead of a timer 

delay.  The 48-bit command has a different sequence sent than CMD0.  The response is 

forty bits rather than seven.  It was found that if the next command was sent too soon, the 

card did not respond properly.  Therefore, the command is not sent until 200 clock cycles 

after the subsystem is enabled. 
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As with the output of CMD0, the MicroSD send CMD8 subsystem’s di output is 

generated with relational blocks to compare the count value to the required logic high 

sequence followed by an OR gate.  The function, which produces the di output port signal 

for CMD8 is given in equation (9) as: 

 

= = = =

= = = =

= = = =

( 200)OR( 201)OR( 204)OR( 231)OR...
              ( 232)OR( 234)OR( 236)OR( 238)OR...
                  ( 240)OR( 245)OR( 246)OR( 247)

di count count count count
count count count count

count count count count

=

         (9) 

 

Contained within the 48-bit word sent to the MicroSD card is an 8-bit value equal to 170.  

This value is a pattern check and is returned within the response from the card. 

The subsystem that receives the MicroSD response to the CMD8 command, 

RECEIVE, checks that the first 8-bit word received from the MicroSD card is equal to 1 

and that the pattern check, bits 32 through 39, is equal to 170.  The MicroSD subsystem 

for receiving the CMD8 response is presented in Figure 38. 

 

 
Figure 38:  MicroSD Receive CMD8 Response Subsystem 
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Once the conditions checked are true a register is latched to logic high.  The 

register output is the subsystem flag ENnext, which provides the next command to be 

sent.  When enable input signal Enable is logic high and the di signal is logic low a 

counter is enabled.  The counter is used to synchronize storing of the arriving bits.  The 

subsystems, RECEIVE1 and RECEIVE2, contain registers, which are enabled by 

corresponding counter values.  The values are concatenated to form the 8-bit word, which 

is the output of the subsystem. 

The next subsystem is MicroSD CMD1, which sends the CMD1 signal.  This 

subsystem follows the same design as the CMD8 subsystem by utilizing a counter for 

synchronizing the sending of the di sequence, which represents the 48-bit command.  The 

MicroSD CMD1 subsystem is presented in Figure 39. 

 

 
Figure 39:  MicroSD CMD1 Subsystem 

 

The counter is enabled when the Enable input is logic high.  Unlike the previous 

commands discussed, the response to this command is slightly different.  The card reacts 
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by returning an 8-bit response equal to 0 while it is still initializing and equal to 1 when it 

is ready for use.  The communication protocol requires the card to be polled for the 

information.  In order to accomplish polling of the card, a reset is included in the circuit, 

which restarts the send CMD1 control counter when a response equal to 0 is received.  

The subsystem for receiving the MicroSD CMD1 response, RECEIVE, which is depicted 

in Figure 39, works the same as the previously discussed MicroSD CMD1 send 

subsystem except for one addition.  The MicroSD CMD1 receive subsystem performs an 

additional comparison to the value 0, which when true, sets the reset output to logic high 

in order to resend the command. 

The final command is sent by the MicroSD CMD16 subsystem.  Once the data is 

sent, the subsystem waits for an 8-bit response, which is equal to one.  Once the response 

is received, a register is latched producing the signal out of the initialization subsystem 

that provides the enable flag to the next subsystem, ENnext.  The MicroSD CMd16 

subsystem is presented in Figure 40. 

 

 
Figure 40:  MicroSD CMD16 Subsystem 
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6.5 RS232 Logic Design 

Communication subsystems were created to provide user capability for the RS232 

communication protocol.  A subsystem is included within the autopilot template to 

enable/disable the autopilot ports.  In addition, three subsystems are included within the 

library for sending, receiving and down-sampling the received data. 

6.5.1 RS232 Disable Logic 

Communication via RS232 is disabled by setting the enable and the shutdown 

pins on the MAX561 transceiver IC to logic low.  When these IC control lines are logic 

low, the transceiver holds all the I/O pins as high impedance.  The subsystem is masked 

and the inputs to the ports set as a variable constant.  The RS232 disable logic is 

displayed in Figure 41. 

 

 
Figure 41:  RS232 Enable Logic 

 

6.5.2 RS232 Send Logic Design 

A library subsystem was designed to send ASCII characters utilizing a standard 

protocol of no parity and one stop bit.  The subsystem for sending RS232 protocol is 

presented in Figure 42. 

The inputs to the subsystem, ASCII and Out_EN, set the sampling rates to the 

following blocks.  The ASCII input is the 8-bit character to be sent.  It is concatenated to 
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the start bit, equal to 0, and the stop bit, equal to 1.  A parallel to serial System Generator 

block is used to rotate the 10-bit result, which causes the lowest bit to be sent first.  The 

parallel to serial converter increases the update rate by a factor equal to the number of 

bits being sent.  Therefore, the input must be set to one-tenth of the bit rate for the 

selected baud rate.  The output of the parallel to serial block is converted from a numeric 

to a logical representation by utilizing the cast block.  The logic output is OR’d with the 

up-sampled and inverted Out_EN bit.  This forces the output BIT, of the subsystem, to 

logic high when a character is not sent. 

 

 
Figure 42:  Send RS232 

 

6.5.3 RS232 Receive Logic Design 

A library subsystem was designed to receive 8-bit data utilizing RS232 with no 

parity and one stop bit protocol.  A functional block diagram of the system is displayed in 

Figure 43. 

 

 
Figure 43:  RS232 Receive Diagram 
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The rate is set by the user selecting the baud value from a drop-down menu, 

which is provided through the use of a subsystem mask.  The selection sets a variable, 

which is used within the subsystem, to synchronize the logic to the corresponding baud 

rate. 

The System Generator program requires the sampling time on the input port to be 

a multiple of the clock rate.  This requirement necessitated a more complex design for 

this subsystem.  Rounding the update rate to the nearest allowable value creates a slight 

timing offset for each of the baud rates.  The baud rates are listed in Table 4. 

 

Table 4:  RS232 Bit Timing 
Baud Rate (bps) Used Bit Rate (uSec) Actual Bit Rate (uSec) 
    9600 104.20 104.1667 
  19200   52.10   52.0833 
  38400   26.04   26.0417 
  57600   17.36   17.3611 
115200     8.68     8.6806 
 

For a single byte the offsets are small enough to be negligible.  However, over 

time the offset are cumulative, which eventually leads to a communication error.  

Therefore, the port was oversampled at the clock rate and a counter, utilized as a timer, 

synchronizes the reception of each bit.  The timer is started when the input changes from 

logic high to logic low, which essentially realigns the timing for each character received.  

Figure 44 displays a recorded waveform for one byte. 

Notice that the sampling occurs close to the center of the time the bit is available.  

This provides for the system to overcome the expected slight offset and any small amount 

of jitter, which may occur. 
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Figure 44:  RS232 Receive One Byte 

 

The timer that synchronizes the storing of the individual bits is implanted within a 

counter block, which is incremented at a sampling rate of 50MHz.  The count is started 

when the input changes from logic high to logic low, which signals the arrival of a new 

byte.  This is detected by comparing the input, which is down-sampled to 25MHz, to 

itself with a delay of one sample.  The down-sampling is required to meet timing 

constraints.  The two bits are then concatenated and compared to a value of 1.  When this 

condition is true a register is latched so that the system cannot reset until all eight bits 

have been received.  The register output is then up-sampled to force the counter to run at 

50MHz.  After up-sampling the register is inverted in order to hold the counter in the 

reset condition while waiting on a byte to arrive.  The register controlling the counter is 

reset to logic low when the final count value is reached.  This value is dependent on the 

baud rate selected for the counter and a constant block.  The baud rate is set by the baud 

variable.  The constant is used as a comparison to the count value in order to control the 

reset of the system.  The variable is set inside the subsystem mask when the user selects 

the baud rate from the menu.  The logic and use of this variable is presented in Figure 45. 
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Figure 45:  RS232 Timer Control Logic 

 

The individual bits are received into one of eight registers when the counter 

equals the correct value.  This value is calculated by equation (10), 

 

*2* _ 1counter baud bit number= +                                        (10) 

 

where baud is the bit rate for the corresponding baud rate and bit_number corresponds to 

the order of the received bit.  The outputs of these eight registers are then concatenated 

into one 8-bit word, which is stored in an additional register.  After the last bit has 

arrived, the output of the register holding the 8-bit word is then updated and a byte ready 

flag, newSym, is set for one clock cycle.  The process is presented in Figure 46. 

 

 
Figure 46:  RS232 Receive Byte Subsystem 
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6.5.4 RS232 Down-Sample Logic 

System Generator synchronizes the output of any block to the incoming rate.  

Therefore, the output of the RS232 library subsystem, by default, is 50MHz.  Attempting 

to run complex algorithms at this rate creates unrealizable timing constraints.  In order to 

avoid such constraints, an additional library subsystem was developed to down-sample 

the incoming byte and the bit ready flag to the communication baud rate.  This system is 

masked with a user selectable drop-down list, which sets a variable, baud, based on the 

communication baud rate chosen.  The variable is incorporated within the blocks of the 

subsystem in order to synchronize the timing to the selected baud rate. 

System Generator does supply a down-sample function.  However, it cannot be 

utilized alone with the bit ready flag.  Since the flag is only available for one hardware 

clock cycle of 2ns, it will not be down-sampled correctly.  The bit ready flag input, 

NewSym, is used to control the timer.  The timer provides the output, which can be down-

sampled to provide the bit ready flag, newsym.  This flag will remain at logic high for a 

period of one clock cycle of the communication rate chosen.  The timer is implemented 

with a counter.  The update rate is the hardware clock rate set by the counter’s reset input.  

The timer value is controlled by setting the counter to increment to the value baud 

reduced by one.  Since the counter starts the increment at zero, the reduction of one is 

included.  The timer enable/reset technique used in the receive subsystem was also 

repeated for this implementation.  The logic used to down-sample the bit ready flag is 

displayed Figure 47. 

The 8-bit word is held in a register, which is stable between updates.  Therefore, it 

can be correctly down-sampled by baud.  However, an additional register is required in 
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order to have the updated value transmitted on the same clock cycle as the byte ready 

flag.  This is due to the delay introduced by the register controlling the counter.  The 

logic for down-sampling the 8-bit word is illustrated in Figure 48. 

 

 
Figure 47:  Down-Sampling New Bit Logic 

 

 
Figure 48:  Down-Sampling RS232 Symbol 

 

6.6 Variable I/O Port Voltage Set Logic 

The logic level setting for the TTL variable voltage ports is controlled by a digital 

potentiometer, which sets the voltage control pin on the level translators.  A single IC 

containing six individual potentiometers was utilized, as discussed in Section 5.3.  The 

communication protocol to the IC is a standard SPI protocol, which possesses a clock 

input line, a data input line and a chip select line.  The data is sent serially as an 11-bit 

word.  The highest three bits specify the potentiometer to be set and the lower eight bits 

specify the trim setting in 255 incremental steps.  The subsystem is presented in Figure 

49. 
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Figure 49:  Variable Port Voltage Set Subsystem 

 

The subsystem is masked to allow the user to easily select between 1.8V, 3.3V 

and 5V logic.  Within the mask, the initialization code was written to assign the correct 

value to the constant containing the trim setting for each port.  If the enable block is not 

selected, the corresponding enable output for each level translator is set to zero.  This 

holds the current unused autopilot I/O ports in a high impedance state.  Figure 50 

demonstrates the protocol for one potentiometer setting. 

The clock frequency is set to 50KHz, and controlled by a counter, which toggles 

between zero and one.  The 11-bit word is then sent to the data input line through a 

parallel to serial converter.  In order to allow the potentiometer select and trim setting to 

be specified separately, two constant blocks are utilized and then concatenated to a single 

11-bit word.  This process must be repeated six times for each of the internal 

potentiometers.  In addition, the chip select must be set to logic low for a short period 

after each setting is received.  A counter is utilized to control when each of the 11-bit 

words is sent.  The counter is stopped when it reaches the value of thirteen.  This is 
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accomplished by channeling the output back through a relational block, which sets the 

counter enable input to logic low when the final value is reached.  Table 5 displays the 

required action for each count value. 

 

 
Figure 50:  Potentiometer SPI Protocol 

 

Table 5:  Port Setting Control Counter 
Counter value Action 
1 Chip not selected 
2 Send data for port 1 potentiometer 
3 Chip not selected 
4 Send data for port 2 potentiometer 
5 Chip not selected 
6 Send data for port 3 potentiometer 
7 Chip not selected 
8 Send data for port 4 potentiometer 
9 Chip not selected 
10 Send data for port 5 potentiometer 
11 Chip not selected 
12 Send data for port 6 potentiometer 
13 Chip not selected, counter is now disabled. 
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The communication protocol is enabled by the logic contained in the SEND_EN 

subsystem and is given in equation (11) 

 

= = = = = =( 2)OR( 4)OR( 6)OR( 8)OR( 10)OR( 12)count count count count count count .  (11) 

 

When the output is logic high it enables the logic responsible for sending the 11-bits.  

The parallel to serial converter is enabled to provide the output data on the IO_SET_SDI 

port.  The counter, which outputs the clock signal on the IO_SET_CLK port, is enabled 

and inverted to directly provide the chip select output on the IO_SET_EN port. 

The data sent to the PARALLEL TO SERIAL block is controlled by the 

OUT_SEL subsystem.  The subsystem is presented in Figure 51. 

 

 
Figure 51:  Variable Port Data Output Multiplexer 
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Individual constant blocks are utilized for specifying each of the individual 

potentiometer trim setting.  This provides for each setting to be specified through a user 

selection variable contained in the subsystem’s mask.  The count value is shifted left by 

one bit in order to specify the correct multiplexer output.  Since the multiplexer’s output 

starts with reference 0, a seven input multiplexer was selected.  The multiplexer input line 

referenced to 0 is tied to the first potentiometer setting.  This first value is never sent.  

The first value is used to provide for the selection to occur between outputs at every other 

count value.  This establishes the required delay between each 11-bit word being sent. 

6.7 Servo PWM Output Logic 

The autopilot is designed to provide for servo control.  Therefore, a subsystem 

was developed to generate the required PWM signals.  The output frequency is specified 

by the user to be between 20Hz and 100Hz.  The system is designed for an input of 

0.00% to 100.00% duty cycle.  A functional block diagram of the PWM generate block is 

presented in Figure 52. 

 

 
Figure 52:  PWM Generate Block Diagram 
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A counter is utilized as a timer for the generation of the PWM output.  The 

maximum count value for 100% duty cycle is assigned from a variable calculated within 

the subsystems mask, which uses the user specified frequency.  The select logic controls 

the multiplexer output selection.  PWM output is logic high when the duty cycle input is 

100% and logic low when the duty cycle input is 0%. 

The percent duty cycle must be converted to a count value.  The ratio given in 

equation (12) 

 

update frequency
PWM frequency*100

count duty=                                          (12) 

 

is contained within a multiplier block.  The converted value is loaded in the counter at the 

start of the clock cycle.  When the value is reached the register containing the output bit 

is enabled.  The register is forced to logic low through the use of an inverter block, which 

is contained within a feedback loop.  When the counter reaches the final count value the 

process is started again.  The detailed logic for the generated PWM output is presented in 

Figure 53. 

The input to the PWM generator is set to fourteen bits.  Seven bits are used to 

represent the integral portion and seven bits represent the fractional portion.  The 

quantization error is limited to 1/27, or +/- 0.0078.  This provides an accuracy of 1us for 

the pulse width.  This accuracy was required since the standard operating range of a 50Hz 

servo is 1msec to 2msec.  The update rate of the duty input is limited to 100Hz in order to 

guarantee the multiplication stage will meet the timing constraints. 
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Figure 53:  PWM Generator 

 

A test was run for a setting of 15.25% duty for a 100Hz period, which will 

produce a 1.525ms pulse output.  The generated wave form was stored to RAM at a 1us 

sampling rate and retrieved through the JTAG port.  A check of the exact time, which the 

waveform was logic high, demonstrated the timing requirements were met.  This 

subsystem was repeated twelve times to provide the control logic for each of the servos 

and combined to create a masked subsystem with the required user settings.  The 

recorded waveform is presented Figure 54. 

 

 
Figure 54:  Generated PWM Output 
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6.8 FPGA RAM Data Acquisition Software Design 

The JTAG port, while efficient when running the hardware under Simulink 

control, is unable to send information at most communication protocol rates.  Therefore, a 

library subsystem was written in order to write data values to two single port RAM 

blocks and then read back these values at a much slower rate.  The logic design is 

presented in Figure 55. 

 

 
Figure 55:  RAM Data Acquisition Logic 

 

The subsystem logic input, EN_Rd, starts the read process under user control.  

There are two inputs, DO and DO1, for data acquisition.  These values are saved to two 

separate RAM blocks at the update rate of the incoming signal.  In order to synchronize 

the write process correctly, EN_Rd must have the same update rate as DO and DO1.   A 

counter is incremented at the date input update rate in order to assign the memory 

location to both of the single port RAM blocks.  When this counter has reached the final 

value, a second counter is enabled at a much slower rate in order to increment through the 

count to value=mem_len
number of bits=bits
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memory locations during the read process.  Both counter outputs are multiplexed before 

the RAM memory input in order to control the switching between the write and read 

processes. 

Control logic was utilized in order to synchronize the selection of the multiplexer 

output and the write control line to the RAM blocks.  Equation (13) 

 

_  and (not (write counter=final value))EN Rd                               (13) 

 

provides the logic for the enable to the write counter and the read/write select input to the 

RAM.  Since the counter is disabled as soon as it reaches the final value, the output of 

this equation is held constant. 

The multiplexer select and the read counter logic is simply a comparison of the 

counter value to the final count value.  When the write counter reaches its final value the 

multiplexer output switches and the read counter starts the increment through the memory 

addresses.  A down-sample block was placed just before the read counter enable input.  

Therefore, the counter rate is reset to a user selectable value.  The outputs from the 

subsystem are the address, addr, the first set of data, data, and the second set of data, 

data1.  These are sent to the JTAG port at the slower rate, during the read cycle, to be 

stored in Simulink. 

The subsystem was masked with user inputs for three variables.  The three 

variables are memory length of the RAM blocks, mem_len, the associated number of 

required bits, bits, and the down-sample rate for reading the RAM, ds.  These variables 

are then entered into the blocks associated with them. 
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6.9 GPS Unit Communication Protocol 

The SuperstarII GPS unit supplies latitude and longitude information.  This 

information is sent as a series of 8-bit values using the RS232 protocol.  The TTL logic 

level is selected as 3.3V.  The library subsystems for receiving and down-sampling the 

RS232 protocol are both set to 1900 baud.  The SUPERSTARII block receives and 

combines the 8-bit values into the correct format.  The last block of the subsystem 

prevents the information from being passed out of the subsystem if the correct CRC is not 

received.  Figure 56 displays the four lower level subsystems that comprise the system. 

 

 
Figure 56:  Receive Superstar II Library Block 

 

The subsystem receiving the down-sampled 8-bit information utilizes a control 

counter to keep track of the byte number of the received 8-bit word then combines the 

information as necessary. 



93 
 

 

The SuperstarII GPS unit when set to send the latitude/longitude information in 

binary format, returns the values listed in Table 6, [51].  The subsystem contains a block 

for each piece of information received or each individual line in Table 6. 

 

Table 6:  GPS Information Formatting 
Byte Description Units Type 
1-4 Header N/A Binary 
5 Hours, Correction, Reserved N/A Binary 
6 UTC Minutes Minutes Binary 
7-14 UTC Seconds Seconds Double 
15 UTC Day Day Character 
16 UTC Month Month Character 
17-18 UTC Year Year Unsigned Short 
19-26 Latitude Radians Double 
27-34 Longitude Radians Double 
35-38 Altitude Meters Float 
39-42 Ground Speed Meters/Second Float 
43-46 Track Angle Radians Float 
47-50 North Velocity Meters/Second Float 
51-54 East Velocity Meters/Second Float 
55-58 Vertical Velocity Meters/Second Float 
59-62 HFOM Meters Float 
63-66 VFOM Meters Float 
67-68 HDOP N/A Unsigned Short 
69-70 VDOP N/A Unsigned Short 
71 Navigation Information N/A Binary 
72 Bits 0-3 Number of SVs 

Bits 4-7 Coordinate System 
N/A Binary 

73 System Mode Information N/A Binary 
74 Elapsed Time Hours Character 
75 Reserved N/A N/A 
76-77 Checksum N/A Unsigned Short 
 

Not all the information received from the GPS unit is passed out of the subsystem.  

The only information passed out of the subsystem is data necessary for simple navigation.  

This includes position readings, velocity readings and number of satellites available (SV).  

The subsystem calculates the CRC checksum as each byte arrives.  The checksum format 
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requires that each of the bytes be combined, added, into a 16-bit word with overflow 

neglected.  As each byte is summed, the addition block output is set to truncate the 

sixteen bits with no fractional representation.  Each of the subsystems receives the 

partially added value, CkSumIn, and passes out the updated value to the next subsystem, 

CkSum.  The final sixteen bits received is the checksum value sent by the GPS.  The 

checksum is subtracted from the calculated value and compared to the value of 0 in order 

set an error flag out of the subsystem, CkSumError.  A comparator is utilized to set a new 

value available flag, NewVal, when the counter reaches the value of 77.  The blocks, 

which make up the receive subsystem are presented Figure 57.  The control counter logic 

and each of the subsystems for combining the specific measurement values are contained 

in the lower level systems for clarity. 

 

 
Figure 57:  Superstar II Receive Subsystem 
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The control counter logic is presented in Figure 58.  The first byte sent by the 

GPS unit is the beginning of the header and is equal to 1.  A relational block is used to 

compare the incoming byte to this value.  When the value is received a register is latched 

to one.  Latching of the register to one enables the counter, which will synchronize 

storing of the received bytes. 

 

 
Figure 58:  GPS Communication Control Counter Subsystem 

 

The final subsystem prevents the output from updating when a checksum error 

occurs by utilizing a series of registers for each of the values sent out of the subsystem.  

This subsystem is presented in Figure 59.  These registers are enabled when the 

checksum error, CkSumErr, is logic low and the new value flag, NewValue, has been set. 

 

 
Figure 59:  GPS Communication Subsystem Update Output Subsystem 
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6.10 IMU Unit Communication Protocol 

The MicroStrain communication library subsystem is comprised of two lower 

level subsystems.  The library subsystem for receiving RS232 protocol is set to a baud 

rate of 38400.  The MicroStrain subsystem controls the initialization command requesting 

the stabilized Euler angles be sent continuously.  After initialization, it combines each of 

the bytes into the correct format as the information is received.  This subsystem also 

checks to see if the correct checksum value is received.  If the checksum is correct, the 

output is updated.  If the checksum is incorrect, the error flag, cksumerror, is set to one.  

The IMU protocol block is illustrated in Figure 60. 

 

 
Figure 60:  IMU Protocol Library Block 

 

The subsystem receiving the 8-bit data from the RS232 subsystem is made up of 

lower level subsystems.  The MicroStrain subsystem is presented in Figure 61.  The 

control counter logic block synchronizes the receiving of the individual bytes by 

providing a count value for each one received.  The send command subsystem sends the 

correct sequence for the requested information.  The remaining subsystems combine the 

bytes making up each of the measurements received.  Logic is included to sum the value 

of the bytes received in order to provide the calculated checksum.  This value is 
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compared to the received checksum.  If the correct value is received, the output registers 

are enabled and the output of the subsystem is updated. 

 

 
Figure 61:  MicroStrain Receive Stabilized Euler Angles Subsystem 

 

The subsystem providing the control count contains a counter, which is used to 

synchronize the reception of the individual bytes.  The counter is enabled by latching a 

register to logic high when the first header byte is received, which is equal to 14.  When 

the counter has incremented to the final count value of 11, the same register is reset back 

to the initial value of 0.  Reset of the register disables the counter until the next block of 

data is received.  The control count subsystem is presented in Figure 62. 

 

 
Figure 62:  IMU Control Count Subsystem 
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The subsystem for sending the command sequence is presented in Figure 63. The 

subsystem uses a counter to synchronize the sending of three sequential 8-bit commands.  

The first value is equal to 16 and indicates to the IMU that a command is coming.  The 

second value is equal to the value 0 and sets send to continuous mode.  The third value is 

equal to 14 and requests the stabilized Euler angles to be sent.  These values are held in 

individual constants, which are applied to a multiplexer.  A slight delay is occurs after 

each value is sent.  Therefore, the counter is increment to the value 6 at the baud rate and 

the output shifted right in order to produce the 0 to 3 count values required by the 

multiplexer select lines.  The library block created for sending the RS232 protocol is 

utilized for sending the multiplexer output.  This block is enabled by comparing the 

counter output to the required constants for sending each of the values. 

 

 
Figure 63:  IMU Send Command Subsystem 
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CHAPTER 7 

RC-TRUCK IMPLEMENTATION 

In 2007, Murthy developed a control system for an RC-Truck model.  The model 

was converted to FPGA implementation using System Generator and verified through 

hardware-in-the-loop on a Xilinx Virtex II development board, [48].  In order to 

demonstrate the effectiveness of the developed autopilot platform, Murthy’s research was 

emulated, by implementing the software design of this research on a similar RC-Truck 

robot utilizing the autopilot designed and developed in this research. 

The simulation RC-Truck model was a simplified mass on wheels model that 

included a single motor equation and kinematic equations for Ackermann steering.  The 

RC-Truck model is illustrated in Figure 64. 

 

 
Figure 64:  RC-Truck Model Block Diagram 

 

Vact is the control input to the motor.  Tm is the torque output of the motor.  ax is the 

forward acceleration along the body reference x-axis.  νx is the forward velocity along the 

body reference x-axis.  X and Y represent the world reference position.  ψ is the heading.  

αs is the steering angle. 
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The control system consisted of a simple mission planner to send in a new way 

point when the robot was close to the current one.  The control system was based on a PI 

controller for velocity and a P controller for the heading.  The RC-Truck control system 

is presented in Figure 65. 

 

 
Figure 65:  RC-Truck Control System 

 

The hardware-in-the-loop verification, performed during Murthy’s research, 

utilized various sensors.  A 10 Hz IMU unit was used to provide the heading angle.  An 

encoder was used to provide body reference velocity at 50 Hz.  A 10Hz GPS was utilized 

for position.  However, the conversion to latitude/longitude or ECEF reference frames 

was neglected, [48]. 

The sensor set utilized on the robot for this research did not include an encoder.  

The velocity was obtained at 5 Hz from the IMU in the North-East reference frame.  

There was an observed delay of 1 to 2 seconds.  In addition, the IMU operated at a 

guaranteed minimum of 50 Hz.  The Latitude/Longitude readings from the GPS unit 

arrived at 5 Hz.  The Simulink implementation was modified slightly to incorporate the 

sampling rates.  The sampling time and delay of the velocity readings was of particular 

concern.  The modified RC-Truck control system is presented in Figure 66. 
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Figure 66:  Modified RC-Truck Control System 

 

The velocity PI controller was implemented with a Simulink PID controller block.  

The proportional gain was set to 0.05, the integral gain to 0.001 and the derivative gain to 

0.  The proportional controller used for the heading control had a gain of one.  This 

caused the steering angle to equal the heading error.  This angle was not limited in the 

controller; rather, it was limited to +/- π/6 radians within the RC-Truck model.  Including 

the limitation within the RC-Truck model best reflected the behavior of the system.  The 

rate transition blocks were incorporated to reflect the sampling rates of the sensors.  The 

rate was transitioned back to the Simulink time step just before the PI controller and the 

steering angle input to the RC-Truck model.  Simulink required that the PI controller to be 

run at the Simulink rate.  A realistic mathematical representation of the system behavior 

was obtained because the update of the error value entering PID block is limited to the 

sensor rate. 

The way point generator was contained within an m-file that assigned two vectors 

of X and Y set points, calculated the Euclidean distance from the position set point in the 

X and Y world reference frame and incremented the set points when the RC-Truck was 

within one meter of the current set point.  The code is presented in Figure 67. 
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Figure 67:  Simulink Implementation of Way Point Generator 

 

The velocity response was not ideal due to the slow sampling rate and delay.  However, 

the controller remained stable for a set point of 1 m/s with the controller proportional 

value equal to 0.01 and the integral value equal to 10-5.  The velocity of the RC-Truck 

during simulation is graphed in Figure 68.  The RC-Truck successfully reached each of 

the way points.  The route established for the RC-Truck to traverse, with way points, is 

presented in Figure 69. 
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Figure 68:  RC-Truck Simulation Velocity Output 

 

 
Figure 69:  RC-Truck Simulation Heading and Position 
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7.1 RC-Truck Controller Design 

The hardware implementation required further revision to incorporate the sensors, 

realistic operation of the hardware, and the math related to the latitude/longitude 

coordinate system.  The Measurements from the GPS unit were received in 64-bit double 

representation for the latitude and longitude and 32-bit single representation for the North 

and East velocity measurements.  The received values were converted to a binary 

representation with a fixed word length.  Because the double and float precision reflects a 

much longer fixed word format, a limitation of the word length providing a sufficient 

resolution was incorporated into the logic design.  Unlike with the simulated system, the 

velocity was rotated to the body reference in order to correctly implement the control of 

the RC-Truck motor.  A block diagram of the hardware control system for the RC-Truck 

is presented in Figure 70.  

The servo control was slightly more complex when implemented in hardware.  

The additional complexity was necessary to prevent damage to the servo controlling the 

steering angle.  If the wheels were turned when the RC-Truck was stationary, there 

existed a potential for damage due to the additional force needed.  In addition, the RC-

Truck had to be stopped when the number of satellites used by the GPS unit dropped 

below five.  This feature was also incorporated in the servo control. 

The battery used to power the autopilot board, sensors and servos was Lithium 

Polymer.  Therefore, full discharge could incur damage.  Battery damage was prevented 

by monitoring the battery voltage with the FPAA and using an LED as a low voltage 

indicator.  A 7.4V battery was selected.  Since the voltage was approximately 8.5V at full 
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charge, the low battery flag was set for 7.4V, which provided for some additional time for 

the LED indicator to be observed visually by the operator. 

 

 
Figure 70:  Hardware RC-Truck Control System 

 

During the development of the control algorithms, it was necessary to collect both 

measurements and calculated values while the vehicle was in motion.  This provided for 

the observation of these values with respect to the robot’s behavior at that moment.  The 

JTAG is limited in how much data can be received into Simulink for each time step.  This 

was due to the limitations of the parallel port integration meeting the timing constraints of 

the Simulink program.  In order to overcome this, a subsystem was built that converts the 

information into ASCII format and then sent the information to one of the autopilot’s 

TTL output ports.  In order to receive the information through the computer’s USB port, 
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using Window’s HyperTerminal program.  The HyperTerminal program also allowed for 

the incoming data to be stored to a text file for further analysis. 

RC-Truck platform was provided by the Army Research lab.  This platform 

included the servos, motor speed controller and motor.  A wood box was fabricated to 

house the autopilot platform and mounted to the metal framing towards the rear of the 

RC-Truck.  The required Superstar II GPS receiver, antenna and power supplies were 

mounted on a wood platform attached to the top metal framing on the vehicle.  The 

MicroStrain IMU was mounted directly to the metal frame on the back of the RC-Truck. 

The location of the IMU prevented the magnetic field generated by the drive train motor 

located at the center of the vehicle from corrupting the measurements.   

The motor was powered from a single 7.4V Polymer Lithium battery.  The same 

type of battery was also utilized to power the autopilot, servos and sensors.  The autopilot 

and GPS required a 5V regulated input.  In order to meet this requirement, a circuit 

containing two voltage regulators and heat sinks was included in the hardware 

implementation.  The servos did not require a regulated voltage, but were limited to a 

maximum of six volts.  For this reason, the servos were also powered from the regulated 

five volt supply.  In order to guarantee enough current, the voltage supply to the 

electronics was divided between the two regulators. The IMU is powered directly from 

the same 7.4V battery.  The RC-Truck is presented in Figure 71. 
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Figure 71:  RC-Truck with Sensors and Power Supply 

 

7.1.1 ASCII Data Collection 

The speed and word length that can realistically be sent through the JTAG is 

limited by both the parallel port and Simulink‘s integration with Windows.  For this 

reason, a subsystem was developed to convert the binary values to decimal ASCII 

representation.  The ASCII values were then sent utilizing RS232 protocol. This allowed 

a TTL-USB converter to be utilized to receive the data from the computer’s USB port 

through Window’s HyperTerminal program.  The algorithms for converting binary to 

ASCII were designed for a specific representation.  In order for sufficient resolution, the 

subsystem required a 40-bit word length, with the lower twenty-nine bits representing the 

fractional portion.  The information was sent sequentially with coma inserted before each 

value.  A line-feed character was the last character to be sent before the subsystem was 

reset for the next eight measurement values.  The additional characters provided the 
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necessary delimitation when stored into a text file through the HyperTerminal program.  

Each of the ASCII characters was then sent to the library subsystem, SENDRS232 in 

order to rotate the bits out to a TTL port.  The design is presented in Figure 72. 

 

 
Figure 72:  Send ASCII Subsystem 

 

A counter was set increment at 1.042(10-3) seconds, which was the required 

timing for sending each ASCII character for a baud rate of 9600 bits/sec.  The count 

value was utilized for synchronizing the sending of the required eight measurement 

values and the delimitation characters.  The final count value was based on the time it 

took all of the ASCII characters to be sent.  The eight measurement values were 

multiplexed just before the subsystem which inserted the coma and converted the binary 

value to ASCII characters, CONV_SEND.  The select input to the multiplexer was 

controlled by the count value.  Equation (14) 

 

5( 1) / 2sel count= −                                                                                        (14) 
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was implemented to convert the count value to the required multiplexer select input of 0 

to 6.  After each of the measurement values were sent, the CONV_SEND subsystem was 

reset for the next character.  The reset logic in equation (15)  

 

( 32)OR( 64)OR( 96)OR( 128)OR...
 ( 160)OR( 192)OR( 224)OR( 255)
count count count count
count count count count

= = = =
= = = =

            (15) 

 

was contained in the RESET subsystem.  When the count was equal to the value 257, the 

last value had been sent and a second multiplexer was utilized to send the value 13, 

which is equivalent to the line-feed character in ASCII. 

The CONV_SEND subsystem contained a counter block utilized as a timer to 

synchronize the sending of the ASCII characters.  The characters sent by this subsystem 

included a starting coma followed by a plus or minus sign, the ASCII characters 

representing the decimal form of binary value to be sent, with the decimal point character 

inserted before the fractional portion.  The counter was reset by the external control 

counter after the last character had been sent. The first bit of the value received was the 

sign bit which controlled a multiplexer.  The multiplexer selected between converting the 

binary value to the ASCII characters, for a positive number, or the negated binary value, 

for a negative number.  The subsystem is presented in Figure 73. 
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Figure 73:  Convert to ASCII Subsystem 

 

The CONV_ABOVE0 subsystem calculated the characters which represented the 

decimal hundreds value, the tens value and the ones value.  The 8-bit values were 

calculated with three sequential mathematical operations.  Equation (16)  

 

CAST( /100)hvalue bin=                                          (16) 

 

calculated the decimal hundreds placeholder, hvalue, directly.  The variable bin is the 

highest 11-bits of the 40-bit binary value to be converted to ASCII.   The CAST operator 

represents the system generator cast block which was set to define the output as an 8-bit 

value with the truncate option set.  Equation (17)  

 

CAST(( ) /10)tvalue bin hvalue= −                             (17) 
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used the output from the first calculation, hvalue, and bin to calculate the decimal tens 

placeholder.  Equation (18) 

 

CAST( )ovalue hvalue tvalue= −                                (18) 

 

was the final calculation that results in the decimal ones placeholder, ovalue.  In order to 

obtain the ASCII character, these values were then OR’d with the value of forty-eight.  

This set the highest four bits to the required ASCII sequence of ‘0011’. 

The CONV_FRACT subsystem utilized a feedback loop to calculate a sequential 

series of division by ten.  This sequential division was calculated at ten times the 

communication baud rate, as required by the subsystem sending the ASCII characters.  

Each division by ten resulted in shift of the fractional value by one decimal place holder 

to the decimal ones placeholder.   The value resulting from this calculation was then 

converted to an 8-bit value and OR’d with the value forty-eight to obtain the ASCII 

character.  After the last character was sent, a comparison to the value of the counter 

controlling the CONV_SEND subsystem was used to reset the subsystem.  The 

CONV_FRACT subsystem is presented in Figure 74. 

 

 
Figure 74:  Convert Fraction to ASCII 
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7.1.2 Battery Monitoring Design 

The FPAA IC was utilized for monitoring the battery voltage.  The battery voltage 

was inputted directly to the FPAA large signal input.  The FPAA was programmed for an 

internal gain of negative two.  The A/D output was assigned to the FPGA port connected 

to data1 in the autopilot template’s FPAA_INPUT subsystem.  A negative gain was 

utilized because the A/D utilized twos compliment formatting.  By utilizing the negative 

gain, the output was directly inputted as 0 for an internal voltage equal to -1.5 and 255 for 

an internal voltage equal to +1.5.  The AnadigmDesigner2 environment is presented in 

Figure 75.   

 

 
Figure 75:  FPAA Program for Battery Monitoring 

 

The FPAA configuration was saved as a binary file in the folder containing the 

Simulink autopilot program.  The binary file was then converted to a variable and 

assigned within the mask of the autopilot template’s PROGRAM_FPAA subsystem.  The 
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output of the autopilot template’s FPAA _INPUT block was connected to a variable for 

comparison to the A/D input equal to 7.4V which was equal to 198.  Equation (19)   

 

87.4 2 1_ 1.5
8.96 3

flag set −⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                         (19) 

 

provided the conversion from the 7.4V input to the binary value outputted by the FPAA 

A/D.  The value 7.4 was the battery voltage that the flag was set for.  The 8.96 was the 

conversion due to the voltage division ahead of the FPAA input.  The value 1.5 was 

added to this value because of the voltage offset within the FPAA.  The (28-1)/3 was the 

conversion factor from the voltage seen at the input to the A/D converter to the 8-bit 

binary value entering into the FPGA.  The logic used for the battery monitoring is 

presented in Figure 76. 

 

 
Figure 76:  Program for Battery Monitoring 

 

7.1.3 Double and Float Conversion to Binary 

The formatting of the measurements received from the GPS unit were 64-bit 

double precision for latitude and longitude measurements and were 32-bit single point 

precision for North and East velocities.  Both these formats required conversion into a 

fixed binary word length in order to be utilized within standard System Generator blocks.  
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The binary word representation for the double and single precision formats is presented 

in Figure 77.  The only difference between the two representations is the number of bits 

contained the exponent and the fraction.  The sign for both formats is represented with 

one bit, with a value equal to one representing a negative number.  The exponent is eight 

bits for single precision and eleven bits for double.  The fraction is twenty-three bits for 

single precision and fifty-two for double.    

 

 
Figure 77:  Single and Double Representation Word Format 

 

The algorithm for conversion between the single and double precision formats 

and the binary fixed word length is obtained in two mathematical steps.  First, equation 

(20)  

 

e exponent bias= −                                              (20) 

 

results in an intermediate variable, e, from the value contained in the received exponent 

bits.  The variable, bias, is an offset utilized in the single and double precision formatting 

and is equal to 127 for single precision and 1023 for double precision.  Second, equation 

(21) 

 

2 *1.emagnatude fraction=                                        (21) 

 

sign exponent fraction
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calculates the magnitude of the single and double precision value represented as a fixed 

binary word length, magnatude. 

The single precision and double precision to binary conversions could not be 

implemented within a single subsystem.  This was due to the difference in word length 

requiring different values within the logic design. The algorithms for each conversion 

were very similar.  A shift block was utilized to perform the 2e calculation.  In order to 

obtain a reasonable word length, the output was limited to forty-five bits, with forty bits 

representing the fractional portion, for the latitude and longitude measurements and to 

thirty-two bits, with sixteen representing the fractional portion, for the velocities. 

The value received from the GPS unit was broken up into three slices, the sign bit, 

the exponent and the fraction values.  This separation provided for the mathematical 

calculation given in equation (20) and equation (21) to be performed.   

After equation (20) is implemented the resulting value, e, may be either a negative 

or positive value, depending on the size of the numeric value received.  A shift right was 

required for a positive result, while a shift left was required for a negative result.  In order 

to accommodate the different logic requirements, a multiplexer block was utilized to 

determine the sign and allow the correct calculation to be passed to the next stage of 

logic. 

The slice containing the fraction value required a one to be added to the value 

received.  The most efficient implementation was to utilize a System Generator concate 

block in order to place a bit equal to 1 in the highest order of the output.  The reinterpret 

block was then utilized to assign this additional bit as the value 1 with the rest of the bits 

assigned to the fractional portion.  This provided the required format for the 
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multiplication given in equation (21).  In order to limit the delay and number of gates 

utilized by the multiply block, a cast block was used to reduce the number of bits.  For 

the latitude and longitude measurements, the value was limited to forty-one bits with the 

lowest forty representing the fractional portion.  For the velocity measurements, the value 

is limited to nine bits, with the lowest eight representing the fractional portion. 

Because the calculated magnitude is always positive, a multiplexer was utilized to 

select between a negative and a positive measurement being outputted by the subsystem.  

The calculated magnitude was directly connected to the multiplexer’s output selected by 

the value 0, while the negated magnitude was connected the multiplexer’s output selected 

by the value 1.   The selected output of the multiplexer was directly determined by the 

sign bit of the value received from the GPS. 

The subsystem for converting from double precision to binary is presented in 

Figure 78.  The single precision to binary design was identical with exception to the 

numeric values dependant on the word lengths. 

 

 
Figure 78:  Double to Binary Conversion 
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7.1.4 Heading Set Point Control 

The heading set point control included an approximation of the distance, an m-file 

to store and increment to the next way point, and a calculation of the heading set point.  

In addition to the code for incrementing the way points, a multiplexer was included with 

the user input switch utilized as a select.  This allowed the m-file to be reset to the first 

way point by the operator.  The heading control subsystem is presented in Figure 79. 

 

 
Figure 79:  Heading Set Point Control Subsystem 

 

The values for latitude and longitude received from the GPS unit were given in 

radians and a very small value represented the difference between waypoints.  A large 

word length would have been required to accurately calculate the Euclidean distance.  

The calculation would, not only require a large amount of logic, but also create a 

significant latency within a feedback loop.  For this reason, equation (22)  

 

( )710 sp spd lat lat lon lon= − + −
                                       (22) 
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calculated an approximation of the distance, d.  The value of d that determined the 

advancement to the next way point was set to the value 1.  The multiplier given in 

equation (22)  was treated as a tuning parameter and determined through 

experimentation.  

An m-file was utilized to store two vectors of way points, where one vector 

represented latitude and the other longitude.  As the vehicle neared the current set point, 

the index assigning the values for the latitude and longitude set points was advanced.  An 

additional comparison to the set point index was also included to hold the index at the 

final way point value.  The m-file code is given in Figure 80. 

 

 
Figure 80:  Hardware Way Point Generator M-File 
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Equation (23)  

 

error spE longitude longitude= −                                          (23) 

calculated the error in the East direction, Eerror.  The sign reversal was required because 

the longitude values were negative and decreasing for movement in the East direction.  

Equation (24) 

 

error spN latitude latitude= −                                                (24) 

 

calculated the error in the North direction.  Equation (25) 

 

1tan error
sp

error

EHeading
N

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                (25) 

 

calculated the heading set point, Headingsp, from the North and East errors; where a 

CORDIC inverse tangent block was used to implement the inverse tangent function.  The 

block provided the quadrant with the output given from –π/2 to π/2.  The formatting of 

the value received from the IMU was the same.  When the vehicle was aligned South the 

measurement changed from –pi/2 to the pi/2 value for a small change in heading.  This 

sign reversal created errors in the controller.  For this reason, an additional subsystem 

was inserted just before the heading controller to modify these values to a 0 to 2π 

representation.  A multiplexer and comparator was used to implement an if-then 
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statement.  If the input, AngleIn, was negative then 2π was added to the value, if the input 

was positive, then the output was not adjusted. The subsystem is presented in Figure 81. 

 

 
Figure 81:  Heading Correction Subsystem 

 

7.1.5 Velocity Set Point Control 

As with the simulation, the velocity set point was a fixed 1m/s, but with additional 

control to hold the set point to 0 when the RC-Truck was under the control of the 

handheld radio.  If a set point of 1m/s was allowed when the RC-Truck was held 

stationary by the radio, an error was present.  This created an increasing control effort at 

the output of the PI controller.  When the RC-Truck was finally allowed to enter the 

autonomous mode, this control effort created a sudden increase in motor RPMs.  By 

synchronizing the set point to change to the required 1m/s to the switch to autonomous 

mode, the velocity control system presented the required step response.  The set point 

design is presented in Figure 82.  The SS_IN block was an FPGA input port connected to 

an output port in the Safety Switch.  This port was logic high for manual control and 

controlled the multiplexer that selected between the two set points. 
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Figure 82:  Velocity Set Point Subsystem 

 

7.1.6 Servo Control 

The servo control incorporated the velocity controller, the heading controller, and 

two m-files.  The m-files were implemented directly before the duty cycle inputs to the 

PWM generator for the steering and the drive train servos for additional control.  The m-

file that provided additional control to the steering servo prevented a change in the 

steering angle when the RC-Truck is stationary and when the number of satellites has 

dropped below five.  This was necessary to prevent potential damage to the servo caused 

by the additional torque generated when the RC-Truck is at a standstill.  The m-file 

providing additional control to the drive train servo set the duty cycle to neutral when the 

number of satellites is below five.  This m-file also included a logic output to an onboard 

LED to inform the operator when the vehicle had stopped due a lost GPS lock.  Since it 

was always possible that the control effort would exceed the limits of the servos, both m-

files included code to limit the duty cycle to an acceptable range.  A block diagram of the 

servo control design is presented in Figure 83. 
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Figure 83:  Servo Control Block Diagram 

 

The heading controller utilized a proportional controller with a gain equal to one. 

The multiplier block was not implemented, since the output would simply equal the 

input.  The heading error required a conversion to the 0 to 100% duty cycle.  The duty 

cycle required for a steering angle of –π/6 radians was approximately equal to 5.5%.  For 

a steering angle of +π/6 radians the duty cycle was approximately 9.5%.   These values 

were determined experimentally by slowly increasing and decreasing the duty cycle 

while observing the resulting angle of the wheels.  Based on this mathematical 

relationship, equation (26)  

 

*12 7.5angleduty = +
π

                                                  (26) 

 

implemented the conversion from radians to duty cycle was implemented through. 

As with the simulated system the velocity control was implemented with a PI 

controller, but slightly different gain values.  The gains were modified because, unlike the 

simulation model, the drive train motor was being driven from the PWM signal, rather 
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than the motor voltage.  In addition, the characteristics of the motor were not exactly 

known, which created a difference in the behavior of the simulated motor and the RC-

Truck motor.  Because of the inherent stability of the system, the gain values were easily 

found by experimentation. The proportional gain was equal to 0.035 and the integral gain 

equal to 3.5(10-5).  Because neutral, where the RC-Truck is not was motion, was equal to 

a duty cycle input of 7.5%, the output from the controller was subtracted from this value.  

The calculation implemented subtraction rather than addition due to the inverse 

relationship of duty cycle to motor control.  A duty cycle input of less than 7.5% resulted 

in forward motion, while a duty cycle of greater than 7.5% resulted in reverse motion. 

The m-file providing additional control to the velocity servo, VelocityLimiter.m, 

was designed with two if-then-else statements in order to adjust the percent duty cycle 

output, PWMout.  PWMout was set to neutral when the SV input, which provided the 

number of satellites used by the GPS unit, dropped below five.  The first if-then-else 

statement adjusted the output to the lower and upper bounds if the control effort exceeded 

the limits of the servos.  The second if-then-else statement set a logic output, SVout, to 

true when the number of satellites dropped below five. The output was connected to a 

user LED as a flag so the operator was able to observe if the vehicle was stopped due to a 

loss of GPS.  The m-file code is given in Figure 84.   

The steering limiting m-file, SteeringLimiter.m, was designed to prevent the duty 

cycle controlling the steering servo from updating when both the velocity duty is set to 

neutral and when there are less than five satellites in view.  In addition, the duty cycle 

input, PWMin, was limited to the maximum or minimum allowed values.  In order to 

check each of these conditions, an if-then-else statement is utilized.  If the number of 
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satellites was adequate and the drive train duty cycle was set for forward motion, but the 

maximum or minimum value was exceeded then the duty output, PWMout, was re-

assigned the maximum or minimum value, respectively.  The m-file containing this code 

is given in Figure 85. 

 

 
Figure 84:  Velocity Limiting M-File 
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Figure 85:  Steering Limiting M-File 

 

7.2 RC-Truck Results 

Five trials were run with the RC-Truck following the same trajectory each time.  

As with the simulation, an approximate figure eight trajectory was assigned.  The 

position in latitude and longitude and the velocity in the vehicle’s body reference frame 

were stored utilizing a laptop’s USB port and the HyperTerminal program.  A text file 
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containing the information was created by the HyperTerminal.  The information was then 

read into MATLAB and the trajectories and velocities plotted for each trial.  The 

velocities for trial one, trial two, trial three, trial four and trial five are presented in  

Figure 86, Figure 88, Figure 90, Figure 92, and Figure 94, respectively.  The trajectories 

for trial one, trial two, trial three, trial four and trial five are presented in Figure 87, 

Figure 89, Figure 91, Figure 93, and Figure 95, respectively.  

 

 
Figure 86:  Velocity Response for Trial One 
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Figure 87:  Trajectory for Trial One 

 

 
Figure 88:  Velocity Response for Trial Two 
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Figure 89:  Trajectory for Trial Two 

 

 
Figure 90:  Velocity Response for Trial Three 
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Figure 91:  Trajectory for Trial Three 

 

 
Figure 92:  Velocity Response for Trial Four 
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Figure 93:  Trajectory for Trial Four 

 

 
Figure 94:  Velocity Response for Trial Five 
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Figure 95:  Trajectory for Trial Five 
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reliable, code could have been added to force a velocity set point of zero when the 

number satellites used by the GPS unit dropped below five. 

The RC-Truck followed very similar paths for each of the trials.  It was observed 

that for each trial the RC-Truck made a sharp turn just past the 10th, 11th, and 12th way 

points.  Because the robot was operating close to a building, it was quite likely that there 

was interference with the heading measurement due to underground power lines, or some 

other external contributing factor.  Despite this slight wavering from the desired figure 

eight trajectory, the robot did successfully reach all the way points along the path. 

Although this implementation was very simplistic in nature, it demonstrated the 

effectiveness of the autopilot platform as a method rapid system prototyping.  In addition, 

it demonstrated the flexibility across sensors and platforms.  All of the sensors and the 

RC-Truck platform were available within the Unmanned System Lab at the University of 

South Florida.  The autopilot accommodated each piece of hardware without requiring 

any circuitry modification or custom sensors to be ordered. 
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CHAPTER 8 

CONCLUSIONS 

This design of the autopilot produced during this research included all of the best 

features of various autopilot platforms such as integration with Simulink, open source to 

allow any modification required and full FPGA implementation.  In addition, the design 

demonstrated its contribution by including additional features, which are unique as far as 

the author is aware. 

Many of the designs implementing FPGAs such as the Microbot and the GTSpy 

still utilize a separate DSP/microcontroller processor for the majority of the processing.  

Therefore, these designs do not allow for the benefits of parallel processing.  Two of the 

full FPGA designs require the programmer to implement the majority of the 

programming in a PowerPC, [9, 36].  This restriction requires implementing some or all 

of the processing utilizing a real-time operating system, without taking full advantage of 

parallel processing capabilities.  The research being performed by Wolter et. al., on a 

design for the control of a Satellite is still in the initial stages.  However, the analysis 

performed indicated good timing and showed parallel communication could be 

maintained by utilizing the full parallel processing capabilities of the FPGA, [40].  The 

only design found that provided for programming directly through Simulink is the Piccolo 

autopilot.  The Piccolo utilized a DSP processor without parallel processing capabilities 
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and, in addition, required a CAN interface in order to implement the hardware-in-the-

loop verification. 

By implementing full FPGA processing design and full Simulink integration, the 

benefits of rapid system prototyping, tight timing control and flexibility across platforms 

and sensors are realized.  The integration with Simulink provides programming and 

hardware-in-the-loop capabilities in an environment familiar to researchers in many areas 

of engineering.  Design within this environment will provide for rapid prototyping of new 

ideas.  In addition, to hardware-in-the-loop capabilities of Simulink, the software design 

capabilities provide for directly integrating the hardware ports and required 

communication protocol, which further improves upon the time required to implement a 

new design.  The autopilot design, produced by this research in this environment, 

provides an unrivaled flexibility due the programmable analog and TTL interfaces and 

the inherent flexibility of the FPGA processor.  There are many systems in use, which 

incorporate the mini-ITX or PC-104.  The autopilot design produced by this research, 

instead of intending to be a replacement, complements these systems.  The complement 

arises by providing dedicated hardware for real-time controls of the system dynamics 

while giving the off board computer the role of a “master” computer when necessary.  

The combined functionality and flexibility of the design has produced a novel and well-

needed processing platform for the unmanned systems community. 
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Appendix A  Details of Commercial Autopilots 

 
Table 7:  Kestral by Procerus 

Processing Hardware: 29 MHz, 8-bit Rabbit 3000 processor 
Onboard Sensors: IMU unit onboard, does not specify brand 

Pressure sensors for altitude and air speed 
I/O Ports: 4 RS232 ports for off-shelf components such as GPS 

3 12-bit analog inputs provided 
Built in support for 2 axis with zoom camera gimbal 

Outputs: 4 onboard servo ports, 8 external servo ports 
Programming: developers kit and dynamic C 
Hardware-in-the-Loop: proprietary software used in conjunction with Aviones 

simulator 
 

Table 8:  MP2028 by Micropilot 
Processing Hardware: Motorola’s 68332 processor 20MHz 32-bit processor 
Onboard Sensors: Trimble Lassen SQ GPS receiver 

Motorola onboard pressure sensors for air speed and altitude 
iMEMS ADXL202 accelerometer 
iMEMS ASXRS150 Gyro 

I/O Ports: Additional ADC board for 32 analog inputs and compass 
Additional AGL board for ultrasonic altimeter and modem 

Actuator Outputs: 24 Servos or relays 
Programming: XTENDER software can be purchased that allows for 

custom programming.   
Hardware-in-the-Loop: With proprietary software (Horizon) only 

 

Table 9:  Ezi-Nav by Autonomous Unmanned Air Vehicles, (AUAV) 
Processing Hardware: 8 micro-processors 
Onboard Sensors: Connections for handheld type GPS units only 

IMU provided, details not given 
I/O Ports: Not disclosed 
Outputs: Not disclosed 
Programming: Not disclosed 
Hardware-in-the-Loop: Not designed for this capability 
Additional Functions: Off-board wireless transceiver capable of 900MHz or 2.4 

GHz provided 
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Appendix A  (Continued) 

 
Table 10:  Phoenix by O-Navi 

Processing Hardware: 32 MHz Motorola MMC-2114 processor 
Onboard Sensors: Unspecified MEMS accelerometers and gyros 

On-board pressure sensors for air speed and altitude. 
On-board Trimble GPS receiver 

I/O Ports: Additional sensors can be connected, but details not 
specified 

Outputs: 6 PWM servo 
Programming: Flash programming kit available 
Hardware-in-the-Loop: Not designed for hardware-in-the-loop 

 

Table 11:  Piccolo II by Cloudcap 
Processing Hardware: Motorola’s MPC555 40MHz 32-bit processor 
Onboard Sensors: 3 ADXRS300 rate gyros 

2 two-axis ASXL21e 
Accelerometers 
uBlox TIM LP 4Hz GPS 
input port for sonic altimeter 
Honeywell HMR-2300 magnetometer, 
onboard pressure sensors to provide air speed and altitude 

I/O Ports: Additional daughter board provides analog, SPI, serial, 
CAN 

Outputs: 10 servos 
Programming: Simulink using the Real Time Workshop 
Hardware-in-the-Loop: Simulink running on a PC equipped with a CAN interface 

card 
Additional Functions: Wireless capabilities supplied on a daughter board 

containing MHX-910/2400 
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Appendix A  (Continued) 

 
Table 12:  Microbot by Microbotics 

Processing Hardware: FPGA for I/O operations 
M-Core MMC211 microprocessor for system programming 

Onboard Sensors: Expansion board provides temperature sensor and mounting 
for Midge series IMU/GPS 

I/O Ports: 32 FPGA ports can be configured for various sensors 
Expansion board provides 2 asynchronous serial ports and 
12 analog ports 

Outputs: FPGA lines used with pulse width generator to provide up 
to 16 PWM outputs 

Programming: Fully reprogrammable, details on required compiler not 
given 

Hardware-in-the-Loop: Not designed specifically for this 
Additional Functions: External board for Aerocomm AC4490 modem available 

Expansion board provides mounting for flash memory 
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Appendix B  Port Connections to the FPGA 

 
 

 
Figure 96:  User LEDs and Switch Locations 

 

Table 13:  LED and Switch Port Assignments 
PORT DESCRIPTION FPGA PORT PORT NAME 
User LED 1 B21 LD1 
User LED 2 B23 LD2 
User LED 3 A22 LD3 
User Switch A20 SW1 

 

SWITCH USER
LEDS
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Appendix B  (Continued) 

 

 
Figure 97:  Daughter Board Connector One 

 

Table 14:  Daughter Board Connector One Safety Switch Connectors 
PORT FPGA PORT CONNECTOR PIN 
SEL1 -- 41 
SEL2 -- 42 
PWM1 -- 43 
PWM2 -- 36 
PWM3 -- 37 
PWM4 -- 38 
PWM5 -- 31 
PWM6 -- 32 
PWM7 -- 33 
PWM8 -- 26 
PWM9 -- 27 
PWM10 -- 28 
PWM11 -- 21 
PWM12 -- 22 

 

DAUGHTER BOARD
CONNECTOR ONE

CONNECTOR
PIN 45

SEL1
SEL2

CONNECTOR
PIN 2

CONNECTOR
PIN 1
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Appendix B  (Continued) 

 
Table 15:  Daughter Board Connector One 

PORT FPGA PORT CONNECTOR PIN 
IO1 K26 1 
IO2 K25 6 
IO3 K23 2 
IO4 K22 7 
IO5 K21 3 
IO6 V24 12 
IO7 AD26 17 
IO8 K20 8 
IO9 G22 13 
IO10 AC25 18 
IO11 AF25 23 
IO12 Y22 4 
IO13 K18 9 
IO14 G23 14 
IO15 V18 19 
IO16 AC21 24 
IO17 AF23 29 
IO18 V16 34 
IO19 AE23 39 
IO20 AE21 44 
IO21 K19 5 
IO22 L18 10 
IO23 G24 15 
IO24 V17 20 
IO25 V19 25 
IO26 V18 30 
IO27 AE25 35 
IO28 AD22 40 
IO29 AE20 45 
IO30 V19 11 
IO31 AC26 16 
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Appendix B  (Continued) 

 

 
Figure 98:  Daughter Board Connector Two 

 

Table 16:  Daughter Board Connector Two 
CONNECTOR FPGA PORT PORT NAME 
1 -- +3.3 Vcc 
2 -- Cmn 
3 -- +5Vcc 
4 A3 IO32 
5 F23 IO33 
6 G20 IO34 
7 B3 IO35 
8 F25 IO36 
9 F24 IO37 
10 A4 IO38 
11 E7 IO39 
12 C8 IO40 
13 B4 IO41 
14 B6 IO42 
15 D6 IO43 
16 C6 IO44 
17 B7 IO45 
18 A8 IO46 

DAUGHTER BOARD CONNECTOR  2

CONNECTOR PIN 1
CONNECTOR PIN 2
CONNECTOR PIN 3
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Appendix B  (Continued) 

 

 
Figure 99:  Analog Input Connectors 

 

Table 17:  FPAA Connections 
CONNECTOR FPGA PORT PORT NAME 
-- H17 FERRB 
-- G9 FACT 
-- F12 FRES 
-- H10 FCS2B 
-- J16 FSI 
-- H12 FSCLK 
-- H15 FACLK 
-- F7 FCLK 
-- K12 FDATA1 
-- K11 FSYNCH1 
-- J11 FDATA2 
-- K16 FSYNCH2 
-- J12 FDATA3 
-- H9 FSYNCH3 
1 -- CMN 
2 -- + SM SIGNAL 
3 -- CMN 
4 -- + LRG SIGNAL 1 
4 -- CMN 
5 -- + LRG SIGNAL 2 

BOTTOM ROW: PIN 5     TOP ROW: PIN 6
BOTTOM ROW: PIN 3     TOP ROW: PIN 4
BOTTOM ROW: PIN 1     TOP ROW: PIN 2

ANALOG INPUT CONNECTOR
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Appendix B  (Continued) 

 

 
Figure 100:  TTL I/O Connector 

 

Table 18:  TTL I/O Ports One to Three Connections  
CONNECTOR FPGA PORT PORT NAME 
1 V1 IO1 4 
2 U1 IO1 3 
3 -- CMN 
4 Y5 IO1 2 
5 AD1 IO1 1 
6 -- CMN 
-- Y2 IO1 EN 
7 AD2 IO2_4 
8 AC3 IO2 3 
9 -- CMN 
10 R3 IO2 2 
11 T3 IO2 1 
12 -- CMN 
-- Y6 IO2 EN 
13 T5 IO3_4 
14 AA3 IO3 3 
15 -- CMN 
16 AA2 IO3 2 
17 W3 IO3_1 
18 -- CMN 
-- T4 IO3_EN 

TOP ROW: PIN 4     MIDDLE ROW: PIN 5    TOP ROW: PIN 6
TOP ROW: PIN 1     MIDDLE ROW: PIN 2    TOP ROW: PIN 3

 5 VOLT
CONNECTORS  TTL PORT CONNECTOR
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Appendix B  (Continued) 

 
Table 19:  TTL I/O Ports Four to Six Connections 

CONNECTOR FPGA PORT PORT NAME 
19 V2 IO4_4 
20 U2 IO4 3 
21 -- CMN 
22 V5 IO4 2 
23 U4 IO4 1 
24 --- CMN 
-- W4 IO4 EN 
25 V6 IO5 4 
26 W7 IO5 3 
27 -- CMN 
28 V7 IO5 2 
29 U6 IO5_1 
30 -- CMN 
-- W6 IO5 EN 
31 V8 IO6 4 
32 U7 IO6 3 
33 -- CMN 
34 U8 IO6 2 
35 U9 IO6_1 
36 -- CMN 
-- U5 IO6_EN 
-- AC2 IO SET CS 
-- AB1 IO_SET_SDI 
-- Y1 IO SET CLK 
-- AC1 IO SET EN 

 

Table 20:  Flash Memory 
PORT NAME FPGA PORT 
uSD CS W10 
uSD DI W9 
uSD CLK AB7 
uSD DO W12 
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Appendix B  (Continued) 

 
Table 21:  Pressure Sensor Connections 

FPGA PORT PORT NAME 
B2 PS_CONV 
B1 PS SCK 
D3 PS SDO 
E1 PS SDI 

 

Table 22:  FPGA PWM Connections 
FPGA PORT PORT NAME 
W23 PWM1 
W21 PWM2 
W20 PWM3 
Y25 PWM4 
Y24 PWM5 
Y23 PWM6 
AA25 PWM7 
AA24 PWM8 
AA23 PWM9 
AB26 PWM10 
AB23 PWM11 
AC20 PWM12 
U23 SS IN 

 

 
Figure 101:  PWM Port Connections 

TOP ROW: PIN 4     MIDDLE ROW: PIN 5    TOP ROW: PIN 6
TOP ROW: PIN 1     MIDDLE ROW: PIN 2    TOP ROW: PIN 3

PWM OUTPUT
CONNECTOR
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Appendix B  (Continued) 

 
Table 23:  PWM Output Port Connections 

CONNECTOR PORT NAME 
1 SERVO1 
2 +6 VCC 
3 CMN 
4 SERVO2 
5 +6VCC 
6 CMN 
7 SERVO3 
8 +6VCC 
9 CMN 
10 SERVO4 
11 +6VCC 
12 CMN 
13 SERVO5 
14 +6VCC 
15 CMN 
16 SERVO6 
17 +6VCC 
18 CMN 
19 SERVO7 
20 +6VCC 
21 CMN 
22 SERVO8 
23 +6VCC 
24 CMN 
25 SERVO9 
26 +6VCC 
27 CMN 
28 SERVO10 
29 +6VCC 
30 CMN 
31 SERVO11 
32 +6VCC 
33 CMN 
34 SERVO12 
35 +6VCC 
36 CMN 
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Appendix B  (Continued) 

 

 
Figure 102:  PWM Pilot Input Connector 

  

Table 24:  Pilot Input Connections 
CONNECTOR PORT NAME 
1 PWM1 
2 +6VCC 
3 CMN 
4 PWM2 
5 +6VCC 
6 CMN 
7 PWM 3 
8 +6VCC 
9 CMN 
10 PWM4 
11 +6VCC 
12 CMN 
13 PWM5 
14 +6VCC 
15 CMN 
16 PWM6 
17 +6VCC 
18 CMN 
19 PILOT SELECT 
20 +6VCC 
21 CMN 

TOP ROW: PIN 1     MIDDLE ROW: PIN 2    TOP ROW: PIN 3
TOP ROW: PIN 4     MIDDLE ROW: PIN 5    TOP ROW: PIN 6

PWM INPUT
CONNECTOR
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Appendix B  (Continued) 

 

 
Figure 103:  RS232 Connector 

 

Table 25:  RS232 Connections 
CONNECTOR FPGA PORT NAME 

1 AA17 TX1 
2 AC19 RX1 
3 Y17 TX2 
4 AD19 RX2 
5 AE17 TX3 
6 AF20 RX3 
7 AA18 TX4 
8 AB18 RX4 
9 AD17 RX5 
10 -- CMN 
-- AE19 RS232EN 
-- AF19 RS232SD 

 

 

 

TOP ROW: PIN 3     BOTTOM ROW: PIN 4
TOP ROW: PIN 1     BOTTOM ROW: PIN 2

RS232
CONNECTOR
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Appendix C  Detailed Schematics 

 

 
Figure 104:  Flash Memory Circuit 

 

 
Figure 105:  Variable I/O Port Potentiometer Circuit 



156 
 

 

Appendix C   (Continued) 

 

 
Figure 106:  Variable I/O Port Translator and Connector Circuitry 

 

 
Figure 107:  FPAA Circuit 
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Appendix C   (Continued) 

 

 
Figure 108:  FPAA Input Circuit 

 

 
Figure 109:  Safety Switch Power and Clock Circuit 



158 
 

 

Appendix C   (Continued) 

 

 
Figure 110:  Safety Switch CPLD and Connector Circuit 

 

 
Figure 111:  User LED Circuitry 
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Appendix C   (Continued) 

 

 
Figure 112:  Daughter Board Connection Circuit 

 

 
Figure 113:  Pressure Sensor Circuitry 
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Appendix C   (Continued) 

 

 
Figure 114:  Power Supply Circuitry 

 

 
Figure 115:  RS232 Circuit 
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Appendix C   (Continued) 

 

 
Figure 116:  FPGA Bank0 Connections 
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Appendix C   (Continued) 

 

 
Figure 117:  FPGA Bank1 Connections 
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Appendix C   (Continued) 

 

 
Figure 118:  FPGA Bank2 Connections 
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Appendix C   (Continued) 

 

 
Figure 119:  FPGA Bank3 Connections 
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Appendix C   (Continued) 

 

 
Figure 120:  FPGA VCC Connections 
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Appendix C   (Continued) 

 

 
Figure 121:  FPGA JTAG and Clock Circuit 
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Appendix D  Safety Switch Code 

 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity SafetySwitch is 
 Port(--CONTROL LOGIC INPUTS 
   clk : in STD_LOGIC; 
   pSel : in STD_LOGIC; 
   dsp_sel1 : in STD_LOGIC:='0'; 
   dsp_sel2 : in STD_LOGIC:='0'; 
  --SERVO INPUTS 
   pilot1 : in STD_LOGIC:='0'; 
               fpga1 : in STD_LOGIC; 
               dsp1 : in STD_LOGIC:='0'; 
   pilot2 : in STD_LOGIC:='0'; 
               fpga2 : in STD_LOGIC; 
               dsp2 : in STD_LOGIC:='0'; 
   pilot3 : in STD_LOGIC:='0'; 
               fpga3 : in STD_LOGIC; 
               dsp3 : in STD_LOGIC:='0'; 
   pilot4 : in STD_LOGIC:='0'; 
               fpga4 : in STD_LOGIC; 
               dsp4 : in STD_LOGIC:='0'; 
   pilot5 : in STD_LOGIC:='0'; 
               fpga5 : in STD_LOGIC; 
               dsp5 : in STD_LOGIC:='0'; 
   pilot6 : in STD_LOGIC:='0'; 
               fpga6 : in STD_LOGIC; 
               dsp6 : in STD_LOGIC:='0'; 
   fpga7 : in STD_LOGIC; 
               dsp7 : in STD_LOGIC:='0'; 
   fpga8 : in STD_LOGIC; 
               dsp8 : in STD_LOGIC:='0'; 
   fpga9 : in STD_LOGIC; 
               dsp9 : in STD_LOGIC:='0'; 
   fpga10 : in STD_LOGIC; 
               dsp10 : in STD_LOGIC:='0'; 
   fpga11 : in STD_LOGIC; 
               dsp11 : in STD_LOGIC:='0'; 
   fpga12 : in STD_LOGIC; 
               dsp12 : in STD_LOGIC:='0'; 
 



168 
 

 

Appendix D   (Continued) 

 
  --SERVO OUTPUTS 
   servo1 : out STD_LOGIC; 
               servo2 : out STD_LOGIC; 
               servo3 : out STD_LOGIC:='0'; 
   servo4 : out STD_LOGIC:='0'; 
               servo5 : out STD_LOGIC; 
               servo6 : out STD_LOGIC; 
   servo7 : out STD_LOGIC:='0'; 
               servo8 : out STD_LOGIC:='0'; 
               servo9 : out STD_LOGIC; 
   servo10 : out STD_LOGIC; 
               servo11 : out STD_LOGIC; 
               servo12 : out STD_LOGIC; 
   SSout : out STD_LOGIC); 
end entity SafetySwitch; 
 
architecture Structural of SafetySwitch is 

signal pps,s : STD_LOGIC:='0'; 
component single_switch is 

    Port(pilot : in STD_LOGIC; 
    fpga : in STD_LOGIC; 
    dsp : in STD_LOGIC; 
    pilot_select : in STD_LOGIC; 
    dsp_select : in STD_LOGIC; 
    servo : out STD_LOGIC); 

end component single_switch; 
component freq_conv is 

        Port(f : in STD_LOGIC:='0'; 
     c: in STD_LOGIC:='0'; 
     control_bit: out STD_LOGIC); 

end component freq_conv; 
begin 
 fc1: component freq_conv port map 
                     (f=>pilot6, c=>clk, control_bit=>pps); 
 --SERVOS CONTROLLING ROBOT DYNAMICS 
 s1: component single_switch port map 
                 (pilot=>pilot1, fpga=>fpga1, 
                         dsp=>dsp1, pilot_select=>pps, 
             dsp_select=>dsp_sel1, 
                         servo=>servo1); 
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Appendix D   (Continued) 

 
 s2: component single_switch port map 
                 (pilot=>pilot2, fpga=>fpga2, dsp=>dsp2, 
                         pilot_select=>pps, 
             dsp_select=>dsp_sel1, 
                         servo=>servo2); 
 s3: component single_switch port map 
                 (pilot=>pilot3, fpga=>fpga3, dsp=>dsp3, 
                          pilot_select=>pps, 
                          dsp_select=>dsp_sel1, 
                          servo=>servo3); 
 s4: component single_switch port map 
                 (pilot=>pilot4, fpga=>fpga4, dsp=>dsp4, 
                         pilot_select=>pps, 
     dsp_select=>dsp_sel1, 
                         servo=>servo4); 
 s5: component single_switch port map 
                 (pilot=>pilot5, fpga=>fpga5, dsp=>dsp5, 
                         pilot_select=>pps, 
         dsp_select=>dsp_sel1, 
                         servo=>servo5); 
 s6: component single_switch port map 
                 (pilot=>'0', fpga=>fpga6, dsp=>dsp6, 
                         pilot_select=>pps, 
     dsp_select=>dsp_sel1, 
                         servo=>servo6); 
 --SERVOS CONTROLLING ACCESSORIES SUCH AS CAMERAS 
 s7:component single_switch port map 
                 (pilot=>'0', fpga=>fpga7, dsp=>dsp7, 
                         pilot_select=>'0', 
         dsp_select=>dsp_sel2, 
                         servo=>servo7); 
 s8:component single_switch port map 
                 (pilot=>'0', fpga=>fpga8, dsp=>dsp8, 
                         pilot_select=>'0', 
     dsp_select=>dsp_sel2, 
                         servo=>servo8); 
 s9:component single_switch port map 
                 (pilot=>'0',fpga=>fpga9,dsp=>dsp9, 
                         pilot_select=>'0', 
     dsp_select=>dsp_sel1, 
                         servo=>servo9); 
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Appendix D   (Continued) 

 
 s10:component single_switch port map 
                 (pilot=>'0', fpga=>fpga10, dsp=>dsp10, 
                         pilot_select=>'0', 
         dsp_select=>dsp_sel2, 
                         servo=>servo10); 
 s11:component single_switch port map 
                 (pilot=>'0', fpga=>fpga11, dsp=>dsp11, 
                         pilot_select=>'0', 
         dsp_select=>dsp_sel2, 
                         servo=>servo11); 
 s12:component single_switch port map 
                 (pilot=>'0', fpga=>fpga12, dsp=>dsp12, 
                         pilot_select=>'0', 
     dsp_select=>dsp_sel2, 
                         servo=>servo12); 
 SSout<=pps; 
end architecture Structural; 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity freq_conv is 
     Port(f : in STD_LOGIC:='0'; 
  c: in STD_LOGIC:='0'; 
  control_bit: out STD_LOGIC); 
end entity freq_conv; 
 
architecture Behavioral of freq_conv is 

signal count: integer:=0; 
signal rst: STD_LOGIC:='0'; 

begin 
process (c) is 

 begin 
  if (c'event and c='1' and f='1') then 
   count<=count+1; 
  end if; 
  if (f='0' and rst='1') then 
   count<=0; 
  end if; 

end process; 
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Appendix D   (Continued) 

 
Process (f) is 

 begin 
  if (f'event and f='0' and count>40000) then 
   if (count>65000) then 
    control_bit<='0'; 
   else 
    control_bit<='1'; 
   end if; 
   rst<='1'; 
  end if; 
  if (f='0' and count=0) then 
   rst<='0'; 
  end if; 

end process; 
end architecture Behavioral; 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity single_switch is 
     Port(pilot : in STD_LOGIC; 
           fpga : in STD_LOGIC; 
           dsp : in STD_LOGIC; 
           pilot_select : in STD_LOGIC; 
           dsp_select : in STD_LOGIC; 
           servo : out STD_LOGIC); 
end entity single_switch; 
 
architecture Architectural of single_switch is 
begin 
 servo<=(not(pilot_select) and not(dsp_select) 
           and fpga) or (not(pilot_select) and 
           dsp_select and dsp) or (pilot_select 
           and pilot); 
end architecture Architectural;



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

ABOUT THE AUTHOR 
 

Wendy received her Bachelor's degree from the University of South Florida in 

1999.  She worked part time in the area of embedded systems design for the signal 

conditioning industry while completing her master's degree at the University of South 

Florida.  Wendy’s master's thesis involved utilizing a second order Sliding Mode 

controller with DC/DC converters.  As a teaching assistant in the Department of 

Electrical Engineering, she taught the controls laboratory and lectured in the 

undergraduate controls and microprocessor classes.  While working on her PhD she 

received a fellowship from the Army Research Lab.  In addition to embedded design, her 

interests include the design of controls for both ground and aerial vehicles and sensor 

integration. 

 

 


	University of South Florida
	Scholar Commons
	2008

	Development of an FPGA based autopilot hardware platform for research and development of autonomous systems
	Wendy Alvis
	Scholar Commons Citation


	tmp.1298569684.pdf.g1k3r

