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Investigation and Evaluation Of A Bi-Polar Membrane Based Seawater 

Concentration Cell and Its Suitability as a Low Power Energy Source for Energy 
Harvesting/MEMS Devices 

 

Clifford Ronald Merz 

 

ABSTRACT 

 

It has long been known from Thermodynamics and written in technical literature 

that, in principal, instant energy can be made available when dilute and concentrated 

solutions are mixed.  For example, a river flowing into the sea carries with it a physical-

chemical potential energy in its low salt content, some of which should be recoverable.  

As also known, a naturally occurring, diffusion-driven, spontaneous transport of ions 

occurs throughout a solution matrix, thru barrier interfaces, or thru ion-selective 

membranes from the side containing the salts of higher concentration to the 

compartments containing the more dilute solution to effect the equalization of 

concentration of the ionic species.  Since this ion movement consists, preferentially, of 

either cations or anions, it leads to a charge separation and potential difference across the 

membrane, otherwise known as a membrane potential.  Eventually, when the 

concentrations in the compartment are the same, the cell ceases to function.  However, if 

operated as a fuel cell with its respective concentrations continually replenished, 

equilibrium at a specific value of potential difference is established.  



 vii

To capture the energy of this potentially significant albeit low power energy 

source, a suitable energy extraction device is required.  The focus of this Ph.D. research 

effort is to address the concept, research and evaluation of a Bi-Polar membrane based 

seawater concentration cell and its suitability as a low power energy source for Energy 

Harvesting/MEMS devices (patent pending). 
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Chapter 1 

 

Introduction 

 

1.1 Focus and Direction 

 

A concentration cell is an electrochemical cell consisting of a semi-permeable 

ion-exchange membrane between two solutions containing the same electrolyte in 

different concentration.  With no external voltage applied, a naturally occurring, 

diffusion-driven (osmotic), spontaneous transport of ions occurs through the ion-

exchange membrane.   Ion-exchange membranes between solutions act as a barrier across 

which almost no electrolyte can diffuse.  Theoretically, the free energy of the system can 

be completely converted into electric energy. 

 

Since ion movement consists, preferentially, of either cations or anions, it leads to 

a charge separation known as a potential difference across the membrane.  Non-

replenishing concentration cells using single anion/cation ion conducting semi-permeable 

membranes have been examined in the past, however, the idea of a replenishing Bi-Polar 

membrane based concentration cell for instant energy generation is unique and 

innovative, and is the basis of this research dissertation.  
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This renewable instant energy has uses in a wide variety of applications and size 

scales depending upon the source of the supplied ionic solutions and the anticipated 

scale/end use of the system. Some of these applications include, but are not limited to: 

Micro/Nano capacity direct power generation systems required for energy harvesting and 

nanotechnology low power devices; low power electronic, communication devices (e.g., 

Pico-Radio, or SCADA); devices operated in the marine environment; Medium scale 

supplemental power generation (such as direct and energy recovery devices used in 

power generation and desalination plants); Large scale direct commercial power 

generation systems using naturally occurring salinity gradient differences such as those 

found where rivers discharge into the sea; and as a possible supplemental energy source 

for use in the generation of H+ (protons) via membrane water dissociation (or splitting) 

technology. 

 

One envisioned use, and the focus of this dissertation effort, is to provide energy 

to low power remote sensor networks or wireless monitoring technologies where it is 

impractical or impossible to provide wired power.  Successful application will result in a 

combined energy harvester/generator and storage system capable of providing the very 

small amounts of power required to couple with and take advantage of miniaturized, low-

power electronics, wireless standards, and modern technologies such as Micro-

ElectroMechanical Systems (MEMS) fabricated using standardized semiconductor 

processing techniques. 
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1.2 Motivation and Purpose 

 

The overarching contribution and technical objective of this Ph.D. research is to 

develop increased technical understanding into the ionic, environmental, and 

electrochemical effects on the generated current and voltage of a membrane based 

seawater concentration cell.  Knowledge obtained from this effort will lead to the 

development of innovative engineering process schemes, designs, and equipment for 

economic generation, based on the applied concepts of recovery and reuse of energy 

released from salinity concentration gradient differences: for both defense and domestic 

applications.   

 

Utilizing modern standardized semiconductor processing techniques, it is possible 

to make very small, inexpensive sensors.  It is desirable, if not necessary, to provide 

small, low power systems for these devices.  Therefore, considering the near limitless 

source of ionic solutions, the market and technological impact is enormous.  Potential 

impact of the increased technical understanding derived from this research effort can be 

practically and immediately applied to the development of such a suitable low power 

system.  The intent of this research effort is to:  

 

1) Develop increased technical understanding into the membrane, ionic, environmental, 

and electrochemical effects because of charge separation effects of a Bi-Polar semi-

permeable membrane based, seawater concentration cell (patent pending),  
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2) Examine the feasibility/applicability of this Dialytic based membrane concentration 

cell as a power source for energy harvesting devices (patent pending),  

3) Evaluate possible MEMS based applications (patent pending). 

 

1.3 Participants 

 

Dialytics, Inc. (Dialytics) is a small business technology spin-off entity founded 

by Clifford R. Merz to undertake development of a University of South Florida (USF) 

technology he invented and was the focus of this research effort. Dialytics and USF’s 

Division of Patents and Licensing have entered into a technology license agreement for 

development and ultimate commercialization of this technology.   As such, Dialytics is 

the research sponsor and technology licensee while Mr. Merz is the project principal 

investigator.
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Chapter 2 

 

Required Technical Background and Discussion 

 

2.1 Summary of Rule Basics with respect to Cell Reactions and EMF1 

 

A fuel cell is an electrochemical system which converts the free energy change of 

an electrochemical reaction into electrical energy.  In dealing with the energy relations of 

cells, thermodynamic principles find very extensive applications.  However, the use of 

these principles is subject to one very important restriction, namely, that the processes to 

which the principles are applied are reversible.  It is recalled that the conditions for 

thermodynamic reversibility of processes are (a) that the driving and opposing forces be 

only infinitesimally different from each other and (b) that it should be possible to reverse 

any change taking place by applying a force infinitesimally greater than the one acting. 

 

The net electrical work performed by a reaction yielding an electromotive force 

(EMF) and supplying a quantity of electricity (q) is qE.  The EMF of a battery (or other 

source) is the maximum potential difference (E).  But that can be reduced by the drop 

across the internal resistance of the source.  In the real world, there is always an internal 

resistance, and in batteries the internal resistance increases with time and usage. So the 

potential difference is the actual measured voltage while EMF is what you would 



 

 6

measure in a resistance-free device.  Each equivalent reacting q is equal to the faraday F, 

hence for n equivalents reacting, q = nF.  The electrical work obtained from any reaction 

supplying nF coulombs of electricity at a potential E° is: 

 

Net electrical work = nFE° 

 

But any work performed by a cell can be accomplished only at the expense of a 

decrease in free energy.  Further, when the electrical work is a maximum, as when the 

cell operates reversibly, the decrease in free energy, -ΔG, must equal the electrical work 

done as presented in Equation 1,  

 

ΔG = -nFE°         Equation 1 

 

E° is the reversible potential and is derived from the free energy change for the reaction.  

The reversible EMF of any cell is determined by the free energy change of the cell and 

Equation 1 is the “bridge” between thermodynamics and electrochemistry.  Information 

provided by EMF measurements assist in the evaluation of thermodynamic properties.   

 

For any spontaneous reaction at constant pressure and temperature ΔG is 

negative, for any nonspontaneous reaction at constant pressure and temperature ΔG is 

positive, while for any reaction in equilibrium ΔG = 0.  In view of this, it may be deduced 

that for any spontaneous reaction E° will have to be positive, for any nonspontaneous 
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reaction E° will have to be negative, while for any reaction in equilibrium E° will have to 

be equal to 0.  Summarized in Table 2.1 as follows: 

 

  Table 2.1 Relation between Signs of ΔG and E°  

  -------------------------------------------------------- 

   Reaction                 ΔG  E° 

                        -------------------------------------------------------- 

   Spontaneous         -  + 

   Nonspontaneous     +               -           

 Equilibrium         0  0 

 

2.2 Electrochemical Cells – Types and Definitions2 

 

 Electrochemical cells in which Faradaic currents are flowing are classified as 

either galvanic or electrolytic cells.  A galvanic cell is one in which reactions occur 

spontaneously at the electrodes when they are connected externally by a conductor 

(Figure 2.1a).  These cells are often employed in converting chemical energy into 

electrical energy.  Galvanic cells of commercial importance include primary 

(nonrechargable) cells, secondary (rechargeable) cells, and fuel cells.  An electrolytic cell 

is one in which reactions are effected by the imposition of an external voltage greater 

than the open circuit voltage (OCV) of the cell (Figure 2.1b).  These cells are frequently 

used to carry out desired chemical reactions by expending electrical energy.  Commercial 

processes involving electrolytic cells include electrolytic syntheses (e.g., the production 
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of chlorine), electrorefining (e.g., copper) and electroplating (e.g., silver and gold).  The 

lead-acid storage cell, when being “recharged”, is an electrolytic cell. 

 

Figure 2.1 Galvanic (a) and Electrolytic (b) Electrochemical Cells 

 

In discussing Electrochemical cells, the following rules are generally used:  

 

1) Cell reaction is the sum of the single electrode reactions as they occur in the cell. 

a) The half-cell, called the anode (positive electrode), reaction is oxidation 

(looses electrons - becomes more negative) – Attracts anions.  

b) The half-cell, called the cathode (negative electrode), reaction is reduction 

(gains electrons – gets less negative or more positive) – Attracts cations.   

2) The total cell EMF is the algebraic sum of the single electrode potentials provided 

each EMF be affixed with the sign corresponding to the reaction as it actually takes 

place at the electrode. 

3) A current in which electrons (e-) cross the interface from the electrode to a species in 

solution is a cathodic current, while electron flow from a solution species into the 

electrode is an anodic current. 
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4) In an electrolytic cell, the cathode is negative with respect to the anode; but in a 

galvanic cell, the cathode is positive with respect to the anode. 

 

2.3 Dialytic Power Generation 

 

Because concentration gradient driven systems force ion migration from the high 

concentration side to the low, they are sometimes referred to as Reverse Electrodialysis 

or Dialytic systems.   Dialytic Power Generation Systems can be operated as a fuel cell 

(an electrochemical cell in which the chemical energy in a fuel is converted directly into 

electrical energy) or a battery depending upon if the source of the energy is continually 

fed to the cell or internally stored and consumed3 (patent pending).  The relationship 

between the membrane OCV potential and the standard-state Gibbs free energy can be 

calculated by the Nernst equation – A thermodynamically derived equation relating the 

potential of an electrochemical cell to the concentration of products and reactants.   The 

applicability of the Nernst equation for a concentration cell under external electrical 

loading will be determined during this research effort. 

 

2.4 Concentration Cell Basics 

 

A concentration cell is an electrochemical cell consisting of a porous divider 

between two solutions containing the same electrolyte in different concentrations.  With 

no external voltage applied, a naturally occurring, diffusion-driven (osmotic), 

spontaneous transport of ions occurs across the separating barrier, in this case a semi-
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permeable ion-exchange membrane, across which almost no electrolyte can diffuse.  

Theoretically, the free energy of the system can be completely converted into electric 

energy.  Since ion movement consists, preferentially, of either cations or anions, it leads 

to a charge separation across the membrane called a membrane potential.  Using 

reversible electrodes of identical composition inserted into the two identical solutions of 

differing concentrations, the potential difference can be measured directly.  

 

2.4.1 Concentration Cells with Transference1 

 

Unlike chemical cells where in EMF arises from a chemical reaction, 

concentration cells depend for their EMF on a transfer of material from one electrode to 

another due to a concentration difference between the two.  For example, for a 

concentration cell containing electrodes made up of the same materials (e.g., Silver [Ag]), 

solutions containing the same ions but at different concentrations where Cconc > CInterface > 

Cdilute, and a semi-permeable junction separating the two, the electrical current 

transferring across the membrane can be analyzed using the following expression:  

 

Ag(s) | Seawater (conc) ||AEM NaCl aq. Soln (Interface) ||CEM Seawater (dilute) | Ag(s) 

 

Since the same electrode is used in each side of the cell, the EMF of the Galvanic Cell 

Ecell = EºCathode – EºAnode = 0.00 VDC.   
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This is a dilution process, sodium cations permeate through the Cation Exchange 

Membrane (CEM) from right to left and chloride ions permeate through the Anion 

Exchange Membrane (AEM) from left to right; with the anode compartment becoming 

more concentrated and the cathode compartment more dilute. Through a suitable 

electrode system, the chemical potential becomes electrical potential.   

 

The OCV membrane potential of a Bi-Polar membrane is based on an extension 

of the Nernst equations of monopolar charged semi-permeable membranes to the case of 

the CEM in series with an AEM and the diffusion boundary layers adjacent to the Bi-

Polar membrane.  Ionic transport in homogeneously charged membranes such as Bi-Polar 

ones, which consist of a layered structure of two oppositely charged layers, has received 

attention because these membranes show several interesting phenomena: specifically 

permselectivity for mono-valent ions and water splitting4. 

 

2.5 General Ion-Exchange Membrane Discussion 

 

The heart of any electro-membrane process is the semi-permeable ion-exchange 

membrane.  The main properties required of ion-exchange membranes for success in 

technical processes are5: 

 

1) Low electrical resistance.  The permeability for the counter-ions under an electrical 

potential gradient should be high to minimize the membrane IR drop loss. 
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2) High permselectivity.  It should be highly permeable for counter-ions, but should be 

impermeable to co-ions, and to non-ionized molecules and solvents. 

3) Good mechanical stability.  It should be mechanically strong, to prevent high degrees 

of swelling or shrinking due to osmotic effects, when transferred from concentrated to 

diluted salt solutions and vice versa, and be dimensionally stable. 

4) Good chemical stability.  It should be stable over a wide pH-range and in the presence 

of oxidizing agents. 

5) Good operating characteristics.  Operation over a wide range of current densities and 

under varying conditions of temperature, current density, pH, pressure, etc. 

6) Good water permeability. 

 

The stability of a membrane is of paramount importance because of their high 

cost, membranes are required to operate for periods of several years. A factor in the 

operation of cells with membrane is the transport of solvent (e.g., water) which 

accompanies the transferring ions.  In aqueous systems, the transport of water can be 

significant (e.g., 3-5 water molecules accompany one sodium ion in a chlorine cell).  If 

protons (hydrogen ions) are transferred then typically, two molecules of water are 

transferred per ion. 

 

2.5.1 Ion-Exchange Membranes6 

 

The most important feature, which distinguishes ion-exchange from isotopic-

exchange membranes, is the electric coupling of the ionic fluxes.  Conservation of 
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electroneutrality requires stoichiometric exchange, i.e., the fluxes (in equivalents) of the 

exchanging counter ions must be equal in magnitude; otherwise, a net transfer of electric 

charge would result.  The regulating mechanism that enforces the equality of the fluxes is 

the electric field (diffusion potential) set up by the diffusion process that produces an 

electric transference of both counter ions in the direction of diffusion of the slower 

counter ion; this electric transference is superimposed on the diffusion.  The resulting net 

fluxes of the counter ions are equivalent to one another, while purely diffusional fluxes, 

as a rule, are not. Thus, electroneutrality is preserved. 

 

If an ionic electro-membrane is in contact with an ionic solution, a distribution of 

ions in the solution will be established as well as a distribution inside the membrane 

(Donnan equilibrium).  If the membrane has a negative fixed charge, ions of opposite 

charge (positively charged ions or counter-ions) will be attracted towards the membrane 

surface while ions of the same charge (negatively charged ions or co-ions) are repelled 

from the membrane surface.  Ions with the same charge as the fixed ions (co-ions) are 

excluded and cannot pass through the membrane.  This effect is known as the Donnan 

exclusion.  Because of the fixed charge, there will be an excess of counter ion charge at 

the interface and a so-called electrical double layer (EDL) is formed.  Protons and 

Hydroxyl ions are not effectively retained by a Donnan potential and this allows 

removing these ions from other ions with the same charge.  In a basic solution (pH > 7), 

an ideal CEM is able to retain all anions except for hydroxyl ions.  Similarly, an ideal 

AEM retains all cations except for protons and a separation can be achieved between 

protons and other cations. 
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Electric current in an ion-exchange membrane transfers predominantly via 

counter-ions by diffusion.  The simple Nernst equation holds reasonably well within the 

concentration range of about 10-4 to 10-1 N.  Deviations at higher solution concentrations 

are caused by co-ion transference, and at lower concentrations by H+ or OH- (hydroxyl) 

ions (stemming from dissociation of H20) that compete with the electrolyte counter ion 

(i.e., the increasing concentration of the co-ion in the ion exchanger causes a decrease in 

the transport number of the counter-ion).   

 

Using the Nernst equation, the maximum reversible OCV (Erev) generated across 

the membrane of a concentration cell using an ideal permselective membrane as a salt 

bridge, a 1,1 valence electrolyte, and carefully selected electrodes of identical 

composition in both compartments can be calculated using Equation 2 as: 

 

Erev = Ecell - (RT/nF) ln (a± conc/a± dil)ν                               Equation 2            

 

where a± = ionic activities (approx. concentrations), n is the number of electrons 

transferred, and ν = charge on the active ion.  Considering an ideal membrane (a = 1.0), 

monovalent active ion, and a 1:10 activity ratio for the two solutions (i.e., concentrated 

solution = 10*dilute) the OCV obtained is:  

 

Erev = 0.0 – [ν*(8.314 J K-1 mol-1 * 298K) / 1*96,500 C mol-1] ln (0.1) 

Erev = +0.059 V (spontaneous) 
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Note that because the same electrode is used in the cell, Ecell is zero in the Nernst 

Equation (see Section 2.4.1).  The membrane potential may be higher if the co-ion is 

more mobile than the counter-ion and if there is little Donnan exclusion of the co-ion.  

 

2.5.2 Characterization of Ionic Membranes7 

 

Polyelectrolytes are a special class of polymers that contain charged ionic groups, 

with the properties completely determined by the presence of the ionic groups. Besides 

the fixed charge present, the properties of solubility, diffusivity, and pore size distribution 

affect separation.  Charged membranes or ion-exchange membranes are typically 

employed in electrically driven processes such as Electrodialysis (ED) and membrane 

electrolysis as well as pressure or concentration driven processes such as diffusion 

dialysis and Donnan dialysis (combination of Donnan exclusion and diffusion). 

 

Strong attractions exist between counter ions and the membrane fixed charge 

groups.  As mentioned, Polylelectrolytes that contain a fixed negatively charged group 

fixed to the polymeric chain are called Cation Exchange Membranes (CEM) because they 

are capable of exchanging positively charged cations.  When the fixed charged group is 

positive, the polyelectrolytic membrane is called an Anion Exchange Membrane (AEM) 

because it is capable of exchanging negatively charged ions.  The counter ions (ions with 

charge opposite to the fixed charge group), can move freely within the limits of the 

Coulomb forces and electroneutrality.  A schematic representation of typical membranes 

of both types is given in Figure 2.2. 
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       Cation Exchange Membrane (CEM)          Anion Exchange Membrane (AEM) 

 

  - CH2 – CH – CH2 – CH -                           - CH2 – CH – CH2 – CH -  

         |                    |                          |                    | 

       R-A+    R-A+                            R+A-         R+A- 

 

Where R = - SO3- (Sulfonic Acid Group)   R = N (CH)3
+ (Quaternary                              

- COO- (Carboxylic Acid Group)         Ammonium Salt Group)  

                            

Figure 2.2 Schematic Representations of Typical Ion-Exchange Membranes 

 

In water or other strongly polar solvents polyelectrolytes are ionized.  However, 

unless cross-linked, the polymer potion will swell or even become soluble because of its 

high affinity to water.  Even very hydrophobic polymers such as polysulfone can be made 

water-soluble by introducing a large number of sulfonic groups.  A very interesting 

polymer for preparing ionic membranes is Polytetrafluororethylene.  This polymer is very 

stable with respect to chemicals, pH and temperature.  Ionic groups can be introduced 

into this polymer to yield a very stable polyelectrolyte based on a Teflon matrix.  One 

such polymer obtained on this basis is Nafion® shown in Figure 2.3 below. 
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- [CF2 – CF2] – CF2 – CF -                - CH2 – CH – CH2 – CH - 

                                     |                  |          |  

   [O – CF2 – CF -] – O – CF2 – SO3
-Na+         - SO3

-Na+    - SO3
-Na+ 

                                                       | 

                                CF3 

Nafion®         Sulfonated Polyethylene 

Figure 2.3   Chemical Structures for Nafion® and Sulfonated Polyethylene CEM 

  

Cation selective membranes are usually made of cross-linked poly (styrene-co-

divinylbenzene) base polymer that has been sulfonated to produce sulfonate groups         

[-SO3
-] or carboxylate groups [-COO-] attached to the polymer.  Anion membranes can be 

cross-linked poly (sulfone) base polymer containing quaternary ammonium groups                   

[-N (CH)3
+].  Currently, aliphatic anion membranes are favored because they have lower 

electrical resistance8.   

 

Homogeneous membranes are coherent, unsupported gels.  Heterogeneous 

membranes are prepared by incorporating colloidal ion-exchanger particles into an inert 

binder.  To obtain structural support, a membrane is fabricated by applying the cation- 

and anion-selective polymer to a fabric or wide-mesh plastic tissues material9.  

Membranes are made in flat sheets and contain about 30 to 50% water.  Each membrane 

has a network of molecular-size pores that are too small to allow significant water flow 

and that have electronegative [-SO3
-] or electropositive [-N(CH)3

+] fixed charges10. 
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For electrical neutrality to be maintained, each of the fixed charges on the 

membrane must be associated with an ion of the opposite charge.  The ion can easily 

move from one fixed charge to another.  Thus, the membrane can pass an electrical 

current in the form of migrating ions.  Since the fixed-charged groups on the membrane 

repel like-charged ions, anions cannot enter the anion selective membrane11.  Not being 

perfectively semi permeable, the membranes do not completely reject ions of the same 

charge.  However, their permselectivity is > 90%. 

 

2.5.3 Diffusion in Ion-Exchange Membranes   

 

When sodium chloride (NaCl) is dissolved in water, it is ionized and dissociates 

into hydrated Na+ (aq) cations and Cl- (aq) anions.  Strong electrolytes, such as Na+ (aq) 

and Cl- (aq), are so well hydrated that they are too far apart to interact directly with each 

other, even in solutions of great ionic strength.  Ions that are so well hydrated that they 

experience only nonspecific interactions with each other are termed “free ions”.  Ions not 

so well hydrated can come into closer contact.  In cases where ions are close enough to 

share some of their primary salvation shells, the resulting strong electrostatic attraction is 

referred to as ion pairing12. 

 

Because ions are hydrated in solution and the extent of hydration depends on the 

charge and size of the ion, di-and tri-valent ions move more slowly across the membrane 

than do monovalent ions. Accordingly anions such as Cl- pass through the electro-

membranes more readily than H+, Na+, K+, and other cations.  Sodium chloride in water 
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does not diffuse as a single molecule; instead the sodium ions and chloride ions move 

freely through the solution.  Although the sodium ion diffuses more slowly than the 

chloride ion, the diffusion of sodium chloride can be accurately described by a single 

average diffusion coefficient.  Protons and hydroxyl ions have unusually high diffusion 

constants. 

 

The ion-exchange mechanism is primarily a redistribution of the counter ions by 

diffusion.  The co-ion has relatively little effect on the kinetics and the rate of ion 

exchange.  The basic equation used to compare various membrane processes when 

transport occurs by diffusion is given in Equation 3 as: 

 

Ji = (βi/d)*(ci,1
s – αi ci,2

s  exp [-Vi (P1-P2)/RT])        Equation 3 

 

Where, Ji   =     Flux of component I through the membrane; m/s 

 Vi = Molar Volume (m3/mol) 

 βi = Permeability coefficient = Di (Diffusional Coefficient) * Ki  

   (solubility constant defined as the ratio of activity coefficients) 

 αi = K I,2 / K I,1 

 d = Membrane thickness (m) 

          P1-P2 = Pressure difference across the membrane (N/m2) 

 R = Universal Gas Constant =   (J/mole.K) 

T = Temperature in Degrees Kelvin (ºC + 273)    
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In concentration cells, liquid phases containing the same solvent are present on 

both sides of the membrane in the absence of a pressure difference.  The pressure terms 

can therefore be neglected and Equation 4 developed with the condition of αi = 1 as: 

 

Ji = (βi/d)*(ci,1
s – αi ci,2

s)            Equation 4 

 

Equation 4 shows that the concentration cell solute flux is proportional to the 

concentration difference (as in Reverse Osmosis).  Separation arises from differences in 

permeability coefficients: these macromolecules have much lower diffusion coefficients 

and distribution coefficients than low molecular weight compounds such as salts.  

 

2.6 Bi-Polar Ion-Exchange Membranes and Their Uses  

 

A Bi-Polar membrane consists of a monopolar CEM and monopolar AEM joined 

together with an intermediate transitional phase layer between.  To explain the transport 

of ions through a charged membrane, the interaction between ions and fixed charge 

groups inside the membrane as well as at the interface has to be considered.  In Bi-Polar 

membranes, there are 3 interfaces: (i) the interface between the concentrated saline 

solution and the anion-exchange membrane, (ii) the interface between the anion-

exchange membrane and the cation-exchange membrane (intermediate transitional phase 

layer), and (iii) the interface between the cation-exchange membrane and the dilute saline 

solution.  Among these three interfaces, the intermediate transitional phase layer is the 

most difficult to observe and the concentration cannot be measured experimentally. 
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The transport properties of Bi-Polar membranes are quite different from those of 

monopolar membranes.  When an electric field is established across a Bi-Polar membrane 

the anions and cations contained in the intermediate layer migrate through the AEM and 

CEM in the direction of the electric field.  Because of the current flow the intermediate 

layer becomes impoverished in salt and its resistance increases.  Two EDL and Donnan 

potential differences develop between the intermediate layer and the outside and are 

opposite to the applied field.   

  

For a constant outer potential difference, the current density of initial value io 

reduces to a much smaller value it with the current density below a limiting current ilim
13.  

In the Bi-Polar membrane’s matrix the concentration of the counter-ions is equal to the 

sum of the concentration of the fixed ions and co-ions.  As one approaches the 

intermediate layer of the Bi-Polar membrane the concentration of the mobile ions 

(counter- and co-ions) decreases until a depleted layer arises in which the mobile ions 

have a fundamentally lower concentration than the fixed ions.   

 

Although made up of well-defined individual components, once combined the Bi-

Polar membrane acquires unique capabilities and additional uses.  These include: 1) a 

variation in membrane potential depending upon which side is in contact with the 

concentrated solution, which is not the case in monopolar ion-exchange membranes14, 

and 2) its use in converting water-soluble salts to their corresponding acids and bases via 

the process of water dissociation, known also as splitting.   
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2.6.1 Bi-Polar Membrane Side Orientation 

 

The two-monopolar layers of a Bi-Polar membrane always differ in their fixed ion 

molarities and in the sign of their charge.  These differences are the cause of the 

asymmetrical character of Bi-Polar membranes13.  Unlike monopolar ion-exchange 

membranes6, in Bi-Polar membranes, the membrane facing direction and the intermediate 

phase condition will alter the direction of the membrane potential charge.  The 

intermediate layer in a Bi-Polar membrane seems to act as an alteration barrier for the 

membrane potential according to the membrane facing direction15.  If the concentration 

of the immediate layer is lower than that of the external solutions, the ion-exchange layer 

which faces the concentrated solution will play the dominant role in determining the 

whole membrane potential, because the concentration ratio between the intermediate 

layer and the external concentrated solution is much higher than that between the 

intermediate phase and the external dilute solution.  

 

According to evolving literature convention, a Bi-Polar membrane is in the (+) 

orientation when it’s positively charged (anion-active) AEM layer is in contact with the 

more concentrated solution.  Generally, the values of the concentration polarization Ec, 

consisting of two Donnan potentials on the two boundaries membrane-solution, are 

smaller with monopolar membranes and less positive with Bi-Polar membranes in the (+) 

orientation than the (-) orientation.  In the (+) orientation, the overall charge and (and the 

Ec value) of a Bi-Polar membrane must be less positive than in the other because the 
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contact of the positively charged layer with the more concentrated solution leads to a 

screening of the positive charge by the electrolyte and vice versa.   

 

2.6.2 Bi-Polar Membrane Water Splitting Discussion 

 

It is well known that salts in solution can be converted unto their corresponding 

acids and bases by a process called electrodialytic water splitting across a Bi-Polar 

membrane.  In the presence of a potential field, water at the interface will dissociate 

according to the following relation: 

 

H20 ↔ H+ + OH- 

 

This water dissociation and its coupling with ion transport offer the possibility of using 

Bi-Polar membranes in a great variety of practical applications.   

 

The process of electrodialytic water splitting consists of a Bi-Polar membrane 

arranged between two electrodes.  If an electrical potential difference is established 

between the electrodes, charge species are removed from the interface between the two 

layers.  When all the salt ions are removed from the solution between the two 

membranes, further transport of electrical charges can be accomplished only by the 

protons and hydroxide ions available from the ionization of water.  Water so removed 

from the interface is replenished by water diffusing into the interface16. 
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When no ions are available within this region, further transport of electric charge 

can be accomplished only by H+ and OH- ions, which are available even in completely 

desalinated water.  At a theoretical potential of 0.828 V (see Section 2.6.2.1), the water in 

the AEM dissociates (splits) into equivalent amounts of H+ and OH- ions.  These ions 

ideally migrate from the intermediate layer with the H+ ions permeating through the CEM 

side and the OH- ions permeating the AEM side.  However, H+ and OH- ions are not very 

effectively retained by a Donnan potential and co-ion leakage of H+ through the AEM as 

well as the OH- leakage through the CEM can occur7.  In addition, the H+ leakage through 

the AEM will increase with the water content of the membrane. 

 

In Bi-Polar membranes both the cation- and anion-exchange groups of the 

membrane polymer adjacent to the interphase layer can react with the water molecules.  It 

is thought, however, that the water splitting reaction takes place primarily at the anionic 

surface17.   One theoretical analysis suggests that water splitting in anion exchange 

membranes containing quaternary ammonium groups is due to the presence of tertiary 

alkyl amino groups in the surface regions that cannot bond with the water molecules.  By 

contrast water splitting is not manifested by cation exchange membranes with sulphonic 

groups if the system is sufficiently clean18.  Although the theoretical potential to achieve 

water dissociation is 0.828 V, the charged species within the intermediate layer are 

removed at a lesser potential and research is ongoing to determine if some H+ and OH- 

ion generation may occur at a lesser potential caused by direct membrane interactions.  
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2.6.2.1   Bi-Polar Membrane Water Splitting EMF Calculation 

 

The conventional method for generating H+ and OH- ions from water utilizes 

electrolysis.  Electrolysis also generates O2 and H2 gas, and the over voltage for this 

generation consumes about half of the electrical energy of the process. An alternative to 

this uses special ion-exchange membranes developed specifically for splitting water 

directly into H+ + OH- ions without generating gases.  Membrane water splitting 

technology is a general purpose unit for converting water-soluble salts to their 

corresponding acids and bases.  The process uses Bi-Polar membranes in conjunction 

with conventional AEM/CEM under the presence of a direct current driving force for ion 

separation and rearrangement.  

 

The water splitting process is electrodialytic in nature because the process merely 

involves changing the concentration of ions that are already present in solution.  The 

theoretical energy for concentrating H+ and OH- ions from their concentration in the 

interface of the Bi-Polar membrane to the acid and base concentrations at the outer 

surfaces of the membrane can be calculated readily.  The free energy change in going 

from the interior of the membrane to the outside is given by:  

 

ΔG = -nFE° = -RT ln ([(ai 
H+ ai 

OH-)/(ao 
H+ ao 

OH-)] 
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Where a’s are the activities of the H+ and OH- ions, superscripts i and o refer to the 

interface and outer surfaces of the membranes respectively.  For generating one normal 

ideal product solution it reduces to (since n = 1) to:  

 

ΔG = -nFE°= -RT ln (ai 
H+ ai 

OH-)  or E° = -RT/nF ln Kw 

 

and Kw is the ion-product or dissociation constant of water. 

 

To overcome this potential, a potential E = Ecell = -E˚ must be applied across the 

membrane.  Using the data on free energy for dissociation of water one can calculate the 

theoretical potential for generating acid and base for an ideal, i.e., perfectively 

permselective, Bi-Polar membrane as 0.828 V at 25C and 0.874 V at 70°C19.  The actual 

potential drop across a Bi-Polar membrane is quite close to this being in the range of    

0.9 – 1.1 V3. 

 

Using standard reduction potentials, Ecell and Kw can be calculated for H20 ↔ H+ + OH- .  

 

At the electrode surfaces the following half-cell reactions occur: 

 

Anode (positive/right electrode):  2H+ (aq) + e- → H2(g)   E˚ =   0.000 V 

Cathode (negative/left electrode): 2H20 (l) + 2e- → H2(g) + 2OH- (aq) E˚ =  -0.828 V 

 

From which the standard EMF for this reaction can be calculated as: 
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Ecell = EºCathode - EºAnode = -0.828 - 0 = -0.828 V 

 

and the ion-product or Kw calculated below from Ecell to be equal to 0.986 x 10-14 from 

 

 Kw = exp (nFEcell/RT) = [(1*96,500 C mol-1 * -0.828) / (8.314 J K-1 mol-1 * 298K)]  

 

2.7 Electrodialysis  

 

ED is the most common electro-membrane process used for desalination and 

concentrating of aqueous solutions.  ED depends on the following general principles: 

 

1) Most dissolved in seawater salts are ionic, being positively (cationic) or negatively 

(anionic) charged (See Table 2.2), 

2) These ions are attracted to electrodes with an opposite charge, 

3) Seawater is nominally 86% NaCl with Na and Cl nearly 100% ion free, 

4) When NaCl is dissolved in water, it dissociates into hydrated Na+ and Cl- ions. 

 

ED uses an electrical potential to move salts selectively through permselective 

membranes, leaving behind fresh product water. 

 

ED is different from other desalination membrane processes in that it is 

electrically driven rather than pressure driven.  Thus, in ED, only ions and associated  
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Table 2.2 Typical Seawater Composition 

Major constituents in surface seawater*

Seawater TDS = 35,000 mg/l (ppm)
   Typical Open Ocean pH = 8.2

Atomic Hydration Ion %                                   Concentration            
Cation Weight Number Charge Ion Free g/kg mg/kg (ppm) mol/g mmol/kg (ppm) meq/kg (ppm) CaCO3 meq

Sodium Na+ 22.9898 2 1 98- 99 10.781 10,781 0.4689 468.947 468.947 23447.35
Potassium K+ 39.0983 0.6 1 98-99 0.399 399 0.0102 10.205 10.205 510.25
Magnesium Mg++ 24.305 5.1 2 87-90 1.284 1,284 0.0528 52.829 105.657 5282.86

Calcium Ca++ 40.08 4.3 2 89-91 0.4119 412 0.0103 10.277 20.554 1027.69
Strontium Sr++ 87.62 3.7 2 0.00794 8 0.0001 0.091 0.181 9.06

Boron B+++ 10.81 3 0.0045 5 0.0004 0.416 1.249 62.44

Anion
Chloride Cl- 35.453 0.9 -1 100 19.353 19,353 0.5459 545.878 545.878 27293.88
Sulfate SO4-- 96.0676 -2 39-54 2.712 2,712 0.0282 28.230 56.460 2823.01

Bicarbonate HCO3- 64.0118 -1 69-80 0.126 126 0.0020 1.968 1.968 98.42
Bromine Br- 79.904 0.9 -1 0.0673 67 0.0008 0.842 0.842 42.11
Fluorine F- 18.9984 1.8 -1 0.0013 1 0.0001 0.068 0.068 3.42

       * An Introduction to the Chemistry of the Sea by M. E. Q. Pilson

Total salt weight (gms)/Kg seawater = 35.15
% Monovalent Content = 86%
% Divalent Content = 13%

General Notes/Definitions
1.  A one molar solution is prepared by adding one mole of solute to one liter of solution
2.  Based on Boric Acid [B(OH)3] concentration of 0.0257 g/kg at 35 per mil salinity which does not ion pair
3.  1 ppm or 1 mg/kg is the lower limit of the major constitiuents which are mostly conservative
4.  meq = milli equivelents = mol/g normalized by ion charge
5.  1 Liter = 1000 grams so meg/kg is also meg/Liter, similarly mmol/kg is also mmol/Liter
6.  CaCO3 meg is defined in terms of Alkalinity by mult meg/kg by 50 (the equivelent weight of CaCO3)
7.  What is the molarity of sodium chloride in seawater?  Remember 1000g = 1 liter and a 1 molar solution is prepared by adding 1 mole of solute to 1 liter of solution
    10.781+19.353 = 30.134 gms of NaCl in seawater (86% of total salt).  Mol wt of NaCl is 22.9898+35.453 =  58.4428 g/mol.    Therefore, 30.134/58.4428 = .52 molar 
8.  What is the molarity of the water in seawater?  Remember 1000g = 1 liter and a 1 molar solution is prepared by adding 1 mole of solute to 1 liter of solution
     1000 - 35.15 = 964.85 gms of H2O in seawater.  Mol wt of H2O is 1+1+15.99 =18.01528  g/mol.    Therefore, 964.85/18.015= 53.56 molar or about 100:1 vs the NaCl

 

water is transferred.  Cations, under the influence of the negative electrode move through 

the CEM but are stopped at the AEM interface.  Similarly, anions under the influence of 

the positive electrode move through the AEM but are stopped at the CEM interface.  In a 

typical ED configuration, AEM and CEM’s are alternately arranged with a spacer sheet 

between to form a “cell”.  The basic ED unit consists of several hundred cell pairs bound 

together with electrodes on the outside and is referred to as a membrane stack.  Pathways 

in ED units are separated by a cation/anion membrane stacks and direct current provides 

the motive force for ion migration from the low concentration side to the higher 

concentration side.  By this arrangement, concentrated and diluted solutions are created in 
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the spaces between the alternating membrane pairs.  Figure 2.4 presents a typical ED unit 

layout. 

 
Figure 2.4 Typical Electrodialysis Unit Layout 

 

2.8 Concentration Polarization Effects in Diffusive Membrane Systems 

 

In pressure driven processes such as Reverse Osmosis (RO), Microfiltration (MF) 

and Ultrafiltration (UF), solutes are retained to some extent by the membrane.  In this 

way the solute concentration profile has been established by the convective flow towards 
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the membrane and the diffusive back transport of the solute towards the bulk.  In ED 

units, adjacent fluid pathways are separated by a cation/anion membrane stack where 

applied direct current provides the motive force for ion migration.  In these cases, 

concentration polarization and boundary layer effects can be significant. 

 

In ED application, the solution compartments and membranes, being in series, 

must carry the same electrical current.  In the solution compartments, both the cations and 

anions carry the current.  In the membranes, however, only one type of ion (cation or 

anion) can do this.  Therefore, the ions in the membranes must travel at twice the speed 

that they move in the bulk solution compartments.  This causes the concentration of the 

ions to be depleted on the entrance side of the membrane in comparison with the 

concentration in the bulk solution.  This concentration polarization requires a higher 

current to transport the ions.  If the current is increased to the critical point ilim – at which 

the membrane surface on the entrance side is totally depleted of ions (cations or anions) – 

two results follow: 

 

1) An increase in the resistance considerably boosts energy consumption, 

2) H+ and OH- ions are transported across the membranes, and water is dissociated. 

 

The transport of H+ and OH- ions result in locally high and low pH levels at the 

membrane surfaces20.  The locally high pH on the brine side can cause salts with limited 

solubility such as CaSO4 and CaCO3 to precipitate19.  The limiting current, the current at 

the critical point, ilim, is directly related to: (1) the concentration of the ions in the bulk 
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solution (the limiting current is smaller for a lower total-dissolved-solids solution), and 

(2) the thickness of the boundary layer.   

 

However, in purely diffusive driven systems such as concentration cells, 

preferential ion transport occurs through the membrane according to the internally 

generated driving force with the concentration of solute at the membrane surface 

dependant upon the flux through the membrane, membrane retention, the diffusion 

coefficient of the solute D, and the thickness of the concentration boundary layer d, i.e., 

the region near the membrane in which the concentration of solute varies.  Because of 

current densities generally below ilim, low transport rates, and low solute mass transfer  

rates, it is frequently assumed that the resistance to ion transport in concentration cell 

systems is determined primarily by the membrane phase with boundary layer resistances 

neglected5. 

 

2.9 Osmosis 

 

Osmosis is the phenomenon of water, solvent, flow through a semi-permeable 

membrane that blocks the transport of salts (solute).  With membranes which are 

nonionic or completely impermeable for the solute, the solvent flux is from dilute to the 

concentrated solution and is proportional to the osmotic pressure difference between the 

two solutions.  This pressure difference occurs whenever a membrane separates a solvent 

from a solution and is given almost entirely by the total concentrations of the dissolved 

species (ions or molecules) and depends very little on the individual species. 
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2.9.1 Anomalous Osmosis Basics21 

 

Solvent diffusion, osmosis, across an ion-exchange membrane is, as a rule, 

anomalous, i.e., not proportional to the osmotic pressure between the solutions.  The pore 

liquid in the membrane carries a net electric charge and, hence, is affected by the both the 

pressure gradient and the electric potential gradient which arises from ionic diffusion. 

 

The effect of the pressure gradient alone always results in Positive Osmosis.  The 

swelling pressure, i.e., the pressure difference between the ion-exchange membrane and 

the equal hydrostatic pressure, is higher on the side of the dilute solution (higher free 

energy) and drives the solvent toward the concentrated solution side. 

 

The effect of the pressure may be enhanced, partly balanced, or even out weighed 

by the electric field.  Strong diffusion potentials arise when the mobility of the counter 

ion and co-ion differ greatly.  If the counter ions are faster, the resulting electric field – in 

addition to enforcing equivalence of the ionic fluxes – drives the electrically charged pore 

liquid as a whole toward the concentrated solution.  The effect of the electric field thus 

adds to that of pressure and produces Anomalous Positive Osmosis.  However, if the co-

ion is faster, the electric field has opposite sign and drives the pore liquid toward the 

dilute solution.  The electric field may be stronger than the pressure.  In this case there is 

Anomalous Negative Osmosis.  Here, solvent diffusion provides the energy required for 

transferring the electrolyte against its chemical potential gradient.   The described 

anomalous phenomena only apply to the solvent. 
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The transport of solvent (water) through the membrane is a critical factor 

determining the performance of fuel cells, and the water balance between anolyte and 

catholyte is important in many applications of electrolysis, determining for example the 

maximum concentration of product which can be achieved.  Besides the pressure and 

chemical gradients discussed, water passes through the membrane with the ions within 

their hydration shells, i.e., electro-osmosis. 
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Chapter 3 
 

Initial Phase I Investigation and Discussion  
 

3.1 Technical Background and Discussion 

 

A primary driving force behind the industrial development of membranes has 

been desalination for municipal drinking water supplies where ED and RO have been 

used for water desalting.  More frequently, desalination plants are being co-located near 

power generation stations such that power plant discharge cooling water of elevated 

temperature and thus increased ion-mobility becomes the desalination plant source water.  

High TDS RO waste stream concentrate is then available for additional processing to 

allow economic recovery and reuse of the energy in the waste stream.  Sources of dilute 

brine include brackish river/estuarine water or treated municipal water (also typically co-

located).  In order to capture the energy of this potentially significant energy source, a 

suitable energy extraction device must first be developed.  

 

3.1.1 General Ion-Exchange Electro-Membrane Theory Discussion 

The heart of any electro-membrane process is the ion-exchange membrane.  It 

usually consists of a polymer film with ionic groups attached to the polymer backbone.  

As mentioned in Chapter 2, if these “fixed charges” contain a negatively (anionic) 

charged group fixed to the polymeric chain they are called a CEM because they are 
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capable of exchanging positively charged cations.  When the fixed charged group is 

positive (cationic), the membrane is called an AEM because it is capable of exchanging 

negatively charged anions. In the case of cationic fixed charges, the freely moveable 

counter-ions are anions.  The membrane, therefore, exhibits ion-exchange properties for 

counter-ions, which can permeate the membrane easily and excludes co-ions (of the same 

charge as the fixed charges) from the passage.  The “permselectivity” between counter- 

and co-ions can reach values up to 99%.  The permselectivity decreases with increasing 

ion concentration of the outside solution and decreasing capacity and degree of cross 

linking of the ion-exchange membrane.  All electro-membrane processes make use of the 

above permselectivity of ion-exchange membranes3.  

  

An electric field in an electrolyte solution produces transference of ions whose 

transport across an ion-exchange electro-membrane.  In a solution of uniform 

composition under the assumption of electro-neutrality, the transference of an arbitrary 

ionic species in the direction of the current is proportional to the gradient of the electric 

potential, the concentration difference, and the electrochemical valence of the ionic 

species.  It is irrelevant whether the field is generated by an external source (as in ED) or 

generated internally via concentration gradient driven diffusion, since the individual ion 

has no means of knowing the origin of the electric field6.  

 

Electric current in an ion-exchanger transfers predominantly via counter-ions by 

diffusion.  The co-ion has relatively little effect on the kinetics and the rate of ion 

exchange.  The Nernst equation holds reasonably well within the concentration range of 
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about 10-4 to 10-1 N for estimations of OCV.  Deviations at higher solution concentrations 

are caused by co-ion transference, and at lower concentrations by H+ (protons) or OH- 

(hydroxyl) ions (stemming from dissociation of H20) that compete with the electrolyte 

counter ion (i.e., the increasing concentration of the co-ion in the ion exchanger causes a 

decrease in the transport number of the counter-ion).  As discussed in Section 2.5.1, the 

limiting OCV value of the membrane potential (at room temperature) is 0.059 V per 

power of 10 activity ratios using a single ideal monopolar membrane, a 1,1 valence 

electrolyte, and reversible electrodes4.   This cell membrane potential may be higher if the 

co-ion is more mobile than the counter-ion and if there is little Donnan exclusion of the 

co-ion6.  

 

3.1.2 Relevant Related Work 

 

Although numerous authors have written on the subject of non-replenishing 

concentration cells, Ohya’s22 test configuration using a single pair of anion/cation 

monopolar semi-permeable membranes separated by a center region is particularly 

relevant.  Ohya reported maximum cell OCV values of nominally 0.100V after several 

hours before dropping off.  Ohya theorized that the reason for this OCV build up and 

drop off might be that as time passed, the center compartment concentration increased 

with a corresponding decrease in electrical resistance, resulting in an increase in the 

observed OCV.  However, as the center compartment’s concentration continued to 

increase, the relative concentration between the center and either side decreased with a 

corresponding decrease in the cell’s potential. This should not be the case in a 
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replenishing Bi-Polar membrane concentration cell design and to the author’s knowledge 

there is no comparable research or technology currently operating on this unique concept. 

 

3.1.3 Bi-Polar Membrane Discussion 

 

An extensive literature and membrane evaluation review revealed the presence of 

Bi-Polar membranes.  A Bi-Polar membrane consists of a monopolar CEM and 

monopolar AEM joined together with an intermediate transitional phase layer in between.  

Although made up of well-defined components, once combined the Bi-Polar membrane 

acquires unique capabilities and additional uses.  These include: 1) an apparent variation 

in membrane potential depending upon which side is in contact with the more 

concentrated solution, which is not the case in monopolar ion-exchange membranes14; 2) 

its use in converting water-soluble salts to their corresponding acids and bases via the 

process of water dissociation (or splitting).  Where H+ and OH- ions, removed from the 

transitional phase layer, are replenished by water transported into the membrane2.  

 

These additional and unique benefits coupled with Ohya’s findings led me to Bi-

Polar membrane concentration cell testing rather than continuing with the typical ED 

based anion/cation monopolar membrane stack arrangements.  As is the case with 

standard AEM/CEMs, when an electrical field is established across a Bi-Polar membrane 

the transfer of electrical charge will be carried preferentially by the ions present.   

However, under the effect of an electric field, charged species are also removed from the 

transitional phase layer between the two ion-exchange layers. 
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When no ions are available within this region, further transport of electric charge 

can be accomplished only by H+ and OH- ions, which are available even in completely 

desalinated water.  At a theoretical potential of 0.828 V, the water in the transitional 

phase layer dissociates (splits) into equivalent amounts of H+ and OH- ions.  These ions 

ideally migrate from the intermediate layer with the H+ ions permeating through the CEM 

side and the OH- ions permeating the AEM side.  However, H+ and OH- ions are not very 

effectively retained by a Donnan potential and co-ion leakage of H+ through the AEM as 

well as the OH- leakage through the CEM can occur7. 

 

3.2 Test Results and Recommendations 

 

An initial baseline, bench top, proof-of-concept laboratory test apparatus was 

constructed, see Figure 3.1.  It consisted of a single concentration cell of cubic design, a 

peristaltic pump, and a computer running a data acquisition program.  The test cell 

consisted of two symmetrical sections (a concentrated solution side and a dilute solution 

side) separated by a single Bi-Polar membrane.  Each section consisted of an end plate, 

electrode, and test chamber.  The concentrated ionic solution side consisted of an 

entrained saturated slurry reservoir. 1:10 ionic test solutions were made from dilutions of 

the saturated concentrate.  The dilute solution was pumped through the dilute cell side 

and collected in a 1,000 ml beaker.  Measurements of the dilute input/output ionic test 

solution salinity revealed higher levels of Cl- in the output solution corresponding to 

possible CEM co-ion migration (lower anion permselectivity).  Low cation AEM 
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permselectivity may also be present but measurements were not made for specific 

cations, nor were they made for solution pH, or the presence of multi-valence ions. 

 
Figure 3.1 Standard Bi-Polar Membrane Concentration Test Cell 

 

OCV and various loaded voltage measurements were made with a computer 

running a data acquisition program.  Figure 3.2 below shows a result from one of the test 

configurations using a Bi-Polar membrane in the (+) orientation.  Note the battery like 

performance including a possible Coup de Fouet effect occurring just after initial 

discharge.  As can be seen in Figure 3.2, the OCV value measured was several times that 

predicted by the Nernst equation and more than twice that reported by Ohya, although 

measurements made under electrical loading were significantly lower in value.  
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Figure 3.2 Bi-Polar Membrane Concentration Cell Proof-of-Concept Test Results 

 

Although small in value, the measured cell membrane potentials were in the realm 

suitable for low power energy harvesting or MEMS applications.  Based on these 

favorable results, a more thorough testing program using a consistent test configuration 

subject to changing membrane/electrode parameters and ionic/environmental effects was 

devised and implemented.  Additional research was conducted in order to investigate and 

evaluate the membrane potential generation in a Bi-Polar electro-membrane based 

seawater concentration cell and its suitability as a low power energy source for energy 

harvesting/MEMS devices.  Included in this test effort was electrochemical testing and 

modeling required to determine an equivalent cell circuit design impedance for maximum 

power delivery, via impedance matching, to a coupled electrical device.  This phase II 
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detailed test discussion is presented in Chapter 4.  Phase II testing methodology, results 

and analysis are presented in Chapter 5, followed by a contribution and future research 

recommendations summary in Chapter 6.  
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Chapter 4 

 

Detailed Phase II Test Discussion  

 

4.1 Overview and Purpose  

 

As discussed in Chapter 3, a phase I proof-of-concept Bi-Polar membrane based 

concentration cell was built and tested with the measured OCV values several times the 

value predicted by the Nernst equation and more than twice that reported by Ohya, 

although measurements made under electrical loading were significantly lower in value.  

The initial proof-of-concept test apparatus was a single cubic shaped cell, but other 

geometries are possible depending upon the end use.  Further, although a single cell was 

initially tested, it is envisioned that in actual use a plurality of cells will be aligned in 

series/parallel configurations to generate the desired output power.  In addition, a variety 

of differing cell designs may also be included within the array structure, such as an 

annular design suitable for inclusion into a high flow rate power plant or desalination 

plant application, designs including ion exchange resins or conductivity enhancing 

materials, and designs combined with monopolar membranes. 

 

The broad use of options permits a wide variety of applications for the instant 

power generating system, with controls being devised by the types and numbers of cells 
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in the generating array.  This dissertation provides documentation detailing the testing 

results along with analysis and recommendations, serving as a baseline for full-scale 

testing during later phases of this technology development. 

 

4.2 Research Objectives  

 

The over arching research goal is to provide a contribution to the body of 

knowledge as well as to suggest one solution to the engineering problem of how to 

extract useful energy from available dilute and concentrated saline solutions.  This 

exploratory research effort consisted of several major areas: 

 

1) Determination of membrane/electrode processes and kinetics,  

2) Equivalent circuit component modeling, 

3) System wide cell performance testing, 

4) Determination of cell parameter inter-relationships, 

5) Examine the feasibility of this Dialytic based membrane concentration cell as a low 

power energy source for energy harvesting/MEMS devices.  

 

4.3 Testing Summary 

This Phase II testing effort consisted of an extended testing/monitoring program 

designed to determine OCV and loaded voltage and current output vice parameters such 

as: external electrical loading; temperature; pH, solution concentration, membrane 

selection and orientation, and electrode surface area.  To minimize membrane and 
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electrode fouling effects, synthetic seawater solutions were used and the results 

compared.  Close inspection of the test set up, membrane, and electrodes were conducted 

during the testing period including the use of a Scanning Electron Microscope (SEM) to 

ascertain membrane and electrode state of health.  Detailed ion-transfer across the Bi-

Polar membrane was analyzed by frequent Cl- ion titration of solution samples removed 

from each side of the test cell at various times during the test runs.   

 

Electrochemical methods such as Cyclic Voltammetry (CV) and Electrochemical 

Impedance Spectroscopy (EIS) along with equivalent circuit modeling were used to 

establish electrode processes and kinetics corresponding to changes in operating 

parameters.   Statistical Design of Experiment (DoE) methods were used to investigate 

various parameter interactions.  Cell performance testing consisted of the standard 

baseline proof-of-concept cell design operated over various test factor variable 

configurations.  MEMS based application considerations were then considered in the 

latter part of the Phase II effort. 
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Chapter 5 
 

Detailed Phase II Test Results and Analysis 

 

5.1 Specific Test Methodology and Details 

 

To examine performance, the Phase I standard Bi-Polar membrane concentration 

test cell was run for various periods of time and loading conditions and the results 

compared.  The standard atmospheric pressure testing effort consisted of a monitoring 

program designed to determine OCV and loaded cell membrane potential voltage and 

current vice the following input parameters: 

 

1) Synthetic seawater solution temperature (5 to 40 °C, nominally), 

2) Synthetic seawater solution concentration differences (e.g., 1:10, 1:100),   

3) Bi-Polar membrane end use differences (e.g., industrial electrochemical plating vs. 

water purification ED), 

4) Solution pumping speed (Fisher Scientific low flow peristaltic pump 13-876-1), 

5) Bi-Polar membrane orientation, 

6) Silver (Ag) wire mesh electrode surface area. 
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Room temperature CV and EIS measurements were conducted over a frequency 

range of 10 MHz to 1 mHz using a Solartron SI 1260/1287 Frequency Response 

Analyzer and supporting test equipment to establish electrode, membrane, and full cell 

component characterization.  This testing occurred at the University of South Florida’s 

(USF) Corrosion Engineering Laboratory (Tampa, FL, ENL 111, Dr. Alberto Sagüés) 

and the University of Kentucky’s Center of Applied Energy Research (Lexington. KY, 

Dr. Stephen Lipka).  Figure 5.1 shows EIS testing at USF’s Corrosion Engineering 

Laboratory. 

 

Figure 5.1 EIS Testing at USF’s Corrosion Engineering Laboratory 

 

Full Cycle temperature and external electrical loading performance measurements 

were conducted using a using a hand held data logger (Vernier Software and 

Technology), computer, and supporting test equipment to establish cell membrane output 
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potential characterization.  This testing occurred at the University of South Florida’s 

(USF) College of Marine Science (CMS) (St. Petersburg, FL, KORC 2129, Dr. Luis 

García-Rubio).  Figure 5.2 shows performance testing at the USF CMS. 

 

Close inspection of the test set up, membrane, and electrodes were conducted 

during the testing period.  SEM and X-Ray imaging techniques were used to ascertain 

membrane and electrode state of health.  Bi-Polar membrane from several manufactures 

were obtained and used during the testing period for comparison.  Specific membrane 

details came from the manufacturer and literature, as available, supplemented by testing.  

 

 

Figure 5.2 Cell Performance Testing at USF’s College of Marine Science 
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 Because of the number of cell components and their coupled parametric 

interactions, it was desirable to characterize each individually and determine their 

respective interactions using Design of Experiment (DoE) and analysis techniques via 

Statistical Analysis System’s (SAS) statistical analysis package.  EIS impedance plots 

and cell Equivalent Circuit Modeling was analyzed using Solartron’s ZView2 software 

package by Scribner Associates, Inc. 

 

5.1.1 Synthetic Seawater Solution Discussion 

 

Instant Ocean® Synthetic Sea Salt, made by Aquarium Systems, was used 

throughout this testing effort to provide a suitable medium for a seawater concentration 

cell with out the sometime deleterious effects of marine biofouling.  Test solutions along 

with nominal Cl- titration and pH measurement values were made as follows: 

 

1) Concentrated Test Solution:  300 grams of Instant Ocean® added to enough Deionized 

(DI) water [Millipore Milli-Q 18.2 MW*cm] to make 1 liter of total solution.     

pH = 8.1 and Cl- = 3.62M (N), 

2) 1:10 Test Solution:  100 ml of concentrated test solution added to 900 ml of DI water. 

pH = 8.8 and Cl- = 0.45M (N), 

3) 1:100 Test Solution:  100 ml of 1:10 test solution added to 900 ml of DI water. pH = 

9.0 and Cl- = 0.05M (N).    
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Although a 1:10 concentration difference exists between 1 to 2 and 2 to 3, their 

Molarities differed by 8:1 and 9:1, respectively, which concurs, based on their respective 

activity coefficients and concentration values. Visual examination of the actual test 

solutions reveal a white, saturated Calcium Carbonate (CaCO3) precipitate present in the 

concentrated test solution, however, the 1:10 and 1:100 solutions were clear.     

 

5.2 Electrode Discussion 

 

5.2.1  Electrode Details 

 

  In order to allow for the sole evaluation of the Bi-Polar membrane in the 

seawater concentration cell, the electrode material was carefully selected so as to only act 

as a charge collector.  The chosen electrodes were made from standard silver (Ag) wire 

mesh with a solid Ag tab soldered for good electrical conduction and increased clip test 

lead attachment longevity. Initial surface treatment included a 20 minute dip in 3M HCL 

followed by a deionized water rinse. Electrode overall cross section is 3 inches by 3 

inches with 2.75 inches by 2.75 inches in solution contact.  Figure 5.3 presents a pair of 

used 80 Mesh electrodes.  

 

  Two sizes of mesh were used in the testing effort, one with 80 threads per inch 

and one with 40 threads per inch, in order to examine any electrode surface area 

depenendancy.  Based on a cylindrical surface area estimation of each wire multiplied by 
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the number of wires, the 40 Mesh electrodes should have 11% more surface area than the 

80 mesh electrode.   

 

 

Figure 5.3 Used 3M HCL Dip 80 Ag Mesh Electrodes 

 

5.2.2  Scanning Electron Microscopy and X-Ray Results 

 

  Figures 5.4 and 5.5 present SEM and X-Ray results, respectively, for a section of 

new 3M HCL dipped 80 Ag wire mesh.  In the area X-Rayed, analysis revealed >96% of 

the total net counts in the X-Ray spectrum were Ag, as expected, with trace elements 

---------- 3 inches ---------- 
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present of C, Mg, Al, Cl and Si.  These results were consistent with those found in a 

similarly sampled section of new 3M HCL 40 Ag wire mesh. 

 

Figure 5.4 New 3M HCL Dip 80 Ag Mesh SEM 

 

Figure 5.5 New 3M HCL Dip 80 Ag Mesh X-Ray  
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  Figures 5.6 and 5.7 present SEM and X-Ray results, respectively, for a section of 

used 3M HCL dipped 80 Ag wire mesh electrode from the concentrated solution side 

near the cell top.  In the area X-Rayed, analysis revealed >97% of the total net counts in 

the X-Ray spectrum were Ag as expected with trace elements of O, Mg, Na, and Cl 

present.  These results were consistent with those found in a similarly sampled section of 

a used 3M HCL dipped 80 Ag electrode from the dilute solution cell side. 

 

 

Figure 5.6 Used Electrode SEM Results from Concentrated Side Cell Top 
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Figure 5.7 Used Electrode X-Ray Results from Concentrated Side Cell Top 

   

  Figures 5.8 and 5.9 present SEM and X-ray results, respectively, for a section of 

used 3M HCL dipped 80 Ag wire mesh electrode from the concentrated solution side 

near the cell bottom.  Precipitated Ca crystals are clearly seen formed on portions of the 

imaged wire.  This concurs with the previously noted observation of a white, saturated 

Calcium Carbonate (CaCO3) precipitate in the 3.6M concentrated test solution. 

 

  In the shinny metal area X-rayed, analysis revealed >75% of the total net counts 

in the X-Ray spectrum were Ag with Ca (10%) and trace elements of O, Mg, Si, S, Na, 

Al, and Pb.  X-Ray analysis on the precipitated coated wire reveal >83% of the net counts 

in the X-Ray spectrum, primarily Ca with trace elements of O, Sr, S, Cl, Mg, Ag, and Na. 

 



 

 54

 

Figure 5.8 Used Electrode SEM Results from Concentrated Side Cell Bottom 

  

Figure 5.9 Used Electrode X-Ray Results from Concentrated Side Cell Bottom 
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  Figures 5.10 and 5.11 present SEM and X-Ray results, respectively, for a section 

of used 3M HCL dipped 80 Ag wire mesh electrode from the dilute solution side near the 

cell bottom.  In the bare wire area X-Rayed, analysis revealed >88% of the total net 

counts in the X-Ray spectrum were Ag with trace elements of Mg, O, Mg, Na, and Cl 

present.  X-Ray analysis on the precipitate in the upper left corner revealed NaCl (>98%) 

with trace elements present of O, Mg and Ca. 

 

 

Figure 5.10 Used Electrode SEM Results from Dilute Side Cell Bottom 
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Figure 5.11 Used Electrode X-Ray Results from Dilute Side Cell Bottom 

 

5.2.3 Cyclic Voltammetry Test Results 

 

  Many electrode reactions can proceed either as oxidation or as reduction, 

depending upon on the direction of the current flowing through the electrode/electrolyte 

interface, e.g., metal deposition/dissolution or Reduction/Oxidation (RedOx) reactions.  

Metal deposition/dissolution is a class of electrode reactions involving RedOx of a solid 

metal and its dissolved ion, e.g., where Ag ions can be cathodically reduced to Ag metal, 

or the Ag metal can be anodically oxidized to Ag ions.  Compare with a RedOx reaction 

where both the oxidized and reduced species are in solution. 

 

  Voltammetry is an electrochemical measuring technique used for the 

determination of chemical reaction rates and their causes, kinetics, along with electrode 
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reaction mechanisms at the electrode surface.  CV is a commonly used variation of the 

technique in which the direction of the working electrode potential is reversed at the end 

of the first scan all while the current flowing through the electrode is measured.  CV has 

the advantage that the product of the electron transfer reaction that occurred in the 

forward scan can be probed again in the reverse scan.   

 

  The waveform used in this analysis is composed of two isosceles triangles and 

is presented in Figure 5.12 below23.  Operation begins by first holding the initial potential 

where no electrolysis occurs and hence no faradaic current flows. As the voltage is 

scanned in the positive direction any reduced compound is oxidized at the electrode 

surface.  At (+ve), the scan reduction is reversed and the material that was oxidized in the 

positive scan is then reduced.  Once the voltage reaches (–ve) it is then retuned to the 

initial value.  This operation is then repeated until repeatability is achieved. 

 

Figure 5.12 Waveform Used in CV Testing 
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  CV testing was conducted on both new and used Ag 80 mesh electrode samples 

and a summary plot is presented in Figure 5.13.  Examination of Figure 5.13 reveals that 

within the potential range typically encountered in an electrically loaded cell condition, 

the curve shape is flat with no transfer of charge occurring at the electrode.  Supporting 

the original hypothesis that the electrodes would not be a contributor to the overall cell 

potential at the working voltages encountered.  

 

Figure 5.13 New/Used 80 Mesh Electrode CV Test Results 
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5.2.4 Pourbaix Diagram Discussion 

 

 The Pourbaix diagram distinguishes regions of active corrosion, passivity, and 

immunity in terms of pH, abscissa, and RedOx potential, ordinate.  Figure 5.14 is a Ag 

Pourbaix diagram at 25°C in chloride solution at 1M concentration Cl- , where (a) and (b) 

correspond to RedOx potentials determined by H and O saturation at standard 

temperature and pressure (STP)24.  

 

Figure 5.14 Ag Pourbaix Diagram at 25°C in Chloride Solution 
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 Room temperature performance cell test results of pH and loaded cell potential, E, 

revealed pH ranges of 6.5 to 9.0 and E ranges of 10 to 20 mV DC.  Figure 5.14 shows 

that at these values reveal that Ag may become an ionic species (Ag ↔ Ag+ + e-), or will 

remains in its metallic form (Ag → Ag) as a degenerate form.  This is supported by 

SEM/X-Ray electrode analysis confirming primarily the presence of Ag alone in both 

new and used electrodes. All evidence supports the hypothesis that Ag is in equilibrium 

with its own ions Ag+ with the Cathodic/Anodic reactions occurring at the same rate in 

each cell side.  

 

5.2.5 Electrode Summary   

 

  Analysis of electrochemical, physical, and performance based testing of the Ag 

mesh electrode confirmed that corrosion effects were found not to be a contributor to the 

overall cell potential and: 

 

1) Functioned simply as charge collectors,  

2) Confirmed electrode material selection, design, and ruggedness for subsequent field 

testing, 

3) Allowed for the sole evaluation of the Bi-Polar membrane performance in a 

membrane based seawater concentration cell.  
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5.3 Bi-Polar Membrane Discussion 

 

5.3.1 Membrane Details 

 

 Bi-Polar membranes from two manufactures were used in the testing effort.  

Details specific to each membrane are provided as follows: 

 

1) Membranes International Inc., USA (MII BPM-9000): 

1. Primarily an industrial grade membrane used in the metal plating industry, 

2. Test cell dimensions: 4 inches by 4 inches, 2.75 by 2.75 in solution contact, 

3. Polymer structure – Gel polystyrene cross linked with divinylbenzene, 

4. Thick, stiff, “fabric-like appearance”, 

5. Shipped dry in “open” container, 

6. CEM: surface rough and dark color, Functional Group – Sulphonic Acid, 

7. AEM: Surface rough and light color, Functional Group – Quaternary Ammonium, 

8. Selected test cell measured and vendor provided sample properties:  

a. Dry Weight = 12.0532 grams 

b. Wet Weight = 13.7901 grams 

c. Water Uptake = 14.4% 

d. Thickness (dry) = 0.955 mm (0.0376 inches) 

e. Thickness (wet) = 1.082 mm (0.0426 inches) 

f. Electrical Resistance (Ohm) <1 (EIS Measured) 
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A used MII Bi-Polar membrane, CEM and AEM side, presented in Figures 5.15 and 5.16.  

 

Figure 5.15 Used MII BPM-9000 Bi-Polar Membrane, CEM Side 

 

Figure 5.16 Used MII BPM-9000 Bi-Polar Membrane, AEM Side 

 

2) Fumatech, Germany (Fumasep® FBM):  

1. Primarily used in the water purification industry,  

2. Test cell dimensions: 4 inches by 4 inches, 2.75 by 2.75 in solution contact, 
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3. Polymer structure – (Kraton, PPO [poly(phenyleneoxide)]) cross linked with   

PEEK [Poly(etheretherketone)],  

4. Thin, flexible, “sandwich wrap like appearance”, 

5. Shipped in sealed container surrounded by 1 M NaCl solution, 

6. CEM: surface smooth and shinny, Functional Group – Sulphonic Acid, 

7. AEM: surface not slippery and opaque, Functional Group – Amines, 

8. Selected test cell measured and vendor provided sample properties:  

a. Dry Weight =  1.7963 grams 

b. Wet Weight = 2.0705 grams 

c. Water Uptake = 15.3% 

d. Thickness (dry) = 0.189 mm (0.0074 inches) 

e. Thickness (wet) = 0.201 mm (0.0079 inches) 

f. Electrical Resistance < 3 Ohm 

Used Fumasep® FBM membrane, CEM/AEM side, presented in Figures 5.17 and 5.18.  

 

Figure 5.17 Used Fumasep® FBM Bi-Polar Membrane, CEM Side 
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Figure 5.18 Used Fumasep® FBM Bi-Polar Membrane, AEM Side 

 

5.3.2 SEM Test Results and Summary 

  SEM images of both new and used MII BPM-9000 and Fumasep® FBM Bi-Polar 

membranes were made, see Figures 5.19 to 5.26. 

 

Figure 5.19 New MII BPM-9000 SEM Image, CEM Side 
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Figure 5.20 New MII BPM-9000 SEM Image, AEM Side 

 

Figure 5.21 New Fumasep® FBM SEM Image, CEM Side 
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Figure 5.22 New Fumasep® FBM SEM Image, AEM Side 

 

Figure 5.23 Used MII BPM-9000 SEM Image, CEM Side 
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Figure 5.24 Used MII BPM-9000 SEM Image, AEM Side 

 

Figure 5.25 Used Fumasep® FBM SEM Image, CEM Side 
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Figure 5.26 Used Fumasep® FBM SEM Image, AEM Side 

 

Analysis of SEM images revealed: 

 

1) The presence of many small holes distributed unevenly on the membrane surface, 

2) The size of the membrane hole is sometimes much smaller than the distance between 

discrete holes and sometimes much larger than the distance between holes connected 

together in trench like lines, 

3) That additional “openings” and “bumps” were present in the “USED” CEM/AEM 

membrane surfaces than were present when imaged new.  
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5.3.3 Membrane Summary 

 

1) MII BPM-9000 and Fumasep® FPM Bi-Polar membranes were selected for testing 

because even though both were Bi-Polar membranes, they differed in composition, 

weight, stiffness, thickness, end application use, and cost. 

2) Analysis of test data, however, revealed similar performance and water take up 

properties with results from DoE modeling showing no membrane manufacturer/end 

use related main effect interaction. 

3) Based on the above findings: 

 

1. The small holes in these charged membranes could be acting in a voltammetric 

behavior on a microelectrode or ultra microelectrode scale21. 

2. Combined membrane swelling and linkage of the “openings” present in used 

CEM and AEM membranes aided by the oppositely charged EDL can account for 

the measured Cl- co-ion/counter-ion migration across the Bi-Polar membrane 

from concentrated to dilute sides of the functioning Bi-Polar concentration cell. 

 

5.4. Electrochemical Impedance Spectroscopy Discussion  

 

  An excellent primer into the basis of EIS can be found in an application note 

entitled “Basics of Electrochemical Impedance Spectroscopy” by Gamry Instruments25. A 

brief EIS summary is included herein.   
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  Ohm’s Law applies to electrical circuits and states that the current through a 

conductor between two points is directly proportional to the potential difference (i.e., 

voltage drop or voltage) across the two points, and inversely proportional to the 

resistance between them.  The mathematical equation that describes this relationship is: 

 

E = IR 

 

Where E is the potential difference in volts, I is the current in amperes, and R is a circuit 

parameter called the resistance (measured in ohms, also equivalent to volts per ampere).   

 

  Electrical resistance is the ability of a circuit element to resist the flow of 

electrical current.  Ohm’s Law can be rewritten in terms of resistance (Equation 5) as the 

ratio between voltage E and current I. 

 

R = E/I                                Equation 5 

 

The simplest electrical circuit element is the resistor.  An ideal resistor has the following 

simplifying but important properties: 

 

1) Follows Ohm’s Law at all current and voltage levels, 

2) Its resistive value is independent of frequency, 

3) AC current and voltage signals through a resistor are in phase with each other. 
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The real world contains additional circuit elements that exhibit much more 

complex behavior.  These elements force the abandonment of the simple concept of 

resistance.  In stead, the more general circuit parameter concept of electrical impedance 

or simply impedance is used.  Electrical impedance extends the concept of resistance to 

alternating current (AC) circuits, describing not only the relative amplitudes of the 

voltage and current, but also the relative phases.  Like resistance, impedance is a measure 

of the ability of a circuit to resist the flow of a sinusoidal AC electrical current.  Unlike 

resistance, impedance is not limited by the simplifying properties listed above.   

 

 The mathematical representations of individual circuit elements can be converted 

into phasor notation, and then the circuit can be solved using phasors.  In phasor notation, 

resistance, capacitance, and inductance can be combined together into a single term 

called “impedance” and like resistance, is measured in units of Ohms.  The phasor used 

for impedance is “Z” and Ohm’s law for phasors becomes: 

 

E = IZ  

 

and it’s important to acknowledge that Ohm’s law holds true for both the phasor domain 

as well as the time domain.   

 

 As mentioned, resistors do not affect the voltage or current, only the magnitude.  

Therefore, the impedance of a resistor with resistance R in phasor notation is: 

 

Z = R ∠0° 
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Capacitors and Inductor circuit elements do, however, affect the voltage or current.  A 

capacitor with a capacitance C has an impedance value of: 

 

Z = 1/ωC∠-π/2 or, in terms of degrees as, Z = 1/ωC∠−90° 

 

Illustrating that the current leads the voltage by 90°.  Conversely, an inductor with an 

inductance L has an impedance value of: 

 

Z = ωL∠π/2 or, in terms of degrees as, Z = ωL∠90° 

 

Illustrating that the current lags the voltage by 90°.  

  

Electrochemical impedance is measured by applying an AC potential to an 

electrochemical cell and measuring the current through the cell.  Assuming a sinusoidal 

excitation is applied to a linear system, the response will be an AC current signal with the 

same frequency.  This current signal can be analyzed as a sum of sinusoidal functions, a 

Fourier series. 

 

 Electrochemical impedance is normally measured using a small excitation signal 

(in this case 10 mV) so the cell’s response is pseudo-liner.  In a linear (or pseudo-linear 

system), the current response to a sinusoidal potential will be a sinusoid at the same 

frequency but shifted in phase ( φ ) as shown in Figure 5.27. 
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Figure 5.27 Sinusoidal Current Response in a Linear System 

 

The excitation signal, e(t), expressed as a function of time, has the form: 

 

e(t) = Eo sin(ωt + 0) 

 

Where Eo is the amplitude of the signal, and ω is the angular frequency in radians/sec 

given by:   

 

ω = 2πƒ 
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Where ƒ is the frequency in cycles per second (Hz).  The excitation signal can also be 

expressed in phasor notation as: 

 

E = Eo ∠0° 

 

In a linear system, the time domain response signal, i(t) is shifted in phase (φ) and has a 

peak amplitude, Io. 

i(t) = Io sin(ωt + φ) 

 

Similarly, the response signal can also be expressed in phasor notation as: 

 

I = Io ∠φ 

 

By Ohm’s law, the impedance of the system is written in Equation 6 as: 

 

Z(ω) =  Eo ∠0 / Io ∠φ = ⏐Zo⏐∠−φ                                                         Equation 6 

 

The impedance is therefore expressed in terms of a magnitude, Zo, and a phase shift φ.  φ.  

Equation 6 has both real and imaginary parts.  Plotting the real part on the X-axis and the 

imaginary part on the Y-axis, produces a “Nyquist Plot” as presented in Figure 5.28.  On 

the Nyquist Plot the impedance can be represented as a vector (arrow) of length |Z|.  The 

angle between this vector and the X-axis is the phase angle φ (= arg Z)).  The semi-circle 

is characteristic of a single “time constant” system.   
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Figure 5.28 Nyquist Plot with Impedance Vector 

 

The Nyquist Plot in Figure 5.28 results from the electrical circuit of Figure 5.29.  

Another popular method is the Bode Plot.  The impedance is plotted with log frequency 

on the X-axis and the impedance and the phase-shift on the Y-axis.  The Bode Plot for the 

electric circuit of Figure 5.29 is shown in Figure 5.30.  Unlike the Nyquist Plot, the Bode 

Plot does show the frequency information. 

 

Figure 5.29 Simple Equivalent Circuit with One Time Constant 

ω = 0 

ω 

ω = ∞ 
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Figure 5.30 Bode Plot with One Time Constant 

 

5.4.1 Equivalent Circuit Modeling Discussion  

 

  EIS data is commonly analyzed by fitting it to an equivalent electrical circuit 

model.  To be useful, the elements in the model should have a basis in the physical 

electrochemistry of the system.  As an example, most models contain a resistor that 

models the cell’s solution resistance. Solartron’s ZView2 software package was used for 

both EIS Impedance and Equivalent Circuit Modeling (ECM) analysis and display.  EIS 
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determined values of the 3.6M//0.45M Solution Resistance (Rs) were approximately 

equal to: 0.33 Ohms for 3.6M Cl- and 1.41 Ohms for 0.45M Cl- solutions and 0.69 Ohms 

for the MII membrane resistance (Rm).   

 

  The Bi-Polar membrane concentration cell was closely modeled as a Randles’ 

Cell in parallel with an external load as presented in Table 5.1 and Figure 5.31.  The 

exception here being that the Randles Cell ideal capacitor, in parallel with the system 

Polarization Resistance (Rp), is replaced by a Constant Phase Element (CPE).  This was 

done because “Double Layer Capacitors” in real electrochemical cells are sometimes 

modeled as a CPE rather than single capacitive elements.   

 

  The impedance of the CPE can be expressed as:  

 

Z = (1 / Yo)(jω)-α 

Where,   

  Yo = C = the Capacitance and, 

    α = An exponent that equals 1 for an ideal capacitor and <1 for a CPE 

 

While several theories (surface roughness, “leaky capacitor”, non-uniform current 

distribution, etc.)  have been proposed to account for the non-ideal behavior of the double 

layer, α is treated here as an empirical constant with no physical basis until additional 

research is conducted and a more generally accepted theory put forward.  
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Rext

2Rs + Rm CPE

Rp

 

Table 5.1 ECM - 1:10 MII RT OCV Data 

 

 

 

Figure 5.31 ECM - 1:10 MII RT OCV  

 

  The Nyquist Plot in Figure 5.32 results from the electrical circuit of Figure 5.31.  

Examination of Figure 5.32 shows a reasonable good fit between OCV modeled and 

measured results with the exception being in the extreme low frequency region which is 

attributed to local environmental noise contamination.  Also evident is the depressed 

semi-circle, characteristic of a parallel RC circuit element. 

 

 

 

Element Freedom Value 

Rext Fixed (X) 1E09 

2Rs + Rm Fixed (X) 2.901 

CPE-T Fixed (X) 0.0031

CPE-P Fixed (X) 0.764 

Rp Fixed (X) 2550 
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Figure 5.32 Nyquist Plot - 1:10 MII RT OCV - Measured vs. Modeled  

 

5.4.2 ECM Model Result Under External Electrical Loading Discussion 

 

  ECM model result comparison analysis was conducted using the same developed 

OCV model with the exception that Rext was changed from near infinity (1E09) Ohms to 

Rext = 500 Ohms as presented in Table 5.2 and Figure 5.33.  No high frequency semi-

circle was seen in the Nyquist plot, shown in Figure 5.34, nor present was a step in the 

intermediate frequency area in the Bode diagram, see Figure 5.35, therefore, the 

Interfacial Capacitance is large enough to compare to the systems high Rp value (e.g. 

metals with very low corrosion rates26) at frequencies low enough that the overall cell 
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Rext

2Rs + Rm CPE

Rp

impedance (Z׀) ≈ Rct (Charge Resistance).  Further examination of Figure 5.35 reveals a 

(-) phase angle which is indicative of a capacitive impedance network.  

 

Table 5.2 ECM - 1:10 MII RT 500 Ohm Ext Load Data 

 

 

 

Figure 5.33 ECM - 1:10 MII RT 500 Ohm Ext Load 

 

Element Freedom Value 

Rext Free  (+) 500 

2Rs + Rm Fixed (X) 2.901 

CPE-T Fixed (X) 0.0031

CPE-P Fixed (X) 0.764 

Rp Fixed (X) 2550 



 

 81

 - Measured Lab EIS Data 
 - Modeled data using OCV Model with Ext Load Changed
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Figure 5.34 Nyquist Plot - 1:10 MII RT 500 Ohm Ext Load - Measured vs. Modeled 
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Figure 5.35 Bode Plot - 1:10 MII RT 500 Ohm Ext Load - Measured vs. Modeled 

 

  Diffusion can create impedance called Warburg impedance.  On a Nyquist plot, 

the Warburg impedance appears as a diagonal line with a slope of 45° at very low 

frequencies.  On a bode plot, the Warburg impedance exhibits a phase shift of 45°.  No 

evidence of this low frequency diffusion control was evident in either the Nyquist or 

Bode plots.  This supports the proposed model as primarily a parallel combination of 

CPE Interfacial capacitance and polarization resistance.  This in conjunction with the 

corrosion evidence supports belief that Ag is in equilibrium with its own ions Ag+ with 
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the Cathodic/Anodic reactions occurring at the same rate in each cell side, as previously 

discussed in Section 5.2.4.   

 

  Whenever the potential of an electrode is forced away from its value at open 

circuit it is referred to as “polarizing” the electrode.  When an electrode is polarized, it 

can cause current to flow through electrochemical reactions at the electrode surface.  The 

amount of current is controlled by the kinetics of the reactions and the diffusion of 

reactants both towards and away from the electrode.  In this case, where RedOx reactions 

are occurring at the same rate in each cell side, a single kinetically-controlled 

electrochemical reaction at equilibrium occurs and charge is transferred.  This charge 

transfer reaction has a certain speed depending upon the kind of reaction, the 

temperature, the concentration of the reaction products and the potential.   

 

  When the polarization depends only on the charge-transfer kinetics the Butler-

Volmer equation can be used to estimate the value of Rct at equilibrium as: 

 

Rct = RT/nFio
                                   Equation 7      

 

Using data presented later in Section 5.9, Table 5.3, a MII 80 Mesh 22°C (RT) 

performance test run under an external load of 500 Ohms resulted in an equilibrium 

voltage of nominally 15.5 mV.  Remembering Ohm’s Law, this results in a value of io 

(exchange current density) of nominally 3E-5 Amps.  Back subbing into Equation 7 

results in: 
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Rct = [(8.314 J K-1 mol-1 * 295K) / (1 * 96,500 C mol-1 * 3E-5A)] ~ 850 Ohms   

 

Which is approximately double the value of Z’ shown in Figure 5.34.  Although close in 

value it indicates the overall cell potential does not depend solely on the electrode charge-

transfer kinetics. A likely contributor is the Donnan exclusion of the reaction products 

under the internally generated concentration gradient driving force (Section 2.8).  

 

5.5 Bi-Polar Membrane Concentration Cell Electrical Loading Discussion 

 

  Cell loading measurements were made on numerous runs using both EIS 

techniques as well as direct DC monitoring of the cell output potential using a digital volt 

meter (DVM)/data logger/computer storage system.  Representative plots of each are 

presented in the following sections. 

 

5.5.1 Electrical Loading Comparison 

 

  Figure 5.36 presents a 5-day run consisting of both OCV and varying load 

conditions.  Of particular importance revealed is the consistency and repeatability of 

conditions, starting at OCV (69 mV), with a 1K Ohm load (18.2 mV), then a 500 Ohm 

load (8.7 mV), then a 10 Ohm load (0.25 mV), followed back to OCV (68 mV) and then 

back to a 500 Ohm load (8.2 mV).  This confirms a parallel external load connection with 

the cell, resulting in a halving of cell output with a halving of externally applied load.  

Revealing a fairly constant cell output current condition across the load conditions tested.    
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1:10 MII Cell Loading Comparision - 22 Deg C (RT) - April 2008 
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    Day 0: E = 68.9 mV OCV, Conc = 3.320M [Cl-], Dilute = 0.371M [Cl-]  

             Day 1: E = 18.2 mV, 1K Ohm, Dilute = 0.383M [Cl-]

Day 2: E = 8.7 mV, 500 Ohm, Dilute = 0.396M [Cl-]

Day 3: E = 0.3 mV, 10 Ohm, Dilute = 0.395M [Cl-]

Day 4: E = 67.3 mV OCV, Dilute = 0.404M [Cl-]

Day 5: E = 8.2 mV, 500 Ohm, Dilute = 0.406M [Cl-]

 

Figure 5.36 1:10 MII RT Cell Loading Comparison  

  Agitation of the cell was performed at various times before and after this test and 

although variations did occur in the OCV condition, the affects were small (<5%) under 

load. With loaded equilibrium quickly reached once the agitation was removed. 

 

5.5.2 EIS Comparison during Loading 

 

  Figure 5.37 presents various EIS test results for variations in concentration ratios 

and external loading values for a standard 80 Mesh MII test configuration run in the (+) 

membrane convention under solution pumping (nominally 430 ml/day).  With the 

exception of OCV conditions, no applicable difference in measured cell impedance was 

noted with a 10 fold increase in concentration differences.  While a doubling of the 
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Figure 5.37 EIS Load Comparison Plot 

 

applied external load results in an approximate doubling of the cell output membrane 

potential (parallel connected); a 10 fold increase in solution concentration does not 

produce a doubling of cell output as predicted by the Nernst Equation.  Therefore, test 

results illustrate that the Bi-Polar membrane concentration cell operation under external 

loading can not be adequately described by the Nernst Equation27.   
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5.6 Solution Pumping Speed Dependency on Cell Output Potential  

 

  The effects of pumping speed on cell performance were evaluated by examining 

the measured change in a loaded 80 mesh MII 1:10 room temperature cell operated under 

differing fluid pumping speeds.  Figure 5.38 presents an impedance comparison plot 

showing variation from low to high speed, 0.0036 ml/sec (310 ml/day) to 0.0064 ml/sec 

(550 ml/day), respectively.  Data analysis revealed a minimal change in overall cell 

impendence under a nominal 500 Ohm load and a resulting negligible 1 mV variation in 

output voltage.   

 

Figure 5.38 1:10 MII 80 Mesh Fluid Pumping Speed Comparison Test 

1:10 - Low/Low Speed - 0.0036ml/sec
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  Final system operation consisted of dual peristaltic pumps (one for each cell side), 

positioned over a reservoir of synthetic seawater of varying concentrations and operating 

at the same speed (nominally 430 ml/day).  This set up was run in both a laboratory grade 

incubator/oven or refrigerator/freezer to obtain the temperature affects desired (Figure 

5.2). 

 

5.7 Bi-Polar Membrane Orientation Discussion  

 

 The difference in membrane output potential and how it may vary depending 

upon which Bi-Polar membrane side (CEM or AEM) is in contact with the concentrated 

and dilute solutions was investigated.  Figure 5.39 presents an 8-day data plot of a room 

temperature measurement of 1:100 concentration cell membrane potential under the 

condition of a nominal 500 Ohm external load, 80 mesh electrodes, and a MII membrane.   

Close examination of Figure 5.39 reveals a significant difference in output membrane 

potential with membrane orientation as illustrated by the data plots and corresponding 

orientation layout schematics.  Investigation reveals that for maximum potential output, 

the cell needs to operated in what is typically referred to as the (+) Bi-Polar membrane 

orientation, that being with the concentrated solution in contact with the Bi-Polar 

membrane AEM side and the Bi-Polar membrane CEM in contact with the dilute solution 

side.  Also illustrated in the orientation layout schematics are the measured electrode 

polarities, which in the case of the preferred (+) orientation is the same as an electrolytic 

cell, discussed in Section 2.2.  
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Figure 5.39 1:100 MII 80 Mesh Bi-Polar Membrane Orientation Test 

 

5.8 Bi-Polar Membrane Concentration Cell Ion Migration and Osmotic Flow 

 

   Ion Migration and Osmotic Flow investigations were made on numerous runs.  

Visual evidence of Positive Anomalous Osmosis – confirming the migration of solvent, 

water, moving across the Bi-Polar membrane from the dilute side to the concentrated side 

– is presented in Figure 5.40.  Figure 5.40 clearly shows an accumulation of solvent 

overflowing from the concentrated side of the cell in this standard (1:10 MII 80 Mesh) 

example of a room temperature, static (no pumping occurring), open cell configuration.   

 

         Standard (+) Test Membrane Orientation          Reversed (-) Test Membrane Orientation 
 

2/11/08 @ 19:49 2/19/08 @ 17:28 
 

         1:100 80 Mesh MII RT 500 Ω External Load 

 0.9 
mV 

15.4 mV 
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Figure 5.40 Evidence of Positive Anomalous Osmosis 

 

 Figure 5.41 presents a 6-day room temperature performance measurement of a 

1:10 MII cell membrane output potential under OCV and varying external loading in the 

(+) Membrane Orientation.  Close examination of this plot reveals very similar OCV pre- 

and post-loading values along with the previously shown halving of cell output 

corresponding to a halving of external load.  Interesting here is that although the OCV 

values are similar, the loaded cell membrane potential values are about a half of that 

previously shown, for similar loading conditions.   Illustrating a repeatable but variable 

output potential which will be discussed and quantified in detail in the following section, 

Section 5.9, DoE Modeling Discussion.  This variation was, however, within the 95% 

Confidence Intervals (CI) computed and provided in the Section 5.9 results section. 
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Figure 5.41 Ion Migration and Osmotic Flow Example 

 

 Revealed in Figure 5.41 is the measurement of the volume in the cell output 

beaker verses time for both the concentrated and dilute side.  As shown, there is an 

overall increase in the concentrated side volume and a decrease in the dilute side volume 

with time, indicating a net transport of solvent (water) across the membrane from dilute 

to concentrated (Anomalous Positive Osmosis).  Shown also are the results of numerous 

Cl- titrations made during the test revealing a net decrease in Cl- ions in the concentrated 

side and an increase in the dilute side. 

 

 Interesting that although small in amount, there was more loss in dilute volume 

than in concentrated volume gain.  The concentrated side pump had stopped sometime 

Cc = 4.13M, pH = 7.0 
Cd = 0.45M, pH = 8.4 

Cc = 3.47M, pH = 7.4 
Cd = 0.54M, pH = 8.1 
 

62.4 mV OCV 59 mV OCV 

   3.6 mV** @ 500 Ω 3.6 mV @ 500 
Ω 
 

  7.4 mV @ 1000 Ω 
 

3/13/08 @ 17:02 3/19/08 @ 16:26 
 

Vc = Vd = 600 ml 

Vc = 602 ml 
Vd = 587 ml 

Vc = 604 ml 
Vd = 573 ml 

Vc = 607 ml** 
Vd = 557 ml 
 

Vc = 609 ml 
Vd = 538 ml 
 

Vc = 611 ml 
Vd = 527 ml 

1:10 80 Mesh MII RT OCV and Load 

** Found Concentrated Pump had stopped - Restarted 

1:10 80 Mesh MII RT OCV and 
Load 
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during the evening mid way in the test and could attribute as well as a slight cell leakage 

of the AEM side along with some solvent passage through the membrane with the Cl- 

ions within their hydration shells.  pH measurements made during this test run reveal an 

increase in the pH of the concentrated solution and a decrease in the pH of the dilute 

solution.  Although the measured cell output potentials were far lower than the theoretical 

“water splitting” potential value of 0.828 (Section 2.6.2.1), it is still possible that the 

water passing through the AEM dissociates (splits) into equivalent amounts of H+ and 

OH- ions within the intermediate layer.  These ions could then migrate with the H+ ions 

permeating through the CEM side and the OH- ions permeating the AEM side, affecting 

the pH as seen.  Both these areas will be examined in more detail in follow-on research. 

 

5.9 Design of Experiment Modeling Discussion 

 

  Because the Nernst Equation did not adequately predict the cell output 

performance under load, a DoE approach was implemented to determine a suitable 

equation defining the cell loaded output performance.  An evaluation of pertinent factors 

that might affect cell membrane potential output performance was conducted and resulted 

in eleven (11) factor variables:  electrode composition, electrode surface area, solution 

concentration, solution composition, solution flow rate, cell temperature, membrane type, 

membrane orientation, operating pressure, agitation, and external electrical loading.  

That’s 211 or 2048 runs with a single replicate.  Screening experiments were performed to 

reduce this number down significantly by systematically examining each variable while 

keeping in mind the focus of this research effort – that being to investigate the membrane 
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potential of a seawater concentration cell and its suitability as a low power energy source 

for micro and nano devices, such as wireless communication devices.   

 

  With anticipated sea surface operation, the need to test at any pressures other than 

atmospheric was removed.  Seawater solution composition variation was minimized 

through the use of synthetic seawater.  Membrane orientation was examined separately 

and (+) orientation was used extensively through out the DoE test program.  Solution 

flow rate was examined separately and found to be negligible at the anticipated flow 

rates.  External loading effects on cell performance were examined and quantified 

separately and all DoE testing conducted with an external load of 500 Ohms present.  

Electrode composition variation issues were removed from contributing to the overall cell 

potential via careful material selection and the use of identical electrodes for both cell 

sides.  Cell agitation was observed to have an affect on the cell potential in the OCV 

condition but the affect was negligible when an external electrical load was present. This 

effectively reduced the variable count down to four (4), however, because of the number 

of possible coupled interactions with just four, a fractional, factorial experimental design 

using SAS statistical DoE analysis package was used to determine the significant factors 

in the concentration cell output potential voltage (E1) in terms of: 

 

1) Electrode surface area (ESA), 

2) Bi-Polar membrane end use type (MEM), 

3) Synthetic seawater solution concentration (CONC), 

4) Cell operating temperature (TEMP). 



 

 94

5.9.1 Test Set-up Discussion 

 

 A 24-1 fractional, factorial design was chosen for this purpose.  Using a 24-1 design, 

four variables were studied at two levels by performing eight experiments (24-1 = 8). The 

response (E1) is the magnitude of the concentration cell output voltage in mVDC 

operated in the (+) membrane orientation and under an external electrical load of 500 

Ohms.  The design of experiment matrix (Table 5.3) shows the measured response along 

with the two levels of the variables coded such that a minus one (-1) represents the low 

level and a plus one (+1) represents the high level.  These variables and coded levels 

were chosen based on previous experiments and practical considerations anticipated to be 

encountered in the field for an operational seawater concentration cell. 

Table 5.3 Engineering Design Test Results with 500 Ohm External Loading 

Run ESA MEM CONC TEMP Date Temp 

 °C 

Cell Voltage

 (mV DC) 

1 80 (-1) FUM (-1) 1:100 (-1) L (-1) 10/29/07 4.6 3.4 

2 40 (1) FUM (-1) 1:100 (-1) H (1) 11/03/07 38.9 38.3 

3 80 (-1) MII (1) 1:100 (-1) H (1) 1/26/08 38.9 23.6 

4 40 (1) MII (1) 1:100 (-1) L (-1) 1/23/08 3.6 4.1 

5 80 (-1) FUM (-1) 1:10 (1) H (1) 10/31/07 40.4 5.6 

6 40 (1) FUM (-1) 1:10 (1) L (-1) 10/30/07 4.5 5.9 

7 80 (-1) MII (1) 1:10 (1) L (-1) 9/27/07 3.1 3.6 

8 40 (1) MII (1) 1:10 (1) H (1) 10/18/07 38.9 26.1 
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5.9.2 DoE Predictive Model Results 

 

 The results of this seven (7) Degree of Freedom (DoF) analysis were used to 

develop an equation which shows the cell parameter inter-relationships between ESA, 

MEM, CONC, and TEMP. 

 

E1 = 13.825 + 4.775*ESA + 0.525*MEM – 3.525*CONC                                Equation 8 

 + 9.575*TEMP – 4.025*ESA*MEM + 0.925*ESA*CONC + 4.025*ESA*TEMP 

 

Inspection of Equation 8 shows that cell temperature is the most important independent 

factor affecting cell output voltage and the interaction between ESA and CONC the least 

important.  In order to obtain Standard Error (SE) and 95% CI data, the lowest 

contributing 2-way interaction effect was removed and a 6 DoF analysis re-run with the 

resulting predictive equation presented in Equation 9. 

 

E1 (SE) [± CI] = 13.825 + 4.775*ESA + 0.525*MEM – 3.525*CONC             Equation 9 

 + 9.575*TEMP – 4.025*ESA*MEM + 4.025*ESA*TEMP 

 

In equation 8, the values of ESA are either -1 (low, 80 mesh) or +1 (high, 40 mesh); 

values of MEM are either (low, Fumasep®) or +1 (high, MII); values of CONC are either 

-1 (low, 1:100) or +1 (high, 1:10); and values of TEMP are either -1 (low, 5 °C) or +1 

(high, 40 °C).  With 80 mesh electrodes, MII membrane, 1:10 Concentration, and Room 

Temperature (RT), Equation 9 predicts: 
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 E1 = 13.825 + 4.775*(-1) + 0.525*(+1) – 3.525*(+1) + 9.575*(0) – 4.025*(-1)*(+1) + 

4.025*(-1)*(0) = 10.1 mV (2.068) [-16.2, 36.36].   

 

This compares favorably to the actual measured result of 15.5 mV for this condition.  

Additional related 6 DoF SAS DoE analysis information is presented in the following 6 

figures, Figures 5.42 to 5.47 which comprise the full report.   
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Figure 5.42 SAS 6 DoF Input Model Data (1 of 6) 
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Figure 5.43 SAS 6 DoF Input Model Data (2 of 6) 
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Figure 5.44 SAS 6 DoF Predicted Model Results (3 of 6) 
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Figure 5.45 SAS 6 DoF Predicted Model Results (4 of 6) 
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Figure 5.46 SAS 6 DoF Predicted Model Results (5 of 6) 
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Figure 5.47 SAS 6 DoF Predicted Model Results (6 of 6) 
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5.9.3 Measured Test Data vs. Predicted 6 DoF Model Results 

 

  Examination of the DoE main effects plot for E1 reveal that the membrane end 

use type, manufacture, and physical characteristics made very little difference in the cell 

output performance.   Temperature was the major parameter evaluated, as indicated in 

both the E1 main effects and Pareto plots. 

 

  Additional data analysis and testing was performed, using the easier to use MII 

membrane, to quantify the model skill vs. actual loaded measured cell performance vice 

operational temperature and solution concentration gradient.  Modeled data input values 

were computed using Equation 6, and are displayed in Table 5.4 along with the 

corresponding measured cell data.  All data is presented in Figure 5.48 along with the 

standard error and 95% CI bars. 
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    Table 5.4 Measured Test Data vs. Predicted 6 DoF Model Results 

Run ESA MEM CONC 
Temp

 °C 
Type Date 

Cell Voltage

 (mV DC) 

1 80 (-1) MII (1) 1:10 (1) 3.95 Model 8/1/08 4.5 

2 80 (-1) MII (1) 1:10 (1) 21.63 Model 8/1/08 10.1 

3 80 (-1) MII (1) 1:10 (1) 39.3 Model 8/1/08 15.6 

4 80 (-1) MII (1) 1:10 (1) 3.1 Measured 9/27/07 3.6 

5 80 (-1) MII (1) 1:10 (1) 21.8 Measured 2/22/08 15.4 

6 80 (-1) MII (1) 1:10 (1) 36.8 Measured 2/23/08 24.6 

7 80 (-1) MII (1) 1:100 (-1) 3.95 Model 8/1/08 11.6 

8 80 (-1) MII (1) 1:100 (-1) 21.63 Model 8/1/08 17.1 

9 80 (-1) MII (1) 1:100 (-1) 39.3 Model 8/1/08 22.7 

10 80 (-1) MII (1) 1:100 (-1) 3 Measured 1/31/08 8.4 

11 80 (-1) MII (1) 1:100 (-1) 22.3 Measured 2/15/08 15.4 

12 80 (-1) MII (1) 1:100 (-1) 38.9 Measured 1/26/08 23.6 

 

  Analysis of Figure 5.48 reveals that a ten-fold increase in cell temperature (4 to 

40 °C) for an 80 Mesh electrode resulted in a: 

 

1) Two fold increase in membrane potential (Δ = 11.1 mV) with a 1:100 

concentration difference, slightly less than predicted by Nernst (Δ = 14.3 mV), 

2) Four (4) fold increase in membrane potential (Δ = 11.1 mV) with a 1:10 

concentration difference, slightly more than predicted by Nernst (Δ = 7.5 mV).  
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Figure 5.48 Measured Test Data vs. Predicted 6 DoF Model Results 

 

  The predicted loaded cell membrane potential is fairly linear with a consistent 

offset between 1:10 and 1:100 concentration differences.  Measured results indicate that 

although generally matching the predicted values, the magnitude of the variation is less 

and then only at the min/max temperatures – no difference was noted with concentration 

variations at room temperature with the MII membrane.  All measured values under load 

are significantly lower than the OCV values predicted by via the Nernst equation. 

   

  Equation 9 predicts a 15% increase in E1 for a 40 mesh electrode over an 80 mesh 

electrode at a 1:10 concentration ratio and similarly a 9% increase at a 1:100 

concentration ratio.  Recalling that the 40 mesh electrode should have 11% more surface 
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area than the 80 mesh electrode, this provides an indication of the DoE model skill while 

confirming both that an increase in surface area results in a better charge collector and the 

near-linear relation with concentration ratio. 

 

5.10 Micro Electrical Mechanical Systems Suitability Discussion  

 

  A comparison of energy sources for nano and micro systems and energy 

harvesting applications is presented in Figure 5.49. 

 

 

 

 Figure 5.49 Comparisons of Energy Sources for Energy Harvesting Applications 
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Table 5.3 measured cell output test result average resulted in: 

 

1) Average Measured Instantaneous Current = 2.77E-05 Amps  

 (0.028 milli Amps or 28 micro Amps), 

2) Average Measured Instantaneous Voltage =  0.0138 Volts (13.8 mVolts) ,  

3) Average Measured Instantaneous Power = 3.8E-7 Watts 

(0.38 micro Watts or 382 pico Watts). 

 

In Comparisons from Figure 5.49:  

 

1) Meso-scale low cost Pico Radio limits power dissipation from picoWatts/cm2 to 

100microWatt/cm2 for energy scavenging target,  

2) MEMS-device operations falls between picoWatts/cm2 to Watts/cm2, 

3) Standard solar cells produce 15 milliWatt/cm2 in bright sun, 1 milliWatt/cm2 when 

averaged over 24 hours, 6 microWatt/cm2 inside a typically illuminated office, 

4) Methanol Micro-Fuel Cell operational targets to match Li-ion polymer in cell phone 

applications are between 150 - 200 milliWatt/cm2,  

5) Traditional PEM based fuel cells are between 300 - 500 milliWatt/cm3.  

 

  In Summary:  All though the industry trend is toward lower power devices, 382 

picoWatts is Orders of Magnitude below target PEM or Methanol Micro-Fuel Cell or Li-

ion polymer cell phone batteries.  It is, however, in the low range of nano/MEMS or 

Energy Harvesting Devices. 
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Chapter 6 
 

Summary and Future Research 

 

The focus of this Ph.D. research effort was to address the concept, research and 

evaluation of a Bi-Polar membrane based seawater concentration cell and its sutability as 

a low power energy source for Energy Harvesting nano/MEMS devices.   

 

In support of this, increased technical understanding into the membrane, ionic, 

environmental, and electrochemical effects on the generated membrane current and 

potential of a Bi-Polar membrane based, seawater concentration cell was developed.  This 

was done thru: the use of equivalent circuit modeling to establish membrane, electrode 

processes and kinetics; an evaluation of pertinent factors effecting cell output 

performance followed by screening experiments to reduce the number of factors to a 

manageable quantity for testing; and a Design of Experiment based fractional factorial 

design analyses with accompanying performance testing to determine a predictive cell 

output performance optimized model in terms of pertinent input parameters tested.   

Modeled performance output was then compared to actual test measurements with 

nominal output values compared against other types of energy sources for nano and 

micro systems and energy harvesting application.  The final results confirmed that the 
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average cell output value of 380 picoWatts falls within the power range required for 

MEMS or Energy Harvesting Devices. 

 

Contributions to the field included the development of an increased technical 

understanding into a novel fuel cell based design method and apparatus which uses a 

replenishing concentration differential of ion solutions across a Bi-Polar semi-permeable 

membrane to effect ion mobility and electrical power generation.  The feasibility and 

applicability of this Bi-Polar membrane based Dialytic Power Generator was in turn 

evaulated as a power source for low power systems such as energy harvesting devices, 

where it is impossible or impractable to provide wired or traditional battery power. 

 

During the testing process, the following specific contributions were identified: 

 

1) Confirmed the Ag wire mesh electrode functioned simply as charge collectors and the 

material selection, design, and ruggedness is suitable for subsequent field testing, 

 

2) Identified membrane swelling and linkage of the “openings” present in used CEM 

and AEM membranes that can account for the measured Cl- co-ion/counter-ion 

migration across the Bi-Polar membrane from the concentrated to dilute sides of the 

functioning Bi-Polar concentration cell, 

 

3) Determined that for maximum potential output, the cell needs to operated in what is 

typically referred to as the (+) Bi-Polar membrane orientation, that being with the 
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concentrated solution in contact with the Bi-Polar membrane AEM side and the Bi-

Polar membrane CEM in contact with the dilute solution side, 

 

4) Determined that Anomalous Positive Osmosis and co-ion/counter-ion migration 

effects are occurring simultaneously across the Bi-Polar membrane, 

 

5) Determined an insensitivity in cell output performance due to changes in fluid 

pumping speed across the flow rates tested, 

 

6) Determined that although OCV variations occurred with cell agitation, the affects 

were small under load with equilibrium quickly reached once agitation is removed, 

 

7) Determined that Bi-Polar membrane concentration cell operation under external 

loading can not be described adequately by the Nernst equation, 

 

8) Determined that membrane end use type/manufacture made very little difference and 

that temperature was the primary driving factor in terms of the cell output potential,  

 

9) The Bi-Polar membrane seawater concentration cell under an external electrical load 

produced a near constant current output across the load conditions tested,  

 

10) The Bi-Polar membrane seawater concentration cell under an external electrical load 

operates as an electrolytic capacitor when operated in a fuel cell configuration, 
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In general, although small in output power, when under external load, the cell was found 

to produce repeatable results while relatively invariant to concentration variations and 

overall motion.  All good characteristics for a Dialytic based sea water concentration cell 

power generator. 

 

Significant progress was made during this research effort.  Additional research is 

planned to continue this progess to futher develop the concept into a functioning energy 

generation system.  This research would entail investigating output performance changes 

through: changes in cell design and size scalability; differing configuration combinations; 

and alternate electrode selection.  In addition,  the possible existance of Bi-Polar 

Membrane “water splitting” effects will be examined. 
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