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ON-CHIP NETWORK-ENABLED MANY-CORE ARCHITECTURES  

FOR COMPUTATIONAL BIOLOGY APPLICATIONS 

 

Abstract 

 

by Turbo Majumder, Ph.D. 

Washington State University 

May 2013 

 

Chair: Partha P. Pande 

 

Large-scale integration of multiple cores on a single chip is the current 

answer to the challenge of attaining higher computation throughput while 

restricting power consumption within acceptable limits. Network-on-Chip (NoC) 

is an emerging paradigm that can efficiently support integration of a massive 

number of cores on a chip by decoupling the on-chip computation and 

communication infrastructure, thereby overcoming scalability issues faced by 

conventional buses. 

Many scientific computing disciplines, such as computational biology, have 

seen a significant increase in the availability of parallel algorithms and high-

performance computing (HPC) tools owing to high runtime complexities and/or 

the data-intensive nature underlying the computation. Software-only solutions 

are likely to be inadequate, creating the need for hardware accelerators. This 

dissertation explores the design and development of highly optimized NoC-based 

hardware accelerators for a particular class of biocomputing applications, viz. 

phylogeny reconstruction, which is important for evolutionary inferences in 

computational biology. 

This dissertation focuses on two computationally distinct phylogeny 

reconstruction approaches to demonstrate that NoC-based many-core platforms 

can deliver orders of magnitude reduction in time-to-solution, compared to 
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existing approaches. The Maximum Parsimony (MP) phylogeny reconstruction 

problem can be reduced to one of solving numerous instances of the classical 

Traveling Salesman Problem (TSP). 99% of the total software runtime is spent in 

computing TSP instances, whose solution typically involves an application of 

branch-and-bound runtime heuristics. This dissertation presents the design of 

many-core systems with core-level pipelined micro-parallel architecture and 

different interconnection topologies to achieve significant speedup and energy 

efficiency. In Maximum Likelihood (ML) phylogeny reconstruction, the improved 

quality of result comes at a higher computational cost, as this approach involves 

optimization over multi-dimensional real continuous space. We present NoC-

based hardware accelerators that target function kernels contributing to a bulk 

of the runtime. These platforms combine novel ideas and approaches, such as 

space-filling Hilbert curves, parallelized core allocation schemes, and 3-D 

integration. We also explore the use of long-range on-chip wireless links on 

existing regular topologies to reduce network diameter, thereby reducing the 

average communication latency between cores. These platforms have the 

potential to serve a broader class of throughput-oriented HPC applications. 
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1. Introduction 

Computing research has become a vital cog in the machinery required to 

drive biological discovery. Computing has made possible significant 

achievements over the last decade, especially in the genomics sector. This has led 

to immense interest in the field of computational biology. Applications in this 

field can be classified into those based on combinatorial optimization and those 

that are simulation-based. The former category includes sequence alignment of 

genomes and phylogenetic tree reconstruction based on aligned DNA or protein 

sequences. The latter category includes molecular dynamics and molecular 

docking. All of these applications are data-intensive or compute-intensive. The 

usual approach has been to carry out data processing for these applications in 

software. However, with large amounts of biological data available, the software-

only approach has become infeasible owing to inordinately large run-times 

involved. An emerging area is the investigation of hardware accelerators for 

speeding up the massive scale of computation needed in such large-scale 

biocomputing applications. Various hardware platforms, such as Field 

Programmable Gate Array (FPGA), Graphics Processing Unit (GPU), Cell 

Broadband Engine (CBE) and multi-core processors are being explored. Figure 

1.1 summarizes the current state of the art. 

The target of this thesis is the design and evaluation of multicore-based 

hardware accelerators for phylogenetics. Phylogenetics is the study of 

evolutionary relationships among organisms based on their underlying genetic 

content. The term genome is a collective reference to all the DNA in the living 
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(Image credits (1) http://www.tolweb.org/tree/ (2) http://www.ks.uiuc.edu/Research/STMV/ (3) 
http://wwwcs.uni-paderborn.de/~lst/HotDock/) 

Figure 1-1: Biocomputing applications benefiting from hardware acceleration  

 

 

cell of an organism and phylogenetic tree construction is the process of building 

an evolutionary tree based on the similarities and differences observed among 

the genomic DNA of a set of species. It is a fundamental problem in 

computational molecular biology with important applications that include drug 

discovery. In this tree, the leaves represent species (known) and the internal 

nodes represent common ancestral species (unknown). Until a decade ago, only a 

handful of genome sequences were available and therefore the knowledge 

regarding evolutionary trees was limited. However, with the recent advances in 

DNA sequencing technologies, sequence information for more than a thousand 

species is now available in public databases and more large-scale sequencing 

efforts are currently underway. Owing to this deluge in genomic information, the 

computational biology community has embarked on a project called the Tree of 

Life, which is an ambitious project to construct the evolutionary tree connecting 

all known species. The single largest impediment to this project is, however, the 
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Figure 1-2: Phylogenetic tree showing members of the dog family  

Reproduced with permission from K. L. Toh et al, “Genome sequence, comparative analysis 
and haplotype structure of the domestic dog”, Nature 438, 803-819 (8 December 2005) 

high computational costs associated with building phylogenetic trees [1]. Figure 

1.2 provides an example of a typical phylogenetic tree. 

The process of inferring the phylogeny of a set of k taxa (or species) entails 

reconstructing a phylogenetic tree based on distance or probability measures [2]. 

Most approaches for phylogenetic tree reconstruction are based on Neighbor 

Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) and 

Bayesian Inference (BI). When the relative ordering of genes on a genome is 

known, then a specific type of phylogeny called the breakpoint phylogeny can be 

computed, based on the breakpoint distance. Given a reference set of m genes 
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{g1,g2,…gm}, any genome can be represented by an ordering of the subset of genes 

that constitute it, as they appear from end to end of the genomic DNA. The 

breakpoint distance between any two genomes is defined as the number of gene 

pairs that appear adjacent in one genome but not in the other. It is a measure of 

how different two genomes are by their gene ordering. Blanchette et al. 

pioneered the work on breakpoint-based phylogeny [3]. They reduced the 

problem of constructing an optimal phylogenetic tree of N genomes to one of 

solving numerous instances of a version of the Traveling Salesman Problem 

(TSP) [4] where edge-weights of the input graph are bounded to a fixed set of 

integer values. Put intuitively, each instance of TSP tries to identify the gene 

order of a hypothetical ancestral genome that is the closest representative to any 

three given genomes. This problem is called the 3-median breakpoint problem 

and has been proven to be NP-Hard [5]. This is the primary method used in MP 

(breakpoint) phylogenetic tree reconstruction. 

Probability-based approaches for phylogenetic inference, like ML and BI, 

provide the most accurate estimate of evolutionary relationship among species. 

These methods use one of several probabilistic models of evolution, e.g., Jukes-

Cantor [6], Kimura-2P [7], HKY85 [8] or General Time Reversible (GTR) [9], 

[10]. They provide a statistical likelihood score for each reconstructed tree using 

the Phylogenetic Likelihood Function (PLF) [11], [12]. The boost in quality, 

however, comes at a high computation cost as both ML and BI formulations are 

NP-Hard [13] and suffer from the need to explore an super-exponential (in k) 

number of trees before they come up with an answer. Therefore, they need to rely 

on algorithmic heuristics and high-performance computing for achieving 
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practical solutions. The increasing availability of genomic data has only 

exacerbated the situation. 

Methods for phylogenetic tree reconstruction are either data-intensive or 

computation-intensive, or both. Most approaches for solving such problems rely 

on the use of parallelism, which divides the problem into a large number of 

smaller semi-independent sub-problems that can be computed concurrently. The 

key points to note here are the requirements of  

(a) a large number of computation cores (to deal with each sub-

problem or a set of sub-problems), and 

(b) effective (i.e. low-latency) communication among cores (to 

exchange information among semi-independent sub-problems).  

Network-on-Chip (NoC) is an emerging paradigm for large scale system 

integration on a single chip. Instead of the bus-based communication 

architecture in multi-core System-on-Chips (SoCs), the NoC-based solution 

proposes a communication infrastructure where various cores exchange data 

with the help of switches/ routers and links. These platforms mitigate the inter-

core communication bottlenecks that appear with larger number of cores on a 

single chip, thereby enabling integration of more components. Applications 

involving many computation kernels communicating with one another are 

typically benefited from a NoC-based platform. Most phylogenetic tree 

reconstruction applications (e.g., MP, ML, BI, etc.) fall under this category. 

Hence, NoC-based platforms are a natural choice when attempting to accelerate 

these applications. 
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1.1 Contributions 

The principal contributions in this dissertation are: 

(1) Design and evaluation of NoC-based platform for MP (breakpoint) 

phylogeny reconstruction, which comprises core and on-chip network 

design, and benchmarking against existing approaches. We achieved a 

speedup of over 8430x over multithreaded software, which represents 

almost an order of magnitude improvement over existing hardware 

acceleration solutions (~1005x, see Table 1). 

(2) Design and evaluation of NoC-based platform for accelerating targeted 

kernels in ML phylogeny reconstruction, which comprises core and on-chip 

network design, and design and evaluation of different NoC architectures 

(including 3D NoC) and job allocation policies. We achieved function-level 

speedups of up to 847x, and aggregate speedup of the targeted kernels 

exceeding 6500x over baseline software runs, which represents an order of 

magnitude improvement over existing hardware acceleration solutions 

(~381x, see Table 1). 

(3) Design and evaluation of NoC-based platforms for throughput-oriented 

scientific applications, and subsequently using the model to study the 

effect of using long-range on-chip wireless links in conjunction with 

different resource allocation strategies on reducing the overall on-chip 

communication and enhancing computational throughput. We have been 

able to achieve a computation throughput of 1011 operations per second, 

with each operation consuming ~0.5 nJ. 
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In the following, we elaborate on the significance of the contributions. 

1.1.1 Accelerating Maximum Parsimony Phylogenetic Tree Reconstruction 

Our principal contributions here are as follows: 

a) We designed a NoC-based platform for computing breakpoint phylogeny 

by solving multiple instances of TSP using branch-and-bound method. Our 

architecture provides for efficient run-time and memory management. We 

have been able to achieve significant speedup over multi-threaded 

software, up to a high of 8430x for some inputs. 

b) We compared two important NoC network topologies – mesh and quad-

tree – in terms of run-time and energy performance, and conclusively 

showed that quad-tree provides better communication latency and energy 

performance. 

c) We designed and evaluated a wide range of synthetic test cases to 

establish a relationship between properties of input data and performance 

of our design. We also correlate the performance obtained using real 

genomic data to these observations. Our experiments show that our 

platform is able to provide an order of magnitude speedup over existing 

hardware accelerators, especially when the input genomes are widely 

disparate. 

1.1.1.1 Significance 

In the case of MP (breakpoint) phylogenetic tree reconstruction, over 99% 

of the software run-time is spent in computing instances of TSP [14]. TSP is a 

widely studied NP-Complete problem for which several heuristics have been 
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explored [15], [16], [17], [18], [19], [20], [21] and branch-and-bound methods [21],  

[22] continue to be the most popular among accurate solvers, owing to their 

effectiveness in reducing the super-exponential search space. The run-time 

heuristic, which itself is computationally intensive, is an ideal candidate for 

parallelization. An array of processing elements (PEs) working in parallel on 

distinct parts of the solution would naturally enhance performance. However, 

these PEs cannot work in isolation and need to communicate amongst 

themselves. This communication needs to be efficient and synchronized with the 

computation operation of the PEs. To achieve this in an on-chip scenario, a 

platform possessing inherent fine-grained, large-scale parallelism and an 

efficient communication fabric needs to be chosen. It is clear that a NoC-based 

solution provides the best fit to this requirement. On one hand, a NoC scales 

very well with increasing number of PEs; on the other hand, it offers the user the 

freedom to choose the communication architecture that is most apt for a target 

application. In this perspective, our contributions mentioned above have been 

able to deliver significantly shorter time-to-solution while being energy-efficient. 

1.1.2 Accelerating Maximum Likelihood Phylogenetic Tree Reconstruction 

Our principal contributions in this case are as follows: 

a) We designed a processing element that is efficiently able to compute the 

floating-point arithmetic operations and elementary functions related to 

ML function kernels. 
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b) We designed a NoC-based platform with a folded-torus network where 

each node contains a subnet of four crossbar-connected processing 

elements. 

c) We designed novel job allocation schemes based on Hilbert space-filling 

curves to allocate nodes of the NoC to different requesting functions in a 

time-efficient manner with a view to minimizing overall application 

latency. 

d) We explored and evaluated the performance of 3D NoC architectures, and 

demonstrated their superiority over 2D NoCs in terms of speedup and 

energy-efficiency. 

e) We achieved function-level speedups of up to 847x, and aggregate speedup 

of the targeted kernels exceeding 6500x over baseline software runs. 

These represent more than an order of magnitude improvement with 

respect to existing hardware accelerator solutions. 

1.1.2.1 Significance 

Phylogenetic inference based on ML present a more challenging problem 

as far as hardware acceleration is concerned. Not only are their computation 

trees larger, each of their computation kernels involves a much larger amount of 

computation than in breakpoint phylogeny. In addition, all computations for 

these methods involve floating-point numbers, unlike those in MP phylogeny. 

ML methods have a wider usage among biologists and hence there has been 

considerably more research on this topic. These methods employ several 

computations of PLF through a class of functions we call phylogenetic kernels. 
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These kernels are composed of several instances of logarithm, antilogarithm and 

sum-of-products (vector product) computations. In terms of software run-time, 

the kernels account for more than 85% of the total run-time of the application. 

Our approach on this has been to distribute the kernel computations across cores 

of the NoC. This distribution is a deciding factor in determining the overall 

latency of the applications. Hence, novel methods of core allocation have been 

used and difference NoC integration approaches have been studied to achieve 

optimum performance. 

1.1.3 High-Throughput, Energy-Efficient NoCs with On-Chip Wireless Links 

Our principal contributions here are as follows: 

a) We designed and evaluated NoC-based platforms for throughput-oriented 

scientific applications that consist of concurrently executing jobs with 

variable computation footprint. 

b) We introduced long-range shortcuts in the NoC via wireless links and 

thereby reduced the average network diameter. We designed and 

evaluated several job allocation schemes based on this architecture. 

c) We achieved a computation throughput of over 1011 operations per second, 

while consuming ~0.5 nJ for each such operation, thereby demonstrating 

that high throughput was attained without compromising on energy-

efficiency. 

d) We evaluated different architectures in terms of their power and energy 

consumption profiles, and established that the architectures delivering the 

highest throughput had favorable power and energy consumption profiles. 
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We also analyzed the correlation of throughput and power consumption 

with the statistical properties of the application traffic. 

e) We carried out chip-level thermal profiling to identify hot-spot distribution 

and correlated them with architecture-level design tradeoffs. 

1.1.3.1 Significance 

High-performance scientific computing tools in emerging application 

domains such as biocomputing demand computation throughputs to scale to 

terascale and beyond. Given the diversity of tools and the need to cater to a wide 

user-base, it has become common practice, even within academic settings, to 

have a dedicated center which hosts a whole range of scientific computing tools 

on a few high-end data servers. The servers can be expected to service requests 

from a variety of applications, each with differing resource requirements, and 

simultaneously support them while delivering high throughput. This server 

could either be based on a cluster of general purpose microprocessors or make 

use of a co-processor consisting of a many-core chip where the cores are designed 

to accelerate targeted operations and are interconnected with an on-chip 

network. 

The choice of the on-chip network architecture is an important 

consideration in the design of a NoC-driven platform targeted at enhancing 

computation throughput. Introduction of long-range links in regular 

architectures like mesh reduces the overall network diameter and improves 

inter-core communication latency. The use of on-chip wireless links to implement 

these shortcuts leads to significant savings in latency and energy, even 
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considering the overhead of wireless transceivers. In this perspective, our 

contribution here is the design and evaluation of NoC-based platforms with long-

range on-chip wireless shortcuts to enhance the computation throughput of 

scientific applications. 

1.2 Organization of the Dissertation 

 The remainder of the dissertation is organized as follows. Chapter 2 

details the prior work in this field. It refers to existing work done for accelerating 

phylogenetic applications using one of MP, ML or BI methods. Chapter 3 treats 

the problem of MP phylogenetic tree reconstruction and the NoC-based solution. 

Sub-sections in chapter 3 deal with the problem statement, the algorithm used, 

design of the PE, network topologies, communication paradigm, application 

mapping and finally experimental results. Chapter 4 details the NoC-based 

platform design targeting ML phylogenetic tree reconstruction. It begins by 

providing a theoretical background of ML and mentioning the available software 

suites. This chapter subsequently describes our core architecture, NoC node, 

network topology, dynamic node allocation methods (including 3D NoCs), routing 

and arbitration, and finally experimental results. In Chapter 5, we propose a 

NoC-driven use-case model for throughput-oriented scientific applications, and 

subsequently use the model to study the effect of using long-range on-chip 

wireless links in conjunction with different resource allocation strategies on 

reducing the overall on-chip communication and enhancing computational 

throughput. In the experimental results, we compare these methods with respect 

to computation throughput, wireless link usage, energy and power consumption, 
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and chip-level thermal profiles. Chapter 6 describes areas that further research 

can explore. Chapter 7 is a list of references. 
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2. Related Work 

2.1 State of the Art in Networks-on-Chip 

 Network-on-chip (NoC) is a paradigm that has recently emerged as an 

alternative to conventional bus-based point-to-point communication 

architectures, in order to deal with the increasing number of components in 

systems-on-chip (SoCs), higher demands on area and performance, and the 

limitations of global interconnects (high latency and energy consumption) with 

technology scaling. One of the earliest proposals for this paradigm can be found 

in Dally and Towles’ seminal paper [23]. Ever since, there has been an ever-

expanding body of work on NoCs in both academia and industry. An example of a 

NoC-based processor designed and manufactured at Intel Corp. can be found in 

[24]. 

 The different aspects of NoC design that has received attention from 

researchers can be categorized into application-level, network-level and 

implementation-level. The reader can refer to [25], [26] and [27] to get a broad-

based understanding of the issues involved.  

At the application-level, traffic modeling has ranged from understanding 

the effect of synthetic traffic patterns [28] to modeling traffic generated by a 

popular application as self-similar traffic [29]. Parameter extraction from 

statistical traffic modeling has been described in [30]. A system of benchmarks 

for NoCs, which covers a wide spectrum of NoC design aspects, from application 

modeling to performance evaluation, has been presented in [31]. A statistical 
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approach to traffic modeling using traffic-load distribution plots that prevents 

overprovisioning for network link capacities is presented in [32]. A statistical 

physics-inspired approach to capture the capture the non-stationary traffic 

dynamics in multicore systems is presented in [103]. Closely related to this is the 

problem of application mapping on the NoC, or partitioning the NoC for multiple 

application requirements. Energy-aware mapping strategies have been 

considered in [33] and [34]. Incorporating floorplan information during 

application mapping is the subject of [35]. A methodology for mapping multiple 

use-cases on the NoC has been developed in [36]. There has been more recent 

work on partitioning the network for reducing message-level contention [37], 

bulk-synchronous parallel programming models [38], and virtualization and 

resource partitioning for traffic isolation [39]. Scheduling of applications on the 

NoC has been carried out with the objectives of enhancing performance (e.g. [40], 

[41]) and lowering power consumption (e.g. [42]), and have employed 

communication-aware voltage selection techniques (e.g. [43]). Similar work has 

been carried out for thermal optimization in 3-D NoCs [44]. 

At the network-level, a wide range of topologies have been proposed and 

studied. These range from simple topologies, such as ring [45] and 2-D mesh [46], 

to custom topologies built using heuristics [47], and complex topologies, including 

hierarchical star [48], mesh-of-tress [49], concentrated mesh [50] and other high-

radix networks [51]. 3-D NoC topologies have been proposed and extensively 

evaluated in [74], [76], [77] and [78]. Introduction of long-range links in the on-

chip network creates topologies that are neither regular nor completely random, 

essentially giving them a Small-World Property [116]. Different routing 
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strategies are explained in detail in [28] and [105]. They include both static and 

adaptive routing algorithms. Among static routing techniques, dimension order 

routing for mesh and e-cube routing for torus [52] are popular owing to their 

deadlock-free nature. Examples of other routing schemes are deflection routing 

[53] and oblivious routing [54]. For NoCs with long-range links, a deadlock-free 

routing strategy is south-last routing which limits the turns a routing path can 

take [115]. 

At the implementation-level, some of the important focus areas have been 

chip layout and metal routing [55] and integration of floorplanning and 

application mapping [47]. An EDA tool for 3-D NoC synthesis was proposed in 

[56]. Clock distribution has been one of the key focus areas, primarily deal with 

the problem of transporting clock signals across significant lengths of 

interconnects to all regions of the chip. An asynchronous clocking approach using 

encoded channels has been demonstrated in [57]. Mesochronous  or globally 

asynchronous locally synchronous (GALS) clocking has been demonstrated in 

[24] and [58]. Recent work has focused on resonant clocking [59] and thermal-

aware clocking [60] approaches. Another area that has seen significant 

contributions is power optimization. Various approaches, such as dynamic 

voltage scaling [61], on-off networks [62] and voltage-islands [63], have been 

proposed. A wide spectrum of power management methodologies has been 

reviewed in [64]. Reduced power budgets and increased sources of crosstalk bring 

into question the reliability of the on-chip communication network [65]. Some 

examples of more recent work focus on maintaining performance QoS by using 
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hop-by-hop retransmission checks and saving power [66] and graceful 

performance degradation in the presence of multiple link failures [67].  

2.2 Hardware Acceleration for Phylogenetics 

Substantial work has been carried out in the field of hardware 

acceleration targeted towards phylogenetics applications. These accelerators 

have been designed using platforms like FPGA, GPU, CBE and general-purpose 

multi-cores (traditional Intel/AMD dual-core, quad-core platforms). Most of the 

work targets probability-based methods like ML or BI because of their obvious 

importance to the biological community. There is some work on MP phylogeny, 

which is often serves as a quick reconstruction method to generate a lot of initial 

trees for “bootstrapping”. 

 Mak and Lam [68] proposed a hybrid hardware/software system for 

solving the phylogenetic tree reconstruction using the Genetic Algorithm for 

Maximum Likelihood (GAML) approach. The genetic algorithm is implemented 

in software and the computationally intensive ML equation is implemented in 

hardware. This work uses a Xilinx Virtex XCV800 FPGA as the hardware 

accelerator and a Pentium 4 PC with 1 GB RAM for running the software. The 

likelihood function is evaluated in parallel in the dedicated FPGA. Their results 

while reconstructing a 4-taxa phylogenetic tree under the Jukes-Cantor Model 

demonstrate an overall speedup of 30 over software and an ML speedup of over 

300, despite the communication overhead of the hybrid system.  This work 

however does not explicitly state how the acceleration scales for larger taxa or 

more realistic complex models like GTR. 
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 Alachiotis et al. explored the use of FPGA for accelerating the computation 

of PLF in [69]. A Xilinx Virtex 5 SX240T with 1056 DSP48E slices has been used. 

The DSP slices have been used to implement double-precision floating point 

multipliers and adders. Due to the limited amount of DSP48E slices on the 

FPGA, several multiplexer units are deployed to optimally exploit the available 

computational resources. A Sun x4600 system equipped with 8 dual-core AMD 

Opteron processors running at 2.6 GHz with 64 GB of main memory was used as 

the baseline. An average speedup of 8.3 over a single core has been demonstrated 

for trees comprising of 4 to 512 sequences on FPGA. The FPGA implementation 

also outperforms OpenMP-based parallel implementation on 16 cores in most 

cases, achieving speedups from 0.96 to 7.46. The projected computational time 

for a full tree traversal using Felsenstein’s pruning algorithm for 512 taxa is less 

than 1 ms, based on reported clock speed of 284.152 MHz. 

 Bakos and Elenis [14] proposed a co-processor design for whole-genome 

phylogenetic tree reconstruction using a parallelized version of breakpoint 

median computation, which is an expensive component of a specialized form of 

MP phylogenetic tree inference (so-called breakpoint phylogeny). The co-

processor uses an FPGA-based multi-core implementation of the combinatorial 

search portion of the TSP algorithm while the TSP graph construction is 

performed in software.  The search tree partitioning is carried out in such a 

manner that each core explores the tree in a different order. This is done to avoid 

complex load-balancing and inter-core communication issues that occur if 

disjoint subtrees are assigned to different cores, because any of them might be 

subject to pruning. Their test system consists of 3.06-GHz Intel Pentium Xeon 
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processor and a single XilinxVirtex-2 Pro 100 FPGA connected to the host using 

a PCI Express interconnect. The best average speedup of 1,005 over software is 

observed using 3 cores. The best overall reduction in execution time is by a factor 

of 417. All these observations are for synthetic data and hence difficult to 

correlate with real-life examples. 

 Randomized Axelerated Maximum Likelihood version VI for High 

Performance Computing (RAxML-VI-HPC) [70] is an efficient parallel algorithm 

based on ML for phylogenetic tree inference. Blagojevic et al. have explored the 

porting, optimization and evaluation of RAxML-VI-HPC on CBE [71]. They carry 

out a detailed empirical optimization of RAxML on CBE, with additional support 

from the runtime environment. Different layers of parallelism have been used – 

task-level parallelism across SPEs, task vectorization within SPEs and/or loop-

level parallelization across SPEs. It is shown that CBE outperforms both Intel 

Xeon and IBM Power5 and is more cost-effective and power-efficient than either 

architecture. However, the sheer complexity of porting the algorithm and the 

various optimizations required for CBE collectively pose a significant roadblock. 

 FPGA-based acceleration up to a factor of 10x has been demonstrated over 

software for Bayesian inference with MrBayes 3 tool in [72]. This paper describes 

a technique for mapping the PLF and supporting logic onto an FPGA-based co-

processor. By leveraging the FPGA’s on-chip DSP modules and the high-

bandwidth local memory attached to the FPGA, the resultant co-processor can 

accelerate probability-based methods. The implementation achieves its 

performance by deeply pipelining the likelihood computations, performing 



20 

Table 1: Performance comparison of hardware accelerators for phylogenetic inference 

Phylogenetic 
tree 

reconstruction 
strategies 

FPGA GPU Cell Broadband Engine General Purpose Multi-
core 

Application 
speedup 

Total 
speedup 

Application 
speedup 

Total 
speedup 

Application 
speedup 

Total 
speedup 

Application 
speedup 

Total 
speedup 

Maximum 
parsimony 

(MP) 

1005 417 - - - - - - 

Maximum 
likelihood (ML) 

381 32 8.5 1.9 12 1.5 12 10 

 

multiple floating point operations in parallel and through a natural logarithm 

approximation that is chosen specifically to leverage a deeply pipelined custom 

architecture. 

 In [73], MrBayes has been used on three different architectures to 

evaluate performance, scalability and programmability. General purpose multi-

core (dual-core and quad-core Intel and AMD) processors and CBE support the 

Multiple Program Multiple Data (MPMD) model while GPUs support Single 

Program Multiple Data (SPMD) model. The PLF in MrBayes is parallelized 

using OpenMP directives for the general-purpose multiprocessors, POSIX 

threads for the CBE systems and Compute Unified Device Architecture (CUDA) 

for the GPU systems. For hardware-managed caches, the sharing of a cache level 

within the chip by all cores is a determining factor for efficient synchronization 

and hence scalability. Systems with software-managed caches like CBE 

compensate the user effort by efficient synchronization mechanisms.  On the 

other hand, there are fewer data transfers between the device memory and CPU 

because GPU has sufficient memory to handle input data. CUDA automatically 

handles data transfer synchronization, thus relieving the user of the 

responsibility of providing any explicit synchronization mechanism. PLF 
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computation speedup is penalized by computation intensity and communication 

overhead inside the multi-cores. Quad-core AMD Opteron, where four cores are 

on a single die and share the same L2 cache, scales better compared to quad-core 

Intel Xeon, which has two L2 caches each shared by a pair of cores. For CBE, 

speedup values are close to ideal for small data sets and performance is stable 

across different computation intensities. Even though SPEs do not share a 

common cache, CBE is more tolerant to synchronization, primarily because it 

relies on user-generated software for this. However, speedup values for large 

data sets and computation intensities are almost equal for general-purpose 

multi-cores and CBEs. GPUs display an increase in speedup as the computation 

intensity increases because they are designed to perform efficient execution of 

small parallel threads in a scenario where the computation-to-data ratio is high. 

In terms of total frequency-normalized execution times, the general-purpose 

multi-core still achieves the best performance. This is based on the sum of the 

time spent in executing the parallel portion of the code (PLF) and that for the 

rest of the code. The degradation in total execution time for CBE is due to the 

fact that the PPE that handles the serial portion of the code is a rather simple 

core with a small cache, in-order execution capability and is burdened with the 

additional responsibility of synchronizing among SPEs. Table 1 summarizes the 

speedups achieved by different hardware accelerators for the MP/ML 

(application speedup) computation and the overall algorithm (total speedup). 

 Currently there are no NoC-based platforms that target phylogenetic tree 

reconstruction, whether MP, ML or BI. In this work, we propose and design 

hardware accelerators targeting MP (in particular, breakpoint) phylogeny and 
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ML phylogeny. In each of these cases, we show that our design has a superior 

performance to the state of the art in terms of absolute speedup provided. 
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3. NoC-Based Accelerator for Breakpoint Phylogeny 

Maximum Parsimony is one of the two principal methods of phylogenetic 

tree reconstruction that we target in this work. The advantage of this method is 

that it provides a quick estimate to a phylogenetic tree structure. When the 

relative ordering of genes on a genome is known, a specific type of MP phylogeny 

called breakpoint phylogeny can be computed, based on the breakpoint distance. 

Prior work of designing hardware accelerators targeting breakpoint phylogeny is 

described in Chapter 2, e.g. [14]. In the following, we describe our NoC-based 

solution that delivers three orders of  speedup over multithreaded software and 

one order of magnitude speedup over other hardware accelerators. To the best of 

our knowledge, this is the first comprehensive NoC-based solution for MP 

(breakpoint) phylogeny reconstruction. 

3.1 Breakpoint Median Problem 

Given a reference set of m genes {g1, g2, …, gm}, any genome can be 

represented by an ordering of the subset of genes that constitute it, as they 

appear from end to end of the genomic DNA. The breakpoint distance between 

any two genomes is defined as the number of gene pairs that appear adjacent in 

one genome but not in the other. It is a measure of how different two genomes 

are by their gene ordering. For example, let us consider two hypothetical 

genomes G1 = g1g2g3g4g5 and G2 = g2g3g5g4g1. According to the definition above, 

the number of breakpoints between G1 and G2 is 2, if we do not consider circular 

adjacency. We can find a set of breakpoint distances where each distance 

pertains to a pair of genomes in the input set. Blanchette et al. pioneered the 
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work on breakpoint-based phylogeny [3]. They reduced the problem of 

constructing an optimal phylogenetic tree of N genomes to one of solving 

numerous instances of a version of the Traveling Salesman Problem (TSP) [4] 

where edge-weights of the input graph are bounded to a fixed set of integer 

values. Put intuitively, each instance of TSP tries to identify the gene order of a 

hypothetical ancestral genome that is the closest representative to any three 

given genomes. This problem is called the 3-median breakpoint problem and has 

been proven to be NP-Hard [5]. 

3.2 Algorithm 

 TSP is a well-researched problem and various approaches have been 

proposed in literature to solve it. These algorithms can be classified into two 

groups – (a) approximation algorithms that could take polynomial time [15], [16], 

[17], [18] and (b) accurate algorithms that run in super-exponential time [21], 

[22]. Techniques used in approximation methods include the Kernighan-Lin 

heuristics, simulated annealing and genetic algorithms [15], [16], [17], [18], [19]. 

Among accurate methods, dynamic programming [22] is super-exponential in 

practice, whereas branch-and-bound methods [21], [22] achieve significant 

pruning of search space during computation without affecting the optimality of 

the output. This method, actually a run-time heuristic, is computationally 

intensive but is easily parallelized. Coarse-level parallelization of TSP has been 

explored using genetic algorithms [19] and branch-and-bound [1], [20].  
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Figure 3-1: An example showing (a) the exhaustive search tree corresponding to the input 
graph in (b). If the tree is computed in the Depth First Search order, then evaluation of the 
path that leads to a low cost (such as u1-u2-u6-u7-u8) first may help in pruning the 
computation of a higher cost path (such as u1-u9-u13-u14-u15). This idea is exploited in the 
branch-and-bound technique. 

 

 

 

 

 

3.2.1 Branch-and-Bound Method 

 In this section, we present the core computation steps of the branch-and-

bound run-time heuristic to solve TSP that we used in our implementation. The 

input is a directed graph, G = (V,E) with m vertices and a non-negative cost 

associated with each edge. The m vertices of this graph correspond to the m 

reference genes and its edges have a bounded weight – an integer cost between 0 

and 3, or an edge with cost ∞ (representing nonexistent edges) [3]. The output is 

a least cost cyclic tour that traverses all vertices exactly once. 

 The overall algorithm has a worst-case runtime complexity that is super-

exponential in the number of vertices (i.e., genes). However, the use of branch-

and-bound technique reduces this search space significantly for most practical 

inputs. For example, for m=110, which represents a typical input genome size for 
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Figure 3-2: Flow diagram showing steps of the branch-and-bound method 

 

 

bacterial genomes, the theoretical number of “reductions” is ~10178 while the 

maximum number of such operations observed in our experiments in ~109. 

 Given this input graph G, the solution space can be represented by a 

conceptual computation tree. An example is shown in Fig. 3.1. The tree has a 

total of (m-1)! potential paths to be explored before identifying the optimal TSP 

tour. Every tree-edge (u,v) from a parent node u to a child node v corresponds to 

a graph edge (i,j) ∊ E, and every path from the root to a leaf node encodes a 

completed TSP tour with cost equal to the sum of the edge weights along its 

path. An optimal TSP tour represents a least-cost path. Our algorithm 

dynamically generates and explores this conceptual search-space tree in the 

depth-first-search (DFS) order. 

 Initially, a global variable called best_cost is initialized to ∞; this variable 

is dynamically updated to keep track of the least cost over all TSP tours 
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examined so far at any stage of the algorithm. At every step, the algorithm 

evaluates the next eligible tree-edge in the DFS order as explained below and 

also shown in Fig. 3.2. 

 At any given step, consider the newly included tree-edge to be from node u 

to node v, and the cost of the corresponding graph edge (i,j) to be cij. Let c*(v) 

denote the cost of the least cost TSP tour passing through node v.  There are two 

possibilities for v: 

 If v is a leaf, then c*(v) is set equal to the net cost of the path from the root 

node to v. Subsequently, if c*(v)<best_cost then best_cost is updated to c*(v). 

 If v is an internal node in the search tree, a lower bound for c*(v) is 

computed using a matrix reduction operation. If the computed lower bound 

(lbc(v)) is observed to be greater than or equal to best_cost, further exploration of 

the subtree under v becomes unnecessary and so the subtree is pruned and the 

computation returns to the parent node u; otherwise, the DFS is continued under 

v’s subtree. 

3.2.1.1 Lower Bound Calculation 

 We use the method shown in [22] for lower bound computation at each 

tree-edge. An m ⨉ m matrix called the reduction matrix (R) is maintained 

throughout execution. Initially, the matrix at the root node is set equal to the 

cost matrix defined by E. At any step of the DFS, lbc(v) is calculated as follows: 

1) All entries in row i and column j of R is set to ∞; 

2) R[j,1] is also set to ∞; 
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3) All rows and columns that contain at least one non-infinity value are 

reduced as follows:   

(a) Given row i, compute mini = min{R[i,j]} for all 1≤j≤m;   

(b) Then for all 1≤j≤m, R[i,j] = R[i,j]-mini;  

(c) Similarly, given column j, compute minj = min{R[i,j]} for all 1≤i≤m;  

(d) Then for all 1≤i≤m, R[i,j] = R[i,j]-minj  As this is done, all subtracted 

values (i.e., the minimum values) are accumulated into another variable adjCost.  

4) Subsequently, the lower bound is given by: lbc(v) = lbc(u)+R[i,j]+adjCost. 

3.2.2 GRAPPA 

 A software suite called Genome Rearrangements Analysis under 

Parsimony and other Phylogenetic Algorithms (GRAPPA) [85] computes an 

exhaustive search across all possible trees for k taxa (3*5*7*…*(2k-5) trees) and 

iteratively runs multiple instances of a TSP solver for scoring each tree. It is 

widely popular for MP phylogenetic tree reconstruction in software and is used 

as the basis for hardware acceleration in [14]. GRAPPA can be run in single-

threaded and multi-threaded modes. We use multi-threaded GRAPPA runs as 

reference for benchmarking the performance of our NoC-based solution. 

3.3 Core Architecture: PE Design 

 The problem of MP (breakpoint) phylogenetic tree reconstruction using 

branch-and-bound technique naturally lends itself to parallelization using a 

divide-and-conquer approach by subdividing the solution-space tree into 
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independent subtrees. A PE computes one subtree at a time and considers 

pruning based on the best cost available from its peers. As this requires a good 

combination of parallelism and inter-core communication, NoC provides an ideal 

platform owing to its inherent parallel architecture, customizability of its core 

and its efficient communication infrastructure. We designed and implemented 

the PEs and the on-chip communication network for this NoC. Two types of 

communication infrastructure were explored. One is a regular mesh network. 

The other is a hierarchical four-way tree or quad-tree. 

 The PE has a pipelined architecture optimized to handle the computation 

along an edge as per the algorithm described in 3.2.1. Since the PE carries out 

the most computationally intensive part of the whole operation, our attempt has 

been to optimize its architecture to ensure that the number of clock cycles 

required scales nicely with increasing graph size (number of vertices, m). The 

primary performance parameter is timing, which aims at reducing application 

run-time and overall latency. To achieve this, we designed our PE for O(m) time 

complexity, as discussed further in 3.3.1. Our PE has an integer datapath 

because breakpoint median computation for MP (breakpoint) phylogenetic tree 

reconstruction consists entirely of integer operations. The principal components 

of the PE are a reduce block and peripheral control logic, each of which is 

described in detail below. We use the short-form lg k to denote log2k. The 

datapath consists of the following fields (m: number of vertices, w: maximum 

edge weight). 

a.  x – the parent node (u) uses lg m bits 
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Figure 3-3: Internal architecture of processing element 

 

 

b. y  –  the child node (v) uses lg m bits  

c. LBC – the lower bound cost (lbc(u)) estimate at an edge; this requires lg m 

+ lg w + 1 bits 

d. EPC – the exact path cost (lbc(u)+R[i,j]) determined so far; takes lg m + lg 

w + 1 bits 

e. TSP – the TSP adjacency matrix (R), flattened. Its representation takes 

m2*lg w bits. 

f. VLST – the current list of vertices traversed; m*(lg m) + 1 bits are required 

to store this field. 
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Figure 3-4: Internal architecture of reduce block (ρ) for linear-time matrix reduction 

g. CC – the candidate children at every stage; takes m bits 

 As is evident, the datapath complexity of the hardware is O(m2). In our 

approach, breakpoint distances can range from 0 to 3, which is the range of the 

valid weights we used. We used the weight 4 to denote a non-existent edge or ∞. 

A different range of weights just changes the number of bits for w. A block 

diagram of the PE is shown in Fig. 3.3. Subsequent references to the sub-blocks 

in parentheses (e.g. ρ, φ, etc.) in this sub-section refer to this figure. 

3.3.1 Reduction Block 

 This block (ρ) carries out the matrix reduction operation described in 3.2.1. 

Based on the algorithm, the run-time of the operation is a function of the matrix 

size, i.e., O(m2).  This operation consumes the maximum fraction of the total time 
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required for an edge computation. Hence, a significant amount of time is saved 

by suitably optimizing its design. Our implementation achieves O(m) cycle time 

by using micro-level parallelism inside the reduce block. This has the effect of 

drastically reducing the total time as well as providing better time-scalability 

with increasing input graph size, m. 

 The matrix is reduced using the new values of x and y in stage2 (see 3.3.2 

for details on the operations up to this stage) and the adjacency cost adjCost is 

obtained. Fig. 3.4 shows the architecture of reduce block. The flattened TSP 

matrix is initially reorganized into rows and columns in the component denoted 

as matrix. There are m rows and m columns with each entry taking up lg w bits. 

The register bank minval of width m*(lg w) is initialized with a bit pattern 

representing infinity (3’b100 as mentioned earlier). A counter is used as a state 

machine controller. There is an m-sized bank of comparators that compare one 

element from every row or column in every cycle. Minimum value calculation for 

all rows and the same for all columns take m cycles each. Additional three cycles 

are required for subtraction of the minimum values, for calculation of the final 

adjCost and for control operations for each case (row and column blocks). The 

entire reduction operation takes 2*(m+3) cycles to complete. 

3.3.2 Peripheral Control Logic 

 The peripheral control logic is used for vertex selection, cost comparison 

and data management. The register bank for the first stage is stage1, which has 

the same width as the datapath. The input control multiplexer initially switches 
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to select the current vertex data. The CC field is computed (φ) from VLST in m 

cycles in the worst case. 

 In the second stage, the candidate child is found by scanning (γ) CC of 

stage1. Again, this requires m clock cycles in the worst case. Using this 

candidate child, VLST is updated (B) for the child node in the graph. If it is not a 

leaf node (A), the candidate child becomes the next child node, while the current 

node (y of stage1) becomes the parent node x of stage2. During the same stage, 

the data pertaining to the best case obtained so far is fetched into stage1. The 

input multiplexer now selects the lowest cost data (global best cost) available to 

the PE at this time. At this stage, TSP of stage1 gets the original TSP matrix. 

 The current value of the exact cost of the path found so far, EPC is updated 

by adding to it the edge cost from x to y in the original adjacency matrix. This is 

checked against global best cost and reduce operation is started only if EPC is 

lower. The sum of adjCost (obtained from reduce operation) and EPC yields the 

lower bound cost, LBC, which is again compared with the best cost found so far. 

If EPC or LBC is larger than the current best cost, the tree is pruned (E), the 

current child is aborted and the path through another child is explored. The data 

on stage2 is reloaded back to stage1 with the old value of x and a new calculation 

for the candidate child. If LBC is smaller and we have not reached a leaf node, 

normal operation (DFS) continues with the new set of data. If we have hit a leaf 

node with an LBC lower than the best cost globally found so far, this value (new 

global best cost) is sent to the switch to be communicated with other PEs in the 

network. 
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Table 2: Per PE memory requirement for different input genome sizes 

Number of 
genes per input 

genome, m 

Per PE memory requirement 
(MB) 

Basic 
scheme 

Improved 
scheme 

128 0.514 0.024 

256 4.063 0.094 

512 32.282 0.375 

1024 257.252 1.5 
 

3.3.3 Memory 

 The memory is physically distributed across all PEs, and the memory local 

to each PE has two logical partitions. One part of the memory stores the TSP 

matrix corresponding to the root of the subtree that is currently assigned to that 

PE. Another part of the memory stores the intermediate matrix data that result 

along the way of evaluating a path down that subtree. 

 The part of the memory that stores intermediate matrix data can be 

implemented as a stack. During DFS, the new vertex data (path cost, vertex list 

and associated adjacency matrix) are pushed into the stack (Fig. 3.3). The stack 

is full only when the leaf node is reached. If there is pruning (before the leaf node 

is reached), the stack is popped. In this scheme, every PE has a stack with m 

levels, where each level of the stack needs to store (m+1)*(lg m) + (m2+1)*(lg w) + 

2 bits. Since lg w is a constant, the total memory requirement is O(m2)*O(m) or 

O(m3). The total memory required per PE for different values of m are shown in 

Table 2. 

 An improved scheme is explored, where the memory requirement is 

reduced to O(m2). In this scheme, the adjacency matrix at each level is not stored 

in the stack. Instead, we store only the original values in the row i and column j 
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(a)                                                                               (b) 

 

Figure 3-5: (a) Mesh network architecture (b) Quad-tree network architecture 

 

 

that are made ∞, the row-wise minima and the column-wise minima obtained 

during reduction at each level. These data require 4m*(lg w) + 2m bits at each 

level. In addition, the adjacency matrix only for the current child level is stored. 

While going back to the parent, these data at each level are used to backtrack 

and reconstitute the adjacency matrix at the parent level. The reconstitution 

step leads to a negligible run-time penalty (1.8%) but the overall memory 

requirement improves to (m+1)*(lg m) + (5m2+1)*(lg w) + 2m2 + 2 bits. This 

improves the memory-scalability of the design and enables implementation for 

higher values of m for the same per-PE memory as can be seen from Table 2. We 

use this memory implementation for our experiments. 

 A list of all subtrees to be computed is maintained in memory. Once each 

PE completes one subtree reduction, it picks up the next available subtree and 

removes it from the list. This is achieved by maintaining a global array of flags 

and a mutually exclusive semaphore. 
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3.4 Network Architecture 

 The choice of the network architecture is affected by application modeling 

and traffic pattern analysis, as is explained in the seminal paper on NoC design 

methodology [27]. Our application is mapped on a set of homogeneous cores, each 

of which carries out reduction of a subtree. The need for communication arises 

when a PE needs to update the network with the best score it has obtained. This 

is explained in detail in this section and the next. The mode of communication 

involved in this case is a conditional broadcast. We explored two different kinds 

of network architecture – a mesh, shown in Fig. 3.5(a) and a quad-tree, shown in 

Fig. 3.5(b). A mesh is the most appropriate scalable topology for broadcast traffic. 

Its regularity provides for easier timing closure and reduces dependence on 

interconnect scalability [27].  The hierarchical nature of a quad-tree minimizes 

the diameter of the network for the same number of nodes, thereby amortizing 

the router (switch) overhead and reducing latency [27]. 

 Other common network architectures like point-to-point, full crossbar or 

ring do not scale well with increasing system size [86], [87] and far exceed 

latency/area budgets. With increasing system size (N), the number of inter-

switch links in a mesh increases faster than that in a quad-tree. The expected 

volume of inter-PE communication in our application is relatively low. Hence, 

having fewer links in our network can lead to potential savings in area and 

power without incurring a risk of network congestion. 

 The diameter of a mesh architecture increases as O(√N) where N is the 

system size or the number of PEs. The same for a quad-tree increases as 
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Table 3: Wost-case write latency in clock cycles 

N Mesh 
Quad-
tree 

4 6 6 

8 9 10 

16 12 10 

64 14 12 

256 30 14 

1024 62 16 
 

 O(log4N). As mentioned earlier, the mode of communication for our application 

involves some form of broadcast as the best cost is written to all the PEs except 

for the originating PE. Hence, the worst-case hop count is a linear function of the 

diameter. It should be remembered that all links are not of the same length in a 

quad-tree, where links higher up the tree are longer and have greater delay. 

Table 3 shows an estimate of the number of clock cycles required per write in the 

worst case in 65 nm CMOS technology with a clock period of 400 ps. Quad-tree 

has an advantage over mesh in terms of communication latency for N>16. 

However, the key advantage of a quad-tree comes from power savings because 

the number of links and switches is drastically reduced. These observations are 

made on the basis of the experimental results reported in 3.7. 

 The problem of partitioning the application and mapping it to the nodes of 

the NoC is also important in optimizing overall latency. This is discussed in 

detail in 3.6. 

3.4.1 Mesh Switch Design 

 A typical switch for the mesh network architecture is shown in Fig. 3.6 (a). 

Input buffers InN, InE, InS, InW receive data from four neighboring switches 

and input buffer InLoc receives data from the associated PE. There is a 
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Figure 3-6: Internal architecture of (a) mesh switch and (b) quad-tree switch 

 

dedicated buffer (BufOut) that provides data to the network as well as to the 

associated PE. Each set of input/output data consists of the fields (a) Path Cost, 

(b) Vertex List and (c) Transmission control bits. At every cycle, one of four 

transmission decisions are taken by the Decision Making Unit (DMU) and the 

data is written into an internal buffer (local). The same is transmitted out in the 

next cycle through BufOut. The transmission control bits are as follows. 

 NOTX: No valid transmission 

 NORETX: No retransmission 

 DOTX: New best cost from local PE; transmit 

 TRWL: New best cost from other PE; transmit and update local PE 
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Figure 3-7: State diagram of control states in a mesh switch 
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Figure 3-8: Timing diagram showing typical scenarios encountered in a mesh switch 

 

 

 Fig. 3.7 shows all the control states for decision making in a mesh switch  

and Fig. 3.8 shows the timing diagram for a typical situation. It is to be noted 

that a switch receives data from each of its neighboring switches in every cycle 

but the transmission control bits determine whether the data is valid for 

consideration or not. The data is considered if the control bits are DOTX or 

TRWL but not if they are NOTX or NORETX. 
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3.4.2 Quad-tree Switch Design 

 There are different levels of switches for this network architecture. The 

leaf level switches (refer to Fig. 3.5(b)) are denoted L1, the next higher level L2 

and so on. An L1 switch consists of five buffered input/output ports 

(BufIn/BufOut), four catering to the four leaf PEs and the fifth to the parent 

switch.  For an L2 switch and upwards, four children ports cater to lower level 

switches and the parent port caters to the higher level switch. The top level 

switch has only four downlinks but no uplink. Each set of input/output data 

consists of the fields (a) Path Cost, (b) Vertex List and (c) Update control bit 

(UCB). The switch architecture is shown in Fig. 3.6(b). UCB is a flag to indicate 

whether the status of the data is valid (UPDT) or invalid (NOUP). The receiving 

parent or child switch infers “no transmission” if UCB is set to NOUP. In every 

cycle, the switch takes a decision based on the following algorithm. 

 Let C1, C2, C3 and C4 be the four (children) downlinks and P be the 

(parent) uplink and let us define the set L = {C1, C2, C3, C4, P}. Let us suppose 

the best (lowest) path cost, PCi for a decision cycle comes from i ∊ L, i.e., PCi < 

PCj ∀ j ∊ L, j ≠ i. Then, we have the following set of assignments. 

 BufOut[k] ← PCk ∀ k ∊ L 

 UCB[i] ← NOUP 

 UCB[j] ← UPDT ∀ j ∊ L, j ≠ i 
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 NH 4log*2

3.5 Communication Paradigm 

 In both network architectures, every PE communicates with its neighbors 

through its local switch. In the mesh architecture, every switch communicates 

with its immediate neighbor and gets data in every cycle from at most four 

neighboring switches. Based on the decision mechanism described in 3.4.1, the 

switch places data on BufOut with appropriate control bits. The neighboring 

switches get this value in their input buffers in the next cycle. Hence, at every 

cycle, data is sent in all four directions. 

 In the quad-tree, every switch communicates with its four children and one 

parent in every clock cycle. It receives data from its parent and/or one or more of 

its children and takes a decision on the lowest cost available to it thus far. Once 

found, this data is placed on four output buffers, except the direction it came 

from along with appropriate UCB, as described in 3.4.2. For the best-cost data to 

propagate to the entire network, it has to go through a maximum of H hops 

where H is given by 

      (1) 

Note that H/2 is the height of the tree. One important fact to keep in mind is that 

each hop does not consume the same number of clock cycles as the wire length 

varies at different levels. 

 The need for inter-PE communication arises when a particular PE checks 

against the global best cost obtained so far and finds out that its local best-cost is 

lower than the global best-cost. At this stage, the PE should broadcast its newly 

obtained value to the whole network. One way to implement this is to use 
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Figure 3-9: Number of subtrees generated by partitioning the search-space tree at 
different levels 

 

 

 

flooding. However, this could lead to an unnecessary network congestion thereby 

affecting scalability. Therefore, we devised an improved alternative strategy 

where a PE conditionally broadcasts valid data only if 

a. Its local best-cost is worse than the global best-cost but it has not yet 

participated in the broadcast of this global cost, or 

b. Its local best-cost is better than the global best-cost (currently available 

to the rest of the network) and it has not been previously transmitted. 

The above scheme ensures elimination of redundant communication, thus 

reducing communication overhead and power consumption without 

compromising on the correctness of the answer. 

3.6 Application Mapping and Tradeoff 

 Partitioning and mapping the application on the NoC has a significant 
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impact on its overall latency and total energy consumption. The PE that finishes 

its share of reduction computations last limits the performance of the entire 

system. The determining factor for this is the load distribution among PEs, 

which is dependent on input data. In our scheme, each PE picks a subtree 

dynamically from a common pool of available uncomputed subtrees, once it has 

finished computing its own subtree. This can happen either when the PE has 

finished computing the subtree exhaustively or when it has pruned it. This could 

result in each subtree contributing to a different number of reductions and each 

PE computing a different number of subtrees. It is evident that we need to 

ensure that PEs are evenly utilized to minimize the impact of a “bottleneck” PE 

and achieve the best overall latency. Hence, application mapping on the NoC 

needs to be optimized such that the load distribution among PEs is even. We use 

the following definitions to formulate the problem. 

 fi: utilization factor of PE i 

 ti: application latency of PE i 

 TPCIe: latency overhead of the system for loading data through PCIe 

 Tpick: cumulative latency overhead of each PE picking subtrees from the 

pool of uncomputed subtrees 

Overall application latency, Toverall, is given by 

 Toverall = TPCIe + Tpick + max{ti}                           (2) 
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where max{ti} is over all i. Note that the last term is the latency of the 

“bottleneck” PE. ti is proportional to fi. TPCIe and Tpick are related to fi as 

explained below. 

 Experiments showed that the load distribution among PEs (fi) becomes 

more balanced when the number of subtrees in the common pool is much higher 

than the number of PEs. For a graph with m vertices, the solution-space tree 

with the starting node as root (level 0) has (m-1) nodes at level 1, (m-1)*(m-2) 

nodes at level 2, (m-1)*(m-2)*(m-3) nodes at level 3 and so on (Fig. 3.9). In 

general, it will have mPk+1 nodes at any level k < m. So partitioning the solution 

space by choosing subtrees rooted at a deeper level generates more subtrees, 

helping to balance load and thereby ensure maximum achievable parallel 

speedup.  Now, TPCIe, the overhead involved in loading the entire set of subtrees 

to the system using PCIe increases with the amount of data that needs to be 

transferred, which increases with the number of subtrees.  Tpick also increases 

with the total number of subtrees handled by each PE. Hence it is clear that the 

dependence of ti on fi is opposite to that of TPCIe and Tpick on fi. We need to 

optimize Toverall in (2) with these constraints. As explained in 3.7.1, we have 

considered m=110 in our experiments. In this case, we resolved this tradeoff by 

choosing to work on subtrees rooted at level 2, which generated 109*108 subtrees 

and yet kept the overhead to a manageable amount. Note that 109*108 (=11772) 

is much larger than the largest system size (number of PEs, N=64) we 

experimented with, which led to a balanced load distribution. 
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3.7 Experimental Results 

3.7.1 Experimental Setup 

 The performance evaluation of the NoC was carried out from the timing 

and power perspectives during phylogenetic tree reconstruction with varying 

data sets. Different parameters associated with the NoC are as follows. The 

system size, N, is the number of PEs in the NoC. N was set to 4, 16 and 64 for 

evaluating the performance of the NoC with scaling of system size. The number 

of vertices in the input graph is denoted by m, which determines the width of the 

datapath.  In practice, this value should be set to the number of genes shared by 

the input genomes. For example, chloroplast genomes of potato, tomato and 

wheat share 110 genes; hence m=110 in this case. In our experiments, we used 

two types of input data: (a) multiple sets of synthetic genomes with m=110 used 

for exhaustive system-wide parametric study; and (b) two sets of real input 

genomes (as explained in 3.7.3). Note that the value of m affects the size of the 

datapath and the memory requirements in the PE as per the discussion in 3.3. 

Since we have dealt with three-median breakpoints, breakpoint distance can 

vary between 0 and 3. Without loss of generality, the maximum weight w has 

been taken to be 4 to indicate ∞ or a non-existent edge. As with m, this choice 

affects the datapath size but to a lesser degree. 

 Each PE with its corresponding switch constitutes one node in the NoC. 

They were implemented by synthesizing Verilog RTL using Synopsys Design 

Compiler followed by place-and-route with Cadence SoC Encounter using 

standard cell library of 65 nm process [88]. Extracted parasitics were used in 
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Synopsys PrimeTime to determine post-layout timing performance. The 

pipelined design could sustain a clock frequency of 2.5 GHz in each PE and 

switch. This was verified with m=110 and higher. The critical path delay using 

65 nm timing library is within 400 ps, as shown in Fig. 3.4. In order to estimate 

the total power dissipation, it becomes necessary to record the total 

communication events involving all the PEs. For modeling the event statistics, 

we implemented a multithreaded program to act as the software driver, which 

recorded the number of reduction operations performed by each thread, and the 

number of successful write operations by that thread. Each individual thread of 

the software driver functionally simulated a processing element of the NoC. 

Thereafter, these statistics were used in conjunction with Synopsys Power 

Compiler using the library [88] for estimating the total computation power of all 

the PEs. The switch power (also obtained from Synopsys Power Compiler) was 

separately added to this component. Logic gate count for one PE and associated 

network switch with m=128 is 1.267 million. 

 Interconnect characteristics (delay, power) were determined using Cadence 

Spectre. Wire capacitance information extracted from layout was used to 

determine delay and energy dissipation of interconnects. Multiple clock cycle 

delay in longer interconnects was accounted for. 

 PCI Express 2.0 is used as the interface for initially loading the graph data 

into the NoC. For modeling this interface, Synopsys Designware IP PCI Express 

2.0 PHY was used.  It has been implemented on 65 nm process and operates at 
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5.0 Gbps. We use a 32-lane PCIe 2.0 for our simulation. Both mesh and quad-

tree architectures were considered for performance evaluation. 

 GRAPPA [34] was used as the software benchmark. It is a standard and 

widely used program for MP phylogenetic analysis. To achieve its best 

performance, GRAPPA was run in its multithreaded mode on a quad-core 2.40 

GHz Intel Xeon E5530 processor with 16 GB of RAM. The run-time measured 

through GRAPPA served as the basis in our speedup calculations. Specifically, 

speedups reported are calculated as the ratio of GRAPPA run-time over the total 

execution time on an N-PE NoC. Note that different multithreaded GRAPPA 

runs were found to yield different output sequences with the same optimum 

score. Our NoC simulation also outputs a sequence that matches this optimum 

score. 
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(a) 

 

(b) 

Figure 3-10: Total execution time in hardware for (a) SynData_73, SynData_50 and 
SynData_27 and (b) SynData_10 and SynData_04 
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3.7.2 Results with Synthetic Data 

 Five synthetic data sets were generated and used as input. Each input 

consisted of three genomes with 110 genes each such that m=110. Each data set 

was generated to have a different common subsequence length and hence 

different divergence.  
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 Pairwise divergence (δ) is given by subtracting the length of the longest 

common subsequence from m. We have three values of δ for each input. The 

standard deviation of the pairwise divergences (σδ) was normalized by dividing it 

by the mean (µδ) and used as the divergence metric, Δ (=σδ/µδ). This metric serves 

as a measure of the skew among the three genomes and is made to vary across 

the entire range of possible values, thereby covering the entire range of the 

possible input spectrum. Low values of Δ indicate that the genomes are equally 

far apart irrespective of the actual magnitude of the breakpoint distance. A high 

value of Δ indicates that two genomes are closer to each other than they are to 

the third. Five synthetic sets of three genomes each were generated such that 

the values of Δ in these inputs are 0.731, 0.498, 0.274, 0.103 and 0.039 

respectively; these inputs were labeled SynData_73, SynData_50, SynData_27, 

SynData_10 and SynData_04, respectively. It is also to be noted that the δ 

values and µδ increase as we move from SynData_73 to SynData_04. 

3.7.2.1 Timing Performance 

 Figs. 3.10(a) and 3.10(b) show the total execution times for NoCs with 

system sizes (N) 4, 16 and 64 for all the synthetic inputs. The total execution 

time includes the total computation and communication cycles spent in the NoC 

and the time required to load the data on the NoC using PCIe. It is interesting to 

note that the absolute run-times are heavily dependent on the input data and 

the absolute divergences. Since the execution times are a function of the 

bottleneck number of reductions carried out by the PEs (see 3.6), the execution 

times for SynData_10 and SynData_04 are orders of magnitude higher than 
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Figure 3-11: Absolute speedup over GRAPPA 

 

Figure 3-12: Variation of speedup with skew of input data on quad-tree NoC with N=16 
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those for the other three inputs. This is because of their larger absolute 

divergences and hence larger number of reductions performed by each PE. There 

is not much difference in the run-times on mesh and quad-tree. This is because 

quad-tree helps reduce only the write latency (as shown in Table 3), which 

contributes a small fraction to the total execution time in this case. 
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Figure 3-13: Power consumption across various inputs, network architectures and system 
sizes 
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 Fig. 3.11 shows the speedup over GRAPPA using a quad-tree for these 

inputs. Since speedup is the ratio of GRAPPA’s run-time to the execution time on 

our design, the trends in speedup and execution time are not identical across 

different inputs. For example, even though execution time increases from 

SynData_10 to SynData_04 for all system sizes, speedup is also observed to 

increase because GRAPPA’s run time increases by a larger factor. Speedup is 

also dependent on Δ, which indicates that our design is able to accelerate median 

computation of genomes that are almost equally far apart (e.g., SynData_04) 

significantly more compared to the case where two of the genomes are very close 

to each other (e.g., SynData_73). This observation is more clearly demonstrated 

in Fig. 3.12, where the speedup on a quad-tree NoC with N=16 is plotted against 

values of Δ. The best speedups of 1,241 (N=4), 3,598 (N=16) and 8,430 (N=64) are 

consistently obtained with SynData_04. Our results compare favorably with the 

overall speedup of 417 or the application speedup of 1005 achieved by 

accelerating GRAPPA in [14]. 
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 Note that the synthetic data encompass almost the full range of possible 

inputs, with Δ varying from 0.039 to 0.731. Biological inputs can lie on either end 

of the spectrum or anywhere in between. In particular, as we mention again in 

3.7.3, the two real genomic inputs that we use have Δ values of 0.866 and 0.1092. 

It is also interesting to note that we achieve significantly higher speedups in the 

cases of genomes displaying greater absolute divergence (SynData_10 and 

SynData_04). These are also the cases where even highly optimized software 

implementations such as GRAPPA take very long times to complete. Our design 

provides better speedup when there is a greater requirement and hence will be of 

more practical value. 
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(a) 

 

(b) 

Figure 3-14: Energy consumption across different synthetic inputs 
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3.7.2.2 Energy Performance 

 Several measures were used to evaluate the energy performance of the 

NoC. The average power consumption for mesh and quad-tree NoCs for N=4, 16 

and 64 is shown in Fig. 3.13. It will again be noticed that power consumption is a 

function of the input data, especially for N=64. There is a slight advantage of 

quad-tree over mesh in terms of power efficiency. For example, a quad-tree NoC 

consumes up to 5% less power than that based on a mesh NoC. Note that the 

PEs in both configurations have the same power consumption and the savings 
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(a) 

 

(b) 

Figure 3-15: Communication energy expended across different inputs 
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come entirely from the communication architecture. Higher levels of network 

activity would lead to greater power savings in the quad-tree. However, since the 

execution time varies widely across inputs, only power consumption provides a 

partial picture.  

 A more accurate rubric is the total energy consumption, shown in Figs. 

3.14(a) and 3.14(b). Although these figures show the advantage of quad-tree over 
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(a) 

 

(b) 

Figure 3-16: Variation of energy-delay product across inputs 
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mesh in terms of energy performance, comparing only the communication energy 

consumptions in Figs. 3.15(a) and 3.15(b) further highlights this. Quad-tree 

consistently outperforms mesh by consuming around 75% less communication 

energy. Both average power and total energy are input-dependent and generally 

show a marked increase with increase in system size (N).  

 The most interesting observation on energy efficiency, however, can be 

seen from Figs. 3.16(a) and 3.16(b) that show the variation of the energy-delay 

product (EDP) with system size (N) across all inputs. EDP is observed to 
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decrease with increasing system size for most inputs. This is because the 

increase in energy consumption is compensated by the run-time reduction, 

thereby showing that parallelization is indeed energy-efficient in this case. 

3.7.3 Results with Real Genomic Data 

 Two real genomic inputs were used to evaluate the performance on 

biological data. Genomic data were downloaded from the National Center for 

Biotechnology Information’s organellar genome repository [89]. One input 

(PoToWh) consisted of the chloroplast genomes of Solanum tuberosum (potato, 

141 genes), Solanum lycopersicum (tomato, 130 genes) and Triticum aestivum 

(bread wheat, 137 genes). The other input (AlAnFe) consisted of chloroplast 

genomes of Chlamydomonas reinhardtii (a unicellular green alga, 109 genes), 

Brachypodium distachyon (purple false brome grass, an angiosperm, 133 genes) 

and Adiantum capillus-veneris (black maidenhair fern, 130 genes). These 

genomes were preprocessed with Mauve [90] in order to determine the common 

genes. The values of Δ for the inputs are 0.866 for PoToWh and 0.1092 for 

AlAnFe. This is indicative of the fact that PoToWh represents a skewed data set, 

with potato and tomato being much closer to one another than they are to wheat. 

This is expected, as evolutionarily potato and tomato are closely related and 

belong to the same genus. On the other hand, AlAnFe represents a uniformly 

divergent scenario. The speedups obtained with these inputs for N=4, 16 and 64 

are shown in Fig. 3.11. Fig. 3.12 shows the speedup correlation with synthetic 

data having similar values of Δ.  
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(a) 

 

(b) 

Figure 3-17: Histogram of number of number of reductions per subtree for (a) PoToWh 
and (b) AlAnFe 

 

 As mentioned in 3.7.1, speedup is calculated as multithreaded GRAPPA 

run-time divided by the total execution time on the NoC. As explained earlier, 

the total execution time on NoC is proportional to the bottleneck number of 

reductions. For example with N=16, the bottleneck number of reductions for 

PoToWh is 6,286 and that for AlAnFe is 46,958. The total execution times on a 

quad-tree NoC are 1.14 ms and 8.46 ms respectively. In comparison, the 

GRAPPA run-times are 5.55 ms and 9.22 s respectively.  
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Table 4: Reduction statistics for PoToWh and AlAnFe 

 N = 4 N = 64 

 

Average 
reductions 

per PE 

Standard 
deviation 

of 
reductions 

per PE 

Max 
reductions 

per PE 

Average 
reductions 

per PE 

Standard 
deviation 

of 
reductions 

per PE 

Max 
reductions 

per PE 

PoToWh 15672.75 1847.57 17430 1942.73 194.73 2342 

AlAnFe 69222 8558.69 79516 19496.84 1700.02 22614 

 

 Next, we turn our attention to the variation of speedup with increasing N. 

It can be seen from Fig. 3.11 that the speedup on PoToWh increases from 1.77 to 

12.98 as we increase N from 4 to 64. For AlAnFe, the speedup increases from 

643.99 to 2,261.99. Table 4 shows the mean, standard deviation and the 

maximum (bottleneck) number of reductions per PE for PoToWh and AlAnFe. It 

is evident that speedup is inversely proportional to the maximum number of 

reductions per PE. Speedup also varies inversely as the average number of 

reductions when load is balanced among PEs.  

 Finally, in order to investigate the reason behind the widely different 

speedups obtained with PoToWh and AlAnFe, we plot histograms (Figs. 3.17(a) 

and 3.17(b)) of the number of reductions per subtree for each of the inputs. The 

larger skew (Δ) for PoToWh is evident from a comparison of the two histograms. 

Due to the higher skew in PoToWh, the best cost is obtained quickly and most 

subtrees are pruned at the initial stage of the operation, leading to few (< 10) 

reductions per subtree. The lower skew in AlAnFe leads to a more gradual 

update of the best cost and subtrees are pruned to a lesser degree. Since the 
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reduction load is shared by several subtrees in the latter case, parallelization 

provides greater speedup. 

3.8 Conclusion 

 To summarize the work done on Maximum Parsimony or breakpoint 

phylogeny, we have undertaken the design, implementation and performance 

evaluation of a NoC-based multi-core architecture for accelerating the 

breakpoint median problem in phylogeny. Our evaluation encompasses a wide 

spectrum of inputs, including both synthetic and real genomes. We show that the 

proposed NoC architecture provides a speedup of up to 8,430 with respect to 

multithreaded GRAPPA software. We also show how the relationship among the 

input genomes affects the timing performance of our design and that we are able 

to provide greater speedup when software methods incur a huge run-time 

penalty. On the network architecture front, we demonstrate the superiority of a 

quad-tree over a mesh in terms of energy efficiency for this application class. 

 We believe that our current implementation provides appreciable 

performance enhancement over comparable hardware accelerators targeting 

breakpoint phylogeny, and can serve as a basis for more NoC-based platforms 

with applications to life sciences. In addition, our design provides a paradigm for 

accelerating similar vector or matrix-based applications like image processing. 
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4. NoC-Based Accelerator for Maximum Likelihood 

Given models of evolution [6], [7], [8], [9], [10], we can use standard 

statistical methods to carry out phylogenetic inferences. Their widespread usage 

is due to the fact that they provide a likelihood score for each reconstructed tree 

using the PLF [11], [12]. Maximum Likelihood (ML), invented by R. A. Fisher 

[91], is the most widely-used of such methods. Its application to phylogenetic 

inference was introduced in [92] for gene-frequency data. ML methods were 

applied to molecular sequences in [93], [94]. Practical use of ML methods for 

nucleotide sequences was demonstrated in [11], [12]. 

 The improved quality of result using ML comes associated with a high 

computational cost as the ML formulation is NP-Hard [13] and suffers from the 

need to explore a super-exponential (in k, where k is the number of taxa) number 

of trees. For example, a run using RAxML [70], which is one of the most widely-

used programs to compute ML-based phylogeny, on an input comprising of 1,500 

genes can take up to 2.25 million CPU hours [69].  As detailed in Chapter 2, 

prior work done on hardware accelerators for ML have focused on GPU, CBE, 

FPGA and general-purpose multicores. We propose a NoC-based platform that 

delivers orders of magnitude speedup over existing methods, and to the best of 

our knowledge, is the first comprehensive NoC-based solution.  

 The performance improvements due to the architectural advantages of 

NoC can be significantly enhanced if 3D integration is adopted as the basic 

fabrication methodology. The amalgamation of two emerging paradigms – NoCs 

in a 3D IC environment – allows for the creation of new structures that enable 
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significant performance enhancements over traditional solutions. The major 

contributions in this chapter are as follows: 

(i) A homogeneous, unified PE design for parallel execution of ML function 

kernels; 

(ii) An efficient, fine-grained implementation of the different floating-point 

arithmetic operations involved in this application;  

(iii) Novel dynamic core-allocation schemes to minimize inter-node 

communication latency; and 

(iv) Exploration and evaluation of the merits of different 2D and 3D NoC 

architectures. 

We demonstrate the capability of our NoC-based platforms to achieve function-

level speedups of 390x to 847x, aggregate speedups of accelerated kernels in 

excess of 6500x, and end-to-end run-time reductions of over 5x with respect to 

state-of-the-art multithreaded software. 

4.1 Theoretical Background 

 Likelihood is of central importance in statistics. From Bayes’ Theorem, 

given a hypothesis H and observation D, we have the following: 

                            ( | )   
 (   )

 ( )
 
 ( | )  ( )

 ( )
                   ( ) 

Here, P(H|D) is the a posteriori probability of H, P(H) is the a priori probability 

of H and P(D|H) is the likelihood of H. Given two hypotheses H1 and H2 and n 

independent observations D1, D2, …, Dn constituting D, we can express the odds 

ratio in favor of H1 over H2 as follows. 
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From (4), we can see that the likelihood ratio dominates the right hand term for 

a large number of observations (data). Bayesian statisticians try to come up with 

valid a priori probabilities and use Bayes’ Theorem to infer valid a posteriori 

probabilities for their hypotheses.  Non-Bayesians prefer the hypothesis that 

maximizes the likelihood P(D|H). For a large amount of data, this also turns out 

to be the hypothesis with the largest a posteriori probability P(H|D) and hence 

the best estimate. 

 We now touch upon some basic features of the method of using likelihood 

for phylogenetic tree computation. Details are provided in Chapter 16 of [12]. 

Initially, we have a set of aligned DNA sequences with m sites (or columns). 

Several of these sites are identical in their nucleotide composition. A group of 

adjacent sites that are equivalent is replaced by a single site with a “weight” 

indicating the multiplicity of that site. Let the number of sites after this 

compression be m’. A given phylogeny (or phylogenetic tree) consists of branch 

lengths and a model of evolution that allows us to compute the probabilities of 

state changes along this tree, in particular, the probability Pij(t)  of state i 

transitioning to state j at the end of a branch of length t. The following 

assumptions greatly simplify the process of computing likelihoods. 

(i) Evolution in different sites (on the given tree) is independent. 

(ii) Evolution in different lineages is independent. 

Assumption (i) renders likelihood computations simple by focusing on one site. 

Likelihood values for the entire sequence can be found by multiplying the 
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likelihood values for each site. Complex models incorporate rate variation across 

sites using a hidden Markov model (HMM). One of the most common models [95] 

uses autocorrelated gamma distribution approximated by having discrete 

categories. Assumption (ii) allows us to write the conditional probability at each 

level only with respect to its immediate predecessor and the intervening branch 

length. These assumptions enable us to calculate the likelihood of a tree using a 

bottom-up approach, starting from the observable data to the “root” of the tree. It 

is further shown in [12] that the phylogenetic tree is unrooted and the placement 

of the root is important only when we assume molecular clocks. 

4.2 Existing Software Suites for ML Phylogeny 

 PAUP* Version 4.0 [96] is an improvement on previous versions of PAUP: 

Phylogenetic Analysis Using Parsimony and is the most widely-used software 

package for the inference of evolutionary trees. It is a general-purpose package 

that combines parsimony, distance matrix, invariants and maximum likelihood 

methods, and many indices and statistical tests. PHYLIP [97] (Phylogeny 

Inference Package) is one the oldest distributed packages that includes ML as 

one of the methods and can operate on data types including molecular sequences, 

gene frequencies, restriction sites and fragments, distance matrices and discrete 

characters. PHYML [98] is a software that implements a fast and accurate 

heuristic for estimating ML phylogenies from DNA and protein sequences. The 

tool provides the user with a number of options, such as nonparametric bootstrap 

and estimation of various evolutionary parameters, in order to perform 

comprehensive phylogenetic analyses on large datasets in run-times comparable 
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to parsimony programs. Other programs like fastDNAML [99] render faster 

solutions for larger trees and number of species. 

 RAxML [70] provides a very fast reconstruction of phylogenies using ML. 

RAxML 7.0 offers several ways to exploit parallelism, in addition to its 

sequential version. It is a highly optimized program that handles DNA and 

amino acid alignments under various models of substitution and several distinct 

methods of rate heterogeneity. In addition, it has a novel rapid bootstrapping 

algorithm built into it, which when combined with rapid ML search allows users 

to conduct a full ML analysis in a single program run. RAxML is able to handle 

extremely large data sets as shown in [100].  We chose RAxML as the ideal 

candidate for which to explore hardware acceleration possibilities because it is 

the most optimized and parallelized software currently available. As mentioned 

in Chapter 2, several of the existing papers on hardware acceleration for ML 

phylogeny target RAxML. 

4.3 Design of Computation Core 

 The motivation for using a NoC to address the ML application stems from 

the fact that there are different levels of parallelism in the application that can 

be exploited to accelerate the computation. Fine-grained parallelism can be 

exploited within a processing element (PE) to render a fast hardware 

implementation for each phylogenetic function kernel. While the same can also 

be alternatively implemented on a large FPGA board that supports several 

computation cores (e.g., similar to [72]), a NoC based multi-core system can 

handle coarse-grained parallelism more efficiently. The latter requirement 
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becomes particularly important in the context of ML programs because they 

typically involve a large number of function invocations; and at any point of 

execution there could be variable number of instances running for each function. 

Under the NoC framework, these requirements can be effectively addressed by 

(a)  Designing a homogeneous system, where different PEs are able to seamlessly 

support different functions executing at different times, and 

(b) Interconnecting them using a suitable network that allows concurrent 

execution of arbitrary combinations of function instances and provides the 

backbone for efficient data exchange between the individual PEs.  

In other words, we can build a heterogeneous application map on a 

homogeneous-core NoC. Furthermore, such a homogeneous NoC-based system 

can be allowed to scale up to provide the computation bandwidth necessary for 

solving larger problems. 

 The computation of ML phylogenetic kernels requires the use of 

elementary functions, specifically logarithms and antilogarithms, in addition to 

basic arithmetic functions. Fast calculation of logarithms in hardware has been a 

well-researched topic. Kwon et al [80] describe a fast implementation of 

exponentiation in hardware targeting graphics applications. A 32-bit binary-to-

binary linear approximation-based logarithm converter is described in [81]. 

Optimality of Chebyshev polynomials for table-based approximations of 

elementary functions is described in [82]. A unified computation architecture for 

calculating elementary functions, including logarithm, exponential and multiply-

and-add, is presented in [83]. They use a fixed-point hybrid number system 
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Figure 4-1: Architecture of computational core for sum-of-products, logarithm and 

antilogarithm 

(FXP-HNS) to integrate all operations in a power and area-efficient manner with 

a low percentage of error. They achieve a throughput of 1 data output per 4.3 ns 

cycle for elementary functions. Another technique for designing piecewise 

polynomial interpolators for implementing elementary functions in hardware is 

described in [84]. They designed linear, quadratic and cubic interpolators with 

progressively increasing accuracy for both high speed and low power. Our design 

builds upon the method employed in [83]. 

4.3.1 PE Design 

 The PE aims to capture the crux of the computation involved in 

phylogenetic kernels. We address this by combining fast and efficient 

computation strategies in hardware with extensive fine-grained parallelism. The 

core architecture uses FXP-HNS arithmetic [83] and has six pipeline stages as 

shown in Fig. 4.1.  
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 It can compute a sum of four products during one traversal across the 

stages, in addition to regular logarithm and exponential. Logarithm and 

exponential are directly computed using linear table-based approximations as in 

[83]. These functions are entirely implemented using logic gates, without using a 

ROM. For sum of products, an indirect approach is used. Logarithms of four 

pairs of numbers are taken, each log value in a pair is added to the other, four 

antilogarithms are taken and the four results are added together. In other 

words, multiplication is done by addition in the log-domain and addition is done 

in the linear domain. Figure 3.18 shows a schematic diagram of the computation 

architecture. Note that if we are interested in only computing the logarithm, the 

adder stage is not required and the core provides the result of the stage 2 as 

output depending on the instruction being executed. For computing exponential, 

the input goes directly to stage 4 with minor modifications in the number 

representation format and the output is available at the end of stage 5. The three 

representative functions of the RAxML suite that are used, namely 

coreGTRCAT, newviewGTRCAT and newviewGTRGAMMA [101] are 

instruction-coded to be run on the computation core. The core is instantiated 

within a wrapper that provides instruction decoding, data fetching and data 

write-back functions. The design has been implemented with Verilog HDL and 

synthesized with a clock frequency of 1 GHz using 65 nm standard cell libraries 

from CMP [88]. The critical path delay is 1 ns as shown in Fig. 4.1. 
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Figure 4-2: Global compression of equal columns for five input sequences. Note that 26 
columns are compressed to 5 with appropriate weights assigned to each. 

 

4.3.1.1 Memory Subsystem 

The computation core has the requisite memory to store the input vectors and 

the computation results for each step of the function computation, all in FXP-

HNS format. The per-PE memory requirement is 0.5 MB. This is implemented in 

the form of register banks. As mentioned earlier, there are no ROM-based lookup 

tables for computing logarithm and antilogarithm. 

4.3.2 Automating Column Compression in Hardware 

 As mentioned earlier and also in [102], the cost of the likelihood function 

and the branch length optimization function, which accounts for the greatest 

portion of the execution time can be reduced by (a) reducing the search space 

using some additional heuristics, and (b) reducing the number of sites taken into 
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account during computation, thereby reducing the number of computations at 

each inner node during the evaluation of a tree. The algorithm used in [102] for 

determining column equalities and compressing equivalent columns is 

mentioned here for the sake of convenience. 

4.3.2.1 Algorithm 

 Two columns in an alignment are equal and belong to the same column 

class, if the base is the same on a sequence-by-sequence basis. A column is 

homogeneous if the same base exists across all sequences and heterogeneous 

otherwise. 

 Let s1, s2, ..., sn be the set of aligned input sequences as depicted in the 

upper matrix of Fig. 3.19. Let m be the number of sequence positions of the 

alignment. Two columns, i and j, of the input data set are said to be equal if ski = 

skj for all k = 1 ... n. It is now possible to calculate the number of equivalent 

columns in a column class and compress the columns in the input data 

accordingly. The compression is carried out by replacing all columns belonging to 

one column class by one representative column and assigning a weight to that 

column denoting the original number of columns in that column class. The 

number of columns after column compression is denoted by m’. Referring to Fig. 

3.19, for example, m = 26 and m’ = 5. Since phylogenetic tree reconstruction is 

preceded by a high quality multiple sequence alignment, a large number of 

column equalities are expected at the global level. This leads to a great deal of 

compression so that m’ is usually much less than m. 
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Figure 4-3: Schematic diagram of Column Compressor 

 Another level of compressing the input data for phylogenetic tree 

reconstruction lies in identification of homogeneous or heterogeneous columns. 

In case of homogeneous columns, the tree for that site need consider only one 

base irrespective of the number of sequences. This aids further compression of 

the input space. Referring to Fig. 3.19 again, we see that 4 out 5 columns in the 

column-compressed input are homogeneous. 

4.3.2.2 Design 

 From the algorithm described in 3.2.3.2.1, it is evident that that time 

complexity of the design is O(m) and the space complexity is O(mn).  One column 



71 

network 

switch

N

E
W

S

fr
o

m
/t
o

 c
ro

s
s
b

a
r 

o
f 
s
u

b
n

e
t

crossbarPE3

PE2

PE1

PE0

subnet 
(lower level)

node of 
folded torus 
(upper level)

 

Figure 4-4: Network switch of NoC and cross-connected subnet under one node 

from each sequence is taken as input in every cycle and is stored in an internal 

memory after column processing. An external control signal determines whether 

the processor is in input or output mode. The number of cycles spent in input 

mode is m and the number of cycles spent in output mode is m’. Since processing 

is concurrent with input, no extra cycles are needed. 

 The schematic diagram of the design is shown in Fig. 3.20. The signal start 

switches between input and output modes. The internal memory stores the 

sequences after column equalities have been determined. The column weights 

are stored in col_wt. The homogeneous registers store a 1 if the column is 

homogeneous and 0 otherwise. The maximum value of the counter is used to 

determine m’, which goes to new_col_size as output. Outputs are activated once 

start goes low. 

4.4 NoC Node 

 The core with a wrapper is designated as a processing element (PE). Four 
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such PEs are integrated to form one subgroup. The choice of this subgroup size 

comes from the fact that the three functions require different numbers of sum-of-

four-product computations (8, 12, 24) for which the greatest common divisor is 

four.  The PEs are labeled PE0, PE1, PE2 and PE3. A crossbar switch, shown in 

Fig. 4.4, connects the four PEs and coordinates communication among them. The 

crossbar switch has to deal with three kinds of traffic, which consists of 

intermediate function results. The first and simplest kind involves sending data 

received from PEx back to PEx. The second kind of communication involves 

sending data from one particular PE to all the other three PEs within the 

subgroup.  The third kind of communication involves sending/receiving data 

to/from the external network through a network switch. This subgroup of four 

PEs along with the crossbar switch forms a subnet under one NoC node. The 

number of nodes in the system is denoted by N. 

4.5 Network Architecture 

 The choice of the network is determined by the traffic patterns [103] 

generated by the application. In our case, a single RAxML run typically 

generates millions of invocations of a few functions at different time-points, and 

each of these functions can benefit from fine-grain parallelism by an assignment 

to multiple PEs. This leads to a high volume of arbitrary point-to-point 

communication. In addition, we observed dynamically changing traffic patterns 

and a clear absence of steady-state localized traffic or clustering, all of which 

indicate the desirability of a distributed interconnection topology. A statistical 

analysis of the traffic patterns under the assumption of an underlying folded 

torus network reveals this fact. The mean and normalized standard deviation of 
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(a)                                                  (b) 

Figure 4-5.Mean (a) and normalized standard deviation (b) of flits per cycle in routers in a 

folded torus network 
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the number of flits per cycle contained in the buffers of each router in an 8 8 

folded torus for a typical application scenario is shown in Fig. 4.5. The clear lack 

of clustering can be observed from the absence of prominent peaks in the mean 

traffic plot in Fig. 4.5(a). The dynamically varying nature of the traffic can be 

gleaned from Fig. 4.5(b) that shows substantial standard deviation of traffic 

(typically above 50% of the mean) across simulation cycles. Hence, topologies like 

star or quad-tree that cater to regular or localized traffic patterns would not 

benefit this application scenario. 

 From the VLSI implementation perspective, a mesh is a scalable network 

architecture whose regularity provides for easier timing closure and reduces 

dependence on interconnect scalability [27]. A folded torus further reduces the 

point-to-point separation (Manhattan distance) between nodes by cutting down 

the diameter of the network by half without compromising on the regularity or 
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scalability of the entire network. Hence, we decided to explore folded torus in our 

2D NoC design.  

 Three-dimensional ICs that contain multiple layers offer advantages like 

reduced length of interconnect, higher package density, lower power 

consumption and higher noise immunity [74]. 3D ICs can be used to improve 

performance by forming a processor-memory stack, as shown in [75]. This 

enables use of very wide buses and stacks to drastically reduce memory access 

time. 2D mesh structures are compared with their 3D counterparts in [76] by 

analyzing zero-load latency and power consumption of each network. A more 

detailed evaluation that takes into account various real-world traffic patterns 

and carries out cycle-accurate simulations is presented in [77]. 3D NoCs have 

been proposed for improving the performance of application-specific 

architectures in [78]. 3D design-space exploration for cache memories has been 

considered in [79]. 

 3D NoCs provide enhanced performance due to the additional degree of 

freedom in the vertical dimension, thereby enabling better integration and 

reduced inter-node hop-count for larger system sizes [77]. We explored the design 

of two different 3D NoC architectures: 3D folded torus and 3D stacked torus; and 

used a system size N of 64 (=4 4 4) in our application study. A 3D folded torus 

NoC has a folded torus along each dimension (x, y and z). There are one-hop 

vertical links (in the z dimension) between adjacent layers. On the other hand, a 

stacked torus [79] is a hybrid between a 2D folded torus, which is a packet-

switched network, and a bus, which takes advantage of the short inter-layer 
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distances. It integrates multiple layers of folded tori by connecting them with 

buses spanning the entire vertical height of the chip. Hence any inter-layer 

communication (for the same <x,y> coordinates) is one-hop. 

 Since each subnet associated with a node has 4 PEs, our system has 64 

PEs for N=16 and 256 PEs for N=64. A network switch handles traffic emanating 

from or destined to each network node. We use the switches described in [104] 

and [77] for our design. Each switch in the 2D architecture has four bidirectional 

ports to neighboring switches and one bidirectional port to the crossbar switch of 

the subnet (Fig. 4.4). In the 3D folded torus, the switch has two additional ports 

(total 7 ports) to the layers above and below. Alternatively, in the 3D stacked 

torus, the switch has just one additional port (total 6 ports) to the vertical bus 

connecting all the layers. 

 We adopted wormhole routing-based data exchange among the NoC nodes. 

The primary data contained in the messages exchanged among nodes are 

intermediate function results, which are 64-bit numbers using FXP-HNS format 

[83]. Given this small message size, we split each message into 3 flits (header, 

body and tail), each of width 64 bits. Since deeper buffers may slow down clock 

frequency and do not appreciably improve performance for short messages [105], 

we use buffer depth of 2 flits. We adopt the routing and arbitration mechanism 

from [104] and [77]. 

4.6 Function-Level Parallelization 
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x3[0] x3[1] x3[2] x3[3]  

Figure 4-6: Part of the computation tree of newviewGTRCAT 

 The three target phylogenetic function kernels from RAxML are 

newviewGTRCAT (f2), coreGTRCAT (f3) and newviewGTRGAMMA (f6). We 

parallelize each function by breaking down larger computation arrays into 

smaller units as follows: Taking newviewGTRCAT (f2) as an example, we can see 

from Fig. 4.6 that computation of the x3 array in each iteration requires 

computation of eight sums-of-four-products, using arrays left, x1, x2 and the 

eigenvalue vector EV[15:0]. Since each PE can compute one sum-of-four-

products, eight PEs (or equivalently, two NoC nodes) are required. We refer to 

this function as f2, indicating that its computation requires two NoC nodes. 

Similarly, each iteration within the function coreGTRCAT 

(newviewGTRGAMMA) involves computation of up to twelve (twenty-four) sums-

of-four-products, thereby requiring three (six) NoC nodes. Hence, we refer to it as 
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f3 (f6). Other operations, such as carrying out the exponentiation operation 

involved in computing the left vector in newviewGTRCAT, are also computed in 

the PEs within each node. Also, in coreGTRCAT for example, sum-of-products, 

exponentiation and cumulative addition are involved. All these operations are 

executed in parallel over multiple PEs. Intermediate results are redistributed 

among PEs within the same node using the intra-node crossbar switch and 

among other nodes using the network switch/router. 

4.7 Dynamic Node Allocation 

 A node is busy when the PEs within its subnet are collectively executing a 

function; otherwise it is available. Nodes continually keep sending their 

busy/available status to a centralized controller (MasterController) that 

dynamically allocates a subset of nodes from the set of available NoC nodes to a 

function. If the number of available nodes at any point of time is less than the 

number of nodes requested by that function (2, 3 or 6), the function waits till the 

requisite number of nodes is available. The nodes allocated for executing one 

function instance are said to belong to one partition. Nodes can be reused after 

execution of the function has completed in the partition. 

 Since the nodes belonging to a given dynamically-allocated partition need 

to communicate with one another, it is desired that they be co-located on the 

network in order to reduce the number of hops required for data exchange and 

thereby reduce the communication latency associated with the function.  A good 

allocation strategy needs to ensure this co-locality, as well as execute fast enough 

to not introduce any significant allocation overhead.  
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Figure 4-7: Hilbert curve embedded in the folded torus network architecture and 
different kinds of contiguous and non-contiguous partitions. 

 One approach for allocating a partition is to use breadth-first search (BFS) 

on the network. Although this appears to be a reasonable strategy, there are 

certain drawbacks: First, BFS does not guarantee the co-locality of non-root 

nodes. The dispersion could become greater if the root node for BFS lies in a 

neighborhood containing a majority of busy nodes. Higher dispersion among 

allocated nodes in a partition results in a higher average message hop-count, 

resulting in higher communication latency. Secondly, the allocation overhead 

becomes dependent on the choice of the BFS root node, and growing a partition 

around a root node surrounded by a majority of busy nodes has the risk of 

increasing the allocation overhead. This is because the MasterController 

handling the node allocation has to traverse each node in the neighborhood (in 
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the adjacency list of the parent node). Scanning the adjacency list of each node 

takes one clock cycle, and therefore, growing the full partition requires a number 

of cycles equal to the number of nodes requested by the function in the best case, 

and N clock cycles in the worst case, where N is the system size. 

 In this paper, we have developed a novel approach that uses the Hilbert 

curve [106] for the dynamic allocation problem. A Hilbert curve is a locality-

preserving space-filling curve widely used in scientific computing [107]. In 

addition, this approach results in consistently lower allocation times, as 

described below.  In the following sub-sections, we describe different approaches 

for dynamic node allocation that make use of the Hilbert curve superposed on 

different 2D and 3D NoC architectures. 

4.7.1 2D Hilbert Curve with Serial Scan and First Fit (2D_serial) 

 In our first approach, we use the Hilbert curve on a 2D folded torus as 

follows: The MasterController serially scans the nodes along the Hilbert curve 

and chooses the required number of available nodes and allocates them as a 

partition to the requesting function.  

 Using the Hilbert curve offers a couple of key advantages. A Hilbert curve 

has the property that when mapped onto a regular mesh or a folded torus, nodes 

adjacent along the Hilbert curve traversal are also adjacent on the network.  

Furthermore, there could be nodes which are not adjacent along a Hilbert curve 

but are adjacent on the folded torus. Also, a Hilbert curve is essentially 

converting a two-dimensional allocation problem into a one-dimensional 

problem. Taking advantage of this property, we use a fixed Hilbert curve 
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embedded on a folded torus as shown in Fig. 4.7 (for N=16), where there is a one-

to-one correspondence between the node ids on the torus and those on the 

Hilbert curve. This allows us to effectively predetermine the set of possible nodes 

for allocation. Since this information can be hard-wired in the design, the 

allocation of an entire partition can be achieved in one clock cycle (for N=16) or 

four clock cycles (for N=64) in our design.  

 Note that our Hilbert curve-based approach may lead to three scenarios, as 

shown in Fig. 4.7. First, allocated nodes are all adjacent to each other or 

contiguous on Hilbert and hence the partition is contiguous on the torus. Second, 

the nodes are non-contiguous on Hilbert but form a contiguous partition on the 

torus. Third, the nodes are non-contiguous both on Hilbert and on the torus. 

4.7.2 Multiple 2D Hilbert Curves with Parallel Scan and Best Fit 

(2D_parallel) 

 Despite the ease of implementing the 2D_serial approach, there are two 

main drawbacks. First, there is a constant allocation penalty of 4 cycles per 

partition for a system size of 64. In addition, the allocation policy in 2D_serial is 

first-fit. Hence, it does not guarantee allocation of a contiguous partition even if 

one is available. Therefore, we developed an alternative approach, 2D_parallel, 

where we make the following changes to the allocation policy. This policy is 

particularly suited for larger system sizes; so we will use N=64 in the following 

description of the underlying algorithm:  
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(a) First, we use four Hilbert curves on a square folded torus in 2D_parallel 

(instead of one as in 2D_serial). These four curves are obtained by using right-

angle rotation operations of a single Hilbert curve.  

(b) We further divide each of the four Hilbert curves into four segments, one from 

each quadrant – thereby resulting in a total of 16 segments. The 

MasterController module now has 16 heads, each of which is responsible for 

scanning a segment. All 16 heads act in parallel. 

(c) Each head now preferentially looks for a contiguous partition starting from 

any of the nodes in its segment. The first head to find a contiguous partition 

returns it to the requesting function and interrupts all the other scanning heads. 

(d) In case, no contiguous partition is found after each head has finished 

scanning its segment, we fall back to execute 2D_serial. 

We have experimentally verified that case (d) has a low probability (< 0.2) of 

occurring and a contiguous partition can be found in most cases. Although there 

is an additional allocation penalty due to the best-fit strategy we use (step (c)), it 

provides a higher percentage of contiguous partitions than is obtained using 

2D_serial. The average number of cycles spent per allocation comes down from 4 

to 3.22. More importantly, greater contiguity of allocated partitions reduces 

inter-node communication latency and provides better speedup, as will be shown 

in Section 4.9. 

4.7.3 3D Folded Torus NoC (3D_torus) 
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(a)                                                                          (b) 

Figure 4-8. (a) 3D folded torus NoC architecture for N=64; also shown are the alternating vertical node 
allocation directions. (b) Stacked torus NoC architecture for N=64. 

 

 

 To further improve contiguity of the allocated partitions while spending 

fewer allocation cycles, we map our application to a 3D folded torus architecture. 

The NoC is a 4 4 4 folded torus as shown in Fig. 4.8 (a). A 2D 16-point Hilbert 

curve is embedded on the top layer (layer 0) and is used to allocate partitions. 

For each allocation request, MasterController allocates all available nodes in the 

column (consisting of 4 layers) corresponding to the current head position. The 

next head position follows from the 16-point Hilbert curve. This is done till all 

requested nodes are allocated. In addition, we ensure vertical contiguity by 

flipping the vertical direction of allocation. For instance, if the most recent node 

allocated in the current column is from layer 3, the next node to be allocated 
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comes from layer 3 in the column corresponding to the next head position. In 

other words, we alternately move up and down the columns during node 

allocation. We are able to handle allocation of nodes in one vertical column in one 

cycle; hence the average allocation time for 3D_torus goes down to 1.56 cycles. As 

shown in Section 4.9, 3D_torus provides the highest speedup and greatest energy 

efficiency. 

4.7.4 3D Stacked Torus (3D_sttorus) 

 Another popular 3D NoC architecture is the stacked torus. For our 

application, we have four 4 4 folded tori vertically stacked using 16 buses as 

shown in Fig. 4.8 (b). Bus width is a determinant of the performance of a stacked 

torus. As shown in [77], a stacked torus with a bus width of 4 flits achieves the 

same throughput performance as of a 3D torus. Hence, we use a bus width of 4 

flits, i.e. 256 bits in our design.  Note that these are very short buses spanning 

four layers. The allocation policy in 3D_sttorus is exactly the same as 3D_torus. 

However, as a consequence of the allocation method, our application generates 

significant amount of traffic between nodes in the same column, which in turn 

leads to bus contention and destination contention, as we further show 

experimentally in Section 4.9. 

4.8 Routing and Arbitration 

 Our routing policy is based on dimension-order: XY routing on folded torus 

for 2D_serial and 2D_parallel; and XYZ routing for 3D_torus and 3D_sttorus.  

 In 2D_serial and 2D_parallel systems, we distinguish between messages 

originating from contiguous partitions and non-contiguous partitions, and the 
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Figure 4-9. Examples of different paths taken while routing A-type and B-type traffic 

 

corresponding flits are designated as A-type or B-type respectively. Each node 

has a set of allowed directions depending on the partition it is situated in. For a 

contiguous partition, any network switch on the partition boundary has channels 

leading out of the partition marked as disallowed. For non-contiguous partitions, 

all network switches have all directions marked as allowed. In other words, 

traffic emanating from a contiguous partition always remains within the 

partition boundary and traffic emanating from a non-contiguous partition is free 

to move in any direction dictated by the routing policy. At each network switch, 

an A-type message is restricted to make the next hop in one of the allowed 

directions. However, since B-type messages have unrestricted access, they follow 

torus routing, which is similar to XY routing but includes the torus loopback 

information to determine the shortest path. A-type messages take the X direction 
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if that direction is allowed, and Y direction otherwise. Fig. 4.9 shows an example. 

A message in an A-type partition going from node 4 to node 7 follows the path 

indicated. In the B-type partition, there is one message going from node 6 to 

node 11 via node 7 outside the partition. Another message from node 0 to node 

15 goes through node 3, which is outside the partition, and makes use of the 

torus loopback. 

 It can be noted from the above routing mechanism that switches internal 

to a contiguous partition will encounter A-type traffic from that partition and 

may encounter B-type traffic from any non-contiguous partition(s). On the other 

hand, switches internal to a non-contiguous partition will face only B-type traffic 

from non-contiguous partition(s). When there is more than one message 

competing for the same port at any switch, the following arbitration policy is 

used. The remaining hop-count of the message is determined by looking up the 

pre-calculated Manhattan distance from the current node to the destination. The 

message with the maximum remaining hop-count, i.e. the one farthest from its 

destination, is granted the channel. In case of a tie, B-type is given preference. 

The remaining hop-count is also used as the arbitration parameter while routing 

in 3D_torus. This policy ensures that traffic with a higher potential latency is 

routed earlier, thereby reducing worst-case latency. 

 Since B-type messages in 2D_serial and 2D_parallel follow XY routing on 

torus (as described above), any non-contiguous partition is automatically 

deadlock-free. For contiguous partitions of sizes 2 and 3, there is no possibility of 

a cycle in the channel dependency graph because the message is always 
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contained within the partition and 2 or 3 nodes cannot form a cycle on a torus. 

Hence, deadlock is avoided in this case. For contiguous partitions of size 6, we 

can have a partition like the A-type partition (nodes 1, 2, 3, 4, 5 and 7) in Fig. 4.9 

or a partition comprising of nodes 8, 9, 10, 12, 13 and 14 in Fig. 4.7. In the former 

case, we do not have a cycle and hence deadlock cannot arise. In the latter case, 

because we follow XY routing, deadlocks are avoided.  For routing in 3D_torus 

and 3D_sttorus, we follow XYZ (dimension-order) routing. Therefore, our routing 

and arbitration policy for each kind of architecture is deadlock-free. 

4.9 Experimental Results 

4.9.1 Experimental Setup 

 The computation core has a datapath width of 64 bits and provides a 

number representation accuracy of 2-52. We synthesized Verilog RTLs for the 

computation core, the instruction-decoding wrapper, the routers and 

MasterController with 65 nm standard cell libraries from CMP [88]. The NoC 

interconnects are laid out and their physical parameters (power dissipation, 

delay) are determined using the extracted parasitics (resistances and 

capacitances). Use of folded torus topology prevents occurrence of long warp-back 

wires. The critical path occurs in the PE datapath as mentioned in Section 4.3.1, 

following which we used a clock with 1 ns period. We simulated 2D_serial NoCs 

with system sizes N=16, and 2D_serial, 2D_parallel, 3D_torus and 3D_sttorus 

NoCs with N=64 using the NoC simulator used in [104]. Recall that there are 

four PEs per NoC node in the system. 
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Table 5: Details of test-cases used for running RAxML 

Input sequences A B C 

Number of 

sequences 
50 50 500 

Number of 

distinct alignment 

patterns 

3066 23385 3829 

 

 The NoC-based multi-core platform is modeled as a co-processor connected 

using a PCIe interface. We modeled a PCI Express 2.0 interface using Synopsys 

Designware IP PCI Express 2.0 PHY. This IP has been implemented on 65 nm 

process and operates at 5.0 Gbps. We use a 32-lane PCIe 2.0 for our simulation. 

We ran RAxML-VI-HPC (version 7.0.4) [101] on three inputs that are provided 

with the suite (Table 5). These inputs comprised of DNA sequences originally 

derived from a 2,177-taxon 68-gene mammalian dataset described in [108]. We 

ran RAxML in single and multi-threaded modes on a Pentium IV 3.2 GHz dual-

core CPU, and used the best software run-times (four threads or 4T) as our 

baseline. Furthermore, to measure the relative computation intensities of each 

function kernel, we profiled RAxML on all inputs using the GNU gprof utility.  

The results consistently showed that the functions coreGTRCAT (f3) (48%), 

newviewGTRGAMMA (f6) (21%) and newviewGTRCAT (f2) (17%) collectively 

account for more than 85% of the total software run-time, as shown in Fig. 4.10 

(a). Fig. 4.10 (b) shows the number of invocations of each of the top three 

functions. The average CPU times spent in the invocation of each of the three 

functions were also noted; these times are labeled Tf2, Tf3 and Tf6. We generated 
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                                          (a)                                                            (b) 

Figure 4-10: Pie charts showing (a) contribution of coreGTRCAT, newviewGTRGAMMA and 
newviewGTRCAT to the total 1-thread software run-time of RAxML and (b) number of 

invocations of these functions in typical runs. 
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100 bootstrap trees using RAxML for each input and used them for subsequent 

likelihood calculation. 

 We compared the numerical results produced in our PEs with the ones 

produced while running RAxML on the above-mentioned CPU using 8 decimal 

places of precision and verified that the average percentage of deviation was 

below 0.1%, which was within tolerable limits and did not hamper the stability of 

RAxML or the likelihood computation.  

4.9.2 Test-case Design 

 The function kernels whose acceleration we target are invoked during 

generation of bootstrap trees and computation of likelihood of the generated 

trees to find out the best tree. Working on each tree in parallel helps us work 

around the sequential dependency among functions within one execution thread. 
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Target function kernels originate from different parallel execution threads and 

hence can be allocated to different nodes of the NoC-based platform. Allocation of 

nodes to each function is based on the policy in Section 4.7. We designed test 

cases for 2D_serial (N=16 and N=64), 2D_parallel (N=64), 3D_torus (N=64) and 

3D_sttorus (N=64). Each test case represents a combination of the three target 

functions (f2, f3, f6). In order to compare the different NoC architectures, we use 

the same test cases on each. However, the allocation of a test case can result in 

different mixtures of contiguous and non-contiguous partitions depending on the 

underlying architecture and system size. Test cases have been captured from a 

wide range of real world scenarios, including the best and the worst case. The 

mean execution time of each function is estimated by averaging over all the test 

case scenarios. During the execution of a function, inter-node exchange of 

intermediate results occurs simultaneously with intra-node computation (in the 

PEs within the subnet). This allows masking of communication latency by 

computation delay. We observed that newviewGTRCAT (f2) requiring 2 nodes 

per invocation is generally computation-intensive, while coreGTRCAT (f3) and 

newviewGTRGAMMA (f6) requiring 3 and 6 nodes respectively are generally 

communication-intensive. 

4.9.3 Communication Latency 

 Total communication latency indicates the amount of time spent in 

executing the function. Since computation and communication are pipelined, we 

define residual communication latency as the number of clock cycles spent in 

performing only inter-node communication. The average lifetime of each 

partition is closely related to the total communication latency.  
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Figure 4-11: Variation of partition dispersion and function communication latency across 

different NoC architectures 
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 The contiguity (or non-contiguity) of an allocated partition has a direct 

bearing on the communication latency (total or residual) for executing the 

function. The effect is most pronounced in the case of newviewGTRGAMMA (f6) 

and also affects coreGTRCAT (f3). On the other hand, newviewGTRCAT (f2) has 

a net zero residual communication latency. This is because this function is 

spread across only two nodes and computation and communication cycles 

complement each other. We use average partition dispersion (diameter) as a 

measure of the non-contiguity of the allocated partition. We observe (Fig. 4.11) a 

gradual decline in average partition dispersion moving from 2D_serial to 

2D_parallel to 3D_torus. The average communication latency involved in 
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function execution displays a similar trend across architectures. The role of the 

interconnection topology here is to reduce the average partition dispersion and 

hence the residual communication latency. B-type messages originating from 

non-contiguous partitions as a percentage of the total number of messages 

reduce from 34% in 2D_serial to 24% in 2D_parallel, further demonstrating the 

impact of contiguity of partitions on latency performance. Partitions on 

3D_sttorus have much lower dispersion than the other architectures owing to the 

presence of a bus in the vertical dimension, which provides one-hop transit 

between any two layers. However, this does not translate to lower 

communication latency because of bus and destination contention. In fact, 

latencies for 3D_sttorus are observed to be slightly higher than those in 

3D_torus (most pronounced for f6 as shown in Fig. 4.11).  

4.9.4 Speedup 

 We used two different measures to evaluate the acceleration performance 

of our design. The first measure is function-level speedup, which assesses the 

level of fine-grained parallelism achieved by our PE design. The second measure 

is aggregate speedup of the accelerated kernels, which measures the degree of 

acceleration achieved by integrating the PEs in the NoC framework. 
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Figure 4-12: Function-level speedup of phylogenetic kernels 
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4.9.4.1 Function-level Speedup 

 In order to determine function-level speedup, the total execution time for 

each function, consisting of computation and communication components, was 

averaged over all test cases on each architecture (2D_serial, 2D_parallel, 

3D_torus and 3D_sttorus) and compared with the baseline CPU times consumed 

by the function  while running the software (Tf2, Tf3, Tf6). The speedup obtained 

for the functions on each architecture is shown in Fig. 4.12. 3D_torus 

consistently provides the best function-level speedup for all three functions. Note 

that the best speedup (on 3D_torus) of 847x is obtained for coreGTRCAT (f3), 

which accounts for 48% of the total software run-time. The least speedup (on 

3D_torus) of 390x is obtained for newviewGTRCAT (f2), because it is the 

smallest function kernel and requires only two NoC nodes (or 8 PEs) by design. 
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Figure 4-13: Total dispersion of target kernel mappings across different NoC architectures 
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As expected, function-level speedup has an inverse relationship with 

communication latency (Fig. 4.11). 

4.9.4.2 Aggregate Speedup of the Target Function Kernels 

 This is a measure of the acceleration achieved on the targeted function 

kernels, and is the ratio of the CPU run-times of the test cases consisting of 

these kernels to the run-times of these test cases on our NoC-based platform of a 

given system size (N) and architecture (2D_serial, 2D_parallel, 3D_torus and 

3D_sttorus). Each test-case configuration represents a typical snapshot of the 

system during the course of execution of parallel RAxML threads, with our NoC-

based platform handling the three phylogenetic kernels. Several instances of 

newviewGTRGAMMA (f6), coreGTRCAT (f3) and newviewGTRCAT (f2) 

occupying contiguous and non-contiguous partitions are present in each such 

test-case. The total time spent in one test case also includes the time required to 

allocate all partitions (allocation time) and to load the input vectors to the 
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Figure 4-14. Average aggregate speedup of the accelerated kernels across different NoC 
architectures 
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function in 64-bit FXP-HNS format [83] (interface time) on the NoC using the 

PCIe interface described earlier. 

 On an average, 2D_serial with N=16 provides a speedup of ~2200x, 

whereas a larger system size (N=64) provides ~4300x speedup. The ideal 

increase (4x) in speedup with system size was not obtained because of higher 

penalties incurred in allocation time and interface time, and higher non-

contiguity of partitions leading to increased communication latency. This is 

where the benefits provided by 2D_parallel, 3D_torus and 3D_sttorus become 

evident. 

 We classified test cases on systems with N=64 on the basis of the number 

of constituent functions (or partitions). Test cases with a lower number of 

partitions (average 15.67) have more instances of f6. Such instances occur 
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mainly during the likelihood evaluation phase. Test cases with higher number of 

partitions (average 23.33) have significantly more instances of f2 and f3. These 

scenarios are prominent during generation of bootstrap trees. Fig. 4.13 shows the 

observed dispersion as a function of the underlying architecture and the number 

of partitions. A test case with fewer partitions is expected to result in a higher 

degree of dispersion because there are more instances of f6. This is generally 

true for all the architectures except for 3D_sttorus because of the bus. Fig. 4.14 

shows the aggregate speedups of the accelerated kernels as a function of the 

underlying architecture and the number of partitions. 2D_parallel, 3D_torus and 

3D_sttorus NoCs provide higher speedup than 2D_serial because they reduce 

allocation time while improving partition contiguity. For all test cases, 3D_torus 

provides the best aggregate speedup (6594x) followed by 3D_sttorus (6428x), 

2D_parallel (4937x) and 2D_serial (4326x). 3D_torus outperforms 3D_sttorus 

because bus and destination contention in 3D_sttorus leads to higher 

communication latency (as described earlier in Section 4.7.4.3). 

4.9.5 Total Execution Time 

 In order to determine the overall reduction in run-time, the run-time of the 

non-accelerated portion of the software is considered along with the accelerated 

portion running on the NoC-based platform. The total execution time takes into 

account all overheads involved in offloading a part of the computation to the 

NoC-based platform. Table 1 shows the total run-times for two representative 

input data-sets, 50_5000 containing 50 DNA sequences with 5000 columns each 

and 500_5000 containing 500 DNA sequences with 5000 columns each. Table 6 

shows the total run-time using our 2D_serial, 2D_parallel, 3D_torus and 
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Table 6. Total run-times for different inputs using different NoC-based platforms vis-à-vis only 
software 

 

Input data (DNA)

Unaccelerated 

software run-time 

(s)

Time spent in 

accelerated 

kernels (s)

Allocation 

time (s)

PCIe 

interface 

time (s)

Total run-time using 

NoC platform as 

hardware accelerator 

(s)

Total 4T 

software run-

time (s)

2D_serial 292.000444 0.515478 0.130387 0.145065 292.791374 924.052039

2D_parallel 292.000444 0.481303 0.104805 0.145065 292.731617 924.052039

3D_torus 292.000444 0.433625 0.050889 0.145065 292.630024 924.052039

3D_sttorus 292.000444 0.474657 0.050889 0.145065 292.671056 924.052039

2D_serial 7038.847538 19.1142 8.467062 8.273363 7074.702162 37124.7233

2D_parallel 7038.847538 18.04733 6.805803 8.273363 7071.974034 37124.7233

3D_torus 7038.847538 16.766102 3.304655 8.273363 7067.191658 37124.7233

3D_sttorus 7038.847538 18.102936 3.304655 8.273363 7068.528491 37124.7233

50_5000

500_5000

3D_sttorus architectures vis-à-vis software. The best run-time reduction is 

obtained using 3D_torus NoC-based platform and is highlighted in the table. It 

can be observed that most of the run-time that results from the use of the NoC-

based platform comes from the unaccelerated portion. Even so, the overall run-

time is reduced by more than 3x for 50_5000 and more than 5x for 500_5000. 

This proves the immense potential of such hardware accelerator platforms in the 

field of phylogeny reconstruction applications. 

4.9.6 Energy consumption 

 Fig. 4.15 shows the total energy consumed across different test cases and 

architectures.   Test cases with larger number of partitions consume more energy 

than those with fewer partitions on the same architecture. However, there is a 

significant reduction (up to 37.7%) of energy going from 2D_serial to 3D_torus. 

This follows a trend similar to that observed for total test case dispersion (Fig. 

4.13). Lower dispersion leads to lower average hop-count of inter-node messages 

and hence lower energy consumed in communication. Also, in the case of 3D 

(both 3D_torus and 3D_sttorus), substitution of longer horizontal links with 

much shorter vertical links leads to lower energy consumption. 3D_sttorus has a 
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Figure 4-15. Total system energy consumption across different NoC architectures 
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slightly higher overall energy consumption over 3D_torus because of the higher 

capacitance of the buses and higher application run-times. 

4.10 Conclusion 

 In this chapter, we presented a novel design and implementation of a 

Network-on-Chip (NoC) based multi-core platform for accelerating Maximum 

Likelihood (ML) based phylogeny reconstruction, which is an important, 

compute-intensive application in bioinformatics. The NoC-based accelerator 

targets the three most time-consuming function kernels that collectively account 

for the bulk of the run-time in the widely-used RAxML software suite. Our 

implementation achieves parallelization at different levels – both within a 

function kernel and across several invocations of these function kernels in 

parallel execution threads. Consequently, our contributions include: (i) the 

design of a fine-grained parallel PE architecture, (ii) a novel algorithm to 



98 

dynamically allocate nodes to tasks based on Hilbert space-filling curves, and 

(iii) the design and extensive evaluation of different NoC architectures, both in 

2D and 3D, in the context of this application. The overarching purpose of our 

experimental study was to evaluate the feasibility and merits of an NoC-based 

hardware accelerator for ML-based phylogenetic kernels. To this end, our 

experimental results show that our NoC based accelerators are capable of 

achieving a function-level speedup of ~847x, aggregate speedup of the 

accelerated portion up to ~6,500x, and overall run-time reduction of more than 

5x over multithreaded software. Comparative evaluation across NoC 

architectures show that the best performances in terms of speedup and energy 

consumption are obtained from 3D NoC platforms. Our speedup performance 

represents considerable improvement over existing hardware accelerators for 

this application (e.g. [69], [100]).  

 Although this work targeted the RAxML implementation of ML phylogeny, 

the design methodology and ideas for node allocation and routing are generic 

enough to be carried forward to other scientific applications which have a similar 

computational footprint, i.e., the need to execute a large volume of a fixed 

number of function kernels; for example, other statistical estimation methods in 

phylogenetic inference such as Bayesian Inference. 
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5. High-Throughput, Energy-Efficient NoC-Based Hardware 

Accelerators  

In all fields of high-performance computing (HPC), new data-generation 

technologies are placing an enormous stress on software tools to perform beyond 

terascale to peta- and exa-scale. Given the diversity of tools and the need to cater 

to a wide user-base, it is becoming common practice, even within academic 

settings, to have a dedicated center that hosts a variety of scientific computing 

tools on a few high-end data servers. The throughput requirement that these 

multi-user servers need to meet can be substantial since the servers can be 

expected to service concurrent requests from a variety of applications, each with 

differing resource requirements. These servers would often consist of multicore 

hardware accelerator co-processor platforms where the cores are designed to 

accelerate targeted operations and are interconnected with an on-chip network. 

A similar setup is also becoming common practice, albeit on a larger scale, in 

cloud solution providers (e.g. [109]). While throughput is important, it is 

necessary to restrain energy consumption and power dissipation in these 

hardware accelerators. In this respect, the role of NoC-based platforms assumes 

significance, owing to the level of on-chip integration that such platforms can 

achieve, delivering high computation throughput alongside energy-efficiency, as 

we elaborate in this chapter. 

 In this chapter, we propose, design and evaluate NoC-based platforms for 

enhancing the computation throughput of scientific applications. Our evaluation 

of the NoC-based platforms includes analysis of the resulting performance, 

energy-efficiency and power consumption, and thermal profiling. More 
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Figure 5-1. Illustration of our NoC-based use-case model proposed for hardware acceleration 
of throughput-oriented scientific applications 

 

specifically, we analyze how throughput and power consumption are correlated 

with the statistical properties of the application traffic. In addition, we compare 

and analyze chip-level thermal profiles to identify hot-spot distribution and 

correlate them with architecture-level design choices. 

5.1 Application Use-Case Model 

 In order to design our platform, we propose the following use-case model 

(see Fig. 5.1): A CPU runs the parent process and communicates via an interface 

(e.g. PCIe) to a multicore system-on-chip that acts as a hardware accelerator for 

specific computation-heavy kernels. There is a queue of jobs offloaded by the 

CPU to the hardware accelerator and an allocation unit (MasterController) 

assigns the requested computational resources from the hardware accelerator to 

the job at the head of the queue. Once some computation resources are assigned 

to a job, they stay busy till the execution of that particular job concludes, and the 

result is sent back to the CPU through a similar interface (e.g. PCIe). Each 
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computational resource is a lightweight custom core embedded in a NoC. In the 

following, we characterize such hardware accelerator platforms in terms of 

overall computation throughput, energy consumption, power dissipation and 

thermal profiling. 

 The computational footprint of many scientific applications fits the 

proposed use-case model, for example, the use of servers that host application 

programs to implement standard functions in phylogenetic inference [110], 

genome/gene sequencing [89], climate modeling and weather prediction [111], 

etc. For instance, a typical genome assembly algorithm farms out billions of 

pairwise sequence alignment tasks, each of which aligns two strings of small 

lengths (e.g., 100-500 base pairs) and can use a small number of cores (e.g., 8-16) 

[112]. As another example, consider the problem of computing phylogenetic 

inference using maximum likelihood (ML) [113], where one typically needs to 

carry out billions of independent tree evaluations, each of which internally 

performs a small number of floating point calculations using a few cores. In such 

applications, enhancing overall throughput in computation translates to shorter 

time to solution. To this end, integration of many cores using an on-chip network 

(or NoC) presents an attractive model of computation, not only due to the 

availability of a large number of cores, but also because the computation within 

the individual tasks in many of these applications (e.g., sequence alignment in 

the genome assembly problem, [114]) can be designed to take advantage of fine-

grain on-chip parallelism involving a fixed number of cores. 
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5.2 Introduction of Long-Range Links 

For any NoC design, the choice of the on-chip network architecture is an 

important determinant of the overall throughput and energy efficiency achieved 

by the many-core system.  

Introduction of long-range links on regular structures such as a mesh 

leads to an interconnect fabric that is neither regular nor fully customized, as 

shown in [115]. This has the effect of reducing average packet latency and 

increasing data throughput without any major impact over the network topology. 

Most complex networks, including the Internet, social networks and the network 

of neurons in the brain share this Small-World property [116]. In [115], the use 

of on-chip wireless interconnects to implement these long-range links is 

demonstrated to provide considerable gains in network throughput and latency, 

and energy consumption over wired counterparts.  

Consequently, the focus of this chapter is the design and evaluation of 

NoC-based platforms for throughput-oriented applications. These platforms 

consist of long-range on-chip wireless links in addition to standard wired links in 

a particular network topology. To the best of our knowledge, this represents the 

first attempt at designing and empirically characterizing NoC-driven accelerator 

platforms built using both wired and wireless links for throughput-oriented 

scientific applications. 

5.3 Network Architecture 

 The choice of the underlying interconnection fabric topology is determined 

from the perspective of the application and VLSI implementation. Our target is 
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                            (a )                                                                                (b) 

Figure 5-2. The number of flits per cycle ((a) mean and (b) normalized standard deviation) 
within routers of an 8x8 folded torus network. The horizontal dimensions denote the 
processor coordinates of the torus, while the vertical dimension denotes the observed flits 
per cycle (mean and standard deviation). The absence of distinctive peaks in temporal 
statistics indicates the higher suitability of fully-distributed, regular interconnection 
topologies such as a mesh or torus, as opposed to linear or hierarchical topologies such as 
bus or trees. 

the class of applications that spawn a stream of independent jobs (constituent 

functions) that individually require variable amounts of computation resources. 

Communication occurs only among nodes catering to a single job during its 

execution. The location of these nodes on the network is a variable for every 

instance of an allocated job, leading to arbitrary point-to-point communication. 

The traffic patterns are hence dynamically changing and steady-state 

characteristics do not indicate any clustering or traffic localization, as shown in a 

sample statistical analysis of the traffic pattern over time in Fig. 5.2.  

Distributed network architectures are generally better suited for such traffic 

patterns. Consequently, we use a folded torus. From the VLSI implementation 

perspective, a torus is a scalable network architecture whose regularity provides 

for easier timing closure and reduces dependence on interconnect scalability [27]. 
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We adopt the computation nodes described in Chapter 4, Section 4.3, which run 

at a clock speed of 1 GHz. All inter-node links in the folded torus are one-hop 

links with respect to the 1 GHz clock used. Since the computation node has a 

datapath that is 64-bit wide, we designate our flit size to be 64 bits and split each 

inter-node message into three flits – header, body and tail. As a result, each 

inter-node link has a minimum bandwidth of 64 Gbps. 

5.4 Use of Long-Range On-Chip Wireless Links 

 In the previous section, we described our underlying network topology 

that suits a distributed traffic pattern. However, we would ideally want the 

average internode distances between nodes catering to the same job to be as low 

as possible, or in other words, we would want the nodes catering to a particular 

job to be all contiguous to one another. This cannot be guaranteed in practice 

because different jobs needing different number of resources could get submitted 

in real-time (as we further explain in Section 5.5, also see Section 4.7). This could 

force any allocation method to either wait for all required nodes to be available 

contiguously (the effect of which could be a significant delay in execution time 

coupled with a non-optimal use of the cores) or map the job on nodes that could 

potentially be non-contiguous along the network (as elaborated in Section 5.5). In 

the latter approach, large physical separation of these nodes on the network 

could lead to a significant communication overhead. From the network 

architecture point of view, bridging these gaps is possible through the use of 

long-range point-to-point shortcuts. In Section 3.2, we described our underlying 

network topology that suits a distributed traffic pattern. However, we would 

ideally want the average internode distances between nodes catering to the same 
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job to be as low as possible, or in other words, we would want the nodes catering 

to a particular job to be all contiguous to one another. This cannot be guaranteed 

in practice because different jobs needing different number of resources could get 

submitted in real-time (as we further explain in Section 3.4). This could force any 

allocation method to either wait for all required nodes to be available 

contiguously (the effect of which could be a significant delay in execution time 

coupled with a non-optimal use of the cores) or map the job on nodes that could 

potentially be non-contiguous along the network (as elaborated in Section 3.4). In 

the latter approach, large physical separation of these nodes on the network 

could lead to a significant communication overhead. From the network 

architecture point of view, bridging these gaps is possible through the use of 

long-range point-to-point shortcuts. As mentioned before, introduction of 

shortcuts on regular architectures have been shown to provide significant 

improvements in latency and network throughput for different kinds of 

applications [115]. Implementing these shortcuts using metal wires inherits the 

issues associated with long wires, viz., transmission delay and large power 

dissipation. High transmission delay makes it impossible to guarantee one-hop 

transmission. Use of on-chip wireless shortcuts overcomes these drawbacks 

[117]. 

5.4.1 Physical Layer 

 Suitable on-chip antennas are necessary to establish the wireless links. It 

has been shown that wireless NoCs designed using carbon nanotube (CNT) 

antennas can significantly outperform conventional wireline counterparts [117]. 

Antenna characteristics of CNTs in the THz frequency range have been 
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investigated both theoretically and experimentally [118]. Such nanotube 

antennas are good candidates for establishing on-chip wireless communications 

links and are henceforth considered in this work. CNT antennas can be used to 

assign different frequency channels to pairs of communicating source and 

destination nodes. This enables creation of dedicated and non-overlapping 

channels using the concept of frequency division multiplexing. This is 

implemented by using CNTs of different lengths, which are multiples of the 

wavelengths corresponding to the respective carrier frequencies. With currently 

available technology, it is possible to create 24 non-overlapping wireless 

channels, each capable of sustaining a data rate of 10 Gbps using CNT antennas. 

Technology-specific details on CNT are discussed in [117]. We determine the 

number of wireless links in our system based on the bandwidth each link needs 

to support. As mentioned earlier, each wireless (inter-node) link needs to sustain 

a bandwidth of 64 Gbps. Since each wireless channel can provide a bandwidth of 

10 Gbps, we need to combine 7 channels per link (delivering up to 70 Gbps 

bandwidth). Hence, the maximum number of single-hop wireless links we can 

implement is ⌊    ⌋   . Note that we could increase the number of wireless 

links providing the same bandwidth when future technology supports more than 

24 non-overlapping channels. 
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Figure 5-3. Comparison of average network communication latencies for different wireless link 
placements. Even small increases in communication latency have shown to lead to significantly 
degrade performance. 
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Figure 5-4. Non-contiguous nodes and long-range communication requirements leading to 
wireless link placement along diameters. Although not shown, each node is connected through 
wired links to four of its neighboring nodes as dictated by the torus topology. Most of our 
allocation strategies consider the nodes along the Hilbert curve while also factoring the 
presence/absence of wireless hubs at intermediate nodes.. 
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5.4.2 Wireless Link Placement 

 Ideally, the placement of wireless links should be dictated by the demands 

in the traffic patterns generated by the target scientific application. For the kind 

of throughput-oriented scientific applications targeted in this paper, however, it 

is not possible to statically predict any particular traffic pattern because the 
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underlying communication requirement could be arbitrary. The sets of 

communicating nodes executing a single task could be spread out over the whole 

network, thereby generating arbitrary point-to-point traffic over time (as 

corroborated by our observations made in Fig 5.2). In fact, we observed the 

probability of non-local interaction between nodes is highest when the separation 

between them is equal to the diameter of the network. We have experimentally 

verified this observation by placing wireless links according to various 

considerations – based on uniform random traffic assumption, and along 

diameters of the network. As shown in Fig. 5.3, wireless link placement along 

the diameter leads to the lowest network latency among the possibilities 

considered. This observation can be explained by the fact that the most efficient 

node allocation method described later in Section 5.5 divides the network into 

four quadrants, tries to allocate nodes locally, and the need for long-range links 

arises when allocated nodes are non-contiguous and lie in neighboring 

quadrants.  It can be easily seen from Fig. 5.4 that the mean distance between 

adjacent quadrants is the network diameter of the folded torus. Since there are 

only 3 wireless links as explained earlier, we maximize their coverage by placing 

them along diameters of the folded torus with almost equal angular separation 

between each pair of diameters, as shown in Fig. 5.4. This ensures that nodes in 

all sections of the network have similar degree of accessibility to a wireless link. 

5.5 Dynamic Node Allocation 

 A network node is busy during the execution of a job by the PE; it is 

available otherwise. The computation nodes (PEs) continually send their 

busy/available status to the allocation unit, MasterController (see Fig. 5.1). 
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When a job requests computation resources, MasterController allocates the 

requisite number of available computation nodes from the system. The nodes 

thus allocated form a partition during the course of function execution and 

communicate with one another (also see Section 4.7). A desired feature of a 

partition is that its constituent nodes are co-located so as to minimize the 

average number of hops spent in message transfers. To this end, a good 

allocation strategy should ensure co-locality without incurring a large allocation 

time overhead. Simple approaches like breadth-first search do not fit these 

criteria. We present the following allocation methods, which can be classified 

into wireless-agnostic and wireless-aware methods. We also make use of the 

locality-preserving, space-filling Hilbert curve [106] for allocation. The resultant 

allocated partitions are denoted A-type if all nodes belonging to that partition 

are contiguous along wired links on the folded torus; else the partition is B-type. 

5.5.1 Parallel Best-Fit Allocation Using Multiple Hilbert Curves 

This allocation strategy preferentially looks for a partition with contiguous 

nodes to maximize co-locality, and parallelizes the search in order to increase the 

probability of a hit. The algorithm follows the one in Section 4.7.2, and is 

reproduced here for clarity. 

1. First, we use four Hilbert curves on a square folded torus. These four 

curves are obtained by using right-angle rotation operations of a single 

Hilbert curve.  

2. We further divide each of the four Hilbert curves into four segments, one 

from each quadrant – thereby resulting in a total of 16 segments (see Fig. 
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5.4). MasterController now has 16 heads, each of which is responsible for 

scanning a segment. All 16 heads act in parallel. 

3. Each head now preferentially looks for an A-type partition in its segment. 

The first head to find such a partition returns it to the requesting job and 

interrupts all the other scanning heads. 

4. In case no A-type partition is found after each head has finished scanning 

its segment, MasterController carries out a serial scan along a Hilbert 

curve and allocates available nodes as they are encountered. 

This method of allocation is wireless-agnostic because we do not make use of 

the information regarding the location of wireless shortcuts. Systems using this 

method of allocation are denoted by 2D_parallel if they do not use wireless 

shortcuts, and 2D_parallel + wireless if wireless shortcuts are used only during 

message transfers. 

5.5.2 Wireless-First Allocation Using Hilbert Curve 

This is a wireless-aware allocation method in which MasterController 

looks for available node pairs directly connected by a wireless shortcut. If such a 

pair is available, they are allocated to the requesting job. MasterController then 

serially scans for the remaining nodes following a Hilbert curve starting from a 

terminal node of the wireless shortcut. Since only nodes belonging to the same 

partition communicate with one another, this method ensures that wireless 

shortcuts are fully utilized. In case no wireless shortcut is available at the time 

of allocation, nodes are allocated based on a serial scan along the Hilbert curve. 

Systems using this allocation method are denoted by wireless + Hilbert. 
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5.5.3 Wireless-First, Column-Major Allocation 

This is another wireless-aware allocation method, which looks for available 

wireless shortcuts to be allocated first. The remaining nodes are allocated 

following the direction of wireless shortcuts such that the nodes in the partition 

are aligned with the shortcut, so as to maximize the traffic the shortcut carries. 

As shown in Fig. 5.4, the wireless shortcuts are placed along the vertical 

diameters (columns) of the folded torus. Hence, the node allocation also follows a 

column-major ordering. The major benefit of this method is that a wireless 

shortcut can potentially carry traffic from partitions that do not directly include 

it but are closely aligned with it. Systems using this allocation method are 

denoted by wireless + column-major. 

5.6 On-Chip Routing 

We adopt wormhole routing to exchange three-flit messages among nodes 

of a partition. Network switches are based on the designs presented in [104]. 

Each switch consists of four bidirectional ports (E, W, N, S) to neighboring 

switches and one local port to/from the computational node. Each port has a 

buffer depth of two flits and each physical channel is split into 4 virtual 

channels. The general routing policy is e-cube routing on torus [52]. 

For routing in the presence of wireless shortcuts, we need information 

about the wireless links closest to a source-destination pair, and the bandwidth 

provided by such links. This information is known beforehand and is available to 

the router. Based on this knowledge, the router chooses a path via a wireless 

shortcut if that entails fewer hops to transfer a message between a source-
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destination pair. The message follows deadlock-free south-last routing [115] 

when involving wireless shortcuts, and e-cube routing when following wired-only 

paths between a source and a destination. 

5.7 Experimental Results 

5.7.1 Experimental Setup 

The computation core (originally from Section 4.3) has a datapath width of 

64 bits and provides a number representation accuracy of ~10-15. A PE integrates 

four such computation cores. We synthesized Verilog RTLs for the PEs, the 

network switches and MasterController with 65 nm standard cell libraries from 

CMP [88]. Our clock period of 1 ns comes from the critical path constraint in the 

core datapath as mentioned in Section 4.3.1 and shown in Fig. 4.1. We verified 

that our design meets all timing constraints, and evaluated power consumption. 

We laid out the wired NoC interconnects and determined their physical 

parameters (power dissipation, delay) using the extracted parasitics (resistances 

and capacitances). We verified that all wired links could be traversed within one 

clock cycle.  

Each wireless link consists of seven channels of 10 Gbps each, providing a 

total link bandwidth of 70 Gbps. For the wireless links, we considered an energy 

dissipation of 0.33 pJ/bit as reported in [117] to include the energy consumed in 

the transceiver circuitry and the antennas, and used these to evaluate the total 

energy consumption of our system. In order to carry out chip-level thermal 

analysis we used the data on power consumption so obtained with HotSpot 5.0, 
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an accurate and fast thermal model suitable for use in architectural studies 

[122]. 

We experimented with the allocation methods mentioned in Section 5.5. 

We used system sizes of N=64 and N=256 in our experiments. We modeled the 

NoC-based multicore platform as a co-processor connected using a PCIe 

interface. We modeled a PCI Express 2.0 interface using Synopsys ™ 

Designware ™ IP PCI Express 2.0 PHY implemented on 65 nm process and 

operating at 5.0 Gbps. We used a 32-lane PCIe 2.0 for our simulation. 

For experimental studies, we use function kernels from a Maximum 

Likelihood-based phylogenetic reconstruction software called RAxML version 

7.0.4, [70], [101]. A detailed profiling of RAxML runs using the GNU gprof utility 

reveals that a small set of functions consume a predominant portion (>85%) of 

the runtime. These functions are offloaded to our NoC-based accelerator co-

processor and are denoted by f6, f3 and f2 respectively based on the computation 

resources (number of computation nodes) they need for execution. Based on the 

composition of jobs executing on our system, we bin the system job loads into two 

categories – one in which f6 jobs are dominant and the other in which f3 and f2 

jobs occupy up to half of all the nodes. The total number of jobs concurrently 

executing on the system is clearly higher in the latter case. Since each f6 

individually requires the largest number of computation nodes (six), the 

probability that one will be allocated a contiguous partition on the network is 

relatively low. Therefore, the above test plan represents the conservative end of 

the spectrum for performance evaluation. 
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Figure 5-5. Computation throughput across different network architectures, system sizes and job 
loads. 
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5.7.2 Computation Throughput 

To measure the computation throughput of our system, we only use each 

basic operation (logarithm/exponentiation) performed by a core (see Section 

4.3.1) as the unit (leaving out addition because it is much simpler), and the 

number of operations per second as the metric. Computation throughput is not 

only affected by the mix of jobs running on the system at any point of time, but 

also by allocation time overhead, usage of wireless shortcuts, and network 

architecture. Fig. 5.5 shows the computation throughput for the two different job 

loads mentioned earlier across different network architectures and system sizes. 

2D_parallel + wireless consistently provides the best computation throughput 

across job loads and system sizes. It is interesting to note that the best 

performing architecture has a wireless-agnostic allocation method. While 

wireless-aware allocation methods guarantee that a larger proportion of flits use 

the wireless shortcuts (see Fig. 5.6), this also leads to congestion over these links. 
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Figure 5-6. Proportion of flits using wireless shortcuts and energy consumption across 
network architectures and system sizes. 
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Since we use a static routing technique that is based only on the comparison of 

distances traversed in alternative paths (using shortcuts vs. not using shortcuts), 

we end up routing more flits through the wireless shortcuts than their 

bandwidth can sustain without incurring a latency penalty. In a wireless-

agnostic allocation method such as 2D_parallel + wireless, we try to maximize 

the number of A-type partitions during allocation, leaving to the wireless 

shortcuts the job of carrying traffic from B-type partitions. 

Referring to Fig. 5.5, we also note that the cases containing a higher 

proportion of f2 and f3 jobs have a 5-10% higher computation throughput than 

the f6 dominant loading scenario. Note that a larger system size (Fig. 5.5 (b)) 

provides proportional gain in computation throughput because the problem size 

can be appropriately scaled up. The lowest parallelization efficiency is obtained 

for wireless + column-major and this is attributed to the high allocation-time 
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Figure 5-7. Average power dissipation in different NoC architectures and system sizes. 
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overheads for larger system sizes, proving that this allocation method is less 

scalable with system size. 

5.7.3 Proportion of Flits Using Wireless Shortcuts 

Fig. 5.6 shows the percentage of total flits that used the wireless shortcuts. 

Note that the number of shortcuts (three) is much lower than the number of 

nodes (64, 256) in the system. As expected, 2D_parallel + wireless, being a 

wireless-agnostic allocation method, leads to the lowest proportion of flits using 

wireless shortcuts. On the other hand, wireless + column-major allocation leads 
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to the highest proportion of flits using wireless shortcuts across system sizes. 

This is because it is a wireless-aware allocation method, in which the partitions 

that do not get direct access to wireless shortcuts are aligned with the shortcuts, 

providing them with access to the shortcuts during routing, as explained earlier 

in Section 5.5.3. 

5.7.4 Energy and Power Consumption 

 Average power dissipation in the chip is important from the physical 

perspective, because it is a direct indicator of the activity of the logic inside the 

chip and has a bearing on its thermal profile as explained further in Section 

5.7.6. Quite predictably, the average power dissipation is higher in architectures 

that can deliver higher computation throughput, as shown in Fig. 5.7. In fact, 

wireless-aware allocation consistently leads to lower average power dissipation. 

We have included a data point to show that wireless link placement under 

uniform random traffic assumption leads to even lower power dissipation for 

N=64, although this is primarily because fewer computations are being 

performed and fewer messages are being transferred per second. Note that, the 

reduced power dissipation comes at the cost of reduced throughput performance 

in all cases. Consequently, we evaluated the energy consumption profiles of the 

architectures under consideration. 
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Figure 5-8. Average, standard deviation and skew of flits routed per network switch across 
NoC architectures and system sizes. 
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 In order to determine which architecture is indeed the most energy-

efficient, we evaluated the energy spent per operation. This consists of the 

computation energy component spent within the computation nodes, and the 

network energy component spent in the network switches, wireless transceivers 

and wired links. Fig. 5.6 shows a comparison of the energy spent per operation 

across different network architectures and system sizes. 2D_parallel + wireless 

is the most energy-efficient in terms of overall energy consumption per 

operation. A closer look reveals that for N=64, the network energy component is 

indeed lower for the wireless-aware methods, wireless + Hilbert and wireless + 

column-major, due to a larger proportion of their flits using wireless shortcuts, 

each of which consumes less energy than a wired link. However, due to higher 
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computation latencies and the greater contribution of the computation energy 

component, the overall energy per operation turns out to be higher. For N=256, 

the proportion of flits using wireless shortcuts is low across all architectures, and 

the saving in energy due to flits using wireless shortcuts is more than offset by 

the additional energy consumption in the wired links. This leads us to the 

conclusion that 2D_parallel + wireless is still the best performing architecture 

from the energy-efficiency perspective. 

5.7.5 Traffic Statistics 

 In order to thoroughly analyze the throughput and energy-efficiency of 

different architectures, we need to understand the nature of traffic that our 

application generates. Our use-case model does not generate a deterministic 

traffic pattern. Hence, we try to characterize the traffic in terms of its first, 

second and third order statistical properties, and correlate these with 

throughput, energy consumption and power dissipation. A good indicator of 

traffic is the number of flits routed per network switch while running the 

application. We measure the mean, standard deviation and skew of this quantity 

across all 64 (256) switches for N=64 (N=256), as shown in Fig. 5.8. For N=64, 

the mean values are about the same across architectures; for N=256, diameter 

wireless + column-major clearly needs to route more flits per network switch, 

which indicates congestion and hence reduced throughput as we have seen 

earlier. Note that the standard deviation varies across architectures for both 

system sizes, and is the least for 2D_parallel + wireless, which has the highest 

throughput and lowest energy per operation. Traffic is clearly less skewed for 

wireless-agnostic architectures than for wireless-aware architectures. This is 
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attributable to congestion around shortcuts in wireless-aware architectures, as 

discussed earlier. Higher skew is strongly correlated with lower throughput and 

higher energy per operation. Following the discussion in Section 5.7.4, higher 

skew is also correlated with lower power dissipation owing to reduced network 

and PE activity. 

5.7.6 Thermal Profile 

Thermal profiling of a many-core chip is important in order to prevent 

chip failure due to extreme temperatures during periods of peak activity. It is 

also important to ensure that a large number of hotspots are not created and on-

chip temperature variation is low enough not to introduce timing failures. With 

this objective, we used HotSpot 5.0 [122] to carry out thermal profiling of our 

systems with N=64 to determine the relationship between NoC architecture and 

on-chip thermal variation. As shown in Fig. 5.7, the majority of the power 

dissipation is due to computation activity in the PEs. Hence, the method of 

allocating these PEs to different jobs has a direct bearing on thermal variation 

and hotspot creation.  



121 

 

(a) 

 

(b) 
Figure 5-9. Thermal profile of N=64 systems with (a) 2D_parallel and (b) 2D_parallel + 
wireless architecture. 
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Fig. 5.9 (a) and (b) respectively shows thermal profiles for 2D_parallel and 

2D_parallel + wireless that have a similar pattern albeit for a slightly higher 

peak temperature in the latter case. Although the maximum temperature (< 77 

degrees C) is well within reliability limits, a clustering of hotspots is noticed. 
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(a) 

 

(b) 

Figure 5-10. Thermal profile of N=64 systems with (a) diameter wireless + Hilbert and (b) 

diameter wireless + column-major architecture. 
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Compare this with the thermal profiles of systems having a wireless-

aware architecture (Fig. 5.10). Since average power dissipation is lower in these 

cases, the thermal profile indicates a more even distribution of hotspots, 

although the on-chip range of temperature is similar to that seen in Fig. 5.9. 
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This observation can be expected as we found the wireless-aware architectures to 

compromise on throughput and thus dissipate lower average power, which 

naturally translates to a lower probability of hotspot generation. The system 

designer has to decide the tradeoff between higher, energy-efficient throughput 

on one hand, and lower propensity for hotspot creation on the other, while 

choosing the NoC architecture and PE allocation approach. 

5.8 Conclusion 

In this chapter, we propose, design and evaluate novel NoC-based 

hardware accelerator platforms targeted towards high-throughput scientific 

applications. The on-chip network is built using both wired links and on-chip 

wireless links, the latter being used as long-range shortcuts to further reduce 

inter-core message latency. In addition to achieving high-throughput, we show 

that our many-core accelerator platforms are energy-efficient.  

We achieved computation throughput of over 1011 log/exp operations per 

second for a class of scientific applications involving concurrently-executing jobs 

of similar nature but variable computational footprint, while consuming ~0.5 nJ 

for each such operation. Our systems dissipate 55 W (for N=64) and 213 W (for 

N=256) and the maximum on-chip temperature is capped at 77 degrees C, 

demonstrating that high throughput is achieved without sacrificing energy-

efficiency or exceeding power and thermal budgets, thereby being thermally 

efficient. We analyze the traffic behavior through statistical properties and 

correlate these with observations of throughput performance and power 

dissipation. We explore several NoC architectures and evaluate them with 
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respect to the above-mentioned parameters and present design tradeoffs between 

throughput and energy-efficiency, and on-chip thermal variation. The results 

presented herein provide solutions to several challenges a system architect faces 

when designing low-energy high-performance many-core hardware accelerators. 
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6. Conclusion and Future Research 

 The aim of this doctoral work has been to demonstrate the potential of 

NoC-based many-core systems to act as enablers for complex computational 

biology applications. To the best of our knowledge, this represents the first 

comprehensive work undertaken to leverage the NoC paradigm for a high-

performance scientific computing application. The platforms proposed and 

designed as part of this work have been demonstrated to deliver orders of 

magnitude superior performance when compared with other hardware platforms. 

The results are promising, and they open up the scope for further research on 

NoC-based platforms having novel on-chip interconnects and architectures, 

distributed cores and memories on a chip, and a broader application space. 

6.1 NoC-based Platforms for Biocomputing: A Ready-Reckoner 

 In this dissertation, we have shown how one can harness the power of on-

chip network-enabled many-core architectures to enable time and energy-

efficient solutions to complex computational biology problems. This opens up the 

scope for further research in this area geared towards solving problems with 

similar computational characteristics but derived from other scientific domains. 

In the following, we distill our contributions in this dissertation and provide a so-

called ready-reckoner in Table 7, which we believe will go a long way in 

providing guidelines to the designer in making appropriate choices and decisions 

while architecting NoC-based platforms to target the problem at hand. The 

organization of the table is as follows. Each of the rows specifies a hardware or 

software design parameter. Each column refers to an application class along with 
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Table 7. Ready-reckoner for NoC-based platform design targeting computational biology 
applications  

For sequence analysis, see [114]. For details on the rest, refer to Chapters 3, 4 and 5. The input 
size (number of DNA characters in sequence analysis, number of genes in branch-and-bound) 
is denoted by n. The number of processing elements (PEs) is p. HW/SW design parameters are 
in green. HW design parameters are in dark red. SW design parameters are in dark blue. 

 Combinatorial optimization Throughput-
driven 

computation 

↓ 

ML phylogeny 
tree optimization 

Sequence analysis 
(see [114]) 

Exhaustive search 
(e.g. branch-and-
bound) 

Memory footprint O(n/p) 
n ~ 102 - 104 

O(n2) 
n ~ 102 

O(1) 

Associated traffic 
pattern 

hypercubic, mesh broadcast point-to-point 

(arbitrary) 

Network topology mesh / torus with 

switch bypass 

quad-tree 

mesh / torus 

mesh / torus 

On-chip 
interconnection 
technology 

wired wired wired-only 

wired + long-

range wireless 

Chip integration 
dimensionality 

2-D 2-D 2-D, 3-D 

Processing 
element 
architecture 

custom lightweight 

integer 

custom lightweight 

integer 

custom 

lightweight 

floating-point 

Task allocation 
policy 

- task granularity 

(optimal subtree 

rooting) 

* Space-filling 

curve (e.g. Hilbert 

curve) based for 

locality 

preservation 

* Serial first-fit / 

parallel best-fit 

* Wireless 

agnostic / aware 

Data mapping block 

decomposition  

- - 

Message routing 
policy 

structured, regular 

communication 

conditional 

broadcast 

wormhole e-cube 

routing (with 

multiple virtual 

channels) 

 

the defining characteristics. Each entry in the table mentions the choice(s) that 

delivered optimal performance in our study. 
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6.2 Architecture Space Exploration 

 Most real-world scientific applications consist of smaller task kernels 

concurrently running with variable computation footprints. The distribution of 

these kernels – varying across application classes – is usually neither completely 

regular nor totally random. The degree of hardware acceleration depends on the 

degree of connectivity among the cores. Regular topologies prove to be 

inadequate when dealing with such scenarios because multi-hop core-to-core 

communication impacts both latency and energy consumption. Novel 

interconnection architectures based on Small-World Graphs have been shown to 

be very successful in reducing network diameters in graphs with many nodes. 

The Internet, social networks and network of neurons in the human brain are 

examples of graphs having Small-World property. Such networks consist of a 

combination of short-range (next-to-neighbor) and long-range links. Analyses of 

classes of applications would help in generating the Small-World network that 

fits the application traffic. There is a tradeoff involved in choosing the best-fit 

network architecture for a particular application and maintaining its reusability 

in a broader application class. 

 Implementation of such Small-World networks on a chip is still a challenge 

because traditional on-chip metal wires as long-range links do not provide 

appreciable improvements in latency or energy consumption because long copper 

wires introduce significant delay and power consumption. Novel interconnects 

such as RF [119], wireless [120] or photonic [121] links have hence been 

proposed. Carbon nanotube based on-chip THz wireless links have been 

considered in this work (Chapter 5). These novel interconnects hold promise in 
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providing high-bandwidth (low-latency) and low-power on-chip long-range links. 

Research in this area would be able to leverage the advances in novel 

interconnect technology coupled with novel network topologies to build NoC-

driven many-core platforms with higher throughput capabilities. 

6.3 Application Space Exploration 

 Biocomputing applications targeted in this work include Maximum 

Parsimony and Maximum Likelihood phylogeny reconstruction. We have also 

demonstrated the potential of NoC-based platforms to cater to throughput-

oriented applications. In the field of phylogenetics, one important application 

could be Bayesian Inference (BI) [123], [124], which is computationally similar to 

Maximum Likelihood. Other HPC applications – be it climate modeling or 

advanced materials science research – could potentially benefit from NoC-based 

platforms. With the increasing diversity of applications, a large number of such 

platforms would consist of heterogeneous cores and/or distributed processor and 

memory nodes. As such, the interconnect fabric would need to support newer 

kinds of inter-node communication. There is enough indication that distributed 

processor-memory interactions within a chip would present the greatest 

bottlenecks to throughput in systems of the future, and current research on NoC 

is beginning to focus on this, e.g. [125]. With applications becoming more 

computation- and data-intensive, each memory-processor interface in a 

distributed many-core system needs to match or better cache speeds attainable 

today. This is the primary motivation behind long-term research on interconnect 

topologies with a focus to solve large problems of the future on a chip. The 

rationale behind this goal is that with power consumption being an overriding 
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concern in the same manner as speed was a decade ago, more solutions would 

increasingly be sought to be implementable on a chip, as opposed to clusters or 

supercomputers. It also helps to note that on-chip solutions would often be faster 

and cost less, and research in this area would be a great enabler. The sheer 

variety of scientific applications and their application traffic – both among 

processing nodes, and between processing nodes and memories – presents an 

interesting field of study to a researcher on multi-core systems and on-chip 

interconnects. Clearly, activity in this research space would yield low-power 

high-performance computing systems on a chip. 

  



130 

7. References 

[1] D. A. Bader and M. Yan, “High-Performance Phylogeny Reconstruction” in 

Handbook of Computational Molecular Biology, Edited by S. Aluru, Chapman & 

Hall/CRC Computer and Information Science Series, 2005. 

[2] P.H. Harvey and M.D. Pagel. The Comparative Method in Evolutionary 

Biology. Oxford University Press, 1991. 

[3] M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint phylogenies,” 

Genome Informatics Workshop, Tokyo: University Academy Press, 1997, pp. 25-

34. 

[4] E.L. Lawler, J. Lenstra, A.R. Kan and D. Shmoys. The traveling salesman 

problem. John Wiley, 1985. 

[5] I. Pe'er and R. Shamir, “The median problems for breakpoints are NP-

complete,” Elec. Colloq. on Comput. Complexity, 1998, p. 71. 

[6] T. Jukes, C. Cantor, “Evolution of protein molecules”, Mammalian protein 

metabolism, III:21–132, Academic Press, New York, 1969. 

[7] M. Kimura. A simple method for estimating evolutionary rates of base 

substitutions by thorough comparative studies of nucleotide sequences”, J. Mol. 

Evol., 16:111-120, 1980. 

[8] M. Hasegawa, H. Kishino, T. Yano, “Dating of the human-ape splitting by a 

molecular clock of mitochondrial DNA”, J. Mol. Evol., 22:160–174, 1985. 



131 

[9] C. Lanave et al, “A new method for calculating evolutionary substitution 

rates”, J. Mol. Evol., 20:86–93, 1984. 

[10] F. Rodriguez, et al, “The general stochastic model of nucleotide 

substitution”, J. Theor. Biol., 142:485–501, 1990. 

[11] Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum 

likelihood approach. J.  Molecular Evolution 17, pp. 368-376. 

[12] Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Inc. 

[13] Chor, B. and Tuller, T. 2005. Maximum Likelihood of Evolutionary Trees: 

Hardness and Approximation. Bioinformatics, vol. 21(1), pp. 97-106. 

[14] Bakos, J.D.; Elenis, P.E.; , "A Special-Purpose Architecture for Solving the 

Breakpoint Median Problem," Very Large Scale Integration (VLSI) Systems, 

IEEE Transactions on , vol.16, no.12, pp.1666-1676, Dec. 2008. 

[15] J. Bentley. Fast algorithms for geometric traveling salesman problems. 

ORSA Journal of Computing, 4:387-411, 1992. 

[16] B. Golden, L. Bodin, T. Doyle, W. Stewart. Approximate traveling 

salesman algorithms, Operations Research, 28:694-711, 1980. 

[17] G. Reinelt. The traveling salesman problem: computational solutions for 

TSP applications. In LNCS 840, pp. 172-186, Springer-Verlag, Berlin, 1994. 

[18] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling 

salesman problem. Operations Research, 21:498-516, 1973. 



132 

[19] P. Jog, J. Y. Suh, and D. Van Gucht. Parallel Genetic Algorithms Applied 

to the Traveling Salesman Problem, SIAM Journal of Optimization, 1(4): 515-

529, 1991. 

[20] D. L. Miller, J. F. Pekny. Results from a parallel branch and bound 

algorithm for the asymmetric traveling salesman problem, Operations Research 

Letters, 8(3): 129-135, 1989. 

[21] M. Bellmore and G. Nemhauser, “The Traveling Salesman Problem: A 

Survey,” Operations Research, 16: 538-558, 1968. 

[22] E. Horowitz and S. Sahni, “Branch-and-bound” in Fundamentals of 

computer algorithms, Potomac, MD: Computer Science Press, 1984, pp. 370-421. 

[23] Dally, W.J.; Towles, B.; , "Route packets, not wires: on-chip interconnection 

networks," Design Automation Conference, 2001. Proceedings , vol., no., pp. 684- 

689, 2001. 

[24] Vangal, S.R.; Howard, J.; Ruhl, G.; Dighe, S.; Wilson, H.; Tschanz, J.; 

Finan, D.; Singh, A.; Jacob, T.; Jain, S.; Erraguntla, V.; Roberts, C.; Hoskote, Y.; 

Borkar, N.; Borkar, S.; , "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm 

CMOS," Solid-State Circuits, IEEE Journal of , vol.43, no.1, pp.29-41, Jan. 2008. 

[25] Henkel, J.; Wolf, W.; Chakradhar, S.; , "On-chip networks: a scalable, 

communication-centric embedded system design paradigm," VLSI Design, 2004. 

Proceedings. 17th International Conference on , vol., no., pp. 845- 851, 2004. 



133 

[26] Tobias Bjerregaard and Shankar Mahadevan. 2006. A survey of research 

and practices of Network-on-chip. ACM Comput. Surv. 38, 1, Article 1 (June 

2006). 

[27] Marculescu, R.; Ogras, U.Y.; Li-Shiuan Peh; Jerger, N.E.; Hoskote, Y.; , 

"Outstanding Research Problems in NoC Design: System, Microarchitecture, and 

Circuit Perspectives," Computer-Aided Design of Integrated Circuits and 

Systems, IEEE Transactions on , vol.28, no.1, pp.3-21, Jan. 2009. 

[28] W. J. Dally and B. Towles, Principles and Practices of Interconnection 

Networks. San Mateo, CA: Morgan Kaufmann, 2004. 

[29] Varatkar, G.V.; Marculescu, R.; , "On-chip traffic modeling and synthesis 

for MPEG-2 video applications," Very Large Scale Integration (VLSI) Systems, 

IEEE Transactions on , vol.12, no.1, pp.108-119, Jan. 2004. 

[30] Soteriou, V.; Hangsheng Wang; Peh, L.; , "A Statistical Traffic Model for 

On-Chip Interconnection Networks," Modeling, Analysis, and Simulation of 

Computer and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE 

International Symposium on , vol., no., pp. 104- 116, 11-14 Sept. 2006. 

[31] Grecu, C.; Ivanov, A.; Pande, R.; Jantsch, A.; Salminen, E.; Ogras, U.; 

Marculescu, R.; , "Towards Open Network-on-Chip Benchmarks," Networks-on-

Chip, 2007. NOCS 2007. First International Symposium on , vol., no., pp.205, 7-9 

May 2007. 



134 

[32] Cohen, I.; Rottenstreich, O.; Keslassy, I.; , "Statistical Approach to 

Networks-on-Chip," Computers, IEEE Transactions on , vol.59, no.6, pp.748-761, 

June 2010. 

[33] Jingcao Hu; Marculescu, R.; , "Energy-aware mapping for tile-based NoC 

architectures under performance constraints," Design Automation Conference, 

2003. Proceedings of the ASP-DAC 2003. Asia and South Pacific , vol., no., pp. 

233- 239, 21-24 Jan. 2003. 

[34] Srinivasan, K.; Chatha, K.S.; , "A technique for low energy mapping and 

routing in network-on-chip architectures," Low Power Electronics and Design, 

2005. ISLPED '05. Proceedings of the 2005 International Symposium on , vol., 

no., pp. 387- 392, 8-10 Aug. 2005. 

[35] Murali, S.; Meloni, P.; Angiolini, F.; Atienza, D.; Carta, S.; Benini, L.; De 

Micheli, G.; Raffo, L.; , "Designing Application-Specific Networks on Chips with 

Floorplan Information," Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM 

International Conference on , vol., no., pp.355-362, 5-9 Nov. 2006. 

[36] Srinivasan Murali; Coenen, M.; Radulescu, A.; Goossens, K.; De Micheli, 

G.; , "A Methodology for Mapping Multiple Use-Cases onto Networks on Chips," 

Design, Automation and Test in Europe, 2006. DATE '06. Proceedings , vol.1, no., 

pp.1-6, 6-10 March 2006. 

[37] Chen-Ling Chou; Marculescu, R.; , "Contention-aware application mapping 

for Network-on-Chip communication architectures," Computer Design, 2008. 



135 

ICCD 2008. IEEE International Conference on , vol., no., pp.164-169, 12-15 Oct. 

2008. 

[38] Bakhoda, A.; Kim, J.; Aamodt, T.M.; , "Throughput-Effective On-Chip 

Networks for Manycore Accelerators," Microarchitecture (MICRO), 2010 43rd 

Annual IEEE/ACM International Symposium on , vol., no., pp.421-432, 4-8 Dec. 

2010. 

[39] Trivino, F.; Sanchez, J.L.; Alfaro, F.J.; Flich, J.; , "Exploring NoC 

Virtualization Alternatives in CMPs," Parallel, Distributed and Network-Based 

Processing (PDP), 2012 20th Euromicro International Conference on , vol., no., 

pp.473-482, 15-17 Feb. 2012. 

[40] Pop, P.; Eles, P.; Pop, T.; Peng, Z.; , "An approach to incremental design of 

distributed embedded systems," Design Automation Conference, 2001. 

Proceedings , vol., no., pp. 450- 455, 2001. 

[41] Yuan Xie; Wolf, W.; , "Allocation and scheduling of conditional task graph 

in hardware/software co-synthesis," Design, Automation and Test in Europe, 

2001. Conference and Exhibition 2001. Proceedings , vol., no., pp.620-625, 2001. 

[42] Jiong Luo; Jha, N.K.; , "Power-conscious joint scheduling of periodic task 

graphs and aperiodic tasks in distributed real-time embedded systems," 

Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM International 

Conference on , vol., no., pp.357-364, 2000. 

[43] Varatkar, G.; Marculescu, R.; , "Communication-aware task scheduling and 

voltage selection for total systems energy minimization," Computer Aided 



136 

Design, 2003. ICCAD-2003. International Conference on , vol., no., pp. 510- 517, 

9-13 Nov. 2003. 

[44] Chong Sun, Li Shang, and Robert P. Dick. 2007. Three-dimensional 

multiprocessor system-on-chip thermal optimization. In Proceedings of the 5th 

IEEE/ACM international conference on Hardware/software codesign and system 

synthesis (CODES+ISSS '07). ACM, New York, NY, USA, 117-122. 

[45] Pham, D.; Asano, S.; Bolliger, M.; Day, M.N.; Hofstee, H.P.; Johns, C.; 

Kahle, J.; Kameyama, A.; Keaty, J.; Masubuchi, Y.; Riley, M.; Shippy, D.; 

Stasiak, D.; Suzuoki, M.; Wang, M.; Warnock, J.; Weitzel, S.; Wendel, D.; 

Yamazaki, T.; Yazawa, K.; , "The design and implementation of a first-

generation CELL processor," Solid-State Circuits Conference, 2005. Digest of 

Technical Papers. ISSCC. 2005 IEEE International , vol., no., pp.184-592 Vol. 1, 

10-10 Feb. 2005. 

[46] Gratz, P.; Changkyu Kim; McDonald, R.; Keckler, S.W.; Burger, D.; , 

"Implementation and Evaluation of On-Chip Network Architectures," Computer 

Design, 2006. ICCD 2006. International Conference on , vol., no., pp.477-484, 1-4 

Oct. 2006. 

[47] Srinivasan, K.; Chatha, K.S.; , "A Low Complexity Heuristic for Design of 

Custom Network-on-Chip Architectures," Design, Automation and Test in 

Europe, 2006. DATE '06. Proceedings , vol.1, no., pp.1-6, 6-10 March 2006. 

[48] Song, Z.; Ma, G.; Song, D.; , "Hierarchical Star: An Optimal NoC Topology 

for High-Performance SoC Design," Computer and Computational Sciences, 



137 

2008. IMSCCS '08. International Multisymposiums on , vol., no., pp.158-163, 18-

20 Oct. 2008. 

[49] Balkan, A.O.; Gang Qu; Vishkin, U.; , "Mesh-of-Trees and Alternative 

Interconnection Networks for Single-Chip Parallelism," Very Large Scale 

Integration (VLSI) Systems, IEEE Transactions on , vol.17, no.10, pp.1419-1432, 

Oct. 2009. 

[50] Camacho, J.; Flich, J.; , "HPC-Mesh: A Homogeneous Parallel 

Concentrated Mesh for Fault-Tolerance and Energy Savings," Architectures for 

Networking and Communications Systems (ANCS), 2011 Seventh ACM/IEEE 

Symposium on , vol., no., pp.69-80, 3-4 Oct. 2011. 

[51] Yu-Hsiang Kao; Ming Yang; Artan, N.S.; Chao, H.J.; , "CNoC: High-Radix 

Clos Network-on-Chip," Computer-Aided Design of Integrated Circuits and 

Systems, IEEE Transactions on , vol.30, no.12, pp.1897-1910, Dec. 2011. 

[52] Dally, W.J.; Seitz, C.L.; , "Deadlock-Free Message Routing in 

Multiprocessor Interconnection Networks," Computers, IEEE Transactions on , 

vol.C-36, no.5, pp.547-553, May 1987. 

[53] Nilsson, E.; Millberg, M.; Oberg, J.; Jantsch, A.; , "Load distribution with 

the proximity congestion awareness in a network on chip," Design, Automation 

and Test in Europe Conference and Exhibition, 2003 , vol., no., pp. 1126- 1127, 

2003. 

[54] DaeHo Seo; Akif Ali; Won-Taek Lim; Rafique, N.; , "Near-optimal worst-

case throughput routing for two-dimensional mesh networks," Computer 



138 

Architecture, 2005. ISCA '05. Proceedings. 32nd International Symposium on , 

vol., no., pp. 432- 443, 4-8 June 2005. 

[55] Pamunuwa, D.;Öberg, J; Zheng, L. R.; Millberg, M.; Jantsch, A.; Tenhunen, 

H.; , “Layout, Performance and Power Trade-Offs in Mesh-Based Network-on-

Chip Architectures,” Very Large Scale Integration (VLSI-SoC) 2003. Proceedings 

of the 12th IFIP International Conference on, pp. 362-367. 

[56] Seiculescu, C.; Murali, S.; Benini, L.; De Micheli, G.; , "SunFloor 3D: A Tool 

for Networks on Chip Topology Synthesis for 3-D Systems on Chips," Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on , vol.29, 

no.12, pp.1987-2000, Dec. 2010. 

[57] Bainbridge, W.J.; Furber, S.B.; , "Delay insensitive system-on-chip 

interconnect using 1-of-4 data encoding," Asynchronus Circuits and Systems, 

2001. ASYNC 2001. Seventh International Symposium on , vol., no., pp.118-126, 

2001. 

[58] Ludovici, D.; Strano, A.; Gaydadjiev, G.N.; Benini, L.; Bertozzi, D.; , 

"Design space exploration of a mesochronous link for cost-effective and flexible 

GALS NOCs," Design, Automation & Test in Europe Conference & Exhibition 

(DATE), 2010 , vol., no., pp.679-684, 8-12 March 2010. 

[59] Mandal, A.; Khatri, S.P.; Mahapatra, R.N.; , "A fast, source-synchronous 

ring-based network-on-chip design," Design, Automation & Test in Europe 

Conference & Exhibition (DATE), 2012 , vol., no., pp.1489-1494, 12-16 March 

2012. 



139 

[60] Salamy, H.; Harmanani, H.; , "An effective solution to thermal-aware test 

scheduling on network-on-chip using multiple clock rates," Circuits and Systems 

(MWSCAS), 2012 IEEE 55th International Midwest Symposium on , vol., no., 

pp.530-533, 5-8 Aug. 2012. 

[61] Li Shang; Li-Shiuan Peh; Jha, N.K.; , "Dynamic voltage scaling with links 

for power optimization of interconnection networks," High-Performance 

Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth 

International Symposium on , vol., no., pp. 91- 102, 8-12 Feb. 2003. 

[62] Soteriou, V.; Li-Shiuan Peh; , "Exploring the Design Space of Self-

Regulating Power-Aware On/Off Interconnection Networks," Parallel and 

Distributed Systems, IEEE Transactions on , vol.18, no.3, pp.393-408, March 

2007. 

[63] Ogras, U.Y.; Marculescu, R.; Marculescu, D.; Eun Gu Jung; , "Design and 

Management of Voltage-Frequency Island Partitioned Networks-on-Chip," Very 

Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.17, no.3, 

pp.330-341, March 2009. 

[64] Liang Guang; Liljeberg, P.; Nigussie, E.; Tenhunen, H.; , "A review of 

dynamic power management methods in NoC under emerging design 

considerations," NORCHIP, 2009 , vol., no., pp.1-6, 16-17 Nov. 2009. 

[65] Bertozzi, D.; Benini, L.; De Micheli, G.; , "Error control schemes for on-chip 

communication links: the energy-reliability tradeoff," Computer-Aided Design of 



140 

Integrated Circuits and Systems, IEEE Transactions on , vol.24, no.6, pp. 818- 

831, June 2005. 

[66] Hui Zhao; Kandemir, M.; Irwin, M.J.; , "Exploring performance-power 

tradeoffs in providing reliability for NoC-based MPSoCs," Quality Electronic 

Design (ISQED), 2011 12th International Symposium on , vol., no., pp.1-7, 14-16 

March 2011. 

[67] Vitkovskiy, A.; Soteriou, V.; Nicopoulos, C.; , "A Dynamically Adjusting 

Gracefully Degrading Link-Level Fault-Tolerant Mechanism for NoCs," 

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions 

on , vol.31, no.8, pp.1235-1248, Aug. 2012. 

[68] Mak, T.S.T.; Lam, K.P.; , "High speed GAML-based phylogenetic tree 

reconstruction using HW/SW codesign," Bioinformatics Conference, 2003. CSB 

2003. Proceedings of the 2003 IEEE , vol., no., pp. 470- 473, 11-14 Aug. 2003. 

[69] Alachiotis, N.; Sotiriades, E.; Dollas, A.; Stamatakis, A.; , "Exploring 

FPGAs for accelerating the phylogenetic likelihood function," Parallel & 

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on , 

vol., no., pp.1-8, 23-29 May 2009. 

[70] Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihood-based 

phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 

[71] Blagojevic, F.; Stamatakis, A.; Antonopoulos, C.D.; Nikolopoulos, D.S.; , 

"RAxML-Cell: Parallel Phylogenetic Tree Inference on the Cell Broadband 



141 

Engine," Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. 

IEEE International , vol., no., pp.1-10, 26-30 March 2007. 

[72] S. Zierke and J.D. Bakos, “FPGA Acceleration of the phylogenetic 

likelihood function for Bayesian MCMC inference methods,” BMC 

Bioinformatics, 11: 184: 1-12, 2010. 

[73] Pratas, F.; Trancoso, P.; Stamatakis, A.; Sousa, L.; , "Fine-grain 

Parallelism Using Multi-core, Cell/BE, and GPU Systems: Accelerating the 

Phylogenetic Likelihood Function," Parallel Processing, 2009. ICPP '09. 

International Conference on , vol., no., pp.9-17, 22-25 Sept. 2009. 

[74] Topol, A. W.; Tulipe, D. C. La; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. 

E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W.; Ieong, M.; , "Three-

dimensional integrated circuits," IBM Journal of Research and Development , 

vol.50, no.4.5, pp.491-506, July 2006. 

[75] Jacob, P.; Erdogan, O.; Zia, A.; Belemjian, P.M.; Kraft, R.P.; McDonald, 

J.F.; , "Predicting the performance of a 3D processor-memory chip stack," Design 

& Test of Computers, IEEE , vol.22, no.6, pp. 540- 547, Nov.-Dec. 2005. 

[76] Pavlidis, V.F.; Friedman, E.G.; , "3-D Topologies for Networks-on-Chip," 

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.15, 

no.10, pp.1081-1090, Oct. 2007. 

[77] Feero, B.S.; Pande, P.P.; , "Networks-on-Chip in a Three-Dimensional 

Environment: A Performance Evaluation," Computers, IEEE Transactions on , 

vol.58, no.1, pp.32-45, Jan. 2009. 



142 

[78] Shan Yan; Bill Lin; , "Design of application-specific 3D Networks-on-Chip 

architectures," Computer Design, 2008. ICCD 2008. IEEE International 

Conference on , vol., no., pp.142-149, 12-15 Oct. 2008. 

[79] Yuh-Fang Tsai; Feng Wang; Yuan Xie; Vijaykrishnan, N.; Irwin, M.J.; , 

"Design Space Exploration for 3-D Cache," Very Large Scale Integration (VLSI) 

Systems, IEEE Transactions on , vol.16, no.4, pp.444-455, April 2008. 

[80] Young-Su Kwon; In-Cheol Park; Chong-Min Kyung; , "A hardware 

accelerator for the specular intensity of Phong illumination model in 3-

dimensional graphics," Design Automation Conference, 2000. Proceedings of the 

ASP-DAC 2000. Asia and South Pacific , vol., no., pp.559-564, 9-9 June 2000. 

[81] Abed, K.H.; Siferd, R.E.; , "CMOS VLSI implementation of a low-power 

logarithmic converter," Computers, IEEE Transactions on , vol.52, no.11, pp. 

1421- 1433, Nov. 2003. 

[82] Li, R.-C.; , "Near optimality of Chebyshev interpolation for elementary 

function computations," Computers, IEEE Transactions on , vol.53, no.6, pp. 678- 

687, June 2004. 

[83] Byeong-Gyu Nam; Hyejung Kim; Hoi-Jun Yoo; , "Power and Area-Efficient 

Unified Computation of Vector and Elementary Functions for Handheld 3D 

Graphics Systems," Computers, IEEE Transactions on , vol.57, no.4, pp.490-504, 

April 2008. 



143 

[84] Strollo, A.G.M.; De Caro, D.; Petra, N.; , "Elementary Functions Hardware 

Implementation Using Constrained Piecewise-Polynomial Approximations," 

Computers, IEEE Transactions on , vol.60, no.3, pp.418-432, March 2011. 

[85] Jijun Tang; Moret, B.M.E.; LiYing Cui; dePamphilis, C.W.; , "Phylogenetic 

reconstruction from arbitrary gene-order data," Bioinformatics and 

Bioengineering, 2004. BIBE 2004. Proceedings. Fourth IEEE Symposium on , 

vol., no., pp. 592- 599, 19-21 May 2004. 

[86] Kangmin Lee; Se-Joong Lee; Hoi-Jun Yoo; , "Low-power network-on-chip 

for high-performance SoC design," Very Large Scale Integration (VLSI) Systems, 

IEEE Transactions on , vol.14, no.2, pp.148-160, Feb. 2006. 

[87] Bononi, L.; Concer, N.; , "Simulation and analysis of network on chip 

architectures: ring, spidergon and 2D mesh," Design, Automation and Test in 

Europe, 2006. DATE '06. Proceedings , vol.2, no., pp.6 pp., 6-10 March 2006. 

[88] Circuits Multi-Projects, 46, Avenue Félix Viallet, 38031 GRENOBLE 

FRANCE (http://cmp.imag.fr/) Last accessed 27 February 2013. 

[89] National Center for Biotechnology Information Genbank 

(http://www.ncbi.nlm.nih.gov/genbank/). Last date accessed: 27 February 2013. 

[90] Genome Evolution Laboratory – Mauve Genome Alignment Software 

(http://asap.ahabs.wisc.edu/mauve/). Last date accessed: 27 February 2013. 

[91] R. A. Fisher, “On the Mathematical Foundations of Theoretical Statistics,” 

Philosophical Transactions of the Royal Society of London. Series A, Containing 

Papers of a Mathematical or Physical Character, Vol. 222, (1922), pp. 309-368. 



144 

[92] A. W. F. Edwards and L. L. Cavalli-Sforza. 1964. Reconstruction of 

evolutionary tress. pp. 67-76 in Phenetic and Phylogenetic Classification, ed. V. 

H. Heywood and J. McNeill. Systematics Association Publ. No. 6, London. 

[93] J. Neyman. 1971. Molecular studies of evolution: A source of novel 

statistical problems. pp. 1-27 in Statistical Decision Theory and Related Topics, 

ed. S. S. Gupta and J. Yackel. Academic Press, New York. 

[94] R. L. Kashyap and S. Subas. 1974. Statistical estimation of parameters in 

a phylogenetic tree using a dynamic model of the substitution process. Journal of 

Theoretical Biology 47:75-101. 

[95] Z. Yang. 1995. A space-time process model for the evolution of DNA 

sequences. Genetics 139:993-1005. 

[96] D. L. Swofford. 2002. PAUP*. Phylogenetic Analysis Using Parsimony 

(*and Other Methods). Version 4. Sinauer Associates, Sunderland, 

Massachusetts. 

[97] Felsenstein, J. 1989. PHYLIP -- Phylogeny Inference Package (Version 

3.2). Cladistics 5: 164-166. 

[98] S. Guindon and O. Gascuel. 2003. A simple, fast, and accurate algorithm to 

estimate large phylogenies by maximum likelihood. Systematic Biology, 

52(5):696-704. 

[99] G. J. Olsen, H. Matsuda, R. Hagstrom and R. Overbeek. 1994. fastDNAmL: 

a tool for construction of phylogenetic trees of DNA sequences using maximum 

likelihood. Computer Applications in the Biosciences, 10(1):41-48. 



145 

[100] Michael Ott, Jaroslaw Zola, Alexandros Stamatakis, and Srinivas Aluru. 

2007. Large-scale maximum likelihood-based phylogenetic analysis on the IBM 

BlueGene/L. In Proceedings of the 2007 ACM/IEEE conference on 

Supercomputing (SC '07). ACM, New York, NY, USA, , Article 4 , 11 pages.. 

[101] The Exelixis Lab, Heidelberg Institute for Theoretical Studies, Heidelberg, 

Germany (http://sco.h-its.org/exelixis/software.html) Last accessed 27 February 

2013. 

[102] Stamatakis, A.P.; Ludwig, T.; Meier, H.; Wolf, M.J.; , "Accelerating Parallel 

Maximum Likelihood-Based Phylogenetic Tree Calculations Using Subtree 

Equality Vectors," Supercomputing, ACM/IEEE 2002 Conference , vol., no., pp. 

40, 16-22 Nov. 2002. 

[103] Bogdan, P.; Marculescu, R.; , "Non-Stationary Traffic Analysis and Its 

Implications on Multicore Platform Design," Computer-Aided Design of 

Integrated Circuits and Systems, IEEE Transactions on , vol.30, no.4, pp.508-

519, April 2011. 

[104] Partha Pratim Pande; Grecu, C.; Jones, M.; Ivanov, A.; Saleh, R.; , 

"Performance evaluation and design trade-offs for network-on-chip interconnect 

architectures," Computers, IEEE Transactions on , vol.54, no.8, pp. 1025- 1040, 

Aug. 2005. 

[105] J. Duato, S. Yalamanchili, and L. Ni. 2003. Interconnection Networks. An 

Engineering Approach. Ch. 9. Morgan Kaufmann Publishers. 



146 

[106] D. Hilbert, “Über die stetige Abbildung einer Linie auf ein Flächenstück”, 

Mathematische Annalen, vol. 38,no. 3, pp. 459-460, 1891. 

[107] Seal, S. and Aluru, S. 2007. Chapter 44: Spatial domain decomposition 

methods for parallel scientific computing. In Handbook of Parallel Computing: 

Models, Algorithms and Applications, (Ed. S. Rajasekaran and J. Reif). Chapman 

& Hall/CRC Computer and Information Science Series. 

[108] Olaf R. P. Bininda-Emonds, Marcel Cardillo, Kate E. Jones, Ross D. E. 

MacPhee, Robin M. D. Beck, Richard Grenyer, Samantha A. Price, Rutger A. 

Vos, John L. Gittleman & Andy Purvis. 2007. The delayed rise of present-day 

mammals. In Nature 446: 507-512. 

[109] Amazon Elastic Compute Cloud (http://aws.amazon.com/ec2/) Last accessed 

27 February 2013. 

[110] The CIPRES Science Gateway (http://www.phylo.org/sub_sections/portal/) 

Last accessed 27 February 2013. 

[111] Earth System Modeling Framework 

(http://www.earthsystemmodeling.org/) Last accessed 27 February 2013. 

[112] A. Kalyanaraman, “Algorithms for genome assembly” in Encyclopedia of 

Parallel Computing, ed. D. Padua , Springer Science+Business Media LLC, New 

York, USA. DOI 10.1007/978-0-387-09766-4, In Press, 2011. 

[113] Majumder, T.; Pande, P.; Kalyanaraman, A.; , "Accelerating Maximum 

Likelihood Based Phylogenetic Kernels Using Network-on-Chip," Computer 



147 

Architecture and High Performance Computing (SBAC-PAD), 2011 23rd 

International Symposium on , vol., no., pp.17-24, 26-29 Oct. 2011. 

[114] Sarkar, S.; Kulkarni, G.R.; Pande, P.P.; Kalyanaraman, A.; , "Network-on-

Chip Hardware Accelerators for Biological Sequence Alignment," Computers, 

IEEE Transactions on , vol.59, no.1, pp.29-41, Jan. 2010. 

[115] Ogras, U.Y.; Marculescu, R.; , ""It's a small world after all": NoC 

performance optimization via long-range link insertion," Very Large Scale 

Integration (VLSI) Systems, IEEE Transactions on , vol.14, no.7, pp.693-706, 

July 2006. 

[116] D. J. Watts and S. H. Strogatz. 1998. Collective dynamics of ‘small-world’ 

networks. Nature 393:440–442. 

[117] Ganguly, A.; Chang, K.; Deb, S.; Pande, P.P.; Belzer, B.; Teuscher, C.; , 

"Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore 

Systems," Computers, IEEE Transactions on , vol.60, no.10, pp.1485-1502, Oct. 

2011. 

[118] K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, 

J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon Nanotubes 

as Optical Antennae,” Advanced Materials, vol. 19, issue 3, pp. 421-426, 

February 2007. 

[119] M.-C. Frank Chang, Eran Socher, Sai-Wang Tam, Jason Cong, and Glenn 

Reinman. 2008. RF interconnects for communications on-chip. In Proceedings of 



148 

the 2008 international symposium on Physical design (ISPD '08). ACM, New 

York, NY, USA, 78-83.. 

[120] Floyd, B.A.; Chih-Ming Hung; O, K.K.; , "Intra-chip wireless interconnect 

for clock distribution implemented with integrated antennas, receivers, and 

transmitters," Solid-State Circuits, IEEE Journal of , vol.37, no.5, pp.543-552, 

May 2002. 

[121] O'Connor, I.; Tissafi-Drissi, F.; Gaffiot, F.; Dambre, J.; De Wilde, M.; Van 

Campenhout, J.; Van Thourhout, D.; Stroobandt, D.; , "Systematic Simulation-

Based Predictive Synthesis of Integrated Optical Interconnect," Very Large Scale 

Integration (VLSI) Systems, IEEE Transactions on , vol.15, no.8, pp.927-940, 

Aug. 2007. 

[122] Wei Huang; Sankaranarayanan, K.; Skadron, K.; Ribando, R.J.; Stan, 

M.R.; , "Accurate, Pre-RTL Temperature-Aware Design Using a Parameterized, 

Geometric Thermal Model," Computers, IEEE Transactions on , vol.57, no.9, 

pp.1277-1288, Sept. 2008. 

[123] B. Rannala, and Z. Yang. 1996. Probability distribution of molecular 

evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43:304-

311. 

[124] Z. Yang and B. Rannala. 1997. Bayesian phylogenetic inference using DNA 

sequences: a Markov chain Monte carlo method. Molecular Biology and 

Evolution. 14:717-724. 



149 

[125] Wooyoung Jang; Pan, D.Z.; , "Application-Aware NoC Design for Efficient 

SDRAM Access," Computer-Aided Design of Integrated Circuits and Systems, 

IEEE Transactions on , vol.30, no.10, pp.1521-1533, Oct. 2011. 


	1. Introduction
	1.1 Contributions
	1.1.1 Accelerating Maximum Parsimony Phylogenetic Tree Reconstruction
	1.1.1.1 Significance

	1.1.2 Accelerating Maximum Likelihood Phylogenetic Tree Reconstruction
	1.1.2.1 Significance

	1.1.3 High-Throughput, Energy-Efficient NoCs with On-Chip Wireless Links
	1.1.3.1 Significance


	1.2 Organization of the Dissertation

	2.  Related Work
	2.1 State of the Art in Networks-on-Chip
	2.2 Hardware Acceleration for Phylogenetics

	3.  NoC-Based Accelerator for Breakpoint Phylogeny
	3.1 Breakpoint Median Problem
	3.2 Algorithm
	3.2.1 Branch-and-Bound Method
	3.2.1.1 Lower Bound Calculation

	3.2.2 GRAPPA

	3.3 Core Architecture: PE Design
	3.3.1 Reduction Block
	3.3.2 Peripheral Control Logic
	3.3.3 Memory

	3.4 Network Architecture
	3.4.1 Mesh Switch Design
	3.4.2 Quad-tree Switch Design

	3.5 Communication Paradigm
	3.6 Application Mapping and Tradeoff
	3.7 Experimental Results
	3.7.1 Experimental Setup
	3.7.2 Results with Synthetic Data
	3.7.2.1 Timing Performance
	3.7.2.2 Energy Performance

	3.7.3 Results with Real Genomic Data

	3.8 Conclusion

	4. NoC-Based Accelerator for Maximum Likelihood
	4.1 Theoretical Background
	4.2 Existing Software Suites for ML Phylogeny
	4.3 Design of Computation Core
	4.3.1 PE Design
	4.3.1.1 Memory Subsystem

	4.3.2 Automating Column Compression in Hardware
	4.3.2.1 Algorithm
	4.3.2.2 Design


	4.4 NoC Node
	4.5 Network Architecture
	4.6 Function-Level Parallelization
	4.7 Dynamic Node Allocation
	4.7.1 2D Hilbert Curve with Serial Scan and First Fit (2D_serial)
	4.7.2 Multiple 2D Hilbert Curves with Parallel Scan and Best Fit (2D_parallel)
	4.7.3 3D Folded Torus NoC (3D_torus)
	4.7.4 3D Stacked Torus (3D_sttorus)

	4.8 Routing and Arbitration
	4.9 Experimental Results
	4.9.1 Experimental Setup
	4.9.2 Test-case Design
	4.9.3 Communication Latency
	4.9.4 Speedup
	4.9.4.1 Function-level Speedup
	4.9.4.2 Aggregate Speedup of the Target Function Kernels

	4.9.5 Total Execution Time
	4.9.6 Energy consumption

	4.10 Conclusion

	5. High-Throughput, Energy-Efficient NoC-Based Hardware Accelerators
	5.1 Application Use-Case Model
	5.2 Introduction of Long-Range Links
	5.3 Network Architecture
	5.4 Use of Long-Range On-Chip Wireless Links
	5.4.1 Physical Layer
	5.4.2 Wireless Link Placement

	5.5 Dynamic Node Allocation
	5.5.1 Parallel Best-Fit Allocation Using Multiple Hilbert Curves
	5.5.2 Wireless-First Allocation Using Hilbert Curve
	5.5.3 Wireless-First, Column-Major Allocation

	5.6 On-Chip Routing
	5.7 Experimental Results
	5.7.1 Experimental Setup
	5.7.2 Computation Throughput
	5.7.3 Proportion of Flits Using Wireless Shortcuts
	5.7.4 Energy and Power Consumption
	5.7.5 Traffic Statistics
	5.7.6 Thermal Profile

	5.8 Conclusion

	6. Conclusion and Future Research
	6.1 NoC-based Platforms for Biocomputing: A Ready-Reckoner
	6.2 Architecture Space Exploration
	6.3 Application Space Exploration

	7. References

