

ON-CHIP NETWORK-ENABLED MANY-CORE ARCHITECTURES

FOR COMPUTATIONAL BIOLOGY APPLICATIONS

By

TURBO MAJUMDER

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Washington State University

School of Electrical Engineering and Computer Science

May 2013

ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of TURBO

MAJUMDER find it satisfactory and recommend that it be accepted.

Partha P. Pande, Ph.D., Chair

Ananth Kalyanaraman, Ph.D.

José G. Delgado-Frias, Ph.D.

Eric H. Roalson, Ph.D.

iii

ACKNOWLEDGMENT

I am grateful to my Ph.D. advisor, Dr. Partha Pratim Pande, who has

guided me in matters related to my research and otherwise. I do not see myself

having carried through the long years during my Ph.D. without his constant

support. I express my gratitude to Dr. Ananth Kalyanaraman, my doctoral co-

advisor, for the insight that he constantly provided me with during our

discussions on various topics. I thank Dr. José G. Delgado-Frias and Dr. Eric H.

Roalson for agreeing to be on my Ph.D. committee despite their pressing

schedules. To all the students at the Low Power and Robust Nanosystems Lab,

past and present, thank you, for making these years an enjoyable learning

experience. I would also like to thank the staff of School of EECS, and Allen

Guyer in particular, for the amount of help that I have received from them with

regard to my work. Outside school, my life in Pullman has been enriched by the

friends and acquaintances I have made here.

 My parents and other family members have been a source of strength and

support throughout these years that I spent far away from home. Words cannot

express how much I am indebted to them.

 Finally, I would like to thank National Science Foundation for the grant

(IIS-0916463) that helped support my doctoral thesis research.

iv

ON-CHIP NETWORK-ENABLED MANY-CORE ARCHITECTURES

FOR COMPUTATIONAL BIOLOGY APPLICATIONS

Abstract

by Turbo Majumder, Ph.D.

Washington State University

May 2013

Chair: Partha P. Pande

Large-scale integration of multiple cores on a single chip is the current

answer to the challenge of attaining higher computation throughput while

restricting power consumption within acceptable limits. Network-on-Chip (NoC)

is an emerging paradigm that can efficiently support integration of a massive

number of cores on a chip by decoupling the on-chip computation and

communication infrastructure, thereby overcoming scalability issues faced by

conventional buses.

Many scientific computing disciplines, such as computational biology, have

seen a significant increase in the availability of parallel algorithms and high-

performance computing (HPC) tools owing to high runtime complexities and/or

the data-intensive nature underlying the computation. Software-only solutions

are likely to be inadequate, creating the need for hardware accelerators. This

dissertation explores the design and development of highly optimized NoC-based

hardware accelerators for a particular class of biocomputing applications, viz.

phylogeny reconstruction, which is important for evolutionary inferences in

computational biology.

This dissertation focuses on two computationally distinct phylogeny

reconstruction approaches to demonstrate that NoC-based many-core platforms

can deliver orders of magnitude reduction in time-to-solution, compared to

v

existing approaches. The Maximum Parsimony (MP) phylogeny reconstruction

problem can be reduced to one of solving numerous instances of the classical

Traveling Salesman Problem (TSP). 99% of the total software runtime is spent in

computing TSP instances, whose solution typically involves an application of

branch-and-bound runtime heuristics. This dissertation presents the design of

many-core systems with core-level pipelined micro-parallel architecture and

different interconnection topologies to achieve significant speedup and energy

efficiency. In Maximum Likelihood (ML) phylogeny reconstruction, the improved

quality of result comes at a higher computational cost, as this approach involves

optimization over multi-dimensional real continuous space. We present NoC-

based hardware accelerators that target function kernels contributing to a bulk

of the runtime. These platforms combine novel ideas and approaches, such as

space-filling Hilbert curves, parallelized core allocation schemes, and 3-D

integration. We also explore the use of long-range on-chip wireless links on

existing regular topologies to reduce network diameter, thereby reducing the

average communication latency between cores. These platforms have the

potential to serve a broader class of throughput-oriented HPC applications.

vi

Table of Contents

1. Introduction ... 1

1.1 Contributions ... 6

1.1.1 Accelerating Maximum Parsimony Phylogenetic Tree Reconstruction . 7

1.1.1.1 Significance .. 7

1.1.2 Accelerating Maximum Likelihood Phylogenetic Tree Reconstruction . 8

1.1.2.1 Significance .. 9

1.1.3 High-Throughput, Energy-Efficient NoCs with On-Chip Wireless Links

 .. 10

1.1.3.1 Significance .. 11

1.2 Organization of the Dissertation .. 12

2. Related Work ... 14

2.1 State of the Art in Networks-on-Chip .. 14

2.2 Hardware Acceleration for Phylogenetics .. 17

3. NoC-Based Accelerator for Breakpoint Phylogeny .. 23

3.1 Breakpoint Median Problem ... 23

3.2 Algorithm ... 24

3.2.1 Branch-and-Bound Method .. 25

vii

3.2.1.1 Lower Bound Calculation .. 27

3.2.2 GRAPPA .. 28

3.3 Core Architecture: PE Design ... 28

3.3.1 Reduction Block .. 31

3.3.2 Peripheral Control Logic .. 32

3.3.3 Memory ... 34

3.4 Network Architecture ... 36

3.4.1 Mesh Switch Design ... 37

3.4.2 Quad-tree Switch Design .. 40

3.5 Communication Paradigm .. 41

3.6 Application Mapping and Tradeoff ... 42

3.7 Experimental Results.. 45

3.7.1 Experimental Setup .. 45

3.7.2 Results with Synthetic Data .. 48

3.7.2.1 Timing Performance... 49

3.7.2.2 Energy Performance .. 53

3.7.3 Results with Real Genomic Data ... 56

3.8 Conclusion ... 59

viii

4. NoC-Based Accelerator for Maximum Likelihood .. 60

4.1 Theoretical Background .. 61

4.2 Existing Software Suites for ML Phylogeny .. 63

4.3 Design of Computation Core ... 64

4.3.1 PE Design .. 66

4.3.1.1 Memory Subsystem .. 68

4.3.2 Automating Column Compression in Hardware 68

4.3.2.1 Algorithm .. 69

4.3.2.2 Design ... 70

4.4 NoC Node ... 71

4.5 Network Architecture ... 72

4.6 Function-Level Parallelization ... 75

4.7 Dynamic Node Allocation .. 77

4.7.1 2D Hilbert Curve with Serial Scan and First Fit (2D_serial)............... 79

4.7.2 Multiple 2D Hilbert Curves with Parallel Scan and Best Fit

(2D_parallel) .. 80

4.7.3 3D Folded Torus NoC (3D_torus) ... 81

4.7.4 3D Stacked Torus (3D_sttorus) .. 83

ix

4.8 Routing and Arbitration ... 83

4.9 Experimental Results.. 86

4.9.1 Experimental Setup .. 86

4.9.2 Test-case Design ... 88

4.9.3 Communication Latency ... 89

4.9.4 Speedup ... 91

4.9.4.1 Function-level Speedup .. 92

4.9.4.2 Aggregate Speedup of the Target Function Kernels 93

4.9.5 Total Execution Time ... 95

4.9.6 Energy consumption ... 96

4.10 Conclusion ... 97

5. High-Throughput, Energy-Efficient NoC-Based Hardware Accelerators 99

5.1 Application Use-Case Model ... 100

5.2 Introduction of Long-Range Links .. 102

5.3 Network Architecture ... 102

5.4 Use of Long-Range On-Chip Wireless Links .. 104

5.4.1 Physical Layer .. 105

5.4.2 Wireless Link Placement .. 107

x

5.5 Dynamic Node Allocation .. 108

5.5.1 Parallel Best-Fit Allocation Using Multiple Hilbert Curves 109

5.5.2 Wireless-First Allocation Using Hilbert Curve 110

5.5.3 Wireless-First, Column-Major Allocation .. 111

5.6 On-Chip Routing ... 111

5.7 Experimental Results .. 112

5.7.1 Experimental Setup .. 112

5.7.2 Computation Throughput... 114

5.7.3 Proportion of Flits Using Wireless Shortcuts 116

5.7.4 Energy and Power Consumption ... 117

5.7.5 Traffic Statistics ... 119

5.7.6 Thermal Profile ... 120

5.8 Conclusion ... 123

6. Conclusion and Future Research .. 125

6.1 NoC-based Platforms for Biocomputing: A Ready-Reckoner 125

6.2 Architecture Space Exploration .. 127

6.3 Application Space Exploration ... 128

7. References .. 130

xi

List of Figures

Figure 1-1: Biocomputing applications benefiting from hardware acceleration 2

Figure 1-2: Phylogenetic tree showing members of the dog family 3

Figure 3-1: An example showing (a) the exhaustive search tree corresponding to

the input graph in (b). If the tree is computed in the Depth First Search order,

then evaluation of the path that leads to a low cost (such as u1-u2-u6-u7-u8) first

may help in pruning the computation of a higher cost path (such as u1-u9-u13-

u14-u15). This idea is exploited in the branch-and-bound technique. 25

Figure 3-2: Flow diagram showing steps of the branch-and-bound method 26

Figure 3-3: Internal architecture of processing element 30

Figure 3-4: Internal architecture of reduce block (ρ) for linear-time matrix

reduction ... 31

Figure 3-5: (a) Mesh network architecture (b) Quad-tree network architecture . 35

Figure 3-6: Internal architecture of (a) mesh switch and (b) quad-tree switch ... 38

Figure 3-7: State diagram of control states in a mesh switch 39

Figure 3-8: Timing diagram showing typical scenarios encountered in a mesh

switch .. 39

Figure 3-9: Number of subtrees generated by partitioning the search-space tree

at different levels .. 42

file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109295
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109296
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109297
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109297
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109297
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109297
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109297
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109298
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109299
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109300
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109300
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109301
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109302
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109303
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109304
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109304
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109305
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109305

xii

Figure 3-10: Total execution time in hardware for (a) SynData_73, SynData_50

and SynData_27 and (b) SynData_10 and SynData_04 48

Figure 3-11: Absolute speedup over GRAPPA ... 50

Figure 3-12: Variation of speedup with skew of input data on quad-tree NoC with

N=16 .. 50

Figure 3-13: Power consumption across various inputs, network architectures

and system sizes ... 51

Figure 3-14: Energy consumption across different synthetic inputs 53

Figure 3-15: Communication energy expended across different inputs 54

Figure 3-16: Variation of energy-delay product across inputs 55

Figure 3-17: Histogram of number of number of reductions per subtree for (a)

PoToWh and (b) AlAnFe ... 57

Figure 4-1: Architecture of computational core for sum-of-products, logarithm

and antilogarithm ... 66

Figure 4-2: Global compression of equal columns for five input sequences. Note

that 26 columns are compressed to 5 with appropriate weights assigned to each.

 ... 68

Figure 4-3: Schematic diagram of Column Compressor 70

Figure 4-4: Network switch of NoC and cross-connected subnet under one node 71

file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109306
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109306
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109307
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109308
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109308
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109309
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109309
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109310
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109311
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109312
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109313
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109313
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109314
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109314
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109315
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109315
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109315
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109316
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109317

xiii

Figure 4-5.Mean (a) and normalized standard deviation (b) of flits per cycle in

routers in a folded torus network ... 73

Figure 4-6: Part of the computation tree of newviewGTRCAT............................. 76

Figure 4-7: Hilbert curve embedded in the folded torus network architecture and

different kinds of contiguous and non-contiguous partitions. 78

Figure 4-8. (a) 3D folded torus NoC architecture for N=64; also shown are the

alternating vertical node allocation directions. (b) Stacked torus NoC

architecture for N=64. .. 82

Figure 4-9. Examples of different paths taken while routing A-type and B-type

traffic ... 84

Figure 4-10: Pie charts showing (a) contribution of coreGTRCAT,

newviewGTRGAMMA and newviewGTRCAT to the total 1-thread software run-

time of RAxML and (b) number of invocations of these functions in typical runs.

 ... 88

Figure 4-11: Variation of partition dispersion and function communication

latency across different NoC architectures.. 90

Figure 4-12: Function-level speedup of phylogenetic kernels 92

Figure 4-13: Total dispersion of target kernel mappings across different NoC

architectures ... 93

Figure 4-14. Average aggregate speedup of the accelerated kernels across

different NoC architectures .. 94

file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109318
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109318
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109319
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109320
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109320
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109321
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109321
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109321
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109322
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109322
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109323
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109323
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109323
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109323
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109324
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109324
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109325
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109326
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109326
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109327
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109327

xiv

Figure 4-15. Total system energy consumption across different NoC architectures

 ... 97

Figure 5-1. Illustration of our NoC-based use-case model proposed for hardware

acceleration of throughput-oriented scientific applications 100

Figure 5-2. The number of flits per cycle ((a) mean and (b) normalized standard

deviation) within routers of an 8x8 folded torus network. The horizontal

dimensions denote the processor coordinates of the torus, while the vertical

dimension denotes the observed flits per cycle (mean and standard deviation).

The absence of distinctive peaks in temporal statistics indicates the higher

suitability of fully-distributed, regular interconnection topologies such as a mesh

or torus, as opposed to linear or hierarchical topologies such as bus or trees. .. 103

Figure 5-3. Comparison of average network communication latencies for different

wireless link placements. Even small increases in communication latency have

shown to lead to significantly degrade performance. .. 107

Figure 5-4. Non-contiguous nodes and long-range communication requirements

leading to wireless link placement along diameters. Although not shown, each

node is connected through wired links to four of its neighboring nodes as dictated

by the torus topology. Most of our allocation strategies consider the nodes along

the Hilbert curve while also factoring the presence/absence of wireless hubs at

intermediate nodes.. ... 107

Figure 5-5. Computation throughput across different network architectures,

system sizes and job loads. ... 114

file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109328
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109328
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109329
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109329
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109330
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109331
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109331
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109331
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109332
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109332
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109332
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109332
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109332
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109332
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109333
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109333

xv

Figure 5-6. Proportion of flits using wireless shortcuts and energy consumption

across network architectures and system sizes. .. 115

Figure 5-7. Average power dissipation in different NoC architectures and system

sizes. .. 116

Figure 5-8. Average, standard deviation and skew of flits routed per network

switch across NoC architectures and system sizes. .. 118

Figure 5-9. Thermal profile of N=64 systems with (a) 2D_parallel and (b)

2D_parallel + wireless architecture. .. 121

Figure 5-10. Thermal profile of N=64 systems with (a) diameter wireless +

Hilbert and (b) diameter wireless + column-major architecture. 122

file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109334
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109334
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109335
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109335
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109336
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109336
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109337
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109337
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109338
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109338

xvi

List of Tables

Table 1: Performance comparison of hardware accelerators for phylogenetic

inference .. 20

Table 2: Per PE memory requirement for different input genome sizes 34

Table 3: Wost-case write latency in clock cycles .. 37

Table 4: Reduction statistics for PoToWh and AlAnFe ... 58

Table 5: Details of test-cases used for running RAxML .. 87

Table 6. Total run-times for different inputs using different NoC-based platforms

vis-à-vis only software .. 96

Table 7. Ready-reckoner for NoC-based platform design targeting computational

biology applications .. 126

file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109339
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109339
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109340
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109341
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109342
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109343
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109344
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109344
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109345
file:///C:/Users/Turbo/Documents/WSU/Project/My%20Presentations%20and%20Documents/PhD%20Thesis/Turbo%20Majumder%20PhD%20Thesis%20rev%20abstract%20small.docx%23_Toc355109345

1

1. Introduction

Computing research has become a vital cog in the machinery required to

drive biological discovery. Computing has made possible significant

achievements over the last decade, especially in the genomics sector. This has led

to immense interest in the field of computational biology. Applications in this

field can be classified into those based on combinatorial optimization and those

that are simulation-based. The former category includes sequence alignment of

genomes and phylogenetic tree reconstruction based on aligned DNA or protein

sequences. The latter category includes molecular dynamics and molecular

docking. All of these applications are data-intensive or compute-intensive. The

usual approach has been to carry out data processing for these applications in

software. However, with large amounts of biological data available, the software-

only approach has become infeasible owing to inordinately large run-times

involved. An emerging area is the investigation of hardware accelerators for

speeding up the massive scale of computation needed in such large-scale

biocomputing applications. Various hardware platforms, such as Field

Programmable Gate Array (FPGA), Graphics Processing Unit (GPU), Cell

Broadband Engine (CBE) and multi-core processors are being explored. Figure

1.1 summarizes the current state of the art.

The target of this thesis is the design and evaluation of multicore-based

hardware accelerators for phylogenetics. Phylogenetics is the study of

evolutionary relationships among organisms based on their underlying genetic

content. The term genome is a collective reference to all the DNA in the living

2

(Image credits (1) http://www.tolweb.org/tree/ (2) http://www.ks.uiuc.edu/Research/STMV/ (3)
http://wwwcs.uni-paderborn.de/~lst/HotDock/)

Figure 1-1: Biocomputing applications benefiting from hardware acceleration

cell of an organism and phylogenetic tree construction is the process of building

an evolutionary tree based on the similarities and differences observed among

the genomic DNA of a set of species. It is a fundamental problem in

computational molecular biology with important applications that include drug

discovery. In this tree, the leaves represent species (known) and the internal

nodes represent common ancestral species (unknown). Until a decade ago, only a

handful of genome sequences were available and therefore the knowledge

regarding evolutionary trees was limited. However, with the recent advances in

DNA sequencing technologies, sequence information for more than a thousand

species is now available in public databases and more large-scale sequencing

efforts are currently underway. Owing to this deluge in genomic information, the

computational biology community has embarked on a project called the Tree of

Life, which is an ambitious project to construct the evolutionary tree connecting

all known species. The single largest impediment to this project is, however, the

3

Figure 1-2: Phylogenetic tree showing members of the dog family

Reproduced with permission from K. L. Toh et al, “Genome sequence, comparative analysis
and haplotype structure of the domestic dog”, Nature 438, 803-819 (8 December 2005)

high computational costs associated with building phylogenetic trees [1]. Figure

1.2 provides an example of a typical phylogenetic tree.

The process of inferring the phylogeny of a set of k taxa (or species) entails

reconstructing a phylogenetic tree based on distance or probability measures [2].

Most approaches for phylogenetic tree reconstruction are based on Neighbor

Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) and

Bayesian Inference (BI). When the relative ordering of genes on a genome is

known, then a specific type of phylogeny called the breakpoint phylogeny can be

computed, based on the breakpoint distance. Given a reference set of m genes

4

{g1,g2,…gm}, any genome can be represented by an ordering of the subset of genes

that constitute it, as they appear from end to end of the genomic DNA. The

breakpoint distance between any two genomes is defined as the number of gene

pairs that appear adjacent in one genome but not in the other. It is a measure of

how different two genomes are by their gene ordering. Blanchette et al.

pioneered the work on breakpoint-based phylogeny [3]. They reduced the

problem of constructing an optimal phylogenetic tree of N genomes to one of

solving numerous instances of a version of the Traveling Salesman Problem

(TSP) [4] where edge-weights of the input graph are bounded to a fixed set of

integer values. Put intuitively, each instance of TSP tries to identify the gene

order of a hypothetical ancestral genome that is the closest representative to any

three given genomes. This problem is called the 3-median breakpoint problem

and has been proven to be NP-Hard [5]. This is the primary method used in MP

(breakpoint) phylogenetic tree reconstruction.

Probability-based approaches for phylogenetic inference, like ML and BI,

provide the most accurate estimate of evolutionary relationship among species.

These methods use one of several probabilistic models of evolution, e.g., Jukes-

Cantor [6], Kimura-2P [7], HKY85 [8] or General Time Reversible (GTR) [9],

[10]. They provide a statistical likelihood score for each reconstructed tree using

the Phylogenetic Likelihood Function (PLF) [11], [12]. The boost in quality,

however, comes at a high computation cost as both ML and BI formulations are

NP-Hard [13] and suffer from the need to explore an super-exponential (in k)

number of trees before they come up with an answer. Therefore, they need to rely

on algorithmic heuristics and high-performance computing for achieving

5

practical solutions. The increasing availability of genomic data has only

exacerbated the situation.

Methods for phylogenetic tree reconstruction are either data-intensive or

computation-intensive, or both. Most approaches for solving such problems rely

on the use of parallelism, which divides the problem into a large number of

smaller semi-independent sub-problems that can be computed concurrently. The

key points to note here are the requirements of

(a) a large number of computation cores (to deal with each sub-

problem or a set of sub-problems), and

(b) effective (i.e. low-latency) communication among cores (to

exchange information among semi-independent sub-problems).

Network-on-Chip (NoC) is an emerging paradigm for large scale system

integration on a single chip. Instead of the bus-based communication

architecture in multi-core System-on-Chips (SoCs), the NoC-based solution

proposes a communication infrastructure where various cores exchange data

with the help of switches/ routers and links. These platforms mitigate the inter-

core communication bottlenecks that appear with larger number of cores on a

single chip, thereby enabling integration of more components. Applications

involving many computation kernels communicating with one another are

typically benefited from a NoC-based platform. Most phylogenetic tree

reconstruction applications (e.g., MP, ML, BI, etc.) fall under this category.

Hence, NoC-based platforms are a natural choice when attempting to accelerate

these applications.

6

1.1 Contributions

The principal contributions in this dissertation are:

(1) Design and evaluation of NoC-based platform for MP (breakpoint)

phylogeny reconstruction, which comprises core and on-chip network

design, and benchmarking against existing approaches. We achieved a

speedup of over 8430x over multithreaded software, which represents

almost an order of magnitude improvement over existing hardware

acceleration solutions (~1005x, see Table 1).

(2) Design and evaluation of NoC-based platform for accelerating targeted

kernels in ML phylogeny reconstruction, which comprises core and on-chip

network design, and design and evaluation of different NoC architectures

(including 3D NoC) and job allocation policies. We achieved function-level

speedups of up to 847x, and aggregate speedup of the targeted kernels

exceeding 6500x over baseline software runs, which represents an order of

magnitude improvement over existing hardware acceleration solutions

(~381x, see Table 1).

(3) Design and evaluation of NoC-based platforms for throughput-oriented

scientific applications, and subsequently using the model to study the

effect of using long-range on-chip wireless links in conjunction with

different resource allocation strategies on reducing the overall on-chip

communication and enhancing computational throughput. We have been

able to achieve a computation throughput of 1011 operations per second,

with each operation consuming ~0.5 nJ.

7

In the following, we elaborate on the significance of the contributions.

1.1.1 Accelerating Maximum Parsimony Phylogenetic Tree Reconstruction

Our principal contributions here are as follows:

a) We designed a NoC-based platform for computing breakpoint phylogeny

by solving multiple instances of TSP using branch-and-bound method. Our

architecture provides for efficient run-time and memory management. We

have been able to achieve significant speedup over multi-threaded

software, up to a high of 8430x for some inputs.

b) We compared two important NoC network topologies – mesh and quad-

tree – in terms of run-time and energy performance, and conclusively

showed that quad-tree provides better communication latency and energy

performance.

c) We designed and evaluated a wide range of synthetic test cases to

establish a relationship between properties of input data and performance

of our design. We also correlate the performance obtained using real

genomic data to these observations. Our experiments show that our

platform is able to provide an order of magnitude speedup over existing

hardware accelerators, especially when the input genomes are widely

disparate.

1.1.1.1 Significance

In the case of MP (breakpoint) phylogenetic tree reconstruction, over 99%

of the software run-time is spent in computing instances of TSP [14]. TSP is a

widely studied NP-Complete problem for which several heuristics have been

8

explored [15], [16], [17], [18], [19], [20], [21] and branch-and-bound methods [21],

[22] continue to be the most popular among accurate solvers, owing to their

effectiveness in reducing the super-exponential search space. The run-time

heuristic, which itself is computationally intensive, is an ideal candidate for

parallelization. An array of processing elements (PEs) working in parallel on

distinct parts of the solution would naturally enhance performance. However,

these PEs cannot work in isolation and need to communicate amongst

themselves. This communication needs to be efficient and synchronized with the

computation operation of the PEs. To achieve this in an on-chip scenario, a

platform possessing inherent fine-grained, large-scale parallelism and an

efficient communication fabric needs to be chosen. It is clear that a NoC-based

solution provides the best fit to this requirement. On one hand, a NoC scales

very well with increasing number of PEs; on the other hand, it offers the user the

freedom to choose the communication architecture that is most apt for a target

application. In this perspective, our contributions mentioned above have been

able to deliver significantly shorter time-to-solution while being energy-efficient.

1.1.2 Accelerating Maximum Likelihood Phylogenetic Tree Reconstruction

Our principal contributions in this case are as follows:

a) We designed a processing element that is efficiently able to compute the

floating-point arithmetic operations and elementary functions related to

ML function kernels.

9

b) We designed a NoC-based platform with a folded-torus network where

each node contains a subnet of four crossbar-connected processing

elements.

c) We designed novel job allocation schemes based on Hilbert space-filling

curves to allocate nodes of the NoC to different requesting functions in a

time-efficient manner with a view to minimizing overall application

latency.

d) We explored and evaluated the performance of 3D NoC architectures, and

demonstrated their superiority over 2D NoCs in terms of speedup and

energy-efficiency.

e) We achieved function-level speedups of up to 847x, and aggregate speedup

of the targeted kernels exceeding 6500x over baseline software runs.

These represent more than an order of magnitude improvement with

respect to existing hardware accelerator solutions.

1.1.2.1 Significance

Phylogenetic inference based on ML present a more challenging problem

as far as hardware acceleration is concerned. Not only are their computation

trees larger, each of their computation kernels involves a much larger amount of

computation than in breakpoint phylogeny. In addition, all computations for

these methods involve floating-point numbers, unlike those in MP phylogeny.

ML methods have a wider usage among biologists and hence there has been

considerably more research on this topic. These methods employ several

computations of PLF through a class of functions we call phylogenetic kernels.

10

These kernels are composed of several instances of logarithm, antilogarithm and

sum-of-products (vector product) computations. In terms of software run-time,

the kernels account for more than 85% of the total run-time of the application.

Our approach on this has been to distribute the kernel computations across cores

of the NoC. This distribution is a deciding factor in determining the overall

latency of the applications. Hence, novel methods of core allocation have been

used and difference NoC integration approaches have been studied to achieve

optimum performance.

1.1.3 High-Throughput, Energy-Efficient NoCs with On-Chip Wireless Links

Our principal contributions here are as follows:

a) We designed and evaluated NoC-based platforms for throughput-oriented

scientific applications that consist of concurrently executing jobs with

variable computation footprint.

b) We introduced long-range shortcuts in the NoC via wireless links and

thereby reduced the average network diameter. We designed and

evaluated several job allocation schemes based on this architecture.

c) We achieved a computation throughput of over 1011 operations per second,

while consuming ~0.5 nJ for each such operation, thereby demonstrating

that high throughput was attained without compromising on energy-

efficiency.

d) We evaluated different architectures in terms of their power and energy

consumption profiles, and established that the architectures delivering the

highest throughput had favorable power and energy consumption profiles.

11

We also analyzed the correlation of throughput and power consumption

with the statistical properties of the application traffic.

e) We carried out chip-level thermal profiling to identify hot-spot distribution

and correlated them with architecture-level design tradeoffs.

1.1.3.1 Significance

High-performance scientific computing tools in emerging application

domains such as biocomputing demand computation throughputs to scale to

terascale and beyond. Given the diversity of tools and the need to cater to a wide

user-base, it has become common practice, even within academic settings, to

have a dedicated center which hosts a whole range of scientific computing tools

on a few high-end data servers. The servers can be expected to service requests

from a variety of applications, each with differing resource requirements, and

simultaneously support them while delivering high throughput. This server

could either be based on a cluster of general purpose microprocessors or make

use of a co-processor consisting of a many-core chip where the cores are designed

to accelerate targeted operations and are interconnected with an on-chip

network.

The choice of the on-chip network architecture is an important

consideration in the design of a NoC-driven platform targeted at enhancing

computation throughput. Introduction of long-range links in regular

architectures like mesh reduces the overall network diameter and improves

inter-core communication latency. The use of on-chip wireless links to implement

these shortcuts leads to significant savings in latency and energy, even

12

considering the overhead of wireless transceivers. In this perspective, our

contribution here is the design and evaluation of NoC-based platforms with long-

range on-chip wireless shortcuts to enhance the computation throughput of

scientific applications.

1.2 Organization of the Dissertation

 The remainder of the dissertation is organized as follows. Chapter 2

details the prior work in this field. It refers to existing work done for accelerating

phylogenetic applications using one of MP, ML or BI methods. Chapter 3 treats

the problem of MP phylogenetic tree reconstruction and the NoC-based solution.

Sub-sections in chapter 3 deal with the problem statement, the algorithm used,

design of the PE, network topologies, communication paradigm, application

mapping and finally experimental results. Chapter 4 details the NoC-based

platform design targeting ML phylogenetic tree reconstruction. It begins by

providing a theoretical background of ML and mentioning the available software

suites. This chapter subsequently describes our core architecture, NoC node,

network topology, dynamic node allocation methods (including 3D NoCs), routing

and arbitration, and finally experimental results. In Chapter 5, we propose a

NoC-driven use-case model for throughput-oriented scientific applications, and

subsequently use the model to study the effect of using long-range on-chip

wireless links in conjunction with different resource allocation strategies on

reducing the overall on-chip communication and enhancing computational

throughput. In the experimental results, we compare these methods with respect

to computation throughput, wireless link usage, energy and power consumption,

13

and chip-level thermal profiles. Chapter 6 describes areas that further research

can explore. Chapter 7 is a list of references.

14

2. Related Work

2.1 State of the Art in Networks-on-Chip

 Network-on-chip (NoC) is a paradigm that has recently emerged as an

alternative to conventional bus-based point-to-point communication

architectures, in order to deal with the increasing number of components in

systems-on-chip (SoCs), higher demands on area and performance, and the

limitations of global interconnects (high latency and energy consumption) with

technology scaling. One of the earliest proposals for this paradigm can be found

in Dally and Towles’ seminal paper [23]. Ever since, there has been an ever-

expanding body of work on NoCs in both academia and industry. An example of a

NoC-based processor designed and manufactured at Intel Corp. can be found in

[24].

 The different aspects of NoC design that has received attention from

researchers can be categorized into application-level, network-level and

implementation-level. The reader can refer to [25], [26] and [27] to get a broad-

based understanding of the issues involved.

At the application-level, traffic modeling has ranged from understanding

the effect of synthetic traffic patterns [28] to modeling traffic generated by a

popular application as self-similar traffic [29]. Parameter extraction from

statistical traffic modeling has been described in [30]. A system of benchmarks

for NoCs, which covers a wide spectrum of NoC design aspects, from application

modeling to performance evaluation, has been presented in [31]. A statistical

15

approach to traffic modeling using traffic-load distribution plots that prevents

overprovisioning for network link capacities is presented in [32]. A statistical

physics-inspired approach to capture the capture the non-stationary traffic

dynamics in multicore systems is presented in [103]. Closely related to this is the

problem of application mapping on the NoC, or partitioning the NoC for multiple

application requirements. Energy-aware mapping strategies have been

considered in [33] and [34]. Incorporating floorplan information during

application mapping is the subject of [35]. A methodology for mapping multiple

use-cases on the NoC has been developed in [36]. There has been more recent

work on partitioning the network for reducing message-level contention [37],

bulk-synchronous parallel programming models [38], and virtualization and

resource partitioning for traffic isolation [39]. Scheduling of applications on the

NoC has been carried out with the objectives of enhancing performance (e.g. [40],

[41]) and lowering power consumption (e.g. [42]), and have employed

communication-aware voltage selection techniques (e.g. [43]). Similar work has

been carried out for thermal optimization in 3-D NoCs [44].

At the network-level, a wide range of topologies have been proposed and

studied. These range from simple topologies, such as ring [45] and 2-D mesh [46],

to custom topologies built using heuristics [47], and complex topologies, including

hierarchical star [48], mesh-of-tress [49], concentrated mesh [50] and other high-

radix networks [51]. 3-D NoC topologies have been proposed and extensively

evaluated in [74], [76], [77] and [78]. Introduction of long-range links in the on-

chip network creates topologies that are neither regular nor completely random,

essentially giving them a Small-World Property [116]. Different routing

16

strategies are explained in detail in [28] and [105]. They include both static and

adaptive routing algorithms. Among static routing techniques, dimension order

routing for mesh and e-cube routing for torus [52] are popular owing to their

deadlock-free nature. Examples of other routing schemes are deflection routing

[53] and oblivious routing [54]. For NoCs with long-range links, a deadlock-free

routing strategy is south-last routing which limits the turns a routing path can

take [115].

At the implementation-level, some of the important focus areas have been

chip layout and metal routing [55] and integration of floorplanning and

application mapping [47]. An EDA tool for 3-D NoC synthesis was proposed in

[56]. Clock distribution has been one of the key focus areas, primarily deal with

the problem of transporting clock signals across significant lengths of

interconnects to all regions of the chip. An asynchronous clocking approach using

encoded channels has been demonstrated in [57]. Mesochronous or globally

asynchronous locally synchronous (GALS) clocking has been demonstrated in

[24] and [58]. Recent work has focused on resonant clocking [59] and thermal-

aware clocking [60] approaches. Another area that has seen significant

contributions is power optimization. Various approaches, such as dynamic

voltage scaling [61], on-off networks [62] and voltage-islands [63], have been

proposed. A wide spectrum of power management methodologies has been

reviewed in [64]. Reduced power budgets and increased sources of crosstalk bring

into question the reliability of the on-chip communication network [65]. Some

examples of more recent work focus on maintaining performance QoS by using

17

hop-by-hop retransmission checks and saving power [66] and graceful

performance degradation in the presence of multiple link failures [67].

2.2 Hardware Acceleration for Phylogenetics

Substantial work has been carried out in the field of hardware

acceleration targeted towards phylogenetics applications. These accelerators

have been designed using platforms like FPGA, GPU, CBE and general-purpose

multi-cores (traditional Intel/AMD dual-core, quad-core platforms). Most of the

work targets probability-based methods like ML or BI because of their obvious

importance to the biological community. There is some work on MP phylogeny,

which is often serves as a quick reconstruction method to generate a lot of initial

trees for “bootstrapping”.

 Mak and Lam [68] proposed a hybrid hardware/software system for

solving the phylogenetic tree reconstruction using the Genetic Algorithm for

Maximum Likelihood (GAML) approach. The genetic algorithm is implemented

in software and the computationally intensive ML equation is implemented in

hardware. This work uses a Xilinx Virtex XCV800 FPGA as the hardware

accelerator and a Pentium 4 PC with 1 GB RAM for running the software. The

likelihood function is evaluated in parallel in the dedicated FPGA. Their results

while reconstructing a 4-taxa phylogenetic tree under the Jukes-Cantor Model

demonstrate an overall speedup of 30 over software and an ML speedup of over

300, despite the communication overhead of the hybrid system. This work

however does not explicitly state how the acceleration scales for larger taxa or

more realistic complex models like GTR.

18

 Alachiotis et al. explored the use of FPGA for accelerating the computation

of PLF in [69]. A Xilinx Virtex 5 SX240T with 1056 DSP48E slices has been used.

The DSP slices have been used to implement double-precision floating point

multipliers and adders. Due to the limited amount of DSP48E slices on the

FPGA, several multiplexer units are deployed to optimally exploit the available

computational resources. A Sun x4600 system equipped with 8 dual-core AMD

Opteron processors running at 2.6 GHz with 64 GB of main memory was used as

the baseline. An average speedup of 8.3 over a single core has been demonstrated

for trees comprising of 4 to 512 sequences on FPGA. The FPGA implementation

also outperforms OpenMP-based parallel implementation on 16 cores in most

cases, achieving speedups from 0.96 to 7.46. The projected computational time

for a full tree traversal using Felsenstein’s pruning algorithm for 512 taxa is less

than 1 ms, based on reported clock speed of 284.152 MHz.

 Bakos and Elenis [14] proposed a co-processor design for whole-genome

phylogenetic tree reconstruction using a parallelized version of breakpoint

median computation, which is an expensive component of a specialized form of

MP phylogenetic tree inference (so-called breakpoint phylogeny). The co-

processor uses an FPGA-based multi-core implementation of the combinatorial

search portion of the TSP algorithm while the TSP graph construction is

performed in software. The search tree partitioning is carried out in such a

manner that each core explores the tree in a different order. This is done to avoid

complex load-balancing and inter-core communication issues that occur if

disjoint subtrees are assigned to different cores, because any of them might be

subject to pruning. Their test system consists of 3.06-GHz Intel Pentium Xeon

19

processor and a single XilinxVirtex-2 Pro 100 FPGA connected to the host using

a PCI Express interconnect. The best average speedup of 1,005 over software is

observed using 3 cores. The best overall reduction in execution time is by a factor

of 417. All these observations are for synthetic data and hence difficult to

correlate with real-life examples.

 Randomized Axelerated Maximum Likelihood version VI for High

Performance Computing (RAxML-VI-HPC) [70] is an efficient parallel algorithm

based on ML for phylogenetic tree inference. Blagojevic et al. have explored the

porting, optimization and evaluation of RAxML-VI-HPC on CBE [71]. They carry

out a detailed empirical optimization of RAxML on CBE, with additional support

from the runtime environment. Different layers of parallelism have been used –

task-level parallelism across SPEs, task vectorization within SPEs and/or loop-

level parallelization across SPEs. It is shown that CBE outperforms both Intel

Xeon and IBM Power5 and is more cost-effective and power-efficient than either

architecture. However, the sheer complexity of porting the algorithm and the

various optimizations required for CBE collectively pose a significant roadblock.

 FPGA-based acceleration up to a factor of 10x has been demonstrated over

software for Bayesian inference with MrBayes 3 tool in [72]. This paper describes

a technique for mapping the PLF and supporting logic onto an FPGA-based co-

processor. By leveraging the FPGA’s on-chip DSP modules and the high-

bandwidth local memory attached to the FPGA, the resultant co-processor can

accelerate probability-based methods. The implementation achieves its

performance by deeply pipelining the likelihood computations, performing

20

Table 1: Performance comparison of hardware accelerators for phylogenetic inference

Phylogenetic
tree

reconstruction
strategies

FPGA GPU Cell Broadband Engine General Purpose Multi-
core

Application
speedup

Total
speedup

Application
speedup

Total
speedup

Application
speedup

Total
speedup

Application
speedup

Total
speedup

Maximum
parsimony

(MP)

1005 417 - - - - - -

Maximum
likelihood (ML)

381 32 8.5 1.9 12 1.5 12 10

multiple floating point operations in parallel and through a natural logarithm

approximation that is chosen specifically to leverage a deeply pipelined custom

architecture.

 In [73], MrBayes has been used on three different architectures to

evaluate performance, scalability and programmability. General purpose multi-

core (dual-core and quad-core Intel and AMD) processors and CBE support the

Multiple Program Multiple Data (MPMD) model while GPUs support Single

Program Multiple Data (SPMD) model. The PLF in MrBayes is parallelized

using OpenMP directives for the general-purpose multiprocessors, POSIX

threads for the CBE systems and Compute Unified Device Architecture (CUDA)

for the GPU systems. For hardware-managed caches, the sharing of a cache level

within the chip by all cores is a determining factor for efficient synchronization

and hence scalability. Systems with software-managed caches like CBE

compensate the user effort by efficient synchronization mechanisms. On the

other hand, there are fewer data transfers between the device memory and CPU

because GPU has sufficient memory to handle input data. CUDA automatically

handles data transfer synchronization, thus relieving the user of the

responsibility of providing any explicit synchronization mechanism. PLF

21

computation speedup is penalized by computation intensity and communication

overhead inside the multi-cores. Quad-core AMD Opteron, where four cores are

on a single die and share the same L2 cache, scales better compared to quad-core

Intel Xeon, which has two L2 caches each shared by a pair of cores. For CBE,

speedup values are close to ideal for small data sets and performance is stable

across different computation intensities. Even though SPEs do not share a

common cache, CBE is more tolerant to synchronization, primarily because it

relies on user-generated software for this. However, speedup values for large

data sets and computation intensities are almost equal for general-purpose

multi-cores and CBEs. GPUs display an increase in speedup as the computation

intensity increases because they are designed to perform efficient execution of

small parallel threads in a scenario where the computation-to-data ratio is high.

In terms of total frequency-normalized execution times, the general-purpose

multi-core still achieves the best performance. This is based on the sum of the

time spent in executing the parallel portion of the code (PLF) and that for the

rest of the code. The degradation in total execution time for CBE is due to the

fact that the PPE that handles the serial portion of the code is a rather simple

core with a small cache, in-order execution capability and is burdened with the

additional responsibility of synchronizing among SPEs. Table 1 summarizes the

speedups achieved by different hardware accelerators for the MP/ML

(application speedup) computation and the overall algorithm (total speedup).

 Currently there are no NoC-based platforms that target phylogenetic tree

reconstruction, whether MP, ML or BI. In this work, we propose and design

hardware accelerators targeting MP (in particular, breakpoint) phylogeny and

22

ML phylogeny. In each of these cases, we show that our design has a superior

performance to the state of the art in terms of absolute speedup provided.

23

3. NoC-Based Accelerator for Breakpoint Phylogeny

Maximum Parsimony is one of the two principal methods of phylogenetic

tree reconstruction that we target in this work. The advantage of this method is

that it provides a quick estimate to a phylogenetic tree structure. When the

relative ordering of genes on a genome is known, a specific type of MP phylogeny

called breakpoint phylogeny can be computed, based on the breakpoint distance.

Prior work of designing hardware accelerators targeting breakpoint phylogeny is

described in Chapter 2, e.g. [14]. In the following, we describe our NoC-based

solution that delivers three orders of speedup over multithreaded software and

one order of magnitude speedup over other hardware accelerators. To the best of

our knowledge, this is the first comprehensive NoC-based solution for MP

(breakpoint) phylogeny reconstruction.

3.1 Breakpoint Median Problem

Given a reference set of m genes {g1, g2, …, gm}, any genome can be

represented by an ordering of the subset of genes that constitute it, as they

appear from end to end of the genomic DNA. The breakpoint distance between

any two genomes is defined as the number of gene pairs that appear adjacent in

one genome but not in the other. It is a measure of how different two genomes

are by their gene ordering. For example, let us consider two hypothetical

genomes G1 = g1g2g3g4g5 and G2 = g2g3g5g4g1. According to the definition above,

the number of breakpoints between G1 and G2 is 2, if we do not consider circular

adjacency. We can find a set of breakpoint distances where each distance

pertains to a pair of genomes in the input set. Blanchette et al. pioneered the

24

work on breakpoint-based phylogeny [3]. They reduced the problem of

constructing an optimal phylogenetic tree of N genomes to one of solving

numerous instances of a version of the Traveling Salesman Problem (TSP) [4]

where edge-weights of the input graph are bounded to a fixed set of integer

values. Put intuitively, each instance of TSP tries to identify the gene order of a

hypothetical ancestral genome that is the closest representative to any three

given genomes. This problem is called the 3-median breakpoint problem and has

been proven to be NP-Hard [5].

3.2 Algorithm

 TSP is a well-researched problem and various approaches have been

proposed in literature to solve it. These algorithms can be classified into two

groups – (a) approximation algorithms that could take polynomial time [15], [16],

[17], [18] and (b) accurate algorithms that run in super-exponential time [21],

[22]. Techniques used in approximation methods include the Kernighan-Lin

heuristics, simulated annealing and genetic algorithms [15], [16], [17], [18], [19].

Among accurate methods, dynamic programming [22] is super-exponential in

practice, whereas branch-and-bound methods [21], [22] achieve significant

pruning of search space during computation without affecting the optimality of

the output. This method, actually a run-time heuristic, is computationally

intensive but is easily parallelized. Coarse-level parallelization of TSP has been

explored using genetic algorithms [19] and branch-and-bound [1], [20].

25

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

u17

u18

u19

u20

u21

u22

(1,2)

(1,3)
(1,4)

(2,3) (2,4)

(3,4)

(3,2) (3,4) (4,2) (4,3)

(4,3) (2,4) (4,2) (2,3) (3,2)

(4,1) (3,1) (4,1) (2,1) (3,1) (2,1)

1 2

34

3 1 0 3
2

1 3

1

9 6 7 4 7 1

pathcost (a)

(b)

--

1

0

0

2

Figure 3-1: An example showing (a) the exhaustive search tree corresponding to the input
graph in (b). If the tree is computed in the Depth First Search order, then evaluation of the
path that leads to a low cost (such as u1-u2-u6-u7-u8) first may help in pruning the
computation of a higher cost path (such as u1-u9-u13-u14-u15). This idea is exploited in the
branch-and-bound technique.

3.2.1 Branch-and-Bound Method

 In this section, we present the core computation steps of the branch-and-

bound run-time heuristic to solve TSP that we used in our implementation. The

input is a directed graph, G = (V,E) with m vertices and a non-negative cost

associated with each edge. The m vertices of this graph correspond to the m

reference genes and its edges have a bounded weight – an integer cost between 0

and 3, or an edge with cost ∞ (representing nonexistent edges) [3]. The output is

a least cost cyclic tour that traverses all vertices exactly once.

 The overall algorithm has a worst-case runtime complexity that is super-

exponential in the number of vertices (i.e., genes). However, the use of branch-

and-bound technique reduces this search space significantly for most practical

inputs. For example, for m=110, which represents a typical input genome size for

26

Figure 3-2: Flow diagram showing steps of the branch-and-bound method

bacterial genomes, the theoretical number of “reductions” is ~10178 while the

maximum number of such operations observed in our experiments in ~109.

 Given this input graph G, the solution space can be represented by a

conceptual computation tree. An example is shown in Fig. 3.1. The tree has a

total of (m-1)! potential paths to be explored before identifying the optimal TSP

tour. Every tree-edge (u,v) from a parent node u to a child node v corresponds to

a graph edge (i,j) ∊ E, and every path from the root to a leaf node encodes a

completed TSP tour with cost equal to the sum of the edge weights along its

path. An optimal TSP tour represents a least-cost path. Our algorithm

dynamically generates and explores this conceptual search-space tree in the

depth-first-search (DFS) order.

 Initially, a global variable called best_cost is initialized to ∞; this variable

is dynamically updated to keep track of the least cost over all TSP tours

27

examined so far at any stage of the algorithm. At every step, the algorithm

evaluates the next eligible tree-edge in the DFS order as explained below and

also shown in Fig. 3.2.

 At any given step, consider the newly included tree-edge to be from node u

to node v, and the cost of the corresponding graph edge (i,j) to be cij. Let c*(v)

denote the cost of the least cost TSP tour passing through node v. There are two

possibilities for v:

 If v is a leaf, then c*(v) is set equal to the net cost of the path from the root

node to v. Subsequently, if c*(v)<best_cost then best_cost is updated to c*(v).

 If v is an internal node in the search tree, a lower bound for c*(v) is

computed using a matrix reduction operation. If the computed lower bound

(lbc(v)) is observed to be greater than or equal to best_cost, further exploration of

the subtree under v becomes unnecessary and so the subtree is pruned and the

computation returns to the parent node u; otherwise, the DFS is continued under

v’s subtree.

3.2.1.1 Lower Bound Calculation

 We use the method shown in [22] for lower bound computation at each

tree-edge. An m ⨉ m matrix called the reduction matrix (R) is maintained

throughout execution. Initially, the matrix at the root node is set equal to the

cost matrix defined by E. At any step of the DFS, lbc(v) is calculated as follows:

1) All entries in row i and column j of R is set to ∞;

2) R[j,1] is also set to ∞;

28

3) All rows and columns that contain at least one non-infinity value are

reduced as follows:

(a) Given row i, compute mini = min{R[i,j]} for all 1≤j≤m;

(b) Then for all 1≤j≤m, R[i,j] = R[i,j]-mini;

(c) Similarly, given column j, compute minj = min{R[i,j]} for all 1≤i≤m;

(d) Then for all 1≤i≤m, R[i,j] = R[i,j]-minj As this is done, all subtracted

values (i.e., the minimum values) are accumulated into another variable adjCost.

4) Subsequently, the lower bound is given by: lbc(v) = lbc(u)+R[i,j]+adjCost.

3.2.2 GRAPPA

 A software suite called Genome Rearrangements Analysis under

Parsimony and other Phylogenetic Algorithms (GRAPPA) [85] computes an

exhaustive search across all possible trees for k taxa (3*5*7*…*(2k-5) trees) and

iteratively runs multiple instances of a TSP solver for scoring each tree. It is

widely popular for MP phylogenetic tree reconstruction in software and is used

as the basis for hardware acceleration in [14]. GRAPPA can be run in single-

threaded and multi-threaded modes. We use multi-threaded GRAPPA runs as

reference for benchmarking the performance of our NoC-based solution.

3.3 Core Architecture: PE Design

 The problem of MP (breakpoint) phylogenetic tree reconstruction using

branch-and-bound technique naturally lends itself to parallelization using a

divide-and-conquer approach by subdividing the solution-space tree into

29

independent subtrees. A PE computes one subtree at a time and considers

pruning based on the best cost available from its peers. As this requires a good

combination of parallelism and inter-core communication, NoC provides an ideal

platform owing to its inherent parallel architecture, customizability of its core

and its efficient communication infrastructure. We designed and implemented

the PEs and the on-chip communication network for this NoC. Two types of

communication infrastructure were explored. One is a regular mesh network.

The other is a hierarchical four-way tree or quad-tree.

 The PE has a pipelined architecture optimized to handle the computation

along an edge as per the algorithm described in 3.2.1. Since the PE carries out

the most computationally intensive part of the whole operation, our attempt has

been to optimize its architecture to ensure that the number of clock cycles

required scales nicely with increasing graph size (number of vertices, m). The

primary performance parameter is timing, which aims at reducing application

run-time and overall latency. To achieve this, we designed our PE for O(m) time

complexity, as discussed further in 3.3.1. Our PE has an integer datapath

because breakpoint median computation for MP (breakpoint) phylogenetic tree

reconstruction consists entirely of integer operations. The principal components

of the PE are a reduce block and peripheral control logic, each of which is

described in detail below. We use the short-form lg k to denote log2k. The

datapath consists of the following fields (m: number of vertices, w: maximum

edge weight).

a. x – the parent node (u) uses lg m bits

30

X

Y

L

B

C

L

B

C

Y

X

E

P

C

E

P

C

T

S

P

T

S

P

V

L

S

T

V

L

S

T
C

C
C

C

ρ adjCost

B

A

prune

Write to

InLoc of

switch

EC

A

C

Child.EPC

A

Control

φ

stage1 stage2

γ

β B

Matrix value

extraction

+

+

Child.LBC

>

=

<

leaf

A

Normal

operation

(DFS, local

memory)

E

TSP

Original

Current

TSP

LEGEND

A = leaf

B = new vertex list

C = new child node

E = prune

Φ = find candidate child

β, γ = decoders

ρ = reduce block

memory

memory

D
o

w
n

 t
h

e
 t
re

e

Stack

base

Stack

top

Figure 3-3: Internal architecture of processing element

b. y – the child node (v) uses lg m bits

c. LBC – the lower bound cost (lbc(u)) estimate at an edge; this requires lg m

+ lg w + 1 bits

d. EPC – the exact path cost (lbc(u)+R[i,j]) determined so far; takes lg m + lg

w + 1 bits

e. TSP – the TSP adjacency matrix (R), flattened. Its representation takes

m2*lg w bits.

f. VLST – the current list of vertices traversed; m*(lg m) + 1 bits are required

to store this field.

31

C
o

n
tro

l lo
g

ic

+

Counter

(2m+6)

S/P Decoder

clk

reset

row

col

TSP_matrix

(-)

lg w

m

m

minval

adjCost

ReductionDone

matrix

m
2
*lg w

m
2
*lg w

lg w
lg w

lg w

lg w

lg w

lg w

lg w
MSB

Critical Path

(In2Reg) (400ps)

Critical Path

(Reg2Out)

(400ps)

Other non-critical

timing paths

(Reg2Reg)

Figure 3-4: Internal architecture of reduce block (ρ) for linear-time matrix reduction

g. CC – the candidate children at every stage; takes m bits

 As is evident, the datapath complexity of the hardware is O(m2). In our

approach, breakpoint distances can range from 0 to 3, which is the range of the

valid weights we used. We used the weight 4 to denote a non-existent edge or ∞.

A different range of weights just changes the number of bits for w. A block

diagram of the PE is shown in Fig. 3.3. Subsequent references to the sub-blocks

in parentheses (e.g. ρ, φ, etc.) in this sub-section refer to this figure.

3.3.1 Reduction Block

 This block (ρ) carries out the matrix reduction operation described in 3.2.1.

Based on the algorithm, the run-time of the operation is a function of the matrix

size, i.e., O(m2). This operation consumes the maximum fraction of the total time

32

required for an edge computation. Hence, a significant amount of time is saved

by suitably optimizing its design. Our implementation achieves O(m) cycle time

by using micro-level parallelism inside the reduce block. This has the effect of

drastically reducing the total time as well as providing better time-scalability

with increasing input graph size, m.

 The matrix is reduced using the new values of x and y in stage2 (see 3.3.2

for details on the operations up to this stage) and the adjacency cost adjCost is

obtained. Fig. 3.4 shows the architecture of reduce block. The flattened TSP

matrix is initially reorganized into rows and columns in the component denoted

as matrix. There are m rows and m columns with each entry taking up lg w bits.

The register bank minval of width m*(lg w) is initialized with a bit pattern

representing infinity (3’b100 as mentioned earlier). A counter is used as a state

machine controller. There is an m-sized bank of comparators that compare one

element from every row or column in every cycle. Minimum value calculation for

all rows and the same for all columns take m cycles each. Additional three cycles

are required for subtraction of the minimum values, for calculation of the final

adjCost and for control operations for each case (row and column blocks). The

entire reduction operation takes 2*(m+3) cycles to complete.

3.3.2 Peripheral Control Logic

 The peripheral control logic is used for vertex selection, cost comparison

and data management. The register bank for the first stage is stage1, which has

the same width as the datapath. The input control multiplexer initially switches

33

to select the current vertex data. The CC field is computed (φ) from VLST in m

cycles in the worst case.

 In the second stage, the candidate child is found by scanning (γ) CC of

stage1. Again, this requires m clock cycles in the worst case. Using this

candidate child, VLST is updated (B) for the child node in the graph. If it is not a

leaf node (A), the candidate child becomes the next child node, while the current

node (y of stage1) becomes the parent node x of stage2. During the same stage,

the data pertaining to the best case obtained so far is fetched into stage1. The

input multiplexer now selects the lowest cost data (global best cost) available to

the PE at this time. At this stage, TSP of stage1 gets the original TSP matrix.

 The current value of the exact cost of the path found so far, EPC is updated

by adding to it the edge cost from x to y in the original adjacency matrix. This is

checked against global best cost and reduce operation is started only if EPC is

lower. The sum of adjCost (obtained from reduce operation) and EPC yields the

lower bound cost, LBC, which is again compared with the best cost found so far.

If EPC or LBC is larger than the current best cost, the tree is pruned (E), the

current child is aborted and the path through another child is explored. The data

on stage2 is reloaded back to stage1 with the old value of x and a new calculation

for the candidate child. If LBC is smaller and we have not reached a leaf node,

normal operation (DFS) continues with the new set of data. If we have hit a leaf

node with an LBC lower than the best cost globally found so far, this value (new

global best cost) is sent to the switch to be communicated with other PEs in the

network.

34

Table 2: Per PE memory requirement for different input genome sizes

Number of
genes per input

genome, m

Per PE memory requirement
(MB)

Basic
scheme

Improved
scheme

128 0.514 0.024

256 4.063 0.094

512 32.282 0.375

1024 257.252 1.5

3.3.3 Memory

 The memory is physically distributed across all PEs, and the memory local

to each PE has two logical partitions. One part of the memory stores the TSP

matrix corresponding to the root of the subtree that is currently assigned to that

PE. Another part of the memory stores the intermediate matrix data that result

along the way of evaluating a path down that subtree.

 The part of the memory that stores intermediate matrix data can be

implemented as a stack. During DFS, the new vertex data (path cost, vertex list

and associated adjacency matrix) are pushed into the stack (Fig. 3.3). The stack

is full only when the leaf node is reached. If there is pruning (before the leaf node

is reached), the stack is popped. In this scheme, every PE has a stack with m

levels, where each level of the stack needs to store (m+1)*(lg m) + (m2+1)*(lg w) +

2 bits. Since lg w is a constant, the total memory requirement is O(m2)*O(m) or

O(m3). The total memory required per PE for different values of m are shown in

Table 2.

 An improved scheme is explored, where the memory requirement is

reduced to O(m2). In this scheme, the adjacency matrix at each level is not stored

in the stack. Instead, we store only the original values in the row i and column j

35

(a) (b)

Figure 3-5: (a) Mesh network architecture (b) Quad-tree network architecture

that are made ∞, the row-wise minima and the column-wise minima obtained

during reduction at each level. These data require 4m*(lg w) + 2m bits at each

level. In addition, the adjacency matrix only for the current child level is stored.

While going back to the parent, these data at each level are used to backtrack

and reconstitute the adjacency matrix at the parent level. The reconstitution

step leads to a negligible run-time penalty (1.8%) but the overall memory

requirement improves to (m+1)*(lg m) + (5m2+1)*(lg w) + 2m2 + 2 bits. This

improves the memory-scalability of the design and enables implementation for

higher values of m for the same per-PE memory as can be seen from Table 2. We

use this memory implementation for our experiments.

 A list of all subtrees to be computed is maintained in memory. Once each

PE completes one subtree reduction, it picks up the next available subtree and

removes it from the list. This is achieved by maintaining a global array of flags

and a mutually exclusive semaphore.

36

3.4 Network Architecture

 The choice of the network architecture is affected by application modeling

and traffic pattern analysis, as is explained in the seminal paper on NoC design

methodology [27]. Our application is mapped on a set of homogeneous cores, each

of which carries out reduction of a subtree. The need for communication arises

when a PE needs to update the network with the best score it has obtained. This

is explained in detail in this section and the next. The mode of communication

involved in this case is a conditional broadcast. We explored two different kinds

of network architecture – a mesh, shown in Fig. 3.5(a) and a quad-tree, shown in

Fig. 3.5(b). A mesh is the most appropriate scalable topology for broadcast traffic.

Its regularity provides for easier timing closure and reduces dependence on

interconnect scalability [27]. The hierarchical nature of a quad-tree minimizes

the diameter of the network for the same number of nodes, thereby amortizing

the router (switch) overhead and reducing latency [27].

 Other common network architectures like point-to-point, full crossbar or

ring do not scale well with increasing system size [86], [87] and far exceed

latency/area budgets. With increasing system size (N), the number of inter-

switch links in a mesh increases faster than that in a quad-tree. The expected

volume of inter-PE communication in our application is relatively low. Hence,

having fewer links in our network can lead to potential savings in area and

power without incurring a risk of network congestion.

 The diameter of a mesh architecture increases as O(√N) where N is the

system size or the number of PEs. The same for a quad-tree increases as

37

Table 3: Wost-case write latency in clock cycles

N Mesh
Quad-
tree

4 6 6

8 9 10

16 12 10

64 14 12

256 30 14

1024 62 16

 O(log4N). As mentioned earlier, the mode of communication for our application

involves some form of broadcast as the best cost is written to all the PEs except

for the originating PE. Hence, the worst-case hop count is a linear function of the

diameter. It should be remembered that all links are not of the same length in a

quad-tree, where links higher up the tree are longer and have greater delay.

Table 3 shows an estimate of the number of clock cycles required per write in the

worst case in 65 nm CMOS technology with a clock period of 400 ps. Quad-tree

has an advantage over mesh in terms of communication latency for N>16.

However, the key advantage of a quad-tree comes from power savings because

the number of links and switches is drastically reduced. These observations are

made on the basis of the experimental results reported in 3.7.

 The problem of partitioning the application and mapping it to the nodes of

the NoC is also important in optimizing overall latency. This is discussed in

detail in 3.6.

3.4.1 Mesh Switch Design

 A typical switch for the mesh network architecture is shown in Fig. 3.6 (a).

Input buffers InN, InE, InS, InW receive data from four neighboring switches

and input buffer InLoc receives data from the associated PE. There is a

38

BufOut

DMU

In
W

InN

InS

In
E

InLoc

DMU

BufIn[C1]

BufOut[C1]

BufIn[C3]

B
u

fIn
[C

2
] B

u
fI

n
[C

4
]

BufOut[C3]

B
u

fO
u

t[C
2

] B
u

fO
u

t[
C

4
]

BufIn[P]
BufOut[P]

To parent node To child node

To child

node

To child

node

To child

node

Figure 3-6: Internal architecture of (a) mesh switch and (b) quad-tree switch

dedicated buffer (BufOut) that provides data to the network as well as to the

associated PE. Each set of input/output data consists of the fields (a) Path Cost,

(b) Vertex List and (c) Transmission control bits. At every cycle, one of four

transmission decisions are taken by the Decision Making Unit (DMU) and the

data is written into an internal buffer (local). The same is transmitted out in the

next cycle through BufOut. The transmission control bits are as follows.

 NOTX: No valid transmission

 NORETX: No retransmission

 DOTX: New best cost from local PE; transmit

 TRWL: New best cost from other PE; transmit and update local PE

39

Figure 3-7: State diagram of control states in a mesh switch

CLK

InX

InLoc

local

BufOut

Transmit

Control Bits

InX is min. InLoc is min. local is min.

InX Inloc

TRWL DOTX NORETX

{TRWL, local} {DOTX, local}

Figure 3-8: Timing diagram showing typical scenarios encountered in a mesh switch

 Fig. 3.7 shows all the control states for decision making in a mesh switch

and Fig. 3.8 shows the timing diagram for a typical situation. It is to be noted

that a switch receives data from each of its neighboring switches in every cycle

but the transmission control bits determine whether the data is valid for

consideration or not. The data is considered if the control bits are DOTX or

TRWL but not if they are NOTX or NORETX.

40

3.4.2 Quad-tree Switch Design

 There are different levels of switches for this network architecture. The

leaf level switches (refer to Fig. 3.5(b)) are denoted L1, the next higher level L2

and so on. An L1 switch consists of five buffered input/output ports

(BufIn/BufOut), four catering to the four leaf PEs and the fifth to the parent

switch. For an L2 switch and upwards, four children ports cater to lower level

switches and the parent port caters to the higher level switch. The top level

switch has only four downlinks but no uplink. Each set of input/output data

consists of the fields (a) Path Cost, (b) Vertex List and (c) Update control bit

(UCB). The switch architecture is shown in Fig. 3.6(b). UCB is a flag to indicate

whether the status of the data is valid (UPDT) or invalid (NOUP). The receiving

parent or child switch infers “no transmission” if UCB is set to NOUP. In every

cycle, the switch takes a decision based on the following algorithm.

 Let C1, C2, C3 and C4 be the four (children) downlinks and P be the

(parent) uplink and let us define the set L = {C1, C2, C3, C4, P}. Let us suppose

the best (lowest) path cost, PCi for a decision cycle comes from i ∊ L, i.e., PCi <

PCj ∀ j ∊ L, j ≠ i. Then, we have the following set of assignments.

 BufOut[k] ← PCk ∀ k ∊ L

 UCB[i] ← NOUP

 UCB[j] ← UPDT ∀ j ∊ L, j ≠ i

41

 NH 4log*2

3.5 Communication Paradigm

 In both network architectures, every PE communicates with its neighbors

through its local switch. In the mesh architecture, every switch communicates

with its immediate neighbor and gets data in every cycle from at most four

neighboring switches. Based on the decision mechanism described in 3.4.1, the

switch places data on BufOut with appropriate control bits. The neighboring

switches get this value in their input buffers in the next cycle. Hence, at every

cycle, data is sent in all four directions.

 In the quad-tree, every switch communicates with its four children and one

parent in every clock cycle. It receives data from its parent and/or one or more of

its children and takes a decision on the lowest cost available to it thus far. Once

found, this data is placed on four output buffers, except the direction it came

from along with appropriate UCB, as described in 3.4.2. For the best-cost data to

propagate to the entire network, it has to go through a maximum of H hops

where H is given by

 (1)

Note that H/2 is the height of the tree. One important fact to keep in mind is that

each hop does not consume the same number of clock cycles as the wire length

varies at different levels.

 The need for inter-PE communication arises when a particular PE checks

against the global best cost obtained so far and finds out that its local best-cost is

lower than the global best-cost. At this stage, the PE should broadcast its newly

obtained value to the whole network. One way to implement this is to use

42

s

1 2 3 m - 1

1 2 m - 2

(m-1)*(m-2)

Level 0

Level 1

Level 2

1 2 m - 3 (m-1)*(m-2)*(m-3)Level 3

Figure 3-9: Number of subtrees generated by partitioning the search-space tree at
different levels

flooding. However, this could lead to an unnecessary network congestion thereby

affecting scalability. Therefore, we devised an improved alternative strategy

where a PE conditionally broadcasts valid data only if

a. Its local best-cost is worse than the global best-cost but it has not yet

participated in the broadcast of this global cost, or

b. Its local best-cost is better than the global best-cost (currently available

to the rest of the network) and it has not been previously transmitted.

The above scheme ensures elimination of redundant communication, thus

reducing communication overhead and power consumption without

compromising on the correctness of the answer.

3.6 Application Mapping and Tradeoff

 Partitioning and mapping the application on the NoC has a significant

43

impact on its overall latency and total energy consumption. The PE that finishes

its share of reduction computations last limits the performance of the entire

system. The determining factor for this is the load distribution among PEs,

which is dependent on input data. In our scheme, each PE picks a subtree

dynamically from a common pool of available uncomputed subtrees, once it has

finished computing its own subtree. This can happen either when the PE has

finished computing the subtree exhaustively or when it has pruned it. This could

result in each subtree contributing to a different number of reductions and each

PE computing a different number of subtrees. It is evident that we need to

ensure that PEs are evenly utilized to minimize the impact of a “bottleneck” PE

and achieve the best overall latency. Hence, application mapping on the NoC

needs to be optimized such that the load distribution among PEs is even. We use

the following definitions to formulate the problem.

 fi: utilization factor of PE i

 ti: application latency of PE i

 TPCIe: latency overhead of the system for loading data through PCIe

 Tpick: cumulative latency overhead of each PE picking subtrees from the

pool of uncomputed subtrees

Overall application latency, Toverall, is given by

 Toverall = TPCIe + Tpick + max{ti} (2)

44

where max{ti} is over all i. Note that the last term is the latency of the

“bottleneck” PE. ti is proportional to fi. TPCIe and Tpick are related to fi as

explained below.

 Experiments showed that the load distribution among PEs (fi) becomes

more balanced when the number of subtrees in the common pool is much higher

than the number of PEs. For a graph with m vertices, the solution-space tree

with the starting node as root (level 0) has (m-1) nodes at level 1, (m-1)*(m-2)

nodes at level 2, (m-1)*(m-2)*(m-3) nodes at level 3 and so on (Fig. 3.9). In

general, it will have mPk+1 nodes at any level k < m. So partitioning the solution

space by choosing subtrees rooted at a deeper level generates more subtrees,

helping to balance load and thereby ensure maximum achievable parallel

speedup. Now, TPCIe, the overhead involved in loading the entire set of subtrees

to the system using PCIe increases with the amount of data that needs to be

transferred, which increases with the number of subtrees. Tpick also increases

with the total number of subtrees handled by each PE. Hence it is clear that the

dependence of ti on fi is opposite to that of TPCIe and Tpick on fi. We need to

optimize Toverall in (2) with these constraints. As explained in 3.7.1, we have

considered m=110 in our experiments. In this case, we resolved this tradeoff by

choosing to work on subtrees rooted at level 2, which generated 109*108 subtrees

and yet kept the overhead to a manageable amount. Note that 109*108 (=11772)

is much larger than the largest system size (number of PEs, N=64) we

experimented with, which led to a balanced load distribution.

45

3.7 Experimental Results

3.7.1 Experimental Setup

 The performance evaluation of the NoC was carried out from the timing

and power perspectives during phylogenetic tree reconstruction with varying

data sets. Different parameters associated with the NoC are as follows. The

system size, N, is the number of PEs in the NoC. N was set to 4, 16 and 64 for

evaluating the performance of the NoC with scaling of system size. The number

of vertices in the input graph is denoted by m, which determines the width of the

datapath. In practice, this value should be set to the number of genes shared by

the input genomes. For example, chloroplast genomes of potato, tomato and

wheat share 110 genes; hence m=110 in this case. In our experiments, we used

two types of input data: (a) multiple sets of synthetic genomes with m=110 used

for exhaustive system-wide parametric study; and (b) two sets of real input

genomes (as explained in 3.7.3). Note that the value of m affects the size of the

datapath and the memory requirements in the PE as per the discussion in 3.3.

Since we have dealt with three-median breakpoints, breakpoint distance can

vary between 0 and 3. Without loss of generality, the maximum weight w has

been taken to be 4 to indicate ∞ or a non-existent edge. As with m, this choice

affects the datapath size but to a lesser degree.

 Each PE with its corresponding switch constitutes one node in the NoC.

They were implemented by synthesizing Verilog RTL using Synopsys Design

Compiler followed by place-and-route with Cadence SoC Encounter using

standard cell library of 65 nm process [88]. Extracted parasitics were used in

46

Synopsys PrimeTime to determine post-layout timing performance. The

pipelined design could sustain a clock frequency of 2.5 GHz in each PE and

switch. This was verified with m=110 and higher. The critical path delay using

65 nm timing library is within 400 ps, as shown in Fig. 3.4. In order to estimate

the total power dissipation, it becomes necessary to record the total

communication events involving all the PEs. For modeling the event statistics,

we implemented a multithreaded program to act as the software driver, which

recorded the number of reduction operations performed by each thread, and the

number of successful write operations by that thread. Each individual thread of

the software driver functionally simulated a processing element of the NoC.

Thereafter, these statistics were used in conjunction with Synopsys Power

Compiler using the library [88] for estimating the total computation power of all

the PEs. The switch power (also obtained from Synopsys Power Compiler) was

separately added to this component. Logic gate count for one PE and associated

network switch with m=128 is 1.267 million.

 Interconnect characteristics (delay, power) were determined using Cadence

Spectre. Wire capacitance information extracted from layout was used to

determine delay and energy dissipation of interconnects. Multiple clock cycle

delay in longer interconnects was accounted for.

 PCI Express 2.0 is used as the interface for initially loading the graph data

into the NoC. For modeling this interface, Synopsys Designware IP PCI Express

2.0 PHY was used. It has been implemented on 65 nm process and operates at

47

5.0 Gbps. We use a 32-lane PCIe 2.0 for our simulation. Both mesh and quad-

tree architectures were considered for performance evaluation.

 GRAPPA [34] was used as the software benchmark. It is a standard and

widely used program for MP phylogenetic analysis. To achieve its best

performance, GRAPPA was run in its multithreaded mode on a quad-core 2.40

GHz Intel Xeon E5530 processor with 16 GB of RAM. The run-time measured

through GRAPPA served as the basis in our speedup calculations. Specifically,

speedups reported are calculated as the ratio of GRAPPA run-time over the total

execution time on an N-PE NoC. Note that different multithreaded GRAPPA

runs were found to yield different output sequences with the same optimum

score. Our NoC simulation also outputs a sequence that matches this optimum

score.

48

(a)

(b)

Figure 3-10: Total execution time in hardware for (a) SynData_73, SynData_50 and
SynData_27 and (b) SynData_10 and SynData_04

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

4 (Mesh) 4 (Quad-
tree)

16 (Mesh) 16 (Quad-
tree)

64 (Mesh) 64 (Quad-
tree)

T
o

ta
l
e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

NoC system size and architecture

SynData_73

SynData_50

SynData_27

2
.2

3

2
.2

3

0
.8

3

0
.8

3

0
.5

1

0
.5

1

5
8

.6
2

5
8

.6
2

2
0

.2
2

2
0

.2
2

8
.6

3

8
.6

3

0

10

20

30

40

50

60

70

4 (Mesh) 4 (Quad-
tree)

16 (Mesh) 16 (Quad-
tree)

64 (Mesh) 64 (Quad-
tree)

T
o

ta
l
e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

NoC system size and architecture

SynData_10

SynData_04

3.7.2 Results with Synthetic Data

 Five synthetic data sets were generated and used as input. Each input

consisted of three genomes with 110 genes each such that m=110. Each data set

was generated to have a different common subsequence length and hence

different divergence.

49

 Pairwise divergence (δ) is given by subtracting the length of the longest

common subsequence from m. We have three values of δ for each input. The

standard deviation of the pairwise divergences (σδ) was normalized by dividing it

by the mean (µδ) and used as the divergence metric, Δ (=σδ/µδ). This metric serves

as a measure of the skew among the three genomes and is made to vary across

the entire range of possible values, thereby covering the entire range of the

possible input spectrum. Low values of Δ indicate that the genomes are equally

far apart irrespective of the actual magnitude of the breakpoint distance. A high

value of Δ indicates that two genomes are closer to each other than they are to

the third. Five synthetic sets of three genomes each were generated such that

the values of Δ in these inputs are 0.731, 0.498, 0.274, 0.103 and 0.039

respectively; these inputs were labeled SynData_73, SynData_50, SynData_27,

SynData_10 and SynData_04, respectively. It is also to be noted that the δ

values and µδ increase as we move from SynData_73 to SynData_04.

3.7.2.1 Timing Performance

 Figs. 3.10(a) and 3.10(b) show the total execution times for NoCs with

system sizes (N) 4, 16 and 64 for all the synthetic inputs. The total execution

time includes the total computation and communication cycles spent in the NoC

and the time required to load the data on the NoC using PCIe. It is interesting to

note that the absolute run-times are heavily dependent on the input data and

the absolute divergences. Since the execution times are a function of the

bottleneck number of reductions carried out by the PEs (see 3.6), the execution

times for SynData_10 and SynData_04 are orders of magnitude higher than

50

Figure 3-11: Absolute speedup over GRAPPA

Figure 3-12: Variation of speedup with skew of input data on quad-tree NoC with N=16

4.44

12.01

28.31

11.62

28.96

72.91

10.03

26.18

63.68

1231.77

3311.36

5343.74

1241.18

3597.99

8429.88

1.77
4.88

12.98

643.99

1090.17

2261.99

1.00

10.00

100.00

1000.00

10000.00

4 16 64

S
p
e
e
d
u
p
 o

v
e
r

G
R

A
P

P
A

System size of quad-tree NoC (N)

SynData_73 SynData_50 SynData_27 SynData_10

SynData_04 PoToWh, 0.866 AlAnFe, 0.1092

12.01

28.96 26.18

3311.36

3597.99

4.88

1090.17

1.00

10.00

100.00

1000.00

10000.00

0 0.2 0.4 0.6 0.8 1

S
p

e
e

d
u

p
 o

v
e

r
G

R
A

P
P

A

Normalized standard deviation of divergence

Speedup for N=16

SynData_04

SynData_10

AlAnFe, 0.109

SynData_27 SynData_50

SynData_73

PoToWh, 0.866

those for the other three inputs. This is because of their larger absolute

divergences and hence larger number of reductions performed by each PE. There

is not much difference in the run-times on mesh and quad-tree. This is because

quad-tree helps reduce only the write latency (as shown in Table 3), which

contributes a small fraction to the total execution time in this case.

51

Figure 3-13: Power consumption across various inputs, network architectures and system
sizes

0

5

10

15

20

25

30

35

Mesh with
N=4

Quad-tree
with N=4

Mesh with
N=16

Quad-tree
with N=16

Mesh with
N=64

Quad-tree
with N=64

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

NoC system size and architecture

SynData_73

SynData_50

SynData_27

SynData_10

SynData_04

 Fig. 3.11 shows the speedup over GRAPPA using a quad-tree for these

inputs. Since speedup is the ratio of GRAPPA’s run-time to the execution time on

our design, the trends in speedup and execution time are not identical across

different inputs. For example, even though execution time increases from

SynData_10 to SynData_04 for all system sizes, speedup is also observed to

increase because GRAPPA’s run time increases by a larger factor. Speedup is

also dependent on Δ, which indicates that our design is able to accelerate median

computation of genomes that are almost equally far apart (e.g., SynData_04)

significantly more compared to the case where two of the genomes are very close

to each other (e.g., SynData_73). This observation is more clearly demonstrated

in Fig. 3.12, where the speedup on a quad-tree NoC with N=16 is plotted against

values of Δ. The best speedups of 1,241 (N=4), 3,598 (N=16) and 8,430 (N=64) are

consistently obtained with SynData_04. Our results compare favorably with the

overall speedup of 417 or the application speedup of 1005 achieved by

accelerating GRAPPA in [14].

52

 Note that the synthetic data encompass almost the full range of possible

inputs, with Δ varying from 0.039 to 0.731. Biological inputs can lie on either end

of the spectrum or anywhere in between. In particular, as we mention again in

3.7.3, the two real genomic inputs that we use have Δ values of 0.866 and 0.1092.

It is also interesting to note that we achieve significantly higher speedups in the

cases of genomes displaying greater absolute divergence (SynData_10 and

SynData_04). These are also the cases where even highly optimized software

implementations such as GRAPPA take very long times to complete. Our design

provides better speedup when there is a greater requirement and hence will be of

more practical value.

53

(a)

(b)

Figure 3-14: Energy consumption across different synthetic inputs

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

2.00E-02

N=4 (Mesh) N=4 (Quad-
tree)

N=16 (Mesh) N=16 (Quad-
tree)

N=64 (Mesh) N=64 (Quad-
tree)

T
o

ta
l

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

System size of NoC (N)

SynData_73

SynData_50

SynData_27

0

20

40

60

80

100

120

140

160

180

N=4 (Mesh) N=4 (Quad-
tree)

N=16 (Mesh) N-16 (Quad-
tree)

N=64 (Mesh) N=64 (Quad-
tree)

T
o

ta
l

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

(J
o

u
le

)

System size of NoC (N)

SynData_10 SynData_04

3.7.2.2 Energy Performance

 Several measures were used to evaluate the energy performance of the

NoC. The average power consumption for mesh and quad-tree NoCs for N=4, 16

and 64 is shown in Fig. 3.13. It will again be noticed that power consumption is a

function of the input data, especially for N=64. There is a slight advantage of

quad-tree over mesh in terms of power efficiency. For example, a quad-tree NoC

consumes up to 5% less power than that based on a mesh NoC. Note that the

PEs in both configurations have the same power consumption and the savings

54

(a)

(b)

Figure 3-15: Communication energy expended across different inputs

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

N=4 (Mesh) N=4 (Quad-
tree)

N=16
(Mesh)

N=16
(Quad-tree)

N=64
(Mesh)

N=64
(Quad-tree)

T
o

ta
l
c
o

m
m

u
n

ic
a

ti
o

n
 e

n
e

rg
y
 r

e
q

u
ir

e
d

(J

o
u

le
)

System size of NoC (N)

SynData_73 SynData_50 SynData_27

0

2

4

6

8

10

12

N=4 (Mesh) N=4 (Quad-
tree)

N=16 (Mesh) N=16 (Quad-
tree)

N=64 (Mesh) N=64 (Quad-
tree)

T
o

ta
l
c
o

m
m

u
n

ic
a

ti
o

n
 e

n
e

rg
y

re
q

u
ir

e
d

 (
J
o

u
le

)

System size of NoC (N)

SynData_10 SynData_04

come entirely from the communication architecture. Higher levels of network

activity would lead to greater power savings in the quad-tree. However, since the

execution time varies widely across inputs, only power consumption provides a

partial picture.

 A more accurate rubric is the total energy consumption, shown in Figs.

3.14(a) and 3.14(b). Although these figures show the advantage of quad-tree over

55

(a)

(b)

Figure 3-16: Variation of energy-delay product across inputs

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

Mesh with
N=4

Quad-tree
with N=4

Mesh with
N=16

Quad-tree
with N=16

Mesh with
N=64

Quad-tree
with N=64

E
n
e
rg

y
d
e
la

y
p
ro

d
u
c
t

(J
.s

)

NoC system size and architecture

SynData_73

SynData_50

SynData_27

1

10

100

1000

10000

Mesh with
N=4

Quad-tree
with N=4

Mesh with
N=16

Quad-tree
with N=16

Mesh with
N=64

Quad-tree
with N=64

E
n
e
rg

y
d
e
la

y
p
ro

d
u
c
t

(J
.s

)

NoC system size and architecture

SynData_10

SynData_04

mesh in terms of energy performance, comparing only the communication energy

consumptions in Figs. 3.15(a) and 3.15(b) further highlights this. Quad-tree

consistently outperforms mesh by consuming around 75% less communication

energy. Both average power and total energy are input-dependent and generally

show a marked increase with increase in system size (N).

 The most interesting observation on energy efficiency, however, can be

seen from Figs. 3.16(a) and 3.16(b) that show the variation of the energy-delay

product (EDP) with system size (N) across all inputs. EDP is observed to

56

decrease with increasing system size for most inputs. This is because the

increase in energy consumption is compensated by the run-time reduction,

thereby showing that parallelization is indeed energy-efficient in this case.

3.7.3 Results with Real Genomic Data

 Two real genomic inputs were used to evaluate the performance on

biological data. Genomic data were downloaded from the National Center for

Biotechnology Information’s organellar genome repository [89]. One input

(PoToWh) consisted of the chloroplast genomes of Solanum tuberosum (potato,

141 genes), Solanum lycopersicum (tomato, 130 genes) and Triticum aestivum

(bread wheat, 137 genes). The other input (AlAnFe) consisted of chloroplast

genomes of Chlamydomonas reinhardtii (a unicellular green alga, 109 genes),

Brachypodium distachyon (purple false brome grass, an angiosperm, 133 genes)

and Adiantum capillus-veneris (black maidenhair fern, 130 genes). These

genomes were preprocessed with Mauve [90] in order to determine the common

genes. The values of Δ for the inputs are 0.866 for PoToWh and 0.1092 for

AlAnFe. This is indicative of the fact that PoToWh represents a skewed data set,

with potato and tomato being much closer to one another than they are to wheat.

This is expected, as evolutionarily potato and tomato are closely related and

belong to the same genus. On the other hand, AlAnFe represents a uniformly

divergent scenario. The speedups obtained with these inputs for N=4, 16 and 64

are shown in Fig. 3.11. Fig. 3.12 shows the speedup correlation with synthetic

data having similar values of Δ.

57

(a)

(b)

Figure 3-17: Histogram of number of number of reductions per subtree for (a) PoToWh
and (b) AlAnFe

 As mentioned in 3.7.1, speedup is calculated as multithreaded GRAPPA

run-time divided by the total execution time on the NoC. As explained earlier,

the total execution time on NoC is proportional to the bottleneck number of

reductions. For example with N=16, the bottleneck number of reductions for

PoToWh is 6,286 and that for AlAnFe is 46,958. The total execution times on a

quad-tree NoC are 1.14 ms and 8.46 ms respectively. In comparison, the

GRAPPA run-times are 5.55 ms and 9.22 s respectively.

58

Table 4: Reduction statistics for PoToWh and AlAnFe

 N = 4 N = 64

Average
reductions

per PE

Standard
deviation

of
reductions

per PE

Max
reductions

per PE

Average
reductions

per PE

Standard
deviation

of
reductions

per PE

Max
reductions

per PE

PoToWh 15672.75 1847.57 17430 1942.73 194.73 2342

AlAnFe 69222 8558.69 79516 19496.84 1700.02 22614

 Next, we turn our attention to the variation of speedup with increasing N.

It can be seen from Fig. 3.11 that the speedup on PoToWh increases from 1.77 to

12.98 as we increase N from 4 to 64. For AlAnFe, the speedup increases from

643.99 to 2,261.99. Table 4 shows the mean, standard deviation and the

maximum (bottleneck) number of reductions per PE for PoToWh and AlAnFe. It

is evident that speedup is inversely proportional to the maximum number of

reductions per PE. Speedup also varies inversely as the average number of

reductions when load is balanced among PEs.

 Finally, in order to investigate the reason behind the widely different

speedups obtained with PoToWh and AlAnFe, we plot histograms (Figs. 3.17(a)

and 3.17(b)) of the number of reductions per subtree for each of the inputs. The

larger skew (Δ) for PoToWh is evident from a comparison of the two histograms.

Due to the higher skew in PoToWh, the best cost is obtained quickly and most

subtrees are pruned at the initial stage of the operation, leading to few (< 10)

reductions per subtree. The lower skew in AlAnFe leads to a more gradual

update of the best cost and subtrees are pruned to a lesser degree. Since the

59

reduction load is shared by several subtrees in the latter case, parallelization

provides greater speedup.

3.8 Conclusion

 To summarize the work done on Maximum Parsimony or breakpoint

phylogeny, we have undertaken the design, implementation and performance

evaluation of a NoC-based multi-core architecture for accelerating the

breakpoint median problem in phylogeny. Our evaluation encompasses a wide

spectrum of inputs, including both synthetic and real genomes. We show that the

proposed NoC architecture provides a speedup of up to 8,430 with respect to

multithreaded GRAPPA software. We also show how the relationship among the

input genomes affects the timing performance of our design and that we are able

to provide greater speedup when software methods incur a huge run-time

penalty. On the network architecture front, we demonstrate the superiority of a

quad-tree over a mesh in terms of energy efficiency for this application class.

 We believe that our current implementation provides appreciable

performance enhancement over comparable hardware accelerators targeting

breakpoint phylogeny, and can serve as a basis for more NoC-based platforms

with applications to life sciences. In addition, our design provides a paradigm for

accelerating similar vector or matrix-based applications like image processing.

60

4. NoC-Based Accelerator for Maximum Likelihood

Given models of evolution [6], [7], [8], [9], [10], we can use standard

statistical methods to carry out phylogenetic inferences. Their widespread usage

is due to the fact that they provide a likelihood score for each reconstructed tree

using the PLF [11], [12]. Maximum Likelihood (ML), invented by R. A. Fisher

[91], is the most widely-used of such methods. Its application to phylogenetic

inference was introduced in [92] for gene-frequency data. ML methods were

applied to molecular sequences in [93], [94]. Practical use of ML methods for

nucleotide sequences was demonstrated in [11], [12].

 The improved quality of result using ML comes associated with a high

computational cost as the ML formulation is NP-Hard [13] and suffers from the

need to explore a super-exponential (in k, where k is the number of taxa) number

of trees. For example, a run using RAxML [70], which is one of the most widely-

used programs to compute ML-based phylogeny, on an input comprising of 1,500

genes can take up to 2.25 million CPU hours [69]. As detailed in Chapter 2,

prior work done on hardware accelerators for ML have focused on GPU, CBE,

FPGA and general-purpose multicores. We propose a NoC-based platform that

delivers orders of magnitude speedup over existing methods, and to the best of

our knowledge, is the first comprehensive NoC-based solution.

 The performance improvements due to the architectural advantages of

NoC can be significantly enhanced if 3D integration is adopted as the basic

fabrication methodology. The amalgamation of two emerging paradigms – NoCs

in a 3D IC environment – allows for the creation of new structures that enable

61

significant performance enhancements over traditional solutions. The major

contributions in this chapter are as follows:

(i) A homogeneous, unified PE design for parallel execution of ML function

kernels;

(ii) An efficient, fine-grained implementation of the different floating-point

arithmetic operations involved in this application;

(iii) Novel dynamic core-allocation schemes to minimize inter-node

communication latency; and

(iv) Exploration and evaluation of the merits of different 2D and 3D NoC

architectures.

We demonstrate the capability of our NoC-based platforms to achieve function-

level speedups of 390x to 847x, aggregate speedups of accelerated kernels in

excess of 6500x, and end-to-end run-time reductions of over 5x with respect to

state-of-the-art multithreaded software.

4.1 Theoretical Background

 Likelihood is of central importance in statistics. From Bayes’ Theorem,

given a hypothesis H and observation D, we have the following:

 (|)
 ()

 ()

 (|) ()

 ()
 ()

Here, P(H|D) is the a posteriori probability of H, P(H) is the a priori probability

of H and P(D|H) is the likelihood of H. Given two hypotheses H1 and H2 and n

independent observations D1, D2, …, Dn constituting D, we can express the odds

ratio in favor of H1 over H2 as follows.

62

 (|)

 (|)
 (∏

 (|)

 (|)
)

 ()

 ()

 ()

From (4), we can see that the likelihood ratio dominates the right hand term for

a large number of observations (data). Bayesian statisticians try to come up with

valid a priori probabilities and use Bayes’ Theorem to infer valid a posteriori

probabilities for their hypotheses. Non-Bayesians prefer the hypothesis that

maximizes the likelihood P(D|H). For a large amount of data, this also turns out

to be the hypothesis with the largest a posteriori probability P(H|D) and hence

the best estimate.

 We now touch upon some basic features of the method of using likelihood

for phylogenetic tree computation. Details are provided in Chapter 16 of [12].

Initially, we have a set of aligned DNA sequences with m sites (or columns).

Several of these sites are identical in their nucleotide composition. A group of

adjacent sites that are equivalent is replaced by a single site with a “weight”

indicating the multiplicity of that site. Let the number of sites after this

compression be m’. A given phylogeny (or phylogenetic tree) consists of branch

lengths and a model of evolution that allows us to compute the probabilities of

state changes along this tree, in particular, the probability Pij(t) of state i

transitioning to state j at the end of a branch of length t. The following

assumptions greatly simplify the process of computing likelihoods.

(i) Evolution in different sites (on the given tree) is independent.

(ii) Evolution in different lineages is independent.

Assumption (i) renders likelihood computations simple by focusing on one site.

Likelihood values for the entire sequence can be found by multiplying the

63

likelihood values for each site. Complex models incorporate rate variation across

sites using a hidden Markov model (HMM). One of the most common models [95]

uses autocorrelated gamma distribution approximated by having discrete

categories. Assumption (ii) allows us to write the conditional probability at each

level only with respect to its immediate predecessor and the intervening branch

length. These assumptions enable us to calculate the likelihood of a tree using a

bottom-up approach, starting from the observable data to the “root” of the tree. It

is further shown in [12] that the phylogenetic tree is unrooted and the placement

of the root is important only when we assume molecular clocks.

4.2 Existing Software Suites for ML Phylogeny

 PAUP* Version 4.0 [96] is an improvement on previous versions of PAUP:

Phylogenetic Analysis Using Parsimony and is the most widely-used software

package for the inference of evolutionary trees. It is a general-purpose package

that combines parsimony, distance matrix, invariants and maximum likelihood

methods, and many indices and statistical tests. PHYLIP [97] (Phylogeny

Inference Package) is one the oldest distributed packages that includes ML as

one of the methods and can operate on data types including molecular sequences,

gene frequencies, restriction sites and fragments, distance matrices and discrete

characters. PHYML [98] is a software that implements a fast and accurate

heuristic for estimating ML phylogenies from DNA and protein sequences. The

tool provides the user with a number of options, such as nonparametric bootstrap

and estimation of various evolutionary parameters, in order to perform

comprehensive phylogenetic analyses on large datasets in run-times comparable

64

to parsimony programs. Other programs like fastDNAML [99] render faster

solutions for larger trees and number of species.

 RAxML [70] provides a very fast reconstruction of phylogenies using ML.

RAxML 7.0 offers several ways to exploit parallelism, in addition to its

sequential version. It is a highly optimized program that handles DNA and

amino acid alignments under various models of substitution and several distinct

methods of rate heterogeneity. In addition, it has a novel rapid bootstrapping

algorithm built into it, which when combined with rapid ML search allows users

to conduct a full ML analysis in a single program run. RAxML is able to handle

extremely large data sets as shown in [100]. We chose RAxML as the ideal

candidate for which to explore hardware acceleration possibilities because it is

the most optimized and parallelized software currently available. As mentioned

in Chapter 2, several of the existing papers on hardware acceleration for ML

phylogeny target RAxML.

4.3 Design of Computation Core

 The motivation for using a NoC to address the ML application stems from

the fact that there are different levels of parallelism in the application that can

be exploited to accelerate the computation. Fine-grained parallelism can be

exploited within a processing element (PE) to render a fast hardware

implementation for each phylogenetic function kernel. While the same can also

be alternatively implemented on a large FPGA board that supports several

computation cores (e.g., similar to [72]), a NoC based multi-core system can

handle coarse-grained parallelism more efficiently. The latter requirement

65

becomes particularly important in the context of ML programs because they

typically involve a large number of function invocations; and at any point of

execution there could be variable number of instances running for each function.

Under the NoC framework, these requirements can be effectively addressed by

(a) Designing a homogeneous system, where different PEs are able to seamlessly

support different functions executing at different times, and

(b) Interconnecting them using a suitable network that allows concurrent

execution of arbitrary combinations of function instances and provides the

backbone for efficient data exchange between the individual PEs.

In other words, we can build a heterogeneous application map on a

homogeneous-core NoC. Furthermore, such a homogeneous NoC-based system

can be allowed to scale up to provide the computation bandwidth necessary for

solving larger problems.

 The computation of ML phylogenetic kernels requires the use of

elementary functions, specifically logarithms and antilogarithms, in addition to

basic arithmetic functions. Fast calculation of logarithms in hardware has been a

well-researched topic. Kwon et al [80] describe a fast implementation of

exponentiation in hardware targeting graphics applications. A 32-bit binary-to-

binary linear approximation-based logarithm converter is described in [81].

Optimality of Chebyshev polynomials for table-based approximations of

elementary functions is described in [82]. A unified computation architecture for

calculating elementary functions, including logarithm, exponential and multiply-

and-add, is presented in [83]. They use a fixed-point hybrid number system

66

Logarithmic

Converter

Logarithmic

Converter

Logarithmic

Converter

Logarithmic

Converter

Logarithmic

Converter

Logarithmic

Converter

Logarithmic

Converter

Logarithmic

Converter

+ + + +

lg a1 lg a2 lg a3 lg a4lg b1 lg b2 lg b3 lg b4

a1 b1 a2 b2 a3 b3 a4 b4

Antilogarithmic

Converter

Antilogarithmic

Converter

Antilogarithmic

Converter

Antilogarithmic

Converter

lg(a1*b1) lg(a2*b2) lg(a3*b3) lg(a4*b4)

+ +

+

a1*b1 a2*b2 a3*b3 a4*b4

a1*b1+a2*b2 a3*b3+a4*b4

a1*b1+a2*b2+a3*b3+a4*b4

pipeline register

(one clock cycle

from reg to reg)

lg = log2

Inputs for
exponentiation

operation

Outputs of
logarithm
operation

Stage 2

Comb. Table Lookup

(Mantissa)

Stage 1

Leading One Detector

(Characteristic)

Stage 3

Adder

Stage 4: Comb. Table Lookup

(Fraction)

Stage 5

Shift and normalization

Stage 6

Adder

CRITICAL
PATH
1 ns

Outputs of
exponentiation

operation

Inputs for sum-of-four-products (vector product)

Output: Sum-of-four-products (vector product)

Inputs for
logarithm
operation

Figure 4-1: Architecture of computational core for sum-of-products, logarithm and

antilogarithm

(FXP-HNS) to integrate all operations in a power and area-efficient manner with

a low percentage of error. They achieve a throughput of 1 data output per 4.3 ns

cycle for elementary functions. Another technique for designing piecewise

polynomial interpolators for implementing elementary functions in hardware is

described in [84]. They designed linear, quadratic and cubic interpolators with

progressively increasing accuracy for both high speed and low power. Our design

builds upon the method employed in [83].

4.3.1 PE Design

 The PE aims to capture the crux of the computation involved in

phylogenetic kernels. We address this by combining fast and efficient

computation strategies in hardware with extensive fine-grained parallelism. The

core architecture uses FXP-HNS arithmetic [83] and has six pipeline stages as

shown in Fig. 4.1.

67

 It can compute a sum of four products during one traversal across the

stages, in addition to regular logarithm and exponential. Logarithm and

exponential are directly computed using linear table-based approximations as in

[83]. These functions are entirely implemented using logic gates, without using a

ROM. For sum of products, an indirect approach is used. Logarithms of four

pairs of numbers are taken, each log value in a pair is added to the other, four

antilogarithms are taken and the four results are added together. In other

words, multiplication is done by addition in the log-domain and addition is done

in the linear domain. Figure 3.18 shows a schematic diagram of the computation

architecture. Note that if we are interested in only computing the logarithm, the

adder stage is not required and the core provides the result of the stage 2 as

output depending on the instruction being executed. For computing exponential,

the input goes directly to stage 4 with minor modifications in the number

representation format and the output is available at the end of stage 5. The three

representative functions of the RAxML suite that are used, namely

coreGTRCAT, newviewGTRCAT and newviewGTRGAMMA [101] are

instruction-coded to be run on the computation core. The core is instantiated

within a wrapper that provides instruction decoding, data fetching and data

write-back functions. The design has been implemented with Verilog HDL and

synthesized with a clock frequency of 1 GHz using 65 nm standard cell libraries

from CMP [88]. The critical path delay is 1 ns as shown in Fig. 4.1.

68

Figure 4-2: Global compression of equal columns for five input sequences. Note that 26
columns are compressed to 5 with appropriate weights assigned to each.

4.3.1.1 Memory Subsystem

The computation core has the requisite memory to store the input vectors and

the computation results for each step of the function computation, all in FXP-

HNS format. The per-PE memory requirement is 0.5 MB. This is implemented in

the form of register banks. As mentioned earlier, there are no ROM-based lookup

tables for computing logarithm and antilogarithm.

4.3.2 Automating Column Compression in Hardware

 As mentioned earlier and also in [102], the cost of the likelihood function

and the branch length optimization function, which accounts for the greatest

portion of the execution time can be reduced by (a) reducing the search space

using some additional heuristics, and (b) reducing the number of sites taken into

69

account during computation, thereby reducing the number of computations at

each inner node during the evaluation of a tree. The algorithm used in [102] for

determining column equalities and compressing equivalent columns is

mentioned here for the sake of convenience.

4.3.2.1 Algorithm

 Two columns in an alignment are equal and belong to the same column

class, if the base is the same on a sequence-by-sequence basis. A column is

homogeneous if the same base exists across all sequences and heterogeneous

otherwise.

 Let s1, s2, ..., sn be the set of aligned input sequences as depicted in the

upper matrix of Fig. 3.19. Let m be the number of sequence positions of the

alignment. Two columns, i and j, of the input data set are said to be equal if ski =

skj for all k = 1 ... n. It is now possible to calculate the number of equivalent

columns in a column class and compress the columns in the input data

accordingly. The compression is carried out by replacing all columns belonging to

one column class by one representative column and assigning a weight to that

column denoting the original number of columns in that column class. The

number of columns after column compression is denoted by m’. Referring to Fig.

3.19, for example, m = 26 and m’ = 5. Since phylogenetic tree reconstruction is

preceded by a high quality multiple sequence alignment, a large number of

column equalities are expected at the global level. This leads to a great deal of

compression so that m’ is usually much less than m.

70

Control logic

Decoder

clk

reset

data_in

start

m

n memory

Counter

0

+

1

homogeneous

col_wt

new_col_size

data_out

ctrl_out

col_wt_out

Figure 4-3: Schematic diagram of Column Compressor

 Another level of compressing the input data for phylogenetic tree

reconstruction lies in identification of homogeneous or heterogeneous columns.

In case of homogeneous columns, the tree for that site need consider only one

base irrespective of the number of sequences. This aids further compression of

the input space. Referring to Fig. 3.19 again, we see that 4 out 5 columns in the

column-compressed input are homogeneous.

4.3.2.2 Design

 From the algorithm described in 3.2.3.2.1, it is evident that that time

complexity of the design is O(m) and the space complexity is O(mn). One column

71

network

switch

N

E
W

S

fr
o

m
/t
o

 c
ro

s
s
b

a
r

o
f
s
u

b
n

e
t

crossbarPE3

PE2

PE1

PE0

subnet
(lower level)

node of
folded torus
(upper level)

Figure 4-4: Network switch of NoC and cross-connected subnet under one node

from each sequence is taken as input in every cycle and is stored in an internal

memory after column processing. An external control signal determines whether

the processor is in input or output mode. The number of cycles spent in input

mode is m and the number of cycles spent in output mode is m’. Since processing

is concurrent with input, no extra cycles are needed.

 The schematic diagram of the design is shown in Fig. 3.20. The signal start

switches between input and output modes. The internal memory stores the

sequences after column equalities have been determined. The column weights

are stored in col_wt. The homogeneous registers store a 1 if the column is

homogeneous and 0 otherwise. The maximum value of the counter is used to

determine m’, which goes to new_col_size as output. Outputs are activated once

start goes low.

4.4 NoC Node

 The core with a wrapper is designated as a processing element (PE). Four

72

such PEs are integrated to form one subgroup. The choice of this subgroup size

comes from the fact that the three functions require different numbers of sum-of-

four-product computations (8, 12, 24) for which the greatest common divisor is

four. The PEs are labeled PE0, PE1, PE2 and PE3. A crossbar switch, shown in

Fig. 4.4, connects the four PEs and coordinates communication among them. The

crossbar switch has to deal with three kinds of traffic, which consists of

intermediate function results. The first and simplest kind involves sending data

received from PEx back to PEx. The second kind of communication involves

sending data from one particular PE to all the other three PEs within the

subgroup. The third kind of communication involves sending/receiving data

to/from the external network through a network switch. This subgroup of four

PEs along with the crossbar switch forms a subnet under one NoC node. The

number of nodes in the system is denoted by N.

4.5 Network Architecture

 The choice of the network is determined by the traffic patterns [103]

generated by the application. In our case, a single RAxML run typically

generates millions of invocations of a few functions at different time-points, and

each of these functions can benefit from fine-grain parallelism by an assignment

to multiple PEs. This leads to a high volume of arbitrary point-to-point

communication. In addition, we observed dynamically changing traffic patterns

and a clear absence of steady-state localized traffic or clustering, all of which

indicate the desirability of a distributed interconnection topology. A statistical

analysis of the traffic patterns under the assumption of an underlying folded

torus network reveals this fact. The mean and normalized standard deviation of

73

(a) (b)

Figure 4-5.Mean (a) and normalized standard deviation (b) of flits per cycle in routers in a

folded torus network

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

M
e

a
n

 o
f

to
ta

l
n

u
m

b
e

r
o

f
fl

it
s

 p
e

r
ro

u
te

r
p

e
r

c
y
c

le

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

0

1

2

3

4

5
6
7

0

0.2

0.4

0.6

0.8

1

1.2

0
1

2
3

4
5

6
7

N
o

rm
a

li
z
e

d
 s

td
.

d
e

v
n

.
o

f
to

ta
l

n
u

m
b

e
r

o
f

fl
it

s
 p

e
r

ro
u

te
r

p
e

r
c

y
c

le

1-1.2 0.8-1 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2

the number of flits per cycle contained in the buffers of each router in an 8 8

folded torus for a typical application scenario is shown in Fig. 4.5. The clear lack

of clustering can be observed from the absence of prominent peaks in the mean

traffic plot in Fig. 4.5(a). The dynamically varying nature of the traffic can be

gleaned from Fig. 4.5(b) that shows substantial standard deviation of traffic

(typically above 50% of the mean) across simulation cycles. Hence, topologies like

star or quad-tree that cater to regular or localized traffic patterns would not

benefit this application scenario.

 From the VLSI implementation perspective, a mesh is a scalable network

architecture whose regularity provides for easier timing closure and reduces

dependence on interconnect scalability [27]. A folded torus further reduces the

point-to-point separation (Manhattan distance) between nodes by cutting down

the diameter of the network by half without compromising on the regularity or

74

scalability of the entire network. Hence, we decided to explore folded torus in our

2D NoC design.

 Three-dimensional ICs that contain multiple layers offer advantages like

reduced length of interconnect, higher package density, lower power

consumption and higher noise immunity [74]. 3D ICs can be used to improve

performance by forming a processor-memory stack, as shown in [75]. This

enables use of very wide buses and stacks to drastically reduce memory access

time. 2D mesh structures are compared with their 3D counterparts in [76] by

analyzing zero-load latency and power consumption of each network. A more

detailed evaluation that takes into account various real-world traffic patterns

and carries out cycle-accurate simulations is presented in [77]. 3D NoCs have

been proposed for improving the performance of application-specific

architectures in [78]. 3D design-space exploration for cache memories has been

considered in [79].

 3D NoCs provide enhanced performance due to the additional degree of

freedom in the vertical dimension, thereby enabling better integration and

reduced inter-node hop-count for larger system sizes [77]. We explored the design

of two different 3D NoC architectures: 3D folded torus and 3D stacked torus; and

used a system size N of 64 (=4 4 4) in our application study. A 3D folded torus

NoC has a folded torus along each dimension (x, y and z). There are one-hop

vertical links (in the z dimension) between adjacent layers. On the other hand, a

stacked torus [79] is a hybrid between a 2D folded torus, which is a packet-

switched network, and a bus, which takes advantage of the short inter-layer

75

distances. It integrates multiple layers of folded tori by connecting them with

buses spanning the entire vertical height of the chip. Hence any inter-layer

communication (for the same <x,y> coordinates) is one-hop.

 Since each subnet associated with a node has 4 PEs, our system has 64

PEs for N=16 and 256 PEs for N=64. A network switch handles traffic emanating

from or destined to each network node. We use the switches described in [104]

and [77] for our design. Each switch in the 2D architecture has four bidirectional

ports to neighboring switches and one bidirectional port to the crossbar switch of

the subnet (Fig. 4.4). In the 3D folded torus, the switch has two additional ports

(total 7 ports) to the layers above and below. Alternatively, in the 3D stacked

torus, the switch has just one additional port (total 6 ports) to the vertical bus

connecting all the layers.

 We adopted wormhole routing-based data exchange among the NoC nodes.

The primary data contained in the messages exchanged among nodes are

intermediate function results, which are 64-bit numbers using FXP-HNS format

[83]. Given this small message size, we split each message into 3 flits (header,

body and tail), each of width 64 bits. Since deeper buffers may slow down clock

frequency and do not appreciably improve performance for short messages [105],

we use buffer depth of 2 flits. We adopt the routing and arbitration mechanism

from [104] and [77].

4.6 Function-Level Parallelization

76

left

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

x1 x2

0 1 2 3 0 1 2 3

+ +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EV

+ + + +

up to 8 sums of 4 products

x3[0] x3[1] x3[2] x3[3]

Figure 4-6: Part of the computation tree of newviewGTRCAT

 The three target phylogenetic function kernels from RAxML are

newviewGTRCAT (f2), coreGTRCAT (f3) and newviewGTRGAMMA (f6). We

parallelize each function by breaking down larger computation arrays into

smaller units as follows: Taking newviewGTRCAT (f2) as an example, we can see

from Fig. 4.6 that computation of the x3 array in each iteration requires

computation of eight sums-of-four-products, using arrays left, x1, x2 and the

eigenvalue vector EV[15:0]. Since each PE can compute one sum-of-four-

products, eight PEs (or equivalently, two NoC nodes) are required. We refer to

this function as f2, indicating that its computation requires two NoC nodes.

Similarly, each iteration within the function coreGTRCAT

(newviewGTRGAMMA) involves computation of up to twelve (twenty-four) sums-

of-four-products, thereby requiring three (six) NoC nodes. Hence, we refer to it as

77

f3 (f6). Other operations, such as carrying out the exponentiation operation

involved in computing the left vector in newviewGTRCAT, are also computed in

the PEs within each node. Also, in coreGTRCAT for example, sum-of-products,

exponentiation and cumulative addition are involved. All these operations are

executed in parallel over multiple PEs. Intermediate results are redistributed

among PEs within the same node using the intra-node crossbar switch and

among other nodes using the network switch/router.

4.7 Dynamic Node Allocation

 A node is busy when the PEs within its subnet are collectively executing a

function; otherwise it is available. Nodes continually keep sending their

busy/available status to a centralized controller (MasterController) that

dynamically allocates a subset of nodes from the set of available NoC nodes to a

function. If the number of available nodes at any point of time is less than the

number of nodes requested by that function (2, 3 or 6), the function waits till the

requisite number of nodes is available. The nodes allocated for executing one

function instance are said to belong to one partition. Nodes can be reused after

execution of the function has completed in the partition.

 Since the nodes belonging to a given dynamically-allocated partition need

to communicate with one another, it is desired that they be co-located on the

network in order to reduce the number of hops required for data exchange and

thereby reduce the communication latency associated with the function. A good

allocation strategy needs to ensure this co-locality, as well as execute fast enough

to not introduce any significant allocation overhead.

78

0

i

1

iv

2

v

3

vi

4

ii

5

iii

6

viii

7

vii

8

xv

9

xiv

10

ix

11

x

12

xvi

13

xiii

14

xii

15

xi

Interconnect

12 13 14 15

0

4

8

12

3

7

11

15

0 1 2 3

Hilbert
0, 1, 2, 3, 4, … - Torus node numbers

i, ii, iii, iv, v, … - Hilbert curve node numbers

contiguous on Hilbert and torus

non-contiguous on Hilbert,

contiguous on torus

non-contiguous on Hilbert and torus

Figure 4-7: Hilbert curve embedded in the folded torus network architecture and
different kinds of contiguous and non-contiguous partitions.

 One approach for allocating a partition is to use breadth-first search (BFS)

on the network. Although this appears to be a reasonable strategy, there are

certain drawbacks: First, BFS does not guarantee the co-locality of non-root

nodes. The dispersion could become greater if the root node for BFS lies in a

neighborhood containing a majority of busy nodes. Higher dispersion among

allocated nodes in a partition results in a higher average message hop-count,

resulting in higher communication latency. Secondly, the allocation overhead

becomes dependent on the choice of the BFS root node, and growing a partition

around a root node surrounded by a majority of busy nodes has the risk of

increasing the allocation overhead. This is because the MasterController

handling the node allocation has to traverse each node in the neighborhood (in

79

the adjacency list of the parent node). Scanning the adjacency list of each node

takes one clock cycle, and therefore, growing the full partition requires a number

of cycles equal to the number of nodes requested by the function in the best case,

and N clock cycles in the worst case, where N is the system size.

 In this paper, we have developed a novel approach that uses the Hilbert

curve [106] for the dynamic allocation problem. A Hilbert curve is a locality-

preserving space-filling curve widely used in scientific computing [107]. In

addition, this approach results in consistently lower allocation times, as

described below. In the following sub-sections, we describe different approaches

for dynamic node allocation that make use of the Hilbert curve superposed on

different 2D and 3D NoC architectures.

4.7.1 2D Hilbert Curve with Serial Scan and First Fit (2D_serial)

 In our first approach, we use the Hilbert curve on a 2D folded torus as

follows: The MasterController serially scans the nodes along the Hilbert curve

and chooses the required number of available nodes and allocates them as a

partition to the requesting function.

 Using the Hilbert curve offers a couple of key advantages. A Hilbert curve

has the property that when mapped onto a regular mesh or a folded torus, nodes

adjacent along the Hilbert curve traversal are also adjacent on the network.

Furthermore, there could be nodes which are not adjacent along a Hilbert curve

but are adjacent on the folded torus. Also, a Hilbert curve is essentially

converting a two-dimensional allocation problem into a one-dimensional

problem. Taking advantage of this property, we use a fixed Hilbert curve

80

embedded on a folded torus as shown in Fig. 4.7 (for N=16), where there is a one-

to-one correspondence between the node ids on the torus and those on the

Hilbert curve. This allows us to effectively predetermine the set of possible nodes

for allocation. Since this information can be hard-wired in the design, the

allocation of an entire partition can be achieved in one clock cycle (for N=16) or

four clock cycles (for N=64) in our design.

 Note that our Hilbert curve-based approach may lead to three scenarios, as

shown in Fig. 4.7. First, allocated nodes are all adjacent to each other or

contiguous on Hilbert and hence the partition is contiguous on the torus. Second,

the nodes are non-contiguous on Hilbert but form a contiguous partition on the

torus. Third, the nodes are non-contiguous both on Hilbert and on the torus.

4.7.2 Multiple 2D Hilbert Curves with Parallel Scan and Best Fit

(2D_parallel)

 Despite the ease of implementing the 2D_serial approach, there are two

main drawbacks. First, there is a constant allocation penalty of 4 cycles per

partition for a system size of 64. In addition, the allocation policy in 2D_serial is

first-fit. Hence, it does not guarantee allocation of a contiguous partition even if

one is available. Therefore, we developed an alternative approach, 2D_parallel,

where we make the following changes to the allocation policy. This policy is

particularly suited for larger system sizes; so we will use N=64 in the following

description of the underlying algorithm:

81

(a) First, we use four Hilbert curves on a square folded torus in 2D_parallel

(instead of one as in 2D_serial). These four curves are obtained by using right-

angle rotation operations of a single Hilbert curve.

(b) We further divide each of the four Hilbert curves into four segments, one from

each quadrant – thereby resulting in a total of 16 segments. The

MasterController module now has 16 heads, each of which is responsible for

scanning a segment. All 16 heads act in parallel.

(c) Each head now preferentially looks for a contiguous partition starting from

any of the nodes in its segment. The first head to find a contiguous partition

returns it to the requesting function and interrupts all the other scanning heads.

(d) In case, no contiguous partition is found after each head has finished

scanning its segment, we fall back to execute 2D_serial.

We have experimentally verified that case (d) has a low probability (< 0.2) of

occurring and a contiguous partition can be found in most cases. Although there

is an additional allocation penalty due to the best-fit strategy we use (step (c)), it

provides a higher percentage of contiguous partitions than is obtained using

2D_serial. The average number of cycles spent per allocation comes down from 4

to 3.22. More importantly, greater contiguity of allocated partitions reduces

inter-node communication latency and provides better speedup, as will be shown

in Section 4.9.

4.7.3 3D Folded Torus NoC (3D_torus)

82

(a) (b)

Figure 4-8. (a) 3D folded torus NoC architecture for N=64; also shown are the alternating vertical node
allocation directions. (b) Stacked torus NoC architecture for N=64.

 To further improve contiguity of the allocated partitions while spending

fewer allocation cycles, we map our application to a 3D folded torus architecture.

The NoC is a 4 4 4 folded torus as shown in Fig. 4.8 (a). A 2D 16-point Hilbert

curve is embedded on the top layer (layer 0) and is used to allocate partitions.

For each allocation request, MasterController allocates all available nodes in the

column (consisting of 4 layers) corresponding to the current head position. The

next head position follows from the 16-point Hilbert curve. This is done till all

requested nodes are allocated. In addition, we ensure vertical contiguity by

flipping the vertical direction of allocation. For instance, if the most recent node

allocated in the current column is from layer 3, the next node to be allocated

83

comes from layer 3 in the column corresponding to the next head position. In

other words, we alternately move up and down the columns during node

allocation. We are able to handle allocation of nodes in one vertical column in one

cycle; hence the average allocation time for 3D_torus goes down to 1.56 cycles. As

shown in Section 4.9, 3D_torus provides the highest speedup and greatest energy

efficiency.

4.7.4 3D Stacked Torus (3D_sttorus)

 Another popular 3D NoC architecture is the stacked torus. For our

application, we have four 4 4 folded tori vertically stacked using 16 buses as

shown in Fig. 4.8 (b). Bus width is a determinant of the performance of a stacked

torus. As shown in [77], a stacked torus with a bus width of 4 flits achieves the

same throughput performance as of a 3D torus. Hence, we use a bus width of 4

flits, i.e. 256 bits in our design. Note that these are very short buses spanning

four layers. The allocation policy in 3D_sttorus is exactly the same as 3D_torus.

However, as a consequence of the allocation method, our application generates

significant amount of traffic between nodes in the same column, which in turn

leads to bus contention and destination contention, as we further show

experimentally in Section 4.9.

4.8 Routing and Arbitration

 Our routing policy is based on dimension-order: XY routing on folded torus

for 2D_serial and 2D_parallel; and XYZ routing for 3D_torus and 3D_sttorus.

 In 2D_serial and 2D_parallel systems, we distinguish between messages

originating from contiguous partitions and non-contiguous partitions, and the

84

0

i

1

iv

2

v

3

vi

4

ii

5

iii

6

viii

7

vii

8

xv

9

xiv

10

ix

11

x

12

xvi

13

xiii

14

xii

15

xi

Interconnect

12 13 14 15

0

4

8

12

3

7

11

15

0 1 2 3

Hilbert
0, 1, 2, 3, 4, … - Torus node numbers

i, ii, iii, iv, v, … - Hilbert curve node numbers

A-type partition

B-type partition

A-type traffic

B-type traffic

Figure 4-9. Examples of different paths taken while routing A-type and B-type traffic

corresponding flits are designated as A-type or B-type respectively. Each node

has a set of allowed directions depending on the partition it is situated in. For a

contiguous partition, any network switch on the partition boundary has channels

leading out of the partition marked as disallowed. For non-contiguous partitions,

all network switches have all directions marked as allowed. In other words,

traffic emanating from a contiguous partition always remains within the

partition boundary and traffic emanating from a non-contiguous partition is free

to move in any direction dictated by the routing policy. At each network switch,

an A-type message is restricted to make the next hop in one of the allowed

directions. However, since B-type messages have unrestricted access, they follow

torus routing, which is similar to XY routing but includes the torus loopback

information to determine the shortest path. A-type messages take the X direction

85

if that direction is allowed, and Y direction otherwise. Fig. 4.9 shows an example.

A message in an A-type partition going from node 4 to node 7 follows the path

indicated. In the B-type partition, there is one message going from node 6 to

node 11 via node 7 outside the partition. Another message from node 0 to node

15 goes through node 3, which is outside the partition, and makes use of the

torus loopback.

 It can be noted from the above routing mechanism that switches internal

to a contiguous partition will encounter A-type traffic from that partition and

may encounter B-type traffic from any non-contiguous partition(s). On the other

hand, switches internal to a non-contiguous partition will face only B-type traffic

from non-contiguous partition(s). When there is more than one message

competing for the same port at any switch, the following arbitration policy is

used. The remaining hop-count of the message is determined by looking up the

pre-calculated Manhattan distance from the current node to the destination. The

message with the maximum remaining hop-count, i.e. the one farthest from its

destination, is granted the channel. In case of a tie, B-type is given preference.

The remaining hop-count is also used as the arbitration parameter while routing

in 3D_torus. This policy ensures that traffic with a higher potential latency is

routed earlier, thereby reducing worst-case latency.

 Since B-type messages in 2D_serial and 2D_parallel follow XY routing on

torus (as described above), any non-contiguous partition is automatically

deadlock-free. For contiguous partitions of sizes 2 and 3, there is no possibility of

a cycle in the channel dependency graph because the message is always

86

contained within the partition and 2 or 3 nodes cannot form a cycle on a torus.

Hence, deadlock is avoided in this case. For contiguous partitions of size 6, we

can have a partition like the A-type partition (nodes 1, 2, 3, 4, 5 and 7) in Fig. 4.9

or a partition comprising of nodes 8, 9, 10, 12, 13 and 14 in Fig. 4.7. In the former

case, we do not have a cycle and hence deadlock cannot arise. In the latter case,

because we follow XY routing, deadlocks are avoided. For routing in 3D_torus

and 3D_sttorus, we follow XYZ (dimension-order) routing. Therefore, our routing

and arbitration policy for each kind of architecture is deadlock-free.

4.9 Experimental Results

4.9.1 Experimental Setup

 The computation core has a datapath width of 64 bits and provides a

number representation accuracy of 2-52. We synthesized Verilog RTLs for the

computation core, the instruction-decoding wrapper, the routers and

MasterController with 65 nm standard cell libraries from CMP [88]. The NoC

interconnects are laid out and their physical parameters (power dissipation,

delay) are determined using the extracted parasitics (resistances and

capacitances). Use of folded torus topology prevents occurrence of long warp-back

wires. The critical path occurs in the PE datapath as mentioned in Section 4.3.1,

following which we used a clock with 1 ns period. We simulated 2D_serial NoCs

with system sizes N=16, and 2D_serial, 2D_parallel, 3D_torus and 3D_sttorus

NoCs with N=64 using the NoC simulator used in [104]. Recall that there are

four PEs per NoC node in the system.

87

Table 5: Details of test-cases used for running RAxML

Input sequences A B C

Number of

sequences
50 50 500

Number of

distinct alignment

patterns

3066 23385 3829

 The NoC-based multi-core platform is modeled as a co-processor connected

using a PCIe interface. We modeled a PCI Express 2.0 interface using Synopsys

Designware IP PCI Express 2.0 PHY. This IP has been implemented on 65 nm

process and operates at 5.0 Gbps. We use a 32-lane PCIe 2.0 for our simulation.

We ran RAxML-VI-HPC (version 7.0.4) [101] on three inputs that are provided

with the suite (Table 5). These inputs comprised of DNA sequences originally

derived from a 2,177-taxon 68-gene mammalian dataset described in [108]. We

ran RAxML in single and multi-threaded modes on a Pentium IV 3.2 GHz dual-

core CPU, and used the best software run-times (four threads or 4T) as our

baseline. Furthermore, to measure the relative computation intensities of each

function kernel, we profiled RAxML on all inputs using the GNU gprof utility.

The results consistently showed that the functions coreGTRCAT (f3) (48%),

newviewGTRGAMMA (f6) (21%) and newviewGTRCAT (f2) (17%) collectively

account for more than 85% of the total software run-time, as shown in Fig. 4.10

(a). Fig. 4.10 (b) shows the number of invocations of each of the top three

functions. The average CPU times spent in the invocation of each of the three

functions were also noted; these times are labeled Tf2, Tf3 and Tf6. We generated

88

 (a) (b)

Figure 4-10: Pie charts showing (a) contribution of coreGTRCAT, newviewGTRGAMMA and
newviewGTRCAT to the total 1-thread software run-time of RAxML and (b) number of

invocations of these functions in typical runs.

17%

48%

21%

14%

newviewGTRCAT (f2)

coreGTRCAT (f3)

newviewGTRGAMMA (f6)

Time spent in other kernels (s)

51% 44%

5%

newviewGTRCAT (f2)

coreGTRCAT (f3)

newviewGTRGAMMA (f6)

100 bootstrap trees using RAxML for each input and used them for subsequent

likelihood calculation.

 We compared the numerical results produced in our PEs with the ones

produced while running RAxML on the above-mentioned CPU using 8 decimal

places of precision and verified that the average percentage of deviation was

below 0.1%, which was within tolerable limits and did not hamper the stability of

RAxML or the likelihood computation.

4.9.2 Test-case Design

 The function kernels whose acceleration we target are invoked during

generation of bootstrap trees and computation of likelihood of the generated

trees to find out the best tree. Working on each tree in parallel helps us work

around the sequential dependency among functions within one execution thread.

89

Target function kernels originate from different parallel execution threads and

hence can be allocated to different nodes of the NoC-based platform. Allocation of

nodes to each function is based on the policy in Section 4.7. We designed test

cases for 2D_serial (N=16 and N=64), 2D_parallel (N=64), 3D_torus (N=64) and

3D_sttorus (N=64). Each test case represents a combination of the three target

functions (f2, f3, f6). In order to compare the different NoC architectures, we use

the same test cases on each. However, the allocation of a test case can result in

different mixtures of contiguous and non-contiguous partitions depending on the

underlying architecture and system size. Test cases have been captured from a

wide range of real world scenarios, including the best and the worst case. The

mean execution time of each function is estimated by averaging over all the test

case scenarios. During the execution of a function, inter-node exchange of

intermediate results occurs simultaneously with intra-node computation (in the

PEs within the subnet). This allows masking of communication latency by

computation delay. We observed that newviewGTRCAT (f2) requiring 2 nodes

per invocation is generally computation-intensive, while coreGTRCAT (f3) and

newviewGTRGAMMA (f6) requiring 3 and 6 nodes respectively are generally

communication-intensive.

4.9.3 Communication Latency

 Total communication latency indicates the amount of time spent in

executing the function. Since computation and communication are pipelined, we

define residual communication latency as the number of clock cycles spent in

performing only inter-node communication. The average lifetime of each

partition is closely related to the total communication latency.

90

Figure 4-11: Variation of partition dispersion and function communication latency across

different NoC architectures

0

1

2

3

4

5

6

0

200

400

600

800

1000

1200

1400

newviewGTRCAT (f2) coreGTRCAT (f3) newviewGTRGAMMA
(f6)

a
v
e
ra

g
e

 c
o

m
m

u
n

ic
a
ti

o
n

 l
a
te

n
c

y

a
v
e
ra

g
e

 d
is

p
e

rs
io

n
 o

f
e
a
c
h

 p
a

rt
it

io
n

avg. dispersion in
2D_serial

avg. dispersion in
2D_parallel

avg. XYZ dispersion in
3D_torus

avg. XYZ dispersion in
3D_sttorus

total communication
latency in 2D_serial

total communication
latency in 2D_parallel

total communication
latency in 3D_torus

total communication
latency in 3D_sttorus

residual communication
latency in 2D_serial

residual communication
latency in 2D_parallel

residual communication
latency in 3D_torus

residual communication
latency in 3D_sttorus

 The contiguity (or non-contiguity) of an allocated partition has a direct

bearing on the communication latency (total or residual) for executing the

function. The effect is most pronounced in the case of newviewGTRGAMMA (f6)

and also affects coreGTRCAT (f3). On the other hand, newviewGTRCAT (f2) has

a net zero residual communication latency. This is because this function is

spread across only two nodes and computation and communication cycles

complement each other. We use average partition dispersion (diameter) as a

measure of the non-contiguity of the allocated partition. We observe (Fig. 4.11) a

gradual decline in average partition dispersion moving from 2D_serial to

2D_parallel to 3D_torus. The average communication latency involved in

91

function execution displays a similar trend across architectures. The role of the

interconnection topology here is to reduce the average partition dispersion and

hence the residual communication latency. B-type messages originating from

non-contiguous partitions as a percentage of the total number of messages

reduce from 34% in 2D_serial to 24% in 2D_parallel, further demonstrating the

impact of contiguity of partitions on latency performance. Partitions on

3D_sttorus have much lower dispersion than the other architectures owing to the

presence of a bus in the vertical dimension, which provides one-hop transit

between any two layers. However, this does not translate to lower

communication latency because of bus and destination contention. In fact,

latencies for 3D_sttorus are observed to be slightly higher than those in

3D_torus (most pronounced for f6 as shown in Fig. 4.11).

4.9.4 Speedup

 We used two different measures to evaluate the acceleration performance

of our design. The first measure is function-level speedup, which assesses the

level of fine-grained parallelism achieved by our PE design. The second measure

is aggregate speedup of the accelerated kernels, which measures the degree of

acceleration achieved by integrating the PEs in the NoC framework.

92

Figure 4-12: Function-level speedup of phylogenetic kernels

0 200 400 600 800 1000

newviewGTRCAT (f2)

coreGTRCAT (f3)

newviewGTRGAMMA (f6)

Function-level speedup

3D_sttorus

3D_torus

2D_parallel

2D_serial

4.9.4.1 Function-level Speedup

 In order to determine function-level speedup, the total execution time for

each function, consisting of computation and communication components, was

averaged over all test cases on each architecture (2D_serial, 2D_parallel,

3D_torus and 3D_sttorus) and compared with the baseline CPU times consumed

by the function while running the software (Tf2, Tf3, Tf6). The speedup obtained

for the functions on each architecture is shown in Fig. 4.12. 3D_torus

consistently provides the best function-level speedup for all three functions. Note

that the best speedup (on 3D_torus) of 847x is obtained for coreGTRCAT (f3),

which accounts for 48% of the total software run-time. The least speedup (on

3D_torus) of 390x is obtained for newviewGTRCAT (f2), because it is the

smallest function kernel and requires only two NoC nodes (or 8 PEs) by design.

93

Figure 4-13: Total dispersion of target kernel mappings across different NoC architectures

30

35

40

45

50

55

60

2D_serial 2D_parallel 3D_torus 3D_sttorus

T
o

ta
l
d

is
p

e
rs

io
n

Test cases with larger number
(avg. 23.33) of partitions

Test cases with fewer (avg.
15.67) partitions

As expected, function-level speedup has an inverse relationship with

communication latency (Fig. 4.11).

4.9.4.2 Aggregate Speedup of the Target Function Kernels

 This is a measure of the acceleration achieved on the targeted function

kernels, and is the ratio of the CPU run-times of the test cases consisting of

these kernels to the run-times of these test cases on our NoC-based platform of a

given system size (N) and architecture (2D_serial, 2D_parallel, 3D_torus and

3D_sttorus). Each test-case configuration represents a typical snapshot of the

system during the course of execution of parallel RAxML threads, with our NoC-

based platform handling the three phylogenetic kernels. Several instances of

newviewGTRGAMMA (f6), coreGTRCAT (f3) and newviewGTRCAT (f2)

occupying contiguous and non-contiguous partitions are present in each such

test-case. The total time spent in one test case also includes the time required to

allocate all partitions (allocation time) and to load the input vectors to the

94

Figure 4-14. Average aggregate speedup of the accelerated kernels across different NoC
architectures

0

1000

2000

3000

4000

5000

6000

7000

2D_serial 2D_parallel 3D_torus 3D_sttorus

A
g

g
re

g
a
te

 s
p

e
e
d

u
p

 o
f

a
c
c
e
le

ra
te

d

k
e
rn

e
ls

Test cases with fewer (avg. 15.67) partitions

Test cases with larger number (avg. 23.33) of partitions

function in 64-bit FXP-HNS format [83] (interface time) on the NoC using the

PCIe interface described earlier.

 On an average, 2D_serial with N=16 provides a speedup of ~2200x,

whereas a larger system size (N=64) provides ~4300x speedup. The ideal

increase (4x) in speedup with system size was not obtained because of higher

penalties incurred in allocation time and interface time, and higher non-

contiguity of partitions leading to increased communication latency. This is

where the benefits provided by 2D_parallel, 3D_torus and 3D_sttorus become

evident.

 We classified test cases on systems with N=64 on the basis of the number

of constituent functions (or partitions). Test cases with a lower number of

partitions (average 15.67) have more instances of f6. Such instances occur

95

mainly during the likelihood evaluation phase. Test cases with higher number of

partitions (average 23.33) have significantly more instances of f2 and f3. These

scenarios are prominent during generation of bootstrap trees. Fig. 4.13 shows the

observed dispersion as a function of the underlying architecture and the number

of partitions. A test case with fewer partitions is expected to result in a higher

degree of dispersion because there are more instances of f6. This is generally

true for all the architectures except for 3D_sttorus because of the bus. Fig. 4.14

shows the aggregate speedups of the accelerated kernels as a function of the

underlying architecture and the number of partitions. 2D_parallel, 3D_torus and

3D_sttorus NoCs provide higher speedup than 2D_serial because they reduce

allocation time while improving partition contiguity. For all test cases, 3D_torus

provides the best aggregate speedup (6594x) followed by 3D_sttorus (6428x),

2D_parallel (4937x) and 2D_serial (4326x). 3D_torus outperforms 3D_sttorus

because bus and destination contention in 3D_sttorus leads to higher

communication latency (as described earlier in Section 4.7.4.3).

4.9.5 Total Execution Time

 In order to determine the overall reduction in run-time, the run-time of the

non-accelerated portion of the software is considered along with the accelerated

portion running on the NoC-based platform. The total execution time takes into

account all overheads involved in offloading a part of the computation to the

NoC-based platform. Table 1 shows the total run-times for two representative

input data-sets, 50_5000 containing 50 DNA sequences with 5000 columns each

and 500_5000 containing 500 DNA sequences with 5000 columns each. Table 6

shows the total run-time using our 2D_serial, 2D_parallel, 3D_torus and

96

Table 6. Total run-times for different inputs using different NoC-based platforms vis-à-vis only
software

Input data (DNA)

Unaccelerated

software run-time

(s)

Time spent in

accelerated

kernels (s)

Allocation

time (s)

PCIe

interface

time (s)

Total run-time using

NoC platform as

hardware accelerator

(s)

Total 4T

software run-

time (s)

2D_serial 292.000444 0.515478 0.130387 0.145065 292.791374 924.052039

2D_parallel 292.000444 0.481303 0.104805 0.145065 292.731617 924.052039

3D_torus 292.000444 0.433625 0.050889 0.145065 292.630024 924.052039

3D_sttorus 292.000444 0.474657 0.050889 0.145065 292.671056 924.052039

2D_serial 7038.847538 19.1142 8.467062 8.273363 7074.702162 37124.7233

2D_parallel 7038.847538 18.04733 6.805803 8.273363 7071.974034 37124.7233

3D_torus 7038.847538 16.766102 3.304655 8.273363 7067.191658 37124.7233

3D_sttorus 7038.847538 18.102936 3.304655 8.273363 7068.528491 37124.7233

50_5000

500_5000

3D_sttorus architectures vis-à-vis software. The best run-time reduction is

obtained using 3D_torus NoC-based platform and is highlighted in the table. It

can be observed that most of the run-time that results from the use of the NoC-

based platform comes from the unaccelerated portion. Even so, the overall run-

time is reduced by more than 3x for 50_5000 and more than 5x for 500_5000.

This proves the immense potential of such hardware accelerator platforms in the

field of phylogeny reconstruction applications.

4.9.6 Energy consumption

 Fig. 4.15 shows the total energy consumed across different test cases and

architectures. Test cases with larger number of partitions consume more energy

than those with fewer partitions on the same architecture. However, there is a

significant reduction (up to 37.7%) of energy going from 2D_serial to 3D_torus.

This follows a trend similar to that observed for total test case dispersion (Fig.

4.13). Lower dispersion leads to lower average hop-count of inter-node messages

and hence lower energy consumed in communication. Also, in the case of 3D

(both 3D_torus and 3D_sttorus), substitution of longer horizontal links with

much shorter vertical links leads to lower energy consumption. 3D_sttorus has a

97

Figure 4-15. Total system energy consumption across different NoC architectures

0

2

4

6

8

10

12

14

16

18

20

2D_serial 2D_parallel 3D_torus 3D_sttorus

T
o

ta
l
s
y
s
te

m
 e

n
e
rg

y
 (

u
J
)

Test cases with fewer (avg. 15.67) partitions
Test cases with larger number (avg. 23.33) of partitions

slightly higher overall energy consumption over 3D_torus because of the higher

capacitance of the buses and higher application run-times.

4.10 Conclusion

 In this chapter, we presented a novel design and implementation of a

Network-on-Chip (NoC) based multi-core platform for accelerating Maximum

Likelihood (ML) based phylogeny reconstruction, which is an important,

compute-intensive application in bioinformatics. The NoC-based accelerator

targets the three most time-consuming function kernels that collectively account

for the bulk of the run-time in the widely-used RAxML software suite. Our

implementation achieves parallelization at different levels – both within a

function kernel and across several invocations of these function kernels in

parallel execution threads. Consequently, our contributions include: (i) the

design of a fine-grained parallel PE architecture, (ii) a novel algorithm to

98

dynamically allocate nodes to tasks based on Hilbert space-filling curves, and

(iii) the design and extensive evaluation of different NoC architectures, both in

2D and 3D, in the context of this application. The overarching purpose of our

experimental study was to evaluate the feasibility and merits of an NoC-based

hardware accelerator for ML-based phylogenetic kernels. To this end, our

experimental results show that our NoC based accelerators are capable of

achieving a function-level speedup of ~847x, aggregate speedup of the

accelerated portion up to ~6,500x, and overall run-time reduction of more than

5x over multithreaded software. Comparative evaluation across NoC

architectures show that the best performances in terms of speedup and energy

consumption are obtained from 3D NoC platforms. Our speedup performance

represents considerable improvement over existing hardware accelerators for

this application (e.g. [69], [100]).

 Although this work targeted the RAxML implementation of ML phylogeny,

the design methodology and ideas for node allocation and routing are generic

enough to be carried forward to other scientific applications which have a similar

computational footprint, i.e., the need to execute a large volume of a fixed

number of function kernels; for example, other statistical estimation methods in

phylogenetic inference such as Bayesian Inference.

99

5. High-Throughput, Energy-Efficient NoC-Based Hardware

Accelerators

In all fields of high-performance computing (HPC), new data-generation

technologies are placing an enormous stress on software tools to perform beyond

terascale to peta- and exa-scale. Given the diversity of tools and the need to cater

to a wide user-base, it is becoming common practice, even within academic

settings, to have a dedicated center that hosts a variety of scientific computing

tools on a few high-end data servers. The throughput requirement that these

multi-user servers need to meet can be substantial since the servers can be

expected to service concurrent requests from a variety of applications, each with

differing resource requirements. These servers would often consist of multicore

hardware accelerator co-processor platforms where the cores are designed to

accelerate targeted operations and are interconnected with an on-chip network.

A similar setup is also becoming common practice, albeit on a larger scale, in

cloud solution providers (e.g. [109]). While throughput is important, it is

necessary to restrain energy consumption and power dissipation in these

hardware accelerators. In this respect, the role of NoC-based platforms assumes

significance, owing to the level of on-chip integration that such platforms can

achieve, delivering high computation throughput alongside energy-efficiency, as

we elaborate in this chapter.

 In this chapter, we propose, design and evaluate NoC-based platforms for

enhancing the computation throughput of scientific applications. Our evaluation

of the NoC-based platforms includes analysis of the resulting performance,

energy-efficiency and power consumption, and thermal profiling. More

100

CPU

Job queue

Each rectangle represents a function requesting an

amount of computation resources proportional to its area.PCIe
tail

head

Computation node

Custom lightweight processing

element (PE)

Inter-PE connection, e.g. crossbar

Computation node Computation node

Computation node Computation node Computation node

On-chip interconnection network

(wired links, wireless links)

Multicore system-on-chip hardware accelerator

Network switch

MasterController

Allocates

computation nodes

to each functionPCIe

(to send

data back

to CPU)

Figure 5-1. Illustration of our NoC-based use-case model proposed for hardware acceleration
of throughput-oriented scientific applications

specifically, we analyze how throughput and power consumption are correlated

with the statistical properties of the application traffic. In addition, we compare

and analyze chip-level thermal profiles to identify hot-spot distribution and

correlate them with architecture-level design choices.

5.1 Application Use-Case Model

 In order to design our platform, we propose the following use-case model

(see Fig. 5.1): A CPU runs the parent process and communicates via an interface

(e.g. PCIe) to a multicore system-on-chip that acts as a hardware accelerator for

specific computation-heavy kernels. There is a queue of jobs offloaded by the

CPU to the hardware accelerator and an allocation unit (MasterController)

assigns the requested computational resources from the hardware accelerator to

the job at the head of the queue. Once some computation resources are assigned

to a job, they stay busy till the execution of that particular job concludes, and the

result is sent back to the CPU through a similar interface (e.g. PCIe). Each

101

computational resource is a lightweight custom core embedded in a NoC. In the

following, we characterize such hardware accelerator platforms in terms of

overall computation throughput, energy consumption, power dissipation and

thermal profiling.

 The computational footprint of many scientific applications fits the

proposed use-case model, for example, the use of servers that host application

programs to implement standard functions in phylogenetic inference [110],

genome/gene sequencing [89], climate modeling and weather prediction [111],

etc. For instance, a typical genome assembly algorithm farms out billions of

pairwise sequence alignment tasks, each of which aligns two strings of small

lengths (e.g., 100-500 base pairs) and can use a small number of cores (e.g., 8-16)

[112]. As another example, consider the problem of computing phylogenetic

inference using maximum likelihood (ML) [113], where one typically needs to

carry out billions of independent tree evaluations, each of which internally

performs a small number of floating point calculations using a few cores. In such

applications, enhancing overall throughput in computation translates to shorter

time to solution. To this end, integration of many cores using an on-chip network

(or NoC) presents an attractive model of computation, not only due to the

availability of a large number of cores, but also because the computation within

the individual tasks in many of these applications (e.g., sequence alignment in

the genome assembly problem, [114]) can be designed to take advantage of fine-

grain on-chip parallelism involving a fixed number of cores.

102

5.2 Introduction of Long-Range Links

For any NoC design, the choice of the on-chip network architecture is an

important determinant of the overall throughput and energy efficiency achieved

by the many-core system.

Introduction of long-range links on regular structures such as a mesh

leads to an interconnect fabric that is neither regular nor fully customized, as

shown in [115]. This has the effect of reducing average packet latency and

increasing data throughput without any major impact over the network topology.

Most complex networks, including the Internet, social networks and the network

of neurons in the brain share this Small-World property [116]. In [115], the use

of on-chip wireless interconnects to implement these long-range links is

demonstrated to provide considerable gains in network throughput and latency,

and energy consumption over wired counterparts.

Consequently, the focus of this chapter is the design and evaluation of

NoC-based platforms for throughput-oriented applications. These platforms

consist of long-range on-chip wireless links in addition to standard wired links in

a particular network topology. To the best of our knowledge, this represents the

first attempt at designing and empirically characterizing NoC-driven accelerator

platforms built using both wired and wireless links for throughput-oriented

scientific applications.

5.3 Network Architecture

 The choice of the underlying interconnection fabric topology is determined

from the perspective of the application and VLSI implementation. Our target is

103

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

M
e

a
n

 o
f

to
ta

l
n

u
m

b
e

r
o

f
fl

it
s

 p
e

r
ro

u
te

r
p

e
r

c
y
c

le

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

0

1

2

3

4

5
6
7

0

0.2

0.4

0.6

0.8

1

1.2

0
1

2
3

4
5

6
7

N
o

rm
a

li
z

e
d

 s
td

.
d

e
v

n
.
o

f
to

ta
l

n
u

m
b

e
r

o
f

fl
it

s
 p

e
r

ro
u

te
r

p
e

r
c

y
c

le

1-1.2 0.8-1 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2

 (a) (b)

Figure 5-2. The number of flits per cycle ((a) mean and (b) normalized standard deviation)
within routers of an 8x8 folded torus network. The horizontal dimensions denote the
processor coordinates of the torus, while the vertical dimension denotes the observed flits
per cycle (mean and standard deviation). The absence of distinctive peaks in temporal
statistics indicates the higher suitability of fully-distributed, regular interconnection
topologies such as a mesh or torus, as opposed to linear or hierarchical topologies such as
bus or trees.

the class of applications that spawn a stream of independent jobs (constituent

functions) that individually require variable amounts of computation resources.

Communication occurs only among nodes catering to a single job during its

execution. The location of these nodes on the network is a variable for every

instance of an allocated job, leading to arbitrary point-to-point communication.

The traffic patterns are hence dynamically changing and steady-state

characteristics do not indicate any clustering or traffic localization, as shown in a

sample statistical analysis of the traffic pattern over time in Fig. 5.2.

Distributed network architectures are generally better suited for such traffic

patterns. Consequently, we use a folded torus. From the VLSI implementation

perspective, a torus is a scalable network architecture whose regularity provides

for easier timing closure and reduces dependence on interconnect scalability [27].

104

We adopt the computation nodes described in Chapter 4, Section 4.3, which run

at a clock speed of 1 GHz. All inter-node links in the folded torus are one-hop

links with respect to the 1 GHz clock used. Since the computation node has a

datapath that is 64-bit wide, we designate our flit size to be 64 bits and split each

inter-node message into three flits – header, body and tail. As a result, each

inter-node link has a minimum bandwidth of 64 Gbps.

5.4 Use of Long-Range On-Chip Wireless Links

 In the previous section, we described our underlying network topology

that suits a distributed traffic pattern. However, we would ideally want the

average internode distances between nodes catering to the same job to be as low

as possible, or in other words, we would want the nodes catering to a particular

job to be all contiguous to one another. This cannot be guaranteed in practice

because different jobs needing different number of resources could get submitted

in real-time (as we further explain in Section 5.5, also see Section 4.7). This could

force any allocation method to either wait for all required nodes to be available

contiguously (the effect of which could be a significant delay in execution time

coupled with a non-optimal use of the cores) or map the job on nodes that could

potentially be non-contiguous along the network (as elaborated in Section 5.5). In

the latter approach, large physical separation of these nodes on the network

could lead to a significant communication overhead. From the network

architecture point of view, bridging these gaps is possible through the use of

long-range point-to-point shortcuts. In Section 3.2, we described our underlying

network topology that suits a distributed traffic pattern. However, we would

ideally want the average internode distances between nodes catering to the same

105

job to be as low as possible, or in other words, we would want the nodes catering

to a particular job to be all contiguous to one another. This cannot be guaranteed

in practice because different jobs needing different number of resources could get

submitted in real-time (as we further explain in Section 3.4). This could force any

allocation method to either wait for all required nodes to be available

contiguously (the effect of which could be a significant delay in execution time

coupled with a non-optimal use of the cores) or map the job on nodes that could

potentially be non-contiguous along the network (as elaborated in Section 3.4). In

the latter approach, large physical separation of these nodes on the network

could lead to a significant communication overhead. From the network

architecture point of view, bridging these gaps is possible through the use of

long-range point-to-point shortcuts. As mentioned before, introduction of

shortcuts on regular architectures have been shown to provide significant

improvements in latency and network throughput for different kinds of

applications [115]. Implementing these shortcuts using metal wires inherits the

issues associated with long wires, viz., transmission delay and large power

dissipation. High transmission delay makes it impossible to guarantee one-hop

transmission. Use of on-chip wireless shortcuts overcomes these drawbacks

[117].

5.4.1 Physical Layer

 Suitable on-chip antennas are necessary to establish the wireless links. It

has been shown that wireless NoCs designed using carbon nanotube (CNT)

antennas can significantly outperform conventional wireline counterparts [117].

Antenna characteristics of CNTs in the THz frequency range have been

106

investigated both theoretically and experimentally [118]. Such nanotube

antennas are good candidates for establishing on-chip wireless communications

links and are henceforth considered in this work. CNT antennas can be used to

assign different frequency channels to pairs of communicating source and

destination nodes. This enables creation of dedicated and non-overlapping

channels using the concept of frequency division multiplexing. This is

implemented by using CNTs of different lengths, which are multiples of the

wavelengths corresponding to the respective carrier frequencies. With currently

available technology, it is possible to create 24 non-overlapping wireless

channels, each capable of sustaining a data rate of 10 Gbps using CNT antennas.

Technology-specific details on CNT are discussed in [117]. We determine the

number of wireless links in our system based on the bandwidth each link needs

to support. As mentioned earlier, each wireless (inter-node) link needs to sustain

a bandwidth of 64 Gbps. Since each wireless channel can provide a bandwidth of

10 Gbps, we need to combine 7 channels per link (delivering up to 70 Gbps

bandwidth). Hence, the maximum number of single-hop wireless links we can

implement is ⌊ ⌋ . Note that we could increase the number of wireless

links providing the same bandwidth when future technology supports more than

24 non-overlapping channels.

107

Figure 5-3. Comparison of average network communication latencies for different wireless link
placements. Even small increases in communication latency have shown to lead to significantly
degrade performance.

0 1 2 3 4 5 6 7

8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

4

0

4

1

4

2

4

3

4

4

4

6

4

7

4

8

4

9

5

0

5

1

5

2

5

3

5

4

5

5

5

6

5

7

5

8

5

9

6

0

6

1

6

2

6

3

Allocated

contiguous nodes

Non-contiguous

nodes are separated

by the average

distance between

quadrants (diameter)

4

5

Wireless

links along

diameters

Hilbert

curve

Figure 5-4. Non-contiguous nodes and long-range communication requirements leading to
wireless link placement along diameters. Although not shown, each node is connected through
wired links to four of its neighboring nodes as dictated by the torus topology. Most of our
allocation strategies consider the nodes along the Hilbert curve while also factoring the
presence/absence of wireless hubs at intermediate nodes..

163 163.5 164 164.5 165 165.5

Average communication latency (clock cycles)

Uniform random placement of
wireless links (config 1) +
2D_parallel allocation

Uniform random placement of
wireless links (config 2) +
2D_parallel allocation

Diameter wireless links +
2D_parallel

5.4.2 Wireless Link Placement

 Ideally, the placement of wireless links should be dictated by the demands

in the traffic patterns generated by the target scientific application. For the kind

of throughput-oriented scientific applications targeted in this paper, however, it

is not possible to statically predict any particular traffic pattern because the

108

underlying communication requirement could be arbitrary. The sets of

communicating nodes executing a single task could be spread out over the whole

network, thereby generating arbitrary point-to-point traffic over time (as

corroborated by our observations made in Fig 5.2). In fact, we observed the

probability of non-local interaction between nodes is highest when the separation

between them is equal to the diameter of the network. We have experimentally

verified this observation by placing wireless links according to various

considerations – based on uniform random traffic assumption, and along

diameters of the network. As shown in Fig. 5.3, wireless link placement along

the diameter leads to the lowest network latency among the possibilities

considered. This observation can be explained by the fact that the most efficient

node allocation method described later in Section 5.5 divides the network into

four quadrants, tries to allocate nodes locally, and the need for long-range links

arises when allocated nodes are non-contiguous and lie in neighboring

quadrants. It can be easily seen from Fig. 5.4 that the mean distance between

adjacent quadrants is the network diameter of the folded torus. Since there are

only 3 wireless links as explained earlier, we maximize their coverage by placing

them along diameters of the folded torus with almost equal angular separation

between each pair of diameters, as shown in Fig. 5.4. This ensures that nodes in

all sections of the network have similar degree of accessibility to a wireless link.

5.5 Dynamic Node Allocation

 A network node is busy during the execution of a job by the PE; it is

available otherwise. The computation nodes (PEs) continually send their

busy/available status to the allocation unit, MasterController (see Fig. 5.1).

109

When a job requests computation resources, MasterController allocates the

requisite number of available computation nodes from the system. The nodes

thus allocated form a partition during the course of function execution and

communicate with one another (also see Section 4.7). A desired feature of a

partition is that its constituent nodes are co-located so as to minimize the

average number of hops spent in message transfers. To this end, a good

allocation strategy should ensure co-locality without incurring a large allocation

time overhead. Simple approaches like breadth-first search do not fit these

criteria. We present the following allocation methods, which can be classified

into wireless-agnostic and wireless-aware methods. We also make use of the

locality-preserving, space-filling Hilbert curve [106] for allocation. The resultant

allocated partitions are denoted A-type if all nodes belonging to that partition

are contiguous along wired links on the folded torus; else the partition is B-type.

5.5.1 Parallel Best-Fit Allocation Using Multiple Hilbert Curves

This allocation strategy preferentially looks for a partition with contiguous

nodes to maximize co-locality, and parallelizes the search in order to increase the

probability of a hit. The algorithm follows the one in Section 4.7.2, and is

reproduced here for clarity.

1. First, we use four Hilbert curves on a square folded torus. These four

curves are obtained by using right-angle rotation operations of a single

Hilbert curve.

2. We further divide each of the four Hilbert curves into four segments, one

from each quadrant – thereby resulting in a total of 16 segments (see Fig.

110

5.4). MasterController now has 16 heads, each of which is responsible for

scanning a segment. All 16 heads act in parallel.

3. Each head now preferentially looks for an A-type partition in its segment.

The first head to find such a partition returns it to the requesting job and

interrupts all the other scanning heads.

4. In case no A-type partition is found after each head has finished scanning

its segment, MasterController carries out a serial scan along a Hilbert

curve and allocates available nodes as they are encountered.

This method of allocation is wireless-agnostic because we do not make use of

the information regarding the location of wireless shortcuts. Systems using this

method of allocation are denoted by 2D_parallel if they do not use wireless

shortcuts, and 2D_parallel + wireless if wireless shortcuts are used only during

message transfers.

5.5.2 Wireless-First Allocation Using Hilbert Curve

This is a wireless-aware allocation method in which MasterController

looks for available node pairs directly connected by a wireless shortcut. If such a

pair is available, they are allocated to the requesting job. MasterController then

serially scans for the remaining nodes following a Hilbert curve starting from a

terminal node of the wireless shortcut. Since only nodes belonging to the same

partition communicate with one another, this method ensures that wireless

shortcuts are fully utilized. In case no wireless shortcut is available at the time

of allocation, nodes are allocated based on a serial scan along the Hilbert curve.

Systems using this allocation method are denoted by wireless + Hilbert.

111

5.5.3 Wireless-First, Column-Major Allocation

This is another wireless-aware allocation method, which looks for available

wireless shortcuts to be allocated first. The remaining nodes are allocated

following the direction of wireless shortcuts such that the nodes in the partition

are aligned with the shortcut, so as to maximize the traffic the shortcut carries.

As shown in Fig. 5.4, the wireless shortcuts are placed along the vertical

diameters (columns) of the folded torus. Hence, the node allocation also follows a

column-major ordering. The major benefit of this method is that a wireless

shortcut can potentially carry traffic from partitions that do not directly include

it but are closely aligned with it. Systems using this allocation method are

denoted by wireless + column-major.

5.6 On-Chip Routing

We adopt wormhole routing to exchange three-flit messages among nodes

of a partition. Network switches are based on the designs presented in [104].

Each switch consists of four bidirectional ports (E, W, N, S) to neighboring

switches and one local port to/from the computational node. Each port has a

buffer depth of two flits and each physical channel is split into 4 virtual

channels. The general routing policy is e-cube routing on torus [52].

For routing in the presence of wireless shortcuts, we need information

about the wireless links closest to a source-destination pair, and the bandwidth

provided by such links. This information is known beforehand and is available to

the router. Based on this knowledge, the router chooses a path via a wireless

shortcut if that entails fewer hops to transfer a message between a source-

112

destination pair. The message follows deadlock-free south-last routing [115]

when involving wireless shortcuts, and e-cube routing when following wired-only

paths between a source and a destination.

5.7 Experimental Results

5.7.1 Experimental Setup

The computation core (originally from Section 4.3) has a datapath width of

64 bits and provides a number representation accuracy of ~10-15. A PE integrates

four such computation cores. We synthesized Verilog RTLs for the PEs, the

network switches and MasterController with 65 nm standard cell libraries from

CMP [88]. Our clock period of 1 ns comes from the critical path constraint in the

core datapath as mentioned in Section 4.3.1 and shown in Fig. 4.1. We verified

that our design meets all timing constraints, and evaluated power consumption.

We laid out the wired NoC interconnects and determined their physical

parameters (power dissipation, delay) using the extracted parasitics (resistances

and capacitances). We verified that all wired links could be traversed within one

clock cycle.

Each wireless link consists of seven channels of 10 Gbps each, providing a

total link bandwidth of 70 Gbps. For the wireless links, we considered an energy

dissipation of 0.33 pJ/bit as reported in [117] to include the energy consumed in

the transceiver circuitry and the antennas, and used these to evaluate the total

energy consumption of our system. In order to carry out chip-level thermal

analysis we used the data on power consumption so obtained with HotSpot 5.0,

113

an accurate and fast thermal model suitable for use in architectural studies

[122].

We experimented with the allocation methods mentioned in Section 5.5.

We used system sizes of N=64 and N=256 in our experiments. We modeled the

NoC-based multicore platform as a co-processor connected using a PCIe

interface. We modeled a PCI Express 2.0 interface using Synopsys ™

Designware ™ IP PCI Express 2.0 PHY implemented on 65 nm process and

operating at 5.0 Gbps. We used a 32-lane PCIe 2.0 for our simulation.

For experimental studies, we use function kernels from a Maximum

Likelihood-based phylogenetic reconstruction software called RAxML version

7.0.4, [70], [101]. A detailed profiling of RAxML runs using the GNU gprof utility

reveals that a small set of functions consume a predominant portion (>85%) of

the runtime. These functions are offloaded to our NoC-based accelerator co-

processor and are denoted by f6, f3 and f2 respectively based on the computation

resources (number of computation nodes) they need for execution. Based on the

composition of jobs executing on our system, we bin the system job loads into two

categories – one in which f6 jobs are dominant and the other in which f3 and f2

jobs occupy up to half of all the nodes. The total number of jobs concurrently

executing on the system is clearly higher in the latter case. Since each f6

individually requires the largest number of computation nodes (six), the

probability that one will be allocated a contiguous partition on the network is

relatively low. Therefore, the above test plan represents the conservative end of

the spectrum for performance evaluation.

114

Figure 5-5. Computation throughput across different network architectures, system sizes and job
loads.

9.80E+10

1.00E+11

1.02E+11

1.04E+11

1.06E+11

1.08E+11

1.10E+11

1.12E+11

1.14E+11

1.16E+11

1.18E+11

A
v
e

ra
g

e
 o

p
e

ra
ti

o
n

s
 p

e
r

s
e

c
o

n
d

N = 64

f6 dominant

significant minority
f2, f3

3.20E+11

3.40E+11

3.60E+11

3.80E+11

4.00E+11

4.20E+11

4.40E+11

A
v
e

ra
g

e
 o

p
e

ra
ti

o
n

s
 p

e
r

s
e

c
o

n
d

 N = 256

5.7.2 Computation Throughput

To measure the computation throughput of our system, we only use each

basic operation (logarithm/exponentiation) performed by a core (see Section

4.3.1) as the unit (leaving out addition because it is much simpler), and the

number of operations per second as the metric. Computation throughput is not

only affected by the mix of jobs running on the system at any point of time, but

also by allocation time overhead, usage of wireless shortcuts, and network

architecture. Fig. 5.5 shows the computation throughput for the two different job

loads mentioned earlier across different network architectures and system sizes.

2D_parallel + wireless consistently provides the best computation throughput

across job loads and system sizes. It is interesting to note that the best

performing architecture has a wireless-agnostic allocation method. While

wireless-aware allocation methods guarantee that a larger proportion of flits use

the wireless shortcuts (see Fig. 5.6), this also leads to congestion over these links.

115

Figure 5-6. Proportion of flits using wireless shortcuts and energy consumption across
network architectures and system sizes.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

4E-10

4.1E-10

4.2E-10

4.3E-10

4.4E-10

4.5E-10

4.6E-10

4.7E-10

4.8E-10

4.9E-10

5E-10

A
v
e

ra
g

e
 n

e
tw

o
rk

 e
n

e
rg

y
 p

e
r

o
p

e
ra

ti
o

n
 (

J
)

N = 64

Average network energy
per operation (J)

Average computation
energy per operation (J)

Percentage of all fits that
use wireless channels

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

4.00E-10

4.20E-10

4.40E-10

4.60E-10

4.80E-10

5.00E-10

5.20E-10

5.40E-10

A
v
e

ra
g

e
 n

e
tw

o
rk

 e
n

e
rg

y
 p

e
r

o
p

e
ra

ti
o

n
 (

J
) N = 256

Since we use a static routing technique that is based only on the comparison of

distances traversed in alternative paths (using shortcuts vs. not using shortcuts),

we end up routing more flits through the wireless shortcuts than their

bandwidth can sustain without incurring a latency penalty. In a wireless-

agnostic allocation method such as 2D_parallel + wireless, we try to maximize

the number of A-type partitions during allocation, leaving to the wireless

shortcuts the job of carrying traffic from B-type partitions.

Referring to Fig. 5.5, we also note that the cases containing a higher

proportion of f2 and f3 jobs have a 5-10% higher computation throughput than

the f6 dominant loading scenario. Note that a larger system size (Fig. 5.5 (b))

provides proportional gain in computation throughput because the problem size

can be appropriately scaled up. The lowest parallelization efficiency is obtained

for wireless + column-major and this is attributed to the high allocation-time

116

Figure 5-7. Average power dissipation in different NoC architectures and system sizes.

42

44

46

48

50

52

54

56

58

P
o

w
e

r
in

 w
a

tt
s

N = 64

Avg power dissipated by wireless links

Average power consumption in switches (W)

Avg power dissipated by wired links

Avg power dissipated by PEs

175

180

185

190

195

200

205

210

215

220

P
o

w
e

r
in

 w
a

tt
s

N = 256

overheads for larger system sizes, proving that this allocation method is less

scalable with system size.

5.7.3 Proportion of Flits Using Wireless Shortcuts

Fig. 5.6 shows the percentage of total flits that used the wireless shortcuts.

Note that the number of shortcuts (three) is much lower than the number of

nodes (64, 256) in the system. As expected, 2D_parallel + wireless, being a

wireless-agnostic allocation method, leads to the lowest proportion of flits using

wireless shortcuts. On the other hand, wireless + column-major allocation leads

117

to the highest proportion of flits using wireless shortcuts across system sizes.

This is because it is a wireless-aware allocation method, in which the partitions

that do not get direct access to wireless shortcuts are aligned with the shortcuts,

providing them with access to the shortcuts during routing, as explained earlier

in Section 5.5.3.

5.7.4 Energy and Power Consumption

 Average power dissipation in the chip is important from the physical

perspective, because it is a direct indicator of the activity of the logic inside the

chip and has a bearing on its thermal profile as explained further in Section

5.7.6. Quite predictably, the average power dissipation is higher in architectures

that can deliver higher computation throughput, as shown in Fig. 5.7. In fact,

wireless-aware allocation consistently leads to lower average power dissipation.

We have included a data point to show that wireless link placement under

uniform random traffic assumption leads to even lower power dissipation for

N=64, although this is primarily because fewer computations are being

performed and fewer messages are being transferred per second. Note that, the

reduced power dissipation comes at the cost of reduced throughput performance

in all cases. Consequently, we evaluated the energy consumption profiles of the

architectures under consideration.

118

Figure 5-8. Average, standard deviation and skew of flits routed per network switch across
NoC architectures and system sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

20

40

60

80

100

120

140

160

S
k

e
w

A
v
g

 /
 s

td
 d

e
v

N = 64

Avg flits routed per
network switch

Std dev of flits routed
per network switch

Skew of flits routed
per network switch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

20

40

60

80

100

120

140

160

180

S
k

e
w

A
v
g

 /
 s

td
 d

e
v

N = 256

 In order to determine which architecture is indeed the most energy-

efficient, we evaluated the energy spent per operation. This consists of the

computation energy component spent within the computation nodes, and the

network energy component spent in the network switches, wireless transceivers

and wired links. Fig. 5.6 shows a comparison of the energy spent per operation

across different network architectures and system sizes. 2D_parallel + wireless

is the most energy-efficient in terms of overall energy consumption per

operation. A closer look reveals that for N=64, the network energy component is

indeed lower for the wireless-aware methods, wireless + Hilbert and wireless +

column-major, due to a larger proportion of their flits using wireless shortcuts,

each of which consumes less energy than a wired link. However, due to higher

119

computation latencies and the greater contribution of the computation energy

component, the overall energy per operation turns out to be higher. For N=256,

the proportion of flits using wireless shortcuts is low across all architectures, and

the saving in energy due to flits using wireless shortcuts is more than offset by

the additional energy consumption in the wired links. This leads us to the

conclusion that 2D_parallel + wireless is still the best performing architecture

from the energy-efficiency perspective.

5.7.5 Traffic Statistics

 In order to thoroughly analyze the throughput and energy-efficiency of

different architectures, we need to understand the nature of traffic that our

application generates. Our use-case model does not generate a deterministic

traffic pattern. Hence, we try to characterize the traffic in terms of its first,

second and third order statistical properties, and correlate these with

throughput, energy consumption and power dissipation. A good indicator of

traffic is the number of flits routed per network switch while running the

application. We measure the mean, standard deviation and skew of this quantity

across all 64 (256) switches for N=64 (N=256), as shown in Fig. 5.8. For N=64,

the mean values are about the same across architectures; for N=256, diameter

wireless + column-major clearly needs to route more flits per network switch,

which indicates congestion and hence reduced throughput as we have seen

earlier. Note that the standard deviation varies across architectures for both

system sizes, and is the least for 2D_parallel + wireless, which has the highest

throughput and lowest energy per operation. Traffic is clearly less skewed for

wireless-agnostic architectures than for wireless-aware architectures. This is

120

attributable to congestion around shortcuts in wireless-aware architectures, as

discussed earlier. Higher skew is strongly correlated with lower throughput and

higher energy per operation. Following the discussion in Section 5.7.4, higher

skew is also correlated with lower power dissipation owing to reduced network

and PE activity.

5.7.6 Thermal Profile

Thermal profiling of a many-core chip is important in order to prevent

chip failure due to extreme temperatures during periods of peak activity. It is

also important to ensure that a large number of hotspots are not created and on-

chip temperature variation is low enough not to introduce timing failures. With

this objective, we used HotSpot 5.0 [122] to carry out thermal profiling of our

systems with N=64 to determine the relationship between NoC architecture and

on-chip thermal variation. As shown in Fig. 5.7, the majority of the power

dissipation is due to computation activity in the PEs. Hence, the method of

allocating these PEs to different jobs has a direct bearing on thermal variation

and hotspot creation.

121

(a)

(b)
Figure 5-9. Thermal profile of N=64 systems with (a) 2D_parallel and (b) 2D_parallel +
wireless architecture.

P0 P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23

P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39

P40 P41 P42 P43 P44 P45 P46 P47

P48 P49 P50 P51 P52 P53 P54 P55

P56 P57 P58 P59 P60 P61 P62 P63

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02

Temp (C)

50.71

52.00

53.28

54.56

55.84

57.13

58.41

59.69

60.98

62.26

63.54

64.82

66.11

67.39

68.67

69.96

71.24

72.52

73.80

75.09

76.37

P0 P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23

P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39

P40 P41 P42 P43 P44 P45 P46 P47

P48 P49 P50 P51 P52 P53 P54 P55

P56 P57 P58 P59 P60 P61 P62 P63

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02

Temp (C)

50.75

52.04

53.33

54.62

55.91

57.20

58.49

59.78

61.07

62.36

63.65

64.94

66.23

67.52

68.81

70.10

71.39

72.68

73.97

75.26

76.55

Fig. 5.9 (a) and (b) respectively shows thermal profiles for 2D_parallel and

2D_parallel + wireless that have a similar pattern albeit for a slightly higher

peak temperature in the latter case. Although the maximum temperature (< 77

degrees C) is well within reliability limits, a clustering of hotspots is noticed.

122

(a)

(b)

Figure 5-10. Thermal profile of N=64 systems with (a) diameter wireless + Hilbert and (b)

diameter wireless + column-major architecture.

P0 P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23

P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39

P40 P41 P42 P43 P44 P45 P46 P47

P48 P49 P50 P51 P52 P53 P54 P55

P56 P57 P58 P59 P60 P61 P62 P63

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02

Temp (C)

50.41

51.74

53.06

54.39

55.72

57.05

58.38

59.70

61.03

62.36

63.69

65.02

66.35

67.67

69.00

70.33

71.66

72.99

74.31

75.64

76.97

P0 P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23

P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39

P40 P41 P42 P43 P44 P45 P46 P47

P48 P49 P50 P51 P52 P53 P54 P55

P56 P57 P58 P59 P60 P61 P62 P63

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02

Temp (C)

50.65

51.93

53.20

54.48

55.76

57.04

58.31

59.59

60.87

62.15

63.42

64.70

65.98

67.26

68.53

69.81

71.09

72.37

73.64

74.92

76.20

Compare this with the thermal profiles of systems having a wireless-

aware architecture (Fig. 5.10). Since average power dissipation is lower in these

cases, the thermal profile indicates a more even distribution of hotspots,

although the on-chip range of temperature is similar to that seen in Fig. 5.9.

123

This observation can be expected as we found the wireless-aware architectures to

compromise on throughput and thus dissipate lower average power, which

naturally translates to a lower probability of hotspot generation. The system

designer has to decide the tradeoff between higher, energy-efficient throughput

on one hand, and lower propensity for hotspot creation on the other, while

choosing the NoC architecture and PE allocation approach.

5.8 Conclusion

In this chapter, we propose, design and evaluate novel NoC-based

hardware accelerator platforms targeted towards high-throughput scientific

applications. The on-chip network is built using both wired links and on-chip

wireless links, the latter being used as long-range shortcuts to further reduce

inter-core message latency. In addition to achieving high-throughput, we show

that our many-core accelerator platforms are energy-efficient.

We achieved computation throughput of over 1011 log/exp operations per

second for a class of scientific applications involving concurrently-executing jobs

of similar nature but variable computational footprint, while consuming ~0.5 nJ

for each such operation. Our systems dissipate 55 W (for N=64) and 213 W (for

N=256) and the maximum on-chip temperature is capped at 77 degrees C,

demonstrating that high throughput is achieved without sacrificing energy-

efficiency or exceeding power and thermal budgets, thereby being thermally

efficient. We analyze the traffic behavior through statistical properties and

correlate these with observations of throughput performance and power

dissipation. We explore several NoC architectures and evaluate them with

124

respect to the above-mentioned parameters and present design tradeoffs between

throughput and energy-efficiency, and on-chip thermal variation. The results

presented herein provide solutions to several challenges a system architect faces

when designing low-energy high-performance many-core hardware accelerators.

125

6. Conclusion and Future Research

 The aim of this doctoral work has been to demonstrate the potential of

NoC-based many-core systems to act as enablers for complex computational

biology applications. To the best of our knowledge, this represents the first

comprehensive work undertaken to leverage the NoC paradigm for a high-

performance scientific computing application. The platforms proposed and

designed as part of this work have been demonstrated to deliver orders of

magnitude superior performance when compared with other hardware platforms.

The results are promising, and they open up the scope for further research on

NoC-based platforms having novel on-chip interconnects and architectures,

distributed cores and memories on a chip, and a broader application space.

6.1 NoC-based Platforms for Biocomputing: A Ready-Reckoner

 In this dissertation, we have shown how one can harness the power of on-

chip network-enabled many-core architectures to enable time and energy-

efficient solutions to complex computational biology problems. This opens up the

scope for further research in this area geared towards solving problems with

similar computational characteristics but derived from other scientific domains.

In the following, we distill our contributions in this dissertation and provide a so-

called ready-reckoner in Table 7, which we believe will go a long way in

providing guidelines to the designer in making appropriate choices and decisions

while architecting NoC-based platforms to target the problem at hand. The

organization of the table is as follows. Each of the rows specifies a hardware or

software design parameter. Each column refers to an application class along with

126

Table 7. Ready-reckoner for NoC-based platform design targeting computational biology
applications

For sequence analysis, see [114]. For details on the rest, refer to Chapters 3, 4 and 5. The input
size (number of DNA characters in sequence analysis, number of genes in branch-and-bound)
is denoted by n. The number of processing elements (PEs) is p. HW/SW design parameters are
in green. HW design parameters are in dark red. SW design parameters are in dark blue.

 Combinatorial optimization Throughput-
driven

computation

↓

ML phylogeny
tree optimization

Sequence analysis
(see [114])

Exhaustive search
(e.g. branch-and-
bound)

Memory footprint O(n/p)
n ~ 102 - 104

O(n2)
n ~ 102

O(1)

Associated traffic
pattern

hypercubic, mesh broadcast point-to-point

(arbitrary)

Network topology mesh / torus with

switch bypass

quad-tree

mesh / torus

mesh / torus

On-chip
interconnection
technology

wired wired wired-only

wired + long-

range wireless

Chip integration
dimensionality

2-D 2-D 2-D, 3-D

Processing
element
architecture

custom lightweight

integer

custom lightweight

integer

custom

lightweight

floating-point

Task allocation
policy

- task granularity

(optimal subtree

rooting)

* Space-filling

curve (e.g. Hilbert

curve) based for

locality

preservation

* Serial first-fit /

parallel best-fit

* Wireless

agnostic / aware

Data mapping block

decomposition

- -

Message routing
policy

structured, regular

communication

conditional

broadcast

wormhole e-cube

routing (with

multiple virtual

channels)

the defining characteristics. Each entry in the table mentions the choice(s) that

delivered optimal performance in our study.

127

6.2 Architecture Space Exploration

 Most real-world scientific applications consist of smaller task kernels

concurrently running with variable computation footprints. The distribution of

these kernels – varying across application classes – is usually neither completely

regular nor totally random. The degree of hardware acceleration depends on the

degree of connectivity among the cores. Regular topologies prove to be

inadequate when dealing with such scenarios because multi-hop core-to-core

communication impacts both latency and energy consumption. Novel

interconnection architectures based on Small-World Graphs have been shown to

be very successful in reducing network diameters in graphs with many nodes.

The Internet, social networks and network of neurons in the human brain are

examples of graphs having Small-World property. Such networks consist of a

combination of short-range (next-to-neighbor) and long-range links. Analyses of

classes of applications would help in generating the Small-World network that

fits the application traffic. There is a tradeoff involved in choosing the best-fit

network architecture for a particular application and maintaining its reusability

in a broader application class.

 Implementation of such Small-World networks on a chip is still a challenge

because traditional on-chip metal wires as long-range links do not provide

appreciable improvements in latency or energy consumption because long copper

wires introduce significant delay and power consumption. Novel interconnects

such as RF [119], wireless [120] or photonic [121] links have hence been

proposed. Carbon nanotube based on-chip THz wireless links have been

considered in this work (Chapter 5). These novel interconnects hold promise in

128

providing high-bandwidth (low-latency) and low-power on-chip long-range links.

Research in this area would be able to leverage the advances in novel

interconnect technology coupled with novel network topologies to build NoC-

driven many-core platforms with higher throughput capabilities.

6.3 Application Space Exploration

 Biocomputing applications targeted in this work include Maximum

Parsimony and Maximum Likelihood phylogeny reconstruction. We have also

demonstrated the potential of NoC-based platforms to cater to throughput-

oriented applications. In the field of phylogenetics, one important application

could be Bayesian Inference (BI) [123], [124], which is computationally similar to

Maximum Likelihood. Other HPC applications – be it climate modeling or

advanced materials science research – could potentially benefit from NoC-based

platforms. With the increasing diversity of applications, a large number of such

platforms would consist of heterogeneous cores and/or distributed processor and

memory nodes. As such, the interconnect fabric would need to support newer

kinds of inter-node communication. There is enough indication that distributed

processor-memory interactions within a chip would present the greatest

bottlenecks to throughput in systems of the future, and current research on NoC

is beginning to focus on this, e.g. [125]. With applications becoming more

computation- and data-intensive, each memory-processor interface in a

distributed many-core system needs to match or better cache speeds attainable

today. This is the primary motivation behind long-term research on interconnect

topologies with a focus to solve large problems of the future on a chip. The

rationale behind this goal is that with power consumption being an overriding

129

concern in the same manner as speed was a decade ago, more solutions would

increasingly be sought to be implementable on a chip, as opposed to clusters or

supercomputers. It also helps to note that on-chip solutions would often be faster

and cost less, and research in this area would be a great enabler. The sheer

variety of scientific applications and their application traffic – both among

processing nodes, and between processing nodes and memories – presents an

interesting field of study to a researcher on multi-core systems and on-chip

interconnects. Clearly, activity in this research space would yield low-power

high-performance computing systems on a chip.

130

7. References

[1] D. A. Bader and M. Yan, “High-Performance Phylogeny Reconstruction” in

Handbook of Computational Molecular Biology, Edited by S. Aluru, Chapman &

Hall/CRC Computer and Information Science Series, 2005.

[2] P.H. Harvey and M.D. Pagel. The Comparative Method in Evolutionary

Biology. Oxford University Press, 1991.

[3] M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint phylogenies,”

Genome Informatics Workshop, Tokyo: University Academy Press, 1997, pp. 25-

34.

[4] E.L. Lawler, J. Lenstra, A.R. Kan and D. Shmoys. The traveling salesman

problem. John Wiley, 1985.

[5] I. Pe'er and R. Shamir, “The median problems for breakpoints are NP-

complete,” Elec. Colloq. on Comput. Complexity, 1998, p. 71.

[6] T. Jukes, C. Cantor, “Evolution of protein molecules”, Mammalian protein

metabolism, III:21–132, Academic Press, New York, 1969.

[7] M. Kimura. A simple method for estimating evolutionary rates of base

substitutions by thorough comparative studies of nucleotide sequences”, J. Mol.

Evol., 16:111-120, 1980.

[8] M. Hasegawa, H. Kishino, T. Yano, “Dating of the human-ape splitting by a

molecular clock of mitochondrial DNA”, J. Mol. Evol., 22:160–174, 1985.

131

[9] C. Lanave et al, “A new method for calculating evolutionary substitution

rates”, J. Mol. Evol., 20:86–93, 1984.

[10] F. Rodriguez, et al, “The general stochastic model of nucleotide

substitution”, J. Theor. Biol., 142:485–501, 1990.

[11] Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum

likelihood approach. J. Molecular Evolution 17, pp. 368-376.

[12] Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Inc.

[13] Chor, B. and Tuller, T. 2005. Maximum Likelihood of Evolutionary Trees:

Hardness and Approximation. Bioinformatics, vol. 21(1), pp. 97-106.

[14] Bakos, J.D.; Elenis, P.E.; , "A Special-Purpose Architecture for Solving the

Breakpoint Median Problem," Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on , vol.16, no.12, pp.1666-1676, Dec. 2008.

[15] J. Bentley. Fast algorithms for geometric traveling salesman problems.

ORSA Journal of Computing, 4:387-411, 1992.

[16] B. Golden, L. Bodin, T. Doyle, W. Stewart. Approximate traveling

salesman algorithms, Operations Research, 28:694-711, 1980.

[17] G. Reinelt. The traveling salesman problem: computational solutions for

TSP applications. In LNCS 840, pp. 172-186, Springer-Verlag, Berlin, 1994.

[18] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling

salesman problem. Operations Research, 21:498-516, 1973.

132

[19] P. Jog, J. Y. Suh, and D. Van Gucht. Parallel Genetic Algorithms Applied

to the Traveling Salesman Problem, SIAM Journal of Optimization, 1(4): 515-

529, 1991.

[20] D. L. Miller, J. F. Pekny. Results from a parallel branch and bound

algorithm for the asymmetric traveling salesman problem, Operations Research

Letters, 8(3): 129-135, 1989.

[21] M. Bellmore and G. Nemhauser, “The Traveling Salesman Problem: A

Survey,” Operations Research, 16: 538-558, 1968.

[22] E. Horowitz and S. Sahni, “Branch-and-bound” in Fundamentals of

computer algorithms, Potomac, MD: Computer Science Press, 1984, pp. 370-421.

[23] Dally, W.J.; Towles, B.; , "Route packets, not wires: on-chip interconnection

networks," Design Automation Conference, 2001. Proceedings , vol., no., pp. 684-

689, 2001.

[24] Vangal, S.R.; Howard, J.; Ruhl, G.; Dighe, S.; Wilson, H.; Tschanz, J.;

Finan, D.; Singh, A.; Jacob, T.; Jain, S.; Erraguntla, V.; Roberts, C.; Hoskote, Y.;

Borkar, N.; Borkar, S.; , "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm

CMOS," Solid-State Circuits, IEEE Journal of , vol.43, no.1, pp.29-41, Jan. 2008.

[25] Henkel, J.; Wolf, W.; Chakradhar, S.; , "On-chip networks: a scalable,

communication-centric embedded system design paradigm," VLSI Design, 2004.

Proceedings. 17th International Conference on , vol., no., pp. 845- 851, 2004.

133

[26] Tobias Bjerregaard and Shankar Mahadevan. 2006. A survey of research

and practices of Network-on-chip. ACM Comput. Surv. 38, 1, Article 1 (June

2006).

[27] Marculescu, R.; Ogras, U.Y.; Li-Shiuan Peh; Jerger, N.E.; Hoskote, Y.; ,

"Outstanding Research Problems in NoC Design: System, Microarchitecture, and

Circuit Perspectives," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on , vol.28, no.1, pp.3-21, Jan. 2009.

[28] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. San Mateo, CA: Morgan Kaufmann, 2004.

[29] Varatkar, G.V.; Marculescu, R.; , "On-chip traffic modeling and synthesis

for MPEG-2 video applications," Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on , vol.12, no.1, pp.108-119, Jan. 2004.

[30] Soteriou, V.; Hangsheng Wang; Peh, L.; , "A Statistical Traffic Model for

On-Chip Interconnection Networks," Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE

International Symposium on , vol., no., pp. 104- 116, 11-14 Sept. 2006.

[31] Grecu, C.; Ivanov, A.; Pande, R.; Jantsch, A.; Salminen, E.; Ogras, U.;

Marculescu, R.; , "Towards Open Network-on-Chip Benchmarks," Networks-on-

Chip, 2007. NOCS 2007. First International Symposium on , vol., no., pp.205, 7-9

May 2007.

134

[32] Cohen, I.; Rottenstreich, O.; Keslassy, I.; , "Statistical Approach to

Networks-on-Chip," Computers, IEEE Transactions on , vol.59, no.6, pp.748-761,

June 2010.

[33] Jingcao Hu; Marculescu, R.; , "Energy-aware mapping for tile-based NoC

architectures under performance constraints," Design Automation Conference,

2003. Proceedings of the ASP-DAC 2003. Asia and South Pacific , vol., no., pp.

233- 239, 21-24 Jan. 2003.

[34] Srinivasan, K.; Chatha, K.S.; , "A technique for low energy mapping and

routing in network-on-chip architectures," Low Power Electronics and Design,

2005. ISLPED '05. Proceedings of the 2005 International Symposium on , vol.,

no., pp. 387- 392, 8-10 Aug. 2005.

[35] Murali, S.; Meloni, P.; Angiolini, F.; Atienza, D.; Carta, S.; Benini, L.; De

Micheli, G.; Raffo, L.; , "Designing Application-Specific Networks on Chips with

Floorplan Information," Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM

International Conference on , vol., no., pp.355-362, 5-9 Nov. 2006.

[36] Srinivasan Murali; Coenen, M.; Radulescu, A.; Goossens, K.; De Micheli,

G.; , "A Methodology for Mapping Multiple Use-Cases onto Networks on Chips,"

Design, Automation and Test in Europe, 2006. DATE '06. Proceedings , vol.1, no.,

pp.1-6, 6-10 March 2006.

[37] Chen-Ling Chou; Marculescu, R.; , "Contention-aware application mapping

for Network-on-Chip communication architectures," Computer Design, 2008.

135

ICCD 2008. IEEE International Conference on , vol., no., pp.164-169, 12-15 Oct.

2008.

[38] Bakhoda, A.; Kim, J.; Aamodt, T.M.; , "Throughput-Effective On-Chip

Networks for Manycore Accelerators," Microarchitecture (MICRO), 2010 43rd

Annual IEEE/ACM International Symposium on , vol., no., pp.421-432, 4-8 Dec.

2010.

[39] Trivino, F.; Sanchez, J.L.; Alfaro, F.J.; Flich, J.; , "Exploring NoC

Virtualization Alternatives in CMPs," Parallel, Distributed and Network-Based

Processing (PDP), 2012 20th Euromicro International Conference on , vol., no.,

pp.473-482, 15-17 Feb. 2012.

[40] Pop, P.; Eles, P.; Pop, T.; Peng, Z.; , "An approach to incremental design of

distributed embedded systems," Design Automation Conference, 2001.

Proceedings , vol., no., pp. 450- 455, 2001.

[41] Yuan Xie; Wolf, W.; , "Allocation and scheduling of conditional task graph

in hardware/software co-synthesis," Design, Automation and Test in Europe,

2001. Conference and Exhibition 2001. Proceedings , vol., no., pp.620-625, 2001.

[42] Jiong Luo; Jha, N.K.; , "Power-conscious joint scheduling of periodic task

graphs and aperiodic tasks in distributed real-time embedded systems,"

Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM International

Conference on , vol., no., pp.357-364, 2000.

[43] Varatkar, G.; Marculescu, R.; , "Communication-aware task scheduling and

voltage selection for total systems energy minimization," Computer Aided

136

Design, 2003. ICCAD-2003. International Conference on , vol., no., pp. 510- 517,

9-13 Nov. 2003.

[44] Chong Sun, Li Shang, and Robert P. Dick. 2007. Three-dimensional

multiprocessor system-on-chip thermal optimization. In Proceedings of the 5th

IEEE/ACM international conference on Hardware/software codesign and system

synthesis (CODES+ISSS '07). ACM, New York, NY, USA, 117-122.

[45] Pham, D.; Asano, S.; Bolliger, M.; Day, M.N.; Hofstee, H.P.; Johns, C.;

Kahle, J.; Kameyama, A.; Keaty, J.; Masubuchi, Y.; Riley, M.; Shippy, D.;

Stasiak, D.; Suzuoki, M.; Wang, M.; Warnock, J.; Weitzel, S.; Wendel, D.;

Yamazaki, T.; Yazawa, K.; , "The design and implementation of a first-

generation CELL processor," Solid-State Circuits Conference, 2005. Digest of

Technical Papers. ISSCC. 2005 IEEE International , vol., no., pp.184-592 Vol. 1,

10-10 Feb. 2005.

[46] Gratz, P.; Changkyu Kim; McDonald, R.; Keckler, S.W.; Burger, D.; ,

"Implementation and Evaluation of On-Chip Network Architectures," Computer

Design, 2006. ICCD 2006. International Conference on , vol., no., pp.477-484, 1-4

Oct. 2006.

[47] Srinivasan, K.; Chatha, K.S.; , "A Low Complexity Heuristic for Design of

Custom Network-on-Chip Architectures," Design, Automation and Test in

Europe, 2006. DATE '06. Proceedings , vol.1, no., pp.1-6, 6-10 March 2006.

[48] Song, Z.; Ma, G.; Song, D.; , "Hierarchical Star: An Optimal NoC Topology

for High-Performance SoC Design," Computer and Computational Sciences,

137

2008. IMSCCS '08. International Multisymposiums on , vol., no., pp.158-163, 18-

20 Oct. 2008.

[49] Balkan, A.O.; Gang Qu; Vishkin, U.; , "Mesh-of-Trees and Alternative

Interconnection Networks for Single-Chip Parallelism," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on , vol.17, no.10, pp.1419-1432,

Oct. 2009.

[50] Camacho, J.; Flich, J.; , "HPC-Mesh: A Homogeneous Parallel

Concentrated Mesh for Fault-Tolerance and Energy Savings," Architectures for

Networking and Communications Systems (ANCS), 2011 Seventh ACM/IEEE

Symposium on , vol., no., pp.69-80, 3-4 Oct. 2011.

[51] Yu-Hsiang Kao; Ming Yang; Artan, N.S.; Chao, H.J.; , "CNoC: High-Radix

Clos Network-on-Chip," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on , vol.30, no.12, pp.1897-1910, Dec. 2011.

[52] Dally, W.J.; Seitz, C.L.; , "Deadlock-Free Message Routing in

Multiprocessor Interconnection Networks," Computers, IEEE Transactions on ,

vol.C-36, no.5, pp.547-553, May 1987.

[53] Nilsson, E.; Millberg, M.; Oberg, J.; Jantsch, A.; , "Load distribution with

the proximity congestion awareness in a network on chip," Design, Automation

and Test in Europe Conference and Exhibition, 2003 , vol., no., pp. 1126- 1127,

2003.

[54] DaeHo Seo; Akif Ali; Won-Taek Lim; Rafique, N.; , "Near-optimal worst-

case throughput routing for two-dimensional mesh networks," Computer

138

Architecture, 2005. ISCA '05. Proceedings. 32nd International Symposium on ,

vol., no., pp. 432- 443, 4-8 June 2005.

[55] Pamunuwa, D.;Öberg, J; Zheng, L. R.; Millberg, M.; Jantsch, A.; Tenhunen,

H.; , “Layout, Performance and Power Trade-Offs in Mesh-Based Network-on-

Chip Architectures,” Very Large Scale Integration (VLSI-SoC) 2003. Proceedings

of the 12th IFIP International Conference on, pp. 362-367.

[56] Seiculescu, C.; Murali, S.; Benini, L.; De Micheli, G.; , "SunFloor 3D: A Tool

for Networks on Chip Topology Synthesis for 3-D Systems on Chips," Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on , vol.29,

no.12, pp.1987-2000, Dec. 2010.

[57] Bainbridge, W.J.; Furber, S.B.; , "Delay insensitive system-on-chip

interconnect using 1-of-4 data encoding," Asynchronus Circuits and Systems,

2001. ASYNC 2001. Seventh International Symposium on , vol., no., pp.118-126,

2001.

[58] Ludovici, D.; Strano, A.; Gaydadjiev, G.N.; Benini, L.; Bertozzi, D.; ,

"Design space exploration of a mesochronous link for cost-effective and flexible

GALS NOCs," Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2010 , vol., no., pp.679-684, 8-12 March 2010.

[59] Mandal, A.; Khatri, S.P.; Mahapatra, R.N.; , "A fast, source-synchronous

ring-based network-on-chip design," Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2012 , vol., no., pp.1489-1494, 12-16 March

2012.

139

[60] Salamy, H.; Harmanani, H.; , "An effective solution to thermal-aware test

scheduling on network-on-chip using multiple clock rates," Circuits and Systems

(MWSCAS), 2012 IEEE 55th International Midwest Symposium on , vol., no.,

pp.530-533, 5-8 Aug. 2012.

[61] Li Shang; Li-Shiuan Peh; Jha, N.K.; , "Dynamic voltage scaling with links

for power optimization of interconnection networks," High-Performance

Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth

International Symposium on , vol., no., pp. 91- 102, 8-12 Feb. 2003.

[62] Soteriou, V.; Li-Shiuan Peh; , "Exploring the Design Space of Self-

Regulating Power-Aware On/Off Interconnection Networks," Parallel and

Distributed Systems, IEEE Transactions on , vol.18, no.3, pp.393-408, March

2007.

[63] Ogras, U.Y.; Marculescu, R.; Marculescu, D.; Eun Gu Jung; , "Design and

Management of Voltage-Frequency Island Partitioned Networks-on-Chip," Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.17, no.3,

pp.330-341, March 2009.

[64] Liang Guang; Liljeberg, P.; Nigussie, E.; Tenhunen, H.; , "A review of

dynamic power management methods in NoC under emerging design

considerations," NORCHIP, 2009 , vol., no., pp.1-6, 16-17 Nov. 2009.

[65] Bertozzi, D.; Benini, L.; De Micheli, G.; , "Error control schemes for on-chip

communication links: the energy-reliability tradeoff," Computer-Aided Design of

140

Integrated Circuits and Systems, IEEE Transactions on , vol.24, no.6, pp. 818-

831, June 2005.

[66] Hui Zhao; Kandemir, M.; Irwin, M.J.; , "Exploring performance-power

tradeoffs in providing reliability for NoC-based MPSoCs," Quality Electronic

Design (ISQED), 2011 12th International Symposium on , vol., no., pp.1-7, 14-16

March 2011.

[67] Vitkovskiy, A.; Soteriou, V.; Nicopoulos, C.; , "A Dynamically Adjusting

Gracefully Degrading Link-Level Fault-Tolerant Mechanism for NoCs,"

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on , vol.31, no.8, pp.1235-1248, Aug. 2012.

[68] Mak, T.S.T.; Lam, K.P.; , "High speed GAML-based phylogenetic tree

reconstruction using HW/SW codesign," Bioinformatics Conference, 2003. CSB

2003. Proceedings of the 2003 IEEE , vol., no., pp. 470- 473, 11-14 Aug. 2003.

[69] Alachiotis, N.; Sotiriades, E.; Dollas, A.; Stamatakis, A.; , "Exploring

FPGAs for accelerating the phylogenetic likelihood function," Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on ,

vol., no., pp.1-8, 23-29 May 2009.

[70] Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihood-based

phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics.

[71] Blagojevic, F.; Stamatakis, A.; Antonopoulos, C.D.; Nikolopoulos, D.S.; ,

"RAxML-Cell: Parallel Phylogenetic Tree Inference on the Cell Broadband

141

Engine," Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.

IEEE International , vol., no., pp.1-10, 26-30 March 2007.

[72] S. Zierke and J.D. Bakos, “FPGA Acceleration of the phylogenetic

likelihood function for Bayesian MCMC inference methods,” BMC

Bioinformatics, 11: 184: 1-12, 2010.

[73] Pratas, F.; Trancoso, P.; Stamatakis, A.; Sousa, L.; , "Fine-grain

Parallelism Using Multi-core, Cell/BE, and GPU Systems: Accelerating the

Phylogenetic Likelihood Function," Parallel Processing, 2009. ICPP '09.

International Conference on , vol., no., pp.9-17, 22-25 Sept. 2009.

[74] Topol, A. W.; Tulipe, D. C. La; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S.

E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W.; Ieong, M.; , "Three-

dimensional integrated circuits," IBM Journal of Research and Development ,

vol.50, no.4.5, pp.491-506, July 2006.

[75] Jacob, P.; Erdogan, O.; Zia, A.; Belemjian, P.M.; Kraft, R.P.; McDonald,

J.F.; , "Predicting the performance of a 3D processor-memory chip stack," Design

& Test of Computers, IEEE , vol.22, no.6, pp. 540- 547, Nov.-Dec. 2005.

[76] Pavlidis, V.F.; Friedman, E.G.; , "3-D Topologies for Networks-on-Chip,"

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.15,

no.10, pp.1081-1090, Oct. 2007.

[77] Feero, B.S.; Pande, P.P.; , "Networks-on-Chip in a Three-Dimensional

Environment: A Performance Evaluation," Computers, IEEE Transactions on ,

vol.58, no.1, pp.32-45, Jan. 2009.

142

[78] Shan Yan; Bill Lin; , "Design of application-specific 3D Networks-on-Chip

architectures," Computer Design, 2008. ICCD 2008. IEEE International

Conference on , vol., no., pp.142-149, 12-15 Oct. 2008.

[79] Yuh-Fang Tsai; Feng Wang; Yuan Xie; Vijaykrishnan, N.; Irwin, M.J.; ,

"Design Space Exploration for 3-D Cache," Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on , vol.16, no.4, pp.444-455, April 2008.

[80] Young-Su Kwon; In-Cheol Park; Chong-Min Kyung; , "A hardware

accelerator for the specular intensity of Phong illumination model in 3-

dimensional graphics," Design Automation Conference, 2000. Proceedings of the

ASP-DAC 2000. Asia and South Pacific , vol., no., pp.559-564, 9-9 June 2000.

[81] Abed, K.H.; Siferd, R.E.; , "CMOS VLSI implementation of a low-power

logarithmic converter," Computers, IEEE Transactions on , vol.52, no.11, pp.

1421- 1433, Nov. 2003.

[82] Li, R.-C.; , "Near optimality of Chebyshev interpolation for elementary

function computations," Computers, IEEE Transactions on , vol.53, no.6, pp. 678-

687, June 2004.

[83] Byeong-Gyu Nam; Hyejung Kim; Hoi-Jun Yoo; , "Power and Area-Efficient

Unified Computation of Vector and Elementary Functions for Handheld 3D

Graphics Systems," Computers, IEEE Transactions on , vol.57, no.4, pp.490-504,

April 2008.

143

[84] Strollo, A.G.M.; De Caro, D.; Petra, N.; , "Elementary Functions Hardware

Implementation Using Constrained Piecewise-Polynomial Approximations,"

Computers, IEEE Transactions on , vol.60, no.3, pp.418-432, March 2011.

[85] Jijun Tang; Moret, B.M.E.; LiYing Cui; dePamphilis, C.W.; , "Phylogenetic

reconstruction from arbitrary gene-order data," Bioinformatics and

Bioengineering, 2004. BIBE 2004. Proceedings. Fourth IEEE Symposium on ,

vol., no., pp. 592- 599, 19-21 May 2004.

[86] Kangmin Lee; Se-Joong Lee; Hoi-Jun Yoo; , "Low-power network-on-chip

for high-performance SoC design," Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on , vol.14, no.2, pp.148-160, Feb. 2006.

[87] Bononi, L.; Concer, N.; , "Simulation and analysis of network on chip

architectures: ring, spidergon and 2D mesh," Design, Automation and Test in

Europe, 2006. DATE '06. Proceedings , vol.2, no., pp.6 pp., 6-10 March 2006.

[88] Circuits Multi-Projects, 46, Avenue Félix Viallet, 38031 GRENOBLE

FRANCE (http://cmp.imag.fr/) Last accessed 27 February 2013.

[89] National Center for Biotechnology Information Genbank

(http://www.ncbi.nlm.nih.gov/genbank/). Last date accessed: 27 February 2013.

[90] Genome Evolution Laboratory – Mauve Genome Alignment Software

(http://asap.ahabs.wisc.edu/mauve/). Last date accessed: 27 February 2013.

[91] R. A. Fisher, “On the Mathematical Foundations of Theoretical Statistics,”

Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character, Vol. 222, (1922), pp. 309-368.

144

[92] A. W. F. Edwards and L. L. Cavalli-Sforza. 1964. Reconstruction of

evolutionary tress. pp. 67-76 in Phenetic and Phylogenetic Classification, ed. V.

H. Heywood and J. McNeill. Systematics Association Publ. No. 6, London.

[93] J. Neyman. 1971. Molecular studies of evolution: A source of novel

statistical problems. pp. 1-27 in Statistical Decision Theory and Related Topics,

ed. S. S. Gupta and J. Yackel. Academic Press, New York.

[94] R. L. Kashyap and S. Subas. 1974. Statistical estimation of parameters in

a phylogenetic tree using a dynamic model of the substitution process. Journal of

Theoretical Biology 47:75-101.

[95] Z. Yang. 1995. A space-time process model for the evolution of DNA

sequences. Genetics 139:993-1005.

[96] D. L. Swofford. 2002. PAUP*. Phylogenetic Analysis Using Parsimony

(*and Other Methods). Version 4. Sinauer Associates, Sunderland,

Massachusetts.

[97] Felsenstein, J. 1989. PHYLIP -- Phylogeny Inference Package (Version

3.2). Cladistics 5: 164-166.

[98] S. Guindon and O. Gascuel. 2003. A simple, fast, and accurate algorithm to

estimate large phylogenies by maximum likelihood. Systematic Biology,

52(5):696-704.

[99] G. J. Olsen, H. Matsuda, R. Hagstrom and R. Overbeek. 1994. fastDNAmL:

a tool for construction of phylogenetic trees of DNA sequences using maximum

likelihood. Computer Applications in the Biosciences, 10(1):41-48.

145

[100] Michael Ott, Jaroslaw Zola, Alexandros Stamatakis, and Srinivas Aluru.

2007. Large-scale maximum likelihood-based phylogenetic analysis on the IBM

BlueGene/L. In Proceedings of the 2007 ACM/IEEE conference on

Supercomputing (SC '07). ACM, New York, NY, USA, , Article 4 , 11 pages..

[101] The Exelixis Lab, Heidelberg Institute for Theoretical Studies, Heidelberg,

Germany (http://sco.h-its.org/exelixis/software.html) Last accessed 27 February

2013.

[102] Stamatakis, A.P.; Ludwig, T.; Meier, H.; Wolf, M.J.; , "Accelerating Parallel

Maximum Likelihood-Based Phylogenetic Tree Calculations Using Subtree

Equality Vectors," Supercomputing, ACM/IEEE 2002 Conference , vol., no., pp.

40, 16-22 Nov. 2002.

[103] Bogdan, P.; Marculescu, R.; , "Non-Stationary Traffic Analysis and Its

Implications on Multicore Platform Design," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on , vol.30, no.4, pp.508-

519, April 2011.

[104] Partha Pratim Pande; Grecu, C.; Jones, M.; Ivanov, A.; Saleh, R.; ,

"Performance evaluation and design trade-offs for network-on-chip interconnect

architectures," Computers, IEEE Transactions on , vol.54, no.8, pp. 1025- 1040,

Aug. 2005.

[105] J. Duato, S. Yalamanchili, and L. Ni. 2003. Interconnection Networks. An

Engineering Approach. Ch. 9. Morgan Kaufmann Publishers.

146

[106] D. Hilbert, “Über die stetige Abbildung einer Linie auf ein Flächenstück”,

Mathematische Annalen, vol. 38,no. 3, pp. 459-460, 1891.

[107] Seal, S. and Aluru, S. 2007. Chapter 44: Spatial domain decomposition

methods for parallel scientific computing. In Handbook of Parallel Computing:

Models, Algorithms and Applications, (Ed. S. Rajasekaran and J. Reif). Chapman

& Hall/CRC Computer and Information Science Series.

[108] Olaf R. P. Bininda-Emonds, Marcel Cardillo, Kate E. Jones, Ross D. E.

MacPhee, Robin M. D. Beck, Richard Grenyer, Samantha A. Price, Rutger A.

Vos, John L. Gittleman & Andy Purvis. 2007. The delayed rise of present-day

mammals. In Nature 446: 507-512.

[109] Amazon Elastic Compute Cloud (http://aws.amazon.com/ec2/) Last accessed

27 February 2013.

[110] The CIPRES Science Gateway (http://www.phylo.org/sub_sections/portal/)

Last accessed 27 February 2013.

[111] Earth System Modeling Framework

(http://www.earthsystemmodeling.org/) Last accessed 27 February 2013.

[112] A. Kalyanaraman, “Algorithms for genome assembly” in Encyclopedia of

Parallel Computing, ed. D. Padua , Springer Science+Business Media LLC, New

York, USA. DOI 10.1007/978-0-387-09766-4, In Press, 2011.

[113] Majumder, T.; Pande, P.; Kalyanaraman, A.; , "Accelerating Maximum

Likelihood Based Phylogenetic Kernels Using Network-on-Chip," Computer

147

Architecture and High Performance Computing (SBAC-PAD), 2011 23rd

International Symposium on , vol., no., pp.17-24, 26-29 Oct. 2011.

[114] Sarkar, S.; Kulkarni, G.R.; Pande, P.P.; Kalyanaraman, A.; , "Network-on-

Chip Hardware Accelerators for Biological Sequence Alignment," Computers,

IEEE Transactions on , vol.59, no.1, pp.29-41, Jan. 2010.

[115] Ogras, U.Y.; Marculescu, R.; , ""It's a small world after all": NoC

performance optimization via long-range link insertion," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on , vol.14, no.7, pp.693-706,

July 2006.

[116] D. J. Watts and S. H. Strogatz. 1998. Collective dynamics of ‘small-world’

networks. Nature 393:440–442.

[117] Ganguly, A.; Chang, K.; Deb, S.; Pande, P.P.; Belzer, B.; Teuscher, C.; ,

"Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore

Systems," Computers, IEEE Transactions on , vol.60, no.10, pp.1485-1502, Oct.

2011.

[118] K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball,

J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon Nanotubes

as Optical Antennae,” Advanced Materials, vol. 19, issue 3, pp. 421-426,

February 2007.

[119] M.-C. Frank Chang, Eran Socher, Sai-Wang Tam, Jason Cong, and Glenn

Reinman. 2008. RF interconnects for communications on-chip. In Proceedings of

148

the 2008 international symposium on Physical design (ISPD '08). ACM, New

York, NY, USA, 78-83..

[120] Floyd, B.A.; Chih-Ming Hung; O, K.K.; , "Intra-chip wireless interconnect

for clock distribution implemented with integrated antennas, receivers, and

transmitters," Solid-State Circuits, IEEE Journal of , vol.37, no.5, pp.543-552,

May 2002.

[121] O'Connor, I.; Tissafi-Drissi, F.; Gaffiot, F.; Dambre, J.; De Wilde, M.; Van

Campenhout, J.; Van Thourhout, D.; Stroobandt, D.; , "Systematic Simulation-

Based Predictive Synthesis of Integrated Optical Interconnect," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on , vol.15, no.8, pp.927-940,

Aug. 2007.

[122] Wei Huang; Sankaranarayanan, K.; Skadron, K.; Ribando, R.J.; Stan,

M.R.; , "Accurate, Pre-RTL Temperature-Aware Design Using a Parameterized,

Geometric Thermal Model," Computers, IEEE Transactions on , vol.57, no.9,

pp.1277-1288, Sept. 2008.

[123] B. Rannala, and Z. Yang. 1996. Probability distribution of molecular

evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43:304-

311.

[124] Z. Yang and B. Rannala. 1997. Bayesian phylogenetic inference using DNA

sequences: a Markov chain Monte carlo method. Molecular Biology and

Evolution. 14:717-724.

149

[125] Wooyoung Jang; Pan, D.Z.; , "Application-Aware NoC Design for Efficient

SDRAM Access," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on , vol.30, no.10, pp.1521-1533, Oct. 2011.

	1. Introduction
	1.1 Contributions
	1.1.1 Accelerating Maximum Parsimony Phylogenetic Tree Reconstruction
	1.1.1.1 Significance

	1.1.2 Accelerating Maximum Likelihood Phylogenetic Tree Reconstruction
	1.1.2.1 Significance

	1.1.3 High-Throughput, Energy-Efficient NoCs with On-Chip Wireless Links
	1.1.3.1 Significance

	1.2 Organization of the Dissertation

	2. Related Work
	2.1 State of the Art in Networks-on-Chip
	2.2 Hardware Acceleration for Phylogenetics

	3. NoC-Based Accelerator for Breakpoint Phylogeny
	3.1 Breakpoint Median Problem
	3.2 Algorithm
	3.2.1 Branch-and-Bound Method
	3.2.1.1 Lower Bound Calculation

	3.2.2 GRAPPA

	3.3 Core Architecture: PE Design
	3.3.1 Reduction Block
	3.3.2 Peripheral Control Logic
	3.3.3 Memory

	3.4 Network Architecture
	3.4.1 Mesh Switch Design
	3.4.2 Quad-tree Switch Design

	3.5 Communication Paradigm
	3.6 Application Mapping and Tradeoff
	3.7 Experimental Results
	3.7.1 Experimental Setup
	3.7.2 Results with Synthetic Data
	3.7.2.1 Timing Performance
	3.7.2.2 Energy Performance

	3.7.3 Results with Real Genomic Data

	3.8 Conclusion

	4. NoC-Based Accelerator for Maximum Likelihood
	4.1 Theoretical Background
	4.2 Existing Software Suites for ML Phylogeny
	4.3 Design of Computation Core
	4.3.1 PE Design
	4.3.1.1 Memory Subsystem

	4.3.2 Automating Column Compression in Hardware
	4.3.2.1 Algorithm
	4.3.2.2 Design

	4.4 NoC Node
	4.5 Network Architecture
	4.6 Function-Level Parallelization
	4.7 Dynamic Node Allocation
	4.7.1 2D Hilbert Curve with Serial Scan and First Fit (2D_serial)
	4.7.2 Multiple 2D Hilbert Curves with Parallel Scan and Best Fit (2D_parallel)
	4.7.3 3D Folded Torus NoC (3D_torus)
	4.7.4 3D Stacked Torus (3D_sttorus)

	4.8 Routing and Arbitration
	4.9 Experimental Results
	4.9.1 Experimental Setup
	4.9.2 Test-case Design
	4.9.3 Communication Latency
	4.9.4 Speedup
	4.9.4.1 Function-level Speedup
	4.9.4.2 Aggregate Speedup of the Target Function Kernels

	4.9.5 Total Execution Time
	4.9.6 Energy consumption

	4.10 Conclusion

	5. High-Throughput, Energy-Efficient NoC-Based Hardware Accelerators
	5.1 Application Use-Case Model
	5.2 Introduction of Long-Range Links
	5.3 Network Architecture
	5.4 Use of Long-Range On-Chip Wireless Links
	5.4.1 Physical Layer
	5.4.2 Wireless Link Placement

	5.5 Dynamic Node Allocation
	5.5.1 Parallel Best-Fit Allocation Using Multiple Hilbert Curves
	5.5.2 Wireless-First Allocation Using Hilbert Curve
	5.5.3 Wireless-First, Column-Major Allocation

	5.6 On-Chip Routing
	5.7 Experimental Results
	5.7.1 Experimental Setup
	5.7.2 Computation Throughput
	5.7.3 Proportion of Flits Using Wireless Shortcuts
	5.7.4 Energy and Power Consumption
	5.7.5 Traffic Statistics
	5.7.6 Thermal Profile

	5.8 Conclusion

	6. Conclusion and Future Research
	6.1 NoC-based Platforms for Biocomputing: A Ready-Reckoner
	6.2 Architecture Space Exploration
	6.3 Application Space Exploration

	7. References

