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BARIUM STRONTIUM TITANATE FILMS FOR TUNABLE MICROWAVE 
AND ACOUSTIC WAVE APPLICATIONS 

 
Venkataramanan Gurumurthy 

 
ABSTRACT 

 
The composition-dependent Curie temperature and bias-dependant dielectric 

permittivity of Barium Strontium Titanate (BST) makes it very attractive for tunable 

application in the RF/Microwave regime . In this research work, the performance of BST 

varactors fabricated on the conventional Pt/Ti/SiO2/Si bottom electrode stack were 

compared with those fabricated using chemical vapor deposited Nanocrystalline 

Diamond (NCD) as the diffusion barrier layer instead of SiO2. The varactors fabricated 

on NCD films displayed much better symmetry in capacitance-voltage behavior and 

better overall quality factors than varactors fabricated on SiO2. The improvement in 

performance can be attributed to existence of stable interfaces in the devices fabricated 

on NCD which reduced the bottom electrode losses at high frequencies. The SiO2 based 

BST varactors on the other hand displayed better reliability and breakdown fields. The 

main purpose of this research work is to develop a robust Metal Insulator Metal (MIM) 

structure to achieve better all round performance of BST varactors. 

In the second part of this research work, the prospect of developing diamond based 

layered Surface Acoustic Wave (SAW) devices using Ba0.8Sr0.2TiO3 as the piezoelectric 

layer is investigated. 
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Structural characterization of BST thin films deposited on Si/NCD/Pt and 

Si/SiO2/Ti/Pt stack were performed using X-Ray Diffraction (XRD) and Atomic Force 

Microscopy (AFM). Cross-sectional studies on the two stacks were performed using 

Scanning Electron Microscopy (SEM). X-Ray Mapping (XRM) was then done to 

ascertain the quality of the interfaces and to check for interdiffusion between layers. 

MIM structures in the Coplanar Waveguide (CPW) configuration were fabricated 

using conventional lithography and etching techniques for high frequency measurements. 

The performance of the fabricated varactors was characterized from 100 MHz to 1 GHz.  

For the SAW application, structural characterization of Ba0.8Sr0.2TiO3 on Chemical 

Vapor Deposited (CVD) diamond was done and the deposition procedure was optimized 

to obtain thick BST films. SAW bandpass filters and resonators were designed wherein 

the  device geometry was varied over a wide range in order to characterize the variation 

in device performance with geometry. Finally interdigital capacitor structures were 

fabricated and used for conducting Curie temperature measurements on the deposited 

BST films in order to determine the operation range of the deposited BST films.  

 

ix 

 



 
 
 
 
 

CHAPTER 1: 

INTRODUCTION 

1.1 Overview 

Modern communication systems require tunable circuits like filters, matching networks 

and phase shifters in analog RF front ends for gaining adaptability to changes in operating 

conditions like frequency, impedance and RF drive level. Tunable circuits also offer a tool to 

counter the stringent frequency and power requirements of the wireless communication 

industry. In order to realize the tuning circuits for the current and next generation 

communication systems, components which offer high performance and generate low losses 

are required; this underlines the necessity for exploring new materials, designs and 

technologies for meeting these requirements. A special class of high-permittivity 

ferroelectric materials, whose permittivity is field-dependent, offers a great promise for 

applications in the tunable RF/Microwave regime. The main driving force for an increased 

interest in these materials is the potential for substantial miniaturization and the possibility of 

integration  with conventional microelectronic circuits [1-4].  

The properties of ferroelectric materials are thickness-dependant and generally 

ferroelectric thin films are used for microwave applications because they display negligible 

temperature dependence or phase transition effects. Additionally, thin films display better 

tunability as higher fields can be better sustained in comparison to bulk films [5-7]. 
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Barium Strontium Titanate (BST) is one of the most researched ferroelectric materials 

for tunable applications at high frequencies as it demonstrates a superior tradeoff between 

loss and tunability. BST based varactors have also been shown to display high power-

handling capability and very high breakdown fields (>2 MV/cm) [8-14].  

BST thin films generally attain crystalline phase when deposited at temperatures around 

450ºC-700 ºC in an oxygen environment. Therefore, for Metal-Insulator-Metal (MIM) 

capacitor applications, the bottom electrode layer should have good thermal stability and 

oxidation resistance [15].  

Platinum (Pt) is primarily chosen as the standard electrode material mainly because of its 

chemical inertness in a high temperature oxidizing ambient. It has been reported that better 

quality of platinum bottom electrode translates into better overall device performance. 

Typically, a silicon dioxide (SiO2) diffusion barrier layer is grown on silicon substrate before 

depositing Pt to prevent diffusion of platinum through the substrate[15, 16]. 

The SiO2 layer gets decomposed due to diffusion of Pt into the Si/SiO2 interface which 

leads to the formation of volatile SiO [17]. Titanium (Ti) layer is sputtered to act as an 

adhesion layer between platinum and SiO2 and to prevent the decomposition of the SiO2 

layer.  However when depositions are done in an oxygen ambient at high temperatures it was 

observed that there was inter-diffusion between the elemental titanium and platinum. This 

inter-diffusion phenomenon leads to defect formation in the platinum layer which results in 

degradation of device performance, depending upon the thickness of the adhesion layer [18-

22]. Ali Tombak et al. have reported that above 300 MHz electrode losses play a principal 

role in degrading the quality factor of BST thin film capacitors [23].  
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Figure 1.1: Interdiffusion issues in Pt/Ti/SiO2/Si wafer at high temperatures in the presence 
of oxygen.  

Therefore it is very important to obtain a stable defect free bottom electrode stack to 

achieve superior device performance. Figure 1.1 is an Scanning Electron Microscope (SEM) 

image depicting the interdiffusion between the Ti and Pt layers and the hillocking in the Pt 

layer after the Pt/Ti/SiO2/Si wafer was heated at 600ºC in the presence of oxygen for four 

hours (BST’s deposition condition). 

Nanocrystalline Diamond (NCD) deposited by Microwave Plasma Enhanced Chemical 

Vapor Deposition (MPECVD) method would make an excellent material for high frequency 

applications [24] . Prior research work has shown that diamond films deposited on high-

resistive silicon substrate displayed very low RF losses comparable with the performance of 

thermally grown SiO2 on high-resistive silicon substrate from DC-65GHz [25].Very stable 

electrodes can be obtained by depositing metals on diamond films as they are chemically 

inert and highly corrosion resistant [26]. Diamond also has the highest thermal conductivity 

among all materials which means that it can act as an effective heat sink that can reduce the 
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detrimental effects that the electromigration phenomenon has on the metal layers [27]. Thus 

CVD diamond exhibits excellent properties for application as a stable diffusion barrier layer 

for ferroelectric thin film-based MIM devices for high frequency applications.  

In this research work we have shown that varactors with better performance can be 

obtained by using nanocrystalline diamond films as the diffusion barrier layer. The 

processing steps are kept the same as those for devices on silicon and the improved 

performance of the varactors rely solely on the NCD films. Thus the process steps remain 

standardized and reliable. 

Application of diamond to surface acoustic wave (SAW) devices is attractive because it 

has the highest acoustic velocity among all materials, and thus, when combined with a 

piezoelectric layer, it will be ideal for high frequency SAW devices providing great 

advantages in device fabrication. For instance, a 2.5 GHz SAW filter can be fabricated with 

1 µm line-and-space electrodes with the piezoelectric material on diamond structure, 

whereas sub half micron electrodes are necessary for conventional SAW materials [28].  

The second part of the research work involves investigating the performance of layered 

Surface Acoustic Wave (SAW) structures based on CVD diamond. In this research work 

Ba0.8Sr0.2TiO3 is investigated as the piezoelectric layer for the proposed layered SAW 

devices. 

1.2 Thesis Outline 

In chapter 2 the general properties of ferroelectric ceramics like crystal structure, phase 

transitions and polarization mechanisms are discussed. Then the material properties of BST 

and the factors that affect the properties of BST thin films are discussed. Finally the common 

device technologies adopted for BST varactors are discussed. 
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Chapter 3 summarizes the previous work done in structural and dielectric 

characterization of BST thin films using RF magnetron sputtering. Further deposition 

optimization details are given along with the structural characterization information. The 

structural properties and the surface morphology of BST thin films deposited on 

Pt/Ti/SiO2/Si and Pt/NCD/Si are compared next. Finally the processing details are provided 

for the fabrication of varactors in Coplanar Waveguide (CPW) configuration.  

In chapter 4 a basic introduction to the various mass transport and interdiffusion 

mechanisms operating in thin films are given. Cross-sectional SEM analysis of the 

Pt/Ti/SiO2/Si and Pt/NCD/Si stacks is done to study the quality of the interfaces after BST 

deposition. Additionally X-Ray Mapping (XRM) is performed to check for interdiffusion 

between different layers in the BST/Pt/NCD/Si stack. 

In chapter 5 the electrical performance of the varactors fabricated on NCD and SiO2 is 

compared. S-parameter measurements are conducted and equivalent circuit modeling of 

varactor behavior is done using ADS2004A. Based on the analysis the quality factor, tanδ, 

tunability and breakdown strengths of the varactors are compared and a final analysis of how 

a stable bottom electrode and well-defined interfaces affect the performance range of the 

varactor is discussed. Variation of capacitance with temperature for the deposited BST films 

is also plotted to check for ferroelectric domains in the film. 

In Chapter 6 a brief discussion on Surface Acoustic Wave (SAW) propagation, properties 

and performance parameters is provided. Then development details of a mask for layered 

SAW devices based on diamond are provided. Later the deposition of Ba0.8Sr0.2TiO3 on CVD 

diamond is by RF magnetron sputtering is discussed. Details about Curie temperature 

measurements done on deposited BST films are then provided.   
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CHAPTER 2: 

THEORETICAL BACKGROUND 

2.1 Piezoelectricity, Pyroelectricity and Ferroelectricity 

In certain crystalline minerals, the crystals become electrically polarized when subjected 

to mechanical forces. Tension and compression generate voltages of opposite polarity, which 

is proportional to the applied force. Conversely, if the crystals were exposed to an electric 

field, it lengthens and shortens according to the polarity of the field, and is proportional to 

the strength of the field. These behaviors are labeled the piezoelectric and inverse 

piezoelectric effect respectively. For the piezoelectric effect to occur, the absence of centre 

of symmetry or inversion point is necessary. All crystalline materials are conventionally 

classified into 32 crystal classes of which 21 lack centre of symmetry of which 20 can show 

piezoelectricity. This group of twenty comprises of a subgroup of 10 crystal classes which 

contain a unique polar axis. As a result, the crystals of this subgroup when uniformly heated 

generate an additional electric charge, due to spontaneous polarization parallel to the polar 

axis-in addition to piezoelectric effect related charge creation. This effect is known as 

pyroelectricity. In some pyroelectric crystals, an additional property is observed wherein, an 

external electric field can reverse the spontaneous polarization of the crystals over some 

temperature range. The response of polarization to an external electric field manifests itself 

as a hysterisis loop. The materials which exhibit this property are called ferroelectrics. All 

ferroelectrics are pyrolectric and piezoelectric [29-31]. 
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2.2 General Properties of Ferroelectrics 

Ferroelectricity is a phenomenon which was discovered in 1921. Rochelle salt was the 

first material found to show ferroelectric properties. A huge leap in the research on 

ferroelectric materials came in the 1950's, with the introduction of metal oxide-based 

piezoelectric ceramics and other man-made materials. These materials generally are 

physically strong and chemically inert. The composition, shape and dimensions of a ceramic 

material can be tailored to meet the requirements of a specific application [32]. The 

widespread use of ferroelectric ceramics started with the use of barium titanate (BaTiO3) 

based ceramics in capacitor applications and piezoelectric transducer devices. Since then, 

many other ferroelectric ceramics including lead titanate (PbTiO3), lead zirconate titanate 

(PZT), lead lanthanum zirconium titanate (PLZT), and relaxor ferroelectrics like lead 

magnesium niobate (PMN) have been developed and utilized for a variety of applications. In 

the past 20 years, due to the development of ceramic processing and thin film technology, 

many new applications have emerged. The biggest use of ferroelectric ceramics have been in 

the areas such as dielectric ceramics for capacitor applications, ferroelectric thin films for 

non volatile memories, piezoelectric materials for medical ultrasound imaging and actuators, 

and electro-optic materials for data storage and displays [33].  

In this section, the crystal structure, phase transition behavior and polarization 

phenomenon of ferroelectric ceramics will be discussed as they play a very important part in 

determining the properties of ferroelectric ceramics irrespective of area of application, 

chemical composition or thickness of films used. 
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2.2.1 Crystal Structure  

A ferroelectric ceramic is an arrangement of perovskite (oxide having the same 

crystalline structure as the mineral, CaTiO3) crystals, each consisting of tetravalent metal 

ions (usually titanium or zirconium), in a lattice of large divalent metal ions (usually lead or 

barium), and usually O2- ions. The resulting crystal structure is in general called the 

perovskite ABO3 structure is shown in Figure 2.1, where A represents the large cations 

located at the corners of the unit cell, B represents the smaller cations located at the body 

center and O is usually the oxygen atoms positioned at the face centers though halides like 

fluorine and chlorine can also take its place. An ideal cubic perovskite structure is not very 

common and symmetry is reduced in most perovskite materials due to distortions. A 

deformed perovskite structure where the positively charged metal ions are displaced with 

respect to the negatively charged oxygen (or halide) ions leads to the formation of a polar 

axis in the direction of the deformation. The formation of this polar axis gives rise to 

spontaneous polarization- one of the defining aspects of a ferroelectric material.   

The perovskite structures are chemically very flexible i.e. many different cations can be 

substituted with transition metal ions on both the A and B sites without drastically changing 

the overall structure. Complete solid solutions are easily formed between many cations, often 

across the entire range of composition. Even though two cations are compatible in solution, 

their behavior can be radically different when apart from each other. The interactions of the 

transition metal ions with the oxygen or halide ions are complex. Therefore, the properties of 

the final structures are completely different from one another depending upon the metal ion 

that has been used for substitution.  
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Thus the composition, shape and dimensions of perovskite structures and hence their 

electronic properties can be tailored over a wide range. This is a major reason of application 

of  perovskite ferroelectric ceramics over a broad spectrum of applications [32]. Table 2.1 

summarizes the different types of perovskite oxide structures [34].  

 

Figure 2.1: Perovskite ABO3 structure with the A and B cations on the corner and body 
center positions, respectively. Three oxygen anions per unit cell occupy the faces and form 
octahedra surrounding the B-site [21]. 
 

Table 2.1: Types of perovskite oxides [24]. 
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2.2.2 Phase Transitions in Ferroelectric Materials 

 In general, ferroelectric materials undergo a transformation from a paraelectric phase 

to a ferroelectric phase when cooled down to a certain temperature known as the Curie 

temperature (Tc). The phase transition behavior of ferroelectrics is theoretically modeled 

using the Landau-Ginzburg-Devonshire (LGD) theory [35-37]. The schematic of 

ferroelectric phase transition and the change in crystal structure below and above Curie 

temperature is represented in Figure 2.2[32, 38]. 

 

                                              

Figure 2.2: Phase transitions and corresponding changes in crystal structure of perovskite 
ferroelectric materials [32, 38]. 
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As depicted in Figure 2.2, in the ferroelectric phase, the dielectric constant increases as 

the temperature increases. While in the paraelectric phase, the dielectric constant decreases 

with increase in temperature obeying the Curie-Weiss law [39]. The Curie-Weiss law is 

given as follows: 

                                                     εr = 
)( ToT

C
−

                                                             (2.1) 

, where εr is the dielectric permittivity, To is the Curie-Weiss temperature (To≤Tc), T is 

temperature at which εr is being measured and C is the Curie constant.  

Phase transitions in perovskite ferroelectric crystals is associated with a change in crystal 

structure from a centro-symmetric non-polar lattice (paraelectric phase) to non centro-

symmetric polar lattice (ferroelectric phase). Below the Curie temperature, the position of 

smaller tetravalent metal ion and the octahedral structure changes from cubic to tetragonal 

symmetry, with the smaller tetravalent metal ion in an off-center position corresponding to a 

permanent dipole. In the ferroelectric phase, adjoining dipoles align themselves in a 

particular direction forming regions of local alignment called domains. The alignment gives 

a net dipole moment to the domain and thus a net polarization called as spontaneous 

polarization (Ps). Domains are formed due to stray electric fields which are created by non-

compensated polarization charges. However the direction of polarization in the neighboring 

domains is not the same; hence the ferroelectric material displays no overall polarization 

unless an electric field is applied to it. The domains are separated by domain walls and a 

particular domain pattern is a result of stresses created at the Curie point, uncompensated 

surface charges and physical imperfections (vacancies, dislocations and dopants). 3-D 

Piezoresponse Force Microscope (PFM) is used to visualize domains in thin films. 
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Piezoresponse images of epitaxial Lead Zirconium Titanate (PZT) film is shown in Figure: 

2.3 [40].  

 

Figure 2.3: PFM images of epitaxial PZT film. (a) Shows domains with vertical (out-of-
plane) polarization, (b) shows domains with horizontal (in-plane) polarization and (c) is a 
schematic showing the different directions of orientation of dipoles in different domains 
[40]. 

Ferroelectric materials display hysterisis below Curie temperature with an applied field. 

The process of applying an electric field to a ferroelectric material in order to polarize it is 

called poling. When the electric field is increased from zero, the polarization also increases 

due to alignment of more and more dipoles in the same direction. When all the dipoles are 

aligned in the same direction, maximum polarization value is reached and the material 

attains saturated state. If the applied electric field is decreased from saturation point, the 

 

12 



polarization also decreases but it does become zero when electric field is zero due to remnant 

polarization (Pr). When the electric field is reversed, the polarization value becomes zero 

when the field reaches a certain value called the coercive field. When the field is decreased 

further, the material reaches a reverse saturation point and from there onwards the sequence 

repeats itself. The typical hysterisis loop for a ferroelectric material is shown in Figure 2.4 

[32]. A theoretical representation of polarization mechanism of the dipoles in a ferroelectric 

material is depicted in Figure 2.5 [32].  

 

Figure 2.4: The typical hysterisis loop for a ferroelectric material [32].  

     

Figure 2.5: Dipole behavior during the poling process [19]. 

The hysterisis behavior of ferroelectrics is believed to originate from irreversible 

polarization processes occurring in a ferroelectric lattice. The exact relationship between 
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these processes and the domain walls and defects is not known. Hence it has not been 

possible to explain the overall appearance of the hysterisis curves for different ferroelectric 

materials [40].    

The transition from ferroelectric phase to paraelectric phase is classified into first- order 

phase transition and second-order phase transition where the order parameter is polarization. 

In a first-order phase transition the polarization is discontinuous with temperature. First-

order phase transition occurs in Barium Titanate (BaTiO3). In second-order phase transition 

the polarization is continuous with temperature (e.g. Lithium Tantalate)[41]. 

It is also important to note that in most ABO3 perovskites have different stable phases at 

different temperatures. Barium titanate has 4 stable phases which in the order of 

transformation are tetragonal, orthorhombic, rhombhoehedral and cubic phases respectively. 

On the other hand, lead titanate has only two phases-tetragonal and cubic[42, 43].  

Above the Curie temperature, thermal energy or an electric field is sufficient to induce 

movement of the metal atoms randomly from one position to another and so there is no fixed 

asymmetry. The open octahedral site allows the tetravalent metal atom to develop a large 

induced dipole moment when an electric field is applied; which is the main reason why 

perovskite ferroelectric materials have high permittivity in the paraelectric phase. 

In the ferroelectric phase, the strong hysterisis behavior observed makes the ferroelectric 

material suitable for non-volatile memory applications and piezoelectric applications. Above 

the Curie temperature (in the paraelectric phase); the material no longer has spontaneous 

polarization. However the dielectric permittivity still remains high and hence the 

ferroelectric material is highly suitable for DRAM and tunable microwave applications.  
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2.2.3 Polarization and Dielectric Permittivity 

Polarization is the central quantity that is used to explain the physics and behavior of 

dielectric material (a ferroelectric material both in the paraelectric and ferroelectric phase in 

considered to be a dielectric).  The following discussion adapted from [40, 41] provides both 

the macroscopic and microscopic view of the origin of polarization.  

A dipole is a system consisting of a positive and negative charge separated by a distance 

‘a’. If ‘ri’ is the position vector of charge ‘qi’ then the dipole moment ‘p’ is 

                                                       aqp ⋅=                                                             (2.2) 

 The dipole moment for a system of charges is given by 

                                                             ∑=
i

ii rqp                                                         (2.3) 

Polarization ‘P’ is defined as dipole moment per unit volume. 

The polarization of a dielectric is due to the redistribution of charges inside the dielectric 

when an electric field is applied to it. From a macroscopic point of view the dielectric has no 

net charges if no electric field is applied to it. This is because the dielectric has as such equal 

number of positive and negative charges in a macroscopic volume and hence the net charge 

is zero.  

If one considers a boundary perpendicular to the direction of polarization, there is a net 

positive or negative charge on the surface which is not compensated by the charges inherent 

to the dielectric. Therefore the polarization appears on the surface of the dielectric. Thus 

polarization of a dielectric produces a macroscopic electric field which is determined by 

these surface charges.  
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If ‘E’ is the total electric field across the dielectric and E0 is the applied field and E1 is 

the field due to polarization of the solid, then  

                                                             10 EEE +=                                                           (2.4) 

The field E1 opposes the applied field E0 and it is called the depolarizing field. The 

depolarizing field tries to break down the ferroelectric particles into domains. Electric fields 

whose values range from 200V/mm -500V/mm or greater have a significant depolarizing 

effect but the degree of depolarization also depends on the grade of the material, the 

exposure time, temperature etc. [32, 44]. 

The relationship between polarization and the total electric field on the dielectric can be 

expressed in terms of dielectric susceptibility (χ) which is a tensor and depends on the 

electric field.  

                                                          EP ⋅= χ                                                               (2.5) 

Assuming that the volume that is being considered is a thin slab, it can be shown that 

uniform polarization produces uniform depolarization field inside the dielectric. The 

depolarization factor ‘N’ is determined by the axes of the thin slab of dielectric. The field 

due to polarization can be expressed as,  

                                                        PNE ⋅=1                                                               (2.6) 

Combining equations (2.5) and (2.6), polarization can be expressed in terms of ‘N’ as, 
 

                                                 01
E

N
P ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
χ

χ                                                         (2.7) 

Looking at polarization from a microscopic point of view,  Eloc is the local electric field 

acting on a particular atom and therefore can be affected by the nearest surrounding atoms. 

Therefore Eloc would provide an insight into the microscopic properties of the material. 
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Since the polarization of the medium is produced by the field, the polarizability ‘α’ of the 

atom can be defined in terms of the local electric field at the atom. 

                                                            locEp ⋅= α                                                          (2.8) 

In condensed matter, the density and interaction between the dipoles will be quite high. 

Hence Eloc at the position of a particular dipole is given by the superposition of the applied 

macroscopic field ‘E’ and sum of all other dipole fields. For cubic structures (perovskite 

crystal structure in paraelectric phase), a relation is obtained between ‘α’ and the 

macroscopic permittivity ε (=ε0. εr), 

                                                   
ji

ji

q
q
αε
αε

ε
⋅−

⋅+
=

0

0 2
                                                         (2.9) 

Equation (2.9) is called the Clausius-Mosotti equation [45]. The equation can be applied 

only for crystal structures. 

The total dielectric displacement ‘D’ on application of an electric field ‘E’ is the sum of 

the displacement due to the electric field in vacuum and due to the net polarization ‘P’ 

experienced in the material. 

                                                      PED += 0ε                                                            (2.10) 

The net polarization can be written in terms of susceptibility ‘χ’ as, 

                                                    EP ⋅⋅= χε 0                                                             (2.11) 

Combining equations (2.10) and (2.11) and using the relation εr= 1+χ which is a direct 

relation between relative permittivity ‘εr’ and ‘D’ is obtained. 

                                                  ED r ⋅⋅= εε 0                                                             (2.12) 
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Thus, relative permittivity (εr) is a direct measure of the polarizability of the material and 

governs  both phase variations and attenuation of the imposed field in the material [46].  

2.2.4 Mechanisms of Polarization 

Molecules, the basic building blocks of matter are composed of both positive (nuclei) 

and negative (electrons) charges. When an external electric field is applied the positive and 

negative charges are pulled apart i.e. the molecule gets polarized. Thus polarizability as a 

physical process can be attributed to the general structure of a molecule. There are different 

types of polarization contributing to dielectric response depending upon the structure of 

molecules constituting a particular material [40, 41, 46, 47]  

• Electronic Polarization 

It exists in all dielectrics and is caused by the displacement of the negatively charged 

electrons from the positively charged nucleus due to externally applied electric field. 

• Ionic Polarization 

It is due to the stretching of ionic bonds in molecules of ionic crystals caused by the 

displacement of ions. The change in the length of the ionic bonds induces a dipole moment.  

• Dipolar or Molecular Polarization 

Dipolar materials have a permanent moment i.e. moment even in the absence of an external 

electric field. However the net polarization of a dipolar material in the absence of an electric 

field is zero because the molecular moments are randomly oriented, resulting in a complete 

cancellation of the polarization. Piezoelectric materials exhibit dipolar polarization. 
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• Space Charge or Interfacial or Maxwell-Wagner Polarization 

Exists in heterogeneous dielectric materials like BST where the charge carriers are 

accelerated by an applied field until they are impeded by and pile up at physical barriers. 

This build up of charge dictates the polarization of the material. Electrically conducting 

grains, insulating grain boundaries and interfaces are common barriers.  

• Orientation Polarization 

It describes the alignment of permanent dipoles in a material. “At ambient temperatures, 

usually all dipole moments have statistical distribution of their directions. An electric field 

generates a preferred direction for the dipoles, while the thermal movement of the atoms 

perturbs the alignment” [30]. 

• Domain Wall Polarization 

It plays a decisive role in contributing to the dielectric response of ferroelectric materials. 

This type of polarization occurs due to motion of domain walls that separates regions of 

differently oriented dipoles. The polarization takes place by the growth of domains which 

have favorably oriented dipoles with respect to the applied field.  

Some of the polarization mechanisms that were discussed above are schematically  

shown  in Figure 2.6 [47] with and without external electric fields. For a given dielectric 

material the total polarization ‘P’ is the sum of all the individual polarization mechanisms. 

Electronic, ionic and dipolar polarization are called extrinsic polarization mechanisms as 

they are all non-lattice mechanisms. Space charge, orientation and domain wall polarization 

are called intrinsic polarization mechanisms as they originate from the crystal lattice of a 

given material [40, 41].  
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Figure 2.6: Polarization mechanisms. (a) electronic polarization (b) ionic polarization         
(c) dipolar polarization (d) space charge polarization [47]. 

Since polarization and dielectric permittivity (and hence relative permittivity εr) are 

directly related, the dispersion of dielectric response due to contributions from each 

polarization mechanism can be expressed by a complex relative permittivity εr
* [40, 46, 48]. 

                                                         εr
* =ε' – jε''                                                         (2.13) 

The real part of the permittivity, ε', is termed the dielectric constant and depends on the 

magnitude of polarization. It determines the amount of electrostatic energy stored per unit 

volume in a material for a given applied field, i.e. the amount of charge stored in a capacitor. 

The imaginary component of the permittivity, ε'', is called the loss factor and it is the 

mathematical representation of all the losses due to lag in polarization upon application of 

the field , energy dissipation associated with charge polarization and energy loss in a 

material due to heat.  
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Dielectric losses are usually described by the loss tangent tanδ. 

                                                     εr
* =ε'(1 – j tanδ)                                                     (2.14) 

Where, 

                                                        tanδ = '

''

ε
ε                                                             (2.15) 

2.2.5 Polarization and Frequency 

When an alternating field is introduced, the polarizability of the dielectric material is 

selectively excited by different polarization mechanisms at different frequencies. The 

contribution of different polarization mechanisms emerges when the dielectric response of a 

material is studied across a wide frequency range. As was described in the previous section, 

these contributions stem from minute movements of particles that respond to an electric 

field. The contribution of a particular polarization mechanism(s) at a particular frequency 

range depends upon the mass of the particle that initiates it. For example at radio frequencies 

a point is reached where the molecules of the material (molecular polarization) can no longer 

rotate fast enough to contribute to the net polarization. As a result the polarizability of the 

material reduces in magnitude as frequency increases. At a frequency range above the 

infrared region, only the electronic polarization remains effective because it is due to 

electrons which are still able to follow the field at high frequencies. At still higher 

frequencies, even the electronic contribution to polarizability vanishes. The variation of 

polarizability due to extrinsic contributions with frequency is shown in Figure 2.7 [41] where 

αe, αi, αd stand for electronic, ionic and dipolar polarizations which occur up till frequencies 

ωe, ωi, ωd respectively. The frequencies ωi and ωd depend on the material under study but 

their orders of magnitude remain in the regions indicated in the figure [41].  
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In Figure 2.7, relaxation behavior is observed in a frequency range extending from ω=0 

to ω= ωd which is due to dipolar (molecular) polarization and internal mechanisms namely 

orientation, domain wall and space charge polarization. A resonance behavior is observed 

from the end of the microwave band which is due to ionic and electronic polarization. The 

resonance behavior leads to an increase in both the real part of permittivity and the loss 

tangent [46]. Again, since relative permittivity is directly related to polarizability, the 

variation of dielectric constant (ε') with frequency follows a similar pattern as shown in 

Figure 2.8 [40].  

 

Figure 2.7: Variation of total polarizability of a dielectric material with frequency [41]. 

 

Figure 2.8: Frequency dependence of real part of relative dielectric permittivity [40]. 

 

22 



2.3 Effect of Electric Field on the Behavior of Ferroelectric Materials 

Large amplitudes of externally applied field lead to strong non-linearity in ferroelectric 

materials. These significant non-linearity’s and electric field tunable permittivity’s open up a 

broad field of applications for ferroelectric materials especially for developing passive 

tunable components (like capacitors) for phase shifters, filters and matching networks. 

Therefore it is important to understand the effects of large amplitudes of externally applied 

fields on ferroelectric films.  

When Capacitance-Voltage (CV) measurements are done on ferroelectric films at 

frequencies of interest a small A.C. ripple propagates through the film along with the applied 

D.C. bias. The small increase in permittivity when bias is initially applied is due to the 

movement of domain walls whose motion was inhibited by defects in the ferroelectric film (a 

phenomenon called domain wall pinning). But with further application of bias the domain 

walls become immobile and extrinsic contributions to particle movements are nullified due 

to elastic constraints [49-53]. Therefore at high applied fields the A.C signal is mainly 

probing the intrinsic contributions to dielectric response. 

As the D.C bias is decreased the extrinsic contributions again start influencing the 

dielectric behavior again and the contributions reach a maximum point at zero bias. These 

particle movements result in dielectric losses as described in previous sections, therefore 

maximum permittivity accompanied by maximum losses are observed at zero bias. 

Conversely, minimum permittivity and losses are observed at maximum bias value. Thus the 

variation of capacitance (or dielectric permittivity) of a ferroelectric film with positive and 

negative bias voltages assumes a characteristic bell-shaped curve [50].  

 

23 



A clear distinction is observed in the CV characteristics of ferroelectric films in the 

ferroelectric phase and paraelectric phase. In the ferroelectric phase, a “butterfly loop” is 

obtained theoretically with two distinct peaks in capacitance values. These peaks correspond 

to different domain orientations formed on a film in the ferroelectric phase [50, 51]. In the 

paraelectric phase no “butterfly loop” is observed due to absence of hysterisis behavior. The 

CV characteristics of a ferroelectric film in ferroelectric and paraelectric phases respectively 

are depicted in Figure 2.9 [40]. 

 

Figure 2.9: Variation of permittivity with applied bias for a ferroelectric material in             
(a) Ferroelectric phase (b) Paraelectric phase  [40]. 

For high frequency applications the variation of dielectric permittivity of a ferroelectric 

material with applied bias is an important property. This characteristic is commonly called 

tunability (n) which is expressed in terms of relative dielectric permittivity (εr) as  

                                                     n = 
(min)

(max)

r

r

ε
ε

                                                (2.16) 
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In (2.16) tunability is expressed as a ratio of maximum and minimum relative 

permittivities, εr. Tunability can also be expressed as a percentage as shown below  

                                               n (%) =
(min)

(min)(max) )(
*100

r

rr

ε
εε −

                                       (2.17) 

Usually there is a trade-off between tunability and loss tangent and a microwave has 

engineer has to judiciously choose a material wherein there is optimal trade-off between 

these two parameters for a better device performance. A ferroelectric material for microwave 

applications is usually operated in the paraelectric stage, close to Curie temperature to ensure 

high tunability and low loss tangent [53]. It is inevitable that a large electric field has to be 

applied to obtain large tunability in ferroelectric thin films. For example a Metal- Insulator-

Metal (MIM) type capacitor with a ferroelectric material as a dielectric requires electric 

fields in the range of 1000KV/cm to obtain a high tunability [54, 55]. The quality factor (Q-

factor) is used to characterize the losses in lumped circuit elements. Quality factor can be 

defined as the ratio of stored energy to the average energy dissipated in the system per cycle. 

At low frequencies, the capacitances of a ferroelectric material like BST in the 

paraelectric phase decreases monotonically with applied bias. The reason for decrease in 

permittivity’s with increase in frequency has been explained in the Section 2.2.5. The 

increase in magnitude of externally applied bias further restricts the extrinsic polarization 

mechanisms in the material, hence the steadily decreasing permittivities (or capacitances) 

with increasing frequencies and electric fields. Typical capacitance-frequency curves for 1V 

increments in applied bias voltages for Ba0.5Sr0.5TiO3 thin films is shown in Figure 2.10 [56].  
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At high frequencies a resonant dips appear in the reflection coefficient data under bias 

which is not observed at low frequencies. The depth of these resonant dips varies with bias 

and the frequencies at which these dips occur depend on the device layer structure. This is 

now understood to be a consequence of the electrostrictive property also called the “field-

induced piezoelectricity” of the material [56]. 

 

Figure 2.10: Variation of capacitance of Ba0.5Sr0.5TiO3 thin films with frequency for 1V 
increments in bias [56].  

Electrostriction is a non-linear electromechanical coupling mechanism in centro-

symmetric crystals as opposed to piezoelectricity which occurs in non-centrosymmetric 

crystals. Electrostriction is defined as the coupling that exists between the strain developed 

in a material and the electric field applied. Electrostriction is tunable, reproducible and non-

hysteretic. This phenomenon exists in all insulating materials. Though electrostrictive effects 

are feeble compared to piezoelectric effect in most crystalline materials, they may be quite 

large in ferroelectric materials [57, 58].  
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This bias-induced resonance at high frequencies observed in Barium Strontium Titanate 

and Strontium Titanate has an adverse residual effect on the loss properties of the device. It 

is extremely important to understand and characterize these resonances in order to obtain 

reliable capacitors for tunable microwave applications [54, 56]. Figure 2.11 shows the bias-

induced resonant dips observed in BST-based MIM capacitor with increasing bias values 

[56]. 

 

Figure 2.11: Bias-induced resonant dips observed in BST-based MIM capacitor from 0-20V 
in 5V increments [56]. 

A time-dependent decrease in resistance under applied DC bias is observed in both bulk 

and thin film titanate dielectrics [59-61]. Waser at al [62] have suggested that resistance 

degradation occurs due to migration of charged oxygen vacancies. Resistance degradation is 

quantified by measurement of the characteristic time required for the leakage current density 

to increase by an order of magnitude from its steady state value. Resistance degradation is 

reported to a big factor in BST thin films[60, 61, 63].   
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2.4 Material Properties of Barium Strontium Titanate (BST) 

Ba1-xSrxTiO3 is a continuous solid solution between two traditional ferroelectrics- Barium 

Titanate (BaTiO3) and Strontium Titanate (SrTiO3). The Curie temperature of BST decreases 

linearly with increasing Sr concentration at a rate of 3.4º C per mole % Sr. Therefore BST’s 

Curie temperature and hence its properties can be tailored over a wide range to meet the 

requirements of different  applications [15]. This kind of flexibility in properties and hence 

the prospective application range is absent in conventional ferroelectric ceramics. The 

various applications for which BST is being currently researched for are shown in Figure 

2.12.  

 

Figure 2.12: Prospective areas of application of barium strontium titanate. 

In this section the crystal structure, phase transition behavior, polarization behavior and 

microstructure of Barium Strontium Titanate and the influence these properties have on its 

electric performance are discussed.    
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2.4.1 Crystal Structure 

BST crystals exist in both cubic and tetragonal symmetry depending upon the (Ba/Sr) 

ratio and the corresponding Curie temperature of the chemical composition. BST belongs to 

the family of ABO3 perovskites. In BST, Ba2+ and Sr2+ occupy the corners of the cube and 

they are shared between 8 adjacent cells. This gives a total of 0.5 Barium atoms and 0.5 

Strontium atoms per cell. Six oxygen atoms occupy the face-centered position on the six 

sides and since each is shared between two adjacent cells, which makes it three oxygen 

atoms per cell. Ti4+, which is the smallest of the atoms in the crystal, is located in the center 

of the cubic cell. It is relatively free to move and the spontaneous polarization of BST is 

mainly attributed to the movement of the Ti atom [53, 58]. The crystal structure of BST in its 

cubic phase is shown in Figure 2.13.  

 

Figure 2.13: The perovskite crystal structure of BST in cubic phase with no externally 
applied electric field [53]. 
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2.4.2 Phase Transitions 

Due to the different behavior of its parent ferroelectric materials BaTiO3 and SrTiO3 the 

phase transition behavior of BST evolves with composition. The variation of Curie 

temperature and lattice parameters (defined as the spacing between unit cells) of BST with 

Barium composition is shown in Figure 2.14 [64].  

 

Figure 2.14: Variation of Curie temperature and lattice parameters of BST with change in 
Barium percentage composition [64]. 

BaTiO3 (Tc=393K) is a prototype ferroelectric which undergoes a sequence of crystal 

structure transitions as it  switches from ferroelectric to paraelectric phase [41]. SrTiO3 is an 

incipient ferroelectric i.e. it exhibits quantum ferroelectricity which means that though it 

undergoes phase transition at very low temperatures (Tc=105K), the quantum effect prevents 

complete transition to paraelectric phase. Therefore SrTiO3 exhibits ferroelectric behavior 

well above its Curie temperature or paraelectric effect well below Curie temperature [54, 

65].  BST undergoes structural changes as it undergoes phase transitions like BaTiO3 for Ba 

concentrations varying from 20 to 100%. As the composition of BST comes close to pure 

 

30 



SrTiO3, its behavior is complicated by the competition between prototype ferroelectric 

transitions and quantum ferroelectric transition related instabilities.  

The variation of dielectric constant of BST with temperature for different concentrations 

of barium and strontium are given in Figure 2.15 [66]. It suggests that BST with x=0.5 is 

ideal for room temperature tunable microwave applications. This is because for this 

composition the relative dielectric permittivity is high and phase transitions occur at 

temperatures well below room temperature. Hence a good trade-off is obtained between 

dielectric permittivity and losses [16].  

 

Figure 2.15: Variation of dielectric constant of BST for different concentrations of barium 
and strontium [66]. 

The phase transition behavior of BST also varies with thickness. The important 

occurrences that have been observed in the phase transition properties of BST with variation 

in thicknesses are- 

The variation of dielectric constant with temperature becomes less and less pronounced 

with decrease in thickness. At thicknesses in the range of 100 nm, the dielectric constant 

shows almost no variation with temperature. Thus it would advantageous to use thin BST 
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films for applications that require stability in device performance with variations in 

temperature [15, 67]. The comparison of variation of dielectric constant with temperature for 

ceramic and thin film Ba0.7Sr0.3TiO3  is shown in Figure 2.16(a) [15].  

The sharp peak in permittivity that is observed in the phase transition region for thick 

films is suppressed more and more as the film thickness becomes lesser and lesser. The 

phase transition region gets spread over a wider range of temperature (diffuse phase 

transitions). Hence characterization of BST thin films becomes more complicated as 

ferroelectric behavior might be observed in paraelectric region and vice versa [68]. The 

origin of this variation in properties of ferroelectrics with decrease in thickness has still not 

been well understood. In one of the theories it has been suggested that though the “apparent” 

Curie temperature obtained from Curie-Weiss plots from as-measured data suggests a 

diffuseness in phase transitions accompanied by shift in Curie temperatures, the “inherent” 

Curie temperature does not change with thickness [69]. The variation of permittivity with 

temperature for six different film thicknesses of Ba0.7Sr0.3TiO3 is shown in Figure 2.16(b). 

It has also been reported that the Curie temperature of BST thin films fabricated on 

various substrates increases due to the internal stress of the films arising from the difference 

in Thermal Coefficient of Expansion (TEC) and/or difference in the lattice parameter 

between the film and the substrate [54, 70]. 
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Figure 2.16: Phase transition behavior of Ba0.7Sr0.3TiO3. (a) Comparison of variation of 
dielectric constant with temperature between ceramic and thin film Ba0.7Sr0.3TiO3[15],         
(b) Difference in phase transition behavior with decrease in film thickness (Km is the 
maximum permittivity value) [68]. 

Ba1-xSrxTiO3 films with x<0.7 show little hysterisis behavior at room temperature and 

above.  A very weak hysterisis behavior is observed for films with x value ranging from 0.7 

and 0.9   as seen from Figure 2.17 [71] which shows the results of Polarization-Electric field 

(P-E) measurements done on Ba1-xSrxTiO3 thin films at room temperature. 
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Figure 2.17: P–E hysterisis loops for BaxSr1-xTiO3 thin films at room temperature [71]. 
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2.4.3 Polarization 

The general prediction of mean-field models is that near the surface of a ferroelectric thin 

film, the polarization normal to the surface should continuously decrease from the bulk value 

[72]. It has been theoretically concluded that there exists a surface modified layer in a thin 

film when the ferroelectric material in paraelectric phase. The polarizability of material near 

the surface is reduced relative to a bulk ferroelectric. The effect of the reduced polarizability 

is the reduced overall capacitance of the film. The films behavior suggests a total 

suppression of the ionic contributions to the polarization due to this “dead layer” in the 

surface[73].  

The domain structure of thin films is also affected by growth stresses, lattice mismatches 

and thermal expansion mismatch stresses imposed by the substrate[59]. In the case of 

perovskite materials like BST, tensile stress at the transformation temperature pulls the 

polarization into the plane of the film, while compressive stress leads to polarization being 

directed normal to the surface. Tensile stress leads to high dielectric constants and low 

remnant polarizations and compressive stresses lead to the opposite [74-76]. Tensile stresses 

are advantageous for acoustic applications as the hysterisis losses decrease. Since varactors 

are operated in the paraelectric phase and thin films are generally used, the polarization and 

hence the effects of stresses are negligible.  

Many ferroelectric films undergo a slow polarization when a voltage is applied to the 

capacitor and the current resulting from the polarization follows an inverse power law over 

many decades in time [77-79]. This is known as Curie von Schweidler law and it has an 

exponent of close to unity. Discharging also follows the same pattern but with a current of 

opposite polarity. The polarization on charging and discharging is directly related to 
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capacitance and dielectric losses. In BST thin films dielectric relaxation is a dominant cause 

of dielectric loss. The origin of the relaxation currents is poorly understood and several 

mechanisms to explain these currents have been put forward in literature [59, 80-83]. Figure 

2.18 [59]  shows the thickness dependence of relaxation currents observed in BST thin films 

for thicknesses varying from 8 nm to 100 nm keeping the electric field constant at 167 

KV/cm. 

 
 
Figure 2.18: Thickness dependence of relaxation currents observed in metal organic 
chemical vapor deposited BST thin films [59]. 
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2.4.4 Microstructure and Point Defect Chemistry 

The microstructure of the thin film influences many properties of thin films. It is 

extremely important to keep the microstructure of the film constant while studying the 

properties of a thin film. For ferroelectric thin films it becomes even more important because 

of the “size effects” (huge variation in properties from bulk to thin films) whose origins and 

effects are yet not completely understood [59, 69]. 

The crystallinity of BST thin films affects its dielectric properties. The XRD spectrum of 

a sintered BST target is shown in Figure 2.19 [84]. York et al. [85] have reported (100) 

orientation is more preferable and leads to smoother films. The substrate and the deposition 

parameters play a major role in deciding the crystallinity of thin films. Usually 

polycrystalline films are obtained on silicon. Magnesium Oxide (MgO) and Lanthanum 

Aluminate (LaAlO3) are preferred substrates for obtaining single crystalline and epitaxial 

BST films [86].  

 

Figure 2.19: X-ray diffraction spectrum of sintered BST target [84]. 

A film with good texture reduces the variability in the performance of devices fabricated 

in the same wafer. Finally it is important to note that crystallinity does not contribute to the 
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“size effects” in ferroelectric thin films and that films with low crystallinity display subdued 

dielectric properties irrespective of the deposition method used [59]. 

The grain size of thin films strongly depends on the deposition method and in general 

ferroelectric thin films with grain sizes below 1 μm show a steady decrease in dielectric 

permittivity due to existence of a low permittivity layer in the grain boundaries. The grain 

size decreases with increase in strontium content  and the dielectric permittivity decreases 

with decrease in grain size [59, 71]. The existence of a low permittivity layer at the grain 

boundaries is the main reason for the decrease in dielectric permittivity[59]. In 

polycrystalline BST thin films, the grain boundaries play a major role in decreasing 

dielectric permittivity. The [(Ba+Sr)/Ti] ratio has a strong effect on the dielectric behavior of 

BST thin films. Maximum value of dielectric constant is found when [(Ba+Sr)/Ti] ratio is 

equal to unity. When the amount of excess Ti in the film increases the relative permittivity 

monotonically decreases [87]. In films with a columnar structure, grain boundaries have a 

negligible effect on the overall permittivity as they lie perpendicular to the electrode. In fine 

grain films they have a marked effect (depending on the grain size) as they lie parallel to the 

electrode layer [59].  

The behavior of BST based capacitors under high electric fields depends on the 

migration of ionic defects. Hence a greater knowledge of the concentration and behavior of 

mobile point defects is necessary for accurate modeling. The point defect chemistry of thin 

films is strongly influenced by the presence of nearby interfaces and interdiffusion of ions 

across the interfaces [59]. Analysis of nature, volume and behavior of various ionic defects is 

complicated and many direct and indirect methods have been put forward [88, 89]. 
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2.5 BST Device Technology for Tunable Microwave Applications 

BST thin films offer a low cost scalable varactor technology and it is the most widely 

researched material for the current generation of tunable RF and Microwave components and 

systems. As illustrated in Figure 2.20, the high dielectric constant of BST makes it suitable 

for small area capacitors which in turn make smaller device packages possible [15].  

 

Figure 2.20: Reduction in device packages using BST capacitors [15]. 

BST and Micro-Electro-Mechanical-Systems (MEMS) technologies are the current 

competing technologies for low-cost tunable circuits. The cost reduction is achieved by 

using inexpensive substrates and employing high-volume deposition technologies. While the 

BST varactors are cheaper to fabricate and to process, the MEMS counterparts offer 

excellent power-handling capabilities. The applications that favor thin-film BST 

technologies are- 

• Phase-shifters or delay lines which require rapid and continuous tuning at low voltages. 

• Frequency-agile components like tunable matching networks, splitters, mixers, 

multipliers etc. that exploit the non-linear dielectric properties [90]. 
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The two most widely reported device geometries for BST varactors are the Interdigital 

(IDT) structure and the Metal-Insulator-Metal (MIM) structure which are shown in Figure 

2.21(a) and 2.21(b) [91].  

 

Figure 2.21: Two different configurations of BST varactors. (a) Parallel Plate Capacitor        
(b) Interdigital Capacitor [91]. 

The IDT structures are easier to fabricate as they require only a single step metallization 

while the fabrication of MIM structures require at least a three step process. The IDT 

structures can be processed at high temperatures as they are fabricated directly on the 

substrate while in MIM structures the chemical stability of the bottom electrode decides the 

processing temperature. IDT structures suffer from reduced tunability due to large fringing 

electric field in the air while MIM structures offer higher tunabilities as the fields are better 

confined between the top and bottom electrodes. Typical operating voltages of MIM 

structures are <30V while IDT structure operating voltages are in the range of 100V’s.  

The MIM structures are ideal for evaluating the dielectric properties of BST thin films 

due to the direct relation between the measured capacitance and the relative dielectric 

permittivity. Hence this research is mainly focused on evaluating the dielectric properties of 

BST thin films at high frequencies using MIM structures. The various material issues in 

MIM structures are further discussed in Chapter 3. 
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2.6 Deposition Technologies for BST Thin Films 

The deposition process used to prepare the film is one of the major parameters that 

decide the material properties of BST thin films. A careful study of the influence of growth 

parameters on material properties and correlation with electrical properties is imperative. 

There are four main deposition methods that are used for obtaining BST thin films for device 

applications. They are- 

• Chemical Solution Deposition or Sol-gel Deposition (CSD) 

• Pulsed Laser Deposition (PLD) 

• RF Magnetron Sputtering  

• Metal Organic Chemical Vapor Deposition (MOCVD) 

The advantages and disadvantages of the deposition methods are listed in Table 2.2 [53]. 

Table 2.2: Different deposition methods and their advantages and disadvantages[53]. 

 
Method 

 

 
Advantages 

 
Disadvantages 

Chemical Solution 
Deposition 

Simple and rapid 
Low capital investment 
Film stoichiometry 

Repeatability 
Scalability 
Morphology 

Pulsed Laser Deposition Good film quality 
Film stoichiometry 

Formation of particulates 
Scalability 
Low volume deposition 

RF Magnetron Sputtering Uniformity 
Scalability 
High volume deposition 

Film stoichiometry 
Defect concentration 
Residual stresses 

Metal Organic Chemical 
Vapor Deposition 

Flexibility 
Scalability 
High volume deposition 

Lack of suitable precursors
Control 
Complexity 
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Sputtering is compatible with high production requirements and promising for 

development of low-cost microwave circuits. Sputtering is the most widely used deposition 

technique for a variety of metals and dielectrics. In this research work RF Magnetron 

sputtering has been employed to obtain good quality BST thin films. The basic principles of 

sputtering and a description of the deposition parameters and their effect on the material 

properties of the BST thin films are provided in Chapter 3.  

2.7  Material Characterization in the High Frequency Regime 

Important applications of microwaves result from their interaction with various types of 

materials. Microwaves penetrate partially in a metal and flow in a narrow band near the 

outside surface. The current density falls off exponentially from the surface of the conductor 

to the center. At a certain depth called the “Skin depth” (δ) the signal amplitude is 36.8% of 

its surface amplitude where, 

                                                 
ωσμ

δ 2
=                                                             (2.18) 

 σ is the electrical conductivity and μ is the permeability of the metal. Thus 95% of the 

current flows through a depth of 3δ. Therefore only thin metal plating is required for 

microwave components. 

However microwaves freely flow through dielectric materials inducing a net polarization. 

The combination of these two interactions of microwaves enables the development of a 

reflection method which permits the measurement of a materials dielectric properties in the 

high frequency regime [46]. 

Planar transmission lines are ideal for material characterization related microwave 

measurements as they can be easily fabricated using conventional lithography techniques and 
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are easily integrated. Planar transmission lines are available in various geometries. Three 

geometries are widely used in material characterization: stripline, microstrip and coplanar 

waveguide. In this research work the capacitors are fabricated in Coplanar Waveguide 

(CPW) transmission line configuration as they offer simple bias schemes by obviating the 

necessity for via holes. The classic CPW configuration is shown in Figure 2.22 [92]. 

 
(a) (b) 

Figure 2.22: Coplanar waveguide configuration. (a) structural dimensions (b) field 
distributions with solid lines describing electrical fields and dashed lines representing 
magnetic fields [92]. 

Microwaves travel in different modes in different transmission lines. In the CPW line 

they travel in the quasi-Transverse Electromagnetic mode or quasi-TEM mode. The RF 

electric field between the center conducting strip and the ground electrodes tangential to the 

air-dielectric boundary produces a discontinuity in displacement current density at the 

interface, giving rise to an axial, as well as transverse, component of RF                    

magnetic field [92, 93]. In this research work high frequency measurements are done on 

varactors fabricated in CPW configuration. 
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CHAPTER 3: 

VARACTOR PROCESSING 

3.1 BST Based Metal Insulator Metal Structure 

Commercial electronic circuits are stringent with respect to voltage requirements and 

BST based parallel plate structures require low bias voltages to provide the desired tunability 

which makes them more flexible and compatible for many circuit applications. The 

important material issues to be considered in BST based MIM structures are summarized in 

Figure 3.1 [15]. 

 

Figure 3.1: Material issues to be considered in BST based MIM structure [15]. 

High-resistivity silicon (3-4 KΩ-cm) has been used as the substrate for this research 

work due to its low loss tangent and low cost compared to other substrates like sapphire. 

Since BST deposition is done at relatively high temperatures ranging from 450ºC to 700ºC in 

the presence of oxygen gas it become important to use a very stable and oxidation-resistant 

metal as the bottom electrode. Hence noble earth metals like Platinum (Pt), Ruthenium (Ru) 

 

44 



and Iridium (Ir) or their conducting oxides are preferred for use as bottom electrodes. In this 

research work Pt has been used as the bottom electrode due to its oxidation resistance and 

high conductivity compared to metal oxides.   

Typically, a Silicon dioxide (SiO2) diffusion barrier layer is grown on silicon substrate 

before depositing Pt to prevent diffusion of platinum through the substrate during BST 

deposition. Additionally an adhesion layer is required for platinum and development of a 

stable adhesion layer is a major challenge as interdiffusion between layers is a major issue 

with BST based MIM structures as BST deposition happens at high temperatures in 

oxidizing conditions. A very thin Titanium (Ti) or Titanium dioxide (TiO2) adhesion layer is 

usually deposited before depositing platinum. The interface issues as a result using elemental 

Ti as the adhesion layer and SiO2 is further discussed in Chapter 4.  

 

Figure 3.2: Schematic of stacked BST Metal Insulator Metal structures. 

As mentioned earlier, in this research work MIM structures using Nanocrystalline 

Diamond (NCD) films as the diffusion barrier layer are also investigated. The NCD films 

were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) 

technique. The cross-section of the two bottom electrode stacks used for BST varactor 

fabrication along with the thickness of each layer is shown in Figure 3.2. 
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Further discussions on the interface quality and electrical performance obtained with the 

SiO2 based and NCD based MIM structures are in Chapters 4 and 5. Gold (Au) is used as the 

top electrode in both MIM structures (Figure 3.2).  

3.2 RF Magnetron Sputtering 

Sputtering is a physical process whereby atoms and ions in a solid target material are 

ejected into the gas phase due to bombardment of the material by energetic ions. The sputter 

gas is inert, and in most sputtering systems argon is used as the sputtering gas. Sputtering is 

done at pressures in the order of 10-6 Torr or more inside specially designed chambers. Inside 

the chamber, the target material to be sputtered is bonded on to a one circular electrode 

which acts as cathode and is placed in front of the substrate to be coated. Gas is introduced 

and maintained at a suitable pressure in the chamber which is ionized by a suitable voltage 

applied between the two electrodes.  

As the target is subjected to a negative electrical potential compared to the plasma body, 

the positively charged ions in the plasma will be accelerated towards the object. At the target 

surface a number of processes and combinations of them can occur. As shown in Figure 3.3 

[94], in (a) the arriving ion is adsorbed onto the surface, and a chemical or physical bonding 

is created. The incoming species may also transfer some of its momentum to one of the 

surface atoms (b), and cause it to move around on the surface (displacement). If the energy 

of the incoming ion is sufficiently high it may start to remove some of the surface atoms 

(sputtering, shown in (c)), and if the energy is increased even further, the incoming ion can 

be implanted (d). In addition, there can also be a number of combinations of these processes. 

Sputtering is initiated when the energy of the incoming atom or ion is of the order of 100 eV, 

while implantation occurs at ~ 1 keV. Naturally, there are no distinct borderlines between the 
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different processes, but in reality they overlap each other. Also, these processes are strongly 

dependent on the chemical and physical properties of the involved atoms and ions. These 

processes are important in many plasma assisted thin film growth techniques and found the 

basis for most plasma-based applications in the field of thin film growth. The schematic of 

these processes is shown in Figure 3.3 [94]. 

 

Figure 3.3: Processes initiated by bombardment of ions onto the sputtering target. (a) 
Adsorption,  (b) displacement (momentum transfer), (c) removal of surface atom (sputtering 
or etching), (d) ion implantation [94]. 

The sputtered atoms then become part of the plasma, as neutral atoms or ions (if they are 

ionized). The sputtered atoms are then available for deposition. Sputtering is typically a high 

voltage, low current discharge (hundreds of volts and tens of mAcm-2). The basic schematic 

of the sputtering process is shown in Figure 3.4. 

Magnetron sputtering is done by introduction of static magnetic field. Among the various 

configurations available, the most commonly used is magnetron sputtering with circular 

target. Magnetron sputtering works on the principle of magnetic confinement of charged 

particles thereby increasing ionization within regions close to the target. In such a situation, 

the electrons are trapped within the magnetic field flux lines and ions are accelerated towards 
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the target. The application of high voltage initiates plasma between the cathode and the 

anode at pressures in the mTorr range. The ion bombardment of the cathode causes 

secondary electrons to be emitted and sustains the plasma. The magnetic field is positioned 

parallel to the cathode surface and with proper orientation of the magnetic field polarity; the 

secondary electrons are confined within the drift loop. The increased confinement forms a 

region of high plasma density near the cathode which in turn causes a high current low 

voltage discharge. The high plasma density permits use of low pressures for material 

deposition and results in less gas scattering. The reduced gas scattering increases the kinetic 

energy of the sputtered atom increasing the atom transport from the cathode to the substrate. 

The cathode can be sputtered at a high rate owing to the high discharge current and thus high 

deposition rates can be achieved. 

 

Figure 3.4: Description of the sputtering process. 

Dielectric or insulating materials like BST are sputtered by using RF power instead of 

DC biasing to prevent charge accumulation at the surface of the target and results in 

electrical discharging or arcing wherein macro-molecules of target species are transported to 

the substrate and form poor quality films. Ionization of the gas in RF sputtering is caused by 

the electrons which are more mobile than ions and hence respond and oscillate with the 
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applied frequency. The deposition rate however, is reduced in RF sputtering due to reduced 

work done per cycle. 

 

Figure 3.5: The CMS-18 sputtering system at the AMRL. 
 

The Advanced Material Research Laboratory (AMRL) at the University of South Florida 

(USF) is equipped with the CMS-18 sputtering system which is used for depositing a variety 

of oxides and metals. The CMS 18 sputtering system at the lab in USF is shown in Figure 

3.5.  

BST depositions are generally done at temperatures in the range of 450ºC-700ºC to 

obtain crystalline films. To account for the loss of oxygen atoms at high temperatures 

oxygen gas is introduced in the chamber along with argon. The argon-oxygen ratio is one of 

the important deposition parameters that decide the quality of the deposited films. The other 

important parameters are RF power, substrate temperature, deposition pressure and distance 

between target and substrate.  
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In this research work Ba0.5Sr0.5TiO3 thin films were deposited using RF magnetron 

sputtering and the deposition conditions were optimized to obtain BST thin films that display 

a good overall electrical performance. 

3.3 Deposition of BST Thin Films by RF Magnetron Sputtering 

Prior to this research work, the structural and electrical properties of Ba0.5Sr0.5TiO3  

deposited using Pulsed Laser Deposition (PLD) and RF magnetron sputtering were 

investigated [91, 95]. The sputtered BST films were found to be highly uniform over surface 

area and smooth compared to pulsed laser deposited films. The sputtered BST thin films 

displayed an average surface roughness of 3-5 nm while the pulsed laser deposited BST 

films showed high surface roughness values >15 nm due to particulate formation. No 

particulate formation was observed in the sputtered BST films. The electrical properties of 

the deposited BST films were investigated by fabricating MIM structures using BST as the 

dielectric. The top and bottom electrodes used were gold and platinum respectively. A loss 

tangent of 0.01 was obtained for the sputtered BST films which were much better than the 

pulsed laser deposited BST films and hence displayed much better quality factors. 

Breakdown voltage of sputtered BST thin films was 2 MV/cm, whereas PLD BST thin films 

was 1.02 MV/cm and this indicates that the sputtered BST thin films had good dielectric 

strength. The effect of Ar/O2 (argon-oxygen) ratio on tunability was studied on sputtered 

BST films and an Ar/O2 ratio of 90/10 produced the highest tunability. The deposition 

conditions were tailored to achieve a tunability and loss tangent of 2.8:1 and of 0.01 

respectively in a frequency range of 10–200 MHz. The deposition conditions are 

summarized in Table 3.1 [95]. Owing to these conclusions, RF magnetron sputtering was the 

deposition method of choice in this research work. It was recommended that further 
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optimization of the deposition process was required to improve the dielectric strength and 

reliability of the BST thin films and to prevent the problem of shorting of majority of the 

varactors tested. Additionally interface issues in the fabricated MIM structures affected the 

performance of the devices measured. These interface issues will be further discussed in 

Chapter 4. 

Table 3.1: The deposition conditions used for sputtering BST thin films in [91]. 

Deposition Parameters Values 

Substrate Temperature 650°C 

RF power 150 W 

Total pressure 25 mTorr 

Ar/O2 ratio 90/10 sccm 

BST thickness 75 nm 

Deposition time 4 hours 

Growth rate 17-19 nm/hour 

 

The deposition conditions were optimized to prevent the shorting problem of the 

varactors. The aim was to increase the thickness of the BST layer without affecting the 

quality of the films that were deposited earlier. The increase in thickness would prevent the 

shorting of the devices due to the hillocking problem associated with Pt electrodes. Further 

discussion on the hillocking is provided in Chapter 4. 

 

 

51 



Since high temperature depositions in oxidizing conditions adversely affect the stability 

of the interfaces between the substrate, bottom electrode and BST it is important to keep the 

temperature as low as possible. Therefore the substrate temperature was reduced from 650ºC 

to 600ºC below which crystalline BST films could not be obtained [91]. 

The thickness of the deposited BST thin films were increased from 75 nm to around 100 

nm  by increasing the RF power from 150 W to 200 W and reducing the deposition pressure 

from 25 mTorr to 20 mTorr. The reason for increasing the growth rate by increasing the RF 

power and decreasing the deposition pressure is that growth rate affects the quality factor of 

the films deposited. It has been found that the losses in the deposited film reduce with 

increased growth rates [15]. But too much increase in RF power could lead to formation of 

defective crystals in the film during growth due to heavy bombardment [59]. The new 

deposition conditions are tabulated in Table 3.2. 

Table 3.2: The optimized deposition conditions used for sputtering BST thin films. 

Deposition Parameters Values 

Substrate Temperature 600°C 

RF power     200 W 

Total pressure    20 mTorr 

Ar/O2 ratio      90/10 sccm 

Deposition time 4 hours 

Growth rate 23-25 nm/hour 
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BST thin films deposited on a platinum thin film are polycrystalline in nature [87]. The 

characteristic X-Ray diffraction pattern obtained for BST thin films deposited on platinum in 

this research work is shown in Figure 3.6. Typically BST thin films deposited on platinum 

display highest intensity in the (110) direction [84]. The BST (100) peak is preferable as that 

would mean an epitaxial BST thin film growth. The change in deposition conditions did not 

cause any discernable change in the structural properties of the deposited BST thin films.  

 

Figure 3.6: Characteristic X-ray diffraction pattern of BST thin films deposited on platinum 
thin film.  

The deposited BST films displayed a dense microstructure with a large distribution of 

small grains as shown in Atomic Force Microscope (AFM) image shown in Figure 3.7. The 

grain sizes of the deposited BST films varied from 30-50 nm (calculated using Scherer’s 

formula). The presence of small grains can lower the dielectric permittivity of the film 

because it means there is a huge distribution of grain boundaries. The high density of grains 

has its advantages too in that it ensures better cell-to-cell reproducibility. Large distribution 

of small grains is attractive in other ways too: fine-grained ceramic perovskite oxides have 

lower electrical conductivities than do single crystals of the same substances, due to the 

inter-grain depletion regions. Low electrical conductivities mean low leakage currents and 

high  breakdown    voltages  [69, 96]. The   inverse   relation   that    exists   between   

dielectric  
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constant and dielectric strength of many dielectrics including BST is shown in Figure 3.8 

[56]. The electrical characterization of BST thin films is discussed in Chapter 5.  

 

Figure 3.7: Characteristic microstructure of BST films deposited on platinum thin film. 

 

Figure 3.8: Dielectric strength versus dielectric constant for dielectrics [56].  
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3.4 eposition of Nanocrystalline Diamond (NCD) Films 

he Nanocrystalline Diamond (NCD) films were grown on high-resistive silicon (100) 

 Chemical Vapor Deposition 

(MP

 D

T

wafers in the Cyrannus I Iplas Microwave Plasma Enhanced

ECVD) reactor using methane, hydrogen and argon as precursor gases. Prior to the 

growth, the substrates were ultrasonically seeded in a nano-diamond suspension followed by 

ultrasonic rinse and clean process. The surface roughness of the deposited diamond films 

was 10-12 nm and the grain size was found to be in the range 10-15 nm. The deposited 

diamond films provided a relatively smooth defect- free surface for the fabrication of devices 

whose active areas were much larger than the roughness and grain size values indicated 

above. The Cyrannus I Iplas reactor is shown in Figure 3.9.  

 

Figure 3.9: The Cyrannus I Iplas system used for deposition of NCD films. 

 

 

 

 

 

55 



The deposition conditions and the percentage of precursor gases used for the CVD 

process are summarized in Table 3.3. Prior to the deposition, the substrates were 

ultr

Values 

asonically seeded in a nano-diamond suspension followed by ultrasonic rinse and clean 

process. The nanocrystlline nature of the deposited diamond films was conformed by 

employing Micro-Raman spectroscopy. 

Table 3.3: Deposition parameters for NCD films. 

Deposition Parameters 

CH4(% volume) 0.5 

H ( %volume) 1 2

Ar ( %volume) 98.5 

Microwave Power(kW) 1.8 

Pressure(Torr) 1  35

Substrate Temperature(°C) 725 

 

BST films were then deposited on platinized silicon (Pt/Ti/SiO2/Si) and platinized NCD 

(Pt/NCD/Si) wafers at the same time to compare the structural and electrical properties of the 

MIM structures fabricated on SiO2 and NCD films. The XRD and AFM results are shown in 

Figures 3.10 and 3.11. The XRD plots are shown from 10º to 37º and from 43º to 60º to 

avoid the Pt (111) peak.  
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Figure 3.10: Comparison of X-ray diffraction patterns for BST films deposited on (a) 
platinized silicon and, (b) platinized NCD. 
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Figure 3.11: Comparison of microstructure and surface roughness for BST films deposited 
on (a) platinized silicon and, (b) platinized NCD. 
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The BST (100) peak that appeared for the film deposited on platinized silicon did not 

appear for the film deposited on platinized diamond. Otherwise the films on both the wafers 

were of polycrystalline nature. There was a large difference in the surface roughness of the 

deposited films due to the relatively high surface roughness of the NCD layer. The 

microstructure of the BST film deposited on platinized diamond was not as consistent as the 

BST film on platinized silicon. Huge defects were seen on some areas of the sample as seen 

in Figure 3.11 (b).  

3.5 Fabrication of BST Metal Insulator Metal Structures 

MIM structures are used in this research work to evaluate the dielectric properties of 

BST at frequencies ranging from 40 MHz to 1.5GHz. The tuning capacity of the structure is 

directly proportional to the tuning capacity of the BST thin film as the electric fields are 

effectively confined between the top and bottom electrode. The direct relation between 

relative dielectric permittivity and the measured capacitance from MIM structures makes 

analysis simpler. The active device areas of the devices used vary from 2500 μm2 to 30000 

μm2 and hence large capacitance values obtained from these devices (>45pF). Fabrication of 

the MIM structure is a two step process with the use of a blanket bottom electrode layer. The 

first step involves etching the BST layer and the second step is the top metal deposition and 

lift-off.  The measurements obtained from these devices enabled an accurate analysis of the 

dependence of electrical properties of BST on the deposition parameters and device 

interfaces. Modeling and analysis of the performance of these devices also provided 

important information about the important issues to be kept in mind while developing 

advanced BST based device architectures. The quality factors of the devices measured 

decrease sharply with increase in frequency due to resistive losses. For obtaining good 
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quality factors at higher frequencies an optimal device architecture design and fabrication 

process is necessary.  

Prior to deposition of platinum bottom electrode, a SiO2 layer was thermally grown on 

the silicon substrate followed by deposition of the Ti adhesion layer by sputtering at room 

temperature. For the NCD based MIM structure, a diamond film with thickness identical to 

the SiO2 layer is deposited on silicon using the MPECVD method. 150 nm of platinum is 

then sputtered on both wafers at room temperature.  

BST was then deposited on the wafers at the same time using the deposition conditions 

described previously. The BST layer was then etched using Buffered Oxide Etchant (BOE) 

10:1 after patterning the BST layer using conventional optical lithography techniques. The 

etching process must be carefully timed to ensure the platinum layer does not get affected by 

the etchant. Over-etching creates “spots” on the platinum layer. The etch rate of BST on 

BOE is 16 nm/min. 

After etching the BST layer, the wafer is patterned for top metal lift-off. The top metal 

(gold) is then deposited using thermal evaporation after depositing a thin layer of chromium 

adhesion layer. Acetone is used to lift-off the top metal to get the final device structures in 

CPW configuration for high frequency measurements. The schematic of the mask used in the 

second step of the fabrication is shown in Figure 3.12 with device numbers and the 

corresponding active areas. The device fabrication process flow after BST deposition is 

summarized in Figure 3.13 (a). A schematic of the top view of the final device structure 

along with a fabricated device is shown in Figure 3.13 (b). The cross-sectional view of the 

final devices in CPW configuration is shown in Figure 3.14. 
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Figure 3.12: Mask pattern and active device areas used for used for fabrication of BST 
MIM structures. 

 
Figure 3.13: (a) Fabrication process flow of BST MIM structure. (b) Schematic of the top 
view of the device and photograph of a fabricated device. 
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Figure 3.14: Cross-sectional view of the SiO2 and NCD based MIM structures in CPW 
configuration (not to scale). 
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CHAPTER 4: 

INTERDIFFUSION  

4.1 Interdiffusion in Thin Films 

Mass-transport phenomena have a distinct influence on thin film formation, properties 

and performance. It leads to instabilities in the functioning of components and devices due to 

effects like decrease in conductivity, short or open circuiting of conductors, lack of adhesion 

and generation of stress. Such problems frequently surface when two adjacent layers of 

materials are chemically reactive. The mass-transport phenomena are aided largely by lattice 

sites that are unoccupied, interstitial or on the surfaces which result from marginal properties 

of materials. In polycrystalline thin films, a large proportion of atomic-defect combinations 

are associated with non-lattice sites like grain boundaries, dislocations, surfaces and 

interfaces relative to lattice sites. This is because the loosely bound atoms at these non-lattice 

sites attract different point-defect populations and are more mobile than lattice atoms. A 

more important reason for high diffusivity through non-lattice sites is their low activation 

energies. Therefore they act as diffusion paths that short circuit the lattice. Grain boundary 

diffusion is believed to account for major amount of mass transportation. In thin films with 

small grains the high density of boundaries allows rapid and widespread diffusion leading to 

serious reliability problems.  

Another important mass-transport phenomenon to be considered is electromigration 

which is the migration of metal atoms along metals carrying large current densities. In thin 

films the heat generated due to high current densities are conducted away to an extent by the 
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substrate which acts as a massive heat sink. In thin films electromigration manifests itself by 

void and hillock formation, cracked dielectric film overlayers and grain boundary grooving. 

This leads to film damage either due to accumulation or depletion of atoms. 

Film damage is caused by either accumulation or depletion of atoms which depends on 

whether the major mass transport is structurally induced or induced by a temperature 

gradient. If more atoms enter a region such a junction of grains than leave it, a mass pileup 

or formation of hillocks is expected. Voids are formed when mass depletion occurs. To 

prevent these defects a uniform grain distribution is desired.  

In device structures electromigration frequently occurs in the presence of a temperature 

gradient that develops at locations of poor film adhesion, in regions of different thermal 

conductivity such as metal-dielectric contacts. Figure 4.1 shows how hillocks and voids 

occur in thin films due to mass transport that in turn arises due to the grain structure and 

temperature variations[27]. 

 

Figure 4.1: Model showing electromigration related mass-transport arising due to non-
uniform grain structure and temperature gradients [27].  
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4.2 Interdiffusion Effects in Pt/Ti/SiO2/Si Structure 

Since BST depositions are usually done at high temperatures in the presence of oxygen 

both the structural defects in the different layers and the temperature gradients that exist at 

different locations contribute to interdiffusions between different layers which lead to 

formation of defects in the Pt/Ti/SiO2 layers which are extremely detrimental to the 

performance of the devices.  

The Si/SiO2 layer undergoes decomposition at high temperatures in the presence of 

oxygen due to contamination from metals like Ti and Pt. The surface defects in the Si/SiO2 

act as nucleation sites for void formation when the deposited metals getter at these defects 

leading to decomposition of the oxide layer. Metals can form precipitates, generate 

dislocations, or enhance the roughness of the Si/SiO2 interface [17, 97]. 

The Ti layer is deposited to act as an adhesion layer and also to prevent the formation of 

platinum silicide at high temperatures[98]. A cross-sectional image of SiO2, Ti and Pt layers 

on a Si wafer used in this research work is shown in Figure 4.2. The layer marked ‘1’ is the  

 

Figure 4.2: Silicon dioxide, titanium and platinum layers on Si (100) wafer. 
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Ti layer and the layer marked ‘2’ is the Pt layer. Both the layers were sputtered at room 

temperature and hence show no defects due to interdiffusion.  

At high temperatures in oxygen ambient, Ti diffuses and oxidizes in the Pt layer which 

leads to hillock formation in the platinum layer which degrades the performance of 

ferroelectric devices and increases the probability of device shorting. The formation of 

hillocks in Pt-Ti  electrodes has been widely reported[18-22]. Hillocks are believed to result 

from the volume expansion in the Pt layer due to the formation of TiO2 in the Pt layer. This 

volume expansion gives rise to the compressive stress of the Pt layer, which is believed to be 

the cause for the formation of the hillocks. It is also important to note that the shorting of 

capacitors is more due to the size of the hillocks than the distribution of hillocks. The size 

and distribution of the hillocks depend on the thicknesses of Ti and Pt layers and the amount 

of oxygen used during the deposition of BST [20]. The use of TiO2 as the adhesion layer 

instead of Ti also poses adhesion issues which leads to process-induced delamination of the 

Pt layer [18, 99]. 

In this research work, 150 nm of Pt and 40 nm of Ti are used and 100 nm of BST is 

deposited with a very low oxygen flow of 2.5 sccm to make sure the hillocks formed do not 

result in shorting of the capacitors. The electrical shorting probability of the resulting MIM 

structures decreased dramatically. The decrease in shorting probability can be attributed to 

the thicknesses of the Ti, Pt and BST layers used in these devices and the low oxygen flow 

during deposition which considerably reduced the effect of hillocks in the device 

performance. A cross-sectional SEM image of the SiO2/Ti/Pt/BST layers is shown in Figure 

4.3. The interdiffusion of Ti into Pt layer and the resulting volume expansion related defects 

can be seen. The voids that are observed could trap the charged carriers that flow from the 
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platinum electrode when bias is applied across the dielectric. These trapped charges could 

increase the relaxation time of BST when the bias is reduced abruptly which could distort the 

Capacitance-Voltage (CV) behavior of the varactors. The CV behavior of varactors 

fabricated on Pt/Ti/SiO2/Si wafers is discussed in Chapter 5.  

 

BST 

Pt-Ti interdiffusion

SiO2

Figure 4.3: Interdiffusion between the platinum and titanium layers after BST deposition. 

Thus SiO2/Ti/Pt/BST and SiO2/TiO2/Pt/BST based MIM structures suffer from severe 

interdiffusion and delamination problems which affects the reliability and yield of the 

resulting devices. Ali Tombak et al. [23] have reported that above 300MHz electrode losses 

play a principal role in degrading the quality factor of BST thin film capacitors. Therefore it 

is very important to obtain a stable defect free platinum bottom electrode layer to achieve 

superior device performance. Platinum deposited on Sapphire substrate at high temperatures 

has been employed for BST based varactor fabrication [15]. 

In this research work the performance of MIM structures using Nanocrystalline Diamond 

(NCD) films deposited on silicon as the diffusion barrier layer were investigated. In these 

structures no adhesion layers were used between the NCD layer and the platinum layer. 
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4.3 NCD/Pt/BST Structure 

Chemical Vapor Deposited (CVD) diamond would make an excellent material for high 

frequency applications and prior research work has shown that diamond films deposited on 

high-resistive silicon substrate displayed very low RF losses comparable with the 

performance of thermally grown SiO2 on high-resistive silicon substrate from DC-65GHz 

[24]. Very stable electrodes can be obtained by depositing metals on diamond films as they 

are chemically inert and highly corrosion resistant [26]. Diamond also has the highest 

thermal conductivity among all materials which means that it can act as an effective heat 

sink that can reduce the detrimental effects that the electromigration phenomenon has on the 

metal layers [25]. Thus it exhibits excellent properties for application as a stable diffusion 

barrier layer for ferroelectric thin film-based MIM devices.  

A cross-sectional SEM image of the NCD/Pt/BST layers deposited on Si (100) is shown 

in Figure 4.4. As seen from the image clear and stable interfaces exist between all the layers. 

The one disadvantage with using diamond films is that the surface roughness of the diamond 

films is relatively higher than SiO2. But for initial performance analysis, devices with large 

active areas were used to circumvent the roughness effects.  

To further ascertain the quality of the interfaces in the NCD/Pt/BST X-Ray Mapping 

(XRM) was done. X-ray mapping of elemental distributions, first demonstrated by Cosslett 

and Duncumb in 1956, has become one of the most popular modes of operation for exploring 

chemically heterogeneous microstructures with electron beam microanalysis. XRM is  a 

slow technique taking many hours of SEM time [100]. Therefore the sample was analyzed 

overnight to obtain high resolution x-ray maps with good statistics at low levels of 

concentration.  
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Figure 4.4: Nanocrystalline diamond, platinum and BST layers on Si (100) wafer. 

Area of the sample used for analysis is shown in Figure 4.5. The X-Ray maps obtained 

for NCD, Pt, Ti (in the BST layer) and Si layers are shown in Figures 4.6-4.9.  

 

Figure 4.5: Area of the sample used for X-ray mapping. 
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Figure 4.6: Silicon X-Ray Map. 

 

 

Figure 4.7: NCD X-Ray Map. 
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Figure 4.8: Platinum X-Ray Map. 

 

 

Figure 4.9: Titanium X-Ray Map. 
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From the X-Ray Maps obtained it can be seen that there is no interdiffusion between any 

of the layers. There are no signs of the platinum layer diffusing into either the NCD, silicon 

or BST layers. There are also no signs of out-diffusion of titanium in the BST layer into the 

platinum layer. Therefore it can be concluded that using NCD as the diffusion barrier layer 

provides stable interfaces for BST based MIM structures. The CV behavior of the varactors 

fabricated on NCD is discussed in Chapter 5. 

S-parameter measurements were done to measure the variation of resistance of the 

platinum film on NCD and SiO2 layers from 40 MHz to 1.2 GHz. It was found that the 

platinum film on NCD displayed less resistive losses than the one on SiO2 which indicates 

lesser mass transport along the platinum layer  and a reduced contribution to device losses 

[27]. Figure 4.10 shows the variation of real part of impedance (resistance) with frequency 

for the Pt film on NCD and SiO2 diffusion barrier layers respectively. 

 
Figure 4.10: Variation of resistance with frequency for platinum film on NCD and SiO2 
diffusion barrier layers. 
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CHAPTER 5 

VARACTOR MEASUREMENTS  

5.1 Measurement Setup and Equivalent Circuit Model  

One port S-parameter measurements were conducted on the fabricated BST varactors 

using the Anritsu 39397C Lightning Vector Network Analyzer (VNA) and the DC biasing 

was done using Agilent E3620A DC bias supply. Short-Open-Load calibration was done 

using the CS-5 calibration substrate. The measured device data was extracted and modeled 

using Agilent Advanced Design System 2004A (ADS). Varactor performance analysis was 

done using the model prescribed for BST based shunt varactors [23].The equivalent circuit 

used to model the device performance is shown in Figure 5.1.  

 

Figure 5.1: Equivalent circuit model used to characterize varactor performance [23]. 
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In the device model used the series resistance Rs represents the electrode losses, Rp 

accounts for the dielectric losses and Cp is the shunt capacitance measured from the devices. 

The variation of capacitance with temperature for the BST varactors were measured using 

the semi-automatic Cascade probe station equipped with a cryogenic temperature controlled 

chuck.  

The equivalent circuit models elemental values were optimized such that the measured 

and modeled S11 values fit over a frequencies ranging from 100 MHz to 1 GHz. The relative 

permittivity (εr), the loss tangent of BST (tanδ) and the quality factors of the device were 

extracted from the model using the relations given below-  

                                                         εr = 
A
dC p

.
.

0ε
                                                              (5.1) 

                                                     
ppCRω

δ 1tan =                                                           (5.2) 

                                                QBST = ppCRω =
δtan

1                                                   (5.3) 

                                                 Qelectrode = 
psCRω

1                                                        (5.4) 

                                               Qtotal = 
electrodeBST QQ

11
+                                                   (5.5) 

, where d is the thickness of the deposited BST and A is the active area of the fabricated 

devices. QBST, Qelectrode and Qtotal are the quality factors of BST, the electrodes and the total 

quality factor of the measured varactor respectively.  
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5.2 Variation of Capacitance with Electric Field  

The variation of capacitance with external bias was studied for varactors fabricated on 

SiO2 and NCD. The bias voltage was increased to 5V (0.5MV/cm) and the capacitance value 

was calculated at 100MHz for every 0.5V interval. Then the voltage was brought down to 

zero abruptly and subsequently increased in the reverse bias region in 0.5V increments up to 

-5V. Figure 5.2 shows the CV curve obtained for Device#6 (Active area -10000μm2) 

fabricated on SiO2 (For device number and device list refer to Figure 3.12 in page 61). 
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Figure 5.2: Capacitance-voltage behavior of varactor fabricated on SiO2. 

From the calculated capacitance values it was found that there was a striking variation in 

the zero-bias capacitance values before and after the application of forward bias. A distinct 

asymmetry was observed in the CV curve obtained. The distorted CV behavior indicates a 

high density of charge build-up in the BST-platinum interface and in the grain boundaries of 

BST. The grain boundaries of BST usually have charged oxygen vacancies and excess 

titanium which results in a characteristic dielectric relaxation behavior depending on the 

density of these charges but the distinct asymmetry observed here suggests the presence of 
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ionic species injected from the bottom electrode layer which get trapped in the BST-Pt 

interface during the forward bias operation and affect the dielectric performance in the 

reverse bias causing an asymmetry in varactor operation [59, 87, 101].  

This was confirmed by conducting CV measurements on Device#6 again by steadily 

decreasing the bias voltage to 0V from 5V and -5V in 0.5V intervals instead of following the 

normal measurement mode of abruptly bringing down the voltage to zero. The measurements 

were first conducted from 5V to -5V and then from -5V to 5V. The resulting CV curves are 

shown in Figure 5.3. 
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Figure 5.3: Dielectric relaxation behavior of BST films. 

It can be seen that with steady decrease in bias voltage to zero reduced the variations in 

the zero bias capacitance values to negligible levels probably because the relaxation times of 

the ionic species have been accounted for due to the slow variation in bias voltage but the 

curves were still asymmetrical due to the detrimental effects of mass transport from the 

bottom electrode trapped in the voids present in the dielectric-electrode interface. The 

reduced tunability of capacitance in the reverse bias region compared to the forward bias 
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region suggests that more ionic species are getting transported and trapped in the BST-Pt 

interface than in the BST-Cr/Au interface. 

Next, the CV behavior of varactors fabricated on NCD and SiO2 were compared at 100 

MHz. Device#3 (Active area -7500μm2) was used for these measurements. The normal 

measurement mode of increasing the bias voltages in the forward region and then abruptly 

decreasing the voltage to zero and increasing it again in the reverse region was followed for 

these devices. The resulting CV curves are shown in Figure 5.4. 
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Figure 5.4: Variation of permittivity with applied bias for varactors fabricated on SiO2 and 
NCD films. 

It can be seen that the CV curves obtained from varactors fabricated on NCD are very 

symmetric. Only negligible variations in zero bias capacitance values were observed before 

and after bias application which are probably due to the charges present in the BST grain 

boundaries. This suggests that the interfaces in the NCD based MIM structures are very 

stable and defect free due to reduced interdiffusion between the different layers. 

The reduced capacitance of the NCD varactors is due to the increased roughness of the 

BST surface on NCD which marginally reduces the cross-sectional area of the device. The 

tunability of the NCD varactor (60.4%) in the forward bias region was also marginally lower 

than the tunability of the SiO2 varactor (61.9%) for the measured bias voltages. The NCD 
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varactors also needed an initial drive-in voltage of around 0.5V to 2V probably to evaporate 

the resist residues on the rough BST surface. Figure 5.5 shows the NCD varactor response 

before and after drive-in voltage. 

 

(a) (b) 

Figure 5.5: Response of NCD varactor (a) before and (b) after drive-in voltage. 
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Figure 5.6: Variation of quality factors with applied bias for varactors fabricated on SiO2 and 
NCD films. 
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Figure 5.7: Variation of Rs with applied bias for varactors fabricated on SiO2 and NCD films. 

Next the quality factors of the NCD and SiO2 varactors were compared. At 100MHz the 

quality factor of the varactors are entirely dominated by the bottom electrode losses as a 

dielectric relaxation behavior is observed and the dielectric losses are static at 0.01. Since the 

NCD varactors exhibit lower bottom electrode losses than SiO2 varactors, the quality factors 

are correspondingly higher. The inverse relation that exists between the quality factor and 

the electrode losses (Rs) is shown in Figures 5.6 and 5.7. The performance of all the NCD 

and SiO2 varactors displayed similar performance trends when measured and characterized 
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5.3 Variation of Capacitance with Frequency  

The variation of capacitance with at frequencies ranging from 100 MHz to 1GHz for 

varactors fabricated on SiO2 and NCD were calculated at different forward bias voltages 

(Figure 5.8). Device#3 was used for this analysis.  
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Figure 5.8: Variation of capacitance with frequency for (a) SiO2 varactor and (b) NCD 
varactor at different bias voltages. 
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As frequency increases, the contributions from the different polarization mechanisms 

operating in the dielectric gets reduced and a relaxation behavior is observed in the 

dielectric[41]. In BST the dielectric relaxation behavior is defined by the Curie-von 

Schweidler power law dependence of t-n (where n<1)[99]. The capacitance values therefore 

stay constant right through the measured frequency range and there is a monotonic decrease 

in capacitance with increase in forward bias voltage.  

The quality factor and the loss tangent decrease linearly with increase in frequency. The 

frequency dependant loss tangent is indistinguishable from the series resistance due to the 

metal electrodes[56]. Therefore the electrode losses play a dominant role in determining the 

quality factor of the devices in the high frequency range. Again since the NCD varactors 

have lower electrode losses, their quality factors are better than those of SiO2 varactors. The 

Rs values stay relatively constant over the entire measurement frequency range. The 

variation of quality factor, loss tangent and Rs with frequency is shown in Figure 5.9. Similar 

measurements were conducted on four other devices with different active areas and on 

different samples and in each case the varactors fabricated on diamond showed better 

performances with about 20% percent better tunability than the SiO2 based varactors. 

When the varactors were under bias, it was observed that resonant curves appear at high 

frequencies. This resonance behavior was observed in all the varactors measured. The depth 

of these resonance curves increased with applied bias. These resonance curves occur due to 

the electrostrictive property of BST and are detrimental to varactor operation at high 

frequencies [56].  
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Device#3 (Active area -7500 μm2) and Device#4 (Active area -2500μm2) were used for 

comparing the resonance behavior in NCD and SiO2 varactors up to 5GHz. It was found that 

the resonance behavior started occurring at 3V applied bias. These curves occurred at around 

1.5 GHz and 3.3 GHz for the NCD varactors irrespective of active area of the device 

measured. For the SiO2 varactors the resonance behavior occurred at 2 GHz and 4GHz. This 

observed variation in frequencies could be due to the slight variation in cross-sectional area 

of the SiO2 and NCD varactors measured due to the increased roughness in the BST layer on 

the NCD varactors or it could be due to the presence of the NCD layer.  
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Figure 5.9: Variation of quality factor, loss tangent and Rs with frequency. 

The depth of the curves decreased in Device#3 in both  SiO2 and NCD varactors when 

compared with the depth in Device#4 which means that the depth of the curves have a strong 
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dependence on the active area of the varactors. Further study is required to understand and 

characterize this resonance behavior. The increase in the depth of these curves with applied 

bias for both SiO2 and NCD varactors is shown in Figure 5.10. The variation of the depths of 

these curves with device active area for both SiO2 and NCD varactors is shown in Figure 

5.11. 
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Figure 5.10: The increase in the depth of resonant curves with applied bias for SiO2 and 
NCD varactors.  
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This electrostriction property observed in BST can potentially be used for development 

high-Q resonators. The resonance behavior in BST varactors has been modeled to resemble a 

thickness mode Bulk Acoustic Wave (BAW) device [56]. 

 

 

Figure 5.11: The variation of the depths of resonant curves with device active area for SiO2 
and NCD varactors. 
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5.4 Varactor Breakdown and Tunability 

Dielectric breakdown occurs due to either one of four mechanisms namely thermal (due 

to ionic conduction with increase in temperature), avalanche (at high electric fields 

accelerated free electrons strike atoms of the material and free more electrons who in turn 

create more free electrons and the process continues till the material breaks down), discharge 

(large electric field arc across pores of the material leading to erosion and more arcing until 

the material breaks down) and electrolytic (conduction paths created over time due to ionic 

and/or environmental conditions). The breakdown mechanism in ferroelectrics is avalanche 

breakdown [102]. The breakdown strength of a dielectric is not related to its dielectric 

properties [103]. The breakdown fields are the same above and below the Curie temperature, 

in the ferroelectric and paraelectric phases, and have nothing to do with domains. The 

breakdown field depends mainly upon thickness of the dielectric layer, type of electrodes 

used and temperature [96]. The devices on SiO2 broke down catastrophically as shown in 

Figure 5.12.  

For the BST varactors fabricated on SiO2, thicker films give higher tunabilities (at the 

expense of increased bias voltages) and display higher breakdown fields as indicated by Baki 

Acikel[15]. The performance of varactors in Sample-1 and Sample-2 was considered. The 

BST thickness on Sample-1 was 100 nm and the BST thickness in Sample-2 was 150 nm. A 

forward bias CV curve for Device#14 in Sample-2 which had a breakdown voltage >55V 

(>3.6MV/cm) is shown in Figure 5.13.  

 

 

 

85 



 

Figure 5.12: Photograph of Device#4 after breakdown. 
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Figure 5.13: Forward bias CV curve of varactor fabricated on SiO2 with a BST thickness of 
150 nm. 

As can be seen in Figure 5.13 the maximum variation in capacitance with bias is between 

the (0-20)V region after which there are very negligible changes in the capacitance values 

with applied bias. The overall tunability of this varactor was 4.5:1. 

It has been suggested that both tunability and breakdown fields of BST varactors are 

thickness dependant and that geometry effects can be ignored for large-area MIM varactors 

as tunability of the varactor is directly proportional to BST’s tunability[56]. 
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Hence when the performance of varactors measured was analyzed depending on the 

thickness of the BST layer a clear relation between BST thickness, tunability, breakdown 

fields and effect of interdiffusion-induced shorting emerges which is summarized in Table 

5.1. Here comparison is made between varactors measured at different thicknesses. The 

performance analysis of the varactor with 75 nm BST thickness was done by Sriraj 

Manavalan [91]. Device#4’s performance in Sample-1 and Device#14’s performance in 

Sample-2 was considered for this summary. 

Table 5.1: Performance summary of varactors fabricated on SiO2. 

BST 
thicknes
s (nm) 

Tunability in 
(0-6)V range 

(no unit) 

Breakdown 
voltage 
(volts) 

Breakdown 
field 

(MV/cm) 

Overall 
tunability 
(no unit) 

Device 
shorting 
issues? 

75* 2.8:1 6 2.1 2.8:1 Yes 

100 1.75:1 >30V >3 3.9:1 No 

150 1.32:1 >55V >3.6 4.5:1 No 

*Measurement done by Sriraj Manavalan [91]. 

The conclusion drawn from this performance analysis is that the harmful effects of 

interdiffusion and delaminations prevent the tailoring of BST thickness over a wide range to 

suit various applications. Conversely, existence of stable interfaces would enhance the 

performance of the varactors and also allows the variation of BST thickness over a wide 

range depending upon varactor performance requirements.  

The breakdown voltages for the varactors fabricated on NCD were 7-8 volts maximum 

irrespective of the thickness of the BST layer. The NCD varactors did not break down 

catastrophically and their breakdown was characterized by a sudden increase in current 

across the electrodes. This suggests that the breakdown in NCD varactors is induced by the 
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high surface roughness values of the BST layer in the NCD varactor which resulted in the 

creation of a breakdown path across the varactor at low bias voltages. Most of the NCD 

varactors also got shorted due to the inconsistency of the BST layer. The surface roughness 

values varied widely across the sample. However improvements were seen in the output 

(more devices worked) with smoother BST layers. Therefore it is extremely important to 

further optimize the NCD deposition process to get smoother films which consequently 

convert to smooth platinum and BST films. 

5.5 Temperature Versus Capacitance Measurements 

One of the major disadvantages of the RF magnetron sputtering process is that the 

deposited films are not stoichiometric. Since BST films phase transition behavior depends on 

its chemical composition it is important to check whether the deposited films are in 

paraelectric phase by conducting temperature versus capacitance measurements. This is done 

by measuring the variation of capacitance (or relative dielectric permittivity) of the BST 

based varactors with temperature. If the films are in paraelectric phase the variations in 

capacitance with temperature would be negligible. Large variations in capacitance values 

with temperature would be a cause for concern as it would affect the overall performance of 

the varactors with temperature variations. 

 For this measurement SiO2 varactor was used. The temperature was varied from room 

temperature (25ºC) to 120ºC (Curie temperature of barium titanate) and capacitance values 

were extracted by using the equivalent circuit model at 100MHz. The variation of 

capacitance with temperature for the measured varactor is shown in Figure 5.14.  

As seen from the figure, the capacitance steadily decreases with increase in temperature 

and the percentage variation in capacitance from room temperature to 120ºC is around     
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9%-10%. This indicates that the deposited BST film underwent diffuse phase transition i.e. 

the phase transitions occurs over a wide range of temperature[68]. This is one of the 

thickness effects observed in ferroelectric thin films. Therefore there is a possibility of the 

film exhibiting ferroelectric behavior at room temperature. It is also possible that the 

strontium present induces some quantum ferroelectric behavior in the film [65]. The XRD 

pattern of the deposited BST films (discussed in Chapter Three) showed BST peaks 

occurring at positions slightly shifted away from their ideal positions. These shifts in peak 

positions indicate a possible increase in Barium content in the deposited film which could be 

responsible for the increased variations in temperature due to  increase in the Curie 

temperature of the deposited film. Since ferroelectric behavior is undesirable for the intended 

application area of these varactors further study must be conducted to understand the phase 

transition behavior of the deposited BST thin films. 

 

Figure 5.14: Variation of capacitance with temperature for the measured varactor at 
100MHz. 
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CHAPTER 6: 

SURFACE ACOUSTIC WAVE DEVICES 

6.1 Surface Acoustic Wave (SAW) Devices 

Surface acoustic waves (SAW) is the general name for the elastic waves that propagate at 

the surface of solids, whose displacement amplitudes undergo exponential decay beneath this 

surface, similar to the ones that propagate on the water surface. Typically almost all of the 

energy is localized within a depth of two wavelengths. There are many different types of 

SAW waves. The SAW industry uses mainly Rayleigh waves, which are named after Lord 

Rayleigh. 

The most common processing techniques involve either the time delay of the signal, 

which depends on the geometry of the device and the acoustic velocity, or the amplitude of 

the signal which can be varied or "weighted" by controlling the efficiency of the 

piezoelectric transduction [104, 105]. 

 

Figure 6.1: Schematic of (a) surface acoustic wave propagation on a piezoelectric surface, 
(b) a basic SAW device [105]. 
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6.2 Types of SAW Devices 

The device in Fig 6.1(a) is a schematic representation of the propagation of a SAW wave 

on a piezoelectric surface and 6.1 (b) is a schematic of a basic SAW delay line. As the wave 

takes some time to travel between the Interdigital Transducers (IDT’s) - typically 1 μs for 3 

mm of path length. This is very compact compared with EM waves which, in free space, 

need 300 m of path for 1 μs delay. The device can also be used as a bandpass filter, because 

the transducers operate most effectively when the SAW wavelength equals the transducer 

pitch - at other frequencies the waves generated by individual gaps are not in phase, so the 

wave amplitude falls off as the frequency is changed. 

Another basic device is the SAW resonator. This uses arrays of metal strips, with pitch 

λ/2, as reflectors of the waves. These arrays can give strong SAW reflections, and two arrays 

can be used to form a SAW resonator with high Q, up to 105. Such resonators are often used 

for high-stability oscillators. The above mentioned devices are just some basic types. Many 

unique variations are possible for SAW devices, and their applications range from 

piezoelectric strain gauges to pulse compression radar, to cellular handsets. 

The most common group is bandpass filters, which are in very widespread use in radio 

systems (including mobile phone handsets and base stations) and in domestic TV. There are 

many types with differing advantages, such as low shape factor, low insertion loss, small 

size, or high-frequency operation. The wide variety of types is possible because almost 

arbitrary shapes can be defined on the surface with very high precision, using lithography 

techniques similar to those for semiconductor processing. A typical SAW Bandpass 

characteristic is shown if Fig 6.2 [104, 105]. 

 

 

91 



 
Figure 6.2: Typical SAW bandpass filter response [105]. 
 

As mentioned earlier, application of CVD diamond to layered surface acoustic wave 

(SAW) device is attractive because it has the highest acoustic velocity among all materials, 

and thus, when combined with a piezoelectric layer, it will be of good use to high frequency 

SAW devices providing great advantages in the manufacturing of the devices. In this 

research work a layered SAW device with Ba0.8Sr0.2TiO3 as the piezoelectric layer is 

investigated. SAW bandpass filters and resonators are going to be the devices used for 

characterizing the SAW properties of this layered SAW device. Figure 6.3 shows the general 

schematic of a SAW bandpass filter and resonator. Table 6.1 [28, 106, 107] shows the 

acoustic velocities of materials used for SAW applications. From the table it can be seen that 

a layered SAW device using CVD diamond would provide much better performance than a 

SAW device based on conventional piezoelectric substrates like quartz and lithium niobate. 

 

Figure 6.3: General schematic of a SAW bandpass filter and resonator [108]. 
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Table 6.1: Comparison of acoustic velocities of  prospective materials [28, 106, 107]. 

 
16200 CVD Diamond 

8024 Single Crystal Silicon 

3158 ST-X Quartz 

3488 YZ Lithium Niobate 

Acoustic Velocity (m/s) Material 

6.3  Basic SAW Device Performance Parameters  

• Phase velocity (vø)  

It is governed by the wavelength of the SAW device (periodicity of IDT’S) and the centre 

frequency of the SAW filter [104]. 

Vø = f0 * λ  

• Electromechanical Coupling Coefficient (K2)  

It determines the strength of coupling between electrical and mechanical fields. It is the 

efficiency with which EM waves are converted to acoustic waves by the IDT’s and vice 

versa [109]. 

K2 = (π/4N). (R0/X0) where, 

R0 is the radiation resistance of the transducer 

X0 is the static reactance of the transducer  

N is the number of interdigital finger pairs 

 

 

 

 

 

93 



6.4 Challenges in Development of Layered SAW Devices  

BST has a very high coupling coefficient value (0.70) and thus it improves the efficiency 

with which conversion is done by the IDC’s. The high relative permittivity of BST ensures 

good impedance matching to external components. Since the permittivity of BST can be 

tuned with applied bias, it offers an extra tool of being able to tune the sensitivity of the 

SAW device for sensor applications [110]. 

One big disadvantage of using BST is the low Curie temperature which restricts its use to 

underwater applications. The other disadvantage is the thickness effects in BST which 

results in its properties changing with thickness. This makes device characterization and 

performance optimization complex and difficult. A completely defect free surface is required 

for efficient SAW propagation. To actually obtain a defect free BST layer on CVD diamond 

is a big challenge due to the defects and structural non-uniformities in the CVD diamond 

layer. 

Finally, a layered SAW device performance is thickness-dependent. The analysis of 

thicknesses of the CVD diamond layer and the piezoelectric layer is required to restrict the 

propagating SAW waves to the diamond layer and to obviate the necessity to incorporate 

IDT with finger widths in the sub-micron range. H. Nakahati et al have provided a detailed 

theoretical analysis of characteristics of layered diamond based SAW structures [28, 111]. In 

general, CVD diamond thicknesses in the range of 20 μm and piezoelectric layer thicknesses 

in the range of 1.2 μm is required for layered SAW devices with IDT finger widths > 4 μm 

[109]. Getting such thick layers and maintaining a homogeneous surface presents challenges 

in optimization of the deposition process and structural characterization of the CVD diamond 

and BST layers. 
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6.5 Design of SAW Bandpass Filters and Resonators 

The IDT usually comprises two sets of interpenetrating metallic electrodes fabricated 

photolithographically on the surface of a piezoelectric layer. A typical SAW device contains 

two such IDTS, one as input transducer, the other as output transducer to convert the SAW 

back to the electrical domain. During this process some useful signal processing function is 

performed, e.g. delay or filtering. In the simplest case each period of the IDT comprises two 

fingers and two gaps each of width p/4 where ‘p’ is the period of the IDT.                     

Considering the input IDT, the wavelets generated by the individual periods add 

constructively when the SAW wavelength equals the period p (Refer to Figure 6.4). The 

electric fields between adjacent IDT electrodes of opposite polarity penetrate the substrate to 

a depth of order p/4, and so have a strong overlap with the strain field of the surface acoustic 

wave i.e. the IDT provides efficient piezoelectric coupling to SAW. Similarly, the output 

IDT is coupled to the incoming SAW, as can be shown by dual reciprocity [108]. 

 

Figure 6.4: Relation between SAW wavelength and period of interdigital transducer.  

There are infinite possibilities for variation of IDT device geometry [112]. The device 

geometry has a strong influence on the type of wave that is getting propagated. In this 

research work the basic aim of the designing process is to characterize the performance of 

CVD diamond based SAW devices with a ferroelectric layer on top. Therefore wide 
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variations have been done on the device geometry to make a comprehensive study of device 

properties versus SAW performance. The variations in device geometry that have been 

incorporated in the mask are summarized in Table 6.2. The mask design has been done using 

CoventorWare and variations in device geometry have been summarized below. The device 

layouts are shown in Figure 6.5.  

Table 6.2: Variation of various parameters in SAW device geometry. 

Parameter varied Variation 

Thickness of piezoelectric layer 600 nm-1200 nm 

Thickness of NCD 8 μm-20 μm 

Number of IDT finger pairs 10-50 

Periodicity 8 μm-24 μm  

Distance between IDT’s 20 λ-200 λ 

The IDC geometries can be varied in the future based on the conclusions drawn from the 

devices in this mask for optimal device performance. The Interdigital Capacitors (IDC’s) 

were used for Curie temperature measurements. 
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 SAW Bandpass Filter 

Interdigital Capacitors and SAW Resonators 
Figure 6.5: Layouts of different device structures. 

 

 

 

 

 

 

 

 

 

 

 

97 



6.6 Deposition of BST on Chemical Vapor Deposited Diamond 

BST films were deposited on CVD diamond using the RF magnetron sputtering method. 

The deposition parameters were varied in order to get the highest possible thickness of the 

BST layer. It was found that at 200 W RF power there was a good growth rate (23-25 

nm/hour) beyond which the RF power started affecting the target. Therefore depositions 

were done with the standard deposition conditions described in Table3.2 (page number 51) 

and the time of deposition was increased up to 12 hours to get the desired BST thickness. 

Since there were two deposited layers on Si substrate (CVD diamond and sputtered BST), θ-

2θ XRD studies were inconclusive due to their relatively low thickness compared to the Si 

substrate. As mentioned before, the surface roughness of the BST layer was dependent on 

the diamond layer. Cross-sectional SEM studies showed that there were no adhesion issues 

with BST on CVD diamond (Figure 6.6).  

 

Figure 6.6: Cross-sectional SEM image of BST on CVD diamond. 
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6.7 Fabrication of Interdigital Structures 
 

The traditional metal lift-off method did not work for the fabrication of the IDT’s as 

particles of the top electrode layer was getting stuck in between the finger gaps in the 2 

micron and 3 micron interdigital structures. Therefore a modified fabrication process was 

followed in which the metal layer was deposited and patterned first and then the gold metal 

was etched off instead of being lifted-off.  

 

 
 
 
Figure 6.7: Photographs of fabricated IDT’s with 2 μm and 3 μm finger widths. 
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Figure 6.8: Fabrication process flow of Interdigital structures. 

The fabrication process was started by first sputtering Titanium (Ti) and Gold (Au) 

(where Ti is the adhesion layer) on the deposited BST layer. The thicknesses of Ti and Au 

were 40Å and 3000Å respectively. The wafer was then patterned using conventional 

lithography techniques using a positive resist in order to pattern the interdigital structures. 

Finally the Au and the Ti layers were etched off using the respective wet etchants. The etch 

times for Au and Ti were 3min30sec and 10 seconds respectively. 
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 The resulting 2 micron and 3 micron interdigital structures were very well-defined. 

Photographs of fabricated devices are also provided in Figure 6.7.  The process flow of the 

IDT fabrication is summarized in Figure 6.8. Further study needs to be done by conducting 

the SEM analysis of the fabricated interdigital structures to conform the absence of top 

electrode particles in between the electrode fingers. 

6.8 Curie Temperature Measurements on Ba0.8Sr 0.2TiO3 

Curie temperature measurements were done in order to determine the temperature range 

up to which the deposited BST films exhibit ferroelectricity. The measurements were done 

on Interdigital Capacitor (IDC) structures. 25 IDC structures with geometry variations 

identical to the SAW bandpass structures were designed specifically for these measurements. 

The schematic of the IDC structures are shown in Figure 6.9. 

BST films were deposited on 4-inch high resistivity silicon samples using the RF 

magnetron sputtering process using standardized deposition conditions except for the 

deposition time which was increased from the usual 4 hours to 8hrs, 10hrs and 12 hrs 

respectively. It was observed that with increase in the deposition time, the uniformity of the 

BST film got affected. For a 4hour deposition the variation in thickness from centers to edge 

of the sample was around 30nm. For an 8 hour deposition the variation in thickness from 

centre to edge was around 135nm.  The variation in thicknesses from the edges to the centre 

of the sample is provided in Table 6.3. In general, an area of about one inch in the sample 

showed uniform thickness with increase in deposition time and the devices of interest were 

fabricated in this area. A schematic of the appearance of the 4-inch sample after a 12 hour 

BST deposition is shown in Figure 6.10. 
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Figure 6.9: Schematic of Interdigital capacitor structure used for Curie temperature 
measurements. 

 

 
Figure 6.10: Schematic of appearance of the 4-inch sample after deposition of BST for 12 
hours with different colors representing different thicknesses. 
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Table 6.3: Variation in thickness of BST layer with different deposition times. 

 

Cascade Microtech system with Cryogenic temperature control was used for the 

measurements. The capacitance was calculated with change in temperature to determine the 

Curie temperature [113]. Two-port S-parameter measurements were performed on the 

fabricated IDC structures. The calibration was done from 1GHz to 7 GHz using the TRL 

calibration technique. The temperature was varied from -15ºC to 120ºC (Curie temperature 

of Barium Titanate). The capacitance was calculated at different temperatures was used to 

plot the capacitance vs. temperature graph for determining the transition region. The 

equivalent circuit diagram used for extracting the capacitance values is shown in Figure 

6.11. 

 

Figure 6.11: Equivalent circuit diagram used for characterizing IDC performance. 
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The temperature vs. capacitance measurements obtained for the interdigital capacitor is 

shown in Figure 6.12. The measured IDC had 30 finger pairs with a finger width of 5 μm. 

The aperture of the IDC was 137.5 microns and IDT length was 125 microns. The device 

was fabricated on the area of the wafer where the deposited BST thickness was 400 nm 

(deposition time-10 hours). The measurements (refer to Figure 6.12) indicated that the Curie 

temperature of the deposited BST films occurred around the 20 degrees Celsius mark which 

is well below the theoretical Curie temperature of Ba0.8Sr0.2TiO3 (77ºC) [64]. This could be 

due to the shift in apparent Curie temperature due to thickness effects. Further research work 

is necessary to determine the various factors that affect the Curie temperature of BST in 

order to obtain films that are ferroelectric (and hence piezoelectric) for underwater SAW 

applications.  
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Figure 6.12: Temperature versus capacitance measurements obtained from the measured 
Interdigital capacitor. 
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CHAPTER 7: 

CONCLUSIONS AND FUTURE WORK 

7.1 BST Deposition and Structural Characterization 

• RF magnetron sputtering method was employed to deposit Ba0.5Sr0.5TiO3 thin films on 

Pt/Ti/SiO2/Si bottom electrode stack and the deposition conditions were optimized to 

obviate the shorting problems in BST varactors and improve the dielectric strength of the 

deposited BST films. 

• XRD and AFM were used for structural characterization of the deposited BST films. The 

change in deposition conditions did not cause any discernible change in the structural 

properties of the deposited films.  

• BST films were then deposited on Pt/NCD/Si electrode stack and the structural 

characteristics of the deposited films were then compared with those deposited on 

Pt/Ti/SiO2/Si wafer. NCD was deposited on Si wafer by the MPECVD technique. The BST 

films deposited on Pt/NCD/Si displayed more defects and much higher surface roughness 

due to the comparatively high roughness of the diamond layer. 

• The stoichiometry of the deposited BST thin films need to studied by using Rutherford 

Back Scattering (RBS) technique to further optimize the deposition process by compensating 

for the stoichiometric mismatch between the BST target used for deposition and the 

sputtered BST film.  
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• The deposition process can be modified by reducing the RF power in order to get larger 

grains and reduce the density of grain boundaries especially for nanoscale devices to reduce 

the statistical variations in properties of devices fabricated on the BST layer. 

• Substrates like MgO and LaAlO3 can be used to obtain mono-crystalline, epitaxial and 

textured BST thin films which will translate into better performance of fabricated devices. 

• Bismuth Zinc Niobate (BZN) is currently being researched as an alternative material for 

varactor applications at high frequencies [38]. Future research work can be conducted on this 

material and comparisons can be done between BZN varactors and BST varactors. 

7.2 Interdiffusion 

• Cross-sectional SEM analysis was done on Pt/Ti/SiO2/Si and Pt/NCD/Si electrode stacks 

after BST deposition. It was observed that the Pt/Ti/SiO2/Si displayed heavy interdiffusion 

between the Ti and Pt layers. 

• The Pt/NCD/Si stack, in comparison displayed stable interfaces between the different 

layers. This was further conformed by conducting X-ray mapping of the stack. The XRM 

results also indicated the existence of stable interfaces. 

• The interface analysis of the bottom electrode stack can be further done by using RBS 

and Transmission Electron Microscopy. 

7.3 BST Varactor Fabrication and Measurements 

• BST MIM structures were fabricated using conventional optical lithography and etching 

techniques. The devices fabricated had large active areas varying from 2500 μm2 to 30000 

μm2. Hence the devices had high capacitance values and lower quality factor values at higher 

frequencies. 
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• The performance of the fabricated varactors was characterized from 100 MHz to 1 GHz 

and measurements revealed that the BST varactors fabricated on Pt/NCD/Si displayed better 

quality factors and good symmetry in CV characteristics due to the existence of stable 

interfaces. 

• The varactors fabricated on Pt/Ti/SiO2/Si were demonstrated much better reliability and 

higher breakdown fields. The high surface roughness and inconsistency of BST films on 

Pt/NCD/Si contributed to the relatively poor reliability and breakdown fields. 

• Based on the results obtained a relation was derived linking the interface quality to the 

tunability and breakdown voltage in varactors. It was found that thetunability and breakdown 

of varactors have a direct relation with the BST film thickness. The lower the BST film 

thickness, the faster the tunability. However bad interfaces restrict the thickness of BST that 

can be deposited and thereby affect the tuning speed of the varactor. 

• It was concluded that with a good interface and a stable bottom electrode it is possible to 

tailor the performance of the varactors to suit various applications. Thus with the realization 

of a robust NCD based MIM structure, a good all-round varactor performance can be 

obtained.  

• Further work needs to be done to improve the structural properties of the BST films 

deposited on MPECVD diamond based electrode stack. 

• BST nano-scale varactors that operate efficiently at frequencies >1 GHz have been 

fabricated by employing the Focused Ion Beam (FIB) milling technique [114]. A schematic 

of the fabricated series-gap capacitor structure is shown in Figure 7.1. 
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•  Future work in this area will be on investigating the non-linear properties of nano-scale 

active regions of BST thin films for developing Non-Linear Transmission Lines (NLTL’s) 

for pulse shaping and pulse modulation, frequency multipliers and non-linear antennas. 

 

Figure 7.1: FIB milled BST series gap capacitor configuration.   
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7.4 Diamond Based Layered SAW Devices   

• Initial structural characterization of Ba0.8Sr0.2TiO3 films deposited on MPECVD diamond 

was done. Thicker BST films were deposited by increasing the deposition time.  

• SAW bandpass filters and resonators were designed with variations in the device 

geometry in order to characterize the effect of device geometry on the performance of 

layered diamond-BST based SAW devices. 

• Temperature versus capacitance measurements were conducted on the deposited BST 

films to ascertain the temperature at which phase transition occurs for the deposited BST 

films. The phase transition was found to occur at a much lower temperature compared to the 

theoretical phase transition temperatures. 

• Grazing incidence XRD needs to be done to properly characterize the structural 

properties of the deposited BST films. It is also critical to maintain stoichiometry in the 

deposited BST films to improve the phase transition behavior. RBS analysis and further 

optimization of the deposition process is necessary to study stoichiometry of the BST films 

and obtain thicker films.   

• Piezoelectric characterization of the Ba0.8Sr0.2TiO3  films needs to be done to predict the 

performance of the diamond-BST based SAW devices. A measurement setup and technique 

for accurately calculating the phase velocity and electromechanical coupling coefficient 

needs to be developed.  
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