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Localization in Wireless Networked Systems 

Mauricio Castillo Effen 

Abstract 

 

A novel solution for the localization of wireless networked systems is presented.  

The solution is based on cooperative estimation, inter-node ranging and strap-down 

inertial navigation.  This approach overrides limitations that are commonly found in 

currently available localization/positioning solutions.  Some solutions, such as GPS, 

make use of previously deployed infrastructure.  In other methods, computations are 

performed in a central fusion center.  In the robotics field, current localization techniques 

rely on a simultaneous localization and mapping, (SLAM), process, which is slow and 

requires sensors such as laser range finders or cameras. 

One of the main attributes of this research is the holistic view of the problem and 

a systems-engineering approach, which begins with analyzing requirements and 

establishing metrics for localization.  The all encompassing approach provides for 

concurrent consideration and integration of several aspects of the localization problem, 

from sensor fusion algorithms for position estimation to the communication protocols 

required for enabling cooperative localization.  As a result, a conceptual solution is 

presented, which is flexible, general and one that can be adapted to a variety of 

application scenarios.  A major advantage of the solution resides in the utilization of 

wireless network interfaces for communications and for exteroceptive sensing.  In 



 

 xii

addition, the localization solution can be seamlessly integrated into other localization 

schemes, which will provide faster convergence, higher accuracy and less latency. 

Two case-studies for developing the main aspects of cooperative localization were 

employed.  Wireless sensor networks and multi-robot systems, composed of ground 

robots, provided an information base from which this research was launched.  In the 

wireless sensor network field, novel nonlinear cooperative estimation algorithms are 

proposed for sequential position estimation.  In the field of multi-robot systems the issues 

of mobility and proprioception, which uses inertial measurement systems for estimating 

motion, are contemplated.  Motion information, in conjunction with range information 

and communications, can be used for accurate localization and tracking of mobile nodes.  

A novel partitioning of the sensor fusion problem is presented, which combines an 

extended Kalman filter for dead-reckoning and particle filters for aiding navigation. 

 

 

 

 

 

 

 

 

 



1 
 

 

 

Chapter 1 

Introduction 

 

1.1. Technologies on the Rise and the Emergence of Computing Paradigms 

Cooperative localization, as presented in this dissertation, lies at the heart of the 

rise of technological advances, which are poised to change the day-to-day life of the 

world’s societies.  In order to allow for the reader to place this research in its proper 

context, the current technological developments, which motivate and enable the practical 

realization of the ideas and concepts presented, are summarized. 

 

1.1.1. Everywhere Computing 

As in the realm of Mark Weiser’s vision of “Ubiquitous Computing”, currently, 

people come into contact with objects that incorporate embedded processors, without 

giving any consideration to how things work internally, [1].  Advances in semiconductor 

fabrication capabilities provide the verification that Moore’s law still holds.  Larger 

computing power, larger memory capacity in ever-shrinking electronic packaging and 

reduction of prices are reported daily.  Inevitably, the pervasiveness of these devices will 

provide for the creation of, so called, smart or situation-aware environments, [2].  Smart 

environments work on behalf of humans.  The attempt to serve their occupants needs and 

fulfill their expressed desires.  In addition, smart environments are conceived, which will 

attempt to deduce their occupants desires and requirements.  Embedded computers may 
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someday become a part of a person’s physical makeup.  Currently, computers, which are 

veiled in clothing, are available to be carried by people.  Such capability has, in the last 

few years, been extensively researched in the wearable computing field, [3].  Figure 1, 

presents an experimental office environment with, what the authors term, “roomware” 

components, [4]. 

 

 
Figure 1:  Ubiquitous Computing Example: 

Streitz et al., 2005, [4] 
 

Roomware components such as computers and their interfaces form part of the 

walls and furniture and provide interactive collaboration tools.  The ultimate goal consists 

in having people not perceive of computers as such.  Rather, people, while performing 

their activities, will interact intuitively with their computational assistants to produce 

more efficient and error free activities. 

 

1.1.2. Everything Networked 

Developments do not stop at everywhere computing.  The latest communications 

and networking technologies have enabled embedded systems to communicate among 
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each other and to connect to and through the largest interconnected system in the world, 

the Internet.  The communications modality with the fastest pace of growth is wireless 

with its key thrust stemming from personal communications.  Aside from the rather 

trivial personal communications applications, it is widely accepted that, in a not so distant 

future, hordes of tiny and low-cost sensors will be pervasively installed for collecting 

data related to physical quantities of every imaginable kind [5].  This development has 

already started, [6].  The usefulness of the, so called, Wireless Sensor Networks, (WSNs), 

has been studied extensively presented and in several publications.  For instance, WSNs 

were used for disaster management purposes, as explained in section 1.2.1, [7].  Figure 2 

pictures a wireless sensor node, which is equipped with a Global Positioning System 

receiver.  These types of WSNs may be used extensively in disaster management 

projects. 

 

  
Figure 2:  A Wireless Sensor Node for Flash-flood Alerting: 

Castillo-Effen et al., 2004, [7] 
 

Another product based on wireless technology is the radio frequency ID or RF-

ID.  The RF-ID is destined to become ubiquitous due to its applicability within a wide 

variety of scenarios such as tracking people, commodities and sensing key parameters of 

perishable food, [8]. 
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While technical issues with respect to spectrum band allocation are being 

resolved, it seems that the, so-called, Fixed to Mobile Convergence, (FMC), and the 

Mobile to Mobile Convergence, (MMC), are imminent, [9].  As a result, these 

technologies will provide for a high degree of integration of cell phones into corporate 

fixed line telecommunications/networking infrastructures.  These infrastructures will 

allow services to be provided to users regardless of location, the terminals, physical radio 

technology or protocols they may employ. 

 

1.1.3. Open Spectrum 

The constant growth of users of wireless communication devices has generated a 

congested and inadequately utilized electromagnetic spectrum, which is considered by 

many as a “precious natural resource” [10].  This development has generated a 

completely new approach to the use of the radiofrequency spectrum.  Ideally, this new 

approach should fulfill some basic requirements such as, [10]: 

• Provide highly reliable communication channels between users, 

• Use the electromagnetic frequency spectrum efficiently, 

• Do not interfere with communications of frequency bands licensed to 

primary users. 

Undoubtedly, the achievement of these goals can only be obtained if communication 

devices have a degree of “intelligence” and if they are aware of the presence of other 

communication parties by sensing the event of instantaneous spectrum occupation. 

These concepts have been summarized and well documented under the definition 

of cognitive radio [11].  The key enabler, at the core of cognitive radio, is a highly 
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flexible platform, which is known as Software Defined Radio, (SDR).  Conceptually, 

SDR is nothing more than a digital signal processing device.  Together with a wideband 

receiving and transmitting front-end and wideband signal converters, the SDR processes 

signals at the baseband.  Figure 3 depicts this conceptual platform. 

 

  
Figure 3:  Conceptual SDR Platform 

 

Developments in reconfigurable computing indicate that the best way to perform signal 

processing within the SDR platform may be based on programmable hardware such as 

Field-Programmable Gate Arrays, (FPGAs).  Reconfigurable computing will make the 

basic objectives of cognitive radio possible.  In addition, reconfigurable computing opens 

up new possibilities of having full interoperability among devices equipped with wireless 

communications interfaces.  These capabilities are currently being tested in the Joint 

Tactical Radio System, (JTRS), military research program, [12].  These efforts are 

important steps towards the “everything networked” future. 

 

1.1.4. The Inertial Sensor Revolution 

The MEMS, (Micro Electro-Mechanical Systems), revolution has engendered a 

wide variety of devices aimed at sensing motion in all things that move.  Inertial sensors 

is the term applied to these motion sensors.  These devices have experienced a drop in 

their cost.  Therefore, they are used more and more in everyday life.  The price drop has 
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been tenfold in the past five years and the market grew by almost 10% in 2006, [13].  As 

a result, these devices are found in applications such as gaming devices, cameras, cell 

phones and portable computers.  Additionally, applications that were restricted to 

expensive gimbaled inertial navigation sensing units may now be handled by strap-down 

platforms at very low costs, [14].  Figure 4 presents a diagram of an Inertial Measurement 

Unit, (IMU). 

 

  
Figure 4:  Analog Devices’ ADIS16350 Block Diagram: 

Taken from the Data Sheet 
 

The IMU contains six motion sensors.  Three of the sensors are orthogonal 

accelerometers and three are orthogonal gyroscopes.  Physically, the IMU looks like a 

cube with an edge of 23mm.  Currently, this device sells for $275 when purchased in 

quantities between 1000 and 5000. 
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1.2. The Need for Location Information 

The possibility exists of having mobile computing devices, which build wireless 

networks spontaneously or in an ad-hoc manner.  Such a possibility has generated a 

multiplicity of potential applications.  Furthermore, “location-awareness” is supposed to 

become mainstream as part of the pervasive computing revolution [15].  Location aware 

computing encompasses applications such as everyday office productivity, personal 

navigation, emergency preparedness and intelligent transportation systems. 

Two research projects, where localization plays a crucial role, are presented next.  

They are introduced to highlight the need for real-time location information.  Such data is 

crucial in applications where devices incorporate wireless networking interfaces.  These 

projects, wherein this author was actively involved, served also as motivation for 

pursuing this research. 

 

1.2.1. Wireless Sensor Networks for Flash-Flood Alerting 

The primary purpose of the Rapid Organization and Situation Assessment project 

was to aid the population of the Andean region of Venezuela.  Specifically, the city of 

Merida and its neighboring towns were chosen as the area for development of an Early 

Alert System based on a WSN.  Large amounts of property damage and resident 

casualties caused by flash-floods were reported over the years.  Additionally, 

hydrological and geological studies had shown that the region was highly prone to similar 

events in near future. 

A flash-flood is a sudden discharge of large amounts of water.  It results from a 

particular confluence and chain of meteorological and geological events.  The mountains 
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that surround the borders of the rivers have geologically unstable characteristics.  In the 

event of high precipitation levels, some zones of the mountains provide origin to 

landslides that fall into the rivers, which occludes the flow of water.  Eventually, these 

naturally built barriers cannot sustain the high potential energy of the accumulated water.  

When the barriers finally break, a rush of water occurs, which affects the villages 

downstream.  This chain of events happens in a short period of time, (few hours), which 

poses a serious challenge for authorities who try to protect the population.  Figure 5 

pictures a set of houses, which are prone to be wiped out by the interaction between the 

mountains and the rivers in the formation of a flash-flood. 

 

  
Figure 5:  Flash-Flood Prone Zone in Venezuela: 

Matthew C. Larsen, USGS 
 

The solution to this problem involves the application of several communication 

and information technologies.  The flash-flood alert system is presented in Figure 6.  

Basically, the alert system consists of three major components: 

• A WSN for collecting information in the places where variables need to be 

measured.  The self-healing/self-forming multi-hopping nature of a WSN 
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allows for a robust low-cost sensing solution that can be deployed swiftly and 

easily.  The main variables to be measured are: 

• Soil humidity, for detecting landslides, 

• Precipitation, (rainfall), 

• Water level sensors, situated in strategic locations of the rivers, 

• Other meteorological sensors, such as wind speed, temperature, sun 

radiation and barometric pressure, for disaster prediction. 

• A sink node, located close to the sensor network whose function is collecting 

data from the wireless sensor nodes.  Periodically, or in case of abnormal 

conditions, the sink sends information via cellular network to a central 

location. 

• A central location or command center.  At the command center, emergency 

preparedness authorities make decisions with the help of a computer system.  

The computer system collects data and augments a Geographical Information 

System, (GIS), with a layer of live data incoming from the distant WSN. 
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Figure 6:  Wireless Sensor Network-Based Flash-Flood Alert System 

 

It is critical that the location of the nodes be known with good accuracy for 

achieving a successful overlay of sensor data with the GIS maps.  As a consequence, the 

decision makers have access to relevant information in order to take appropriate 

mitigation measures.  In some cases, sensors nodes are located in places with Line of 

Sight, (LOS), access to GPS satellites.  Therefore, they can determine their location with 

little error and almost no effort.  However, there are places where mountains or 

vegetation obstruct the direct LOS between sensor nodes and some of the GPS satellites.  

These conditions cause a loss of fix condition, which prevents the nodes from determining 

their location. 

The research, presented in this dissertation, was directed towards providing means 

for localization in a distributed fashion, without the requirement of having GPS receivers 

in all the nodes.  In wireless sensor networks, “strength is in numbers”.  Sensors are 

deployed in large quantities.  Therefore, they need to be low in cost.  Having a GPS 
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receiver in every unit would increase the cost of the system unnecessarily.  Ideally, nodes 

with GPS receivers should cooperate with nodes that do not possess GPS receivers.  After 

some time and through several information exchanges, all nodes will have good position 

estimates. 

Location information is essential for the usefulness of the data provided by the 

nodes.  Location information is also important for implementing important algorithms for 

network management.  Network management algorithms such as power management, 

node addressing and the implementation of efficient location aware routing protocols 

may be simplified to a great extent using location information.  Solutions to these types 

of localization requirements are explored initially in Chapter 3.  Afterwards, localization 

in sensor networks is expounded in Chapter 4. 

 

1.2.2. Multi-Robot Teams With Cooperation and Coordination 

The ability of a robot to localize itself is an essential prerequisite for autonomy.  

For this reason, localization is also regarded as the most basic perceptual problem in 

robotics, [16].  A robot needs to estimate its current position in order to determine the 

next action.  The position estimate with respect to local features determines the 

immediate actions performed by the robot.  On the other hand, the position with respect 

to some semi-global coordinate system helps the robot establish the actions to take within 

a longer time-horizon or broader scope, such as part of a plan or mission within a team.  

For multi-robot teams, relative location with respect to other members of the team is 

fundamental for achieving coordination and cooperation during such activities as 

formation control, swarming, cooperative search and exploration.  Localization in a 
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multi-robot system is fundamental for exploiting redundancy and complementarities 

inherent to a system composed of multiple heterogeneous individuals.  When ground 

robots navigate in an unknown environment, it has been shown that it is advantageous to 

perform the action in a specific formation [17].  Different formations adapt to particular 

goals such as exploration and surveillance.  In addition, formations can help in keeping a 

required node degree in a network topology.  Moreover, if every robot is aware of its 

location, resource sharing and task allocation can be enacted more efficiently.  Some 

mechanisms for task allocation, such as auction-based methods, have been reported 

extensively in the current literature [18]. 

One major contribution of this research consists in enabling localization in 

scenarios where multi-robot systems have to be deployed in an ad-hoc manner and 

execute missions with minimal human intervention.  Chiefly, occluded and unstructured 

environments where no prior knowledge is easily accessible, such as maps, pose a great 

challenge to currently used localization schemes.  For example, GPS-based solutions do 

not work in environments surrounded by objects that intermittently block the line of sight 

to GPS-satellites.  As a consequence, equipping each robot or sensor node with a GPS-

receiver does not assure correct positioning in all situations and/or at all times. 

Simultaneous Localization and Mapping, (SLAM), techniques studied profusely 

in current literature are known to give good results in structured environments such as the 

indoors, [16].  SLAM techniques assume the availability of relatively accurate 

exteroceptive sensing such as the one obtained from laser range-finders.  At the same 

time, the proposed solutions usually make extensive use of computational resources 

onboard the robots.  It will be shown in Chapter 5, that there are not many solutions, 



13 
 

reported in the literature, that make use of SLAM techniques in multi-robot systems in 

the context of unstructured outdoor locations.  Moreover, in such applications, a map is 

an outcome of the relatively slow SLAM process.  In many cases, a map is neither needed 

nor required within the scope of a mission with severe time constraints. 

Figure 7 presents an example of the use of a multi-robot system for cooperative 

exploration of occluded spaces.  In order to maximize the information acquisition over 

time, entropy maximization algorithms may guide robot navigation while exploring the 

confined space.  There are no maps of the environment, there is no access to the Global 

Positioning System and pure odometer information would diverge quickly due to high 

level of uncertainty in the motion patterns of the robot.  While all these adverse factors 

put the success of the mission in jeopardy, communications can remain functional.  The 

robots may drop disposable nodes that remain fixed for the duration of the mission.  The 

fact of the sensors being immobile makes them act as “anchor nodes” or “landmarks”.  

While the disposable nodes cooperatively enhance their location information, they also 

serve as reference points for the robots that explore in the inside of the restrained space.  

These sensor nodes allow for localization.  They also may act as relay nodes for the 

ground robots to maintain the communications infrastructure with the outside.  In such a 

situation one of the robots would act as a gateway to the command center.  The relative 

localization computed inside of the restrained space can even be enhanced with absolute 

coordinates obtained from members of the robot team with access to the GPS system. 
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Figure 7:  Robots and Sensors for Cooperative 

Exploration of Occluded Spaces 
 

The description above does not point to the specific techniques used for 

localization.  Rather, it illustrates a hypothetical scenario where localization can be 

enabled through collaboration of on-site deployed nodes and robots.  The particular 

techniques needed for implementing such a cooperative localization scenario are the ones 

covered within the scope of this dissertation. 

 

1.3. Research Question 

The main question that guided this research can be stated as: 

What resources and mechanisms are necessary for enabling real-time cooperative 

localization in wireless networked systems? 
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1.4. Contributions 

The main contributions of this research are: 

• A novel flexible solution to localization, which is based on distributed 

cooperative localization.  This approach unifies networking and inertial 

navigation in a way that has neither been reported elsewhere in the current 

literature nor implemented in commercial solutions. 

• Structuring of the cooperative localization problem.  A systems-

engineering analysis of the main localization function with allocated sub-

functions is presented. 

• Simple cooperative nonlinear distributed estimation laws were developed, 

which are amenable for localization of devices with constraints in 

computational resources and power, such as Wireless Sensor Nodes.  Most 

standard approaches resource on optimal estimation techniques.  However, 

they do not suggest simple suboptimal nonlinear estimation laws for 

WSNs such as the ones described in this document. 

• Data fusion algorithms were developed to enable cooperative localization 

of wireless networked systems with mobile nodes.  A concrete partitioning 

of the problem is presented, which provides for incorporating single range 

measurements and inertial measurements.  Incorporation of these 

capabilities makes it a trilateration-free approach. 

• A protocol was developed, which enables cooperative localization.  The 

protocols required, for cooperative localization have not been explicitly 

analyzed in other research. 
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• A taxonomy of current localization solutions and a comprehensive review 

of the state of the art in localization.  A holistic approach such as the one 

attempted in this work requires an all-encompassing taxonomy, which has 

not been presented elsewhere in the current literature. 

 

1.5. Methodology 

One of the main features of this work is the application of Systems Engineering 

principles to a research problem.  Hence, the focus is not placed on solving the problem 

in an ad-hoc manner, but rather on analyzing all its aspects and their interactions in order 

to create a solution space, from which a particular solution may be drawn fitting a 

specific application.  Due to the application of SE, the problem transforms from an 

amorphous whole into manageable pieces which may be investigated separately.  SE also 

allows for engendering a vision of how localization should ideally work in the near or 

long term future, without technological constraints.  Hence, novel and long-standing 

ideas may be generated that could be realized gradually, as technology progresses. 

After the application of the SE process, each particular aspect may be analyzed by 

abstracting all the others.  Abstracting means creating simplified models or making 

reasonable assumptions.  In order to isolate certain problems, specific scenarios are 

studied where other aspects do not play any role.  For instance, when considering the 

cooperative position estimation aspect, mobility may be taken “out of the equation” if 

nodes are assumed to be fixed.  On the other hand, when dealing with mobility the 

networking aspects may be also abstracted, allowing all nodes to exchange information 

seamlessly.  Novel contributions have arisen as a result of the application of this 
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methodology.  For example, applying the conceptual cooperative localization solution to 

the particular case when nodes are fixed and limited in energy and computational 

resources, unique nonlinear recursive estimation techniques have been proposed.  Lifting 

the restrictions on computational resources on mobile nodes, computational intensive but 

elegant solutions have been offered for cooperative localization of wireless networked 

systems. 

 

1.6. Document structure 

Chapter 2 presents a comprehensive report of relevant available solutions for 

localization, which are comparable to the solution presented in this document.  

Furthermore, related work is presented following a taxonomical classification. 

Chapter 3 covers the main localization solution proposed from a systems-

engineering point of view.  The localization problem is initially structured and analyzed 

at the conceptual level.  Relevant metrics and requirements are defined.  Afterwards, a 

conceptual solution is presented, which guides the development of specific algorithms 

and techniques presented in subsequent chapters. 

Chapter 4 focuses on cooperative localization as applied to Wireless Sensor 

Networks.  In order to isolate the cooperative aspect of the estimation process, 

cooperative localization of fixed nodes with limited ranging capability is analyzed.  

Particular constraints and needs of WSN are also addressed. 

Chapter 5 presents the central idea of this research, which is cooperative 

localization in mobile wireless networked systems.  The analysis begins with an 

introduction to a navigation structure, which provides for the incorporation of mobility 
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into the position estimation process.  A probabilistic motion model is introduced as well 

as fusion of range estimates.  The chapter concludes with a series of simulation 

experiments, which show different situations where cooperative localization yields better 

position estimates than the non-cooperative variant. 

Chapter 6 presents several alternatives and aspects of the protocol necessary for 

enabling cooperative localization in wireless mobile networks. 

Chapter 7 summarizes the material presented and highlights the objectives that 

were achieved.  It also points to several topics and areas for possible future research in 

cooperative localization of wireless networks. 
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Chapter 2 

Related Work 

 

Localization is a vast field of research with many technological applications.  This 

is the reason why it has evolved in different directions, each in its own realm and 

sometimes within a very limited perspective.  As a result, a broad variety of tools and 

techniques have been generated.  However, due to the constrained vision employed by 

the different research communities some opportunities have been overlooked.  Since one 

of the main features of this research was its unifying nature, in the following sections, 

major contributions from different fields will be presented in a structured manner.  In this 

manner the reader can obtain a clear picture of who are the current key players in 

localization and their respective contributions. 

 

2.1. A Taxonomy of Solutions for Localization 

The localization field may be categorized according to different criteria. For 

instance: 

• Definition of location, 

• Research communities that have an interest in the localization problem, 

• Processing and infrastructure required by the technological solutions, 

• Sensors and measurements. 
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2.1.1. Definitions of Location 

There are two main interpretations of location and according to them there are 

two categories for localization: 

• Qualitative:  Numbers or sets of coordinates are not necessary.  

Information, in the form of location qualifiers, such as “in room ENB151” 

or “in front of the Hall of Flags” is sufficient to describe the position of an 

object or agent.  In robotics, locations described in this form are also 

known as topological. 

• Quantitative:  Coordinates with respect to a map or to an inertial reference 

system are the result of quantitative localization schemes.  Position 

descriptions may be absolute, as in the case of latitude and longitude 

coordinates obtained from a GPS receiver; or relative, such as the ones 

obtained from SLAM in robotics.  In robotics, quantitative location 

information is also known as metric. 

 

2.1.2. Research Communities 

Currently there are four main research communities that deal with the localization 

problem. 

 

2.1.2.1. Navigation 

The navigation community has handled the localization problem for many years.  

Consequently, their methods have evolved to a high degree of maturity.  Numerous 

textbooks treat the inertial navigation problem, particularly from the optimal estimation 
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perspective, [19], [20], [21].  Specifically, defense-related applications such as target 

tracking and long-range weapon guidance have driven the field to its current state of the 

art.  In addition, numerous other areas benefited and contributed to these developments 

such as geodesy and vehicle navigation.  The current Global Positioning System and its 

derivatives can be viewed as one of the main products of navigation. 

 

2.1.2.2. Robotics 

Localization is a central topic in autonomous robotic navigation.  Localization is 

the process of determining a coordinate transformation that provides a means of finding 

the correspondence between the robot’s coordinate system and a map that is described in 

a global coordinate system, [16]. 

There is a profuse number of publications on the Simultaneous Localization and 

Mapping, (SLAM), problem.  In SLAM, neither the map nor its location is known to the 

robot, which has to infer both, as it traverses the unknown location where it was placed.  

In most cases, robots possess accurate exteroceptive sensing capabilities such as range 

finders and cameras that provide for the identification of features in the environment.  

The greatest degree of complexity is reached when multiple robots need to exchange 

information for performing SLAM in unstructured environments. 

 

2.1.2.3. Wireless Networking 

Localization in the wireless communications community is also known as “radio-

localization” or “positioning”.  It is defined as the process of determining the position of 

a node, which is the target node, from information collected from radio signals traveling 
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between the target node and a number of reference nodes.  There are three types of 

widely used wireless networks where localization is important.  Mobile ad-hoc networks, 

cellular networks and wireless sensor networks require localization information.  The 

articles presented in [22] show, in a tutorial fashion, several aspects of localization from 

the wireless networks perspective. 

 

2.1.2.4. Localization Theory 

There are some groups of researchers that have focused their interest on the 

theoretical aspects of the localization problem.  For instance, the computational 

complexity of finding the nodes of a network, given the internode distances, has been 

proven to be NP-complete, [23].  Aspnes also studied graph rigidity for unambiguous 

localization.  Distributed consensus and distributed/cooperative estimation schemes are 

studied in [24] and [25]. 

 

2.1.3. Categories According to Processing and Infrastructure 

Solutions for localization may be categorized into three groups. 

 

2.1.3.1. Centralized Localization 

In this case, the localization routines are executed in a data fusion center, which 

collects all necessary information to determine the location of the target node.  Most 

localization schemes proposed for cellular and ad-hoc networks require some previously 

deployed infrastructure and data fusion centers.  The most common approach consists of 

collecting measurements from mobile nodes in a central platform and executing a multi-
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lateration type of algorithm to determine their position.  Centralized localization schemes 

are sometimes unfeasible due to limitations in scalability and reliability. 

 

2.1.3.2. Infrastructure-Based Localization 

Network-based or infrastructure-based solutions may not require a central data 

fusion center.  However, previously deployed infrastructure in the form of beacons or 

landmarks is necessary.  The Global Positioning System  may be regarded as an 

infrastructure-based system, [26].  Such a classification is possible since satellites send 

out signals to GPS receivers, which basically compute their location based on the location 

of the satellites and the distances to them.  Similarly the “Cricket” localization system in 

its original conception was also an infrastructure based system.  In Cricket, the beacons 

send out ultrasound pulses, which may be used by listeners to determine their location.  

Computations are carried out at the client’s location, which is the reason why these 

solutions may be regarded as client-based or mobile-based. 

 

2.1.3.3. Cooperative Localization 

Cooperative localization methods may be termed as fully distributed since nodes 

in a network collaborate to estimate their position.  In some cases nodes rely on a few 

nodes with absolute position information to infer their absolute location.  After nodes 

have determined their position, they help other nodes to infer their location.  This type of 

localization is known as incremental.  However, if all nodes start the localization process 

simultaneously, the localization process is termed to be concurrent. 
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2.1.4. Sensors and Measurements 

Basically, there are two major categories of sensors that may help in achieving 

localization and tracking of a moving node: 

• Proprioceptive Sensors:  Provide information about the position and 

movement of the different internal parts of an object.  Typically, 

accelerometers, gyroscopes and encoders are considered proprioceptive 

sensors since they do not provide information with respect to external 

reference points.  Odometry or deduced reckoning (DR) (“dead 

reckoning”) is based on proprioceptive sensing. 

• Exteroceptive Sensors:  These sensors help establish relationships of 

distance and bearing with respect to external inertial reference frames. 

Most radio signals could be considered within this category, as well as 

vision-based sensors, sun-sensors, star trackers, magnetometers that 

measure the Earth’s magnetic field, laser range finders, etc. In inertial 

navigation terms, exteroceptive sensors are also known as aids. 

A taxonomy of radio-localization techniques according to measurements where 

the following types of measurements are distinguished is treated in [27]: 

• Received Signal Strength, (RSS):  If the power of the transmitter and 

receiver together with a propagation model are known, it is possible to 

estimate the distance between nodes. 

• Time of Arrival, (TOA):  Synchronization is required in order to use the 

signal’s travel time to estimate distance. 

• Time Difference of Arrival, (TDOA):  This is equivalent to taking 
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differences of TOA measurements.  With respect to pure TOA, it has the 

advantage that clock bias can be eliminated. 

• Angle of Arrival, (AOA):  These measurements are possible when 

antennae are directionally sensitive or when multiple receiver antennas are 

used. 

• Digital Map Information:  In this case, RSS measurements are collected a-

priori in a specific area and associated with a map.  RSS real-time 

measurements are used by the receiver for finding the most likely position 

that matches the stored RSS data.  Higher resolution maps may improve 

positioning accuracy.  However, they require more memory and more 

elaborate calibration procedures. 

• Direct Estimates:  Corresponds to information that is available in direct 

form.  For instance, it can be obtained from GPS receivers in outdoor 

environments. 

The use of different measurements or combinations of them affects the 

localization accuracy and implies different limitations as described in [27]. 

 

2.2. Salient Work 

Important developments and research, which have had a key impact on this 

dissertation, are described next. 
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2.2.1. The Localization Problem from the Robotics Perspective 

 

2.2.1.1. Thrun, Burgard and Fox 

A comprehensive treatment on localization in robotics is presented in [16].  This 

report also contains bibliographical remarks to earlier work.  The main contribution of 

Thrun consisted in providing a structured framework for localization using probabilistic 

techniques.  The term probabilistic refers to the idea of incorporating uncertainty in the 

localization process and taking into consideration the noise inherent to sensor 

measurements. 

Collaborative multi-robot localization is explored and some practical results 

demonstrated in [28].  Although it is assumed that all robots are initially given a model of 

the environment; they are also equipped with accurate exteroceptive sensors, (laser range-

finders), and they can exchange information seamlessly.  While these assumptions might 

be realistic in some environments, they may not hold in unstructured and uncertain 

environments.  The positive aspects of this work show that the multi-robot localization 

problem can be decomposed into smaller problems that can be handled by each member 

of the team.  Faster convergence is achieved by leveraging on collaboration. 

 

2.2.1.2. Kurazume and Nagata 

Kurazume’s research, previous to the research mentioned in last section, is 

seminal in the area of multi-robot localization, [29].  In Kurazume’s research, for the first 

time, the idea of collaboration among robots of a team is exposed and a concrete 

technique described.  In the approach presented, the robot team is divided into two 
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groups.  The groups serve as landmarks to each other.  The “landmark” group remains 

stationary while the other group moves.  Even though this research can only be classified 

as an interesting research exercise, it demonstrated that the position error derived from 

pure proprioception can be reduced in a collaborative scenario. 

 

2.2.1.3. Roumeliotis and Bekey 

The research carried out by Roumeliotis provided one of the most appealing 

approaches to the multi-robot localization problem, [30].  Collaboration is based on the 

temporal exchange of information between pairs of robots, which always achieves better 

accuracy than the individual members of the team.  Robots with better sensors help other 

robots to improve their location estimates.  The core of Roumeliotis’ work is the 

decomposition of a central Kalman filter into smaller communicating filters.  Each filter 

consumes only measurements produced by the host robot.  Convergence of the Kalman 

filters is tested extensively in different scenarios.  All equations are derived and 

demonstrated for the specific case when the number of robots is three.  Finally, 

experimental results are presented where an overhead camera is used to record the ground 

truth position of three Pioneer II robots. 

In the experimental setup, the relative position and orientation required for the 

proper function of the algorithm is “simulated” by the overhead camera.  It is not clear 

how each robot would be able to estimate its relative position and orientation in a real 

scenario.  Furthermore, the communications infrastructure required for the exchange of 

information among robots is not handled in proper detail.  In addition, the need for 

explicitly taking into account the number of robots for deriving the Kalman filter 
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equations constitutes a serious restriction for scenarios where robots should have the 

ability to join and leave the team in an ad-hoc manner. 

 

2.2.1.4. Howard, Mataric and Sukhatme 

Howard et al. developed a localization method applicable to environments 

presenting a high degree of uncertainty, [31].  They assume that each robot makes use of 

its proprioceptive sensing units and that they also can detect each other’s position and 

identity.  The team localization problem is reduced to a combination of maximum 

likelihood estimation and optimization procedures.  Optimization is used for maximizing 

the likelihood that a set of estimates give rise to the set of observations obtained by 

measurement.  This is equivalent to maximizing the conditional probability of the 

observations given the estimates.  Due to the nonlinear nature of the problem, steepest 

descent and conjugate gradient optimization algorithms were employed.  The 

experimental results with four robots utilized are presented.  The problem of estimating 

the position of other robots is solved by attaching retro-reflective poles to each robot, 

which make them appear as “moving landmarks”.  The approach offered is essentially 

centralized and account neither for scalability nor reliability issues. 

In their most recent work, Howard et al., lift the assumption of having a 

centralized computer to perform the optimization, [32].  In addition they make use of the 

Bayesian formalism and the particle filter implementation to enable “cooperative relative 

localization”.  As stressed in the reactive paradigm school of robotics, the approach is 

“ego-centric”, which means the robot is always at the origin of its coordinate system.  

With the new additions, the work shares more attributes with the work by Roumeliotis 
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and provides various improvements.  Limitations of the Kalman filter are revoked due to 

the ability to maintain non-parametric distributions, (particle-filter), with the reasonable 

consequence of enhancing the robustness of the algorithm.  The explanations regarding 

the use of UDP broadcast sockets for sharing observations among members of the robot 

team are welcome additions to the literature.  Consequently, they offer a glimpse of the 

communication problems that arise when trying to implement different forms of 

coordination or collaboration.  Experimental results with four robots are presented for 

validating the correctness of the method.  In addition, the “robot sensor” proposed is 

based on cameras and special artifacts that increase the computational burden and cost of 

implementation. 

 

2.2.2. Projects in Radio-Localization 

 

2.2.2.1. Active Badge and Active Office 

The Active Badge and Active Office projects represent two of the earliest 

documented localization projects, which were oriented towards ubiquitous computing and 

pervasive sensing, [33], [34].  In both cases, the localization is rather centralized.  The 

nodes act passively by sending pulses to a network of receivers, which pass the 

information to a master station where the information is processed.  In the Active Badge 

case, infrared pulses were used, which provided only for symbolic location information 

retrieval.  In the Active Office case, nodes send ultrasound and RF pulses.  The receivers 

compute distances based on the time difference of arrival, (TDOA).  Distance 

information is passed to the master station, which can determine the nodes position. 
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2.2.2.2. Cricket 

The Cricket project represents an evolution towards decentralized schemes, [35].  

In its original conception, Cricket allowed each node to determine its physical position.  

In a way, similar to the active office project, cricket is based on ultrasound and range 

estimates obtained from TDOA measurements.  Reference nodes send RF and ultrasound 

pulses continuously.  The listener calculates the distance to each beacon from the TDOA.  

The cricket hardware is basically a sensor node, (“MICA2 Mote”), equipped with a pair 

of piezoelectric transducers.  One transducer generates ultrasound pulses and the other 

transducer receives the ultrasound pulses. 

The work by Priyantha was extended and improved in [36] by applying graph 

theory.  The notion of robust quadrilaterals is introduced to allow for scalable and 

accurate distributed localization. Up to date, Moore’s work is perhaps the most complete 

in the area of wireless sensor network localization employing the Cricket platform, [36].  

Mobility is also introduced through the application of Kalman filter techniques. 

 

2.2.2.3. Radar 

The RADAR project focused mainly on localization in wireless local area 

networks, (LAN, IEEE 802.11 Standard), [37].  This research was characterized by the 

use of RF measurements.  The Radio Signal Strength, (RSS), was used to obtain range 

estimates.  Furthermore, it leveraged on the readily available hardware of standard off-

the-shelf wireless LAN equipment, focused attention on the double use of the wireless 

communications hardware.  Another important aspect of this project was the creation of a 

“Radio Map”, which is explained in the section describing radio-location measurements. 
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2.2.2.4. Calamari 

Calamari started after the Cricket project and possessed several interesting 

features, [38].  It allowed for the fusion of different ranging techniques such as 

connectivity, Received Signal Strength, (RSS), and TDOA from ultrasound.  The 

hardware was very similar to the cricket platform.  The main difference was that it 

worked at a much lower frequency, 25khz in contrast to 40khz, which enabled an almost 

omni-directional propagation of sound.  Furthermore, only one transducer was used for 

transmission and reception of ultrasound pulses.  The advantages of having simpler 

hardware and a wider cone angle have to be traded for a lower achievable precision. 

 

2.2.2.5. Place Lab 

The Place Lab project started in 2003 with the goal of providing ubiquitous 

location capability to mobile computing platforms, [39].  After some years of 

experiments and practical deployment, the lessons learned from this project were reported 

in [40].  The technology relied on mobile computers making use of a large database 

containing positions of Wi-Fi and GSM access points.  These databases were built from 

so-called war driving tours where “war-drivers” collect position and MAC address 

information from wireless access points, which constantly broadcast their identifier such 

as the MAC address.  It is not necessary for a receiver to have authorization to use the 

network in order to receive the beacon message.  Then, if several access points are in 

range, based on the received signal strength, it is possible to apply triangulation to 

determine the receiver’s position with an accuracy of approximately 25m [41].  

Currently, there are several cities that have been mapped.  In addition, there is a 
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commercial product, Navizon, which takes advantage of the databases built by the war-

driving community and the methodology of Place Lab. 

 

2.2.3. Localization in Wireless Sensor Networks 

Localization algorithms for WSNs have been studied and decomposed into three 

procedures, [42]: 

• Determining distances between unknown and anchor nodes, 

• Deriving a position for each node from the anchor distances, 

• Refining node positions using information about the range. 

Three prototypical algorithms that fall into this scheme are: 

• Ad-hoc positioning, [43], 

• N-hop multi-lateration, [44], 

• Robust positioning, [45]. 

All three algorithms use different methods for determining distances.  The derivation of 

position is through trilateration in the first two cases, whereas bounding boxes are used in 

the third case, which provide results similar to those obtained through trilateration but 

with fewer computations.  In the final step, the last two algorithms provide for 

refinement, while the first one does not provide for refinement. 

Simulation studies and practical results have shown a great level of discordance in 

the field of localization.  As a consequence, many papers published recently: 

• Revisit trilateration schemes [46], 

• Look for theoretic foundations and assess the computational 

complexity of localization [47], 
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• Investigate error bounds [48], [49], [50], 

• Investigate robustness [51], 

• Provide comprehensive experimental studies [52], [53]. 

One last research effort, which should be mentioned, is the one proposed by 

Ramadurai, [54].  The main feature of Ramadurai’s research was the departure from the 

use of deterministic models for computing the position of the nodes.  In addition, he 

evaded the use of lateration or similar geometric approximations.  Instead, range 

measurements and the position of the nodes were described by probability density 

functions, (PDFs).  The final position estimate was computed from the convolution of 

PDFs.  The results were not very promising since the localization error presented 

considerable variations.  In addition, the convolutions required considerable 

computational power that was provided in the experimental setup by Personal Digital 

Assistants, (PDAs), which acted as sensor nodes. 

 

2.2.4. Contributions from Inertial Navigation 

 

2.2.4.1. Gustafson 

The work of Fredrik Gustafson stands out from the extensive amount of work in 

inertial navigation, [55].  Gustafson’s work formally introduces the use of Bayesian 

statistical techniques for the almost “classical” problem of GPS/INS integration.  

Moreover, it proves that sequential Monte Carlo estimation, (SMCE), which are also 

known as particle filter methods, can be applied to a variety of similar problems such as 

positioning, navigation and tracking. 
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A major problem associated with particle filters is the large amount of particles 

necessary for accurate belief representation when the dimension of the state vector to be 

estimated is greater than three.  Gustafson applied particle filters to inertial navigation 

with a state vector of 27 states.  The solution to this problem stems from the application 

of a procedure called Rao-Blackwellization, which essentially decomposes the estimation 

problem into a standard Kalman filter for 24 states and a particle filter for the three 

remaining states.  The Rao-Blackwellization procedure is also known as the marginalized 

particle filter. 

 

2.2.4.2. Sukkarieh 

The impact of Sukkarieh’s work on the application of inertial navigation to the 

autonomous vehicles community is substantial.  Sukkarieh analyzes several aspects of 

inertial navigation, [56].  He provides comprehensive coverage of statistical estimation, 

error analysis and fault detection in low-cost inertial navigation systems.  More recent 

work focuses on incorporating cameras for inertial navigation aiding and on cooperative 

SLAM in unknown environments, [57], [58]. 

 

2.3. Some Commercially Available Products 

A few products are mentioned in order for the reader to gain an overview of 

commercially available solutions for localization. 
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2.3.1. Northstar Robot Localization System 

The Northstar Robot Localization System is a localization system commercialized 

by the Evolution Robotics Company.  The system uses infrared, (IR), landmarks, which 

are projected onto a flat ceiling.  Nodes to be localized incorporate detectors that identify 

the marks on the ceiling and determine their own position and heading by means of 

triangulation.  Northstar may be categorized as an infrastructure-based system.  The main 

applications envisioned for this product are primarily mobile robot navigation, asset 

tracking and tracking of people. 

 

2.3.2. Liberty Latus 

Liberty Latus is a “6-DOF magnetic tracking solution” which was 

commercialized by the company Polhemus.  The system tracks up to 12 magnetic 

markers, which have the size of a matchbox and a weight of two ounces, (battery 

included).  Receptors need to be deployed for detecting magnetic signals emitted by the 

markers.  All receptors connect to a central computer.  Each receptor has coverage of 

approximately 5 2m .  The low latency, 5 ms, makes this solution very appropriate for 

high performance motion tracking.  Such requirements are found in the analysis of human 

motion, in the animation industry or in the design of attitude control systems. 

 

2.3.3. Vicon MX 

Vicon MX is a camera-based motion capture system.  Several cameras are 

necessary for tracking the motion of highly reflective markers.  Up to eight cameras may 

be connected through a high-speed network.  The applications are very similar to the ones 
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offered by the Liberty Latus system.  However, the markers are lighter and do not require 

a battery.  The Vicon MX system is more expensive than Liberty Latus. 

 

2.3.4. IS900 Precision Motion Tracker 

Intersense is a company that competes in the market with the previous two 

companies mentioned, Polhemus and Vicon.  The main application scenarios for the 

IS900 system are augmented reality, immersive technologies and other novel human-

computer interfaces.  The major characteristic of the IS900 system consists of the 

incorporation of inertial measurements aided by ultrasound.  According to the product 

documentation, better tracking accuracy can be achieved due to the inclusion of inertial 

measurements in the position and attitude estimation process. 

 

2.3.5. Navizon 

Navizon is a personal localization system combining GPS, Wi-Fi and cellular 

phone positioning.  The principle of operation was elucidated in the previous exposition 

of the Place Lab project.  According to their product documentation, Navizon may be 

catagorized as a “software only GPS”.  Navizon users possessing GPS receivers collect 

wireless data and share the data with other users by accessing the Navizon central server. 

 

2.3.6. Motorola’s Mesh Enabled Architecture 

Fast and accurate localization is just one of the capabilities of Motorola’s Mesh 

Enabled Architecture, (MEA).  MEA is based on mobile, ad-hoc networking technology, 

offering high bandwidth and excellent coverage even in scenarios where nodes move at 
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high speed.  Nodes require a specialized wireless network interface card.  Fixed mesh 

wireless routers may be installed to guarantee coverage in large geographic areas.  This 

technology is proprietary and information about specifications with respect to the 

localization function as well as its operational principles is limited. 

 

2.4. Conclusions 

After presenting a large collection of related work in localization and a 

comprehensive taxonomy, it may be concluded that there still exist many areas open to 

further scrutiny and study.  Current solutions seem to be based on divergent approaches 

and plagued by limitations such as: 

• They work only in specific environments, such as outdoors or indoors. 

• Some are based on centralized computation, giving rise to scalability 

limitations. 

• Many methods depend strictly on previously deployed infrastructure 

which is mostly proprietary. 

• Other methods are based on the simultaneous construction of maps using 

bulky exteroceptive sensors. 

Four key developments have substantially changed the shape of the field in recent 

times: 

• The wireless communications field has allowed for the spontaneous 

creation of networks where nodes can exchange information seamlessly. 
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• The inertial navigation field has moved away from gimbaled inertial 

measurement units towards strap-down configurations, which take 

advantage of the low costs enabled by advances in MEMS. 

• The robotics field has contributed substantially to the solution of nonlinear 

estimation problems with important results in probabilistic estimation 

techniques. 

• There is enormous pressure for the advancement of location-aware 

computing and ubiquitous location systems with big commercial 

opportunities. 

There are no localization solutions that explicitly take advantage of cooperation, 

radio-localization and inertial sensors for localization.  The integration of these three 

aspects is the central subject of study in this research, which will be developed in the next 

chapters. 
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Chapter 3 

A Flexible Localization Solution 

 

3.1 Definition of Localization 

Within the scope of this research, localization is defined as the process of 

determining the position of an object, which in this case is a node in a wireless network, 

relative to a given reference frame of coordinates.  The terms localization, positioning, 

geolocation and navigation can be used synonymously.  However, in some of the 

robotics and autonomous vehicle literature, the terms localization and navigation have 

different meanings.  For instance, according to Bekey, localization refers to the ability of 

a robot to “know where it is,” while navigation may be understood as the process of 

planning and executing maneuvers necessary to move from point A to point B, [59].  In 

this document, the more traditional interpretation of the term navigation will be used, 

which refers to “accurately determining position and velocity relative to a known 

reference” [19].  Some authors, in the robotics literature, also distinguish between global 

localization and position tracking, [16].  A robot needs global localization when it needs 

to estimate its coordinates with respect to a known reference frame.  The robot is said to 

need position tracking when the position estimates have to be kept current as it wanders.  

The semantics of localization in this research encompasses both problems.  It is assumed 

implicitly that all activities from proper position initialization to real-time updating are 

contained within the localization concept. 
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3.2. The Systems Engineering Approach 

This research is a reflection of the, ever more frequent, appearance of technical 

problems involving several disciplines.  In this case, an integrative understanding of 

networking, control, signal processing and computing is necessary to approach the 

problem in the most effective way.  The application of a holistic view to these types of 

problems can be considered as one the main contributions of this research.  Considering 

the diversity and variety of aspects of the problems treated, only the Systems 

Engineering, (SE), approach can provide the common ground for an adequate 

formulation of a solution to a multifaceted and interdisciplinary problem such as 

localization 

The main focus and goal of the SE approach is to yield a tangible product or 

system, as required in the development of a project, [60].  It is widely accepted that the 

main objective of research is the generation of knowledge.  Apparently, the application of 

a SE approach to research may seem arguable.  However, one of the main weaknesses, 

which were identified during the collection of sources of related work, was the fact that 

most researchers observe the localization problem from a very narrow perspective.  For 

instance, the roboticist is concentrated on solving the simultaneous localization and 

mapping, (SLAM), problem, which in its pure form, may be restricted to only few 

application scenarios. 

In many real-life applications of mobile robots, the generation of a map is not 

strictly necessary.  Other means to obtain location information, at least in rough form, 

may be available.  Conversely, scientists in the communications areas count only on 

radio-location techniques.  They are in many cases oblivious to the advances of inertial 
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measurement systems, which may provide a key complement to techniques currently 

employed in radio-localization.  Consequently, it appears that the application of SE to 

structuring research endeavors is perfectly feasible.  In addition, the SE approach may 

give rise to innovative and optimal solutions to particular applications.  Therefore, it is 

argued that the application of SE principles results in a more focused and structured 

generation of knowledge.  The SE process is a sequential, top-down, process with the 

main objective of delivering a “Solution Space” that fits the needs of particular missions 

and/or applications.  Within the solution space, the role of the SE process is translating 

requirements into a system that solves the problem.  The SE process accounts for all the 

restrictions, requirements and needs initially specified.  The SE process may be divided 

into four basic steps: 

• Requirement analysis, 

• Functional analysis and allocation, 

• Design synthesis, 

• Verification. 

Figure 8 presents the block diagram of the guidance, navigation, and control, (GNC), 

problem from the SE approach as applied to autonomous vehicles, [19]. 
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Figure 8:  Block Diagram of a GNC System: 

Modified from [19] 
 

The SE approach to research planning indicates that through proper structuring of 

a problem, conceptual solutions can be obtained that are free of technological constraints.  

The diagram presented in Figure 8 is the result of the application of the first two steps of 

the SE process.  It shows the different functions that are required in a GNC application 

and their interactions.  However, the diagrammed process does not reference actual 

solutions or particular implementations since they may vary according to application, 

available resources or the stage of technological development.  Concrete implementation 

factors will be considered in the design synthesis and verification steps, which are 

iterated until reaching a solution that fulfills all the requirements specified in step one of 

the process. 
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3.3. Requirements and Metrics 

The development of a localization system is proposed, which lifts the limited 

applicability and restrictions of solutions previously formulated.  A requirements analysis 

considering different aspects of localization solutions is listed below: 

• Coverage:  One major drawback of currently available localization 

schemes is their limited coverage.  For instance, GPS receivers work only 

outdoors.  Other indoor systems work only within a specific range and 

with severe constraints.  For example, the “Cricket” and NorthStar 

systems are severely constrained by the fact that signals can be easily 

blocked by obstacles. 

• Processing:  Because of privacy issues and due to scalability constraints, 

centralized solutions are not desirable.  For example, current localization 

services offered by cellular communications providers are based on 

centralized trilateration schemes, which allow them to pinpoint the 

location of mobile communication devices.  A distributed cooperative 

estimation process is desired, which provides a capability for nodes to 

determine their position locally with the help of close-by neighbors. 

• Sensing:  Researchers from the mobile communications community see 

the problem as a “radio-localization” problem since radio signals alone are 

used to determine position information.  However, the roboticist 

incorporates sensors such as laser range-finders and cameras.  These 

sensors improve the localization process but are too bulky and expensive 

to be installed in every networked wireless system.  Navigation scientists 
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are especially concerned with the process of augmenting inertial sensing 

with external aids.  However, they do not consider the potential 

cooperation that can take place due to networking.  The solution should 

provide a balance between the compactness found in radio-localization 

with the comprehensiveness of robotics and navigation. 

• Applicability:  Some currently available methods work only for specific 

applications.  For instance, localization systems designed for mobile 

communications cannot be used in robotics applications.  What is sought 

is a solution, which can be used in all applications such as personal 

navigation, vehicular navigation and robotics with some adaptations. 

• Infrastructure:  Many localization systems rely heavily on previously 

deployed infrastructure.  Such is the case with GPS, which needs a set of 

dedicated satellites.  Other systems require direct communication to 

anchor nodes, beacons, or visual landmarks.  The proposed system should 

work without relying only on external infrastructure.  However, it should 

benefit from such infrastructure when available. 

• Previous knowledge:  Some localization designs require a map with 

signature patterns such as visual or RF signal strength.  These maps are 

built prior to the deployment of the devices to be localized.  However, it is 

desirable that no previous mapping should be necessary.  Storing large 

amounts of information locally should also be avoided. 

• Integration:  The localization solution should be easily integrated into the 

vehicles, robots or objects to be localized.  If other types of localization 
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systems are in place, the system should integrate into their computational 

and communications resources use them and enhance them to the 

maximum extent possible. 

Table 1 summarizes the desired characteristics of the localization solution 

compared to characteristics, which have been reported in related scientific literature or to 

commercially available characteristics. 

 
Table 1:  Requirements for Localization 

 Features   
 Proposed  Common   

Location  Anywhere  Either outdoors or, 
indoors   

Processing  Local, distributed Centralized   
Sensing  Compact and 

comprehensive  
Radio-loc. only, 
cameras, range-

finders  
Applicability Universal  Specific (robotics, 

cellular, vehicles). 
Infrastructure Benefit from it 

when available  
Ref. points, 

beacons, anchor 
nodes   

Prev. 
Knowledge  

Minimum  Maps, databases  

Integration  “Embeddable”  Stand-alone  
 

Requirements involve all desired features of the localization solution to be 

proposed.  However, it is highly relevant to determine concrete quantitative metrics in 

order to compare the proposed solution to other solutions.  The comparative relevance of 

each metric depends on the particular application.  A list of metrics that can be used to 

assess the quality of a localization method follows: 
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• Accuracy:  This metric can be viewed as the uncertainty associated with a 

position estimate.  Accuracy may be measured in units of longitude.  

Estimation bounds, such as the Cramer-Rao lower bound, indicate the 

minimum variance achievable using particular proprioceptive and 

exteroceptive sensing hardware. 

• Lag, Latency:  Many localization system vendors indicate latency as one 

of the main parameters of their products.  The position estimation process 

is not instantaneous.  Therefore, results are obtained a short time interval 

after the platform has passed through a given position.  Hence, this 

parameter defines the ability of the system to perform dynamic tracking. 

• Coverage:  Coverage could be measured in units of area in the case of 

two-dimensional solutions.  Coverage is highly dependent on the 

technology used for exteroceptive sensing.  For instance, ultrasound 

ranging technology, which is used in the Cricket localization system, has a 

wedge-formed coverage area with an approximate radius of five meters 

and an approximate angle of 150 .  Cooperative localization methods 

present better coverage metrics than trilateration solutions, which require 

nodes to be within the coverage area of anchor nodes.  Coverage can be 

categorized according to the application environment since exteroceptive 

sensing technologies, such as ranging, depend on the propagation patterns 

of RF-Signals.  Some authors distinguish indoor-to-indoor, (ITI), indoor-

to-outdoor, (ITO), and outdoor-to-indoor, (OTI), coverage metrics. 
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• Cost:  The cost can be divided into two main categories.  These categories 

comprise costs at the local level and the cost of infrastructure.  Some 

localization schemes such as GPS do not imply any costs to the user.  

However, certain methods specify a minimum number of reference nodes 

for the solution to work within certain error bounds.  Some solutions 

require expensive sensors at the node level.  Others may only use 

hardware that is already in place such as wireless network interface cards, 

(WNICs). 

• Computational complexity:  Computational complexity of localization 

algorithms can vary with such parameters as the number of sensors 

employed, the number of nodes in the network and the accuracy of the 

models used for navigation. 

• Message complexity:  Distributed computations involve the exchange of 

messages.  This exchange of messages can be observed as 

communications “overhead”.  Therefore, it is desirable for localization 

methods to possess a limited usage bandwidth and that the amount of 

localization-related messages does not grow exponentially with the 

number of nodes. 

 

 

 

 



48 
 

3.4. Structuring the Cooperative Localization Problem 

 

3.4.1. Challenges and Issues in Localization 

After the requirements have been analyzed and metrics established, the systems 

engineering approach usually includes a step, which consists of analyzing the challenges 

that are involved in solving the main problem.  Exploratory practical experiments may be 

carried out to discover the challenges and issues of localization.  Two preliminary 

“naïve” experiments that elucidate the challenges of localization are described next. 

 

3.4.1.1. A Trilateration Experiment 

There are many alternatives for the determination of the location of a node based 

on external measurements or through the application of geometric principles.  The most 

widely used method is trilateration, which is defined as “a method to determine the 

position of an object based on simultaneous range measurements from three stations 

located at known sites”, [46].  A straight-forward numerical implementation of 

trilateration is through the application of Cayley-Menger determinants, [46].  However, 

trilateration is highly sensitive to errors in the range measurements as well as in the 

position of the reference nodes. 

A practical experiment was performed with the help of the Cricket localization 

system, (presented in Chapter 5), to assess the trilateration method.  The setup consisted 

of three beacons, which sent ultrasound pulses and a mobile platform equipped with a 

listener, [61].  The setup is pictured in Figure 9. 
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Figure 9:  Setup for a Trilateration Experiment 

 

When a beacon sends an ultrasound pulse, it also simultaneously sends an RF 

packet with a beacon identifier, which may be associated with a specific position.  This 

combination of ultrasound pulse and RF packet is interpreted as a single chirp.  A chirp 

possesses information about the location where the chirp originates such as the position 

of the beacon and the distance from that location to the listener.  In reality several 

listeners can make use of a chirp since each listener needs to compute its distance to the 

beacon.  The distance can be determined, using the speed of sound for the ultrasound 

pulse and the speed of light for the RF packet, from the time difference of arrival, 

(TDOA). 

This particular experiment deals with a mobile platform that obtains chirps from 

the beacons and forwards them to a computer where the position is calculated.  No two 

beacons can emit chirps at the same time.  Therefore, a protocol was required.  A medium 

access control, (MAC), protocol was employed, which enabled the beacons to share the 

acoustic medium where the ultrasound propagated. 

Figure 10 presents the results obtained from this experiment and the positions of 
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the beacons.  The x-marks indicate the trilateration estimates.  The smooth curve, which 

can be used as ground-truth, shows the trajectory of the mobile platform obtained through 

a-posteriori smoothing of the data. 

 

  
Figure 10:  Results of a Trilateration Experiment 

 

Although the experiment was simple, the degree of error, which was an average 

of approximately 0.2m in the position estimates, highlights several drawbacks of the 

trilateration approach.  Most of the drawbacks can be attributed to the fact that the 

Cricket localization system was designed for static localization.  However, in this case, it 

was applied to dynamic tracking of a mobile platform.  Salient points, from an analysis of 

the experiment, were: 

• In order to perform trilateration, three simultaneous measurements are 

required.  In this case, because of the MAC protocol, the chirps arrive at 

different instants of time.  If absolutely no filtering is applied, the best 

possible result can be obtained using the three most recent chirps.  This 
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means that if the listener is moving, only one range measurement is valid 

and the other two are outdated.  The error is exacerbated considering that 

range measurements also have some degree of noise.  The solution to this 

problem requires projecting the past measurements through a motion 

model of the mobile platform in order to apply trilateration to one current 

measurement and two past measurements.  Hence, filtering is required. 

• Sensitivity and error analysis indicate that results are highly dependent on 

the configuration of the beacons and on the position of the listener, [46].  

For instance, beacons that are almost collinear do not yield good results.  

Similarly, when the listener is close to the barycenter of the triangle 

formed by the beacons, the sensitivity and errors behave better than when 

the listener is in faraway locations. 

• The problem of lack of consistency in the error and sensitivity could be 

alleviated by placing higher numbers of beacons.  However, the listener 

would have to choose the best configurations of three beacons to optimize 

the error performance of the position estimates. 

• At least three measurements from three different beacons are required in 

order to obtain a valid position estimate.  However, intuitively, one or two 

beacons could be used to obtain a raw estimate of position. 
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3.4.1.2. Inertial Measurement Experiment 

An Inertial Measurement Unit, (IMU), should improve the location estimation 

results obtained in the previous experiment since it contains information about the motion 

of the mobile platform.  A simple experiment demonstrates the challenges involved in the 

use of inertial sensing devices.  The experiment consists of simply collecting data from a 

static IMU.  Six variables were measured with the help of accelerometers and gyroscopes 

contained in the IMU.  The accelerometers provided three orthogonal accelerations.  The 

gyroscopes provided three orthogonal angular rates.  The IMU used in this experiment is 

pictured in Figure 11, which also depicts the measurement axes for the available signals. 

 

  
Figure 11:  The Microstrain’s 3DM-GX1 

Inertial Measurement Unit 
 

Figure 12 presents the measured acceleration data and Figure 13 presents the 

measured angular rate data.  From these results it can be inferred that the position or 

attitude of the IMU cannot be determined from the measurements in a straightforward 

manner.  Acquired measurements present bias and a considerable noise component.  The 

noise component is especially large in the case of the accelerometers.  The 

accelerometers also sense the Earth’s gravitation, which makes it difficult to distinguish 

the true acceleration from noise and gravity. 
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Figure 12:  Measured Acceleration with 

Basic Statistical Parameters 
 

  
Figure13:  Measured Angular Rate with 

Basic Statistical Parameters 
 

Basic zero-phase digital filtering was applied to the data presented in Figures 12 

and 13 after removing the mean.  The resulting signals were integrated, with the objective 

of obtaining position and attitude, in accordance with: 
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( ) ( )j jx t a t= ,     (1) 

where ( )ja t is the measured acceleration, ( )jx t is position along the j axis, and 
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,  (2) 

where φ , θ  and ψ  are roll, pitch, and yaw, respectively.  p , q , r  are measured angular 

rates around the X, Y and Z axes respectively. Figure 14 presents, in a summarized way, 

the computed position and attitude for a time interval of 60s. 

 

 
Figure 14:  “Virtual” Motion of a Static 

Object Due to Errors 
 

The results presented indicate that the error due to drift in the accelerometers can grow 

very quickly even when the average is subtracted.  However, attitude errors were much 

smaller since the orientation of the object did not change noticeably. 
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3.4.1.3. Summary of Challenges and Issues 

The following main challenges have been identified: 

• The localization problem based on range measurements is a difficult 

problem, [62].  It has been proven that, in the presence of noise, the 

localization problem is NP-Hard. 

• As seen from the trilateration experiment, measurements may arrive 

asynchronously.  For instance, in trilateration, at least three simultaneous 

range readings are required. 

• When using trilateration, choosing different groups of three reference 

nodes yields different sensitivity and accuracy. 

• Ranging technologies have limited coverage. 

• Inertial sensors have significant errors that are non-stationary.  If 

calculations do not account for these errors the estimation results may 

diverge quickly. 

• Kinematics of a rigid body is highly nonlinear, as equation 2 indicates. 

• Variables of interest in rigid body kinematics are tightly coupled. 

• The most practical and inexpensive way to do inertial navigation is with 

strap-down inertial measurements systems.  However, it may be much 

easier to employ gimbaled inertial measurement units, which are more 

accurate and sensitive, but bulkier and more expensive. 
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3.4.2. Cooperative Localization and Distributed Estimation 

In networked systems, centralized solutions may not be optimal due to several 

constraints, which are associated with scalability, robustness and flexibility.  This fact is 

well known, for instance in ad-hoc networks, which require routing algorithms to build 

routes for shuttling information between nodes.  Therefore, it is highly desirable to 

elaborate a distributed localization solution where the computational and communications 

load is distributed evenly among the members of the network. 

Making localization a cooperative distributed task improves its coverage, 

scalability, flexibility and robustness.  The central idea in this research is the possibility 

of posing localization as a distributed estimation problem.  Figure 15 presents the 

cooperative localization process, which takes in a network of four nodes.  As indicated in 

Figure 15, the problem can be partitioned into three major aspects. 

 

  
Figure 15:  Three Aspects of Cooperative Localization 

 

Each aspect is depicted in different color and represents: 

• Local Aspect:  The lower blocks represent processing taking place in each 

node for the estimation of the node’s position, 
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• Cooperative Aspect:  The upper blocks depict the processing component, 

which is executed on behalf of other nodes in order to enable cooperative 

distributed estimation, 

• Information Exchange Aspect:  The exchange arrows represent the 

information that each node sends to their neighbors as part of the 

cooperative estimation process. 

The main question consists in finding the appropriate boundaries of problem partitions.  

Three questions arise: 

• How much processing is going to be performed at the local level? 

• What portion of the processing is going to be solved in a distributed 

manner? 

• What type of information is going to be exchanged? 

The more weight that is placed on pure distributed estimation, the greater will be the 

amount of information to be exchanged.  However, pure local processing will disable the 

potential of having more accuracy due to the possibility of exchanging information since 

the systems may have to exchange information under any circumstance.  Ideally, the 

estimation process should allow for a refinement of estimates in a loop such as the one 

depicted in Figure 16. 
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Figure16:  Cooperative Estimation 

 

3.5. Functional Analysis and Allocation 

Following the SE approach, a more detailed functional analysis of the localization 

solution yields the main functional modules, which are depicted in Figure 17.  The 

overall general solution has three main components. 

 

  
Figure 17:  Main Functions of the 
Cooperative Estimation Solution 

 

Each of the main components is comprised of several sub-units: 

• Sensing:  This unit is in charge of obtaining physical measurements, which 

will enable the system to determine its location.  There are two main 

categories of sensing devices, which were introduced in section 2.1.4: 
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 Proprioceptive:  These are devices that can be used by the system 

to register its own motion.  Sensors of this category are the ones 

that provide for performing dead-reckoning, which is also known 

as odometry.  It can be assumed that proprioceptive measurements 

are available at higher sampling rates than measurements from the 

complementary exteroceptive category.  The proprioceptive 

module is only necessary when nodes possess mobility. 

 Exteroceptive:  Odometry cannot be used for long-term position 

tracking, due to modeling errors and measurement noise.  

However, exteroceptive sensors provide for keeping errors, which 

stem from odometry, within bounds.  In navigation terms, sensors 

of this category are also known as navigation aids. 

• Processing:  To allow for combining data incoming from the sensing 

module and information gathered through the communication interfaces, a 

processing device is required.  The processing device is required to 

execute procedures, which, most likely, would consist of sensor fusion 

filters.  Accurate positioning of mobile nodes with minimum latency 

demands much higher computational power than static node localization.  

An additional machine learning module is suggested for localization of 

mobile nodes.  The learning module would perform online identification 

of certain parameters such as drift rates of the inertial sensors, particular 

motion patterns of the host vehicle or node carrier, the non-orthogonality 

of inertial measurements and lever-arm compensation 
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• Interface:  Localization of a wireless node serves an application-specific 

purpose.  Therefore, there must be a user for the location information.  

This module consists of the elements that enable the wireless localization 

solution to pass this information to a user or to other nodes.  In the latter 

case, a node may contribute to the cooperative localization process by 

providing its own position estimate to other nodes.  Thus, it should be 

stressed at this point, that the most viable way to implement cooperative 

localization is by making each node share its own position estimate.  

Additional to the position estimate, it is important for other nodes to have 

a measure of confidence of their position estimate since they may use it in 

their own position estimation process. 

 

3.5.1. The “Localizer” – A Conceptual Solution for Cooperative Localization 

The third step in the systems engineering approach is design synthesis.  Following 

these guidelines a conceptual solution for cooperative localization is presented.  This 

solution can be considered as the vision for this research, which opens the possibility for 

generating concrete measurable contributions to the state of the art. 

 A localizer is an abstraction of the conceptual solution for localization presented 

in this work.  The “localizer” may exploit hardware already available in its carrier, such 

as power, communications interfaces, antennae or even the processing unit.  In one 

extreme case, the localizer may have the appearance of a small rugged device comprising 

all the hardware and software, as presented, in simplified form, in Figure 18. 
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Figure 18:  Simplified Representation of the “Localizer” 

 
NOTE:  After coining the term “localizer” for illustrating the conceptual localization 
solution, the author became aware of a device also termed “localizer”, introduced by the 
science-fiction author Vernor Vinge in the novel “A Deepnes in the Sky” published in 
1999.  Vinge describes localizers as tiny devices bearing some resemblance to one of the 
possible solutions expounded in this document. 
 

In another extreme case, the “localizer” may include all the software algorithms 

and use all the hardware resources available in the host device. The “localizer” comprises 

the following elements: 

• An inertial measurement unit, which may minimally incorporate a six-

degree-of-freedom inertial measurement configuration such as three 

accelerometers and three gyroscopes. 

• A processing unit comprising all processing functions explained 

previously.  For its physical realization, the processing unit may be 

realized as a system of parallel processors or multi-threaded software 

modules.  Each module would be dedicated to different tasks such as: 

 A sensor fusion processing module for executing sensor fusion 

algorithms and cooperative estimation tasks. 
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 A communications module for performing all communications 

tasks and protocols.  This module may also use a signal processor 

for assistance in managing software defined radio functions and 

range determination.  Possibly, only one communications interface 

may be necessary for communication with other localizers and 

with host devices querying position information. 

 A management processing module, which may be in charge of 

machine learning routines and coordination among the different 

processors. 

• An antenna or set of antennas in case the communications system is 

realized as a MIMO system or in case other geometric relationships are 

used for location determination, such as the angle of arrival, (AOA), of a 

“chirp.” 

 

The localizer might represent a viable solution for the two motivating examples 

expounded in Chapter 1. Additional application scenarios are described below with the 

purpose of understanding the function of each module of the localizer. 

 

3.5.2. Application Examples 

 

3.5.2.1. A Localizer-Enabled Cell Phone 

One possible application scenario of the localizer may involve incorporating it in 

cellular phones for accurate pedestrian navigation.  Due to seamless interoperability, cell 
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phones of the future may establish communication links with indoor and outdoor network 

access points.  They may even use other phones in a multi-hop configuration.  Multiple 

channels and specific protocols may be used for synchronization and accurate range 

estimation.  The main feature of this futuristic phone is the incorporation of a strap-down 

inertial measurement unit.  The measurement unit would provide for motion tracking and 

substantially reduce information exchanges associated with cooperative localization.  A 

high degree of dead-reckoning precision is achieved due to the identification of the 

motion patterns of the users.  These parameters may be acquired after a continuous 

identification process through machine learning techniques.  Static cell-phone towers and 

wireless access points would have their location estimated with high accuracy, which 

would make navigation aids very accurate.  This situation is illustrated in Figure 19. 

 

  
Figure 19:  A Localizer-Enabled Cell Phone for Pedestrian Navigation 

 

3.5.2.2. UAV–WSN Cooperative Localization 

A scenario, where the proposed localization solution would be applicable, 

involves an unmanned aerial vehicle, (UAV), aided cooperative localization of wireless 
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sensor networks.  For instance, an environmental monitoring WSN may be deployed 

randomly by UAVs in a location with severe LOS obstruction with respect to GPS-

satellites.  WSN nodes may be equipped with a localizer, which would allow them to 

cooperatively find their relative location.  However, if data needs to be collected using 

absolute location information, there should be a mechanism that would allow the nodes to 

determine their absolute location.  A localizer-enabled UAV could be used for 

“spreading” location information among the WSN nodes just after deployment.  This 

situation is illustrated in Figure 20. 

 

  
Figure 20:  UAV-WSN Cooperative Localization 

 

The motion of the UAV would allow it to broadcast chirps from different 

locations.  The chirps would allow the WSN nodes to estimate their own position 

information.  Not all nodes would need to find their location.  Certain nodes could use 

similar cooperative localization mechanisms for refining the position estimates 

independently of the UAV.  The cooperative localization mechanisms would provide for 

achieving complete coverage of the network. 
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3.5.2.3. A Swarm of Ground Robots 

The localizer can be also used in a network of ground vehicles, which need to 

move in a specific formation.  Figure 21 pictures such a network.  Since each robot is 

equipped with a localizer, they can communicate with each other.  Therefore, they can 

determine their relative distances.  Due to the inertial sensing capability included in each 

localizer, the robots do not need to exchange location information continuously.  

Formation control algorithms will use the relative position information for maintaining a 

specific geometric pattern. 

 

  
Figure 21:  A Swarm of Ground Robots 

Equipped with Localizers 
 

The machine learning algorithms may learn the holonomic constraints of the 

robots, which would enhance their dead-reckoning ability.  Position estimates obtained 

from the localizers may be further refined in case more sensing magnitudes had to be 

integrated such as velocities and position changes stemming from wheel encoders. 
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3.6. The Role of Ranging 

Navigation aids used in this research used range measurements such as inter-node 

distances.  In the remainder of this document, it is assumed that range measurements are 

available, even under adverse conditions, which is the primary situation in indoor 

environments.  Indoor environments pose the main challenge to current ranging methods 

due to the difficulty of range estimation under Undetected Direct Path, (UDP), 

conditions, [63].  These conditions arise in cluttered environments with severe multi-path 

propagation characteristics.  Under these conditions nodes do not have Line of Sight, 

(LOS), connectivity.  The cooperative nature of the localization scheme proposed in this 

research makes the estimation of very long ranges unnecessary.  However, most 

researchers agree that, due to intense research work in Ultra-Wideband, (UWB), 

modulation techniques, in the near future range measurements may be available as a 

byproduct of the networking functionality of wireless networking interfaces, [64].  The 

main advantages and challenges of UWB localization, as well as an outline of techniques 

and error bounds, are covered in a tutorial manner in, [65]. 

 

3.7. Summary 

The localization problem was analyzed and considered most relevant aspects from 

the systems engineering perspective.  Initially, requirements and metrics were defined.  

Two preliminary experiments served for identifying key issues in localization, which 

showed it to be a non-trivial problem.  Function allocation exposed the structure and 

modules necessary for creating a conceptual solution, which may be applied to a variety 

of scenarios.  Finally, the “localizer” was presented with some examples illustrating its 
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use and capabilities.  A localizer may be realized as a stand-alone device.  Alternatively, 

its functions may be embedded in the computers of the host vehicle or carrier.  The main 

characteristic of the localizer consists of the integration of three aspects: 

• A wireless network interface with the functions of communications and 

range measurements, 

• An inertial measurement unit, 

• One or more processing devices executing routines for the implementation 

of protocols, for recursive state estimation and for continuous on-line 

calibration. 
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Chapter 4 

Cooperative Localization in the Case of Fixed Nodes 

 

Several aspects of the conceptual solution were presented in the previous chapter.  

The best way to approach solving a complex problem, which includes many functional 

components and fields, is to isolate the different aspects of the problem by applying a 

“divide and conquer” approach.  In the divide phase, the nodes were considered to be 

fixed.  The fixed node assumption allowed key aspects of the problem to be isolated.  

However, the fixed node idea is not an assumption but the relevant condition in certain 

problems.  The problem of localization in Wireless Sensor Networks, (WSNs), which 

was outlined in the introduction, is a fixed node localization problem. 

This chapter develops two main ideas that were key in this research: 

• Probabilistic estimation:  It is shown that probabilistic approaches can 

override limitations inherent to deterministic solutions such as those using 

graph rigidity, trilateration or other similar ideas. 

• Cooperative localization:  It is proven that devices can exchange 

information and use it for determining their own location in a cooperative 

and distributed manner. 

The associated aspects of mobility and the protocols underlying cooperative localization 

are handled in subsequent chapters.  For practical implementation of the localization 

algorithms, which are presented in this chapter, additional aspects are explored.  
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Computational and energy constraints inherent to WSN nodes, which were used while 

seeking to minimize the complexity of the estimation algorithms, are presented.  

Additionally, the number of messages, required to be exchanged, between nodes to 

achieve accurate localization was investigated. 

 

4.1. Probabilistic Approach to Localization 

In section 3.4.1.1, it was shown that trilateration may not be the best solution for 

determining the position of a node.  Obtaining the position from pure geometry in a 

closed form expression or through an iterative solution is regarded as the deterministic 

approach to localization.  Probabilistic techniques constitute an alternative approach.  

One of the main advantages of probabilistic techniques is that they facilitate the 

consideration of uncertainty, which is always present in real-world applications.  The 

main sources of uncertainty reside in the inaccuracy of dynamic models and in the 

measurement of noise. 

This section introduces the probabilistic estimation framework as applied to 

localization.  The approach follows the one presented in, [16].  In general, and not only 

for fixed nodes, the localization problem can be viewed as a continuous Markov process.  

The state of the system, ( tx ), evolves with time and is driven by the controls, ( tu ).  The 

system is Markovian because the current state depends only on the previous state, ( 1tx − ), 

and the control action.  In other words, to predict the next state, it is only necessary to 

know the current state, the control that is being applied and the conditional probability 

functions.  The state is not directly observable.  Only measurements, ( tz ), are available.  

The measurements are probabilistic projections of the state.  Measurements contain noise.  
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Since the state is “hidden behind” the measurements, the model of the evolution of the 

position in time can be regarded as a Hidden Markov Model, (HMM), or as a Dynamic 

Bayes Network, (DBN).  It is important to note that the state is not the position.  The state 

is a collection of variables that completely describe the system.  Hence, the state may also 

incorporate the current velocity and rotational speed in the case of moving nodes.  A 

diagrammatic depiction of a HMM is presented in Figure 22. 

 

  
Figure 22:  Localization as a Hidden Markov Model: 

From [16] 
 

A paramount change in perception occurs when applying probabilistic methods to 

the problem of localization.  The position of an object or node cannot be viewed as 

possessing a fixed value, which can be directly measured.  Instead, position is viewed as 

stochastic in nature and, the value associated with position, is termed belief.  A belief can 

be understood as the node’s internal knowledge about the state.  The belief also 

incorporates the uncertainty inherent to the non-absolute knowledge about the state.  In 

statistical terms, a belief is simply a probability density function.  The belief distribution 

represents the probability of any hypothetical state value. 
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4.1.1. Bayes Filter 

The Bayes filter is a tool that can be applied for determining belief with almost no 

restrictions outside the assumption of the process being Markovian.  Table 2 presents the 

Bayes filter algorithm.  Table 2 lists the main steps invoked in assessing the belief, the 

posterior, after the application of the control and the measurement.  Measurement and 

control are not applied at the same time.  The prediction is the result of the incorporation 

of the control.  The posterior is calculated from the prediction after the measurement 

update step. 

 

Table 2:  Bayes Filter Algorithm 

BayesFilter 1( ( ) )t t tbel x u z− , ,  

1 1 1( ) ( ) ( )t t t t t tbel x p x u x bel x dx− − −= | ,∫  

( ) ( ) ( )t t t tbel x p z x bel xη= |  

return ( )tbel x  

 

In Table 2, ( )tbel x  stands for the conditional probability distribution: 

 
1 1( ) ( )t t t tbel x p x z u: := | ,         (3) 

 

Similarly: 

 

1 1 1( ) ( )t t t tbel x p x z u: − := | ,         (4) 
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For calculating the posterior, three probability distributions are required: 

• The initial belief:  0( )p x , 

• The transition probability:  1( )t t tp x u x −| , , 

• The measurement probability:  ( )t tp z x| . 

 

4.1.1.1. Illustrating the Experiment 

In an experiment similar to the one performed in Section 3.4.1.1, beacon nodes 

send chirps to a static listener.  Given that the device to be localized is static makes the 

prediction calculation step unnecessary.  Figure 23 depicts the configuration of the 

beacons and the listener. 

 
Figure 23:  Configuration of Beacons and a Listener 

 

Figures 24 through 26 show the sequential application of the Bayes filter.  The 

assumptions are that range measurements are always noisy and that the measurement 

noise has Gaussian distribution.  Therefore, the location of a listener belief can be 

represented by an annular distribution centered on the beacon.  The belief after one range 

measurement is presented in Figure 24. 
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Figure 24:  Belief after one Range Measurement 

 
Every time a range measurement from a beacon is available, the position belief is 

updated.  In this example, three measurements were processed.  Noise in the range 

measurements displayed a standard deviation of one, ( 1 0σ = . ).  The belief after two 

range measurements is presented in Figure 25. 

 

  
Figure 25:  Belief after two Range Measurements 

 

Figure 26 presents the belief obtained after three range measurements. 
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Figure 26:  Belief after three Range Measurements 

 

This example shows several important aspects of the probabilistic approach: 

• What is calculated is the belief, which is the Probability Density Function, 

(PDF), of a node being at a particular position.  Specific techniques could be 

used to extract from this PDF a position estimate and the degree of 

uncertainty.  If the PDF was Gaussian, the position would correspond to the 

mean of the PDF and the uncertainty to the covariance matrix. 

• The PDFs resulting from the application of the Bayes filter to range 

measurements are not normally distributed.  This could be a major hurdle 

when trying to apply optimal estimation methods that assume normal 

distributions. 

• It is possible to obtain position estimates without the need for three chirps 

from different beacons.  For instance, after the second chirp, as shown in 

Figure 25, the PDF has a strong bimodal character, which indicates that there 

is equal probability for the node being at one of the peaks. 

• All measurements are useful.  Even two measurements from the same node 

produce a refining effect on the resulting belief. 
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4.1.2. Particle Filters 

Graphs in previous sections were computed using the generic Bayes filter, which 

was evaluated numerically on a grid with almost 300 cells per side.  However, 

localization needs to be implemented in embedded devices.  Therefore, working with 

such a degree of resolution or even symbolically may not be feasible as a result of 

memory and computational constraints.  There are two main possibilities for the practical 

representation of beliefs; Gaussian and non-parametric.  Due to the non-Gaussian nature 

of the beliefs resulting from applying measurement updates stemming from range 

measurements, this section considers only non-parametric belief representations. Non-

parametric belief representations work with sampled versions of the distributions.  The 

two popular varieties of sampled representations are histogram filters and particle filters.  

The particle filter representation is known to possess a high level of robustness and there 

are a number of techniques that make it computationally tractable.  The generic particle 

filter algorithm, which can be viewed as a Monte Carlo approximation of the Bayes filter, 

is listed in Table 3. 
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Table 3:  Particle Filter Algorithm 

Particle_Filter 1( )t t tX u z− , ,  

t tX X= = ∅  

for 1m =  to M  do 
sample [ ] [ ]

1( )m m
t t t tx p x u x −| ,∼  

[ ] [ ]( )m m
t t tw p z x= |  

[ ] [ ]m m
t t t tX X x w= ∪ ,  

endfor 
for 1m =  to M  do 

draw i  with probability [ ]i
tw∝  

add [ ]i
tx  to tX  

endfor 
return tX  

 

 The first for-loop implements the Bayes filter using samples of the distributions.  

The second for-loop is termed importance sampling and is relevant for keeping a larger 

amount of particles at places with higher probabilities.  After the first for-loop, particles 

are still spread according to the prior concentration.  However, after the second for-loop, 

particles will have higher concentration where the posterior had higher weight.  Each 

particle is one hypothesis of the possible position of the listener.  The weight of a particle 

can also be interpreted as the probability of the hypothetical position. 

The experiment for localization from three range measurements was repeated 

using particle filters.  The results are presented in Figures 27 through 30.  The number of 

particles, M, in the experiment was 5000.  Since there was no previous knowledge about 

the location of the listener, the belief was initialized by sampling a two-dimensional 

uniform distribution.  Figure 27 presents the result. 
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Figure 27:  Particle Filter Initialization 

 

Figure 28 shows the belief after the first range measurement and after resampling, which 

is also known as importance sampling. 

 

  
Figure 28:  Particles after the First 

Range Measurement 
 

Figure 29 presents the belief after the second range measurement. 
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Figure 29:  Particles after a Second 

Range Measurement 
 

The red cross, and the red circle are displayed in each of the steps of the iterative 

process to represent the true and the estimated position of the listener respectively.  The 

estimated position was calculated as the Center Of Gravity, (COG), of all particles.  A 

comparison of the estimated and true positions demonstrates that the estimation 

converges to the true position. 

 

  
Figure 30:  Particles after a Third 

Range Measurement 
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4.1.3. Implementation of Resampling 

The resampling process consists in drawing a specific number of particles from an 

original set of particles tX  to conform a new set of particles tX  representing a particular 

belief, that is, a probability density function.  The process of “drawing” particles is 

governed by the weight of each particle of the set tX .  The way this was implemented is 

illustrated by an example, where the distribution of tX  is uniform and the weighting 

distribution is normal, as seen in Figures 31 through 34. 

First, in Figure 31, the original set comprising 1000 particles is shown. Particles 

are distributed uniformly over the interval (0, 10). This fact can be corroborated by 

observing the histogram. 

 

 
Figure 31:  Set of Uniformly Distributed Particles and 

Their Histogram 
 

Then, the particles are weighted according to a normal distribution given by N(5, 

2). The weighted particles are shown in Figure 32. 
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Figure 32:  Weighted Particles 

 

Figure 33 shows the cumulative sum of the weights. After that, N random values 

are generated according to a uniform distribution U(0, 1).  These values are used to 

perform an interpolation finding the indexes of the corresponding particles. This can be 

thought as finding the x value for each y generated value.  The concrete MATLAB 

command used is:   

newix = interp1(cumul,1:N,ix,’nearest’,’extrap’) 

 

 
Figure 33:  Cumulative Weight of Weighted Particles 

 

Then, the new particle set consists of the particles with the indexes obtained from 

the function mentioned above.  The new set is depicted in Figure 34.  The corresponding 

histogram shows that the particles are distributed according to the weighting distribution 

N(5, 2). 
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Figure 34:  Resampled Set of Particles with  

Corresponding Histogram 
 

4.2. General Assumptions 

WSN nodes are assumed to host range-based measurement devices.  A “chirp” 

sent by a node comprises a distance measurement pulse and a short message, (standard 

wireless packet).   The message contains the location of the beacon and a measure of 

uncertainty of its own position.  Nodes can act alternatively either as transmitters of 

chirps, (beacons), or as receivers, (listeners).  In the transmitting state a node broadcasts 

chirps to neighboring nodes.  Listeners compute their distance from the transmitting node 

and use the position transmitted by the beacon to update their own position estimates.  

Listeners obtain readings from different beacons at random.  The ranging technology may 

require a particular randomized MAC arbitration scheme.  Hence, this research is 

applicable to platforms with different ranging technologies such as Received Signal 

Strength, (RSS), to other more sophisticated ranging techniques, for instance those 

described in [66] and [67]. 
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Two scenarios, incremental localization and concurrent localization, are analyzed 

in order to define the localization problem, [68].  In both scenarios, the ranging device 

has a specific coverage area.  In the incremental localization scenario, reference nodes 

broadcast their position to nodes within their coverage area.  As soon as a node has a 

good position estimate it begins to broadcast its position to other nodes, which expands 

the region of coverage for localization.  In concurrent localization all nodes start the 

localization process simultaneously.  In both scenarios, nodes cooperate to obtain the 

final position estimates, which leads to the term cooperative localization.  Therefore, in 

cooperative localization, WSN nodes do not rely on a central platform to assist in the 

localization process.  Consequently, the algorithms are characterized as distributed.  In 

both scenarios, it is assumed that there is an underlying MAC layer protocol striving to 

minimize the overhead of information packets exchanged for coordination.  It is also 

assumed that localization packets, (chirps), constitute the core of the information 

exchange necessary for enabling localization. 

Given that communications was the key factor impacting network lifetime in 

WSNs, the main metric considered, to reach final localization estimates, was the total 

number of chirps broadcasted, [69].  The main concern was the convergence time of the 

algorithm measured by the number of chirps.  Slower convergence implies that more 

messages must be exchanged.  Thus, the message complexity of the distributed algorithm 

employed for localization was crucial to assess its impact on the energy consumption and 

the lifetime of the WSN. 
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4.3. Varying the Number of Particles 

In Section 4.1.2 the localization process using a particle filter, which consisted of 

5000 particles was illustrated.  The large amount of memory required for localization 

motivated an investigation of the effect of changing the amount of particles.  Reduction 

of the number of particles required would make the method applicable to devices with 

constrained computational and memory storage resources.  However, convergence time is 

severely affected by the number of particles, which will be demonstrated in subsequent 

paragraphs. 

In the experiments performed, the Crámer-Rao bound was not calculated, [48].  

Therefore, convergence was assumed to be reached when the COG of the particles was 

within one standard deviation of the measurements.  The experiment was run twenty 

times with different random seeds.  The results presented in Figure 35 are the averages of 

twenty runs. 

 
Figure 35:  Convergence as a Function of Particle Size 
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On average, approximately seven chirps are required in order to reach final 

estimates.  These results were corroborated by applying the binomial distribution.  The 

problem is that fast convergence, (7 chirps in this case), can only be obtained with a 

number of particles greater than 1000.  Other experiments demonstrated that 

approximately 500 particles were necessary if they were initialized with a flat annular 

distribution around the beacon, after the first reading, instead of a uniform distribution.  

However, even 500 particles impose a significant burden on the reduced memory and 

computational resources available in WSN nodes. 

Significant memory and computational requirements exist to yield fast 

convergence in sequential Monte-Carlo estimation.  Reducing the number of particles 

slows convergence.  Slow convergence is particularly undesirable when faced with the 

prospect of trying to apply this method to tracking mobile nodes.  Slow convergence 

would also increase the amount of chirps required, which would incur high energy 

expenditures.  An additional problem related to reducing the number of particles is that 

particle filters base their robustness on keeping particles, (hypothesis) with low 

probability, (weight). 

 

4.4. Adapting Particle Filters 

The two elements that are essential to estimation are the belief representation and 

the estimation law.  When the belief is approximated by a Gaussian distribution, the 

optimal estimation law, which minimizes the sum of the squared errors, is given by the 

Kalman filter.  When the belief is strongly non-Gaussian the belief may be approximated 

by a set of particles.  The main objective pursued in this research was to reduce the 
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amount of particles used in particle filters while maintaining their positive properties such 

as simplicity, robustness and fast convergence.  Previous experimentation has shown that 

a reduction in the number of particles causes an increment in the amount of chirps 

necessary to achieve localization.  The main reason for this degradation lies in the fact 

that fewer particles cannot represent the actual belief with sufficient accuracy.  Therefore, 

if fewer particles are used, they should not be generated “randomly” as in the original 

formulation of the Monte Carlo approximation.  Hence, a smoother trade-off of accuracy 

and convergence versus number of particles is sought, (graceful degradation). 

This research proposed a nonlinear estimation algorithm.  The algorithm is based 

on a suboptimal update rule.  The rule yields extreme simplicity and flexibility due to its 

straightforward geometric interpretation.  Since it handles position as a belief, the 

algorithm conserves the probabilistic nature of sequential estimation methods.  

Furthermore, it incorporates a heuristic certainty measure, which resembles the 

covariance measure of belief in a parametric implementation of the Bayes filter. 

If a WSN node is static, the hypotheses of a particle filter do not move.  

Therefore, particles are only subject to the importance resampling process.  In the 

resampling process the most likely hypothesis is drawn, with higher probability, to 

generate a new set of particles.  Due to this research, it is proposed that particles not be 

resampled.  Instead, particles should be moved to relevant spots as the sequential 

estimation process proceeds, (adaptation).  The term “particle” is kept and it is still used 

for representing a hypothesis of the state that needs to be estimated, which is the position 

of the node.  It is possible to determine the optimal next estimate by applying optimal 

filtering theory.  This approach would lead to a parametric implementation of the Bayes 
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filter, which manifests itself as a Multi-Hypothesis Kalman filter, (KF), with the 

consequent computational overhead and limitations.  In this research a sub-optimal 

nonlinear estimation algorithm was introduced that provided good results.  The nonlinear 

estimation algorithm can be viewed as the counterpart of simple nonlinear control 

algorithms such as “bang-bang” control or three-point control. 

The belief updating algorithm is illustrated geometrically using only one particle 

in a 2-D space.  However, this principle works analogously in a 3-D space and also with 

different numbers of particles.  Every range measurement “moves” the particle from its 

current position, in a greedy approach, to minimize the error with respect to the latest 

measurement.  Figure 36 illustrates the 2-D configuration where three steps of the 

estimation process are presented: the initialization and two updates. 

 

  
Figure 36:  Particle Updating 

 

Since particle filters represent samples of a probability distribution, (PDF), the 

small numbers of particles used have to be representative.  If the range measurements 
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noise is assumed to be Gaussian, the PDF in the two-dimensional space, has an annular 

distribution around the beacon node.  This situation was depicted in Figure 24.  In a 3-D 

space, a sphere is realized with higher “concentration” of probability in the vicinity of the 

radius corresponding to the measurement.  For illustration, in the 2-D space, a few 

representative particles were positioned around a circle of radius, r , which represents the 

measured range.  An advantageous configuration of particles was simply that of a regular 

polygon inscribed in the circle.  The orientation of the particles was left to randomization.  

This configuration was used for initializing the particles.  Using this information, a basic 

form of the few-particle algorithm, for the adaptation of one particle, was constructed and 

is presented in Table 4.   

The adaptation algorithm consists of two basic steps.  In the first step, the, v , 

parameter finds the direction from the previous position of the particle, 1tx − , towards the 

position of the beacon, refx .  The second calculation consists of finding a point in space, 

tx , which is collinear with the previous particle position and the position of the beacon.  

The new point lies at a distance, tr , from the beacon, which provided the most recent 

measurement. 

 
Table 4:  Particle Adaptation Algorithm 

1-Particle_Adaptation 1 ref( )t tx r x− , ,  

if 1t =  

1 rand( )n
tx x R− = ∈  

ref 1

ref 1

t

t

x xv
x x

−

−

−
=
|| − ||

 

1 ref 1( )t t t tx x v x x r− −= + || − || −  

return tx  
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If more particles are used, the particle adaptation algorithm is performed on each 

of the particles.  Actual position estimates can be computed via the weighted average, 

(center of gravity), of the particles and is given by: 

 

1

ˆ
pN

i i
i

x w x
=

= ⋅∑ .     (5) 

 

If only the Table 4 update rule is used, nodes holding just one particle, which are 

surrounded by beacons, estimate their location rather quickly.  In addition, if the node 

degree is high the location estimate is derived even more quickly.  However, localization 

converges rather slowly in the case where beacons are positioned on one side only.  This 

situation occurs always at the borders of the network.  Therefore, several particles are 

required to have more hypotheses and to find convergence.  The weight, w , of a particle 

is proportional to the probability of the distance of the particle to the beacon, ( pd ).  

Assuming that range measurements, ( )rN r σ, are distributed normally, with, r , the range 

measurement and rσ  the standard deviation of the measurement, the weight can be 

calculated by: 

 
2

2

( )1Pr( ) exp
2
p

p r
r

d r
w d r σ

η σ
⎛ ⎞−

= | , = −⎜ ⎟
⎝ ⎠

.   (6) 

 

The factor 1 η/  is used for normalization of the particles.  The particles conform 

to a discrete distribution, which approximates a Gaussian, ( )rN r σ,  on the distance to the 

beacon.  In order to avoid numerical issues, a probability threshold, Thrw , can be defined 

to eliminate particles with very low probability.  This method would work in a similar 
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way even if a different unimodal distribution is assumed, for instance a triangular 

distribution, which would yield significant computational simplicity for wireless sensor 

nodes. 

Parameters r  and rσ  can be used when the position of the beacon is assumed to 

be known with 100% certainty.  However, in cooperative localization, imperfectly 

localized nodes act as beacons for other nodes, which have more uncertainty in their 

location estimates.  Therefore, the uncertainty in the position of the beacon has to be 

taken into account.  Assuming that nodes possess a heuristic “certainty” measure, 

[0 1]c∈ , , the standard deviation used to evaluate the weight of the particles can be 

updated using: 

 
1 log( )r cσ σ α= − .     (7) 

 

The factor α  depends on the application and the certainty measure adopted.  It 

can be verified that if the beacon knows its position with absolute certainty, ( 1c = ), the 

standard deviation used in the weight evaluation is simply the same as the one 

corresponding to the measurements, rσ .  However, if the certainty is low, the weighting 

Gaussian is wider.  Such a Gaussian has the effect of keeping particles that would be 

otherwise eliminated if a more constrained distribution was used. 

As mentioned before, the significance of the location certainty, c , becomes 

apparent in the situation of incremental localization.  Unlocalized nodes start with a 

certainty of zero and reference nodes start with certainty close to one since their location 

is assumed to be known.  It is expected that every update helps to increase the location 

certainty of a node.  This expectation is reasonable in view of the assumption that there 
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are no malicious nodes, which purposefully sabotage the cooperative localization process.  

The certainty factor is also essential since it is used as the stopping criterion for the 

sequential estimation process. 

There are several choices for the calculation of, c .  Two simple measures that can 

be used for computing c  are: 

• The degree of spread of the particles:  A simple measure of spread is the 

variance of the discrete distribution along each of the dimensions, j , of 

the position.  If the weight of the particles is considered, it can be 

calculated by: 

 
2

1

Var( ) ( )
pN

j i j j
i

x w x x
=

= ⋅ −∑ .   (8) 

 

• Another simple and effective measure of spread of the particles is the size 

of the bounding box that encloses all particles, which is given by: 

 
max( ) min( )j j jD x x= − .   (9) 

 

The change in two consecutive estimates is computed from equation 5.  However, 

if the change is small, it is assumed that the estimation process is close to reaching 

convergence.  Therefore, the measure of closeness is approximated by: 

 
1ˆ ˆ ˆj j t j tx x x, , −Δ =| − | .    (10) 

 

The best results were obtained using a certainty measure based on both criteria.  

In both cases, the quantities, used in the measure of spread, need to be compared with 
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respect to a reference value.  A reference value that can be used is the standard deviation 

of the measurements.  The standard deviation quantifies the highest achievable accuracy 

of the technology being used.  A certainty heuristic, which was successfully 

implemented, is given by: 

 
max(Var( ))

min 1 exp
max( )ˆ

jj r

jr j

x
c

x
σβ γ

σ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= , − ,

⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠
.  (11) 

 

In equation 11, β  and γ  are parameters that can be tuned freely.  The effect of 

these parameters is that of slowing down the convergence while achieving better 

accuracy.  Conversely, β  and γ  speed up the localization process while sacrificing 

accuracy.  In practice, the sequential update procedure is terminated when a certainty 

threshold, Thrc , is reached. 

 

4.4.1. Tuning parameters 

To this point, several parameters have been identified, which govern the 

achievable accuracy and speed of convergence of the algorithm.  Final values of these 

parameters depend on several factors that are specific to the concrete application 

envisioned.  The main factors are: 

• Node density:  Usually, higher density gives faster convergence and better 

accuracy since nodes have more neighbors with whom to exchange chirps. 

• Range measurement technology:  The two main factors that have a major 

impact are the measurement error and the maximum range. 
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• Computational resources:  WSN platforms with more computational 

resources can handle more particles.  Therefore, the accuracy and speed of 

convergence of the location estimation can be improved.  More 

computational power can also help in implementing more sophisticated 

certainty calculation, which will also improve accuracy and convergence 

speed. 

• Energy resources:  More energy available means an increased ability to 

exchange more chirps, which improves the accuracy of the final location 

estimates. 

• Accuracy requirements:  It has been demonstrated experimentally that the 

localization algorithm presented can fully exploit the accuracy of the 

ranging technology, which provides for the best accuracy.  However, 

better accuracy is usually paid for in terms of more chirps, which requires 

more energy expenditure. 

 

4.5. Experimental Results 

 

4.5.1. Experiment 1:  Sensor Characterization 

Preliminary tests of experimental data were performed in order to validate the 

basic assumptions.  The main goal was to provide a basic sensor characterization of a 

candidate range-measurement technology.  The data used stemmed from experiments 

performed with the Cricket system, [70].  In the initial experiment, 12 beacons sent chirps 

to a listener for 1.48 hours.  Distance measurements were computed at the listener and 
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transferred to a PC.  The PC time stamped the distance readings as well as the beacon 

identifiers. 

Figure  37 illustrates the statistical nature of the distance measurements for two 

randomly selected beacons. 

 

0 200 400 600
0.001
0.003
0.01 
0.02 
0.05 
0.10 
0.25 
0.50 
0.75 
0.90 

d/cm

P
ro

ba
bi

lit
y

Normal Probability Plot

0 200 400 600
0

500

1000

1500
Beacon 2, N. of readings = 1864.

Fr
eq

ue
nc

y

0 1000 2000 3000
0.001
0.003
0.01 
0.02 
0.05 
0.10 
0.25 
0.50 
0.75 
0.90 

d/cm

P
ro

ba
bi

lit
y

Normal Probability Plot

0 1000 2000 3000
0

200

400

600

800
Beacon 12, N. of readings = 675.

Fr
eq

ue
nc

y

 
Figure 37:  Measurement Distributions 

 

In Figure 37, the upper plots depict histograms of the readings and the lower diagrams 

present normal probability plots.  The lower plots were used to evaluate how well the 

data fit a normal distribution.  In most cases, using standard statistical tests, such as the 

Kolomogorov Smirnoff test or the Lilliefors test, the null hypothesis that the data 

stemmed from a normal family distribution could be rejected at the 5% significance level.  

This fact indicated that the range measurement distributions were not necessarily normal.  

However, normality is not a strict condition for the methods presented in this research to 

work.  In fact, it was hinted previously that even if particles are evaluated with triangular 

distributions, the distributed cooperative localization algorithm would converge 
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appropriately.  Hence, the only condition for convergence is that measurements shall be 

distributed unimodally. 

Table 5 presents the mean and standard deviation of the measurements for each of 

the twelve beacons.  These results were obtained with version V1 of the Cricket 

firmware.  Researchers have reported much better accuracy with the new firmware 

version, (V2).  With the V2 firmware version, measurement errors consisted of 1 cm on 

average and 3 cm most of the time, [71]. 

 
Table 5:  Measurement Errors for 

Range Readings 
Beacon Nr.  N. of readings Std. dev. (cm) Mean (cm)   

1  1969  8.0  390   
2  1864  7.2  317   
3  1835  7.6  453   
4  1743  7.0  455   
5  1659  7.2  441   
6  2014  7.0  328   
7  1848  6.9  344   
8  1824  7.4  312   
9  1587  7.0  352   
10  1528  4.6  310   
11  1773  8.4  408   
12  675  5.4  456   

 

The Gaussian approximation of range measurements is meant for giving a 

measure of the spread or precision. It is also remarkable that the measurement accuracy is 

highly dependent on the range determination algorithms, even when the same transducers 

are used. 
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4.5.2. Experiment 2:  Three Beacons and Twenty Listeners in Range 

The simulations presented were developed as MATLAB scripts.  The simulations 

consist of iterations of a basic step where a beacon sends a chirp to its neighboring nodes.  

Nodes were deployed randomly within the field.  Beacons that sent chirps were picked at 

random in order to simulate a randomized MAC protocol such as the one used in the 

Cricket system.  Nodes within the range of a beacon used the range reading to update 

their particles as explained previously. 

In the experiment presented in this section, twenty listener nodes estimated their 

positions by using range readings from three beacons.  One unit is equivalent to 0.3 m.  In 

this setup, it was assumed that all nodes were in the region of coverage of the beacons.  

Each node managed 20 particles that were initialized after the first reading.  Range 

measurements contained a noise component, which followed a normal distribution with a 

standard deviation one half unit, ( 0 5σ = . ).  A standard deviation of 15 cm, (0.5 units), is 

relatively conservative when compared to the accuracy achievable with the technology 

presented in previous section. 

Figure 38, depicts positions for beacons, nodes and the COG of particles after 12 

beacon chirps were received by all nodes.  The dotted circles show approximate bounds, 

which were defined by the error in the range measurements. 
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Figure 38:  Position of the COGs of Particles 

After 12 Chirps, (1 unit ≡  0.3m) 
 
By analyzing the average location error per node, which is given, as a function of 

message number, (beacon chirp), by: 

 

TRUE
1

ˆ
n

i
i

E x xn
⎛ ⎞= || − ||⎜ ⎟
⎝ ⎠
∑ .   (12) 

 
the convergence of the algorithms was assessed.  The convergence curve is presented in 

Figure 39.  Twenty, (20), different experiments were averaged to obtain the position error 

plot.  The plotted data yielded the smooth monotonically decaying curve presented in 

Figure 39. 
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Figure 39:  Convergence of the Average Position Error 

 

Figure 39 illustrates the fact that, on average, 12 beacon chirps are necessary for 

achieving localization.  This total number of chirps divided by the number of beacons 

yields approximately 4 chirps per beacon, which is an excellent result in terms of energy 

expenditure.  The minimum average error was slightly higher than the standard deviation 

of the measurement noise.  The chirps were generated at random and the measurements 

were noisy.  Therefore, the number of chirps necessary was more than the minimal 

number of chirps, which a complete particle filter would predict.  However, it must be 

reiterated that these results were obtained with only 20 particles. 

 

4.5.3. Experiment 3:  Incremental Localization 

In a second experiment, the feasibility of cooperative localization using the 

proposed algorithm was tested by limiting the range of the beacon chirps to a specific 

distance.  Therefore, listeners that were outside the range of the beacons had to wait until 

nearby listeners could act as beacons.  Listeners could act as beacons only after they had 

localized themselves, at least partially, (incremental localization).  In this experiment the 
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heuristic certainty factor was employed.  In addition, 78 nodes were randomly deployed 

in a square field with a side of 60 units.  Four nodes were used as reference nodes and 

their locations were chosen in a regular pattern.  Figure 36 presents the setup parameters 

and the results.  Once again, 20 particles are used in the sequential estimation process.  

When sending chirps, nodes were assumed to have a radius of coverage of 15 units.  The 

noise in the readings had a standard deviation of one half unit, ( 0 5σ = . ). 

Analogously to the previous experiment, two figures characterize the 

development and results of the experiment.  Figure 40 presents the configuration of the 

nodes, the reference nodes and estimates of position after most of the nodes had found 

their location. 

 

 
Figure 40:  Incremental Localization Experiment: 

Estimates after 100 Chirps, (1 unit ≡  0.3m) 
 

Convergence results are illustrated in Figure 41.  Figure 41 illustrates that the 

average error per node is a function of the number of total chirps that were emitted from 

all beacons.  The data indicate that approximately 150 chirps were required to reach 

convergence.  This means that, on average, each beacon sends approximately two chirps.  
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It is possible that this distribution may not be uniform for all beacons.  Some beacons, 

especially the reference nodes, may incur higher energy expenditures than nodes located 

at the border of the WSN. 

 

  
Figure 41:  Convergence of Position 

Error in Incremental Localization 
 
4.6. Summary 

Commonly employed methods for localization are based on 

deterministic/trilateration-based techniques.  The methods present drawbacks that have 

been identified and explained.  However, optimal probabilistic estimation techniques 

require computational and energy resources not available in constrained WSN nodes.  To 

bridge this gap, a new probabilistic distributed algorithm was outlined, which is based on 

a simple nonlinear estimation procedure.  This algorithm provides promising results and 

should establish a new direction in location estimation techniques in Wireless Sensor 

Networks.  The approach gives rise to flexible algorithms for solving the localization 

problem in WSNs in a wide variety of application scenarios.  The strength of the 

algorithm lies in its simplicity and flexibility.  The flexibility stems from the ability to 
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tune, using very few parameter, the convergence and accuracy of the localization process.  

Given that the algorithm parameters depend on the specific application, computer 

simulation studies can help in the determination of optimal values for typical scenarios.  

The WSN case study helped in introducing the two main aspects of cooperative 

localization and the probabilistic framework that were fundamental to this research. 



101 
 

 

 

Chapter 5 

Localization of Mobile Nodes 

 

5.1. Navigation Structure 

The main objective of this chapter is to demonstrate the feasibility of cooperative 

localization in mobile wireless networked systems.  The conceptual solution introduced 

in Chapter 3 will be developed in more detail with an emphasis on practical 

implementation.  This chapter can be considered as an in-depth analysis of the “Sensor 

Fusion” module, the core of the localization solution, which was presented in Figure 17, 

and reproduced here for ease of reference. 

 

 
Figure 17:  Main Functions of the 
Cooperative Estimation Solution 
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Aided navigation constitutes the basis for the development of the localization 

method offered in this dissertation.  Therefore, the integration of GPS and an Inertial 

Navigation System, (INS), through a complementary filter, which was applied to 

navigation of vehicles with different locomotion modalities, was used as the basic 

inspiration.  Figure 42, illustrates how such a complementary filter works, [19]. 

 

 

Figure 42:  A Common GPS/INS Integration Topology 
 

The INS receives signals from an inertial measurement unit, which are integrated 

to produce an, estimate of state, termed x xδ+ .  Due to sensor errors and the integrating 

feature of the INS, the output signals possess low-frequency noise.  Concurrently, the 

INS produces estimates of the GPS measurement, termed ρ δρ+ , where δρ represents 

error due to noise.  The GPS receiver also produces, at lower rates than the INS, position 

estimates, which a re termed ρ ν+ .  The spectral content of the GPS noise occurs at 

higher frequencies than that of the INS.  The combination of the predicted GPS output 

with the actual GPS measurement yields a signal, termed δρ ν− , which is used to drive a 

filter that estimates the INS state error, ˆxδ .  The frequency content of the GPS and INS 
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errors can be modeled with accuracy.  Therefore, it is possible to design the error 

estimation filter such that it attenuates the GPS noise while providing accurate estimates 

of the INS state error.  Once estimated, the error can be subtracted from the INS estimate 

to yield the final state estimate, which will still possess a small residual error, termed 

wδ .  Variants of this method and additional details with respect to GPS/INS integration 

techniques are covered in detail in, [19].  Figure 43 presents the aided navigation method 

proposed in this research. 

 

 
Figure 43:  Proposed Structure for Aided Navigation 

 

Figure 47 can also be attributed to the application of the functional allocation method, 

which stems from the Systems Engineering approach.  This navigation solution presents 

three principal modules. 
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5.1.1. The INS Module 

The core of the INS module consists of a filter, which performs sensor fusion of 

the proprioceptive sensors.  An IMU measures accelerations with a set of three 

orthogonal accelerometers and measures angular rates with a set of three orthogonal 

gyroscopes.  The acceleration and angular rate signals, produced by the IMU, are 

provided to the INS module.  Most IMUs also incorporate a set of magnetometers, which 

assist in initializing the INS.  In addition the IMU’s magnetometer signals assist in 

maintaining attitude estimates current.  However, magnetometers are very sensitive to the 

proximity of ferromagnetic materials, which is a major concern in their application. 

The main function of the INS module is to provide optimal estimates of speed and 

angular velocity, which is projected onto the configuration space of the moving node.  In 

addition, the INS module produces confidence parameters of a simplified motion model 

operating in the configuration space, which are represented as α i in Figure 43.  

Therefore, it is implicitly assumed that optimal attitude estimation is to be performed.  

Due to the nonlinear nature of rigid body motion, the sensor fusion filter needs to be 

realized as a nonlinear variant of an optimal estimator, which possesses the capability to 

handle several states.  The Extended Kalman Filter (EKF), which is proposed in this 

research, represents such an optimal estimator. 

The combined effect of the absence of external aids in conjunction with the non-

stationary nature of sensor errors renders estimates unusable after a relatively short period 

of time.  The time frame associated with usable estimates depends on the quality of the 

IMU.  This is the reason external updating has to be provided by the navigation aiding 

module.  The external updating is provided in the form of position estimates, which 
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prevent INS errors from growing without bounds.  Additionally, certain techniques such 

as zero updating and the incorporation of constraints in the filtering process help with 

reducing the negative effects of inertial sensor errors.  The machine learning function 

introduced in Chapter 3 can also be considered as an add-on improvement, which was left 

for future research. 

 

5.1.2. The Navigation Aiding Module 

The Navigation Aiding module is where the position estimation process is 

performed.  In concert with the Bayesian approach to the problem, actual estimates are 

not as important as the PDF of position, which is the position belief given by, bel( )Nx .  

There are several techniques for extracting an actual numeric position estimate from 

belief.  Subsequent section will explain how the Bayesian approach provides an elegant 

way of handling uncertainty.  In addition, the Bayesian approach also paves the way for 

solutions that do not deal with issues related to graph rigidity.  The two main 

components, predication and cooperation, of a Bayesian Filter were utilized in the 

navigation aiding module.  Prediction was incorporated in the form of a probabilistic 

motion model and in measurement updates.  The probabilistic motion model was based 

on velocity estimates and parameters provided by the INS module.  The parameters of the 

motion model are essentially a function of the measures of confidence of the velocity 

estimates such as covariance or variances.  Cooperation is provided by the measurement 

update function.  Information is provided by other nodes in the form of range 

measurements, r , and reference node position belief, bel( )Lx , which are termed 

collectively as “chirps.” 



106 
 

The Navigation Aiding module updates its internal predicted position belief, 

which is obtained from the motion model, by using incoming chirps.  The combination of 

uncertain range measurements along with the position belief of the chirp originator is one 

of the main topics and contributions of this dissertation, which will be presented in 

Section 5.4.  After the combination of these two pieces of information, the resulting PDF 

is used for updating the predicted belief, which is returned to the motion model, in a 

recursive procedure.  The Navigation Aiding module is presented in greater detail in 

subsequent sections of this chapter. 

 

5.1.3. The Wireless Network Interface Module 

The function of the Wireless Network Interface, (WNI), module is twofold.  The 

WNI module is used as an exteroceptive sensor for obtaining range estimates.  In 

addition, the WNI module is employed as a means for communication.  Chirps are 

generated and received by the WNI.  Additionally, the WNI module directly influences 

the measurement updating function of the navigation aiding module.  The concrete 

protocols required to handle these two aspects are elucidated in Chapter 6. 

 

5.2. Assumptions 

The structure presented in previous section has explained how sensor fusion can 

yield an optimal estimate of the main states associated with the kinematics of a rigid 

body.  The main objective of this chapter is to present the advantages of cooperative 

localization when applied to mobile nodes. 

 



107 
 

During the development of this section, the reader may visualize the localization 

process, which takes place in a multi-robot system, as presented in Chapter 1.  The 

underlying assumptions, which are associated with the problem of localization presented 

in this chapter, are: 

• The localization problem is presented for the two-dimensional case.  That is, a 

mobile node in a two-dimensional plane with three degrees of freedom will be 

considered.  The degrees of freedom are concerned with the nodes position, 

which is given by the x  and y  coordinates and the nodes heading, which is 

represented by the angle, θ .  A vector of these parameters is termed the 

node’s pose, p.  However, the methods proposed may be extended to three-

dimensional localization. 

• Each mobile node possesses an inertial navigation system, (INS), which 

receives information from six sensors.  The sensors consist of three orthogonal 

accelerometers and three orthogonal gyros.  The INS is initialized correctly 

and provides optimal estimates of horizontal linear speed, v , and angular 

speed, ω .  That is, the result of odometry calculations are optimal estimates 

of, v , and, ω .  Current pose estimates are fed-back to the INS in order to 

compensate for errors inherent to inertial sensors. 

• As in the case of fixed nodes, mobile nodes have the ability to exchange 

“chirps”.  A chirp is a signaling mechanism, which allows nodes to determine 

inter-node range and to exchange belief information. 

• In contrast to the problem analyzed for fixed nodes, it is assumed that there 

are no restrictions with respect to energy, computational power or memory. 
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• Doppler effects due to relative motion of the mobile nodes were neglected. 

• Additional errors, which may arise from lack of clock synchronization in the 

process of measuring range, were neglected. 

 

5.3. Probabilistic Motion Model 

Localization can be analyzed as a hidden Markov model, (HMM).  The HMM 

was presented in Figure 22.  In this framework, the state transition probability, 

1( )t t tp x u x −| , , is determined by the motion model of the mobile node.  Most of the 

development in this section is based on the probabilistic methods presented in [16].  

According to the decomposition presented in previous section, the state of the robot, 

handled by the particle filter, is assumed to be its pose, p , which is given by: 

t

t t

t

x
p y

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎣ ⎦

= .      (13) 

 

The inputs are the estimated translational velocity, INS tv̂ , , and rotational velocity, INS tω̂ , , 

which are provided by the INS system.  The control vector, u , is comprised of the two 

estimated magnitudes, which are given by: 

 

INS tˆtv v ,= ,      (14) 

 
and 
 

INS tˆtω ω ,= .      (15) 
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Thus: 
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u
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⎢ ⎥
⎢ ⎥
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= .      (16) 

 

The deterministic motion model is given by: 

 

1 1 1

1 11

1

sin sin( )
cos cos( )

t t t t t t t t t

t t t t t t tt t

tt t

x x v v t
y y v v t

t

ω θ ω θ ω
ω θ ω θ ω

θ θ ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− −−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

− / + / + Δ⎡ ⎤
⎢ ⎥= + / − / + Δ⎢ ⎥

Δ⎢ ⎥⎣ ⎦

.  (17) 

 

In practice, the dead-reckoning process enabled by a coasting INS possesses 

errors and is subject to noise and uncertainty.  Therefore, the input variables can be 

modeled as the estimated quantities plus a random variable, bε , with finite variance, 2b , 

and zero mean.  It can be assumed that such a random variable is distributed according to 

a normal distribution with parameters obtained from an error analysis of the INS system.  

It has proven useful, to model the standard deviation of the noise, bε , as dependent on the 

magnitude of, v , and, ω .  Therefore, ut : 
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To obtain a complete probabilistic model of the motion of the mobile node, an 

additional source of error was considered.  The additional source of error results from a 

random rotation after the node has moved for the discrete time interval, tΔ .                
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This error is calculated from: 

 

5 6
ˆ vα α ωγ ε | |+ | |= .     (19) 

 

The complete probabilistic motion model, (PMM), is given by: 
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The noise and uncertainty, in the motion of the mobile node, depend on the 

parameters, 1 2 6…α α α, , , .  The larger these constants, the less accurate will be the 

predictions.  The growth of these constants will also be reflected in “wider” belief 

distributions.  These constants can be obtained from the motion model. 

For particle filters, it is not necessary to compute, 1( )t t tp x u x −| , , for arbitrary tx , 

tu  and 1tx − .  It is sufficient to have the ability to sample from the conditional probability 

density function.  This will ensure that even when using identical particles for 1tx − , the 

predicted values will have enough diversity before applying the measurement update. 

 

5.3.1. Preliminary Analysis of the Probabilistic Motion Model 

Several experiments were carried out to observe the effect of the parameters and 

since there was no navigation aiding, the uncertainty grew.  Figures 44 through 46 

illustrate the overall effect of the parameters, α , for different trajectories.  These results 

certify that the model possesses more uncertainty with greater values of the α  
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parameters.  In Figures 44 through 46 snapshots of the current state of the particles are 

presented.  Internally, the robot updates the particles, according to the PMM, more often 

than depicted.  Covariance ellipses with a width of 3σ , in the respective eigen-directions, 

results from the Gaussian approximation for the particles.  The center of the ellipses 

corresponds to the center of gravity of the particles, which can also be considered as a 

good approximation of the actual position derived from the set of particles. 

Figure 46 presents results for fixed ν and ω and an increase in the α values.  These 

results were obtained without measurement updates. 

 

 
(a) 1 6 0 1…α = .      (b) 1 6 0 2…α = .  

Figure 44:  PMM for 1m sv = /  and 0rad sω = /  
 

Figure 45 presents results for the same ν and α values but with an increase in the 

value of the ω parameter.  These results were obtained without measurement updates. 
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(a) 1 6 0 1…α = .       (b) 1 6 0 2…α = .  

Figure 45:  PMM for 1m sv = /  and 0 05rad sω = . /  
 

Figure 46 presents results for the same ν and α values but with an increase in the 

value of the ω parameter.  These results were obtained without measurement updates. 

 

 
(a) 1 6 0 1…α = .       (b) 1 6 0 2…α = .  

Figure 46:  PMM for 1m sv = /  and [0 1( 10) ( 0 1)( 10)]rad st tω = . < + − . ≥ /  
 

The effect of the individual α  parameters is presented in Figures 47 through 49 

using similar conditions to those presented in Figure 44.  These results indicate that the 

model is highly sensitive to the parameters, which define the uncertainty in rotational 

motion, ( 3 6…α α ).  However, the uncertainty in the translational velocity, ( 1 2α α, ), does 

not produce any significant spread in the belief.  Figure 47 presents the results obtained 
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for an increase in the uncertainty in the ν parameter but with fixed values for the α 

parameters. 

 

 
Figure 47:  PMM with Greater Uncertainty in v : 

1 2 0 5α , = . , 3 4 5 6 0 05α , , , = .  
 

Figure 48 presents the results obtained for an increase in the uncertainty in the ω 

parameter but with fixed values for the α parameters. 

 

 
Figure 48:  PMM with Greater Uncertainty inω : 

3 4 0 5α , = . , 1 2 5 6 0 05α , , , = .  
 

Figure 49 presents the results obtained for an increase in the uncertainty in the γ 

parameter but with fixed values for the α parameters. 
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Figure 49:  PMM with Greater Uncertainty in γ : 

5 6 0 5α , = . , 1 2 3 4 0 05α , , , = .  
 

It is also indicated that the distributions of the belief, after the prediction, are not 

Gaussian.  Therefore, particle filters offer a very appropriate way to represent belief. 

With growing uncertainty, greater spread, in the position of the robot, is expected 

since it is only subject to prediction through dead-reckoning.  Table 6 summarizes the 

results of these preliminary experiments.  The maximum error and spread, ( 3σ ), of the 

particles was produced at the end of the experiment.  Both values are presented in the last 

column of Table 6. 

 
Table 6:  Quantitative Results of Experiments 

With the Motion Model 
Trajectory  1α , 2α   3α , 4α   5α , 6α   MAX3σ (m) Error (m) 

Straight Line  0.10  0.10  0.10  3.20  0.04   
Straight Line  0.20  0.20  0.20  6.35  0.17   
Straight Line  0.50  0.05  0.05  1.60  0.01   
Straight Line  0.05  0.50  0.05  10.6  0.49   
Straight Line  0.05  0.05  0.50  11.0  0.53   

Curve  0.10  0.10  0.10  3.26  0.05   
Curve  0.20  0.20  0.20  6.46  0.18   

S-Shaped  0.10  0.10  0.10  3.38  0.06   
S-Shaped  0.20  0.20  0.20  6.69  0.20   
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5.3.2. Basic Navigation Aiding 

In particle filtering, the measurement update is performed through computation of 

the weight of the particles and through the resampling procedure.  The weight of the 

particles is given by: 

 
[ ] [ ]( )m m
t t tw p z x= | .     (21) 

 

In this specific example, it was assumed that the moving node can measure its distance to 

reference nodes with known positions.  Since the experiment was preliminary, the 

position of the reference nodes was assumed to be known with perfect certainty.  In latter 

sections, the uncertainty in the positions of the reference nodes will be taken into account.  

The uncertainty of the reference nodes had to be taken into account since other mobile 

nodes become reference nodes for the mobile node, which is to be localized. 

Range measurements were assumed to possess normally distributed noise with a 

specific standard deviation.  The standard deviation was chosen so that the associated 

probability density function, ( )t tp z x| , would resemble the curve presented in Figure 50.  

The PDF presented in Figure 50 is for a “beacon”, reference node, located at, (8m, 8m).  

In the illustrated example, the measured range was 5m and the standard deviation was 

1m. 
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Figure 50:  Measurement Probability, ( )t tp z x|  

 

To analyze improvements for the measurement of range to the reference node, it 

was established that range readings were to be taken with respect to a beacon located at 

(0, 10m), with noise distributed according to, (0 0 05m)N , . .  The results of the 

experiment are presented in Figures 51 through 56.  In addition, the center of gravity of 

the particles is also presented for the reader to observe the estimated position after the 

measurement update, which is indicated by the red robot mark.  Measurements were 

available every 5 seconds and the robot kept computing dead-reckoning based on the 

velocity model.  Figure 51 presents results for fixed ν and ω with measurement updates 

and an increase in the α values. 
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(a) 1 6 0 1…α = .      (b) 1 6 0 2…α = .  

Figure 51:  PMM for 1m sv = /  and 0rad sω = /  with Measurement Updates 
 

Figures 51 and 44 should be compared since they present results for different 

experiments with the same parameter values.  Figure 52 presents, with measurement 

updates, results for the same ν and α values but with an increase in the value of the ω 

parameter. 

 

 
(a) 1 6 0 1…α = .       (b) 1 6 0 2…α = .  

Figure 52:  PMM for 1m sv = /  and 0 05rad sω = . /  with Measurement Updates 
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Figures 52 and 45 should be compared since they present results for different 

experiments with the same parameter values.  Figure 53 presents, with measurement 

updates, results for the fixed ν and α values but with a varying value ω parameter. 

 

 
(a) 1 6 0 1…α = .      (b) 1 6 0 2…α = .  

Figure 53:  PMM for 1m sv = /  and Varying ω  with Measurement Updates 
 

Figures 53 and 46 should be compared since they present results for different 

experiments with the same parameter values.  Figure 54 presents results for an increased 

uncertainty in the ν parameter with measurement updates. 

 
Figure 54:  PMM with Greater Uncertainty in 

v  With Measurement Updates 
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Figures 54 and 47 should be compared since they present results for experiments 

with and without measurement updates but with increased uncertainty in the ν parameter.  

Figure 55 presents results for an increased uncertainty in the ω parameter with 

measurement updates. 

 

 
Figure 55:  PMM with Greater Uncertainty in 

ω  With Measurement Updates 
 

Figures 55 and 48 should be compared since they present results for experiments 

with and without measurement updates but with increased uncertainty in the ω parameter.  

Figure 56 presents results for an increased uncertainty in the γ parameter with 

measurement updates. 

 

  
Figure 56:  PMM with Greater Uncertainty in 

γ  With Measurement Updates 



120 
 

Figures 56 and 49 should be compared since they present results for experiments 

with and without measurement updates but with increased uncertainty in the γ parameter. 

In all cases, even though the measurements were noisy, the uncertainty was 

reduced due to the measurements obtained from the reference node.  It is also indicated 

that if measurements were available more often, the divergence of the particles would be 

much reduced.  Another way to reduce divergence would be to have reference nodes 

located at different places in order to yield a trilateration-like effect.  In such a situation 

the robot would keep the spread of the location belief within bounds.  Table 7 

summarizes the experiments considering the measurement update.  For comparison 

purposes, the results listed in Table 6 have also been included. 

 
Table7:  Quantitative Results of Experiments with the 

Motion Model and Range Measurements 
    w. Range 

Meas. 
w.o. Range 

Meas. 
Trajectory  1α , 2α 3α , 4α 5α , 6α MAX3σ

(m)  

Δ  
(m) 

MAX3σ  

(m)  

Δ  
(m)   

Straight Line 0.10 0.10 0.10 1.05  0.04 3.20  0.04  
Straight Line 0.20 0.20 0.20 2.38  0.12 6.35  0.17  
Straight Line 0.50 0.05 0.05 0.96  0.05 1.60  0.01  
Straight Line 0.05 0.50 0.05 3.36  0.27 10.6  0.49  
Straight Line 0.05 0.05 0.50 3.70  0.30 11.0  0.53  

Curve  0.10 0.10 0.10 1.14  0.07 3.26  0.05  
Curve  0.20 0.20 0.20 2.01  0.09 6.46  0.18  

S-Shaped  0.10 0.10 0.10 1.20  0.05 3.38  0.06  
S-Shaped  0.20 0.20 0.20 2.23  0.13 6.69  0.20  
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5.4. Measurement Update with Respect to Non-Deterministic Reference Nodes 

In section 5.3, the positive effect of range measurements on the position belief 

was presented.  The position of the reference node was assumed to be known with perfect 

certainty.  In this section, this assumption is relaxed.  In order to gain insight into the 

problem, the analysis will be reduced to the one-dimensional case.  That is, nodes are 

only allowed to move along the, x , direction.  However, initially, distributions are not 

assumed to follow a Gaussian distribution.  The range measurement is a random variable, 

R , given by the probability density function: 

 
( ) ( )Rf r p z x= | ,     (22) 

 

with the corresponding cumulative distribution, ( )RF r , given by: 

 

{ ( ]} ( ) ( )
a

R RP R a F a f r dr
−∞

∈ −∞, = = ∫ .   (23) 

 

Analogously, the position of the reference node is a random variable, L , given by 

its belief, bel( )Lx , which is a probability density function, ( )Lf l , with its respective 

cumulative distribution, ( )LF l , which is given by: 

 

{ ( ]} ( ) ( )
b

L LP L b F b f x dx
−∞

∈ −∞, = = ∫ .   (24) 

 

Using these two distributions, equations 23 and 24, the distribution for the 

measurement update is sought, given that the reference node is no longer a set of 

numbers.  Instead the reference node is a belief.  Therefore, the PDF of P  is sought from: 
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( ) ( bel( ) )P Lf x p z x x= , | .    (25) 

 

These three variables P, L and R are related geometrically by: 

 
P L R= + .      (26) 

 

The cumulative distribution function of P  satisfies: 

 

( ) ( ) ( ) ( )P L R R Ll r x
F x F x f r f l dr dl+ + ≤

= = ∫∫ .  (27) 

 

This expression may be manipulated to obtain a definitive expression given by: 

 

( )
( ) ( ) ( )

( ) ( )

( ) ( )

x l

L R R L

x l

R L

R L

F x f r f x dr dl

f r dr f l dl

F x l f l dl

∞ −

+ −∞ −∞

∞ −

−∞ −∞

∞

−∞

=

=

= −

∫ ∫

∫ ∫

∫

.   (28) 

 
To obtain ( )Pf x , equation 28 may be differentiated, which yields: 

 

[ ]

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

P L R R L

R L

R L

P R L

df x f x F x l f dl
dx

d F x l f l dl
dx

f x l f l dl

f x f x f x

∞

+ −∞

∞

−∞

∞

−∞

= = −

= −

= −

= ∗

∫

∫

∫

.      (29) 
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Equation 29 states that the resulting PDF for P is the convolution of the individual 

PDFs for R and L.  This result is corroborated in the statistical literature; for instance, 

[72].  The PDF for measurement updates, which is given by equation 25, can be rewritten 

as: 

 
( bel( ) ) bel( )L Lp z x x x R, | = ∗ .   (30) 

 

5.4.1. Gaussian Measurement:  Uniform Landmark Position 

The previous results obtained will be applied to a concrete example in this 

section.  In the example, the distance measurement from the position of node, Np , to the 

nominal position of the reference node, Lp , is distributed according to: 

 
(15 1)N Lr p p N= − ,∼ .    (31) 

 

The PDF of the reference node is given by: 

 
0 1 ( 5 5)
0 otherwiseL

x
p

. ∈ − ,⎧
= ⎨
⎩

   (32) 

 

The resulting PDF for the position of the node to be localized is given by: 

 

N Lp p r= ∗ .     (33) 

 

Figure 57 presents the three distributions pictorially. 
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Figure 57:  Combination of Measurement Distributions 

With Position Belief 

 

Figure 57 indicates that, due to the flatness of the uniform distribution 

representing the belief of the reference node, the measurement updating PDF has more 

spread. 

 

5.4.2. Gaussian Measurement, Gaussian Reference Node Position 

The derivation developed for one dimension could also be easily extended to two 

dimensions by applying a two-dimensional convolution.  However, since nodes need to 

transmit position belief information to other nodes, complex non-Gaussian PDFs 

represent a complexity issue.  For instance, if a particle filter implementation is 

employed, the transmitting node would need to transmit all the particles as part of the 

“chirp”.  Upon reception, the receiving node would need to calculate the convolution of 

the position belief of the transmitting node with the PDF of the range measurement in 

order to update its own particles.  However, if the node could transmit a Gaussian 
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approximation of belief, less parameters would be required.  In addition, the fact that a 

Gaussian is obtained from the convolution of two Gaussian could be also exploited. 

It can be easily shown that if the range measurement, ( )m mN r σ, , and the position 

belief of the reference node, ( )L LN μ σ, , are distributed normally, the resulting PDF is 

also Gaussian, ( )N NN μ σ, .  The standard deviation of the new Gaussian can be 

determined from: 

 
2 2

N N Lσ σ σ= + .    (34) 

 

This relationship, given by equation 34, was applied in order to simplify the 

method for computing the convolution of a Gaussian range measurement in the two-

dimensional case.  In the two dimensional case the range measurement possesses a 

bivariate Gaussian belief of position of the reference node.  This convolution was handled 

in polar coordinates, where all random variables are normally distributed. 

 

The position belief of the reference node, bel( )Lx , is described by a Gaussian 

bivariate distribution with mean vector, Lμ , and covariance matrix, LΣ , and is given as: 

 
bel( ) ( )L L LN μ ,Σx ∼ .    (35) 

 

The range measurement is given by: 

 
|| || ( )N L m mr N r σ= − ,x x ∼  .   (36) 

 



126 
 

The distribution is sought, which will be applied for weighting the belief of a node using 

the range measurement, for localization.  The required distribution is given by: 

( bel( ) ) ( )N Rp r f, | =Lx x x .    (37) 

 

The covariance matrix, LΣ , can be decomposed into its eigenvectors and eigenvalues 

such that: 

 

L λΣ =v v .     (38) 

 

Therefore, unitary eigenvectors 1v  and 2v  are obtained with corresponding eigenvalues 

1λ  and 2λ .  A unit vector can also be obtained from the mean to an arbitrary point, which 

is given by: 

 

L

L

μ
μ

−
=

−
xu
x

.     (39) 

 

The angle θ  between u  and the eigenvector 1v  can be calculated from: 

 

1cos( )θ = ⋅u v ,    (40) 

 

and since 1v  and 2v  are orthogonal, sin( )θ  can be obtained from: 

 

1sin( )θ = ⋅u v .     (41) 
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Using equation 34, equation 40 and equation 41, the new variance for any given angle θ  

can be computed from: 

 
2 2

2 2 1 2
2 2 2 2
2 1 1 2

( )
( ) ( )m

λ λσ θ σ
λ λ

= +
⋅ + ⋅u v u v

.   (42) 

 

The probability as a function of angle and distance can then be computed from the 

Gaussian distribution and is given by: 

 

2
2

( bel( ) ) ( || ||)

1 1exp (|| || )
2( ( ))2 ( )

N R L

L m

p r f

r

θ μ

μ
σ θπσ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, | = , −

= − − −

Lx x x

x
    (43) 

 

This analysis, equations 34 through 43, was applied to the computation of the distribution 

of the measurement update for the specific case where the position belief of the reference 

node was given by: 

 
0 4 1

bel( )
0 1 1L

⎛ ⎞⎡ ⎤ ⎡ ⎤
,⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
x ∼ ,    (44) 

 

and the range measurement was given by: 

 
(15 1)r N ,∼ .     (45) 

 

Figure 58 presents the results for the position belief of the reference node. 
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Figure 58:  Position Belief of the Reference Node 

 

Figure 59 presents the results for PDF of the measurement update distribution without 

considering the position uncertainty of the reference node. 

 

 
Figure 59:  PDF of the Range Measurement 

 
Figure 60 presents the results for the PDF of the convolved distribution. 
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Figure 60:  PDF of the Range Measurement Obtained  

from Convolution 
 

These results illustrate that a wider spread for the reference node’s belief also 

widens the spread of the convolved distribution and reduces the height.  In general, the 

convolved PDF presents more spread than the measurement PDF, which does not 

consider the belief of the reference node.  If this distribution was applied for weighting a 

set of uniformly distributed particles, the configuration presented in Figure 61 would be 

obtained after resampling. 
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Figure 61:  Belief after Applying a Measurement 

Update with a Convolved PDF 
 

5.5. Experiments in Cooperative Localization 

In order to isolate the estimation aspect from the protocols required for 

localization, in all the examples studied in this section, perfect networking was assumed.  

Nodes were able to exchange chirps simultaneously at specified time intervals.  Nodes 

were not required to contend with medium access conflicts or the establishment of 

networking links.  However, the limitations of ranging technology were taken into 

account.  Therefore, chirps could not be transmitted to nodes that were beyond the 

coverage area for ranging. 

 

5.5.1. Cooperative Localization of Two “Passing-By” Nodes 

In this experiment, two nodes moved towards one another.  Both nodes 

maintained the same speed.  For comparison purposes, the experiment was conducted 

with and without cooperation.  When the nodes cooperated, chirps were exchanged every, 

 

chirp 5T = s.      
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The measurement update mechanism presented in section 5.4 was employed for 

processing chirps.  The experimental conditions are summarized in Table 8. 

 
Table 8:  Experiment Conditions for two 

Moving and Cooperating Nodes 
 Robot 1  Robot 2   

[ (m) (m) (rad)]x y θ, ,   [0 4 0], − ,  [23 4 ]π, ,    
v (m/s)  1  1   

ω (rad/sec)  0  0   

1 2α ,   0.2  0.2   

3 4α ,   0.2  0.2   

5 6α ,   0.2  0.2   

N of Particles  1000  1000   

ST  for Odometry (ms) 20  20   

 

The results obtained for running the experiment under cooperating conditions and 

conditions of no cooperation are presented in Figure 62. 

 

 
(a) No Cooperation            (b) Cooperation 

Figure 62:  Two “Passing-by” Nodes 1m sv = /  and 0rad sω = /  
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Numerical results for experiments involving no cooperation, cooperation with of 

the other moving node and cooperation with a fixed reference node are presented in Table 

9.  The results for only one of the nodes are presented, since the results for both nodes 

were very similar. 

Table 9:  Experimental Results Showing the Effect of 
Cooperation and no Cooperation for a Mobile Node 

No 
Cooperation

Cooperation w 
Moving Node 

Cooperation with Fixed 
Node   

3 MAXσ Δ   3 MAXσ   Δ   3 MAXσ   Δ    

6.05m 0.17m 2.53m  0.15m 2.38m  0.12m 
 

5.5.2. Cooperative Localization of a Robot Swarm Moving in Formation 

The goal of this experiment was to demonstrate the effect of cooperative 

localization for a swarm of robots.  The robot team consisted of four robots, which 

moved in a square-shaped formation.  The formation of the swarm is presented in Figure 

63. 

 
Figure 63:  Robots moving in a Square-Shaped Formation 
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The algorithms required to build such a formation are beyond the scope of this 

analysis.  The robots used pre-computed controls, which allowed them to maintain the 

formation.  The conditions of the experiment are presented succinctly in Table 10 and are 

similar to the conditions presented in Figures 46 and 53 where one node followed an s-

shaped trajectory. 

Table 10:  Experimental Conditions for Localization  
of a Robot Swarm 

 Robot 1 Robot 2 Robot 3  Robot 4  
[ (m) (m) (rad)]x y θ, ,  [4 1 0], ,  [0 1 0], − ,  [1 2 0], ,  [3 2 0], − ,   

v (m/s)  1  1  1  1   
ω (rad/sec)  0.1,-0.1 0.1,-0.1 0.1,-0.1 0.1,-0.1   

1 2α ,   0.2  0.2  0.2  0.2   

3 4α ,   0.2  0.2  0.2  0.2   

5 6α ,   0.2  0.2  0.2  0.2   

N. of Particles  1000  1000  1000  1000   

ST  for Odometry (ms) 20  20  20  20   

Tc  for Chirps (s)  5  5  5  5   
 

Figure 64 depicts snapshots of the particles, of each robot every five seconds, 

while traversing the s-shaped path.  The actual results are presented in Table 11.  Table 

11 contains results for unaided and reference-node-aided localization for purposes of 

comparison. 
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Table 11:  Results of Cooperative Localization 
In a Robot Swarm 

 Cooperation w 
Moving Nodes

No Cooperation Cooperation 
with Fixed 

Node   
 3 MAXσ Δ   3 MAXσ  Δ   3 MAXσ Δ    

Robot 1  1.92m 0.12m 6.69m  0.20m  2.23m 0.13m 
Robot 2  1.73m 0.15m     
Robot 3  1.65m 0.14m     
Robot 4  1.54m 0.13m     

 

From Table 11, it can be inferred that cooperation among the four robots is 

comparable to receiving chirps from a fixed reference node with perfect position 

knowledge.  However, the degree of uncertainty after traversing the trajectory for 20s is 

better in the case of cooperative localization.  The results of the swarm experiment are 

presented graphically in Figure 64. 

 

 

Figure 64:  Cooperative Localization in a Robot Swarm 
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5.6. Summary 

This chapter has presented the principal results and contributions of this 

dissertation, which are: 

• A novel navigation principle, which integrates an INS with range readings 

for cooperative localization.  The navigation principle is based on particle 

filtering techniques and a probabilistic motion model, 

• A detailed development of the conceptual notion of “chirp” in cooperative 

localization, 

• The measurement update from a reference node with a given position 

belief was found to be equal to the convolution of the measurement PDF 

with the PDF of the belief, 

• A simplified, exact, algorithm for computing the convolution of the 

measurement PDF with the PDF of the belief.  The convolution is specific 

to the case when range measurement noise and the position belief of the 

reference node can be assumed to be Gaussian, 

• Several experimental scenarios, where the usefulness of the cooperative 

localization techniques, were highlighted. 
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Chapter 6 

The Role of Protocols 

 

In this chapter, the exchange of chirps will be investigated in more detail.  Some 

of the assumptions made in previous chapters will be relaxed.  Communication protocols 

provide for efficient medium utilization, for the creation of communication links and for 

establishing paths for packet delivery.  In a similar way, localization protocols provide 

for efficient and fair swapping of chirps among nodes, which are to be localized. 

The main goal of the networking function in a wireless networked system is to 

transmit data.  The transmitted data is not simply limited to that used for localization.  

The transmission of operational data related to the mission of the WSN is paramount.  

Therefore, in cases when the localization function shares the wireless network interfaces, 

(WNI), with the main data transmission function, it cannot have higher priority.  

Therefore, the localization function needs to use the WNI sparingly, which forces a 

careful design of the localization protocols. 

Localization protocols deal mainly with the two lower layers of the OSI model of 

networking.  The layers associated with cooperative localization are presented in Figure 

65. 
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Figure 65:  The Two Lower Layers of the OSI Model 

 

At the physical layer, certain signal processing functions may be implemented, 

which would provide for the determination of range between two nodes.  In more basic 

platforms, such as the Cricket Platform, this is achieved by using the Time Difference of 

Arrival of an ultrasound pulse and an RF packet.  Since ranging, as such, is not within the 

scope of this dissertation, the physical layer will not be treated in further detail. 

In order to guarantee any type of communication, nodes need to work within the 

same communication channels and share the wireless medium.  A Medium Access 

Control Protocol, (MAC), creates the necessary signaling mechanisms, for usage of a 

medium, which is efficient and fair to all nodes.  Subsequent sections will demonstrate 

how the MAC can encompass several channels.  At the link layer, acknowledgement 

mechanisms are implemented to guarantee delivery of chirps.  Due to the strong ad-hoc 

nature of the networks under consideration, protocols that require synchronization may 

not be appropriate.  Randomized protocols will usually represent a better alternative.  

Therefore, with respect to this dissertation and from the point of view of protocols, the 

MAC/Link layer represents the main object of study. 
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6.1. The Cricket Platform 

The Cricket localization system, which was developed at MIT and 

commercialized by the Crossbow Company, constitutes and ideal platform for 

investigating the issues related to protocols.  The main advantage of the Cricket system is 

that it is based on the TinyOS operating system.  The TinyOS operating system is widely 

popular, open-source and targeted to Wireless Sensor Networks.  TinyOS provides 

abstractions that allow for the selective customization of specific functions within the 

package of functions available.  In this research TinyOS was particularly suitable since it 

provided for the notion of a chirp to be embodied in a very direct manner. 

 

6.1.1. Cricket V2.0 Protocol 

A chirp, in the Cricket system, comprises an ultrasound pulse and an RF packet 

with the position information of the transmitting node.  Therefore, a chirp requires an 

ultrasound channel and a RF channel.  Nodes cannot transmit ultrasound pulses 

simultaneously since such activity would create a collision.  The receivers would not be 

able to determine the source of the chirp from the signal mixture.  The situation is 

resolved by employing the Carrier Sense Multiple Access, (CSMA), technique.  In 

CSMA, a node uses its ultrasound receiver to detect whether other nodes are transmitting.  

In case a signal is detected, the node waits for a random time, which is termed random 

back-off, before attempting a transmission.  A similar mechanism is employed for the 

RF-channel. 

The, off-the-shelf, Cricket localization function possesses modes for transmitting 

and receiving.  The transmitting mode is termed “beacon” and the receiving mode is 
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termed “listener”.  Nodes may be set to work in only one mode.  Therefore, nodes can be 

setup to be beacons or listeners but not both at the same time.  Beacons are placed at 

known positions, which means that they do not perform any localization activities.  

However, listeners use chirps from beacons to find their location via trilateration. 

Figure 66 presents a graphical representation, component diagram, of the main 

Cricket V2.0 software configuration, which details all of its main components. 
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 Figure 66:  Cricket V2.0 Configuration  
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In Figure 66, the UltrasoundControlM module performs the function of 

controlling the ultrasound channel by providing the UltrasoundControl interface.  

The UltrasoundControl interface is comprised of several commands and events 

such as: 

• command result_t UltrasoundControl.StartDetector, 

• command result_t UltrasoundControl.StopDetector, 

• event result_t UltrasoundControl.PulseDetected, 

• event result_t UltrasoundControl.DetectorTimeout, 

• command result_t UltrasoundControl.SendPulse, 

• command result_t UltrasoundControl.SetGain. 

Control of the RF channel is analyzed in a similar manner.  The RF channel 

contains the CC1000RadioIntM module.  The CC1000RadioIntM module provides 

several interfaces for setting a node to either the listening mode or the receiving mode.  In 

addition, the CC1000RadioIntM module possesses capabilities for receiving and 

transmitting messages. 

The protocols for the, off-the-shelf, Cricket V2.0 application are depicted, in simplified 

form, in Figure 67. 
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Figure 67:  Cricket V2.0 Protocols 

 
NOTE:  The terms provide, use, module, configuration, interface, command and event 
have a special interpretation in the NesC language of TinyOS. 
 

Although modules for using the Cricket platforms in both modes are available, as 

Figure 66 indicates, the main application does not accommodate all the requirements for 

the simultaneous exchange of chirps.  Nodes need to function both as listeners and 

beacons for cooperative localization to occur.  However, the main Cricket application 

does not provide for both modes to be active at the same time. 

 

6.1.2. The RobustLoc Application 

The RobustLoc application was developed by Moore, [36].  In the RobustLoc 

application, nodes act as both beacons and listeners.  In addition, nodes are not limited 

simply to transmitting range information to the external serial port of the platform.  In 

RobustLoc nodes also perform localization functions. 

Nodes are usually in receiver mode and convert to beacon mode at fixed time 

intervals for short periods of time.  The interactions of the RF and ultrasound channels 

with respect to beacon and listener functions are presented in Figure 68. 
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Figure 68:  RobustLoc Protocol 

 

6.2. Chirp Reception Frequency 

The effort to maintain odometry errors within prescribed bounds is substantially 

reduced at higher frequencies.  Therefore, the integrated navigation perspective considers 

higher frequency navigation aids as superior.  However, medium allocation is not 

instantaneous.  A definitive time is required to transmit chirps.  Thus, the frequency at 

which nodes receive chirps is an important metric that measures the efficiency of the 

protocol. 

The goal in this section is to develop the nature of the chirp reception process 

from the statistical perspective.  The distribution of the range errors for this specific 

technology was scrutinized in section 4.5.1.  Instead of modeling the protocols 

theoretically, an empirical model is sought.  The model can later be incorporated into the 

navigation and motion models, which provides for a more realistic prediction functions 

such as accuracy and latency. 
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In pursuit of this objective, the question is posed: 

• Assuming a network of n  nodes, with every node having the ability to see 

all the others, what maximum chirp rate is achievable? 

A perfect Time Division Multiple Access, (TDMA), protocol can be taken as an 

ideal case, which may yield the highest possible chirp rate.  Two channels, ultrasound 

and RF, are shared by Cricket nodes.   The channel, which defines the maximum chirp 

frequency, is the ultrasound channel since it operates in the slower medium.  The 

maximum range of the Cricket ultrasound transducer was found to be approximately 5m.  

Therefore, each chirp allocates the ultrasound medium for at least a time, which is given 

by: 

 

Sound

5 15ms
340m s

r mt
v

Δ = = =
/

.    (46) 

 

If nodes would take turns in a highly synchronized manner, they would need to 

wait to use the channel for a time given by: 

 
T n tΔ = Δ .      (47) 

 

For a network with 6n = , this represents a waiting time of 90ms 10Chirps sTΔ = / .  

Hence, the performance of the TDMA protocol deteriorates with higher numbers of 

nodes. 
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To study the statistical nature of the chirps, an experiment similar to the one 

described in section 4.5.1 was performed.  The main focus, of the experiment, was the 

frequency at which chirps were transmitted.  Therefore, the listener registered the time of 

arrival in microseconds and the beacon number. 

The histograms in Figure 69 depict the inter-arrival times of the chirps.  In each 

case, an exponential distribution of the form te μ− /  was fitted to the data and the parameter 

μ  determined.  As expected, μ  was similar for all beacons since they all used the same 

protocol and the physical propagation conditions were similar.  An average μ  was 

determined to be: 

 
525 sμ μ= .     (48) 
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(a) Node 2      (b) Node 4 

 
(c) Node 5      (d) Node 6  

 
(e) Node 7     (f) Node 8 

Figure 69:  Histograms for the Inter-Arrival Time from Six Nodes 
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Since inter-arrival times can be modeled as an exponential distribution, the 

probability of a certain number of chirps, n , arriving at a listener within a specific time 

interval can be modeled as a Poisson process of the form: 

 
( ){ ( ) }

n
t tP N t n e

n
λ λ−Δ = =

!
,    (49) 

 

where 

 
1λ μ= / ,      (50) 

 

was determined to be: 

 
1 9Chirps sλ = . / .     (51) 

 

In accordance with the Poisson model, the theoretical probabilities for different numbers, 

n , of received chirps within a time interval of 1s are presented in Figure 70. 

 

 
Figure 70:  Probability of, n , Chirps Received; { (1 ) }P N s n=  

 



148 
 

6.3. Basic Outline of the Protocol 

The protocols to handle cooperative localization can vary significantly since they 

are highly dependent on the role and characteristics of the node.  For example: 

• A wireless access point, which is fixed and considered part of the 

infrastructure.  Upon its initial installation, the access point infers a basic 

zone from other wireless access points with which it communicates by the 

exchange of chirps.  Lack of access to a sufficient number of other access 

points can leave the location belief with a substantial spread.  However, it 

may “pick up” information from cell phones, lap-tops and vehicles, which 

are passing by or located in the near vicinity, in a continuous improvement 

process.  Such a process would be limited by the nodes ability to measure 

range. 

• A cell phone tower, due to GPS access and GPS augmentation systems, 

could quickly become a “pseudo-light” or beacon, which broadcasts chirps 

within its area of coverage. 

• A vehicle would rely on its localizer in GPS/INS mode when driving in 

open landscapes.  However, in urban canyons a vehicle could 

communicate with cell phone towers and access points to keep its position 

errors within bounds.  On the highway, a vehicle can communicate with 

other vehicles in order to guarantee accurate position estimates, which are 

necessary for safe driving and purposeful navigation. 
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• A pedestrian with cell phone would exchange chirps with cell phone 

towers, other cell phones and passing robots in order to keep its error 

bounds within limits. 

• A wireless sensor node would work in a way very similar to a wireless 

access point. 

The operation of a cooperative localization protocol, for a wireless sensor 

network, yields itself to a simple outline type description.  It is assumed that a few 

reference nodes are initially positioned in the area of interest. 

After deployment, listener nodes put themselves in unlocalized mode.  

Concurrently, reference nodes enter their localized mode and wait for chirp-request 

messages.  In the unlocalized mode, nodes wait for chirps for a specified time.  If no 

chirps are heard, after the wait time has elapsed, a chirp-request message is broadcast. 

Listener nodes, in the process-chirp state, use chirps to estimate their location and 

update their uncertainty measure, c .  When a threshold certainty level, Thrc , is achieved, 

the node assumes it has a good location estimate and moves into the localized state.  

When a node receives a chirp request, while still in the unlocalized state, it compares its 

current certainty level with a threshold certainty level by checking if the condition 

Thr Thr'c c<  holds.  If this condition is true, the node transmits a chirp.  However, nodes 

with very low certainty values should be prevented from sending chirps in order to avoid 

contention. 

The sooner the nodes start cooperating as beacons, even when their location 

estimate is not perfect, the sooner the nodes, distant from the original reference nodes, 

will reach convergence. 
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In the localized state a node either puts itself to sleep or performs its usual duties.  

While awake, the node listens for chirp requests.  The long preamble technique may be 

used in order to reach sleeping neighbors.  In every case, the techniques used in the MAC 

randomized protocols can be used to allow for sharing the ultrasound and RF channels 

necessary for collision free chirp exchange.  Figure 71 presents, in state-diagram form, 

the protocol, which is comprised of the different states and messages. 

 

 
Figure 71:  Basic Localization Protocol for a WSN 

 

6.4. Summary 

This chapter has briefly presented a few aspects related to protocols that are 

necessary to enable cooperative localization.  The Cricket system served as the basis for 

the analysis.  Basic MAC techniques employed in two known applications were studied.  

The inter-arrival time of chirps was quantified and modeled statistically.  Finally, a 

protocol applicable to localization of Wireless Sensor Networks was outlined. 
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Chapter 7 

Conclusions and Future Work 

 

7.1. Conclusions 

This research investigated the process of forging an original vision of how 

localization in wireless networked systems could work in the future.  The result was the 

development of a novel localization solution.  This result was achieved primarily due to 

the application of Systems Engineering principles.  In addition, the results of this research 

were based on solid foundations of previous work in the areas of navigation, networking, 

robotics and estimation.  The chirp, was introduced as a unit for one-to-one interactions.  

Also introduced was the localizer, as a device, which encompassed networking, ranging 

and inertial measurement functionalities.  Theses two concepts were central to the 

success of this research. 

The three main pillars of the novel localization solution are: 

• Cooperative estimation, 

• Introduction of a probabilistic framework, 

• Incorporation of inertial measurements. 

These three aspects have not been unified in any previous solution. 
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Cooperation refers to the purposeful interactions among nodes of a network such 

that nodes with lower position uncertainty assist other nodes to perform self-localization.  

Through cooperation, localization becomes a distributed estimation task.  It also remedies 

coverage and reliability issues, due to the inherent redundancy enabled by cooperation. 

The probabilistic framework lays the foundation for handling measurement errors 

in a very elegant way.  Additionally, it provides the mechanism for breaking away from 

trilateration and other graph rigidity related approaches.  Within the probabilistic view, 

position is not a set of coordinates.  Instead, position becomes a belief.  The belief 

provides the mechanism for the extraction of an actual estimate of position.  Due to the 

application of probabilistic estimation techniques, every measurement and interaction 

with other nodes is useful, which avoids the “no fix” condition common in trilateration.  

A product of this framework is also the particle filter, also known as a Sequential Monte 

Carlo Estimation or Bootstrap filter, which was used extensively in this research. 

Strapdown Inertial Navigation Systems, (SINS), are becoming common place due 

to the abruptly sinking prices of MEMS-based inertial sensors.  The combination of SINS 

and inter-node range measurements for navigation aiding was one of the fundamental 

ideas put forward in this research. 

Two main issues of particle filters were addressed and effective solutions 

proposed. The need for large numbers of particles to produce convergence of the 

sequential estimation process was investigated and a heuristic adaptation rule proposed.  

The adaptation rule wireless sensor nodes with limited computational resources to benefit 

from the advantages and simplicity of particle filters.  The resulting non-linear estimation 

law is flexible and can be tuned according to the metric with the highest relevance in a 
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specific application. Secondly, the applicability restrictions when handling problems with 

a state vector of higher than three dimensions was investigated.  The problem was 

partitioned.  The odometry partition employed an optimal filter to handle a large number 

of states.  The aiding partition assumes responsibility for producing position estimates 

and fusing range measurements.  This navigation structure proved useful in diverse 

example scenarios, which were presented in chapter 5. 

Another highlight of the research, presented in this dissertation, was the elegant 

solution to the problem of performing the convolution of the annular measurement update 

probability density function with the position belief of the chirp originator.  This was 

achieved through representation of the problem in polar coordinates and by exploiting the 

fact that both PDFs possess Gaussian sections, whose convolution yields another normal 

distribution. 

Many problems that possess a NP-complete nature, such as the localization of 

nodes in a network using noisy measurement readings, have been solved in approximate 

form through the application randomization techniques.  It appears that, with the 

increasing computational power of embedded networked systems, the use of 

randomization techniques will expand dramatically.  Randomization techniques are 

particularly applicable to those many real problems, which are, by their very nature, 

highly uncertain and noisy. 
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7.2. Future Work 

A few of the many lines of inquiry that this research has unveiled and could or 

possibly should attract research attention in the future are: 

• Consideration of vehicles, which incorporate an integrated INS/GPS 

system.  In such a vehicle there exists the possibility of exchanging chirps 

for communication and to measure inter-node range.  How would this 

additional capability improve the INS/GPS estimation process? 

 

• How can priors such as holonomic constraints and maps be incorporated 

into the cooperative localization process? 

• What are the observabilities and sensitivities of different geometric 

configurations of localizers?  What is the effect of using redundant 

localizers? 

• How can the techniques, outlined in this dissertation, be improved by 

machine learning techniques?  For example, over time the localizer “gets 

to know” its carrier.  Tracking a person is different from tracking a 

vehicle. 

• How can the parameters of the probabilistic motion model be determined?  

There seems to be three possibilities: 

 Via theoretical error analysis of the inertial navigation system, 

 Empirically, by performing system identification or 

expectation maximization-type algorithms, 

 Via continuous on-line parameter learning. 
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• What is the effect of malicious nodes, which try to “delocalize” a 

network? Similarly, what happens when one node presents severe 

measurement failures?  Since localization is a cooperative process, much 

like a distributed routing algorithm, techniques for identifying malicious 

nodes in localization may be drawn from the distributed computation area. 

• A careful analysis of the Lower bounds of estimation, such as the Cramer-

Rao lower bound used for Gaussian distributions, could help in 

quantifying the exact benefits of cooperative localization. 
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