
A COLLABORATIVE DEFENSE FRAMEWORK AGAINST DDOS ATTACKS

IN NETWORKS

By

HAIQIN LIU

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2013

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of HAIQIN LIU find

it satisfactory and recommend that it be accepted.

Min Sik Kim,Ph.D.,Chair

Lawrence B. Holder,Ph.D.

David E. Bakken,Ph.D.

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to my advisor Dr. Min Sik Kim for his guid-

ance, support, encouragement and patience throughout my graduate study. He was always there to

meet and talk about my ideas and to give invaluable advice through all phases of my research. I

also value his influences on my vision of my professional and personal developments.

I also want to thank my thesis committee members, Professor Larry Holder and Professor

Dave Bakken, for serving on the defense committee and reviewing my thesis.

I own my thanks to all the Network Research Lab group members, past and present, for

creating a friendly and inspiring atmosphere over these years.

Finally, I want to give the deepest appreciation to my parents and friends for their support.

iii

A COLLABORATIVE DEFENSE FRAMEWORK AGAINST DDOS ATTACKS

IN NETWORKS

Abstract

by Haiqin Liu, Ph.D.
Washington State University

May 2013

Chair: Min Sik Kim

Distributed Denial of Service (DDoS) attacks pose one of the most serious security threats

to the Internet. In this work, we aimed to develop a collaborative defense framework against DDoS

attacks in networks. We focus on two main phases, which are anomaly detection and filtering of

malicious traffic, to achieve a successful defense against DDoS attacks.

Our first accomplishment is to effectively detect DDoS traffic at local nodes. Our conducted

experiments can be divided into three categories which are described as follows. Firstly, in order

to detect the stealthy DDoS attack at an early stage, we proposed an effective detection scheme

based on time-series decomposition method. Moreover, in order to more effectively defend against

the attacks, our credit-based defense method is designed for pinpointing the malicious flows. In

addition, in order to adapt to the high-speed environment, we present a two-level approach for

scalable and accurate attack detection by exploiting the asymmetry in the attack traffic. At both

detection levels, sketch structures are utilized to ensure the scalability of our scheme.

Secondly, current defense systems are not scalable well to high-speed networks and few of

them are able to defend against attacks originated from both spoofed and genuine source addresses

iv

effectively. Aimed at this problem, we propose a two-stage defense scheme to mitigate attacks.

The main advantage of our defense approach is its space efficiency since it does not need to keep

per-flow state. Moreover, both spoofed and genuine IP DDoS attacks can be well regulated. We

finally extend the single-host sketch-based scheme to a distributed detection scheme and finally

develop a collaborative defense scheme. In the distributed detection scheme, we deploy detectors

in a certain number of edge routers at the edge side. The local analyzer periodically reports the

local processed result to the global analyzer in order to infer the anomaly. The collaborative de-

fense scheme is further developed to filter the malicious traffic. By combing both the host-based

solutions with the network-wide solutions, we develop a comprehensive solution that can detect

and defend against attacks more effectively. Experimental results using the real Internet traffic

demonstrate its effectiveness.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 Introduction . 1

1.1 How Do DDoS Attacks Work? . 1

1.1.1 Direct and Reflector-based Attacks . 2

1.1.2 Bandwidth and Resources Attacks . 4

1.2 Why DDoS Attacks Exist? . 5

1.3 Motivations of our works . 6

1.4 Main Contributions . 7

1.5 Thesis organization . 8

1.6 Related Works . 9

1.6.1 Source-end based Defense Schemes . 9

1.6.2 Core-network based Defense Scheme . 11

1.6.3 Victim-end based Defense Scheme . 13

1.6.4 Collaborative Defense Scheme . 15

2 Real-Time Detection of Stealthy DDoS Attacks Using Time-Series Decomposition . . 17

2.1 Motivation of this work . 17

vi

2.2 Stealthy DDoS Attacks . 18

2.3 Internet Traffic Analysis . 21

2.3.1 Statistical Property of FCE Series . 22

2.3.2 Decomposition Model of Short-Term Traffic 24

2.3.3 Anomaly Detection of Each Component 26

2.4 DDoS Detection Algorithm . 27

2.4.1 Self-Adaptive CUSUM Technique for Random Component 28

2.4.2 Double Autocorrelation Technique for Trend Component 28

2.4.3 Adaptive Sliding Window . 30

2.4.4 Overall Algorithm Description . 31

2.5 Evaluation . 31

2.6 Conclusion . 34

3 TrustGuard: A Flow-level Reputation-based DDoS Defense System 36

3.1 Motivation of this work . 36

3.2 Related works . 36

3.3 Credit-based DDoS defense scheme . 37

3.3.1 DDoS Pattern Analysis . 38

3.3.2 Macro-Level Anomaly Analysis . 39

3.3.3 Micro-Level Anomaly Analysis . 44

3.4 System Description . 46

3.4.1 Traffic Profile Construction . 47

vii

3.4.2 Macro-level Anomaly Detector . 48

3.4.3 Micro-level Credit Accumulation . 48

3.4.4 Probabilistic Drop Filter . 49

3.4.5 Space Requirement . 49

3.5 Evaluation . 50

3.5.1 Macro-level Detection Performance . 51

3.5.2 Micro-Level Filtering Performance . 53

3.6 Conclusion . 54

4 A Scalable DDoS Detection Framework with Victim Pinpoint Capability 55

4.1 Motivation of this work . 55

4.2 Related works . 55

4.3 System Description . 57

4.3.1 Measurement on Real Traces . 58

4.3.2 Data Structure . 62

4.3.3 System Architecture . 63

4.4 Scheme Design and Implementation . 64

4.4.1 Coarse-level Detection . 64

4.4.2 Fine-level Detection . 67

4.4.3 Distinct Sources Estimator . 69

4.4.4 Victims Identification . 70

4.4.5 Hardware Architecture . 71

viii

4.5 Analysis and Discussion . 72

4.5.1 Space Requirements . 72

4.5.2 Accuracy Estimation Analysis . 73

4.5.3 Collaborative Detection Scheme . 79

4.6 Evaluation . 83

4.6.1 Detection Accuracy Evaluation . 84

4.6.2 Space Consumption . 87

4.7 Conclusion . 89

5 A Collaborative Defense Framework against DDoS attacks 91

5.1 Motivation of this work . 91

5.2 Overall system architecture . 93

5.3 Defense against TCP flooding attacks . 94

5.3.1 Background . 94

5.3.2 Related Works . 96

5.3.3 System Description . 98

5.3.4 Evaluation . 110

5.4 Defense against UDP flooding attacks . 115

5.4.1 Background . 117

5.4.2 Proposed Approach . 118

5.4.3 Evaluation . 124

5.5 Conclusion . 132

ix

6 Conclusion . 133

6.1 Stealthy DDoS attacks detection . 133

6.2 TrustGuard . 134

6.3 Sketch-based detection . 134

6.4 Sketch-based collaborative defense framework . 135

6.5 Future works . 137

BIBLIOGRAPHY . 139

APPENDICES . 146

APPENDICES

A Publications . 146

A.1 Journal . 146

A.2 Conference . 146

A.3 Poster . 147

x

LIST OF TABLES

2.1 The default parameter settings of stealthy DDoS detection 32

3.1 Definition of our packet size level scheme . 43

4.1 The default parameter settings of sketch-based detection 84

5.1 The default parameter settings of sketch-based defense 110

5.2 The node settings for the topology deployed on PlanetLab 124

5.3 The default parameter settings of sketch-based defense for UDP flooding attacks 124

xi

LIST OF FIGURES

1.1 Direct attack . 2

1.2 Reflector-based attack . 3

1.3 Denial of edge service . 4

1.4 Denial of network service . 5

1.5 D-WARD in Action. Figure copied from [1] . 10

1.6 Illustration of Pushback. Figure copied from [2] . 13

1.7 Illustration of DefCOM. Figure copied from [3] . 16

2.1 A typical low-rate DDoS attack pattern . 19

2.2 A generic example of slowly-increasing intensity DDoS attack pattern 20

2.3 Original and double autocorrelation coefficients of normal traffic 22

2.4 Original and double autocorrelation coefficients of traffic with SIDA attacks 23

2.5 Structure and process of detection based on time series decomposition 25

2.6 Traffic characteristic of tested traces . 33

2.7 Detection result compared with ground truth . 33

3.1 Packet size distribution of DDoS traffic over different protocols. 42

3.2 Packet size distribution of Internet traffic over different protocols. 43

3.3 Overview of system architecture . 46

3.4 Data structure for building the traffic profile. 47

3.5 Evaluation of MAD performance. 51

xii

3.6 Evaluation of detection performance. 52

3.7 Evaluation of micro-level filtering . 54

4.1 Flow patterns of normal traffic and DDoS attacks . 60

4.2 Average # of incoming packets per DIP . 61

4.3 Average AI per DIP . 61

4.4 Average distinct # of source IPs . 62

4.5 Illustration of sketch data structure . 62

4.6 High-level view of detection process . 63

4.7 Illustration of BCS data structure . 68

4.8 Hardware architecture for the proposed scheme . 71

4.9 Size of MCS VS. FPRoverall . 76

4.10 Size of BCS VS. FPRoverall . 77

4.11 Traffic distribution VS. FPRoverall . 77

4.12 Illustration of a collaborative framework . 81

4.13 Maximal DistNum value in BCS . 85

4.14 # of detected victims . 86

4.15 Recall ratio . 87

4.16 Space consumption . 88

4.17 Storage scalability . 89

5.1 Overall system architecture . 93

5.2 Overall architecture . 98

xiii

5.3 Illustration of UTF module by a sequence diagram. This figure neglects the ATF mod-

ule which sits between the UTF and victims for the clear demonstration of the

procedure. 100

5.4 Update of bloom filters for aggressive traffic filtering. 105

5.5 Effectiveness of mitigating spoofed IP DDoS attacks 111

5.6 Accuracy evaluation by varying traffic scale . 112

5.7 Effectiveness of mitigating genuine IP DDoS attacks 113

5.8 Accuracy evaluation by varying the number of attack sources 114

5.9 Evaluation of defense against mixed types of attacks 115

5.10 GridStat Architecture . 117

5.11 Illustration of a collaborative framework for mitigating UDP flooding attacks in GridStat119

5.12 Evaluation of packet loss rate . 125

5.13 Loss rate VS. attack rate . 126

5.14 Evaluation of pass ratio of legitimate traffic . 127

5.15 Evaluation of pass ratio of malicious traffic . 127

5.16 Pass ratio of legitimate traffic VS. attack rate . 129

5.17 Pass ratio of malicious traffic VS. attack rate . 129

5.18 Evaluation of average delay . 130

5.19 Average delay VS. attack rate . 131

xiv

CHAPTER ONE

INTRODUCTION

Nowadays, distributed denial of service (DDoS) attacks pose one of the most serious security

threats to the Internet [4–6]. DDoS attacks can result in a great damage to the network service. The

DDoS attackers usually utilize a large number of puppet machines to launch attacks against one or

more targets, which can exhaust the resources of the victim side. That makes the victim lose the

capability to serve legitimate customers and prevent legitimate users from accessing information or

services. Since DDoS attacks can greatly degrade the performance of the network and are difficult

to detect, they have become one of the most serious security challenges to the current intrusion

detection systems (IDS) [4, 7, 8]. Concerning the current state of the network, every corner of the

world is likely to be the target of DDoS attacks. However, as long as they are detected early, the

loss can be reduced to the minimum. Therefore, DDoS attack detection and defense still attract

much concern from researchers.

1.1 How Do DDoS Attacks Work?

During a typical attack period, an attacker controls the compromised hosts to send requests to a

target site and those combined packet flows will overwhelm the target due to the limited resources.

The target can be machine, network link or even network links of ISPs.

According to the typical communication pattern of DDoS attacks, they can be divided into

two main categories, which are called direct attacks and indirect attacks, respectively. In order to

launch an attack, attackers have to build a network first. Such kind of networks usually contains

1

three components, which are attackers, masters and agents. The attacker controls one or more

masters and each master controls thousands of agents to initialize the attacks. The attacker itself

does not send packets to victims directly. It makes the puppets to send attack packets in order to

hide its malicious activities. By this way, it is difficult to track the attack source during attacks.

1.1.1 Direct and Reflector-based Attacks

During a direct attack, spoofed IP addresses are usually involved to prevent attackers from being

discovered. As shown in Fig. 1.1, the attacker directly sends packets with forged source IP address-

es to the victim side and try to periodically establish connections with the victim to exhaust the

victim’s resources. Such kind of attacks utilizes the inherent weaknesses of some communication

protocols, which require the receiver to send feedback to the sender side when it receives packets

from senders. The attacker can take advantage of such feedback mechanism to launch an attack.

One of the most prevalent DDoS attacks in the past decade is SYN flood attack which belongs to

Attacker

Masters

Agents

Victim

Figure 1.1: Direct attack

2

direct attacks. According to the three-way handshake mechanism of TCP initialization process, the

victim server needs to send an acknowledge packet to the sender side. Since source IP addresses

of malicious packets are spoofed, the server will never get responses from sender’s side. At the

same time, the victim server still keeps a large amount of memory and CPU resources for those

broken connections. By exhausting the resources of the server, legitimate users cannot access nor-

mal services. Fig. 1.2 shows a typical flow distribution during a DDoS reflector attack. Compared

Attacker

Masters

Agents

Victim

Reflectors

Figure 1.2: Reflector-based attack

with the direct attack, the attackers do not send packets directly to the victim but to some reflec-

tors. Both routers and DNS servers can be utilized as the reflectors. The attacker sends packets,

which are required to be responded to the reflectors. However, those packets which are sent to the

reflectors contain the victims’ IP addresses. The reflectors will then send a large number of packets

3

to the victims. The large number of packets will saturate the ingress link of the victim. Such kind

of attacks is more dangerous since all the responding packets have no difference compared with

legitimate packets and thus it is more difficult to detect.

1.1.2 Bandwidth and Resources Attacks

The DDoS attacks can also be divided as bandwidth attacks and resources attacks in terms of the

target of DDoS attacks. For the bandwidth attack, there are usually two types of DDoS attacks,

namely, denial of edge service and denial of network service attacks [9], which are shown in the

Fig. 1.3 and Fig. 1.4. For the former type, the attackers usually try to saturate the ingress bandwidth

of the victim side. The reflector attack belongs to the former type, which can render normal users

not able to receive responses from the server on time.

Victim
Zombie

Zombie Zombie

Figure 1.3: Denial of edge service

During a resource attack, the attacker mainly tries to send a large number of virtual con-

nections in order to exhaust CPU and memory resources of the victim. Since the resource of the

host is limited, a large number of broken connections will result in the disability of the server to

respond to legitimate users.

4

Victim
Zombie

Zombie Zombie

 Figure 1.4: Denial of network service

1.2 Why DDoS Attacks Exist?

The prevalence of DDoS attacks today is mainly due to the design goal of the Internet [10]. In

the history, the design goal of Internet mainly focused on functionality rather than security and the

network tries to provide simple, fast and cheap communications. Those complicated functionalities

are assigned to end hosts. Under such best efforts principle, the network itself was designed with

delivery efficiency without considering security issues.

It is impossible for the today’s internet to regulate the behavior of end-hosts. The attackers

always try to find enough vulnerable hosts and deploy them into their BotNet. The attacks can be

launched due to many reasons such as annoying, extortion, or trying to disable opponent’s network

operations. However, the Internet itself has no idea about the attacks and it will always try its

best to forward malicious packets to the destinations. Furthermore, it only takes a little cost for

attackers to cause large scale damages. That is why DDoS attacks become the most popular attack

means for the attackers.

Current DoS attacks are usually extended to the distributed version of DoS. There are two

main reasons for that. Firstly, the targets are often highly provisioned servers, and a single machine

5

usually cannot overwhelm such a server. By employing a large number of zombie machines, the

attacker can easily take down a powerful server. Secondly, by using many compromised machines,

it is hard for the defense scheme to trace back the source of attacks.

1.3 Motivations of our works

Currently, the large-scale denial of service (DoS) still remains as the main threat to the Internet.

Although many solutions have been proposed to fight against traditional DDoS attacks, there is

still no panacea for dealing with all kinds of attacks. Many sophisticated attacks keep emerging

and it is more and more difficult to detect them. Also, attackers are always trying to hide their

behavior by taking advantage of bugs of new proposed methods in order to achieve their goals.

Host-based methods can defend directly against attacks which can mitigate potential dam-

ages as early as possible. However, host-based solution alone is far from solving the overall prob-

lem. This is because it is usually too late to fight against attacks since damages have already been

caused when we detect it at the end host. While someone may argue that we can deploy detectors

near the source side in order to detect possible anomalies at an early stage. However, it is very

hard to detect malicious patterns from the DDoS traffic since the traffic amount originated from

those malicious sources at source-end side is usually extremely small. Furthermore, there is a new

DDoS attack called denial of edge bandwidth which can congest the bandwidth of edge links of

the victim side by colluding sources and some victim nodes. In this case, host-based methods are

incapable to deal with such kind of attacks.

Network-wide solutions seem to be more attractive than host-based solutions. Such kind of

6

solutions usually places many detectors across edge routers of the core network and then collects

local traffic statistics. The filtering instructions are sent back to local nodes to finally regulate the

traffic. Although current network-wide solutions can detect anomalies at an early stage, they are

usually too slow to mitigate the damages.

Therefore, a network-wide collaboration mechanism will be more effective and efficient

to combat with current DDoS attacks. By combing both host-based solutions with network-wide

solutions, we are able to develop a comprehensive solution that can detect and defend against

DDoS attacks more effectively. To the best of our knowledge, we are the first one to present

such collaborative mechanism to fight against DDoS attacks by making local modules and global

modules work together. The global defense module collects local information which is extracted

by the local defense module and makes filtering instructions in order to regulate the traffic based

on a global and comprehensive decision. The local defense module we introduced does not only

perform the detection work but also defend directly against some apparent anomaly events without

waiting for the instructions from the global defense module to guarantee the timely reaction. We

will describe the overall architecture in details in the Chapter 5.

1.4 Main Contributions

The primary contributions of this thesis lie in the design and implementation of frameworks for de-

tecting and defending against DDoS attacks from a collaborative perspective. Theoretical analysis

and extensive simulations using real-world traces are also provided to show the effectiveness of our

frameworks. Some algorithms for defending against UDP-based DDoS attacks had been deployed

7

on the PlanetLab environment [11]. The main contributions can be summarized as follows.

• The design of scheme to accurately detect stealthy DDoS attacks which cannot be effectively

detected by traditional methods.

• The design of credit-based framework to achieve a fine-grained flow-level detection of ma-

licious flows.

• The design of sketch-based detection scheme to achieve high scalability performance by

exploiting the asymmetry pattern.

• The design of sketch-based defense scheme to fight against TCP SYN flooding attacks with

fine granularity.

• The design of sketch-based defense framework to mitigate UDP flooding attacks with fine

granularity. This algorithm had been deployed on the PlanetLab environment.

• The design of a collaborative framework for detecting and defending against DDoS attacks

from a global and comprehensive perspective to achieve better defense performance.

1.5 Thesis organization

The first three parts of our work presented in chapter 2, chapter 3 and chapter 4 all belongs to the

very first step of our overall framework. That is to effectively detect DDoS traffic at local nodes.

The chapter 2 is proposed to detect the stealthy DDoS attack at an early stage. In order to effectively

defend against the attacks, we need to know where the attack happens. For example, if we can

pinpoint those malicious flows or those victims which are under attacks earlier, we can generate

8

filtering rules for the defense purpose. Our credit-based defense method described in chapter 3 is

exactly designed for pinpointing the malicious flows. It utilized both macro-level and micro-level

features to pinpoint the malicious flows by accumulating the credits for each flow. Furthermore,

out sketch-based detection method proposed in chapter 4 is developed for the victim pinpoint

capability in the high-speed network environment. Although some similar credit-based and sketch-

based methods have been proposed for detection, most of them have their own drawbacks, which

will be presented in details in chapter 3 and chapter 4. In chapter 5, a two-stage defense scheme

is firstly proposed to mitigate TCP SYN flooding attacks with low memory consumption and then

a sketch-based defense method is implemented on the PlanetLab environment in order to evaluate

the impact of UDP flooding attacks on the GridStat as well as the efficiency of our collaborative

defense scheme. The conclusion and future work of this research work are presented in chapter 6.

1.6 Related Works

In this section, we categorize and summarize current state-of-the-art of DDoS defense schemes.

According to the deployment location, the most common DDoS defense schemes proposed till now

can be divided into four main categories: source-end-based, core-network-based, victim-end-based

and collaborative defense schemes [4], which are described separately below.

1.6.1 Source-end based Defense Schemes

Detecting DDoS at the source-end has many advantages compared with defense at the victim-end

or intermediate-network. Firstly, since the traffic volume is at a low level near the source-end, the

detection overhead for monitoring traffic can also be low. Secondly, the damage can be mitigated

9

at the very early stage and can be reduced to the minimal level. Finally, it also prevents the overall

defense system from being attacked due to the low level of the attack traffic. It is very hard for the

attacker to congest the link near the source end.

However, there are two potential problems with the source-end approaches. The first one

is the lack of deployment incentives. There is little motivation for the source-end ISP to protect

the victims which belong to other ISPs. The second problem is it is relatively hard to detect the

anomaly at the source end compared with the other two methods since the attack traffic may be

still at a very low level. In fact, it is mostly deployed to filter spoofed packets at ingress routers by

checking whether the packet belongs to its routing domain. D-WARD [1] is a typical source-end

requests

replies
D-WARD

D-WARD

attacks

Figure 1.5: D-WARD in Action. Figure copied from [1]

defense scheme against DDoS. The main idea is to leverage a difference between DDoS and normal

traffic. It autonomously detects and stops attacks originating from networks. Attacks are detected

by constant monitoring of two-way traffic flows between the network and the rest of the Internet

10

and periodic comparison with normal flow models. Those mismatching flows are further rate-

limited in proportion to their aggressiveness. Experiments conducted had shown its effectiveness

in filtering DDoS traffic while it only caused little collateral damages to the legitimate traffic.

Fig. 1.5 illustrates the D-WARD scheme.

The D-WARD suffers from two issues we mentioned above. Firstly, D-WARD defends

other people from your network’s DDoS attacks. Also, it doesn’t defend your network from other

people’s DDoS attack. Thus, there will be little incentive for the practical deployment. Secondly,

the volume of attack traffic might be very small at the source side which cannot be easily observed

by the D-WARD.

In [12], researchers proposed a space and computation efficient source-end based approach

to mitigate DDoS attacks by using Bloom filter. Since it only requires limited resource, this method

was expected to attract more ISPs to participate the source-end detection. However, the method is

only suitable to fight against the malicious traffic originated from spoofed IP addresses and cannot

be used to mitigate attacks launched from genuine IP addresses.

1.6.2 Core-network based Defense Scheme

Core-network-based systems are typically deployed across the whole network which requires the

global cooperation of detectors placed in the routers [13–15]. This kind of schemes can detect

and counter the attack threats at a very early stage which can greatly mitigate the pressure of the

victim side. However, network-based schemes suffer from two drawbacks, which can render these

schemes unpractical. Firstly, due to some commercial and privacy issues, there is little incentive for

cooperation among different ISP companies. Furthermore, since the large-scale deployment and

11

complex calculations are necessary for this kind of schemes, it is usually a resource-consuming

solution.

Defense at the core-network usually requires trace back and pushback, both of which re-

quire the cooperation among various ISPs. The trace back techniques are developed to identify

the real location of the attacker. Most of these schemes require marking packets along its routing

path or sending some special packets. A series of marking algorithms are described in [16]. After

the real path of the spoofed packets is identified, the pushback technique, which will be described

below, can be applied to inform upstream routers to perform filtering.

Pushback [2] provides a mechanism that allows a router to request adjacent upstream

routers to limit the rate of traffic. It extracts attacking signatures by rate-limiting the suspicious

traffic destined to the congested link. This is possible since the DDoS traffic is not like the le-

gitimate traffic following the flow control to reduce the traffic rate when the congestion happens.

Fig. 1.6 illustrates the architecture of a typical Pushback-based router. The main advantage of

Pushback is that even a few core routers are able to control high-volume attacks. However, it also

inflicts collateral damage on legitimate traffic because traffic sharing controlled links with attack

traffic is likely to also be harmed.

In [17], Seo and his colleagues propose a probabilistic filter scheduling method to miti-

gate DDoS attacks. In their method, filter routers identify attack paths using probabilistic packet

marking technique and maintain filters using a scheduling policy to maximize the defense effec-

tiveness. Again, such kind of methods requires the cooperation among various ISPs, which renders

it infeasible to be applied in reality. Also, it will introduce extra space overhead on the header of

12

Rate Limiter

Pushbackd

Input Queues

Output Queues
N

Y

Update

Congestion

signature

Adjust

Local

ACC

Drop

Drop

pushback

Pass

Match

congestion

signature?

Figure 1.6: Illustration of Pushback. Figure copied from [2]

packets.

In [18], Francois proposes the architecture and algorithms for FireCol, the core of which

is composed of intrusion prevention systems (IPSs) located at the ISPs level, to mitigate DDoS

attacks. It makes IPSs form virtual protection rings around the hosts to defend and cooperate by

exchanging traffic statistics. Again, the effectiveness of the framework depends on the cooperation

among different ISPs which render it hard to deploy in reality.

1.6.3 Victim-end based Defense Scheme

There are many research works [19–21] focused on victim side since such kind of defense schemes

can maximize the deployment incentives. Such systems were only deployed on the victim side to

protect ISPs and enterprise networks as well as individual hosts, which are usually bound with the

firewall or intrusion detection systems (IDS).

13

In [22], Wang proposes the SYN flooding attacks near the server side while the detectors

are installed at leaf routers which connect end hosts to the Internet. The main idea of their method

is to monitor abnormal SYN-FIN pairs behavior and a non-parametric cumulative sum technique

is applied to analyze the anomaly pattern. In [23], Jin utilizes the TTL in the IP header to estimate

the Hop-Count of each packet and detect attacks by the spoofed packet’s Hop-Count deviation

from normal ones. [21, 24] defend against DDoS attacks by distinguishing attacking packets from

legitimate ones by a fine-grain traffic profile comparison between the current traffic profile and vic-

tim’s nominal traffic profile. The effectiveness of these schemes depends on the assumption that

the attackers cannot precisely mimic the victim’s traffic characteristics. It suffers from two main

problems. Firstly, the complex process for generating statistical filtering rules will introduce heavy

computing overhead to the system. Secondly, the fact that a victim’s nominal traffic profile can still

be obtained by an attacker which was pointed out in [25]. In addition, this kind of systems also

suffers from some unavoidable weaknesses. Firstly, the requirement of the prior nominal traffic

profile render these schemes unable to well adapt to today’s dynamic traffic. Therefore, it might

result in a large collateral damage which can make some legitimate flows with new traffic patterns

failed to pass such kind of defense systems. Furthermore, even though the nominal traffic profile

can be built in a frequent and periodical manner in order to meet with the new network conditions,

how to know whether the current traffic, which is used for building the new nominal traffic profile,

is purely normal or not is still doubtable. In other words, it suffers from an egg-chicken problem.

On one hand, the system is designed to fight against the attack. On the other hand, the key compo-

nent of this system requires a mechanism to find out the period without anomaly traffic in advance.

14

Unless this problem can be solved properly, there is no guarantee that this kind of system can be

fully reliable. We argue that these base-line based schemes can only be suitable for the relatively

stable and small-scale network environment. In [26], Liu and his colleagues proposed an approach

for diagnosing traffic anomalies by analyzing the behavior of network traffic. They pointed out that

the traffic in communication networks has been shown to exhibit statistical self-similar phenomena

which can be characterized by the so-called Hurst parameter.

1.6.4 Collaborative Defense Scheme

In [3], Jelena and her colleagues propose a distributed system for DDoS defense which is called

DefCOM. Its nodes span source, victim and core networks and cooperate via an overlay network

to detect and stop attacks, which is shown in Fig. 1.7. The defense nodes constrain the attack

traffic to relieve victim’s resources. Also, the nodes cooperate together to detect legitimate traffic

within the suspicious stream and ensure its correct delivery to the victim. Furthermore, it offers a

framework for existing security systems to join the overlay and cooperate in the defense. Nodes

communicate with each other by using an automatically-built overlay. They collaborate by ex-

changing messages, marking packets as high or low priority and prioritizing traffic during attack.

However, the effectiveness of DefCOM depends on several facts which might become weaknesses

for this approach. Firstly, it requires the accurate anomaly detection at the victim-end in order to

trigger the overall defense flow. Secondly, the nodes inside core-network should cooperate togeth-

er to push the generated traffic regulation messages back to upstream nodes. Finally, it requires

source-end nodes to constrain their out-going traffic which might have little incentive for them to

do so.

15

Alert

generator

Classifier

Classifier

Core
Core

Figure 1.7: Illustration of DefCOM. Figure copied from [3]

In addition, those source networks that do not participate in DefCOM receive poor service

because core nodes in DefCOM that perform filtering lack light-weight algorithms to differentiate

legitimate from attack traffic at line speed. In order to overcome this problem, Mohit [27] proposed

a collaborative scheme by combing DefCOM and Speak-up [28] into a synergistic defense. By

integrating Speakup with core defenses in DefCOM, legitimate clients in legacy networks can thus

be detected and served. However, the framework is still unable to address the three issues we

pointed out above.

16

CHAPTER TWO

REAL-TIME DETECTION OF STEALTHY DDOS ATTACKS USING TIME-SERIES

DECOMPOSITION

2.1 Motivation of this work

In this chapter, we focused on the very first step of the overall collaborative framework. That is

how to detect when the attacks happen effectively and efficiently. To be specific, we aimed to detect

stealthy DDoS attacks which usually have low traffic volume. Over the past decade, many efforts

have been devoted to the detection of DDoS attacks. A typical approach to detecting DDoS attacks

in a network is to detect whether the amount of the total flow or other similar metrics exceeds

a certain threshold, which is determined based on the traffic history. However, the problem of

identifying attack traffic is generally difficult because currently the pattern of the normal network

flow is so dynamic and changing that those fixed thresholds can result in a high false positive rate.

There are methods that utilize adaptive thresholds which can change according to the network

conditions [29]. The main drawback of such methods is that those thresholds are still hard to be

determined to get high detection accuracy, and the effectiveness greatly depends on the previous

training by using historical data. Moreover, attackers can still manipulate their traffic and packets

to defeat detection.

We introduce a new type of DDoS attacks [30] called stealthy DDoS attacks, which can

be launched by sophisticated attackers. One special case is that a smart attacker injects the attack

17

traffic in a very slow speed to increase those thresholds to achieve the final attack goal. Those

DDoS attacks are called shrew DDoS attacks or low-rate DDoS attacks [31] and are a subclass of

the stealthy DDoS attacks. Cheng et al. firstly utilized the power spectral density (PSD) of network

flow to detect general TCP SYN flood [32]. Chen and Hwang also used the power spectral density

(PSD) of network flow to detect shrew attacks [33]. The attack types they focused on are stealthy,

periodic, pulsing, low-rate, and embedded in TCP or UDP traffic flows. Luo and Chang studied

the characteristics of shrew attack with a wavelet approach [34]. Lu and his group [15] proposed a

network-wide detection scheme for the DDoS attack by exploiting spatial and temporal correlation

of attack traffic. Their study mainly focused on the spoofed address attack, which will be unsuitable

for detecting the attack launched by a botnet. Unfortunately, none of these defense schemes can

identify and filter out the general stealthy DDoS attacks effectively and accurately. The main reason

is that a new DDoS attack called slowly-increasing-intensity DDoS attack introduced in this work

will be able to defeat the traditional baseline-based detection schemes by stealthily promoting those

baselines. In order to detect them, new approach needs to be proposed.

2.2 Stealthy DDoS Attacks

stealthy DDoS attacks can be launched by sophisticated attackers. Such attacks are different from

traditional DDoS attacks in that they cannot be detected by previous detection methods effectively.

In response to this type of DDoS attacks, we propose a detection approach based on the decompo-

sition of time series, which divides the original time series into the trend and random components

according to the analysis of its characteristics. It then applies a double autocorrelation technique

18

to the trend component while an improved cumulative sum technique is adopted in the random

component to detect anomalies in both components. By separately examining each component

and synthetically evaluating the overall results, the proposed approach can greatly reduce not only

false positives/negatives but also the detection latency. In addition, to make our method more gen-

erally applicable, we apply an adaptive sliding-window into the real-time algorithm. We evaluate

and demonstrate the performance of the proposed approach on the real Internet traces, demonstrat-

ing its effectiveness.

We introduce the fundamentals of stealthy DDoS attacks and compare their properties with

traditional DDoS attacks. Based on the comparison, we present in detail why this kind of DDoS

attacks cannot be easily detected by the conventional methods.

��������	�
�����

��������	���������

�����������

Figure 2.1: A typical low-rate DDoS attack pattern

The terminology “stealthy DDoS attacks” proposed in this work mainly refer to shrew D-

DoS attacks and slowly-increasing-intensity DDoS attacks (SIDA). The shrew DDoS attacks were

firstly introduced in [31], which was followed by a series of related research [34–36]. Generally,

a shrew DDoS attack refers to the periodic, pulsing, and low-rate attack traffic embedded in TCP

or UDP flows. A typical low-rate DDoS attack is illustrated as a periodic waveform shown in

Fig. 2.1, where T is the time period of an attack, L is the length of a burst period, and R is the

19

Time(s)
A

tt
ac

k
 I

n
te

n
si

ty

Period Of Burst T

Initial Intensity I

Increment I

Figure 2.2: A generic example of slowly-increasing intensity DDoS attack pattern

burst rate. We consider the shrew DDoS attacks as a subclass of general stealthy DDoS attacks. In

this work, our research focuses on the latter one, which can be launched by a patient, intelligent

attacker in no great rush. Fig. 2.2 shows a generic example of a slowly-increasing-intensity DDoS

attack, where the parameter I means the initial intensity of the attack traffic, T is the length of the

period of burst and ∆I is the increment of the attack intensity each time. The value of ∆I can be

manipulated by a smart attacker and be controlled in a very small range to hide the attack behavior.

The overview of the SIDA curve is slowly-increasing scalariform. That means the sophisticated

hacker can stealthily enhance the threshold for judging legitimate traffic and thus defeat those pre-

vious detection methods that detect based on thresholds. This type of DDoS attacks is even more

dangerous than those traditional attacks because it is harder to detect, especially when embedded

in a large amount of traffic, and thus can greatly delay the anomaly detection.

To the best of our knowledge, none of the previous research focus on the detection of SIDA.

In order to detect the new attack type, a new approach needs to be employed.

20

2.3 Internet Traffic Analysis

The Internet traffic is complex network flows with strong outburst and instability. In this work,

we sample the flow connection entropy (FCE) series from the Internet traffic. By calculating the

distribution of the FCE series, we can obtain a coarse-grained estimation of the traffic. We define

FCE, which reflects the change of the flow distribution caused by DDoS attacks, as follows.

Definition 1. A flow fi is a 3-tuple {sipi, dipi, dport i}, where sipi represents source IP address,

dipi destination IP address, and dport i destination port number.

This definition of flow can reflect main characteristics of DDoS attack traffic, because a

typical DDoS attack pattern is that each zombie machine from a BotNet launches one connection

to target at a certain service port of one or more victim machines.

Definition 2. The flow connection entropy (FCE) of a set of flows is defined as

FCE = −
n∑

i=1

p(fi) log2 p(fi) (2.1)

where p(fi) is the probability of receiving a packet belonging to flow fi.

During certain time period ∆t, we consider the frequency of the packets belonging to fi as

the estimation of p(fi).

From the definitions, we can see that DDoS attack will result in an abnormal increase in

the FCE of the network traffic.

21

0 5 10 15 20 25 30 35 40 45 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Autocorrelation coefficient

k

Autocorrelation coefficient

0 5 10 15 20 25 30 35 40 45 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k

Double autocorrelation coefficient

Autocorrelation coefficientFigure 2.3: Original and double autocorrelation coefficients of normal traffic

2.3.1 Statistical Property of FCE Series

We sample network traffic with sampling period ∆t and calculate FCE of every interval. Therefore,

the packet arrivals are modeled by FCE time series: Z(N,∆t) = {FCEi, i = 1, 2, ..., N}, where

N is the length of the time series. The kth order auto-correlation coefficient of the series Z is then

denoted as:

ρk =

N−k∑
i=1

(FCE i − FCE)(FCE i+k − FCE)

N∑
i=1

(FCE i − FCE)2
(2.2)

where FCE is the mean of FCE series.

Fig. 2.3 shows the auto-correlation coefficient of normal traffic. From that result, we can see

that ρk is near 0 when the order k is larger than 1. If FCE is stationary, ρk should decay rapidly as k

increases [37]. Otherwise, ρk fluctuates as k increases. Since ρk in Fig. 2.3 stabilizes as k increases,

we can conclude that the FCE series for the normal traffic are stationary. That is to say, for the

22

0 5 10 15 20 25 30 35 40 45 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Autocorrelation coefficient

k

Autocorrelation coefficient

0 5 10 15 20 25 30 35 40 45 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k

Double autocorrelation coefficient

Figure 2.4: Original and double autocorrelation coefficients of traffic with SIDA attacks

normal network traffic FCE series at present time is independent of the previous network status.

However, the auto-correlation coefficient of normal traffic with injected SIDA traffic, shown in the

Fig. 2.4, is much larger than 0 even when the order k is greater than 1. Besides, its value decreases

in a very slow pace. This point is more obvious when we obtain the double auto-correlation (DA)

coefficient by re-calculating auto-correlation coefficient of the original auto-correlation coefficient

series. Clearly, the injected attack traffic makes the FCE series of network traffic non-stationary.

Thus, the traditional auto-regressive (AR) model does not perform well.

Since the Internet traffic today always contains attack traffic, which make the series of

factual network traffic do not follow the stationary process, the decomposition of the original series

into long-term component and the steady random component will greatly benefits for proposing a

more effective approach.

23

2.3.2 Decomposition Model of Short-Term Traffic

Today’s Internet traffic depends on many factors, such as user behavior, network architecture, and

unexpected accidents, which make the network traffic contain both stationary and non-stationary

components. According to a study conducted by Guang et al. [38], generally the long time-scale

traffic exhibit the characteristics of trend, period, mutation, and randomness. Specifically, they

divided the large-timescale time series such as FCE i into trend component Ai, period component

Pi, mutation component Bi, and random component Ri. Therefore, for long time-scale traffic, it

can be modeled as:

FCE i = Ai + Pi +Bi +Ri (2.3)

where Ai and Pi belong to long-term changes which represents the smooth process of network

traffic behavior while Bi and Ri belong to short-term changes reflecting uncertainty in network

traffic.

In order to come up with a real-time detection algorithm which can be executed in an

incremental way, we introduce a sliding window into our algorithm. Generally, the size of the

sliding window should be kept small (10 minutes in our implementation) to adapt to real-time

detection requirements. With larger window size, more memory resources will be consumed.

For a short period of time, we claim that the mutation component and the period com-

ponent are negligible. In other words, the network traffic within the window can be considered

as the consequence of the interaction between the trend component and random component only.

This assumption greatly simplifies the real-time detection algorithm and makes our approach more

24

Original

FCE series

Trend

component

Random

component

Double

autocorrelation

Non-parametric

CUSUM

Decision

module

Alert

Series

decomposition

Figure 2.5: Structure and process of detection based on time series decomposition

practical. Under this assumption, the FCE series is modeled as

FCE i = FCE i +Ri

Ri = ηi + εi

(2.4)

where FCE i denotes the trend component, Ri is the random component containing ηi and εi, which

represents the steady random component and the measurement error (white noise) component,

respectively. The value of εi can reflect the absolute error between the prediction sequence and the

measured sequence.

Fig. 2.5 demonstrates the overview of the detection process based on the time series de-

composition method. Given a series of FCE data, we first obtain the trend and random components

by decomposition of the series. Then, anomaly detection methods are applied to each component

separately. Results are collected at the decision module to make a comprehensive decision. Be-

cause each anomaly detection method has its own strength under certain conditions, the proposed

synthetic approach has a potential to be more effective than previous approaches in detecting SIDA

and general DDoS attacks.

We use a modified exponentially weighted moving average (EWMA) to produce estimate

the trend component. The current estimation of FCE is obtained by combining the current FCE

25

with the FCE from the previous period corrected for trend as follows:

FCE i = αiFCE i + (1− αi)FCE i−1

αi = αmax(1− e−Cβi)

βi =
|FCE i−FCE i−1|

FCE i−1

(2.5)

where βi reflects the extent of the fluctuation. Generally, if FCE series are subject to large changes,

then the proportion of the history should be small so as to quickly attenuate the effect of old

observations. In contrast, when FCE series smoothly change as time goes, the proportion of the

history should be large to minimize random variations. The value of the parameter C is determined

empirically through experiments.

After we subtract the long-term trend component from the original series, the remainder of

the series can be considered as the random part of the traffic. Hence, the estimated steady random

series is obtained from

Ri = FCE i − FCE i . (2.6)

2.3.3 Anomaly Detection of Each Component

By decomposing the FCE series, the trend component will reflect the majority of slowly-increasing

signal while the steady random signal is contained in the random component. After we decompose

the original series into two separate components, appropriate approaches will be applied to each

component separately.

26

Conventional approaches can perform well in detecting anomaly with certain properties.

For instance, the cumulative sum (CUSUM) technique, which is based on the Sequential Change

Point Detection [39] can determine whether the observed time series is statistically homogeneous,

and find the time when the change occurs. However, its effectiveness will be weakened when the

network signal contains a large proportion of increasing- or declining- intensity signals, because

those signals may result in statistical bias, causing false positives. In our approach, we apply the

non-parametric CUSUM method [40] to the random component, which has all the advantages of

sequential and non-parametric tests with light computational overhead.

For the trend component, we calculate the double auto-correlation coefficient series and

examine the first Kmax elements in that series. If the signal in the trend component has an evident

increasing or declining tendency, then those values of the first few elements will all exceed certain

threshold. Generally, since the window size used in our algorithm is small, the normal trend series

should exhibit little fluctuation as time goes. The calculation of the auto-correlation coefficient

series can be implemented in an incremental manner.

2.4 DDoS Detection Algorithm

The important performance metrics of DDoS detection include detection accuracy and detection

latency. However, it is impossible to reduce both at the same time; we need to find out an ap-

propriate trade-off between the two metrics. Towards this goal, we firstly discussed the following

notions.

27

2.4.1 Self-Adaptive CUSUM Technique for Random Component

In order to accurately and timely detect the mutation point of random series R, we adopt the

CUSUM technique in our approach. The basic idea of CUSUM is to accumulate those small

offsets during the process to amplify the varying statistical feature and thus improve the detection

sensitivity. CUSUM can detect a small deviation of the mean effectively. It is generally defined as:

yi = (yi−1 + xi)

+

y0 = 0

(2.7)

where xi is the observed original value and ∆+ is ∆ if ∆ > 0 and 0 otherwise. When xi becomes

positive from a negative value, yi becomes larger, and its exceeding a threshold TH CUSUM indicates

the change point of the original series. In our implementation, we use R̃i = Ri−RH as the original

series, where RH is the upper bound of Ri series during normal process.

Although the original CUSUM algorithm can quickly and efficiently detect attacks, after

an attack period ends, the alarm will remain active. To stop the alarm, we consider the attack is

over if yi does not grow for CAttackEnd∆t. When the alarm stops, we reset yi to 0.

2.4.2 Double Autocorrelation Technique for Trend Component

As shown in Fig. 2.4, the double autocorrelation coefficient can be used as an indicator of the

existence of SIDA in network traffic; the injected SIDA traffic increases the double autocorrelation

coefficient. It results from the high internal dependency of SIDA traffic. The FCE series obtained

from the same traffic also exhibit this property. Based on these observations, we can detect the

28

anomaly in the trend component using the following condition:

ρ′k(i) > THDA, 2 ≤ k ≤ Kmax (2.8)

where ρ′k(i) is the double autocorrelation coefficient series at phase i. If all the first Kmax elements

of the double autocorrelation coefficient series (except the very first element which always equals

to 1) exceed the threshold THDA, then we conclude that there is SIDA traffic embedded in the

traffic.

Considering the fact the SIDA traffic is injected to the normal traffic in a very slow pace,

another condition should be introduced in order to detect the SIDA traffic at an early stage. During

θ∆t period, if the sum of the first Kmax element (except the very first one) keep growing ⌊CDAθ⌋

times, then we consider a SIDA attack is initialized by attackers as follows:

i∑
j=i−θ+1

1 ∗ {
Kmax∑
k=2

ρ′k(j) >
Kmax∑
k=2

ρ′k(j − 1)} ≥ ⌊CDAθ⌋ (2.9)

where CDA is an empirically-determined constant. The above condition can be checked by the

following way. We firstly compare the sum of the first Kmax element of the double autocorrelation

coefficient series at phase i− θ+1 with that at phase i− θ+2. If the former is greater than latter,

then 1 will be accumulated into the left side of the formula, otherwise 0. If the cumulated value

during the previous θ phase is greater than ⌊CDAθ⌋, then an anomaly is indicated.

29

2.4.3 Adaptive Sliding Window

We use an adaptive size sliding windows into our algorithm, which means the size of the intro-

duced window can be automatically adjusted according to the current network traffic condition.

An adaptive sliding window is necessary for improving the performance of proposed algorith-

m. Intuitively, when the value of double autocorrelation coefficient becomes larger than previous

phases, the window size should be enlarged so as to capture a more obvious increasing or declining

trend. Therefore, the following ratio RRA can be used to represent that trend.

Ri
RA =

Kmax∑
k=2

ρ′k(i)

Kmax∑
k=2

ρ′k(i− 1)

(2.10)

For the random component, the performance of CUSUM technique do not require a specific

length of the time series, however, the window size can be smaller in order to reduce the detecting

latency.

The initial size of the sliding window can be denoted as L0. Every time the window slides

forward, the size of the window changes. Based on the discussion above, the size of the adaptive

sliding window can be denoted as:

Li =

Li−1 + C1

⌊
Ri−1

DA

⌋
− C2 if Li ≥ L0

L0 otherwise
(2.11)

where C1 and C2 are both positive integers, which can be optimally determined by experiments.

30

2.4.4 Overall Algorithm Description

Based on the above discussions, the proposed algorithm can be described as follows. After initial-

izing those values of parameters, we sample the initial FCE series with window length L0. Then,

we decompose the FCE series inside the window by the improved EWMA technique proposed in

the previous section. The following flow contains two branches. That is to separately apply the

DA and CUSUM techniques to trend component and random component, respectively. One aspect

we need to pay attention to is that the value of yi need to be reset to 0 when the termination of the

attack is verified. If one of these two branches detects an anomaly, then an appropriate attack type

will be reported to the system. After computing the next Li − Li−1 + 1 FCE series, the sliding

window forwards to next, and then the algorithm repeats. As we can see, all of the techniques

adopted in this algorithm only require simple processes and small computing resource.

2.5 Evaluation

We use actual network traffic downloaded from the MIT Lincoln Laboratory [41] to evaluate our

approach. The traffic we tested is synthetically generated by merging the attack traffic and the

normal traffic.

We developed our own tool to generate the SIDA traffic, and the increasing rate can be

adjustable. The duration of one SIDA was normally distributed with mean 15 minutes and variance

1. The attack traffic is periodically generated and the duration of the period was exponentially

distributed, with mean value 60 minutes. General outburst-like SYN flood attack traffic was also

injected into the tested trace, and the duration of each outburst follows normal distribution with

31

mean 20 seconds and variance 5 seconds. The interval between each outburst was exponentially

distributed with mean 1000 seconds. From Fig. 2.6, we can see that the merged traffic seems to be

normal, especially we compare the traffic volume with the ground truth shown in the Fig. 2.7.

Table 2.1: The default parameter settings of stealthy DDoS detection
Item Parameter Setting value

Interval for Sampling FCE Series ∆t 5s

Time Series Decomposition
αmax 0.4
C 10

CUSUM Technique Detection
CAttackEnd 3
TH CUSUM 10

DA Technique

Kmax 6
THDA 0.4
CDA 0.8
θ 3

Adaptive Sliding Window
L0 50
C1 3
C2 5

We considered the detection accuracy and the detection latency as the main performance

metrics. Here, the detection accuracy contains two aspects: false positive ratio (FPR) and false

negative ratio (FNR). Table 2.1 shows the default parameter settings for the parameters we adopted

in our experiment.

Fig. 2.6 shows that after we calculated the FCE series, the SIDA attack can be greatly

amplified from the background traffic. Hence, several periodical SIDA attack can be observed

from the FCE series. Such slowly-increasing trend is more obvious when we apply the time series

decomposition approach into the original FCE series. Several strong long-period tendencies can

32

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0
1
2

x 10
5 Traffic volume

Time(s)

V
o

lu
m

e
(B

y
te

)

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0

5

10

FCE series of tested traffic

Time(s)

E
n

tr
o

p
y

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0

5

10

Trend component of tested traffic

Time(s)A
m

p
li
tu

d
e

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
-5
0
5

Random component of tested traffic

Time(s)A
m

p
li
tu

d
e

Figure 2.6: Traffic characteristic of tested traces

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0
1
2

Alarm series of DA technique

Time(s)A
m

p
li
tu

d
e

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0
1
2

Alarm series of CUSUM technique

Time(s)A
m

p
li
tu

d
e

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0
1
2

Overall alarm series

Time(s)A
m

p
li
tu

d
e

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0
1
2

Ground truth

Time(s)A
m

p
li
tu

d
e

Figure 2.7: Detection result compared with ground truth

33

be observed from the trend component, and it provides the basis for the DA technique to detect

its high internal correlation. Concerning the random component, those outbursts, which indicates

general DDoS attack stream, can be quickly detected by the improved CUSUM technique.

Fig. 2.7 shows the detection result of experiments. We use alarm series to represent our

detecting result, which value is equal to 1 when an attack is detected and otherwise 0. From the

Fig. 2.7, nearly all the SIDA can be detected in a very early stage. The average of the detection

latency for those SIDAs in our experiment is around 32 seconds, which is very small when com-

pared with the 900 seconds whole period of SIDA. Compare with the ground truth series, the best

overall FPR in our experiment is around 4.3% and the overall FNR is around 9.8%. However,

the better performance of the accuracy depends on an improved combination of those parameter

values, which is still our ongoing work.

2.6 Conclusion

In this chapter, we introduce a new type of DDoS attacks called stealthy DDoS attacks, which can

be launched by a sophisticated attacker. Such attacks are different from traditional DDoS attacks

and cannot be easily detected by traditional detection methods. For this type of DDoS attacks,

we propose a detection approach based on the decomposition of time series, which divides the

time series into trend and steady random components. We then analyze different components to

detect the anomaly in both long-term and short-term changes of the traffic. By analyzing each

component separately and evaluating results synthetically, the approach can greatly reduce both

false negatives and false positives. Furthermore, to make our method more generally applicable,

34

we apply the adaptive sliding window to our approach. The experimental results using real Internet

traces show the effectiveness of this approach.

The detection scheme developed can be used in the local detection module to detect the

attacks at an early stage. In fact, it can be used to decide when to trigger the defense modules in

the system in order to reduce the filtering overhead.

35

CHAPTER THREE

TRUSTGUARD: A FLOW-LEVEL REPUTATION-BASED DDOS DEFENSE SYSTEM

3.1 Motivation of this work

Although we are able to detect when the stealthy DDoS attacks occur in the previous work, we

still have no idea where the attack happens. In order to throttle the malicious traffic, we have to

know, at least estimate, the malicious flows and perform packet filtering on those suspicious flows.

Aimed at this goal, we further developed the TrustGuard in this chapter to identify which flows

belong to attacks.

3.2 Related works

Recently, a series of credit-model based frameworks have been proposed to defense the DDoS

attacks. Since such kind of defense scheme usually requires little prior configuration and can auto-

matically adapt to various network conditions, this direction does attract attention from researchers.

Jun and his colleagues [42] introduce a message rate controlling model (MRCM) in their credit-

based framework to defense against DDoS for P2P streaming system. It is essentially a network-

wide solution since this scheme requires the cooperation of the nodes inside this system, which

render this scheme expensive for the practical deployment. Jayashree and his group [43] propose

a trust-based traffic monitoring approach for preventing DDoS attacks. Again, their framework

requires the interaction among the peer nodes in the network. Furthermore, attackers can defeat

36

their system by overwhelming the legitimate traffic since their credit accumulation is based on

clustering.

Among those previous trust-based frameworks for countering the DDoS attacks, the most

similar scheme compared with our proposed system is presented by Natu and Mirkovic [44]. They

propose a credit-based ticket-granting system which is deployed in the victim server. However,

that framework still suffers from several deficiencies that can make it vulnerable in practice, which

are addressed in this work. Firstly, since their system is deployed at the victim server, it may

not be able to protect legitimate access to the server, because the ingress link to the server can

be congested by high-volume attack. Secondly, their credit calculation scheme is based on the

feedback of the server traffic conditions, which can usually counteract the goal of defense that to

make the reaction before the damage. Moreover, since the initial credit is equally assigned to each

client, attackers can easily launch attacks to defeat this scheme by using a huge number of one-off

clients or random address spoofing. Finally, ticket-granting mechanism is adopted in their scheme

by hash-based integrity checks, which can make the entire system failed if the secret hash method

is exposed.

3.3 Credit-based DDoS defense scheme

In this work [45], we firstly provide an understanding of the existing DDoS attack pattern by

analyzing recent Internet DDoS attack traffic and then point out the drawbacks of existing defense

schemes. To combat these deficiencies, we propose a credit-based defense system: TrustGuard.

Essentially, flows accumulate credit based on the diversity of their packet-size distribution. The

37

more diverse the flow, the more credit it has. Since DDoS attacks demonstrate low diversity they

accumulate less credit and are likely to be dropped by the system. Naturally, the performance

of TrustGuard greatly depends on the choice of credit accumulation and flow selection methods.

We derive our solution by identifying the essential characteristics of DDoS attacks. Our analysis

accounts for both micro and macro behaviors of DDoS attacks. The primary goal of this work is

to not only detect the occurrence of a DDoS attack, but to also identify the attackers and victims

involved. Experimental results demonstrate that TrustGuard performs admirably in both cases.

The novel features of our system are: (1) It is a light-weight and automated scheme ex-

ecuted in real-time manner and can be easily applied to the practical deployment without many

configurations. (2) Fine-grained flow filtering capability can be provided by our scheme, which

will be useful for the generation of new rule sets for the current intrusion detection system. (3)

Compared with the previous filtering scheme based on the nominal traffic profile, our scheme can

be more active to fight against the DDoS attack without building any traffic profile in advance. (4)

The combination of the macro and micro level credit accumulation can provide the guarantee that

our system can defend against DDoS attacks from both spoofed and true address.

3.3.1 DDoS Pattern Analysis

We evaluated recent Internet traffic traces from the Cooperative Association for Internet Data Anal-

ysis (CAIDA) [46, 47]. We derived normal Internet traffic from “The CAIDA Anonymized 2008

Internet Traces Dataset” (CAITD) and DDoS traffic from the “CAIDA DDoS Attack 2007 Dataset”

(CDAD). The CDAD traces only contain attack traffic to the victims and any responses to that traf-

fic. All traffic in the CAITD was collected from both directions of an OC-192 Internet backbone

38

link by CAIDA’s equinix-chicago monitor. Both of these two traces were anonymized with the

same key and the payload has been removed from all the packets for privacy reasons.

The primary goal in this section is to find those essential features of DDoS attacks which

can provide critical indicators to facilitate building a more reliable and robust credit-model. We

extract the key features of the DDoS attacks for both the macro and micro-levels of the traffic pat-

terns. The terminology “macro-level” feature means those globally distinguishable traffic patterns

when a DDoS attack occurs while “micro-level” represents those anomaly patterns that usually

require the inspection of each individual flow. We define a flow below.

Definition 3. A flow fi is a 2-tuple {sipi, dipi}, where sipi represents source IP address, dipi

destination IP address, for a uni-directional flow.

The combination of the observations from both the macro and micro-level offers two ben-

efits: (i) Macro traffic features concentrate singly undetectable events into a global event that can

make detection easier and faster without the need for deep inspection of each flow. (ii) Macro traffic

features alone cannot provide a high-level of granularity in filtering. Thus, combining macro-level

features with the micro-level flow characteristics allows for greater refinement in filtering.

3.3.2 Macro-Level Anomaly Analysis

A number of features of DDoS traffic have been proposed as strong indicators of attack. These

elements include: entropies of the individual components of the flow five-tuple (SIP, DIP, SPORT,

DPORT, Protocol) [48], flow symmetry features [15], packet sizes [49], packet-to-flow ratio [50]

and the ratio of SYN to SYN/ACK [51]. Our first step is to find the most descriptive features of

39

both spoofed and true IP DDoS attacks amongst all these candidates. In order to induce a better

indicator for macro-level DDoS patterns, several features of DDoS are discussed.

[50] points out that DDoS attacks can engender an abrupt disproportion between the num-

ber of received packets and the number of IP flows. A DDoS attack from a series of zombies will

have a finite number of instigating flows (i.e. the number of zombies). Thus, the ratio of packets to

flow will be quite large. However, if the attacker employs spoofed IPs, then the potential range of

attack addresses approaches several billion which can potentially mean many flows of few packets

creating a relatively low ratio between packets and flow.

This makes sense if we consider true IP DDoS attacks where the attacker is causing many

zombies to saturate a victim’s resources. However, it is not necessarily the case when we consider

the spoofed IP DDoS attack scenario. Since the source IP address of each packet can be randomly

chosen from a large address pool, it can result in a large amount of single-packet flows in the traffic

which can still maintain the proportion feature between the packet number and the flow number.

Some researchers [15,52] try to measure the flow-level symmetry and utilize it as the basis

for their detection schemes. Such a scheme is only suitable for spoofed IP attacks and requires the

deployment of a detector near the source which may not be feasible in practice since little incentive

exists for the source Autonomous System (AS) to protect a victim located in a different AS. Some

DDoS attack traffic, generated by reflectors or zombies for example, is hard to distinguish in terms

of the flow-level symmetry property as it is well-formed traffic. Our preliminary inspection of both

CAIDA traces indicates that normal flows and malicious flows show approximate equality in the

flow symmetry feature.

40

Entropy is a well-known metric for measuring the degree of randomness given a distribu-

tion. This property can be utilized for detecting a DDoS attack because DDoS traffic always comes

from multiple sources and aggregate at one or a few destinations. Thus, when a DDoS attack oc-

curs, the entropy of the source IP will become larger while the entropy of the destination IP will

shrink. However, we are not going to adopt the previous entropy definitions [48] in our scheme.

The main reason is that those entropy definitions usually reflect higher-level anomalies which are

hard to pinpoint. In our system, the macro-level anomaly indicator should support pinpointing

victim addresses, in order to facilitate the explicit identification of the misbehaving flows.

Mao et al. [49] indicate that 83% of attacks purely consist of small packets (usually less

than 100 Bytes). Our inspection of the CDAD trace also shows a similar result. Fig. 3.1 illustrates

an example of the packet size distribution by evaluating a single 5-minute interval of traffic from

the CDAD trace compared with the trace with the same period of normal one shown in Fig. 3.2.

The distributions are both plotted as histograms according to the packet size. The data in the

CAIDA traces demonstrated packets between 0 and 1600 Bytes. Thus we divided the total space

into 16 equal intervals. The order of the interval that a given packet size falls in denotes the size

of the packet. We can see that, for each specific protocol, the distribution of attack packet size

is highly concentrated in level-1, which denotes a packet size less than 100 Bytes. Over 99% of

attack packets from TCP and ICMP traffic, and 90% of UDP, fall in level-1.

We argue that DDoS attack traffic tends to see smaller payloads for several reasons. First,

the packet processing rate, rather than bandwidth, is the typical bottleneck for network devices.

Thus, it is a better strategy for an attacker to send small packets as rapidly as possible to overload

41

0 5 10 15
10

0

10
2

10
4

10
6

10
8

10
10

Packet size level

#
 o

f
p

a
c
k
e
ts

(a) TCP

0 5 10 15
10

0

10
1

10
2

Packet size level

#
 o

f
p

a
c
k
e
ts

(b) UDP

0 5 10 15
10

0

10
2

10
4

10
6

10
8

10
10

Packet size level

#
 o

f
p

a
c
k
e
ts

(c) ICMP

0 5 10 15
10

0

10
2

10
4

10
6

10
8

10
10

Packet size level

#
 o

f
p

a
c
k
e
ts

(d) Overall

Figure 3.1: Packet size distribution of DDoS traffic over different protocols.

the victim’s CPU and memory. Moreover, low-volume attack traffic by utilizing small packets

can help to hide the attack behavior to circumvent volume-based IDS. Finally, attack packets

originating from different sources are usually produced by the same, or at least a similar, program

which leads to packet distributions that are largely deterministic. For example, the IRC robot is a

popular choice for attackers and all traffic generated from that software will demonstrate similar

patterns.

There is the possibility that some applications will have a high probability that most of the

packets involved are smaller than 100 Bytes. In order to better target the anomaly detection, we

42

0 5 10 15
10

0

10
2

10
4

10
6

10
8

10
10

Packet size level

#
 o

f
p

a
c
k
e
ts

(a) TCP

0 5 10 15
10

0

10
2

10
4

10
6

10
8

10
10

Packet size level

#
 o

f
p

a
c
k
e
ts

(b) UDP

0 5 10 15
10

0

10
2

10
4

10
6

Packet size level

#
 o

f
p

a
c
k
e
ts

(c) ICMP

0 5 10 15
10

0

10
2

10
4

10
6

10
8

10
10

Packet size level

#
 o

f
p

a
c
k
e
ts

(d) Overall

Figure 3.2: Packet size distribution of Internet traffic over different protocols.

redefine the packet size-level scheme, as shown in Table 3.1, to further reflect the distribution of

packet sizes at the lower levels.

Table 3.1: Definition of our packet size level scheme
Size level 1 2 3 4 5

Range(Bytes) 40–60 60–80 80–100 100–120 120–200
Size level 6 7 8 9 10

Range(Bytes) 200–400 400–600 600–800800–10001000–1200
Size level 11 12

Range(Bytes)1200–14001400–1600

43

Based on the above observation, we define the macro-level anomaly indicator H(A) for a

destination address A.

H(A) = −
√
imax ·

12∑
i=1

p(xi) log2 p(xi) (1 ≤ i ≤ 12) (3.1)

Where xi means the ith packet size-level, p(xi) represents the probability that a packet possess a

size that falls in the ith level and imax is the packet size-level where most packets fall for one specific

address A. Thus, the greater concentration of packet sizes at the lower size levels, the smaller the

H(A) value is, which translates to a higher probability that the victim A is under DDoS attack.

Although there might be other properties among different flows targeted at the same victim,

utilizing the packet size distribution is sufficient for our detection goals.

3.3.3 Micro-Level Anomaly Analysis

Once we can identify victims based on H(A), the next question is how to distinguish malicious

flows from the normal flows. We call the factors that can help to indicate an anomalous flow

as micro-level anomaly indicators. One micro-level indicator would be to simply build an H(·)

function for each flow. However, this is not a light-weight solution since it would require significant

resources as the number of flows increase. This could cause the system to become a bottleneck

and reduce its value.

Without considering the subsequent behavior of flows, it is difficult, if not impossible, to tell

whether an isolated packet is malicious or not. It is difficult to determine whether an isolated packet

is malicious or not without referring to some global information. We term “malicious” to mean that

44

a packet contributes to a DDoS flow. We are motivated by the fact that most packets in attack flows

will share a similar distribution of packet sizes at the macro-level. Based on this observation, the

information imax we obtained in the macro-level phase can be utilized to construct a light-weight

flow level indicator at the micro-level phase. Here, we can apply a credit-based accumulation

method for building the reputation of each flow targeting a particular victim. Suppose the credit is

a number that ranges from LOW to HIGH and a new flow is assigned a credit value of LOW . We

denote fA as a specific flow which is destined to address A. Thus, whenever there is a packet that

belongs to flow fA, the micro-level reputation of such flow can be calculated as:

CreditnewfA
= min(CreditoldfA

+ α(1− e−|i−imax|),HIGH) (3.2)

Where α is the credit increase factor, i represents the packet size-level of the incoming packet and

imax can be obtained from the macro-level detection phase. Since the packet size distribution of

attack flows is highly correlated, their flow credits will keep constant or continue growing at a very

slow pace. As discussed earlier, small packets are advantageous to attackers when instigating an

attack. Thus, it is not necessarily a good strategy for an attacker to implement diverse packet sizes

in their attacks. Given this we believe our accumulation scheme should maintain its effectiveness

well into the future.

In contrast, normal flows will build their credit rapidly. Large flows of small packets are

advantageous to attackers and changing strategy to create DDoS with different packet size distribu-

tions is not necessarily productive for the attacker. For example, if an attacker creates a DDoS with

a diverse packet distribution then this will undoubtedly offset the efficiency of an attack as well

45

as its ability to avoid detection. Given this state our current credit accumulation scheme should

maintain its effectiveness well into the future.

Other micro-level features of DDoS attacks can also be adopted into our system for build-

ing the reputation of flows. For example, as pointed out in the study [49], the fact that all packets

in one TCP flow have only a single flag (such as SYN, RST, ACK in most cases) can be consid-

ered a strong indication of DDoS attacks. Obviously, more characteristics involved in the defense

system can provide more accurate filtering. However, since our packet size based credit scheme

is sufficient to filter the current DDoS attack flows, which will be shown in our experiments later,

we are not going to adopt those additional features of DDoS attacks in order to reduce the system

complexity.

3.4 System Description

Incoming

traffic
Traffic profile

construction

Legitimate flows database

Rule sets update

Outgoing

traffic

TrustGuard

Macro-level

anomaly detector

Micro-level

credit accumulation
Anomaly?

Probabilistic

drop filter

Y

Figure 3.3: Overview of system architecture

In this section, we detail the architecture and function of our system. Fig. 3.3 illustrates

the overall architecture of our defense scheme. Our system contains four main modules, namely,

46

Traffic Profile Construction (TPC), Macro-level Anomaly Detector (MAD), Micro-level Credit Ac-

cumulation (MCA), and Probabilistic Drop Filter (PDF), which are described, in detail, as follows.

3.4.1 Traffic Profile Construction

The main function of the TPC module is to build the current traffic profile. A hash table with a

linked list can be adopted in this module for statistical accumulation. For a given packet, we use

the corresponding destination IP of that packet as the key in the hash table. Fig. 3.4 demonstrates

the typical entries in the hash table.

IP A pacSizePtr

nextPtr

· ·

IP B pacSizePtr

nextPtr

·
·

·

·

Size Level 1

Size Level 2

Size Level 3

Size Level 12

·

Figure 3.4: Data structure for building the traffic profile.

Besides the IP address used as the key for one entry, it also contains pacSizeP tr which is

a pointer to an array with 12 elements, each of which maintains the number of packets that fall into

the corresponding level as described in Table 3.1. The traffic profile is refreshed and built every

time period Tmacro in order to minimize memory consumption. That is to say, the hash table only

maintains those statistics during a period Tmacro.

47

3.4.2 Macro-level Anomaly Detector

In our scheme, the MAD module runs in an independent thread. It periodically scans the traffic

profile built by the TPC module and will activate the MCA module whenever there is an anomaly

event detected. To be more specific, it will report suspected victims to the MCA module for

further flow-level filtering. The macro-level anomaly indicator can be utilized as the criterion for

determining suspected victims. Simply, a given address A can be treated as a suspected victim

whenever the following condition is satisfied.

H(A) < THH (3.3)

Where THH is a pre-defined threshold that can be determined according to the practical environ-

ment.

3.4.3 Micro-level Credit Accumulation

The MCA module is only active when there is an anomaly detected by the MAD module. Those

flows related to a suspected victim will be examined by the MCA module. It keeps building the

credit for each flow according to equation 3.2. The flows are maintained in another hash table,

each entry of which contains a 2-tuple IP pair as the key, the time stamp of the corresponding

new packet, and the credit value accumulated. In addition to the credit accumulation based on

equation 3.2, we evenly divide the overall credit range [LOW ,HIGH] into n scales. Flows in

higher scales should be legitimate traffic while those in the lower scales are potentially malicious.

All the flows are initially set to be in the lowest scale. In order to reduce the memory consumption,

48

whenever the difference between the current time and the time stamp of one flow is larger than

Texp, then the corresponding entry will be removed during a periodic scan of the hash table.

3.4.4 Probabilistic Drop Filter

A probabilistic drop scheme is adopted in our system, and only those packets targeting suspected

victims will be filtered by the PDF module. For a specific flow, the flow’s credit falls into the kth

interval as per:[
LOW + k · HIGH−LOW

n
,LOW + (k + 1) · HIGH−LOW

n

]
. The probability that a packet belonging

to that flow will be dropped as determined by: e−βk, where 0 ≤ k ≤ n−1 and β is the probabilistic

drop factor. Thus, flows with a low-level k will demonstrate a high probability of drop while flows

with intermediate or high-level k will see limited drop.

3.4.5 Space Requirement

The primary space requirement for the system is due to the hash tables employed in the TPC

and MCA modules. Let NUM ip denote the number of distinct IP addresses during the hash table

construction period Tmacro. For each victim identified we must further maintain an additional hash

table. Denote NUM flow the average number of flows that are associated with the suspected victims

detected by the MAD module. Let Lip represent the length (in bytes) of each record in the TPC

hash table and Lflow denote the same in the MCA hash table. Thus, the total memory requirement

is NUM ip · Lip + NUM flow · Lflow. One additional benefit by adopting the hash table is that the

construction time of both the macro-level traffic profile and the micro-level credit is quite small.

49

3.5 Evaluation

In this section, we evaluate the performance of the proposed TrustGuard scheme via simulation.

As we pointed out earlier, previous defense systems cannot efficiently tackle both the true IP and

spoofed IP DDoS attacks. We synthetically generate traffic that can be launched from true IP

addresses to evaluate our system defense against both the true and spoofed IP attacks. In order not

to inject bias into our experiments, the existing Internet traces CAITD and CDAD will be utilized

as much as possible and synthetically generated traffic is only employed when necessary. We

chose uni-directional traffic for a 10-minute time period from the CAITD trace as our background

traffic. The choice of a 10-minute interval stemmed from the fact that the CAITD has an average

rate of 617594 packets per second making larger evaluations resource prohibitive. We further used

only uni-directional traffic from the CDAD attack traffic in order to maintain a fair test. This

traffic maintained an average rate of 79202 packets per second. Most of the traffic in the CDAD

contains a single packet per flow and thus this data provided the model for spoofed IP DDoS

attacks. The most significant difference we have observed between spoofed IP and true IP DDoS

attacks is in the number of packets per flow. We synthetically generate true IP traffic traces in the

following manner: (i) The average rate is 60000 packets per second. (ii) The source IP addresses

are randomly selected from 1000 pre-defined source IP addresses. Thus, the resultant traffic will,

on average, contain 60000 packets with roughly 60 packets per unique source IP. (iii) Finally, we

randomly choose packet sizes to be between 40 to 50 Bytes. We set Tmacro = 1s.

50

3.5.1 Macro-level Detection Performance

Accurate detection of suspected victims directly affects the accuracy of our approach overall as

non-victims are not investigated. We inject attack traffic into the CAITD traffic in order to evaluate

the detection accuracy of the MAD module. A 60 second segment of the CDAD trace is injected

into the CAITD traffic at an offset of 100 seconds. Further, we synthetically generated 60 seconds

of true IP DDoS attack traffic, as explained above, and insert that into the CAITD traffic at an

offset of 300 seconds. Fig. 3.5 illustrates the experimental results. The minimal H series contain

0 50 100 150 200 250 300 350 400 450 500 550 600
4

5

6
x 10

8

Time(s)

V
o

lu
m

e
(B

y
te

)

0 50 100 150 200 250 300 350 400 450 500 550 600
0

0.2

0.4

Time(s)

M
in

im
a
l
H

s
e
ri

e
s

0 50 100 150 200 250 300 350 400 450 500 550 600
0

5
x 10

9

Time(s)

IP
 w

it
h

M

in
im

a
l
H

Figure 3.5: Evaluation of MAD performance.

the minimal H value amongst all the destination IP addresses for one sampling period. The IP

with minimal H identifies the IP address with the lowest score for a sampling period. We can

see that either the spoofed IP attack or true IP attack can result in significantly smaller values

of H, which make it easy for the defense system to determine a threshold THH for detection.

Furthermore, since those destination IP addresses can be pinpointed based on the threshold THH ,

51

the countermeasures we take later can be targeted to defend the suspected victims.

The Receiver Operating Characteristic (ROC) curve of our method are depicted in Fig. 3.6(a).

For a false positive rate of 1%, our system can correctly identifies over 97.68% DDoS attacks.

We also sought to determine the sensitivity of our approach to varying intensities of DDoS

traffic. The attack traces are thinned by a thinning factor N such that we select 1 out of every N

packets from the original attack traffic and otherwise repeat the above experiments. We chose a

threshold, THH , of 0.1 based on the results from Fig. 3.6(a) where 0.1 marks the typical lowest

level of benign traffic as well as the highest level of those malicious. We define the Detection

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive ratio

T
ru

e
 p

o
s
it

iv
e
 r

a
ti

o

(a) ROC curve

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Thinning factor

D
e
te

c
ti

o
n

 a
c
c
u

ra
c
y
 (

%
)

True IP attack

Spoofed IP attack

(b) Sensitivity

Figure 3.6: Evaluation of detection performance.

Accuracy Ratio (DAR) as:

DAR = 1− (FP + FN) (3.4)

Where FP denotes the False Positive ratio and the FN means the False Negative ratio. Fig. 3.6(b)

shows the experimental results. When the thinning factor is less than 10, the MAD module per-

52

forms well and can achieve over 95% DAR in both true and spoofed IP attack cases. When the

thinning factor is larger than 100, which means the average rate per second of attack traffic is

smaller than 0.1% of the background traffic, the detection performance rapidly degrades.

3.5.2 Micro-Level Filtering Performance

We also evaluate the micro-level filtering performance of our system. We define two metrics

called the Legitimate Survival Ratio (LSR) and the Malicious Survival Ratio (MSR) to measure

the performance, which are defined as follows.

LSR =

NUM passNormal

NUM totalNormal

MSR =
NUM passAnomaly

NUM totalAnomaly

(3.5)

Where NUM passNormal and NUM passAnomaly are the number of legitimate and anomalous packets

that successfully passed through the system (i.e. not dropped) and NUM totalNormal and NUM totalAnomaly

are the total number of legitimate and anomalous packets. To evaluate the flow-level filtering per-

formance, we chose a set of legitimate flows that are associated with a single destination from

the CAITD trace and then change that destination to one that is under DDoS attack in the CDAD

trace. After that, we combine the modified trace with the CDAD trace and evaluate it. The default

settings for the parameters we adopted here were Texp = 10min, LOW = 0, HIGH = 5, α = 2,

β = 1 and n = 5. Fig. 3.7 shows the experimental results. We can see that most normal packets

(over 98%) pass through our system unmolested, while most malicious flows are filtered by our

system due to the low credit they accumulate. All the first packets of flows associated with a sus-

pected victim detected by the MAD module will be dropped during the initial phase. However, as

53

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Time(s)

P
e
rc

e
n

t
(%

)

LSR

MSR

Figure 3.7: Evaluation of micro-level filtering

flows begin to move data then they have a greatly reduced chance of drop. Further, since the MAD

module targets only flows impacting suspected victims then most traffic encountered is ignored by

our system.

3.6 Conclusion

In this chapter, we present TrustGuard to counter the threat of DDoS attack. Our approach employs

a two-tier model to reduce the size of the search space and make identification of specific attackers

and victims possible. Our macro-level detector can accurately identify suspected victims and the

micro-level detector can then confirm and refine those suspicions. We believe that this approach

can accurately identify DDoS attacks down to the instigating flows and that this information can

be used to improve firewall and IDS rules.

54

CHAPTER FOUR

A SCALABLE DDOS DETECTION FRAMEWORK WITH VICTIM PINPOINT

CAPABILITY

4.1 Motivation of this work

Although TrushGuard was proposed to point out which flows belong to attacks, it cannot scale well

with the large amount of traffic since it requires maintaining per-flow state to accumulate credits

for each flow. In order to address this problem, we further proposed a sketch-based framework

to scale with the high-speed traffic while it still provides victim pinpoint capability. The victim

pinpoint capability is critical for react to the attacks at an early stage.

4.2 Related works

Over the past decades, many intrusion detection systems (IDSs) have been proposed to fight against

DDoS attacks. However, those existing schemes usually present a tradeoff between scalability and

accuracy. That is to say, finer grained traffic monitoring can ensure the accuracy of detection while

does not scale well. For example, two most popular open-source IDSs, Snort and Bro [53, 54],

keep per-flow state to detect anomalies, which makes both of them not scale well in a high-speed

network. Since the volume of the Internet traffic doubles every year, how to monitor a large amount

of traffic in real-time is becoming more crucial in anomaly detection. Although dimensionality

reduction proposed in [55,56] may be effective in dealing with such a large data, it usually requires

55

complex operations, and thus is impractical in real-time detection.

Recently, a series of sketch-based approaches have been proposed for anomaly detec-

tion [57–61]. Sketch [62] is a data structure to store a summary of a large data set for space

efficiency. Kompella et al. presented Partial Completion Filters (PCF) by utilizing multiple hash

tables for scalable attack detection in high-speed networks [57]. As we will see later, such scheme

is essentially an simplified version of the original sketch [62]. The main drawback of their scheme

is that it can only tell when an attack happens without providing any hint on where the anomaly

occurs; the latter is critical in mitigating the attack at an early stage. Identifying victims is al-

so useful in responding to attacks. For instance, an IDS can generate packet classification rules

automatically based on the victim information, so as to minimize future damage. In order to pro-

vide sketches with the capability that can tell those keys with heavy change, a reversible sketch

framework is proposed by [58, 59]. Such feature can be used to provide the victim pinpoint capa-

bility in DDoS detection. An improved reversible sketch is proposed by [60] in DDoS detection

context. They proposed a flooding attack detection method using a count-min sketch (CMS) with

multi-channel nonparametric CUSUM (MNP-CUSUM) [60]. The CUSUM [39] is a change-point

detection technique that can accumulate those small offsets during the process to amplify a varying

statistical feature so as to improve the detection sensitivity. Although their improved scheme can

detect flooding events effectively, it suffers from the following shortcomings which render it still

insufficient to detect general DDoS attacks effectively. First of all, their scheme only takes the high

frequency of packets in a flow as the evidence of an anomaly event. However, this feature of traffic

alone is not enough to detect an anomaly. For example, a Flash Crowd event, which is caused by a

56

large number of legitimate users simultaneously accessing the same server during historical events,

can also result in an outburst of the traffic. Their scheme will lead to a large false positive in such

a case. Moreover, their scheme suffers from the scalability problem. Because of the key recovery

issue in the original sketch scheme they exploited, their method has to record every incoming des-

tination IP (DIP) for the key recovery later, which makes it unscalable to a large amount of traffic

due to the huge memory consumption. Finally, it applies a multi-channel CUSUM algorithm to

every bucket in the sketch, which requires heavy computations in high speed networks. In [63], re-

searchers proposed a discrimination algorithm using the flow correlation coefficient to distinguish

flash crowd events from DDoS attacks, however, their method requires complex computing work

and introduces extra overhead which make the method unsuitable for real-time processing.

4.3 System Description

In this work [64,65], we propose a two-level approach for DDoS detection. We are motivated by the

fact that a typical DDoS attack traffic possesses three characteristics: high frequency of incoming

packets, asymmetry in interaction patterns, and high diversity of source IP (SIP) addresses. Our

modified count-min sketch (MCS), bidirectional count sketch (BCS), and distinct IP addresses

estimator are designed precisely for detecting these three characteristics. Although sketch is also

used in our work to achieve high scalability, the differences between the previous sketch-based

detection approaches and ours lie in the following ways:

Memory consumption Our scheme outperforms previous works in terms of the space require-

ment. By utilizing the two-level model, most of benign traffic information, which may be consid-

57

ered as a redundancy for IDS systems, does not need to be recorded in the system. Moreover, the

traditional key recovery process in sketch [59] requires sketches to record every input keys, which

will consume much space, especially when a large number of DIPs are involved in high-speed

networks. By taking advantage of the high diversity of source IP addresses feature, our approach

can reveal the victim set without recording every destination IPs as previous works do.

Searching time Our scheme also can achieve faster detection than previous sketch-based ap-

proaches in two aspects. Firstly, since most of traffic is benign, the adopted two-level scheme

can greatly reduce the search space while the sketch adopted in [60] processes different kinds of

traffic equally. Secondly, rather than applying CUSUM to multiple channels of each bucket in the

high frequency anomaly detection phase, we utilize a light-weight exponentially weighted mov-

ing average (EWMA) technique to achieve the same goal while introducing much less computing

overhead.

Accuracy By taking the asymmetry feature into accounts, our approach can greatly reduce the

false positives by distinguishing between Flash Crowds and DDoS attacks, and thus can improve

the overall accuracy.

4.3.1 Measurement on Real Traces

The effectiveness of our scheme is based on the assumption that a typical DDoS attack traffic

possesses three characteristics: high frequency of incoming packets, asymmetry in the interaction

patterns, and high diversity of source IP addresses.

58

Fig. 4.1 demonstrates the “asymmetry” in typical DDoS attacks for web services. We pay

attention to the fundamental difference in flow patterns between DDoS attacks and normal traffic.

In order to exhaust resources at the server side, an attacker (or more likely a large number of

“puppets” in his or her botnet) tries to generate as many requests as possible. When the number

of requests exceeds the capacity of the server, we observe fewer responses from the server than

requests it receives. We notice that it is not always true that an IP address will serve as both source

and destination of traffic, especially when the UDP or ICMP protocol is involved. Thus, in this

work we only refer to the TCP flooding attack by default. Let Nforward(i) denote the number of

flows from other nodes to a server i, and Nbackward(i) the number of those flows that originate from

the server i. By “flow,” we mean a group of packets with the same pair of source IP (SIP) and

destination IP (DIP) addresses. We do not consider the port information in the flow because we

only consider the node-level interactions in our scheme. We define the asymmetry index AI (i) =

|Nforward(i) − Nbackward(i)| for the server i. We expect that the server under a DDoS attack will

exhibit a higher AI value than the one experiencing no attack. For example, Fig. 4.1(a) shows

normal interactions between clients and a server, and AI (f) is 0. On the other hand, in an attack

scenario depicted in Fig. 4.1(b), AI (f) is 4.

In order to support the above assumption, we sought to evaluate a set of public traces.

We derived Internet traffic from Auckland University (AU) [66] and Washington State University

(WSU) as the normal traffic and the attack traffic from “The CAIDA DDoS Attack 2007 Dataset”

(CDAD) [46]. The traces are labeled AU-0, AU-1, WSU-0, WSU-1, CDAD-0, CDAD-1, where the

numbers with each label are corresponding to different time periods from each trace. The default

59

a

b

c

d

e

f

Source Destination

estination

(a) Normal

a

b

c

d

e

f

Source Destination

(b) Attack

Figure 4.1: Flow patterns of normal traffic and DDoS attacks

time interval for the measurements is 10 minutes. We firstly measure the average number of the

incoming packets per DIP in each trace for comparison. Fig. 4.2 shows the results. We notice

that in Fig. 4.2 the average numbers of the incoming packets per DIP of CDAD-0 and CDAD-

1 are both much larger than that of other traces (nearly 100 times larger). We also measure the

average number of flows per DIP and the average traffic volume per DIP over every trace, and

we get the similar results that the numbers measured from CDAD are much higher than that of

other traces. Thus, rather than using all the three metrics (packet, flow, volume), we only utilize

the high frequency feature of incoming packets as the anomaly indicator during the coarse-level

detection since these three metrics are highly correlated with each other in our measurement. We

notice that some attacks might not possess such correlations. For example, alpha flows [67] usually

result in high volume of traffic while only have a small number of flows per DIP or even low-rate

60

WSU-0 WSU-1 AU-0 AU-1 CDAD-0 CDAD-1

10
1

10
2

10
3

10
4

10
5

#
 o

f
p

a
c
k
e
ts

Figure 4.2: Average # of incoming packets per DIP

WSU-0 WSU-1 AU-0 AU-1 CDAD-0 CDAD-1

10
1

10
2

10
3

10
4

A
v
e
ra

g
e
 a

s
y
m

m
e
tr

y
 i
n

d
e
x

Figure 4.3: Average AI per DIP

DDoS attacks [68] can have low value of all the three metrics. In this work, we do not aim at the

development of a panacea, which is very hard if not impossible, for all kinds of attacks. Instead, we

only focus on the detection of the general flooding attack in high speed networks. Other types of

attacks need to be further filtered by extra works. Regarding the asymmetry features, we measure

the asymmetry index of DIPs of each traces, the result of which is shown in Fig. 4.3. We can see

that the AI value obtained from CDAD traces is greatly larger than that of other traces. Similar

results can be seen in Fig. 4.4 after we measure the number of distinct IPs that are associated with

each DIP in all the traces.

61

WSU-0 WSU-1 AU-0 AU-1 CDAD-0 CDAD-1
10

0

10
1

10
2

10
3

10
4

A
v
e
ra

g
e
 d

is
ti

n
c
t

#
 o

f
s
o

u
rc

e
 I
P

s

Figure 4.4: Average distinct # of source IPs

1h

2h

H
h

1 ()h k

2 ()h k

()
H
h k

·

·

·

1 2 K· · ·

(,)k v

h

h

h

1 2 K· · ·

·

Figure 4.5: Illustration of sketch data structure

4.3.2 Data Structure

K-ary sketch is a data structure to efficiently and accurately estimate the original signals by aggre-

gating high dimensional data streams into fewer dimensions. As shown in Fig. 4.5, it consists of H

hash tables of size K. A hash function for each row is selected independently and randomly from

a set of hash functions. Each data item contains a key ki and an associated value vi. When a new

item si = (ki, vi) arrives, its value vi is added to those buckets corresponding to the key ki. The

CMS Query(key) function can return the minimum value among all the buckets corresponding to

62

a specific key. In case of hash collisions, the colliding keys will be listed in the bucket for the key

recovery purpose later. The key recovery process [59] can reveal those keys with high frequency in

the sketch by looking into the intersection set of high value buckets across the whole sketch. The

recovery process is crucial in tracking victims, which will greatly benefit in responding to attacks.

Our proposed approach makes two important changes to this original sketch structure: modified

count-min sketch (MCS) and bidirectional count sketch (BCS), which will be introduced in the

next section.

4.3.3 System Architecture

Coarse level

detection

Fine level

detection

Anomaly

with key?
Anomaly?

Y

N

N

Y

Generate alarms and the

victim set

Input key

streaming

Output

streaming

Figure 4.6: High-level view of detection process

The overall framework of our detection system is shown in Fig. 4.6. During each detection

period, the related information of every incoming packet is inserted into MCS for the coarse-level

detection. We use DIP as the key, and the number of packets that are destined for that IP address

as the associated value. MCS only maintains counters for input IP addresses. Compared with the

original CMS structure, our MCS structure utilizes space more efficiently because no information

on IP addresses themselves is stored in this structure. Besides, unlike CMS, MCS does not rely

on CUSUM; MCS is used only for coarse-grained filtering and a light-weight EWMA technique is

applied to each bucket to determine whether to generate an alarm for this bucket or not. Whenever

63

an incoming packet satisfies the condition that every bucket it hashed into has an alarm signal, it

will trigger the second stage for finer-grained detection, where a new structure called BCS is used.

In BCS, those suspicious flows detected in the coarse-level detection in both directions

are mapped into buckets. While the general sketch structure in which a value in each bucket can

increase only, a bucket value in BCS may increase or decrease. We will demonstrate how we apply

BCS to exploiting the asymmetry of the attack traffic the following sections. Once an attack is

detected, we use a light-weight distinct IP addresses estimator to pinpoint victims that have the

most number of distinct sources, which is a strong indication of DDoS attacks.

4.4 Scheme Design and Implementation

In this section, we describe the detection processes of both coarse and fine level in details and then

explain how the proposed distinct sources estimator works and why it can help to indicate DDoS

attacks. Finally, a SRAM-based parallel architecture is proposed to achieve high-speed process.

4.4.1 Coarse-level Detection

In our scheme, each bucket in the MCS contains four values (vt, vt−∆t, vbackup,Flag). vt is the

number of packets that are accumulated from t − ∆t to t, vt−∆t is the previous value of vt, and

vbackup is the value of vt right before the alarm occurs (or null if there has been no alarm). Flag

is set to 1 whenever the alarm condition is satisfied; otherwise it is set to 0. Here, the definition

of alarm conditions depends on the practical deployment, and we will further explain it when we

describe Algorithm 1 below. For each incoming record, we update the sketch with (ki, 1) where ki

is the DIP and 1 represents the number of this incoming record. In our MCS, rather than returning

64

the minimum value of vt as the original sketch does, the CMS Query function in MCS returns the

minimum value of Flag among all the buckets corresponding to a specific DIP to indicate whether

it is under flood attacks. As we can see, the sketch adopted here only requires O(H × K) cells,

which is constant.

The main purpose of MCS is to detect items with abnormal frequency at the coarse level.

It is the first stage in the system, which every packet must go through. When a new packet arrives,

hash values of H hash functions are computed, and the corresponding buckets are updated; the

value in each bucket is incremented by 1. This accumulation process repeats every ∆t seconds.

The alarm condition is tested for all H×K buckets periodically. If the alarm condition is satisfied,

then the alarm flag associated with the bucket is set to 1. Whenever there is an alarm, the previous v

value of the bucket is recorded in the vbackup for determining whether the raised alarm is terminated

or not.

We use an EWMA technique to decide whether there is an anomaly in each bucket, as

shown in Algorithm 1. For each bucket, if the bucket status is normal, then we estimate vt with

an EWMA parameter α. Whenever vt ≥ (1 + θ)vt−∆t, which is considered as the satisfaction of

the alarm condition, an alarm is raised. θ is the parameter that represents the percentage above the

estimated value that can be considered to be an indication of anomalous pattern. The procedure

is different after an alarm was raised. In order to estimate when the generated alarm should be

terminated, we need to compare the current value with the specific value right before the time that

the alarm happened. Such specific value is recorded in vbackup before the alarm is generated. Also,

rather than using the previous value vt−∆t, we estimate the vt by vbackup in order to eliminate the

65

Algorithm 1: Adjustment procedure of Flag

1 for k = 1, h = 1 to K,H do
2 if Flag = 0 then
3 vt ← (1− α)vt−∆t + αvt ;
4 if vt ≥ (1 + θ)vt−∆t then
5 Flag ← 1 ;
6 vbackup ← vt−∆t ;
7 end
8 else
9 vt ← (1− α)vbackup + αvt ;

10 if vt < (1 + θ)vbackup then
11 Flag ← 0 ;
12 end
13 end
14 end

impact of the anomaly on the next following vt series.

We can do the coarse-level detection by querying the minimal value of alarm flag for a

specific key. If CMS Query(key) = 1, then there may be an anomaly associated with the key.

However, the coarse-level detection would yield a certain number of false positives. There are two

possible reasons for false positives. The first possibility is hash collisions, which can be reduced

by carefully selecting hash functions or enlarging the size of the sketch. The second possibility is

flash crowds. They can also yield many items with high frequencies in the sketch. Thus, we need

to examine traffic further to separate these possibilities from true attacks, which is the goal of our

next technique, BCS, which detects anomalies at the finer level.

66

Algorithm 2: BCS update procedure in the forward direction

1 for h = 1 to H do
2 k ← BCS[h].hash(DIP) ;
3 if DIP is not in BCS[h][k].list then
4 insert DIP into BCS[h][k].list ;
5 update BCS[h].BF by DIP |SIP ;
6 BCS[h][k].counter ++ ;
7 else
8 if DIP |SIP is not in BCS[h].BF then
9 update BCS[h].BF by DIP |SIP ;

10 BCS[h][k].counter ++ ;
11 end
12 end
13 DistinctSourcesEstimator(SIP) ;
14 end

4.4.2 Fine-level Detection

The objective of the fine-level detection is to find out those DIPs exhibiting high asymmetric com-

munication patterns. A successful DDoS attack employs a large number of zombies to exhaust

resources of the target side. However, they are usually unaware of the exact capacity of the server.

Therefore, to guarantee to overwhelm the server, an attacker sends as much traffic as allowed, ex-

ceeding the server’s capacity. This results in highly asymmetric communication patterns between

clients and the server, as shown in Fig. 4.1(b). There are two reasons for such an asymmetry pat-

tern. First, the capacity of the server, namely the victim, to respond is limited while the attacker

can keep launching new connections. Second, the SIP addresses of attack traffic are forged, and

thus the server has to abort communications. During some time interval ∆T , for a specific IP

address, we can detect whether this address serves as both source and destination or not. If yes,

67

1
h

2
h

H
h

·

·

·

1 2 K· · ·

Bloom filter 1

Bloom filter 2

Bloom filter H

·

·

·

DIP 1

Counter

DIP 2 DIP 3 DIP 4

Bucket
DIP

max

min

DistNum

Figure 4.7: Illustration of BCS data structure

then the corresponding flow (the source and destination IP pair containing this IP address) can

be considered as a normal flow. Motivated by this observation, we propose the BCS structure to

monitor such kind of anomaly with fine granularity.

During one time interval, we use DIP as the key in updating the BCS structure. An illustra-

tion of BCS sketch is shown in Fig. 4.7. All the keys with hash collisions will be stored as a list in

the corresponding bucket. Rather than incrementing corresponding H counters by 1 every time a

new packet arrives, the counters increase only when the DIP belongs to a new flow. For example,

a flow (si, di), where si denotes the SIP address of node i and di is the DIP address of node i,

will contribute to the corresponding H buckets only once during a single period. On the other

hand, (sj, di), which is another flow with the same destination di, will contribute another 1 to the

buckets that the key di is hashed into. Since we do not need to record SIP addresses in the sketch,

we employ H bloom filters (BF) with m bits and kbf hash functions as an ancillary structure to

68

estimate whether a specific flow that new packets belong to has been inserted to the BCS structure

or not. Algorithm 2 presents the details of how BCS works on the forward direction of traffic. We

use | as the string concatenation operator.

Algorithm 3: BCS update procedure of the backward direction

1 for h = 1 to H do
2 k ← BCS[h].hash(SIP) ;
3 if SIP is in BCS[h][k].list then
4 if SIP |DIP is in BCS[h].BF then
5 BCS[h][k].counter −− ;
6 end
7 end
8 end

The procedure for the backward traffic is shown in Algorithm 3. Whenever we find a back-

ward flow that can be paired with an existing forward flow in the BCS structure, the corresponding

counter decreases. In this way, the counters with anomalous high values indicate an anomaly event

caused by asymmetric communication patterns for a specific victim.

4.4.3 Distinct Sources Estimator

In order to avoid being detected, attackers may employ a large number of SIP addresses. In such

cases, those DIPs that are associated with the largest distinct SIP addresses should be a good

candidate for a victim under attack. Thus, how to find the number of distinct SIPs for a victim is

crucial in the DDoS defense. Without recording the SIP addresses in the system, which requires

too much memory, we need to find a way to estimate this number. For each DIP that is hashed

into BCS, we pick a hash function h : N → [0, 1] which maps every number into [0, 1], and then

69

we apply h(·) to all the SIP addresses that are associated with this DIP, and maintains the maximal

value max and minimal value min, and then the number of distinct IP addresses, DistNum , can

be estimated as 1
2
·
(

1
min

+ 1
1−max

)
. If the hash function that we choose is sufficiently random, then

the above formula is a sufficiently good estimator for our purpose. In this way, each DIP which

has been hashed into the BCS will be associated with a number: DistNum . For a specific DIP,

this number DistNum can be used as an indicator on how diverse the corresponding SIPs are.

4.4.4 Victims Identification

At the end of each time interval, for each row in the BCS, we compute the average counter val-

ue C[h] and the corresponding mean square deviation D[h]. For a specific bucket, whenever its

counter value BCS[h][k].counter satisfies the following condition, then it raises an alarm for an

anomaly:

BCS[h][k].counter − C[h] ≥ β ·D[h] (4.1)

where β is an adjustment factor that should be empirically determined. Then, we merge those

DIPs that correspond to those anomalous buckets together, and sort them by their DistNum . In

addition, we eliminate those DIPs that satisfy the condition BCS Query(DIP) < THcounter in the

merged set, where BCS Query is similar to the original CMS Query , which returns the minimum

counter value through all the hashed buckets in the sketch BCS. THcounter is a threshold which

can be empirically determined. Finally, those victims can be chosen from the merged DIP set by

picking the top few DIPs with the largest DistNum value. Or, we can set a threshold THDistNum

to select those victims that can satisfy DistNum ≥ THDistNum to process the selection of victims.

70

DIP queue

Hash(MCS)1

Hash(MCS)2

Hash(MCS)H

.
.
.

bucket...bucket bucket

bucket...bucket bucket

bucket...bucket bucket

.
.
.

Alarm
Vector

Bidirectional
 DIP

Hash(BCS)1

Hash(BCS)2

Hash(BCS)H

.
.
.

bucket...bucket

bucket...bucket

bucket...bucket bucket

.
.
.

BCS Anomaly
 Detector

bucket

bucket

BCS Anomaly
 Detector

BCS Anomaly
 Detector

.
.
.

.
.
.

Victim
 set

Victim
 set

Victim
 set

Ranking
module

K Victims

Sel

Pass

Figure 4.8: Hardware architecture for the proposed scheme

4.4.5 Hardware Architecture

Our proposed scheme can be implemented by hardware to achieve high speed process. Since the

field programmable gate array (FPGA) technology has widely been utilized for real-time packet

processing due to its capability of reconfigure and parallelism, we propose a SRAM-based parallel

architecture as shown in Fig. 4.8. For each input DIP of incoming packets, we perform the hash

computations over the HMCS branches in parallel. The Carter-Wegman H3 hash function [69]

can be utilized in our hardware-based scheme, since the H3 hash function mostly consists of XOR

gates proportional to the number of output bits, which can make it easily implemented in hardware.

The bit values in the vector are initially set to 0 and they will be periodically reset to 0 at the end

of the detection interval. For each row at the first stage, whenever an alarm signal is generated,

the corresponding bit in the vector will be set to 1. After doing the AND operation among all the

71

bit values, it can decide whether to trigger the second stage detection or not. Similarly, the HBCS

branches during the finer level detection phase can also be executed in parallel. The BCS anomaly

detector and ranking module can be implemented by FPGAs according to the flow logic discussed

in the previous sections. The overall search process can be divided into several independent parts

and it can be pipelined by assigning each part to a separate memory block to accelerate the overall

processing speed. For example, the hash computation of the current incoming DIP and the anomaly

detection of the previous DIP are independent with each other and thus can be mapped into two

different stages.

4.5 Analysis and Discussion

In this section, we firstly analyze the space requirement and then estimate the accuracy of our

scheme. We further demonstrate how to extend the current scheme to a collaborative detection

framework.

4.5.1 Space Requirements

The primary space consumption of the system is due to the two sketches (MCS and BCS) and H

bloom filters that are employed at the finer detection stage. Let Lmc denote the length (in bytes)

of each bucket in the sketch MCS and Lbc represent the same in the sketch BCS. Moreover, each

bloom filter will occupy Lbf space. Suppose the MCS and BCS have the size Hmc · Kmc and

Hbc ·Kbc, respectively, the total memory requirement will be:

Hmc ·Kmc · Lmc +Hbc ·Kbc · Lbc +Hbc · Lbf (4.2)

72

According to our method proposed above, the length Lbc will not be a constant value because

the length of the linked list varies. In the practical deployment, we are able to limit the maximal

number of the nodes in the link list. For example, for a specific link list, we can only keep those

top few DIPs that are associated with the highest DistNum value in the list.

4.5.2 Accuracy Estimation Analysis

We further sought to quantify the impact of the size of sketches to the overall accuracy of our

framework. We estimate the accuracy of our system in terms of “false positive rate” (FPR) and

“false negative rate” (FNR). In order to simplify the problem, we conduct our analysis on an

assumption that the “false negative rate” of both MCS FNRmc and BCS FNRbc are negligible and

we will demonstrate why this assumption holds in our scheme below. At the presence of certain

number of malicious flows, the overall “FPR” depend on the accuracy performance of individual

modules (MCS and BCS). Thus, we firstly define false positive rate of MCS FPRmc and BCS

FPRbc, and then demonstrate how they contribute to the overall false positive rate.

Since MCS and BCS are both proposed based on sketch, we firstly conduct a general anal-

ysis of the sketch structure. Let us assume there are m different malicious keys and n buckets

in each row of a sketch. Since the probability that a specific bucket is not hashed by a mali-

cious key is 1 − 1
n

, the probability that a specific bucket is not hashed by every malicious key is

(1− 1
n
)m. Therefore, the probability that a bucket in a row is hashed by at least one malicious key

is 1 − (1 − 1
n
)m and the expectation of the number of buckets to which these m malicious keys

73

hash is n(1− (1− 1
n
)m). When m is much less than n, we have:

n(1− (1− 1

n
)m) = n(1− (1− 1

n
)−n·−m

n)

≈ n(1− e−
m
n) when n >> 1

= m · 1− e−
m
n

m
n

= m ·
1− [1 + (−m

n
) +

(−m
n
)2

2!
+ · · ·]

m
n

≈ m (when n >> m ≥ 1)

(4.3)

We define those buckets that are hashed by malicious keys as malicious buckets. Therefore, when

n >> m, the number of the malicious keys can be used to estimate the expected number of

malicious buckets in a row. For a key that is hashed into a malicious bucket in each row of sketch,

whether it is benign or not, our scheme will judge it as a malicious key, which is the main cause of

false positives of sketch scheme.

We assume that there are totally N distinct incoming keys, which contains N · Pnormal

normal keys, N · PflashCrowd keys associated with “Flash Crowd” events and N · PDDoS keys with

DDoS events. Pnormal, PflashCrowd and PDDoS are the proportion of normal keys, keys with “Flash

Crowd” and keys with DDoS to the total number of different keys, respectively. Based on the

above definition, we have Pnormal +PflashCrowd+PDDoS = 1. For the analysis, we call those keys

that are related to “Flash Crowd” events as “Flashcrowd” keys and keys associated with DDoS

events as DDoS keys.

In the coarse level detection, both “Flashcrowd” and DDoS keys are considered to be posi-

tive (malicious) instances. Therefore, based on the Eq. 4.3, the probability that a key is hashed into

74

one of these malicious buckets in one row is given by N ·(1−Pnormal)
Kmc

. For Hmc rows, the probability

is:

FPRmc = (
N · (1− Pnormal)

Kmc

)Hmc (4.4)

For the fine level detection, only DDoS keys are considered to be positive (malicious) instances.

Similarly, the probability that a key is hashed into one of these malicious buckets for each row in

BCS is given by:

FPRbc = (
N · PDDoS

Kbc

)Hbc (4.5)

We define the overall false positive rate by the definition:

FPRoverall =
Total # of false positive instances

Total # of negative instances
(4.6)

For the overall scheme, negative instances contains normal keys and “Flashcrowd” keys and false

positives mean those negative instances that are wrongly judged as DDoS keys. Thus, we have:

FPRoverall

=
Total # of false positive instances

Total # of negative instances

=
NPnormalFPRmcFPRbc +NPflashCrowdFPRbc

N(PflashCrowd + Pnormal)

=
PnormalFPRmcFPRbc + PflashCrowdFPRbc

PflashCrowd + Pnormal

(4.7)

From the Eq. 4.7, we can see that the overall false positive rate depends on the distribution of traffic

and false positive rate of each individual module. We can estimate the overall false positive rate

75

FPRoverall by Eq. 4.7. For example, suppose the total number of distinct DIPs is 1000, and there

are 180 “Flashcrowd” keys and 20 “DDoS” keys. Let us assume that Kmc = 1024, Hmc = 10 for

MCS and Kbc = 128, Hbc = 5 for BCS. According to the Eq. 4.4 and Eq. 4.5, we have FPRmc =

((180+20)/1024)10 ≈ 8.08×10−8 and FPRbc = (20/128)5 ≈ 9.31×10−5. Therefore, FPRoverall

can be estimated as:(0.8×8.08×10−8×9.31×10−5+0.18×9.31×10−5)/(0.18+0.8) ≈ 1.72×10−5.

Figure 4.9: Size of MCS VS. FPRoverall

In order to further demonstrate the impact of various factors on FPRoverall, we vary differ-

ent parameters and draw figures according to Eq. 4.7. The default settings for the parameters we

adopted are Hmc = 10, Kmc = 1024 for the sketch size of MCS, Hbc = 5, Kbc = 128 for the size

of BCS and Pnormal = 0.8, PflashCrowd = 0.18 for the traffic distribution.

Fig. 4.9 and Fig. 4.10 show the impact of sizes of MCS and BCS on the overall false pos-

itive rate, respectively. From both of these two figures, we can see that by enlarging the size of

sketches (either H or K), we can greatly reduce the overall false positives. Although keeping the

76

Figure 4.10: Size of BCS VS. FPRoverall

Figure 4.11: Traffic distribution VS. FPRoverall

77

size of sketches large will benefit the accuracy performance, it will also consume much memory

space, which will be unaffordable for practical deployment. In practice, we should carefully de-

sign the size of sketches employed in the scheme based on space requirements. In Fig. 4.11, we

show the impact of traffic distribution on FPRoverall, where F2M is defined as the ratio of the

number of “Flashcrowd” keys to malicious keys (including “Flashcrowd” keys and DDoS keys).

We can see that the FPRoverall decreases as the proportion of “Flashcrowd” keys increases when

we fix Pnormal. This is because the probability that a normal key is hashed into a malicious bucket

decreases as the number of malicious buckets diminishes.

Regarding the false negative rate, we first consider the false negative rate of MCS FNRmc

and BCS FNRbc. Since we define those buckets that are hashed by the malicious keys as malicious

buckets and we consider those keys that are hashed to malicious buckets in every row of sketches

as malicious keys, there will be no false negative ideally. In our MCS stage, it is possible that some

false negatives can be caused by the improved EWMA technique. For example, some of buckets,

which should be considered as malicious buckets, still do not generate the corresponding alarm

signal for detection. However, this case is much less often, because the malicious keys will always

have much higher incoming frequency than the normal keys. Similar things happen at the BCS

stage. Although there might be some false negatives in BCS due to the inherent false positive issue

of bloom filters employed, such case rarely happens for the much lower false positive rate of bloom

filters compared with sketches. From the perspective of the overall framework, positive instances

only consist of DDoS keys and false negatives are those DDoS keys which are classified as normal

78

or “Flashcrowd” keys by mistake. Thus, according to the definition of false negative rate, we have:

FNRoverall

=
Total # of false negative instances

Total # of positive instances

=
NPDDoSFNRmc +NPDDoSTPRmcFNRbc

NPDDoS

= FNRmc + TPRmcFNRbc

= FNRmc + FNRbc (Since TPRmc = 1)

(4.8)

Where TPRmc is the true positive rate of MCS. The true positive rate for MCS is approximately

equal to 1 based on the definition of the positive instances in MCS. Since both FNRmc and FNRbc

are negligible, the overall false negative rate also can be neglected. Moreover, from Eq. 4.8, we

can see that the false negative rate is irrelevant to the distribution of the incoming traffic.

4.5.3 Collaborative Detection Scheme

Till now, our proposed two-level framework can be categorized as a host-based system, which

can be deployed at an ingress router near the victim side. The nearer the detection module from

victims is, the larger amount of attack traffic we can observe. Thus, in order to reduce the difficulty

of detection, one possible solution is to deploy the proposed detection module at the targeted server.

However, this preliminary solution is a bad idea for two reasons. First, one deployment can only

protect one victim which render it not scale well. Secondly, it cannot even well protect the victim

it supposed to protect. Because the ingress bandwidth resources near the victim server can be

exhausted as well by the attack traffic, which will result in the same effect to the legitimate users

79

since they cannot visit the victim server. Thus, a deployment that is a little far from a victim server

might be a good choice.

However, a single host-based system is inherently not robust enough no matter where it is

deployed. It is entirely possible that some unaware or intentional internet behaviors can damage its

effectiveness. For instance, due to network device failure problems or a specific routing protocol

designed for congestion avoidance, a backward traffic associated with an original forward flow

might be routed by a totally different path. As a result, the traffic asymmetry feature no longer can

be observed by a single router. Furthermore, such scheme can be easily fooled by a sophisticate

attacker, which can be considered as an intentional internet event. Since attackers always employ a

large number of zombie machines around the world to launch attacks, traffic that comes from every

corner of the world can be routed by different edge routers inside an AS. Thus, if we only take a

single router into accounts, the volume of attack traffic might not be aggregated at a detectable

level for a detection module while the final gather of attack traffic will still cause severe damage to

victim servers. Therefore, a collaborative detection approach which can comprehensively consider

the global circumstance will be an attractive solution. Fortunately, our proposed approach can

be easily extended to a collaborative detection scheme, which will greatly reinforce our original

work. Fig. 4.12 illustrates the overall collaborative framework. The edge routers are responsible

for connecting subnets (it can be customer networks or other ASes) with the core network. Our

collaborative detection framework contains multiple local detectors, one global detector and a

feedback loop between them. The functionality of each component is described as below.

Local Detector A local detector can be deployed at an edge router, and it is responsible for:

80

Global detector

Local detector

Feedback

loop
Edge

router

Edge

router

Edge

router

Local detector

Local detector

Core

network

AS

Subnet

Subnet

Subnet Subnet

Figure 4.12: Illustration of a collaborative framework

• Summarizing traffic statistics from partial or all packets from both of two directional links

• Report the summarized traffic statistics to the global detector periodically

• Receive feedback instructions from the global detector and adjust the local information col-

lection manner based on the feedback instructions

• Timely react to those DDoS events that can be detected at the local side

To be specific, a local detector maintains two main threads. The first thread is called “update

thread”, which keeps scanning every incoming packet and updates the traffic profile. The second

thread, which we called as “report thread”, periodically sends the built traffic profile to the global

detector and finally refreshes the profile after reporting. A hash table with linked lists can be

utilized for the traffic profile building. Each entry in the profile hash table contains six values

(DIP, num, suspF lag,min,max, sipP tr) with DIP as key value. num accumulates the number

of those incoming packets associated with DIP during one period. suspF lag, which is set based

81

on the feedback instructions from the global detector, can be used to decide whether to update the

remaining values in one entry or not. Whenever a DIP is suspected by the global detector due to its

high packet frequency, the suspF lag will be set to 1. When suspF lag = 1, the “update thread”

will keep updating the following values (min,max, sipP tr) in an entry. min and max maintain

the minimal and maximal of hash value by mapping all SIPs associated with the DIP into range

(0, 1) as we did in the distinct sources estimator. At the same time, sipP tr, which is a head pointer

of a linked list, will be updated by inserting those SIPs into the list. As we can see, by reporting the

built traffic profile, the global detector can obtain all the necessary information for further anomaly

analysis.

Global Detector The responsibility of a global detector contains:

• Receive those statistics reports from local detectors

• Perform anomaly detection based on packet frequency at coarse-level detection phase

• Perform anomaly detection based on both the distinct number of SIPs and asymmetry feature

associate with each DIP at fine-level detection phase

• Send feedback instructions to local detectors based on anomaly detection results

The global detector also maintains two threads. The first thread, which we called as “MCS thread”,

is responsible for updating MCS and sending feedback to local detectors. The MCS update pro-

cess is similar as we described above. The total incoming frequency associated with a DIP can

be obtained by:
∑M

k=1 numk, (1 ≤ k ≤ M), where M is the total number of local detectors

that report their local frequency num of this DIP to the global detector. When a key is detected

82

as suspicious key with high packet frequency during MCS detection phase in the global detec-

tor, those hash entries associated with this key at local detectors will be marked as suspicious

by setting suspF lag to 1. We called the second thread as “BCS thread”. The “BCS thread”

also does similar works as we have demonstrated above. The min and max value associat-

ed with certain DIP in BCS can be obtained by: min = MIN(min1,min2, · · · ,minM) and

max = MAX(max1,max2, · · · ,maxM). As we can see, our original scheme can be extended in

a distributed-executing way quite smoothly. Besides those advantages we pointed out before, one

great benefit by running in a distributed way is that the workload of the central global detector can

be largely reduced. As a result, the scalability performance can be further improved.

We notice that the number of one packet will be counted twice in a typical AS infrastruc-

ture. One count is at the ingress router and the other one is at the egress router. Similar thing

happens when we measure the count for traffic asymmetry. However, it will not impact the overall

performance, because both malicious and benign traffic will be amplified by the same proportion

when we measure the frequency feature. Regarding the asymmetry feature, both forward and back-

ward traffic will be counted twice, the effect of which will be offset to each other when we measure

the asymmetry feature in BCS.

4.6 Evaluation

We evaluate the performance of the proposed scheme via simulations. We use the trace data from

AU [66] as the background traffic. It contains packet traces captured from the link connecting

Auckland University and the Internet. This background traffic, which contains both forward and

83

Table 4.1: The default parameter settings of sketch-based detection
Item Parameter Setting value

Interval for Periodical Sketch Construction ∆t 5s

Size of MCS
Hmc 32
Kmc 1024

Size of BCS
Hbc 5
Kbc 128

Bloom Filters Lbf 10000 Bytes

Coarse Level Detection
α 0.4
θ 0.5

Fine Level Detection
∆T 5s
β 2

THcounter 10

reverse directions, has an average rate of 523 packets per second. We consider the accuracy of

victim identification and the amount of memory consumption as two main performance metrics.

The default parameter settings for the parameters we adopted in our experiment are shown in

Table 4.1.

4.6.1 Detection Accuracy Evaluation

We generate the flooding traffic using attack tools we developed. The attack rates vary from 25

to 500 packets per second (25, 50, 75, 100, 200, and 500) and the duration of each the attack is

20 seconds. Those attacks are injected at the offset of every 100 seconds. Our goal is to try to

gauge the detection sensitivity of our scheme under a large range of attack rates. Fig. 4.13 shows

the maximal DistNum series among all the detected victims in the sketch BCS as the time goes.

The six spikes (excluding the smallest one) indicate all six DDoS attacks we injected. Even when

84

0 100 200 300 400 500 600 700
10

0

10
1

10
2

10
3

10
4

Time (s)

M
a
x
im

a
l
d

is
tN

u
m

 i
n

 B
C

S

Figure 4.13: Maximal DistNum value in BCS

the attack rate is as low as 25 packets per second, which happens at the offset of 100 seconds, our

scheme is still able to identify such low rate attacks while maintaining high accuracy. The maximal

DistNum values well reflect the rates of corresponding attacks. After we manually inspected the

background traffic, we found that the remaining spike with the lowest value in Fig. 4.13 represents

a low rate flooding attack in the original trace. Fig. 4.14 demonstrates the number of victims that

are identified by the coarse-level and fine-level detection. On average, the coarse-level detection

identify 12 victims per interval. All of those victims experience high rates of requests, which may

be caused by flash crowds or DDoS attacks. However, after we further filter those potential victims

using the fine-level detection, at most one victim per interval remains, which is the actual attack

contained in the traffic. Moreover, the average victim number detected by the MNP-CUSUM

approach [60] is around 21, which is even higher than the coarse-level detection of our approach.

This is because the original CUSUM technique does not take care of the quick termination after the

85

0 100 200 300 400 500 600 700
0

10

20

30

40

50

Time (s)

#
 o

f
v
ic

ti
m

s
Fine-level detection

Coarse-level detection

MNP-CUSUM

M
a
x
im

a
l
d

is
tN

u
m

 i
n

 B
C

S

Figure 4.14: # of detected victims

alarm happens, which results in that too many buckets in the sketch remains high value for a long

time. Therefore, it usually causes many false positives. After we modified the original CUSUM

techniques by a method for quickly terminating alarm as proposed in [30], the average number is

significantly reduced to around 12, which can be due to flash crowds.

We also measure the recall ratio under different attack rates. A recall ratio is the fraction of

the true victims in the estimated victims returned by our scheme. The estimated victims identified

by the coarse-level detection is the set of all DIPs which satisfy CMS Query(DIP) = 1. In

Fig. 4.15, we can see that the recall ratio of the fine-level detection is very stable; nearly 100% of

victims are accurately identified. Even when the attack rate is as low as 25 packets per second,

the recall ratio is still over 95%. However, with the coarse-level detection only, the ratio is much

lower. It requires more than 350 packets per second (about 66% of the background traffic rate)

86

0 100 200 300 400 500
0

20

40

60

80

100

Attack rate (Packets/s)

R
e
c
a
ll
 r

a
ti

o
 (

%
)

Fine-level detection

Coarse-level detection

MNP-CUSUM

Figure 4.15: Recall ratio

to achieve the ratio over 95%. Again, due to the alarm termination problem, the MNP-CUSUM

technique performs poorly here. Its recall ratio is around 23% on average.

4.6.2 Space Consumption

We also sought to measure the memory consumption. Basically, the overall space consumption of

sketch-based approaches consists of two different parts. The first part, which can be attributable

to the sketch structure itself, takes constant size of small space while the other part, which serves

for assisting functions such as the key storage, occupies dynamic size. Since the scalability perfor-

mance of sketch-based approaches greatly depends on the dynamic part, we compare our approach

against [60] by measuring the number of keys that should be stored. The results are shown in

Fig. 4.16. During one interval, there are 47 keys that are needed to be stored in our scheme on

average while the average number of the keys of MNP-CUSUM approach is around 519. Our

87

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

Time (s)

T
o

ta
l
#
 o

f
k
e
y
s

Our approach

MNP-CUSUM

Figure 4.16: Space consumption

approach can save up to 90% keys, which translates to less memory consumption and searching

space, when comparing with the previous approach. In order to evaluate the storage scalability, we

shift time stamps of different periods of traces from AU and then merge them together in order to

enhance the traffic intensity. We define “Merging factor” as the number of different periods, which

can also reflect the intensity of the traffic. Then, we measure the required key storage over various

approaches as shown in Fig. 4.17. Our method nearly keeps constant number of keys when the

merging factor increases, while the MNP-CUSUM holds a linear-like trend in the same case. That

is because our method only record those suspicious DIPs rather than storing every DIPs.

From the total number of keys in the sketches and the default parameter settings, the total

memory consumption of our scheme can be estimated using the Eq. 4.2. The average memory cost

is around 563.6 KB, which we consider can be easily accommodated in modern routers.

88

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

Merging factor

T
o

ta
l
#
 o

f
k
e
y
s

Our approach

MNP-CUSUM

Figure 4.17: Storage scalability

4.7 Conclusion

In this work, we present a fine-grained DDoS detection scheme based on the BCS structure to

counter the threat of DDoS attacks. Our approach employs a two-level model to reduce both the

size of the search space and time, and further make identification of specific victims possible in the

high-speed network environment. We adopt the MCS structure in coarse-level detection to achieve

fast detection, and the BCS structure in the fine-level to further guarantee the accuracy. We believe

that this approach can accurately identify victims of DDoS attacks with a low memory footprint and

give a timely response. We also propose a SRAM-based parallel architecture to achieve high-speed

process. We finally analyze accuracy estimation issue and demonstrate a collaborative detection

scheme based on the original single-host detection scheme. Experimental results show that our

scheme outperforms previous sketch-based methods with respect to both storage scalability and

89

detection accuracy.

Our future work will focus on designing a collaborative defense framework against DDoS

attacks. Our proposed detection scheme can be used to facilitate defense against DDoS attacks in

the following way. Since all the victims can be accurately detected by our collaborative scheme,

an automatical rules generator can be developed to reinforce firewall and IDS systems in real-time.

90

CHAPTER FIVE

A COLLABORATIVE DEFENSE FRAMEWORK AGAINST DDOS ATTACKS

5.1 Motivation of this work

All the previous works focused on the detection of DDoS attacks, we need to have some ways to

react and filter malicious traffic, which is the goal we targeted at in this work. As we pointed out

in the Chapter 4, a single-host based defense system has its own weaknesses for fighting against

DDoS attacks. A sophisticated attacker can easily circumvent detection by employing a large num-

ber of zombie machines around the world and make them send malicious traffic through different

edge routers. As a result, if we only take a single router into accounts, the volume of malicious

traffic might not be aggregated at a detectable level. The advantage of distributed defense systems

over single-host systems has been recognized in [70–72]. [70, 71] deployed defense nodes at all

the victim-end, source-end and core network. They can achieve higher effectiveness than source-

end/victim-end solutions [72] or victim/core network schemes [73]. However, they still focus on

a single approach to fight against attacks. For example, the method proposed in [70] depends on a

capability mechanism and the approach proposed in [71] relies on victim-hiding technique. All of

these constraints will discourage integration with other defenses and their wide deployment.

George Oikonomou and his colleagues proposed a framework called DefCOM for a col-

laborative DDoS defense in [3]. Nodes inside the network collaborate during the attack to spread

alerts and protect legitimate traffic and then rate limiting actions are performed on the correspond-

91

ing nodes and routers. However, the effectiveness of their method relies on three key assumptions.

(a) The victims are able to detect attacks accurately and timely. (b) The core routers in the network

are willing to collaborate together to alert source-end nodes. (c) Source-end nodes have enough

incentives to mitigate malicious traffic for the victim-end. However, these three assumptions are

usually not easily to be satisfied in real world. Firstly, the paper did not address the key issue of

how to accurately and timely detect various common DDoS attacks which will greatly affect the

effectiveness of their scheme. Secondly, the collaboration of Internet-wide scale routers seems to

be infeasible in reality, especially when we consider the fact that the current Internet consists of

different autonomous systems which are administrated by various ISPs. Finally, source-end nodes

do not have enough incentives to protect the nodes at the victim-end. Thus, their third assumption

is also under questions.

In order to overcome the weaknesses of the previous framework as stated above, we propose

a collaborative framework for detection and defense of DDoS attacks in this chapter. However, we

are not aimed to protect the Internet-wide scale network. Rather, we proposed the collaborative

framework to protect edge-networks. It can achieve the following advantages compared with the

previous framework at the cost of some scalability performance which are acceptable as we consid-

er. (a) Since the effectiveness of each individual component have been shown and proved through

experiments in the previous chapters, we can guarantee victim-end nodes have the ability to detect

attacks accurately and timely. (b) Since we do not focus on the protection of the Internet-wide

scale, the feasibility of the implementation can be greatly increased since all the deployments on-

ly relies on the operations of a single AS. (c) Since we only protect the victim side, the defense

92

A S

Local Defense

Local Detection

Sketch-based defense of

TCP Flooding attacks

Sketch-based defense of

UDP Flooding attacks

Global defense module

Subnet

Subnet

Subnet

Local defense module

Global

Feedback

Loop

Stealthy attacks detection

TrustGuard

Sketch-based detection

Sketch-based defense of

TCP Flooding attacks

Sketch-based defense of

UDP Flooding attacks

Figure 5.1: Overall system architecture

incentive of the corresponding edge network can also be maximized. We describe details of the

implementation in the following sections.

5.2 Overall system architecture

Fig. 5.1 shows the overall system architecture. We deploy local defense modules among edge

routers and the global defense module is also deployed at one edge router. There exists a feedback

loop between local defense modules and the global defense module. All the local defense modules

periodically collect the traffic statistics, summarize the passing traffic profile and send that infor-

mation to the global defense module for further analysis. At the same time, all the local defense

93

modules will directly defend against those attacks which are detectable at the local side by single-

host-based methods demonstrated in the previous chapters. The global defense module collects the

information from all local defense modules, makes comprehensive decisions according to the col-

lected information and sends filter instructions to corresponding edge routers. In this chapter, we

mostly focused on the defense of TCP and UDP flooding attacks, which can be considered as the

most two representative examples of current DDoS attacks. We firstly demonstrate how the pro-

posed defense schemes work and then show how to extend the schemes to the distributed-executing

version.

5.3 Defense against TCP flooding attacks

In this section, we proposed a defense scheme against TCP flooding attacks, which is considered as

the most popular DDoS attack. Then, we extended our proposed method to a distributed-executing

version. The effectiveness of the proposed scheme is shown by experiments using real Internet

traffic.

5.3.1 Background

Among various types of DDoS attacks, probably TCP SYN flooding is the most powerful and

serious flooding method and the most common one. It has been reported that about 90% of all

DoS attacks are SYN Flood attacks. According to a recent NANOG report [74], it still dominates

DDoS attacks. Thus, in this work we take TCP SYN flooding attacks as a motivating example.

Over the past decade, many victim-based defense systems [75–77] have been proposed to mitigate

DDoS attacks. Such systems are attractive as they are able to accurately differentiate benign from

94

malicious traffic, and thus can perform per-flow filtering. However, most of current defense sys-

tems need to maintain per-flow state, which renders them not scalable in high-speed environment.

What is worse, those systems themselves could be attack targets since maintaining per-flow state

requires a significant amount of resources. Besides the scalability issues, they usually cannot ef-

fectively filter traffic launched from both genuine and spoofed IP addresses. For example, the SYN

cache [75] allocates full required resources only when the connection is completed which enables

it to mitigate traffic originated from spoofed sources. However, its effectiveness will be beaten

by attacks using BotNet since malicious traffic in this case is launched using real addresses. On

the other hand, some detection and mitigation schemes [22, 57] are based on detecting abnormal

SYN/RST, SYN/FIN or SYN/SYNACK ratios and such schemes will work well when most of the

traffic is launched from genuine sources. However, attackers can still avoid detection by sending

crafted packets to satisfy the normal ratios and we denote this as “spoofed-packet problem”.

In this work, we design and implement an innovative DDoS defense system by using a

sketch and multiple bloom filters, which can be deployed at ISPs’ edge routers, to protect servers.

It works as follows. We firstly filter the spoofed IP attack traffic using two bloom filters. Basi-

cally, it filters spoofed traffic by pairing SYN/ACK with associated ACK packets. As a result,

the remaining traffic after the first stage only contains both legitimate traffic and traffic generated

by compromised nodes using genuine IP addresses. We then pass the remaining traffic to a K-

ary sketch for further differentialization. The values of buckets in the sketch are built based on

the number of SYN packets associated with destination IP (DIP) addresses. Then, a light-weight

exponentially weighted moving average (EWMA) technique is employed for detecting anomaly

95

buckets. All of the source IP (SIP) addresses associated with anomaly buckets will be record in t-

wo counting bloom filters (CBF). Finally, SYN packets will be probabilistically dropped according

to the associated value in the CBFs.

We are aware of recent defense systems [44, 78] that utilize users’ behavior to accumu-

late credits and the traffic from those ill-behaved users will get punished. The main differences

from previous credit-based defense schemes is that all of them require keeping per-flow state to

calculate credits and thus cannot scale well with high-speed environment since the amount of re-

quired space consumption will grow linearly with the number of flows. Furthermore, previous

credit-based schemes cannot fight against spoofed IP DDoS attacks since the missing interaction

between source-end and victim-end which will nullify the credit profile construction.

Our defense scheme addresses these problems. Introducing sketch structure makes it scale

with the high-speed environment. Also, since it filters most spoofed traffic before they go through

sketch, not only false positives of sketch employed are greatly reduced but also the “spoofed-

packet problem” is mitigated. To the best of our knowledge, all of the previous sketch-based

schemes focus on the detection rather than defense of DDoS attacks and none of them utilize

sketch for flow-level filtering. Finally, our approach filters both spoofed and genuine IP attack

traffic effectively.

5.3.2 Related Works

According to the deployment location, current DDoS defense systems are classified into four cat-

egories. They are source-end, victim-end, core network, and combinations of all three. Except

victim-end defense systems, none of the other three types of defense systems have been deployed

96

widely, although network-wide deployments have been proved to be more effective to fight against

denial of network service [79]. This is mainly due to the lack of incentives for those source-end

ISPs to invest on DDoS defense systems to protect servers of other ISPs. Our proposed system is

designed as a victim-end defense system to maximize deployment incentives and can be used to

complement the existing network-wide deployment.

In terms of defense methods, current defense systems also can be divided into two main cat-

egories. They are statistical-based and behavior-based defense systems. Statistical-based defense

systems [21, 80, 81] typically rely on nominal traffic profiles built before attacks happens. The

systems try to discriminate “normal” traffic from “malicious” traffic based on deviations from pre-

defined nominal traffic profiles. However, as more and more sophisticated attacks emerging, they

can bypass detection by mimicking legitimate behaviors. For example, the attacker can learn the

victim’s nominal traffic profiles by probing the victim and observing the corresponding responses.

As a result, the systems can be beaten by sending malicious traffic that is carefully crafted to satisfy

the nominal traffic profile.

On the other hand, various behavior-based approaches [42–44, 78, 79, 82] have been pro-

posed in the literature and probably credit-based system consists of the majority of this type.

Such kind of systems typically regulates the traffic based on behaviors of related sources. The

ill-behaved traffic will get throttled. Yang et al. introduce a Message Rate Controlling Model

(MRCM) in their credit-based framework to defend against DDoS for Peer-to-Peer (P2P) stream-

ing systems [42]. MCRM is essentially a network-wide solution requiring the cooperation of all

nodes within a system, which renders this scheme impractical for deployment. Padmanabhan et

97

ISP DISP CISP BISP A

Victim

Edge router

Client
Edge router

Attacker

Edge router

UTF ATF

CPU Memory

ISP Customer

Line card

Figure 5.2: Overall architecture

al. propose a trust-based traffic monitoring approach for preventing DDoS attacks [43]. Again,

their framework requires interaction among peer nodes in the network. Furthermore, all of previ-

ous behavior-based systems need to maintain per-flow state which renders it not scale well with

link-speed.

5.3.3 System Description

Overall Architecture

We first describe an overview of our designed architecture, which is shown in Fig. 5.2. It can be

deployed at the ISP’s edge routers and serves as a supplement of the existing network filtering to

protect potential victims from being flooded. It monitors both of the forward and backward passing

traffic. Only traffic with the forward direction will be regulated in our scheme. The backward

98

traffic from servers to clients is also useful since we will utilize it for building the filters in the two

modules of our method.

Unidirectional Traffic Filter

The term “unidirectional traffic” described here refers to the traffic that does not have interactions

with servers during the TCP three handshake procedure. It is usually associated with spoofed IP

DDoS attacks since there is no way for non-existing source nodes with bogus addresses to interact

with servers. Spoofed IP DDoS attacks are usually attractive for attackers to use for launching

attacks since these kinds of attacks can help attack sources to escape being traced back. The “u-

nidirectional traffic” can also be launched by a large number of zombie machines, which indicates

genuine IP DDoS attacks, by simply ignoring SYN/ACK responses from servers. In this work, the

term “unidirectional traffic” and “spoofed IP attack” are exchangeable since most of “unidirection-

al traffic” is due to the “spoofed IP attack” in networks.

A typical TCP three-way handshake protocol works as followings. Firstly, the client sends

a SYN packet to a server to ask for an open connection request. The server then reserves con-

nection resources and then responses with a SYN/ACK packet. Finally, the client sends an ACK

packet back to the server as an acknowledgement to indicate an established connection. In a TCP

SYN flooding attack scenario, by not responding to the server with the expected ACK packets and

making the server wait for the ACKs for some time, the attack sources can exhaust resources of the

server if a large number of half-open connections are involved. As a result, the server suffers from

the SYN Flood DDoS since no new connections can be made. In this case, if we deploy a detec-

tor near the victim side, we will see a large difference between the number of SYN/ACK packets

99

Insert 4-tuple into SABF

Convert tuple to SYN/ACK

4-tuple and check SABF

SYN Src: C Dst: V

SYN/ACK Src: V Dst: C

ACK Src: C Dst: V

Trigger condition: tuple is in SABF

SYN Src: C Dst: V

Insert 2-tuple into ASBF

SYN/ACK Src: V Dst: C

check ASBF

UTF Victim: VClient: C

Trigger condition: tuple is in ASBF

ACK Src: C Dst: V

Figure 5.3: Illustration of UTF module by a sequence diagram. This figure neglects the ATF
module which sits between the UTF and victims for the clear demonstration of the procedure.

sent by the server and that of ACK packets. This is because source addresses are bogus and the

server will never receive ACK packets from clients. Based on this observation, researchers [83]

proposed accurate detection approaches based on bloom filters (BF). However, their approach can

only detect flooding attack events while it cannot filter the unidirectional traffic. In this work, we

also utilize bloom filters in UTF. The main improvement is that our UTF module has the capability

to filter the majority of “unidirectional traffic”, which is different with previous BF-based works.

The main goal of UTF is to filter the majority of SYN packets associated with unidirec-

tional traffic before they arrive at the victim, while not affecting SYN packets associated with

100

active source nodes which will finish the three handshake procedure. Fig. 5.3 illustrates the main

work procedure of UTF. A typical filtering procedure is described as follows. When an attack-

er C sends a SYN packet to a victim V to initialize a TCP connection, the UTF will respond

to C immediately by creating a corresponding SYN/ACK packet with V as SIP and sending the

created SYN/ACK packet back to client C. At the same time, we extract the SIP and DIP, se-

quence number and ACK sequence number information of this mimic SYN/ACK packet as 4-tuple

⟨SIP,DIP, SEQ,ACKSEQ⟩ and insert this 4-tuple into a bloom filter called SYN/ACK Bloom

Filter (SABF). Whenever the UTF observes an ACK packet in the forward direction, it will ex-

tract 4-tuple ⟨DIP, SIP,ACKSEQ− 1, SEQ⟩ from this ACK packet and query the SABF to see

whether this ACK packet can be paired with any mimic SYN/ACK packets inserted before with a

small false probability. If the tuple cannot be found in SABF, the UTF forward this ACK normally.

While if the tuple is checked as positive in SABF, which means there is a paired SYN/ACK pack-

et inserted before, the UTF will generate a new SYN packet with SIP as C for this source using

the header information of this ACK packet and send it to the victim V to initialize a real three-

handshake procedure. At the same time, the UTF will insert the associated SIP and source Port as

2-tuple ⟨SIP, SP⟩ into another bloom filter named Active Source Bloom Filter (ASBF). Similarly,

whenever the UTF captures a SYN/ACK packet from the backward traffic, it will extract the corre-

sponding DIP and destination port (DP) as 2-tuple ⟨DIP,DP⟩ and check whether this 2-tuple can

be found in the ASBF. If yes, the UTF will generate an ACK packet with DIP in SYN/ACK as SIP

and send it back to the victim V to complete the connection.

From the procedure described above, we can see that the UTF essentially serves as a dele-

101

gation of victim servers. The TCP connections associated with active sources will be established

unaffected. However, the majority of malicious SYN packets will stop at the UTF module since

actual initialization of TCP connections will not be triggered due to the lack of ACK packets that

can be paired with inserted SYN/ACK packets in SABF. Someone may ask what if the UTF itself

is flooded by SYN packets. Since UTF does not allocate resources to prepare for a real connection

when it receives a SYN packet, this issue will not affect the performance. Also, we notice that the

UTF module will introduce certain delay of the TCP three-way handshake procedure for a new

connection. If we can place some existing detection modules [65] with victim pinpoint capability

before the defense module, only the connections to victims which are under attacks will be affect-

ed. At the cost of some little delay to normal connections, we can avoid victims being flooded by

spoofed IP attacks.

We also aware that the existing SYN cache [75] and SYN cookies [77] also utilize dele-

gation mechanism. However, the per-flow state still needs to be maintained or state cryptographic

computation is required which render it not scale well. It will also make the defense mechanism

itself vulnerable to attacks. In our UTF, only two bloom filters are maintained, and it will save a

lot of space consumptions compared with previous approaches. Although using bloom filters for

recording will yield some false positives, the majority of “unidirectional traffic” is filtered, which

greatly reduces computing overhead and false positives in the next module ATF. We will see that

the remaining spoofed of traffic that pass UTF will still be well regulated by ATF as describe be-

low. Furthermore, both of the two bloom filters should be refreshed periodically whenever the ratio

of set bits to the length of bloom filters exceeds predefined threshold TH SABF to avoid large false

102

positives.

We filter “unidirectional traffic” before passing it to the second stage for two reasons. First-

ly, the ATF, which we will describe in the next section, usually requires a relatively higher com-

puting overhead than UTF since it need to build traffic profile. Thus, by eliminating most of the

“unidirectional traffic” at a light-weight UTF stage, the computing overhead of the ATF will be

greatly reduced. Furthermore, since we can avoid maintaining a large number of bogus flows in

sketch, the incidents of hash collisions will also be reduced in sketch, which translates much less

false positives.

Aggressive Traffic Filter

After passing the UTF module, the majority of the remaining traffic should be originated from

active sources using genuine SIP addresses. However, an active source is not necessarily benign.

For example, a sophisticated attacker can still utilize zombies to periodically initialize and finalize

TCP three handshake procedures to exhaust the resources of victims. We call this kind of attacks

as genuine IP flooding attacks since it can only be launched by sources with genuine IP addresses.

The genuine IP flooding attacks can pass our UTF module and exhaust connection resources of

victim servers. In the sketch, we define the Sketch Query(key) function which can return the

minimum value among all the buckets corresponding to a specific key and such value can be used

to estimate the frequency of occurrences of the key.

Abnormal Buckets Identification We first perform a light-weight EWMA technique to identify

those abnormal buckets in the sketch. Each bucket in the sketch maintains four value (vt, vt−∆t, vbackup,Flag).

103

vt is the number of SYN packets that are accumulated from t−∆t to t, vt−∆t is the previous value

of vt, and vbackup is the value of vt right before the alarm occurs (or null if there has been no alarm).

Flag is set to 1 whenever the alarm condition is satisfied; otherwise it is set to 0. For each incom-

ing record, we update the sketch with (ki, 1) where ki is the DIP and 1 represents the number of

this incoming SYN packet. Rather than returning the minimum value of vt as the original sketch

does, the Sketch Query function in ATF returns the minimum value of Flag among all the buckets

corresponding to a specific DIP to indicate whether it is under SYN flood attacks.

When a new packet arrives, hash values of H hash functions are computed, and the corre-

sponding buckets are updated; the value in each bucket is incremented by 1. This accumulation

process repeats every ∆t seconds. The alarm condition is tested for all H×K buckets periodically.

If the alarm condition is satisfied, then the alarm flag associated with the bucket is set to 1. When-

ever there is an alarm, the previous v value of the bucket is stored in the vbackup for determining

whether the raised alarm is terminated or not. In our approach, we use an EWMA to generate an

alarm for a bucket. We estimate vt with an EWMA parameter α. Whenever vt ≥ (1 + θ)vt−∆t,

which is considered as the satisfaction of the alarm condition, an alarm is raised. θ is the parameter

representing the percentage above the estimated value that can be considered to be an indication of

anomalous pattern. There is a little difference after an alarm is generated for a bucket. Rather than

using the previous value vt−∆t, we estimate vt by vbackup to eliminate the impact of the anomaly

on the next following vt series. If vt < (1 + θ)vbackup is satisfied, we reset the alarm flag to 0.

If Sketch Query(key) = 1 is satisfied for an incoming packet with its DIP, which indicates

its suspicion, a finer-level filtering process will perform on this packet, which will be demonstrated

104

Counting Bloom Filter

Suspicious traffic

Suspicious SIP

1h 2h k
h· · ·

Forward to another PPF

i

DE
N

i

SYN
N Flag

Pass Backward traffic

Figure 5.4: Update of bloom filters for aggressive traffic filtering.

in the next section. All the suspicious DIPs will be recorded in a bloom filter called suspicious DIP

bloom filter (SDBF) and the SDBF will be placed before the sketch to reduce detection overhead.

If a DIP associated with a packet is positive in the SDBF, the packet will be directly considered to

be suspicious without performing Sketch Query function.

Probabilistic Packet Filter We employ two counting bloom filters to build our probabilistic

packet filter (PPF) to mitigate the flows with aggressive behavior. The first CBF builds the traffic

profile for the current detection interval and the other one, which is built based on the traffic in

the previous detection interval, is used for the packet filtering. The role of each of the two CBFs

is altered to the other one as the time goes. When reaching the end of a detection interval, we

refresh the filtering CBF and prepare it for the traffic profile construction during the next detection

interval. At the same time, we used the CBF built in the last interval for filtering. We take two

factors into account for identifying the aggressive behavior of a flow. Firstly, an aggressive source

will send more SYN packets to the victim in order to exhaust the victim’s resource compared with

105

a normal one. Secondly, an aggressive source will send SYN packets to victims with few real

data exchanges (DEs). The attacker can be benefited from this way because it can maximize the

attack power of the compromised nodes. The forward and backward update process of the CBF

is described in Algorithm 4 and Algorithm 5, respectively. When a packet which is considered as

malicious by sketch comes, we update the value of all the indexed N i
SY N and the same of N i

DE .

Then, the minimal value of all the indexed N i
SY N and the same of N i

DE can be used to estimate the

number of SYN packets and that of data exchanges associated with a key. As shown in Fig. 5.4,

we use 2 bytes in each cell in the CBF where 7 bits is used for recording N i
SY N , 8 bits for N i

DE

and 1 bit of Flag for indicating the direction of the traffic. Here, we use 0 to represent the forward

direction and 1 for the reverse.

Algorithm 4: Update procedure of CBF (forward)

1 for k = 1 to K do
2 i← PPF.hash[k](SIP) ;
3 if Packet.tcpFlag = SYN then
4 if PPF.CBF [i].NSY N < 128 then
5 PPF.CBF [i].NSY N++ ;
6 end
7 PPF.CBF [i].F lag ← 0 ;
8 else
9 if Packet.tcpFlag = ACK and PPF.CBF [i].F lag = 1 then

10 if PPF.CBF [i].NDE < 256 then
11 PPF.CBF [i].NDE++ ;
12 end
13 PPF.CBF [i].F lag ← 0 ;
14 end
15 end
16 end

106

Algorithm 5: Update procedure of CBF (backward)

1 for k = 1 to K do
2 i← PPF.hash[k](DIP) ;
3 if Packet.tcpFlag = ACK and PPF.CBF [i].F lag = 0 then
4 PPF.CBF [i].F lag ← 1 ;
5 end
6 end

We further define normal index (NI) as NI i = N i
DE/N

i
SYN for a specific cell in the bloom

filter. The larger NI is, the more likely the associated flows are benign. Thus, the probability of

dropping packets that belong to this flow can be defined as:

P i
drop =

(
THNI − NI i

)+
THNI

(5.1)

Where THNI is a threshold to decide whether this flow is benign or not, and ∆+ is ∆ if ∆ > 0

and 0 otherwise.

Space Requirements

The primary space consumption of the system is due to the two bloom filters employed in the UTF

module, one sketch in abnormal buckets identification phase of ATF module and two counting

bloom filters for PPF in ATF module. Suppose each bloom filter will occupy Lbf space and each

counting bloom filter will take Lcbf space. The sketch has the size of Hsketch ·Ksketch. Let Lsketch

denote the length of each bucket in the sketch. The total memory requirement will be:

Hsketch ·Ksketch · Lsketch + 2Lbf + 2Lcbf (5.2)

107

As we can see, the space consumption is constant, which translates to the promising scalability

performance.

Collaborative Defense Scheme

The proposed scheme can be extended to a distributed-executing framework. We demonstrate how

to extend the proposed scheme in this way in this section. Our collaborative defense framework

contains multiple local defense modules, one global defense module and a feedback loop between

them. The functionality of each component is described as follows.

Local defense module A local defense module can be deployed at an edge router, and it is

responsible for:

• Summarizing traffic statistics from partial or all packets from both of two directional links

• Report the summarized traffic statistics to the global defense module periodically

• Receive feedback instructions from the global defense module and perform packet filtering

based on the feedback instructions

• Timely react to those DDoS events that can be detected at the local side

Since the UTF module needs to timely react to the traffic in order to reduce the TCP con-

nection delay, we deploy the UTF module at the local side. Only the ATF module is extended to

the distributed version. To be specific, a local defense module maintains two main threads. The

first thread is called “update thread”, which keeps scanning every incoming packet and updates the

traffic profile. The second thread, which we called as “report thread”, periodically sends the built

108

traffic profile to the global defense module and finally refreshes the profile after reporting. A hash

table with linked lists can be utilized for the traffic profile building. Each entry in the profile hash

table contains three values (SIP/DIP, num, tcpF lag) with SIP or DIP as key value, the selection

of which depends on the direction of the passing traffic. num accumulates the number of those

incoming packets associated with the selected key during one period. tcpF lag represent the TCP

flag. As we can see, by reporting the built traffic profile, the global detector can obtain all the

necessary information for further anomaly analysis.

Global defense module The responsibility of a global defense module contains:

• Receive those statistics reports from local defense modules

• Perform anomaly detection based on the collected information

• Identify those malicious flows with high level of asymmetry of data exchanges

• Send feedback instructions to local defense modules

The global defense module also maintains two threads. The first thread, which we called as

“anomaly detection thread”, is responsible for updating sketch and bloom filters and sending feed-

back to local defense modules. The process is similar as we described in the above section. The

total incoming frequency associated with an IP can be obtained by:
∑M

k=1 numk, (1 ≤ k ≤ M),

where M is the total number of local defense modules that report their local frequency num of

this IP to the global defense module. When a flow is detected as malicious in the global detector,

the corresponding dropping probability will be computed and sent back to related local defense

modules for further filtering. As we can see, our original defense scheme can be extended in a

109

distributed-executing way quite smoothly. Besides those advantages we pointed out before, one

great benefit by running in a distributed way is that the workload of the central global detector can

be largely reduced. As a result, the scalability performance is further improved.

5.3.4 Evaluation

Table 5.1: The default parameter settings of sketch-based defense
Item Parameter Setting value

Interval for Periodical Sketch Profile Construction ∆t 5s
Interval for CBF Profile Construction ∆t 5s

Sketch Size of ATF Module
Hsketch 16
Ksketch 1024

Abnormal Buckets Identification
α 0.3
θ 2

Size of Counting Bloom Filters Lcbf 20000 Bytes
Size of All Bloom Filters Lbf 10000 Bytes
Probabilistic Dropping TH NI 2

We evaluate the performance of the proposed approach via simulations. We use the trace

dataset from AU [66] as the background traffic which contains packets captured from the link

connecting Auckland University and the Internet. The background traffic contains traffic of both

forward and reverse directions and has an average rate of 523 packets per second. We firstly

try to evaluate the effectiveness of our scheme under different attack types and finally evaluate

the performance under mixed types of attacks. The filtering effectiveness Φ is defined as Φ =

1 − (Fn + Fp)/2 where Fp and Fn are false positive rate and false negative rate, respectively and

0 ≤ Fn, Fp ≤ 1. We consider Φ as the main performance metric. Unless otherwise noted, the

110

0 100 200 300 400 500 600
0

300

600

900

1200

1500

Time(s)

#
 o

f
s
y
n

 p
a
c
k
e
ts

Total offered SYN

Normal offered SYN

Total forwarded SYN

Figure 5.5: Effectiveness of mitigating spoofed IP DDoS attacks

default settings for the parameters are shown in Table 5.1.

Defense against spoofed IP flooding attacks

In order to evaluate the filtering effectiveness of the UTF module, we generated spoofed flooding

traffic by attack tools we developed and then injected this traffic into the background traffic. The

attack tool randomly chooses a SIP address from an IP address pool with size Nspoof = 1000

and sends SYN packets to the victim with default attack rate 200 SYN packets per second. The

attack traffic is injected at the offset of 100 seconds and is terminated at the offset of 400 seconds.

We set TH SABF = 0.1, which means when the ratio of set bits in SABF is larger than 10%, we

reset the SABF in order to reduce false positives. The results are shown in Fig. 5.5 by collecting

statistics every 5 seconds. As we can see, nearly all of spoofed SYN packets are filtered by our

UTF module without affecting normal SYN packets. In order to evaluate the accuracy performance

111

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Attack rate (Packets/s)

Merge Factor = 1

Merge Factor = 3

Merge Factor = 5

Merge Factor = 7

Merge Factor = 9

Figure 5.6: Accuracy evaluation by varying traffic scale

under different traffic scales, we shift time stamps of different periods of traces from AU and then

merge them together in order to enhance the traffic intensity. We define merging factor (MF) as

the number of different periods, which can also reflect the intensity of the traffic. Fig. 5.6 shows

accuracy by varying the attack rate from 200 packets per second to 2000 packets per second. We

can see the accuracy performance is quite stable even the traffic scale is large. For example, the Φ

can still achieve over 70% under attack rate 2000 packets per second with MF = 9.

Defense against genuine IP flooding attacks

We further evaluate effectiveness of filtering SYN packets of genuine IP attack. We generate the

genuine IP attack traffic in the following way. Each attack source sends 20 SYN packets per second

to the victim and they will finish the three-way handshake with the victim without the following

data exchanges. The SIP of each attack source is generated from an IP address pool with default

112

0 100 200 300 400 500 600

10
2

10
3

Time(s)

#
 o

f
s
y
n

 p
a
c
k
e
ts

Total offered SYN

Normal offered SYN

Total forwarded SYN

Figure 5.7: Effectiveness of mitigating genuine IP DDoS attacks

size Ngenuine = 1000. Again, the attack traffic is injected at the offset of 100 seconds and is

terminated at the offset of 400 seconds. Fig. 5.7 shows the experimental results when there are

100 attack sources. After the attack happens, the ATF module seems forward too many attack

packets initially. This is due to the detection latency of the ATF module since it requires one

detection interval to identify the victim in sketch and another detection interval for building the

CBF. Our ATF module quickly filtered nearly all of the malicious SYN packets after two detection

intervals from the beginning of attacks. In order to evaluate the scalability, we enhance the traffic

intensity in a similar way as we do in experiments for filtering the spoofed IP attack. We vary the

number of attack sources and measure the filtering effectiveness Φ as shown in Fig. 5.8. As we

can see, the performance is quite stable as the traffic intensity grows. This is because we update

CBFs only with the suspicious flows which are identified by the sketch. In this way, we achieve

a scalable filtering. Also, the performance is also not sensitive to the increase of the number of

113

100 200 300 400 500 600 700 800 900
0.98

0.985

0.99

0.995

1

of attack sources

F

Merge Factor = 1

Merge Factor = 3

Merge Factor = 5

Merge Factor = 7

Merge Factor = 9

Figure 5.8: Accuracy evaluation by varying the number of attack sources

attack sources.

Defense against mixed types of attacks

The functions of UTF and ATF are not exchangeable. The UTF module can only filter spoofed

IP attack effectively and genuine IP attack traffic needs to be further examined by ATF. A single

ATF module can also perform filtering for the spoofed IP attack traffic, but it has relatively heavier

computing overhead compared with UTF. We further evaluate the performance of accuracy by

applying various defense deployments by embedding mixed attack traffic in the background traffic.

We generate the mixed attack as follows. The spoofed IP attack traffic is sent at the rate of 500

SYN packets per second and the genuine IP attack traffic is sent by 50 attack sources. We obtain

the filtering results by applying three deployments. They are deploying single UTF, deploying

single ATF and deploying both of them. The associated numbers of forward SYN packets are

114

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

Time(s)

#
 o

f
s
y
n

 p
a
c
k
e
ts

Total offered SYN

Normal offered SYN

UTF only

ATF only

UTF and ATF

Figure 5.9: Evaluation of defense against mixed types of attacks

shown in Fig. 5.9. As we can see, by only deploying UTF in the system is not enough. Most attack

traffic with genuine IPs will be forwarded normally. Also, although only placing the ATF module

in the system can filter the majority of both spoofed and genuine IP attack traffic, the accuracy

performance is not as good as deploying both of the two modules.

5.4 Defense against UDP flooding attacks

Various DDoS attacks are launched based on UDP protocol since UDP protocol is widely applied

in the internet, such as DNS resolution, stream media, online game and so on to ensure the quality

of service (QoS). It becomes one of the most effective methods for DDoS attack. The attackers

usually exploit UDP’s connectionless feature and its weakness in responding to the request. Such

features are utilized by the attacker to submit a stream of UDP data packet to the target system

which will fill the server’s responding request queue. As a result, the server will refuse the new

115

response request and the legitimate users cannot get the response of the server as usual [84].

In this section, we evaluate the impact of UDP flooding attacks on GridStat in the “GridStat

on Geni” project [85], and we further present a sketch-based defense scheme to fight against UDP

Flooding attacks. The sketch structure introduced in the previous chapters is employed again to

ensure the scalability performance. Our contribution mainly contains:

• We built a simulated environment for GridStat on Planet-Lab and evaluated the impact of

UDP flooding attacks on GridStat in such environment. We will show that UDP flooding

attacks do have a great impact on the QoS performance of GridStat, such as packet loss rate

and delay.

• We further propose a solution for fighting against UDP flooding attacks. To the best of our

knowledge, we are the first one to utilize sketch structure to achieve fine-grained filtering of

UDP flooding traffic with small space consumption.

116

5.4.1 Background

������������������	
 �������
��	

�	�����

��
��	

�	�����

��
��	

�������

�������

������

��
��	

Figure 5.10: GridStat Architecture

GridStat [86, 87] is a framework for power-grid communication centered around a middleware

network for power-grid data acquisition purpose. It is actually a status dissemination middleware,

and it is usually a special type of publish-subscribe network. The publishers publish the measure-

ments or signals from some electrical device in a power grid and the subscribers subscribe for data

that they are interested in. The GridStat communication infrastructure consists of a number of

status routers and the status routers are located between the publishers and the subscribers and are

responsible for forwarding the information from the publisher side to the subscriber side. Futher-

more, status routers in a single administrative domain forms a cloud and all the clouds are further

governed by QoS brokers. The QoS brokers are involved in finding if certain requirements can

be satisfied by the status routers. Fig. 5.10 represents the architecture of the GridStat. In order

117

to provides end-to-end QoS guarantees, the GridStat should be built based on protocol without

congestion control such as UDP. Thus, UDP flooding attacks will become a realistic threat to the

GridStat system. In this section, we evaluate the impact of UDP flooding attacks on the QoS per-

formance of GridStat and propose a defense scheme for mitigating damage caused by the attacks.

5.4.2 Proposed Approach

Overall Architecture

As we mentioned in the previous section, a single host-based system is inherently not robust e-

nough no matter where it is deployed. This is mainly due to the fact that a single host-based

scheme can be easily fooled by a sophisticate attacker, which can be considered as an intention-

al internet event. Attackers will always try to employ a large number of compromised machines

around the world to launch attacks and traffic that comes from every corner of the world can be

routed by different edge routers inside an AS. As a result, if we only take a single router into ac-

counts, the volume of attack traffic might not be aggregated at a detectable level for a detection

module while the final gather of attack traffic will still cause serious damage to victim servers.

Therefore, a collaborative approach which can comprehensively consider the global circumstance

will be a more attractive solution for defense.

118

Defense Node

Publishers Subscriber

Status

routers

Attacker

Drop packets

Figure 5.11: Illustration of a collaborative framework for mitigating UDP flooding attacks in Grid-

Stat

Our proposed approach is precisely designed based on a collaborative architecture. Fig. 5.11

illustrates the overall collaborative framework and we implement the prototype of GridStat on the

PlanetLab environment to evaluate the performance of our detection module. The implemented

GridStat prototype currently consists of publishers, status routers and subscribers which are al-

l critical components in the GridStat network and it can well simulate the real working flow of

GridStat. The publishers read data from trace files which were captured in the real GridStat envi-

ronment and send status messages to subscribers through status routers. Furthermore, one defense

node and one attacker node on the PlanetLab are also implemented. Each legitimate publisher

119

periodically sends status message to target subscribers through status routers. The status router-

s periodically collect and build local traffic statistics and report them to the defense node. The

defense node will then send feedback messages to instruct status routers to drop those malicious

flows based on the comprehensive global decision made from the reported statistics. To be specific,

the functionality of each key component in the defense framework is described as below.

Local defense modules deployed in status routers The local defense modules we implemented

in status routers are mainly responsible for:

• Summarizing traffic statistics from partial or all packets from both of two directional links

• Report the summarized traffic statistics to the global defense module periodically

• Receive feedback instructions from the global defense module and perform probabilistic

packet filtering

• Timely react to those DDoS events that can be detected at the local side

Global defense module The responsibility of global defense module we implemented mainly

contains:

• Receive those statistics reports from local defense modules

• Perform anomaly bucket detection based on packet volume

• Evaluate anomaly buckets and calculate the dropping probability for those malicious buckets

in sketch

120

• Send feedback instructions for filtering packets to local defense modules based on anomaly

detection results

Abnormal Buckets Identification

In our scheme, each bucket in the sketch contains four values (vt, vt−∆t, vbackup,Flag). vt is the

number of packets that are accumulated from t − ∆t to t, vt−∆t is the previous value of vt, and

vbackup is the value of vt right before the alarm occurs (or null if there has been no alarm). Flag

is set to 1 whenever the alarm condition is satisfied; otherwise it is set to 0. Here, the definition

of alarm conditions depends on the practical deployment, and we will further explain it when we

describe Algorithm 6 below. For each incoming record, we update the sketch with (ki, 1) where ki

is the SIP|DIP and 1 represents the number of this incoming record. Here, we use | as the string

concatenation operation. In the sketch we employed in our framework, rather than returning the

minimum value of vt as the original sketch does, the Sketch Query function in sketch returns the

minimum value of Flag among all the buckets corresponding to a specific SIP|DIP to indicate

whether this flow is suspicious. As we can see, the sketch adopted here only requires O(H ×K)

cells, which is constant.

The main purpose of sketch is to detect items with abnormal frequency. Every packet

must go through. When a new packet arrives, hash values of H hash functions are computed,

and the corresponding buckets are updated; the value in each bucket is incremented by 1. This

accumulation process repeats every ∆t seconds. The alarm condition is tested for all H × K

buckets periodically. If the alarm condition is satisfied, then the alarm flag associated with the

bucket is set to 1. Whenever there is an alarm, the previous v value of the bucket is recorded in the

121

vbackup for determining whether the raised alarm is terminated or not.

Algorithm 6: Adjustment procedure of Flag

1 for k = 1, h = 1 to K,H do
2 if Flag = 0 then
3 vt ← (1− α)vt−∆t + αvt ;
4 if vt ≥ (1 + θ)vt−∆t then
5 Flag ← 1 ;
6 vbackup ← vt−∆t ;
7 end
8 else
9 vt ← (1− α)vbackup + αvt ;

10 if vt < (1 + θ)vbackup then
11 Flag ← 0 ;
12 end
13 end
14 end

We use a light-weight EWMA technique to decide whether there is an anomaly in each

bucket, as shown in Algorithm 6. For each bucket, if the bucket status is normal, then we estimate vt

with an EWMA parameter α. Whenever vt ≥ (1+ θ)vt−∆t, which is considered as the satisfaction

of the alarm condition, an alarm is raised. θ is the parameter that represents the percentage above

the estimated value that can be considered to be an indication of anomalous pattern. The procedure

is different after an alarm was raised. In order to estimate when the generated alarm should be

terminated, we need to compare the current value with the specific value right before the time that

the alarm happened. Such specific value is recorded in vbackup before the alarm is generated. Also,

rather than using the previous value vt−∆t, we estimate the vt by vbackup in order to eliminate the

impact of the anomaly on the next following vt series.

122

Probabilistic Packet Filtering

For each incoming SIP|DIP key, we query the minimal value of alarm flag for this specific key. If

Sketch Query(key) = 1, then there may be an anomaly associated with the associated flow. The

more aggressive the flow is, the higher value those hashed buckets have. We need to punish more

for those flows with more aggressive behavior. Thus, we assign higher dropping probability for

those malicious flows associated with anomaly buckets compared with those normal flows. We

maintain a hash table named “FlowDropProbHashTable” with SIP|DIP as key and dropping prob-

ability as value for sending feedback information to the subscriber. Whenever a key is identified

as abnormal, the dropping probability will be calculated based on the values in the sketch and the

probability with SIP|DIP will be inserted in to the hash table “FlowDropProbHashTable”. The

dropping probability for an abnormal key is calculated as follows.

VNormal =

M∑
i=1

V i
Normal

M

P i
Drop =

(V i
Abnormal−VNormal)

+

V i
Abnormal

(5.3)

Where VNormal is the average value of all the buckets with Flag 0, and ∆+ is ∆ if ∆ > 0 and 0

otherwise.

Another thread is maintained to periodically traverse the hash table and send the dropping

probability information to those associated status routers to mitigate the damage.

123

5.4.3 Evaluation

The topology deployed on the PlanetLab is also shown in Fig. 5.11. We deploy three publishers,

three status routers, one subscriber, one attacker node and one defense node. The node settings for

the deployed topology are shown in Table 5.2.

Table 5.2: The node settings for the topology deployed on PlanetLab
Node role PlanetLab Node

Publisher
planetlab-4.eecs.cwru.edu
planet1.cs.rochester.edu

lefthand.eecs.harvard.edu

Status router
planetlab3.eecs.northwestern.edu

pluto.cs.brown.edu
planetlab04.cs.washington.edu

Subscriber plab4.eece.ksu.edu
Malicious node planet5.cs.ucsb.edu
Defense node planet-lab2.cs.ucr.edu

Table 5.3: The default parameter settings of sketch-based defense for UDP flooding attacks
Item Parameter Setting value

Interval for Periodical Sketch Construction ∆t 10s
Interval for Periodical Instruction Feedback ∆tfeedback 20s

Size of Sketch
H 10
K 1024

Anomaly Buckets Detection
α 0.3
θ 2

Legitimate node Packet rate 5 packets/s
Malicious node Packet rate 2500 packets/s

Unless otherwise noted, the default parameter settings for the experiments are shown in

124

the Table 5.3. We consider the packet loss rate, pass ratio of legitimate traffic and pass ratio of

legitimate traffic measured at the subscriber and average delay as the main performance metrics.

Evaluation of packet loss rate

0 50 100 150 200 250 300
0

20

40

60

80

100

Time (s)

L
o

s
s
 r

a
te

 (
%

)

Without defense

With defense

50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

3

m
a
li

c
io

u
s
 p

a
c

k
e

ts
 (

%
)

Figure 5.12: Evaluation of packet loss rate

In order to evaluate the impact of UDP flooding attacks on the packet loss, we made the malicious

node send flooding traffic with the default attack rate 2500 packets per second. The packet loss

rate is measured at the subscriber side. The malicious node starts sending flooding traffic at the

offset of 60 seconds. We repeat the experiments after we deploy the defense node and compare

the packet loss performance in order to evaluate the effectiveness of our defense method. The

experimental results are shown in the Fig. 5.12. As we can see, without deploying the defense

node, UDP flooding attacks do have great impact on the packet loss. The measured packet loss

rate is around 18% in the worst case. Also, the packet loss rate is unstable during the attack period.

125

After we deploy the defense node, the average packet loss rate is greatly reduced and becomes

steady.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

20

40

60

80

100

Attack rate (Packets/s)

L
o

s
s

 r
a

te
 (

%
) Without defense

With defense

m
a

li
c

io
u

s
 p

a
c
k

e
ts

 (
%

)

Figure 5.13: Loss rate VS. attack rate

We also measure the loss rate by varying the attack rate from 500 to 5500 packets per

second which is shown in Fig. 5.13. As we can see, the loss rate slightly increases as we en-

hance the attack rate without deploying the defense node. On the other hand, the performance is

unfluctuating if we employ the defense node.

126

Evaluation of accuracy

300 0 50 100 150 200 250 300
0

20

40

60

80

100

Time (s)

P
a
s
s
 r

a
ti

o
 o

f

le
g

it
im

a
te

 p
a

c
k
e
ts

 (
%

)

Without defense

With defense

Figure 5.14: Evaluation of pass ratio of legitimate traffic

0 50 100 150 200 250 300
0

20

40

60

80

100

Time (s)

P
a

s
s

 r
a

ti
o

 o
f

m
a
li

c
io

u
s
 p

a
c

k
e

ts
 (

%
)

Without defense

With defense

Figure 5.15: Evaluation of pass ratio of malicious traffic

127

We also evaluate the accuracy performance of our defense module. We measure the accuracy

performance from two aspects, which are the pass ratio of legitimate traffic and malicious traffic

measured at the subscriber side. Again, the malicious node starts sending flooding traffic at the

offset of 60 seconds and we repeat the experiments after we deploy the defense node and compare

the performance between them. The experimental results are shown in the Fig. 5.14 and Fig. 5.15.

As we can see, without deploying the defense node, the majority of malicious traffic successfully

arrives at the subscriber, which in turn saturates the subscriber’s processing capability while the

pass ratio of normal traffic becomes unstable due to the high packet loss in the network. After the

defense node is deployed, most of the malicious packets are filtered by status routers which are

instructed by the defense node while the normal traffic can reach the subscriber unmolested. We

notice that there are some defense delays (around 30 seconds) for the defense node to take effect.

This is because the defense node needs one interval for building current traffic profile and another

one interval for sending feedback to status routers.

128

5500 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

20

40

60

80

100

Attack rate (Packets/s)

P
a
s
s

 r
a
ti

o
 o

f
le

g
it

im
a
te

 p
a
c
k
e
ts

 (
%

)

Without defense

With defense

Figure 5.16: Pass ratio of legitimate traffic VS. attack rate

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

20

40

60

80

100

Attack rate (Packets/s)

P
a

s
s
 r

a
ti

o
 o

f
m

a
li
c

io
u

s
 p

a
c
k

e
ts

 (
%

)

Without defense

With defense

Figure 5.17: Pass ratio of malicious traffic VS. attack rate

We also measure the accuracy by varying the attack rate from 500 to 5500 packets per

second which are shown in Fig. 5.16 and Fig. 5.17. As we can see, the pass ratio of legitimate traffic

129

will decrease as we enhance the attack rate without deploying the defense node. This is because the

processing queues of status routers have been saturated by malicious packets and cannot forward

all legitimate packets to the subscriber. After we deploy the defense node, the majority of malicious

traffic is filtered. At the same time, the pass ratio of legitimate traffic is around 100% since the

processing queues of status routers are now recovered to the normal level. We also notice that

the pass ratio of malicious packets slightly decreases as the attack rate increases. This is because

the drop probability of malicious flows will increase as they become more aggressive in sending

packets in our detection module. The more aggressive the flow behaves, the more punishment it

receives.

Evaluation of average delay

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

Time (s)

D
e
la

y
 (

m
s
)

Without defense

With defense

le
g

it
im

a
te

 p
a
c
k
e
ts

 (
%

) Figure 5.18: Evaluation of average delay

130

We finally measure the average delay at the subscriber side with the same experimental settings

as described in the previous evaluation. Again, the UDP flooding attack starts at the offset of 60

seconds. As we can see from the Fig. 5.18, the average delay flitters after the attack starts without

deploying the defense node. On the other hand, the delay is steady-going and kept at the low level

when the defense node starts working.

5500 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

200

400

600

800

1000

Attack rate (Packets/s)

D
e
la

y
 (

m
s
)

Without defense

With defense

Figure 5.19: Average delay VS. attack rate

By varying the attack rate, we also evaluate the impact of attack rate on the average delay

which is shown in Fig. 5.19. We can see that the average delay will increase as we enhance the

attack rate without having the defense node work. The average delay becomes stable after we

deploy the defense node.

131

5.5 Conclusion

In this chapter, we aimed at a collaborative defense scheme against both TCP and UDP flooding

attacks, which are two of the most powerful and popular DDoS attacks. To be specific, we firstly

present a two-stage defense scheme to mitigate TCP flooding attacks. At the UTF stage, the

spoofed DDoS traffic is filtered by using two light-weight bloom filters. Then, malicious flows

originated from genuine source addresses will be probabilistically dropped according to their data

exchange behavior at the ATF stage. The main advantage of our approach is its space efficiency

since it does not need to keep per-flow state. Moreover, both spoofed and genuine IP DDoS

attacks can be well regulated. Futhermore, we built a simulated environment for GridStat on

PlanetLab, evaluated the impact of UDP flooding attacks on the GridStat and proposed a sketch-

based defense scheme to fight against UDP flooding attacks. Our approach employs the sketch

structure to ensure the scalability performance and make identification of regulations of flows

with low space consumption possible. The packets from malicious flows will be dropped more if

they behave more aggressive. Experimental results demonstrate the effectiveness of the proposed

framework.

132

CHAPTER SIX

CONCLUSION

In this thesis, an important issue is discussed: how to design an effective and efficient defense

framework against DDoS attacks, which are probably the most serious threat to today’s Internet.

In order to address this issue, we proposed and evaluated several detection and defense schemes in

this work. We do not only focus on the accuracy but also the scalability performance in our design.

6.1 Stealthy DDoS attacks detection

The very first step of our developments for the overall system is to accurately and efficiently detect

when attacks happen. The research work of stealthy DDoS attack detection precisely fits into this

step.

After introducing a new type of DDoS attacks called stealthy DDoS attacks, which can be

launched by a sophisticated attacker, we propose a detection approach based on the decomposition

of time series, which divides the time series extracted from FCE series into trend and steady ran-

dom components. We then analyze different components to detect the anomaly in both long-term

and short-term changes of the traffic. By applying different techniques to each component sep-

arately and evaluating results synthetically, the approach can greatly reduce both false negatives

and false positives. Furthermore, to make our method more generally applicable, we apply the

adaptive sliding window to our approach. The experiment results using real Internet traces show

the effectiveness of this approach. To be specific, the best overall FPR in our experiment is around

4.3% and the overall FNR is around 9.8%.

133

6.2 TrustGuard

Only knowing when attacks happen is not enough. We need to have some ways to react to the

attacks. Thus, knowing where the attacks happen is more important. In order to provide a fine-

grained control over the traffic, we need to differentiate legitimate flows from malicious ones at

the flow level, which is exactly the goal of development of TrushGuard.

The TrustGuard employs a two-tier model to reduce the size of the search space and make

identification of specific attackers and victims possible. Our macro level detector can accurately

identify suspected victims and the micro level detector can then confirm and refine those suspi-

cions. We believe that this approach can accurately identify DDoS attacks down to the instigating

flows and that this information can be used to improve firewall and IDS rules.

6.3 Sketch-based detection

Although the TrustGuard can provide flow level filtering, it still needs to keep per-flow state in or-

der to accumulate credit for each flow. Thus, it cannot scale well with the high-speed traffic. Aimed

at solving this issue, we further propose a sketch-based detection framework to achieve scalable

performance in terms of space consumption while it still provides victim pinpoint capability.

The sketch-based detection scheme employs a two-level model to reduce both the size of

the search space and time, and further make identification of specific victims possible in the high-

speed network environment. We adopt the MCS structure in coarse-level detection to achieve fast

detection, and the BCS structure in the fine-level to further guarantee the accuracy. We believe that

this approach can accurately identify victims of DDoS attacks with a low memory footprint and

134

give a timely response. We also propose a SRAM-based parallel architecture to achieve high-speed

process. We finally analyze accuracy estimation issue and demonstrate a collaborative detection

scheme based on the original single-host detection scheme. Experimental results show that our

scheme outperforms previous sketch-based methods with respect to both storage scalability and

detection accuracy.

6.4 Sketch-based collaborative defense framework

Most of the previous works focused on the detection aspect. In this work, we developed a sketch-

based collaborative defense framework to mitigate DDoS attacks. Aimed at defending against

attacks launched with two main different protocols, we proposed defense schemes against both

TCP and UDP flooding attacks.

We firstly present a two-stage defense scheme to mitigate TCP flooding attacks. At the UTF

stage, the spoofed DDoS traffic is filtered by using two light-weight bloom filters. Then, malicious

flows originated from genuine source addresses will be probabilistically dropped according to

their data exchange behavior at the ATF stage. The main advantage of our approach is its space

efficiency since it does not need to keep per-flow state. Moreover, both spoofed and genuine IP

DDoS attacks can be well regulated.

In order to fight against threads from UDP flooding attacks, we further built a simulated en-

vironment for GridStat on PlanetLab, evaluated the impact of UDP flooding attacks on the GridStat

and proposed a sketch-based defense scheme to fight against UDP flooding attacks. Our approach

employs the sketch structure to ensure the scalability performance and make identification of reg-

135

ulations of flows with low space consumption possible. The packets from malicious flows will be

dropped more if they behave more aggressive. Experimental results demonstrate the effectiveness

of the proposed framework.

Compared with previous state-of-the-art defense frameworks, our framework solves the

three existing key issues in previous approaches. (a) We proposed several detection schemes to

accurately detect when and where attacks happen. They can be deployed at the victim side to raise

alerts with small delay to ensure timely reaction to attacks. Also, they can be used as a supplement

of current IDS systems to reduce the heavy weight flow-level inspections. This is because those

detection modules can be placed before defense modules and the defense modules can only be

triggered when the attack event is detected. Furthermore, detection at an early stage is critical

for timely response to attack events at the local side. Whenever attacks happen, local detection

modules will directly react to the malicious flows without interrupting the global module. (b) Our

framework was proposed to protect an edge network rather than Internet scale network. By this

way, the implementation feasibility can be greatly enhanced since all the edge routers belong to

a single AS which make them possible to collaborate with each other. Also, the framework can

be incrementally deployed across the whole Internet in the future. (c) The deployment incentives

can also be maximized since the protected edge network belongs to the same AS. However, the

previous approach requires source-end edge routers to throttle malicious traffic in order to protect

victim-end edge networks. Thus, the deployment incentives are few which render it hard to be

implemented in practice.

136

6.5 Future works

The future works of our research work mainly fall into four aspects which are described below.

Firstly, since there are many parameter settings in our conducted experiments and the per-

formance of each individual detection and defense module heavily depends on the settings, how to

develop an automatic and adaptive parameter adjustment mechanism is definitely a critical issue

that needs to be considered when we want to deploy our modules in reality.

Secondly, there exist a number of malicious events besides TCP and UDP flooding attacks

such as ICMP flooding, ACK flooding and scanning activities. Since those attacks also have high

frequency of certain feature, the sketch structure, which is used to detect frequency anomalies, can

definitely be applied to detect these attacks. Thus, how to extend our current sketch-based DDoS

defense framework to defend against these attacks is another issue that needs to be addressed. In

fact, we are currently working on developing sketch-based methods to detect scanning activities

and experiments have shown the effectiveness of sketch-based methods.

Thirdly, our modules need to be integrated in the existing intrusion detection systems such

as Snort or Bro. The main functionalities of current Snort and Bro focus on packet classifica-

tion and deep packet inspection. How these existing modules will impact the performance of our

modules still needs to be evaluated when we integrate them into the system. For example, since

the existing modules require certain amount of space consumption, the remaining memory for our

modules may be at a very low level.

Last but not least, current framework is still implemented on a relatively stable environmen-

t. There are several issues that need to be considered when we deploy the developed framework

137

on the real Internet. (a) To what extent can our system be resilient to unexpected hardware failure?

(b) To what extent can the network congestion impact the performance of our framework when

we deploy it in reality? (c) Since our current framework potentially suffers from a single point of

failure problem, certain mechanism that is able to provide backup and recovery ability is definitely

necessary for a robust overall system.

138

BIBLIOGRAPHY

[1] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Attacking DDoS at the source. In Pro-
ceedings of the 10th IEEE International Conference on Network Protocols (ICNP), pages
312–321, 2002.

[2] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-based defense a-
gainst DDoS attack. In Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2002.

[3] George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robinson. A framework for a
collaborative DDoS defense. In Proceedings of Computer Security Applications Conference
(ACSAC), pages 33–42, 2006.

[4] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS defense mecha-
nisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53, Apr 2004.

[5] Chang and R.K.C. Defending against flooding-based distributed denial-of-service attacks: a
tutorial. IEEE Communications Magazine, 40(10):42–51, Oct 2002.

[6] David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring internet denial-of-service
activity. In Proceedings of USENIX Security, 2001.

[7] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DoS-resistant authentication with
client puzzles. Lecture Notes In Computer Science, 2133:170–177, 2000.

[8] Chen Y. W, Hsiang K. S, and Hsieng T. Y. Study on the prevention of SYN flooding by using
traffic policing. In Proceedings of Network Operations and Management Symposium, pages
593–604, Hawaii, Apr 2000.

[9] Xin Liu, Xiaowei Yang, and Yanbin Lu. To filter or to authorize: Network-layer DoS defense
against multimillion-node botnets. In Proceedings of ACM SIGCOMM, 2008.

[10] B. Al-Duwairi. Mitigation and Traceback Countermeasures for DDoS Attacks. Ph.d. disser-
tation, Iowa State University, 2005.

[11] PlanetLab. http://planet-lab.org/.

[12] Yanxiang He, Wei Chen, Wenling Peng, and Bin Xiao. An efficient and practical defense
method against DDoS attack at the source-end. In Proceedings of the 11th International
Conference on Parallel and Distributed Systems - Workshops - Volume 02, pages 265–269,
Washington, DC, USA, 2005. IEEE Computer Society.

[13] K. Park and H. Lee. On the effectiveness of route-based packet filtering for distributed DoS
attack prevention in power-law internets. In Proceedings of ACM SIGCOMM, 2001.

139

[14] S. Chen and Q. Song. Perimeter-based defense against high bandwidth DDoS attacks. IEEE
Trans. Parallel Distrib. Syst., 16(6):526–537, 2005.

[15] Kejie Lu, Dapeng Wu, and Jieyan Fan. Robust and efficient detection of DDoS attacks for
large-scale internet. Computer Networks: The International Journal of Computer and T-
elecommunications Networking, 51(18):5036–5056, December 2007.

[16] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. Practical network support
for IP traceback. In Proceedings of the conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, pages 295–306, New York, NY, USA,
2000. ACM.

[17] Dongwon Seo, Heejo Lee, and A. Perrig. PFS: Probabilistic filter scheduling against dis-
tributed denial-of-service attacks. In Proceedings of the IEEE 36th Conference on Local
Computer Networks (LCN), pages 9–17, October 2011.

[18] J. Francois, I. Aib, and R. Boutaba. FireCol: A collaborative protection network for the
detection of flooding DDoS attacks. IEEE/ACM Transactions on Networking, 20(6):1828–
1841, December 2012.

[19] P. Ayres, H. Sun, and H. Chao. ALPi: A DDoS defense system for high-speed networks. IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 24(10):1864–1876, 2006.

[20] L. Kencl and C. Schwarzer. Traffic-adaptive packet filtering of denial of service attacks. In
Proceedings of the 2006 International Symposium on WOWMOM, June 2006.

[21] Huizhong Sun, Wingchiu Ngan, and H. Jonathan Chao. RateGuard: A robust distributed
denial of service (DDoS) defense system. In Proceedings of Globecom2009, 2009.

[22] Haining Wang, Danlu Zhang, and Kang G. Shin. Detecting SYN flooding attacks. In Pro-
ceedings of IEEE INFOCOM, 2002.

[23] Cheng Jin, Haining Wang, and Kang G. Shin. Hop-count filtering: An effective defense
against spoofed DDoS traffic. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 30–41, New York, NY, USA, 2003. ACM.

[24] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah, and H. Jonathan Chao. PacketScore:
Statistics-based overload control against distributed denial-of-service attacks. In Proceedings
of IEEE INFOCOM, 2004.

[25] Q Li, EC Chang, and MC Chan. On the effectiveness of DDoS attacks on statistical filtering.
In Proceedings of IEEE INFOCOM, 2005.

[26] Lei Liu, Xiaolong Jin, Geyong Min, and Li Xu. Real-time diagnosis of network anomaly
based on statistical traffic analysis. In Proceedings of the IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 264–
270, June 2012.

140

[27] Mohit Mehta, Kanika Thapar, George Oikonomou, and Jelena Mirkovic. Combining speak-
up with defCOM for improved DDoS defense. In Proceedings of the IEEE International
Conference on Communications (ICC), pages 1708–1714, 2008.

[28] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott Shenker.
DDoS defense by offense. In Proceedings of ACM SIGCOMM, 2006.

[29] Jake D. Brutlag. Aberrant behavior detection in time series for network monitoring. In
Proceedings of LISA XIV, Dec 2000.

[30] Haiqin Liu and Min Sik Kim. Real-time detection of stealthy DDoS attacks using time-series
decomposition. In Proceedings of IEEE International Conference on Communications 2010,
May 2010.

[31] A. Kuzmanovic and E. Knightly. Low-rate TCP-targeted denial of service attacks. (the shrew
vs. the mice and elephants). In Proceedings of ACM SIGCOMM, 2003.

[32] C.M. Cheng, H.T. Kung, and K.S. Tan. Use of spectral analysis in defense against DoS
attacks. In Proceedings of 2002 IEEE GLOBECOM, Taipei, China, 2002.

[33] Yu Chen and Kai Hwang. Collaborative detection and filtering of shrew DDoS attacks using
spectral analysis. Journal of Parallel and Distributed Computing, 66(9):1137–1151, Sep
2006.

[34] X. Luo and R. K. Chang. On a new class of pulsing denial-of-service attacks and the defense.
In Proceedings of Network and Distributed System Security Symposium, San Diego, CA, Feb
2005.

[35] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the transients of adaptation for RoQ at-
tacks on internet resources. In Proceedings of IEEE ICNP, pages 184–195, Berlin, Germany,
Oct 2004.

[36] S. Ebrahimi-Taghizadeh, A. Helmy, and S. Gupta. TCP vs. TCP: a systematic study of
adverse impact of short-lived TCP flows on long-lived TCP flows. In Proceedings of IEEE
INFOCOM 2005, pages 926–937, Miami, USA, Mar 2005.

[37] J. D. Hamilton. Time Series Analysis. Princeton University Press, 1994.

[38] Cheng Guang, Gong Jian, and Ding Wei. A time-series decomposed model of network traffic.
Lecture Notes in Computer Science, pages 338–345, 2005.

[39] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes : Theory and Application.
Prentice Hall, 1993.

[40] B.E. Brodsky and B.S. Darkhovsky. Nonparametric Methods in Changepoint Problems. K-
luwer Academic Publishers, 1993.

141

[41] J. W. Haines, R. P. Lippmann, D. J. Fried, M. A. Zissman, E. Tran, and S. B. Boswell. 1999
DARPA intrusion detection evaluation: Design and procedures. Technical Report 1062, Lin-
coln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, U.S.A.,
February 2001.

[42] Jun Yang, Ying Li, Benxiong Huang, and Jiuqiang Ming. Preventing DDoS attacks based on
credit model for P2P streaming system. In Proceedings of the 5th International Conference
on Autonomic and Trusted Computing, 2008.

[43] Jayashree Padmanabhan, K. S. Easwarakumar, Gokul B., and Harishankar S. Trust based
traffic monitoring approach for preventing denial of service attacks. In Proceedings of the
2nd International Conference on Security of Information and Networks, 2009.

[44] Maitreya Natu and Jelena Mirkovic. Fine-grained capabilities for flooding DDoS defense
using client reputations. In LSAD ’07: Proceedings of the 2007 workshop on Large scale
attack defense, New York, NY, USA, 2007. ACM.

[45] Haiqin Liu, Yan Sun, Victor C. Valgenti, and Min Sik Kim. TrustGuard: A flow-level
reputation-based DDoS defense system. In Proceedings of the 5th IEEE International Work-
shop on Personalized Networks, Las Vegas, January 2011.

[46] Paul Hick, Emile Aben, Kc Claffy, and Josh Polterock. The CAIDA DDoS At-
tack 2007 Dataset. http://www.caida.org/data/passive/ddos-20070804_
dataset.xml (accessed on 2010-02-28).

[47] Colleen Shannon, Emile Aben, kc claffy, and Daniel E Andersen. CAIDA Anonymized 2008
Internet Traces Dataset (20081120). http://www.caida.org/data/passive/
passive_2008_dataset.xml (accessed on 2010-02-28).

[48] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and Hui Zhang. An empir-
ical evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, New York, NY, USA, 2008.

[49] Z. Morley Mao, Vyas Sekar, Oliver Spatscheck, Jacobus van der Merwe, and Rangarajan
Vasudevan. Analyzing large DDoS attacks using multiple data sources. In Proceedings of the
2006 SIGCOMM workshop on Large-scale attack defense, Pisa, Italy, 2006.

[50] H. Rahmani, N. Sahli, and F. Kammoun. Joint entropy analysis model for DDoS attack
detection. In Proceedings of the Fifth International Conference on Information Assurance
and Security, August 2009.

[51] H. Wang, D. Zhang, and K. G. Shin. Change-point monitoring for the detection of DoS
attacks. IEEE Transactions on Dependable and Secure Computing, 1(4):193–208, October
2004.

142

[52] Tu Xu, Da Ke He, and Yu Zheng. Detecting DDoS attack based on one-way connection den-
sity. In Proceedings of the 10th IEEE Singapore International Conference on Communication
systems, October 2006.

[53] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the 13th
USENIX Conference on System Administration, November 1999.

[54] V. Paxson. Bro: A system for detecting network intruders in real-time. Computer Networks,
31(23–24):2435–2463, December 1999.

[55] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic
anomalies. In Proceedings of ACM SIGCOMM, August 2004.

[56] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic fea-
ture distributions. In Proceedings of ACM SIGCOMM, August 2005.

[57] Ramana Rao Kompella, Sumeet Singh, and George Varghese. On scalable attack detection in
the network. IEEE/ACM Transactions on Networking, 15(1):14–25, February 2007.

[58] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches for
efficient and accurate change detection over network data streams. In Proceedings of the
ACM SIGCOMM Internet Measurement Conference, pages 207–212, Taormina, Sicily, Italy,
October 2004.

[59] R. Schweller, Zhichun Li, Yan Chen, Yan Gao, A. Gupta, Yin Zhang, P. Dinda, Ming-Yang
Kao, and G. Memik. Reverse hashing for high-speed network monitoring: Algorithms, eval-
uation, and applications. In Proceedings of IEEE INFOCOM, April 2006.

[60] Osman Salem, Sandrine Vaton, and Annie Gravey. A scalable, efficient and informative
approach for anomaly-based intrusion detection systems: theory and practice. International
Journal of Network Management, 20:271–293, September 2010.

[61] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani. Streaming algorithms for robust,
real-time detection of DDoS attacks. In Proceedings of the 27th International Conference on
Distributed Computing Systems, June 2007.

[62] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. QuickSAND: Quick summary
and analysis of network data. Technical Report 2011-43, DIMACS, 2001.

[63] Shui Yu, Wanlei Zhou, Weijia Jia, Song Guo, Yong Xiang, and Feilong Tang. Discriminating
DDoS attacks from flash crowds using flow correlation coefficient. IEEE Transactions on
Parallel and Distributed Systems, 23(6):1073–1080, June 2012.

[64] Haiqin Liu, Yan Sun, and Min Sik Kim. Fine-grained DDoS detection scheme based on
bidirectional count sketch. In Proceedings of IEEE International Conference on Computer
Communication Networks, Hawaii, August 2011.

143

[65] Haiqin Liu, Yan Sun, and Min Sik Kim. A scalable DDoS detection framework with victim
pinpoint capability. Journal of Communications, 6(9):660–670, December 2011.

[66] Auckland-IV trace data, 2001. http://wand.cs.waikato.ac.nz/wand/wits/
auck/4/.

[67] S. Sarvotham, R. Riedi, and R. Baraniuk. Network traffic analysis and modeling at the con-
nection level. In Proceedings of Internet Measurement Workshop, San Francisco, November
2001.

[68] Kuzmanovic Aleksandar and Knightly Edward W. Low-rate TCP-targeted denial of service
attacks and counter strategies. IEEE/ACM Transactions on Networking, 14:683–696, August
2006.

[69] Carter J. Lawrence and Wegman Mark N. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979.

[70] Xiaowei Yang, David Wetherall, and Thomas Anderson. A doS-limiting network architec-
ture. In Proceedings of SIGCOMM, 2005.

[71] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein. SOS: An architecture for miti-
gating dDoS attacks. IEEE Journal on Selected Areas in Communications, 22(1), January
2004.

[72] Christos Papadopoulos, Robert Lindell, John Mehringer, and Alefiya Hussain. COSSACK:
Coordinated suppression of simultaneous attacks. In Proceedings of DISCEX, pages 2–13,
2003.

[73] D.K.Y. Yau, J. C. S. Lui, and F. Liang. Defending against distributed denial of service attacks
with max-min fair server-centric router throttles. IEEE/ACM Transactions on Networking,
13(1):29–42, 2005.

[74] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-based de-
fense mechanisms countering the DoS and DDoS problems. ACM Computing Surveys, 39(1),
2007.

[75] Jonathan Lemon. Resisting SYN flood DoS attacks with a SYN cache. In Proceedings of the
USENIX BSDCon, 2002.

[76] Yuichi Ohsita, Shingo Ata, and Masayuki Murata. Deployable overlay network for defense
against distributed SYN flood attacks. In Proceedings of Internatonal Conference on Com-
puter Communications and Networks, 2005.

[77] SYN cookies.

[78] Ping Du and Akihiro Nakao. Overcourt: DDoS mitigation through credit-based traffic segre-
gation and path migration. Computer Communications, 33(18):2164–2175, 2010.

144

[79] Xin Liu, Xiaowei Yang, and Yong Xia. NetFence: Preventing internet denial of service from
inside out. In Proceedings of ACM SIGCOMM, 2010.

[80] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah, and H. Jonathan Chao. PacketScore:
Statistical-based overload control against distributed denial-of-service attacks. In Proceed-
ings of IEEE INFOCOM, 2004.

[81] Qiming Li, Ee-Chien Chang, and Mun Choon Chan. On the effectiveness of DDoS attacks
on statistical filtering. In Proceedings of IEEE INFOCOM, 2005.

[82] Xiaowei Yang, David Wetherall, and Thomas Anderson. TVA: A DoS-limiting network
architecture. IEEE/ACM Transactions on Networking, 16(6):1267–1280, 2008.

[83] Changhua Sun, Chengchen Hu, Yi Tang, and Bin Liu. More accurate and fast SYN flood
detection. In Proceedings of the 18th Internatonal Conference on Computer Communications
and Networks, 2009.

[84] Juniper Networks. Denial of service and attack protection. white paper, 2006.

[85] Ruma Paul, Divya Giri, Haiqin Liu, Victor Valgenti, Carl Hauser, and Min Sik Kim. GridStat
on GENI: Simulating a smart power grid infrastructure over GENI. First DFG/GENI Doctoral
Consortium, 2011.

[86] GridStat. http://www.gridstat.net.

[87] Carl H. Hauser, David E. Bakken, Ioanna Dionysiou, K. Karalrd Gjermud, Venkata S. Irava,
Joel Helkey, and Anjan Bose. Security, Trust, and QoS in Next-Generation Control and
Communication for Large Power Systems. International Journal of Critical Infrastructures,
2008.

145

Appendix ONE

PUBLICATIONS

A.1 Journal

• Haiqin Liu, Yan Sun, Min Sik Kim, “A Scalable DDoS Detection Framework with Victim

Pinpoint Capability”, Journal of Communications, Vol. 6(9), pp. 660-670. Dec. 2011.

• Haiqin Liu, Min Sik Kim, “Fine-Grained Defense against DDoS Attacks Using Sketch and

Bloom Filters”, prepared to be submitted to a journal.

A.2 Conference

• Haiqin Liu, Yan Sun, Min Sik Kim, “Fine-Grained DDoS Detection Scheme Based on Bidi-

rectional Count Sketch”, In Proceeding of the International Conference on Computer Com-

munication Networks (ICCCN’11), Aug. 2011.

• Yan Sun, Haiqin Liu, Min Sik Kim, “Using TCAM Efficiently for IP Route Lookup”, In Pro-

ceeding of the 8th IEEE Consumer Communications & Networking Conference (CCNC’11),

Jan. 2011.

• Haiqin Liu, Yan Sun, Victor Valgenti, Min Sik Kim, “TrustGuard: A Flow-level Reputation-

based DDoS Defense System”, In Proceedings of the 5th IEEE International Workshop on

Personalized Networks (PerNets 2011) , Jan. 2011.

• Haiqin Liu, Yan Sun, Min Sik Kim, “Provider-Level Content Migration Strategies in P2P-

Based Media Distribution Networks”, In Proceedings of the 3rd IEEE International Work-

146

shop on Digital Entertainment, Networked Virtual Environments, and Creative Technology

(DENVECT 2011) , Jan. 2011.

• Yan Sun, Haiqin Liu, Victor Valgenti, Min Sik Kim, “Hybrid Regular Expression Matching

for Deep Packet Inspection on Multi-core Architecture”, In Proceeding of the International

Conference on Computer Communication Networks (ICCCN’10), Aug. 2010.

• Haiqin Liu, Min Sik Kim, “Real-Time Detection of Stealthy DDoS Attacks Using Time-

Series Decomposition”, In Proceedings of IEEE International Conference on Communica-

tions 2010 (ICC’10), May 2010.

• Yan Sun, Haiqin Liu, Min Sik Kim, “Energy-Efficient Routing Protocol in Event-Driven

Wireless Sensor Networks”, In Proceeding of the IEEE ICC Workshop on Energy Efficiency

in Wireless Networks & Wireless Networks for Energy Efficiency (E2Nets 2010), May. 2010.

A.3 Poster

• Haiqin Liu, Min Sik Kim, “TrustGuard: a flow-level reputation-based DDoS Defense Sys-

tem”, Poster in Academic Showcase of WSU, Pullman, WA, 2010.

• Haiqin Liu, Min Sik Kim, “A new approach based on FFT for path selection in networks”,

Poster in Academic Showcase of WSU, Pullman, WA, 2009.

147

