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DESIGN AND EVALUATION OF PACKET CLASSIFICATION SYSTEMS

ON MULTI-CORE ARCHITECTURE

Abstract

by Shariful Hasan Shaikot, Ph.D.
Washington State University

August 2012

Chair: Min Sik Kim

Packet classification (PC) is the core mechanism used by network devices such as edge

routers, firewalls, and intrusion detection systems to classify incoming traffic based on the classifi-

cation policy. In decision-tree-based PC, packets are classified by searching in tree data structure.

However, tree search presents significant challenges because it requires a number of unpredictable

and irregular memory accesses. Packet classification is per-packet operation and memory latency

is considerably high (caused by cache and TLB misses). The growing trend of number of rules

in the classifier coupled with the constant increase in link speeds makes wire-speed classification

a challenging task. Hence, satisfactory performance of PC still remains elusive at the wire speed.

In this dissertation, we propose several novel ideas to improve the look up performance of packet

classification system. They are:

1. An efficient memory layout for the tree data structure which ensures the movement of data

optimally among the different levels of the memory hierarchy on modern general purpose

processors. In particular, the number of accessed cache lines (and memory pages) is mini-

mized by our proposed memory layout resulting in less number of cache and TLB misses;

2. npf, a traffic-adaptive packet classification system which exploits the potentiality of traffic
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locality to optimize the average look up time. It dynamically reorganizes the internal data

structure in order to adapt to the traffic characteristics. Unlike existing approaches requiring

a separate, off-line reorganization phase, npf performs reorganization on-line with little

overhead, resulting in improved look up time per packet on average;

3. Pnpf, a parallel traffic-aware classification system that exploits the strong computational

power and thread-level parallelism capabilities of modern multi-core general purpose pro-

cessors in order to achieve Gbps classification rate;
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CHAPTER one

INTRODUCTION

1.1 Packet Classification

Today’s Internet traffic consists of different types of traffic, such as time sensitive, ma-

licious or benign. Thus, every Internet core and edge router or firewall today needs to treat these

traffic mix differently. Packet classification is a technique that is used by these network devices

to classify the traffic and process them accordingly. For example, an Intrusion Detection System

(IDS) classifies the packet either as benign or malicious based on the policy in the rule-set. The

rule-set consists of multiple rules that characterize the pattern of the malicious activity. Individual

entries for classifying a packet are called rules. For instance, a typical firewall rule specifies that

packets from which subnet should be blocked in order to protect network against malicious attacks.

In this context, the packet classification problem is to determine the first matching rule for each

incoming packet.

Recent advancement in transmission link rates (Gbps) at the core and edge of the Internet

and growing trend of large rule-sets size [4] pose challenges on the existing traditional packet

classifiers. Currently the largest rule-set in use contain thousands of rules and each rule involves

five or more header fields. Tens of thousands of rule in a rule set are expected in the future.

Currently, core routers are connected by OC-768 (40 Gbps) link and edge routers are connected

by OC-192 (10 Gbps) link. It is estimated that in worst case scenario, more than 30 million

packets need to be classified in a second to perform wire-speed processing in OC-192 i.e. the

classification results must be produced every 32 ns. Therefore, packet classification is still an open

and challenging problem and any technique that can reduce the lookup time per packet can be

useful in practice for fast packet classification.
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1.2 Problem Statement of Packet Classification

Table 1.1: An example of a typical rule-set

ruleID SrcIP DestIP SrcPort DestPort Protocol Action
1 * * [600,610] 80 TCP Accept
2 * * [1000,1024] [1024,65535] TCP Reject
3 * * 23 80 TCP Accept
4 * 66.166.49.30 25 1024 TCP Reject
5 66.166.49.151 * 22 * TCP Accept
6 * 66.166.49.30 * * UDP Reject
7 * * [1000,1024] 80 TCP Accept
8 * * * * * Reject

Packet classifier categorizes packets based on a set of pre-defined rules that represent

the classification policy. Typically, the values of specific fields in packet headers are used in

packet classification. For example, in IPv4, the IP 5-tuples, the source/destination IP addresses,

source/destination port numbers and protocol are used for classifying packets. Other header fields,

e.g. the TCP flags, can also be used for the classification. The rule database or rule-set consists of

a finite sequence of rules, R1,R2, . . . ,RN . Rules in the rule-set contain values for each of the five

fields. The rules can be a combination of an exact match, prefix match or range match over various

fields of the packet header. The packet header field should:

1. exactly match the rule field in an exact match

2. match with the rule field that is a prefix of the packet header in a prefix match

3. lie within the range specified by the rule field in a range match

2



For example, exact matching is useful for protocol, prefix matching is useful for taking

some action for a certain subnet and range matching is applicable for situation where port number

ranges is specified. Each rule Ri is a combination of d values, one for each header field or dimen-

sion and has an associated action Ai which decides the fate of the packet. In a typical rule-set,

A = {accept, reject}. We say that a packet P matches a rule if all the header fields of P match all

the corresponding rule-fields of R. For example, according to Table 1.1, a packet P matches ruleID

1 if the TCP packet is originated from any IP address with source port between 600–610 and is

destined to destination port 80 for any IP address. Since any packet may match multiple rules in

a typical rule-set, the first matching rule (based on the rule ordering) is given the highest priority.

Usually, the rule’s position in an ordered list of rules defines its priority. If a packet does not match

any of the rules in the rule-set, then the fate of the packet is decided by the default rule which is

usually set by the network administrator.

1.3 Solutions of Packet Classification Problem

The most simple solution of packet classification problem is a technique that linearly searches

through the rule-set to find a matching rule. However, for large rule-sets that often contain hun-

dreds to thousands of entries, this simple and memory efficient technique is unacceptably slow

and classification must be performed at link-speed in order to avoid creating a bottleneck. In or-

der to improve the search times, specialized data structures, geometric algorithms, and heuristics

have been proposed or expensive custom hardware such as Ternary Content Addressable Memory

(TCAM), Application-specific Integrated Circuit (ASIC), Field-programmable Gate Array (FPGA)

has been embraced to tackle the problem. Both of these approaches have their own pros and cons

in terms of performance, scalability and cost. Comprehensive surveys of packet classification

techniques can be found in [5–7]. There have been two major threads of research addressing the

3



problem: software-based (algorithmic) solutions and hardware-based (TCAM-based) solutions. In

this section, we discuss certain high level characteristics of both threads of solutions.

1.3.1 Hardware-based solutions

Ternary Content Addressable Memories (TCAMs) are special-purpose memory modules which al-

low three possible values to be stored in a memory cell, i.e. 0, 1, or x (don’t care) and can execute

fast parallel searches on all of its stored contents simultaneously. TCAMs are the most widely

used packet classification technique in high performance network routers because of their deter-

ministic and high-speed lookup (TCAM can perform an IP address lookup in one clock cycle).

The high degree of parallelism [5] supported by TCAMs make them effective for using in packet

classification. TCAM-based scheme can classify 250 million packets per second, which satisfies

the throughput demands of all the existing networks today [8]. The use of TCAMs in packet clas-

sification (routing table lookups) was first proposed by McAuley and Francis [9]. While TCAMs

remain the most dominant solution for high performance packet classification in network routers,

it suffers from several deficiencies [6] compared to commodity hardware: (1) expensive (high cost

per bit relative to other memory technologies), (2) storage inefficiency (inefficient representation

of range match fields), (3) high power consumption, and (4) limited scalability to long input keys,

(5) lack of flexibility and programmability, (6) unsuitable for dynamic rules, since incremental

updates usually require many TCAM entries to be shifted. Compared to static random access

memories (SRAMs), TCAMs are expensive and do not scale well with respect to clock rate, power

consumption, or circuit area with rule-set size. That is why the algorithmic alternatives for general

packet classification using SRAM/DRAM are still being considered. A detailed summary of the

trade-offs involved between software and TCAM-based approaches can be found in [6, 10].
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1.3.2 Software-based solutions

Software-based classification is the most flexible and enables more sophistication and complexity

at the cost of slower execution time. Packet classification algorithms use two dominant resources,

memory and time. For example, packet classification problem can be mapped to the point location

problem where one has to find the enclosing region of a query point, given a set of non-overlapping

regions. In the context of packet classification, rules define hyper-cubes and a packet defines a point

in the space. The goal is to determine the highest priority hyper-cube covering a given point. Point

location in computational geometry has proven to be difficult. Assuming there are n rules and d

dimensions, [11] shows that it is possible to achieve O(logn) lookup time, but with a complexity

of O(nd) in storage; while optimizing for storage leads to O(n) storage requirements, a lookup

may take O(logd−1 n) time to finish. Clearly, both extremes are unacceptable in practice because

with just 1000 rules and 3 fields, O(nd) space is about 1GB; and O(logd−1 n) time is about 100

memory accesses [12].

The Packet classification problem has been extensively studied and consequently numerous

algorithms and architectures for packet classification have been proposed. The comprehensive

survey [6] presents a taxonomy that breaks the design space into four regions based on the high-

level approach to the problem. The high-level approaches to finding the best matching rule or rules

for a given packet:

• Exhaustive Search: all rules in the rule-set are searched sequentially

• Decomposition: The multiple field search is decomposed into instances of single field searches,

and searches are then performed independently on each packet header field and finally the

classification result is determined by combining these independent intermediate results
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• Decision Tree: a decision tree is constructed from the rules in the rule-set and the packet

header fields are used to traverse the decision tree to find the matching rule

• Tuple Space: the rule-set is partitioned according to the number of specified bits in the rules.

The partitions or a subset of the partitions are then probed using simple exact match searches

Crossproducting [13] was one of the first techniques to employ decomposition. The obser-

vation that the number of unique field specifications is significantly less than the number of rules

in the rule-set motivated the design of Crossproducting. For example, a rule-set containing 100

rules may contain only 17 unique source address prefixes, 10 unique destination address prefixes,

11 unique source port ranges, etc. Classification is done first by constructing a crossproduct table

from the rules in the rule-set and then by performing lookup into this table using packet header

values. The entries in the direct lookup table (crossproduct table) are all possible field value com-

binations (cross-products) and the earliest rule matching each cross-product (pre-computed). To

locate the best matching rule for a given packet, the approach performs separate lookups on each

field independently, concatenate the results from the independent lookups and use this concate-

nated string to index into the crossproduct table.

Recursive Flow Classification (RFC) [5] is a variation of the crossproducting algorithm.

This heuristic based approach provides high lookup rates at the cost of memory inefficiency. The

authors introduced a unique high-level view of the packet classification problem in which they

showed that the packet classification can be viewed as the reduction of an m-bit string defined by

the packet header fields to a k-bit string specifying the set of matching rules for the packet. For

classification on the IPv4 5-tuple, m is 104 bits and k is typically on the order of 10 bits. Similar to

the Crossproducting technique, RFC performs independent, parallel searches on “chunks” of the

packet header, where “chunks” may or may not correspond to packet header fields. The results of
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Figure 1.1: Recursive cutting in 2-Dimenstion

the “chunks” searches are combined in multiple phases, rather than in a single step as is done in

Crossproducting. The result of each “chunks” lookup and aggregation step in RFC is an equiva-

lence class identifier, eqID, that represents the set of potentially matching rules for the packet.

By looking at the packet classification problem from geometric view, researchers gain new

insight and ideas on how to construct the data structures and to represent packet rules. In the

geometric view, many algorithms cut the search space recursively into smaller subregions. Each

subregion contains fewer rules. This recursive cutting procedure narrows down the search space.

Figure 1.1 illustrates recursive cutting on a 2D plane. The decision tree-based algorithms usually

apply the cutting technique (Chapter 2).

Most of the existing packet classification algorithms reported in the literature exploits the

characteristics of rule-set in optimizing their techniques. The first technique is rule-set partition-

ing. It uses a few packet header bits to partition the rule-set space into a set of equisized smaller
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subspaces which distribute the rules as evenly as possible. Some other header bits are then used to

continue partitioning each subspace. This recursive partitioning scheme results into a decision tree.

Software-based solutions using this approach include Woo’s modular packet classification [14] ,

Hierarchical Intelligent Cuttings (HiCuts) [12], Multidimensional Cuttings (HyperCuts) [4].

The second technique is rule-set intersecting. In this approach, instead of matching the

entire rule at one time, partial matching to a rule is done. The packet header field is split into a

set of substrings and then each substring can match a subset of rules. The rules that match the

full packet header is obtained by taking the intersection of these subsets. The Bit Vector (BV)

algorithm [15] and the Aggregated Bit Vector (ABV) algorithm [16] explicitly represent the subset

of rules for each partial match by using bitmap. BV treats each dimension independently. On

classification, d (assuming d-dimensions) parallel lookups are issued, each yielding a n bit vector

stating the matching rules for the corresponding dimension. The vectors are then intersected by

applying bit-wise AND operations and the resulting bit vector is further processed like the TCAM

bit vector. The aggregated bit vector (ABV) algorithm, extension of BV, assumes sparse vectors,

i.e. vectors with a very small number of 1s, to reduce both memory usage and number of parallel

operations. These algorithms work well for moderately size rule-set because the inherent linear

worst case scaling makes it difficult to scale up to large rule-set. The intersection operation can be

done in sequence or in parallel. For example, the RFC algorithm [5] and the Distributed Cross-

producting of Field Labels (DCFL) algorithm [17] employ parallel set intersection in multiple

steps in a recursive manner. The Fat Inverted Segment Trees (FIST) algorithm [18] uses a similar

approach but performs the intersections in sequence. The partial header lookup can be done using

different methods. The simple and the fastest method is to use a direct lookup table. However, it

is not scalable in terms of storage consumption. Any single field lookup technique, such as binary

search and longest prefix matching can also be used.
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The last technique to exploit rule-set characteristics is rule-set grouping. Some rules are

regrouped into disjoint subsets based on the common feature that they share. Parallel search is

executed on each of these smaller subsets. The results of all the searches is used to determine the

best matching rule. This idea is proposed in Tuple Space Search [19], in which rules are grouped

based on a tuple specification. A simple hash table is used to support lookups (simple exact match

searches) in each tuple.

Each of these approaches either exploit the characteristics of rule-set in their optimization

techniques or try to optimize their technique for the worst case scenario by minimizing the depth

of the search tree (Hi-Cuts [12] and HyperCuts [4]). However, we pursue a different avenue in our

optimization technique. We propose a classification system that exploits the potentiality of traffic

locality to optimize the average look up time. Our study on publicly available traffic traces [3]

and traffic traces captured in our research laboratory reveals that the majority of the incoming (or

outgoing) packet is matched against a small subset of rules in the rule-set (skewness of the traffic

matching the rules) and this traffic skewness property stays over an extended period of time. Our

findings are consistent with the prior observations [2, 10, 12, 20–22] as well.

1.3.3 Our Contributions

The key contributions in this dissertation are as follows:

1. An efficient memory layout for the tree data structure which ensures the movement of data

optimally among the different levels of the memory hierarchy on modern general purpose

processors. In particular, the number of accessed cache lines (and memory pages) is min-

imized by our proposed memory layout resulting in less number of cache and TLB misses

(Chapter 3);
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2. npf, a traffic-adaptive packet classification system which exploits the potentiality of traffic

locality to optimize the average look up time. It dynamically reorganizes the internal data

structure in order to adapt to the traffic characteristics. Unlike existing approaches requiring

a separate, off-line reorganization phase, npf performs reorganization on-line with little

overhead, resulting in improved look up time per packet on average (Chapter 4);

3. Pnpf, a parallel traffic-aware classification system that exploits the strong computational

power and thread-level parallelism capabilities of modern multi-core general purpose pro-

cessors in order to achieve Gbps classification rate (Chapter 5).
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CHAPTER two

DECISION TREE BASED PACKET CLASSIFICATION

R1
R2

R1, R2, R3, R4, .......Rn

Decision Tree

R3
R4

R..
Rn

Figure 2.1: A general decision tree data structure used by packet classification system

Researchers proposed different types of software-based solutions for Packet classification

in the recent years [6]. Among these solutions, decision tree-based algorithms [4, 12, 14] (e.g.

Hicuts, HyperCuts) usually scale well. Decision tree based packet classification system constructs

a decision tree from the rules in the rule-set where each leaf in the decision tree holds a small list of

possible matching rules (Figure 2.1). Packet header fields are used to traverse the decision tree to

reach a leaf node and a small amount of linear searching is used to find a highest-priority matching

rule. In this chapter, we will briefly discuss about two most popular decision tree based solutions.

We present novel techniques in Chapter 3 that can be applied to improve the look up performance

of these decision tree based solutions.
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Figure 2.2: Decision tree-based packet classification system

2.1 The HiCuts Algorithm

HiCuts builds a decision tree by partitioning the multi-dimensional rule space (e.g., source IP, des-

tination IP, source port, destination port, protocol) into smaller segments with the goal of evenly

distributing the rules into the tree’s leaves. The root node of HiCuts covers the entire rule space.

HiCuts cuts the space only along single dimension to create a set of equi-sized segments which

separate the rules as evenly as possible. Each segment is represented by a child node. Figure 2.2(a)

shows an example of a two-dimensional rule space. The figure shows five rules and the correspond-

ing HiCuts decision tree (Figure 2.2(b)). The rules that span multiple subspaces are replicated in

each of the corresponding children (e.g., R1, R2 and R4 are replicated Figure 2.2(b)). The cutting

procedure is continued at each child node until the number of rules associated with the current

node is less than a predetermined threshold called binth (e.g., 3 in Figure 2.2(b)). The nodes that

contain less than binth number of rules are considered a leaf. Each leaf contains a set of pointers

to its rules. The lookup algorithm is very simple. Packet header fields are used to traverse the

decision tree until a leaf node is reached. The rules at the leaf node are then searched linearly to
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determine the highest-priority matching rule.

For any given rule-set, there are possibly many ways to construct a decision tree, and Hi-

Cuts uses some heuristics based on structure present in the rule-set to guide the process of tree

construction. The preprocessing algorithm in HiCuts uses a heuristic:

1. to pick the number of interval cuts to make at each node: HiCuts observes that a large number

of cuts at a node will decrease the depth of the tree (which will accelerate look up time) at

the expense of increasing storage due to increase in rule replication and also the number of

children. To balance this trade-off, the heuristic attempts to maximize the number of cuts,

and hence minimize the depth, while limiting the total number of rules at all the children of

a node to be within a factor, called space factor, of the number of rules at the node.

2. to pick which dimension to cut along at each internal node: HiCuts proposes various metrics

that can be used to pick the dimension, including for example: the selected dimension should

minimize the maximum number of rules per child resulting from the cut in an attempt to

decrease the worst-case depth of the tree; or, select the dimension that has the largest number

of distinct components (range) of rules in that dimension.

3. to maximize the reuse of child nodes: HiCuts observes that in real world rule-sets many child

nodes have identical set of rules. The heuristic removes this redundancy by using a single

child node for each distinct set of rules and have identical child nodes point to it.

4. to eliminate redundancies in the tree: The recursive cutting procedure used by HiCuts may

introduce a scenario where a higher-priority rule completely overlaps a lower-priority rule

within a nodes subspace. In this case, no packet would ever match the lower-priority rule. So,

storage requirements can be improved by detecting and eliminating these redundant rules.
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HiCuts has two main limitations. First, the tree depth depends on the distribution of the

rules in the rule space. For some rule-sets, no matter how many cuts are going to be executed

at a time, the HiCuts algorithm requires deeper levels in the decision tree. This limitation arises

from the fact that HiCuts considers only one dimension to cut at a node. Second, the redundancy

removal heuristic employed by HiCuts fail to remove redundancy completely. The heuristic can

detect only the simplest form of full redundancy where some of the child nodes cover identical set

of rules. However, it does not detect partial redundancy when some child nodes share many but

not all the rules. For example, a heavily wildcarded rule often ends up in many leaves, increasing

storage unnecessarily. This redundancy grows dramatically for the large size rule-sets.

2.2 The HyperCuts Algorithm

HyperCuts, the successor of HiCuts, addresses the limitations mentioned above. First, instead of

cutting only one dimension (field) at a node, HyperCuts proposes to split the set of current rules

at each node based on information from one or more dimension (fields) in the rule. Consequently,

the data structure results in a fatter and shorter decision tree.

Second, HyperCuts partly addresses the redundancy where all the child nodes have associ-

ated a subset of rules that are identical. To remove this redundancy, HyperCuts employ a heuristic

that simply moves all common rules in a subtree to a linear list at the root of the subtree. This

heuristic is more flexible and efficient in redundancy removal because it is not limited by the fact

that all the rules of a child node need to be common with another child node. Although, this opti-

mization reduces replication but adds extra memory accesses to search the linear list held at each

non-leaf nodes.
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In HyperCuts, there are two types of nodes: internal nodes and leaf nodes. An internal

node contains more than binth rules, where binth is a small constant that limits the amount of

linear searching at leaves. Therefore, rules stored in the internal node have to be further partitioned

to its child nodes. By contrast, each leaf node contains less than or equal to binth number of rules

(e.g., 3 in Figure 2.2(c)) which are linearly traversed to find the matching rule.

The main strengths of HyperCuts are improvement in the tree depth and memory con-

sumption. We choose HyperCuts over HiCuts in Chapter 3 because of its superior performance

and scalability reported in the research community.
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CHAPTER three

EFFICIENT MEMORY LAYOUT FOR PACKET CLASSIFICATION SYSTEM

In decision tree based packet classification system, packets are classified by searching in

the tree data structure. Tree search presents significant challenges because it requires a number of

unpredictable and irregular memory accesses. Since packet classification is per-packet operation

and memory latency (caused by cache and TLB misses) is considerably high, any technique that

can reduce cache and TLB misses can be useful in practice for improving lookup time in packet

classification. In this chapter, we present an efficient memory layout for the tree data structure

which ensures the movement of data optimally among the different levels of the memory hierarchy

on general purpose processors. In particular, for a given node size, the number of accessed cache

lines (and memory pages) is minimized by our proposed memory layout resulting in less number of

cache and TLB misses. This reduction directly contributes in improving the look up performance.

The decision tree laid out in the proposed layout can also exploit the strong computing power of

multi-core architecture by leveraging data- and thread-level parallelism.

3.1 Introduction

The network devices, routers and firewalls, execute operations such as packet filtering, Quality-of-

Service (QoS), traffic engineering for a specific subset of network packets using a technique called

Packet classification. There are two major categories of solutions for performing packet classifica-

tion: Hardware-based (using Ternary content addressable memory (TCAM)) and Software-based

(using commodity processors and memory). TCAM-based solutions [23] can provide deterministic

and high-speed lookup, but they are expensive and lack the adaptability to ever-changing network

protocols. Also, TCAMs are not scalable with respect to power consumption compared to static
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random access memories (SRAMs). For example, TCAMs consume 150 times more power per bit

than that of SRAMs [6]. SRAM-based solutions offer the best flexibility and programmability. As

a result, software based solutions (using SRAM) is still widely deployed on both edge routers and

core routers.

Among the proposed software based solutions, decision-tree-based techniques received

wider acceptance in the research community. HiCuts [12] and HyperCuts [4] are the two most

popular decision-tree-based techniques. Packets are classified by searching in tree data structure.

Tree search presents significant challenges because it requires a number of unpredictable and irreg-

ular memory accesses. Packet classification is per-packet operation and memory latency (caused

by cache and TLB misses1) is considerably high. The growing trend of large rule-sets size coupled

with the recent advancement in transmission link rates (Gbps) makes wire-speed classification a

challenging task. Therefore, any technique that can reduce cache and TLB misses can be useful in

practice for improving lookup time in packet classification. To reduce cache and TLB misses, data

locality is one of the most important factors to be considered when designing the memory layout

for the data structure. A fast processor’s time is wasted when programs with poor data locality

spend a significant amount of time waiting for data to be fetched from memory.

The search algorithm in HyperCuts tree involves comparing the search key to the key stored

at a specific node at every level of the tree, and traversing a child node based on the comparison

results. It is guaranteed that one of the child nodes in the next level will be traversed next. Hence,

by carefully storing the child nodes close to its parent can improve the locality. Study [24] reported

that cache misses can be reduced significantly by laying out data carefully.

1An auxiliary structure called the Translation Lookaside Buffer (TLB) which is used to perform a conversion from
virtual to physical memory addresses prior to each memory access.
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We, therefore, pursue to devise a memory layout for the HyperCuts tree which will reduce

cache and TLB misses on general purpose processors. The idea is to try to keep the contemporane-

ously accessed elements of the data structure close to each other in the memory region. The spatial

and temporal locality2 is improved by this packing scheme. However, just naı̈vely co-locating child

nodes to its parents may not help to achieve performance improvement because it does not exploit

the underlying architecture features such as cache line size and page size efficiently. In this work,

we propose techniques that take the architecture into considerations as well. Since HyperCuts tree

does not change frequently, we believe that our proposed layout will reduce the cache and TLB

misses on average due to its ability to utilize the memory hierarchy in an efficient way to achieve

good data locality.

Packet classification system’s performance can be further improved by utilizing the in-

creased computing power of low-cost, highly parallel modern multi-core CPUs because its data

parallel computing model is suitable for packet classification system.

The key contribution in this work is that we present a memory layout that rearranges tree

nodes based on architecture features like page size, cache line size to reduce cache and TLB misses.

We implement the proposed layout in multi-core architecture by employing data-level and thread-

level parallelism during the classification phase, thereby exploiting the strong computing power in

modern processors. We evaluate the proposed layout on two different state-of-the-art processors.

Experimental results showed that our proposed memory layout provides significant performance

improvements (40–55% faster) and achieves near-linear speedup (3.8× on quad cores) on multi-

core architecture. We would like to emphasize that our proposed layout can be applied in general

with any other decision tree-based packet classification system (such as Hicuts [12]) to improve

the look up performance.

2The locality in memory access is often categorized into two different types, code reusing recently accessed loca-
tions (temporal) and code referencing data items that are close to recently accessed data items (spatial) [25].
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Figure 3.1: A typical memory hierarchy in modern computer architecture

3.2 Background

3.2.1 Overview of Memory Hierarchy and Cache

Modern computer hardware architecture contains a hierarchy of memory levels, with different

memory sizes, block transfer sizes and access times and with each level acting as a cache for the

next. Figure 3.1 gives a typical example of a memory hierarchy. The memory hierarchy consists

of following components: registers, level-1 cache, level-2 cache, main memory, and disk. The

level-1 cache is very small (typically 8 KB to 32 KB), very fast, very expensive, and very close to

the CPU and its registers, usually on the CPU chip itself. The level-2 cache is larger (typically

128 KB to 2 MB), somewhat slower, and located either on the CPU chip or at least mounted on

the same board. In some recent designs, even a third level of caching is used. Thus, instead

of two levels in the memory hierarchy, namely CPU registers and main memory as traditionally

considered in algorithm design, there is as many as five levels: registers, three levels of caches

and main memory. For instance the Intel core i5 and AMD Opteron have 5 levels in its memory
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hierarchy. The time for accessing a level in the memory hierarchy increases from one cycle for

registers and level-1 cache to figures around 10, 100, and 100,000 cycles for level-2 cache, main

memory, and disk, respectively. The evolution in CPU speed and memory access time indicates

that the differences between them are likely to increase in the future [25]. As a consequence, the

pattern of the memory access of data intensive main memory applications like packet classification

will remain a key component in determining its performance in practice.

3.2.2 Multi-Core Architecture

In multi-core architecture, all processors are integrated on the same chip. Different cores execute

different threads (multiple instructions) and operate on different parts of memory (multiple data).

All cores have dedicated cache and they share the same address space as well. For example, Intel

core i5 has 2 cores. Each of the cores has private L1 and L2 cache. Both the cores share L3 cache.

High throughput data structures can benefit from the strong computing power provided by these

multiple cores. However, the performance gains are limited by the extent to which the operations

on the data structure can be parallelized to run on multiple cores concurrently. In this work, we

employ thread-level parallelism and data parallelism to create parallel version of the HyperCuts.

3.3 Efficient Memory Layout for HyperCuts Tree

The goal of our proposed memory layout is twofold: First, laying out the HyperCuts tree in a

way that ensures better data locality and second, to make the tree traversal operation compute-

bound. The benefit of making compute-bound results in scaling with increasing number of cores

(Section 3.5).
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Figure 3.2: Root-to-leaf traversal in a tree laid out in hierarchical layout

The van Emde Boas layout (vEB), proposed by van Emde Boas et al. [26], aims to speed up

the tree based search by ensuring that a group of data which are likely to be accessed contempora-

neously during an execution are placed contiguously in the memory region. However, we observe

that just naı̈vely applying vEB layout is not effective when the tree data structure is larger than

the last level cache (LLC). This is because in order to improve cache locality, we need to ensure

that temporally coherent data are stored close to each other i.e. we need to store all the children

nodes close to their parents in a tree data structure. However, doing so for all depths results in

a breadth-first storage. This increases the storage distance between any node and its children at

deeper depths. When the tree is large, traversing the bottom part of the tree results in memory

accesses that are separated by increasing distances. Since memory is laid out as pages on modern

architecture, each access results in accessing nodes stored in different pages of memory incurring

TLB misses at each level and search becomes latency bound. In addition, if the working set is

too big to fit in caches, we need to ensure that a cache line which has been transferred from the

memory is fully utilized before being evicted out of caches. Unfortunately, there is no dedicated
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mechanism in vEB layout to utilize cache-line efficiently.

To accomplish our first goal, we layout the data structure in a way similar to vEB layout.

However, to accomplish our second goal we propose a scheme called “hierarchical blocking” that

consists of two key techniques called “cache line blocking” and “page blocking”. The main pur-

pose of the hierarchical blocking scheme is to reduce cache and TLB misses. A cache line with a

typical size of 64 bytes can contain multiple nodes in it (e.g. 4 nodes of 16 bytes each). Our cache-

line blocking technique ensures that the data in a single cache line is utilized more efficiently. This

efficiency is achieved by performing a rearrangement of tree nodes within each page so that the

subsequent nodes to be used also stays within the same cache line. Our page blocking technique

addresses the problem associated with traversing the bottom part of the large tree mentioned above.

This technique rearranges the tree nodes so that the contemporaneously accessed tree nodes also

stays within the same page, thereby ensuring good cache locality. We expect that the root-to-leaf

tree traversal (Figure 3.2) of the HyperCuts tree laid out according to our proposed approach will

incur less number of cache and TLB misses on average.
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Figure 3.3: Recursive hierarchical layout of a tree in memory
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3.3.1 Hierarchical Layout

In order to introduce the layout, we will use a simple binary tree example. By layout here, we

mean the mapping of the nodes of a binary tree to the indices of an array where the nodes are

actually stored. The nodes should be stored in the bottom array in the order shown (Figure 3.3) for

achieving better locality and hence searches to be fast.

5 6

4

8 9

7

11 12

10

14 15

13

2 3

1

Figure 3.4: Binary tree laid out in hierarchical layout

Given a complete binary tree, we describe a mapping from the nodes of the tree to positions

of an array in memory. Suppose the tree has N items and has height h = logN + 1. Split the tree

in the middle, at height h/2. This breaks the tree into a top recursive subtree of height bh/2c

and several bottom subtrees B1, B2, . . . , Bk of height dh/2e. There are
√

N bottom recursive

subtrees, each of size
√

N. The top subtree occupies the top part in the array of allocated nodes,

and then the Bi’s are laid out. Every subtree is recursively laid out (Figure 3.3). The order of the

recursive subtrees is not important; what is important is that each recursive subtree is laid out in a

single segment of memory, and that these segments are stored together without gaps. This strategy

provides some benefits on spatial locality by grouping the children and their parents in nearby

locations. To handle trees whose height h is not a power of two the split rounds so that the bottom
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recursive subtrees have heights that are powers of two, specifically dh/2e. This process leaves the

top recursive subtree with a height of h−dh/2e, which may not be a power of two. In this case,

we apply the same rounding procedure to split it.

The binary tree in Figure 3.4 is shown with the nodes labeled with their positions according

to the layout mentioned above. In this example, only two levels of recursion are needed. If we

suppose that every page stores three nodes, then the highlighted path from node 1 to 6 visits only

two pages incurring less cache and TLB misses on average.

3.3.2 HyperCuts Tree in Hierarchical Layout

Table 3.1: Example rule-set; Source and Destination port ranges cover 4-bit port numbers

RuleID Src Port Dst Port
1 1:3 12:14
2 10:11 6:13
3 8:9 0:15
4 0:15 2:6
5 1:6 1:10
6 10:11 1:2

In this section, we will show a demonstration on constructing a HyperCuts tree from the

rule-set in Table 3.1 and laying out the HyperCuts tree according to the hierarchical memory layout

(Section 3.3.1).

The geometric view of the rule-set in 2-dimension is presented in Figure 3.5. On the plane

are six rectangles, each representing a rule. HyperCuts uses simultaneously cutting multiple di-

mensions with the goal of evenly distributing the rules into the trees leaves. In this demonstration,

the dimensions to cut and number of cuts along each dimension are picked up following heuristics

described in [4]. The cutting procedure is continued until the number of rules in a node is less than
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Figure 3.5: Geometric representation of the example rule-set (Table 3.1) before the cutting se-
quence

binth. For this example, binth = 2. The cutting sequence given by the heuristic is as follows: at

the first step, we give 4 cuts along the x-axis and 2 cuts along the y-axis. It will generate 8 sub-

regions in total. Each sub-region is a node in the tree (the link to empty sub-region is not shown

in Figure 3.7). At this point, one sub-region overlaps more than 2 rectangles i.e. one node in the

tree contains more rules than the predefined threshold binth. So the cutting procedure continues.

Next, we cut this sub-region along the x-axis. Now, we have another sub-region that overlaps 3

rectangles.

So, the cutting procedure continues. Next, we cut this sub-region along the y-axis. Now

each sub-region overlaps = 2 rectangles. We can stop cutting the space further because no node in
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Figure 3.6: Geometric representation of the example rule-set (Table 3.1) after the cutting sequence

the tree contains more than binth number of rules. The effect of cutting is displayed in geometric

representation in Figure 3.6 and the resulting decision tree from this cutting sequence is shown in

Figure 3.7. Since the tree height3 is 4, we divide in the middle (according to hierarchical layout)

and we lay out the top sub-tree in contiguous memory. Bottom subtree is also laid out in contiguous

memory (recursively) using the same principle (Figure 3.8).

Suppose, a packet just arrived which will match ruleID 4. If every page stores the shaded

region in the tree, then search for the matching rule will visit only two pages, thereby reducing the

possibility of cache and TLB misses on average.

3We assume that height of root node is 1.
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Figure 3.7: HyperCuts tree for the rule-set in Table 3.1

3.3.3 Hierarchical Blocking

The proposed hierarchical blocking scheme contains two key techniques: page blocking and cache

line blocking. The goal of page blocking technique (solid triangle in Figure 3.9) is to cluster

the nodes into groups of N nodes where N is the number of nodes that fit entirely in a memory

page (typical size of 4 KB). Furthermore, the nodes are rearranged within every page so that the

children and their parents are stored in nearby locations - thereby fully exploiting a cache-line

(dotted triangle in Figure 3.9). In our implementation, the node size is 16 byte. As a result, we can

fit 4 nodes in a cache line (typically 64 bytes or longer) and 125K nodes in a 2 MB memory page.

During the initialization phase of page blocking technique, all the nodes in the tree are

marked as unassigned node to any cluster. A record of the list of unassigned nodes is maintained

throughout the process. The threshold ∆ is set to N. All the nodes in the tree are assigned depth

values (using a depth-first traversal starting with the root node). The clustering procedure begins

by selecting one of the unassigned nodes at the lowest depth. For example, we start clustering with
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Figure 3.8: HyperCuts tree laid out in hierarchical layout

the root node of the tree and consider the sub-tree with N− 1 nodes. The selected node and its

unassigned children are then included in the cluster. This process is carried out till the threshold

∆ is reached. The clustering for the next page is started by either continuing with the children

of the node just being selected or starting with a new unassigned node. The clustering process is

complete when all the tree nodes have been assigned to any of the clusters.

The cache line blocking is performed within each cluster that has just been created using

the page blocking technique. During the initialization phase, all the nodes within the cluster being

considered are marked as node unassigned to an index. A record of the list of nodes which have not

been assigned an index is maintained throughout the process. We begin with the node at the lowest

depth and consider its children in the cluster. In case, the number of unassigned children is greater

than 4 (the maximum number of node within a cache-line), we assign the children contiguously.
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We continue with the remaining children and assign them in a similar fashion. If the number of

unassigned children is less than 4, we fill up the cache-line partially, and continue with the process

by picking up the unassigned node at the lowest depth. The process is complete when all the tree

nodes within the cluster have been assigned an index.

Our hierarchical blocking scheme aims to reduce the average number of cache and TLB

misses for any distribution of the incoming packets. In practice, the tree traversal spends most of

its time in the first few levels of the tree, which are clustered together by our scheme. Hence, at an

average we have very few cache and TLB misses. Our blocking scheme helps to obtain significant

improvement in look up performance for tree size larger than LLC (Section 3.5).

3.3.4 Analysis on Memory Access Pattern

We now discuss the memory access pattern with our proposed hierarchical blocking scheme in

action. Let us define some notations that we will use in this section. Let, dtree is the depth of the

tree, dpage is the tree depth of page blocking, dcl is the tree depth of cache line blocking, lpage is the

latency incurred when there is a TLB miss, lcl is the latency incurred during the cache line fetch.
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At the beginning of the experiment, we have cold cache and TLB. Consequently, the comparison

to the root accesses a memory page and incurs a TLB miss. This will cost a latency of lpage cycles.

Then the appropriate cache line is brought from the main memory, incurring a further latency of lcl

cycles. Now, we access the necessary nodes within this cache line cluster (i.e. within the next dcl

levels). The subsequent access incurs cache miss which costs a latency of lcl cycles. On average,

we say that within the first page, ddpage/dcle cache lines will be accessed. So, any memory page

would incur a total latency of (lpage + ddpage/dcl)elcl) cycles. Traversing to the bottom part of

the tree would access ddtree/dpagee pages, for an average incurred latency of ddtree/dpagee(lpage +

ddpage/dcl)elcl) cycles. To take into account of different levels in memory hierarchy, suppose, the

last level cache contain dllc out of dtree levels of the tree. Although the TLB size in modern pro-

cessor is not infinite, we can reasonably assume that for a random packet distribution the entry

for the top page would be in the page table during the lookup process. Therefore, the lookup pro-

cess would incur a latency of (1−dllc/dtree)(ddtree/dpageeddpage/dclelcl)+ lpage(ddtree/dpagee−1)

cycles on average.
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3.4 HyperCuts on Multi-Core Architecture

We considered and implemented data parallel approach (Figure 3.10) to create parallel HyperCuts

algorithm on multi-core architecture. In data parallel approach, the classification algorithm is

fully replicated onto each core, and packet headers are distributed to an arbitrary core for parallel

classification. The scalability of this straightforward approach is reasonably good because inter-

thread communication is not strictly needed when classifying two separate packets. Construction

of data structures are done before the replication, and a single copy of these and other read-only

data structures is shared among all instances of the algorithm.

Figure 3.10 illustrates the data parallel approach for the HyperCuts algorithm. We use the

producer consumer model in our implementation. One thread is capturing the incoming network

packet (produce data) and other threads are classifying the packets (consume data). Packet headers

are placed in a queue shared between the producer and the consumer(s). We use mutual exclusion

lock to properly guard the shared queue against the concurrent accesses and the race conditions.

On each core, the classification cycle consists of following three stages:

1. busy-waiting to acquire the mutual exclusion lock

2. retrieving a header from the queue

3. perform the classification by finding the matching rule

The data parallel approach has two following merits:

1. simplicity: applications parallelized using data parallel approach requires only the inclusion

of a mutual exclusion lock and some logic at the entry point of the algorithm to synchronize

the queue. In addition, no extra effort is required to extract parallelism out of the algorithm.
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2. minimal dependency: dependencies between cores are minimal in data parallel approach.

The classification on different cores can run independently without regard to the speed or

duty cycle of other cores. In addition, cores do not need to execute in tight synchrony.

3.4.1 Mutual Exclusion by Atomic Operation

During the experiment, we find out that the use of a single lock guarding the shared queue limits the

scalability with increasing the number of threads. Consequently we do not observe a linear speed-

up as the number of competing threads increases. Our investigation reveals that the contention for

acquiring the shared queue’s lock is a dominant factor. Our finding is also consistent with the prior

study [27] where Mellor-Crummy and Scott find that this construction limits scalability for even

small numbers of processors.

This bottleneck is mitigated somewhat in CMP architecture by exploiting the implicit de-

gree of freedom in the choice of synchronization primitive. Study [28–30] found that the use of

atomic variable to implement locking are the least expensive among other synchronization prim-

itives such as condition variables, pthread mutexes using busy-wait loops. In order to reduce the

lock acquisition time for synchronization, we, therefore, opt in to use atomic variable in lieu of

condition variables or library-provided locking. The main characteristic of atomic variables is that

while it is being accessed by one thread, no other thread can interrupt it. This is why they are

called atomic variables. In practice, atomic variables are the best solution to arbitrate the access to

a simple variable (queue’s counter) shared among two or more competing threads.

There are twelve functions in gcc atomic builtins [31], which guarantee atomic mem-

ory access. These functions do atomic add, substitution, and logical atomic or, and, xor and

nand. There are two functions for each operation. One that returns value of the variable before

changing it and another that returns value of the variable after changing it. The built-in function
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“ sync fetch and add(type *ptr, type value, ...)” available in gcc provides

atomic add operation. This function adds the value indicated in the second argument to a memory

location specified in the first argument, and returns the value that had previously been in memory.

The steps of the operation are as follows:

{ tmp = *ptr;

*ptr += value;

return tmp; }

The entire set of steps are done as an atomic operation, which means that only one thread

can perform this update at a time. This call is much faster than a mutex. We use this function to

arbitrate access to the shared queue in our implementation and this simple optimization helps to

observe near-linear speed-up with increasing number of competing threads during the experiment

(Section 3.5).

How Atomic Variables Work

Modern processor architectures has instructions that allow one to lock Front Serial Bus (FSB),

while doing some memory access. The core uses this bus to communicate with memory, i.e.

access to the memory by any other core, and threads running on that core can be prevented by

locking FSB. This is exactly what is needed to implement atomic variables [32].

3.5 Evaluation of Hierarchical Layout

We evaluate the effectiveness of our proposed memory layout on several architectures. The dif-

ferent processor architecture varies mainly in terms of number of cores and L1, L2, and L3 cache

size. We implement our hierarchical blocking scheme on an Intel Core i5 and a quad-core AMD
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Table 3.2: Configuration details of test beds

Name Test bed I Test bed II
Processor Name AMD Opteron 2379 HE Intel Core i5
Core Count 4 2
Core Speed (MHz) 2400 (per Core) 1330 (per Core)
L1 Cache Size (KB) 128 (per Core) 32 (per Core)
L2 Cache Size (KB) 512 (per Core) 256 (per Core)
L3 Cache Size (MB) 6 (shared by 4 cores) 3 (shared by 2 cores)

Opteron processor. The detail configurations of the machines are given in Table 3.2. We use the C

language and POSIX pthread-library [33] because of their simplicity and portability. We conduct

experiments on Linux OS. Each experiment is repeated a number of times and results are averaged.

We generate synthetic rule-sets with characteristics representative of real-world rule-sets

using ClassBench [34]. All the rules in the rule-sets are 5 dimensional tuples composed of source

and destination IP addresses, source and destination port numbers and protocol type. The size of

the five rule-sets ranges from 1K to 10K. The synthetic packet headers used in our experiments

were generated using the ClassBench trace generator. In order to test the impact of our proposed

optimizations on look up performance, we conduct the experiments with two extreme cases: small

trees (tree size smaller than L2 cache) and large trees (tree size larger than LLC). The large tree is

generated from the 10K rule-set and the small tree is generated from the 1K rule-set. We do not

present the performance of intermediate tree sizes because it falls in between the above two cases.

We compare the normalized search time, measured in cycles per lookup on Intel Core i5

CPU. The tree node size is 16 byte in our implementation. The cache line size is 64 bytes and the

page size used in our study is 2 MB, although smaller traditional pages of size 4 KB are available.

We first present the naı̈ve lookup measurement when no optimization techniques are used. Then,

we present the improvement obtained from each optimization such as page blocking, cache line
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Figure 3.11: Normalized lookup time with various optimization techniques (lower is better)

blocking.

According to the Figure 3.11, the impact of each optimization is more visible for large size

trees than small size trees because as the tree size grows, lookup process suffers from cache and

TLB misses and large trees are more latency bound than the small trees. The page blocking tech-

nique obtains 40% faster lookup performance. Augmenting cache line blocking with page blocking

results in more faster lookup performance (55%). The reduction in cache and TLB misses on aver-

age while traversing the bottom part of the large tree significantly contributes to the improvement

in lookup time. However, for small trees our techniques do not bring any improvement because for

small trees Intel Core i5 CPU is able to store the entire tree within L2 cache and consequently there

are no TLB and cache misses. The results reported here are based on a single-thread execution.

In Figure 3.12 and Figure 3.13, the x-axis represents the number of nodes in log scale and

the y-axis represents the average number of cycles. The impact of our proposed optimization tech-
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Figure 3.12: Look up performance on Intel Core i5 processor (lower is better)

niques are reported on both Intel Core i5 and AMD Opteron platform. We observe that the impact

of our proposed optimization techniques on both platforms are more noticeable when the tree size

starts to grow beyond LLC. This result validates our claim that by applying the hierarchical block-

ing scheme, lookup process can suffer from reduced amount of cache and TLB misses for tree

sizes larger than the LLC.

In our final experiment, we seek to find out whether the HyperCuts tree laid out in our pro-

posed memory layout coupled with the optimization techniques can leverage the strong computing

power of modern multi-core general purpose processors. Note that our intention is not to show that

the optimization techniques contribute on the speed up on multi-core architecture rather we want

to confirm that the expected speed up due to multi-threading is not inhibited by the introduction of

our optimization techniques. Five synthetic rule-sets have been used in this experiment. The rule-

set sizes ranges from 1K to 10K. We start the experiment by executing HyperCuts (HyperCuts-1)
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Figure 3.13: Look up performance on AMD Opteron processor (lower is better)

on a single core. No parallelism is exploited in HyperCuts-1. We then gradually start utilizing

more cores by leveraging data parallel scheme. In the HyperCuts-4 multi-threaded version, each

of the 4 cores of AMD Opteron performs packet classification concurrently on different set of

input packets. Note that construction of the HyperCuts tree and laying out in proposed memory

layout is performed prior to multi threading, and a single copy of the tree structure is shared among

all the threads. In order to avoid context switching and process migration costs [35], each thread

is hard-affinitized to the core using pthread setaffinity np function. The throughput re-

ported in Figure 3.14 is the maximum throughput achievable by both HyperCuts (single threaded

and multi-threaded) without packet loss. The maximum throughput achievable of HyperCuts is

the maximum incoming packet rate in which HyperCuts does not suffer from any packet losses.

In Figure 3.14, the x-axis represents the five rule-sets, and the y-axis is the packet classification

throughput. The throughput gain ranges from 2.5 to 3.8 on quad-core AMD Opteron machine.
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3.6 Conclusion

We show that faster lookup time can be achieved by rearranging the nodes of the HyperCuts tree

in an order more appropriate for the memory hierarchy of current modern general purpose proces-

sors. Packet classification is per-packet operation and its performance is dominated by memory

references because it requires a number of unpredictable and irregular memory accesses during

the search for matching rule for each packet. Poor memory layout can easily generate weak data

locality and poor performance. In this work, we use an efficient hierarchical memory layout for

decision tree based packet classification system to improve the data locality. The goal of this lay-

out is to carefully placing the tree nodes close to each other in memory that are accessed closely

in time, thereby reducing the cache and TLB misses on average. The decision tree laid out in
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the proposed layout can also exploit the computing power of multiple cores on general purpose

processors by leveraging data- and thread-level parallelism. We evaluate the proposed layout on

two different state-of-the-art processors. Experimental results show that our proposed memory

layout provides significant improvements (40–55% faster) in lookup process on both platforms

and achieves near-linear speedup (3.8× on quad cores) on multi-core architecture. Finally, we

would like to emphasize that our proposed layout can be applied in general with any other decision

tree-based packet classification system (such as Hicuts [12]) to improve the look up performance.
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CHAPTER four

TRAFFIC ADAPTIVE PACKET CLASSIFICATION SYSTEM

Packet classification is primarily used by network devices, such as routers and firewalls,

to do additional processing for a specific subset of packets. Such additional processing includes

packet filtering, quality of service (QoS), and differentiated services (DiffServ). Most of the exist-

ing packet classification algorithms reported in the literature exploits the characteristics of filtering

or classifier rules in optimizing their techniques. We pursue to find out whether that packet clas-

sifier’s average performance can be improved by exploiting the locality in the traffic pattern. In

this chapter, we present npf, a fast, lightweight, traffic-adaptive packet classification system. Our

lightweight traffic-aware packet classifier reorganizes its internal data structure (rule tree) based

on the traffic pattern to reduce the search time for the most frequently visited rules in the rule-set.

Unlike existing traffic-adaptive packet classifier requiring a separate, offline reorganization phase,

our approach performs reorganization online with little overhead, resulting in improved look up

time per packet on average.

4.1 Introduction

Today’s Internet traffic consists of different types of traffic, such as delay sensitive, malicious or

benign. Thus, every Internet router or firewall today needs to treat these traffic mix differently.

Packet classification is the mechanism that enables the routers and firewalls to classify the traffic

and process them accordingly. Packet classification becomes a core mechanism used by a variety of

Internet applications including Security, traffic monitoring, Quality of Service (QoS). For example,

an Intrusion Detection System (IDS) classifies the packet either as benign or malicious based on

the policy in the rule-set. The rule-set consists of multiple rules that characterize the pattern of
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the malicious activity. Individual entries for classifying a packet are called rules. For instance, a

typical firewall rule specifies that packets from which subnet should be blocked in order to protect

network against malicious attacks. In this context, the packet classification problem is to determine

the first matching rule for each incoming packet.

The rapid improvement in link speed at the core and edge of the Internet and the growing

size of rule-set [4] pose challenges on the existing traditional packet classifiers. Therefore, the

design of an efficient fast packet classification algorithm still remains an important open problem.

Packet classification is per-packet operation and the search speed is a major performance factor.

It requires a number of high latency memory accesses (slower than the link speed). Therefore,

designing a Packet classifier that spends minimal time per packet (i.e. incurs small number of

memory accesses) is inherently a challenging problem.

Previous works in packet classification resulted in two threads of solutions: hardware-

based (TCAM-based) and software-based packet classification (optimization of underlying data

structures). Although the hardware-based packet classification shows promises in performance

optimization, it has some potential issues such as slow growth rate of TCAM chip size, high power

consumption and high cost. In addition, the need for rules with range specifications to be translated

into several CAM entries is expensive for very large rule-sets. Software-based packet classification

which has been studied extensively in the research literature [5] either exploit the characteristics

of rule-set in their optimization techniques or try to optimize their technique for the worst case

scenario by minimizing the depth of the search tree (Hi-Cuts [12] and HyperCuts [4]).

The prior observations [2, 10, 12, 20–22] that a relatively small subset of rules are visited

more frequently in the rule-set show promise to another direction that packet classifier’s average

performance can be improved by exploiting the locality in the traffic pattern. Therefore, we seek

to exploit these observations to produce a traffic-aware decision tree based packet classification
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system npf [36] that is able to exploit the locality in the traffic pattern to achieve a near-optimal

searching time on average. Recently, Adel [1] et al. proposed a traffic-adaptive packet classifier.

However, their approach performs a separate, offline reorganization of the underlying data structure

at regular interval. This may introduces mediocre performance if Internet traffic pattern changes

before the next reorganization interval. In order to address this issue, we undertook the investi-

gation of finding the feasibility of performing online dynamic adaptation to the incoming traffic

pattern. In particular, our interest focuses on analyzing the tradeoff between the performance gain

and processing overhead due to dynamic adaptation and performing a comparative study between

online and offline adaptation approach. In the experiment, we use npf that performs dynamic

reorganization (online) of the underlying data structure along the changes in the traffic pattern.

4.2 Importance of Traffic Awareness in Packet Classifier

Most of the existing packet classification approaches exploit the characteristics of rule-set. For

example, Florin et al. [16] made rearrangement of rules in the rule-set with the assumption that in

real rule-set the rule overlap is rare. This rearrangement of rules reduces the number of memory

accesses which improves the packet classification performance overall. Another underlying crucial

assumption of their work is that the number of rules that match a packet is small. Our study

in Section 5.2 observes that a small subset of all rules in the rule-set are visited (matched) more

frequently by the the majority of the inbound or outbound packet and this traffic skewness property

is likely to stay for time intervals that are sufficient to make such skewness important to consider

in designing algorithm for packet classification [1]. This observations along with other findings

reported in the literature motivate us to design and develop a traffic-aware packet classification

system. A detail analysis on the motivation of exploiting traffic pattern is presented in Section 5.2.

The main contribution of this work is the design, implementation and the analysis of per-
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formance gain and overhead of a packet classification algorithm (npf) that dynamically adapts its

internal tree structure to the properties of Internet flows and packet headers in reducing the classi-

fication time. In npf, a tree structure is used to store the rules and it is dynamically reorganized

to exploit the locality in the incoming traffic. The goal of the adaptation to the traffic pattern is

to ensure that most frequently visited rules will be found early during the search process, thereby

incurring less memory accesses. Packet headers are used to traverse the tree and it accesses mem-

ory as the look up process traverses down the tree. In order to consume less number of memory

accesses, we promote the tree node associated with the most visited rules closer to the root of the

tree. Traffic awareness does not cause any oscillation in the underlying data structure reorganiza-

tion because we observe from a large number of Internet and private traces that most of the packets

match only a few rules and this characteristics of Internet traffic is unlikely to change over a short

period of time. The online reorganization introduces overhead. But we believe that the amortized

overhead is much smaller than the overall performance gain.

4.3 Related Work

Most simple packet classification technique uses linear search through the rule-set to find a match-

ing rule. However, for a large rule-set, this memory efficient technique consumes unacceptably

long search time. Specialized data structures, and heuristics have been proposed in order to speed

up the software-based packet classification. The significant contributions to the advancement of

packet classification research made by the previous works aim to improve the worst-case matching

performance. Hence, they do not exploit the the pattern to improve the average packet match-

ing time. The techniques that exploit the traffic pattern for optimizing the performance of packet

classification was discussed in [1, 37–39].

Lukas et al. [37] proposed a technique to make search structures adapt to traffic dynamics
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by inserting a shortcut path from the root of the search tree to the frequently visited nodes which

reduces the number of memory accesses. This method performs a control loop, where periodically

the statistics about the popularity of the node are read and the shortcuts for the next time interval

are placed into the tree. However, they showed that their method only works for Denial-of-Service

(DoS) attack traffic.

The authors [38] introduced the idea of statistical data structures in optimizing packet filter-

ing. In this work, depth-constrained alphabetic trees are used to reduce lookup time of destination

IP addresses of packets against entries in the routing table. They showed that the average case

lookup time (finding matching rule) can be significantly reduced by using statistical data struc-

ture. However, their approach was limited to only one field (routing prefix) with arbitrary statistics

because the focus of the paper is on routing lookup. In addition, the paper does not provide any

details on traffic statistics collection and dynamic update of the statistical tree.

The use of statistical trees for optimizing packet classification is also found in [21]. The

authors proposed a technique that used whole rules without exploiting traffic patterns over separate

fields.

Researchers [1, 39] utilized traffic pattern over separate fields to obtain adaptive methods

that can accommodate varying traffic statistics for achieving a near-optimal average matching time

if the traffic statistics get stable over time. They build Huffman trees using traffic space segments

where all segments are disjoint subsets of the traffic space such that each subset contains flows that

have some common characteristics. Their approach adapts to the traffic pattern in regular intervals

(offline).

Our approach is similar to the existing traffic adaptive solutions in the way that we also

take traffic pattern into consideration to improve the average packet matching time. However,

the novelty of our approach lies in: (i) adaptation is done as traffic comes in (instead of regular
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intervals) to match the most-recent traffic characteristics (ii) adaptation is done “online” and (iii)

our technique provides much finer granularity than whole rules with the added capability to digest

multiple fields.

4.4 Proposed Approach

Traditional packet classifier classifies packets based on a rule-set, being unaware of the traffic

pattern. However, npf goes one step further. In addition of performing its main duty—“Packet

classification”, npf intelligently reorganizes its internal data structure by exploiting locality in the

incoming traffic in order to achive a near-optimal searching time.

npf is a decision tree based algorithm. It constructs a special data structure called “Interval

based Rule Tree (IRT)” in order to efficiently store the rules in the rule-set.

The dynamic adaptation to the traffic pattern in npf is done by using a technique called

“tree rotation”. Applying this technique, the nodes associated with the most frequently visited rules

are stored at the shortest path in the search tree. This results in a significant matching reduction

for the most popular traffic. It is highly likely that the next search for the matching node will be

found quickly by consuming less number of memory accesses because the nodes associated with

the most frequently visited rules is expected to be found near the root of the “IRT” (Section 4.6).

In best possible case, our npf will find the matching rule for the most popular traffic in at most

one memory access.

We perform two kinds of rotation: left rotation and right rotation based on the location of

the node to be rotated in the tree. The rotation operation preserves the binary-search-tree property.

When we do a left rotation on a node x, we assume that its right child y is not NULL. x may be any

node in the tree whose right child is not NULL. The left rotation works around the link from x to y.

It makes y the new root of the subtree, with x as y’s left child and y’s left child as x’s right child. On
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Figure 4.1: High level view of npf design

the other hand when we do right rotation on a node x we assume that its left child y is not NULL. It

makes y the new root of the subtree, with x as y’s right child and y’s right child as x’s left child [40].

Both left rotation and right rotation run in O(1) time. These rotations have two important effects:

they move the node being rotated upward in the tree, and they also shorten the path to any nodes

along the path to the rotated node. This latter effect means that rotation operations tend to make

the tree more balanced. The other advantage of tree rotation is that rule dependencies/ordering on

the IRT hierarchy are preserved because each node contains the list of matching ruleIDs.

The high level design of npf is shown in Fig. 4.1. Our proposed design mainly consists of

2 phases.

• Phase I: Preprocessing Phase constructs the decision tree IRT and list of ruleIDs for wild-

card rules based on the rules in the classifier in the user space for each of the five dimensions

(source/destination IP, source/destination Port, and protocol). These information are down-

loaded to the kernel and then IRT is rebuilt in kernel space.

• Phase II: Search Phase queries multiple IRTs to identify the matching rule for the incom-
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Figure 4.2: The interval trichotomy for two closed intervals i and i′. If i and i′ overlap, there are
four situations: in each low[i]≤ high[i′] and low[i′]≤ high[i]

ing packet. Kernel modules update the popularity counter of the matching node and per-

forms dynamic reorganization of the tree based on the traffic pattern. The main objective of

our approach was exploiting traffic pattern to minimize the maximum number of operations

(memory accesses) to be performed during the search phase.

Each time a packet arrives, the IRT for each dimension (field) is traversed based on the

information in the packet header to find a matching node in the respective IRT. We obtain for each

field a set of candidate rules that contain the corresponding field value. The rule(s) that matches

the packet are obtained by getting the intersection between these sets of rules. If the intersection

contains more than one rule, the rule with highest order (priority) is selected. If no rules are

common, then the default action is returned. An important advantage of this concept is that the

field searches can be performed more efficiently because of the relatively small search keys and by

exploiting specific field characteristics. Another advantage is that the memory accesses related to

different field searches are independent and can be performed in parallel or in a pipelined fashion

(Chapter 5), which reduces the latency and allows a better utilization of the available memory

bandwidth. We describe the design and working procedure of npf in detail in the following

sections.
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4.4.1 Phase I: Building IRT from Scratch

The algorithm starts with a set of N rules where each of the rules containing K dimension (field).

In this work, we consider K = 5 dimensions i.e. source/destination IP, source/destination Port

and protocol in the rule-set. However, npf can be extended for higher number of dimensions

if needed. Since packet matching is performed on multiple fields, multiple IRT are constructed.

The tree structure is named as “Interval based Rule Tree” because everything (IP address and port

number) is considered in terms of interval or range. For example, 16 bit port field ranges from

0 to 216− 1. Thus the port field has an interval of [0,65535]. We also convert the IP prefix into

appropriate interval. We can represent an interval [t1, t2] as an object i, with fields low[i] = t1 (the

low endpoint) and high[i] = t2 (the high end point). We say that the interval i and i′ overlap if

i∩ i′ 6= /0, that is, if low[i] ≤ high[i′] and low[i′] ≤ high[i]. Any two intervals i and i′ satisfy the

interval trichotomy; that is, exactly one of the following three properties holds [40]:

1. i and i′ overlap

2. i is to the left of i′ (i.e., high[i]< low[i′])

3. i is to the right of i′ (i.e., high[i′]< low[i])

Fig. 4.2 shows the all possible interval trichotomy for two closed intervals i and i′. If the

interval specified by two rules overlap (partially or fully), the higher priority rule will overwrite

the lower priority rules in the IRT. The ordering of the rule in the rule-set typically is the priority

indicator. The rules in the top order are usually considered higher priority rules than the rules in

the bottom order.

Each node x in the decision tree has the following properties: an interval [begin range,

end range], popularity of the interval and {list of ruleIDs} matching this interval.
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begin range is the starting point of the interval or range, end range is the end point of

the interval. For example, 16 bit port field that has interval [0,65535], begin range = 0 and

end range = 65535. popularity defines the frequency of the interval [begin range,

end range] seen in the incoming traffic. {list of ruleIDs} stores the list of rules that

contains the interval [begin range, end range] in rule-set. The IRT is created based on

the binary-search-tree property. Let x be a node in IRT. If y is a node in the left subtree of x,

then end range[y] < begin range[x]. If y is a node in the right subtree of x, then end range[x] <

begin range[y]. An in-order tree walk of IRT lists the intervals in sorted order by start point of the

interval or begin range. The worst case search time in binary tree is lgn where n is the number

of elements in the tree. However, the binary tree does not exploit the the skewed distribution

property of the traffic as described in Section 5.2. To exploit this property, we employ techniques

in IRT in order to minimize the average matching time. IRT basically is reorganized so that the

nodes associated with the most frequently visited rules are stored at the shortest path in the search

tree. This way, field values that commonly exist in the traffic will incur less number of memory

accesses in comparison to less frequent values, resulting in a significant reduction in the matching

time of most popular flows, reducing the overall average classification time of all flows. Although

the IRT based tree matching may not be in favor of less-frequently matched traffic, it still improves

the overall average classification by significantly reducing matching of most popular packets. The

more the skewness in the traffic distribution over field values, the more the gain in the classification

performance. Even when the traffic distribution is uniform (in the worst case scenario), npf cannot

do worse than the binary search as a lower bound. We can argue that the worst case scenario is

unlikely to occur for all the header fields at the same time for long time. The analysis presented in

Section 5.2 corroborates this.
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Table 4.1: An example of packet classifier

ruleID SrcIP DestIP SrcPort DestPort Protocol Action
1 * * [600,610] 80 TCP Accept
2 * * [1000,1024] [1024,65535] TCP Reject

0,65K,{1,2}

0,65K,{}

(a) default IRT

1

2 3

80,80,{1}

81,65K,{}0,79,{}

(b) IRT after inserting ruleID 1

80,80,{1}

1024,65K,{2}

81,1023,{}

0,79,{}

(c) IRT after inserting ruleID 2

Figure 4.3: Construction of Interval based Rule Tree IRT

In order to store nodes associated with the most frequently visited rules at the shortest path

in the search tree, we employ the second constraint max-heap property in IRT . The max-heap

property mandates that for any non-root node the popularity must be less than to the popularity of

its parent. Thus, the node with most popular interval (i.e. most frequently visited rule) are stored

at root node and its left and right subtrees are formed in the same manner from the subsequences

of the sorted order to the left and right of that node.

We initialize the popularity of each node associated with an interval based on the

number of its descendants. It helps us to preserve the max-heap property of IRT . Then, when we

find a matching node during search operation the popularity counter is incremented. In order to

find whether the max-heap property is violated, we compare the popularity of a node to its parent’s
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popularity. On violation of max-heap property, we use the tree rotation technique to regain the

max-heap property. Tree rotation promotes the higher popular nodes towards the root of the tree

and demotes the less popular nodes towards the leaf of the tree. Consequently, frequently matched

nodes (i.e. most popular rules) would be more likely to be closer to the root of the tree, causing

searches for them to be faster [41]. All the nodes in IRT encompass the entire header field space,

for example for Port field, it encompasses from 0 to 65535.

Fig. 4.3 shows the steps involved in IRT construction for “Destination Port” dimension

(field) from rule-set (Table 4.1). The node contain begin range, end range and {list of

ruleIDs}. For the sake of simplicity, we omit the popularity counter from the node in the tree.

Fig. 4.3(a) is the default node in the IRT at the beginning of IRT construction. The default

node initially contains begin range = Min(Interval) = 0, end range = Max(Interval) =

65535 and list of ruleIDs = {NULL}. Rule 1 has 80 in destination port field. Since it

is a non-range value, so we have: begin range = 80, end range = 80 and list of

ruleIDs= {1}. When we traverse the current IRT (Fig. 4.3(a)), we find out that interval [80,80]

overlaps with the interval [0,65535] (interval trichotomy 1) [36]. Interval [80,80] will overwrite

the current node and thus the intermediate IRT (Fig. 4.3(b)) is constructed. We provide a marking

system to the node in IRT (Fig. 4.3(b)) for ease of reference. This is not part of our design. The

destination port of rule 2 is [1024,65535] which means that rule 2 has an interval [1024,65535].

We traverse the current IRT (Fig. 4.3(b)) to find out its appropriate location to insert it into the

tree. At node 1, we find out that interval [80,80] is to the left of the interval [1024,65535] (interval

trichotomy 2) [36]. So we make a right branch traversal. At node 3, we find out that interval

[81,65535] overlaps with the interval [1024,65535]. Now interval [1024,65535] overwrites the

node 3 and IRT (Fig. 4.3(c)) is constructed. Without loss of generality, using this procedure the

IRT can be constructed for other dimensions as well regardless of the number of rules in the
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rule-set.

Algorithm 4.4.1: LOOKUP(root, packet header f ield)

t← root

key← packet header f ield

while (t 6= NULL)

do



if key < t→ begin range

then


comment: Traverse the left subtree

t← t→ le f t

else if key > t→ end range

then


comment: Traverse the right subtree

t← t→ right

else



comment: Matching node found

(t→ popularity) = (t→ popularity)+1

if (t→ popularity) == (t→ parent→ popularity)+UPDAT E T HRESHOLD

then
{

comment: Perform either left or right tree rotation

comment: Terminate the look up

return (t)
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4.4.2 Phase II: IRT Search Algorithm

When a packet arrives we extract the value of the K = 5 dimensions (fields) from the packet header

(SIP, DIP, SP, DP, and Protocol). During search process, the IRT for each dimension is traversed,

and a matching node in each IRT is identified. For example, we traverse SIP IRT to find out a

matching node that contains the interval such that begin range≤ SIP≤ end range. We do

this search operation for identifying a matching node in IRT for other dimensions as well. The

pseudocode to look up packet header field in IRT is presented in Algorithm 4.4.1. Traversing the

trees yield 5 matching nodes. We collect the list of rules from the matching nodes. As a result,

we get 5 different sets of ruleID list. We also have the list of wild card rules for each dimension

from Phase I. The list of rules are unified with their wild card rules as follows: USIP = {SIP}∪

{SIP∗}, UDIP = {DIP}∪{DIP∗}, {USP} = {SP}∪{SP∗} , UDP = {DP}∪{DP∗} and UPROTO =

{PROTO}∪{PROTO∗}. All of these unified lists of rules are intersected in the following order of

USIP∩UDIP, (USIP∩UDIP)∩USP, ((USIP∩UDIP)∩USP)∩UDP and (((USIP∩UDIP)∩USP)∩UDP)∩

UPROTO. Here, {SIP} contains the list of rules of the matching node and {SIP∗} contains list of

wild card rules for the source IP dimension. The intersection operation finally selects either a

list of common ruleIDs or /0. If the result of ∩ is not empty, ruleAction associated with the

smallest common ruleID determines the fate of the packet— accept or reject, otherwise the fate of

the packet is determined by the default ruleAction set by the Network Administrator. Note that

npf focuses on traditional rule-set based on IP 5-tuples. Hence, in this work, we describe npf’s

packet classification process for K = 5 dimensions. However, npf’s packet classification ability is

not limited by the number of dimensions.

In order to make npf traffic pattern adaptive, statistics are collected using a simple calcu-

lation (e.g., counter increments). More specifically, the popularity counter for the matching node

(i.e. a specific interval) is incremented during tree search operation. We compare the popularity
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0,65K,{1,2}

(a) sip IRT

0,65K,{1,2}

(b) dip IRT

0,599,{1}

611,629,{2}

600,610,{2} 630,65K,{1}

600,610,{1}

1000,1024,{2}

611,999,{} 1025,65K,{}

0,599,{}

(c) sp IRT
80,80,{1}

1024,65K,{2}

81,1023,{}

0,79,{}

(d) dp IRT

6,6,{1,2}

7,255,{0}0,5,{0}

(e) proto IRT

Figure 4.4: Interval based Rule Tree IRT for five different header fields. “SIP” means Source
IP, “DIP” means Destination IP, “SP” means Source Port, “DP” means Destination Port and
“proto” means protocol. The legend of the node is as follows: begin of interval, end
of interval, {list of rule IDs}

of the matching node with the popularity of its parent node. If the max heap property is violated

(i.e. popularity(child node) = popularity(parent node) + Update Threshold ) then we apply the tree

rotation to promote the higher popular nodes towards the root of the tree. As a result, search-

ing time for the most frequently visited rules is reduced further which contributes in significant

improvement of average case performance of packet classification. In addition, as soon as our al-

gorithm finds that the result of ∩ operation between two dimension is /0, it can bypasses the search

operation and ∩ operation for other dimensions and classify the packet faster (because of saving

memory accesses) without compromising the accuracy because ∩ = /0 implies that the fate of the

packet will be determined by the default ruleAction. This inherent advantage present in our
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approach contributes further in achieving superior average performance.

4.4.3 npf’s Packet Classification Demonstration

In this section, we demonstrate the packet classification procedure of npfwith the help of a simple

example. Table 4.1 is a very simple rule-set that contain only 2 rules. For the sake of simplicity

we keep the number of rules in this rule-set small. Any incoming packet will match rule 1 if it is

a TCP packet with source port within the range [600,610] and destination port 80, regardless of

its source and destination IP addresses. Rule 2 will be matched when the packet is coming from

source port within the range [1000,1024] and destined for any port within the range [1024,65535],

regardless of its source and destination IP addresses. The five IRT’s (Fig. 4.4) for five different

dimensions are constructed according to the procedure mentioned in Section 4.4.1.

Table 4.2: Packet header information

source IP 69.166.49.179
destination IP 69.166.48.145

source port 600
destination port 80

protocol TCP

Now suppose a packet arrives at NIC whose header information is listed in Table 4.2. At

first the source IP IRT (Fig. 4.4(a)) is traversed and the list of rules {SIP}= {1,2} is obtained from

the matching node. We do the same for destination IP IRT and obtain {DIP}= {1,2}. The list of

wild card rules for source and destination IP dimension are {SIP∗}= {1,2} and {DIP∗}= {1,2},

respectively. If {USIP}∩{UDIP} 6= /0 the source Port IRT is traversed in order to find a matching

node for source port 600. The search finds {SP} = {1} because 600 lies between the interval

[600,610] at the root node of (Fig. 4.4(c)). Here, {SP∗} = /0. Again, if (USIP ∩UDIP)∩USP 6= /0

the destination Port IRT is searched for a matching node for destination port 80 and we obtain
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{DP}={1}. Here, {DP∗} = /0. Since ((USIP ∩UDIP)∩USP)∩UDP 6= /0, finally, we search proto

IRT to find a matching node for TCP protocol and the search finds {PROTO} = {1,2}. Here,

{PROTO∗} = /0. The result of (((USIP∩UDIP)∩USP)∩UDP)∩UPROTO = {1}. Hence, the fate of

this packet will be decided by the action associated with rule 1.

Let us consider that another packet arrives with the same header information except the

source port equals to 1024. Performing search in source IP and destination IP IRT will yield the

following ruleID list: {SIP}= {1,2} and {DIP}= {1,2}. Since USIP∩UDIP 6= /0, the source port

IRT is searched which finds {SP} = {2}. The intersection operation (USIP ∩UDIP)∩USP 6= /0.

So we search destination port IRT and we obtain {DP} = {1}. However, (USIP ∩UDIP)∩USP ∩

UDP = /0 . Therefore, the fate of this packet will be determined by the default ruleAction

right away instead of searching other dimension IRT (in this case, proto IRT), resulting in faster

classification. This bypass helps us improving the average performance of our packet classifier.

4.5 Attacks and Defense

npf, a traffic-adaptive packet classifier, exploits the pattern of the traffic to achieve a better perfor-

mance. The crucial assumption to make npf efficient is that the traffic pattern would match only a

small subset of rules in the rule-set and this pattern would show steady behavior for sufficient long

interval. Unfortunately, the attacker can exploit this fact to force npf to have lower performance

than expected. In this section, we present possible attack scenarios that are tailored specifically

for statistical packet classification techniques. The main objective of this section is to give some

ideas how different attacks can be planned against npf and what countermeasures could be taken

to prevent the attack.

56



4.5.1 Attack on the adaptation method by injecting short term variation in the traffic pattern

The underlying reason of npf’s superior average performance is that the search time for the most

frequently visited rules are reduced by dynamically promoting the tree node associated with those

rules closer to the root of the tree. Hence, an attacker can lower the performance of npf by

creating artificial short term variations in traffic pattern by injecting traffic flow with the least

expected properties (e.g. invalid protocol, least used port numbers) which forces npf to traverse

long path to find the matching node. As a result, these packets will take longer time to be classified

by npf than the average packet. Consequently, the average throughput will decrease since one bad

packet will increase the search time for all successive distinct packets.

4.5.2 Defenses

We describe the possible defense mechanisms of npf following the idea presented in [1].

IRT reconstruction

The performance of npf is measured by the number of comparisons (memory accesses) performed

to classify a packet. Hence, we can detect the performance degradation of npf by observing the

average number of comparisons (i.e. average path length) performed for every packet. Once the

average cost per packet is exceeded above the predefined threshold, the search structure (IRT) is

reconstructed. However, under an attack, the IRT may need to be rebuilt so frequently that it may

overload the processing capacity of the system by rebuilding operations. One way to prevent this

from happening, we can redefine the threshold which will force the IRT rebuild operation to occur

not so frequently.
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Dynamic Sampling rate

We perform sampling on the incoming traffic because it is hard to process each and every packet

due to high speed link. We can mask out burst attack by carefully choosing sampling rate. By

lowering sampling rate, the effect of burst attack in changing overall traffic pattern can be reduced.

Therefore, the attacker will have to inject traffic with high rate for a long time to have impact on

the traffic pattern. It would be foolhardy for us to say that npf’s classification accuracy will not

be affected by this dynamic sampling. However, we believe that this is a better way to defend the

attack than complete loss of performance.

4.6 Performance Evaluation

npf is not designed for exploiting the rule-set characteristics. Nevertheless, we evaluate the per-

formance of npf using both real world and synthetic rule-sets. We used 5 real world Snort rule-

sets [42] in which each entry contains a 5-tuple (source and destination IP prefixes, source and

destination port numbers, and protocol). We used the real world rule-set as generators to produce

5-dimensional synthetic rule-set. The synthetic rule-set were generated using a simple technique.

To create a new rule, we randomly pick the source and destination port and protocol from a pool

of all the values that were in the corresponding 5 real world rule-set. We generate randomly source

and destination IP prefix. This procedure is then repeated N times to create a rule-set of size N.

Both type of rule-set size ranges from 25 to 103.

4.6.1 Metrics

We consider the number of operations performed per packet as the primary metric in order to

analyze the performance of npf. We take the average on the number of operations performed per
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Traffic Generator

Switch

Packet Classifier

L.NIC1

L.NIC2

O.NIC1

O.NIC2

Figure 4.5: A simple view of the experimental test bed

packet to make sure that the system will perform as expected and the performance will not drop to

an unacceptable level with the varying traffic distribution.

4.6.2 Experimental Test bed

The performance of our proposed approach in a real network configuration is demonstrated by

writing a new packet filter using NetBSD’s pfil framework [43] as an IDS on a NetBSD [44]

machine. The testbed in Fig. 4.5 contains two machines: a traffic generator and traffic-adaptive

packet classifier (3 GHz CPU and 2 GB memory). The generated traffic is forwarded to the traffic-

adaptive classifier. If the packet matches a rule with “accept,” the classifier forwards the traffic

back to the generator, otherwise blocks it.

4.6.3 Experimental Results

Several Internet packet traces were captured at different machines of our lab and then replayed

back using tcpreplay [45] in the experiments. The traces contain packet header information

for 2 million to 5 million packets. The packet headers were captured at different days of week

and times of day. It is reasonable to assume that these traces reflect realistic network conditions.

The packet frequency distribution of two of the packet traces used in the experiment is shown in

Fig. 4.6(a) and 4.6(b).

In Fig. 4.7, we plot the average path length (average number of operations) taken by npf
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Figure 4.6: (a) Packet frequency distribution (Type-1) (b) Packet frequency distribution (Type-2)

per packet. The average is taken over the whole packet trace, with the tree updated online along

the change in the traffic pattern. The graph shows attractive measurement that npf can classify

packet with less than four evaluations per packet. We also calculate the entropy (theoretically)

which is a measure of the smallest number of evaluations possible per packet for a particular

traffic distribution. Fig. 4.7 shows a performance gain in npf (< 4 evaluations) compared to

the calculated entropy of 5.345 evaluations per packet because of the inherent advantage of our

underlying data structure that the node associated with the most frequently visited rules can be

placed at the root of the tree which has 0 path length. Also, our tree building technique allows

us to place the intervals not only in the leaf nodes but also in the internal nodes. As a result, our

approach consumes less number of memory accesses (i.e. less number of operations) on average

compared to the theoretical limit (calculated entropy).

We take measurement to find out the gain achieved in packet classification time due to

exploiting traffic pattern. Fig. 4.8 shows that the performance gain was in an attractive range of

36–61% approximately.
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Figure 4.7: Actual cost per packet in number of evaluations using npf

The reason of consuming small number of operations per packet is because we promote the

nodes associated with the most frequently visited rules closer to the root. However, it may happen

that for a particular unpopular rule, our approach may need to take longer path if the node associ-

ated with that unpopular rule is located in the bottom of the tree. Hence, we take a measurement to

see the trend of maximum tree height in our experiment. Note that we started with balanced binary

tree which is the minimum possible tree height for a particular traffic distribution at the beginning

of the experiment. Fig. 4.9 shows that the tree height increases from the minimum possible height

as the experiment progresses and becomes stable as our approach adapts to the pattern of the traffic.

Although the maximum tree height is longer (≈ 21) in this result, our approach can classify packet

with less than 4 evaluations (Fig. 4.7) because the infrequently visited rules reside in the bottom of

the tree and those are accessed less compared to the popular rules which reside closer to the root
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Figure 4.8: Gain in packet classification time by exploiting traffic pattern for three different traffic
distribution (Fig. 4.6(a) and 4.6(b))

of the tree.

Finally, In order to justify the claim that running ‘online adaptation’ achieves better per-

formance gain than ‘offline,’ we compare npf’s online adaptation approach with Adel et al. [1]

approach in which the tree organization (adaptation) is done offline at certain interval. We conduct

six different experiments with different traffic distribution to find out the effect of online vs. offline

adaptation on classification time. In 3 different types of experiments, segment weights (section 4.3)

are assigned using traffic of previous interval which are E-1: traffic distribution of current interval

is kept same as previous interval, E-2: traffic distribution of current interval is made opposite as

previous interval, E-3: traffic distribution of current interval is made randomly different than pre-

vious interval. In other 3 different types of experiments segment weights are assigned randomly

which are E-4: traffic distribution of current interval is kept same as previous interval, E-5: traffic
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distribution of current interval is made opposite as previous interval, and E-6: traffic distribution

of current interval is made randomly different than previous interval. Fig. 4.10 shows that in all

types of experiments, packet classification time was reduced more than 75% in online adaptation

approach compared to the offline adaptation approach. This large reduction is attributed to two in-

herent features available in npf - first of all, due to online adaptation most frequently visited nodes

reside closer to the root and second as soon as our algorithm finds that the result of ∩ operation

between two dimension is /0 (section 4.4.2), it bypasses the search operation and ∩ operation for

other dimensions and classify the packet faster (incurring less memory accesses).
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Figure 4.10: Effect of online adaptation (npf ) vs. offline adaption [1] on packet classification
time

Preprocessing Time Complexity

During preprocessing stage, npf converts the rules in the rule-set into intervals, which takes O(ni)

where n is the number of rules and i is the number of intervals. The IRT construction time is

O(n logn).

Space Complexity

Fig. 4.11 demonstrated the memory cost of the tree search structure (IRT) as a function of the

number of rules. The memory cost appear linear growth without requiring any significant addi-

tional space. npf belongs to the algorithm “trade space for time”, it use a lower speed but large

capacity and cheap RAM to achive comparative performance as the expensive and power-hungry

hardware (such as FPGA, TCAM etc.)
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Figure 4.11: Number of interval (nodes) in IRT

Overheads due to Online adaptation

In order to exploit traffic pattern, we update tree dynamically (Section 4.4) to promote the nodes

associated with the more frequently visited rules closer to the root. Online IRT update reduces

the search time for a matching node for the most frequently visited rules. We have found in our

experiments that this extra overhead update operation is extremely useful to achieve relative gain

(Fig. 4.8) in search time on average if the traffic shows “skewness” (Section 4.1). In Fig. 4.12,

we see that although the number of tree update is large at the beginning, it converges to a stable

situation as our approach adapts to the pattern of the current traffic. The data for this graph was

taken at several intervals during the experiment to show how our approach adapts to the pattern of

the traffic over the time. However, we are curious to know what happens when IRT is updated too

frequently. Does the processing overhead caused by unnecessary adaptation pose a performance
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issue? Fig. 4.12 shows how the IRT update rate can be controlled by employing a update threshold.

In particular, if npf’s performance degrades to an unacceptable level (performance level can be

measured from the average number of evaluations per packet Fig. 4.7) enforcing a higher update

threshold would reduce the tree update rate and thus avoid the unnecessary adaptation. However,

enforcing a higher update threshold would affect the classification time. To see how the change in

update threshold affect the classification time, we plot, in Fig. 4.13, the percentage of increase in

classification time for different update threshold compared to the classification time when update

threshold is set to 1 (best case). We see approximately 15% increase in classification time when

update threshold is increased from 1 to 104. This is acceptable than trashing the system because of

excessive tree update.

Since online tree update is crucial for achieving the gain, we are curious to find out how

66



 0

 20

 40

 60

 80

 100

1 10 100 1000 10000

%
 o

f I
nc

re
as

e

update threshold

%of Increase in Classification Time 
 due to different update threshold

Figure 4.13: Effect of different update threshold in packet classification time

much processing overhead is introduced by the online dynamic adaptation of data structure? we

took measurements to find out the time needed to modify the tree structure in real time. Our

experiments with different traffic distribution (Fig. 4.6(a) and 4.6(b)) shows that approximately

4–6% of total classification time is spent for modifying the tree structure in real time.

4.7 Conclusion

Most of the current packet classification algorithms reported in the literature do not consider the

traffic pattern in optimizing their techniques. In this work, we undertook the investigation of find-

ing the feasibility of exploiting the locality in traffic to improve the average performance of packet

classifier. We show that classification time can be reduced by performing online dynamic adap-
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tation to the incoming traffic pattern. In particular, our test bed based analysis shows the tradeoff

between the performance gain and processing overhead due to dynamic adaptation and a compar-

ative study between online and offline adaptation approach. It is evident from our experimental

results that the dynamic adaptation to the traffic pattern is very effective in boosting packet classi-

fier’s average performance because the most frequently visited rules can be found by incurring less

memory accesses (i.e. spending less time per packet) since heavily hit nodes will remain in cache

and as a result the cache hit ratio will be high.
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CHAPTER five

PARALLEL PACKET CLASSIFICATION SYSTEM

In decision-tree-based Packet Classification (PC), packets are classified by searching in

tree data structure. However, tree search presents significant challenges because it requires a num-

ber of unpredictable and irregular memory accesses. Packet classification is per-packet operation

and memory latency is considerably high. The growing trend of number of rules in the classifier

coupled with the constant increase in link speeds makes wire-speed classification a challenging

task. Hence, satisfactory performance of PC still remains elusive at the wire speed. In this chap-

ter, we present a parallel traffic-aware classification approach in high-end multi-core architecture

available today. In particular, we present the design, implementation, and evaluation of traffic-

aware classification system that exploits the locality in traffic patterns and leverages the task-level

parallelism on multi-core general purpose processors to achieve Gbps classification speed.

5.1 Introduction

Packet classification is primarily used by network devices, such as routers and firewalls, to do ad-

ditional processing for a specific subset of packets. Such additional processing includes packet

filtering, quality of service (QoS), and differentiated services (DiffServ). Packet classifier catego-

rizes packets based on a set of rules that represent the classification policy. Most of the existing

packet classification solutions reported in the literature exploits the characteristics of rule-sets in

optimizing their schemes. However, the prior observations [2,10,12,20–22] that a relatively small

subset of rules are visited more frequently in the rule-set show promise to another direction that

packet classifier’s average performance can be improved by exploiting the locality in the traffic

pattern.
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We designed npf [36], a lightweight traffic-aware packet classification system that achieves

superior average performance by exploiting the traffic pattern. For each header field (source and

destination IP, source and destination port, protocol), npf creates a special data structure called

“Interval based Rule Tree (IRT)” in order to organize the rules in the rule-set. During classifica-

tion, IRT is reorganized dynamically so that most frequently used field values are located at the

shortest path in the search tree. The performance gain in npf is achieved when a large fraction

of packets are classified by visiting the top part of corresponding header field’s IRT incurring less

number of memory accesses on average.

Packet classification is per-packet operation and for packet classification, the time to pro-

cess a packet is dominated by memory-access latencies. Hence, an architecture containing a single,

high-performance processor is often not suitable for a classification system. In addition, the grow-

ing trend of large rule-sets size coupled with the recent advancement in transmission link rates

(Gbps) makes wire-speed classification a challenging task. To mask memory access latencies and

to meet the performance demands, and thereby process packets at high rates, it is important to ex-

ploit the inherent parallelism of network processing. Most packets in network traffic do not exhibit

interdependencies and thus can be processed independently. As a result, modern multi-core general

purpose processor can be utilized to employ highly parallel architectures for packet classification.

The increased computing power, inexpensive system cost, easy programmability of multi-core pro-

cessors have lead researchers to employ them for high-speed packet processing [46–48].

In order to achieve the required high throughput, we pursue to make strong use of paral-

lelization. In this work, we explore how the highly parallel capabilities of commodity multi-core

processors can be utilized to further improve the performance of traffic-aware packet classification

system. An important property of npf is its modular nature. As a result, npf is a “natural” fit

for multi-core technologies, because npf can be visualized as a set of tasks (or modules) and the
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tasks can be assigned to distinct cores to run independently in parallel. In this work, our effort is

to take advantage of this modular nature of npf with the use of multithreading and with multiple

execution cores on a general purpose multi-core architecture.

We have designed, implemented and evaluated Pnpf, a parallel traffic aware packet clas-

sification system on modern multi-core architecture. The design of Pnpf (Parallel npf) is a

multi-threaded software-only solution that accompanies a load balancing mechanism which bal-

ances the throughput of its multiple constituent components, such that the overall throughput of

the entire system is maximized. We use pipeline model (i.e. task-level parallelism) in Pnpf.

Here, classification is partitioned into multiple stages, stages are connected together in sequence,

and each processor is assigned a specific stage to execute. Small queues (with exclusion locks)

reside between adjacent stages to decouple read and write operations and provide for a limited

amount of buffering. Compared to data parallelism, this approach offers reduced lock contention

(since each lock is shared by at most two processors), reduced latency, and good cache locality.

While our design of Pnpf is implemented and evaluated for a popular multi-core architecture, this

software-only solution can be embedded in any other platform, for example Cavium’s family of

Octeon-based network processor boards [49].

5.2 Internet Traffic Properties

The design of npf is highly motivated by the Internet traffic properties that were observed in our

study [36] and addressed by other researchers as well [2, 10, 12, 20–22]. After studying publicly

available Internet traffic and private traffic traces we find out that the majority of network traf-

fic/flows matches a small subset of the rules in the rule-set. Another key finding in our observation

is that this “skewness” property in the distribution of network traffic continues for long enough time

intervals such that it is reasonable to exploit such skewness to improve the average performance
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Figure 5.1: Distribution of a) flow size, and b) flow duration [2] for packet traces available at [3].

of packet classification. Many of the current packet classification techniques does not consider the

traffic pattern in their optimization techniques; rather they exploit the characteristics of rule-set.

On the other hand, npf considers the traffic pattern to improve its average case performance.

In this section, we will present detail analysis on publicly available traffic traces [3] to

demonstrate that the majority of the incoming (or outgoing) packet is matched against a small

subset of rules in the rule-set (skewness of the traffic matching the rules) and traffic skewness

property is unlikely to change over a short period of time. We perform the traffic analysis on the

packet traces available at [3]. The traces contain packet header information for 2 million to 10

million packets. The packet headers were captured at different days of week and times of day. It is

reasonable to assume that these traces reflect realistic network conditions.

5.2.1 Packet flow properties

As shown in Figure 5.1(a) around 20% of the flows have 10 packets or more and around 60%

of the flows have 3 packets or less. Also, around 70% of the Internet traffic are carried by the

long flows. Next, we look at the distribution of flow duration. As shown in Figure 5.1(b), about

20% of the flows (that carry about 60% of the total traffic) have a duration of 5 seconds or more
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Figure 5.2: An overview of multi-core architecture

(i.e. long-lived flows carry most of the traffic). These observations imply that a significant portion

of the traffic is matched against a relatively small subset of the rule-sets over extended duration.

Our observation is consistent with the previous study [50] which reported that while the most of

the Internet flows have short flow sizes, the considerable amount of Internet traffic is constituted

from the long flows. As a result, this clearly indicates that exploiting traffic pattern to optimize

classification performance is not only useful but also practical in most cases.

5.3 Introduction To Multi-Core Architecture

Modern designs include multi-core systems, where a single die holds multiple CPUs. Multi-core

processors use chip multiprocessing (CMP). Rather than just reuse select processor resources in a
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single-core processor, processor manufacturers take advantage of improvements in manufacturing

technology to implement two or more “execution cores” within a single processor. These cores are

essentially N individual processors on a single die. (Figure 5.2). Execution cores have their own

set of execution and architectural resources. Depending on design, these processors may or may

not share a large on-chip cache.

Commodity multi-core processors gained popularity [51,52] because they offer the raw par-

allelism necessary to address the problem, namely the incessant growth of network traffic volumes

and rates. The low cost multi-core processors made it feasible to build complete packet classifica-

tion system using general purpose processors. Architects and developers in the industry [53] are

now considering these processors as an attractive choice for implementing a wide range of net-

working applications, as performance levels that could previously be obtained only with network

processors (NPUs) or ASICs can now also be achieved with multi-core architecture processors,

but without incurring the disadvantages of the former such as the requirement of highly deliber-

ate, and customized programming. Today one can buy quad-core [54], six-core [55], and 8- core

with 8 threads/core [56] CPUs. These designs promise to continue scaling into the future; for ex-

ample, there are already specialized 64-core processors for network processing [57] and 86-based

many-core architectures that may contain 64 discrete 86 cores with vector extensions [58].

While there are many ways to take advantage of the computing power of multi-core sys-

tems (ex. virtualization, SMP OS, etc.), multi-threading individual applications may be the best

way to realize large performance gains on such platforms. Chip multiprocessors (CMPs), exploit

thread-level parallelism (TLP) and programmers must exploit thread-level parallelism in order to

extract performance from CMP. CMP is arguably the most common architectural method for net-

working applications. The reason for this selection is motivated by the nature of the networking

applications. Most networking applications exhibit task and data level parallelism. In addition,
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most applications are relatively simple. Therefore, designers utilize several simple execution cores

that can take advantage of the data/task level parallelism without complicating the design pro-

cess. CMP can improve packet processing performance by executing concurrent processes/threads

on different execution cores. Consequently, to provide more computing power and to match I/O

processing required by high bandwidth network, CMP are widely used as server platforms. For

example, multi-core architectures are employed in Cisco’s Application Oriented Network (AON)

technology [59].

We choose to deploy our parallel packet classification system in CMP multi-core environ-

ment because of the following reasons:

1. ease of development (As opposed to NPUs, the software engineers are not required to learn

a special purpose programming model and tools for packet processing)

2. promise of long term support from the major chip manufacturers [53].

3. CMPs natural tolerance for inter-thread communication optimizes the necessarily small com-

putation time per packet, and does not mandate the processing of many packets at a time to

provide scalability [30].

5.4 Architectural Paradigms

This section explores different programming models that can be used for developing Pnpf and

their influence on the performance of Pnpf in the multi-core architecture processor environment.

In order to deal with high data-rates, several architectural paradigms have been commonly used:
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Figure 5.3: Pipeline architecture in which each incoming packet flows through multiple stages of
a pipeline.

5.4.1 Parallel processing with multiple processors

In this model, a packet is processed in a single step. This the simplest approach to parallelize a

workload. The processing loop is entirely replicated for every thread. Threads are well-supported

models of concurrent programming. However, they often entail high overhead in terms of context-

switch time and memory footprint, which limits concurrency.

5.4.2 Pipeline of processors

This model (Figure 5.3) comprises a number of steps, called pipeline stages. Each stage of the

packet classification pipeline is mapped to a different core/thread, with the packet being sent from

one stage to the next one in the pipeline. Each core/thread has its fixed place in the pipeline and is
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the owner of a specific functionality which it applies on a single packet at a time, so the number of

packets currently under processing is equal to the number of pipeline stages. The pipeline model

has the advantage of offering an easy way to map the packet processing pipeline to the computing

resources of the processor by simply assigning each pipeline stage to a different core/thread. Better

throughput can be achieved if the code footprint and the data working set of a given pipeline stage

is similar for most of the packets and dependencies with other cores can be kept at minimum.

5.5 Challenges in Multi-threaded design on CMP architecture

No increase in the processing power is achieved by simply using the multi-threading. Multi-

threading cannot minimize the latency of complex operations, but it can be an effective mechanism

to hide this latency from the cores and thus increase the overall efficiency of the cores. However,

the multi-thread model is not problem-free, as it introduces the delicate problem of synchroniza-

tion between the cores/threads when accessing the shared resources such as the input/output packet

streams, the shared data structures, etc.

A general rule of thumb in multi-threaded application is to share as little data as possible

between threads because the synchronization overhead can really limit performance. In general,

it is recommended to design the data structures of the application for minimal contention between

the cores/threads accessing them.

Also, it is very important to distinguish read-only resources from shared modifiable re-

sources to address the problem of data race. Data race is not a concern or does not occur when

multiple threads simply attempt to read a block of resources simultaneously or access simultane-

ously a resource that cannot be modified (that is, read-only memory or const objects). In order for

a race condition to exist, the resource under consideration must be modifiable, and multiple threads

must be trying to simultaneously access the resource with at least one of the threads attempting to
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modify the resource.

Communication between threads or synchronization between processors comes at a cost.

The complexity of the synchronization or the amount of communication between processors can

require so much computation that the performance of the tasks that are doing the work can be

negatively impacted. We consider the above mentioned issues while designing the parallel pipeline

version of npf.

5.6 Design of Pnpf

In this section we briefly discuss about npf, a light weight traffic-aware packet classification

system. Then we present the design of Pnpf (parallel npf), which is designed to enable high

concurrency with load conditioning on CMP architecture.

5.6.1 Introduction to npf

Table 5.1: An example of rule-set

ruleID SrcIP DestIP SrcPort DestPort Protocol Action
1 * * [600,610] 80 TCP Accept
2 * * [1000,1024] [1024,65535] TCP Reject

Most of the previous researches on packet classification focus on optimization based on de-

terministic techniques. On the other hand, we focus on considering the statistical properties of the

traffic passing through the classifier as an optimization technique to achieve a near-optimal search-

ing time. We propose npf that is different from the existing packet classifiers in two ways: first,

it classifies traffic exploiting the locality in the traffic pattern and second, unlike existing traffic-

aware approaches requiring a separate, off-line reorganization phase, npf performs reorganization
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on-line with little overhead. npf is a decision tree based algorithm. It uses a special data structure

called “Interval based Rule Tree (IRT)” in order to efficiently organize the rules in the rule-set.

During classification, IRT is reorganized dynamically so that most frequently used field values are

located at the shortest path in the search tree. This results in quick matching significantly for the

most popular traffic. The dynamic adaptation to the traffic pattern in npf is achieved by using a

technique called “tree rotation”. Applying this technique, the nodes associated with the frequently

visited rules are moved closer to the root to reduce the number of memory accesses for the popular

rules. This simple technique results in extremely good performance in packet classification be-

cause it is highly likely that the next couple of searches for a matching rule will be found at the top

part of the tree, thereby incurring less number of memory accesses because the nodes associated

with the frequently visited rules is expected to be found near the root of the “IRT”. In best possible

case, our npf will find the matching rule for the most popular traffic in at most one step.

80,80,{1}

1024,65K,{2}

81,1023,{}

0,79,{}

Figure 5.4: A typical “IRT” for Destination Port field in ruleset (Table 5.1). The legend of the node
is as follows: begin of interval, end of interval, {list of rule IDs that
contains this interval}.

We build IRT for each dimension (field) in the rule-set. The tree structure is named as

“Interval based Rule Tree” because everything (IP address and port number) is considered in terms

of interval or range. For example, 16 bit port field ranges from 0 to 216−1. Thus the port field has

an interval of [0,65535]. Figure 5.4 shows a typical IRT for the destination port field in Table 5.1.
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We also convert the IP prefix into appropriate interval. The detail of npf can be found in Chapter 4.

5.6.2 Pnpf Design

Due to the inherent parallelism in network traffic, the design space for parallel packet classification

system is vast and ranges from pipelined to multiprocessor solutions. Most packets in network

traffic do not exhibit interdependencies and thus can be processed independently. Therefore, it

is very important to exploit the inherent parallelism of network processing in order to meet the

performance demands of a packet classification system at high link speed.

Parallelizing any application requires first identifying the available concurrency. Concur-

rency is exposed by using data parallelism or task parallelism or combination of both. In data

parallelism model, identical tasks process different set of packets independently and in parallel. In

task parallelism, the entire work load is partitioned into components that are completely indepen-

dent of each other. These components are then scheduled to execute in parallel. It is critical to

leverage the right combination of data and task parallelism because the gains from parallel execu-

tion can be overshadowed by the costs of communication and synchronization.

We exploited one type of task parallelism, pipeline model to parallelize npf. This paradigm

has a number of benefits: first, it does not require any synchronization or lock mechanisms since

different cores/threads process different data in isolation. Second, having several smaller data

structures instead of sharing a few large ones reduces the size of the working set in each cache,

increasing overall cache efficiency. In addition, pipeline model provides deterministic communi-

cation, following a producer-consumer pattern between pipeline stages and parallelism can also

be exploited within stages using either data parallelism or multiple worker threads. However, one

limitation of pipeline model is that applications parallelized using this model are very sensitive to

the load balancing across the stages. Our design includes controller that dynamically balances load
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Classification Result

Intermediate
Result

Figure 5.5: IRT tree structures for parallel matching for d = 4 dimension packet classification.
“SIP” means Source IP, “DIP” means Destination IP, “SP” means Source Port, “DP” means Desti-
nation Port.

across the stages to ensure an overall good throughput (Section 5.6.4).

Task level parallelism seems a natural granularity for parallelizing npf. In Pnpf (the par-

allel npf), we partition the entire packet classification system into components that are completely

independent of each other. Multiple IRT’s are constructed because packet matching is performed

on multiple fields (5-tuple source/destination IP, source/destination port and protocol). These in-

dependent tree structures (Figure 5.5) are suitable in pipeline model on a multi-core environment

because tree traversals over header fields offer independent operations which can be performed

concurrently on distinct processors. All these trees, five in our case, are searched in parallel and

the matching results of the independent field searches are then combined to produce the final clas-

sification results.

As shown in Figure 5.6, Pnpf is decomposed into seven pipeline stages. The first and the

last ones are stages for input and output. These are the serial stages that read a set of network

packets to be classified against a rule-set, and output the highest priority ruleID that matches the

packet, respectively. The middle 5 stages are parallel and configured with a thread pool of size t
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Packets enter
the pipleline

Interstage
Packet Queue

SIP DIP SP DP Protocol

Packets leave
the pipleline

Figure 5.6: Pnpf pipeline configuration. This is a structural representation of Pnpf. The parallel
classifier is composed as a set of stages separated by queues. Edges represent the flow of packets
between stages. Each stage can be independently managed, and stages can be run in parallel. The
use of packet queues allows each stage to be individually load-conditioned. “SIP” means Source IP,
“DIP” means Destination IP, “SP” means Source Port, “DP” means Destination Port and “proto”
means protocol.

where t ≥ 1. Packet data is passed between stages using software queues, configured to hold 1000

entries (default Queue size).

Packet Queue

Controller

Figure 5.7: A Pnpf Stage: A stage consists of an incoming packet queue, a thread pool, and
tree structure IRT. The stage’s operation is managed by a controller, which dynamically adjust
resource allocations.

The fundamental unit of processing within Pnpf is the stage. A stage is a self-contained

application component consisting of a tree structure (i.e. IRT), an incoming packet queue, and a

thread pool, as depicted in Figure 5.7. Each stage is managed by a controller that affects thread

allocation. Threads within a stage operate by pulling a batch of packets off of the incoming packet

queue and traversing the tree structure. After the tree traversal is complete, the packets and the set

of ruleID that matches the current header field are enqueued on the packet queue of the following

stage. Each packet flows through the entire pipeline, and a given stage of the pipeline performs

part of the required processing. An arriving packet enters the first stage, which looks up the source
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Figure 1: Packet arrivals per second over a day for the
Auckland trace [26]

by Figure 1, the observed load fluctuates significantly over
time and at any instant is often substantially lower than the
maximum load [22, 25, 27, 29, 40].

In such settings, an adaptive run-time environment—
that can change the allocation of processors to pipeline
stages at run-time—can yield significant benefits. First,
the ability to match processor allocations to the processing
demands for each pipeline stage leads to system designs
that are robust to traffic fluctuations. An adaptive sys-
tem can allocate appropriate number of processors to each
stage even when the processing demands for a stage ex-
ceed design-time expectations, as long as the cumulative
demands do not exceed the provisioning level; further, this
simplifies the determination of the processor provision-
ing level for the entire system. Second, by multiplexing
processors among different types of packets, an adaptive
system can reduce the cumulative processor requirement
(or provisioning level), and thereby reduce system cost.
Finally, by reducing the power consumption of idle pro-
cessors (e.g., by turning off processors or running them
in low-power mode), an adaptive system can conserve en-
ergy.

The Challenges Although the properties of network
workloads and of packet processing hardware raise oppor-
tunities for adaptive processor allocations, they also raise
key challenges. First, because network traffic can fluc-
tuate at multiple time-scales, accurately predicting traf-
fic arrival patterns is difficult [25, 27, 29, 40] and inter-
vals of idleness or low load may often be short [22], so
it may be difficult to take advantage of periods of low
load. Second, allocating and releasing processors incurs
delay/overhead (generally of the order of a few hundred
microseconds [23]). If the system releases processors too
aggressively during idle periods, then because of the in-
herent delay in re-allocating processors, a burst of arriving
packets might suffer unacceptable delays or losses.

Our Contributions In this paper, we present an on-line
algorithm for adapting processor allocations while ensur-

ing that the additional delay suffered by packets as a re-
sult of adaptation is deterministically bounded. Our Pro-
cessor Allocation Algorithm (PAL) is simple, but it al-
locates only as many processors to stages as needed to
meet packet delay guarantees, accounts for system recon-
figuration overheads, and copes with the unpredictability
of packet arrival patterns. PAL, like active queue man-
agement algorithms [6, 9, 15], makes processor alloca-
tion/release decisions based only on the current queue
length; it does not rely on any predictions for future ar-
rival patterns beyond knowing the worst-case arrival rate.

• Given a current allocation of j processors for a stage
and a worst-case delay bound D, PAL allocates ad-
ditional processors only when the current allocation
is unable to process within D the sum of (a) all cur-
rently enqueued incoming packets and (b) the max-
imum number of packets that could arrive during a
processor’s allocation latency. Surprisingly, for real-
istic system configurations, a simple sufficient con-
dition to meet this general activation requirement is
to activate the j+ 1st processor when the set of en-
queued packets first exceeds the number of packets
that j processors can process within D.

• Conversely, when the system has excess capacity,
PAL releases one or more processors when both (a)
the input queue becomes empty and (b) the minimum
time until the processors would be reactivated under
a worst-case arrival rate exceeds the latency for allo-
cating/releasing a processor.

A key contribution of PAL is its generality; it captures
the adaptation opportunities in the system as a finite state
automaton (FSA)—the methodology for constructing the
FSA can be applied to a variety of application require-
ments and system configurations.

There are four salient features of PAL. First, PAL of-
fers the flexibility to instantiate various policies for ea-
ger or lazy allocation and release of processors; this al-
lows PAL to tradeoff adaptation frequency/benefits with
the delay incurred by packets. Second, we show that
for acceptable values of the delay bound D, total proces-
sor requirement for PAL is within 10-30% of an ideal,
hypothetical setting that incurs no overhead for proces-
sor allocation/release. Third, PAL does not require pre-
diction of future packet arrival patterns. Given the vari-
ability of packet arrival rates in many network environ-
ments [25, 27, 29, 40], algorithms that do not depend on
on-line prediction are likely to be less complex and more
effective than those that do. Fourth, PAL deterministically
meets a configurable bound on packet processing delay.

We have evaluated PAL through simulations; further,
we have implemented a prototype adaptive processor al-
location framework for a packet processing system based

2

Figure 5.8: Arrival of Packets (per second) over a day for the NLANR trace [3].

IP part of the packet header. The later stages perform lookup on other header fields of the packet

header. When the packet reaches the last stage, the lookup results (sets of ruleID) are combined to

find the matching rule for this packet. Because each stage is executed by independent core/thread,

all stages can operate at the same time. Of course, parallel execution of all stages only occurs

when packets arrive in rapid succession (Figure 5.8); a pipeline remains full only if a new packet

is ready to enter each time a packet leaves. We expect that the average time spent for tree search

on different stages will not significantly deviate because the tree structure on different stages dy-

namically adapts to the traffic pattern. However, in practice the time required to lookup can vary

across the stages. We therefore, employ packets queues between stages. Thus, a given stage can

place a packet in an output queue and begin working on the next packet, even if the succeeding

stage remain busy. The use of queues has a number of benefits, including isolation, independent

load management, and code modularity. Introducing a queue between two stages decouples their
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execution, providing an explicit control boundary. The execution of a thread is constrained to a

given stage, bounding its execution time and resource usage to that consumed within its own stage.

A thread may only pass data across the boundary by enqueueing a packet for another stage. As a

result, the load balancing of each stage can be controlled independently.

Contention for locked resources usually becomes one of the major bottlenecks to multi-

threaded application performance. Another motivation for choosing pipeline model is that assign-

ing task specific resources to single stages ensures less access conflicts and reduced communication

effort. Access to data structures shared across multiple packets only needs to be synchronized on

the threads running on single core. In Pnpf the tree structure is reorganized dynamically to adapt

to the pattern of the network traffic. By isolating each tree structure into distinct stages reduces the

amount of communication and resource sharing among the cores/threads.

In CMP architecture, each core has its own memory cache. Thus, we can achieve good

memory performance by scheduling threads that share the same data structure onto the same core,

while executing unrelated threads on another core. As the performance gap between cache and

main memory increases, improving cache locality is critical to yield performance gains. Another

benefit of core dedication is that the possibility of cache collision is very small. Therefore, it is

much better to always schedule the task on the same core to minimize overhead like cache misses

or TLB flushes. Previous work on multi-core OSes also suggests that isolating applications into

different cores outperforms symmetric scheduling because dedicating cores ensure an effective use

of cache resources and a reduction in lock contention [60].

We also considered other design choices. One alternative design is shown in Figure 5.9.

This design follows the data parallelism idea used by previous software router implementations [61,

62]. In this alternate design, we could take all the different task components of Pnpf and fold

them into a serial sequence of tasks. Each core implements a full version of Pnpf that acts on
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Figure 5.9: An alternative architecture that exploits data parallelism.

separate sets of incoming packets for data parallelism. However, we find that this model of paral-

lelization of npf will not yield noticeable performance improvement due to excessive sharing and

high lock contention cost associated with protecting shared data structures.

5.6.3 Packet Classification in Pnpf

Packets move through a series of stages along the pipeline (Figure 5.6) from one processing ele-

ment (core) to another. Each instance of the pipeline passes packets from one stage to the next,

across core boundaries. So at any one time, the entire pipeline may have multiple packets in vari-

ous stages of processing. Packets are placed onto a ring buffer, which serves as a holding point for

the remainder of the packet processing. Threads in the first stage removes packets from the ring

and begins the processing the packet header. For IPv4, packet classification, this processing takes

place on the Internet Protocol (IP) portion of the packet. In order to perform the search on multiple

fields (5-tuples), packet lookup is performed against each of the field’s search trees separately on

different stages. We obtain for each field a set of candidate rules that contain the corresponding
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field value. The last stage in the packet processing pipeline finds out the rule that matches the

packet by getting the intersection between these sets of rules. If the intersection contains more

than one rule, the rule with highest order (priority) is selected. If no rules are common, then the

default action is returned.

5.6.4 Optimizations

The scalability of Pnpf is gated by the load imbalance between stages and by the input stage (first

stage). In this section, we discuss solutions to address these limitations encountered in applications

parallelized using the pipeline model.

Input stage optimization

Study [46] indicated that the CPU spends almost 100% of its time responding to packet receive

interrupts i.e. the system bottleneck is in the packet capture module. In Pnpf, there is no depen-

dence between different network packets, therefore, we can parallelize the input stage (the first

stage in the pipeline). We divide the first stage into two stages, a serial one that receives the net-

work packets and enqueues them in an intermediate queue and a second parallel stage that extracts

packets from the queue for processing by the later stages.

Dynamic Load Balance

Load imbalance is a result of the different amounts of work in each stage in Pnpf. It is common

to use a unique number of threads for all stages in pipeline. Although, we expect that the amount

of work across the stages would be similar because the tree structures are adapted dynamically to

the traffic pattern, it may happen that the amount of work between stages may vary over the time.

As a result, if we continue to use unique number of threads for all stages, the stage with the larger
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amounts of work will become a bottleneck. Large differences in the amount of processing across

stages will result into an inefficient parallel classification system.

In order to enforce balance on the amount of work between stages, we employ load bal-

ancing mechanism to minimize the proportions between the largest and the smallest processing

task. Instead of using a unique number of threads for all stages in pipeline, the number of threads

attached to a pipeline stage are adjusted dynamically to make the pipeline flow smoothly, which

not only solves the possible imbalance problem, but also makes the thread-level pipeline parallel

model scalable.

Our load balancing mechanism employs resource control technique by tuning the number

of threads executing within each stage. The objective is to avoid allocating too many threads, but

still have enough threads to meet the concurrency demands of the stage. The controller periodically

samples the input queue (default: once per second) and adds a thread when the queue length

exceeds some threshold (default: 100 packets). If threads are idle for more than a specified period

of time (default: 5 seconds), the controller will remove them from a stage.

We also considered other load balancing choices such as “Work stealing”. Load balancing

is achieved by keeping one active thread per core and assigning several work units to each thread.

When a thread completes its assigned work, it queries the other thread for additional work (i.e.

it will steal work from another thread [63]). Although, in general, work stealing is an effective

technique to balance the amount of work between stages, it turns out a bad choice for our applica-

tion. The main reason is that the tree structures in each stage are dynamically adapted to the traffic

pattern. If we let the threads of another stage to steal the work, it introduces data structure sharing.

Data structure sharing between two stages raises a number of concerns. Consistency of shared data

must be maintained using locks or a similar mechanism; locks can lead to race conditions and long

acquisition wait-times when contended for, which in turn limits concurrency.
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5.6.5 Mutual Exclusion by Atomic Operation

Certain features are critical to creating efficient software pipelines. Atomic operations are useful

in coordinating access to shared resources while low-latency inter-process communication mech-

anisms (software queue) move packet information between pipeline stages and help to control

synchronization among threads. If multiple threads extract/place packets from/to the same queue,

the queuing process must ensure that packets are inserted/extracted atomically. In order to guaran-

tee this, mutual exclusion is needed. Mutual exclusion can be implemented by locking. We use the

built-in function for atomic memory access available in gcc [31] to implement a lock in our design.

A details description on using atomic variable to implement locking is presented in Section 3.4.1.

5.7 Related Work

Packet classification is per-packet operation and for packet classification, the time to process a

packet is dominated by memory-access latencies. To mask memory access latencies and to meet

the performance demands (Gbps link speed), and thereby classify packets at high rates, parallelism

is the must-adopt solution. Recent work has looked at approaches to parallelizing packet classifi-

cation itself.

The researchers mainly leveraged either data-level or task-level or combination of both

parallelism in designing parallel packet classifier. Inspired by instruction-level pipeline structure,

various thread-level pipeline approaches were proposed [64–66]. The idea of parallelizing packet

classification application using pipeline model was mentioned by [67]. The authors claimed that by

applying pipelining, their prototype was able to classify packets at the rate that exceeds the required

rate for OC-192 (i.e. 10 Gb/s). However, the authors did not present any detail description on the

parallelization scheme.

88



Randy et al. [30] parallelized two classic packet classification algorithms using both data-

and task-level parallelism on multi-core architecture. Their results showed that the hardware con-

straints are mitigated by the parallelization scheme and vice versa, yielding near-linear speedups

as the degree of parallelization increases. However, the authors mentioned that the performance

improvement depends strongly on many factors, including algorithm choice, hardware platform

and parallelization scheme.

Yaxuan et al. [68] utilized parallelization on multi-core Octeon machine to achieve packet

classification in Gbps rate. However, the authors did not clearly mention which type of parallelism

was exploited to utilize the multiple execution cores.

Cheng et al. [69] proposed scalable packet classification algorithm that can be efficiently

implemented on a multi-core architecture with or without a cache. The authors studied the interac-

tion between the parallel algorithm design and architecture mapping to facilitate efficient algorithm

implementation on multi-core architectures. The authors effectively exploited thread-level paral-

lelism on multi-core architecture to enable an efficient algorithm mapping.

Guo et al. [70] explored potential connection level parallelism in pattern matching, and

proposed an affinity-based scheduler to enhance the scalability of multithreading. The authors

assigned packets belonging to the same connection to the runqueue of the same thread, which is

dispatched to a dedicated core on a multi-core server.

In [71], the authors parallelized by partitioning the rule-sets and running multiple decision

tree-based classifiers in parallel. Each tree covers a distinct subset of the rules.

We exploit task-level parallelism to design, implement, and evaluate a packet classification

system on multi-core architecture that also exploits the potentiality of traffic pattern to achieve a

superior average case performance. The idea of exploiting traffic pattern to improve the perfor-

mance is proposed in [2, 10, 12, 20–22]. Hamed et al. [2] presented cascaded tree structure for
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Table 5.2: Configuration details of test bed

Name Value
Processor AMD Opteron 2379 HE
Core Count 8 (4 per processor)
Core Speed (MHz) 2400 (per Core)
L1 Cache Size (KB) 128 (per Core)
L2 Cache Size (KB) 512 (per Core)
L3 Cache Size (KB) 6144 (shared by 4 cores)

single-threaded processing and parallel tree structure for multi-core architectures. However, the

authors’ design and implementation of parallel algorithm lacks details in analysis.

5.8 Evaluation

This section presents and evaluates Pnpf that yields improvements in performance by exposing

more parallelism.

5.8.1 Test bed Setup

The hardware platform for our test bed is Dell Poweredge 2970. This machine has two CPU

sockets, each embeds a quad-core AMD Opteron 2379 HE, and 16 GB RAM running Linux OS.

The detail configuration of the machine is given in Table 5.2. We used the C language and POSIX

pthread-library [33] because of their simplicity and portability in our implementation.

5.8.2 Performance Evaluation

In this section, we evaluate the performance of the Pnpf. We used real-life packet traces [3] in

our experiments. We generated different size rule-sets based on the traffic flow information in [3],

such that the rules will exercise the effectiveness of traffic awareness of Pnpf. To create the rule-
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Figure 5.10: Throughput of Pnpf on rule-sets R1 through R5

set from [3], for each header field, we extracted 28 different values from the packet trace. The

rules were generated using a simple technique. To create a new rule, we randomly pick different

field values from the pool of all values in the respective header filed and then use them to form

the 5-dimensional rule. This procedure is then repeated N times to create a rule-set of size N. All

the rules in the rule-sets are 5 dimensional tuples composed of source/destination IP addresses,

source/destination port numbers and protocol type. The size of the rule-sets ranges from 500 to

5K. We experimented with all rule-sets and present results from all of them. The packet size is

assumed to be 128 bytes (1024 bits).

Figure 5.10 shows the throughput achieved by the Pnpf system where the x-axis represents

the five rule-sets R1 through R5, and y-axis is the packet classification throughput achieved by the

corresponding rule-set. Pnpf is able to achieve 10 Gbps or more in packet classification through-
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put in almost all the rule-sets. The characteristics and the size of rule-sets do not have noticeable

impact because Pnpf reduces the classification time by adapting to the traffic pattern dynamically.

This online adaptiveness enable Pnpf to achieve higher throughput on average particularly when

the traffic pattern is stable for an extended period of time (Section 5.2).

We must also note that pipeline parallelism is beneficial for data-intensive applications

such as Pnpf, because compared to data-level parallelism, it reduces the contention on shared re-

sources. In fact, we have compared our Pnpf with a programming scheme where all the cores are

executing the full application. Our results indicate that for a 6-core system running the Pnpf appli-

cation, the throughput of pipeline model Pnpf is 39.8% higher than the throughput achieved with

replicating the Pnpf on each core. This is because synchronization and locking costs outweighed

the benefits of concurrency.

We next study the scalability of Pnpf by varying the number of cores available in the

system. We used the pthread setaffinity np function to bind all threads to a fixed number

of cores. We varied the number of cores between 2 and 6. Figure 5.11 shows the speedup on the

five different rule-sets. The baseline configuration for this experiment is a configuration where

the entire application is run in a single core. Pnpf demonstrates a near linear scalability growth.

We expect that this linear growth in performance can continue for a much larger number of cores,

using efficient partitioning of tasks to threads and cores.

5.9 Conclusion

In this work, We pursue to make strong use of parallelization in order to achieve the required

high throughput in packet classification. We have designed, implemented and evaluated Pnpf,

a parallel traffic aware packet classification system that exploit the locality in traffic patterns and

the task-level parallelism on multi-core general purpose processors to achieve Gbps classification
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Figure 5.11: Pnpf’s scalability with number of cores

speed. We utilize pipeline model (one type task parallelism) to parallelize npf because of its in-

herent modular nature and the benefits of pipeline model such as reduced lock contention, reduced

latency, and good cache locality compared to other types of parallelism, ex. data parallelism.

However, one limitation of pipeline model is that applications parallelized using this model are

very sensitive to the load balancing across the stages. Our design includes controller that dynam-

ically balances load across the stages to ensure an overall good throughput. Experimental results

show that by using a 6-core AMD Opteron processor on desktop platform, it is possible to sustain

classification rates of more than 10 Gbps for a 5-dimensional rule-set.
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