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Fault-Tolerant Adaptive Model Predictive Control Using Joint Kalman Filter for 

Small-Scale Helicopters 

Carlos L. Castillo 

ABSTRACT 

A novel application is presented for a fault-tolerant adaptive model predictive 

control system for small-scale helicopters.  The use of a joint Extended Kalman Filter, 

(EKF), for the estimation of the states and parameters of the UAV, provided the 

advantage of implementation simplicity and accuracy.  A linear model of a small-scale 

helicopter was utilized for testing the proposed control system.  The results, obtained 

through the simulation of different fault scenarios, demonstrated that the proposed 

scheme was able to handle different types of actuator and system faults effectively.  The 

types of faults considered were represented in the parameters of the mathematical 

representation of the helicopter. 

Benefits provided by the proposed fault-tolerant adaptive model predictive control 

systems include: 

• The use of the joint Kalman filter provided a straightforward approach to 

detect and handle different types of actuator and system faults, which were 

represented as changes of the system and input matrices. 
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• The built-in adaptability provided for the handling of slow time-varying 

faults, which are difficult to detect using the standard residual approach. 

• The successful inclusion of fault tolerance yielded a significant increase in 

the reliability of the UAV under study. 

A byproduct of this research is an original comparison between the EKF and the 

Unscented Kalman Filter, (UKF).  This comparison attempted to settle the conflicting 

claims found in the research literature concerning the performance improvements 

provided by the UKF.  The results of the comparison indicated that the performance of 

the filters depends on the approximation used for the nonlinear model of the system.  

Noise sensitivity was found to be higher for the UKF, than the EKF.  An advantage of the 

UKF appears to be a slightly faster convergence. 
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Chapter 1 

Introduction 

Since their inception, control systems have been an enabling technology, [2].  

Control systems were introduced during the industrial revolution with devices like the 

James Watt flyball governor, [1], [2].  Over the past 40 years, the developments in analog 

and digital electronics have resulted in dramatic increases in the computational power of 

microcomputers and microcontrollers.  These developments provided for the 

implementation of advanced control techniques.  These advanced control techniques 

enabled the successful development of high performance applications such as: 

• Guidance and control systems for aerospace vehicles such as commercial 

aircraft, guided missiles, advanced fighter aircraft, launch vehicles and 

satellites.  These control systems provide stability and tracking in the 

presence of large environmental and system uncertainties, [2]. 

• Control systems in the manufacturing industries from automotive to 

integrated circuits, which are associated with computer-controlled 

machines, provide the precise positioning and assembly required for high-

quality, high-yield fabrication of components and products, [2]. 

• Industrial process control systems, particularly in the hydrocarbon and 

chemical processing industries, maintain high product quality.  Product 
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quality is maintained by monitoring thousands of sensors signals and 

making corresponding adjustments to hundred of valves, heaters, pumps 

and other actuators, [2]. 

• Control of communication systems such as the telephone system, cell 

phones, and the Internet are especially pervasive.  These control systems 

regulate the signal power levels in transmitters and repeaters, manage 

packet buffers in network routing equipment and provide adaptive noise 

cancelation to respond to varying transmission line characteristic, [2]. 

Control systems have reached a high level of theoretical development and there 

exists a myriad of applications.  However, the development of new sensors and actuators 

for old and new applications continues.  Therefore, the demand for new theoretical 

concepts and approaches, to handle increasingly complex applications remains high. 

The development of flight control systems for UAVs is a relative new application 

of advanced control techniques.  Due to the successful use of unmanned aircrafts, (UAs), 

in the Global War on Terrorism, (GWOT), an enormous interest has developed for 

increasing their contributions in sorties, hours and expanded roles.  As of September 

2004, some twenty types of coalition unmanned aerial vehicles, (UAVs), large and small, 

have flown over 100,000 flight hours in support of Operation ENDURING FREEDOM, 

(OEF), and Operation IRAQI FREEDOM, (OIF), [3].  Previously, the only application 

for UAV’s was as reconnaissance vehicles.  However, current applications include strike, 

force protection and signals collection, which have helped to reduce the complexity and 

time lag in the sensor-to-shooter chain for acting on “actionable intelligence”.  UA 
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systems, (UAS), continue to expand and encompass a broad range of mission capabilities.  

Figure 1 presents the expected evolution or trend for UAV systems. 

 

 

Figure 1:  Unmanned Aircraft Systems Roadmap 2005 - 2030 

 

The trend associated with increases in the capabilities and complexity of UAVs is 

expected to grow enormously.  The latest successes of UAVs applications have been 

impressive.  However, several crashes have raised concerns about their reliability.  

Consequently, a need to improve UAV’s reliability has become a very important subject.  

The Office of the Secretary of Defense has acknowledged the significance of UA 

reliability by stating that “Improving UA reliability is the single most immediate and long 

-reaching need to ensure their success”, [3].  Fault-tolerance and adaptability to 
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unpredictable flight conditions will be fundamental for increasing the reliability of 

UAVs. 

Currently, most of the UAVs, which are associated with military applications, are 

fixed wind airplanes.  However, as part of the Future Combat Systems, (FCS), initiative, 

it was recommended that several types of Vertical Take-Off and Landing, (VTOL), UAs 

be developed.  VTOL UA vehicles will provide reconnaissance, surveillance and target 

acquisition assistance for ground troops.  VTOL UA vehicles will offer major advantages 

over fixed-wing UAs.  The Future Combat Systems initiative was formerly known as the 

Future Ground Combat Systems program 

In addition, to military applications for UAVs there are civil and commercial 

applications.  These applications include search and rescue, traffic monitoring, demining, 

forest fire detection, border patrol, filming industry and dam inspections.  Carrier 

companies such as FedEx and UPS have expressed interest in unmanned vehicles for 

long-haul cargo duty, [4].  A NASA Civil UAV Capability Assessment indicating the 

diverse user spectrum for UAVs is presented in Figure 2. 
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Figure 2:  Classification of UAV Users 

 

Many universities around the world have advocated the development of research 

platforms for the development of small-scale rotorcraft as UAV prototypes.  These 

platforms have the goal of allowing the proof of concepts of new algorithms to tackle 

some of the challenging problems associated with the development of an autonomous 

vehicle.  Fault detection and identification, (FDI), fault-tolerant flight control systems, 

path planning, obstacle avoidance and cooperative control are some of the many 

problems, which have to be resolved.  Figure 3 provides a picture of a popular 

commercial UAV, which is used at several university research laboratories. 
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Figure 3:  Yamaha RMAX Commercial UAV 
(http://uav.ae.gatech.edu/pics/gtmax/) 

 

The development of UAV flight control systems, which are capable of obtaining 

the autonomous control level indicated in Figure 1, is a challenging task.  In order to 

achieve high levels of autonomous control, it is necessary to address some of the typical 

issues encountered in the implementation of advanced control systems.  These issues will 

be reviewed briefly. 
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1.1. Background on Relevant Issues Encountered in the Implementation of Control 

Systems 

The diversity of application areas where control systems are used or will be used 

makes the characterization of all the possible controllable systems an almost unreachable 

task.  Therefore, this research focused on some of the most relevant issues encountered 

when addressing the challenge of implementing advanced control techniques. 

1.1.1. Uncertainty 

When a control engineer must obtain a desired behavior from plants, the main 

reason that forces the use of closed-loop control systems is uncertainty.  The absence of 

uncertainty would allow the implementation of control systems without the use of 

feedback.  Feedback introduces cost, complexity and possibly instability.  Uncertainty is 

one of the major issues to be dealt with for the practical implementation of control 

systems.  Uncertainty can be classified either as disturbance signals or as dynamic 

perturbations.  The former includes input and output disturbances such as a gust on an 

aircraft, sensor noise and actuator noise.  The later represents the discrepancy between 

the mathematical model and the actual dynamics of the system in operation, [5].  Most of 

the relevant control techniques, developed through decades by the control research 

community, are model-based techniques.  The use of a mathematical model of the system 

has been fundamental for the enormous development obtained in control theory.  

However, it is considered that models will never provide exact representations of the true 

system, [6].  The development of a model inherently produces uncertainties due to 

unmodeled dynamics, neglected nonlinearities, system-parameter variation due to 
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environmental changes and torn-and-worn factors.  These and other factors render 

modeling the exact behavior of physical systems impossible.  Therefore, there exists the 

need of representing and taking into account these uncertainties in the control design. 

1.1.2. Robust Stability and Robust Performance 

In order to be useful or even practical, a closed-loop control system has to be 

stable under certain specified levels of uncertainty.  This is the concept of robust stability.  

The nominal stability is obtained when the closed-loop is stable assuming zero 

uncertainty.  Following the same idea, the concepts of nominal and robust performance 

can be developed.  The performance can be specified in the time domain, in the 

frequency domain or, as is typical, in both domains.  Given its importance, a considerable 

effort is normally dedicated to guarantee robust stability.  Robust control methods are one 

of the standard ways to deal with uncertainty in dynamical systems. 

1.1.3. Nonlinearities 

Every physical system has nonlinearities to some extent.  However, the use of 

linear models to represent the local behavior of nonlinear systems has been used for 

decades with great success in a vast number of applications in many different fields.  The 

linear approach to control of the nonlinear plant is theoretically based in the so-called 

first theorem of Lyapunov. 
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1.1.4. Physical Limitations on Sensors/Actuators 

Any kind of electronic or mechanic devices such as sensors or actuators will have 

some kind of maximums and/or minimums limits, in their specifications.  Valves, a 

common actuator used in the process industry are limited by maximum flow rates, which 

they can provide. 

1.1.5. Fault Tolerance  

Stringent requirements for safety, reliability and profitability are demanded for 

the chemical and manufacturing industries.  These requirements have generated the 

necessity of designing control systems with the ability of handling defects/malfunctions 

in process equipment, communication networks, sensors and actuators, [8]. 

Issues related to faults may include physical damage to the process equipment, misuse of 

raw material and energy resources, increase in the downtime for process operation 

resulting in significant production losses and jeopardizing personnel and environmental 

safety [7].  Management of abnormal situations is a challenge in the chemical industry 

since abnormal situations account annually for 10 billion in lost revenue in the U.S. 

alone, [8].  Aside from the economical implications, which failures in technological 

systems imply, the loss of life is also a fundamental reason for designing control systems 

capable of handling systems’ components faults or failures.  Reliability and operational 

safety is one of the main research focus areas in the design of current and future control 

systems of UAVs. 
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1.1.6. Adaptability 

System dynamics change considerably when their operating conditions change.  

Aircraft and helicopters are typical examples of these types of systems.  The controllers 

of these systems need to possess mechanisms to account for varying system 

characteristics.  A common way to deal with this issue is to use adaptive based control 

systems.  Adaptive control methods are also considered as an approach to handle the 

uncertainty of dynamical systems. 

1.2. Research Objectives 

The main objective of this research was the study of the use of the model 

predictive control (MPC) technique, as the primary approach to be employed for a novel 

development of fault-tolerant and adaptive flight control systems for small-scale 

helicopters. 

1.3. Research Methodology 

An extensive literature review of low-level control of UAVs was performed as the 

starting point of this research.  Based on the literature review, the frameworks for fault-

tolerant control, adaptive control and model predictive control were selected.  The 

framework developed can be described as a hybrid approach to be applied to small-scale 

helicopters.  Additional literature reviews were carried out for adaptive model predictive 

control and fault-tolerant MPC. 

An outcome of this research, which was motivated by the literature review, was a 

performance comparison study between the Extended Kalman Filter and the Unscented 
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Kalman Filter.  This comparison study attempted to provide insight into the reasons for 

the conflicting results found during the literature review. 

The proposed Fault-Tolerant Adaptive Model Predictive controller was tested in 

simulations, for several fault case studies. 

1.4. Summary of Contributions 

This research provided the following contributions: 

•  A novel application of a fault-tolerant adaptive MPC to a small-scale 

helicopter was developed and validated using computer simulations. 

• The Joint Extended Kalman filter was employed for parameter estimation 

of the helicopter’s aerodynamic coefficients.  This approach provided an 

accurate and simple approach for implementing the adaptive mechanism 

of the controller and an implicit implementation of the FID function. 

• A novel comparison of the Extended Kalman Filter and the Unscented 

Kalman filter was developed.  The comparison provided insights into the 

different claims related to the improved performance of the Unscented 

Kalman filter. 

1.5. Outline of this Dissertation 

Chapter 2 presents an UAV low-level control literature review and a brief 

background related to the control concepts and techniques, which were used during this 

research. 
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Chapter 3 presents a brief description of Estimation theory, which provides the 

theoretical background for the standard Kalman Filter, the Extended Kalman Filter, the 

Unscented Kalman Filter, (UKF), and their use for parameter estimation.  A literature 

review of the Unscented Kalman filter is presented.  In addition, a novel comparison of 

the EKF and the UKF is presented. 

Chapter 4 presents a literature review associated with adaptive and fault- tolerant 

model predictive control.   

Chapter 5 presents the control architecture proposed and implemented during this 

research. 

Chapter 6 presents the results obtained for the UAV fault-tolerant adaptive model 

predictive control. 

Chapter 7 presents the conclusions derived from this research.  In addition, 

foreseeable future work, which is envisioned from the details and particularities 

encountered during the implementation of the proposed control architecture, is outlined. 
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Chapter 2 

UAV Low-level Control Literature Review and Background 

This chapter presents a review of the literature associated with UAV low-level 

control.  Additionally, a background review of the basic ideas associated with adaptive 

control, model predictive control and fault-tolerant control is presented. 

2.1. Literature Review of the Main UAV Research Groups 

The last decade has seen a strong interest in the development of Unmanned 

UAVs.  Many universities, [9], [10], [11], research institutes, [12], and companies, [13], 

[14], [15], [16] have dedicated enormous efforts to building UAVs prototype.  Some 

aspects considered in the implementation of UAVs are the type of aeronautic platform, 

the computational platform, the operating system, the path planning algorithms, low-level 

control techniques and sensors.  The intent of the review was to find the latest 

contributions from the main research groups in the area of low-level control techniques. 

2.1.1. Carnegie Mellon University 

The Carnegie Mellon University Robotics Institute, (CMURI), is arguably the 

first research group that implemented vision-based techniques for navigation.  Since 

1991, researchers at CMURI have been working in Vision-based control of small-scale 
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helicopters.  In addition, development of several helicopter research platforms was 

undertaken, [17].  The primary focus of their research from 1991-1997 was the 

development of vision based navigation and sensor fusion.  In 1997, the CMURI won the 

International Aerial Robotics Competition, (IARC), which was held at Disney World's 

Epcot Center, [18], [19]. 

2.1.1.1. Classical Control 

In 1999, Bernard Mettler extended the application of the Comprehensive 

Identification from FrEquency Responses, (CIFER), a integrated software packages of 

system identification tools for full size helicopters, to the Yamaha R50, which is a fully 

instrumented small-scale helicopter, [20].  An accurate, high-bandwidth, linear state-

space model was derived for both the hover and the cruise flight conditions.  The model 

structure included the explicit representation of coupled rotor-flap dynamics and rigid-

body fuselage dynamics, and the yaw damper dynamics.  In 2000, Mettler’s continuation 

of this research presented a new 13th
 order linear state-space helicopter model, which 

explicitly accounted for the coupled rotor/stabilizer/fuselage, (r/s/f), dynamics in the 

hover and cruise modes, [21].  Optimization based tuning was performed utilizing the 

CONtrol Designer’s Unified InTerface, (CONDUIT), computational facility and the 

developed model in order to implement classical control techniques. 

2.1.1.2.  Robust Control 

In 2001, a control design technique based on Reinforcement Learning Policy 

Search Methods was presented, [22].  The control problems within the robotics field are 
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treated as a Partially Observed Markovian Decision Problem, which is a type of optimal 

control formalism.  The idea is to ''learn'' the control law from the data obtained from 

experiments, which produce a minimum value for certain performance criteria. 

In 2002, Marco La Civita presented a novel modeling technique called MOdeling 

for Flight Simulation and Control Analysis, (MOSCA), [23].  In 2003, Marco La Civita 

implemented a gain-scheduled H∞  loop-shaping controller for the Yamaha R-50 

helicopter, [24], [25]. 

2.1.2. Massachusetts Institute of Technology 

The Massachusetts Institute of Technology, Boston University and Draper 

Laboratory developed an autonomous helicopter, which won the 1996 International 

Aerial Robotics Competition, (IARC), [10].  The control system was implemented 

utilizing four control loops.  In addition, this group has provided significant contributions 

to the development of small-scale helicopter nonlinear models, [26].  More recently, the 

MIT aerial robotics group has been dedicated to providing research in the areas of hybrid 

control architecture, [27], [28], and path planning for Multiple UAVs, [29], [30]. 

2.1.2.1. Classical Control 

During the 1998 IARC, MIT's Aerial Robotics Club presented the “chopter'98”.  

The vehicle was based on a “Bergen Industrial Hel”, (BIH), and included a series of 

modified off-the-shelf products.  Some improvements were made in the software 

implementation.  However, there was very little significant change in the control system, 
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[9].  Classical controllers were used for the roll, pitch, yaw and collective/throttle with 

feed forward gain implementation on some of the variables. 

2.1.2.2. Hybrid Control 

In 1999, a hybrid controller based on an automaton whose states represent 

feasible trajectory primitives was developed.  A control system for aggressive maneuver 

of an autonomous helicopter is presented in, [31], [32].  The main idea was based on 

incorporating a maneuver automaton for selecting optimally different control laws 

according to the motion primitives, which required executed.  The maneuver automaton 

concept was developed further and tested in simulation within the framework of the 

Software Enabled Control program, (SEC), [33].  Nonlinear control techniques such as 

the Back Stepping Algorithm, [34], and Linear Quadratic Control techniques, [35], have 

also been researched. 

2.1.3. Georgia Institute of Technology 

The Georgia Institute of Technology research group is arguably the one group that 

has contributed the most to the UAV field.  This group has collected the most IARC 

competition prizes.  In addition, they have played the crucial role in developing and 

implementing the DARPA SEC program. 

The Georgia Institute of Technology research group has provided major 

contributions related to the control of unmanned helicopters.  A prototype 

implementation of OCP, [36], [33], was developed in the form of a fully rigged 

autonomous helicopter, which incorporated a fault detection and identification module to 
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compensate for collective actuator failures.  A control design methodology for 

accommodating different flight modes and limit avoidance through mode transition 

controllers was presented, [37], [38].  An experimental platform called GTMax, which 

included a Yamaha RMAX helicopter with full avionic instrumentation, a simulation 

model of the helicopter, a ground control station and all baseline on-board routines, was 

developed.  The first two components run on Windows platforms and the onboard 

routines run under QNX, [39], [40], [41]. 

2.1.3.1. Neural Networks Control 

In 1994, a direct adaptive tracking control architecture using neural networks, 

(NN), and a nonlinear controller based on feedback linearization was studied, [42].  In 

1999, an adaptive nonlinear controller using a combination of feedback linearization and 

a neural network for on-line adaptation was presented, [43]. 

Johnson et al, [44], [45], [46], developed an adaptive control scheme based on NN 

and a method termed Pseudo-Control Hedging, (PCH), was presented.  The purpose of 

PCH was to prevent the adaptive element of an adaptive control system from adapting to 

selected plant input characteristics. 

Calise and Rysdyk, [47], presented a robust nonlinear adaptive flight control 

system, which utilized model inversion control with an adaptive neural network.  This 

flight control system was oriented to provide consistent handling qualities for piloted 

unconventional modern aircraft like a tiltrotor. 
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2.1.3.2. Fault-Tolerant Control 

Idan et al, [48], presented a fault-tolerant flight control system, which blended 

aerodynamic and propulsion actuation for safe flight operation in the presence of actuator 

failures.  Fault tolerance was obtained using the nonlinear adaptive control scheme and 

the previously developed PCH. 

Drozeski et al, [49], [50], presented a fault-tolerant control architecture, which 

coupled techniques for fault detection and identification with reconfigurable flight control 

to augment the reliability and autonomy of a UAV.  An adaptive, neural network, 

feedback linearization technique was employed to stabilize the vehicle after the detection 

of a fault. 

2.1.3.3. Fuzzy Logic and Neuro-Fuzzy Control 

In 1997, Fuzzy Logic was used to implement critical vehicle modules as the route 

planner, the fuzzy navigator, the fault-tolerant tools and the flight controller, [51].  An 

adaptive mode transition control technique was presented, [37], [38], which cited 

additional references.  The control technique consisted of an on-line adaptation of the 

parameter of mode transition controllers designed off-line via the method of blending 

local mode controllers, (BLMC).  The adaptation scheme was composed of a desired 

transition mode to be adapted.  The desired transition model, the active plant model and 

the blending gains portion of the active controller model were represented via a fuzzy 

neural network.  Valenti et al, [33], handled the control problems of limit detection and 

avoidance by constantly redefining artificial limits on the actuators. 
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2.1.4. University of California, at Berkeley 

The BErkeley AeRobot, (BEAR), research team at UC Berkeley has consistently 

contributed to the field of VTOL type UAVs since 1996, [52].  Recent research published 

by the UC deals with control of multiple UAVs, [53], and the incorporation of obstacle 

avoidance strategies for navigation in urban environments, [54]. 

2.1.4.1. Classical Control 

Kim et al, designed a multi-loop PD controller, [55], and compared it with a 

nonlinear model predictive controller. 

2.1.4.2. Nonlinear Control 

In 1996, [56], a nonlinear controller was presented to deal with tracking in non-

minimum phase nonlinear systems with inputs.  The method was applied to simplified 

planar dynamics of VTOL and CTOL aircraft.  In 1998, [57], the output tracking control 

design of a helicopter model based on approximate input-output linearization was 

compared with the exact linearization.  Depending of the selection of output variables, 

exact linearization can produce unstable zero dynamics.  It was shown that by neglecting 

the coupling between the forces and the moments, the approximate system with dynamics 

decoupling is full state without zero dynamics by choosing positions and heading as 

outputs. 
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2.1.4.3. Model Predictive Control 

Kim et al, [55], [58], presented a nonlinear model predictive controller.  The on-

line optimization was implemented using the gradient-descent method.  The 

computational load of this nonlinear model predictive tracking control was claimed to be 

low enough for real-time control of rotorcraft unmanned aerial vehicles.  Shim et al, [53], 

[54], [59], treated the vehicle control, with state constraints and input saturation, as an 

optimization of a model predictive control framework.  The optimization considered cost 

functions including penalties for obstacle avoidance or symmetric pursuit-evasion games, 

[60], [61]. 

2.1.5. University of Southern California 

Research at the University of Southern California, (USC), started in 1991 with the 

first version of an Autonomous Flying Vehicle, (AFV).  The AFV won the IARC 

competition in 1994 with the first generation of Autonomous Vehicle Aerial Tracking 

and Retrieval, (AVATAR), helicopters, [11].  The AVATAR software and control 

architecture was further explained in, [62], along with other research efforts in 

autonomous landing and vision-based state estimation.  The AVATAR main feature was 

its hierarchical behavior-based control architecture with all behaviors acting in parallel at 

different levels.  An autonomous landing approach on a moving target and visual 

surveying in urban areas are the topics discussed in, [63], and, [64].  Behavior-based 

architectures for helicopter control have also been reported, [11], [65]. 
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2.1.6. Software Enabled Control, (SEC) 

The Software Enable Control, (SEC), program began in late fiscal year 1999 

under Defense Advanced Research Projects Agency, (DARPA), funding and sponsorship 

to address, among other issues, the search for solutions, which would lead to greater 

levels of autonomy in man-made systems.  Realization of complex controls for such 

systems involves major computational complexity concerns and requires computationally 

efficient techniques, which can be implemented in real-time.  Therefore, computing plays 

a prominent role when dealing with such complex controls and systems. 

The primary focus of the SEC program was to advance control technologies, 

which improve UAV performance, reliability and autonomy.  One of the main results was 

derivation and implementation of an Open Control Platform, (OCP), which enabled 

development and deployment of control functions in terms of objects.  In OCP, object-

oriented control components are distributed across embedded platforms and enable 

coordination and cooperation among UAVs, [33].  A component-based design 

environment called Ptolemy was developed and integrated with OCP.  Ptolemy provided 

for model-based control design of heterogeneous systems.  Ptolemy also accounted for 

the hybrid nature of most technical systems and different models of computation.  The 

SEC program provided major contributions of in the field of low level VTOL control.  

The program accounted for several model predictive controls, (MPC), strategies and the 

so-called mode transition controller, which blended different linear controllers according 

to the corresponding appropriate flight mode.  To date, the SEC program has been the 

most comprehensive effort involving major companies and Universities across the US. 
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2.1.7. University of South Florida 

2.1.7.1. Classical Control 

A decentralized control system, based on multi-loop PID controllers, was 

implemented, [66], [103].  The control system designed focused on non-aggressive 

flights.  Tuning of the PIDs was obtained using optimization methods.  A decentralized 

control system based on multi-loop two-degrees of freedom PIDs was designed following 

the “one loop at the time” approach to guarantee good phase and gain margins 

2.1.7.2. Fuzzy Logic Control 

A decentralized control system, based on multi-loop PID-like Fuzzy controllers, 

was implemented, [103].  The control system designed focused on non-aggressive flights.  

Tuning of the Fuzzy Logic controllers was obtained using optimization methods. 

2.1.7.3. Model Predictive Control 

A Model Predictive Control Based Trajectory Tracking, (MPCTT), system for 

UAVs was presented in, [67].  Simulation results demonstrated the superiority of the 

proposed MPCTT approach.  MPCTT required substantially less control effort in order to 

track waypoint trajectories. 

2.1.7.4. Robust Control 

A practical and simple approach to the design of UAVs was based on a standard, 

easily tunable, PID control as the starting step of the design, [68].  Then, robust loop-
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shaping techniques were applied to derive a controller with optimal properties with 

respect to robustness, noise sensitivity and bandwidth. 

2.2. Literature Review Summary 

The previous low-level control literature review reveals that almost any existent 

control method has been used.  However, only a few cases of fault-tolerant control for 

application to small-scale helicopter or unmanned aerial vehicles were presented to the 

literature. 

In order to confront the most important issues of flight control systems for UAVs, 

it is the author’s conviction that a convergence of several advanced control techniques is 

required to accomplish the challenging task of developing a safe and reliable flight 

control system.  Table 1 presents a personal appraisal of the capabilities of some of the 

most successful advanced control techniques available. 

Table 1:  Appraisal of Capabilities to Handle Some of the Control Issues 

 Nonlinearity MIMO States/Inputs 
Constraints 

Robustness 
to 

Uncertainty 

Strong 
Coupling 

Fault- 
Tolerant 

Classical low/medium low/medium low low low low 
LQR/LQG low high low/high low high low 
Adaptive high high low low high medium/high
Robust medium/high high low high high medium/high

Nonlinear High high medium/high medium/high high medium/high
Predictive medium/high high high medium/high high medium/high

Neural high high medium/high low/medium high medium/high
Fuzzy high low low low medium/high medium/high
Hybrid medium/high medium/high low low medium/high medium/high
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The adaptive control approach is the only control technique, which has been used 

to improve the reliability of UAVs, [48], [49], [50].  This approach was realized within 

the framework of fault-tolerant control systems. 

Colin N. Jones, [69],presented a recent report on Reconfigurable Flight Control.  

That report suggests that model predictive control presents intrinsic properties, which 

allow it to handle easily some typical actuator faults.  The report presents the application 

of fault-tolerant model predictive control to the case of the Flight EL AL 1862, [109].  

Table 2 , which was extracted from the report, indicates that, to date, only Model 

Predictive Control has the potential for solving the general reconfigurable control 

problem [69].  Filled circles mean that the method has the property, while empty circles 

imply that an author has suggested that the approach could be modified to incorporate the 

property. 
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Table 2:  Comparison of Reconfigurable Control Methods 

Failures Fault Model  Model Type Method Actuator Structural 
Robust Adaptive 

FDI Assumed Constraints Linear Nonlinear 
Multiple Model 
Switching and Tuning 
(MMST) 

 •  • •   •  

Interacting Multiple 
Model  
(IMM) 

 •  • •  ο •  

Propulsion Controlled 
Aircraft (PCA) •  ο   •  • • 

Control Allocation 
(CA) •     • ο •  

Feedback linearization • •  • •    • 

Sliding Mode Control 
(SMC) ο1

 • •2    •  • 

Eigenstructure 
Assignment (EA)  •    •  •  

Pseudo Inverse 
Method (PIM)  •    •  •  

Model Reference 
Adaptive Control 
(MRAC) 

 •  • •   • ο 

Model Predictive 
Control (MPC) • • ο ο • • • • • 

 

Based on the UAV low-level control literature review, the appraisal presented in 

Table 1 and the comparison of reconfigurable control methods presented in Table 2, this 

research focused on application of the fault-tolerant control framework to small-scale 

helicopters using an adaptive model predictive control approach. 

2.3. Background on Adaptive Control 

The origins of Adaptive Control can be traced back to the early 1950s, [70], [71], 

when an extensive effort in the design of autopilots for high-performance aircraft, like the 

X-15 experimental aircraft, was begun.  Since such aircraft operated over a wide range of 

speeds and altitudes, [70], aerodynamic characteristics changed considerably.  Therefore, 

_______________________________________________________________________ 

1 SMC can handle partial loss of effectiveness of actuators, but not complete loss. 
2 SMC assumes robust control can handle all forms of structural failures. 
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it was necessary to use more sophisticated control techniques than the simple linear time-

invariant constant-gain feedback controllers.  These controllers were not able to operate 

throughout the complete flight envelope.  A heuristic approach called Gain scheduling 

was determined to be a suitable technique for flight control systems. 

A universally accepted definition of adaptive control systems does not exist.  

Åström and Wittenmark, [70], proposed “An adaptive controller is a controller with 

adjustable parameters and a mechanism for adjusting the parameters”.  More recently, 

Filatov and Unbehauen, [73], proposed the definition, “A control system operating under 

conditions of uncertainty of the controller that provides the desired system performance 

by changing its parameters and/or structure in order to reduce the uncertainty and to 

improve the approximation of the desired system is an adaptive control system.” 

During the decades after the beginnings of adaptive control, researchers in the 

adaptive control field devised the following main types of adaptive systems, [70]: 

• Gain Scheduling, 

• Model-reference adaptive control, 

• Self-tuning regulators, 

• Dual control. 

The first three methodologies are based in the certainty equivalence, (CE), 

principle or approach.  The certainty equivalence principle consist of assuming that the 

parameters estimates are the true parameters values of the model, ignoring the uncertainty 

of the estimation, and these estimates are used for the controller design.  Most of the 

current adaptive approaches are based on the CE principle, [70], [71], [73]. 
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2.3.1. Gain Scheduling 

The basic idea associated with gain scheduling is to change the parameters of the 

controller based on the changes of certain variables, called scheduling variables.  

Parameter changes are well correlated with the changes on the dynamics of the process, 

[70].  In general terms, the design of a gain scheduling controller consists of the 

following steps, [72]: 

• Linear Parameter-Varying Model Generation:  The most common 

approach is based on Jacobian linearization of the nonlinear plant about a 

family of equilibrium points.  This yields a parameterized family of 

linearized plants and forms the basis for what is termed linearization 

scheduling. 

• Design of the linear controller set:  A linear controller is designed for each 

linearized plant model, which constitutes the linear parameter-varying 

model.  This step results in a family of linear controllers 

• Implementation of the Gain Scheduling logistic block: Since only a 

selected number of equilibrium points are linearized, it is necessary to 

establish a procedure to change the controller's parameters when the 

scheduling variables change.  The use of thresholds represents the most 

basic approach.  However, thresholds could produce “jumps” in some 

variables of interest.  In order to avoid jumps typical approaches 

incorporate interpolation of controller's parameters and blending. 
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• Performance Assessment: Typically, the local stability and the 

performance properties of the gain scheduled controller are subject to 

analytical investigation, while nonlocal performance evaluation is based 

on simulation studies, [72]. 

The main disadvantage of gain scheduling is that possible future changes in the 

system's parameters are not taken into account.  A simplified block diagram of a gain 

scheduling controller is presented in Figure 4. 
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Figure 4:  A Simplified Block Diagram of a Gain Scheduling Controller 

 

2.3.2. Model-Reference Adaptive Control 

In this type of adaptive controller, a model is used to generate a reference signal.  

This signal shows the adaptive controller how the closed-loop system should respond to 

input commands, [70].  The controller parameters are adjusted in such a way that the 

difference between the process output and the reference signal is kept small.  In Model-
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Reference Adaptive Systems, (MRAS), the main issue is to determine the adjustment 

mechanism so that a stable system, which brings the error to zero, is obtained [70]. 

A simplified block diagram of a Model Reference Adaptive System is presented 

in Figure 5. 
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Figure 5:  A Simplified Block Diagram of a Model Reference Adaptive System 

 

2.3.3. Self-Tuning Regulators 

In self-tuning regulators, (STR), estimates of the process parameters are obtained 

and then used to obtain the controller parameters using a controller design method based 

on the updated/estimated parameters, [70], [71].  A simplified block diagram of a Self-

Tuning Regulator is presented in Figure 6. 
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Figure 6:  A Simplified Block Diagram of a Self-Tuning Regulator System 

 

2.3.4. Adaptive Dual Control 

The previous adaptive control approaches were based on reasonable heuristics.  

They were based on separation of the parameter estimation and controller designs, [70].  

Adaptive Dual Control is an approach, which was derived from an abstract problem 

formulation, used in optimization theory.  The method was originally proposed by A. 

Feldbaum, (1960-61, 1965), [73].  In his early work, Feldbaum indicated that systems 

based on the certainty equivalence (CE) principle are not always optimal.  In fact, CE 

based systems can be far from optimal, [73].  Feldbaum postulated two main properties, 

which the control signal of an optimal adaptive control system should possess.  It should 

ensure that the system output cautiously tracks the desired reference value and it should 

excite the plant sufficiently for accelerating the parameter estimation process so that the 

control quality improves in future time intervals. 
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The formal solution of the original approach of adaptive dual control, as proposed 

by A. Feldbaum, can be realized using dynamic programming.  However, the equation is 

considered to be practically unsolvable and only a few very simple control problems have 

been solved, [73], [70].  A simplified block diagram of an Adaptive Dual Control System 

is presented in Figure 7. 
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Figure 7:  A Simplified Block Diagram of an Adaptive Dual Control System 

 

2.4. Model Predictive Control 

Model Predictive Control, (MPC), Model-Based Predictive Control, (MBPC), or 

simply Predictive Control, (PC), was developed and used in the industry for nearly 

twenty years before attracting very much serious attention from the academic control 

community, [74]. 
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Maciejowski stated that predictive control was proposed or devised independently 

for several people more or less simultaneously, [74].  This technique was used for years 

in the industry before it was presented or published in papers.  Therefore, it is difficult to 

determine who was first to propose the original predictive control approach.  Richalet et 

al, [75],in 1978 at ADERSA, published their Model Predictive Heuristic Control, 

(MPHC), which was later known as Model Algorithmic Control, (MAC), [78].  MPHC 

software is termed Identification and Command, (IDCOM).  Cutler and Ramaker, [76], 

published their predicted control called Dynamic Matrix Control, (DMC), in 1980.  

Interestingly, Juan Martin Sanchez, [77], holds the earliest patent for a control technique 

with the characteristics of the current standard predictive control. The US patent is titled 

Adaptive-Predictive Control System. 

MPC refers to a set of control strategies based on the same basic ideas or 

concepts, [8], which are: 

• The explicit use of a plant model to predict the behavior, in terms of states 

and outputs, of the plant at future time instants. 

• The computation of a control sequence for minimizing a cost or objective 

function, which takes into account the output/states errors and control 

effort. 

• The receding horizon strategy where the predicted behavior at each instant 

is displaced towards the future and only the first value of the calculated 

control sequence at each instant is applied. 
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MPC possesses the ability to naturally handle many situations, which other 

control techniques are not able to handle.  Therefore, MPC may be considered as the 

most general approach capable of addressing a control problem in the time domain.  

Some of the main advantages for using/implementing MPC, also called Receding 

Horizon Predictive Control, (RHPC), [78], [74], are: 

• Ability to support constraints of variables associated with the control 

problem under study such as input, output or states variables, 

• Its basic formulation may be extended to multivariable plants with almost 

no modification, 

• Intrinsic compensation for dead time and no minimum phase dynamics, 

• Deals with zone objectives, 

• Deals naturally with non-square plants, 

• Possesses the ability to use future values of references when they are 

available.  This capability allows MPC to improve performance in 

navigation such as waypoint trajectory tracking. 

The basic ideas upon which MPC is based are quite general.  They can, in 

principle, be applied to any plant for which it is possible to develop a model.  In addition, 

MPC provides for simulation of the model at a speed faster than real-time and 

minimization of the cost function at speed faster than real-time.  The basic structure of 

Model Predictive Control, [79], is presented in Figure 8. 

Figure 9 displays signals involved in Model Predictive Control for a Single-Input 

Single-Output system assuming a discrete-time control approach. 
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Optimizer Process

 

Figure 8:  Basic Structure for Model Predictive Control 

 

 

Figure 9:  Model Predictive Signals 
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The set point trajectory, s(t), is the trajectory that the output, y(t), should follow.  

The reference trajectory, r(t), is the trajectory that starts at the current output, y(k), and 

defines an ideal trajectory along which the output should return, after a possible 

disturbance, to the set point trajectory, [74].  This reference trajectory is normally an 

exponential function.  However, it could be any other function or it could be the same set 

point trajectory. 

The Prediction horizon, pH , is the number of sampling intervals, which the 

internal model will be simulated to predict the behavior of the plant.  The internal model 

will be simulated from the initial time 

*initial samplingt k T=       

to the final time 

( )*final p samplingt k H T= +      

It is important to observe that the simulation of the internal model will depend on 

the assumed input trajectory.  The assumed input trajectory, 

ˆ ˆ{ ( ), ( 1),u k u k + ˆ, ( 1)}pu k H… + −     

is the trajectory, which the controller should attain through optimization of the cost 

function. 

The Control horizon, uH , is the number of control signal values, 

ˆ ˆ{ ( ), ( 1),u k u k + ˆ, ( 1)}uu k H… + − ,    

of the input trajectory, which will be considered as variables and will be obtained from 

the optimization step.  Considering 
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u pH H≤ ,      

for 

1uk H> −       

the control signal values will be 

ˆ ˆ( 1) ( 1)u uu k H u k H+ − = + + =…. ˆ ˆ( 2) ( 1)p pu k H u k H= + − = + − .   

It is strange to assume Hu >Hp.  However, it can be reasonable under certain conditions.  

For instance, it is reasonable under the condition that the control signal values for 

1pk H> −  are all equals to ˆ( 1)pu k H+ −  [74]. 

2.5. Fault-Tolerant Control 

Safety and reliability are very important aspects of current complex technological 

systems.  Control systems used to improve the overall performance of commercial, 

industrial and military processes are composed of sophisticated digital system design 

techniques and complex hardware such as input-output sensors, actuators, components 

and processing units, [80]. 

Specific terminology is needed to understand the concepts and ideas related with 

Fault-Tolerant Control Systems.  Some terms are presented based on the information 

obtained from the SAFEPROCESS Technical Committee.  They are considered, “on-

going”, in the sense that new definitions and updates are being formulated, [80]: 

• Fault is “an unpermitted deviation of at least one characteristic property or 

parameter of the system from the acceptable, usual or standard condition”, 

[80]. 
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• Failure is “a permanent interruption of a system’s ability to perform a 

required function under specified operating conditions”, [80]. 

• Malfunction is “an intermittent irregularity in the fulfillment of a system’s 

desired function”, [80]. 

• Fault detection is the “determination of faults present in a system and the 

time of detection”, [80]. 

• Fault isolation is the “determination of the kind, location and time of 

detection of a fault.  Follows fault detection”, [80]. 

• Fault identification is the “determination of the size and time-variant 

behavior of a fault.  Follows fault isolation”, [80]. 

• Fault diagnosis is “the kind, size, location and time of detection of a fault.  

Follows fault detection.  Includes fault detection and identification”, [80]. 

The Architecture of Fault-Tolerant Control Systems is presented in Figure 10 

[81].  The architecture is composed of the fault diagnosis block and the control re-design 

block.  The fault diagnosis block uses the measured input and output and tests their 

consistency with the plant model.  The control re-design block uses the fault information 

and adjusts the controller to the faulty situation. 
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Controller

Controller

re‐design

Process

Fault 
Diagnosis

 

Figure 10:  Basic Block Diagram of a Fault-Tolerant Control System 

 

Patton, [82], and Zhang & Jiang, [83], classify Fault-Tolerant Control System into 

two major groups.  The groups are the passive fault-tolerant control systems, (PFTCS), 

and active fault-tolerant control systems, (AFTCS).  Figure 11 presents a diagram, which 

represents these classifications. 
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Passive

Fault Detection Isolation or System Identification
+

Control  Reconfiguration or Restructure

Active
(Intelligent Control)

FTC

Projection 
based

Online Controller redesign 
or adaptation

Robust 
Control  

Figure 11:  Classification of Fault-Tolerant Control Systems 

 

2.5.1. Types and Modeling of Faults and Failures 

In general, faults can be classified as actuator faults, sensor faults and system 

faults.  Figure 12 presents a diagram of these fault classifications. 

 

System or PlantActuators Sensors

Actuator 
faults

System 
faults

Actuator 
faults  

Figure 12:  Types of Faults and Failures 
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“Sensor faults break the information link between the plant and the controller.  

These faults can render the plant partially unobservable.  New measurements may have to 

be selected and used in order to solve the control task.  Actuator faults disturb the 

possibilities to influence the plant.  These faults can make the plant partially 

uncontrollable.  New actuators may have to be used.  Plant faults change the dynamic 

behavior of the process.  Since any control law cannot tolerate severe changes, a redesign 

of the controller is necessary, [84]. 

Assuming that the whole system can be modeled as a typical state space linear 

system, it can be represented by: 

( ) ( ) ( )
( ) ( )
t t t
t x t

= +
=

x Ax Bu
y C
&

,    
 (1) 

with ( ) nt ∈x R , ∈ R( ) mtu , ∈ R( ) lty , ×∈ Rn nA , ×∈ Rn mB , and ×∈ Rl nC .  The 

parameter n is the number of states, m is the number of inputs and l is the number of 

outputs. 

An actuator fault is normally represented in the literature as a decrease in the 

actuator’s effectiveness, which is represented by: 

( ) ( ) ( ) ( )t t t t= + −x Ax Bu BKu& ,   (2) 

with 

1( ,... )mdiag k k=K ,     (2a) 

where the ki are scalars satisfying 0 1ik≤ ≤ , [85].  The ki scalars model a reduction in the 

effectiveness, (gain), of the ith actuators.  If ki = 0, then the ith actuator functions 
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normally.  The ith actuator presents a fault if ki > 0.  If ki = 1, the ith actuator presents a 

failure. 

Another type of fault, which occurs in aircraft, is structural damage.  Structural 

damage may change the operating conditions of the aircraft from its nominal conditions 

due to changes in the aerodynamic coefficients of the aircraft or a change in the center of 

gravity.  Therefore, in terms of the linear model, the A matrix will also be perturbed.  

Mathematically, this can be represented by, [85]: 

( ) ( ) ( ) ( ) ( ) ( , , )t t t tξ= + Δ + + Δ +x A A x B B u x u& & ,  (3) 

where ΔΑ  and ΔΒ represent the changes in the A and B matrices and ( , , ) ntξ ∈x u R  

represents additional changes ,which are not included in ΔΑ  and ΔΒ , [85].  

Boskovic and Mehra, [86], describe some typical actuator failures: 

• Lock-In-Place, (LIP), 

• Hard-Over Failure, (HOF), 

• Float, 

• Loss of Effectiveness, (LOE). 

LIP is a failure condition, which occurs when the actuator becomes stuck and immovable.  

The actuator moving to the upper or lower position limit at its maximum rate limit, 

without responding to commands, characterizes HOF.  LOE is a decrease of the actuator 

gain. 

Typical sensor failures are, [86]: 

• Bias is a constant offset/error between the actual and measured signals; 

• Drift occurs when the measurement errors increase over time; 
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• Performance degradation, (loss of accuracy), occurs when the 

measurements never indicate the true values of the signals; 

• Freezing occurs when a sensor provide a constant value instead of the true 

value; 

• Calibration error,(loss of effectiveness), is a gain error of the sensor. 

2.5.2. Fault Detection Methods 

Typical methods used for the detection of sensors, plant and actuators faults or 

failures are, [80]: 

• Observer, 

• Parity Space, 

• Parameter Estimation, 

• Frequency spectral analysis, 

• Neural networks. 

Based on some statistic provided by, [80], it can be stated that parameter 

estimation and observer-based methods are the most frequently applied techniques for 

fault detection.  In addition, it is mentioned that more than 50% of sensor faults are 

detected using observer-based methods while the other methods play a less important 

role.  For the detection of actuator faults, observer-based methods are mostly used, 

followed by parameter estimation and neural networks.  The detection of process faults is 

performed mostly by parameter estimation methods. 
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2.6. Summary 

It was observed, from the UAV low-level control literature review, that adaptive 

control approaches have been used to increase the reliability of the UAV, which “is the 

single most immediate and long -reaching need to ensure their success”, [3].  Table 1 and 

Table 2 data, force the conclusion that MPC has a high potential for use in the 

development of fault-tolerant control systems. 

The importance of the observer-based and the parameter estimation methods for 

the detection of sensors, process and actuators faults should be clear.  It is important to 

consider that most practical processes need the use of an observer to estimate the states 

signals. 

The following chapters will cover the issues mentioned in this summary.  

Specifically, chapter 3 will cover states observers or estimators and parameter estimation.  

Chapter 4 will cover adaptive and fault-tolerant predictive control. 
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Chapter 3 

Estimation 

3.1. Estimation Theory 

The need to extract or estimate useful information, from noisy signals or from 

partial information sources, is almost pervasive in most of the real-world signal 

processing and control systems.  Estimating the values of signals or parameters is a 

fundamental part of many signal-processing systems.  In the particular case of control 

systems, the requirement is pervasive to use an algorithm to obtain measured outputs and 

the estimated values of the state variables of the process from noise.  The Kalman filters 

are the most commonly used algorithm for the purposes of extracting information from 

noise.  A brief background of the most common types of Kalman filter will be presented. 

3.2. Standard Kalman Filter 

The Kalman filter is an estimator for what is called the linear-quadratic problem.  

This is the problem of estimating the instantaneous “state” of a linear dynamical system, 

which has been perturbed by additive white Gaussian noise with normal distribution, 

using measurements linearly related to the state and perturbed by additive white Gaussian 

noise with normal distribution. 
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In his original formulation, [87], Kalman addressed the general problem of 

estimating the state, n∈x R , of a discrete-time process whose dynamics are described by 

the linear stochastic difference equation, which is given by: 

1k k k k+ = + +x Fx Gu w     (4) 

 k k k= +z Hx v  (5) 

where F is the state transition matrix, also termed the system or dynamic matrix, G is the 

input matrix, ku  is the input vector, wk is the process noise vector and kv  is the 

observation or measurement noise vector.  The process noise vector is white Gaussian 

with zero mean and covariance matrix given by: 

[ ] kT
k k

n k
E

n k
=⎧

= ⎨ ≠⎩

Q
w w

0    
 (6) 

The observation or measurement noise is white Gaussian with zero mean and 

covariance matrix given by: 

[ ] kT
k k

n k
E

n k
=⎧

= ⎨ ≠⎩

R
v v

0    
 (7) 

In real situations, the process noise covariance and measurement noise covariance 

matrices might change with each time step or measurement.  However, it is assumed that 

they are constant.  The process noise and the measurement noise are uncorrelated, which 

requires: 

 [ ] 0T
k kE =w v  (8) 

To present the equations, which allow the implementation of the Kalman filter, 

some definition and nomenclature must be defined.  Let ˆ n
k R− ∈x  represent the a priori 
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state estimate at step k given knowledge of the process prior to the step k.  Let ˆ n
k R∈x  

represent the a posteriori state estimate at step k given the measurement zk.  Given these 

representations, prior and posteriori estimates can be defined as: 

ˆk k k
− −≡ −e x x        (9) 

ˆk k k≡ −e x x        (10) 

The a priori estimate error covariance is given by: 

[ ]T
k k kE− − −=P e e      (11) 

and the a posteriori estimate error covariance is given by 

[ ]T
k k kE −=P e e      (12) 

The Kalman filter obtains the a posteriori state estimate, ˆkx  as a linear 

combination of the a priori estimate ˆ k
−x  and a weighted difference between the 

measurement zk and the measurement prediction ˆ k
−Hx at step k.  This a posterior state 

estimate is given by: 

ˆ ˆ ( )k k k k
− −= + −x x K z Hx    (13) 

The difference, ( )k k
−−z Hx  in equation (13) , is called the measurement innovation or the 

residual. 

The n m× matrix K ,in equation (13), is termed the Kalman gain or blending 

factor, [88].  It is chosen to minimize the a posteriori error covariance, which is presented  

in equation (12).  One form that minimizes the error covariance is given by: 
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1( )T T
k k k

T
k

T
k

− − −

−

−

= +

=
+

K P H HP H R

P H
HP H R    

 (14) 

The Kalman filter is a recursive algorithm whose equations can be separated into 

groups concerned with time update or prediction equations and measurement update or 

correction equations.  The time update or predictor equations are used for projecting the 

current state and error covariance estimates forward to obtain the a priori estimates for 

the next time step.  The measurement update or corrector equations are responsible for 

incorporating a new measurement into the a priori estimate to obtain an improved a 

posteriori estimate, [88]. 

Table 3 presents the Kalman filter equations in a sequential approach, which 

indicates the calculations required for the appropriate implementation of the filter. 



 

48 

 

Table 3:  Kalman Filter Algorithm 

 

 

Having presented the fundamentals concepts and the equations needed for the 

implementation of the Kalman Filter, the next sections present some of the extensions 

that were of interest for this research. 

3.3. Extended Kalman Filter 

The Extended Kalman Filter, (EKF), was the first extension and at the same time, 

the first application of the Kalman Filter.  The EKF is probably the most widely used 

t Operation 

k-1 Obtain the measurements at t = k -1 , zk-1 

 1
1 1 1 1 1 1ˆ ˆ ˆ( )k k k k k kz−

− − − − − −= + −x x K H x  

 Calculations of uk-1 

 1 1 1ˆ ˆk k k k
−

− − −= + +x Fx Bu w  

 1
T

k k k
− +

−= +P FP F Q  

 1( )T T
k k k k

− − −= +K P H HP H R  

k Obtain the measurements at t = k, zk 

 ˆ ˆ ˆ( )k k k k k l
− −= + −x x K z H x  

 ( ) ( )T T
k k k k k k kK+ −= − − +P I K H P I H K R K  

 Calculation of uk 

 M  

k+1 Obtain the measurements at t = k +1, zk+1 
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estimator for nonlinear systems.  However, the practical use of the EKF has two well-

known drawbacks, [89]: 

• Linearization can produce a highly unstable filter if the assumptions of 

local linearity are violated; 

• The derivation of the Jacobian matrices is nontrivial in most applications 

and often lead to significant difficulties. 

To understand the causes of the problems obtained with the application of the EKF to 

nonlinear dynamical systems, some concepts need to be investigated. 

Consider the equations of a stochastic time-invariant or autonomous nonlinear 

dynamical system, which are given by: 

1 ( , , )k k k kF+ =x x u w      (15) 

and 

( , )k k kH=z x v      (16) 

where xk is the state vector, uk is the input vector, wk is the process noise and vk is the 

measurement noise.  The process noise and the measurement noise do not need to be 

considered as additive.  The nonlinearity presented in the system results due to the 

presence of F, which is a nonlinear function, the presence of H, which is a nonlinear 

function or the presence of both functions, which are nonlinear functions. 

Given the noisy measurements zk, the recursive estimation of ˆkx  can be obtained 

using the equation (13).  If the a priori estimate ˆ k
−x  and the current measurement or 

observation are Gaussian, [90], then the recursion provides the optimal Minimum Mean-
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Square Error estimate of x.  The optimal values terms of the recursive equation (11) are 

given by, [90] [91] 

1 1 1ˆ ˆ[ ( , , )]k k k kE F−
− − −=x x u w     (17) 

ˆ ˆ[ ( , )]k k kE H− −=z x v      (18) 

and 

1 1ˆ ˆ ˆ[( )( ) ] [( )( ) ]
k k k k

T T
kk k k k k k k kE E
−− − − − −= = − − × − −x z z zK P P x x z z z z z z% %
$  (19) 

where the optimal prediction ˆ k
−x  is the expectation of a nonlinear function of 1ˆ k−x ,uk-1 and 

wk-1, which are random variables.  The same applies to the optimal prediction of ˆ k
−z .  The 

Kalman gain is expressed as a function of posterior covariance matrices in which 

k k k
−= −z z z% % %  

In all these terms, it is necessary to calculate expectations of nonlinear functions 

in order to obtain the optimal values.  It is well-known that the optimal solution of the 

nonlinear filtering problem requires that a complete description of the conditional 

probability density be maintained.  Unfortunately, the exact description requires a 

potentially unbounded number of parameters.  Therefore, a number of suboptimal 

approximations have been proposed, [89].  The EKF is a suboptimal approximation that 

obtains the terms of equation (13) using the following simplifications: 

1 1ˆ ˆ( , , )k k kF−
− −≈x x u w     (20) 

1ˆ ˆ
k k k kk

−≈ x z z zK P P% %     (21) 

and 
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ˆ ˆ( , )k kH− −≈z x v      (22) 

where the prediction of ˆ k
−x and ˆ k

−z  are approximated by directly evaluating the nonlinear 

function F and H with the prior mean values.  The covariances are determined by 

linearizing the dynamical nonlinear equations of the system and then analytically 

determining the posterior covariance matrices for the linear system as in the case of the 

standard Kalman filter.  Having these values the a posteriori estimate of ˆkx  can be 

obtained from equation (13). 

The values obtained with these approximated equations can be considered as 

“first order” approximations of the optimal values.  When the nonlinear system is not 

well represented by the linearization, the calculated a posteriori estimates of the mean 

and covariance matrix will have large errors.  These errors could produce severe 

suboptimal performance and possibly lead to divergence of the filter. 

All these issues have led researchers, to seek more accurate methods for the 

solution of the problem of filtering nonlinear dynamical systems.  Even though, there are 

EKF variants, which are more accurate, they are more complex and computationally 

demanding. 

3.4. Unscented Kalman Filter 

The Unscented or Sigma-Point Kalman Filter developed by Julier and Uhlmann, 

[89], was introduced as a solution to the problems of the EKF.  The propagation of a 

Gaussian random variable, (GRV), through the system dynamic is a central and vital 

operation upon which all Kalman filters are based.  The approach presented by Julier and 
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Uhlmann is a new method of calculating the first and second order statistics of a random 

variable, which undergoes a nonlinear transformation.  The Unscented or sigma-Point 

Kalman filter is a direct application of the transformation with the similar name 

Unscented Transformation. 

3.4.1. The Unscented Transformation 

The Unscented Transformation, (UT), is a new, novel method for calculating the 

statistics of a random variable, which undergoes a nonlinear transformation, [89].  Julier 

and Uhlmann founded their work with the intuition that “with a fixed number of 

parameters it should be easier to approximate a Gaussian distribution than it is to 

approximate an arbitrary nonlinear function/transformation”, [92].  Figure 13 depicts that 

sigma points capturing the mean and covariance of the distribution are transformed 

independently.  The mean and covariance of the transformed sigma points define the 

statistics of the transformed random variable 

 

 

Figure 13:  Principle of the Unscented Transformation [92] 
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The general problem of calculating the statistics of a random variable, which undergoes a 

nonlinear transformation, is governed by a relatively complex algorithm. 

Given an n-dimensional vector random variable x with mean ¯x and covariance 

Pxx, obtain the mean y  and the covariance Pyy of the vector random variable y, which is 

related to x by the nonlinear transformation 

[ ]=y g x      (23) 

The Sigma-Point method follows, [92].  Compute the set σ of 2n points from the 

rows or columns of the matrices n± P .  This set is zero mean with covariance P.  

Compute a set of points with the same covariance but with mean x , by translating each 

point as: 

+χ =σ x        

where 

2 rows or columns from ( ) xxn n kσ ← ± + P    

k will be defined later and 

0 ˆ
ˆi iσ

=
= +

χ x
χ x        

which assures that 

2

1

1 ˆ ˆ[ ][ ]
(

 
2 )

n
T

xx i i
in k =

= − −
+ ∑P χ x χ x

    

Transform the set of sigma point by 

[ ]i i=γ g χ      (24) 

The approximated mean is computer by: 
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2

0
1

1 1ˆ
2

n

i
i

k
n k =

⎧ ⎫= +⎨ ⎬
+ ⎩ ⎭

∑y γ χ
    

 (25) 

and the approximated covariance is computed by: 

2

0 0
1

1 1ˆ ˆ ˆ ˆ[ ][ ] [ ][ ]
2

n
T T

yy i i
i

k
n k =

⎧ ⎫= − − + − −⎨ ⎬
+ ⎩ ⎭

∑P γ y γ y γ y γ y  (26) 

The properties of this algorithm were summarized by Julier and Uhlmann, [89]. 

Since the mean and covariance of x are captured precisely up to the second order, the 

calculated values of the mean and covariance of y are also correct to the second order.  

The sigma points capture the same mean and covariance irrespective of the choice of 

matrix square root, which is used.  Numerically efficient and stable methods such as the 

Cholesky decomposition can be used.  The mean and covariance are calculated using 

standard vector and matrix operations.  This means that the algorithm is suitable for any 

choice of process model and implementation is extremely rapid since it is not necessary 

to evaluate the Jacobian, which is required by an EKF. 

The parameter k provides an extra degree of freedom to “fine tune” the higher 

order moments of the approximations, and can be used to reduce the overall prediction 

errors.  When xk is assumed to be Gaussian, a useful heuristic is to select n+k = 3.  If a 

different distribution is assumed for xk then a different choice of k might be more 

appropriate.  Although k can be positive or negative, a negative choice of k can lead to a 

non-positive semi-definite estimate of Pyy.  Figure 14 presents the different cases of 

propagating the statistics of a 2D random variable through a nonlinear transformation. 
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Figure 14:  2D Example of the Sigma-Point or Unscented Approach [97] 

 

The Unscented Filter is a straightforward extension of the UT to the recursive 

estimation where σ = xk and the corresponding matrix is represented as ( | )k kχ .  It is 

interesting to note that no explicit calculation of Jacobians or Hessians is necessary to 

implement this algorithm. 

3.5. Dual Estimation  

The problem of Dual Estimation consists on the simultaneous estimation of the 

states and the parameters’ model of the dynamical system from which the measurements 

or observations are taken.  Considering that the dynamical system is expressed by: 
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1 ( , , , )k k k kF+ =x x u w θ     (27) 

and 

( , , )k k kH=z x v θ      (28) 

where xk is the state vector, uk is the input vector, θ is the parameter’s model vector, wk is 

the process noise and vk is the measurement noise.  The process noise and the 

measurement noise do not need to be considered as additive.  The system will be linear or 

nonlinear in the states as a function of the linearity or nonlinearity of the system function 

F and measurement function H.  If either of these functions is nonlinear, the estimation 

will become a nonlinear estimation problem.  However, even if the functions F and H are 

linear or affine in the states and inputs, the estimation problem becomes nonlinear when 

the simultaneous estimation of the parameters is considered. 

Most common algorithms used to solve the dual estimation problems are: 

• Expectation Maximization, (EM), 

• Dual Kalman Filter, 

• Joint Kalman Filter. 

The EM algorithm uses an extended Kalman smoother for the E-step where 

forward and backward passes are made through the data to estimate the signal.  The 

model is updated during a separate M-step, [90]. 

The Dual Kalman Filter algorithm uses two separate Kalman filters.  One filter is 

used for estimating the states given the current parameters and one filter is used for 

parameters’ model estimation given the current states.  To estimate the parameter’s 

model vector using the dual Kalman filter or the joint Kalman filter it is necessary to 



 

57 

 

represent them as a stationary process, with an identity state-transition matrix, which is 

driven by process noise rk: 

1k k k−= +θ θ r      (29) 

and 

1( , , , )k k k k kf −=z x θ w v    (30) 

A simplified block diagram of a Dual Kalman filter is presented in Figure 15. 
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Figure 15:  Block Diagram of a Dual Kalman Filter 

 

The Joint Kalman Filter uses a combined state vector, which is formed by the 

state variables vector of the system and the model parameters.  Only one Kalman filter is 

required and both states and parameters are estimated simultaneously based on the 

current estimates of the states and the parameters.  The augmented state vector is simply 

formed and it is given in by: 
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( ) k
aug

k

k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
x

θ     
(31) 

The joint dynamical system can be represented simply by: 

1

1

(
ˆ ( 1) ˆ

, , , )k
aug

k kk

k k kk
F+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

x u w
θ

θx 0
x

rθ  
 (32) 

Since the joint filter concatenates the state and parameter variables into a single 

state, it effectively models the cross-covariance between the states and the parameter 

estimates, which should theoretically provide better estimates, [97].  The coupled 

covariance matrix, Paug, would provide for treatment of the uncertainty of the states and 

parameter estimates.  In addition, it also models the interaction between the model and 

parameters, which is given by: 

k k k

k k k

aug

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

x x θ

θ x θ

P P
P

P P
   

 (33) 

In this research, the dual estimation was handled using joint Kalman filters due to 

its potential for better performance and implementation simplicity. 

3.6. Literature Review about Unscented Kalman Filter 

Several research papers have presented different comparisons between the 

Extended Kalman Filter and the relatively new Unscented or Sigma Points Kalman Filter.  

Both filters represented different approaches to the problem of recursive 

states/parameters estimation of nonlinear systems disturbed by process and measurements 

noise.  Every practical industrial process contains some sort of nonlinearities, [93].  Some 

researchers have asserted that linear systems do not really exist, [94].  Independently of 
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the absolute non-existence of linear systems, decades of incessant development of the 

theory of control of linear systems have allowed amazing advanced application of control 

in areas such as the aerospace, manufacturing and chemical industries. 

Undoubtedly, the most widely used nonlinear state estimation technique that has 

been applied since the sixties is the Extended Kalman Filter, (EKF), [94].  Stanley 

Schmidt originally proposed its use for solving nonlinear spacecraft navigation problems. 

Simon Julier, Jeffrey Uhlmann and Hugh Durrant-Whyte presented the original 

version of the Unscented Kalman Filter in 1995, [95].  Julier, [96], presented the Scaled 

Unscented Transformation, which introduces an additional degree of freedom to control 

the scaling of the sigma points.  This avoids the possibility that the resulting covariance 

can become non-possible semidefinite.  This scaled version of the Unscented 

Transformation seems to have become the standard version.  because the scaled version 

presents the same second order accuracy of the normal or original UT and allow a 

controllable scaling of the high order errors, [97]. 

Several research papers have been published.  Some of them compare the EKF 

and the UKF.  Others focus on the application of the UKF to specific fields of study.  

Rudolf van der Merwe, (2004), presented an extensive work in his Ph.D. dissertation, 

[97].  In his dissertation, van der Merwe studied the performance and divergence 

properties of the EKF, UKF and the Central Difference Kalman Filter, (CDKF).  The 

CDKF filter is based on Sterling's polynomial interpolation formula.  He developed the 

Square-Root Unscented Kalman Filter, (SR-UKF), the Square-Root Central Difference 

Kalman Filter, (SR-CDKF).  These filters were used to obtain state and parameter 
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estimations.  He also presented a method for the use of the UKF to improve the 

Sequential Monte Carlo method, which is also known as the Particle Filter.  Several 

application examples were implemented for states, parameter and joint estimation.  In his 

conclusion, it was claimed that there are large performance benefits to be gained by 

applying Sigma-Point Kalman filters to areas were EKFs have been used as the standard 

as well to areas where use of the EKF was impossible, [97]. 

Girish Chowdhary and Ravindra Jategaonkar, (2006), reported their comparison 

of the EKF, the simplified version of the UKF with additive noise and the augmented 

UKF for aerodynamic parameter estimation of two aircrafts from real flight data, [98].  

For the first study case, which involved the HFB-320 fixed wing research aircraft, a 

nonlinear model was used for the experiments.  The results obtained indicated a very 

good comparable performance using the three estimation techniques.  The excellent 

performance and close agreement of the three methods was attributed to the use of an 

accurate mathematical model.  For the second study case, which involved a miniature 

rotary aircraft, a linear model in the hover domain was used for the experiments.  The 

results indicated similar steady state performance between the EKF and the simplified 

UKF.  The augmented UKF displayed marginally better performance.  It was concluded 

that the three estimation methods present comparable performances.  The augmented 

UKF demonstrated a faster convergence than the EKF and the simplified UKF.  

However, the computational cost of the simplified UKF was three times more than the 

EKF.  The computational cost of the augmented UKF was six times more than the EKF.  
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In all cases, the continuous-discrete or hybrid versions of the three methods was 

implemented, [94]. 

Rambabu Kandepu, Bjarne Foss, and Lars Imsland, (2008), discussed the 

difference between the EKF and the augmented or general UKF and compared their 

performance when the filters were applied to four different simulation cases, [93].  A 

simple approach to handling states constraints was also proposed by the authors.  The 

examples considered were: 

• The Van der Pol oscillator, 

• An induction machine, 

• A gas-phase reversible reaction, 

• A solid oxide fuel cell, (SOFC), stack integrated in a gas turbine,(GT), 

cycle. 

The characteristics compared were the robustness of the estimators due to model errors 

and initial states errors.  The authors found that the augmented or general UKF 

demonstrated consistently improved performance compared to the EKF.  The proposed 

constraints handling method was found to be promising.  However, only one example 

was presented. 

Dan Simon, (2008), compared the Linearized Kalman Filter, (LKF), the Extended 

Kalman Filter and the Unscented Kalman Filter for the study of aircraft turbofan engine 

health parameter estimation,[99].  The authors concluded that both the EKF and UKF 

outperformed the LKF.  The computational cost of the EKF is one order of magnitude 

higher than the LKF and the UKF is another order of magnitude higher than the EKF.  
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Most of the computational cost for the LKF and the EKF was associated with the 

numerical calculations of the Jacobians.  In the UKF case, most of the computational cost 

was associated with the simulation of the nonlinear system. 

3.7. Comparison of the Effect of the Sampling Time on the Performance of the EKF 

and the UKF 

There are some research papers, which draw comparisons between these two 

variants of the Kalman filter.  However, there is not yet a general accepted opinion about 

their performance.  Some researchers, [101], [90], claim that the improvements in 

accuracy obtained for the UKF are considerable and others, [98], indicate that the 

accuracy is comparable.  There are also disparate results related to the computational cost 

of the two filters.  Some researchers, [99], claim that the UKF has computational costs, 

which are an order of magnitude higher than the computational cost of the EKF.  Still 

others indicate that the computational costs of the two filters are similar, [93]. 

Several simulation examples are presented in order to study the issues related to 

accuracy, computational cost and noisy sensitivity of the EKF and the UKF. 

3.7.1. Simulation Example 1: Vertically Falling Body 

This particular example has been analyzed previously in the literature, Athans et 

al, [100].  Julier, Uhlmann and Durrant-Whyte, (2000), used this problem to show the 

improved accuracy of the new filter presented in their paper, which is now termed the 

UKF, [101].  Welch and Bishop studied the same problem, [94].  This problem is 

considered to contain significant nonlinearities in both the states and output equations.  
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This case consists of the estimation of the altitude, x1(t), velocity, x2(t) and the constant 

ballistic coefficient, x3(t), of a vertically falling body as it reenters the atmosphere at a 

very high altitude and at a very high velocity.  The measurements are taken at discrete 

instants of time by radar, which measures range in the presence of discrete white 

Gaussian noise.  The radar was at an altitude, H, of 100,000 ft and the horizontal 

distance, M, between the vertical trajectory of the body and the radar was 100,000 ft.  It 

is assumed that the effect of gravity is negligible, [100], [101].  Figure 16 sketches the 

geometry for this example. 

 

body

Radar
location

x1(t)

H

M 

x2(t)

 

Figure 16:  Geometry for the Example of a Vertically Falling Body 
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The equations of motions for the vertically falling body are given by, [100]: 

1 2

2
2 2

( ) ( )

( ) ( )
2
D

x t x t
C Ax t x t

m
ρ

= −

= −

&

&
   

 (34) 

where the air density, ρ, is approximated by the exponential function given by, [100]: 

1 ( )
0

x te γρ ρ −=      (35) 

and γ is a constant, (5 x 10-5), which relates the air density with the altitude. 

Defining 

3 0 / 2Dx C A mρ≡     (35a) 

a constant, as the ballistic parameter, the continuous-time state equations of the system 

are given by: 

1

1 2 1
( ) 2

2 2 3 2

3 3
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= − +
=
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&  

 (36) 

where w1(t), w2(t) and w3(t) are zero-mean uncorrelated noises with covariances given by 

the process covariance matrix, Q(t).  The output r(t) is given by: 

[ ]22
1( ) ( )r t M x t H= + −

  
 (37) 

The range was observed at discrete instants of time.  Therefore, the observed 

sequence is given by, [100]: 

[ ]22
1( ) ( ) ( )z k M x k H v k= + − +

 
 (38) 

where v(k) is the discrete observation white Gaussian noise with zero-mean and constant 

covariance R(t), which equaled 104 ft.  The process matrix covariance, Q(t), was set to 
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zero for both filters since the process noise can be used to mask the linearization errors, 

[101]. 

The initial true state of the system is given by: 

5

4

3

3 10
(0) 2 10

10−
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⎢ ⎥= ×⎢ ⎥
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The initial estimates and covariance of the states are given by: 
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A hybrid EKF and a hybrid UKF, as presented in, [94], were implemented using 

MATLAB scripts.  Two numerical integration methods were used to simulate the 

nonlinear system given by equation (36).  The continuous-time part, (time update), of the 

hybrid EKF and the propagation from (k-1)+ to k- of the sigma points time (time update) 

of the hybrid UKF were simulated.  The methods used to represent the simulations were 

the fourth-order Runge-Kutta method and the Euler's method, which involves rectangular 

integration. 

In order to verify the effect of the measurement frequency and the simulation step 

size on the accuracy of the filter, several Monte Carlo simulations, which consisted of 50 

runs each, were implemented for different values of the measurement frequency and the 

simulation step size. 



 

66 

 

The results obtained for a measurement frequency, Ts, equal to 1 Hz, [100], [101], 

and a simulation step size, Tsim, equal to 10 ms are presented in Figure 17, Figure 18 and 

Figure 19 
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Figure 17:  Comparison of the Position Estimation Error of the EKF 
and the UKF:  Ts = 1 Hz, Tsim = 10 ms; Fourth-order Runge-Kutta 

Method 
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Figure 18:  Comparison of the Velocity Estimation Error of the EKF and 
the UKF:  Ts = 1 Hz, Tsim = 10 ms; Fourth-order Runge-Kutta Method 
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Figure 19:  Comparison of the Ballistic Coefficient Estimation Error of the 
EKF and the UKF:  Ts = 1 Hz, Tsim = 10 ms; Fourth-order Runge-Kutta 

Method 
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The estimation errors obtained for the EKF and the UKF for a measurement 

frequency of 1 Hz and a simulation step size of 0.1 ms are presented in Figure 20, Figure 

21 and Figure 22. 
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Figure 20:  Comparison of the Position Estimation Error of the EKF and 
the UKF:  Ts = 1 Hz, Tsim = 0.1 ms; Fourth-order Runge-Kutta Method 
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Figure 21:  Comparison of the Velocity Estimation Error of the EKF and 
the UKF:  Ts = 1 Hz, Tsim = 0.1 ms; Fourth-order Runge-Kutta Method 
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Figure 22:  Comparison of the Ballistic Coefficient Estimation Error of the EKF 
and the UKF:  Ts = 1 Hz, Tsim = 0.1 ms; Fourth-order Runge-Kutta Method 
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The results obtained in the two previous Monte Carlos simulations, lead to the 

conclusion that decreasing the simulation step size improves the accuracy of the EKF.  

This result could provide insight into the reasons for different claims about accuracy 

presented in the literature.  In the first case, with a measurement frequency of 1 Hz and a 

simulation step size of 10 ms, it could be claimed that the improvement in accuracy of the 

UKF is considerable.  However, from the results obtained in the second case, it could be 

claimed that both filters have similar accuracy performance.  It is important to note that 

the only change between the two simulations was the simulation step size used for the 

numerical integration of the nonlinear system, the time update of the hybrid UKF and the 

time update of the hybrid UKF. 

The computational cost for the first simulation is presented in Table 4. 

 

Table 4:  Simulation Time of Call for a Measurement Frequency 
of 1 Hz and a Simulation Steps Size of 10 ms 

Simulation time for call 

Filter Type Mean Covariance 

EKF 8.57 ms 0.23 ms 

UKF 34.57 ms 1.58 ms 

 

Table 4 data indicates that the UKF requires a greater computational time, which 

was an expected result.  The UKF simulation time was 4 times greater than the EKF 

simulation time.  The difference is not one order of magnitude higher but it cannot be 

considered similar.  The simulation times for call obtained for the second simulation were 
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greater than in the first simulation.  However, it was found that the rate of UKF 

simulation time was approximately four times than the EKF simulation time.  In view of 

these results, further experiments were performed.  The new experiments changed the 

measurement frequency to determine its effect on the accuracy of the estimations.  The 

effects were also investigated in the accuracy comparison between the EKF and the UKF. 

For a measurement frequency of 100 Hz and a simulation step of 1 ms, the 

estimation errors are presented in Figure 23, Figure 24 and Figure 25 
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Figure 23:  Comparison of the Position Estimation Error of the EKF 
and the UKF:  Ts = 100 Hz, Tsim = 1 ms; Fourth-order Runge-Kutta 

Method 
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Figure 24:  Comparison of the Velocity Estimation Error of the EKF and 
the UKF:  Ts = 100 Hz, Tsim = 1 ms; Fourth-order Runge-Kutta Method 
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Figure 25:  Comparison of the Ballistic Coefficient Estimation Error of the 
EKF and the UKF:  Ts = 100 Hz, Tsim = 1 ms; Fourth-order Runge-Kutta 

Method 

 

The results of the previous simulation, as expected, verified that reduction of the 

measurement frequency improved the accuracy of both filters, [100].  In this simulation, 

the estimation errors obtained from both filters were very similar. 

The Euler's numerical integration method was also used to compare the effect of 

the measurement frequency and the simulation step size in the accuracy comparison of 

the EKF and UKF.  The estimation errors obtained for a measurement frequency of 1 Hz 

and a simulation step size of 10 ms are presented in Figure 26, Figure 27 and Figure 28. 
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Figure 26:  Comparison of the Position Estimation Error of the 
EKF and the UKF:  Ts = 1 Hz, Tsim = 10 ms; Euler's Method 
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Figure 27:  Comparison of the Velocity Estimation Error of the 
EKF and the UKF:  Ts = 1 Hz, Tsim = 10 ms; Euler's Method 
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Figure 28:  Comparison of the Ballistic Coefficient Estimation 
Error of the EKF and the UKF:  Ts = 1 Hz, Tsim = 10 ms; Euler's 

Method 

 

The estimation errors obtained for a measurement frequency of 1 Hz and a 

simulation step of 0.1 ms are presented in Figure 29, Figure 30 and Figure 31. 
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Figure 29:  Comparison of the Position Estimation Error of the 
EKF and the UKF:  Ts = 1 Hz, Tsim = 0.1 ms; Euler's Method 
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Figure 30:  Comparison of the Velocity Estimation Error of the 
EKF and the UKF:  Ts = 1 Hz, Tsim = 0.1 ms; Euler's Method 
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Figure 31:  Comparison of the Ballistic Coefficient Estimation Error 
of the EKF and the UKF:  Ts = 1 Hz, Tsim = 0.1 ms; Euler's Method 

 

The estimation errors obtained for a measurement frequency of 100 Hz and a 

simulation step of 1 ms are presented in Figure 29, Figure 30 and Figure 31. 
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Figure 32:  Comparison of the Position Estimation Error of the 
EKF and the UKF:  Ts = 100 Hz, Tsim = 1 ms; Euler's Method 
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Figure 33:  Comparison of the Velocity Estimation Error of the 
EKF and the UKF:  Ts = 100 Hz, Tsim = 1 ms; Euler's Method 
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Figure 34:  Comparison of the Ballistic Coefficient Estimation Error 
of the EKF and the UKF:  Ts = 100 Hz, Tsim = 1 ms; Euler's Method 

 

The results of the simulations indicate that the accuracy of the EKF improve 

considerably with frequency and simulation step size.  In a real-world application, the 

measurement frequency could not be changed due to the specifications of the sensors 

used.  However, the improvements obtained using smaller simulation step sizes could 

explain the opposing results obtained for different researchers. 

The simulations also indicate that the computational cost for the UKF, as 

expected, exceed the computational costs for the EKF.  It is important to note that in the 

simulations analyzed, the analytical Jacobians were used.  It has been reported that the 

computational effort is similar when the Jacobians have to be calculated numerically, 

[93]. 
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3.8. Comparison of the Performance of the EKF and the UKF for Parameter 

Estimation 

Several simulations were implemented to study the performance of the EKF and 

the UKF for the task of tracking the parameters of a system. 

The system used in this simulation was a small-scale helicopter model.  Bernard Mettler, 

[102], developed two linear models for the small-scale Yamaha R-50.  One model was 

concerned with the hover condition and the other model was concerned with the cruise 

condition.  As a simple experiment of parameter estimation, one of the parameters, the 

stability derivative Xu, was perturbed and it varying value was estimated.  A joint Kalman 

filter was used for the estimation of the Xu parameter from Mettler's model for the cruise 

flight condition.  Even though the model was linear in the states, when parameters are 

estimated, the new augmented system becomes nonlinear.  Therefore, it was necessary to 

use a variant of the Kalman filter for nonlinear systems.  The hybrid EKF and the hybrid 

UKF versions were used in the experiments.  In this case, the filters were implemented as 

Level-2 M-file S-functions to be used as a block in Simulink.  This implementation 

permitted the use of the Kalman filters with the previously implemented Mettler's model, 

[103], for control of UAVs. 

The equations for the augmented system were rearranged in a convenient order. 

They are presented in Table 5. 
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Table 5:  Equations for the Augmented Mettler's Model for the 
Estimation of the Stability Derivative, Xu 

* * *u au X u g X aθ= − +&  

* * * *v b ped pedv Y v g Y b Yφ δ= + + +&  

* * * * *a b w r col colw Z a Z b Z w Z r Z δ= + + + +&  

* * * *u v b wp L u L v L b L w= + + +&  

* * * * *u v a w col colq M u M v M a M w M δ= + + + +&  

* * * * *v p w r rfb fbr N v N p N w N r N r= + + + +&  

* * * * *f f b c lat lat lon lona q a A b A c A Aτ τ δ δ= − − + + + +&  

* * * *f f a d lat lat lon lonb B a b B d B Bτ τ δ δ= − + − + + +&  

* *s s lon lonc q c Cτ τ δ= − − +&  

* *s s lat latd p d Dτ τ δ= − − +&  

* *fb r rfb fbr K r K r= +&  

pφ =&  

qθ =&  

0uX =&  

The Xu parameter was assumed a constant, which is customary for parameter 

estimation.  The measured outputs are given by: 

( )

u
v
w

y k
p
q
r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦     

 (39) 
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In order to reproduce a “real world” situation for the small-scale helicopter 

simulation, the measured outputs were distorted with a “reasonable amount” of noise.  

The measurement noise covariance used for the simulation was 

R = diag([100 100 100 3x10-2 3x10-2  3x10-2]).   

Figure 35 and Figure 36 present the measured noisy outputs.  After a careful tuning was 

completed, the simulation was run to measure the tracking of the filter. 
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Figure 35:  Noisy Translational Velocities, u, v, and w 
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Figure 36:  Noisy Rotational Rates, p, q, and r 

 

Using an incorrect initial value for the Xu parameter, the ability of the filter to 

converge to the true values was tested.  Figure 37 presents the results obtained for the 

hybrid EKF and the hybrid UKF. 
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Figure 37:  Tracking of the Parameter Xu from an Incorrect Value 
of -0.062.  The Real Value was -0.122 

 

The “tuning” was achieved by varying the values of a “fictitious” process noise, 

which is a common strategy used for estimating “constants”, [94].  The UKF presents 

considerable sensitivity to changes in the process noise of Xu, which provided for tuning 

the tracking of the UKF.  The EKF presented a lower sensitivity to the fictitious process 

noise but considerable sensitivity to the cross-covariance term
uX uR .  The UKF seemed to 

be completely insensitive to variations of the cross-covariance term.  Both filters were 

completely insensitive to the cross-covariance term
uuXR . 

The hybrid EKF filter was observed to have a little faster convergence to the real 

value than the hybrid UKF.  The Root Mean Square Error, (RMSE), and the Root Mean 

Absolute Error, (RMAE), are presented in Table 6 for an initial value of -.061.  The data 

indicate that the better tracking performance was associated with the hybrid EKF. 
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Table 6:  RMSE and RMAE for the Tracking of the Parameter Xu when the 
Initial Value was -0.061 

Filter Type RMSE RMAE 

Hybrid EKF 0.0218895218742776 0.104069651011363 

Hybrid UKF 0.0259090409155798 0.13613440975281 

 

The simulation results for the tracking with an initial value of -0.183 are presented 

graphically in Figure 38. 
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Figure 38:  Tracking of the Parameter Xu from an Incorrect 
Initial Value of -0.183.  The Real value of Xu was -0.122 

 

The Root Mean Square Error, (RMSE), and the Root Mean Absolute Error, 

(RMAE), are presented in Table 7 for an initial value of -.183.  The data indicate that the 

better tracking performance was associated with the hybrid EKF. 



 

86 

 

Table 7:  RMSE and RMAE for the Tracking of the Parameter Xu when the 
Initial Value was -0.183 

Filter Type RMSE RMAE 

Hybrid EKF 0.0210274279728388 0.101713516955333 

Hybrid UKF 0.0310201803077989 0.165126063672822 

 

The simulation results for the tracking when the real value changed from -0.122 to 

zero are presented graphically in Figure 39. 
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Figure 39:  Tracking of the Parameter Xu when its Real Value 

Changed from -0.122 to Zero.  A Correct Initial Value 
was used in the Simulation 

 

The results obtained in the two previous simulations, and in other simulations, 

which were not presented, indicate that the hybrid EKF is better at estimating the correct 

value of the parameter Xu when the initial value is incorrect.  The farther the initial value 
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is from the real value, the worse the tracking of the hybrid UKF.  However, the hybrid 

EKF maintains a similar tracking performance for different incorrect initial values.  It is 

possible to improve the tracking of the hybrid UKF by increasing the fictitious process 

noise of the parameter Xu.  However, the result is a more noisy response. 

In the next simulation, the tracking of the value of the parameter Xu was studied 

when the real value of the parameter changes from -0.122 to 0 in 5 sec.  This time the 

correct initial value was used.  The settings that were used in past simulation were 

maintained.  The Root Mean Square Error, (RMSE), and the Root Mean Absolute Error, 

(RMAE), are presented in Table 8.  The data indicate that the better tracking performance 

was associated with the hybrid EKF. 

 

Table 8:  RMSE and RMAE for the Tracking of the Parameter Xu when its 
Real Value Changed from -0.122 to 0 

Filter Type RMSE RMAE 

Hybrid EKF 0.0236099865712331 0.09085880805346 

Hybrid UKF 0.0201290648298945 0.110209529260923 

 

 

In the next simulation, the tracking of the value of the parameter Xu was studied 

when the real value of the parameter changes from -0.122 to -0.244 in 5 sec.  The Root 

Mean Square Error, (RMSE), and the Root Mean Absolute Error, (RMAE), are presented 

in Table 9.  The simulation results for the tracking when the real value changed from -

0.122 to -0.244 are presented graphically in Figure 40. 
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Figure 40:  Tracking of the Parameter Xu when its Real Value Changed 
from -0.122 to -0.244.  A Correct Initial Value was Used in the 

Simulation 

 

 

Table 9:  RMSE and RMAE for the Tracking of the Parameter Xu when its 
Real Value Changed from -0.122 to -0.244 

Filter Type RMSE RMAE 

Hybrid EKF 0.0256160351945344 0.11648595078295 

Hybrid UKF 0.0246661803845061 0.130525724707613 

 

 

The results obtained in the previous simulations indicate that the hybrid EKF 

converges faster to the real value of the parameter Xu.  The estimation errors presented in 
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Table 8 and Table 9 favor the hybrid EKF.  Again, it is possible to improve the tracking 

performance of the hybrid UKF.  However, a more noisy response is obtained. 

Figure 41, Figure 42 and Figure 43 present the responses in the case where the 

change in the parameter value was substantial.  In the case of big positive changes, the 

hybrid UKF presented a faster response and the RMSE and the RMAE were less than the 

corresponding errors of the hybrid EKF. 
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Figure 41:  Tracking of the Parameter Xu when its Real Value Changed 
from -0.122 to 1.  A Correct Initial Value was Used in the Simulation 

 

The Root Mean Square Error, (RMSE), and the Root Mean Absolute Error, (RMAE), are 

presented in Table 10. 
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Table 10:  RMSE and RMAE for the Tracking of the Parameter Xu 
when its Real Value Changed from -0.122 to 1 

Filter Type RMSE RMAE 

Hybrid EKF 0.606521236581858 0.631802091542201 

Hybrid UKF 0.435385429859299 0.47536013578397 
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Figure 42:  Tracking of the Parameter Xu when its Real Value Changed 
from -0.122 to 2.  A Correct Initial Value was Used in the Simulation 

 

The Root Mean Square Error, (RMSE), and the Root Mean Absolute Error, (RMAE), are 

presented in Table 11. 
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Table 11:  RMSE and RMAE for the Tracking of the Parameter Xu 
when its Real Value Changed from -0.122 to 2 

Filter Type RMSE RMAE 

Hybrid EKF 1.00251427497877 0.755009947529238 

Hybrid UKF 0.679443476319661 0.514003734843681 
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Figure 43:  Tracking of the Parameter Xu when its Real Value 
Changed from -0.122 to 3.  A Correct Initial Value was 

Used in the Simulation 

 

The Root Mean Square Error, (RMSE), and the Root Mean Absolute Error, (RMAE), are 

presented in Table 12. 
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Table 12:  RMSE and RMAE for the Tracking of the Parameter Xu when its Real Value 
Changed from -0.122 to 3 

Filter Type RMSE RMAE 

Hybrid EKF 1.34219238805557 0.82496449532556 

Hybrid UKF 0.884991339642728 0.541659062185965 

 

In the case of a big negative change in the value of the Xu parameter, Figure 44 

presents the responses of the filters.   
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Figure 44:  Tracking of the Parameter Xu when its Real Value 
Changed from -0.122 to -3 

 

EKF converges to a more accurate final value.  Even though, the filters were able 

to converge to the real values of all states. 
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(b) 

Figure 45:  Responses of the Filters when the Xu Parameter Changed its Value 
from -0.122 to -3.  (a) Estimates of the State u, (b) Estimates of the State θ  
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Figure 45a indicates that the hybrid UKF converges faster than the EKF but to a 

biased value.  Figure 45b shows that in the case of state θ, both filters converge 

accurately. 

3.8.1. Noise Sensitivity 

Simulations were run to establish the filters behavior when the values of the 

covariance of the measurement noises were multiplied by factor that varied from 1x10-10, 

which resulted in a noiseless system, to a factor of 1, which resulted in the original noisy 

system.  Figure 46, Figure 47 and Figure 48 present the responses obtained for the 

different values of this factor. 
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Figure 46:  Response of the Filters to a Noiseless System:  Factor = 10-10 
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Figure 47:  Response of the Filters to a Moderately Noisy System:  Factor = 10-2 
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Figure 48:  Response of the Filters to the Original Noisy System:  Factor = 1 
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The previous three simulations indicate that the hybrid UKF is more sensitive to 

the measurement noise than the hybrid EKF. 

3.9. Discussion 

The results obtained from the simulations certain conclusions to be drawn.  In the 

Vertically Falling Body example, it was demonstrated that the performance of the UKF 

was superior for a simulation time of 10 msec.  However, when the simulation time was 

decreased to 0.1 ms; the performance of the filters was clearly similar.  This result is 

significant since the only parameter changed in the simulation was the simulation step 

size, which caused a significant variation in the performance of the hybrid EKF.  Both 

filters improved their performance.  However, the difference between them was 

negligible.  Computational cost also favored the EKF. 

For the case of parameter estimation for small-scale helicopter simulation, several 

aspects were studied.  Hybrid filters were used but in the Simulink environment.  The 

continuous-time part of the simulations was under the control of the Simulink engine.  

The fixed-step fourth-order Runge-Kutta, (od4), was used for the simulations.  The 

results obtained for the tracking of the parameter value when an incorrect initial value 

was assumed favored the hybrid EKF.  This conclusion is supported by the data displayed 

in the corresponding figures and in the RMSE and RMAE values calculated for this case. 

The results obtained for the case when a sudden change in the value of the 

parameter occurred also indicated a better performance associated with the hybrid EKF.  

The final simulations indicated that the hybrid UKF was more sensitive to noise than the 

hybrid EKF. 
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The performance changes seem to be related with the way the filters were 

simulated.  This could be explained by the observation that in the hybrid filters, the time 

update was implemented using the continuous-time nonlinear model of the system under 

consideration.  In the case of the hybrid EKF, the time update was implemented by the 

equations, [94]: 

ˆ ˆ( , , 0)f=x x u&
     (40) 

T T= + +P AP PA LQL&     (41) 

For the case of the hybrid UKF, only the sigma points were propagated using 

equation (40).  The hybrid EKF had the advantage of propagating the covariance matrix 

in a “more” exact way.  The hybrid UKF calculated the covariance matrix by the 

equation, [101]: 

2

0

ˆ{ ( 1| ) ( 1| )}
n

k i i
i

W k k k kχ−

=

= + − +∑P x
  

 (42) 

where ( 1| )i k kχ +  were the sigma points and ˆ( 1| )k k+x  was the predicted mean of the 

sigma points. 
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Chapter 4 

Model Predictive Control Literature Review 

This chapter presents a summary of the literature review on adaptive model 

predictive control, as well as a summary of the literature review on fault-tolerant model 

predictive control.  The following chapter, Chapter five, will present the developed 

control scheme, which effectively blends the adaptive MPC with the fault-tolerant MPC 

through the use of an joint EKF. 

4.1. Literature Review about Adaptive Model Predictive Control 

Aggelogiannaki and Sarimveis, (August 2007), [104], presented a hierarchical 

multiobjective adaptive model predictive control.  The Pareto optimal set of the 

multiobjective optimization problem was approximated using a Simulated Annealing, 

(SA), algorithmic approach.  The algorithm returns a single solution, which corresponds 

to the lexicographic ordering approach.  Different initial temperatures were assigned to 

each objective according to their position in the hierarchy.  A major advantage of the 

proposed method was its low computational cost, which is a very critical issue for online 

applications.  The MPC control scheme was an adaptive discrete-time model of the 

system, which was developed using a radial-basis-function, (RBF), neural network 

architecture.  A key issue in the success of the adaptation strategy was the introduction of 
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a persistent excitation constraint, which was transformed to a top-priority objective.  Only 

an unconstrained version of the adaptive MPC was considered. 

Kim and Sugie, (January 2008), [105], presented an adaptive receding horizon 

predictive control for constrained discrete-time linear systems with parameter 

uncertainties.  It was claimed that an adaptive parameter estimation algorithm suitable for 

MPC was proposed.  This estimation was based on the methodology of the Moving 

Horizon Estimation.  The estimation algorithm enables the prediction of a monotonically 

decreasing worst-case estimation error bound over the prediction horizon of MPC.  This 

provided that future model improvement could be considered explicitly.  Only the noise-

free case and the state-feedback case were considered in the research. 

Corona and De Schutter, (March 2008), [106], present an adaptive Cruise Control 

for a SMART car, which is used as a comparison benchmark for several mode predictive 

control methods for nonlinear and piecewise affine, (PWA), systems.  The prediction 

model and control approaches were compared: 

• A nonlinear MPC with the nonlinear prediction model was approximated 

using a first-order Euler approximation, 

• MPC with a Piecewise Affine model was represented as a mixed logical 

dynamical, (MLD), model.  The online optimization for this MPC 

approach was a mixed-integer linear program, (MILP), 

• An offline PWA-MPC approach used a multi-parametric MILP.  This 

strategy avoids solving optimization on-line and the online calculation was 

reduced to the mere search in a lookup table, 
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• An approach, which only considers a PWA, and the gear was presented.  

This approach is still a MILP and if the prediction horizon is short, it will 

reduce the computational cost of the online MILP, 

• A tangent approximation of the nonlinear friction’s nonlinearity was 

considered.  The PWA was obtained for the current operating point.  The 

MILP structure was similar to that of approach 2, 

• A basic tangent approximation was considered but neglected the effect of 

the gear.  This approximation has the advantage of leading to an online 

linear optimization problem, which requires less computational power, 

• A basic gain scheduling approximation was implemented considering six 

linear models for the nonlinear friction curve, 

• A proportional-integral, (PI), controller was considered.  The controller 

first computed the desired acceleration and the actuators regulated the 

throttle, the gear and the braking action in order to better achieve the 

desired values of the acceleration. 

The results obtained in this benchmark comparison indicate that in terms of performance 

the PI performed the worst.  In terms of computational cost, the online PWA-MPC-MILP 

was the most demanding approach.  In terms of constraints violations, the source of 

numerous constraint violations was the bigger mismatch of the linear methods compared 

with the MLD or NMPC methods. 

C.-H. Lu, and C.-C Tsai, (March 2008), [107], presented an adaptive predictive 

control with recurrent neural networks, (RNN).  The control was for a class of discrete-
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time nonlinear systems described by a nonlinear autoregressive moving averaging, 

(NARMA), model.  This class of discrete-time nonlinear control was approximated by 

the combination of a linear model and a RNN model.  A recursive least-squares, (RLS), 

estimation method was used for determining the unknown linear dynamic system 

parameters.  The RNN was used to develop a neural predictor for model errors.  The 

model predictive control implemented was unconstrained, which provides for obtaining a 

closed form control law.  The control horizon was set to one in order to reduce the 

computational load, even thought the sampling time of three seconds seems to provide 

enough time to allow a larger control horizon.  The stability was claimed to rely on the 

convergence of the estimates of the linear parameters and the neural error predictions.  To 

insure that the identification process would be successful, persistently exciting, (PE), 

signals were used as the testing signals for accomplishing PE conditions. 

K. R. Muske, J.C. Peyton Jones, and E.M. Franceschi, (July 2008), [108], present 

an adaptive, linear state-space analytical model-predictive controller for spark ignition, 

(SI), engine air-fuel ratio control.  The process model used for this research was a 

parameterized linear time-varying discrete-time state-space model.  The input to the 

model was a multiplier of the base fuel flow rate calculated by the Engine Control 

Module, (ECM), obtained during engine calibration.  The measured output was the 

equivalence ratio, which is the inverse of the air-fuel ratio.  The output was determined 

from the precatalyst wide-ranging universal exhaust gas oxygen, (UEGO), sensor.  The 

model's parameters were obtained from step responses of a Ford 2-L I-4 engine.  Despite 

the significant complexity in the system dynamics due to the effects of fuel puddling, 



 

102 

 

manifold wall wetting and the intake manifold hydrodynamics, the engine's step response 

was approximated by a first-order plus dead time, (FOPDT), model.  The model 

parameters were scheduled as: 

• The model gain is assumed constant and equal to 0.9, 

• The time constant was scheduled only by the engine's speed, 

• The time delay was scheduled by the speed and load conditions of the 

engine. 

A Kalman filter was used to obtain an estimate of the model's states. 

 

4.2. Literature Review of Fault-Tolerant Model Predictive Control 

Maciejowsky and Jones (June 2003), [109], demonstrated that the fatal crash of El 

Al Flight 1862 might have been avoided by using MPC-based fault-tolerant control.  A 

detailed nonlinear model of the aircraft was used to show that it is possible to reconfigure 

the controller so the aircraft could be flown successfully down to the ground.  The 

proposed fault-tolerant controller was composed of three components: 

• The block FID, which performs detection and identification of the fault's 

effects.  This block was not designed by the authors and was assumed to 

be present. 

• A reference model, which uses the pilot commands to generate a reference 

trajectory for the state's state vector. 

• A reconfigurable MPC. 
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The objective of the reconfigurable MPC was to track the reference trajectory using the 

output of the FDI block to update its internal model constraints. 

Qi et al, ( December 2007), [110], presented a fault adaptive control methodology 

against actuator failure.  A Square Root Unscented Kalman Filter, (SR-UKF), was used 

for on-line estimation of both the flight states and the Actuator Healthy Level, (AHL), 

parameters of a rotorcraft UAV.  The controller was designed using Feedback 

linearization.  Since exact input-output linearization fails to linearize the whole system 

and results in unstable zero dynamics, the authors proposed to linearize the system, 

approximately, by neglecting the coupling of the model.  Simulations indicated the 

scenario in which a proportional and bias joint type failure of the collective actuator 

occurred.  The results obtained were quite satisfactory. 

QI and Han, (June 2008), [111], basically, presented the same research they 

presented in, [110].  However, a more detailed presentation of the rotorcraft UAV 

dynamics and characteristics of the sensors were presented. 

Miksch, Gambier, and Badreddin, (September 2008), [112], presented a 

comparison between a model predictive controller, a linear quadratic controller and the 

pseudo inverse method, (PIM).  The controllers were tested in a real-time implementation 

under several cases of actuators faults such as saturation, freezing and total loss as well as 

under a structural fault.  The Fault Detection and Identification/Diagnosis subsystem was 

considered to provide accurate information about the faults.  An active fault recovery 

approach based on fault accommodation was pursued.  A Three-Tank-System was used 

to test the algorithms in real-time.  However, no information was provided about the 
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operating system and programming language used in the implementation of the 

algorithms.  The results showed that MPC provided the best performance at the cost of a 

greater computation expense and an intensive use of the control signals.  The fault-

tolerant LQ controller displayed an acceptable performance in most of the fault scenarios 

and the PSM provided the worst results. 

4.3. Summary 

The literature reviews, presented above, show a snapshot of some of the most 

recent approaches in the area of fault-tolerant MPC and adaptive MPC.  As far as the 

author is aware, the combination of joint EKF and MPC has not been presented before in 

the research literature.  This provides for the justification of studying applications using 

the combination of joint EKF and MPC for small-scale helicopter 
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Chapter 5 

Fault-Tolerant Adaptive Model Predictive Control for Flight Systems 

5.1.  Flight Control Systems 

The typical architecture of the low-level flight control systems implemented in the 

literature have been described as multi-loop, [113], cascaded or nested controllers, [102].  

The architecture presented in Figure 49 is a velocity tracking architecture. 
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Figure 49:  Typical Low-level Flight Control System Architecture 

 

It is possible to include an additional controller loop, in the velocity tracking architecture, 

to obtain either a low-level, middle or high-level tracking position.  A state estimation 

block and a navigation block, always present in UAV applications, have not been shown 

to simplify the diagrams.  The block b
iT is the inertial-frame to body-frame coordinate 

transformation.  This transformation is given by: 
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,  

 (43) 

where the Euler angles are φ, (roll), θ, (pitch), and Ψ, (yaw),.  The c and s parameters 

represent the cosine and sine functions, respectively.  The body-frame to inertial-frame 

coordinate transformation is given by: 

( )Ti b
b i=T T

.    
 (44) 

In the developed low-level flight control system, the model predictive control 

substitutes the body-frame velocity controller and the attitude controller.  This approach, 

presented by the author in, [67], simplifies the design of the low-level flight controller. 

As mentioned in chapter 2, it can be stated that parameter estimation and 

observer-based methods are the most frequently applied techniques for fault detection.  

The detection of some actuator faults, (LOE), and system or process faults can easily be 

represented as changes in the A and B matrices of the linear time-invariant model of the 

process, which is demonstrated in equations (2) and (3).  Parameter estimation is also the 

technique used for the adaptive control technique, to determine the changes, which are 

occurring in the plant under control.  A Joint Extended Kalman filter represents a 

straightforward and accurate approach to simultaneously estimate the states and 

parameters of the system’s model. 

An inspection of the Self-Tuning Regular block diagram depicted in Figure 6 and 

the basic block diagram of a fault-tolerant control system depicted on Figure 10 

demonstrate the likeness of the developed control system as a form of self-tuning fault-

tolerant control system. 
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The model predictive control technique possesses the intrinsic capability of 

handling input and states constraints.  MPC uses an open-loop optimization to calculate 

the control signals, which minimize the generic objective function given by: 

1
3 2

( ) ( )
0

ˆ ˆ( ) ( | ) ( |) ( | )
p u

w

H H

Q i R i
i H i

V k y k i k r k i u k i k
−

= =

= + − + + Δ +∑ ∑
, 
 (45) 

where 

• ˆ( | )y k i k+ is the predicted output, 

• ( | )r k i k+ is the predicted reference trajectory, 

• ˆ( | )u k i kΔ +  is the predicted changes of the control signal, 

• Hp is the prediction horizon, 

• Hw is the window parameter, 

• Hu is the control horizon, 

• ( )Q i are the weighting matrixes applied to the predicted error during the 

prediction horizon, 

• R(i) are the weighting matrices applied to the control moves during the 

control horizon. 

MPC calculates the optimal control signal, which minimizes the objective 

function for the given parameter and the current internal model.  Therefore, MPC pursues 

optimality even when there are changes or updates of the internal model. 

The Fault-Tolerant Adaptive Model Predictive Control (FTA-MPC) combines the 

advantages of adaptive control techniques with fault-tolerant control techniques by 

inclusion of a Joint Kalman filter as parameter estimator.  The adaptation is performed 
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each time the parameters of the internal model of the MPC are updated.  Figure 50 shows 

the block diagram of the Fault-Tolerant Adaptive Model Predictive Controller. 
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Figure 50:  Generic Block Diagram of the Fault-Tolerant Adaptive Model 
Predictive Controller 

 

A more detailed block diagram is presented in Figure 51. 
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Figure 51:  FTA-MPC Flight Control System 

 

The measured output signals are the body-frame linear velocities, [u, v, w]T, and 

the angular velocities, [p, q, r]T.  The control signals are the cyclic longitudinal, δlon, the 

cyclic lateral, δlat, the collective, δcol, and the pedal, δped.  The controls signals are 

constrained to the range -1 to +1.  The MPC set point signals are uset point vset point, wset point 

and rset point.  The parameters to be estimated are Xu, Zcol, Ncol, Ac and Alon.  The waypoints 

are given as inertial positions x, y, z and the heading as a function of the time t. 

The behavior of a simulated flight system utilizing a FTA-MPC is presented in 

the next chapter under several fault case studies.  A stability test and robustness test under 

nominal conditions is also presented. 
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Chapter 6 

Results 

In this chapter several simulations are presented, which were performed to test 

different aspects of the developed control configuration.  The simulations consisted of a 

performance comparison, a stability test, a passive fault, (robustness), test and several 

fault case scenarios. 

6.1. Performance Comparison 

A comparison of the robustness of the standard MPC and an H∞ loop-shaping 

controller, previously developed, [68], was realized.  The nominal or non-faulty case is 

presented. Figure 52 to Figure 56 presents the response of the system, to the set points of 

signals in the body frame and in the inertial frame. 
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Figure 52 displays the responses of the helicopter to the set points of the longitudinal 

velocity, u, and the lateral velocity, v.  These velocities are in the body-frame. 
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Figure 52:  u and v Response of the System in the Nominal Case, No Fault 



 

112 

 

Figure 53 displays the responses of the helicopter to the set point of the body-frame 

vertical velocity, w, and the yaw rate, r. 
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Figure 53:  w and r Response of the System in the Nominal Case, (No Fault) 
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Figure 54 displays the inertial trajectory followed by the H∞ controller in response to the 

set point trajectory. 
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Figure 54:  x and y Response of the System in the Nominal Case, (No Fault) 
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Figure 55 displays the inertial trajectory followed by the developed MPC in response to 

the set point trajectory. 
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Figure 55:  z and Ψ Responses of the System in the Nominal Case, (No Fault) 
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Figure 56 presents the 3D representation of the inertial trajectories. 

 

 

Figure 56:  3D Plot of the Response of the System to the Double Circle with Varying 
Altitude Trajectory in the Nominal Case, (No Fault) 

 

The data presented in Figures 52 through 56, clearly demonstrate that the standard MPC 

outperforms the H∞. 

 

6.2. Stability Test 

In order to test the nominal stability of the developed system, some initial values 

were assigned to the output variables and the system was simulated to verify its capability 

to bring the states to zero.  Several sets of the initial values, of the state variables, were 
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used to test the stability of the designed control system.  Figure 57 presents the results for 

the initial states/outputs given by: 

y0=[6,-1,-1,-1,-1,-1,-1]. 
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Figure 57:  Stability Test of the System under Nominal Conditions with 
the Initial States/Outputs Given by y0 = [ 6,-1,-1,-1,-1,-1,-1] 
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Figure 58 presents the results with the with initial values given by 

y0 = [6,-1,-1,-1,-1,-1]. 
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Figure 58:  Stability Test of the System under Nominal Conditions with Initial Values 
Given by y0 = [6,-1,-1,-1,-1,-1] 
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Figure 59 presents the results with initial values given by 

y0 = [6,-6, 5,-5, 4,-4]. 
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Figure 59:  Stability Test of the System under Nominal Conditions with Initial Values 
Given by y0 = [6,-6, 5,-5, 4,-4] 

 

6.3. Passive Fault Tolerance, (Robustness) 

The case when a fault, such as changes in the nominal value of Xu, occurs in the 

helicopter is considered.  The value of the parameter, Xu, was changed from its nominal 

value of -0.0505 to the faulty value of +0.3.  The change and the manner in which it was 

handled by MPC and H∞ are presented in Figure 60 to Figure 64. The data clearly 
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indicate that the standard MPC outperformed the H∞. Figure 60 presents the response for 

the lateral velocity parameters u and v. 

0 50 100 150
-2

0

2

4

6

8

10

time (sec)

u

 

 
u Set point
u H

∞
u MPC

0 50 100 150
-0.1

0

0.1

0.2

0.3

time (sec)

v

 

 
v Set point
v H

∞
v MPC

 

Figure 60:  u and v Responses of the System When a Fault Occurs, (Xu = 0.3) 
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Figure 61 presents the responses for the rotational velocity parameters w and r. 
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Figure 61:  w and r Responses of the System When a Fault Occurs, (Xu = 0.3) 
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Figure 62 presents the responses for the translational parameters x and y. 
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Figure 62:  x and y Responses of the System When a Fault Occurs, (Xu = 0.3) 
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Figure 63 presents the responses of the vertical translation parameter, ,z, and the yaw 

angle, Y, parameter. 

0 50 100 150
-50

0

50

100

150

time (sec)

z

 

 
z Set point
z H

∞
z MPC

0 50 100 150
0

2

4

6

8

time (sec)

ψ

 

 
ψ Set point
ψ H

∞

πs MPC

 

Figure 63: z and Ψ Responses of the System When a Fault Occurs, (Xu = 0.3) 
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Figure 64:  3D Plot of the Response of the System to the Double Circle with Varying 
Altitude Trajectory when the Parameter Xu was Equal to 0.3, (Fault) 

 

Figure 64 shows that the helicopter crashes at the end of the trajectory when it was being 

controlled by the H∞ controller.  The standard MPC was able to maintain stability and a 

performance close to the nominal case. 

6.4. Fault-Tolerant Model Predictive Control 

Several fault scenarios are presented in the next sections. 

6.4.1. Fault Case 1 

In this case, the value of the Xu parameter was changed from -0.0505 to 3.  The 

H∞ loop shaping controller was not able to maintain stability for any values of Xu greater 
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than 0.3.  Hence, it was not used for further comparison with the Fault-Tolerant MPC.  

Figure 65 presents the response of the estimated value for the Xu parameter. 
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Figure 65:  Response of the Estimated Xu Parameter:  Fault Case 1 
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Figure 66 presents the covariance of the Xu parameter. 

 

0 50 100 150
0

0.5

1

1.5

2

2.5
x 10

-3

time(sec)

X
u c

ov
ar

ia
nc

e

 

Figure 66:  Xu Covariance:  Fault Case 1 
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Figure 67 presents the response of the control system for the u translational velocity 

parameter when the fault was applied at 5 sec. 

 

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

time(sec)

u  
re

sp
on

se

 

 

Set point
No Adaptation
Ideal Adaptation
Real Adaptation

 

Figure 67:  u Response of the Control System:  Fault Case 1 

 

The maximum fault magnitude, which could be controlled, was a step of 3.0505.  The 

outputs were disturbed with Gaussian noise. 
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Figure 68 presents the control system response with respect to the x translational 

parameter. 
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Figure 68:  x Response of the Control System:  Fault Case 1 
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Figure 69 presents the control system response with respect to the y translational 

parameter. 
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Figure 69:  y Response of the Control System:  Fault Case 1 
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Figure 70 presents the control system response with respect to the z translational 

parameter. 
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Figure 70:  z Response of the Control System:  Fault Case 1 
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Figure 71 presents the control system response with respect to the yaw angle, (Ψ ), 

parameter. 
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Figure 71:  Ψ Response of the Control System:  Fault Case 1 
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Figure 72 presents the 3D trajectory response of the control system. 

 

 

Figure 72:  3D Response of the Control System:  Fault Case 1 

 

6.4.2. Fault Case 2 

In this case, the fault, which was a change in the value of the parameter Xu, was 

applied at 20 sec.  The outputs were disturbed with Gaussian noise.  The maximum fault 

magnitude, which could be controlled, was a step of 2.5505. 
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Figure 73 presents the response of the estimated value for the Xu parameter. 
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Figure 73:  Response of the Estimated Xu Parameter:  Fault Case 2 
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Figure 74 presents the covariance of the Xu parameter. 
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Figure 74:  Xu Covariance:  Fault Case 2 

 

This case was determined to be the worst-case scenario for the occurrence of a change of 

the Xu parameter. 
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Figure 75 presents the response of the control system for the u translational velocity 

parameter when the fault was applied at 20 sec. 
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Figure 75:  u Response of the Control System:  Fault Case 2 
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Figure 76 presents the control system response with respect to the x translational 

parameter. 
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Figure 76:  x Response of the Control System:  Fault Case 2 
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Figure 77 presents the control system response with respect to the y translational 

parameter. 
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Figure 77:  y Response of the Control System:  Fault Case 2 
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Figure 78 presents the control system response with respect to the z translational 

parameter. 
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Figure 78:  z Response of the Control System:  Fault Case 2 
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Figure 79 presents the control system response with respect to the yaw angle, (Ψ ), 

parameter. 
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Figure 79:  Ψ Response of the Control System:  Fault Case 2 
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Figure 80 presents the 3D trajectory response of the control system. 

 

 

Figure 80:  3D Response of the Control System: Fault Case 2 

 

6.4.3. Fault Case 3: Bell Mixer 

The Bell mixer is a mechanical mixer between the stabilizer bar and the main 

blade pitch control.  The action of the mixer is to impose a command on the main blade 

pitch, which is proportional to the flapping magnitude of the stabilizer bar, [102]. 

A change in the value of the parameter Ac, was assumed to represent an indication 

of a fault in the Bell mixer.  This Bell mixer fault was applied at 20 sec.  The maximum 

magnitude of the fault, which could be controlled, was a step of 4.356.  The outputs were 

disturbed with Gaussian noise. 
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Figure 81 presents the response of the estimated value for the Ac parameter. 
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Figure 81:  Response of the Estimated Ac Parameter:  Bell Mixer Fault 
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Figure 82 presents the covariance of the Ac parameter. 
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Figure 82:  Ac Covariance:  Bell Mixer Fault 
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Figure 83 presents the response of the control system for the u translational velocity 

parameter when the fault was applied at 20 sec. 
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Figure 83:  u Response of the Control System:  Bell Mixer Fault 
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Figure 84 presents the control system response with respect to the x translational 

parameter. 
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Figure 84:  x Response of the Control System:  Bell Mixer Fault 
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Figure 85 presents the control system response with respect to the y translational 

parameter. 
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Figure 85:  y Response of the Control System:  Bell Mixer Fault 
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Figure 86 presents the control system response with respect to the z translational 

parameter. 

 

0 50 100 150
0

20

40

60

80

100

120

time(sec)

z  
re

sp
on

se

 

 

Set point
No Adaptation
Ideal Adaptation
Real Adaptation

 

Figure 86:  z Response of the Control System:  Bell Mixer Fault 
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Figure 87 presents the control system response with respect to the yaw angle, (Ψ ), 

parameter. 
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Figure 87:  Ψ Response of the Control System:  Bell Mixer Fault 

 

6.4.4. Fault Case 4: Loss of Effectiveness  

An actuator fault was simulated as a Loss of Effectiveness, (LOE).  This fault was 

implemented as a factor multiplying the parameter Zcol and Ncol in the B matrix of 

equation (2).  In this fault case, two parameters were varied at the same time.  The data 

demonstrate that the Kalman Filter accurately estimated both parameters.  The LOE fault 

was applied at 20 sec.  The maximum fault magnitude, which could be controlled, was a 

factor of 0.05.  The outputs were disturbed with Gaussian noise.  Figure 88 to Figure 91 
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present the responses of the estimated values and its covariance for the parameters Zcol 

and Ncol.  Figure 88 presents the response of the estimated value for the Zcol parameter. 
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Figure 88:  Response of the Estimated Zcol Parameter:  LOE Fault 
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Figure 89 presents the covariance of the Zcol parameter. 
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Figure 89:  Zcol Covariance:  LOE Fault 
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Figure 90 presents the response of the estimated value for the Ncol parameter. 
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Figure 90:  Response of the Estimated Ncol Parameter:  LOE Fault 
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Figure 91 presents the covariance of the Ncol parameter. 
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Figure 91:  Ncol Covariance:  LOE Fault 
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Figure 92 to 94 present the responses of the body-frame velocities v, w, and the yaw rate, 

r.  Figure 92 presents the response of the control system for the v translational velocity 

parameter when the fault was applied at 20 sec. 
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Figure 92:  v Response of the Control System:  LOE Fault 
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Figure 93 presents the response of the control system for the w translational velocity 

parameter when the fault was applied at 20 sec. 
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Figure 93:  w Response of the Control System:  LOE Fault 
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Figure 94 presents the responses of the body-frame yaw rate, r. 
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Figure 94:  r Response of the Control System:  LOE Fault 
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Figure 95 to 98 present the responses of x, y, z, and the yaw angle (Ψ). 

Figure 95 presents the control system response with respect to the x translational 

parameter. 
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Figure 95:  x Response of the Control System:  LOE Fault 
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Figure 96 presents the control system response with respect to the y translational 

parameter. 
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Figure 96:  y Response of the Control System:  LOE Fault 
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Figure 97 presents the control system response with respect to the z translational 

parameter. 
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Figure 97:  z Response of the Control System:  LOE Fault 
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Figure 98 presents the control system response with respect to the yaw angle, (Ψ ), 

parameter. 
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Figure 98:  Ψ Response of the Control System:  LOE Fault 
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Chapter 7 

Conclusions and Future Work 

7.1. Conclusions 

The focus of this research was the improvement of the reliability of small-scale 

helicopters.  The reliability was realized through the novel combination of a joint 

Extended Kalman filter and model predictive control techniques. 

Before the development of the control techniques, a comprehensive comparison 

of the Extended Kalman Filter and the Unscented Kalman Filter was required to select 

the best implementation.  The comparison of the Extended Kalman filter and the 

Unscented Kalman Filter demonstrated that the performance of the filters is dependent 

upon the approximation used for the nonlinear model of the system.  The UKF presented 

a higher sensitivity to noise.  For this reason, the EKF was selected as the method 

providing the most robust form of parameter estimation when utilized in conjunction with 

the MPC. 

The estimation of the model’s parameters and control design are the fundamental 

concepts involved in the implementation of adaptive control systems.  These estimations 

are particularly relevant to the self-tuning regulator approach.  Similarly, fault-tolerant 

control systems are based on the detection and identification of faults and the controller 

re-design concepts.  This research took advantage of these similarities and proposed a 
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flight control system based on model predictive control, which possesses the advantages 

of both adaptive control and fault-tolerant control. 

The developed framework highlighted some potential capabilities, not studied in 

this research, which were inherited from the self-tuning regulator controller scheme.  

Some of these capabilities most relevant to this research were; 

• The minimization of the performance degradation produced by the normal 

wear of the helicopter’s components, 

• Changes of the dynamic characteristics of the system when the operating 

points change, 

• Changes in the load carried for the helicopter, 

• Change of the mass of the helicopter due to the consumption of the 

combustible. 

A joint Extended Kalman filter simultaneously estimated the states and 

parameters of the system.  Successful estimation of changes of parameters in the system 

and/or input matrices was performed.  The behavior and magnitude of the covariance of 

the estimated parameters showed that the joint EKF possessed fast convergence and was 

able to estimate the parameters with low uncertainty. 

The use of the joint Extended Kalman filter provided a straightforward approach 

to implement the function of fault detection and identification, (FDI).  An additional 

module based on the calculation of the residual and the heuristic selection of thresholds 

normally provides this function.  An additional advantage of the joint EKF was that it 

possesses the ability of detect slow time-varying changes of the parameters of the system.  
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The standard FID approach, which uses residual calculation and heuristic threshold 

selection, has difficulties detecting these types of changes or faults. 

A Loss-of-Effectiveness of the collective actuator was represented as changes of 

the Zcol and the Ncol parameters of the helicopter model.  A fault of the mechanical mixer 

between the stabilizer bar and the main blade pitch control, the Bell mixer, was 

represented by changes of the Ac parameter.  A generic system fault was represented as 

changes of the Xu parameter.  The developed fault-tolerant adaptive approach was able to 

detect faults and handle them while maintaining excellent performance. 

The developed control system was able to increase the reliability of small-scale 

helicopters through an effective handling of faults.  The developed fault-tolerant 

controller combined the advantages of adaptive control techniques and fault-tolerant 

control techniques by the use of a Joint Kalman filter as parameter estimator.   

7.2. Future Work 

Some of the avenues for future research are: 

• The use of a first-principles nonlinear model of the helicopter, which 

provides a better correlation between parameter changes and real physical 

changes.  The model should provide a greater certainty of the fault 

tolerance capabilities of the flight control system. 

• The use of a nonlinear MPC for tracking of the inertial position 

coordinates.  This configuration will include the transformation from the 

body-frame to inertial-frame coordinates and vice versa.  These 

transformations will introduce nonlinearities. 
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• Online retuning of the model predictive controller.  In the research, 

retuning of the MPC was not necessary for the magnitude of the faults 

studied.  However, it would be interesting to research the manner in which 

the online retuning of the MPC could increase its capability to handle 

more severe faults. 

• Online determination of close-to-failure conditions.  This investigation 

should determine the magnitude and performs localization for un-

recoverable faults. 

Some important aspects need further research for obtaining a clearer view of the 

advantages and disadvantages of the UKF with respect to the EKF.  Some of these 

aspects are: 

• Analyze the performance of the filter for other benchmark problems 

presented in the research literature. 

• Analyze the effect of using parameter/states constraints in the performance 

of the UKF. 

• Study the use of persistent excitation for improving the estimation 

accuracy 
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