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Measurement and Modeling of the Anhysteretic Magnetization of Magnetic 

Cores for Temperature and Frequency Dependent Effects 

 
Jeremy M. Walker 

ABSTRACT 

 

Inductors and transformers are electrical devices critical to power conversion 

systems.  The current-voltage (I-V) behavior of these devices is very nonlinear as a 

result of the magnetic cores used in their construction.  However, in the design of 

these power conversion systems the present state of Spice-based models is limited to 

low frequency and room temperature effects.  An addition to the present model found 

in many Spice type environments, Jiles-Atherton, is the subject of this work. 

 

Chapter 1 of this dissertation introduces the source of these nonlinearities as 

being a result of the relationship between the magnetic flux density, B, and the 

applied magnetic field, H.  Chapter two then derives the original mathematical model 

used in the Spice, Jiles-Atherton, to provide a physical basis of the addition to the 

model.  The original derivation as it can be found in the referenced literature shows 

that a temperature and frequency dependence on the model does not exist.  This work 

will seek to add such a dependence on temperature first followed by frequency.   



 

 xv

Using this approach, the temperature dependence can be modeled without the 

core experiencing self-heating.  The model therefore must be capable of being further 

modified after the temperature dependence is added.  



 

 

 
 
 
 

Chapter 1: Introduction 
 
 
1.1. Power Electronics Introduction 
 
 
 Within the first two months of 2007, the total U.S. consumption of electrical 

power rose 6.5% from the previous year to a staggering 675,034 thousand megawatt 

hours [1].  Worldwide PC sales rose 10.9% in the first quarter of 2007 [2], and by the end 

of 2006 approximately 233 million cell phone subscriptions [3] had been purchased in the 

United States. The rising demand for electrical power, energy storage, and power 

conversion has been driving several vital areas of research such as alternative fuel 

sources and smart power supplies, all of which are becoming essential elements of our 

society and economy.  Not only can small electrical losses in the power conversion 

process create huge losses on a large scale, inefficient power conversion can render an 

electronic device useless.  Imagine a cell phone with only a ten minute battery, or a PC 

that requires twice the space and produces a large amount of heat. Such losses are costly 

both monetarily and ecologically.  Therefore research into the area of power conversion 

has spawned numerous benefits as well as complex technical challenges.  One of which 

this dissertation aims to directly address. 
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1.1.1. Classical Power Conversion 
 
 If one considers the classical method of power conversion as represented by the 

linear power supply shown in Figure 1.1 [4].  The need for an alternate method for power 

conversion will soon become apparent.  Although simple in its construction as well as 

very robust, the linear power supply that performs the function of converting AC line 

power at 60 Hz into a specific DC quantity can vary widely in efficiency from 20% to 

75% [5].  Electrical power is transformed, rectified, filtered, regulated and delivered to 

the load in a linear fashion.  During the process, current continuously flows to maintain 

the regulation, and power is continuously applied across the regulating device.  In Figure 

1.1, a BJT performs this function and is seen electrically as a variable resistor [4]. 

 

Figure 1.1  Classical linear power supply schematic.  The linear regulator is implemented 

with a BJT that is seen electrically as a variable resistance.  Power is regulated to the load 

by controlling the resistance of the BJT.   

Figure copied from [4]. 
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Because of the linear design, the power at the input is either applied to the load or is 

applied across the regulator.  The later causes the power to be converted into heat.  This 

type of power conversion scheme is extremely inefficient.  In a portable device such as 

cell phone, such a method of regulating power is unacceptable.  Moreover, a large 

volume of space is required to implement the power transformer required in the linear 

power conversion process.  This is primarily due to the use of a magnetic core in the 

transformer’s construction.  Such a large size would be both cumbersome and expensive 

for many practical portable products.   

1.1.2. Switch-Mode Conversion 
 

 In examining the classical linear power supply, power is continuously 

consumed by the regulator in an inefficient manner and transformed into heat.  In 

contrast, if the BJT in Figure 1.1 was replaced by an ideal switch, then the total power 

consumed when the switch is open would be zero.  The switch could then be toggled at a 

given frequency to regulate power to a load.  This is the most basic idea behind switch-

mode power conversion.  Hence, the efficiency would dramatically improve as no power 

would be consumed when the switch was open [4], and the power to the load could still 

be regulated.  Such a design is common in many electrical systems such as a PC that can 

now have upwards to a 1000 W power supply.  The benefits of which are seen greatly in 

the improved 80%-90% efficiency [5] rating.   

The basic design of the switch mode power supply is shown in Figure 1.2 with the 

ideal switch being implemented with a BJT. 
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Figure 1.2  Switch-mode power supply showing the input line voltage and key 

components.  Voltage is regulated by a feedback loop controlling BJT.  Efficiencies of up 

to 90% and utilizes a high-frequency transformer.   

Figure copied from [4]. 

A key overall advantage of this scheme lies with the operation of the high-

frequency transformer.  The largest volume of space in power supplies is consumed by 

the magnetic component [4] used to make the transformer.  To achieve higher power 

densities, the size of the magnetic components must be reduced.  This is achieved by 

operating the transformer at higher frequencies ranging from 50 kHz to 1 MHz [6].  The 

volume of the magnetic component relates directly to the energy loss, so shrinking the 

core’s volume is key to increased efficiency as well.  However, real magnetic cores that 

make up component are nonlinear and change as a function of temperature and 

frequency.  A mathematical model for Spice-based applications for frequency and 

temperature effects is the chief goal of this research. Such a model would greatly aid the 

designer in the application of these magnetic components.   
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The basic principle governing magnetic components is Faraday’s Law, which 

states that the voltage  is proportional to the change in magnetic flux,φ, with respect to 

time is given by the following equation [7]: 

dt
dNA

dt
dN

dt
dφNV(t)

S
c

BdsB∫ −=⋅−=−=    (1.1) 

Here the flux density, B, relates the induced voltage, V(t), to the cross-sectional area of 

the core, Ac and the number of winding turns around the core, N.  In the ideal sense, the 

same voltage can be induced across the core if the change in B with respect to time is 

balanced by an appropriate change in core size.  In this way, the magnetic core which is 

quite large for AC line frequencies can be made quite small at very high switching 

frequencies [4].  However, the actual flux density, B, is nonlinear as a result of the 

material composing the core.   
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Figure 1.3  Core loss divided by volume as a function of flux density.   

Figure copied from [8]. 
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The trade-off in power consumption is also positive as the core loss due to high higher 

frequency operation is proportional to the volume of the core [9].  This means 

transformers or inductors can satisfy the same current-voltage (I-V) characteristic while 

consuming less power with a simultaneous increase in overall power density.  

Usually, in the analysis and design of switch-mode power conversion, the 

switching components are assumed to be ideal switches [4].  Accepting this assumption 

still leaves a large number of nonlinear waveforms to be processed that are a result of the 

switching scheme used in the circuit.  These nonlinear waveforms are often applied to a 

magnetic transformer or inductor that has a core with nonlinear I-V terminal 

characteristics even at room temperature and low frequencies.  The basis for this 

dissertation is to analyze and model magnetic cores as a function of temperature and 

high-frequency operation so that optimized power electronics design on a circuit level 

can be performed.  This is necessary as present models do not adequately address these 

challenges as will be discussed more fully in Chapter 2.  In order to set the stage for this 

research, the impact of switching waveforms on the transformer needs to be discussed 

first. 

The output of the high-frequency transformer and the rectifier that follows it may 

be modeled as a simplified, equivalent circuit as shown in Figure 1.4 [4].  
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Figure 1.4  Equivalent circuit of the switch-mode power supply shown in Figure 1.2.  The 

DC voltage, vd, is formed from the rectified output of the high-frequency transformer.   

Figure copied from [4]. 

  

If one observes the output of the rectified DC voltage that is passed from the high-

frequency transformer, a large number of unwanted harmonics are filtered at the output 

by the tuning of the inductor and capacitor.   

However, the purpose of this discussion is to point out the nonlinearities in the 

voltage waveforms that are processed and produced by component blocks in the circuit, 

while still holding to the assumption that the components themselves are ideal.  In Figure 

1.5, Voi represents the rectified DC output of the power supply, which is the mean value 

over time.  voi represents the total voltage both AC and DC from the conversion process.   



 

 9

 

Figure 1.5  Waveforms produced by the high-frequency transformer and rectified as a DC 

value.  Note the harmonics that are found in the rectified voltage, Voi.  

Figure copied from [4]. 

 

 Even with these ideal considerations, a large number of harmonic components are 

applied across the high-frequency transformer.  In reality, the I-V behavior of the 

transformer is highly dependent on frequency and temperature.  This is due to the 

material properties of the magnetic core from which the transformer is made.  The 

nonlinearities in the I-V relationship due to frequency and temperature effects are an 

additional technical challenge that is compounded by the nonlinear waveform processing. 

 Notice also that the output of the high-frequency waveform in Figure 1.4 is also filtered 

by another magnetic component, namely the inductor in the LC filtering network found at 
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the output of the power supply.  The I-V behavior of the inductor also experiences the 

same dependency on frequency and temperature as the high-frequency transformer.  Both 

of these magnetic components derive their nonlinear characteristics primarily from the 

composition of their magnetic cores.  To understand the origin of these nonlinearities, the 

ideal B-H relationship will be introduced.  After the ideal B-H relationship is introduced, 

the actual B-H relationship will be discussed.  It will be shown, that the nonlinearities of 

the B-H relationship will produce nonlinear I-V terminal characteristics on a magnetic 

device.  It is the prediction of these nonlinear terminal characteristics that are the object 

of the current research. 

 

1.2. Research Objective 
 

The research objective of this work is summarized as follows: 

1. The research will focus on the Jiles-Atherton (Spice) model. 

2. The research will seek to determine if the Jiles-Atherton model can be made 

temperature dependent, and then implement a thermodynamic version of the 

model. 

3. The research will seek to determine if the Jiles-Atherton model can be made 

frequency dependent, and then implement a frequency dependent version of the 

model. 

 

The methodology employed here is not to curve fit as many parameters as possible to 

a specific core, but to establish techniques, practices, and theory that can be applied to a 

wide a range of magnetic materials at a much more fundamental level.  First, having 
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added temperature dependence to the Jiles-Atherton model, the addition of high-

frequency effects on magnetic cores will be investigated.  If practicable the final model 

will possess a physically based temperature and frequency dependence thus allowing 

follow-on development of design simulation models to be developed with ease. 

 

1.3. Magnetic Components 
 
 At a very basic level, magnetic components depend on the relationship between 

an applied magnetic field, H, and a resulting magnetic flux density, B.  From these two 

vector fields, the I-V characteristics of magnetic component can be determined by 

application of either Ampere’s Critical Law or Faradays’ Law.  The law that is applied 

depends on whether a voltage or current is applied to the magnetic core.   

There are generally two types of common magnetic components used in power 

electronics namely inductors and transformers, and there are a multitude of material 

types, geometries, coatings, wire types and other particulars that complete the design of a 

magnetic component.  However, the chief governing property of a magnetic component is 

the behavior of its magnetic core.  This is because the material properties of a magnetic 

core determine the B-H properties of the core and therefore the I-V properties of the 

magnetic device, where B is the magnetic flux density in Tesla and H is the applied 

magnetic field in A/m. 

 A transformer or inductor is made from the winding of wire around a material that 

has the unique property of producing a large magnitude of B in response to an applied H. 

 While all materials can have some magnetic response, the magnitude of B resulting from 

an applied H in most materials is so small that it is of no consequence.  However, the 
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materials that are used in the construction of magnetic cores possess a set of unique 

properties which allow them to produce a large magnitude of B in response to H.  The 

details of these properties will be discussed in Chapter 2.  Presently, a brief overview of 

the idealized properties will be presented.  Following this, the nonlinearities found in real 

magnetic materials is introduced. 

1.3.1. Ideal Magnetic Components 
 
 To construct a magnetic component such as an inductor or transformer, a wire is 

wound around a magnetic core.  The wire carries a current which in turn produces a 

magnetic field of the type shown in Figure 1.6.  When this occurs, the material responds 

by causing a magnetic flux to flow in the material.  It should be noted that this flux is a 

scalar field that is often measured for the purpose of calculating B.  The change in B with 

respect to time induces a voltage, V(t), from Faraday’s Law, on the winding of the coil. 

 

  

Figure 1.6  Magnetic field in a torrid vs. input current i. (a) A current is applied to a 

toroidal shaped magnetic core.  On the right, the response of the core is shown as a flux, 

φ, causes a voltage to be induced across the winding. 

Figure copied from [4]. 
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An ideal representation of the B-H characteristic of a core is shown in Figure 1.7.  

 

Figure 1.7  Idealized B-H relationship showing a linear relationship between B and H.  

Note that B has a maximum value, Bs.  

Figure copied from [4]. 

 

Here, the magnitude of B depends linearly on the magnitude of H.  B saturates once a 

certain magnitude of H is reached, meaning that the magnitude of B has reached a 

maximum value, Bs.  As the voltage induced is proportional to the change in B with 

respect to time, once B saturates the value of the induced voltage will be zero.   

 

The mathematical expression for the relationship shown in Figure 1.7 is 

HB μ=      (1.2) 

Where µ is the permittivity that describes how B will respond to H and is a material’s 

parameter and has units of H/m.  If H is sinusoidal, then B will be sinusoidal.  This 

means that if a sinusoidal current is applied to an inductor with the characteristic B-H 

relationship shown in equation (1.2), then the current waveform will produce an H field 

with a magnitude proportional to the applied current according to Ampere’s Law.  H is 
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related to B by μ, so B is sinusoidal.  The induced voltage, V(t), across the winding will 

also be sinusoidal according to Faraday’s Law.  To this end, the ideal B-H relationship of 

a core is linear.   

 

1.3.2. Real Magnetic Components 
 
 Real magnetic components are also characterized by their B-H relationship.  

However, a real B-H relationship is nonlinear and contains hysteresis.  This means that 

the present value of B depends not only on the present value of H, but on past values of 

H.  The B-H relationship of a real magnetic core is shown in Figure 1.8.  This is 

commonly called a B-H loop due to the hysteresis inherent in the curve. 

 

 

Figure 1.8  B-H loop measurement performed by the author for a MnZn power ferrite 

core showing hysteresis.  The curve was measured by the Walker Hysteresisgraph AMH-

401A courtesy of Magnetics Inc. 
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 The B-H relationship shown in Figure 1.8 is far from a singled-value 

mathematical function.  B still saturates as in the linear case, however, the hysteresis of 

the material changes the value of B making it dependent on past values of H.  If a voltage 

waveform were applied to an inductor or transformer with this B-H relationship, then the 

resulting I-V behavior would be nonlinear.  If B and H are plotted independently as a 

function of time, these nonlinear characteristics can be further observed.  In Figure 1.9 

the B and H waveforms used to plot the B-H loop in Figure 1.8 are plotted independently 

as a function of time.  The relationship between is nonlinear with µ=µrµo relating B and 

H.  The relative permeability, µr, is used to describe a specific material and µo is the 

permeability of free space.   



 

 16

 

 

 

Figure 1.9  B(t) and H(t) waveforms as a function of time for a sinusoidal input voltage 

on a MnZn magnetic core.  These waveforms were measured by the author and used to 

construct the B-H plot shown in Figure 1.8. 
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The resulting waveforms demonstrate the complexities of the B-H relationship 

even for just a single excitation frequency at room temperature.  To further complicate 

the design process of power electronics, the B-H relationship of real materials is very 

dependent on the temperature of the material.  This means that as a magnetic component 

heats up during operation due to wasted energy, the I-V characteristics of the device 

change as a result of the changing core B-H characteristic.  Figure 1.10 shows two B-H 

loops in the first quadrant plotted as a function of temperature.  The magnitude of the 

applied H has remained the same.  The difference in the loops is due to the effect 

temperature is having on B.  The slope of a point on the plot representsμ, and it is 

continually changing because B is not a linear function of H.   
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Figure 1.10  Effect of temperature on the B-H relationship.  As a direct consequence, the 

overall I-V characteristics of the magnetic component change greatly complicating 

component and system design.  

Figure copied from [8]. 

 

The initial permeability, μI, is shown in Figure 1.11.  It specifically refers to the 

slope on the line on the B and H when the curve begins at the zero coordinate.  The 

origin  is called the demagnetized state.  Once H is applied when the core is in the 

demagnetized state, the value of B is traced out and the slope is equal to the initial 

permeability.  The dependence of the initial permeability on temperature and the 

magnitude of B is also shown in Figure 1.11.  The point here is to demonstrate the 

nonlinear relationship that temperature has on the B-H characteristic of the core. 
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Figure 1.11  The initial permeability plotted as a function of temperature for two different 

magnitudes of B.  The material shown is a MnZn power ferrite.   

Figure copied from [8].   

 

 Nonlinearities in the B-H characteristics also change as a function of frequency.  

This is a result of eddy-currents being induced in the material and also a result of the 

limited penetration depth of the applied H field into the bulk of the material.  At low 

frequencies, the generated eddy-currents are negligible and the depth of penetration of H 

is considered to be throughout the core.  In Figure 1.12, the relationship of three types of 

magnetic cores is shown changing as a function of temperature.  Again, this is the initial 

permeability relating B and H as H is applied from the demagnetized state. 
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Figure 1.12  Three types of ferrite cores (H, W, J) manufactured by Magnetics, Inc. 

showing their nonlinear permeability as a function of frequency.   

Figure copied from [8]. 

 

The trends observed in Figure 1.12 indicate the strong dependence that the B-H 

relationship has on the frequency of excitation.  As a whole, a designer of power 

electronics must consider both the temperature and frequency of operation of a magnetic 

component as they both dramatically effect the B-H relationship and the resulting I-V 

behavior. 

 

1.4. Problem Statement 
 
 In the design of power electronics, the movement toward higher-switching 

frequencies is expected as is evident by the benefits they provide [10].  Higher 

temperature operation is also expected as a result of the energy lost in the power 
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conversion process [11].  Figure 1.3 has already shown that increased magnitude of B 

and increased frequency yield higher losses.  The effects cause nonlinear I-V 

characteristics for magnetic components [11].  The magnetic components that are used 

under these conditions need mathematical models to aid their use and design.  One 

plausible solution is the use of CAD-based design software such as PSpice [12], Saber 

[13], Maxwell 3D [14], and others, but it should be noted that it is the fundamental 

problem with the present state of the magnetic component model in these tools that it is 

the subject of the present research [15]. 

Over the years the Jiles-Atherton model [16] has become one of the primary 

models for modeling magnetic components as it models the material properties used for 

magnetic core.  It is implemented in many circuit simulators and physics-based 

simulators and is used in predicting the B-H relationship [15].  The reason for the 

model’s popularity comes first from its accuracy in predicting the correct B-H 

relationship because the model is based on the fundamental mechanics of the material.  

The underlying mathematics are also capable of being implemented in a circuit simulator. 

 The model in its present form lacks a true, fundamental dependence on temperature as 

will be extensively covered in the theory Chapter of this dissertation.   

The effect of nonlinearities in a magnetic core due to temperature and frequency 

are coupled [11], and the Jiles-Atherton model has proven that it can model low 

frequency and room temperature operation with high accuracy.  Several years after the 

model’s initial development, the addition of high-frequency effects were added to the 

model with modest success [17].  While there are other models which rely upon extensive 

measured and empirical data, they also lack fundamental temperature dependence.  
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Moreover, those types of models are too specific to a given core and do not provide the 

flexibility that the circuit designer requires, which needs to be based solely on the 

terminal characteristics (i.e., I-V) of the component. 

 

1.5. Chapter Conclusion 
 

The basic need for a mathematical model has been demonstrated as evident by the 

nonlinear nature of not only the magnetic components involved, but of the waveforms 

applied to these components.  While ideal magnetic components would produce a linear 

sinusoidal waveform from a sinusoidal input, real magnetic components saturate and can 

make the task of designing power electronics systems difficult.  Spice based simulations 

can aid the designer greatly, but the present Spice based simulation tools are limited as 

they apply only to room temperature and low frequency operation.  The chief goal of this 

research is to add the capability to model frequency and temperature dependent effects to 

the present Jiles-Atherton model.   
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Chapter 2: Theory 
 
 
2.1. Introduction to Magnetic Materials 
 
 
 When introduced in Chapter 1, the magnetic field, H, of an ideal magnetic 

material was related to the flux density, B, through the magnetic permeability µ=µrμo [7]. 

HB or μμ=      (2.1) 
where µr is the relative permeability that characterizes a specific material and µo is the 

permeability of free space. 

Ferromagnets and ferrimagnets are used in the making of magnetic cores.  These 

two classifications of magnetic materials exhibit a very nonlinear B field in response to 

an applied H field [18].  This relationship demonstrates several different physical 

phenomenon that when averaged over the whole of the core give the hysteretic 

relationship previously introduced in Chapter 1.  To understand this phenomenon, we 

will first examine some particulars of the B-H loop which displays this inherent 

hysteresis.  Following this, we move into the mechanics of how and why this relationship 

occurs. 

In Figure 2.1, an example of a B-H plot is presented showing how a real material 

might respond to a given excitation.  Several prominent features can be observed.  H is 

applied to a ferromagnetic material in a sinusoidal fashion.  Assuming that the excitation 

begins with zero magnitude for both fields (i.e., the core is in the demagnetized state), the 

magnetic field, H, forces the magnitude of B to increase until it reaches what is called 
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inept saturation.  At this point, B has reached its maximum value that is a characteristic 

of the material.  When the magnitude of H is then decreased to zero, B has a remaining 

residual value left in the material known as remanence, Br.  As the magnitude of H is 

further decreased to zero, the magnitude of B is finally forced to a zero value.  The 

magnitude of H required to force the magnitude of B to a zero value is called the coercive 

field, Hc.  Again, as the magnitude of H is further decreased, the magnitude of B reaches 

a maximum and becomes saturated.  This application of H causes the B-H relationship to 

form a loop sometimes termed a hysteresis loop.  The term hysteresis refers to the fact 

that B does not depend on present value of H, but also on past values of H [19]  The 

formation of the B-H loop is shown starting in the demagnetized state in Figure 2.1. 

 

In many cases, the application of H does not force B into a saturated state.  

Instead, the field, which can be cyclic, may traverse the B-H loop in a variety of ways 

 

Figure 2.1  B-H loop formed by the application of a sinusoidal H to a real magnetic core and 

the resulting nonlinear response of B. The process shown begins in the demagnetized state at 

the origin of the B-H plane.   

Figure copied from [20]. 
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each of which will form a given B-H relationship of the magnetic core.  The relationship 

formed by B and H will determine the I-V characteristics of the magnetic device.  When 

B does not saturate, the loop is called a minor loop to distinguish it from a major loop 

formed when the core does reach saturation.  This is shown in Figure 2.2 along with the 

points on the loop where the coercivity and remanence are defined. 

 

 

Figure 2.2  Minor and major B-H loops plus the location of the coercivity and remanence 

points.  Note the minor loop does not reach saturation.   

Figure copied from [21]. 

 

Minor loops and major loops can take a variety of forms depending on the type of 

excitation.  It can be seen that both forms of the B-H loops created in Figure 2.2 are 

nonlinear.  It should be noted that a model of the B-H characteristics needs to be able to 

predict both minor and major loops.   

In understanding why a magnetic core behaves in this type of hysteretic manner, 

the material itself needs to be discussed on a bulk scale.  Before a discussion of the 
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material begins, the concept of the magnetic dipole moment needs to be introduced.  This 

will provide at a basic level the motivation for the mathematical model of a magnetic 

core.  The objective here is not to give a thorough review of the underlying quantum 

mechanics of magnetism for which there is a volume of established literature [22, 23].  

The point here is to point out how magnetism can naturally be included into the classical 

form of Maxwell’s Equations and how modeling of the bulk material may be 

accomplished. 

 

2.1.1. Magnetic Moments 

 
It has been known from the early investigations of magnetism and particularly 

from the pioneering work of Andre Marie Ampere that a magnetic field is caused by a 

moving electrical charge, which we now refer to as Ampere’s Law [24].  Ampere 

postulated the origin of tiny currents running through the material that could produce a 

similar effect.  In a sense, he was correct.  If one considers the classical model of an atom 

from Neils Bohr’s work, then one does find charge moving in a circular pattern around 

the nucleus of an atom [20] 
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Figure 2.3  Neils Bohr’s classical picture of the hydrogen atom with a single electron 

orbiting the nucleus.  The electron’s orbit and spin combine to give a net magnetic 

moment.   

Figure copied from [20]. 

 

For a given radius, r, and charge of the electron, -e, it can be shown that given a 

the electron orbit period, T, the negative charge of the electron circling the atom creates a 

current that can be expressed in the form [20] 

T
eI −

=      (2.2) 

where I is in coulombs per second or Amperes.  This causes H to produce the field 

pattern shown in Figure 2.4. 
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Figure 2.4  Field lines formed from simple current loop.  The field line pattern resembles 

the field lines created by two opposite charges in the electrostatic dipole case.  The 

phenomenon has come to be known as the magnetic dipole moment, µ. 

Figure copied from [25]. 

 

For the electron period, T, with velocity, V 

2ππ
T

V
=      (2.3) 

The resulting magnetic dipole, μ, is given by 

AI=μ       (2.4) 

The magnetic dipole can be written in terms of its angular momentum, L, and the electron 

mass, me [20], as 
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Lμ
e2m

e−
=      (2.5) 

The magnetic dipole is a vector quantity whose magnitude depends on the cross-

sectional area of the current loop and the quantity of charge circulating in the loop.  The 

magnetic dipole is therefore directly proportional to the angular momentum, L, of the 

electron orbiting the nucleus.  The direction of the μ vector is perpendicular to the cross-

sectional area of the loop and points in the opposite direction of L.  The magnetic dipole 

is usually specified in terms of its angular momentum, L [19] as shown in Figure 2.5. 

 

Figure 2.5  Simple representation of a magnetic dipole caused by a charge, -e, circulating 

around an atom in an orbit of radius, r.  The magnitude of the resulting vector μ is 

proportional to the magnitude of the angular momentum, L, but in the opposite direction.  

Figure copied from [26]. 

 

Magnetic materials have magnetic moments that are quantized, and it is shown 

through experiments [27] that the expected value of the magnetic moment does not 

follow the classical treatment that was just briefly reviewed.  The ordering of this 
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quantization is governed by Hund’s Rules [27].  The angular momentum is replaced by 

the quantized spin angular momentum, s, of the electron given as 

s
m

m
e

spin
e−

=      (2.6) 

The magnetic moment created by the orbital motion of the electron then takes the form. 

l
m2

m
e

orb
e−

=      (2.7) 

where the angular momentum, L, has been replaced by the quantized orbital angular 

momentum, l.  The total magnetic moment of an atom, m, is the addition of both 

magnetic components and is given by 

orbspin mmm +=     (2.8) 

The important point from a modeling point of view is that the magnetic dipole is 

treated as magnetization vector of atomic origin.  This allows the magnetic dipoles 

resulting from the atom to be treated as vector type point sources that are fixed locally in 

the crystal lattice, yet are free to rotate in response to an applied magnetic field.   

The summing of these atomistic vectors leads to a total vector magnetic field, M, 

referred to as the magnetization of the material.  Ultimately, it is M that is responsible for 

the nonlinear B-H characteristics of a magnetic core.  M is a measure of the response of 

the material to the applied field H, and its magnitude specifies the net magnetic dipole 

moment per unit volume.  M is included into the B-H relationship as [19]. 

))_,(()( HHistoryHMHHB += oμ    (2.9) 
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Here the flux density, B(H), has been specified more precisely as a function of H 

and the resulting magnetization, M(H, History_H), that depends not only on the present 

value of H but on past values of H.  Every type of material has some magnetic 

component, but ferromagnetic and ferrimagnetic materials yield significantly high 

magnitudes of M that make them ideal for the construction of inductors and transformers 

[19].  Ferromagnetic materials tend to be metal in composition while ferrimagnetic 

materials tend to be ceramic and more electronically insulating in composition.  

Ferromagnets and ferrimagnets differ primarily in that not all of the magnetic dipoles of a 

ferrimagnetic point in the direction of the applied field.  Instead, some of the magnetic 

dipoles oppose the magnetic field, yet the net overall contribution to the resulting 

magnetization due to an applied magnetic field is still very high.  The B-H loop for 

ferromagnets and ferrimagnets look very much the same. 

 

It should be stated that the M-H loop appears in exactly the same form as the B-H 

loop because it is the magnetization, M, that actually determines B.  Many times the 

contribution of the term μoH added to the total B(H) is negligible in magnitude compared 

to the μoM(H) term.  A proper model of the B-H relationship is therefore a model of 

M(H) [19]. 

 

2.1.2. Magnet Domains 
 
 In considering the modeling of magnetic cores, the two types of fundamental 

ordering of dipoles in a material are classified as ferromagnetic and ferrimagnetic.  Both 

materials are composed of regions of subdivided space called magnetic domains that 
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contain magnetic dipoles aligned to the same orientation.  The model to be introduced 

can predict the B-H relationship for both ferromagnetic and ferrimagnetic materials.  In 

fact, it is emphasized that the model to be presented is a phenomenological model of 

domain mechanics.  The model has also been adapted to work with the domain 

mechanics of ferroelectric materials where the underlying physics for the domain 

formation are quite different [28].  Figure 2.6 represents an ideal single-crystal, 

ferromagnetic material.   

 
Figure 2.6  Sketch of an idealized single-crystal structure of a ferromagnetic material in 

equilibrium.  Regions of homogenous magnetization are composed of magnetic dipole 

moments of atomic origin. 

Figure adapted from [18]. 

 

 Each region of the material is subdivided into regions called magnetic domains 

that contain many magnetic dipole moments of the type discussed in the last section.  

These moments possess a potential energy known as the magnetostatic energy.  This 

energy can be expressed in terms of M and HM as [29] 
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rd
2
μ

U 3

V

o
M ∫ ⋅−= MH M     (2.10) 

HM here is not the applied field, but the field that results when M diverges, where it can 

be shown mathematically that the divergence of M creates a magnetic field. 

MH M ⋅−∇=⋅∇      (2.11) 

This allows the overall energy of the field created by the magnetic dipoles to be reduced, 

when M diverges and a demagnetizing field is created to fill the space.  The result is a 

cost in energy of B2/2µo [27].  The magnetostatic energy reaches a minimum when no net 

magnetization vector is measurable from the bulk material.  The magnetostatic energy is 

at a maximum value when the core becomes saturated.  To reduce this energy, the 

magnetization diverges and a domain wall is created.  However, the creation and 

maintaining of a domain wall requires energy.  A balance is therefore reached between 

the lowering of the magnetostatic energy and the creation of a domain wall. 

 Inside a given domain the dipoles themselves are aligned as the result of what is 

known as the exchange energy [27].  This causes an electrostatic coupling between 

dipoles that makes it more energetically favorable for them to align toward the direction 

of the applied magnetic field.  This is primary reason for preferred alignment of the 

magnetic dipole moments inside a given domain.  This exchange energy between 

neighboring magnetic dipole moments is much stronger than the magnetostatic energy, 

but the magnetostatic energy becomes more significant for dipoles separated by large 

distances [22]. 

 It is also quite common for a material to have directions in the crystal structure 

that makes it energetically more favorable for the magnetic dipole moment to align 
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toward a specific direction [22].  Such crystallographic directions are known as the easy 

axis of magnetization.  To contrast this, there are also crystallographic directions that are 

move difficult to magnetize termed hard axis.  This means that a larger magnitude of M 

will occur when the applied field is in the direction of the easy axis.  The energy required 

to make the net magnetization point in a direction not aligned toward the easy axis is 

called the anisotropy energy. 

 When the magnetostatic energy is lowered by the creation of a magnetic domain 

wall, the energy is spent in terms of exchange energy and anisotropy energy.  At the 

domain wall boundary, the exchange energy and anisotropy energy are at equilibrium.  

This causes a finite transition region from one domain to the next.  The length of this 

region is often approximated by setting a mathematical expression of the anisotropy 

energy to a mathematical expression of the exchange energy.  The distance is then found 

by minimization of both energy terms. 
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Figure 2.7  Schematic of the transition region between two domains.  This specific type 

of domain wall configuration is known as a Bloch wall.  The energy balance is 

maintained by a competition between the anisotropy and exchange energy. 

Figure copied from [18]. 

 

 The texture of a material takes advantage of a material’s microstructure.  The 

overall effect in terms of the microstructure is shown in Figure 2.9.  A material becomes 

textured due to the alignment of its grains.  Several magnetic domains may occupy a 

given grain. 
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Figure 2.8  Polycrystalline iron-silicon sheets.  The textured sheet is the result of cold 

rolling with the small cubes representing the orientation of the unit cell.   

Figure copied from [30]. 

 

 From the perspective of the magnetization of the material, this causes the easy 

axis in each crystal to be aligned.  The net effect is that the there is a given distribution of 

domains pointing toward the same set of easy axes [31].  When this occurs, the average 

energy required energy to rotate a moment to its easy axis is less.  For modeling 

purposes, texture and anisotropy are treated together as will be shown later in this 

chapter. 
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Figure 2.9  Influence of texture on the B-H characteristics of silicon iron.  The texturing 

of the material aligns the easy axis toward a single direction.  Less energy is then 

required to rotate the magnetic domains toward the easy axis.  The resulting B increases 

at a much higher rate with the applied H. 

Figure copied from [30]. 

 

In summarizing and showing the formation of domains due to the minimization of 

the magnetostatic energy, we will rely on Figure 2.23 from the work of [18].  From 

Figure 2.2 (a) the magnetostatic energy is at its maximum value.  There is no energy 

spent in creating magnetic domains.  The material is in a saturated state.   
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Figure 2.10  Schematic of the formation of magnetic domains in a single crystal 

ferromagnetic crystal.  The process is governed by the minimization of three primary 

energy terms.  They are the magnetostatic energy, exchange energy, and anisotropy 

energy.   

Figure copied from [18]. 

 

Figure 2.11(b) the magnetostatic energy is lowered by creating and maintaining a domain 

wall.  Figure 2.11(c) it is energetically favorable for the total domain configuration to 

subdivide again to lower the magnetostatic energy and create more domain walls.  The 

reduction in magnetostatic energy compared to the saturated condition is approximately 

1/N where N is the number of domain walls.  Figure 2.11(d) the magnetostatic energy 

continues to lower and closure domains begin to form.  The magnetic dipole moments 

have aligned normal to the surface and the net M over the volume begins to approach 
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zero.  Figure 2.11(e) the magnetostatic energy, exchange energy, and anisotropy energy 

are balanced and have reached equilibrium.  No external M is present from the material, 

and the material is in the demagnetized state.   

 
Figure 2.11  Magnetic domain structure changing as a result of the applied field.  The 

domain structure is altered as energy is spent and minimized by creating and maintaining the 

boundaries between magnetic domains.   

Figure copied from [29]. 

 

When an external magnetic field is applied to the material, the magnetostatic 

energy is altered [18], and the magnetic domain structure moves in response to the 

applied field.  This change is averaged over the volume and seen as a change in the B-H 

loop is shown in Figure 2.12. 

The domain wall can be envisioned as having a surface tension like that of a 

liquid [19].  When the wall moves it can become pinned to a defect(s) and its shape 

deforms by bowing.  Domain walls with a high surface tension move as rigid walls.  This 

can occur in highly pure materials where the probability of encountering a defect is much 

less.  For more realistic types of materials with defects, the movement of domain walls is 
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impeded by defects in the material.  The overall effect averaged over the volume is that 

defects cause an energy loss in the material and prevent the material from reaching its 

true equilibrium state known as the anhysteretic magnetization.  The combination of the 

exchange energy, anisotropy energy, thermal energy, and magnetostatic energy along 

with the defects in the material create a random potential where a multitude of metastable 

states exist [29].  Such a series of states is seen by a domain in balancing the forces upon 

it.  When a domain structure is placed in a given energy state by an applied field, it is 

surrounded by a large energy well as shown in Figure 2.12.  

 
Figure 2.12  Example of a random potential seen by a magnetic domain.  This random 

potential causes fluctuations in the domain walls which randomizes the net motion of the 

domains under the application of an external magnetic field.   

Figure copied from [18]. 

 

The domain structure will remain in its present metastable state depending on the 

height of the energy barriers present, the energy provided by the environment, and the 

energy provided by the applied H as a function of time.  When H is applied the local 
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minimum is transformed into a saddle point, and the domain structure is abruptly 

transformed into a new stable configuration.  In the process, the system releases energy 

form of heat.  Such a reaction by the domain structure is called a Barkhausen jump [29].  

If the domain structure is left unperturbed for a period of time, thermal fluctuations to the 

domain structure can overcome the surrounding energy barriers and cause a Barkhausen 

jump.  This is known as a thermally activated Barkhausen jump.[29]  Because of the 

depth of some potential wells and the number of wells present in the material, a given 

structure may exist for an extremely long time.  However, it should be noted that the 

natural Barkhausen jumps occur as the system approaches true thermodynamic 

equilibrium.  When a given M-H loop is formed, the same domain structure is not 

repeatedly formed.  Instead, the M-H loop is formed by an average over the volume.  The 

presence of metastability in forming a domain structure shows how the history of M 

influences the magnitude of M [29].   

 

2.2. Theory of Ferromagnetic Hysteresis 
 

One theory of ferromagnetic hysteresis is the Jiles-Atherton model and is 

implemented in many simulation tools such as PSpice.  When first postulated, the 

model’s purpose was the development of an equation of state to describe the M-H 

relationship and therefore the B-H characteristics of a given magnetic material which 

would, in principle, be easy to apply with a limited number of extractable parameters 

[16].   

The model can be divided into two key components.  This section will begin with 

a brief description of both components followed by a detailed discussion of each 
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component.  The anhysteretic magnetization, Man(H), is a single valued function 

representing the global equilibrium points on the M-H plane [16].  In this way the 

anhysteretic magnetization is thought of as the thermodynamic equilibrium curve of a 

given magnetic material.  Another theory expounded upon by Jiles and Atherton is that 

the anhysteretic magnetization is the ideal magnetization curve that would occur if the 

material were free from defects.  In this theory, defects were the cause of hysteresis in 

real magnetic materials.  The anhysteretic magnetization would then represent the M-H 

relationship that would occur in an ideal defect free material.  The theory of 

ferromagnetic hysteresis uses the anhysteretic magnetization to predict the present value 

of M(H) as an offset from the ideal anhysteretic magnetization [16].  In order to 

understand the Jiles-Atherton model, which is the theoretical basis for this dissertation 

research, we must first begin with a discussion of the anhysteretic magnetization. 

 

2.2.1. The Anhysteretic Magnetization, Man(H) 
 
 In this section, a development of Man(H) will be discussed.  How Jiles and 

Atherton adapted Man(H) for predicting the present value of M will be discussed in the 

next section.   

Before a correct interpretation of the exchange energy was provided by 

Heisenberg, it was postulated by Weiss that a molecular field existed in which electrons 

applied a force on each other in order to align themselves [19].  The term Weiss mean 

field was used to describe the average field that was experienced by a magnetic dipole 

moment.  It was found that this force was of significant magnitude that it could overcome 
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the thermal agitation that existed in a real material and cause long range order to be 

present such as that seen inside a single domain.   

 In forming an equation of state for magnetic domains, Jiles and Atherton adopted 

the idea of an average field interaction between magnetic domains to describe how the 

domains react to one another.  Normally, an average field interaction is used to calculate 

the dipolar field experienced between magnetic moments and the concept is not applied 

to magnetic domains.  This resulted in an effective applied field, He, [16] 

MHH e α+=      (2.12) 
 

where α is the mean field parameter describing the inter-domain coupling and is 

determined experimentally.  With this assumption, Jiles and Atherton stated that the 

energy of a magnetic domain per unit volume is given by [16] 

( ) eHm ⋅−= oμE θ

      

(2.13) 
 
where m is the magnetic moment per unit volume of a typical domain and is analogous to 

the energy of a single moment.  The Langevin function was then used to mathematically 

estimate the probability that a magnetic domain would occupy a given energy state in an 

isotropic medium given the effective coupling α.  The modified Langevin equation took 

the form [32] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Tk

)E(

B

θLsan MM      (2.14) 

where L is the Langevin function, Ms is the saturation magnetization and E(θ) is the 

energy of typical domain given as [32] 
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( ) )( MHmo αμ +⋅><−=θE    (2.15) 

where  

a
T

o

B

μ
k

>=< m       (2.16) 

is the magnetic moment of a typical magnetic domain, kB, is Boltzmann’s constant, T is 

the ambient temperature, and a characterizes the shape of the anhysteretic magnetization 

curve and is determined experimentally [16].  The model of Man(H) would represent the 

M-H relationship that would occur if no defects were present in an isotropic magnetic 

material with dipolar coupling.  This is why the anhysteretic magnetization curve is often 

referred to as the ideal magnetization of the core.   

 
Figure 2.13  Original experimental data by Bozorth showing a methodology to measure 

the ideal magnetization curve Man(H).  The normal (initial) magnetization curve is plotted 

for comparison.   

Figure copied from [33]. 
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It was noted by Jiles and Atherton that the modified Langevin equation was valid 

only for isotropic materials as the energy E of a magnetic domain depended only on a 

single angle θ between the magnetic domain and the applied H which was already stated 

to be eHm ⋅−= oμE [16].  

In other materials such as ferrites, the material cannot be considered isotropic.  

Work began after the original model to find alternate expressions for Man(H) based upon 

the type of anisotropy in the material.  As an example, an expression for Man(H) based 

upon uniaxial anisotropy was developed.  In Figure 2.15 the magnetic moment of the two 

domains are shown as m1 and m2.   The energy of each domain depends on the angle 

formed between the domain and the applied field, θ, and also the angle formed between 

H and the unique axis, ψ.  The unique axis can be either an easy axis or a hard axis and 

depends on the model parameters for this specific model of Man(H).   

 
Figure 2.14  Representation of uniaxial anisotropy showing the vector representation of 

the resulting magnetic domain’s magnetic moment, the applied field and the unique axis 

of the crystal.   

Figure copied from [32]. 
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When the Jiles-Atherton model was applied to magnetic cores with high levels of 

anisotropy without a proper model of the anhysteretic magnetization, the entire model lost 

accuracy [34].  Results reported for the application of the model with a hard magnetic 

material, Nd2Fe14B, verified this observation.  Deviations of 10% to 20% were found 

between the predicted and measured B-H curves as shown in Figure 2.16 and Figure 2.17 

[34]. 

 
Figure 2.15  Comparison of experimental and modeled M-H loops.  Error was introduced by 

using the modified Langevin equation to predict the M-H relationship in a material with a 

higher level of anisotropy.   

Figure copied from [34]. 
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Figure 2.16  Errors in the predicted and measured B-H loops due to a poor model of Man(H). 

 The circles represent the measured data and the line is the modeled M-H loop. 

Figure copied from  [34]. 

Further work was required to create models for the anhysteretic magnetization for 

materials with other types of anisotropy so that they can be properly modeled with the Jiles-

Atherton model.  It was found that the texture of a magnetic material like that shown in 

Figure 2.9 could be included in the Jiles-Atherton model by again altering the model of the 

anhysteretic magnetization [31].  It was concluded that both texture and anisotropy could be 

used as input parameters to model a magnetic material’s anhysteretic magnetization [31].  
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Figure 2.17  Predicted curves for Man(H) for uniaxial anisotropy.  The anisotropy in the 

model is characterized by the anisotropy constant Ka and the parameter  

Figure copied from[32]. 

 

In modeling Man(H) for commercially available magnetic cores, the type of 

anisotropy and texture are generally unknown.  Furthermore, a common material can be 

listed under a trade name making it more difficult to identify.  Technical data from the 

manufacturer does not provide any useful information concerning this subject.  Thus, on a 

practical level, some type of test must be performed to properly model Man(H) for the 

purpose of achieving an accurate higher level circuit model.  This need forms a substantial 

basis of this dissertation research. 
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Furthermore, the anhysteretic magnetization curve has a definite temperature 

dependence as the curve itself can be understood as representing a collection of thermal 

equilibrium states [29].  Jiles later work on the extraction of experimental parameters and in 

particular, a for the model described the parameter a as a form factor for Man(H) with a clear 

temperature dependence.  He noted that the parameter a does not seem to represent the 

Boltzmann energy kBT [35].  Therefore, the explicit temperature dependence from the 

modified Langevin equation is not correct.  The work of Wilson showed this by curve fitting 

the parameter a as a function of temperature to the modified Langevin equation [36].  If the 

temperature dependence of Man(H) is not accounted for in the modeling process, a systematic 

error will occur for a given change in core temperature.  This is similar to the error measured 

when the modified Langevin equation was applied to materials with higher levels of 

anisotropy.  This is because the total magnetization, M(H), is predicted as an offset from 

Man(H).  When the temperature of the material changes, the initial point where the offset is 

predicted will change. 

To overcome these challenges in the modeling process, and to provide for a correct 

and precise mathematical model for Man(H) for a commercially available magnetic core, an 

automated test system was constructed to measure Man(H) as a function of temperature 

which will be described in Chapter 3.  This system resolves several difficulties.  It removes 

the difficulty of properly identifying the correct Man(H)based upon the anisotropy and 

texture of the core material.  This allows custom cores to be used and does not limit the 

material type in the design process.  It circumvents the need for complex models of Man(H), 

which could possibly differ in real materials due to defects.  The system also allows for the 

prediction of a precise temperature dependence to of Man(H).  Finally measured data can be 
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used as experimental validation of Man(H) to confirm its accuracy.  The construction of this 

system and its experimental data is the subject of Chapter 3. 

 

2.2.2. The Theory of Ferromagnetic Hysteresis 
 
 The domain mechanics modeled by Jiles and Atherton is the second component of 

the Jiles-Atherton model.  The derivation of their theory begins with the total work done 

per volume by a magnetic field.  However, some related energy terms that are derived 

from the Poynting Theorem [29] are not present in the derivation in the original paper 

that would require certain assumptions.  The energy loss due to eddy-currents has been 

neglected with the assumption that the present model is valid for low frequencies.  This 

derivation of the original model will follow with one that shows how temperature and 

frequency dependent effects can be included. 

 The following original theory by Jiles and Atherton begins by considering the 

work done on a volume of material by a magnetic field [16]. 

∫∫∫ +==
B

0

B

0
o

B

0
MdBBdB

μ
1HdBE    (2.17) 

where  

∫=
B

0
HdBE       (2.18) 

is the work done on the sample by the externally applied field H. 

The two terms on the right hand side of equation (2.17) are 

∫
B

0
BdB

oμ
1    

which is the work done on the environment and 
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∫
B

0
MdB    

which is the work done on the sample. 

In the Theory of Ferromagnetic Hysteresis, the fields are considered effective 

fields following the form of the previous section so that He = H + αM [16].  Using this 

relationship the work done on the sample with no defects would be equal to the work 

done by Man(H).  The magnetization, M(H), would then be given by Man(H) for a material 

with no defects.  This means that the work done on the same volume is equal to the work 

done by Man(He) given by [16] 

∫∫ =
Be

0 eean

Be

0 e )dB(HMMdB     (2.19) 

For real materials, defects can cause irreversible changes.  Jiles and Atherton 

highlighted the work of Globus [16] in their original work in noting that irreversible 

changes in M(H) are caused when domain walls become pinned by defects.  Recall that it 

is the domain wall that is considered to move as the result of the applied field due to the 

delicate energy balance being maintained.  The model is not concerned with the 

underlying physics of each type of defect present in the material as the purpose is to 

predict the M-H relationship, so the model then makes the assumption that all defects can 

be treated equally and are collectively referred to as pinning sites [16].  This allows the 

extraction of a single parameter, k, referred to as the pinning constant for the model.   

Consider two magnetic domains.  One has a magnetic moments per unit volume 

m aligned toward H and another with magnetic moment per unit volume m΄ aligned at 

some arbitrary angle to H.  Assume that a defect is located on the wall so that the wall 

that separates these two domains is pinned.  The energy required to overcome this 
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pinning site is proportional to the change in energy per unit volume of m΄ caused by 

rotating the net moment m΄ given by [16] 

ee Bm´BmΔE ⋅−⋅=      (2.20) 

Jiles and Atherton point out that the energy to rotate the domain is a function of the 

pinning site itself [16].  This means that the energy related to the pinning site, εpin, is 

proportional to the change in energy [16] which is given as 

)cos(1 θ−∝ epin mBε      (2.21) 

where θ is the angle formed between m΄ and H.  We will consider a domain wall where 

the magnetization is pointing in the opposite direction on the other side of the wall.  If the 

pinning energy for a 180° domain wall is επ and επ is proportional to 2mBe, then the 

pinning energy can be specified in terms of επ.  Adjacent magnetic domains separated by 

a domain wall often point 180° in the opposite direction as shown in  

 

 
Figure 2.18  Two domains with magnetic moments m and m’.  m is aligned with H and 

m’ is aligned 180° from H. 

 

If the wall is not 180°, the extracted parameter governing the pinning process will reflect 

this.  Now the average pinning energy can be placed in terms of the pinning site [16] 
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)cos1(
2
1 θεε π −><>=< pin      (2.22) 

When a domain wall moves, the magnetic moment per unit volume m΄ is reduced.  m by 

symmetry is increased.  If the domain wall has an area, A, that is moved by a distance, x 

then it follows that the total energy lost by the pinning site is [16] 

∫ −
><

=
x

0

pin dx)cos1(
2

A
n

(x)E pin θ
ε

    (2.23) 

where n is the average density of defect sites throughout the material.  The magnetic 

domain with magnetic moment per unit volume m increases as the domain wall moves.  

The increased area will be equal to the area lost by the magnetic domain with magnetic 

moment per unit volume m΄.  Because the magnetic moment per unit volume m already 

points in the direction of the applied field, it follows that the change in M(H) is [16] 

dx)cos1( AmdM θ−=      2.24) 

 

Substituting into the total energy lost from pinning yields a relationship for total pinning 

lost in terms of the magnetization, M(H) [16]   

∫
><

=
M

0
M

m
d

2
πεn(M)Epin      (2.25) 

where 

m2
><

= πεn
k       (2.26) 

is put in terms of the model parameter k that is determined experimentally.  The equation 

for hysteresis may now take a more realistic form consisting of an ideal component, 
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Man(H) and an irreversible loss term due to the pinning of rigid domain walls by defects 

[16]. 

∫∫∫ −=
Be

0 e
e

B

eean

Be

0 e dB
dB
dMk)dB(HMMdB e

0
   (2.27) 

Here the work done per unit volume is equal to the ideal lossless case minus the 

hysteresis loss.  Differentiating with respect to Be yields the basic equation of state for a 

ferromagnetic material [16]   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

e
eane dB

dMδk)(BM)M(B    (2.28) 

The present value of M depends on the ideal value minus some offset from the ideal 

value caused by loss.  In its present form the equation is of limited use as the equation is 

really in terms of its natural output Be.  The equation can be placed in terms of its natural 

input and response using [16] 

))(( HMHB oe αμ +=  

 

This yields an irreversible component of the magnetization given originally as [16] 

(H))M(H)α(Mk
(H)M(H)M

dH
(H)dM

irran

irranirr

−−
−

=
oμδ /

   (2.29) 

where δ becomes -1 when H is decreasing and +1 when H is increasing.  In later years, 

the k parameter was redefined in terms of A/m and the permeability of free space µo 

removed.   

 

The reversible component of magnetization results when the domain wall bulges, 

and then returns to its shape once the applied field is removed.  In considering the 
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reversible component of the magnetization, the pinning of a domain wall between two 

pinning sites was considered.   

 
Figure 2.19  Pinning of domain wall by two pinning sites.  The wall bows in a reversible 

fashion and returns to its original position. 

Adapted from [16]. 

The pressure, P, exerted on the wall by the applied field is related to the surface energy, 

E, by [16] 

r
EP 2

=      (2.30) 

If the geometry of Figure 2.20 is used, the x-coordinate can be placed in terms of the 

radius and y-coordinate.  Once substituted into the expression for wall pressure, the x 

coordinate takes the following form [16]. 

2
2

y
P

2E
P

2Ex −⎟
⎠
⎞

⎜
⎝
⎛−=     (2.31) 

When the pressure applied by H is small, the displacement shown in Figure 2.20 can 

approximated by the first terms of the binomial expansion so that [16] 

E
P

2
y

2
1x

2

≈       (2.32) 

The ferromagnetic material applies a resulting force so that the effective magnetostatic 

energy is proportional to [16]  
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2)(
2
1 (H)M(H)ME anrev −∝     (2.33) 

So that the force on the domain walls is 

(H))M(H)(MF revan −∝     (2.34) 

The pressure on the domain walls is then specified by the constant C΄. 

(H))M-(H)C´(MP revan=     (2.35) 

Substituting P into the binomial approximation for x yields an expression for the bowing 

of a domain wall [16] 

( )(H)M(H)M
E

x revan -´
4
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C⎟⎟
⎠

⎞
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⎝

⎛
=    (2.36) 

It is now assumed that the volume swept out by Mrev is given the work of Globus and 

Duplex [16] 

( )223
6
π xyxΔV +⎟
⎠
⎞

⎜
⎝
⎛      (2.37) 

and the change in the reversible component of magnetization is Mrev(H)=2∆Vm for two 

parallel or antiparallel domains.  The total reversible component of magnetization is then 

given by [16] 
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 (2.38) 

The higher order terms were neglected in the model again following the analysis 

performed by Globus.  The lower order term was given the coefficient [16] 
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4E
mππy4C´

=c       (2.39) 

which again is determined experimentally and describes the reversible component of 

magnetization which is now written [16]  

)-( (H)M(H)Mc(H)M revanrev =    (2.40) 
 

We finally arrive at the goal of Jiles and Atherton – a single equation for M(H) 

which is the addition of the irreversible and reversible components [16]. 

(H)M(H)MM(H) revirr +=     (2.41) 

Now that the basic mechanics of the Jiles-Atherton model have been discussed including 

the anhysteretic magnetization and the equation of state, we are ready to delve into 

temperature and frequency dependent effects.  From the viewpoint of the anhysteretic 

magnetization, the equation as-is lacks a basic temperature dependence.  In fact from the 

viewpoint of the mechanics of the model, no temperature dependence exists.  The 

discussion now turns toward the primary goal of the present research in adding 

temperature dependence to the present model. 

2.3. Static and Dynamic Temperature Modeling 
 

In the present equation, the work done on a given magnetic sample equals the 

ideal case minus the loss and was given by [16] 

∫∫∫ −=
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Yet as the first law of thermodynamics states, the change in internal energy equals the 

work done on the system plus the heat absorbed by it [29] 
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δQδLdU +=      (2.42) 

where δQ is the heat absorbed by the system.  If one makes the wrong assumption that 

the hysteresis loss governed by k, is only a result in the change in internal energy, the 

heat flux dQ/dt will provide an additional offset from the anhysteretic magnetization 

curve.  This is not the case.  The dynamic experiments presented in Chapter 4 show that 

there is no change in the B-H characteristics of a magnetic core due to heat flux being 

present.  Thus, the thermodynamic B-H characteristics can be quantified using the 

present temperature of the core.   

Theoretically if that were not true then the following derivation shows how such a 

heat flux would change the width of a measured M-H loop.  Accounting for the work 

terms in the previous equation shows that the change in internal energy is given by  

∫∫ −=
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0 e
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0 eean dB
dB

dM
k)dB(HMdU    (2.43) 

With the work done on the sample given by  

∫=
Be

0 eirr dBMδL       (2.44) 

For the irreversible component of magnetization shown above, the work done by the 

environment is added so that the irreversible component becomes 

QdB
dB

dM
k)dB(HMdBM

Be

0 e
e

irrBe

0 eean

Be

0 eirr δ−−= ∫∫∫  (2.45) 

where δQ represents the energy loss as the work performed on the sample by the 

environment.  Similar to the analysis performed before, the equation is differentiated with 

respect to Be and the heat term is specified only by Q.  This assumes the heat is not from 

the pinning loss in the material, which is not true.  In doing so, the equation of state takes 

the following form. 
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Now, the new equation of state must be placed in terms of M and H.  This has been done 

before for the term involving pinning as it has been done before and must be done for the 

term involving heat. 
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Given again that 
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dt
dBe  can be formed based upon the assumption that the heat 

loss in the core is not caused by pinning.  The dynamic experiments in Chapter 4 show 

this is not true, so that M(H) can be modeled only as a function of the materials 

temperature.   
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Here the term 
dt
dQ represents the diffusion of heat into the material, and would 

provide a natural coupling to the heat equation if the hysteresis loss were not responsible 

for the self-heating and energy loss of the sample.  For thermodynamic equilibrium, the 

Mirr(H) component again predicts the magnetization as an offset from Man(H) and the 
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equation obtains its static form.  A solution of 
dt
dQ  is met by solving the diffusion 

equation given as [37] 

qλ(t)
dt
dQ 2∇=      (2.48) 

where λ is the diffusivity specified as 

ρc
k

=λ      (2.49) 

and k is the thermal conductivity, ρ is the density of the material, and c is the specific 

heat [37].   

One must realize that if equation 2.48 were true, then an additional offset from the 

anhysteretic magnetization curve would occur when a heat flux is present.  Because this 

is not true, the temperature dependence of Man(H) governs the core’s behavior, and is 

itself a function of temperature.  Recall also that Man(H) has a functional dependence on 

the anisotropy and texture of a given material, and recognize that no accurate temperature 

dependence is present in the many Man(H) equations.  For instance, it is known 

experimentally that the pinning coefficient k that governs the loss for the irreversible 

component has a function of temperature.  This is not a dynamic case, but a static case or 

rather a thermodynamic equilibrium case.  In fact, all of the parameters have a static 

temperature dependence, which can be found experimentally.  This was shown by 

Wilson, who previously curve fitted the parameters of the model as a function of 

temperature.  In doing so, the modified Langevin equation was assumed, meaning the 

material was assumed to be highly isotropic [36].  To model the anhysteretic 

magnetization correctly, an automated test system was constructed to plot Man(H,T) as a 
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function of temperature.  The system is also capable of plotting B-H loops as a function 

of temperature, which is required for the parameter extraction in the model.  The 

following Chapter will discuss the experimental component of this research and how the 

required experimental data was obtained.  But first a discussion of the frequency-

dependent modeling component is provided to conclude this theoretical Chapter. 
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2.4. Frequency Dependent Model 
 

The previous expression involving the energy supplied to a material was given as 

∫∫∫ +==
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which is a consequence of the Poynting Theorem.  In assuming that the total energy 

supplied to the field was 

∫
Be

0 eirr dBM  

it was an inferred assumption that the eddy-current distribution within the material was 

negligible.  At higher frequencies this is clearly not true.  To correct this problem, Jiles 

on a later paper applied the classical equation for instantaneous power loss per unit 

volume due to of eddy currents given as [17] 

2

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

dt
dM

dt
dB

ββ 2ρ
dμ

2ρ
d 22

0
22

dt

dWEC     (2.50) 

 

where ρ is the material resistivity, d is the cross-sectional dimension of the core, β is a 

geometrical factor which varies for the type of sample.  This loss component was 

simplified by the assumption of a sinusoidal excitation so that [17] 

 

ρβ
π 222

MAX
2 fdB

≈
dt

dWEC     (2.51) 

 

Such would not be the case in the application of power electronics.  The classical 

anomalous loss term was also added to the total energy loss equation in the form of [17] 
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This term results from the random reordering of the domain structure.  G is a geometrical 

factor [29].  w is the width of the core laminations.  d is the thickness of the core.  ρ is the 

resistivity.  Ho is a parameter representing the internal potential energy experienced by a 

domain wall.  To add these terms to the model, Jiles first added the reversible and 

irreversible components together.  Following this, the loss terms were added to the total 

magnetization.  The expression was then differentiated again.  Jiles reported the 

following result for the equation of state with these two loss terms [17] 
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The equation was solved iteratively and could at most moderately predict the B-H 

relationship at higher frequencies.  A sample of predicted and measured B-H loops is 

shown in Figure 2.21.  It was noted that this model assumes a sinusoidal excitation, 

neglects the depth of penetration of the field into the material, and assumes that the 

domain structure can in fact return to thermodynamic equilibrium.  
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(a)  

(b)  
Figure 2.20  B-H curves for a permalloy 80 core as a function of frequency. (a) modeled 

performance and (b) measured performance. Note the large discrepancies between 

modeled and measured performance. Clearly a more accurate method to model 

frequency-dependent affects on such cores is needed and will be discussed in Chapter 3 

of this dissertation.  

Figures copied from [17]. 
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For the B-H relationship to depend on the frequency of the applied field (i.e. 

rate), a change in magnetization occurs during a Barkhausen jump.  If the jump is 

interrupted, then the material cannot return to its equilibrium state before another force is 

applied to it.  In this simple terminology, the system cannot return to equilibrium.  It is 

the belief of this author that this will result in an effective equilibrium state for a given 

frequency that can be verified experimentally.   

From a macroscopic level, the equilibrium not only involves the competition of 

magnetostatic, anisotropy, exchange, and thermal energies but also the energy incurred in 

balancing the frequency dependent terms in steady state.  Chapter 5 will entail the 

experimental component of this research that will verify this result by introducing higher 

frequency losses in the measurement of the core’s anhysteretic magnetization.  Man(H) 

will then become a function of both applied field, frequency, and temperature.  It should 

also be noted that the loss due to heating must also be included with the frequency 

dependent loss terms.   

In formulating a total equation for hysteresis as function of frequency, it should 

be noted, that investigations of loss in prior work have shown that higher frequency 

losses are seen as an increase in pinning energy [38].  As the frequency of the applied 

field increases, eddy-currents form around the domain wall boundary and effect the 

movement of the wall [29].  When the wall overcomes the additional force applied to it 

by the eddy-current distribution, this will be seen as increase in the pinning energy.  It is 

therefore the opinion of this author that the loss mechanisms as a function of heat cause 

only irreversible changes to the magnetization.  While hysteresis loss was treated as a 

reversible effect during the original derivation of the model, the eddy-current loss and 



 

 66

anomalous loss were treated as having reversible components.  At higher frequencies, the 

applied field created by these eddy-currents causes a change in the bowing of the domain 

walls, and the entire bowing process will be a strong function of frequency.  This means 

that the parameter c governing the reversible magnetization process will be a function of 

frequency.   

So that if we begin again with the energy supplied to the material and also add the 

additional losses due to eddy-currents with only the irreversible component of 

magnetization and the heat term we will have 
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In following latter derivations of the model, it was found that the extraction of parameters 

was made easier by altering the work terms.  Jiles noted that the mechanics of the model 

do not change.  Similar to Jiles the substitution [38] of the fourth term on the right hand 

can be changed using the following substitution 
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Likewise a substitution for the fifth term from (2.54) on the right hand side can be made 

by 
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So that the fifth term from (2.54) becomes 
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Substituting back into (2.54) and dividing by µo yields 
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Differentiating with respect to the applied field yields 
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Substituting this into (2.58) yields the component of magnetization governing loss. 
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This is only the irreversible component, and the form of the reversible component 

remains unchanged.  Once the irreversible component is solved, it can be added to the 

reversible component to find the total magnetization. 

 

In dealing with the penetration depth of the field, it is recognized that the field 

will perform work only on a given volume of the core.  The penetration of the field 

should be able to be treated in the same manner as minor loops in which a working 

volume of the core is approximated.  In this way, the field performs work on a given 

volume of the core. 

 

2.5. Chapter Summary  
 
 The basics of magnetic dipoles and magnetic domains have introduced for the 

purpose of describing the present theory of ferromagnetic hysteresis.  A derivation of the 

model following the original work of Jiles and Atherton showed that no temperature 

dependence existed in the model despite the use of the mean field approach and the use 

of the Langevin function.  In later work, Jiles acknowledged that no such temperature 

dependence can be given based upon the Boltzmann statistics in the modified Langevin 

equation, thus motivating a modification of the Jiles-Atherton model which is the core 

goal of this dissertation. 
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 Multiple anhysteretic magnetization equations exist for a multitude of different 

material types and textures.  The anhysteretic curve was identified as representing 

thermodynamic equilibrium as well as the ideal curve for magnetization with both 

interpretations being correct.  A thermodynamic relationship was found for the low 

frequency case of the model which is required in the expanded high frequency case. 

 The present high frequency model is limited in several respects due to the lack of 

the inclusion of the field penetration into the core via the skin depth.  It is believed that 

the high frequency loss terms should be included only in the irreversible component of 

the magnetization.  The next two Chapters will offer the experimental validation of the 

ideas and theories presented for the purpose of formulating practical design models that 

can assist in the practical design of power electronics. 
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Chapter 3: Experimental Measurement System 
 
 
3.1. Introduction to Measurement System 
 
 

As shown in Chapter 2, Man(H) represents the defect free magnetization curve and 

contains no hysteresis.  Using Man(H) with the Jiles-Atherton model, the B-H relationship 

can be predicted.  The measurement of Man(H) has been studied repeatedly [33], but no 

satisfactory method exist for measuring the curve without cutting the core to use a magnetic 

sensor.  Pearson has studied the anhysteretic magnetization of magnetic cores, and his 

experimental approach [39] is closest to the one adopted here.  The purpose of the 

measurement is to allow for the modeling the anhysteretic magnetization curve as a function 

of temperature, and its further study as a function of frequency. 

A point on the curve is measured by demagnetizing the core with a static value of 

magnetic field [33].  This has been well established, but it is the practical reading of this 

point that is difficult.  Each value of static H then yields a static B when the demagnetization 

process is complete, where B and H are not bolded to indicate the magnitude of the vector 

field.  The material’s magnetization is then found from Eq. (3.1)  

HB(H) M(H) −=
0μ

     (3.1) 

where, M(H) is the magnetization, B(H) is the flux density, H is the magnetic field, and µ0 is 

the permeability of free space. 
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Figure 3.1  Original experimental measurement of Man(H) after Bozorth.   

Figure copied from [33]. 

 

A major difficulty in the measurement of Man(H) arises from determining exactly 

where on the M-H plane a point forms.  In measuring the magnitude of B, the voltage 

induced slowly becomes zero because a static B cannot induce a voltage.  Measurement of B 

should proceed after the demagnetization process is complete to ensure that B has come to its 

final value and to avoid reading of any induction caused by the demagnetizing waveform 

[40].  It is for this reason that magnetic sensors are employed to measure Man(H).  

While it is possible to use a magnetic sensor to measure a residual B this requires the 

core to be cut and the sensor to be inserted.  This alters the magnetostatic energy, the 

effective magnetic path length , the B field in the gap, and the overall M-H relationship [41]. 

 Figure 3.2 shows the resulting change in the M-H relationship when a magnetic core is cut. 
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Figure 3.2  Alteration of the M-H characteristics due to a gap.  This work avoids the use of 

magnetic sensors to avoid this alteration.  

Figure copied from [29]. 

 

Commercial sensors can also have very limited temperature range, temperature 

dependent output, and require constant nulling of their offset [42].  It is for these reasons that 

a winding should be used to measure the actual B remaining in the material after 

demagnetization, yet it is not till this work that such a measurement has been successfully 

been reported. 

 

H is directly proportional to the applied bias current and can be found using 

Ampere’s Law as shown in Eq. (2)   

el
tNiH )(

=      3.2 
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where, N is the number of turns on the winding, i(t) is the current and le is the mean magnetic 

path length. 

 

The determination of B, however, is more difficult because the flux density is static 

after the demagnetization process is completed.  We shall refer to the point that forms from 

both fields as (HDC, BDC) to emphasize the fact that the point on the B-H plane corresponds 

to the magnitudes of the static H-field and the static B-field present after the demagnetization 

process is completed.  It should be noted that the B-field will remain in its forced state if the 

applied H-field and temperature remain constant.   

The following magnetic characterization system is composed of seven major 

components, shown in Figure 3.3 in block diagram form and Figure 3.4 as a photograph.  

The system is integrated using National Instrument’s LabVIEW™ programming language.   

 

Figure 3.3  Block diagram of the characterization system showing the major components. 
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Figure 3.4  Photograph of the magnetization characterization system.  The system is shown 

with its major components as follows A.) power amplifiers A and B, B.) heater power and 

control, C.) oscilloscope, D.) arbitrary function generator, E.) test cell, and F.) thermocouple 

reader. 

 

All of the components, except the test cell and transconductance amplifiers, are 

commercially available products and may be easily substituted.  The function generator and 

personal computer (PC) generate the AC and DC current waveform, respectively.  Sample 

temperature is maintained by the heater and thermocouple reader through a PC-based control 

algorithm.  Response and stimulus waveforms are capture by a digital oscilloscope and 

transferred to the PC for analysis.  

The custom test cell, shown in Figure 3.5, is constructed of a closed copper cylinder that 

is uniformly heated along its perimeter and bottom by a pair of metal foil heaters.  The 
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cylindrical heatsink enclosing the sample is surrounded by ceramic insulation to permit the 

system to achieve thermal equilibrium.  The core-under-test is suspended inside the cell by 

its windings and a thermocouple is attached to monitor temperature.  The temperature 

response had a measured deviation of +/– 0.3 °C. 

 

Figure 3.5  Test cell diagram showing the integrated heating elements and current sources 

connected to the toroidal core under test. 

 

The current sources which produce the magnetic fields are implemented by a pair of 

high-speed, high-slew rate operational-amplifiers namely the PA09 manufactured by Apex 

Mircotechnology.  These are labeled amplifiers A and B in Figure 3.3 and A.) in Figure 3.4.  

One current source, IBIAS, maintains a DC current through one winding to establish the static 

H-field, while another current source, IAC, provides the AC excitation on a separate winding. 

 Previous work has relied upon voltage control to provide current excitation [43].  The total 

current will add together to produce the applied magnetic field to the core.  IAC will also be 

used to demagnetize the core and excite the core after the demagnetization process is 
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complete to obtain BDC.  The current sources were designed using the Apex Microtechnology 

PA09 Video Power Operational Amplifier  to provide precision magnetic deflection [44].  

Figure 3.6 shows the schematic of the current sources.   

 

 

Figure 3.6  Schematic of the current sources used to generate IBIAS and IAC. 

 

The operational-amplifier supplying IAC is controlled by the arbitrary function 

generator.  The inductance of the core creates a zero in the frequency response, which is 

cancelled by the pole created by Rf, Rd, and Cf.  The number of turns on the IAC winding 

must be balanced by the  magnitude of the applied magnetic field needed to  demagnetize the 

core [45].  For example, if  500 A/m is required to saturate the core during the 

demagnetization process, and the peak current from the amplifiers is 2.5A, then one can 

simply calculate the number of turns required using Ampere’s Law, magnetic path length, 

and peak current.  The number of turns will give a certain inductance value and therefore a 

known zero in the frequency response.  The demagnetization process has to saturate the core. 

 If the number of turns is too small, the core cannot be driven into saturation using the 

available peak current of the amplifier.   

 



 

 77

It should be noted that IAC will induce a voltage on the bias winding where it is 

desired to only have a DC current flowing.  In order for the operational amplifier producing 

IBIAS to properly regulate the DC current through its winding, the induced voltage must be 

summed to zero.  For example, when the DC input voltage is zero, the amplifier will produce 

at its output a voltage that has the same magnitude as the induced voltage yet opposite in 

polarity. This will cause zero current to flow through the bias winding.  When the voltage on 

the positive input of the operational amplifier is incremented, the output will respond to force 

a DC current through its winding.  In this way, the bias current can be regulated. 

 

3.2. Measurement Procedure 
 

In contrast to the method attributed to Bozorth[33], our method excites the core after 

the demagnetization process is complete to avoid cutting the core.  The reading of the value 

of Man(H) is then decoupled from the excitation to place the core in a proper state..  The 

method does not cut the core to ensures that the magnetostatic, anisotropy, exchange energy 

and are not altered.  By not cutting the sample, this energy balance is maintained and the 

actual Man(H) curve can be measured.  Furthermore, it provides for the first time a 

methodology to measure the true Man(H,T) of a magnetic core. 

The measurement process is summarized in Figure. 3.7. Once the sample’s 

temperature is stabilized, HDC is applied to the core in the form of a DC current via the IBIAS 

winding.  The demagnetization process is then initiated.  The system generates a series of 

ten-cycle waveforms that will cause the current source IAC to produce a decaying sinusoidal 

current in its winding.  Each cycle has a magnitude that is approximately 1% less than the 

previous cycle in following the IEEE and ANSI standard for proper demagnetization.[45]  
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Lower decay rates of the demagnetization waveform have shown not to alter the final state of 

a core.[39]  Once the initial ten cycles are complete, another ten cycles are initiated, and IAC 

excites the core again with the demagnetizing current.  This process is repeated.  The final 

ten cycles of the demagnetization process utilize the lowest amplitude of the arbitrary 

function generator and the waveform generated decays to zero.  This method of 

demagnetizing is performed for three reasons:  

 

1. The amplitude of the demagnetizing waveform must decrease very slowly, so that 

the domain structure is allowed to reach thermodynamic equilibrium. 

 

2. The arbitrary function generator has a limited sampling rate to recreate a single 

waveform with a very large number of cycles. 

 

3. The system avoids excessive heating of the sample so that its temperature can be 

properly regulated. 
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Figure 3.7  Flowchart showing the automated procedure to measure Man(H) 
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Once the demagnetization process is complete the core is in a proper state to read the 

static B-field now held constant by IDC and the present temperature.  To accomplish this, the 

B-H loop is traversed while maintaining HDC.  Recall HDC has already been set.  Because a 

separate winding is used for the bias current, HDC can be regulated throughout the 

measurement process.   

To read BDC, the present value of IBIAS is passed to a subroutine that generates a 

nonsymmetrical sinusoid.  This sinusoid is designed so that the total current, IBIAS + IAC, will 

cause the total applied H to have equal magnitudes in the positive and negative directions 

while still maintaining a constant median value, HDC, as shown in Figure 3.8.   

 

Figure 3.8  Total measured H created by IAC + IBIAS.  By traversing H with equal magnitudes 

in the positive and negative direction, the magnitude of B in the positive and negative 

direction will also be the same.  Here IBIAS has produced an average H-field of 61.3 A/m.  

 

We will refer to this waveform as the reading-waveform as its purpose is to cause 

B to respond so that a point-of-reference can be established to correctly identify the 

magnitudes of B.  This is necessary because only a change in flux induces a voltage as 
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shown in Figure 3.9.  The induced, secondary voltage, V(t), and the reading-waveform 

are captured by a Tektronix TDS 2014 Digital Storage Oscilloscope.  Each channel on 

the oscilloscope is programmed to capture either a positive or negative portion of either 

the voltage or current waveform.  The total waveform is then formed.  Using (3.2) the 

flux is calculated from the measured V(t).  

∫−=
f

0

t

t

V(t)dt
N
1Φ     (3.3) 

 

Figure 3.9  Measured secondary voltage generated by the reading-waveform.   

 

Once V(t) is measured, it is digitally re-sampled using an FIR filter with aliasing 

rejection of 120 dB.  The mean value of the induced voltage is numerically calculated and 

subtracted from the entire voltage waveform.  If this offset is not removed, the integration 

process will produce errors as the offset will be integrated with the induced voltage.  The 

voltage offset present in the induced voltage waveform can result from the resistance in the 

windings and noise.  From the consideration previously discussed in determining the number 

of windings, the offset due to the wire resistance can be minimized by using fewer turns.   
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The amplitude of the reading-waveform is then finely adjusted to null the offset after 

the first initial measurement.  Once the flux is found by digital integration, the B field can be 

computed by dividing by the cross-sectional area, A, of the core.  After the B-field waveform 

is calculated, it will still have an apparent offset of the form 

∫ +−=
f

0

t

t
offset ]dtV[V(t)

AN
1B     (3.4) 

remaining from the integrated voltage.  This occurs as the final value of B linearly decays to 

zero as shown in Figure. 3.10. The cause of this is that a static B-field cannot induce a 

voltage.  As a result, the final value of the B field appears to be zero according to the 

integration of the induced voltage.  Physically, the initial and final values of B should be 

different.  It can be observed from Figure 3.11 that the waveform decreases by a linear 

amount as the integrated waveform attempts to come to rest at zero instead of a final static 

value of B.   
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Figure 3.10  Measured B field response – not aligned.  This is the unprocessed measured B-

field waveform resulting from application of the reading-waveform.  The B-field linearly 

decays to zero because the flux is not directly measuring the final static field. 

 

The final value of B-field waveform appears to be zero, but in reality an offset from 

the initial value should be present.  The peaks and valleys should also have the same 

magnitude.  To correct for this linear decay, an offset voltage is added to the induced voltage 

and it is reintegrated to causes a linear rise in the B-field waveform.  This is done iteratively 

until the midpoints between the peaks and valleys of the B-field waveform align as they 

should with excitation of equal magnitude as shown in Figure 3.11. 

The B-field plotted over time will then cycle about zero.  However, because the 

change in B is equal in both the positive and negative directions, it can be said with certainty 

that the value of zero B is at the midpoint of the peaks and valleys.  This is the reference 

point that has been established by the reading-waveform.  If the reading waveform had not 

traversed H with equal magnitude, the value of zero B could not be identified with certainty. 
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 This would be the same value of zero B that would be identified on a B-H plot under cyclic 

excitation. 

 

 

Figure 3.11  Measured B field response – aligned.  This is the B-field waveform resulting 

from application of the reading-waveform.  The corrected B-field now cycles about zero.  

The peaks and valleys now have equal magnitude for equal excitation. 

 

To properly identify BDC, which is the static field left after the demagnetization, the 

magnitudes of the peaks are averaged and the mid-point between them is identified so that 

BDC is given by 

2

n

V

n

V

B

ni
valley

ni
peaks

DC

∑∑
== −

=     (3.5) 

where n is equal to the number of cycles used in the reading waveform.  This midpoint will 

be negative and its absolute value will be added to the total B-field waveform.   



 

 85

 

Figure 3.12  B-field resulting from BDC being properly identified.  The value is read after 

the demagnetization process.  Here the value of BDC is equal to 0.28T. 

 

It can be observed from Figure 3.12 that saturation of the B-field now occurs at the 

same magnitude of B in both the positive and negative directions, which is expected when 

applying H with equal magnitudes in the positive and negative direction.  Clearly, if the 

reading-waveform does not have equal magnitudes in the positive and negative direction, 

then identification of the midpoint will introduce an error.  Measurement and nulling of the 

offset in the reading-waveform after an initial measurement greatly minimized this error. 

 

Once HDC and BDC are found, the value of MDC can be determined using  

H-
μ

B(H)  M(H)
0

=      (3.6) 

Thus, a single point on the anhysteretic magnetization curve is known.  Once a single 

point is measured, the measurement may be repeated and averaged to increase accuracy.  

Before each point is measured, the core undergoes the same demagnetization process 
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with the same value of HDC.  In this way, the core is placed in the same state and signal 

averaging can be performed.   

 

3.3. Chapter Summary 
 

The experimental setup involving the measurement of anhysteretic magnetization 

curve has been demonstrated.  The setup is capable of performing non-destructive testing 

on magnetic cores by applying a wave-form to read the resulting B field of a core.  This 

resulting B field can be placed in terms of M and the resulting magnetization can be 

measured.   

The applied reading-waveform takes the form of a sinusoid with a median value, 

and traces through the complete B-H loop.  If the static H applied in the bias winding is 

set to zero, then the initial magnetization curve is traced from the origin of the B-H plot, 

and the normal B-H loop is formed.  This allows the normal extraction of model 

parameters directly from a normal B-H loop. 
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Chapter 4: Temperature Dependent Data 
 
 
4.1. Measured Anhysteretic Magnetization Curves 
 
 

The measurement of the anhysteretic magnetization was performed using the 

experimental setup described in Chapter 3 of this dissertation on a MnZn ferrite core 

manufactured by Magnetics Inc. (part# 0P40401TC).  The core was suspended in the test 

cell using MWS 31AWG NEMA MW16-C high-temperature copper wire.  The 

temperature was incremented at 17°C increments, and the family of curves for the 

anhysteretic magnetization was measured as shown in Figure 4.1. 
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Figure 4.1  A family of anhysteretic magnetization curves measured for a MnZn ferrite 

manufactured by Magnetics Inc. (part # 0P40401TC) as a function of core temperature.  Two 

waveforms were averaged for each point. 

 

As a point of reference to the above given data, data is shown below from a 

different author attempting to measure the same curve experimental curve being 

demonstrated here.  Figure 3.14 shows the measurement of the anhysteretic 

magnetization curve for a sample of pure, polycrystalline nickel (99.98%) wire 150mm 

long and 1mm in diameter performed by Pearson.   
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Figure 4.2  Measurement of the Man(H) curve of nickel performed by J. Pearson.   

Figure copied from [39]. 

 
Pearson summarizes how he resolved the point on the curve by stating, 

“…anhysteretic magnetization could be deduced by measuring the flux change to 

saturation.”[39]  This is the only information provided as to how he resolved the static B 

field on the curve for a given bias current.  Details on how the waveforms were measured 

or excited were not provided.   

This author would like to note that he too attempted to resolve the anhysteretic 

magnetization curve using the saturation magnetization as a point of reference, and found 

using only the distance to saturation unsatisfactory.  This was due to the fact that 

magnetization saturation is not a fixed point of reference because the saturation 

magnetization increases for a larger magnitude of applied field.  There is therefore a 

distinction made between technical saturation and complete saturation [19].  This is one 

of the reasons why the methodology of the previous section was adopted.   



 

 90

Pearson must also assume that the core is in the zero state after demagnetization.  

In doing so, the anhysteretic remanence magnetization must be assumed to be zero.  Even 

in the symmetrical torrid used for these experiments, this is not true.  In simpler terms, 

the experimental anhysteretic curve will possess a remnant value of magnetization which 

will change the value of the resulting anhysteretic magnetization curve. 

 

4.2. Data Analysis and Model at Static Temperature 
 
 Now that Man(H,T) has been properly measured the data analysis portion of the work 

can begin.  The static temperature model requires an equation to represent Man(H,T) along 

with the other model parameters   

 

4.2.1. Curve Fitting for Man(H,T) 
 

The data presented in this section is that of a commercially available MnZn, power 

ferrite (Part# 0F-40401-TC) manufactured by Magnetics Inc [8].  Microcal Origin was used 

to perform a nonlinear least squares fit for the collected data for the data shown in Figure 

3.13.  It was found that the Boltzmann Function given as 
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represents Man(H,T) for the MnZn ferrite sample, where M2, and dH are linearly dependent 

upon temperature.  A1 and Ho are temperature independent constants and provide the form 

factor for the curve.  Figure 3.15 shows the curve fit of Man(H,T) with the collected data. 
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Figure 4.3  Curve fit of Man(H,T) for the data of a MnZn ferrite sample.  The Boltzmann 

Function ideally models the temperature and field characteristics of Man(H,T). 

 

 It is pointed out that the magnitude of M in Figure 4.3 does not become zero for a 

zero value of applied H.  This is expected.  If the curve is examined closer to the origin in 

Figure 4.4, this is more easily observed.   
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Figure 4.4  Zoomed in view of Man(H) measured at 30°C.  Note the crossing the y-axis and 

the nonzero B field value.  Measurement performed for the MnZn ferrite sample. 

 

 This phenomena is called anhysteretic remanence or ARM (i.e., anhysteretic 

remanence magnetization), and is a result of the applied H being different than the internal H 

experienced in the bulk material.  This is well known in the area of magnetic media 

recording where the anhysteretic magnetization is measured for the purposes of linearizing 

the media [46].  To compensate for the internal HIN of the bulk having a different magnitude 

of magnetic field than that which is applied, demagnetization factors are often calculated of 

the form 

HIN = HA - kdfM    (3.2) 
 

where HIN is the internal magnetic field, HA is the applied magnetic field and kdf is the 

demagnetization factor. 

To minimize this effect in the measurements performed, a small toroidal sample was 

used with equal height and width.  However, it was found that the demagnetizing field that 
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truly results from the divergence of the magnetization is still present.  Toroidal magnetic 

cores produced by modern manufacturers are actually cylindrically-shaped, and the 

demagnetizing field of such ring cores has been studied by D.B. Clarke who sought to model 

the effect [47]. 

 In modeling the anhysteretic magnetization as a function of temperature, the H 

intercept was calculated using the linear portion of the anhysteretic magnetization curve near 

the origin.  This was then added to the total applied H to represent the internal value.  For all 

temperatures curves, the internal and external H varied by 2A/m irrespective of temperature. 

 This allowed Man(H,T) to be modeled as  
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Equation (4.3) is modified slightly from (4.1) in that Ho has been removed as the curve now 

intersects the origin.  The following curves are shown shifted to zero and modeled with (3.3). 

 

Figure 4.5  Curve fit of Man(H) intersecting at the origin. 
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It follows then that M2(T) displays  the trend shown in Figure 3.19, and is easily represented 

by a linear fit. 

 
Figure 4.6  Linear curve-fit for M2 as a function of temperature. 

 

Where M2 is now given by 

M2=MspT+MINT    (3.4) 

From Figure 3.19 MSP = -1118.98 and MINT = 325496.80. 

 M1 is plotted as a function of temperature in Figure 4.7 and can also be shown to be a 

linear function of temperature. 
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Figure 4.7  Linear curve-fit for M1 as a function of temperature. 

 

 Having seen that M1 and M2 are both linear functions of temperature; a boundary 

condition on each will now be implemented.  If Man(0,T) = 0, then it follows from equation 

(4.3) that 
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Therefore,  
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And it is easy to see that 

(T)M(T)M 21 −=  

M1 can be eliminated from the equation of Man(H,T). 

Substituting M1(T) = -M2(T) = Mf(T) into the equation of Man(H,T) yields 
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In dealing with the remain term in the equation for Man(H), we also discover a linear 

dependence on the term Hf. 

 

Figure 4.8  Linear dependence of the curve-fit parameter Hf as a function of temperature. 

 

So that 

INTSPf HTH  H +=      (3.6) 

where HSP = -0.1454 and HINT = 33.672 for the data shown in Figure 4.5.  Man(H,T) is know 

only a function of two parameters Hf and Mf. 

4.2.2. Static Temperature Model 
 
 Continuing with the building of the static model for the MnZn core, the static 

temperature model, the parameter extraction from the B-H loop must be performed as a 

function of temperature.  Following this Man(H,T) is used to predict the temperature 
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dependence of the core.  In doing so, we will modify the extraction procedure for the model 

parameters.  It should be noted that a very important point in the new dynamic equations 

introduced that both the temperature and frequency equation revert back to their original 

forms for the static, low frequency case.  Therefore, model parameter extraction is performed 

on the static model.  

4.2.2.1. Customized Extraction Procedure using Man(H,T) 
 
 One of the biggest disadvantages of the Jiles-Atherton model is known to be the 

difficulty involved with parameter extraction.  Since its introduction the extraction process 

of the model parameters has seen major refinement, but it still involves solving several sets 

of transcendental equations [35].  Part of the difficulty also involves what is considered a 

lack of “fixed points” reference points on the B-H loop.  A modification of the standard 

extraction procedure will follow.  The use of the new equation describing Man(H,T) will be 

used.  In doing so the extraction procedure is greatly eased and the model parameters can be 

solved explicitly.  Beginning with the irreversible component of magnetization, 
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−−
−

=
αδ

 

The value of k is set to that of the coercive field [48] as found from the M-H loops shown 

Figure 3.9.   
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Figure 4.9  Measured family of M-H loops.  The measurement performed on MnZn ferrite 

was used to extract the parameters of the Jiles-Atherton model as a function of temperature.  

The temperature is incremented by 17°C for each loop. 

 

The coercivity was measured to be approximately 17A/m.  For the MnZn ferrite sample 

modeled here k will be treated as a constant.  In finding the other parameters, we will we will 

look at the irreversible component of magnetization. 
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Here k = 17A/m.  Man(H,T) was measured.  Jiles noted that when H = Hc, that the 

magnetization processes involved were only irreversible, and used this in the extraction 

procedure [35].  This author will also make use of this knowledge.  So that 
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Mirr(Hc) = 0 
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and 
dH

)(HdM cirr is given the slope of M at Hc. 

The irreversible component then becomes at Hc is given by 

)(HαMkδ
)(HM

dH
)(HdM

can

cancirr

−
=  

The author would like to point out that according to the model being used when M is 

measured it is measured with the inter-domain coupling coefficient α so that 

)( MHB o αμ +=  

according to the model.  So that the measured anhysteretic magnetization curve does not 

represent Man(H) alone, but rather αMan(H).  At this point, αMan(H) is treated as the 

known term and is used to find Man(Hc).  Once this is done, then Man(Hc) can be used to 

calculate the model parameter α.  Figure 3.23 shows alpha plotted as a function of 

temperature.  The parabolic fit shows good agreement with Figure 3.23. 

29)T-8.74E(6)T-(1.17E-4)-2.85E(  +=α    (3.7) 
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Figure 4.10  The model parameter α modeled as a function of temperature using a simple 

parabolic fit. 

 

Now that the parameters for the irreversible components have been found the parameter 

governing the reversible component can be found.  For the reversible component of 

magnetization, 

))()(()( HMHMcHM irranrev −=  

it is known [35] that the irreversible component of magnetization is essentially zero near 

the origin for small deviations.  In setting Mirr(H) = 0 near the origin, Man(H) will be 

related to M(H) by the parameter c.  Because both Man(H) and M(H) will be zero near the 

origin, we will use the relationship between their slopes to find c.  So that 
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These expressions can be evaluated numerically.  The slope of the initial magnetization 

curve can then be taken as the reversible component.  However, it is helpful to simply 

take the derivative of Man(H,T) and evaluate it at the origin.   
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Here a similar result as before is presented.  Contrary to the results of Wilson [36], Figure 

3.24 shows that the parameter c did not vary with temperature.  The average value 

measured at each temperature will then be used for the value of c.  Therefore c = .242 for 

the data presented here and the last parameter for the static temperature model is known. 

 

 

 

Figure 4.11 The model parameter c governing the reversible component of magnetization 

was found not to vary with temperature. 
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4.2.2.2. Predicted and Compared Results at Static Temperature 
 

The model was implemented in Maple 11 from Maplesoft [49] using the data 

collected in the previous section.  The following is a comparison of predicted and 

simulated results.   

 
Figure 4.12  Measured B-H curve at 30°C of the MnZn ferrite sample. 
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Figure 4.13  Predicted M-H curve at 30°C of the MnZn ferrite sample.  The red curve is 

formed by the setting of the initial condition in the differential equation to begin at negative 

saturation.  Likewise the green curve is formed by the setting of the initial condition to begin 

at positive saturation. 
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Figure 4.14  Direct comparison of measured and predicted B-H curves.  The curve from 

Figure 4.12 is overlaid on top of the curve from Figure 4.13.  The predicted and measured B-

H curves match very well.  Measurement and prediction are made at 30°C. 
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Figure 4.15 Direct comparison of predicted M-H loop at 98°C.   

 

4.3. Dynamic Heating Experiments 
 

In Chapter 2, the idea of a heat flux changing the work done on the sample was 

presented to show that if the work done on the sample cannot be accounted for by the 

hysteresis loss, then the heat flux will cause an offset from the anhysteretic magnetization 

curve.  To prove that this does not occur, the following experiment was performed.  The 

magnetization characterization system was adapted to allow instantaneous triggering of 

the function generator by the thermocouple.  The lid of the test cell was removed, and a 

Thermolyne type 1900 hotplate was used to heat one cup of household vegetable oil to 

approximately 70°C.  The magnetic core at room temperature was submerged into the 
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70°C oil.  When the temperature of the core began to change, the trigger of the arbitrary 

function generator excited the core with a sinusoidal waveform at approximately three 

kilohertz for three cycles.  The magnitude of the saturation magnetization was used to 

determine the temperature of the core, and the change in the width of the B-H loop was 

examined. 

 
Figure 4.16  Dynamic heating experiment showing two B-H curves at the same temperature. 

Both curves overlap each other.  The heat flux into or out of the core has no effect on the B-

H characteristics of the core.  The B-H characteristic is only a function of the present 

temperature of the core. 

 

4.4. Dynamic Temperature Simulation 
 

In formulating a proper dynamic model for the heat flux, it can be said with 

certainty due to the results from the previous section that the pinning loss or hysteresis 

loss rather of the core is directly responsible for core temperature rise at low frequencies. 

 Therefore, the Jiles-Atherton model has been reformulated in terms of time using the 

following substitution 
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dt
dH(t)

dt
dM(t)

dH
dM(H)

=     4.10 
The new model in terms of time takes the form 

  4.11 

with Man(t) being placed in terms of time by replacing H with its associated time-varying 

function.  In this way, Man(t) creates a time varying waveform that it used to predict M(t) 

can be predicted.  Man(t) is given by the following equation 

 

   

4.12 

where the time base is due to the applied field, H(t).  Having M(t) in terms of time allows 

the heat equation to combined, allows the hysteresis loss to be dynamically predicted, 

and therefore allows the heat equation to predict the temperature rise.  Higher frequency 

would follow the same method.  Figure 3.17 shows the simulation of the Man(t) now as a 

waveform.  Such a waveform would exist in the MnZn ferrite tested in these experiments 

if hysteresis loss did not exist.   
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. 
Figure 4.17  Prediction of the Man(t) waveform as a function of time.  The time-based 

Man(t) is used to predict M(t).  Once applied with the remainder of the model, simple 

application of Faraday’s Law will yield a prediction of the corresponding voltage 

waveform. 
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Figure 4.18  Dynamic prediction of the magnitude of M(t).  A periodic singularity now 

exists in the model equation due to the emergence of two time based derivatives in the 

denominator of the pinning loss term. 

 

 If the model is to be truly dynamic, then the static model must be evaluated at the 

instantaneous temperature.  To evaluate the instantaneous temperature, the heat equation 

is symbolically solved in cylindrical coordinates for Robin conditions (i.e., Newton’s 

Law of Cooling) on each side of a cylinder that is equal to the dimensions of the core 

[37].  The forcing function of the heat equation (internal heating) is then related directly 

to the pinning loss that has now a function of time by the thermal diffusivity of the 

material as proven by the previous set of dynamic experiments.  The expression for 
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temperature is then substituted out of the model and the remaining model expression can 

be evaluated for M(t).   

 The following is the analytical expression governing the instantaneous 

temperature of the core that was formulated with the aid of USFKAD [50].  For this 

expression the thermal diffusivity is considered a constant, and is added to the final 

expression once a numerical approximation is performed.  For the expression below, 

finterrior, denotes the substitution of the pinning expression and Ψ denotes the present 

temperature of the core. 
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4.5. Chapter Summary 
 
 The measurement of the anhysteretic magnetization curve as function of 

temperature was performed with the magnetization characterization system.  A highly-

accurate curve-fit for the anhysteretic magnetization curve was performed for a 

commercially-available, MnZn ferrite magnetic core.  Parameter extraction for the 

purpose of modeling the magnetic core as a function of temperature was performed.  All 

model parameters including the anhysteretic magnetization curve have been given a static 

temperature dependence.  A dynamic temperature dependence was described, but the 

comparison to measured data is left to future work.  Using this static temperature 

dependence, predictions of M-H loops were made based upon the measured curves.  

Correlation of experimental and predicted results was good.   
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A series of dynamic experiments were setup to investigate the effect of a heat flux 

on the core from the environment.  In this set of experiments, a MnZn ferrite core was 

dropped in a bath of oil at substantially higher temperature (i.e., approximately 70°C).  

The heat flux on the core was shown to have no effect on the B-H characteristics of the 

core.  This indicated as shown in Chapter 2 that the heat loss is directly related to the 

hysteresis loss of the core and that the hysteresis loss can be used to predict the 

temperature rise of the core. 

An expression for the temperature of the core including dynamic heating was 

formulated using USFKAD [50].  The expression was found by solving the non-

homogenous heat equation with Robin boundary conditions on each side to represent the 

cooling of the core as a function of time.  The expression of temperature contains the 

forcing function, finterrior, to denote the heating caused by the pinning term.  A complete 

dynamic expression for M(t) can then be formulated.  Comparison to of this dynamic 

heating expression to measured data is left to future work. 
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Chapter 5: Frequency Dependent Results. 
 
 
5.1. Experimental Procedure and Results 
 
 

It was postulated in Chapter 2 that the anhysteretic magnetization curve would 

essentially change shape depending on the frequency of the applied demagnetizing 

waveform.  In applying higher frequency demagnetizing waveform, it was thought 

possible that the magnetic domains could not return to their equilibrium condition as 

represented by the low frequency anhysteretic magnetization curve.   

To test this hypothesis, the characterization system of Chapter 2 was used with a 

modification of the demagnetizing waveform.  The pauses in the demagnetizing 

waveform that were placed with the intent of regulating the core temperature were 

removed.  Two hundred cycles of a continuous decaying sinusoid was programmed.  The 

magnitude of the applied field was kept substantially high past the knee of the M-H loop 

where it is prescribed by IEEE standard [45] to demagnetize the core.  The 

demagnetization process and biasing process as described in Chapter 3 were performed at 

several different frequencies.  In doing so, the demagnetizing waveform was made 

contentious.  The following results were obtained for demagnetizing frequencies of 

10kHz, 50kHz, and 100kHz. 
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Figure 5.1  Man(H) measured with different demagnetizing frequencies.  The curve was 

measured at 30°C for a MnZn ferrite.   

 

The decline of Man(H) in saturation observed in Figure 5.1has been witnessed in 

the measurement of the anhysteretic magnetization in the area of magnetic recording 

media [51].  How the mechanisms involved in particular the inability of the core to reach 

true equilibrium would be the subject of future work. 

The most striking characteristic of the curve is that the initial rise of the curve has 

not been altered by a change in the frequency of the applied field.  From a modeling point 

of view, it indicates a few possibilities.  Either no steady state anhysteretic magnetization 

curve exists.  The curve cannot be approached properly.  The overall effect is negligible 

for the experimental range investigated.  The physical loss at higher frequencies is too 

small for the volume of the core under test. 
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5.2. Chapter Summary 
 

The anhysteretic magnetization curve of magnetic core was measured by applying 

a sequence of higher-frequency demagnetizing waveforms at constant temperature.  The 

response of the demagnetizing waveforms was compared, and a change in saturation was 

noted.  The behavior of the waveforms will be the subject of future work. 
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Chapter 6: Conclusions and Future Work 
 
 

Present day electrical systems depend heavily on the area of power conversion to 

supply highly efficient power conversion systems.  A major component paving the way 

for power conversion is the switching power supply, which depends heavily on high-

frequency transformers.  This high-frequency operation is a direct result of the shrinking 

of the magnetic core used to construct transformers and inductors as the shrinkage of 

volume of the core greatly reduces the power loss in the core and the volume occupied by 

the core. 

The nonlinear I-V characteristics of the core depend on the B-H characteristics 

core.  This fundamental relationship is usually termed hysteretic in that the present value 

of B depends on the past value of B.  This nonlinear behavior is difficult to predict and 

can changes as a function of temperature and frequency.  In the area of power electronics 

the application of nonlinear waveforms further complicate the prediction of a magnetic 

component’s I-V characteristics. 

To aid in the design of electrical systems especially power electronics, the development 

of a mathematical model began.  In particular, it was noted that because of the 

nonlinearities involved with temperature and frequency that the modern Spice based 

model, namely the Jiles-Atherton model, did not possess a temperature or frequency 

dependence.
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The Jiles-Atherton model was investigated, and it was found to depend upon the 

anhysteretic magnetization of a magnetic core.  The anhysteretic magnetization of a core 

has two fundamental definitions.  In the Jiles-Atherton model it is known to be the defect 

free magnetization.  This is due to theory that hysteresis is caused by a sort of frictional 

loss that results in the material due to the application of an applied magnetic field.  The 

anhysteretic magnetization is also theorized to be thermodynamic equilibrium.   

Because the effects of temperature could be separated from frequency effects at 

low frequencies of operation, the modification of the Jiles-Atherton model to posses a 

temperature dependency was approached first.  The research therefore concentrated on 

the measurement and modeling of the anhysteretic magnetization, which is a singled 

valued function that could be measured and modeled mathematically.  In doing so, the 

basic temperature model could be formed. 

During the investigation of the anhysteretic magnetization curve, it was found that 

several different functions existed to represent the curve.  Each expression for the 

anhysteretic curve existed not for the purpose of temperature, but for the purpose of 

describing the anisotropy and texture of the material.  None of the present equations 

correctly model the temperature effects of the core with Jiles noting himself that the 

original model did not have a temperature dependence. 

To aid in the research and measurement of the anhysteretic magnetization, an 

experimental setup was constructed consisting of drive electron, a programmable 

function generator, a customized test cell with heating capabilities, and a control program 

designed to measure both the B-H loop and the anhysteretic magnetization curve.  During 
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the design of the system, it was found that no method existed for measuring the 

anhysteretic magnetization of a core without cutting the core.  In doing so, the 

characteristics being measured would change.  The primary difficulty in measuring the 

anhysteretic magnetization of a magnetic core was that it requires the reading of a static 

in time B field (i.e., no induced voltage would be present on the core to read the field.) 

The system was constructed with the advent of a new methodology to measure the 

anhysteretic magnetization by applying a sinusoidal magnetic field to the core by the 

application of two independent current sources.  Data for the anhysteretic magnetization 

was measured as a function of temperature, and the anhysteretic curve was modeled as a 

function of temperature. 

While a primary difficulty in the Jiles-Atherton model is known to be the 

parameter extraction process, the singled-valued function modeled using the described 

measurement technique eased the process.  This is mainly due to the ability to know the 

anhysteretic magnetization directly instead of attempting to model it based on theory.  

The overall extraction process for the model parameters is then simplified.   

For dynamic temperature performance, it was found that the I-V behavior of the 

magnetic core depends solely on the present temperature of the core.  This was proven by 

a set of dynamic experiments in which a temperature gradient was created around a core 

sample using heated oil.  An equation describing the present temperature of the core was 

formulated using USFKAD with the internal self-heating of the core based on the energy 

loss due to hysteresis. 

In examining the frequency dependent effects of hysteresis, it was noted that Jiles 

attempted previously to add frequency dependent effects to the model while neglecting 
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temperature dependent effects.  The equation was reconstructed under a different set of 

assumptions.  The proving of this equation is left to future work.   

It was also postulated, that the anhysteretic magnetization curve could form a type 

of steady state frequency dependency.  In other words, the core would not return to 

thermal equilibrium or the actual anhysteretic magnetization curve because the material 

would not be allowed to relax at higher frequencies.  A set of experiments was performed 

to test this hypothesis.  The magnetic core was demagnetized at different frequencies and 

its value was measured.  While the results are different than that of the low-frequency, 

anhysteretic magnetization curves, the interpretation of the results is not fully understood. 

 The remaining frequency work and its interpretation is left to future work. 
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