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Abstract 
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Washington State University 
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Chair: Vaithianathan Venkatasubramanian 

 

Electric power systems are large nonlinear dynamical systems and therefore require 

unique control designs compared to the linear systems engineers often encounter. A special 

characteristic of the power system is structural change as a control option, with end-point 

stability the objective. However, these structural changes are not always treated rigorously 

when control systems are designed today. This research investigates the theory of control 

through structural changes and shows the need for an optimality based approach. A control 

framework is then created that considers both state trajectory and control action performance 

measures. Recovery to a stable operating point is through rapid and minimal control actions, 

which simultaneously are selected to constrain the dynamic response of relevant state 

variables along the path towards stability. The approach is well suited for responding to high 

order contingencies. These contingencies, while rare, are difficult to mitigate with existing 

controls, and can lead to cascading system collapse. 
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Subsequently, several realizations are researched, designed, analyzed, and validated. 

The first is a solution that places few constraints on implementation complexity. It is model-

based and predictive for control selection. Then, an improvement is developed that decreases 

computational requirements by reducing the space of admissible controls. A method to select 

this space that exhibits minimal impact on system disturbance response is invented. Finally, 

the optimality constraint is relaxed, but in a manner that maintains much of its original 

benefits. No model is required. Each of these instances demonstrate robustness to parameter 

errors,  robustness to control actuation failures, robustness to modeling errors, and a 

significant improvement in the disturbance size the controller can tolerate while driving the 

system to an acceptable solution, compared to present approaches. Performance trade-offs 

between optimality of the selected controls and computational demands of the controllers are 

investigated. Experimental validation of results is demonstrated with the IEEE 39-bus test 

system. 
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1.0 INTRODUCTION 

 

This chapter summarizes the dissertation motivation. Existing literature is surveyed. 

An overview of the dissertation research is provided along with a summary of key 

contributions. 

 

1.1 Motivation 

 

The electric power system provides critical infrastructure for society and it must 

maintain a specified level of performance even during severe unexpected disturbances. The 

system is also very large, highly nonlinear, and with time varying characteristics. 

Furthermore, it exhibits the unique feature of structural changes as the initiating disturbance 

and often the disturbance response. This is in contrast to most controlled systems cast as a 

time signal arrangement. The engineering challenge to meet required performance is 

simultaneously difficult and interesting. 

Consider the problem of designing a system with synchronized power generating and 

receiving devices, spread over thousands of kilometers, and interconnected with a mesh 

network carrying all power exchanges. Although rotating in isolation, generators are 

electrically coupled. Power consumers continuously switch in and out of service. The demand 

quantity and electrical characteristics of loads are never constant. Power flows in the system 

are very large, with individual generation stations capable of delivering on the order of 1,000 

megawatts (approximately 1,300,000 horsepower) of power and the total capacity in the 
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United States alone near 1,000,000 megawatts (1 terawatt). The dynamics of every device is 

intertwined with all of the other machines and devices in the system through a network of 

connections, and that network itself varies in both topology and electrical capability. All of 

these dynamics are nonlinear in nature. The electric power system is perhaps the largest, most 

complicated man-made machine ever created and is considered one of the great engineering 

achievements of modern time [1]. 

The nonlinear nature of the electric power system deserves special attention. Well-

developed mathematical theory and analysis exist for linear systems and nearly all commonly 

known areas of science and engineering are approximated as linear. Electromagnetic radiation 

described by Maxwell’s equations follows linear relationships and, although complicated, at 

least the mathematics of quantum mechanics is linear. For linear systems the whole is exactly 

the sum of the parts. Decomposition into constituent pieces is allowed, as is individual 

analysis, and subsequent reconstruction into mathematically tractable and understandable 

explanations makes problem solutions neat and organized. 

In contrast, with nonlinearities, even the simplest systems become impossible to solve 

almost immediately [2]. John Guckenheimer has written, “We must start by admitting that 

almost nothing beyond general statements can be made about most nonlinear systems” [3]. 

The practical unpredictability of chaotic behavior emerges starting with only three time-

invariant nonlinear differential equations. Now consider that the electric power system 

consists of not three nonlinear differential equations, but at least hundreds or thousands of 

nonlinear differential equations [4]. So, the challenge for the power engineer is to design and 

maintain a system that is critical to modern society and must operate with near perfection, 
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while simultaneously the system is mathematically described at a level where the theory is 

exceptionally challenging. 

One strategy that helps avoid nonlinear complexities and aids in reliable power system 

operation is keeping the system near its equilibrium point. During normal operation, generator 

rotors rotate in synchronism and their relative angles maintain slowly varying relationships. 

Also, power flows remain steady. The voltages and currents in the system stay within well-

understood ranges. Oscillations are small and under control. Equilibrium operation allows 

linearization of the system both for analysis and design of controllers. As long as the power 

system operates in historically consistent ranges then unreliable behavior is avoided and this 

is the case most of the time. 

However, the electric power system does not operate in isolation. It is subject to a 

variety of external events that are often very significant, such as severe weather, structural 

failures, and, more recently, the stochastic nature of renewable generation sources. When the 

system suddenly demands an excessive change in energy, rotors can experience large 

excursions, even to the point of swinging outside of their normal equilibrium relationship. 

Special care is required to keep the system stable during these excursions. Systems that 

tolerate disturbances while maintaining stability enable safe, high energy transfer over 

existing transmission lines, and, especially important today, enable increasing the penetration 

of new generation sources such as wind and solar. 

Hierarchies of protection and control are employed to ensure reliable operation when 

the system moves too far from its equilibrium state. The lowest level of defense is local 

protection, which disconnects selected components of the system after detecting faulted 
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conditions. Protection at this level utilizes localized signals to make decisions, and is 

responsible to control local network sections. At the highest defense level, system operators 

monitor and control wide sections of the power system. During a disturbance, operators are 

often confronted with complex situations and must make difficult decisions in relatively short 

time-spans. 

For some potential disturbances, the required breadth of decision making information 

exceeds what is available at the local level and the maximum time allowed to make the 

correct decision is less than what is humanly possible at the operational level. In these cases, 

system integrity protection systems (SIPS), also sometimes called remedial actions schemes 

(RAS), collect wide-area information and make automated decisions with the intent of 

preserving the system and keeping performance within acceptable limitations. The integrity of 

the system is equated with a stable disturbance response and acceptable performance limits 

are equated with important states remaining within specified ranges. 

Power system stability theory is divided into several classifications, to reflect the 

different physical cause of instability modes, the different size of disturbances, and to make 

clear relevant time-spans, devices, and processes involved [5]. Voltage stability relates to the 

ability of the system to maintain system voltages within certain limits. The electric power 

system today is designed such that power is controlled through current variations while 

voltage is held constant. Declining voltage violates design assumptions resulting in an 

increase in current to maintain the power draw, which can act as a positive feedback driver to 

further push voltage lower until the system collapses. Frequency stability relates to the ability 

of the system to balance power delivery and power demand. Rotor angle stability, also known 
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as transient stability, is a class specific to the electromechanical nature of most generators 

driving the electric power system. When rotors are unstable they swing through extra cycles. 

This disrupts generated power, can damage equipment, and lead to other forms of instability. 

Good system planning, including well designed local protection and SIPS help prevent 

instability. These approaches result in very reliable systems by identifying contingencies that 

lead to instability and designing solutions for each individually. However, it is not always 

possible to plan for every contingency. Typical expectations are stability for all single, 

denoted (N-1), and sometimes credible double, denoted (N-2), contingency failures. In a 

system with N lines there are N possible single line failures and  
 
 
  possible double line 

failures. Electric power systems are characterized by large numbers of connections and it is 

not always practical to consider additional failures cases, with  
 
 
       possible 

permutations. For example, a minimal version of the New England power system includes 46 

connections, resulting in    , or over four trillion possible line outage combinations. This 

number is further increased when other failure modes besides transmission lines, such as 

stuck breakers, are included in the considered contingency set. 

Fortunately, as   increases, the probability of a given contingency occurring rapidly 

decreases. Given equally likely and independent statistics, the probability of   simultaneous 

line outages is   ,where   is the probability of a single line outage. Often it is appropriate to 

neglect all k > 2 cases. And yet, because electric power is very important in today’s high 

technology world, systems and methodologies able to tolerate rare, difficult to predict events 
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are worth investigating. Larger-order transmission contingencies decrease overall reliability 

and increase the risk associated with them [6][7]. 

In addition to the large possible failure space, another challenge for system reliability 

during SIPS design is model accuracy. Ability to distinguish stable from unstable system 

responses is a function of model parameter accuracy and model structure. For preplanned 

controls, the model parameters are effectively fixed by the time the system is put into service. 

Parameter uncertainty may force the preplanned scheme into more conservative responses 

than minimally necessary. For example, shedding extra generation or load in order to reach a 

satisfactory guarantee the resulting system configuration is stable. 

The electric power industry needs continued innovation in the area of control methods 

for large nonlinear systems that help improve reliability. Advancements in theory and design 

are required. This dissertation contributes to both. 

 

1.2 State of the Art 

 

The first step in controlling something is measuring it. Unfortunately, the physical size 

of the electrical power system makes a measurement of its state difficult. For example, 

consider the challenge of measuring the voltages and currents at every bus. There might be 

thousands of substations, each separated by hundreds of miles. Historically this impeded 

development of wide-area feedback-based control schemes because accurate state 

measurements, or, at least, good estimates, are required. Time-synchronized phasors, also 

known as synchrophasors, utilize a global timing signal to place a precise time-stamp on each 
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network measurement. This measurement approach was initially proposed in the 1980’s [8], 

with further theoretical development in the 1990’s [9]. Deployment of the Global Positioning 

System [10] provided a convenient source of the timing signal. During the decade of the 

2000’s phasor measurement units (PMU), devices that measure the power system network 

state with a precise time-stamp, became available at low cost [11][12] and deployed for many 

applications [13]. These advancements enable fast, high quality, and time-aligned 

measurements of the power system network state. 

For the innovation developed in this dissertation, knowledge of system machine states 

is also necessary. A relatively recent advance in the area of time-synchronized measurements 

is in the measurement of electrical machine rotor angle [14][15]. Also, research results are 

appearing for measuring other electrical machine state variables such as excitation signals 

[16]. Time-synchronized measurement of the network state and the machine state are 

foundational technologies for the research in this dissertation. They provide the measurements 

which make new wide-area control methods possible. 

Two other technology advancement which make new control methods possible are fast 

reliable communication networks [17] and high speed computing. Delay in control actions is 

almost always destabilizing to feed-back controller performance. Processing time to calculate 

decisions results in delay and for wide-area systems the communication network latency 

directly counts towards control loop delay. This dissertation is not intending to solve all of the 

various implementation issues but it is helpful that continuous advancements in these areas 

make approach such as the ones developed in this dissertation more implementable. 
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The most common methods today for wide-area system integrity protection are offline 

planning with look-up tables [18], as mentioned in the previous section, and direct energy 

function methods [19] including the equal area criterion [20]. The preplanned methods are 

very fast because they sense topology changes, which often precede signal changes. But they 

have limited adaptability to changing system topology and state, are susceptible to modeling 

and parameter errors, and do not provide a framework to move functionality from saving the 

system, a protection operation, to controlling the system such that the protection operation is 

either no longer necessary or becomes an even more rare event. Feedback control with 

synchrophasors and a voltage magnitude measuring system have been developed as well [21]. 

An emerging control approach for nonlinear systems is finite horizon, model based 

prediction. Model based prediction control was originally formulated for complex control 

applications such as chemical processing [22]. It has been applied to electric power for control 

of voltage related stability [23][24][25]. The single machine equivalent method includes 

prediction in a transient stability control scheme along with an optimality approach for 

generator control [26][27][28]. Relating to transient stability prediction, a real-time simulation 

approach for stability assessment through prediction has been developed [29]. Rotor angle 

stability prediction has been investigated [30][31], as assessment, which is a first step for 

subsequent control. Applications with model predictive control to damp small and large signal 

oscillations [32][33] have been reported. 
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1.3 Formulation 

 

Power systems often apply structural changes as control and yet fundamental theories 

of this approach are immature. Therefore, a theoretical framework is developed in this 

dissertation. A key result of this new theory is showing that an optimal formalization is 

necessary to properly selected between competing viable structures. Also, a new class of 

control instability is identified. The driving forces of control instability are analyzed. 

The present research then applies this new theory to design a feedback controller that 

reflects the full nonlinear nature of the system which it controls, and finds a solution optimal 

in the sense of minimizing state trajectory and actuation costs. The design is feedback 

iterative for robustness and built for real-time implementation. Realizations include both 

model driven with prediction controllers as well as a model-free with buffered measurement 

controller. The research includes both theory and analysis in coordination with the design. 

The resulting solutions are shown to provide several benefits. They stabilize higher 

order contingencies than preplanned schemes are capable. Costs are included in decisions. 

States are tracked and controlled over the full transient trajectory. The iterative, feedback 

nature of the controllers improve robustness to modeling errors and state initialization errors.  

Such feedback also increases robustness to actuation failures. Application of either short-

window prediction or historical measurements, both with feedback, mitigates some of the 

nonlinearity challenges because the response adapts to conditions outside of the forecast. The 

controllers can respond therefore to unanticipated events. The system captures complex levels 

of modeling detail in control selection, unlike approaches such as equal area [20]. Finally, 
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these controllers are shown to exhibit good performance even with limitations in control 

options and with system feedback delays due to communication latencies. 

The developed method is applied specifically in this dissertation to correct transient 

instabilities. This provides a  tangible environment for explaining the concepts. However, the 

framework and control methods developed also apply to correcting other types of instability, 

when the control response is through structural changes in the system. Rotor angles for a 

transiently unstable power system experience large deviations and this can lead to generation 

falling out-of-step with the rest of the system. A benefit of the new controllers is correcting 

this condition through structural changes prior to the system separating in an uncontrolled 

manner. 

An important constraint on real-time control for transient stability is response time. 

The initial feedback controller developed in this dissertation requires significant 

computations. This is because of its optimal theory based approach, which can suffer from a 

“curse of dimensionality” [34]. Methods exist to improve computational performance [35][36] 

but are not easily applicable to the system designed here because of its nonlinear nature and 

the method of control through structural changes. Therefore, simplifications to the controller 

are designed. A classification algorithm is developed which reduces the space of admissible 

controls in a manner that does not prune structures which lead to an acceptable cost result. 

Then, a model free solution is designed which requires only historical state measurements. 

Controllers developed following the principles of both are shown to successfully stabilize 

transiently unstable systems. However, the trade-off is a less optimal control selection. Also, 

the applicable space of unstable systems is reduced. These results are shown experimentally.  
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1.4 Contributions of the Dissertation 

 

1. A new framework for controller design that acts through structural changes and 

dimensional reduction is proposed. 

2. It is demonstrated why applying structural changes as control requires a cost-based 

approach [37]. 

3. A form of instability due to excessive control actions is identified [37]. 

4. Optimal control for large signal transient stabilization, using discrete dimensional 

reduction as the control method, is developed and analyzed [38] [15]. The algorithm is 

designed along with experimental validation [37]. Somewhat related, the requirements 

of real-time control to the communication network is examined [17]. 

5. A classification method that reduces the computational demands of the controller is 

designed, analyzed, and demonstrated experimentally [39]. 

6. A model free historical measurement based controller is designed, analyzed, and 

demonstrated experimentally [40].  
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2.0 THEORETICAL FRAMEWORK  

 

This chapter develops a framework relating to systems which control through discrete 

structural changes, including dimensional reduction. Electric power systems have long 

allowed structural changes as control actions. However, what is needed is a design 

methodology that formalizes this approach and can provide the foundation for new control 

solutions. 

 

2.1 Foundation 

 

Consideration is given to differential equations with the form specified as follows. 

          2.1.1 

 

The vector         is the system state, and         . The       is a nonlinear vector 

field, and each structure index   is for a different system. The theory places no constraints as 

to how the systems relate to each other. 

Control is through discrete changes in the structure of the system, indicated by   , 

which allows the progression of time through index  . No signal based controls are 

considered. If a continuously acting control is needed, then it is incorporated into the method 

through quantization and then including as a separate structure. This is in contrast to a more 
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typical control system, of the form          , where   is a control acting in a time-series 

manner as a signal input to the system. 

The method of control developed here is unusual for control theory, but not unusual 

for power systems. Consider load shedding. This is a discrete structural change that, at most, 

eliminates a set of differential equations from the system, or, at least, step-changes the 

existing differential equations. If any differential equations are eliminated, it is identified as 

control through dimensional reduction. Then, the system is allowed to evolve along a path as 

determined by whatever existing dynamics and controls are in place. The fact that existing 

controls are left to drive the system according to their pre-designed nature is an important 

concept. This research does not seek to actively modulate existing closed-loop controls. 

Instead, it step-changes the structure of the system, with the goal of allowing existing controls 

to take the system towards an equilibrium point of their design. 

A simple example gives some insight into the range of structure index  . Consider the 

case where each set of state collections corresponds to a unique structure and no other 

structures are available to the system. In this case              
 
 
              

   

  , which represents all possible combinations of states. If there are initially three state 

variables,    , then     is associated with a state vector that includes all three states. 

Subsequently,     is associated with a state vector that includes, for example, states 

       ;     is associated with a state vector that includes states        ;     is 

associated with a state vector that includes states        ;          are associated with state 
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vectors that include single states               ; and     is for a null system, with no 

states. 

In general there are multiple structures available for a given set of states. Given the 

previous example, perhaps five structures exist for a system composed of states      . The 

result is five sets of two differential equations. Therefore, the range of the structure index   is 

           where each value is not necessarily associated with any specific dimension of 

the system, and where   is system dependent. The only constraint is that     is the starting 

system and has dimension  . 

 

Control Objective 

The objective is to design a sequence              such that 

1.      is transferred from its initial state to a target region  . 

              2.1.2 

 

2. A performance measure, or, cost, is minimized along the trajectory to  . 

            2.1.3 
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Constraints 

The solution is subject to four constraints. 

1. Equation 2.1.1. 

2.                . This is the set of admissible structures, as selected by 

admissible controls. There is a slight difference between admissible structures and 

admissible controls. The controls are actions that take the system from one structure to 

another. Because admissible structures and admissible controls are closely related the 

terminology is used interchangeably when the distinction is immaterial. In a typical 

control system, the admissible controls are in terms of signal ranges and signals 

meeting limits. In the case considered here, when control is through a series of 

structural changes, the admissibility constraint is because of the requirement to remain 

with a subset of the set of all possible structures. Considering the load shedding 

example, there are often loads that are not available for removal because of their 

importance. Another example is a dynamic brake located at a specific bus. A 

controller calling for dynamic brake insertion at a location where not installed is 

disallowed. 

3. Structures cannot repeat as the result of a control action, unless a subsequent 

structural change has restored the original structure. Once a load is removed from the 

system, the controller cannot remove that load again. Similarly, if a generator is 

removed from the system, or, if spinning reserve generation is added to the system, it 

is meaningless to try removing or adding it again. An example of allowing a repeated 
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change is if a generator is removed from service and later is placed back into service. 

In this case the original removal action is allowed to repeat. 

4. Consider exclusively structures and controls which depend on the present or 

previous states and the previous history of controls. 

 

2.2. Structural Changes and Equilibrium 

 

A structural change is visualized as shown in Fig. 2.2.1. The phase portrait on the left 

is a representation of the initial dynamical system, with vector field         . The control 

action transforms the vector field          to       , as shown on the right, and the state 

     in system on the left is transferred to state   . Transferring to the new system can 

involve eliminating a set of states as a form of dimensional reduction driven control. At the 

instant after transformation, states in the new system have identical values to their 

corresponding initial state values in the original system. In the course of this reduction, 

parameters in the new space can change. Historically, the hope has been that the new 

dynamical system contains stable equilibrium points and that the initial state    is within a 

domain of attraction of a stable equilibrium point in the new system. In contrast, the method 

developed here provides a framework to design a system that achieves this objective. 
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Figure 2.2.1. Phase portrait (stylized) response to control. 

 

Again, control through structural change is not a method of actively guiding the state 

along a trajectory towards a stable equilibrium point. Instead, this is a discrete control method 

that relies on existing control schemes to provide that transfer. The role of structural change is 

to modify the composition of the phase portrait such that within this new dynamical system 

the initial state is in the region of attraction of a valid stable equilibrium point. One way this 

can happen is when the location of equilibrium points, the number of equilibrium points, and 

the stability characteristics of these points remain the same in           and       . When the 

state is projected into the new space,       , it becomes within the domain of attraction of an 

equilibrium point and is transferred to that point by the dynamics of the new system. Another 

possibility is when the nature of equilibrium in          and        are different, and in the 

new space the mapped state is within the domain of attraction of a stable equilibrium point. 
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Consider a simple nonlinear dynamical system, Eqn. 2.2.1 [41]. The phase portrait is 

shown in Fig. 2.1.2 with     and    . This system is defined by vector field     
 
   . 

 
            

        
2.2.1 

 

There are two fixed points in this system, one at              and one at            . 

The first equilibrium location is a saddle-point and the second is a stable node. Stability of 

any given instance of this system depends on its initial conditions. The initial state       

         leads to instability because the state variable   increases without bound. This point 

is shown by the dark circle in the upper left corner of Fig. 2.2.2. 

 

Figure 2.2.2. Phase portrait for first example. 
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Setting     eliminates state variable  , and reduces the dimension of the system by one. 

The new dynamical system is defined as      . This is an example of controlling the system 

by dimensional reduction. The new system is globally stable. However, the dynamical 

equation         has no changes to the value of the equilibrium point for  . Notice in Fig. 

2.2.2 that state   always converges towards an equilibrium    , even when state     . 

 A modification to Eqn. 2.2.1 provides an example of the case when dimensional 

reduction changes the nature of an equilibrium point for  . The vector field is     
 
   . 

 
            
            

2.2.2 

 

The phase portrait for Eqn. 2.2.2 with the consistent values of   and   is shown in Fig. 2.2.3. 

There are two fixed points in this system, one at                 and one at       

       . The first equilibrium location is a saddle-point and the second is a stable node. 

Setting     again eliminates state variable  , and reduces the dimension of the system by 

one, now defined as      . The new system is stable. However, unlike the previous example, 

in this case, the equilibrium points for   change. Setting     and keeping   at its original 

value shows the opposite case, where the new system is not stable. 



 

 

 

20 

 

 

Figure 2.2.3. Phase portrait for second example. 

  

These examples have demonstrated various cases for what can happen to equilibrium 

locations after structural changes. The responsibility of the controller is to select the correct 

sequence of structures, which may include dimensional reduction, such that the new dynamics 

transfer the initial state to the target region  , and do so in a manner that meets performance 

objectives. 
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2.3 Controllability 

 

The present method builds on a power system characteristic of structural system 

changes as both the initiating force of instability and an available control actuation 

mechanism to recover. Implementing control as a step change in system structure is not a 

typical approach outside of the electric power industry. Figure 2.3.1 illustrates a common 

control system architecture. The controller drives the system   with a signal input. The 

controller does not change the structure of the system  . However, in electric power systems 

actions like generator tripping, line tripping, series compensation, and load shedding are 

structural changes to the system  . 

controller system, G
reference output

 

Figure 2.3.1. Typical control system block diagram. 

Often when electric power is stabilized with emergency controls the primary objective 

is stabilization. However, with full freedom to change   it is apparent that stabilizing any 

contingency is possible, and from any post-contingency initial state. This is true as long as 

states removed through dimensional reduction are defined as included in target region  , per 

Eqn. 2.1.2. For example, removal of unstable states as is done when tripping a generator is a 

structural change. In this case, if the remaining system is transferred to a stable equilibrium 

point, then the control action is considered successful. It is acceptable that the state variables 



 

 

 

22 

 

associated with the generator are removed from the system and, by definition, their values are 

included in  . The perhaps surprising conclusion is that if stability is always achievable then 

the design focus shifts from merely stabilizing the system, towards stabilizing the system at 

minimum cost. 

An initial state    of a control system is defined as controllable if a set of admissible 

controls      are available that can transfer the state to the target   in finite time. The set of 

all initial states that are controllable is called the controllable set [35]. If the initial states are 

held at the target then, in a broad usage sense, the system is stable for those initial states. The 

domain of attraction is the set of initial states that are taken to the target region [35]. Because 

the control system developed here works through structural changes, and then allows the 

system to evolve under its existing control mechanisms, there is really no way to guarantee 

that the system reaches its target asymptotically. Furthermore, such a characteristic is not 

important for this application. As long as the system is taken from instability, to a point in a 

new structure where it is within the domain of attraction of  , then time and resources 

become available to the existing controls to finish the task of bringing the system to its final 

desired state. 

If the set of admissible controls includes the ability to switch all sources and loads, 

then one of the available responses for a large contingency is to completely disassemble the 

electric power system, removing all generation and all loads. The system is at a target   

because of the allowance to dimensionally reduce the system. The problem with this approach 

is that the cost of these control actions is not considered. Removing generation involves 

eliminating a revenue source. Removing load involves disconnecting people from 
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infrastructure that is critical to modern life. This simple example demonstrates why it is only 

possible to design control based on structural changes if the cost of controls are included in 

the design. However, this is not always the method applied today when designing controls for 

electric power systems that include structural changes. Additionally, it is desired that electric 

power states remain within certain limits, even during transient evolution towards a stable and 

acceptable equilibrium point. So, cost of state deviation from an acceptable path is also 

important to measure. This dissertation shows how to include control and state deviation costs 

in a controller based on structural changes. 

Excessive disassembly of the system is a form of control driven instability, defined 

later. For example, during the 2003 East Coast blackout some lines were opened, as designed, 

because large signal excursions were detected [42]. The system eventually settled to a stable 

equilibrium point and if stability was the only measure, then the resulting configuration 

should be considered successful. But it is widely agreed that the cost to bring the system to its 

final state was excessive. A less expensive solution was possible if the controls acted 

different. It was the existing controls themselves that drove the system to an unacceptable 

state, implying that stability analysis and control without considering in-place controls is not 

always useful. 
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2.4 The Cost Metric 

 

The task of developing an appropriate cost metric starts with a specific example. 

Consider the Kundur 2-area system, as shown in Fig. 2.4.1. This system is modified by the 

doubling of each generator, with the purpose of providing extra granularity in considering 

various control options. Each generator is set to deliver one unit of power. The loads are 

arranged so that the power draw at bus #12 is six times the power draw at bus #10. Therefore, 

significant power is flowing from left to right, through line 10-11. 

1

2

3

8

4

5

7

6

9
10 11 12

13
14

 

Figure 2.4.1. Kundur 2-area system. 

Because this dissertation is particularly interested in higher order contingencies, the 

case where three of the four lines connecting bus #10 to bus #11 fault and then disconnect 

from service is investigated. The fault is set to persist on the line for 500 milliseconds prior to 

tripping. The result is a significant accelerating power at each generator. The initial system is 

defined as      . During the fault, the system is given by a new set of differential equations 

because of the structural change of the network connected to a low impedance load. This 

system is defined as      . After the fault is cleared, the system structure has again changed 

and the resulting equations are defined as      . 
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Figure 2.4.2 shows the resulting state trajectories. The upper left figure is the rotor 

frequency at each generator. The system electrically splits into two loosely connected islands. 

The larger frequencies correspond to generators one through three, who support only the light 

load at bus #10. The lower frequencies correspond to generators four through seven, 

connected more closely to the heavier load at bus #12. The lower left figure shows the rotor 

angles. Finally, the right figure is the voltage magnitude at each bus. During the fault, which 

lasted from time 1 to 1.5 seconds, the voltage is severely depressed. After the fault the 

voltages recover but then oscillate as the system becomes unstable. 

 

Figure 2.4.2. Long duration fault on line 10-11 prior to clearing. 
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The minimal solution to recover stability is removing generator #2 and the system 

becomes defined by      . In this case, because a generator is removed from service, all of its 

differential equations are also removed. The dimension of the system is reduced by the 

dimension of the subset defined by the equations of generator #2. Figure 2.4.3 shows the 

result when this generator is removed at 100 milliseconds after the fault is cleared, followed 

by removing 16% of the load at bus #12 at 200 milliseconds after the fault is cleared. The 

system after removing the load is defined as      . So, the dynamical equations for these 

structural changes are as follows:                              . The first three sets of 

vector fields are outside of the actions of the control system. Once guided by the dynamics of 

     , a hypothetical (as yet, not designed) control system then responds by directing the 

system to further change through the second two vector fields, and the final system is      . 

 

Figure 2.4.3. System response for simple structure sequence. 
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This control sequence is not the only option available to stabilize the system. In part 

because of the ability to change the system structure, a large number of control options are 

available, all with similar final results in the sense that the system is brought to a stable 

equilibrium point. Control through structural change means the equilibrium point for each 

option is not the same. Fig. 2.4.4 shows the response when generator #2 is removed at 100 

milliseconds after the fault is cleared,      , followed by removing 32% of the load at bus #12 

at 200 milliseconds,      , then generator #5 is removed at 300 milliseconds,      . 

Comparing Fig. 2.4.3 to Fig. 2.4.4 makes it clear that the evolution of the system and the final 

states are nearly identical for these two different sequences of controls. 

 

Figure 2.4.4. System response for second structure sequence.  
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A further example control sequence is tripping generator #2, which is system      , 

then removing 65% of the load at bus #12,      , then tripping generator #5, now       

because of the load removal, then generator #3, called      , then generator #6, called       . 

The control actions are at 100, 200, 300, 400, and 500 milliseconds after the initial fault is 

cleared. The result is shown in Fig. 2.4.5. In this case the signals experience a much wider 

deviation and the final voltage values are low compared to their initial values. However the 

system response is stabilized. 

 

Figure 2.4.5. System response for third structure sequence. 
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What is needed is a way to quantify the difference between these and other sequence 

options. This difference then can provide a basis for the design of an algorithmic selection of 

the best approach. Without such a method, there is no consistent methodology to select 

between control alternatives. One is left with a system, a disturbance, and a response but no 

way to know whether that response represents an acceptable cost behavior, or how it 

compares with other available options. Even when the system is stabilized this result is not 

necessarily a sufficient outcome because the power system is always eventually stabilized, 

even during a blackout. A measure of the goodness of the response and the controls selected, 

compared to other possibilities and compared to a target, is needed. 

A solution to this problem is designed here that measures the amount that the 

evolution of each signal deviates from a desired value. This difference is then numerically 

integrated over the course of evolution. Prior to summation, each term is squared and the 

result is a mean squared error. A mean-squared formulation provides a strong signal 

correlation with good noise immunity [43]. This becomes important later when it is desired to 

decrease the length over which the measure is computed. The general form of this metric is 

given in Eqn. 2.4.1. The value   represents a state of a particular type. The cost of this state, 

as measured by its deviation from a target    is       . The index   represents a time sequence 

and the index   represents individual states of type  .        is the cost for a specific state  . 

The cost is computed over a window of size   and is scaled by  . 

        
 

  
 

         
 

  

   

   
 2.4.1 
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The total cost for a given type of state is equal to the summation of each individual state 

value. 

           
   

   
 2.4.2 

 

A measure for each of the key signals related to transient stability problems; rotor 

angle, rotor frequency, and network voltage magnitude; is developed next. Although rotor 

angle and frequency are fundamental to transient instability, perhaps it is not immediately 

clear why voltage magnitude is included in the set of state costs. One reason is because 

control actions may involve removing generation. An advantage of generation tripping is 

correcting a rotor that has swung past its point of stability. The disadvantage is that a source 

of reactive power is simultaneously removed from the system. Therefore, a practical reason 

for including voltage magnitude is to help select controls that compensate for voltage 

excursions. Also, voltage is a system signal that is required to remain within certain ranges 

and therefore tracking to select controls that keep it within those ranges is important. Finally, 

voltage can help anticipate transient instability [21] [30]. 

For rotor angle there is no time-independent target value available. This is because 

even in steady state, the angle linearly increases if the frequency is offset from a nominal 

value. Creating a reference for generating the target value begins by defining a center of 

inertia angle. Similar to Eqn. 2.4.1, in Eqn. 2.4.3 the index   represents a time sequence and 

the index   represents individual states. The total number of machines in the system is  . The 
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inertia of each machine is  . The center of inertia angle represents the angle of a hypothetical 

machine, rotating at a frequency set by the averaged effect of all machines in the system. 

        
       
   
   

   
   
   

 2.4.3 

 

Each machine is then referenced to the center of inertia. 

                   2.4.4 

 

The target value for each machine in the system is set equal to the average of the 

center of inertia angle,    , over a window of observation. The resulting cost follows from Eqn. 

2.4.1 and Eqn. 2.4.4. 

        
 

  
 

            
 

  

   

   
           

2.4.5 

 

The metric for rotor angle is not based on a specific target value of rotor angle. What it is 

measuring is how much the angle is different from its average, and all referenced to the center 

of inertia angle. A low cost indicates that the machine angle, referenced to the center of inertia 

angle, maintains a close proximity to its average value and changes minimally from this value 

over the measuring window. The metric is normalized so that if the difference is equal to   

the cost is unity. 
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 For frequency the cost is based on a reference frequency    . This is set to the nominal 

system frequency in this section, or other values as described later in the dissertation. The 

normalization is based on the target frequency expected to provide unit cost through       . 

For example, it is often desired that the frequency of the power system remain within +/- 50 

milliHertz of the reference. In this case                         . 

        
 

  
 

          
 

      
 

   

   
           2.4.6 

 

For voltage magnitude cost is calculated by comparison to a reference voltage     that is equal 

to the equilibrium value at each bus prior to a disturbance. Subsequent sections of the 

dissertation also select other values. The normalization value      is determined according to 

the desired voltage limits. A typical value of      is     volts. 

        
 

  
 

          
 

    
 

   

   
           2.4.7 

 

Compute the combined metrics by summation over the individual values. 

           
   

   
 2.4.8 

 

           
   

   
 2.4.9 
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The voltage metric is scaled by      
 
 to account for the difference in number of buses   

compared to number of machines  . 

     
 

 
 
 

       
   

   
 2.4.10 

 

The total cost of the state deviation is equal to a summation of the individual costs.  Applying 

a summation follows consistently with the approach of summing the individual set of states, 

Eqn. 2.4.2.  It is possible to weight the summation terms, for example giving the rotor angle a 

higher weight than the voltages for transient stability control. Such further refinements to the 

general method developed here are not considered but are options in the future to provide 

possible incremental benefits in control selection. 

                 2.4.11 

 

Now, consider these metric values applied to the various control options considered in 

the previous example. Table 2.4.1 lists the results. The very large metrics for the case without 

control actions simply show that the system configuration is unstable. For the second case, the 

system is stabilized and this is reflected by dramatically smaller cost metrics. The third case 

results in a slight improvement in the value of all metrics. Finally, the fourth case results in a 

larger voltage cost metric. For each of these examples, comparison of the metrics with the 

previous figures shows good correlation between the numerical values and what is expected 

based on a visual inspection. For example, the third case improves    over the second case, 

which is consistent with the initial swing of frequency for the second case exceeding -200 
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milliHertz while the initial swing of frequency for the third case is better than -200 milliHertz. 

The fourth case voltage cost is significantly higher than that for the second or the third cases 

and this is reasonable given the generally depressed voltages seen in Fig. 2.4.5. 

 

Table 2.4.1. State cost comparison 

Case Figure # Control Sequence          

1 2.4.2 None 1,541,418 165,413 194,327 

2 2.4.3 Trip gen #2 @100ms 

Shed 16% bus #12 @ 200ms 

0.0094 0.0236 0.0304 

3 2.4.4 Trip gen #2 @ 100ms 

Shed 32% bus #12 @ 200ms 

Trip gen #5 @ 300ms 

0.0072 0.0162 0.0277 

4 2.4.5 Trip gen #2 @ 100ms 

Shed 65% bus #12 @ 200ms 

Trip gen #5 @ 300ms 

Trip gen #3 @ 400ms 

Trip gen #6 @ 500ms 

0.0069 0.0115 0.3454 

  

Based on the results of Table 2.4.1, it might seem that the controls for case #3 are best 

because they provide the best overall metrics. However, case #3 requires shedding extra loads 

and tripping an extra generator. Table 2.4.1 does not capture these actions numerically. This 
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demonstrates that a metric based on the cost of the controls themselves also needs 

consideration. 

One possible solution is to extend the mean-squared error approach to include the 

control actions. Given    as a sequence of control actions leading to a sequence of dynamical 

systems, Eqn. 2.4.12 shows how the control sequence is referenced against a target control 

and then normalized. 

 
 

  
 

       

  

   

   
 2.4.12 

 

 Summation of Eqn. 2.4.11 with Eqn. 2.4.12 provides the foundation for very common 

optimal based control methods such as linear quadratic regulators (LQR) [36]. The problem 

with applying Eqn. 2.4.12 for the class of control problem considered here is the nature of the 

controls – they are discrete structural changes and single acting. Also, for rotor angle 

stabilization, the number of controls taken is very small compared to the time-span of the state 

changes. Another challenge is how to normalize the control costs so that they follow a similar 

dynamic range as the state variables costs. Although the first case shown previously is an 

extreme example, it does demonstrate that the state variable costs can vary widely when 

structures discontinuously change. If control costs are summed with state costs, the dynamic 

range proves problematic. 

A practical consideration when designing a method to measure the cost of the controls 

is that their values must be set by the effect they have on end-users of the power system, by 

contractual relationships, or by economics. It is possible to capture these characteristics 
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mathematically with the mean-square error formulation. But it is a cumbersome approach. For 

example, the cost relationship between various control options requires backing into the 

equations to get the desired result. The key reason, however, that makes a solution such as 

Equation 2.4.12 inappropriate is that, as described previously, controls are not signal based 

but consist of structural changes. The structural nature of the control does not share the time-

series characteristic as the state variables. 

 The solution to these issues is to not use a mean-squared error metric, Eqn. 2.4.12, for 

the control costs. Instead, a table relationship for the controls is created. The cost of each 

control is selected based on the specific characteristics of the system. The following table 

provides example costs for the kind of controls common in rotor angle stabilization systems. 

Table 2.4.2. Set of possible costs for each control. 

Structural change control  Example Cost,    

System separation 9 

Load rejection 8 

Generator rejection 7 

Dynamic brake 6 

Turbine valve control 5 

Series Capacitor 4 

Shunt capacitor switching 3 

Tap-changer control 2 

No action 1 
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The total cost of the controls is then the summation of the individual cost values for the    

structural changes. 

             
    

   
 2.4.13 

 

The final metric then consist of the state cost scaled by the control cost. 

                  2.4.14 

 

The resulting approach to calculating cost has several advantages. It simplifies the process of 

identifying and quantifying the practical impact of structural changes on end-users of the 

system. It also avoids the issue of aligning the dynamic range of state trajectory costs and 

structural change costs. It makes possible combining costs for two fundamentally different 

aspects of the system – states and structures. 

Going back to the example, Table 2.4.3 shows the combined performance metrics, 

including both state deviation and control costs. Now the minimum cost is for case #2, 

consistent with the result one might select based on intuition.  Table 2.4.3 also is a reminder 

of a consequence of the metric application method. Metrics are compared to each other when 

determining which control sequence provides the lowest overall cost. The absolute value of 

the cost metrics is not important. What matters is how the metrics relate to each other. This is 

captured by the product form, Eqn. 2.4.14. For example, it is possible to scale all values in 

Table 2.4.2 by an arbitrary constant factor without impacting the results.  
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Table 2.4.3. Total cost of each structure sequence. 

Case Figure # Control Sequence                   

1 2.4.2 None 1,901,158 1 1,901,158 

2 2.4.3 Trip gen #2 @100ms 

Shed 16% bus #12 @ 200ms 

0.0634 15 0.951 

3 2.4.4 Trip gen #2 @ 100ms 

Shed 32% bus #12 @ 200ms 

Trip gen #5 @ 300ms 

0.0511 22 1.124 

4 2.4.5 Trip gen #2 @ 100ms 

Shed 65% bus #12 @ 200ms 

Trip gen #5 @ 300ms 

Trip gen #3 @ 400ms 

Trip gen #6 @ 500ms 

0.3638 36 13.097 

 

Although all of the costs for cases 2, 3, and 4 seem reasonable, the number of controls 

required for case 4 is significantly higher than for the other cases, and the metric clearly 

indicates that this selection is suboptimal. At some point the selected sequence of structures 

becomes so suboptimal that it is unacceptable. When an unacceptable sequence of structures 

is selected even though a better sequence is available, then the possibility to define the 

response as control instability arises. By the definitions of this section, the system was 

stabilized by reducing its dimensionality and all states were brought to their target regions. 

However, the cost of the controls was unacceptable. 
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The following is a proposed definition of control instability. 

            ,                 2.4.15 

 

Control instability is when the system is stabilized, but the cost of the controls exceeds a 

threshold,     , and there is an available control which achieved the stability objective, Eqn. 

2.1.2, with a cost less than     . 

 

2.5 Summary 

 

 This section has provided a framework for systems consisting of structural changes as 

control. It was shown that control over structure guarantees controllability, as long as 

removed states are counted in the target domain  . Therefore, a cost-based method of control 

selection is required. An appropriate cost metric was developed and its utility demonstrated. 

What is required next is the design of a system to select and implement controls.  
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3.0 TRANSIENT STABILIY CONTROL WITH MODEL AND PREDICTION 

 

This chapter presents the analysis, design, and validation of a controller acting through 

structural changes with consideration of the state trajectory and control costs. The design of 

this section is one realized solution to the ideas developed in Chapter 2. The problem under 

consideration is large signal rotor angle instability, also known as transient instability. 

 

3.1 Architecture 

 

A controller class that is suitable for nonlinear systems and utilizes a model for 

iterative prediction is called model predictive control [22]. While all optimal based controllers 

utilize a model to compute state evolution, what is unique to this approach is application of 

the model over a finite window, initialized by instantaneous state measurements, and then 

iterating after each control application. But model prediction is merely a starting point for the 

work. Like any control system design; whether a methodology for pole placement in a linear 

feedback controller, an approach to discover a suitable Lyapunov function for stability 

analysis, or a means to find optimal control solutions for a linear quadratic regulator; a 

method to apply these ideas is required, along with design and implementation. Application to 

a system utilizing structural changes as control and oriented towards transient instabilities 

requires analysis and innovation. 

Figure 3.1.1 shows a simplified diagram of operation. Two time regions are illustrated. 

The first portion, labeled as the evolution region indicates how the state starts at an 

equilibrium value and then is perturbed by a disturbance at time   . The primary class of 
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disturbances considered here are electrical faults. This condition persists until time   . A 

typical ending condition is removal of the faulted line by existing protection devices in the 

power system [12]. 

The controller then applies a model to the starting conditions at time    and predicts 

the future evolution of the system. Knowing the starting conditions requires a time-

synchronized set of state measurements. This prediction starts with the case of not applying 

any controls, and allowing the system to evolve along a path determined by its existing in-

place controls,      . Then, the evolution of the system is modeled for each of the stepped 

structural changes,      ,      , …,      , within the set of admissible controls. The 

performance cost of each future state trajectory is computed with Eqn. 2.4.14 and the best 

sequence is selected, according to a designed performance metric. Then, the first structure in 

that sequence is selected and applied to the system. In Fig. 3.1.1 these structures are the 

control sequences. Utilizing the first structure in the sequence, and ignoring subsequent 

structures ensures that the controller always acts based on the most recent available 

information. 
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Figure 3.1.1. Evolution and modeling stages of the system and controller. 

  

After the system settles as a result of the structural change, the state is measured again. 

Similar to the first iteration, individual trajectories are modeled and the best sequence of 

structures is selected. The first structure from this sequence is applied to the system. This next 

iteration is shown in Fig. 3.1.2. The controller acts in a feedback manner because after each 

control application, the state of the system is measured and a new sequence of structures is 

selected based on the measured state. Controls are applied as a function of state, model, and 

performance. 
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Figure 3.1.2. Evolution and modeling at second iteration. 

 

The previous figures are augmented to include a timeline of the newly designed 

controller, Fig. 3.1.3, showing when to include control cost calculations. The top timeline in 

Fig. 3.1.3 shows the events that occur in real-time in the actual system. The lower timeline 

shows modeled events that occur outside of real-time, during modeled state evolution. An 

event happens at time    and an automatic clearing of that event happens at time   . These 

events are outside of the domain of the controller. The controller is notified of these events 

either by measuring system conditions or by receiving status information from breakers 

within the system. In either case, the controller begins operating at time      . The time    

is included to allow time for detection, measurement, and communication delays. 
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Figure 3.1.3. Control algorithm timeline. 

 

Starting with a measured system state and an estimated model structure and 

parameters, differential equations enable comparison of the performance of a set of controls 

within the admissible control set. The time    gives allowance for the execution duration. The 

horizon over which prediction spans depends on the expected dynamics of the system. For 

transient stability, the important time interval is the first few seconds after   . There are two 

test controls applied as shown in Fig. 3.1.1. The application of a small number of sequential 

controls is unique to transient stability control. These are not continuous or even discrete-time 

signal type controls. They are structural changes applied discretely. And, this necessitates a 

new control approach. One of the structures is tested at time    after the algorithm measures 

the system state and begins modeling. The second is tested at time    . The interval    

between trip time and algorithm initiation allows for system settling and accounts for 

communication and control mechanical delays. If the algorithm determines no control is 

necessary, for that iteration, then the next start-time is at        instead of       . After 
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each algorithm execution a control, if appropriate, is applied to the power system. Then, the 

system evolves until the next iteration. The state is re-measured and the algorithm iterates 

again. This process repeats until the system is stabilized. 

 

3.2 The Model 

 

Selection of an appropriate model depends on the class of dynamics and stability 

under consideration. This work considers large disturbance rotor angle dynamics. These 

effects are nonlinear in nature and are not linearizable because it is the nonlinearities 

themselves that can lead to instability. A difficult challenge of electric power system is the 

stiffness of dynamics, with both very fast and very slow changes that contribute to how the 

system evolves. For rotor angle, the fast dynamics are the electrical phenomena of the power 

system transmission lines, transformers, and distribution network. Slower dynamics are the 

governors controlling thermal and mechanical input power to generators. Also, moderate 

speed dynamics are in play, such as terminal voltage changes due to an automatic voltage 

regulator. 

One method of dealing with these different time scales is the use of differential 

algebraic equations (DAE). This approach approximates the network dynamics as being 

infinitely fast and keeps differential equations only for machine and certain load dynamics. 

 
             
            

3.2.1 
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In Eq. 3.2.1 vector   represents machine and load states while   represents the 

network states and they are modeled as changing instantaneously. The vector   is a set of in-

place controls and   shows explicitly that these equations depend on the system structure. The 

in-place controls are modeled but not included as part of the controller under design. Each 

system evolves according to its existing dynamics, including any existing controls. The model 

developed here is for rotor angle but as long as the disturbance is within the capability of the 

model and controls selected, finding a control solution is possible for other types of 

instability. 

The machine model selected is 6
th

 order [20]. In the following equations   is the 

internal machine angle,   is the internal machine frequency, and   
  and   

  are internal 

voltages [20]. Model parameters are system inertia  , damping   , and time constants      

and     . The nominal system frequency is   . The power loading of the network is    and 

the current is    and   . It is assumed that model parameters are known. However, it is 

unrealistic to assume they are known exactly. During validation of the algorithm random 

errors are added to the parameters to simulate uncertainty in their values. 

The rotor angle depends linearly on rotor frequency. This relationship is captured in 

the first of the six machine differential equations. The frequency is normalized so its value is 

unity at nominal frequency,   . 

            3.2.2 
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 The frequency rate of change is a function of the difference between machine input 

power    and system load power   . When the machine power exceeds the load requirements 

then the machine accelerates. This is analogous to how a car accelerates when the accelerator 

pedal is depressed. Similarly, when the machine power is below the load requirements, then 

the machine decelerates. For the automobile analogy, this is equivalent to the manner in 

which a car slows down if the accelerator pedal is kept at a constant displacement, while the 

car begins to climb a hill. The term    provides a damping effect which is included to 

aggregate more complicated aspects of the machine dynamics such as those due to stator 

winding impedance [20]. 

    
 

  
                3.2.3 

 

 Two differential equations relate internal flux dynamics. The first is the decay 

equation associated with the main field axis flux. 

   
 
  

 

    
    

        
          3.2.4 

 

The second is the decay equation for a rotor amortisseur winding flux, along the quadrature 

axis. 

      
 

    
                  3.2.5 
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The model includes an automatic voltage controller, driving the rotor voltage    , 

because it can contribute to rotor angle dynamics. 

      
 

  
                  3.2.6 

 

Governor control is over the generator driving power   . In Eqn. 3.2.6 the control 

time constant is   , while the gain is   . In Eqn. 3.2.7 the time constant is     and the droop 

is  . The set points are      for voltage control and    for input power control. 

     
 

   
        

 

 
       3.2.7 

 

3.3 State Measurement 

 

Historically, wide-area control of electric power was inhibited by an inability to 

directly measure the state of the system. This is because of the large geographic area over 

which power systems are located. When designing a controller for systems such as an 

airplane, a cell phone, an automobile engine, or even a manufacturing process, the controller 

and sensors are located together. In contrast, an electric power system may exist over many 

kilometers. This has made it very difficult to make a system measurement, communicate it to 

a control location, and have the measurements arrive with values that are closely aligned in 

time. Until recently, the solution was to measure only the slowly changing values, such as 

voltage magnitude, estimate values that change rapidly, such as voltage angle, and completely 

ignore dynamics that change with time scales faster than approximately one second. 
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The advent of a global positioning system (GPS) helped change this because it 

provided the ability to put a precise time-stamp on each measurement. Then, it is possible to 

communicate these measurements across wide distances and when received, time-align them 

[8]. Missing values are linearly calculated [9][44]. 

Synchrophasors are measurements of the network states  . In the power system these 

are complex voltages and currents. Power quantities are also measured. For the model defined 

according to Eqn. 3.2.2 through 3.2.7 this means good initial values for   ,   ,   , and  . The 

technique of time-synchronized measurements is now seeing application for internal machine 

states as well [15]. Direct time-aligned rotor angle measurements of synchronous machines 

have been put into service [14]. This means good initial values for   and   are available. 

More recent advancements in measuring the time-stamped state of the power system include 

detailed machine states such as input power    and rotor field signal     [16]. It is expected 

that these technical advancements continue to progress. The work developed here leverages 

these advances. 

The result is that initial values of all state variables in Eqn. 3.2.2 through 3.2.7 are 

available with the exception of two values:   
  and   

 . The challenge with them is that they 

do not represent physically measureable states. They are an approximation to effects that 

include state dynamics and neglected damping. So, a method is required to calculate their 

values based on the other available initial state measurements. First, the terminal voltage and 

current phasors are measured with time-synchronized accuracy. Then, convert to d-q domain 

by referencing to the measured machine angle  . A simple circuit representation of the 

synchronous machine results in a linear equation for calculating   
  and   

  [20]. 
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3.3.1 

 

The results of this section show how all initial values for states are available, either 

through direct time-synchronized measurements or through a simple calculation. The work of 

this dissertation is not focused on state observability or estimation. It requires availability of 

these initial values. 

3.4 Performance Metric 

 

At each iteration the applied structural change is selected by determining a control 

with lowest cost from the admissible set. The cost is calculated following the method of 

Section 2.4, where each observation window starts with initialized state values. 

          
 

  
 

            
 

  

   

   
 

3.4.1 

 

          
 

  
 

           
 

      
 

   

   
 3.4.2 

 

          
 

  
 

            
 

    
 

   

   
 3.4.3 
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Eqns. 3.4.1, 3.4.2, and 3.4.3 are functions of the state,  , as well as on a start-time 

index,  . The indices   and   represent intervals of the sample rate   . In keeping with the 

time-scale appropriate for transient stability    
 
    
 . Parameterization of the cost 

functions by   is necessary to capture the fact that predictions are performed iteratively, each 

over a separate window. The window start index is  . The window length is  . The value   

updates at the start of each prediction iteration, while the parameter   is set during design. 

To determine state costs, first model the states, with Eqns. 3.2.1 through 3.2.7, over a finite 

window   sample steps in duration. Then use Eqn. 3.4.1, 3.4.2, and 3.4.3, in Eqn. 2.4.8, 

2.4.9, and 2.4.10. The total state cost        is finally given by Eqn. 2.4.11. 

Equations 3.4.1, 3.4.2, and 3.4.3 are different than the related Section 2.4 equations 

which only depended on  . Previously the performance metric covered a duration that 

extended until the system reached target region  . However, with a finite window constraint 

the cost calculation does not necessarily include terminal conditions. This is a limitation when 

realizing the controller. Performance of the design relies on a good metric along with the 

iterative nature of structural changes to either bring the system to   or sufficiently close that 

existing controls bring the system to stability. An advantage of iterating is adaption to 

changing conditions. 

The window length    is selected based on expected system dynamics. It is important 

that the prediction interval is of sufficient length to capture system evolution as it settles. 

However, a long window increases the computational demands of the controller. Also, a long 

window provides additional time for modeling errors to corrupt the prediction. This is 
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mitigated somewhat by the fact that only the first control action is selected and applied to the 

system. The most difficult situation is a system described by phenomena with both fast and 

slow dynamical behavior. A long window is required but that gives additional time for 

propagation of state initialization error and modeling error in the short-term dynamics. This is 

in part why the selected model, Eqn. 3.2.1 through Eqn. 3.2.7, includes network through 

governor aspects. It is a difficult case situation and provides a good test for the algorithm. 

The target values in the cost equations are the averaged angle referenced to the center 

of inertia,    , the nominal frequency,     , and the equilibrium voltage values prior to the 

disturbance,    . These values are selected because they are desired operating points and it is 

expected that as states approach them the system is near the region of convergence of a stable 

equilibrium point. However, it is important to make clear that these values were not computed 

based on knowing a stable equilibrium point in advance for the system configuration that 

exists at time   . This is a limitation of control through structural changes. The final topology 

of the system is not known in advance, nor is its equilibrium point. These target values are 

near the desired operating conditions of the electric power system and it is a reasonable 

expectation that these operating points are stable by the design of the system when initially 

built. 

In the model controls are applied for    individual structure change steps into the 

future. The value of    is defined as the control window length. The control cost          is 

calculated as the sum of the cost of the individual control actions, Eqn. 2.4.13. The specific 

values of individual control costs are not fundamentally important to this dissertation. The 

work is general and allows a wide variety of costs. As an example, a convenient approach is 
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setting the costs to simple integers, as shown in Table 3.4.1. The values shown here bias the 

controls against load shedding. This reflects the criticality of electric power to modern 

society. Specific cost values are system dependent and in a given implementation might differ 

from the Table 3.4.1 values. The table format is amenable to incorporating specific utility 

practices or standards. The experimental section demonstrates a variety of control costs. 

An important criterion is providing separate costs for when evolution of the system 

without control application is modeled as either stable or unstable. Differentiation of these 

cases is by comparing the state cost, Eqn. 2.4.11, with a coarse threshold for the case when no 

structural changes are directed to the system. When the state cost exceeds a stability threshold 

then the system without control application is classified as unstable. In this case the cost of 

acting without control is increased. When the state cost is below the stability threshold then 

the cost of acting without control is decreased. Table 3.4.1 lists these two cases. The threshold 

value is derived later. 

Table 3.4.1. Control costs selected for experimental verification. 

Structural change 

control action 

Base case is modeled stable Base case is modeled unstable 

No control action 1 4 

Series capacitance 2 1 

Load shedding 4 3 

Generator tripping 3 2 
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The reason to differentiate between these cases is to account for state initialization and 

model inaccuracy. When the evolution without application of control has a state cost that is 

within the threshold cost, then it is likely that not executing any controls yields the best result. 

However, due to modeling inaccuracy or initial state value errors, it is possible that the 

physical system is not responding this way and is actually moving towards instability. 

Therefore, the other control actions remain in consideration, although given a higher cost. 

Alternatively, when the system is moving towards instability, action is needed as soon as 

possible. However, it is also possible that the physical system is actually responding 

acceptably. Therefore, the option of not applying any control is kept, but given higher cost. 

Optimization is based on minimizing the total cost over all admissible controls. For 

the reason discussed in Section 2.4, with a nonlinear power system and structural change 

based control, the approach is total performance metric as a product of state and control costs. 

Validation of the product objective form is through experimental results. 

 
   

           

                       3.4.4 

 

The selection method is not relevant to the scope of this dissertation. Many well-known 

approaches are available [34]. However, subsequent chapters provide methods of reducing the 

admissible control selection space over which Eqn. 3.4.4 applies and introduces methods to 

decrease the computational burden of this step. 

 The stability threshold is set based on how the states are expected to perform when the 

system is moving towards stability. For rotor angle and rotor frequency, this is estimated as 
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true when the performance metric decays exponentially. Although exponential convergence 

towards equilibrium is not a dynamic included in the performance metrics, it is a reasonable 

approximation for stable behavior. 

             
 

  
      

3.4.5 

 

Substitute into Eqn. 3.4.1, and define the resulting measure as the threshold for the rotor angle 

metric. The window start index is set to zero. Also, the threshold is not a function of the 

machine state index  . 

    
 

  
     

   

   
 3.4.6 

 

Apply an equivalence relationship for the sum of an exponential. 

    
 

  
     

   

   
 

 

  

      

     
 3.4.7 

 

Similarly for the frequency an exponential decay is expected. 

 
           

 

      
       3.4.8 

 

The result is an identical formula to Eqn. 3.4.7 for the frequency threshold. 
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 3.4.9 

 

The exponential constant   is set by forcing the decay to half of its initial value at half of the 

modeling window length. 

       
           

   3.4.10 

 

Solving results in the Eqn. 3.4.11 value for  . Alternative approaches to developing a value 

for   are possible. A larger value of   enforces a faster decay requirement before declaring a 

system as stable. The control option of not issuing a control in Table 3.4.1 becomes less likely 

and structural change commands become more likely. Control is biased towards 

dependability. A smaller value of   means the system can move more slowly to equilibrium 

and remain considered as becoming stable. This makes it less likely that the controller acts. 

Control is biased towards security. That is, not acting unless strongly required. 

     
          3.4.11 

 

For the voltage metric, exponential decay is not required. The threshold is instead set by 

estimating that the voltages will stay within       of the pre-disturbance value    . 

 
            

 

    
 

   3.4.12 
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The voltage threshold then has a simple form. 

    
 

  
  

   

   
 

 

 
 3.4.13 

 

The stability threshold is then calculated by substituting Eqn. 3.4.7, Eqn. 3.4.9, and Eqn. 

3.4.13 into Eqn. 2.4.11. 

          
   

   
    

   

   
  

 

 
 
 

   
   

   
 3.4.14 

 

Simplify into a combined expression. 

       
  

  

      

     
 

  

  
 3.4.15 

 

As   becomes small       becomes large making it more likely the system is estimated as 

becoming stable, and control actions are less likely. Finally, substitute   from Eqn. 3.4.11. 

       
  

   
 

 

   
 
  

   
  

  

  
 3.4.16 

 

This threshold on the state trajectory cost is applied for selecting the cost in Table 3.4.1. All 

values in Eqn. 3.4.16 are known at the design phase which simplifies implementation. 
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3.5 Experimental Results 

 

This section investigates performance of the previously derived control approach. 

First, a specific example is examined in detail. Then, the capability of the controller is 

investigated through analysis of a large contingency set. As demonstrated in this section 

transient instability evolves over time-frames of seconds, or even shorter. This means the 

controller must have a fast response, defined by    in Fig. 3.1.3, and is also constrained by    

in the same figure. The response time is limited by measurement latency (impacting   ), 

communication delays (impacting   ), modeling (impacting    through Eqn. 3.2.2 through 

3.2.7) and control selection (impacting    through Eqn. 3.4.4). The effect of finite computing 

resources influences selection of the admissible control space, the number of sequential 

controls   , and the prediction window length  . Later, the admissible control space is 

restricted to improve computational performance. 

This dissertation directed at designing a controller and is not attempting to address 

implementation approaches. However, given real-time aspirations, the work cannot 

completely ignore practical implementation constraints and the next two chapters provide 

designs that significantly reduce computational demands that affect   . An interesting tradeoff 

is between taking longer to make a decision and making a better decision because of more 

information, compared to making a faster decision and based on less information. 

The IEEE 39-bus system, as shown in Fig. 3.5.1, is selected for experimental testing. 

The contingency set selected is three independent line outages, all simultaneous. The 

probability of losing three lines in different regions of the system is small. However, this 
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shows the capability of the proposed approach as it can stabilize such extreme cases. The 

generation and load power are individually increased by 80% to put the network in a highly 

stressed state. Loads are modeled as 50% constant impedance and 50% constant power. 

The system is setup to remain in the faulted state for 450 milliseconds prior to tripping 

of the faulted lines. One possible reason for this long time duration is primary protection 

failing before slower backup protection takes out the lines. This is a further contingency case. 

The fault condition adds a large amount of energy to the system because the generators spin 

up, supplying power to large power demands of the low impedance grounding condition. All 

simulations are with Matlab [45] using custom software to model the system as well as select 

and apply the controls. A subset of the results was validated with the Powertech Transient 

Security Assessment Tool [46]. 
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Figure 3.5.1. IEEE 39-bus system. 
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There are 46 line and transformer connections in the 39-bus system. The result is a 

total of  
  
 
        double contingency and  

  
 
         triple contingency cases. 

Triple contingency cases of losing line 17-27 along with all possible double outages are 

investigated. Line 17-27 is the primary connection to the upper portion of the system. Losing 

this line results in significant changes to the power-flow. A total of  
  
 
      

contingencies exist for this set of     cases. From these contingencies, 67 are selected that 

exhibit transient instability and do not island generators or completely isolate a bus. These are 

considered here. 

Detailed Example 

As a specific example, from the set of 67, the case of outages on lines 21-22, 26-28, 

and 17-27 is considered in detail in this section. This is one of the most difficult contingencies 

to stabilize from the list of 67. Line 21-22 is very close to generator #6 and during a fault on 

this line both this generator and generator #7 are accelerated significantly. The lines 26-28 

and 17-27 are close to generator #8 and generator #9. This means these generators also 

experience acceleration during the fault condition. Stabilizing the system, at minimum cost, 

requires the controller to distinguish between what is happening between these two groups of 

generators, along with the rest of the system. Furthermore, when line 17-27 is lost, this 

disconnects the upper section of the power system from its most direct connection to the 

lower right section (generators #6 and #7). 

Simultaneous tripping is selected as a worst case condition. Certainly other sequences 

of fault and clearing times are possible. Fig. 3.5.2 shows the rotor angles referenced to the 
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center of inertia (upper left), rotor frequency referenced to the nominal frequency (lower left), 

and network voltages (right) of the system without any controls applied. Two generators lose 

synchronization with the rest of the system. These are generators #6 and #7. They are 

represented by the frequency and angle values that increase to large positive values in the 

figure. Generator #9 remains synchronized but is in a stressed condition, with low frequency 

oscillations that are loosely correlated to the rest of the system. 

 

Figure 3.5.2. Response after triple contingency without control. 

 

When the control algorithm executes it first initiates to the present directly measured 

system state. State is received 50 milliseconds after the line trip is detected. This is at 1.5 

seconds in the subsequent tables and figures. This allows 50 milliseconds for implementation 
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delays, more than adequate given today’s communication system capabilities. The set of 

admissible controls are as follows: 

1. Generation tripping: 2, 3, 4, 5, 6, 7, 8, 9, 10. 

2. Load shedding in the following sets: {36, 37, 12}, {15, 36, 37}, {16, 20, 15}, 

{20, 15, 16}, {21, 23, 24}, {23, 24, 21}, {25, 26, 32}, {29, 28, 26}, {32, 25, 

26} 

3. Series compensation on line 16-17. 

 

A variety of admissible control sets are possible. The next chapter presents a method to select 

admissible controls dynamically with the intent of reducing the space over which the 

computationally expensive step of Eqn. 3.4.4 is evaluated, but in a manner that does not 

significantly lower performance. 

 Structure changes are selected as acting due to individual controls in the tests. It is also 

possible to consider pairs of controls, triplets of controls, and further parallel actions. Testing 

shows that single controls are effective. One advantage of single controls is in acknowledging 

that the model is not perfectly accurate and therefore taking more significant controls at each 

iteration can have the negative effect of excess control actions. 

The value of   is set for a window length of three seconds. The parameter    is set 

for searching over two sequential controls, and    is set at 50 milliseconds to account for 

communication and processing delays. The time sequence diagram of Fig. 3.1.3 is drawn for 

the case of testing two sequential controls, appropriate for this detailed example with     . 
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For each sequential set of admissible controls the controller models the trajectory of 

the system with Eqns. 3.2.1 through 3.2.7. The effect of inaccurate model parameters is 

included by adding a random 10% error to the parameter values used for modeling. The cost 

of each control is calculated by the controller with Eqns. 3.4.1, 3.4.2, and 3.4.3. The best 

structure is selected by finding the lowest cost, per Eqn. 3.4.4. As a result, tripping generator 

#6 is selected by the controller as the lowest cost option and is applied at 1.55 seconds. 

Following this, series capacitance is added by the controller to line 16-17 at 1.65 seconds. 

Finally, at 1.75 seconds, the controller sheds load at bus #25, bus #26, and bus #32. Table 

3.5.1 shows the sequence of events for all iterations. Subsequent iterations find further 

structural changes as having a total cost greater than the cost of applying no controls and the 

algorithm effectively terminates. 

In Table 3.5.1, the systems are identified as      . The vector   represents the 

complete set of states for a given system structure. The system starts as      . The fault 

changes the structure of the system to       and then the clearing of the lines further changes 

the system to      . Subsequently, the control algorithm is selecting between a set of 

admissible controls that modify       into a new system. This new system has the capability 

of taking final conditions of       as the initial conditions of the new system, then evolving 

toward a region   under the dynamics of intermediate structure sequences. 
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Table 3.5.1. Time and description of each event. 

Time, 

seconds 

System Event 

0.00       Initial system 

1.00       A three phase fault on all three lines occurs simultaneously. 

1.45       All lines faults cleared. 

1.50       The algorithm begins its first iteration and selects tripping 

generation #6 as the best first control action. 

1.55       The first selected control, tripping generator #6, is taken. 

1.60        The algorithm begins its second iteration and selects inserting 

series compensation on line 16-17 as the best control action. 

1.65       The control action is taken. 

1.70       The algorithm begins its third iteration and selects load shedding 

as the best control action. 

1.75       Load is shed. 

1.85, …       No further controls 

 

Observing the unstable case shown in Fig. 3.5.2 it is evident that removing generator 

#6, generator #7, or both should stabilize the system. However, when attempted, this solution 

does not work. What happens is that generator #9 subsequently loses synchronization with the 
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rest of the system. Application of the optimal control algorithm does trip generator #6 in the 

set of controls selected in real-time. Then as time progresses and additional sequences of 

structures are evaluated a set of controls are selected that drive the system towards stability, 

while simultaneously considering the cost of the state deviations and controls. This is an 

advantage of the optimality approach towards selecting controls. By monitoring the system in 

real-time and predicting its response, a solution is found that stabilizes the system with 

minimal combined control and trajectory cost along the transient evolution towards a stable 

equilibrium point. The system remains in synchronism by removing the weakest link early, 

before such generation drags a larger group of generators with it towards an islanded 

condition. 

Fig. 3.5.3 shows the controlled result with the system remaining in synchronism. The 

large frequency excursion is due to the relatively small size of the system compared to the 

contingency. If the controller is installed as a full implementation in the field, then other in-

place control schemes such as under-frequency load shedding could operate when the 

frequency reaches such extreme levels. The wide-area control approach described here 

coordinates well with existing in-place controls. Their effect simply modifies the initial state 

measurement at each iteration. The controller then determines if the new dynamics require 

further action, considering both the cost of the controls and the cost of the state trajectory. 

Alternatively the controller approach developed here is amenable to including in-place control 

dynamics in the prediction model. 
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Figure 3.5.3. Response after triple contingency with control. 
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Comparison Against Exhaustive Search 

A test of the algorithm in comparison to an exhaustive search of the best control helps 

identify the performance loss due to the finite window length and modeling errors. It applies 

each control action against the exact system, computes the total cost off-line, and selects the 

control with minimum cost using Eqn. 3.4.4. Testing is performed with a different set of 

control costs, to investigate the applicability of various cost possibilities. 

Table 3.5.2 Control costs for exhaustive search. 

Control Action Base case is modeled stable Base case is modeled unstable 

No control action 1 10 

Series capacitance 2 1 

Load shedding 10 5 

Generator tripping 5 2 

 

Figure 3.5.4 summarizes the results. Comparing the performance of the real-time 

algorithm against the exhaustive search shows that in most cases the algorithm under non-

ideal conditions selects the same controls. Fig. 3.5.4 shows a histogram comparing the 

number of contingencies out of 67 a given control sequence was selected for both the real-

time algorithm (white bars) and exhaustive search (black bars) cases. For all contingencies 

and for both the exhaustive search and real-time algorithm the system is stabilized. 
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Figure 3.5.4. Histogram of control actions. 

 

As an example of the performance tradeoff due to non-ideal conditions, here is one 

case where the real-time algorithm selected a different control sequence: losing lines 13-14, 

34-35, and 17-27. The exhaustive search first shed load, then followed by tripping generator 

#3, and then tripping generator #2. The real-time algorithm selected tripping generator #3 first 

and shedding load. 
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Figure 3.5.5. Comparison of control selection methods. 

 

Fig. 3.5.5 shows the rotor angles for the sequence of controls selected by the real-time 

algorithm (upper figure) and the sequence of controls selected by the off-line search (lower 

figure). The rotor angles swing over a wider range for the real-time control case, but the 

system is stabilized. Reducing some of the limitations on the real-time algorithm, for example 

allowing for a longer modeling window or a larger number of sequential controls results in the 

real-time algorithm achieving the same performance as the exhaustive search. 
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Performance During Unexpected Contingencies 

The iterative and feedback nature of the algorithm developed here provides robustness 

against unexpected conditions. One problem that can occur in electric power systems is an 

actuation failure. For example, if a breaker is ordered to open a line, shed load, or trip a 

generator, it can sometimes fail to operate. This case is somewhat unique to the control of 

electric power systems, compared to other types of control. For a more traditional signal style 

control input the continuous or stepped nature of the controller can make the onset and 

consequence of the failure less unexpected. In a power system, the breaker might only have to 

respond once every few years. Until the time it attempts to operate, if there is no advanced 

information regarding its suitability, then it could fail without warning. 

Therefore, when control is over the structure of a system such as electric power, the 

ability to recover from this type of failure is important. In fact, it is appropriate to consider 

this type of failure as an additional contingency case. To test these conditions, a set of 

experiments is run for the non-ideal conditions where the first attempt at an action fails. These 

experiments are for all 67 of the three-line outage contingencies. After detecting that the 

attempted change was unsuccessful for capacitance switching or load shedding, the selected 

control is removed from consideration by the algorithm because of the possibility that the 

failure is permanent. There is little point in wasting additional time trying the control again. 

For generator tripping, a backup scheme removes the generator after an additional 100 

millisecond delay. The control algorithm remains able to stabilize the system. This shows the 

advantage of the feedback mechanism that is measuring the state and dynamically adapting 

the controls to the evolving system conditions. 
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Returning to the detailed example, a test is setup with the first generation trip action 

initially failing and then delayed by 100 milliseconds before removal by a backup system. The 

result is tripping of generator #6 at time 1.65 seconds. This is in contrast to when the same 

generator was removed in the initial example without an actuation failure. As shown in Table 

3.5.1, generator #6 was removed by the control system at 1.55 seconds in the initial example. 

Subsequently, at 1.75 seconds, the controller with actuation failure sheds the same loads (bus 

#25, #26, and #32) as was selected for shedding in the example without control failure. 

However, capacitor insertion is not taken as an action. 

In the previous example, when the control was not delayed, the system stabilized after 

the load shedding structural change control action.  However, with the actuation failure, the 

system remains unstable. The controller in the present example senses this instability and 

removes generator #7 at 1.85 seconds. The system response after this control action leads to a 

seemingly stable state, but only temporarily. During this time of temporary stability, generator 

#9 experiences an oscillation that slowly grows. For approximately eight seconds the system 

remains in a tenuous state. Finally, generator #9 goes out-of-step with the rest of the system. 

The advantage of the feedback controller is its ability to respond to the evolving 

instability. Before the system becomes completely unstable, at 6.983 seconds, the controller 

sheds more load. The system stabilizes by keeping all generators closer to the swing of 

generator #9. Figure 3.5.6 shows the response of the system when this last control is 

artificially blocked. It is generator #9 that accelerates away from the rest of the system with an 

increasing frequency. Figure 3.5.7 shows the complete response, with all of the actions 

selected by the controller applied correctly. 
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Figure 3.5.6. Response of the system with last control artificially blocked. 

 

Figure 3.5.7. Response with all selected controls applied. 
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Control Instability 

It was shown previously that when changing the system structure is an available 

control option, as it is in electric power systems, there is a possibility for control actions to 

stabilize the system but at an unacceptable cost. To investigate this condition, the cost 

allocation in Table 3.4.1 is set equal for all controls, and the no-control case set to twice the 

cost of the others. This biases the system towards selecting a control action over not selecting 

a control action. 

This set of costs is compared against the original set of costs for the contingency of 

losing lines 17-27, 16-21, and 17-18. The result of this outage is separation of most direct 

connection between the lower right side of the power system and the rest of the power system. 

Without controls the generators at terminals #4, #5, #6, and #7 lose synchronization with the 

rest of the system. The real-time control algorithm selects tripping generator #7 as the lowest 

cost option and this is applied 50 milliseconds after the fault is cleared. The system then 

stabilizes. 

The result with the new set of costs is removing generator #7 at 1.55 seconds, 

shedding load at time 1.65 seconds, removing generator #2 at 1.75 seconds, and removing 

generator #10 at 1.85 seconds. While the system is stabilized, the case with modified control 

costs does so with a much larger number of required control actions. One might consider this 

type of operation as a form of control instability. Although the system is stabilized, the 

controls act excessively.  
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4.0 THE CLASSIFICATION CONTROL METHOD 

 

In the previous chapter a controller which applies optimality principles for selecting a 

sequence of structures to bring transiently unstable power systems to an acceptable operating 

point is designed, analyzed, and validated. The approach is shown to effectively control even 

large contingency events. However, a disadvantage of the method is requiring a significant 

number of calculations. Computational performance is particularly relevant for large 

disturbance rotor-angle control. This type of instability acts over short time intervals and 

therefore response time of the controller is critical. The minimum achievable response time is 

a function of the time it takes to select each new control action and techniques to reduce this 

selection time are needed. Helping offset these tradeoffs are advances in computing power 

and installation of higher performance computer networks [17]. 

When optimal control is applied to linear systems with feedback, the Riccati equation 

solution is available, providing a reasonably fast control selection [36]. For nonlinear systems, 

linearization is sometimes possible, which then allows Riccati based control for selecting the 

feedback gain. Linearization is not an option for large signal transient control because it is 

precisely the nonlinear nature of rotor angles dynamics that drive the instability. These 

nonlinear phenomena are important for the controller to capture. 

An approach to decreasing the computational demands of nonlinear system 

optimization is numerical quantization of states and then using linear programming for control 

selection [34]. Of course, brute-force search is always an option. The performance of both 

these approaches is improved by reducing the space of available controls. This chapter 
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constructs a method to reduce the set of admissible controls, meaning admissible sequences of 

structures, based on an algorithm that adapts the search space as the controls execute. The 

reduction is constructed to keep controls most likely to contribute towards a solution with 

acceptable cost. 

 

4.1 Admissible Control Subspace Classification 

 

Fig. 4.1.1 shows subsets of the control space. This section describes how classifying 

the control space leads to an approach for considering fewer controls during optimization. The 

set   in Fig. 4.1.1 includes all admissible controls and it is this set over which an optimal 

control searches, in existing approaches [35]. Admissibility means the controls meet 

constraints over an entire interval of application. For example, in an electric power system a 

shunt capacitor at a certain location might improve performance but is not physically 

installed. Therefore it is not available for switching into service and is not an admissible 

control. Other constraints include contractual obligations on load changes, device cycling 

interval limitations, or constraints on actuation ranges. 

M

B

R

1

2
3

4

A

 

Figure 4.1.1. Admissible control subspaces. 
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The thick-lined region,  , is the subset of available controls which achieve a cost less 

than an acceptable cost. An acceptable cost means that the system is stabilized, states remain 

as close as required to acceptable ranges, and the cost of the controls is satisfactory. As 

demonstrated earlier, multiple structure sequences are usually available that stabilize the 

system with acceptable cost. Of course, as the acceptable cost becomes smaller, so does 

region  . Region   includes the globally optimal control sequence for a given set of 

admissible controls, and a given definition of cost. 

The region   is the subset of controls modeled by the implemented controller to 

achieve a cost less than an acceptable cost. Suboptimal conditions result in      . A 

factor contributing to these suboptimal conditions includes inaccuracies in the model used for 

control selection. Parameters of the model can have errors and in some cases the structure of 

the model itself is incorrect. Also, the measured starting state for the model includes sensor 

noise. This results in the model not making an accurate assessment of the following system 

dynamics. Another condition leading to errors is the length of the window over which the 

model acts. In the ideal case the model is applied over a window of sufficient length to bring 

the system to its desired final state, or at least of sufficient length to capture most of the 

system settling time. In reality, computational constraints necessitates a finite window length. 

Also, because of model inaccuracy, there is benefit in iterating its application and applying a 

finite window for control selection. Then, at each iteration, a new starting state is measured 

and a new set of controls are selected. This is the method considered here. 

The dashed region   is a subset of restricted controls, selected to reduce the search 

space over which the model is applied. The intent is to apply the control algorithm only over 
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the controls of subspace   instead of over the entire space of admissible controls  . The 

objective of this work is defining region  . Furthermore, an objective of this work is to define 

region   with a computational cost less than simply applying each control sequence to the 

model, as was done in the previous chapter. As demonstrated in Fig. 4.1.1, four subspaces are 

relevant. 

Table 4.1.1. Admissible control subspace descriptions. 

   These controls achieve an acceptable cost both under modeled conditions and 

when applied to the physical system. 

   These controls are modeled to achieve an acceptable cost but when applied to the 

actual power system the resulting cost is larger than acceptable. 

   These controls do not achieve an acceptable level of cost. 

   These controls are not modeled to achieve a desired cost but if applied to the 

physical system the resulting cost is acceptable. 

 

The goal is subset   as small as possible. This minimizes the controller search space 

and therefore improves overall search performance. In the ideal case      while    

       . The subset    is a problem because it could lead to a selected control which 

then performs poorly when applied to the physical system. The subsets    and    are a 

problem because they unnecessarily increase the computational demands, while not 

contributing towards the eventual solution. Computational demands impact time    in Fig. 

3.1.3 and therefore increases the response time of the controller. Although none of the 
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controls in subsets    or    are selected, they force the controller to take longer before 

making a control decision. This has a destabilizing effect on the performance of the system 

state trajectories. The states swing over wider ranges and more complicated and wide ranging 

structural changes are required for stabilization. Therefore, it is desired to keep  subsets    

and    as small as possible. 

The numerical size of spaces   and   in Fig. 4.1.1 is determined by the number of 

controls considered and the number of sequential intervals over which those controls are 

applied. Let    be the total number of available controls, implemented as structural changes, 

contributing to set  . For example, if control options are removing generation at each of five 

buses and adding electrical braking loads at each of four buses then         . From 

these controls, actions are applied as sequences. A given sequence for the previous example 

might be adding a braking load at a given bus and then removing a generator at another bus.  

So, two of the controls are applied in sequence. Let    be the number of sequences of 

structural changes available as a result of the individual structural change control actions 

included in  . It is the value of    with direct impact on computational performance. The 

control selection algorithm selects sequences of actions from  , applies each to a model that is 

initialized with real-time power system measurements, and selects the sequence of controls 

which minimize a cost objective. 

Let    be the number of sequential controls considered, with      . In most cases, 

     . After a sequence of control is selected, the first one is applied to the electric power 

system. Then, the selection algorithm repeats with a new set of initial state measurements. 

The previous chapter demonstrated that a value of      was sufficient to stabilize even 
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large contingencies. This is due to the nature of rotor angle instability. A relatively few 

number of structural changes are sufficient to bring the system into order. This helps keep the 

computational demands low. 

For the initial control selection, the search space over which optimization Eqn. 3.4.4 

selects is      in series over a window of   . The unit addition accounts for the fact that 

not issuing any controls is kept as a valid option. Then, at each subsequent sequential 

consideration, one less control is available because repeated controls are not allowed (see 

constraint #3 of Section 2.1). A calculation of the total number of controls considered at each 

iteration starts with Eqn. 4.1.1. 

           
    

   
 4.1.1 

 

Before tackling more sophisticated approaches to reduce the computational demands 

of Eqn. 4.1.1, an easy first step is to not allow control sequences that start without a control 

action. There is little gained by waiting before applying controls. Eliminating these cases as 

options reduces   . However, repeating the no control action is allowed as it is sometimes 

advantageous to wait between control actions. Fig. 4.1.2 summarizes the number of sequences 

   as a function of the number of individual controls   , since the relationship is slightly 

more complicated than Eqn. 4.1.1 alone. The upper figure is for      and the lower figure 

is for     . The nonlinear relationship between the number of controls    and the number 

of sequences that the controller must consider helps demonstrate the advantage of finding a 

subset   in   with    smaller than   . Even a slight improvement in    leads to dramatic 
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improvements in the number of controls considered using   as the admissible control space 

instead of   as the admissible control space. 

 

Figure 4.1.2. Number of control sequences   . 

 

4.2 Subset Classification Algorithm 

 

This section describes the classification algorithm for selection of controls in subset  , 

with the intent of    as large as possible. It is based on measuring the system state 

immediately after a disturbance. Then, the state of the system with no controls applied is 

projected, according to a model, for a finite horizon into the future. From this single 

prediction, a subset of controls is selected for consideration by the optimization algorithm. 

Determining this set of controls adaptively, based on the measured system state, results in a 
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smaller set of controls to consider than if the controls are selected prior to the start of the 

disturbance. 

Three types of states are monitored when selecting the appropriate control. These are 

the rotor angle  , rotor frequency  , and bus voltage magnitude  . The costs are calculated as 

the deviation from targets, according to Eqn. 3.4.1, 3.4.2, and 3.4.3 for predictions without 

controls applied. The resulting values are          ,           , and          , where   

represents a given state and   is the starting index of the window. There is a different cost 

value for each state and for each window starting time index. States range over either   

generators or over   network buses. 

Reduction of the search space is based on identifying relationships as independent as 

possible between control actions and the cost related to an associated single type of state. For 

three cost equations, the proposed approach selects three types of controls and relates each to 

a dominant effect on these states. The controls considered in this chapter are generator 

tripping, load shedding, and shunt capacitance adjustment. 

The clearest relationship between a control action and a single state type is the way 

generator tripping directly effects an unstable rotor angle state. Therefore, the generator 

tripping control is associated with         . The load shedding control is associated with 

         because of the well-known relationship between frequency   and the machine    

compared to load    torque. 

  
  

  
       4.2.1 
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Shedding load directly impacts   through   , and then cost through Eqn. 3.4.2. Finally, shunt 

capacitance insertion is associated with          as reactive power injection and voltage level 

are related [47]. 

Selection of a reduced set of controls proceeds as follows for generation tripping. 

First, rank the costs          in order from largest to smallest. Include only those generators 

in the set           which have not previously been removed by a control action. Define 

this list of generators as        . In this list, the machine with the highest cost          is 

denoted as    . Next, determine the frequency at the terminal modeling window index 

    for machine  . This frequency is defined as     . This frequency becomes the basis 

for collecting generators into two sets; those with frequency at the terminal window time near 

     and those not near this frequency. The distinguishing criterion between these two sets is 

based on the maximum frequency difference, scaled by free parameter  . 

                         4.2.2 

 

The maximum is computed over all          . For this work the parameter is set as    
  . 

The subset    of generators available to consider for removal as a control action are those in 

set         starting with the machine associated with the highest cost, and continuing until a 

machine is found with frequency                   . This algorithm gives two benefits. 

First, it ensures related frequency swing directionality for generators in set  . Second, the 
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collection of generators in   stops once a generator is found with sufficient frequency 

difference from the machine  . This minimizes the number of considered generators. 

As a numerical example, consider the case where     and the cost          for 

each rotor angle state are given by                          where the array is indexing by 

machine  . Assume also that the frequency of each state at the terminal window time is 

                    . For simplicity of illustration these two sets use the same numerical 

values. From the set of          values it is clear that    ,                   and from 

Eqn. 4.2.2 the frequency criteria is        
 

 
              Therefore, the generators 

selected as available for tripping commands are #  and #  because they have the highest cost 

and also with frequency difference less than the criteria frequency. This is the reduced set of 

controls    subsequently input to the optimization search algorithm. For this example 

        . 

Motivation for this selection method is because during transient instability, generators 

often separate into relatively coherent subgroups [27]. Fig. 4.2.1 shows an example of 

transient instability for the IEEE 39-bus system. Four of the ten generators accelerate away 

from the remaining six generators. The horizontal dashed line is a separation point based on 

the criteria frequency       . Because Fig. 4.2.1 shows a clear separation it might seem that 

only the terminal frequency is necessary, without also ranking based on cost Eqn. 4.2.1. 

However, in many cases the separation is not as distinct and the advantage of applying ranked 

costs is a quantitative measure of which generator states are most different from the target 

values and therefore result in the highest benefit from controlling. Although not the preferred 
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result, the classification algorithm is robust to the case when the system separates into less or 

more groups. In such rare cases, when the selected set of controls is larger than necessary it 

impacts computational performance. 

 

 

Figure 4.2.1. Frequency separation example. 

 

Load shedding is based on arranging costs         , ordering each from highest to 

lowest. There are   generators and   buses, typically with    . Each bus may or may not 

include an available load for shedding. Therefore, the first load encountered while traversing 

the network away from a given generator is selected for consideration in the load shedding 

control scheme. Because of the important nature of power system loads it is expected that 

their selection is unique to each implementation. The controller cannot shed critical loads and 



 

 

 

86 

 

other loads might have contractual availability for shedding. The algorithm is easily 

extensible for constraints specific to each power system implementation. 

It is possible for the classification approach to select loads in   for regions where the 

frequency is moving away in the positive direction. In this case it might seem unlikely that the 

load will be further selected for shedding by the subsequent control algorithm. However, the 

predictive scheme is considering sets of controls that includes generation removal and such 

actions can result in frequency subsequently moving the opposite direction. Therefore, it is 

preferred when selecting set   to keep the highest cost loads, according to Eqn. 3.4.2, 

independent of the local frequency. 

For shunt capacitance insertion, after computing the costs          a single bus with 

the highest cost and with a connected shunt device is selected for inclusion in the optimization 

search. If during the control sequence a shunt capacitor is switched into service, then further 

control with capacitance is disabled. This avoids potential issues with excessive selection of 

this control option with short windows for prediction. The control cost of inserting a shunt 

capacitor is much less than the control cost of tripping a generator or shedding load. 

Therefore, it is possible that the algorithm could inappropriately continue to select this control 

option when the system is becoming stable, and allowing a limited number of applications 

prevents this issue. 
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4.3 Combined Control Algorithm 

 

The classification selection output is a set of controls    . The controls that make 

the sequences of this set include tripping generators in set   , shedding load at bus locations 

in set   , and inserting shunt capacitance as locations in set   . Next an optimization 

algorithm searches each of these possible control actions, along with the no control option, to 

find which sequence of controls has the lowest total cost. 

The total cost consists of two components. The first is the cost of state deviation from 

target levels Eqn. 2.4.11. The second component of cost measures the impact of the controls, 

and is defined as         . These are adjusted depending on whether the no-control case is 

modeled as stable or instable. If stable, then the cost of controls is increased. If unstable, then 

the cost of issuing no controls is increased. Integer values are used as the cost for each control 

and the total control cost          is their summation. Individual costs are shown in Table 

4.3.1. For a given implementation the cost values might differ from the ones used here. 

 

Table 4.3.1. Control costs for experimental verification. 

Control Action Base case is modeled stable Base case is modeled unstable 

No control action 1 4 

Shunt capacitance 2 1 

Load shedding 4 3 

Generator tripping 3 2 
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The total cost includes both the effect of states and controls and the sequence of 

structures is selected to minimize this total cost, Eqn. 3.4.4. At each control iteration the 

reduced space of available controls   is recomputed. This adaptation of the reduced search 

space improves performance because it allows the space   to move within the space   

according to the instantaneous conditions of the power system. There is a slight performance 

penalty for recomputing   at each iteration but it is relatively minor because a modeling over 

the finite horizon for the no-control case is necessary as part of the control selection process, 

independent of the control classification step. Therefore, the only penalty is ranking the costs 

and recalculating Eqn. 4.2.2, both of which are relatively minor compared to the rest of the 

control optimization steps. 

It is always possible to reduce the size of control space   simply by allowing fewer 

controls. However, arbitrarily creating subset   provides no guarantees on the size of   , 

which needs to be large, or the size of   ,   , and    which need to be small. The benefit of 

the method described here is creation of space   that not only reduces the search space but 

also provides a set of controls which can meet the performance objectives. 
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4.4 Experimental Results 

 

Verification of the approach is by comparing stabilizing control for the full admissible 

control space with the space restricted according to the algorithm in the previous sections. The 

same contingency is selected as was used for the experimental validation of Section 3.5. This 

is an outage on lines 21-22, 26-28, and 17-27. The severity of this contingency, with 

generators in two portions of the power system effected, provides a very challenging case for 

the classification method to stabilize. A 10% random error is added to the model parameters 

to include the inevitable effect of model parameter inaccuracy. The delay interval    is set at 

50 milliseconds and the modeling interval of prediction is set at three seconds. The model is 

6
th

 order, including rotor angle, frequency, internal voltage, machine power, and rotor voltage, 

as described in Chapter 3. When this same contingency was previously tested the admissible 

control space included removing nine generators, the load at nine bus sets, and inserting 

capacitance at one bus. The result is       individual structural changes considered by the 

controller. From Fig. 4.1.2, the search space size is        and this is compared later to 

the computational demands of the classification method. 

As part of the experimental testing, it is important to verify that region   with empty 

   is not found. Another possible problem is if region    is much smaller than region    and 

because of this a control in region    is modeled to have a cost smaller than the best cost in 

region   . It is the finite window nature of control selection, selecting individual controls at 

each iteration from  , along with the iterative nature of the classification method that provides 

this possibility. Then, even though a valid control is available that meets the cost objective, a 

control in region    is selected which results in a higher cost control applied to the system. 
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Such a finding does not mean that the classification method has failed. It simply identifies the 

tradeoff between better computational performance and better cost-based control selection. 

 The fault occurs at time 1 second and continues until 1.45 seconds, at which time all 

three lines trip. The initial iteration of the control algorithm is at 1.5 seconds, or, 50 

milliseconds after the lines are cleared. Ranking the cost calculation of Eqn. 3.4.1 for        

results in                             , which makes the highest cost generator    . Then, 

based on the frequency difference              the set of generators available for removal is 

        . One set of loads is allowed for removal and is found by finding the bus associated 

with largest value of       . The result is that set            is selected. For shunt 

compensation, the highest cost according to        is for bus #16. A total of      

individual control actions are then included in the admissible control set. Two for generation 

shedding, one for the bus shedding set, and one for shunt capacitance. From Fig. 4.1.2 the 

result is a total of       sequences are considered by the optimal control algorithm. 

Comparing this to the        required for the full admissible control space indicates a 

nearly 95% reduction in the size of the space the controller searches.  This directly reduces 

computational demands and decreases the response time of the controller. 

 The controller then receives time-synchronized state measurements as initial values 

and applies the model, Eqn. 3.2.1 through Eqn. 3.2.7 for each of the admissible control 

sequences. State deviation costs are computed by summation of Eqn. 3.4.1, 3.4.2, and 3.4.3. 

The control costs follow Table. 4.3.1 and then selection is with Eqn. 3.4.4. The result is that 

removal of generation #6 is selected as the first control and applied at 1.55 seconds. So far the 
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control matches what was selected for the full admissible control space example in Section 

3.5. 

At the next iteration, a similar process for selecting the admissible control space 

follows and in this case       ,              , and        . It is interesting that 

generator #9 is included in the admissible control space and generator #7 is not included. This 

is because the control application of removing generator #6 has resulted in generator #7 

moving towards equilibrium. The controller then selects a capacitance change as the control 

action and the result is applied to the power system at time 1.65 seconds. 

After waiting for the system to settle, the controller receives new time-synchronized 

state measurements and iterates for a third time. In this case there is no control available that 

provides a better result than doing nothing. Therefore, the controller does not apply any 

controls. Further iterations result in the same outcome and the process effectively terminates. 

It is interesting that the controller with full set of admissible controls applied a load shedding 

operation for the third iteration and this difference as compared to the result for the reduced 

set of admissible controls is now investigated. Table 4.4.1 provides the list of         at each 

iteration, along with the frequency difference            .  
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Table 4.4.1. Frequency difference at each generator, ranked by cost. 

Iteration #1 (1.5 seconds) Iteration #2 (1.6 seconds) Iteration #3 (1.7 seconds) 

Generator            , 

milliHertz 

Generator             , 

milliHertz 

Generator             , 

milliHertz 

6 0 9 0 9 0 

7 14 7 1370 7 330 

4 3616 8 1656 6 441 

3 3552 5 1824 5 534 

2 3554 4 1819 2 516 

5 3636 10 1768 3 551 

10 3560 3 1809 8 195 

8 3573 2 1819 10 272 

9 3706 NA 

 

 The results in Table 4.4.1 show that the frequency difference between the machines 

declines with each iteration. This is a result of the control actions. It also shows that after 

removing generator #6, the next generator showing the highest cost        is generator #9. 

The cost metric        follows a similar pattern, where cost associated with generator #9 

becomes largest after the initial control action. This is the reason why the third iteration does 

not shed load, because the load shedding options in   change to those associated with 

generator #9, and it is becoming more stable. The load that was shed for the full admissible 

control space is not included in   at the third iteration. 
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 Figure 4.4.1 shows the result after application of controls and includes time spans for 

pre-fault, fault-on, post fault, and control actions. As seen by observing the rotor angles and 

voltages, the system is stabilized. However, since the best load shedding option was not 

included in the reduced admissible control space  , the frequency declines significantly. In an 

actual implementation under frequency load shedding schemes would arrest the decline by 

shedding load according to their characteristics. This scenario fits with the original problem 

definition of the dissertation. Existing power system controls are allowed to act. The purpose 

of the optimal controller is to select a structure that minimizes a defined metric of cost and 

allows existing governors, automatic voltage regulators, and even system wide protection 

such as automatic load shedding to act according to their design. 

 

Figure 4.4.1. Response for stabilized conditions. 
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 In addition to this detailed example, the classification method is applied to all of the 

67 three line outage contingency cases as defined in Chapter 3. In all cases the system is 

brought to a stable equilibrium point. Also, unlike the detailed example just considered, in 

almost every other case the set of controls selected by the controller acting on the reduced set 

of admissible controls are identical to those selected when the controller acts on the full set of 

admissible controls. The previous example was selected for detailed analysis because of the 

difficulty it presents to the controller. It demonstrates the power of the optimal based 

structural change controller in stabilizing even a case that involves three line outages and two 

geographically separated sets of generators becoming unstable compared to the rest of the 

system. It also demonstrates that when the full algorithm is modified to reduce computational 

demands it sometimes leads to a less optimal control selection. But the system is stabilized by 

the controller.  
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5.0 MODEL-FREE CONTROLLER 

 

A model of the system is required for selecting structural change controls with the 

previously described algorithms. A key advantage of the model is that it provides a systematic 

framework for selecting the best control. It also provides the ability for prediction and 

therefore gives additional time to determine and act with the controls. Disadvantages include 

the possibility of model inaccuracies and the large computational burden. Another issue is the 

practical difficulty of building and maintaining models. Errors in the model are mitigated by 

the iterative, feedback nature of the previous approaches. The computational burden is 

improved by adaptively partitioning the admissible control space, developed as the 

classification algorithm. 

This chapter designs a controller that further reduces the number of calculations 

required. No model is required, only historical measurements. The design method is through a 

heuristic approach. The controller does not have the ability to correct the same wide range of 

contingencies as the previous two designs. However, a portion of the cost metric is 

maintained therefore the controller still does well with many high order contingencies. The 

result is a system that is simple to implement and demonstrates reasonably good performance, 

both in terms of its ability to stabilize difficult contingencies and to select suitable controls. 
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5.1 Algorithm Timeline 

 

A timeline of the approach is shown in Fig. 5.1.1. An initial fault on the system is at 

time    and then existing protection and controls remove one or more assets at   . Time-

synchronized state measurements are collected into a buffer while the system evolves along a 

post-fault trajectory. When sufficient data is collected, the algorithm initiates. The historical 

buffer is in place of prediction. The buffer of measured data means that a model is not 

required. Instead, however, the controller must wait for a sufficient number of measurements 

in the buffer before selecting a control decision. 

fault

trip

tF tT

Measurements

tA

tB1 tB2 tE tE+tU
System

control 

#1

buffer
 

Figure 5.1.1. Timeline for the historical classification control algorithm. 

 

Data collection begins at time     and continues until time    . The delay from    

until     allows for communication latencies. The data received is time-stamped voltage 

magnitudes      and time-stamped rotor angle measurements     , where   is an index of the 

individual devices in the system and   indexes time. The voltage magnitudes are 

synchrophasor values from phasor measurement units (PMU). Data is received at a fixed rate 

of      samples per second and therefore   is a notational short form indicating time at 

       
  . 
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The length of historical data received is set by the time difference        . The 

buffer length in units of samples is set by the update rate. A small buffer is necessary for 

transient stability control. This ensures a fast response time. However, to accurately assess the 

stability of the system, and to select appropriate controls, a large buffer is needed. Later in the 

experimental section it is shown that a buffer duration on the order of hundreds of 

milliseconds is adequate. This results in the size of the buffer,   , in range of 3 to 15 samples. 

                  5.1.1 

 

One of the challenges of the historical approach is the necessity of a small window. 

The previous controllers applied models and prediction. Modeling the system behavior in 

advance allows a longer window over which to select controls. This is because waiting for a 

sufficient buffered set of measurements is not required. Only a measurement at a single 

instant of time is needed to initialize the models. However, the model with prediction 

introduces computation time into the control actions. So, there is an inherent tradeoff between 

the model and the model-free approaches. The response time of the model approach is 

constrained by waiting for the computations to complete and the response time of the model-

free approach is constrained by waiting for measurements. 

The controller executes at time    after a receiving a complete set of buffered 

measurements. A time duration of    seconds is allowed for algorithm processing. Then, if a 

control action is required, it is sent to the machines or loads and takes effect at time      . 

Once a control is sent then determination of the sufficiency of the control is by waiting until 

the system settles and then collecting another buffer of measurements, as shown in Fig. 5.1.2. 
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If a control was not required after the first iteration, then the second iteration executes at time  

     , instead of waiting for a complete new buffer of data. In this case the old data is 

removed from the buffer and new data is added in a first-in-first-out (FIFO) manner. 

 

tA

tB1 tB2 tE

control 

#2

buffer
Measurements

System
tE+tU

 

Figure 5.1.2. Second iteration of historical classification. 

 

5.2 Algorithm Design 

 

The historical classification algorithm consists of two stages. First, stability is 

assessed. This determines the need for controls. Second, controls are selected. The need for a 

separate stability assessment stage is new to the historical classification controller. It is 

required because no model or prediction is available to aid in control selection. Therefore, 

controls are issued only subsequent to determining that the system is becoming unstable. This 

is in contrast to the previous two controllers which could use a model to determine the 

consequences of issuing a control. The optimization algorithm inherently rejected any 

controls that made the system response worse and therefore avoided applying controls when 

the system was stable. 

 



 

 

 

99 

 

Collect buffer of 

measurements

Stability 

assessment 

algorithm

Stable?

Yes

Control selection 

algorithm
No

 

Figure 5.2.1. Historical classification flow diagram. 

 

Both stages of the historical classification control algorithm utilize similar cost 

metrics, although with different reference values. A cost is calculated following the method of 

Section 2.4. Each state value in the window of length   is from a measurement, not from a 

modeled output. The result is that the summations run from the most recent time to the start of 

the buffered state measurements. 
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 5.2.3 

 

Stability Assessment Algorithm (SAA) 

At time    the controller has a set of buffered time-synchronized measurements and 

computes the performance metrics         ,         , and         . Stability is assessed by 

first summing the metrics, Eqn. 5.2.4. For stability assessment, the reference frequency      

in Eqn. 5.2.2 is set to the average frequency over the window. The voltage reference,        in 

Eqn. 5.2.3 is set to the equilibrium voltage values for the first iteration. If any control actions 

are necessary, then subsequent iterations use the average voltage over the buffer. This is 

because the stability assessment algorithm does not have a model available and the initial 

equilibrium values become less relevant once the structure of the system has changed. 

                          

   

   

          

   

   

 5.2.4 

 

Initially, it might seem that comparing Eqn. 5.2.4 with a threshold can detect 

instability. A large combined performance metric implies all measured states have deviated 

significantly from their target values. This is an indication of instability. However, it is not 

robust to depend on a fixed value. Calculating a value depends on the system configuration 

and it changes with control actions. The value also depends on power flows, which can 



 

 

 

101 

 

change, as well as pre-fault state values. It is difficult to find a threshold that is 

simultaneously secure against falsely declaring instability and dependable to correctly identify 

conditions that lead to instability. 

A better solution is monitoring changes in the metric Eqn. 5.2.4 over time. This 

approach, through a numerical derivative, is given by Eqn. 5.2.5. When the power system 

response is headed towards stability, then it seems reasonable that      decreases with time. 

This is because angles, frequencies, and voltages move towards mean-square reference 

values. When the response of the system is moving towards instability, then it is likely that 

     increases with time because the monitored cost values tend to diverge. In Eqn. 5.2.5, 

       is the cost metric derived from data at a sample      
  in time previous to the 

present sample. 

                  5.2.5 

 

The differentiation is qualified for security before application as a predictor as 

instability. Fig. 5.2.2 shows the set of calculations, including qualification. 
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Figure 5.2.2. Stability assessment algorithm logic diagram. 

 

In Fig. 5.2.2,      is numerically differentiated, with a time step corresponding to the 

controller execution interval,    
 
    
 . The difference value      is compared against 

zero. When      is positive, this means that the performance metric has increased. For 

security and rejection of spurious noise in the differentiation process a sequence of consistent 

increases is enforced by the pick-up timer. The setting value (   ) determines the required 

number of repeated positive values. The pick-up timer output provides an assessment that the 

system is becoming unstable and a control is required. A specific value of     is provided in 

the experimental section. 

The threshold as shown in Fig. 5.2.2 does not require a precise value because it is only 

serving as a qualification to avoid noise from differentiation for small metrics. Security 

against excessive control actions, control instability, is possible by progressively increasing 

the threshold value after each control action is taken. The system is assessed as becoming 
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unstable, and requiring a control, when      asserts. Here is a summary of the stability 

assessment algorithm. The algorithm executes at each time interval   . 

1. Calculate the rotor angle performance metric          for each machine 

          according to Eqn. 5.2.1. 

2. Calculate the rotor angle performance metric          for each machine 

          according to Eqn. 5.2.2. 

3. Calculate the rotor angle performance metric          for each machine 

          according to Eqn. 5.2.3. 

4. Compute      with Eqn. 5.2.4. 

5. Compute the difference, Eqn. 5.2.5. 

6. Determine if the difference is larger than zero. If so, keep track of the number 

of times this difference exceeds zero in a row. 

7. If the difference exceeds zero for     intervals in a row and if      exceeds a 

coarse threshold, then assert a flag   indicating an unstable condition. 

Control Selection Algorithm 

The control selection algorithm builds on the theory developed for the classification 

control method. The classification method was previously applied to reduce the search space 

for optimal control selection. Now, without a model, there is no further information available 

to help determine which of the controls in the subset to select. Instead, apply all controls in 

the reduced space   to the system. The resulting controls might be suboptimal because no 

additional refinement is added to the algorithm to distinguish between these controls. 
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However, the classification algorithm has selected controls based on a cost metric applied to 

the historical buffer data. Therefore, the results of this approach are reasonably successful at 

stabilizing the system at acceptable cost, as shown later in the experimental section. 

The control selection algorithm proceeds by first ranking the costs          in order 

from largest to smallest. These costs are based on a buffer of historical data, instead of a 

predicted set of data. The frequency of the most recent measurement is then used to select a 

subset of the generators associated with these costs. Define this set of frequencies as     , 

where          , and also define the frequency in this set corresponding to the machine 

with largest          as     . Then, apply Eqn. 4.2.2 to calculate the criteria frequency 

      . The subset of generators    selected for tripping are selected by traversing the costs 

         starting at the largest value, and continuing until a machine is found with the most 

recent frequency measurement such that                   . Measurement sensor noise 

is easily reduced by filtering the last few frequency values to compute a derived value for 

    . 

Frequency is calculated from     
   . Then, rank the costs          in order from 

highest to lowest. Because the entire space   is selected as the controls at each iteration, it is 

beneficial to reduce the size of   more significantly than was needed for the classification 

method. Previously, the main disadvantage of large space   was requiring extra computations. 

Now, however, an excessive number of controls in space   can result in control instability. 

So, the selection algorithm is modified towards biasing to a smaller  . Specifically, it is 

preferred to remove as little load as possible. Governors at the generators will pick up some of 
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the imbalance. Therefore, only a specified fraction of the power difference is corrected by the 

action of load shedding. 

Selection of loads to shed proceeds as follows. First, start with bus j associated with 

the largest value of         . Calculate the power of the associated load using measured 

values received from synchrophasor measurements. This power value is defined as   . 

Compare this power to a specified fraction   of the total shed generation power   . If the 

amount of load power shed meets or exceeds this total, then finish. The set of loads selected 

for removal is complete. Otherwise, continue consideration of further loads, progressing from 

those associated with larger performance metric          values to smaller values until the 

total shed load power matches or exceeds the fractional amount of generation removed. In 

calculating          for load shedding       is set to the nominal frequency. This forces the 

control algorithm to select controls such that the frequency returns to its nominal range. The 

fraction   is a tunable parameter that allows trading the amount of load shed against the 

amount of state deviation tolerable. Setting this fraction closer to unity means more load 

shedding is allowed. A smaller fraction sheds lesser load and requires governors on other 

generators, as well as spinning reserve, to pick up the imbalance. 

A variety of methods are available to associate loads with generators. The algorithm 

nicely adapts to specific utility practices. If certain loads near a generator are unavailable for 

shedding then simply do not include them in the association with that generator. Alternatively, 

in some cases contractual relationships make a load available for shedding. In this case 

include it. For this work, loads are selected by traversing the power system network away 

from the generator until the first load is found.  
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5.3 Experimental Results 

 

Detailed Example 

 Suitability of the measurement based approach is validated using the same 

contingency as was analyzed in the previous two chapters. The unstable response of the 

system without controls was shown in Fig. 3.5.2. This contingency is particularly severe and 

provides a difficult test of the algorithms. The buffer length for this experiment is set to six 

samples. The delay for buffering is therefore 100 milliseconds. The sample rate is        . 

Referring back to Fig. 5.1.1,             milliseconds. 

There is an inherent tradeoff in buffer size selection. Making the buffer longer 

provides more information for stability assessment and control selection. However, with a 

longer buffer this means a longer time until controls are applied. If the system is becoming 

unstable then waiting to apply controls gives the system more time to evolve away from any 

nearby stability regions. 
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Figure 5.3.1. Results after stabilization for historical method. 

  

Figure 5.3.1 shows the result after the historical classification method applies the controls it 

has selected. The control algorithm has successfully stabilized the system. A detailed analysis 

is as follows. Start with the fault at      second. The lines trip after the fault condition at 

time          milliseconds. Once the trip condition is detected the controller is notified and 

begins collecting and buffering the time-synchronized measurements. The controller first 

executes once the buffer contains six samples. The pick-up timer     is set for two sequential 

samples. At time         milliseconds the output of Fig. 5.2.1,  , asserts to indicate an 

unstable condition. Once the system is assessed as unstable, the control selection algorithm 

executes. This is at time           milliseconds. Table 5.3.1 shows the order of          
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cost metrics, from largest to smallest. Also shown are frequency differences from the machine 

with the largest metric. The criteria frequency,          is 215 milliHertz. 

 

Table 5.3.1 Metrics for generator tripping selection. 

Generator              , 

milliHertz 

6 0 

7 9 

9 78 

3 430 

2 424 

8 424 

4 411 

10 394 

5 358 

 

 Devices selected for removal are generator #6, generator #7, and generator #9. 

Similarly, the computation for load shedding results in removal of loads at bus #16, bus #20, 

bus #21, bus #23, bus #29, and bus #32. The load shedding parameter   was set to 0.75. The 

value    was set to 50 milliseconds to allow for communication latencies and actuation 

delays. 
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Compare this set of controls to the optimal controller applied over the full admissible 

control space, Table 3.5.1. The full controller, with model for control selection, removed one 

generator, inserted one series capacitor, and shed load at three buses. The historical controller, 

with a model-free selection, removed three generators and shed load at six buses. So, the 

historical controller took a more expensive option. This is not unexpected since it did not 

explicitly consider the costs of the controls. However, the computational burden is much less 

and no model is required. Comparing the state trajectory performance between these two 

cases, Fig. 3.5.3 for the full controller and Fig. 5.3.1 for the historical controller, shows they 

are similar for rotor angle and frequency. However, the voltage performance is worse for the 

historical controller. Again, this is a result of the less computationally demanding, but also 

less optimal control selection. 
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Figure 5.3.2. Sequence of events for the example. 

 Figure 5.3.2 shows a timeline of the actions for this test case, referenced to the time of 

the line trip. In this figure, SAA represents the stability assessment algorithm, CSA represents 

the control selection algorithm, and Comm indicates communication delay. While the stability 

assessment algorithm estimates that the system is stable, the control selection algorithm does 

not run and controls are not selected. Once instability is detected, then the control selection 
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algorithm executes. Cost of controls is implicitly included by using a criteria frequency and 

set of rotor angle metrics to keep the number of generators removed as small as possible. 

Similarly, for load shedding, frequency metrics enable finding locations where load shedding 

has the greatest impact on restoring balance. This reduces the amount of load required for 

removal. 

Comparison Against 67 Cases 

Additional verification of the model free algorithm is through testing against the same 

set of 67 test cases as were used for the full controller. Results show that the method is able to 

suitably assess stability and select controls that stabilize the system. Three of the cases, 

however, proved problematic. In these cases too many controls were applied and the system 

was disassembled fairly completely. This is an example of control instability, Eqn. 2.4.15. 

The results of these tests indicate that there are certain contingencies for which the historical 

classification controller is not suitable, as expected. 

Comparison With Different Buffer Lengths 

The previous examples operated with a buffer length of 100 milliseconds, which 

means six samples were available for computing the performance metrics, assessing stability, 

and selecting the controls. It might seem that a shorter buffer could provide a faster response, 

or, alternatively, a longer buffer could provide more accurate assessments. Perhaps one or the 

other might provide a better control response. To investigate these possibilities the detailed 

example was retested with a short 50 millisecond and a long 250 millisecond buffer length. 

The short buffer has a total of 3 measurements and the long buffer a total of 15 measurements 
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for calculating the performance metrics. Experimental results show that the generators 

selected for removal by the control algorithm are identical to those removed for the 100 

millisecond buffer length case. However, when the buffer length increased to 500 

milliseconds then performance degraded significantly, as shown in Fig. 5.3.3. This is because 

unstable conditions remain in the system longer, additional load shedding is required, and the 

system states swing over very wide ranges. The system is eventually stabilized. It is expected 

that other controls in the system arrest the significant frequency decline. The result of these 

experiments shows that there is a fairly wide margin in selecting the buffer length and values 

in the range of 50 milliseconds to 200 milliseconds give good results, for the system under 

consideration. The relative insensitivity to the buffer length is due in part to the mean square 

error formulation of the performance metric calculations. 

 

Figure 5.3.3. System response with a long buffer. 
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Security of Stability Assessment Algorithm 

The control system developed here acts based on real-time system measurements and 

the actions are not planned in advance. It is important that these controls are restrained for 

cases when the system is stable. Key to such security is correct operation of the controller 

stability assessment algorithm. Verification, in part, is through considering a single stable line 

outage. The conditions are set with a 100 millisecond fault time, which results in a significant 

amount of acceleration to the rotors. The system oscillates severely but then settles to 

stability. When the control algorithm is enabled, the stability assessment logic determines that 

the system is moving towards stability. No controls are issued. The resulting rotor angles with 

the controller enabled are shown in Fig. 5.3.4. 

 

Figure 5.3.4. Rotor angles after disturbance without controls applied. 
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6.0 CONCLUSIONS 

 

A methodology to design a control system that responds to rotor angle instability 

through stepped structural changes, including dimensional reduction, has been provided in 

this dissertation. After developing the methodology, two implementations are designed, 

analyzed, and tested. A third implementation applies the developed cost-metrics in a unique 

way towards a suboptimal but less computationally expensive approach. 

Experimental results show many advantages of the approaches developed here 

including robustness to modeling errors, robustness to unexpected contingencies, and good 

performance in stabilizing a wide range of contingencies and initial conditions. The three 

implementations range from most to least complicated for implementation, giving opportunity 

for real-time implementation. The following summary of these methods helps in 

understanding their performance advantages and disadvantages. 

Here are the processing steps for the unconstrained approach: 

1. Measure the state of the power system using synchrophasors for the network state and 

time-synchronized measurements for the machine states. 

2. Project the evolution of the system with an appropriate model for each control in  . 

3. For each sequential combination of controls in admissible set   compute  

        ,         , and         , and combine to create a cost of the state deviation 

from target trajectories,       . 

4. Compute the controls costs         , based on       
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5. Select a sequence of structures from admissible control space   to minimize the total 

trajectory and control cost  . 

6. Apply the first control in the selected sequence to move the power system to a new 

structure. 

7. Repeat. 

Here are the processing steps for the classification method: 

1. Follow the first two steps of the full method, except the prediction is only for the case 

without applying controls. 

2. Build the sets   ,   , and   . This becomes the reduced admissible set  . 

3. Predict the evolution of the system for each control in  . 

4. Compute the controls costs         , based on       

5. Select a sequence of structures from admissible control space   to minimize the total 

trajectory and control cost  . 

6. Apply the first control in the selected sequence to the power system. 

7. Repeat 

The historical classification approach makes no predictions and requires no model. It monitors 

the present time-synchronized state, retains their history, and applies controls when the rate-

of-change of a stability threshold is met. 

1. Measure the state of the power system using synchrophasors for the network state and 

time-synchronized measurements for the machine states. 

2. Compute         ,         , and          over the buffer of measurements. 
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3. Check if the rate of change of the state metric costs is positive for a certain length of 

time, if so, build the sets    and   . 

4. Apply all of the controls in     and   . 

5. Repeat. 

The first method iteratively calculates costs based on a full admissible control set. The 

second method adaptively limits the admissible control set as a means to reduce 

computational complexity but retains the iterative cost selection method. The final method is 

model free and applies controls based only on a recent history of measurements. 

The first method requires the largest computational demands and selects a sequence of 

controls with the lowest overall cost, including both the cost of state excursions as well as the 

cost of the controls. The second method reduces the admissible control space over which costs 

are computed and does so in a manner that does not significantly impact the selection of 

controls. Therefore, it has the advantage of both improving computational performance and 

selecting controls with a method that is optimal based. The third method requires a relatively 

modest amount of computation and can stabilize the system but makes no explicit guarantees 

about the cost of the controls or whether lower cost controls are available. 

For minimum computation time,    of Fig. 3.1.3, the Eqn. 3.4.4 control selection is 

parallelizable. Simple test all structural sequences simultaneously in individual processing 

units or threads. Then, compare the resulting cost. Independence of computation is an 

advantage of the first two methods. A parallel approach is also possible for the third controller 

in calculating Eqn. 5.2.1, 5.2.2, and 5.2.3. 
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It is shown that the first two methods correct a wide range of contingencies. High 

order contingencies, while rare, can lead to wide area outages. Therefore, methods to react 

against such possibilities are beneficial. The third method cannot claim suitability for as many 

contingencies or classes of systems. 

The development of these three methods provides an interesting means to understand 

tradeoffs between computation and optimization. As computing power, memory access 

speeds, and communication capabilities increase, the viability of the best performing 

algorithm increases. However, when such an approach is not possible, the analysis presented 

here demonstrates the effect of moving to sub-optimal, but more implementable approaches.  
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