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ELECTROMAGNETIC MODELING BASED

ON DIRECTIONAL TIME-DISTANCE

ENERGY TRANSFER ANALOGIES

Abstract

by Timothy Michael Minteer, Ph.D.
Washington State University

May 2013

Chair: John B. Schneider

A new electromagnetic model is established based on an average rate of directional

time-distance energy transfers. A directional time-distance energy transfer is analogous to

an energy carrier mediator (boson) exchange. Electromagnetic force is modeled as mean

valued, continual emission and absorption of energy carrier mediators.

For an isolated spherically symmetric static charge distribution, Maxwell’s stress

equation is recast using a variant of Stokes’ Theorem. The recast stress equation elimi-

nates the stress normal to the electric field and establishes a stress only aligned with the

electric field. The remaining stress is identified as an external omnidirectional Poincaré

stress, inwardly directed towards the charge distribution. The Poincaré stress is modeled

as a mean valued, continual exchange of bosons between the charge distribution and the

distant matter of the universe.

For two separated spherically symmetric static charge distributions, Maxwell’s stress

equation is recast using a variant of Stokes’ Theorem. The recast stress equation develops

a line stress that only exists on the straight path between the two charge distributions. The

line stress is identified as a Coulomb stress modeled as a mean valued, continual exchange
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of photons back and forth between two like-charge distributions.

For an isolated differential current element, Maxwell’s stress equation is recast using

a variant of Stokes’ Theorem. The recast stress equation establishes a pinch stress that is

normal to the magnetic field and is directed inward toward the differential current element.

Similar to the Poincaré stress, the pinch stress is omnidirectional and is modeled as a mean

valued, continual exchange of bosons between the current element and the distant matter

of the universe.

For two separated static differential current elements, a Neumann stress is established

by analyzing the historical current force formulas known to be compatible with Maxwell’s

equations for closed circuits. The term Neumann stress is assigned to the line stress that

only exists at each point on the straight path between two separated, differential current

elements. Similar to the Coulomb stress, the Neumann stress is modeled as a mean valued,

continual exchange of photons back and forth between two differential current elements in

opposite directions.
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5. A QET Model for the Poincaré Stress of an Isolated, Spherically Symmetric

Static Charge Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Recasting of Maxwell’s Stress Equation in Free Space, Away from an

Isolated Spherically Symmetric Static Charge Distribution at the Origin . . 36

5.2 Recasting of Maxwell’s Stress Equation in Free Space for an Isolated

Spherically Symmetric Static Charge Distribution at an Arbitrary Loca-

tion for an Arbitrary Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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6.3 Poincaré Stress, Coulomb Stress and QET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7. A QET Model for the Pinch Stress of a Differential Current Element at the

Origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Evaluating Maxwell’s Stress Equation in Free Space, Away from a Dif-

ferential Current Element at the Origin (r = 0) with Total Current, JdV,

in the Positive z Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Recasting of Maxwell’s Stress Equation in Free Space, Away from a

Cylindrically Symmetric Infinite Line Current on the z Axis (ρ= 0) with

Current, I, in the Positive z Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Recasting of Maxwell’s Stress Equation in Free Space, Away from a Dif-

ferential Current Element at the Origin (r = 0) with Total Current, JdV,

in the Positive z Direction for a Spherical Surface with Center at the Origin 83

7.4 Pinch Stress and QET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8. A QET Model for the Neumann and Pinch Stresses of Two Separated, Static

Differential Current Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Determination of the QET Magnetostatic Stress Equation for the Inter-

action Between Two Isolated Differential Current Elements . . . . . . . . . . . . . . 91

8.2 Neumann Stress and QET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3 Pinch Stress, Neumann Stress and QET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9. Coulomb Stress for Two Separated, Spherically Symmetric Charge Distribu-

tions Both Moving With the Same Constant Velocity . . . . . . . . . . . . . . . . . . . . . . 108



viii

10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

APPENDIX A. Derivation of Γe, the Constant of Quantum Energy Transfer Rate

to Mass (W/kg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

APPENDIX B. Derivation of Maxwell’s Stress Equation for Electrostatics in

Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

APPENDIX C. Variant of Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX D. Vector Identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

APPENDIX E. Derivation of Maxwell’s Stress Equation for Magnetostatics in

Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

APPENDIX F. Determination of Constraints for the General Force Equation Be-

tween Two Differential Current Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

APPENDIX G. QET and Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

APPENDIX H. QET and the Cosmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



ix

LIST OF TABLES

Table Page

6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



x

LIST OF FIGURES

Figure Page

2.1 Quantum energy transfer (QET) illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 Conic closed surface symmetric about the z axis with spherical surfaces
at r “ a and r “ b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Force on (a) closed contour bounding the surface Sside is equivalent to
(b) two ring edges at r “ a and r “ b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Arbitrary surface away from a spherically symmetric charge distribution
with total charge q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Spherical surface centered at the origin, beyond the charge distribution
for q1, with radius r ă d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Spherical surface can be broken into differential rings. . . . . . . . . . . . . . . . . . . 59
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CHAPTER 1. INTRODUCTION

Electromagnetic modeling is an important aspect of advancing the understanding

and application of electromagnetic phenomena. From Faraday’s lines of force [1] and

Maxwell’s ethereal stress [2] (pertaining to electric and magnetic fields) to Feynman’s

diagrams [3] of photon-electron interaction in quantum electrodynamics (QED), models

provide a conceptual insight into the physics of electromagnetism.

The new electromagnetic model of this dissertation may provide fresh or different

insight into some electromagnetic systems. It provides an alternate conceptualization of

the path of electromagnetic forces. In addition, the new model may inspire new inven-

tions or develop a new area of expertise in the realm of electromagnetic energy transfer

technologies.

In general, a given model may be an approximate (1st order, 2nd order, etc.) or an

exact representation of some physical law or phenomena. The model itself need not have

any physical relevance. However, it should have results that are comparable to analytic

solutions or empirical test data. For example, a good electromagnetic model should be in

agreement with Maxwell’s equations.

The new electromagnetic model of this dissertation is based on an analogy of an

average rate of directional time-distance energy transfers. A directional time-distance en-

ergy transfer is analogous to a photon or boson exchange (i.e., energy carrier mediator

exchange). When the directional time-distance energy transfer analogy is related to the
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interaction of charges or currents, the energy carrier mediator may be considered a photon.

When the directional time-distance energy transfer analogy is related to a solid structure

containing/supporting a charge or current distribution, the energy carrier mediator may be

considered more generally as a boson (i.e., may consists of photons and/or other bosons).

This dissertation presents an electromagnetic model/analogy and makes no claim that

the model should be taken physically literal. However, the laws of physics do apply to this

model and the analogies presented.

The underlying principles of directional time-distance energy transfer are:

1. Energy transfer occurs in discrete quanta of energy being emitted from one particle

of matter at a given point in time and successively absorbed by a different particle of

matter at some later point in time.

2. Energy transfer occurs in a straight line (invariable in free space), directionally from

the location of the emitting particle (at the emission time) to the location of the ab-

sorbing particle (at the absorption time).

3. Energy transfer occurs at the speed of light, thus relating the time difference between

energy emission and absorption to the distance between the locations of the emission

and absorption events.

A directional time-distance energy transfer may be viewed as an energy carrier me-

diator (boson) exchange. Therefore, the acronym QET (quantum energy transfer) is used

throughout this dissertation for a directional time-distance energy transfer. Averaging a

sequence of QETs for a given period of time and a given region of space (i.e., mean energy
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quanta, mean transfer repetition rate, mean spatial straight path location) yields a mean

QET flux density (W/m2).

The rudimentary premise of directional time-distance energy transfer is that forces

of nature (including electromagnetic forces) are a result of an average rate of QETs (boson

interactions) between particles of matter. When energy is emitted from a particle there is

an impulse force to the particle in the direction opposite to the transfer path (i.e., recoil

impulse). Similarly, when energy is absorbed by a particle there is an impulse force to

the particle in the direction of the transfer path (i.e., impact impulse). The average rate of

recoil impulses (from energy emissions) and the impact impulses (from energy absorptions)

produce a pressure or push force.

Although this dissertation conceptualizes directional time-distance energy transfers

in general, it accentuates energy transfers relating to electromagnetics. Particularly, the

new electromagnetic model is based on QETs into and out of molecular regions (elements

or compounds) that are electrically charged (positively or negatively) and/or have electrical

current passing through them. Details of energy transfer contained within molecular re-

gions are outside the scope of this dissertation. Energy transfers into and out of molecular

regions are viewed as interacting with the molecules as a whole and the details of energy

transfers to/from specific sub-atomic particles of matter are also outside the scope of this

dissertation.

The subsequent chapters of this dissertation are summarized as follows:

Chapter 2. Directional time-distance energy transfer (QET): defines directional time-

distance energy transfer or QET (quantum energy transfer) in general.
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Chapter 3. Background of force between masses, charges, and currents: contains

various historical aspects related to the force between masses, charges,

and currents and/or the exchange of energy between them.

Chapter 4. Mass, force, and QET: briefly touches on the quantum energy transfers

interacting with mass associated with gravity and inertia.

Chapter 5. A QET model for the Poincaré stress of an isolated, spherically sym-

metric static charge distribution: establishes the Poincaré stress by re-

casting Maxwell’s stress equation for an isolated, spherically symmetric

charge distribution. The recast stress equation identifies a Poincaré stress

as the only stress external to the charge distribution. The Poincaré stress

is aligned with the electric field, is omnidirectional, and is directed inward

toward the charge distribution.

Chapter 6. A QET model for the Coulomb and Poincaré stresses of two separated,

spherically symmetric static charge distributions: establishes the Coulomb

stress by recasting Maxwell’s stress equation for two separated, spheri-

cally symmetric static charge distributions. The term Coulomb stress is

assigned to the line stress that only exists at each point on the straight

path between two separated, spherically symmetric charge distributions.

Chapter 7. A QET model for the pinch stress of a differential current element at the

origin: establishes the pinch stress by recasting Maxwell’s stress equation

for an isolated, differential current element. The pinch stress is normal to

the magnetic field and is directed inward toward the differential current
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element.

Chapter 8. A QET model for the Neumann and pinch stresses of two separated, static

differential current elements: establishes the Neumann stress by analyz-

ing the historical current force formulas known to be compatible with

Maxwell’s equations for closed circuits. The term Neumann stress is as-

signed to the line stress that only exists at each point on the straight path

between two separated, differential current elements.

Chapter 9. Coulomb stress for two separated, spherically symmetric charge distribu-

tions both moving with the same constant velocity: analyzes the Coulomb

stress between two charge distributions moving with the same velocity by

applying the Lorentz transformation.

Chapter 10. Summary of Poincaré, Coulomb, Neumann, and pinch stresses.

Appendix A. Derivation of Γe, the constant of quantum energy transfer rate to mass

(W/kg).

Appendix B. Derivation of Maxwell’s stress equation for electrostatics in free space.

Appendix C. Derivation of a variant of Stokes’ Theorem.

Appendix D. Vector identities.

Appendix E. Derivation of Maxwell’s stress equation for magnetostatics in free space.

Appendix F. Determination of constraints for the general force equation between two

differential current elements.

Appendix G. QET and Electrodynamics: terse description of an electrodynamic model
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based on QET.

Appendix H. QET and the Cosmos: describes a cosmos model that is compatible with

the QET model of this dissertation. In addition, briefly describes the QET

interaction between molecular regions.



7

CHAPTER 2. DIRECTIONAL TIME-DISTANCE ENERGY

TRANSFER (QET)

This chapter defines directional time-distance energy transfer or QET (quantum en-

ergy transfer) in general. The definition is for a single QET. However, the new electro-

magnetic model of this dissertation is based on an average rate of QETs as described in

subsequent chapters. Application of QET includes gravitational and electromagnetic inter-

actions between molecular regions.

For a given quantum energy emission from a first particle of matter there is a corre-

sponding quantum energy absorption by a second particle of matter at a directional time-

distance. The directional distance is established by the distance vector,
á

d21, from the first

particle’s location at the emission time to the second particle’s location at the absorption

time.

The time between the quantum energy emission and corresponding absorption events

is related to the distance between the event locations:

t2 ´ t1 “

ˇ

ˇ

ˇ

á

d21

ˇ

ˇ

ˇ

c
, (2.1)

where c is the speed of light in free space.

An illustration of a QET is shown in Figure 2.1. The two particles P1 and P2 are

moving along separate paths as indicated by the dashed lines of Figure 2.1 (in the direction

of the arrows shown at the tips of the dashed lines). At time t1, a quanta of energy is emitted
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from particle P1 (at the location indicated by the solid black dot). At a later time t2, the

corresponding quanta of energy is absorbed by particle P2 (at the location indicated by the

gray dot).

Figure 2.1: Quantum energy transfer (QET) illustration.

An example of QET is the straight path of a photon being emitted from one atom and

being absorbed by a different atom at some later point in time. QETs have the following

characteristics:

1. QETs only occur between particles of matter.

2. A quanta energy is only absorbed by a particle if at some prior time the corresponding

quanta energy was emitted from another particle.

3. Similarly, a quanta energy is only emitted from a particle if at some later time the
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corresponding quanta energy will be absorbed by another particle.

4. The transfer of quantum energy occurs in a straight line, at the speed of light (as ob-

served in any inertial reference frame). The distances between quantum energy emis-

sion and corresponding absorption event locations range from sub-atomic minuteness

to the furthest expanse of the universe.

5. There are no collisions or interference between QETs in free space. Therefore, there

may be a plethora of QETs ostensibly passing through a given location in space void

of matter at a particular point in time.

6. Based on the assumption that molecular regions consist of many moving particles of

matter and a large percentage of free space (at any particular point in time), QETs

may statistically pass through molecular regions located between the emission and

absorption points.

7. When quantum energy is emitted, there is a recoil impulse to the corresponding par-

ticle of matter in the opposing direction of the QET.

8. When quantum energy is absorbed, there is an impact impulse to the corresponding

particle of matter in the direction of the QET.

Items 3 and 7 imply that a present impulse is related to a future event. The implica-

tions of this are touched upon in Chapter 3. The impulses from quantum energy emission

and absorption events contribute to push or pressure forces which constitute the forces of
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nature (i.e., no pull or tension forces occur from directional time-distance energy transfers).

A variation on Newton’s third law summarizes QET:

For every action impulse (quantum energy emission) there is an equal and opposite

reaction impulse (quantum energy absorption) at a directional time-distance.

The magnitude of the nth QET, Un (J), and the unit vector in the direction of the nth

QET, ân, are related to the impulse action,
á

Ien (N‚s), or reaction,
á

Ian, on the particles of

matter respectively emitting or absorbing the quantum energy. The impulse on the emitting

particle of matter at emission time, ten, for the nth QET is:

á

Ien ptenq “ ´
Un
c
ân. (2.2)

Similarly, the impulse on the absorbing particle of matter at absorption time, tan, for the

nth QET is:

á

Ian ptanq “
Un
c
ân “ ´

á

Ien ptenq , (2.3)

where tan and ten are associated in accordance with (2.1).

An example of an impulse/force as a result of QET is the radiation pressure from

light being absorbed or emitted from an object.

It should be noted that the net impulse on a first particle of matter traveling at a

velocity á

v1n at the time of emitting quantum energy Un in the direction of ân is related to

the change in momentum of the equivalent mass of the quantum energy:

á

Ienpnetq “
Un
c2

á

v1n ´
Un
c
ân. (2.4)

Likewise, the net impulse on a second particle of matter traveling at a velocity á

v2n at

the time of absorbing quantum energy Un in the direction of ân is related to the change in
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momentum of the equivalent mass of the quantum energy:

á

Ianpnetq “
Un
c
ân ´

Un
c2

á

v2n. (2.5)
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CHAPTER 3. BACKGROUND OF FORCE BETWEEN MASSES,

CHARGES, AND CURRENTS

This chapter contains various aspects related to the force between masses, charges,

and currents and/or the exchange of energy between them. The following paragraphs may

seem disjointed with each other and somewhat terse. The goal of this section is to identify

the many pieces (in some way relevant to the directional time-distance energy transfer

of this dissertation) in an efficient manner without getting bogged down in the details of

each piece. The various references provide a starting place when further understanding is

desired.

Action/reaction forces from interactions between matter (gravitation), static charges

(electrostatics), and stationary currents (magnetostatics) have been propounded to occur in

straight lines between each corresponding mass, charge, or current element. These forces

were once viewed as action at a distance. Since time is not involved (i.e., the system is

static/stationary), these forces were also conceived as instantaneous.

Isaac Newton’s universal law of gravitation establishes the force between each par-

ticle of matter [4]. The differential element of force on a first differential mass element

interacting with a second differential mass element separated by the distance d21 (with unit

directional vector, â21, from the first to the second differential mass element) is:

d2áF1 “ G
pρ1dV1q pρ2dV2q

d 2
21

â21, (3.1)
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where G is the gravitational constant 6.674ˆ 1011 N‚m2/kg2, ρ is the mass density, and

dV is the differential volume of the mass element.

Coulomb’s Law was formulated by Charles-Augustin de Coulomb for the electro-

static interaction between charged particles [5]. The differential element of force on a first

differential charge element interacting with a second differential charge element is:

d2áF1 “ ´
1

4πεo

pρ1dV1q pρ2dV2q

d 2
21

â21, (3.2)

where ρ is the charge density. As a side note, Coulomb also developed a similar force

relationship between magnetized materials (i.e., permanent magnets and ferromagnets),

inversely proportional to the square of the distance [6].

Twenty years after Alessandro Volta invented the electric pile or battery [7], Hans

Christian Oersted discovered1 that a magnetic needle tended to turn at right angles to a

wire shorting out the terminals of a battery [8]. Oersted published the assertion that there

is always a magnetic circulation around an electric current in a conductor [9]. Within

months of Oersted’s announcement, André-Marie Ampère delivered2 a series of lectures on

electrical current and magnetism [10]. Two years later Ampère published his fundamental

law relating electrical current and the magnetic field (i.e., Ampère’s Law3) [11].

André-Marie Ampère proposed a formula for the interaction between two station-

1July, 1820

2September, 1820

31822
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ary current elements, the resulting force acts along the straight line between the current

elements [12]. Accordingly, the differential force element on a first differential current

element interacting with a second differential current element is [13]:

d2áF1 “
µo

4π

2
´

á

J1dV1

¯

¨

´

á

J2dV2

¯

´ 3
”´

á

J1dV1

¯

¨ â21

ı ”´

á

J2dV2

¯

¨ â21

ı

d 2
21

â21, (3.3)

where dV is the differential volume of the current element.

Franz Ernst Neumann also developed a formula for a force acting along the straight

line between two stationary current elements [14, 15]. For Neumann, the differential ele-

ment of force on a first differential current element interacting with a second differential

current element is:

d2áF1 “
µo

4π

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

d 2
21

â21. (3.4)

As a side note, Neumann developed an expression for the mutual inductance of two closed

current circuits containing a similar expression as (3.4) [16, 17].

The differential force element in all four equations (3.1), (3.2), (3.3), and (3.4) act

in the direction (attraction) or opposite direction (repulsion) of the unit directional vector,

â21, from the first to the second corresponding differential element. Similarly, succes-

sive directional time-distance energy transfers (the basis for this dissertation) between two

molecular charge or current elements also constitute repulsion directionally away from the

straight line between the two molecular elements.

Historically, electromagnetic concepts and models have aided in the progression and

application of electromagnetic field theory. Michael Faraday envisioned electric lines of

force [18], magnetic lines of force (observed with iron filings or a magnetic needle) [19],
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and even gravitational lines of force [20]. James Maxwell describes Faraday’s physical

lines of force and the state of stress in the medium (i.e., tension in the direction of the lines

of force and pressure normal to this direction) as a kind of action at a distance resulting

from “the tension of ropes and the pressure of rod” [21].

Based on the Biot-Savart Law [22], Hermann Günther Grassmann proposed a for-

mula for the interaction between two stationary current elements [23]. Grassmann con-

cluded that Ampère’s formula (3.3) generated unlikely results and the principle from which

it is derived must come under suspicion. With Ampère’s formula, there is no force between

two parallel current sources when the angle between them is 35.3˝. For angles greater than

35.3˝ there is attraction. However, for angles less than 35.3˝ there is repulsion. Unlike

Ampère’s formula of (3.3), the resulting force for Grassmann’s formula is not necessarily

acting along the straight line between the current elements, but always acts perpendicular

to the current elements. Accordingly, the differential force element on a first differential

current element interacting with a second differential current element is [24]:

d2áF1 “´
µo

4π

´

á

J1dV1

¯

ˆ

”´

á

J2dV2

¯

ˆ â21

ı

d 2
21

“
µo

4π

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

â21 ´

”´

á

J1dV1

¯

¨ â21

ı ´

á

J2dV2

¯

d 2
21

.

(3.5)

A peculiarity of Grassmann’s formula is that forces on two differential current ele-

ments are not always equal and opposite (i.e., in violation of Newton’s third law). Although

(3.3) and (3.5) generally give different differential force element values, the net force on

a differential current element, exerted by another closed circuit (e.g., current density in a

wire loop) resulting from integrating an assemblage of differential current elements around
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the closed circuit, are equivalent [25]. Historically, there are an infinite number of formulas

identified that are equivalent to (3.3) and (3.5) for the net force on a stationary differen-

tial current element exerted by the differential elements in a stationary closed circuit (see

derivations by Whittaker [26], O’Rahilly [27], Stefan [28], and Moon and Spencer [29]):

d2áF1 “ ´
µo

4πd 2
21

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

3 p1´ k1q

”´

á

J1dV1

¯

¨â21

ı ”´

á

J2dV2

¯

¨â21

ı

â21

` pk1 ´ 2q
´

á

J1dV1

¯

¨

´

á

J2dV2

¯

â21

` k1

”´

á

J1dV1

¯

¨â21

ı ´

á

J2dV2

¯

` k2

”´

á

J2dV2

¯

¨â21

ı ´

á

J1dV1

¯

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

, (3.6)

where k1 and k2 are arbitrary constants.

In order for d2
á

F2 “ ´d
2
á

F1 (i.e., Newton’s third law to be maintained), the two con-

stants are constrained as: k1 “ k2. Ampère’s formula (3.3) is obtained by choosing the two

constants of (3.6) as: k1 “ k2 “ 0. Grassmann’s formula (3.5) is obtained by choosing:

k1 “ 1 and k2 “ 0 and hence Newton’s third law is not maintained.

Moon and Spencer derived an additional formula set for the force between differen-

tial current elements by removing Ampère’s original constraint that a current element can’t

have a tangential force component (when interacting with a closed circuit), while maintain-

ing Ampère’s constraint that current element forces only act along the straight line between

them [12]. Accordingly, the differential force element on a first differential current element

interacting with a second differential current element is [29]:

d2áF1“–
µo

4πd 2
21

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

3p1´k1q

”́

á

J1dV1

¯

¨â21

ı”́

á

J2dV2

¯

¨â21

ı

`pk1´2q
´

á

J1dV1

¯

¨

´

á

J2dV2

¯

`k3

”́

á

J1dV1

¯

ˆ

´

á

J2dV2

¯ı

¨â21

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

â21, (3.7)
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where k1 and k3 are arbitrary constants. Ampère’s formula (3.3) is obtained by choosing the

two constants of (3.7) as: k1 “ k3 “ 0. Neumann’s formula (3.4) is obtained by choosing

the two constants of (3.7) as: k1 “ 1 and k3 “ 0.

Equations (3.6) and (3.7) (and thus (3.3), (3.4) and (3.5)) generally give different

differential force element values and even a different net force on a differential current

element, exerted by another closed circuit. However, all five equations give the same equal

and opposite force on one stationary closed circuit exerted by another stationary closed

circuit.

Hendrik Antoon Lorentz established a force equation for a charge in the presence of

an electric and magnetic field [30]. Lorentz’s force equation is also applicable to differential

current elements as well as differential charge elements (assuming a differential current

element is equivalent to a differential charge element moving at a directional velocity á

v,

á

JdV “ pρdV q
á

v). The corresponding differential element of force on a differential volume

within a subsystem of charge and current densities (denoted by subscript 1) resulting from

the electric field and magnetic flux density generated by the total system of charge and

current densities is [31]:

d
á

F1 “ pρ1dV1q
á

E`
´

á

J1dV1

¯

ˆ
á

B. (3.8)

To utilize (3.8), all charge and current densities in the total system must be known

or determined. If the system contains any conductors (stationary or moving), dielectrics,

ferromagnetic materials, time varying sources, etc., ascertaining these charge and current

densities/distributions and the electric filed and magnetic flux density involves the complete

solution of Maxwell’s equations external and internal to the various materials.
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As a side note, (3.8) may also be applied using the electric field and magnetic flux

density excluding the partial fields calculated from the subsystem of charge and current

densities (i.e.,
á

E´
á

E1 and
á

B´
á

B1: the partial fields calculated from the rest of the charge

and current densities not contained in the subsystem). This approach gives the same results

for the total force on the subsystem under the assumption there is no subsystem net self-

force (i.e., no net force as a result of the partial electric and magnetic flux density fields

from the charge and current densities of the subsystem).

Another approach for determining the force on a charge and/or current density is to

use Maxwell’s stress equation for electromagnetic fields [2]. Maxwell envisioned stress in

the ether/medium caused by the existence of electric and magnetic fields. The differential

force element on a differential volume of charge and/or current density resulting from the

electric and magnetic fields and flux densities generated by the total system of charge and

current densities is [32]:

d
á

F “

„

á

E
´

∇ ¨
á

D
¯

`

´

∇ˆ
á

E
¯

ˆ
á

D`

´

∇ˆ
á

H
¯

ˆ
á

B´
B

Bt

´

á

Dˆ
á

B
¯



dV. (3.9)

Although(3.9) appears more complicated than(3.8), when applied to a region/volume

of space the first three terms can typically be converted from volume to surface integrals

[32]. The differential surface element of force may provide insight into the directional

time-distance energy transfer flux density (the basis for this dissertation) passing through

a given surface. The last term in (3.9) is proportional to the partial time derivative of the

Poynting vector
á

S. The Poynting vector was developed by John Henry Poynting and is
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defined as [33]:

á

S “
á

Eˆ
á

H. (3.10)

The Poynting vector specifies the magnitude and direction of the net electromag-

netic energy flux density at a given location in the electromagnetic field. The average of

all electromagnetic directional time-distance energy transfers (with transfer path through

a given location) corresponds to the Poynting vector. Oliver Heaviside proposed the exis-

tence of additional, “circuital” energy flux(es) whose divergence is zero [34]. Continuous

directional time-distance energy transfers between two like charged, static objects is an ex-

ample of electromagnetic energy flux having zero divergence (i.e., energy flux having no

net energy transfer are not part of the Poynting vector).

For quantum electrodynamics (QED), Richard Phillips Feynman describes photons

interacting with electrons based on probabilities [3]. In particle physics (including QED),

the mediator (boson) is the energy carrier. The photon is the mediator for QED and the

graviton for quantum gravitation. The photon and graviton both have zero mass, travel at

the speed of light and don’t interfere with other zero mass mediators [35].

Directional time-distance energy transfer or QET (the basis for this dissertation) is

similar to the mediator/boson transfer in particle physics. However, in QED, the photon

can cause both repulsion (recoil and impact impulses from particle transfer) as well as

attraction (analogous to the throwing and then tugging of a rope) [36]. Directional time-

distance energy transfers only produce a pressure or push (repulsion) force (i.e., tension

or pull forces do not exist). Therefore, attraction needs to be explained by some other

mechanism.
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Oliver Heaviside pictured gravitation as the result of “the pressure of radiation pro-

duced by galactic energy-tubes.” These energy-tubes are a result of the “many millions of

galaxies” and are “a consequence of the radiant energy-mass relationships existing in this

cosmic system.” H. J. Josephs further describes Heaviside’s concept of gravitation [37]:

“... he imagined that all space was filled with energy-tubes, moving in straight

lines according to Newton’s first law, and in all directions with the speed of

light. A single planet alone in space would be subject to a rain of these galactic

energy-tubes from all directions at once and so would remain still. But two

planets in space would screen each other from the galactic rays coming in

particular directions. Consequently the galactic energy-density in the space

between the two planets would be reduced and so they would be urged towards

each other.”

Heaviside’s energy-tubes may be viewed as describing the graviton in quantum grav-

ity/particle physics. Georges-Louis Le Sage originally devised a kinetic theory of gravita-

tion [38], having a similar pushing effect as Heaviside’s energy-tubes. Feynman discarded

this pushing/kinetic theory of gravity because of the drag it predicts would be experienced

by moving bodies (i.e., the gravitation model can’t be a rain of energy-tubes) [39, 40].

However, the QET model of this dissertation (i.e., an influx and out-flux of QETs propor-

tional to a mass) doesn’t exhibit this drag issue for moving bodies.

Ernst Mach suggested a connection with the masses of the universe contributing to

inertial motions [41]. Mach’s principle has been coined to relate the inertia force (on ac-

celerating local masses) as a result of the fixed, distant matter of the universe. In other
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words, the force that presses a person against the door of an automobile navigating a sharp

corner is caused by the entire matter of the universe [42]. The concept of an object alone

in free space having inertia properties is not compatible with Mach’s principle. In terms of

this dissertation, the inertia of a local mass is the result of directional time-distance energy

transfers with surrounding distant matter of the universe.

In a similar manner, an underlying premise of this dissertation is that local charge

and current densities not only interact with each other but also with the distant matter of

the universe. If there is a repulsion between two objects (having like charges or opposite

current flow), it is a result of a greater average of directional time-distance energy transfers

(QETs) back and forth between the two objects compared to the QETs in the opposite di-

rection between the objects and the rest of the universe. Likewise, if there is an “attraction”

between two objects (having opposite charges or parallel current flow), it is a result of a

lesser average of QETs back and forth between the two objects compared to the QETs in

the opposite direction between the objects and the rest of the universe. In both the repul-

sion and attraction cases, the objects are always pushed (apart or together, respectively) as a

result of the summation of impulses from the QETs emitted (recoil impulse) and absorbed

(impact impulse) by the object.

For electrodynamics, (3.2) must be modified to incorporate the results of moving

charge densities. Wilhelm Eduard Weber proposed a formula for the interaction between

two moving charges (as a function of their relative position, velocity, and acceleration), the

resulting force acting along the straight line between the two charges [43]. Accordingly,

the differential force element on a first differential charge element interacting with a second
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differential charge element is [44]:

d2áF1 “ ´
1

4πεo

pρ1dV1q pρ2dV2q

d 2
21

«

1´
1

2c2

ˆ

Bd21

Bt

˙2

`
1
c2

B2d21

Bt2

ff

â21. (3.11)

Applying (3.11) to differential current elements (assuming neutral conductors) yields

Ampère’s formula of (3.3). Since (3.11) contains an acceleration term, Ampère’s formula

of (3.3) is also valid for time-varying currents (in neutral conductors) as well as curved

conductors [45].

Walter Ritz proposed a general formula for the interaction between two moving

charges (based on circuital currents), where the resulting force is not necessarily acting

along the straight line between the charge elements [46]. The corresponding differential

force element on a first differential charge element interacting with a second differential

charge element is [47]:

d2áF1“´
1

4πεo

pρ1dV1q pρ2dV2q

d 2
21

#«

1`
3´λ
4c2 v

2
21´

3 p1´λq
4c2

ˆ

Bd21

Bt

˙2

`

á

d21 ¨
á

a2

2c2

ff

â21

`
1` λ
2c2

ˆ

Bd21

Bt

˙

á

v21 ´
d21

2c2
á

a2

*

,

(3.12)

where á

v21 is the relative velocity of the second differential charge element with respect

to the first, áa2 is the acceleration of the second differential charge element, and λ is an

arbitrary constant. The terms containing λ integrate to zero for the force on a first closed

current circuit (e.g., current density in a wire loop) interacting with a second differential

current element. Equation (3.12) applied to differential current elements (assuming neu-

tral conductors) yields a differential force element that is not necessarily acting along the

straight line between the current elements, but is equal and opposite to the force on the

second differential current element [48].
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Georg Friedrich Bernhard Riemann suggested that electrodynamic effects are ex-

plained by the action from a charged mass propagating to other charged masses at the speed

of light. He formulated a retarded electric scalar potential [49]. Ludvig Valentin Lorenz

also suggested a formula for the retarded electric scalar potential and retarded magnetic

vector potential [50]. The retarded electric scalar potential, φret, and retarded magnetic

vector potential,
á

Aret, (Coulomb gauge) are used to determine the electric field and mag-

netic flux density satisfying Maxwell’s equations [51]:

φret “
1

4πεo

¡

rρsret

r
dV 1, (3.13)

á

Aret “
µo

4π

¡

”

á

J
ı

ret

r
dV 1, (3.14)

á

E “´∇φret ´
B
á

Aret

Bt

“
1

4πεo

¡
"

rρsret

r2 `
1
rc

„

Bρ

Bt1



ret

*

ârdV
1
´
µo

4π

¡

1
r

«

B
á

J

Bt1

ff

ret

dV 1,

(3.15)

á

B “∇ˆ
á

Aret

“
µo

4π

¡

$

&

%

”

á

J
ı

ret

r2 `
1
rc

«

B
á

J

Bt1

ff

ret

,

.

-

ˆ ârdV
1,

(3.16)

where r is the distance from the source point (at an earlier time) to the field (observation)

point (at the present time), âr is the unit vector directed toward the field point, and the

retardation symbol, rsret, indicates evaluation at an earlier (retarded) time, t1 “ t´ r{c.
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The electric field and magnetic flux density calculated using the retarded integrals

of (3.15) and (3.16) for a system of charge and current densities (excluding the partial

fields from the first subsystem of charge and current densities, if desired) can be applied

to Lorentz’s force equation (3.8) to determine the differential force element within a first

subsystem of charge and current densities. Combining (3.8), (3.15), and (3.16) produces a

differential element of force that may be viewed as retarded action at a distance.

An electric field and magnetic flux density calculated using advanced integrals (i.e.,

advanced electric scalar and magnetic vector potentials) are also a solution to Maxwell’s

equation. John Archibald Wheeler and Richard Feynman proposed an electromagnetic

interaction that involved half retarded and half advanced Lienard-Wiechert potential solu-

tions [52]. Their approach was based on Hugo Martin Tetrode’s notion that energy can’t be

radiated unless there is an absorber receiving the energy [53].

The background information in this chapter provides a supporting framework for di-

rectional time-distance energy transfers or QETs (quantum energy transfers) as highlighted

below:

1. Similar to QED, QET occurs in discrete quanta of energy being emitted from one

particle of matter at a given point in time and successively absorbed by a different

particle at a later point in time.

2. Unlike QED, QETs only produce a pressure or push (repulsion) force (i.e, tension or

pull forces do not exist).

3. Similar to Tetrode’s absorber concept, QETs occur only as a pair; one particle of
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matter is the emitter and another particle of matter is the absorber.

4. Similar to QED, there is no collisions/interference between QETs.

5. Retarded and advanced potential differential elements are correlated with QETs; they

both ‘propagate’ at the speed of light in a straight path between past/future locations.

6. Retarded potentials are correlated with quantum energy absorption (i.e., a particle of

matter absorbs energy from an emitter in the past).

7. Advanced potentials are correlated with quantum energy emission (i.e., a particle of

matter emits energy to an absorber in the future).

8. Although QET is a causal transaction (i.e., quantum energy is emitted at one point

in time and absorbed at some later point in time), the recoil impulse from quantum

energy emission based on the future absorber location is non-causal.

9. The impulse forces from QETs are correlated with the differential force elements of

(3.1), (3.2), and (3.3) or (3.4) for statics; the resulting force is towards or away from

the directional vector between two differential elements of mass, charge, or current

densities.

10. Similar to Heaviside’s energy-tubes concept of gravity, QETs occur between the

masses of the universe and local masses; two local masses screen each other from

these QETs causing the local masses to be pushed together.

11. Unlike Le Sage’s kinetic theory of gravitation, QETs to/from an object are propor-

tional to the mass of the object itself (i.e., not a function of an abundance of tiny
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corpuscles moving at high speeds in all directions interacting with a mass density).

12. Similar to Mach’s principle, inertia is a result of QETs between a local mass and the

masses of the universe.

13. Unlike Mach’s principle, a local mass has a finite average rate of QETs and there-

fore can’t interact with the entire masses of the universe; although there is a given

probably of interaction with every mass element of the universe.

14. If there is an electric or magnetic repulsion between two objects (having like charges

or opposite current flow), it is a result of a greater average of QETs back and forth

between the two objects compared to the QETs in the opposite direction between the

objects and the rest of the universe.

15. Likewise, if there is an “attraction” between two objects (having opposite charges

or parallel current flow), it is a result of a lesser average of QETs back and forth

between the two objects compared to the QETs in the opposite direction between the

objects and the rest of the universe.

16. The force on moving differential charge and current elements is correlated with the

retarded potentials (i.e., absorbed energy transfers from emitters in the past) and ad-

vanced potentials (i.e., emitted energy transfers to absorbers in the future) and there-

fore should also be a function of the velocities and accelerations of the differential

elements; the resulting force not necessarily being in line with the distance vector

between the two differential elements.
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17. The average of all QETs occurring (i.e., transferring) through a given location is

deduced to be the Poynting vector.

18. There are additional energy fluxes (not part of the Poynting vector) accounting for

the QETs related to the electric and magnetic interactions.
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CHAPTER 4. MASS, FORCE, AND QET

Although the primary emphasis of this dissertation deals with electromagnetic di-

rectional time-distance energy transfer (QET), it is useful to briefly touch on the QETs

interacting with mass associated with gravity and inertia. However, this chapter doesn’t go

into any details of gravity or inertia. This chapter provides a formula for calculating the

force on a given system of particles of matter given knowledge of the QETs emitted from

and absorbed by the system in a given amount of time.

A system of particles of matter (e.g., sub-atomic particles, atoms, molecules, objects,

planets, solar systems ...) has a corresponding mass, m (kg). If a) the mass of a system

remains constant, b) the momentum of the system is conserved, and c) there is no net flow

of thermal and electromagnetic energy into or out of the system, then:

1. The mean rate of quantum energy absorptions, sPa (W), corresponding to QETs di-

rectionally into the system, is proportional to the mass, m, of the system.

2. The mean rate of quantum energy emissions, sPe (W), corresponding to QETs direc-

tionally out of the system is also proportional to the mass, m, of the system.

3. The mean rate of quantum energy absorptions into the system is equivalent to the

mean rate of quantum energy emissions out of the system: sPa “ sPe. In other words,

there is no net gain or loss of the system’s energy.

4. The mean force and torque on the system (resulting from the QETs into and out of
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the system) is null.

Assume that between the times to and to `∆t there are N quantum energy absorp-

tions (with magnitudes Uan) directionally into the system (with corresponding directional

unit vectors âan). Additionally, assume that between the same times there are K quantum

energy emissions (with magnitudes Uekq directionally out of the system (with correspond-

ing directional unit vectors âek).

The mean rate of quantum energy absorptions directionally into the system, sPa is:

sPa “
1

∆t

N
ÿ

n“1

Uan “ Γm, (4.1)

where Γ is the constant of QET rate to mass (W/kg), applicable in the limit for sufficiently

large ∆t. The constant of mean quantum energy absorption/emission rate to mass Γ is

proposed to be equivalent to Γe derived in Appendix A as:

Γ “ Γe “
8πεomec

5

e2 “ 1.913ˆ 1040
pW/kgq . (4.2)

The mean rate of quantum energy emissions directionally out of the system, sPe is:

sPe “
1

∆t

K
ÿ

k“1

Uek “ Γm “ sPa. (4.3)

The net force on the system as a result of quantum energy absorption directionally

into the system,
á

Fa is:

á

Fa “
1
c∆t

N
ÿ

n“1

Uanâan pNq . (4.4)

The net force on the system as a result of quantum energy emissions directionally out

of the system,
á

Fe is:

á

Fe “
1
c∆t

K
ÿ

k“1

Uekâek “ ´
á

Fa. (4.5)
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The net forces
á

Fa and
á

Fe may be non-zero. However, the total net force from QETs

into and out of the system (i.e., the summation of the two forces) is null. Therefore, the

net forces
á

Fa and
á

Fe are equal and opposite (in the limit for sufficiently large ∆t). The net

system torques from QETs into and out of the system may be non-zero, and also are equal

and opposite (i.e., the total net system torque is null).

The basic model/concept of gravity is (as described in Chapter 3): QETs occur be-

tween the masses of the universe and local masses; two local masses screen each other from

these QETs causing the local masses to be pushed together.

The basic model/concept of inertia is related to the net forces
á

Fa and
á

Fe on a system.

When a system is at rest (as observed in an inertial reference frame), both net forces
á

Fa and

á

Fe are zero. However, if the system is moving with a given velocity,
á

Fa will be non-zero,

having a direction opposite the velocity (i.e., greater net impact force on the front side of

system). In addition,
á

Fe will be non-zero, having the same direction as the velocity (i.e.,

greater net recoil force on the back side of the system).
á

Fa and
á

Fe are equal and opposite,

so the net force will be zero. If the system is accelerated,
á

Fa and
á

Fe are no longer equal

and opposite, giving rise to a net force (i.e., the force of inertia).
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CHAPTER 5. A QET MODEL FOR THE POINCARÉ STRESS OF

AN ISOLATED, SPHERICALLY SYMMETRIC STATIC CHARGE

DISTRIBUTION

The goal of this and the subsequent chapter is to establish a QET (boson interaction)

model that provides a visualization of the stresses internal and external to static charge

distributions [54]. The internal and external charge distribution stresses are derived from

the recasting of Maxwell’s stress equation. Therefore, the electrostatic QET model of this

dissertation is mathematically consistent with Maxwell’s stress equation.

The QET model for electrostatics may provide fresh or different insight into electro-

static systems. The model provides an alternate conceptualization of the path of electro-

static forces and the location of stored electrostatic potential energy. In addition, the QET

model provides an illustrative link between classical electrostatics and the quantum realm.

Maxwell’s stress equation for electrostatics identifies a tensile stress in the direction

of the electric field and a pressure normal to this direction. The principle aim of this chapter

is to determine how Maxwell’s stress equation (applied to a closed surface external for an

isolated, spherically symmetric static charge distribution) can be recast to eliminate the

stress normal to the electric field while maintaining a radial stress aligned with the field

[55]. The motivation to pursue this endeavor is to establish a mathematical basis for an

external omnidirectional pressure, inwardly directed that may be attributed to the Poincaré
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stress [56, 57] maintaining the equilibrium of the charge distribution.

For electrostatics, the electromagnetic momentum density [58] is null. Therefore,

from the conservation of momentum, the electrostatic force
á

f per unit volume at any given

location is:

á

f “ ∇ ¨
Ø

T, (5.1)

where
Ø

T is the Maxwell stress tensor [59]. For electrostatics in free space, terms of the

Maxwell stress tensor are:

Tij “ εoEiEj ´
εo

2
δijE

2, (5.2)

where εo is the permittivity of free space, δij is the Kronecker delta (i.e., 1 if the indices

are the same, 0 otherwise), and Ei or Ej is the x, y, or z component of the electric field.

Maxwell’s stress equation for electrostatics in free space can be obtained by applying the

divergence theorem to the total force for a given volume using (5.1) (see also an alternate

derivation in [60] and Appendix B):

á

F “

¡

á

f dV “

¡

´

∇ ¨
Ø

T
¯

dV “

£

Ø

T ¨ d
á

S

“εo

£

á

E
´

á

E ¨ d
á

S
¯

´
εo

2

£

E2d
á

S.

(5.3)

An interesting outcome of Maxwell’s stress equation is that the force on a charge

distribution may be attributed to the electric field in the free space around the charge distri-

bution, rather than to the charge distribution itself [61]. Maxwell’s stress equation may be

applied to any surface that either encloses all charge distributions or separates one charge

distribution (with any enclosed surface shape) from a second charge distribution [62].
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The simplest example of a spherically symmetric charge distribution is a hollow shell

having a uniform surface charge distribution. Maxwell’s stress equation at the shell surface

depicts the outward electrostatic pressure on the shell surface corresponding to the repul-

sive Coulomb force between all shell charge distribution elements. The Poincaré stress is

traditionally viewed as an internal pulling, mechanical stress of the shell’s physical struc-

ture balancing the outward electrostatic pressure. The Maxwell stress (per unit area) at

concentric spherical surfaces (with radius r) away from the spherical shell falls off as 1{r4.

In contrast, for this simple spherical shell charge distribution, the QET model of this

chapter depicts the Poincaré stress as an inwardly directed, omnidirectional pressure. The

pressure is a result of a mean valued, continual QETs between the charge distribution and

the distant matter of the universe. The Poincaré stress (per unit area) at concentric spherical

surfaces away from the spherical shell falls off as 1{r2 compared to 1{r4 for the Maxwell

stress.

This chapter establishes the external Poincaré stress that is mathematically compat-

ible with Maxwell’s stress equation. Unlike Maxwell’s stress, the Poincaré stress has no

stress component normal to the electric field, but only has a stress component aligned with

the straight ‘path’ of the QET (i.e., aligned with the electric field external to the spherical

shell).

The electrostatic potential energy of the spherical shell is traditionally computed by

integration of the square of the electric field over the volume of space from the shell’s sur-

face to infinity (i.e., the electric field inside the hollow shell is null) [63]. Therefore, the

electrostatic potential energy is classically viewed as being stored in the electric field. Al-
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ternatively, the electrostatic potential energy may be computed by integration of the product

of the electric potential and the charge density at the charge distribution shell [64]. In this

case, the electrostatic potential energy may be viewed as being stored in the charge distri-

bution itself.

In contrast, for this simple spherical shell charge distribution, the QET model of

Chapter 6 identifies the electrostatic potential energy as trapped energy inside the hollow

shell. The trapped energy is a result of a mean valued, continual exchange of photons be-

tween all shell charge distribution elements. Chapter 6 also develops an internal line stress

between two separated, spherically symmetric static charge distributions. The line stress is

shown to be mathematically consistent with Maxwell’s stress equation. The spherical shell

charge distribution may be constructed from the superposition of many dumbbell compo-

nents [57] (the two separated charge distributions making up a dumbbell component).

The spherical shell charge distribution example highlights the primary differences

between the traditional approach and the QET model for electrostatics. The traditional

approach defines the Poincaré stress as internal to the structure and establishes that the

electrostatic potential energy is stored in the electric field external to the shell (or alternately

in the charge distribution itself). In contrast, the QET model defines the Poincaré stress as

an external stress and establishes the electrostatic potential energy as trapped energy inside

the hollow shell.

For an isolated, spherically symmetric static charge distribution, Maxwell’s stress

equation applied to any closed surface (containing all or none of the charge distribution)

yields a total force that is null. This is easily shown for any concentric spherical surface
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outside of the charge distribution due to symmetry. The purpose of recasting Maxwell’s

stress equation for a spherically symmetric static charge distribution is not to produce an

alternate method of obtaining the same null result. Instead, the purpose of recasting is to

ascertain a stress with a component only in the radial direction.

Maxwell’s stress equation designates a differential element of stress at a specific

location on a given surface. As shown in Section 5.1, Maxwell’s stress equation for the

spherically symmetric charge distribution may be recast in an infinite number of ways, all

producing the null result for the total force on any closed surface (containing all or none of

the charge distribution). However, there are two outcomes of importance. First, Maxwell’s

stress equation may be recast such that in addition to the total force on a closed surface

being null, every differential element of stress on the surface is null as well. Second,

Maxwell’s stress equation may be recast such that every differential element of stress only

has a component in the radial direction. The first is an interesting result while the second

supports the QET electrostatic model of this dissertation.

Section 5.1 methodically steps through the details of recasting Maxwell’s stress equa-

tion for a conic closed surface in free space away from an isolated spherically symmet-

ric static charge distribution at the origin. A variant of Stokes’ Theorem (derived in Ap-

pendix C) is used in this recasting process. The end result is a recast stress equation for a

closed surface that depicts an inward surface tension only in the radial direction, parallel to

the electric field for a spherically symmetric charge distribution.

Section 5.1 is purposely arduous in the recasting process which may appear to take

the longest route to obtain the desired results. However, the application of the variant of
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Stokes’ Theorem is uncommon and justifies such rigor. The end result is the recasting

of the differential element of Maxwell’s stress equation from a stress with a component

normal to the electric field and a component in the radial direction that falls off as 1{r4 to a

Poincaré stress with a differential element only in the radial direction that falls off as 1{r2.

Section 5.2 generalizes the results of Section 5.1 for an arbitrary spherically sym-

metric charge distribution location and arbitrary closed surface. Again, the recasting of

Maxwell’s stress equation is realized by applying a variant of Stokes’ Theorem. However,

the recasting process itself is more concise.

Section 5.3 expounds on the Poincaré stress identified in the recast stress equation.

Modeled as energy carrier mediator interactions with the distant matter of the universe, this

stress is shown to conform with Mach’s principle.

5.1 Recasting of Maxwell’s Stress Equation in Free Space, Away from
an Isolated Spherically Symmetric Static Charge Distribution at
the Origin

In classical electrostatics, the electric field external to a spherically symmetric charge

distribution (centered at the origin), with total charge, q, is [65]:

á

E “
q

4πεor2 âr, (5.4)

where r is the distance from the origin and âr is the radial unit vector of the electric field

location.

Maxwell’s stress equation (5.3) may be used to determine the force on each surface of

the conic closed surface shown in Figure 5.1. The surfaces at r “ a and r “ b are spherical
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surfaces (i.e., only a radial component normal to the surface) and the side surface only has

an azimuthal component normal to the surface. The angle α specifies the tilt of the side

surface Sside with respect to the z axis.

Figure 5.1: Conic closed surface symmetric about the z axis with spherical surfaces at r “ a and

r “ b.

The force from Maxwell’s stress equation for surface Sa is:

á

Fa “εo

ĳ

Sa

á

E
´

á

E ¨ d
á

S
¯

´
εo

2

ĳ

Sa

E2d
á

S “ εo

ĳ

Sa

E2d
á

S´
εo

2

ĳ

Sa

E2d
á

S “
εo

2

ĳ

Sa

E2d
á

S, (5.5)

and the force in the z direction for surface Sa is:

Faz “´
εo

2

ż 2π

0

ż α

0

ˆ

q

4πεoa2

˙2

a2 sin θ cos θdθdφ “ ´
q2 sin2 α

32πεoa2 .
(5.6)

The force from Maxwell’s stress equation for surface Sb is:

á

Fb “
εo

2

ĳ

Sb

E2d
á

S, (5.7)
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and the force in the z direction for surface Sb is:

Fbz “
εo

2

ż 2π

0

ż α

0

ˆ

q

4πεob2

˙2

b2 sin θ cos θdθdφ “
q2 sin2 α

32πεob2 .
(5.8)

The force from Maxwell’s stress equation for surface Sside is:

á

Fside “εo

ĳ

Sside

á

E
´

á

E ¨ d
á

S
¯

´
εo

2

ĳ

Sside

E2d
á

S “ 0´
εo

2

ĳ

Sside

E2d
á

S “ ´
εo

2

ĳ

Sside

E2d
á

S, (5.9)

and the force in the z direction for surface Sside is:

Fsidez “
εo

2

ż 2π

0

ż b

a

ˆ

q

4πεor2

˙2

r sinα sinα dr dφ “
q2 sin2 α

32πεo

ˆ

1
a2 ´

1
b2

˙

. (5.10)

For any closed surface containing free space, the net force from Maxwell’s stress

equation is null. This is true for the sum of the three surface forces of (5.6), (5.8), and

(5.10):

Ftotalz “ Faz ` Fbz ` Fsidez “ 0. (5.11)

The three forces on each surface of the conic closed surface of Figure 5.1 give some

general insight into Maxwell’s stress equation. James Maxwell related Michael Faraday’s

physical lines of force (electric lines of force in this case) [1] to a state of stress in the

medium (i.e., tension in the direction of the lines of force and pressure normal to this

direction) [21]. Surfaces Sa and Sb are in the direction of the electric lines of force and the

surface Sside is normal to this direction.

The primary goal of this section is to determine if Maxwell’s stress equation for the

conic closed surface of Figure 5.1 can be recast to eliminate the stress normal to the electric

lines of force while maintaining a radial stress (for an isolated spherically symmetric static
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distribution). To accomplish this goal, the following variant of Stokes’ Theorem is used

(see derivation in Appendix C):

¿

á

Cˆ d
á

` “

ĳ

”´

∇ ¨
á

C
¯

d
á

S´∇C

´

á

C ¨ d
á

S
¯ı

, (5.12)

where the C subscript of the del operator indicates that partial derivatives are only applied

to the vector field
á

C (see (C.5)).

The variant of Stokes’ Theorem is used to convert the Maxwell’s stress equation

force contribution on the side surface of the cone to forces on the ring edges at r “ a and

r “ b. Figure 5.2(a) shows a closed contour bounding the surface Sside: traversing clock-

wise around the top ring edge at r “ b, down the side surface, continuing counter-clockwise

around the bottom ring edge at r “ a, and returning up the side surface. Figure 5.2(b)

shows that the net result of the closed contour of (a) is two separate ring edges, one at

r “ a and the other at r “ b.

The objective is to determine a
á

C such that the variant of Stokes’ Theorem applied

to the closed contour of Figure 5.2(a) results in a force on surface Sside equivalent to the

Maxwell’s stress equation force for this surface. A first step to achieve this objective is to

systematically establish how the variant of Stokes’ Theorem applied to Sside operates on a

á

C of the general form:

á

Cn “
kn
rn

âr, (5.13)

where kn is an arbitrary constant and n is a positive integer.

The divergence of
á

Cn is:

∇ ¨
á

Cn “ kn

„

B

Bx

x

rǹ 1`
B

By

y

rǹ 1`
B

Bz

z

rǹ 1



“
kn p2´ nq

rǹ 1 , (5.14)
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Figure 5.2: Force on (a) closed contour bounding the surface Sside is equivalent to (b) two ring

edges at r “ a and r “ b.

and the gradient of the vector [66]
á

Cn is:

∇
á

Cn“ kn

»

—

—

—

—

—

—

–

B

Bx

x

rǹ 1

B

Bx

y

rǹ 1

B

Bx

z

rǹ 1

B

By

x

rǹ 1

B

By

y

rǹ 1

B

By

z

rǹ 1

B

Bz

x

rǹ 1

B

Bz

y

rǹ 1

B

Bz

z

rǹ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ –
knpn`1q
rn`3

»

—

—

—

—

—

–

x2–
r2

n`1
xy xz

xy y2–
r2

n`1
yz

xz yz z2–
r2

n`1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

(5.15)
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The differential surface element for Sside is:

d
á

Sside “ dSsideâθ “ dSside

»

—

—

—

—

—

—

—

—

–

xz

r
a

x2 ` y2

yz

r
a

x2 ` y2

´

a

x2 ` y2

r

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (5.16)

and:

∇Cn

´

á

Cn ¨ d
á

Sside

¯

“

´

∇
á

Cn

¯

¨ d
á

Sside “
kn
rn`1d

á

Sside. (5.17)

Combining (5.14), (5.17), and the integrand in the right side of (5.12) for the surface

Sside yields:

´

∇¨
á

Cn

¯

d
á

Sside´∇Cn

´

á

Cn ¨d
á

Sside

¯

“
kn p2´nq
rǹ 1 d

á

Sside ´
kn
rǹ 1d

á

Sside

“
kn p1´nq
rǹ 1 d

á

Sside.

(5.18)

From the general results of (5.18), Maxwell’s stress equation for surface Sside (5.9)

can be converted to contour ring forces at r “ a and r “ b using a
á

C of the form given in

(5.13) by selecting n “ 3 and k3 such that:

á

C “
k3

r3 âr “
εo

4

ˆ

q

4πεo

˙2 1
r3 âr “

εorE
2

4
âr. (5.19)

The two contour ring forces at r “ a and r “ b can subsequently be converted to

surface forces at Sa and Sb using the variant of Stokes’ Theorem (5.12). In general, for a

á

C of the form given in (5.13) and the gradient of the vector
á

Cn given in (5.15) applied to a

spherical outward surface:

d
á

Sr “ dSrâr “
dSr
r

»

–

x
y
z

fi

fl (5.20)
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(i.e., only a radial component normal to the surface such as Sb in Figure 5.1), yields:

∇Cn

´

á

Cn ¨ d
á

Sr

¯

“

´

∇
á

Cn

¯

¨ d
á

Sr “ –
nkn
rn`1d

á

Sr. (5.21)

Combining (5.14), (5.21), and the integrand in the right side of (5.12) for a spherical

surface Sr yields:

´

∇¨
á

Cn

¯

d
á

Sr´∇Cn

´

á

Cn ¨d
á

Sr

¯

“
kn p2´nq
rǹ 1 d

á

Sr ´ –
nkn
rǹ 1d

á

Sr “
2kn
rǹ 1d

á

Sr. (5.22)

Converting the contour ring force at r “ a with the
á

C of (5.19) and the contour direc-

tion d
á

`a of Figure 5.2(b) and combining it with the Maxwell’s stress equation for surface

Sa of (5.5) yields null not only for the force on surface Sa but also for each differential

element of the surface force integrand:

á

Fa “ –
ĳ

Sa

εoE
2

2
d
á

S`
εo

2

ĳ

Sa

E2d
á

S “ 0. (5.23)

Similarly, converting the contour ring force at r “ b with the
á

C of (5.19) and the

contour direction d
á

`b of Figure 5.2(b) and combining it with the Maxwell’s stress equation

for surface Sb of (5.7) yields null:

á

Fb “ –
ĳ

Sb

εoE
2

2
d
á

S`
εo

2

ĳ

Sb

E2d
á

S “ 0. (5.24)

It is interesting to note that using the variant of Stokes’ Theorem to convert the

Maxwell’s stress equation force on the side surface of the cone Sside to ring forces on the

cone ends and then subsequently using the variant of Stokes’ Theorem to convert these ring

forces to forces on the end surfaces Sa and Sb cancels out the Maxwell’s stress equation

force on these end surfaces. It is also interesting to note by inspection of (5.18) and (5.22)
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that a
á

C of the form given in (5.13) with n “ 1 may be added to (5.19) and still provide a

valid conversion of Maxwell’s stress equation for surface Sside to ring forces at r “ a and

r “ b:

á

Crecast “
εorE

2

4
âr `

k

8πr
âr, (5.25)

where k may be an arbitrary constant.

Converting the contour ring force at r “ a with the recasting
á

C of (5.25) and the

contour direction d
á

`a of Figure 5.2(b) and combining it with the Maxwell’s stress equation

for surface Sa of (5.5) yields:

á

Fa “ –
ĳ

Sa

ˆ

εoE
2

2
`

k

4πa2

˙

d
á

S`
εo

2

ĳ

Sa

E2d
á

S “ –
ĳ

Sa

k

4πa2d
á

S. (5.26)

Similarly, converting the contour ring force at r “ b with the recasting
á

C of (5.25)

and the contour direction d
á

`b of Figure 5.2(b) and combining it with the Maxwell’s stress

equation for surface Sb of (5.7) yields:

á

Fb “ –
ĳ

Sb

ˆ

εoE
2

2
`

k

4πb2

˙

d
á

S`
εo

2

ĳ

Sb

E2d
á

S “ –
ĳ

Sb

k

4πb2d
á

S. (5.27)

The force on surface Sa and Sb given in (5.26) and (5.27) are equal and opposite

and represent an inward surface tension where the units of the constant k are N/sr. The

outcome of this section is the recasting of Maxwell’s stress equation using the variant of

Stokes’ Theorem:

á

Frecast “ –
£

k

4πr2 âr

´

âr ¨ d
á

S
¯

. (5.28)

For a spherically symmetric charge distribution centered at the origin, (5.28) may be

applied to any closed surface which either encloses all or none of the charge distribution
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(with no charge distribution at any surface element). If the closed surface is a sphere (also

centered at the origin) enclosing the entire charge distribution, then the recast stress equa-

tion suggest an omnidirectional inward pressure. Section 5.3 establishes that the constant

k is proportional to the electrostatic potential energy of the charge distribution.

5.2 Recasting of Maxwell’s Stress Equation in Free Space for an Iso-
lated Spherically Symmetric Static Charge Distribution at an Ar-
bitrary Location for an Arbitrary Surface

The purpose of this section is to generalize the results of the preceding section for an

arbitrary charge distribution location and arbitrary surface. Figure 5.3 shows an arbitrary

surface away from a spherically symmetric charge distribution at ár1
1 “ x1

1âx ` y1
1ây ` z1

1âz

with total charge q1. The electric field at any observation point, ár, is:

á

E1 “
q1

4πεor
3
1

á

r1, (5.29)

where:

á

r1 “
á

r ´
á

r1
1
“ px´x1

1
q âx`py ´y1

1
q ây`pz ´z1

1
q âz “

»

–

x1

y1

z1

fi

fl “

»

–

x´ x1
1

y ´ y1
1

z ´ z1
1

fi

fl . (5.30)

Maxwell’s stress equation for an arbitrary surface S can be recast using the method

similar to the previous section. For any arbitrary closed contour on the arbitrary closed

surface (shown as the ring in Figure 5.3), the variant of Stokes’ Theorem is used to convert

equal and opposite closed contour integrals to two surface integral portions bounded by the

respective closed contours.
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Figure 5.3: Arbitrary surface away from a spherically symmetric charge distribution with total

charge q1.

The following
á

C1 is chosen such that after converting to a surface force using (5.12)

and combining with the Maxwell’s stress equation of (5.3) (for the surface S) yields a

component that is only radially aligned with respect to the spherical charge distribution

location:

á

C1 “´
εo

4

ˆ

q1

4πεo

˙2 1
r3

1
âr1 ´

k

8π
1
r1
âr1

“´
εo

4

ˆ

q1

4πεo

˙2 1
r4

1

»

–

x´ x1
1

y ´ y1
1

z ´ z1
1

fi

fl´
k

8π
1
r2

1

»

–

x´ x1
1

y ´ y1
1

z ´ z1
1

fi

fl ,

(5.31)
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where k is an arbitrary constant. The divergence of
á

C1 is:

∇¨
á

C1 “ –
εo

4

ˆ

q1

4πεo

˙2ˆ
B
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ˆ
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(5.32)

and the gradient of the vector
á

C1 is:

∇
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1

r4
1

B

Bz

z –z1
1

r4
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

–
k

8π

»

—

—

—

—

—

—

–

B

Bx

x –x1
1

r2
1

B

Bx

y –y1
1

r2
1

B

Bx

z –z1
1

r2
1

B

By

x –x1
1

r2
1

B

By

y –y1
1

r2
1

B

By

z –z1
1

r2
1

B

Bz

x –x1
1
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1
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(5.33)

and:

∇C1

´

á

C1 ¨ d
á

S
¯

“

´

∇
á

C1

¯

¨ d
á

S

“εo
á

E1
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á

E1 ¨ d
á

S
¯

´
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4
E2

1d
á

S´
k

8πr2
1
d
á

S`
k

4πr2
1
âr1

´

âr1 ¨ d
á

S
¯

.

(5.34)

Combining (5.32), (5.34), and the right side of (5.12) and adding this result to the
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Maxwell’s stress equation (5.3) for the surface S yields:
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(5.35)

Equation (5.35) represents the recasting of Maxwell’s stress equation in free space

for an arbitrary spherically symmetric static charge distribution location and an arbitrary

surface (not containing any surface charge) using the variant of Stokes’ Theorem. The

recast stress equation depicts an inward surface tension only in the radial direction (relative

to the charge distribution location) where the units of the constant k are N/sr.

5.3 Poincaré Stress and QET

Maxwell’s stress equation applied to a closed surface external to an isolated, spheri-

cally symmetric static charge distribution has been recast using a variant of Stokes’ Theo-

rem. The recast stress equation (5.28) or (5.35) eliminates the stress normal to the electric

field and manifests an inward surface tension only in the radial direction (relative to the

charge distribution location).
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The recasting may have the appearance of fabricating something from nothing. The

argument being that for an arbitrary closed surface that either contains none or all of the

charge distribution, there is nothing at the surface since Maxwell’s stress equation has a

net null result. However, Maxwell’s stress equation may be used to determine the outward

electrostatic pressure [61] (N/m2) on a spherical shell with uniform charge distribution,

total charge q, and radius a (see also an alternate derivation [67]):

á

pa “
εo

2
E2âr “

q2

32π2εo a4 âr. (5.36)

Similarly, the recast stress equation has some usefulness.

In general, the Poincaré stress is a non-electromagnetic, binding force that keeps a

charge distribution stable [68, 69]. This binding force is typically viewed as being internal

to the charge distribution (i.e., an inward pulling force equalizing the outward electrostatic

pressure). However, the recast Maxwell’s stress equation (5.28) identifies a stress that is

external to the charge distribution, directed inward. Poincaré propounded at times that the

equalizing stress was an external pressure [70].

An external Poincaré stress for a spherically symmetric charge distribution may be

modeled as an omnidirectional average rate of QET influx (W/sr) in combination with an

out-flux of an equal average rate of QETs. Since the average rate of influx and out-flux

QETs are equal, there is no net gain or loss of energy in the charge distribution. The

average rate of QET influx and out-flux depict a mean valued sequence of energy carrier

mediators. For instance, the energy carrier mediators (bosons) may be gravitons or photons

[71, 35]. The impact force of QET influx and the recoil force of QET out-flux [72] accounts

for the inward pressure (N/sr).
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Assume that the mean QET influx and out-flux is proportional to the electrostatic

potential energy (or equivalent electrostatic mass) of the spherically symmetric charge dis-

tribution. For example, the electrostatic potential energy of a spherical shell with uniform

charge distribution, total charge q and radius a is: Ue “ q2{8πεoa [73]. Therefore, the con-

stant k of (5.28) or (5.35) is proportional to the equivalent electrostatic mass m “ Ue{c
2

of the charge distribution. Chapter 4 described a net rate of QET absorptions, sPa, and

emissions, sPe, both proportional to the mass, m, of a system: sPa “ sPe “ Γm. The con-

stant of mean rate of QET absorptions/emissions to electrostatic mass Γ is proposed to be

equivalent to Γe derived in Appendix A as:

Γ “ Γe “
8πεomec

5

e2 “ 1.913ˆ 1040
pW/kgq . (5.37)

This derivation is based on Jules Henri Poincaré’s conclusion that the electron is in equi-

librium between the outward force of charge wanting to push it apart and an inward normal

stress [74].

The Poincaré stress is the sum of the impact force density of quantum energy absorp-

tions and recoil force density of quantum energy emissions. Therefore, for a spherically

symmetric charge distribution with electrostatic potential energy, Ue, the Poincaré stress

equation is (5.35) with k “
`

sPa ` sPe
˘

{c “ 2ΓUe{c
3:

á

F1Poincaré“ –
£

ΓUe
2πc3r2

1
âr1

´

âr1 ¨ d
á

S
¯

. (5.38)

Jules Henri Poincaré also hinted of a relationship between the electrostatic equalizing

stress and gravity [75]. Ernst Mach suggested a connection with the masses of the universe

contributing to inertial motions [41]. Mach’s principle has been coined to relate the inertia
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force (on accelerating local masses) as a result of the fixed, distant matter of the universe

[76, 77]. An isolated mass may have a large quantity of quantum energy bosons interacting

with the distant matter of the universe [78].

Equation (5.38) may be interpreted in light of Mach’s principle. An isolated, spher-

ically symmetric static charge distribution has an average rate of QET influx and out-flux

interacting with the distant matter of the universe, proportional to the equivalent electro-

static mass of the charge distribution. The recast stress equation depicts an inward om-

nidirectional pressure (i.e., Poincaré stress) for a spherical surface enclosing the charge

distribution as a result of these QET interactions.

The mean rate of QET influx and out-flux resulting in the Poincaré stress may consist

of a combination of photons and bosons. If the interaction is with the charge in the distribu-

tion, then the QETs may be considered photon exchanges. If the interaction is with the solid

structure of the distribution itself, then the QETs may be considered bosons. The specifics

of which are involved are not needed for this model. The important aspect for electrostatics

is that the inwardly directed Poincaré stress is in equilibrium with the outward electrostatic

force keeping the solid structure/charge distribution intact.

A rigid/solid structure plays an important role in electrostatics. The rigid structure

contains the charges and is part of the mechanism for keeping the charge distribution in

equilibrium (i.e., from flying apart). The Poincaré stress also plays an important part.

For a spherically symmetric charge distribution, the underlying rigid structure has a radial

tension trying to pull the structure apart. The Poincaré stress interacting with the rigid

structure counteracts this tension in the structure keeping everything at equilibrium. If the
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solid structure were not there, then the Poincaré stress interacting with the structure would

also not be there and the charges in the charge distribution would start to accelerate away

from each other.

The mean rate of QET influx and out-flux could be viewed as a continuum of omni-

directional influx and out-flux of power exchange (W/sr) near (into and out of) the charge

distribution. The concept of a continuum power exchange is not necessary and doesn’t sim-

plify the model. In fact, it complicates the exchanges/interactions with the distant matter

of the universe. For a given charge distribution, there is a mean rate of energy exchange

with the distant matter of the universe. However, the exchange is not always with the same

distant matter every time. Instead, the exchange is with any distant matter and statistically

varies with each QET.

5.4 Summary

Using a variant of Stokes’ Theorem, Maxwell’s stress equation for an isolated, spher-

ically symmetric static charge distribution has been successfully recast. The recast stress

equation identifies a non-electromagnetic Poincaré stress as the only stress external to the

charge distribution. The Poincaré stress is aligned with the electric field, is omnidirectional,

and is directed inward toward the charge distribution.

The Poincaré stress is modeled as an average rate of QET influx and an equivalent

average rate of QET out-flux, the QETs exchanging bosons between the charge distribution

and the distant matter of the universe. The inward pressure arises from the impact force of
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energy influx and the recoil force of energy out-flux. The Poincaré stress is proportional to

the equivalent mass of the electrostatic potential energy of the charge distribution.

For two or more spherically symmetric, separated static charge distributions, the re-

cast stress equation of this chapter is insufficient. For a two charge distribution system,

the total electric field
á

E is the superposition of the electric field from each separate charge

distribution:
á

E “
á

E1 `
á

E2. For this two charge system, Maxwell’s stress equation (5.3)

has additional cross terms from the expansion of electric field products that are further

evaluated in the next chapter.
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CHAPTER 6. A QET MODEL FOR THE COULOMB AND

POINCARÉ STRESSES OF TWO SEPARATED, SPHERICALLY

SYMMETRIC STATIC CHARGE DISTRIBUTIONS

The goal of this and the previous chapter is to establish a QET (boson interaction)

model that provides a visualization of the stresses internal and external to static charge

distributions. The internal and external charge distribution stresses are derived from the

recasting of Maxwell’s stress equation. Therefore, the electrostatic QET model of this

dissertation is mathematically consistent with Maxwell’s stress equation.

Chapter 5 established a Poincaré stress by recasting Maxwell’s stress equation for an

isolated, spherically symmetric static charge distribution using a variant of Stokes’ Theo-

rem. The Poincaré stress is aligned with the electric field, is omnidirectional, and is directed

inward toward the charge distribution. The Poincaré stress is modeled as an average rate of

QET influx and an equivalent average rate of QET out-flux, the QETs exchanging bosons

between the charge distribution and the distant matter of the universe. The inward pres-

sure arises from the impact force of QET influx and the recoil force of QET out-flux. The

Poincaré stress is proportional to the equivalent mass of the electrostatic potential energy

of the charge distribution.

The principle aim of this chapter is to determine how Maxwell’s stress equation for

two separated, spherically symmetric static charge distributions (applied to a closed surface

enclosing one or both of the charge distributions) can be recast such that only a stress at a
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single point aligned between the two charge distributions remains [79]. The motivation to

pursue this endeavor is to establish a mathematical basis for a Coulomb stress4 that only

exists at each point on the straight path between the two charge distributions.

Two separated, spherically symmetric static charge distributions are a key building

block for electrostatics. Two extremely small charge configurations (i.e., point charges)

are often referred to as a dumbbell [80, 81]. Any arbitrary charge distribution may be

assembled from a collection of interacting charge dumbbells. Therefore, dumbbell results

may be generalized for a spherical shell or any other configuration of interest [57].

Maxwell’s stress equation for electrostatics in free space is:

á

F “ εo

£

á

E
´

á

E ¨ d
á

S
¯

´
εo

2

£

E2d
á

S, (6.1)

where εo is the permittivity of free space.

For a two charge system, the total electric field
á

E is the superposition of the electric

field from each separate charge distribution:
á

E “
á

E1 `
á

E2 [57]. Therefore, Maxwell’s

stress equation for electrostatics in free space for a two charge system is:

á

F“εo

£

´
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á
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¯
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or:
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S
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S
¯

´ εo

£

´

á
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á

E2

¯

d
á
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(6.3)

4The term Coulomb stress is assigned to the line stress (developed in Section 6.1 from the recast stress
equation) that only exists at each point on the straight path between two separated, spherically symmetric
charge distributions.
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Section 6.1 steps through the details of recasting Maxwell’s stress equation for two

separated, spherically symmetric charge distributions. The end result is a Coulomb stress

only existing on the straight line between the centers of the two charge distributions.

Section 6.2 expounds on the Coulomb stress identified in the recast stress equation.

For two like-charge distributions, the Coulomb stress is modeled as photon exchanges con-

tinually occurring between the two charge distributions. The amount of trapped energy

associated with this continual photon exchange is shown to be equivalent to the electro-

static potential energy of the separated two like-charge distributions.

Section 6.3 describes how two like-charge distributions and two opposite charge dis-

tributions may be modeled with energy carrier mediators associated with the Coulomb

stress and the Poincaré stress.

6.1 Recasting of Maxwell’s Stress Equation in Free Space for Two
Separated, Spherically Symmetric Static Charge Distributions

Consider two spherically symmetric static charge distributions in free space, the first

centered at the origin (r “ 0) with total charge q1 and the second centered a distance d

away on the z axis (z “ d) with total charge q2. The electric field
á

E1 for the first charge

distribution is [65]:

á

E1 “
q1

4πεor2 âr, (6.4)
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where r is the distance from the origin. The electric field
á

E2 for the second charge distri-

bution is:

á

E2 “
q2

4πεor2
2
âr2 , (6.5)

where r2 is the distance from the second charge distribution and âr2 is the directional unit

vector away from the second charge distribution.

For any arbitrary surface (no charge contained on the surface), the first four terms of

(6.3) are nulled by applying the variant of Stokes’ Theorem per the method of Section 5.2

and choosing:

á

C1&2 “ ´
εorE

2
1

4
âr ´

εor2E
2
2

4
âr2 . (6.6)

The Poincaré stress related to the electrostatic potential energy of each individual

charge distribution is being ignored for the evaluation of this section. Therefore, the

Maxwell’s Stress Equation for electrostatics in free space for this two charge system re-

duces to:

á

F “εo

£

á

E1

´

á

E2 ¨ d
á

S
¯

` εo

£

á

E2

´

á

E1 ¨ d
á

S
¯

´ εo

£

´

á

E1 ¨
á

E2

¯

d
á

S. (6.7)

If a spherical surface is chosen centered at the origin, beyond the charge distribu-

tion for q1, with radius r ă d as shown in Figure 6.1, then Maxwell’s stress equation for

electrostatics in free space for this surface reduces to (
á

E1 and d
á

S are always in the same

direction):

á

F “ εo

£

E1
á

E2dS. (6.8)
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Figure 6.1: Spherical surface centered at the origin, beyond the charge distribution for q1, with

radius r ă d.

Equation (6.8) is also valid for any radius r ‰ d. Substituting (6.4) and (6.5) into

(6.8) and expressing the result in cylindrical components ρ and z yields:

á

F“εo

ż π

0

ż 2π

0

ˆ

q1

4πεor2

˙̂

q2

4πεor2
2
âr2

˙

r2 sin θ dφ dθ

“
q1q2

16π2εo

ż π

0

ż 2π

0

sin θ2âρ ` cos θ2âz
r2

2
sin θ dφ dθ

“
q1q2

16π2εo

ż π

0

ż 2π

0

r sin θâρ̀ prcos θ – dq âz
pr2`d2 – 2rd cos θq3/2 sinθdφdθ,

(6.9)

where: sin θ2“pr sin θq{r2, cos θ2“pr cos θ – dq{r2, and r2“
?
r2`d2 – 2rd cos θ.

The net force from the ρ component is null because of cylindrical symmetry:

á

Fρ “
q1q2

16π2εo

ż π

0

ż 2π

0

r sin2 θ

pr2`d2 – 2rd cos θq3/2 âρ dφ dθ “ 0. (6.10)

The force in the z direction is:

Fz“
q1q2

16π2εo

ż π

0

ż 2π

0

sin θ pr cos θ – dq

pr2`d2 – 2rd cos θq3/2 dφ dθ “´
q1q2 r1´sgn pr´dqs

8πεod2 , (6.11)
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where sgn pq is the sign (or signum) function [82]:

sgn pxq “

$

&

%

–1 for x ă 0
0 for x “ 0
1 for x ą 0

. (6.12)

For r ă d (where the surface encloses all of q1 and none of q2), Fz is the Coulomb

force [5]:

Fz “ ´
q1q2

4πεod2 , (6.13)

and for r ą d (where the surface encloses all of q1 and q2), Fz “ 0.

The primary goal of this section is to determine if Maxwell’s stress equation (6.9)

for the spherical closed surface of Figure 6.1 can be recast using the variant of Stokes’

Theorem (5.12) such that only a stress at a single point aligned between the two charge

distributions remains.

The application of the variant of Stokes’ Theorem requires a surface enclosed by a

given contour. The contour of choice is the differential ring at a given angle θ as shown in

Figure 6.2.

A brief overview of the utilization of differential rings is in order before proceeding.

Maxwell’s stress equation (6.9) can either be integrated in terms of differential surface

elements dS:

á

F“
q1q2

16π2εor2

ż π

0

ż 2π

0

r sinθâρ`pr cosθ – dqâz
pr2`d2 – 2rd cos θq3/2 r2sinθdφdθ

“

ż π

0

ż 2π

0

á

FS r
2sinθdφdθ “

£

á

FS dS,

(6.14)
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Figure 6.2: Spherical surface can be broken into differential rings.

or in terms of differential ring elements d` with angular width dθ:

á

F“
q1q2

16π2εor

ż π

0

ż 2πrsinθ

0

r sin θâρ`pr cos θ – dq âz
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0

á

F` d`dθ “

£

á

F` d`dθ.

(6.15)

In general, the force for a given differential ring (at angle θ) can be converted to a

force on the spherical surface portion bounded by the ring (according to the right hand rule)

using the variant of Stokes’ Theorem:

£

δpθ1– θq
á

F̀ pθ1qd`dθ1“

¿

á

F̀ pθq d` “

¿

á

Cˆ d
á

`
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ĳ
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∇¨
á

C
¯

d
á

S –∇C

´

á

C¨d
á

S
ı̄

“

ĳ

á

FS dS,

(6.16)

where δ pq is the Dirac delta function [83]: δ pxq “ 0 for x ‰ 0 and
ş8

–8 δ pxq “ 1.
á

C is



60

chosen such that
á

Cˆ d
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therefore:
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ˆ p– âφq d` “
á

F` d`.

Applying the
á
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âz



dS

“ –
1
r

„̂

F`z`
BF`ρ
Bθ

˙
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(6.18)

where: Bf
Bρ
“
Bf
Bθ
Bθ
Bρ
“ cos θ

r
Bf
Bθ

, Bf
Bz
“
Bf
Bθ
Bθ
Bz
“– sin θ

r
Bf
Bθ

, and d
á

S“dS âr“dS
”

sin θ cosφ
sin θ sinφ

cos θ

ı

.

It is interesting to note that the z component of the resulting surface force density

is only a function of the z component of the original ring force density. The outcome of

(6.18) is the conversion of a ring force density
á

F` using the variant of Stoke’s Theorem to

a surface force density
á

FS as follows:

FSz “ –
1

r sin θ

B

Bθ
psin θF`zq , (6.19)
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and

FSρ “ –
1
r

ˆ

F`z`
BF`ρ
Bθ

˙

. (6.20)

f
Bf

Bx

Bf

By

Bf

Bz

sinφ –
sinφ cosφ

r sin θ

cos2φ

r sin θ
0

cosφ
sin2φ

r sin θ
–

sinφ cosφ

r sin θ
0

f cosφ
Bf

Bρ
sinφ

Bf

Bρ

Bf

Bz

Cx – cos2φ
BF`z
Bρ

´ F`z
sin2φ

r sin θ
– sinφ cosφ

BF`z
Bρ

` F`z
sinφ cosφ

r sin θ
– cosφ

BF`z
Bz

Cy – sinφ cosφ
BF`z
Bρ

` F`z
sinφ cosφ

r sin θ
– sin2φ

BF`z
Bρ

´ F`z
cos2φ

r sin θ
– sinφ

BF`z
Bz

Cz cosφ
BF`ρ
Bρ

sinφ
BF`ρ
Bρ

BF`ρ
Bz

Table 6.1: Useful partial derivatives for
á

C “

„

–F`z cosφ
–F`z sinφ

F`ρ



.

And finally, a ring force density
á

F` is derived such that when
á

C “
á

F` ˆ p– âφq is

applied using the variant of Stokes’ Theorem, the resulting surface force density
á

FS is

equivalent to the reduced Maxwell’s stress equation surface force of (6.14). By definition of

d
á

` and d
á

S in Figure 6.2, the ring force density is on a differential ring at the azimuthal angle

θ and the corresponding surface force density is in the direction with greater azimuthal

angle than the ring’s angle θ.
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Solving (6.19) for F`z and substituting FSz from (6.14) yields:

F`z“ –
1

sin θ

ˆ
ż

r sin θFSzdθ `Kz

˙

“ –
1

sin θ

ż

q1q2 sin θ pr cos θ – dq
16π2εorpr2̀ d2 – 2rd cos θq3/2dθ –

Kz

sin θ

“
q1q2 pr – d cos θq

16π2εord2 sin θpr2̀ d2 – 2rd cos θq1/2 –
Kz

sin θ
.

(6.21)

The integration constant Kz is obtained by setting the net force in the z direction on

the differential ring equal to the net force on the surface bounded by the ring. The net force

in the z direction on the differential ring is:

Fz “

ż 2π

0
F`zr sin θ dφ “

q1q2 pr – d cos θq

8πεod2pr2̀ d2 – 2rd cos θq1/2 – 2πrKz, (6.22)

and the net force in the z direction on the surface bounded by the ring is:

Fz “

ż π

θ

ż 2π

0
FSzr

2 sin θ1 dφ dθ1 “
q1q2

8πεo

ż π

θ

sin θ1 pr cos θ1 – dq
pr2̀ d2 – 2rd cos θ1q3/2 dθ

1

“
q1q2 pr – d cos θq

8πεod2pr2̀ d2 – 2rd cos θq1/2 –
q1q2

8πεod2 .

(6.23)

Combining (6.22) and (6.23) and solving for Kz yields:

Kz “
q1q2

16π2εord2 , (6.24)

and therefore:

F`z“
q1q2 pr – d cos θq

16π2εord2 sin θpr2̀ d2 – 2rd cos θq1/2 –
q1q2

16π2εord2 sin θ
. (6.25)

The significance of (6.25) is that it identifies the z component of a differential ring

force at any angle θ that is equivalent to the z component of the Maxwell’s stress equation

force on the surface bounded by the ring. In other words, the result is the conversion of the

z component of the Maxwell’s stress equation surface force to a ring force enclosing the
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surface. The remaining step is to solve for the ρ component. Solving (6.20) for F`ρ and

substituting FSρ from (6.14) and F`z from (6.25) yields:

F`ρ“ –
ż

`

rFSρ ` F`z
˘

dθ `Kρ

“ –
ż

q1q2 sin θ

16π2εopr2̀ d2 – 2rd cos θq3/2dθ

–
ż

q1q2 pr – d cos θq

16π2εord2 sin θpr2̀ d2 – 2rd cos θq1/2dθ

`

ż

q1q2

16π2εord2 sin θ
dθ `Kρ

“
q1q2

16π2εordpr2̀ d2 – 2rd cos θq1/2

–
q1q2

16π2εord

»

—

—

—

—

–

tanh–1

«

`

r2̀ d2 – 2rd cos θ
˘

1/2

d – r

ff

`tanh–1

«

`

r2̀ d2 – 2rd cos θ
˘

1/2

d`r

ff

fi

ffi

ffi

ffi

ffi

fl

`
q1q2

16π2εord2 ln

„

sin θ

cos θ ` 1



`Kρ.

(6.26)

The constant of integration Kρ is shown later to be inconsequential. Equations (6.25)

and (6.26) are now used to recast Maxwell’s stress equation by selecting the differential

ring location θ “ 0. This angle selection allows the force on the entire spherical surface to

be converted to a force on a single differential ring at θ “ 0. For a spherical surface with

r ă d, the force in the z direction on this differential ring is found by integration of (6.25)

around the ring. The force on this differential ring is equal to the Coulomb force:

Fz “

ż 2π

0
F`zr sin θ dφ

θ“0
“ 2πr sin θF`z

θ“0

“
q1q2 pr – d cos θq

8πεod2pr2̀ d2 – 2rd cos θq1/2
θ“0

–
q1q2

8πεod2 “ –
q1q2

4πεod2 .

(6.27)

The force in the ρ direction for any angle φ is found by evaluating F`ρrsin θ at θ “ 0.

The constant of integration Kρ of (6.26) multiplied by rsin θ and evaluated at θ “ 0 is null.
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Applying l’Hospital’s rule [84], the force in the ρ direction for any angle φ is null (i.e.,

there is no hoop stress [85]):

Fρ pφq “F`ρr sin θ
θ“0
“ lim

θÑ0

rF`ρ
1

sin θ

“ lim
θÑ0

r
BF`ρ
Bθ

B

Bθ

1
sin θ

“ lim
θÑ0

– r
`

rFSρ ` F`z
˘

–
cos θ

sin2 θ

“ 0. (6.28)

The ramification of recasting Maxwell’s stress equation for the spherical surface to a

stress at a single point (i.e., differential ring at θ “ 0) is significant. The recasting may be

done for all spherical surfaces with radii ranging from just outside the charge distribution

centered at the origin up to the charge distribution centered at z “ d. The outcome is a con-

stant line stress directionally aligned between the two charge distributions. The magnitude

of the line stress is equivalent to the two charge distribution Coulomb force.

6.2 Coulomb Stress and QET

The term Coulomb stress is assigned to the line stress developed in the previous

section from the recast stress equation. The Coulomb stress only exists at each point on the

line between the two separated, spherically symmetric charge distributions. In general, a

Coulomb stress equation may be defined for an arbitrary surface and arbitrary locations for

two separated, spherically symmetric charge distributions:

á

FCoulomb“
q1q2

4πεod2

£

δ2
p1`âr1¨âr2q sgn pâr2¨ânqâr1dS, (6.29)

where q1 and q2 are the total charges of the two charge distributions, d is the distance

between the centers of the two charge distributions, δ2pq is the two dimensional or surface

Dirac delta function [86], âr1 and âr2 are the directional unit vectors away from the first
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and second charge distributions respectively, sgn pq is the function defined in (6.12), and ân

is the directional unit vector outward normal from the surface S.

The essence of(6.29) is a differential surface force element (equivalent to the Coulomb

force) for every non-tangential intersection of the arbitrary surface S with the straight line

between the two charge distributions. Equation (6.29) may have the appearance of merely

stating the point to point, action-at-a-distance [87, 88] property of Coulomb’s Law [89, 90].

However, the recasting process of the previous section shows that the Coulomb stress equa-

tion is mathematically compatible with Maxwell’s stress equation.

For a two charge system (each charge spherically symmetric), Maxwell’s stress equa-

tion (6.3) and the Coulomb stress equation (6.29) give the same result. If the arbitrary

surface encloses only one of the charge distributions, then the result is the Coulomb force

acting on the enclosed charge distribution. If the arbitrary surface encloses either none or

both charge distributions, then the result is null.

If both charge distributions are of like charges, then the Coulomb stress may be mod-

eled as an average rate of QETs (i.e., photons) exchanging back and forth between the two

charge distributions. The line stress is modeled as the straight path of the photons. The

impact force (of photons absorbed by the charge distribution) and recoil force (of photons

emitted from the charge distribution) constitute the Coulomb force on the charge distribu-

tions.

The energy of a photon Uphoton “ hν is quantized, where h is Planck’s constant and ν

is the photon frequency [71, 58]. Assume the photons exchanging back and forth between

the two charge distributions have a mean [91, 92] energy sUphoton pJq and a mean time rep-
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etition of photon exchanges t̄rep psq. Therefore, the mean rate of energy absorbed sPa pWq

and emitted sPe pWq to and from each charge distribution is:

sPa “ sPe “
sUphoton

t̄rep
. (6.30)

The repulsive Coulomb force on each charge distribution is inferred to be the sum of

the impact force from the mean energy absorbed and the recoil force from the mean energy

emitted [72, 93]:

F “
q1q2

4πεod2 “
sPa ` sPe
c

, (6.31)

where c is the speed of light in free space [94, 95].

The photon exchanges back and forth between the two charge distributions may be

regarded as trapped energy along the path between them (i.e., the Coulomb stress). The

amount of time between photon emission from one of the charge distributions and absorp-

tion to the other is t12 “ d{c. Therefore, the amount of trapped energy is:

Utrapped “
`

sPa ` sPe
˘

t12 “
`

sPa ` sPe
˘ d

c
“

q1q2

4πεod
. (6.32)

It is interesting to note that the trapped energy of (6.32) is equivalent to the electrostatic

potential energy for a two liked-charge system [96, 97] (q1 and q2) separated by a distance

d.

6.3 Poincaré Stress, Coulomb Stress and QET

The Poincaré stress related to the electrostatic potential energy of each individual

charge distribution was ignored for the evaluation of Section 6.1. For an isolated, spheri-
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cally symmetric charge distribution, the Poincaré stress is aligned with the electric field, is

omnidirectional, and is directed inward toward the charge distribution.

The inward pressure arises from the impact force of QET influx and the recoil force of

QET out-flux. The QET influx and out-flux has been modeled as energy carrier mediators

(bosons) interacting between the charge distribution and the distant matter of the universe.

The Poincaré stress is proportional to the equivalent mass of the electrostatic potential

energy of the individual charge distribution.

For two like-charge distributions (i.e., both positive or both negative) there is a

Poincaré stress associated with each individual charge distribution. In addition, there is a

Coulomb stress from QETs (i.e., photon exchanges) back and forth between the two charge

distributions causing the charge distributions to be pushed apart. The mean QET flux den-

sity corresponding to the Coulomb stress between the two charge distributions may be

determined by using superposition and (6.29). Each differential element of charge from the

first charge distribution has photon exchanges back and forth with each differential element

of charge from the second.

The concentration of mean QET flux density (i.e., energy flux density magnitude)

is modeled/depicted in Figure 6.3(a). The darker gray regions represent a higher concen-

tration of QETs, while the lighter gray regions denote a lower concentration. The mean

QET flux density associated with the Poincaré stress for each individual charge density

falls off as the inverse square of the distance from the charge distribution. The mean QET

flux density associated with the Coulomb stress depicts the trapped energy from the photon

exchanges back and forth between the two charge distributions.
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Figure 6.3: Illustration of Poincaré and Coulomb stress for two charge distributions: (a) like

charges, (b) opposite charges.

In addition to the Poincaré stress associated with the two individual charge distri-

butions, for a static condition there is an additional Poincaré stress maintaining the two

charge distributions at equilibrium. The net effect of this additional Poincaré stress is a

force that counteracts the Coulomb force associated with the photon exchange back and

forth between the two charge distributions.

This additional Poincaré stress (proportional to the electrostatic potential energy of

the two separated charge distributions) may be from QETs interacting with the charges

in the distributions (i.e., photons) or from QETs interacting with the solid/rigid structure

separating the two charge distributions (i.e., bosons). The specifics of which are involved

are not needed for the electrostatic model. If the solid structure were not there, then the

associated Poincaré stress (from QETs interacting with the solid structure) would also not



69

be there and the two charge distributions would start to accelerate away from each other.

At a large distance away from the charge distributions (compared to the distance

between the two charge distributions), this additional Poincaré stress is assumed to be om-

nidirectional inward proportional to the electrostatic potential energy of the two charge

distributions: q1q2{p4πεodq.

Two opposite charge distributions may be modeled in a similar, but slightly differ-

ent manner. The two individual charge distributions have a Poincaré stress associated with

them, omnidirectionally inward, proportional to the electrostatic mass of each charge dis-

tribution.

However, there is a missing amount of QETs back and forth between the two charge

distributions associated with the Coulomb stress, causing the charge distributions to be

pushed together. The concentration of mean QET flux density (i.e., energy flux density

magnitude) is depicted in Figure 6.3(b).

The electrostatic model of this dissertation identifies a missing amount of QETs be-

tween the two opposite charged distributions. This missing amount of QETs is analogous

to the screening of two local masses from QET interactions with the distant matter of the

universe (identified in Chapter 4), causing two local masses to be pushed together.

The “screening” between two opposite charged distributions results in a lack of QET

interactions between them. The Poincaré stress associated with each of the two charge dis-

tribution consists of QET interactions with the distant matter of the universe. Specifically

of importance here is the QET portion of the Poincaré stress interacting with the charges in

the distributions (i.e., the photons, but not the bosons interacting with the solid structure).
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A logical conclusion is there are two “types” of photons for the QETs interacting with

the positive and negative charge components of each distribution and the distant matter.

The photons associated with the Poincaré stress for a positive charge distribution don’t

interact with a negative charge distribution (and vice versa). However, the details of the

“types” of photons and breakdown of photons and bosons involved in the Poincaré stress

are not necessary for the electrostatic model of this dissertation. The important aspect for

the opposite charged distributions is that the net Poincaré stress develops a “screening” or

missing amount of QETs transferring back and forth between the two charge distributions

corresponding to the Coulomb stress.

The missing energy between the charge distributions is equivalent to the negative

valued electrostatic potential energy Umissing “ q1q2{p4πεodq of the two opposite charge

distributions. As a result of a decrease in the electrostatic mass for the opposite charge

distributions, there is a reduction in the overall Poincaré stress thus maintaining the two

charge distributions in equilibrium (i.e., a net force equal and opposite to the Coulomb

force).

At a large distance away from the charge distributions (compared to the distance

between the two charge distributions), the reduction in the Poincaré stress is assumed to be

omnidirectional inward proportional to the electrostatic potential energy (negative) of the

two opposite charge distributions.
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6.4 Summary

Using a variant of Stokes’ Theorem, Maxwell’s stress equation for two separated,

spherically symmetric static charge distributions has been successfully recast. The recast

stress equation identifies a Coulomb stress that only exists at each point on the line between

the two charge distributions. The resulting Coulomb stress equation is mathematically

consistent with Maxwell’s stress equation.

For two like-charge distributions, the Coulomb stress has been modeled as a mean

rate of QETs absorbed and emitted by each charge distribution consisting of a continual

exchange of photons back and forth between the charge distributions.

The impact force from the absorbed QETs and the recoil force from the emitted QETs

constitute the Coulomb force pushing the charge distributions apart from each other. The

amount of trapped energy in the exchange of photons between the two charge distribu-

tions has been shown to be the electrostatic potential energy of the two charge distribution

system.

A model of the QETs associated with the Poincaré stress and Coulomb stress has

been illustrated for the two charge system. For each individual charge distribution, there is

a Poincaré stress, omnidirectionally inward and proportional to the electrostatic potential

energy of the corresponding charge distribution.

If the two charges are like charged, then there is an additional Coulomb stress be-

tween the two charges and an additional Poincaré stress equalizing the Coulomb stress. If

the two charges have opposite charges, then the Coulomb stress is a reduction in QETs be-
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tween the two charges along with a reduced Poincaré stress equalizing the Coulomb stress.

The Coulomb stress accounts for the electrostatic potential energy of the two charge

system (not including the individual charge distributions themselves) and is equivalent to

the trapped energy (for like-charge distributions) or the missing energy (for opposite charge

distributions) between the two charge distributions.

The two separated charge distribution dumbbell model of this chapter may be used

to construct a hollow shell having a uniform surface charge distribution. For the hollow

shell, the QET model depicts the Poincaré stress as an inwardly directed, omnidirectional

pressure. The pressure is a result of a mean valued, continual exchange of bosons (i.e.,

QETs) between the charge distribution and the distant matter of the universe proportional

to the electrostatic potential energy (or equivalent electrostatic mass) of the charge distri-

bution. The electrostatic potential energy of the hollow shell with uniform surface charge

distribution is modeled as trapped energy inside the hollow shell. The trapped energy is

a result of a mean valued, continual exchange of photons (i.e., QETs) between all shell

charge distribution elements.

The spherical shell charge distribution example highlights the primary differences

between the traditional approach and the QET model of this dissertation. The traditional

approach defines the Poincaré stress as internal to the structure and establishes that the

electrostatic potential energy is stored in the electric field external to the shell (or alternately

in the charge distribution itself). In contrast, the QET model defines the Poincaré stress as

an external stress and establishes the electrostatic potential energy as trapped energy (i.e.,

QETs) inside the hollow shell.
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CHAPTER 7. A QET MODEL FOR THE PINCH STRESS OF A

DIFFERENTIAL CURRENT ELEMENT AT THE ORIGIN

The goal of this and the subsequent chapter is to establish a QET (boson interaction)

model that provides a visualization of the stresses internal and external to constant current

carrying solids [98, 99]. The internal and external magnetostatic stresses are derived from

Maxwell’s stress equation and historical current force formulas known to be compatible

with Maxwell’s equations for closed circuits. Therefore, the magnetostatic QET model of

this dissertation is mathematically consistent with Maxwell’s equations.

Maxwell’s stress equation for magnetostatics identifies a tensile stress in the direction

of the magnetic field and a pressure normal to this direction. The principle aim of this

chapter is to determine how Maxwell’s stress equation (applied to an external closed surface

from a static current distribution) can be recast to eliminate the stress aligned with the

magnetic field. In addition, the recast stress equation eliminates most of the stress normal

to the magnetic field, leaving only an inward surface stress in the radial direction referenced

to the location of the current distribution elements. This pressure, inwardly directed may

be attributed to the pinch stress [100] associated with a static current distribution.

For magnetostatics, the electromagnetic momentum density [58] is null. Therefore,

from the conservation of momentum, the magnetostatic force
á

f per unit volume at any

given location is:

á

f “ ∇ ¨
Ø

T, (7.1)
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where
Ø

T is the Maxwell stress tensor [59]. For magnetostatic in free space, terms of the

Maxwell stress tensor are:

Tij “
1
µo
BiBj ´

1
2µo

δijB
2, (7.2)

where µo is the permeability of free space . Maxwell’s stress equation for magnetostatics

in free space can be obtained by applying the divergence theorem to the total force for a

given volume using (7.1) (see Appendix E for an alternate derivation):

á

F “

¡

á

f dV “

¡

´

∇ ¨
Ø

T
¯

dV “

£

Ø

T ¨ d
á

S

“µo

£

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

£

H2d
á

S.

(7.3)

Section 7.1 evaluates Maxwell’s stress equation in free space, away from a differ-

ential current element at the origin. For a conic enclosed surface, the total force from

Maxwell’s stress equation is not null. This nonzero result supports the reality that Maxwell’s

stress equation for magnetostatics based on the Biot-Savart Law and Lorentz’s force equa-

tion is only applicable when at least one of the current carrying circuits is closed.

Section 7.2 steps through the details of recasting Maxwell’s stress equation for a

cylindrical wedge-shape closed surface away from an infinite line current. The end result

is a recast stress equation for a closed surface that depicts an inward surface tension only

in the polar direction towards the line current.

Section 7.3 recasts Maxwell’s stress equation for a spherical closed surface away

from a differential current element at the origin. The end result is a recast stress equation

for a spherical surface that depicts an inward surface tension only in the radial direction

towards the differential current element.
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Section 7.4 expounds on the pinch stress identified in the recast stress equations.

Modeled as energy carrier mediator interactions with the distant matter of the universe, this

stress is shown to conform with Mach’s principle.

7.1 Evaluating Maxwell’s Stress Equation in Free Space, Away from a
Differential Current Element at the Origin (r = 0) with Total Cur-
rent, JdV, in the Positive z Direction

In classical magnetostatics, the magnetic field external to a differential current ele-

ment at the origin pr “ 0q with total current JdV in the positive z direction is (based on

the Biot-Savart Law [22]):

á

H “
JdV

4πr3 âz ˆ
á

r “
JdV sin θ

4πr2 âφ, (7.4)

where r is the distance from the origin.

Maxwell’s stress equation (7.3) may be used to determine the force on each surface of

the conic closed surface shown in Figure 7.1. The surfaces at r “ a and r “ b are spherical

surfaces (i.e., only a radial component normal to the surface) and the side surface only has

an azimuthal component normal to the surface. The angle α specifies the tilt of the side

surface Sside with respect to the z axis.

The force from Maxwell’s stress equation for surface Sa is:

á

Fa “µo

ĳ

Sa

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

ĳ

Sa

H2d
á

S “ 0´
µo

2

ĳ

Sa

H2d
á

S “ ´
µo

2

ĳ

Sa

H2d
á

S, (7.5)

and the force in the z direction for surface Sa is:

Faz “
µo

2

ż 2π

0

ż α

0

ˆ

JdV sin θ

4πa2

˙2

a2 sin θ cos θdθdφ “
µo pJdV q

2 sin4 α

64πa2 . (7.6)
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Figure 7.1: Conic closed surface symmetric about the z axis with spherical surfaces at r “ a and

r “ b.

The force from Maxwell’s stress equation for surface Sb is:

á

Fb “ ´
µo

2

ĳ

Sa

H2d
á

S, (7.7)

and the force in the z direction for surface Sb is:

Fbz “´
µo

2

ż 2π

0

ż α

0

ˆ

JdV sin θ

4πb2

˙2

b2 sin θ cos θdθdφ “ ´
µo pJdV q

2 sin4 α

64πb2 . (7.8)

The force from Maxwell’s stress equation for surface Sside is:

á

Fside “µo

ĳ

Sside

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

ĳ

Sside

H2d
á

S “ 0´
µo

2

ĳ

Sside

H2d
á

S “ ´
µo

2

ĳ

Sside

H2d
á

S, (7.9)



77

and the force in the z direction for surface Sside is:

Fsidez “
µo

2

ż 2π

0

ż b

a

ˆ

JdV sinα

4πr2

˙2

r sinα sinα dr dφ

“
µo pJdV q

2 sin4 α

32π

ˆ

1
a2 ´

1
b2

˙

.

(7.10)

As shown in Section 5.1, for classical electrostatics the total force from Maxwell’s

stress equation on a conic surface outside a differential charge element at the origin is null.

However, this is not true for the differential current element. The sum of the three surface

forces of equations (7.6), (7.8), and (7.10) is not null. This nonzero result supports the

reality that Maxwell’s stress equation for magnetostatics based on the Biot-Savart Law and

Lorentz’s force equation “has meaning only as one element of a sum over a continuous set

... of a current loop or circuit” [101].

A variation of Maxwell’s stress equation for magnetostatics based on one of the pos-

sible differential force elements of (3.7) is the most likely candidate for a meaningful stress

equation involving a single differential current element. If such a variation of Maxwell’s

stress equation exists, it is presumed to yield a null force for any arbitrary enclosed surface

where the single differential current element is not on the surface.

7.2 Recasting of Maxwell’s Stress Equation in Free Space, Away from
a Cylindrically Symmetric Infinite Line Current on the z Axis
(ρ= 0) with Current, I, in the Positive z Direction

Maxwell’s stress equation for magnetostatics is only applicable for closed circuits.

The simplest ‘closed circuit’ to evaluate is the infinite line current. For an infinite cylindri-

cally symmetric line current on the z axis with total current I in the positive z direction,
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the magnetic field external to the line current is:

á

H “
I

2πρ
âφ, (7.11)

where ρ is the distance from the z axis.

Maxwell’s stress equation (7.3) may be used to determine the force on each surface

of the wedge closed surface shown in Figure 7.2. The surfaces at ρ “ a and ρ “ b are

cylindrical surfaces (i.e., only a radial component normal to the surface), the side surfaces

only have a polar component normal to the surface, and the top/bottom surfaces only have

a z component normal to the surface. The angle α specifies the angle of the side surfaces

Sside with respect to the y axis and w is the height of the wedge.

Figure 7.2: Wedge closed surface symmetric about the y axis with cylindrical surfaces at ρ “ a and

ρ “ b.

The force from Maxwell’s stress equation for surface Sa is:

á

Fa “µo

ĳ

Sa

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

ĳ

Sa

H2d
á

S “ 0´
µo

2

ĳ

Sa

H2d
á

S “ ´
µo

2

ĳ

Sa

H2d
á

S, (7.12)
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and the force in the y direction for surface Sa is:

Fay “
µo

2

ż w

0

ż α

´α

ˆ

I

2πa

˙2

a cosφdφdz “
µoI

2w sinα

4π2a
. (7.13)

The force from Maxwell’s stress equation for surface Sb is:

á

Fb “ ´
µo

2

ĳ

Sb

H2d
á

S, (7.14)

and the force in the y direction for surface Sb is:

Fby “´
µo

2

ż w

0

ż α

´α

ˆ

I

2πb

˙2

b cosφdφdz “ ´
µoI

2w sinα

4π2b
. (7.15)

The force from Maxwell’s stress equation for the top Stop and bottom Sbottom surfaces

are:

á

Ftop{bottom “µo

ĳ

Stop{bottom

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

ĳ

Stop{bottom

H2d
á

S “ 0´
µo

2

ĳ

Stop{bottom

H2d
á

S

“´
µo

2

ĳ

Stop{bottom

H2d
á

S,

(7.16)

and there is no force contribution in the y direction for these two surfaces.

The force from Maxwell’s stress equation for surface Sside is:

á

Fside “µo

ĳ

Sside

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

ĳ

Sside

H2d
á

S “ µo

ĳ

Sside

H2d
á

S´
µo

2

ĳ

Sside

H2d
á

S

“
µo

2

ĳ

Sside

H2d
á

S,

(7.17)

and the force in the y direction from both side surfaces Sside is:

Fsidesy “´ 2
µo

2

ż w

0

ż b

a

ˆ

I

2πρ

˙2

sinα dρ dz “ ´
µoI

2w sinα

4π2

ˆ

1
a
´

1
b

˙

. (7.18)
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For any closed surface containing free space, the net force from Maxwell’s stress

equation for magnetostatics (resulting from a closed circuit) is null. This is true for the sum

of the three surface forces of equations (7.13), (7.15), and (7.18):

Ftotaly “ Fay ` Fby ` Fsidesy “ 0. (7.19)

The six forces on each surface of the wedge closed surface of Figure 7.2 give some

general insight into Maxwell’s stress equation. James Maxwell related Michael Faraday’s

physical lines of force (magnetic lines of force in this case) [1] to a state of stress in the

medium (i.e., tension in the direction of the lines of force and pressure normal to this

direction) [21]. Surfaces Sside (front and back) are in the direction of the magnetic lines of

force and the surfaces Sa, Sb, Stop, and Sbottom are normal to this direction.

The primary goal of this section is to determine if Maxwell’s stress equation for the

wedge closed surface of Figure 7.2 can be recast to eliminate the stress parallel to the

magnetic lines of force while maintaining a radial stress (for an infinite line current). To

accomplish this goal, the variant of Stokes’ Theorem (5.12) is used. Similar to section 5.1,

a first step to achieve this objective is to systematically establish how the variant of Stokes’

Theorem applied to the various wedge surfaces operates on a
á

C of the general form:

á

Cn “
kn
ρn

âρ, (7.20)

where kn is an arbitrary constant.

The divergence of
á

Cn is:

∇ ¨
á

Cn “ kn

„

B

Bx

x

ρǹ 1`
B

By

y

ρǹ 1`
B

Bz
0


“
kn p1´ nq

ρǹ 1 , (7.21)
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and the gradient of the vector
á

Cn is:

∇
á

Cn“ kn

»

—

—

—

—

—

—

—

–

B

Bx

x

ρǹ 1

B

Bx

y

ρǹ 1

B

Bx
0

B

By

x

ρǹ 1

B

By

y

ρǹ 1

B

By
0

B

Bz

x

ρǹ 1

B

Bz

y

ρǹ 1

B

Bz
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ –
kn
ρn`3

»

—

–

nx2–y2 pn`1qxy 0

pn`1qxy –x2 ` ny2 0

0 0 0

fi

ffi

fl

.

(7.22)

The differential surface element for the cylindrical surface Sb is:

d
á

Sb “ dSbâρ “ dSb

»

—

—

—

–

x
a

x2 ` y2

y
a

x2 ` y2

0

fi

ffi

ffi

ffi

fl

, (7.23)

and:

∇Cn

´

á

Cn ¨ d
á

Sb

¯

“

´

∇
á

Cn

¯

¨ d
á

Sb “ ´
knn

ρn`1d
á

Sb. (7.24)

Combining (7.21), (7.24), and the integrand in the right side of (5.12) for the surface

Sb yields:

´

∇¨
á

Cn

¯

d
á

Sb´∇Cn

´

á

Cn ¨d
á

Sb

¯

“
kn p1´ nq

ρǹ 1 d
á

Sb ´ –
knn

ρn`1d
á

Sb “
kn
ρn`1d

á

Sb. (7.25)

The differential surface element for the back side surface Sside is:

d
á

Sside “ dSsideâφ “ dSside

»

—

—

—

–

´
y

a

x2 ` y2

x
a

x2 ` y2

0

fi

ffi

ffi

ffi

fl

, (7.26)

and:

∇Cn

´

á

Cn ¨ d
á

Sside

¯

“

´

∇
á

Cn

¯

¨ d
á

Sside “
kn
ρn`1d

á

Sside. (7.27)
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Combining (7.21), (7.27), and the integrand in the right side of (5.12) for the surface

Sside yields:

´

∇¨
á

Cn

¯

d
á

Sside´∇Cn

´

á

Cn ¨d
á

Sside

¯

“
kn p1´nq
ρǹ 1 d

á

Sside´
kn
ρn`1d

á

Sside “´
knn

ρn`1d
á

Sside. (7.28)

The differential surface element for the top surface Stop is:

d
á

Stop “ dStopâz “ dStop

»

–

0
0
1

fi

fl , (7.29)

and:

∇Cn

´

á

Cn ¨ d
á

Stop

¯

“

´

∇
á

Cn

¯

¨ d
á

Stop “ 0. (7.30)

Combining (7.21), (7.30), and the integrand in the right side of (5.12) for the surface

Stop yields:

´

∇¨
á

Cn

¯

d
á

Stop´∇Cn

´

á

Cn ¨d
á

Stop

¯

“
kn p1´ nq

ρǹ 1 d
á

Stop ´ 0 “
kn p1´ nq

ρǹ 1 d
á

Stop. (7.31)

By inspecting the general results of (7.25), (7.28), and (7.31) and applying the method

of Section 5.2, the following
á

C is chosen to recast Maxwell’s stress equation for the infinite

line current:

á

C “
µoI

2

8π2ρ
âρ ´

k

2π
âρ. (7.32)

Therefore, applying the
á

C of (7.32) the recast stress equation for the infinite line current

becomes:

á

Frecast “ –
£

k

2πρ
âρ

´

âρ ¨ d
á

S
¯

´

£
ˆ

µoI
2

8π2ρ2 `
k

2πρ

˙

âz

´

âz ¨ d
á

S
¯

. (7.33)
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The component in the z direction for the recast stress equation of (7.33) is an ar-

tifact of the infinite line current ‘closed circuit’. Otherwise, the recast stress equation of

(7.33) is similar to the recast stress equation of (5.28) for the spherically symmetric charge

distribution.

7.3 Recasting of Maxwell’s Stress Equation in Free Space, Away from
a Differential Current Element at the Origin (r = 0) with Total
Current, JdV, in the Positive z Direction for a Spherical Surface
with Center at the Origin

For a spherical surface S with radius r and center at the origin, the Maxwell’s stress

equation is (
á

H ¨ d
á

S “ 0):

á

F “ µo

£

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

£

H2d
á

S “ ´
µo

2

£

H2d
á

S “

£

á

FSdS, (7.34)

where:

á

FS “ ´
µoJ

2dV 2
`

x2 ` y2
˘

32π2r6 âr “ ´
µoJ

2dV 2 sin2 θ

32π2r4 âr, (7.35)

FSρ “ ´
µoJ

2dV 2 sin3 θ

32π2r4 , (7.36)

and

FSz “ ´
µoJ

2dV 2 sin2 θ cos θ

32π2r4 . (7.37)

Applying the variant of Stokes’ Theorem using the method of Section 6.1 and solving
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(6.19) for F`z and then substituting FSz (7.37) yields:

F`z“ –
1

sin θ

ˆ
ż

r sin θFSzdθ `Kz

˙

“ –
1

sin θ

ż

r sin θ

ˆ

´
µoJ

2dV 2 sin2 θ cos θ

32π2r4

˙

dθ –
Kz

sin θ

“
µoJ

2dV 2 sin3 θ

128π2r3 –
Kz

sin θ
.

(7.38)

The constant Kz is determined by setting the net force in the z direction on the

differential ring equal to the net force on the surface bounded by the ring. The net force in

the z direction on the differential ring is:

Fz “

ż 2π

0
F`zr sin θ dφ “

µoJ
2dV 2 sin4 θ

64πr2 – 2πrKz, (7.39)

and the net force in the z direction on the surface bounded by the ring is:

Fz “

ż π

θ

ż 2π

0
FSzr

2 sin θ1 dφ dθ1 “ ´
µoJ

2dV 2

16πr2

ż π

0
sin3 θ1 cos θ1dθ1

“
µoJ

2dV 2 sin4 θ

64πr2 .

(7.40)

Therefore, Kz “ 0 and:

F`z“
µoJ

2dV 2 sin3 θ

128π2r3 . (7.41)

Continuing using the method of Section 6.1 and solving (6.20) for F`ρ and then

substituting FSρ (7.36) yields:

F`ρ“ –
ż

`

rFSρ ` F`z
˘

dθ `Kρ

“ –
ż
„

r

ˆ

´
µoJ

2dV 2 sin3 θ

32π2r4

˙

`

ˆ

µoJ
2dV 2 sin3 θ

128π2r3

˙

dθ `Kρ

“´
µoJ

2dV 2 sin2 θ cos θ

128π2r3 ´
µoJ

2dV 2 cos θ

64π2r3 `Kρ,

(7.42)
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where the constant of integration Kρ may be any function of r. Equations (7.41) and (7.42)

are now used to solve for the
á

C of (6.17) that may be used to cancel Maxwell’s stress

equation for the spherical surface:

á

C “
á

F` ˆ p– âφq “ –F`z âρ ` F`ρ âz

“–
µoJ

2dV 2 sin3 θ

128π2r3 âρ ´

ˆ

µoJ
2dV 2 sin2 θ cos θ

128π2r3 `
µoJ

2dV 2 cos θ

64π2r3 ´Kρ

˙

âz

“–
µoJ

2dV 2 sin2 θ

128π2r3 âr ´

ˆ

µoJ
2dV 2 cos θ

64π2r3 ´Kρ

˙

âz.

(7.43)

In a similar manner, a
á

C may be derived such that when the variant of Stoke’s theorem

(5.12) is applied yields a spherical surface stress of:

á

Frecast “ –
£

fpθq
4πr2 âr

´

âr ¨ d
á

S
¯

, (7.44)

where fpθq is an undetermined function of θ that is symmetric about the x–y plane (i.e.,

θ “ π{2 plane).

The magnetostatic Maxwell stress (per unit area) of (7.35) at concentric spherical

surfaces (with radius r) away from the differential current element falls off as 1{r4. In

contrast, the magnetostatic recast stress equation of (7.44) falls off as 1{r2. The recast

stress equation of (7.44) depicts an inward surface tension only in the radial direction

(referenced to the differential current element location) where the units of the function fpθq

are N/sr. The choice of fpθq is made in the next chapter based on the interaction between

two separated differential current elements.
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7.4 Pinch Stress and QET

Maxwell’s stress equation applied to a closed spherical surface external to an isolated,

static differential current element has been recast using a variant of Stokes’ Theorem. The

recast stress equation (7.44) eliminates the stress aligned with the magnetic field and most

of the stress normal to the magnetic field. The recast stress equation manifests an inward

surface tension only in the radial direction (referenced to the differential current element

location).

For the infinite line current of section 7.2, Maxwell’s stress equation for a closed

surface outside the line current has a net null result. However, Maxwell’s stress equation

may be used to determine the inward magnetostatic pressure [100] (N/m2) on an infinite

cylindrical shell with uniform surface current density, total current I and radius a:

á

pa “ ´
µo

2
H2âρ “ ´

µoI
2

8π2a2 âρ. (7.45)

Similarly, the recast stress equation has some usefulness.

The recast stress equations (7.33) and(7.44) identifies the pinch stress associated with

static current distributions. This pinch stress is external to the current distribution, directed

inward. An external pinch stress may be modeled as an omnidirectional average rate of

QET influx (W) in combination with an out-flux of an equal average rate of QETs. Since

the average rate of influx and out-flux QETs are equal, there is no net gain or loss of energy

in the current distribution. The average rate of QET influx and out-flux depict a mean

valued sequence of energy carrier mediators. For instance, the energy carrier mediators

(bosons) may be gravitons or photons [71, 35]. The impact force of QET influx and the
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recoil force of QET out-flux accounts for the inward pressure (N/m2).

Assume that the mean QET influx and out-flux is proportional to the equivalent mag-

netostatic mass of the current distribution. Chapter 4 described a net rate of QET absorp-

tions, sPa, and emissions, sPe, both proportional to the mass,m, of a system: sPa “ sPe “ Γm.

The pinch stress is the sum of the impact force density of quantum energy absorptions and

recoil force density of quantum energy emissions.

Equations (7.33) and (7.44) may be interpreted in light of Mach’s principle. A given

current distribution has an average rate of QET influx and out-flux interacting with the

distant matter of the universe, proportional to the equivalent magnetostatic mass of the

current distribution. The recast stress equation depicts an inward pressure (i.e., pinch stress)

as a result of these QET interactions with the current distribution.

The pinch stress is the basis for the pinch phenomenon [102], pinch pressure [103], or

pinch effect [100]. The pinch effect is traditionally viewed as a pressure internal to a current

carrying conductor as a result of its own magnetic field and corresponding magnetostatic

force on the conductor carrying the current [104]. The pinch effect has been attributed to

the pinching off of current carrying liquids [102] and plasma [105], the propulsion of pencil

shaped copper slugs in current carrying mercury [106, 107], the crumpling of hollow cur-

rent carrying conductors and objects [108], as well as the explosion/mechanical fracturing

of current carrying wires [109].

Similar to the Poincaré stress for charge distributions, the pinch stress is an external

stress resulting from a mean valued, continual QETs between the current distribution and

the distant matter of the universe. Maxwell emphasized: “It must be carefully remembered,
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that the mechanical force which urges a conductor carrying a current ... acts, not on the

electric current, but on the conductor which carries it” [110]. Therefore, the external pinch

stress is a mechanical pressure on the solid or liquid conductor itself.
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CHAPTER 8. A QET MODEL FOR THE NEUMANN AND PINCH

STRESSES OF TWO SEPARATED, STATIC DIFFERENTIAL

CURRENT ELEMENTS

The goal of this and the previous chapter is to establish a QET (boson interaction)

model that provides a visualization of the stresses internal and external to constant cur-

rent carrying solids. The internal and external magnetostatic stresses are derived from

the recasting of Maxwell’s stress equation and historical current force formulas known to

be compatible with Maxwell’s equations for closed circuits. Therefore, the magnetostatic

QET model of this dissertation is mathematically consistent with Maxwell’s equations.

Chapter 7 established a pinch stress by recasting Maxwell’s stress equation for an

infinite line current and an isolated, cylindrically symmetric static differential current ele-

ment using a variant of Stokes’ Theorem. The pinch stress is normal to the magnetic field

and is directed inward toward the current distribution location. The pinch stress is modeled

as an average rate of QET influx and an equivalent average rate of QET out-flux, the QETs

exchanging bosons between the charge distribution and the distant matter of the universe.

The inward pressure arises from the impact force of QET influx and the recoil force of

QET out-flux. The pinch stress is proportional to the equivalent magnetostatic mass of the

current distribution.

The principle aim of this chapter is to determine the QET magnetostatic stress equa-

tion for two separated, static differential current elements. The QET magnetostatic stress
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only occurs at points aligned between the two differential current elements. The motivation

to pursue this endeavor is to establish a mathematical basis for a Neumann stress5 that only

exists at each point on the straight path between the two differential current elements.

Two separated, static differential current elements are a key building block for mag-

netostatics. Any arbitrary current distribution may be assembled from a collection of inter-

acting differential current elements. Therefore, differential current element results may be

generalized for a circular loop or any other configuration of interest.

Equation (3.7) derived by Moon and Spencer, identifies an infinite number of formu-

las for the force between differential current elements only acting along the straight line

between them. Repeated here, the differential force element on a first differential current

element interacting with a second differential current element is:

d2áF1“–
µo

4πd 2
21

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’
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3p1´k1q

”́

á

J1dV1

¯

¨â21

ı”́

á

J2dV2

¯
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`pk1´2q
´

á

J1dV1

¯

¨

´

á
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¯
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”́

á

J1dV1

¯

ˆ

´

á

J2dV2
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/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

â21, (8.1)

where k1 and k3 are arbitrary constants.

The goal of this chapter is to identify which combination(s) of the arbitrary constants

k1 and k3 of (8.1) are compatible with the QET model of this dissertation. Any combi-

nations of k1 and k3 give the correct total force between two closed circuits. However, as

established in section 6.2 for electrostatics, the force resulting from QET exchanges be-

5The term Neumann stress is assigned to the line stress (developed in Section 8.1 from the historical
current force formulas known to be compatible with Maxwell’s equations for closed circuits) that only exists
at each point on the straight path between two separated, differential current elements.
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tween two ‘elements’ is related to the trapped energy between these ‘elements’. Therefore,

the approach taken in this chapter is to determine if there are any constraints on k1 and k3

related to the trapped energy between differential current elements.

Section 8.1 identifies the constraints on the arbitrary constants k1 and k3 of (8.1) by

analyzing the trapped energy associated with two different closed circuits. The end result

is that only the Neumann formula (3.4) is compatible with the trapped energy for any two

closed circuits.

Section 8.2 expounds on the Neumann stress identified in the magnetostatic stress

equation. For two differential current elements in opposite directions, the Neumann stress

is modeled as photon exchanges continually occurring between the two differential current

elements. The amount of trapped energy associated with this continual photon exchange is

shown to be equivalent to the magnetostatic potential energy of the two separated differen-

tial current elements.

Section 8.3 describes how two differential current elements in opposite directions

and two differential current elements in the same direction may be modeled with energy

carrier mediators associated with the Neumann stress and the pinch stress.

8.1 Determination of the QET Magnetostatic Stress Equation for the
Interaction Between Two Isolated Differential Current Elements

Maxwell’s stress equation for magnetostatics (7.3) cannot be recast to determine the

stress between two differential current elements because it is only valid when one of the

differential elements is part of a set integrated around a closed circuit. Therefore, a different
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approach is necessary for determining the magnetostatic stress between two differential

current elements that is compatible with the QET model of this dissertation. The approach

taken in this section is equating the trapped or missing energy corresponding to the force

between all differential current elements of two separate closed circuits to the magnetostatic

potential energy of the two separate closed circuits [111].

Equation (8.1) identifies an infinite number of formulas for the force between differ-

ential current elements only acting along the straight line between them, where k1 and k3

are arbitrary constants. Constraints on the arbitrary constants k1 and k3 may be determined

by analyzing the trapped energy associated with two separated closed circuits.

Great precaution must be taken when analyzing differential current elements for mag-

netostatics because physically they do not independently exist. Maxwell’s equation for

magnetostatics based on the Biot-Savart Law and Lorentz’s force equation “has meaning

only as one element of a sum over a continuous set ... of a current loop or circuit” [101].

From the conservation of charge standpoint (i.e., continuity equation for charge), a static

differential current element may be part of a circuit (i.e., closed path) or part of a finite

wire where there is a buildup of positive and negative charges at the wire ends [112]. An

isolated static differential current element is purely fictitious.

Differential current elements for magnetostatics must be part of a closed path, other-

wise there would be a buildup of charge resulting from a dynamic electric field and thus a

dynamic magnetic field. That is the case for the differential current elements analyzed in

this chapter, they are always part of a closed circuit (even if not specifically mentioned on

every occasion).
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Section 6.2 and section 6.3 established a relationship for electrostatics between the

Coulomb stress/force and the trapped (or missing) energy between two charge distributions.

It was shown that for two like-charge distributions, the Coulomb force is a result of a mean

rate of energy absorbed sPa pWq and emitted sPe pWq to and from each charge distribution.

The repulsive Coulomb force on each charge distribution is the sum of the impact force

from the mean energy absorbed and the recoil force from the mean energy emitted:

F “
q1q2

4πεod2 “
sPa ` sPe
c

. (8.2)

The photon exchanges back and forth between the two charge distributions may be

regarded as trapped energy along the path between them (i.e., the Coulomb stress) and is

equivalent to the electrostatic potential energy of the two charge distribution system:

Utrapped “
`

sPa ` sPe
˘

t12 “
`

sPa ` sPe
˘ d

c
“

q1q2

4πεod
“ Fd “ Ue. (8.3)

This same relationship Utrapped “ Fd, equivalent to the electrostatic potential energy

may be used for magnetostatics as well. The magnitude (positive for repulsion, negative

for attraction) of the differential force element of (8.1) multiplied by d may be viewed

as the differential amount of trapped (or missing) energy between two differential current

elements. For the QET model of this dissertation, the net trapped energy obtained by inte-

grating the differential amount of trapped (or missing) energy around two closed circuits is

equivalent to the magnetostatic energy of the two closed circuit system.

Neumann’s mutual inductance formula for two closed filament current loops in free

space contains a similar expression to the Neumann’s formula for the differential force
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between two differential current elements of (3.4) [16, 17]:

M12 “ ´
µo

4π

¿

1

¿

2

d
á

`1 ¨ d
á

`2

d21
, (8.4)

where d
á

`1 and d
á

`2 are in the directions of the currents in loop 1 and loop 2 respectively.

The magnetostatic potential energy associated with the two filament current loops

carrying currents I1 and I2 respectively is:

Um “
1
2
M12I1I2 “ ´

µoI1I2

8π

¿

1

¿

2

d
á

`1 ¨ d
á

`2

d21
, (8.5)

where the 1
2 factor is so that the differential energy associated with a given differential

current element of loop 1 and loop 2 isn’t counted twice when integrating around both

loops.

The magnetostatic potential energy corresponding to the Moon and Spencer formula

(8.1) is therefore:

Um“
µoI1I2

8π

¿

1

¿

2

#

3p1´k1q

´

d
á

`1 ¨â21

¯́

d
á

`2 ¨â21

¯

d21
`pk1´2q

d
á

`1 ¨d
á

`2

d21
`k3

´

d
á

`1ˆd
á

`2

¯

d21

+

, (8.6)

where the term with the pk1´2q coefficient is the negative of the Neumann mutual induc-

tance energy (8.5).

Determining if there are any constraints on k1 requires a two circuit system such that

d
á

`1ˆd
á

`2 “ 0 and there is no contribution form the k3 term. This is the case for two infinite

parallel cylindrical shell surface currents carrying equal and opposite total currents I with

cylindrical radius a separated by a distance d as shown in Figure 8.1.

The inductance per unit length (H/m) of this two conductor system is easily de-

rived by calculating the magnetic flux density between the two conductors (assuming d"a)
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Figure 8.1: Two infinite cylindrical shell surface currents.

[113]:

` “
µo

2π
ln

ˆ

d2

a2

˙

. (8.7)

Therefore, the magnetostatic potential energy per unit length (J/m) is:

um “
1
2
`I2

“
µoI

2

4π
ln

ˆ

d2

a2

˙

. (8.8)

The trapped/missing energy per unit length corresponding to the term with the pk1´2q

coefficient in (8.6) is obtained by integrating the energy associated with the cylindrical shell

elements in the x–y plane. By symmetry, the energy corresponding to each cylindrical shell

element are equal. Therefore, the total energy per unit length will be twice that obtained for

one of the cylindrical shell elements. In addition, the self interaction of a current filament

element on the cylindrical shell surface about the z axis, interacting with the rest of the

cylindrical shell surface is equivalent to the interaction as if all the current is contained in a

current filament on the z axis. Therefore, the trapped energy per unit length corresponding
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to the term with the pk1´2q coefficient in (8.6) is (again, assuming d"a):

utrapped:pk1́ 2q“ 2

#

µoI
`

I
2πa

˘

8π

ż 2π

0

ż 8

–8

ˆ

1
?
d2 ` z2

`
–1

?
a2 ` z2

˙

dz adφ

+

“ –
µoI

2

4π
ln

ˆ

d2

a2

˙

.

(8.9)

As expected, the energy per unit length of (8.9) is the negative of the Neumann mutual

inductance energy (8.5). The trapped/missing energy per unit length corresponding to the

term with the 3 p1´k1q coefficient in (8.6) is (assuming d"a):

utrapped:3p1́ k1q“ 2

#

µoI
`

I
2πa

˘

8π

ż 2π

0

ż 8

–8

ˆ

–z2

pd2`z2q
3/2`

z2

pa2`z2q
3/2

˙

dz adφ

+

“
µoI

2

4π
ln

ˆ

d2

a2

˙

.

(8.10)

In order for the net trapped energy to be equivalent to the magnetostatic potential energy:

3 p1´k1qutrapped:3p1́ k1q ` pk1´2qutrapped:pk1́ 2q “ um. (8.11)

Therefore, combining (8.8), (8.9), (8.10), and (8.11) yields:

3 p1´k1q ´ pk1´2q “ 1, (8.12)

or k1 “ 1.

Determining if there are any constraints on k3 of (8.6) requires a two circuit system

such that there is a contribution for d
á

`1ˆd
á

`2. Circular filament current loops provide a

straight forward approach to achieve this. Consider two coaxial circular filament current

loops with radii a separated by a distance d as shown in Figure 8.2.

The mutual inductance between these two coaxial circular current loops involving

elliptic integrals is [114]:

M “ µoa h

˜

2

c

a2

d2 ` 4a2

¸

, (8.13)
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Figure 8.2: Two coaxial circular filament current loops.

where:

hpkq “
ˆ

2
k
´ k

˙

Kpkq ´
2
k

Epkq , (8.14)

Kpkq “
ż π{2

0

1
a

1´ k2 sin2 φ
dφ, (8.15)

and:

Epkq “
ż π{2

0

b

1´ k2 sin2 φdφ. (8.16)

The magnetostatic potential energy for these two coaxial circular current loops is:

Um “
1
2
MI2

“
µoaI

2

2
h

˜

2

c

a2

d2 ` 4a2

¸

. (8.17)

The trapped energy for the two coaxial circular current loops corresponding to the

term with the k3 coefficient in (8.6) is determined numerically using Mathcad as shown in

Figure 8.3. This energy is null, therefore no constraint is found for this case.

Since the energy associated with the k3 coefficient term is null, this two coaxial cir-

cular current loop example can also be used to numerically determine that k1 “ 1.
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Figure 8.3: Numerical analysis (Mathcad) for two coaxial circular filament current loops.

Next, consider two circular filament current loops normal to each other with radii a

separated by a distance d as shown in Figure 8.4. Because the loops are normal to each

other, the mutual inductance is null.

The trapped energy for the two circular current loops corresponding to the term with
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Figure 8.4: Two circular filament current loops normal to each other.

the k3 coefficient in (8.6) is determined numerically using Mathcad as shown in Figure 8.5.

Since this energy is nonzero for the two current loops normal to each other, the constant k3

of (8.6) must be equal to 0.

As a side note, Mathcad was also used to verify numerically that the general force

equation of (3.6) gave the same resulting force between a differential current element and

a circular filament current loop covering all combinations of possible angles between the

differential current element and current loop as well as possible combinations for k1 and

k2. In addition, Mathcad was used to verify numerically that the Moon and Spencer force

equation of (3.7) gave the same resulting force between two circular filament current loops

covering all combinations of possible angles between the two loops as well as possible

combinations for k1 and k3.

The two infinite parallel cylindrical shell surface currents carrying equal and opposite

total currents and the two circular filament current loops normal to each other have been

used to determine the constraints: k1 “ 1 and k3 “ 0 of (8.6). Therefore, the trapped energy

(i.e., magnetostatic potential energy) for two filament current closed circuits of (8.6) having

infinite possibilities reduces to the magnetostatic potential energy based on Neumann’s
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Figure 8.5: Numerical analysis (Mathcad) for two circular filament current loops normal to each

other.

mutual inductance formula for two filament current closed circuits of (8.5).

And finally, the force formula for the interaction between two differential current

elements of (8.1) having infinite possibilities reduces to the Neumann force formula of

(3.4). Repeated here, the differential element of force on a first differential current element
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interacting with a second differential current element is:

d2áF1 “
µo

4π

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

d 2
21

â21. (8.18)

When integrated around two closed circuits, this force is equivalent to the classical

magnetostatic force [115, 116]. The differential amount of trapped (or missing) energy

(i.e., magnetostatic potential energy) associated with the differential force of (8.18) is:

d2U21 “ –
µo

4π

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

d21
. (8.19)

Similar to electrostatics, the force between two anti-parallel differential current ele-

ments for magnetostatics is a result of a mean rate of QETs absorbed and emitted by each

differential current element consisting of a continual exchange of photons back and forth

between the current elements. The continual exchange of energy carrier bosons along the

straight line between the two differential current elements may be viewed as a line stress.

The term Neumann stress is assigned to the line stress that only exists at each point on the

straight path between two separated, differential current elements. The Neumann stress in

magnetostatics is analogous to the Coulomb stress in electrostatics.

As an aside, a similar method may be used for analyzing the magnetostatic potential

energy of the general force equation between two differential current elements of (3.6).

Appendix F determines the constraints on this general force equation. The end result is

that the Ampère force formula (3.3) between current elements is invalid because it does

not give the correct magnetostatic potential energy between two closed circuits. The only

commonly referenced formula agreeing with Ampère’s original experimental conclusions

and giving the correct magnetostatic potential energy for circuital currents is shown to be
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the Grassmann force formula (3.5).

Ampère’s force formula between current elements is based on his original experi-

ments. Maxwell gave preference to Ampère’s force formula as “...undoubtedly the best,

since it is the only one which makes the forces on the two elements not only equal and op-

posite but in the straight line which joins them” [117]. Although Ampère’s force formula

has been preferred by many scientist and physicist, it is invalid because it does not produce

the proper magnetostatic potential energy between two closed circuits.

Both the Grassmann and Neumann current element force formulas give the correct

magnetostatic potential energy between two closed circuits. Therefore, any magnetostatic

models or conclusions about the forces between closed circuits must be based on one

of these two formulas to be valid. The Grassmann (Biot-Savart/Lorentz) force formula

(applicable for closed circuits) provides the foundation for the static magnetic field
á

B of

Maxwell’s equation.

The Neumann current element force formula is the only force formula that corre-

sponds to the appropriate magnetostatic potential energy as a result of removing Ampère’s

original constraint that a current element can’t have a tangential force component (when

interacting with a closed circuit), while maintaining Ampère’s constraint that current ele-

ment forces only act along the straight line between them. Therefore, the Neumann force

formula also “makes the forces on the two elements not only equal and opposite but in the

straight line which joins them”.
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8.2 Neumann Stress and QET

The Neumann force formula of (8.18) is the only force formula compatible with the

QET model of this dissertation. The force between two differential current elements in the

opposite directions is a result of photon exchanges continually occurring between the two

differential current elements. The differential amount of trapped energy associated with

this continual photon exchange is equivalent to the magnetostatic potential energy of the

two separated differential current elements of (8.19).

The Neumann stress only exists at each point on the line between the two separated,

differential current elements. In general, a Neumann stress equation may be defined for an

arbitrary surface and arbitrary locations for two separated, differential current elements:

á

FNeumann“

µo

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

4πd2
21

£

δ2
p1`âr1¨âr2q sgn pâr1¨ânqâr1dS, (8.20)

where
´

á

J1dV1

¯

and
´

á

J2dV2

¯

are the two differential current elements, d21 is the distance

between the centers of the two current elements, δ2pq is the two dimensional or surface

Dirac delta function [86], âr1 and âr2 are the directional unit vectors away from the first

and second differential current elements respectively, sgn pq is the function defined in(6.12),

and ân is the directional unit vector outward normal from the surface S.

The essence of (8.20) is a differential surface force element (equivalent to the Neu-

mann force) for every non-tangential intersection of the arbitrary surface S with the straight

line between the two differential current elements. Equation (8.20) may have the appear-

ance of merely stating the point to point, action-at-a-distance property of Neumann’s force

formula. However, the analysis of the previous section shows that the Neumann stress
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equation is mathematically compatible with Maxwell’s equation for two closed current cir-

cuits.

If both differential current elements are generally in the opposite direction (i.e., the

dot product of the two current elements is negative), then the Neumann stress may be

modeled as an average rate of QETs (i.e., photons) exchanging back and forth between the

two current elements. The line stress is modeled as the straight path of the photons. The

impact force (of photons absorbed by the differential current elements) and recoil force (of

photons emitted from the current elements) constitute the Neumann force on the differential

current elements.

The photon exchanges back and forth between the two differential current elements

may be regarded as trapped energy along the path between them (i.e., the Neumann stress).

The amount of trapped energy is equivalent to the magnetostatic potential energy of (8.19)

for two differential current elements generally in the opposite directions.

8.3 Pinch Stress, Neumann Stress and QET

The pinch stress related to the equivalent magnetostatic mass of each individual dif-

ferential current element was ignored for the evaluation of Section 8.1. For an isolated

differential current element, the pinch stress is normal to the magnetic field and is directed

inward toward the differential current element. The recast stress equation of (7.44) identi-

fies the pinch stress associated with a differential current element.

Based on the omnidirectional appearance of the Neumann force formula of (8.18), it
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is presumed that the undetermined function of θ, fpθq of (7.44) is a constant proportional

to the equivalent magnetostatic mass of the current element. As such, the pinch stress as-

sociated with a differential element of current having a differential magnetostatic potential

energy of um is:

á

F1pinch“ –
£

Γum
2πc3r2

1
âr1

´

âr1 ¨ d
á

S
¯

. (8.21)

The inward pressure arises from the impact force of QET influx and the recoil force of

QET out-flux. The QET influx and out-flux has been modeled as energy carrier mediators

(bosons) interacting between the current element and the distant matter of the universe. The

pinch stress is proportional to the equivalent mass of the magnetostatic potential energy of

the differential current element.

For two differential current elements generally in opposite directions (i.e., the dot

product of the two current elements is negative) there is a pinch stress associated with each

individual current element. In addition, there is a Neumann stress from QETs (i.e., photon

exchanges) back and forth between the two current elements causing the current elements

to be pushed apart.

The concentration of mean QET flux density (i.e., energy flux density magnitude) is

modeled/depicted in Figure 8.6(a). The darker gray regions represent a higher concentra-

tion of QETs, while the lighter gray regions denote a lower concentration. The mean QET

flux density associated with the pinch stress for each individual current element falls off as

the inverse square of the distance from the current element. The mean QET flux density

associated with the Neumann stress depicts the trapped energy from the photon exchanges

back and forth between the two current elements in opposite directions. The actual direc-
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tion of one of the current elements doesn’t matter as long as the two current elements are

in opposite directions.

Figure 8.6: Illustration of pinch and Neumann stress for two differential current elements: (a) op-

posite directions, (b) same direction.

In addition to the pinch stress associated with the two individual current elements, for

a static condition there is an additional pinch stress maintaining the two current elements

at equilibrium. The net effect of this additional pinch stress is a force that counteracts

the Neumann force associated with the photon exchange back and forth between the two

current elements.

At a large distance away from the current elements (compared to the distance be-

tween the two current elements), this additional pinch stress is assumed to be omnidirec-

tional inward proportional to the magnetostatic potential energy of the two current ele-

ments: –µo

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

{ p4πd21q.
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Two current elements in the same general direction (i.e., the dot product of the two

current elements is positive) may be modeled in a similar, but slightly different manner. The

two individual current elements have a pinch stress associated with them, omnidirectionally

inward, proportional to the magnetostatic mass of each current element.

However, there is a missing amount of QETs back and forth between the two el-

ements associated with the Neumann stress, causing the current elements to be pushed

together. The concentration of mean QET flux density (i.e., energy flux density magnitude)

is depicted in Figure 8.6(b).

The missing energy between the current elements is equivalent to the negative valued

magnetostatic potential energy Umissing “ –µo

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

{ p4πd21q of the two cur-

rent elements in the same direction. As a result of a decrease in the magnetostatic mass for

the two current elements, there is a reduction in the overall pinch stress thus maintaining

the two current elements in equilibrium (i.e., a net force equal and opposite to the Neumann

force).

At a large distance away from the current elements (compared to the distance between

the two current elements), the reduction in the pinch stress is assumed to be omnidirectional

inward proportional to the magnetostatic potential energy (negative) of the two current

elements in the same direction.
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CHAPTER 9. COULOMB STRESS FOR TWO SEPARATED,

SPHERICALLY SYMMETRIC CHARGE DISTRIBUTIONS BOTH

MOVING WITH THE SAME CONSTANT VELOCITY

This chapter analyzes the Coulomb stress for two charge distributions moving with

the same constant velocity by applying the Lorentz transformation. The Coulomb stress

is found to be compatible with relativistic velocities. This chapter also provides a visual

representation of the increase in energy and the relationship of forces associated with the

Lorentz transformation.

Two extremely small charge configurations (i.e., point charges) are often referred to

as a dumbbell [80, 81]. The movement with constant velocity of a like-charged dumbbell

is easily analyzed with the Lorentz transformation [118].

Consider two reference frames as shown in Figure 9.1. The reference frame Σ is at

rest. The reference frame Σ1 is moving in the positive x direction with a constant velocity

v.

Figure 9.1: Reference frames for Lorentz transformation.



109

Two separate dumbbell configurations (a transverse configuration and a longitudinal

configuration) are at rest in the moving reference frame Σ1 as shown in Figure 9.2. For

simplicity, the two differential charge elements are considered to have total charges q11 and

q12.

Figure 9.2: Charge dumbbells at rest in moving reference frame: (a) transverse, (b) longitudinal.

The following attributes are observed in the reference frame Σ at rest:

Time dilation [118]: t “ γt1, (9.1)

Length contraction [118]: dx “
d1x
γ
, (9.2)

Charge is invariant [119]: q “ q1, (9.3)

Energy [120]: U “ γU 1, (9.4)
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where:

γ “
1

a

1–v2{c2
. (9.5)

The force and energy Lorentz transformation may be determined by analyzing the

Lorentz transformation of the classical electric field and magnetic flux density. With the

two charges at rest in Σ1 (see Figure 9.2 (a)), the electric field from q12 at q11 only has a

component in the positive y1 direction: E 1y “ q12{
´

4πεod
12
y

¯

. Applying the Lorentz trans-

formation for the electric field, an electric field in the y direction and a magnetic flux density

in the positive z direction is calculated: Ey “ γE 1y and Bz “ γE 1yv{c
2 [121]. The force on

q1 in the y direction is then calculated using Lorentz’s force equation:

Ftransverse “q1

ˆ

γE 1y ´ γE
1
y

v2

c2

˙

“
F 1

γ
. (9.6)

For the longitudinal dumbbell at rest in Σ1 (see Figure 9.2 (b)), the electric field from

q12 at q11 only has a component in the negative x1 direction: E 1x “ –q12{
´

4πεod
12
x

¯

. At this

location, the x component of the electric field is unchanged in the Lorentz transformation

and no magnetic flux density component is introduced: Ex “ E 1x [121]. Therefore, the

force on q1 in the negative x direction using Lorentz’s force equation is:

Flongitudinal “q1E
1
x “ F 1. (9.7)

The sum of the energies for the transformed electric and magnetic fields agrees with

the Lorentz transformation of the original electrostatic potential energy of the two charges

at rest in Σ1: U “ γU 1. There are two invariants related to the relativistic Lorentz trans-

formation of the electric field and magnetic flux density [122]. The first invariant is
á

E ¨
á

B.
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Since
á

B1 “ 0 in Σ1,
á

B will always be normal to
á

E in every other inertial reference frame.

The second invariant is εoE
2–B2{µo. Since

á

B1 “ 0 in Σ1, the electric field will always

dominate in every other inertial reference frame.

The force and energy Lorentz transformation may also be determined by analyzing

the electromagnetic model of this dissertation moving with relativistic velocities. The two

separate dumbbell configurations (a transverse configuration and a longitudinal configura-

tion) are at rest in Σ1 as shown in Figure 9.3. The Coulomb stress between q11 and q12 is

depicted as a line with an arrow from q11 to q12 and from q12 to q11. These lines/arrows rep-

resent a QET (i.e., emission [non-arrow end] and absorption [arrow end] of a photon from

one charge to the other).

Figure 9.3: Charge dumbbells at rest in moving reference frame: (a) transverse, (b) longitudinal.

Assume the photons exchanging back and forth between the two charges q11 and q12

have a mean energy sU 1photon pJq and a mean time repetition of photon exchanges t̄1rep psq.

Therefore, the mean rate of energy absorbed sP 1a pWq and emitted sP 1e pWq to and from each
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charge is:

sP 1a “
sP 1e “

sU 1photon

t̄1rep
. (9.8)

The repulsive force between the two charges is:

F 1 “
sP 1a `

sP 1e
c

“
q11q

1
2

4πεod1
2 . (9.9)

And, the trapped energy (from QETs) between the two charges (i.e., the electrostatic po-

tential energy) is:

U 1trapped “
`

sP 1a `
sP 1e
˘

t112 “
`

sP 1a `
sP 1e
˘ d1

c
“

q11q
1
2

4πεod1
. (9.10)

The Lorentz transformation for both the transverse and longitudinal dumbbell config-

urations is used: q1 “ q11, q2 “ q12 (i.e., charge is invariant) [119], sUphoton “ γ sU 1photon [120],

and t̄rep “ γt̄1rep (i.e., time dilation), where γ “ 1{
a

1–v2{c2. Therefore, the mean rate of

energy absorbed sPa pWq and emitted sPe pWq to and from each charge as observed in the

reference frame at rest Σ is:

sPa “ sPe “
sUphoton

t̄rep
“
γ sU 1photon

γt̄1rep
“ sP 1a “

sP 1e. (9.11)

For the transverse dumbbell configuration, the Lorentz transformation is used: dy “ d1

and t12 “ γt112 “ γd1{c (i.e., time dilation). The force between the two charges as observed

in the reference frame at rest can be determined by referring to Figure 9.4. Figure 9.4 shows

three positions of each charge. The gray dot represents the past location of the charge, the

solid black dot represents the present location, and the dotted white dot represents the fu-

ture location. The three dots (gray, black, and white) have a separation corresponding to
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the time it takes a photon to transfer t12 from the past position of one of the charges to the

present position of other (or the present position of one of the charges to the future position

of the other) multiplied by the velocity v.

Figure 9.4: Transverse dumbbell as observed in reference frame at rest.

The repulsive force between the two charges is obtained by adding the components

of force normal to the velocity of the charge (cosα“dy{ pct12q) for the impact force from

the mean rate of absorbed energy and the recoil force from the mean rate of emitted energy:

Ftransverse “

sPa
dy
ct12

` sPe
dy
ct12

c
“

sP 1a
d1

c

ˆ

γ
d1

c

˙ ` sP 1e
d1

c

ˆ

γ
d1

c

˙

c
“
F 1

γ
. (9.12)

And, the trapped energy (from QETs) between the two charges (i.e., the electrostatic po-

tential energy) is:

Utrapped “
`

sPa ` sPe
˘

t12 “
`

sP 1a `
sP 1e
˘

ˆ

γ
d1

c

˙

“ γU 1trapped. (9.13)
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For the longitudinal dumbbell configuration, the Lorentz transformation is used:

dx “ d1{γ (i.e., length contraction), t12 “ γ
`

t112 ` vd
1{c2

˘

, and t21 “ γ
`

t121 ´ vd
1{c2

˘

. The

force between the two charges as observed in the reference frame at rest is:

Flongitudinal “
sPa
c

´

1˘
v

c

¯

`
sPe
c

´

1¯
v

c

¯

“
sPa ` sPe
c

“
sP 1a `

sP 1e
c

“ F 1. (9.14)

And, the trapped energy (from QETs) between the two charges (i.e., the electrostatic po-

tential energy) is:

Utrapped “ sPat12 ` sPet21 “ sP 1a
“

γ
`

t112 ` vd
1
{c2

˘‰

` sP 1e
“

γ
`

t121 ´ vd
1
{c2

˘‰

“γ
`

sP 1a `
sP 1e
˘

t112 “ γU 1trapped.

(9.15)

Figure 9.5 shows three positions of each charge for the longitudinal configuration.

The gray dot represents the past location of the charge, the solid black dot represents the

present location, and the dotted white dot represents the future location. The three dots

(gray, black, and white) have a separation corresponding to the average of the time it takes

a photon to transfer from q1 to q2 and from q2 to q1: pt12 ` t21q {2 “ γt112 multiplied by the

velocity v.

Figure 9.5: Longitudinal dumbbell as observed in reference frame at rest.

The relativistic changes in force and energy of the electromagnetic model of this dis-
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sertation given in (9.12), (9.13), (9.14), and (9.15) are in agreement with those given early

based on the classical electromagnetic field transformation of (9.6), (9.7), and (9.4). With

the classical electromagnetic field approach, as the transverse dumbbell is moved with rel-

ativistic velocity, the electric field transforms into both an electric field and a magnetic flux

density component (however, the electric field always dominated). For the electromagnetic

model of this dissertation, the Coulomb stress is always exchanging between charges for

observations made in any inertial reference frame (i.e., there is no transformation of the

Coulomb stress into some kind of magnetic phenomena).

Figure 9.4 and Figure 9.5 provide a visual representation of the increase in energy

and the relationship of forces associated with the Lorentz transformation.

The electrostatic model of this dissertation is not very static. Both figures also pro-

vide some visual insight into the causality of the QET model of this dissertation. With the

charges moving, it is clear that the Coulomb force on one charge is dependent upon the

past and future location of the other charge (and vise-versa).

Since the Neumann stress for magnetostatics also involves QET between differential

current elements and the trapped QET corresponds to the magnetostatic potential energy,

the results of this chapter are also applicable to magnetostatics [123]. The QET rate (W)

associated with the Coulomb and Neumann stress is invariant (i.e., doesn’t change rela-

tivistically).
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CHAPTER 10. CONCLUSIONS

Four stress equations have been developed in this dissertation, two for electrostatics

and two for magnetostatics. For electrostatics, the Poincaré stress was derived by recasting

Maxwell’s stress equation for electrostatics applied to an isolated spherically symmetric

charge distribution:

á

FPoincaré“ –
£

ΓUe
2πc3r2 âr

´

âr ¨ d
á

S
¯

. (10.1)

The Poincaré stress is an omnidirectional inwardly directed stress proportional to the elec-

trostatic potential energy of a charge distribution. The stress is a result of a mean rate

of QET influx and out-flux to/from the charge distribution and the distant matter of the

universe.

A Coulomb stress for electrostatics was also derived by recasting Maxwell’s stress

equation for electrostatics applied to two separated spherically symmetric charge distribu-

tions:

á

FCoulomb“
q1q2

4πεod2

£

δ2
p1`âr1¨âr2q sgn pâr2¨ânqâr1dS. (10.2)

The Coulomb stress is a line stress that exists between each pair of charge elements. The

stress is a result of a mean rate of QETs back and forth between two like charges (or

a missing amount of QETs between two opposite charges). The quantity of trapped or

missing QETs between the two charges corresponds to the electrostatic potential energy of

the two separated charges.
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For magnetostatics, the pinch stress was derived by recasting Maxwell’s stress equa-

tion for magnetostatics applied to an isolated differential current element:

á

Fpinch“ –
£

ΓUm
2πc3r2 âr

´

âr ¨ d
á

S
¯

. (10.3)

The pinch stress is an omnidirectional inwardly directed stress proportional to the magne-

tostatic potential energy of a current element. The stress is a result of a mean rate of QET

influx and out-flux to/from the current element and the distant matter of the universe.

A Neumann stress for magnetostatic was developed by analyzing the historical force

formulas between two separated differential current elements:

á

FNeumann“

µo

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

4πd2
21

£

δ2
p1`âr1¨âr2q sgn pâr1¨ânqâr1dS. (10.4)

The Neumann stress is a line stress that exists between each pair of current elements. The

stress is a result of a mean rate of QETs back and forth between two current elements

in opposite directions (or a missing amount of QETs between two current elements in

the same direction). The quantity of trapped or missing QETs between the two current

elements corresponds to the magnetostatic potential energy of the two separated current

elements.

The four preceding static stress equations give the same result as Maxwell’s stress

equation for any arbitrary closed surfaces. They have been shown to be mathematically

compatible with Maxwell’s stress equation in the various chapters of this dissertation. The

Neumann and pinch stress equations and Maxwell’s stress equation for magnetostatics are

only applicable to closed circuit paths.
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APPENDIX A. DERIVATION OF Γe, THE CONSTANT OF

QUANTUM ENERGY TRANSFER RATE TO MASS (W/kg)

Chapter 4 describes a net rate of quantum energy absorptions sPa and emissions sPe

both proportional to the mass m of a system: sPa “ sPe “ Γm (W). This appendix provides

a derivation of Γe (based on the electron), the constant of QET rate to mass (W/kg).

Given an electron model of spherical shell charge density σ with radius re and static

charge e, the charge density is defined as:

σ “
– e

4πr2
e

`

C/m2
˘

. (A.1)

The electric field for r ě re is:

á

Ee “
– e

4πεor2
e

âr pV/mq . (A.2)

The electrostatic potential energy of the electron is:

Ue “
e2

8πεore
pJq . (A.3)

Assume the mass of the electron is entirely from the electrostatic potential energy:

me “
Ue
c2 pkgq . (A.4)

The radius of the electron (for this model of the electron and assumption) is solved for by

combining (A.3) and (A.4):

re “
e2

8πεomec2 pmq . (A.5)



119

The Lorentz differential element of force on the spherical charge density shell of the

electron is:

d
á

Fe “σ
á

EedS “

ˆ

– e
4πr2

e

˙ˆ

– e
4πr2

e

âr

˙

r2
esinθdθdφ

“
e2

16π2εor2
e

dΩâr pN/SRq .

(A.6)

Combining(A.5) and(A.6), the Lorentz differential element of force on the spherical charge

density shell of the electron is:

d
á

Fe “
4m2

eεoc
4

e2 dΩâr pN/SRq . (A.7)

Jules Henri Poincaré concluded that the electron is in equilibrium between the out-

ward force of charge wanting to push it apart and an inward normal stress [74]. Subse-

quently, the differential element of Poincaré stress may be defined as:

d
á

FP “ ´d
á

Fe “ ´
4m2

eεoc
4

e2 dΩâr pN/SRq . (A.8)

Poincaré also hints of a relationship between this stress and gravity [75].

Assume that the Poincaré stress arises from the average boson emission and absorp-

tion QET rate, sPe, and sPa, where sPe “ sPa “ Γem (W):

d
á

FP “ ´
sPe ` sPa

4πc
dΩâr “ ´

Γeme

2πc
dΩâr pN/SRq . (A.9)

Finally, combining (A.8) and (A.9), yields the constant of QET rate to mass, Γe:

Γe “
8πεomec

5

e2 “ 1.913ˆ 1040
pW/kgq . (A.10)
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APPENDIX B. DERIVATION OF MAXWELL’S STRESS

EQUATION FOR ELECTROSTATICS IN FREE SPACE

The following summarizes a derivation of Maxwell’s Stress Equation for electrostat-

ics in free space by O. D. Jefimenko [61]. Begin with the vector identity:

1
2

£

A2d
á

S´

£

á

A
´

á

A ¨ d
á

S
¯

“

¡

”

á

Aˆ
´

∇ˆ
á

A
¯

´
á

A
´

∇ ¨
á

A
¯ı

dV. (B.1)

Applying Maxwell’s equation (Faraday’s Law) for electrostatics,∇ˆ
á

E “ 0, to (B.1)

yields:

εo

¡

´

∇ ¨
á

E
¯

á

EdV “ εo

£

á

E
´

á

E ¨ d
á

S
¯

´
εo

2

£

E2d
á

S. (B.2)

Combining Lorentz’s force equation,
á

F “ q
á

E, and Maxwell’s equation (Gauss’ Law

for electricity) for free space,∇ ¨
´

εo
á

E
¯

“ ∇ ¨
á

D “ ρ, to the left side of (B.2) yields:

εo

¡

´

∇ ¨
á

E
¯

á

EdV “

¡

ρ
á

EdV “
á

F. (B.3)

Combining (B.2) and (B.3) yields the Maxwell’s Stress Equation:

á

F “ εo

£

á

E
´

á

E ¨ d
á

S
¯

´
εo

2

£

E2d
á

S. (B.4)
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APPENDIX C. VARIANT OF STOKES’ THEOREM

The following is based on a derivation by X. Chen [124] starting with Stokes’ Theo-

rem:

ĳ

´

∇ˆ
á

A
¯

¨ d
á

S “

¿

á

A ¨ d
á

`. (C.1)

Let
á

A “
á

Cˆ
á

B and let
á

B be a non-zero constant vector. Evaluating the integrand in

the right side of (C.1) and applying vector identity (D.1) yields:

á

A ¨ d
á

` “
´

á

Cˆ
á

B
¯

¨ d
á

` “
´

d
á

` ˆ
á

C
¯

¨
á

B “ ´

´

á

Cˆ d
á

`
¯

¨
á

B. (C.2)

Evaluating the integrand in the left side of (C.1) and applying vector identity (D.2)

yields:

´

∇ˆ
á

A
¯

¨ d
á

S “
”

∇ˆ
´

á

Cˆ
á

B
¯ı

¨ d
á

S

“

”´

á

B ¨∇
¯

á

C`
á

C
´

∇ ¨
á

B
¯

´

´

á

C ¨∇
¯

á

B´
á

B
´

∇ ¨
á

C
¯ı

¨ d
á

S.

(C.3)

Since
á

B is constant,∇ ¨
á

B “ 0 and
´

á

C ¨∇
¯

á

B “ 0, thus (C.3) reduces to:

´

∇ˆ
á

A
¯

¨d
á

S “ ´
´

∇¨
á

C
¯

d
á

S¨
á

B`
”́

á

B ¨∇
¯

á

C
ı

¨d
á

S. (C.4)

Expanding in Cartesian coordinates using vector identity (D.3) and applying vector
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identity (D.4), the last term on the right in equation (C.4) becomes:

”́

á

B ¨∇
¯

á

C
ı

¨d
á

S“

»

—

—

—

—

—

—

–

Bx
BCx
Bx
`By

BCx
By
`Bz

BCx
Bz

Bx
BCy
Bx
`By

BCy
By
`Bz

BCy
Bz

Bx
BCz
Bx
`By

BCz
By
`Bz

BCz
Bz

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨d
á

S

“

»

—

—

—

—

—

–

dSx
BCx
Bx
`dSy

BCy
Bx
`dSz

BCz
Bx

dSx
BCx
By
`dSy

BCy
By
`dSz

BCz
By

dSx
BCx
Bz
`dSy

BCy
Bz
`dSz

BCz
Bz

fi

ffi

ffi

ffi

ffi

ffi

fl

¨
á

B

“

”́

∇
á

C
¯

¨ d
á

S
ı

¨
á

B “∇C

´

á

C ¨ d
á

S
¯

¨
á

B,

(C.5)

where the C subscript of the del operator indicates that partial derivatives are only applied

to the vector field
á

C.

Combining equations (C.1), (C.2), (C.4), (C.5), and removing ¨
á

B from each term

yields the variant of Stokes’ Theorem (see corollary of Stokes’ Theorem [125] for an alter-

nate form):

¿

á

Cˆ d
á

` “

ĳ

”´

∇ ¨
á

C
¯

d
á

S´∇C

´

á

C ¨ d
á

S
¯ı

. (C.6)
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APPENDIX D. VECTOR IDENTITIES

Useful vector identities [126]:

á

A ¨
´

á

Bˆ
á

C
¯

“
á

B ¨
´

á

Cˆ
á

A
¯

, (D.1)

∇ˆ
´

á

Aˆ
á

B
¯

“

´

á

B ¨∇
¯

á

A`
á

A
´

∇ ¨
á

B
¯

´

´

á

A ¨∇
¯

á

B´
á

B
´

∇ ¨
á

A
¯

, (D.2)

where

´

á

A ¨∇
¯

á

B “

»

—

—

—

–

´

á

A ¨∇
¯

Bx
´

á

A ¨∇
¯

By
´

á

A ¨∇
¯

Bz

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

Ax
BBx

Bx
` Ay

BBx

By
` Az

BBx

Bz

Ax
BBy

Bx
` Ay

BBy

By
` Az

BBy

Bz

Ax
BBz

Bx
` Ay

BBz

By
` Az

BBz

Bz

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (D.3)

Gradient of a vector [66]:

∇A

´

á

A ¨
á

B
¯

“

´

∇
á

A
¯

¨
á

B “

»

—

—

—

—

—

–

BAx
Bx

BAy
Bx

BAz
Bx

BAx
By

BAy
By

BAz
By

BAx
Bz

BAy
Bz

BAz
Bz

fi

ffi

ffi

ffi

ffi

ffi

fl

¨
á

B (D.4)
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APPENDIX E. DERIVATION OF MAXWELL’S STRESS

EQUATION FOR MAGNETOSTATICS IN FREE SPACE

The following summarizes a derivation of Maxwell’s Stress Equation for magneto-

statics in free space by O. D. Jefimenko [127]. Begin with the vector identity:

1
2

£

A2d
á

S´

£

á

A
´

á

A ¨ d
á

S
¯

“

¡

”

á

Aˆ
´

∇ˆ
á

A
¯

´
á

A
´

∇ ¨
á

A
¯ı

dV. (E.1)

Applying Maxwell’s equation (Gauss’s Law for magnetism), ∇ ¨
á

B “ 0, to (E.1)

yields:

µo

¡

´

∇ˆ
á

H
¯

ˆ
á

HdV “ µo

£

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

£

H2d
á

S. (E.2)

Combining Lorentz’s force equation,
á

F “ q
´

á

v ˆ
á

B
¯

, and Maxwell’s equation (Amp-

ère’s Law) for magnetostatics and free space, ∇ˆ
á

H “
á

J, to the left side of (E.2) yields:

µo

¡

´

∇ˆ
á

H
¯

ˆ
á

HdV “

¡

´

á

JdV
¯

ˆ
á

B “
á

F. (E.3)

Combining (E.2) and (E.3) yields the Maxwell’s Stress Equation:

á

F “ µo

£

á

H
´

á

H ¨ d
á

S
¯

´
µo

2

£

H2d
á

S. (E.4)
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APPENDIX F. DETERMINATION OF CONSTRAINTS FOR THE

GENERAL FORCE EQUATION BETWEEN TWO DIFFERENTIAL

CURRENT ELEMENTS

There is much literature on the equivalence of the Ampère and Grassmann (Biot-

Savart/Lorentz) current element force formulas [128, 129, 25, 130, 131]. However, this

appendix reveals that the magnetostatic potential energy associated with the Ampère and

Grassmann current element force formulas are nonequivalent. Thus, the validity of using

the Ampère force formula comes into question.

Because an isolated differential current element does not physically exist, the actual

force on a differential current element cannot be determined experimentally [24]. Despite

this fact, there has been much literature through the years emphasizing the importance (or

even absolute correctness) of Ampère’s original force formula [132, 133, 134, 135, 136].

However, based on the results of this appendix, Ampère’s force formulas is invalid because

it does not produce the proper magnetostatic potential energy between two closed circuits.

The magnetostatic potential energy corresponding to the general formula (3.6) is:

Um“
µoI1I2

8π

¿

1

¿

2

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

3p1´k1q

´

d
á

`1 ¨â21

¯́

d
á

`2 ¨â21

¯

d21

`pk1´2q
d
á

`1 ¨d
á

`2

d21

`k1

´

d
á

`1 ¨â21

¯

d21
d`2 ` k2

´

d
á

`2 ¨â21

¯

d21
d`1

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

, (F.1)

where the term with the pk1´2q coefficient is the negative of the Neumann mutual induc-
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tance energy (8.5).

For the two infinite parallel cylindrical shell surface currents carrying equal and op-

posite total currents (see Figure 8.1 of Section 8.1), there is no contribution from the k2

term. Therefore, the constraint of k1 “ 1 determined in Section 8.1 also applies to the

general formula (3.6).

It is fairly straight forward to show numerically (i.e., with Matlab, Mathcad, ect.)

that for two circular filament current loops the k2 term of (3.6) and (F.1) yields a net zero

force and net zero magnetostatic potential energy respectively. This is true for any two

closed circuits [27]. Therefore, an argument could be made that further constraining k2

is irrelevant since it has no net effect for two closed circuits. However, understanding

the interactions of two current elements provide the building blocks for understanding and

modeling any static current distribution.

If a constraint on k2 exists, it will be determined by analyzing the force and magne-

tostatic potential energy of an isolated current element interacting with a separate closed

loop. The obvious constraint is k2 “ 0 yielding the Grassmann formula (3.5). This is the

basis for the Biot-Savart Law defining the magnetic field
á

B in Maxwell’s equation. It must

be kept in mind that the use of Maxwell’s equation and the Lorentz force law involving

static current elements (where there is no dynamic electric field) is only applicable for two

closed circuits.

For example, analysis of the force between a current element pJ1dV1q and a filament

current loop with current I2 as shown in Figure F.1 has atypical results.

The force on pJ1dV1q exerted by the filament current loop can be calculated using the
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Figure F.1: Interaction between a current element and a filament current loop.

Grassmann formula (3.5), integrating around the closed filament current loop:

á

F1 “
µo

4π

¿

1
d 2

12

$

’

’

&

’

’

%

”´

á

J1dV1

¯

¨ â12

ı ´

á

J2dV2

¯

´

´

á

J1dV1

¯

¨

´

á

J2dV2

¯

â12

,

/

/

.

/

/

-

“
µo

4π

ż 2π

0

pJ1dV1q
?

3–2 sinφ
I2

„– sinφ
cosφ

0



a2 p3–2 sinφq
adφ,

(F.2)

where the force in the x direction is:

á

F1x “–
µo pJ1dV1q I2

4πa

ż 2π

0

sinφ

p3–2 sinφq3/2dφ

“–1.143
µo pJ1dV1q I2

4πa
,

(F.3)

and the force in the y direction is:

á

F1y “
µo pJ1dV1q I2

4πa

ż 2π

0

cosφ

p3–2 sinφq3/2dφ “ 0. (F.4)

However, the force on the filament current loop exerted by the current element is
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zero:

á

F2 “
µo

4π
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d 2

21
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”´

á

J2dV2

¯

¨ â21
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á

J1dV1

¯

´
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á

J2dV2

¯

¨

´

á

J1dV1

¯

â21
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/

/

.

/
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-

“
µo

4π

ż 2π
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–I2 cosφ
?

3–2 sinφ

´

á

J1dV1

¯

a2 p3–2 sinφq
adφ

“–
µo

´

á

J1dV1

¯

I2

4πa

ż 2π

0

cosφ

p3–2 sinφq3/2dφ “ 0.

(F.5)

The calculated forces for (F.3) and (F.5) are not equal and opposite. This result

supports the reality that isolated current elements are fictitious. Maxwell’s equations for

magnetostatics based on the Biot-Savart Law and Lorentz’s force law (where there is no

dynamic electric field) are only applicable for analyzing two or more closed circuits.

Another viable constraint for k2 is: k2 “ k1 “ 1. This results in equal and oppo-

site forces between two current elements or between one current element and a separate

closed circuit. However, this constraint cannot be fit into the magnetic field concept and

Maxwell’s equation. In addition, since the resulting force is not necessarily acting along

the straight line between the current elements, its usefulness in any electromagnetic model

is questionable.

The primary result of this appendix is that Ampère’s current element force formula

(3.3) does not yield the correct magnetostatic potential energy between two closed circuits.

Therefore, it’s use to explain any phenomena is invalid. Secondly, constraints for k2 are

undetermined. However, the constraint k2 “ 0 yielding the Grassmann formula (3.5) is

extremely useful (i.e., the basis for the magnetic field concept of Maxwell’s equations).

Although the constraint k2 “ k1 “ 1 is viable, it’s usefulness is unknown.
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APPENDIX G. QET AND ELECTRODYNAMICS

Dominique Francois Jean Arago discovered6 that rotating a copper disc below a com-

pass needle caused the needle to revolve in the same direction as the copper disc. He was

led to this discovery by observing the dampening of an oscillating compass needle when

placed over a copper plate [137].

Michael Faraday conducted an experiment7 with an iron ring which had two coils

wound on it. One of the coils was connected to a battery through a contact. The second coil

was connected to a galvanometer (used to measure low currents). Faraday observed that

whenever the contact was either closed or opened, the needle of the galvanometer would be

momentarily disturbed and then return to it’s original position [138, 139]. Michael Faraday

made a second major discovery8. He constructed a helix coil connected to a galvanometer.

Faraday observed that whenever a cylindrical bar magnet is pushed in or pulled out of the

coil, the needle of the galvanometer would be deflected for as long as the magnet was

moving [140, 141].

Chapter 3 provided additional background for electrodynamics including Lienard-

6November, 1824

7August, 1831

8October, 1831
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Wiechert potentials, retarded potentials, and the force equations of Ritz and Weber for

moving charge elements. For the electromagnetic model of this dissertation, electrody-

namic forces may also be modeled as QETs between moving current and/or charge ele-

ments. The details are not addressed in this work, but are left for a future endeavor.

It is assumed that an additional line stress (similar to the Coulomb stress or Neumann

stress) models the force between moving current and/or charge elements. This line stress

may later be coined the term Faraday stress, Weber stress, Ritz stress or even Helmholtz

[142, 143] stress. The actual name is dependent on which force formula(s) are compatible

with the QET model.

For an isolated charge or current distribution the total QET rate (W) corresponding

to the Poincaré stress and pinch stress is invariant. The only thing that changes for the

Poincaré stress and pinch stress (under relativistic transformation) is the QET power den-

sity at a given angle. It is assumed that the QET power density under relativistic Lorentz

transformation varies similar to the electric field [144] and is proportional to
´

1´ v2

c2

¯

´

1´ v2

c2 sin2 θ
¯3{2 .

As a charge is accelerated, it is assumed that the combination of the changing Poincaré

stress density and the electrodynamic stress makes up the Larmor radiation formula for non-

relativistic velocities as well as the generalized formula for relativistic velocities [145].
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APPENDIX H. QET AND THE COSMOS

The QET model of this dissertation is applicable to more than just electrostatics and

magnetostatics. Chapter 4 briefly touches on the QETs interacting with mass associated

with gravity and inertia. The gravitational potential energy of two masses may be modeled

as a missing amount of QETs between the two masses.

The term inertial stress is coined for the QETs between an isolated, uncharged mass

at the origin and the distant mass of the universe. The inertial stress equation is:

á

Finertial“ –
£

Γm

2πcr2 âr

´

âr ¨ d
á

S
¯

. (H.1)

The term Newton stress is coined for the missing QETs between two masses. The

Newton stress equation is:

á

FNewton “G
m1m2

d2
21

£

δ2
p1`âr1¨âr2q sgn pâr1¨ânqâr1dS, (H.2)

where m1 and m2 are the two masses, d21 is the distance between the centers of the two

masses, δ2pq is the two dimensional or surface Dirac delta function [86], âr1 and âr2 are

the directional unit vectors away from the first and second mass respectively, sgn pq is the

function defined in (6.12), and ân is the directional unit vector outward normal from the

surface S.

The QET model is also applicable to the cosmos since the Poincaré stress, pinch

stress, and inertial stress is a QET interaction with the distant matter of the universe. This

appendix describes a cosmos model that is compatible with the QET model of this disser-
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tation. In addition, this appendix briefly describes the QET interaction between molecular

regions.

A valid cosmos model is one with an origin to the universe, a location in space

considered at rest where all galaxies are moving away from. The origin can be viewed

as the center of mass/energy for the universe. For any spherical closed surface with center

at the origin of the universe, the mean rate of mass (with equivalent energy U “ mc2) and

QETs outwardly crossing the spherical boundary (W) is equal to the mean rate of QETs

inwardly crossing the boundary (W).

New galaxies are created at the center of the universe [146]. An accumulation of

energy at the origin from QETs directed inwardly, eventually births a new galaxy which is

pushed away from the origin. When masses approach the fringe of the universe (no mass

exists beyond the fringe), all of the corresponding energy of the mass is transfered back

(i.e., via QETs) inward toward the origin. The death of a galaxy occurs when it nears this

fringe boundary. Since QETs only occur between masses, QETs do not exist outwardly

beyond the fringe (i.e., where no mass exists).

The physics of our world applies between two spherical boundaries with centers at

the origin of the universe. The inner boundary is somewhere away form the origin of the

universe, the outer boundary is somewhere inside the fringe. Galaxies in this region move

at a fairly constant velocity away from the origin. The Milky Way galaxy is well within

these two boundaries.

For galaxies within these two boundaries, this cosmos model contains an abundance

of mass at vast distances in all directions that is interacting with localized mass systems
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by means of QETs. The omnidirectional aspect of the Poincaré stress, pinch stress, and

inertial stress is a result of a homogeneous density of the distant matter of the universe in

all directions.

Galaxies approaching the fringe have an increasing acceleration away from the origin

of the universe. The acceleration increases because the majority of QETs are inward toward

the origin since there is less mass outward toward the fringe. Molecular regions approach

instability as a mass is accelerated toward and approaches the fringe. In this cosmos model,

old galaxies are constantly dying off (as they approach the fringe) and new galaxies are

constantly being born (at the origin of the universe).

Two molecular regions have distances where the corresponding masses are being

pushed together and other distances where the masses are being pushed apart [147]. This

concept is similar to Boscovich’s theory of ‘point forces’ having repulsion at very close

distances (infinitely increases as the distance approaches zero), attraction at far distances

(according to Newton’s gravitation law), and many equilibrium points in between (two

‘point forces’ tend to stay at a distance of one of the equilibrium points) [148].

The molecular regions in a solid are at an equilibrium condition between being

pushed together and pushed apart (1st equilibrium condition). The molecular regions in

a liquid are at the 2nd equilibrium condition between being pushed together and pushed

apart. The molecular regions of gases are typically not at equilibrium conditions, however

there may be 3rd, 4th, etc. equilibrium conditions that exist momentarily until they are

disturbed by the movement of other molecular regions in close proximity.

Two molecular regions pushing apart with a maximum force (somewhere between
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two equilibrium conditions) is a result of isochronous QETs between the molecular regions.

Two molecular regions being pushed together with a maximum force (somewhere between

two equilibrium conditions) is a result of missing QETs (i.e., anti-isochronous) between

the molecular regions.



135

Bibliography
[1] Michael Faraday. Experimental Researches in Electricity, Volume III, pages 2–3,

410, 418, 443–441. In [149], 2005. Unabridged facsimile of the edition published

in 1855 by Richard Taylor and William Francis, London.

[2] James Clerk Maxwell. A Treatise on Electricity and Magnetism, pages 270–285.

Volume 2 of [150], 1954. Republication of the third edition, 1891.

[3] Richard Phillips Feynman. QED: the Strange Theory of Light and Matter, pages

91–123. Princeton University Press, Princeton, NJ, 1988.

[4] Isaac Newton. Newton’s Principia: The Mathematical Principles Of Natural Phi-

losophy (1687) [English translation by A. Motte]. Daniel Adee, New York, NY,

1846.

[5] Charles Augustin de Coulomb. Premier & Second mémoire sur l’électricité et le
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