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VOICE RECOGNITION SYSTEM BASED ON 
INTRA-MODAL FUSION AND ACCENT CLASSIFICATION 

 
Srikanth Mangayyagari 

 
ABSTRACT 

 
Speaker or voice recognition is the task of automatically recognizing people from their 

speech signals. This technique makes it possible to use uttered speech to verify the speaker’s 

identity and control access to secured services. Surveillance, counter-terrorism and homeland 

security department can collect voice data from telephone conversation without having to 

access to any other biometric dataset. In this type of scenario it would be beneficial if the 

confidence level of authentication is high. Other applicable areas include online transactions, 

database access services, information services, security control for confidential information 

areas, and remote access to computers.  

Speaker recognition systems, even though they have been around for four decades, 

have not been widely considered as standalone systems for biometric security because of 

their unacceptably low performance, i.e., high false acceptance and true rejection. This thesis 

focuses on the enhancement of speaker recognition through a combination of intra-modal 

fusion and accent modeling. Initial enhancement of speaker recognition was achieved 

through intra-modal hybrid fusion (HF) of likelihood scores generated by Arithmetic 

Harmonic Sphericity (AHS) and Hidden Markov Model (HMM) techniques. Due to the 
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Contrastive nature of AHS and HMM, we have observed a significant performance 

improvement of 22% , 6%  and 23% true acceptance rate (TAR) at 5% false acceptance rate 

(FAR), when this fusion technique  was evaluated on three different datasets – YOHO, USF 

multi-modal biometric and Speech Accent Archive (SAA), respectively. Performance 

enhancement has been achieved on both the datasets; however performance on YOHO was 

comparatively higher than that on USF dataset, owing to the fact that USF dataset is a noisy 

outdoor dataset whereas YOHO is an indoor dataset. 

  In order to further increase the speaker recognition rate at lower FARs, we combined 

accent information from an accent classification (AC) system with our earlier HF system. 

Also, in homeland security applications, speaker accent will play a critical role in the 

evaluation of biometric systems since users will be international in nature. So incorporating 

accent information into the speaker recognition/verification system is a key component that 

our study focused on. The proposed system achieved further performance improvements of 

17% and 15% TAR at an FAR of 3% when evaluated on SAA and USF multi-modal 

biometric datasets. The accent incorporation method and the hybrid fusion techniques 

discussed in this work can also be applied to any other speaker recognition systems. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Background 
 
 
A number of major developments in several fields have occurred recently: the digital 

computer, improvements in data-storage technology and software to code computer 

programs, advanced sensor technology, and the derivation of a mathematical control theory. 

All these developments have contributed to advancement of technology. But along with 

advancement of technologies, security threats have increased in various realms such as 

information, airport, home, international, and national securities. As of July 4th 2007, the 

threat level from international terrorism is severe [1]. According to MSNBC, identity thefts 

cost banks $1 billion per year and FBI estimates 500,000 victims in the year 2003 [2].  

Identity theft is considered one of the country's fastest growing white-collar crimes. One 

recent survey reported that there have been more than 28 million new identity theft victims 

since 2003, but experts say many incidents go undetected or unreported. Due to the increased 

level of security threats and fraudulent transactions, the need for reliable user authentication 

has increased and hence biometric security systems have emerged. Biometrics, described as 

the science of recognizing an individual based on his or her physical or behavioral traits, is 

beginning to gain acceptance as a legitimate method for determining an individual’s identity. 
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Different biometrics that can be used are fingerprints, voice, iris scan, face, retinal scan, 

DNA, handwriting typing patterns, gait, color of hair, skin, height, and weight of a person. 

This research work focuses on voice biometrics or speaker recognition technology.

 Speaker or voice recognition is the task of automatically recognizing people from 

their speech signals. This technique makes it possible to use uttered speech to verify the 

speaker’s identity and control access to secure services, i.e., online transactions, database 

access services, information services, security control for confidential information areas, 

remote access to computers, etc.   

 

   

             

  

 

 

 

Figure 1. Speaker Identification System 

 
 A typical speaker recognition system is made up of two components: feature 

extraction and classification. Speaker recognition (SR) can be divided into speaker 

identification and speaker verification. Speaker identification system determines who 

amongst a closed set of known speakers is providing the given utterance as depicted by the 
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block diagram in Figure 1. Speaker specific features are extracted from the speech data, and 

compared with speaker models created from voice templates previously enrolled. The model 

with which the features match the most is selected as the legitimate speaker. In most cases, 

the model generates a likelihood score and the model that generates the maximum likelihood 

score is selected. 

 

            

 

 

 

 

 

Figure 2. Speaker Verification System 

 
 On the other hand, speaker verification system as depicted by the block diagram in 

Figure 2, accepts or rejects the identity claim of a speaker. Features are extracted from 

speech data and compared with the legitimate speaker model as well as an imposter speaker 

model, which are created from previously enrolled data. The likelihood score generated from 

the speaker model is subtracted from the imposter model. If the resultant score is greater than 

a threshold value, then the speaker is accepted as a legitimate speaker. In either case, it is 

expected that the persons using these systems are already enrolled. Besides these systems 
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can be text-dependent or text-independent. Text-dependent system uses a fixed phrase for 

training and testing a speaker. On the contrary, text-independent system does not use a fixed 

phrase for training and testing purposes. In addition to security, speaker recognition has 

various applications and is rapidly increasing. Some of the areas where speaker recognition 

can be applied are [3]: 

1) Access Control:  

Secure physical locations as well as confidential computer databases can be accessed 

through one’s voice. Access can also be given to private and restricted websites. 

2) Online Transactions:  

In addition to a pass phrase to access bank information or to purchase an item over the 

phone, one’s speech signal can be used as an extra layer of security.  

3) Law Enforcement:  

Speaker recognition systems can be used to provide additional information for forensic 

analysis. Inmate roll-call monitoring can be done automatically at prison. 

4) Speech Data Management:  

Voicemail services, audio mining applications, and annotation of recorded or live meetings 

can use speaker recognition to label speakers automatically. 

5) Multimedia and Personalization:  

Soundtracks and music can be automatically labeled with singer and track information. 

Websites and computers can be customized according to the person using the service. 
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1.2 The Problem 

 
Even though speaker recognition systems have been researched over several decades and  

have numerous applications, they still cannot match the performance of a human recognition 

system [4] as well as not reliable enough to be considered as a standalone security system. 

Although speaker verification is being used in many commercial applications, speaker 

identification cannot be applied effectively for the same purpose. The performance of 

speaker recognition systems degrade especially under different operating conditions. Speaker 

recognition system performance is measured using various metrics such as recognition or 

acceptance rate and rejection rate. Recognition rate deals with the number of genuine 

speakers correctly identified, whereas rejection rate corresponds to the number of imposters 

(people falsifying genuine identities) being rejected. Along with these performance metrics 

there are some performance measures and trade-offs one needs to consider while designing 

speaker recognition systems. Some of the performance measures generally used in the 

evaluation of these systems include: false acceptance rate (FAR) - the rate at which an 

imposter is accepted as a legitimate speaker, true acceptance rate (TAR) - the rate at which a 

legitimate speaker is accepted, and false rejection rate (FRR) - the rate at which a legitimate 

speaker is rejected (FRR=1-TAR). 

 There is a trade-off between FARs and TARs, as well as between FARs and FRRs. 

Intuitively, as the false acceptance rate is increased, more speakers are accepted, and hence 

true acceptance rate rises as well. But the chances of an imposter accessing the restricted 

services also increase; hence a good speaker recognition system needs to deliver 
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performance even when the FAR threshold is lowered. The main problem in speaker 

recognition is, poor TARs at lower FARs, as well as high FRRs. 

 The performance of a speaker recognition system [3] for three different datasets is 

shown in Figure 3. Here, error (%) which is equivalent to FRR (%) has been used to measure 

performance. The TIMIT dataset consists of clean speech from 630 speakers. As the dataset 

is clean we can see that the error is almost zero, even though the number of people is 

increased from 10 to 600. For NTIMIT, speech was acquired through telephone channels and 

the performance degraded drastically as the speaker size was increased. At about 400 

speakers we can see that the error is 35%, which means a recognition rate of 65%. We can 

see the similar trend for SWBI dataset, where speech was also acquired through telephone 

 

 

Figure 3. Current Speaker Recognition Performance over Various Datasets [3] 

 
channel. However, the performance for SWBI is not as low as TIMIT, which indicates that 

various other factors other than the type of acquisition influence the recognition rate. It 
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depends on the recording quality (environmental noise due to recording conditions and noise 

introduced by the speakers such as lip smacks) and the channel quality. Hence it is hard to 

generalize the performance of an SR system on a single dataset. From Figure 3, we can see 

that the recognition rate degrades as the channel noise increases and also when the number of 

speakers increases. Another evaluation of current voice recognition systems (Figure 4) 

conducted by the UK BWG (Biometric Working Group) shows that about 95% recognition 

can be achieved at an FAR of 1% [5]. The dataset consisted of about 200 speakers and voice 

was recorded in a quiet office room environment. 

  
 

 

 

 

 

 

 

 

 

 

 
Figure 4. Current Speaker Recognition Performance Reported by UK BWG [5] 

  
 On the whole, we can see that speaker recognition performance in a real world noisy 

scenario cannot provide a high level of confidence. Speaker recognition systems can be 
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considered reliable for both defense and commercial purposes, only if a promising 

recognition rate is delivered at low FARs for realistic datasets.  

 
1.3 Motivation 

 
In this thesis, an effort has been made to deal with the problem, i.e. to achieve high TAR at 

lower FARs even in realistic noisy conditions, by enhancing recognition performance with 

the help of intra-modal fusion and accent modeling. The motivation behind the thesis can be 

explained by answering the three questions: why enhance speaker recognition, why intra-

modal fusion and why combine accent information? In case of speaker recognition, obtaining 

a person’s voice is non-invasive when compared to other biometrics, for example capture of 

iris information. With very little additional hardware it is relatively easier to acquire this 

biometric data. Recognition can be achieved even from long distance via telephones. In 

addition surveillance, counter-terrorism and homeland security department can collect voice 

data from telephone conversation without having to access to any other biometric dataset. In 

this type of scenario it would be beneficial if the confidence level of authentication is high.  

 Previous research works in biometrics have shown recognition performance 

improvements by fusing scores from multiple modalities such as face, voice, and fingerprint 

[6], [7], [8]. However multi-modal systems have some limitations, i.e., cost of 

implementation, availability of dataset, etc. On the other hand, by fusing two algorithms for 

the same modality (intra-modal fusion), it has been observed in [8], that performance can be  

similar to inter-modal systems when realistic noisy datasets are used. Intra-modal fusion 

reduces complexity and cost of implementation when compared to various other biometrics, 



9 

such as fingerprint, face, iris, etc. Various additional hardware and data is required for 

acquiring different biometrics of the same person.   

 Finally, speech is the most developed form of communication between humans. 

Humans rely on several other types of information embedded within a speech signal, other 

than voice alone. One of the higher levels of information that humans use is accent. Also, 

incorporation of accent information provides us with a narrower search tool for the 

legitimate speaker in huge datasets. In an international dataset, we can search within a pool 

of dataset, where speakers belong to the same accent group as the legitimate speaker. 

Homeland security, banks, and many other realistic entities, deal with users who are 

international in nature. Hence incorporation of accent is a key for our speaker recognition 

model.  

 
1.4 Thesis Goals and Outline 

 
The main goal in this thesis is to enhance speaker recognition system performance at lower 

FARs with the help of an accent classification system, even when evaluated on a realistic 

noisy dataset. The following are the secondary goals of this thesis: 

1) Study the effect of intra-modal fusion of Arithmetic Harmonic Sphericity (AHS) 

and Hidden Markov Model (HMM) speaker recognition systems. 

2) Formulate a text-independent accent classification system. 

3) Investigate accent incorporation into the fused speaker recognition system. 

4) Evaluation of the combined speaker recognition system on a noisy dataset. 

Figure 5 shows the flow chart of our proposed hybrid fusion – accent (HFA) method. We 

have used the classification score from our accent classification system to modify the 
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recognition score obtained from our Hybrid Fusion (HF) speaker recognition system. Thus 

the final enhanced recognition score is achieved. Our system consists of three parts – HF 

system, AC system and the score modifier (SM) algorithm. The HF speaker recognition 

system [9] is made up of score-level fusion of AHS [10] and HMM [11] models, which takes 

enrolled and test speech data as inputs and generates a score as an output, which is a matrix 

when a number of test speech inputs are provided. The accent classification system is made 

up of a fusion of Gaussian mixture model (GMM) [12], and continuous hidden Markov 

model (CHMM) [13], as well as a reference accent database. It accepts enrolled and test 

speech inputs and generates an accent score and an accent class as the outputs for each test 

data. The SM algorithm, a critical part of the proposed system, makes mathematical 

modifications to the resultant HF score matrix controlled by the outputs of the accent 

classification system. The final enhanced recognition scores are generated after the 

modifications are made to the HF scores by the score modifier.  Feature extraction is an 

internal block within both the HF system as well as the accent classification (AC) system. 

Each building block of the HFA system is studied in detail in the next sections. 

  The rest of the thesis is organized as follows. In the next sections each segment of the 

HFA system is described thoroughly in the next chapters. The hybrid fusion speaker 

recognition is explained in Chapter 2, which consists of background information of speech, 

feature extraction, speaker model creation and the fusion technique used to fuse the speaker 

recognition models. In Chapter 3, the accent classification system is described, along with 

past research work in accent classification, accent feature, and the formulation of accent 

classifier. In Chapter 4, the combination of speaker and accent models is investigated and its 

effects are studied. Chapter 5 describes the datasets and shows the results and performances 
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of hybrid fusion, accent classification and the complete system. Finally, Chapter 6 contains 

the conclusions and recommendation for future research. 

 

 

Figure 5. Flow Chart for Hybrid Fusion - Accent (HFA) Method 
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CHAPTER 2 

HYBRID FUSION SPEAKER RECOGNITION SYSTEM 

 
2.1 Overview of Past Research 
 

Pruzansky at Bell labs in 1960 was one of the first ones to research on speaker recognition, 

where he used filter banks and correlated two digital spectrograms for a similarity measure 

[14]. P. D. Bricker and his colleagues experimented on text-independent speaker recognition 

using averaged auto-correlation [15]. B. S. Atal studied the use of time domain methods for 

text-dependent speaker recognition [16]. Texas Instruments came up with the first fully 

automatic speaker verification system in the 1970’s. J. M. Naik and his colleagues 

researched the usage of HMM techniques instead of template matching for text-dependent 

speaker recognition [17]. In [18], text-independent speaker identification was studied based 

on a segmental approach and mel-frequency cepstral coefficients were used as features. Final 

decision and outlier rejection were based on a confidence measure. T. Matsui and S. Furui 

investigated vector quantization (VQ) and HMM techniques to make speaker recognition 

more robust [19]. Use of Gaussian mixture models (GMM) for text-independent speaker 

recognition was successfully investigated by D. A. Reynolds and R. Rose [12]. Recent 

research has focused on adding higher level information to speaker recognition systems to 

increase the confidence level and to make them more robust. G. R. Doddington used 

ideolectic features of speech such as word unigrams and bigrams to characterize a certain 



13 

speaker [20]. Evaluation was performed on the NIST extended data task which consisted of 

telephone quality, long duration speech conversation from 400 speakers. An FRR of 40% 

was observed at an FAR of 1%. In 2003, A. G. Adami used temporal trajectories of 

fundamental frequencies and short term energies to segment and label speech which were 

then used to model a speaker with the help of an N-gram model [21]. The same NIST 

extended dataset was used and similar performance as in [20] was observed.  In 2003, D. A. 

Reynolds and his colleagues used high level information such as pronunciation models, 

prosodic dynamics, pitch and duration features, phone streams and conversational 

interactions, which were fused and modeled using an MLP to fuse N-grams, HMMs, and 

GMMs [22]. The same NIST dataset was used for evaluation and a 98% TAR was observed 

at 0.2% FAR. Also in 2006, a multi-lingual NIST dataset consisting of 310 speakers was 

used for cross lingual speaker identification. Several speaker features derived from short 

time acoustics, pitch, duration, prosodic behavior, phoneme and phone usage were modeled 

using GMMs, SVMs, and N-grams [23]. The several modeling systems used in this work, 

were fused using a multi layer perceptron (MLP). A recognition rate of 60% at an FAR of 

0.2% has been reported. In [24], mel-frequency cepstral coefficients (MFCC) were modeled 

using phonetically structured GMMs and speaker adaptive modeling. This method was 

evaluated on YOHO consisting of clean speech from 138 speakers and Mercury dataset 

consisting of telephone quality speech from 38 speakers. An error rate of 0.25% on YOHO 

and 18.3% on Mercury were observed. In [25], MFCCs and their first order derivatives were 

used as features and an MLP fusion of GMM-UBM system and speaker adaptive automatic 

speech recognition (ASR) system were used to model these features. When evaluated on the  
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Mercury and Orion datasets consisting of 44 speakers in total, an FRR of 7.3% has been 

reported. In [26], a 35 speaker NTT dataset was used for evaluating a fusion of a GMM 

system and a syllable based HMM adapted by MAP system. MFCCs were used as features 

and 99% speaker identification has been reported. In [27], SRI prosody database and NIST 

2001 extended data task were used for evaluation. Though this paper was not explicitly 

considering accent classification, it used a smoothed fundamental frequency contour (f0) at 

different time scales as the features, which were then converted to wavelets by wavelet 

analysis. The output distribution was then compacted and used to train a bigram for universal 

background models (UBM) using a first order Markov chain. The log likelihood scores of 

the different time scales were then fused to obtain the final score. The results indicate an 8% 

equal error rate (where FAR is equal to FRR) for two utterance test segments and it degrades 

to 18% when 20 test utterance segments were used.  NIST 2001 extended data task 

consisting of 482 speakers was used for evaluation. In [28], exclusive accent classification 

was not performed, but formant frequencies were used for speaker recognition. Formant 

trajectories and gender were used as features and a feed forward neural network was used for 

classification. An average misclassification rate of 6.6% was observed for the six speakers 

extracted from the TIMIT database. 

 In this thesis, we focused on an intra-modal speaker recognition system, to achieve 

similar performance enhancement observed in [6], [7]. However, we used two 

complementary voice recognition systems and fused their scores to have a better performing 

system. Similar approach has been adopted in [24], [25] and [26], where scores from two 

recognition systems were fused, one of the recognition algorithms was a variant of Gaussian 
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Mixture Model (GMM) [24] and the other being a speaker adapted HMM [26]. But, there are 

a number of factors that differentiate this work from those described in [24], [25] and [26]: 

Database size, data collection method, and the location of the data collected (indoor and 

outdoor dataset). In [25] and [26], a small dataset, population of 44 and 35 respectively, was 

used. We, on the other hand, conducted our experiment on two comparatively larger indoor 

and outdoor datasets.  

 There has been a great deal of research towards improving speaker recognition rate 

by adding supra-segmental, higher level information and some accent related features like 

pronunciation models and prosodic information [21], [22], [27], [28]. But the effect of 

incorporating the outcome of an accent modeling/classifying system into a speaker 

recognition system has not been studied so far. Even though performance of the systems 

reported in [21] and [22] was good, the algorithms were complex due to the utilization of 

several classifiers with various levels of information fusion. But the system developed in this 

thesis has relatively simpler algorithms compared to these higher level information fusion 

systems. 

 
2.2 Hybrid Fusion Speaker Recognition Model 

 
 
Figure 6 shows the flow chart of our proposed Hybrid Fusion (HF) method. We used same 

person’s voice data from each dataset to extract features. Arithmetic Harmonic Sphericity 

(AHS) is used to generate a similarity score between the enrolled feature and the test feature. 

A Hidden Markov Model (HMM) is created from enrolled features and an HMM likelihood 

score is generated for each test feature. The AHS and HMM likelihood score matrices are of  
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dimension NxM, where N and M are the number of speakers in testing and training sessions, 

respectively. These score matrices are then fused using a linear weighted hybrid fusion 

methodology to generate intra-modal enhanced scores. The features and the speaker models 

used to generate likelihood scores, as well as the fusion methodology are explained next. 

 

                          

Figure 6. Flow Chart for Hybrid Fusion (HF) System 

 
2.3 Speech Processing 
 
 
2.3.1 Speech Signal Characteristics and Pre-Processing 
 
 
Speech is produced when a speaker generates a sound pressure wave that travels from the 

speaker’s mouth to a listener’s ears. Speech signals are composed of a sequence of sounds 

that serve as a symbolic representation of thought that the speaker wishes to convey to the 
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listener. The arrangement of these sounds is governed by a set of rules defined by the 

language [29].  

 A speech signal must be sampled in order to make this data available to a digital 

system as natural speech is analog in nature. Speech sounds can be classified into voiced, 

unvoiced, mixed, and silence segments as shown in Figure 7, which is a plot of the sampled 

speech signal “six”. Voiced sounds have higher energy levels and are periodic in nature 

whereas unvoiced sounds are lower energy sounds and are generally non-periodic in nature. 

Mixed sounds have both the features, but are mostly dominated by voiced sounds. 
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Figure 7.  Time Domain Representation of Speech Signal “Six” 

 
 In order to distinguish speech of one speaker from the speech of another, we must use 

features of the speech signal which characterize a particular speaker. In all speaker 
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recognition systems, several pre-processing steps are required before feature extraction and 

classification. They are: pre-emphasis, framing, and windowing. 

1) Pre-emphasis and Framing 
 
Pre-emphasis is the process of amplifying the high frequency, low energy unvoiced speech 

signals. This process is usually performed using a simple first order high pass filter before 

framing. As speech is a time-varying signal, it has to be divided into frames that possess 

similar acoustic properties over short periods of time before features can be extracted. 

Typically, a frame is 20-30 ms long where the speech signal can be assumed to be stationary. 

One frame extracted from the speech data “six” is shown in Figure 8. It can be noted that the 

signal is periodic in nature, because the extracted frame consists of voiced sound /i/. 
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Figure 8. Framing of Speech Signal “Six” 
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2) Windowing 

The data truncation due to framing is equivalent to multiplying the input speech data with a 

rectangular window function w(n) given by 

1,     n=0,1,.....N-1.
( )

0,    n  otherwise.
w n

⎧
= ⎨
⎩

        (1)  

Windowing leads to spectral spreading or smearing (due to increased main lobe width) and 

spectral leakage (due to increased side lobe height) of the signal in the frequency domain. To 

reduce spectral leakage, a smooth function such as Hamming window given by Equation (2) 

is applied to each frame, at the expense of slight increase in spectral spreading (trade-off).  

0.54 0.46 cos(2 n/N-1),     n=0,1,.....N-1.
( )

0,                                          n  otherwise.
w n

π−⎧
= ⎨
⎩

     (2) 
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Figure 9. Windowing of Speech Signal “Six” 
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As seen in the Figure 9, the middle portion of the signal is preserved whereas the beginning 

and the end samples are attenuated as a result of using a Hamming window.   In order to 

have signal continuity and prevent data loss at the edges of the frames, the frames are 

overlapped before further processing. 

3) Fast Fourier Transform 
 
Fast Fourier Transform (FFT) is a name collectively given to several classes of fast 

algorithms for computing the Discrete Fourier Transform (DFT). DFT provides a mapping 

between the sequence, say x (n), n=0, 1, 2………, N-1 and a discrete set of frequency 

domain samples, given by 

1
(2 / )

0
( ) ,     k=0,1,.....N-1.

( )
0,                              k  otherwise.

N
j N kn

n
x n e

X k
π

−
−

=

⎧
⎪= ⎨
⎪⎩

∑       (3) 

 

The inverse DFT (IDFT) is given by 

1
(2 / )

0

1 ( ) ,     n=0,1,.....N-1.
( )

0,                                   n  otherwise.

N
j N kn

n
X k e

x n N
π

−

=

⎧
⎪= ⎨
⎪⎩

∑      (4) 

Where, the IDFT is used map the frequency domain samples back to time domain samples. 

The DFT is always is periodic in nature, where k varies from 1 to N, where N is the size of 

the DFT. The Figure 10 shows a 512-Point FFT for the speech data “six”. 
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Figure 10. Frequency Domain Representation - FFT of Speech Signal “Six” 

 
4) Cepstrum Domain 

Speech is the resultant of an excitation sequence convolved with the impulse response of the 

vocal system model. Cepstrum is a transform used to separate the excitation signal from the 

vocal tract transfer function. These two components that are convolved in the time domain 

becomes multiplication in the frequency domain, which is represented as, 

( ) ( ) ( )X G Hω ω ω=          (5) 

A log of the magnitude on both sides of the transform converts this into additive functions as 

given by, 

log | ( ) | log | ( ) | log | ( ) |X G Hω ω ω= +       (6) 

The cepstrum is then obtained by taking IDFT on both sides of the Equation (6), 

          (7) (log | ( ) |) (log | ( ) |) (log | ( ) |)IDFT X IDFT G IDFT Hω ω ω= +
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This process is better understood with the help of a block diagram (Figure 11). A lifter is 

used to separate the high quefrency (Excitation) from the low quefrency (Transfer Function). 

Figure 12 consists of the cepstral representations of sounds ‘eee’ and ‘aah’ uttered by male 

and female speakers.  We can see in the plot that the female speakers have higher peaks than 

the male speakers, which is due to higher pitch of female speakers. The initial 5 ms consists 

of the transfer function and the later part is the excitation.  

  

 

Figure 11. Block Diagram for Computing Cepstrum 

 
2.3.2 Feature Extraction 
 
 
Many speaker recognition systems use time domain features such as correlation, energy, and 

zero crossings, frequency domain features such as formants and FFTs, as well as other 

parametric features such as linear prediction coefficients (LPC) and cepstral coefficients. 
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Figure 12. Cepstrum Plots 

 
1) Mel-Frequency Cepstral Coefficients (MFCC) 
 
In the field of psychoacoustics, which studies human auditory perception, it is a known fact 

that human perception of frequency is not on a linear scale, but on a different scale called 

mel.  A mel is a unit of measure of perceived pitch or frequency of the tone. It does not 

correspond linearly to the frequency of the tone, as the human auditory system apparently 

does not perceive pitch in this linear manner. The mel scale is approximately linear below 1 

kHz and logarithmic above. The mapping from normal frequency scale in Hz to a mel scale 

is done using, 

Mel (f) = 2595*log (1+f / 700)       (8) 

Where f is the frequency in Hz and is shown in Figure 13. An approach to simulate this 

behavior of our auditory system is to use a band of filters. It has been found that the 

perception of a particular frequency by the auditory system is influenced by energy in a 

critical band of frequencies around that frequency. Further the bandwidth of critical band 
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varies with frequency, beginning at about 100 Hz for frequencies below 1 kHz and then 

increasing logarithmically above 1 kHz.  

 

 

Figure 13. Frequency Mapping Between Hertz and Mels 

 
 A pictorial representation of the critical band of filters is shown in Figure 14. The 

filter function depends on three parameters, the lower frequency fl, the central frequency fc 

and the higher frequency fh. On a mel scale, the distances fc-fl and fh- fc are the same for each 

filter and are equal to the distance between the fc’s of successive filters. The filter function 

is: 

( ) 0   and l hH f for f f f f= ≤ ≥        (9) 

( ) ( ) /( )  l c l l cH f f f f f for f f f= − − ≤ ≤       (10) 
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( ) ( ) /( )  h h c c hH f f f f f for f f f= − − ≤ ≤       (11) 

 

 

Figure 14. Mel-Spaced Filters 

     

        

Figure 15. Computation of MFCC 

  
As shown in Figure 15, the speech data is first extracted into 20-30 ms frames, next a 

window is applied to each frame of data, and then it is mapped to the frequency domain 

using FFT. Then the critical bands of filters are applied and are mel-frequency warped. In 

order to convert the mel-frequency warped data to the cepstrum domain, we apply discrete 

cosine transform since the MFCCs are real numbers. The MFCCs are given by, 

1

1(log )cos ,     n=1,2,...,k
2

k

n k
k

c s n k
k
π

=

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑      (12) 
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Where cn are the MFCCs and sk is the mel power spectrum coefficients. Typically Cn values 

are taken from 1 to 20, i.e. about 20 MFCCs for satisfactory results.  

  
2.4 Speaker Models 

 
The models Arithmetic Harmonic Sphericity (AHS) and Hidden Markov Model (HMM) 

were used to model the MFCC features. 

 
2.4.1 Arithmetic Harmonic Sphericity (AHS) 

 

According to Gaussian Speaker Modeling [10], a speaker X’s speech characterized with a 

feature vector sequence, xt  can be modeled by its mean vector x and covariance matrix 

X i.e. 

1 1

1 1  and  ( ).( )
M M T

t t t
t t

x x X x x x x
M M= =

∑ ∑= = − −       (13) 

Where, M is the length of the vector sequence tx . 

Similarly a speaker Y’s speech can be modeled by, 

1 1

1 1  and  ( ).( )
N N T

t t t
t t

y y Y y y y y
N N= =

∑ ∑= = − −       (14) 

Where, N is the length of the vector sequence ty , y  the mean vector and Y , the covariance 

matrix. 

Also, vectors x  and y  have a dimension of p , whereas the matrices X and Y  are 

p p× dimensional. We also express iλ  as the eigen values of the matrixτ , where1 i p< < , i.e.,  

Det[τ - λ I]=0          (15) 
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Where Det is the determinant, I is the Identity matrix and 1/ 2 1/ 2X YXτ − −= , where X and Y are 

the covariance matrices. 

Matrix τ can be written as, 

1τ −= ΘΔΘ           (16) 

Where Θ , is the p p× diagonal matrix of eigen values and Δ is the matrix of eigen vectors. 

Mean functions of these eigen values are given by, 

Arithmetic mean: 1,
1

1( ......, )
p

p i
i

a
p

λ λ λ
=
∑=       (17) 

Geometric mean: ( )1/

1,
1

( ......, )
pp

p i
i

g λ λ λ
=
∏=       (18) 

Harmonic mean: 
1

1,
1

1 1( ......, )
p

p
i i

h
p

λ λ
λ

−

=
∑

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

      (19) 

These means can also be calculated directly using the covariance matrices, because of the 

trace and determinant properties of matrices, which states that trace(XY)=trace(YX), 

Det(XY)=Det(X).Det(Y), we have 

1
1,

1 1 1( ......, ) ( ) ( ) ( )pa tr tr tr YX
p p p

λ λ τ −= Δ = =      (20)     

( ) ( )
1/

1/ 1/
1,

( )( ......, ) ( ) ( )
( )

p
p p

p
Det Yg Det Det
Det X

λ λ τ ⎛ ⎞
= Δ = = ⎜ ⎟

⎝ ⎠
    (21) 

1, 1 1 1( ......, )
( ) ( ) ( )p
p p ph

tr tr tr XY
λ λ

τ− − −= = =
Δ

      (22) 

The Arithmetic Harmonic Sphericity measure is a likelihood measure for verifying the 

proportionality of covariance matrix Y to a given covariance matrix X , given by 
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/ 2 / 2

1/ 2 1/ 2

1/ 2 1/ 2

( ) ( )( | )

( ) ( )

N N

Det X YX DetS Y X p p
tr X YX tr

τ

τ

− −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (23) 

By denoting, XS  as the average likelihood function for the sphericity test, we have  

1 log ( | )XS S Y X
N

=          (24) 

and by defining, 

1 ( )
(X,Y) log

( )

tr
p

p
tr

τ
μ

τ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        (25) 

1/ 2 1/ 2

1/ 2 1/ 2

1 ( )
(X,Y) log

( )

tr X YX
p

p
tr Y XY

μ

− −

− −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (26) 

1/ 2 1/ 2 1/ 2 1/ 2

2

( )* ( )(X,Y) log tr X YX tr Y XY
p

μ
− − − −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     (27) 

1 1(X,Y) log[ ( )* ( )] 2 log[ ]tr X Y tr Y X pμ − −= −      (28) 

Where, (X,Y)μ is the log ratio of arithmetic and harmonic means of the eigen values of the  

covariance matrices X andY . (X,Y)μ  is the AHS similarity or distance measure which 

indicates the resemblance between the enrolled and test features. 

 
2.4.2 Hidden Markov Model (HMM) 
 
 
HMM has been widely used for modeling speech recognition systems and it can also be 

extended for speaker recognition systems. Let an observation sequence be O= (o1 o…. oT) 
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and its HMM model be λ= (A, B, π). Where A denotes state transition probability, B denotes 

output probability density functions, and π is the initial state probabilities. We can iteratively 

optimize the model parameters λ, so that it best describes the given observation O. Thus the 

likelihood (Expectation), P(O|λ) is maximized. This can be achieved using Baum-Welch 

method, also known as Expectation Maximization (EM) algorithm [11].  

To re-estimate HMM parameters, ( , )t i jξ  is defined as the probability of being in state i at 

time t, and state j at time t+1, given the model and the observation sequence, 

1( , | , )( , )
( | )

t t
t

P q i q j Oi j
P O

λξ
λ

+= ==        (29) 

Using above formula, we can re-estimate HMM parameter 

λ = (A, B, π) by 

1( )j iπ γ=           (30)  

1 1

1 1
 ( , ) / ( )T T

t tij t t
a i j iξ γ− −

∑ ∑
= =

=        (31) 

. .
1 1

( ) ( )   ( )/
s t o vt k

T T
t tj t t

b k j jγ γ
=

∑ ∑
= =

=       (32) 

Where
1

( ) ( , )
N

t tj
i i jγ ξ∑

=
= .  

Thus we can iteratively find optimal HMM parameter λ [8]. This procedure is also viewed as 

training since using optimal HMM parameter model we can later compare a testing set of 

data or observation O by calculating the likelihood P(O|λ). 

 Thus AHS and HMM likelihood scores are generated, but in order to fuse these 

scores we need to bring both scores to the same level, hence we need to normalize them. 

 



30 

2.5 Hybrid Fusion 

 
2.5.1 Score Normalization 
 
 

The score matrices generated by AHS and HMM are denoted as ij
AHSS and ij

HMMS ; 

1 i m≤ ≤ and1 j n≤ ≤ , respectively, where m is the number of speakers used in training session 

and n is the number of speakers in testing session. These scores are in different scales and 

have to be normalized, before they can be fused together, so that both the scores are 

relatively in the same scale. We have used Min-Max normalization, therefore scores of AHS 

and HMM are scaled between zero and one.   

These normalized scores can be represented as follows, 

min( )

max( ) min( )

ijS S
S

S S

−
=

−
         (33) 

Where S  is the normalized scores obtained from AHS or HMM. Though these scores are 

between zero and one, their distributions are not similar. A deeper insight into the 

distributions shows that AHS has wider distribution range when compared to HMM, which 

has a narrower distribution. 

 
2.5.2 Hybrid Fusion Technique 

 
Figures 16(a) and 16(c) show the genuine score distribution of the AHS and HMM, while 

Figures 16(b) and 16(d) show the imposter distribution of AHS and HMM algorithm, 

respectively. It can be seen that distributions among AHS and HMM are clearly different. 

The imposter and genuine distribution of AHS is well spread out, but the imposter 

distribution has a Gaussian like shape. On the other hand, the distributions of HMM, are 



31 

closely bound. In a good recognition system, the genuine distribution is closely bound and 

stands separated from that of the imposter which is spread out and similar to a Gaussian in 

shape. 

 Thus in order to obtain the best score from both these methods; we have to use the 

complementary nature of the algorithms. We used a linear weighted fusion method derived 

as follows, 

(( ) )opt HMM AHS AHSS S S Sω= − × +         (34) 

In order to find the weight, we used an enhanced weighting method. The weightω , is 

calculated using the mean of the scores, 

AHS

AHS HMM

M
M M

ω =
+

         (35) 

Here, HMMM , AHSM  are the means of normalized scores from AHS and HMM, given as, 

1 1

11 1           
1

m n ij

j i

i m
M S

j nm n= =
∑ ∑

≤ ≤⎡ ⎤= ⎢ ⎥ ≤ ≤⎣ ⎦
        (36) 

Thus the features (MFCCs) are extracted, and these features are modeled using HMM and 

AHS systems. The scores from these two models are fused to produce the final output score 

of the HF speaker recognition system. 



32 

  

                                           (a)             (b) 

  

                      (c)                         (d) 

Figure 16. Score Distributions. (a) & (c) Genuine Distribution Generated Using AHS and 

HMM, Respectively. (b) & (d) Imposter Distribution Generated Using AHS and HMM, 

Respectively. 
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CHAPTER 3 

ACCENT CLASSIFICATION SYSTEM 

 
Before we proceed towards the accent features and modeling algorithms used in the 

proposed AC system, a brief background and a research review on accent classification is 

presented in this chapter. 

 
3.1 Accent Background 

 
Foreign accent has been defined in [30] as the pattern of pronunciation features which 

characterize an individual’s speech as belonging to a particular group. The term accent has 

been described in [31] as, “The cumulative auditory effect of those features of pronunciation 

which identify where a person is from regionally and socially.” In [32], accent is described 

as the negative (or rather colorful) influence of the first language (L1) of a speaker to a 

second language, while dialects of a given language are differences in speaking style of that 

language (which all belong to L1) because of geographical and ethnic differences.  

 There are several factors affecting the level of accent, some of the important ones 

are as follows: 

1) Age at which speaker learns the second language. 

2) Nationality of speaker’s language instructor.
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3) Grammatical and phonological differences between the primary and 

secondary languages. 

4) Amount of interaction the speaker has with native language speakers. 

Some of the applications of accent information are  

1) Accent knowledge can be used for selection of alternative pronunciations or 

provide information for biasing a language model for speech recognition. 

2) Accent can be useful in profiling speakers for call routing in a call center. 

3) Document retrieval systems. 

4) Speaker recognition systems. 

 
3.2 Review of Past Research on Accent Classification 

 
There has been considerable amount research of research conducted on the problem of 

accent modeling and classification. The following is a brief review on some of the papers 

published in the area of accent modeling and classification. 

 In [30], analysis of voice onset time, pitch slope, formant structure, average word 

duration, energy and cepstral coefficients was conducted. Continuous Gaussian Mixture 

HMMs were used to classify accents, using accent sensitive cepstral coefficients (ASCC), 

energy and their delta features. The frequencies in the range of 1500-2500 Hz were shown to 

be the most important for accent classification. A 93% classification rate was observed, 

using isolated words, with about 7-8 words for training. The Duke University dataset was 

used for evaluations. This dataset consists of neutral American English, German, Spanish, 

Chinese, Turkish, French, Italian, Hindi, Rumanian, Japanese, Persian and Greek accents. 

The application was towards speech recognition and an error rate decrease of 67.3%, 73.3%, 
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and 72.3% from the original was observed for Chinese, Turkish, and German accents, 

respectively. In [33], fundamental frequency, energy in rms value, first (F1), second (F2), 

third formant frequencies (F3), and their bandwidths B1, B2 and B3 respectively were 

selected as accent features. The result shows the features in order of importance to accent 

classification to be: dd(E), d(E), E, d(F3), dd(F3), F3, B3, d(FO), FO, dd(FO), where E is 

energy, d() are the first derivatives and dd() are the second derivatives. 3-state HMMs with 

single Gaussian densities were used for classification. A classification error rate of 14.52% 

was observed. Finally, they show an average 13.5% error rate reduction in speech 

recognition for 4 speakers by using accent adapted pronunciation dictionary. The TIMIT and 

HKTIMIT corpuses were used as the database for evaluation. This paper was focused on 

Canto-English where their Cantonese is peppered with English words and their English has a 

particular local Cantonese accent. In [32] three different databases were used for evaluation: 

CU-Accent corpus – AE: American English, and accents of AE (CH: Chinese, IN: Indian, 

TU: Turkish), IviE Corpus: British Isles for dialects. CU-Accent Read – AE (CH: Chinese, 

IN: Indian, TU: Turkish) with same text as IviE corpus. A pitch and formant contour analysis 

is done for 3 different accent groups – AE, IN and CH (taken from CU-Accent Corpus) with 

5 isolated words – ‘catch’, ‘pump’, ‘target’, ‘communication’, and ‘look’, uttered by 4 

speakers from each accent group. Two phone based models were considered – MP-STM and 

PC-STM.  

 The MFCCs were used as features to train and test STMs for each phoneme in case of 

MP-STM and phone class in case of PC-STM. Results show that better classification rate for 

MP-STM than PC-STM and also dialect classification was better than accent classification.  
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The application was towards a spoken document retrieval system. In [34], LPC Delta 

cepstral features were used as features which were modeled by using 6 Gaussian mixture 

CHMMs. The classification procedure, employed gender classification followed by accent 

classification. A 65.48% accent identification rate was observed. The database used for 

evaluation was developed in the scope of the SUNSTAR European project. It consists of 

Danish, British, Spanish, Portuguese, and Italian accents. In [35], a mandarin based speech 

corpus with 4 different accents was used as the native accent. A parallel gender and accent 

GMM was used to model, with 39 dimensional features of which 12 are MFCCs and 1 is 

energy along with their first and second derivatives as features, using 4 test utterances and 32 

component GMM. Accent identification error rates of 11.7% and 15.5% were achieved for 

female and male speakers, respectively. In [36], 13 MFCCs were used as features, with a 

hierarchical classification technique. The database was first classified according to gender, 

and 64-GMM was used for accent classification. They have used TI digits as the database 

and results show an average 7.1% error rate reduction relatively when compared to direct 

accent classification. The application was towards developing an IVR system using 

VoiceXML. In [37], speech corpus consisting of speakers from 24 different countries was 

used. The corpus focuses on French isolated words and expressions. Though this was not an 

application towards accent classification, this paper showed that addition of phonological 

rules and adaptation of target vowel phonemes to native language vowel phonemes helps 

speech recognition rates. Also adaptation with respect to the most frequently used phonemes 

in the native languages resulted in an error rate reduction from 8.88% to 7.5% for foreign 

languages. An HMM was used to model the MFCCs of the data. In [38], the CU-Accent  
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corpus, consisting of American English, Mandarin, Thai, and Turkish was used. 12 MFCCs 

along with energy were used as features and Stochastic Trajectory Model (STM) was used 

for classification. This classification employs speech recognition in front end, and was used 

to locate and extract phoneme boundaries. Results show that STM has classification rate of 

41.93% when compared to CHMM and GMM which has 41.35% and 40.12% respectively. 

Also the paper lists the top five phonemes which could be used for accent classification.  

 In [39], 10 native and 12 non-native speakers were used as a dataset. Demographic 

data including speaker’s age, percentage of time in a day when English used as 

communication and the number of years English was spoken were used as features, along 

with speech features: average pitch frequency and averaged first three formant frequencies. 

Even in this paper F2 and F3 distributions of native and non-native groups show high 

dissimilarity. Three neural network classification techniques namely competitive learning, 

counter propagation, and back propagation were compared. Back propagation gave a 

detection rate of 100% for training data and 90.9% for testing data. In [40], American and 

Indian accents have been extracted from the speech accent archive (SAA) dataset. Second 

and third formants were used as features and modeled with a GMM. The authors have 

manually identified accent markers and have extracted formants for specific sounds such as 

/r/, /l/ and /a/. They have achieved about 85% accent classification rate.  

 In [35], [38], [39], the accent classification system was not applied to a speech 

recognition system even though it was the intended application. All the above accent 

classification systems were based on the assumption that the input text or phone sequence is 

known, but in our scenario where accent recognition needs to be applied to text-independent  
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speaker recognition, a text-independent accent classification should be employed. In [38], 

text-independent accent classification effort has been made by using speech recognizer as 

front end followed by stochastic trajectory models (STM). However, this will increase the 

system complexity as well as introduce additional errors in the accent classification system 

due to accent variations. Our text-independent accent classification system comprises of a 

fusion of classification scores from continuous Gaussian hidden Markov models (CHMM) 

and Gaussian mixture models (GMM). Similar work has been done in the area of speaker 

recognition in [26], where scores from two recognition systems were fused and one of the 

recognition algorithm was a Gaussian mixture model (GMM) and the other being a speaker 

adapted HMM instead of a CHMM. 

 
3.3 Accent Classification Model 
 

The AC model is as shown in Figure 17.  Any unknown accent is classified by extracting the 

accent features from the sampled speech data and measuring the likelihood of the feature 

belonging to a particular known accent model. Any dataset where speech was manually 

labeled according to accents can be used as the reference accent database. 

 In this work, we have used a fusion of mel-frequency cepstral coefficients (MFCC), 

accent-sensitive cepstral coefficients (ASCC), delta ASCCs, energy, delta energy, and delta-

delta energy. Once these accent features have been extracted from the reference accent 

database (SAA dataset), two accent models are created with the help of GMM and CHMM. 

Any unknown speech is processed and accent features are extracted, then the log likelihood 

of those features against the different accent models are computed. The accent model with  
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the highest likelihood score is selected as the final accent. In order to boost the classification 

rate the GMM and CHMM accent scores were fused. Due to the compensational effect [26] 

of the GMM and CHMM we have seen improvement in the performance. 

 

  

Figure 17. Block Diagram of Accent Classification (AC) System 

 
3.4 Accent Features 

 
Researchers have used various accent features such as pitch, energy, intonation, MFCCs, 

formants, formant trajectories, etc., and some have fused several features to increase 

accuracy as well. In this paper, we have used a fusion of mel-frequency cepstral coefficients 

(MFCC), accent-sensitive cepstral coefficients (ASCC), delta ASCCs, energy, delta energy, 

and delta-delta energy. MFCCs place critical bands which are linear up to 1000 Hz (Figure 
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18) and logarithmic for the rest. Hence it allows more selection filters on the lower 1000 Hz, 

whereas ASCCs  [30] concentrate more on the second and third formants. i.e., around 2000 

to 3000 Hz (Figure 19) which are more important features for detecting accent. Hence a 

combination of both MFCCs and ASCCs has been used in this work which provided an 

increase in the accent classification performance when compared to ASCCs alone. Thus after 

these features are extracted, they are modeled using GMM and CHMM. 

 

 

Figure 18. Mel Filter Bank 

 
3.5 Accent Classifier Formulation 

 
Gaussian mixture model (GMM) and continuous hidden Markov model (CHMM) have been 

fused to achieve enhanced classification performance. GMM is explained next, followed by 

CHMM. 
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Figure 19. Accent Filter Bank 

 
3.5.1 Gaussian Mixture Model (GMM) 

 
A Gaussian mixture density is a weighted sum of M component densities which is given 

by, ( | ) ( )
1

M
p x p b xi ii

λ ∑=
=

r r          (37) 

Where xr  is a D-dimensional vector, ( )b xi
r , i = 1,…,M, are the component densities and pi  

are the mixture weights. Each component density is given by, 

1
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b x x xμ μ
π
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with mean vector modeling iμr and covariance matrix i∑ . These parameters are represented 

by, 

{ }, ,  i = 1,...,Mi i ip μλ = ∑r         (39) 

These parameters are estimated iteratively using the Expectation-Maximization (EM) 

algorithm. The EM algorithm estimates a new model λ  from an initial model λ , so that the 
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likelihood of the new model increases. On each re-estimation, the following formulae are 

used, 

1
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where 2
iσ , iμ , and ip are the updated covariance, mean and mixture weights. The a posteriori 

probability for class i  is given by, 

1

( )( | , )
( )

i i t
t M

k k t
k

p b xp i x
p b x

λ

=
∑

=
r

r
r         (43) 

For accent identification, each accent in a group of S accents, where S={1,2,….S}, is 

modeled by GMMs 1 2, ,...., Sλ λ λ . The final decision is made by computing the a posteriori 

probability for each test sequence (feature) against the GMM models of all accents, and 

selecting the accent which has the maximum probability or likelihood. 

 
3.5.2 Continuous Hidden Markov Model (CHMM) 

 
To model accent features, continuous HMM models have been used instead of discrete ones, 

as in case of CHMMs, each state is modeled as a mixture of Gaussians thereby increasing 

precision and decreasing degradation. The Equations (29), (30), (31) in Section 2.4.2, used 

for computing the initial and state transitional probabilities in case of HMM, apply here as 
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well. But to use a continuous observation density the probability density function (Gaussian 

in our case) should be formulated as follows, 

1
( , , ),   1( ) M

jk jk jk
k

c o U j Njb o η μ∑
=

< <=       (44) 

Where c jk is the mixture coefficient for the kth mixture in the state j and η is a Gaussian with 

mean vector jkμ and covariance matrixU jk . 

The parameter B is re-estimated, by re-estimating the mixture coefficients as follows, 
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Where ( , )t j kγ  is given by, 
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     (48) 

Where ( ), ( )t tj jα β are the forward and backward variables of HMM, respectively. Thus we 

can iteratively find optimal HMM parameter λ [8]. This procedure is also viewed as training 

since using optimal HMM parameter model we can later compare a testing set of data or 

observation O. 
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3.5.3 GMM and CHMM Fusion 
 
 
In order to enhance the classification rate, the compensational effect of GMM and CHMM 

has been taken into account [26]. The likelihood scores generated from GMM and CHMM 

have been fused. A fused model benefits from both the advantages of GMM as well as 

CHMM. In a nutshell, the following are some of the advantages of GMM and HMM, which 

combine when they are fused. 

1) GMM 

1) Better recognition even in degraded conditions [12]. 

2) Good performance even with short utterances. 

3) Captures underlying sounds of a voice, but does not restrict like HMM. 

4) Mostly used for text-independent data. 

5) Fast training and less complex. 

2) HMM 

1) Models temporal variation. 

2) Good performance in degraded conditions [19]. 

3) Good in modeling phoneme variation within words. 

4) Continuous HMM: models each state as a mixture of Gaussians thereby 

increasing precision and decreasing degradation. 

The following is the fusion formula which has been used to benefit from the properties of 

both GMM and CHMM, 

( (1 ))CHMM GMMCombAS AS ASβ β= × × −+       (49) 
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Where CHMMAS is the accent score of the speech data from CHMM, GMMAS is the accent score 

from GMM, CombAS is the accent score of the combination and β is the tunable weight factor. 

 Thus after assigning a score for each speaker against various accent models, the 

model which delivers the highest score is decided as the accent class for that particular 

speaker. 
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CHAPTER 4 

HYBRID FUSION – ACCENT SYSTEM 

 
Until now we have gone through the HF-speaker recognition system as well as the accent 

classification system. The feature extraction and modeling for both the systems were 

detailed. The HFA system (Figure 20) is a combination of these two systems; the speaker 

recognition system and the accent classification system.  These systems have been combined 

using a score modifying algorithm. 

 

              

Figure 20. Flow Chart for Hybrid Fusion – Accent (HFA) System 
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4.1 Score Modifier Algorithm 

 
The main motivation of this research is to improve speaker recognition performance with the 

help of accent information. After the HF score matrix is obtained from the HF speaker 

recognition system, the accent score and the accent class outcomes from the accent 

classification system are applied. This application ensures modification of the HF score 

matrix so that it improves the existing performance of the HF based speaker recognition 

system. The pseudo-code of the score modifier (SM) algorithm is as shown in Figure 21. 

 The matrix SP (row, column) represents HF score (enrolled versus test speakers). The 

variables, accent class and AScore are the class label and accent score assigned by the AC 

system. The main logic in this algorithm is to modify the HF scores, which do not belong to 

the same accent class as the target test speaker. The modification should be such that the 

actual speaker’s score is separated from the rest of the scores. As the AC rate increases, the 

speaker recognition rate should increase and not change when it decreases. The HF scores 

are changed by subtracting  or adding the variable ‘M’ in the algorithm, which is equivalent 

to the accent score multiplied by a tunable factor, coefficient of accent modifier (CAM), 

depending on whether the scores are closely bound towards the minimum score or not. The 

distance threshold variable maxvar is used to specify the range of search for closely bound 

scores around the minimum score. 

 HF speaker recognition performance itself plays a significant role because an 

incorrect accent classification paired with incorrect speaker recognition would cause a 

degradation of the overall HFA system performance. So, the factor M is multiplied by the 

variance of the scores of the test speaker versus all the enrolled speakers. Larger variances 
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Set maxvar to maximum of variance of SP (row, column)   
 
Where  SP = HF Score matrix 

row  1:n 

column  1:n 

FOR each column 

   Set k to accent class (column) 

   FOR each row 

      IF minimum of SP (row, column)-SP (row, column) < maxvar     

 Store row of SP in ro 

      END IF 

 END FOR   

FOR each row where accent class (row) != k     

   IF row belongs to ro 

     SP (row column)=SP (row, column)-M*Variance of SP (row, column) 

 ELSE 

     SP (row, column)=SP (row, column)+M*Variance of SP (row, column)    

  //Where M=AScore(column)*CAM 

 //Where CAM is found empirically 

    END IF 

  END FOR 

END FOR 

Figure 21. The Score Modifier (SM) Algorithm 
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indicate large spread of HF scores (good speaker recognition) and vice versa. Hence the SM 

increases or decreases based on the accent score and the variance of the HF score. The SM 

algorithm can be applied to any speaker recognition system with some adjustments to 

distance threshold variable maxvar and CAM.  

 
4.2 Effects of Accent Incorporation 
 

The score modifier algorithm bonds the accent classification system and the speaker 

recognition system, and the entire integrated system is called the hybrid fusion – accent 

system. This section illustrates the effect of incorporating accent into speaker recognition 

system through the score modifier. Scores and histograms of the USF biometric dataset 

(described in Section 5.1) have been used to illustrate the effect. Three specific cases have 

been used for the illustrations, which are explained below. 

  

 

Figure 22(a). Effect of Score Modifier – HF Score Histogram (Good Recognition Case) 

 
1) Case 1: Good Speaker Recognition 

This case deals with a scenario when a speaker is recognized correctly, i.e. the score of the 

legitimate speaker is the minimum and clearly separated from the rest of the scores. The raw 
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scores and the histograms of HF and HFA are shown in Figures 22(b) & 23(b) and Figures 

22(a) & 23(a), respectively. In Figure 22(b), the legitimate speaker is marked by the arrow, 

where X indicates the speaker number and Y indicates the speaker’s score. In Figure 22(a), 

the legitimate speaker’s bin has been indicated by the ‘Bin-sp’ marker (arrow) in the 

histogram, and the neighboring imposter bin is indicated by ‘Bin1’. The same annotations for 

legitimate and imposter scores and histograms have been used in the rest of the illustrations. 

The gap between the bins ‘Bin-sp’ and ‘Bin1’, which is 0.01649, relates to the performance 

of the system. Greater the gap, better is the performance. For the HFA histograms in Figure 

23(a), we can see that the gap difference between the bins ‘Bin-sp’ and ‘Bin1’ has increased 

to 0.01914. Since the legitimate speaker’s accent has been classified correctly, the score 

modifier changed the imposter scores which belonged to accents other than that of the true 

speaker, thereby increasing the performance. 

               

 
Figure 22(b). Effect of Score Modifier – HF Scores (Good Recognition Case) 
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Figure 23(a). Effect of Score Modifier – HFA Score Histogram (Good Recognition Case) 

 

 

Figure 23(b). Effect of Score Modifier – HFA Scores (Good Recognition Case) 
 
 

 

Figure 24(a). Effect of Score Modifier – HF Score Histogram (Poor Recognition Case) 
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2) Case 2: Poor Speaker Recognition 

This case deals with a scenario when a speaker is not recognized correctly, i.e., the score of 

the legitimate speaker is not distinguishable from the rest of the scores. In Figures 24(a), 

‘Bin-sp’ is in between the imposter scores. We can see that the imposter bins, ‘Bin1’ and 

‘Bin2’ are very close to the true speaker’s bin ‘Bin-sp’. ‘Bin1’ is separated from ‘Bin-sp’ by 

a small gap of 0.00099 and there is little or no gap between ‘Bin-sp’ and ‘Bin2’. After score 

modification, we can see that ‘Bin1’ is separated by a gap of 0.00112, as shown in Figure 

25(a). Also ‘Bin2’has been separated by a gap of 0.00111, whereas before modification, 

there was no gap. Thus due to the introduction of gaps, though the true speaker’s score is not 

completely separated from the rest, it is more easily separable from the imposters when 

compared to the HF scores.  

 

 

Figure 24(b). Effect of Score Modifier – HF Scores (Poor Recognition Case) 
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Figure 25(a). Effect of Score Modifier – HFA Score Histogram (Poor Recognition Case) 
 

 

     

Figure 25(b). Effect of Score Modifier – HFA Scores (Poor Recognition Case) 
 

 
3) Case 3: Poor Accent Classification 

This case deals with a scenario where a speaker was recognized correctly, but the true 

speaker’s accent was not identified correctly. In Figure 26(a), ‘Bin-sp’ is clearly separated 

from the imposter bins. We can see that the imposter bin ‘Bin2’ is separated from ‘Bin-sp’ by 

a gap of 0.00319. After score modification, we can see that the score of the true speaker has 

been modified from 0.028761 to -0.056982, as shown in Figure 27(a). This indicates an 

accent classification error because the score modifier modifies any score which does not 

belong to the trained accent as that of the true speaker. Because of this subtraction, even 
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when there is an error in accent classification, the speaker’s score that was truly recognized 

is further improved but not degraded. Degradation might occur only with a completely 

inseparable true speaker score and an error in accent classification. 

 

 

Figure 26(a). Effect of Score Modifier – HF Score Histogram (Poor Accent Classification 
Case) 
 

 

Figure 26(b). Effect of Score Modifier – HF Scores (Poor Accent Classification Case) 
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Figure 27(a). Effect of Score Modifier – HFA Score Histogram (Poor Accent Classification 
Case) 
 

.  

Figure 27(b). Effect of Score Modifier – HFA Scores (Poor Accent Classification Case) 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 
The HF system, accent classification system and the HFA system have been evaluated on 

various datasets; the results of these experiments are provided in this Chapter. The HF 

speaker recognition system has been evaluated on YOHO [41] and the USF multi-modal 

biometric dataset [8]. For evaluating accent incorporation, i.e. accent classification system 

and HFA system, SAA system and the USF multi-modal biometric dataset were used. The 

YOHO dataset was not used for evaluating accent incorporation, as the dataset comprised of 

only North American accents. 

 
5.1 Datasets 

 
1) YOHO Dataset 

YOHO dataset, which can be obtained from Linguistic Data Consortium (LDC), was created 

in a low noise office environment and has a population of 138 persons (106 males and 32 

females). Data structure contains two different types of data-training and testing. Each 

speaker reads a portion of a six digit combination lock phrases. There are 4 enrollment 

sessions of 24 utterances. For verification, there are 10 verification session with 4 utterances. 
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Speaker’s voice was recorded using a telephone handset (Shure XTH-383). Data sampling 

rate is 8000 Hz. Data set was collected over a three month period [11]. YOHO dataset was 

designed to ascertain system accuracy up to 0.1% false rejection and 0.01% false acceptance 

rate with 75% confidence. 

 
2) USF Multi-Modal Biometric Dataset 

A multi-modal biometric dataset was collected at USF over a time period of nine months. In 

this dataset 78 persons provided three sessions of indoor and outdoor data for face, voice and 

fingerprint. As we have used only the voice dataset in this work, we will describe only that 

portion of the dataset. Each person’s voice samples were acquired using Sennheiser E850 

microphone in collecting both indoor and outdoor datasets. There are three sets of phrases in 

the voice dataset: Fixed:-one fixed sentence was uttered by every person; Semi-fixed:-

sentence was varied by a small amount for each speaker, i.e., date and time of recording; 

Random:-completely random utterance. Each person uttered three types of phrases and each 

phrase was repeated three times, for both indoor and outdoor locations. This gives 9 voice 

samples for indoor and outdoor per person per session. Sampling rate was 11,025 Hz. There 

are three different sessions of data available in this dataset. Not all volunteers showed up for 

all the sessions. Therefore, we used two sessions of data, with population of 65 people. We 

used indoor data as training and outdoor data for testing. 

 
3) SAA Dataset 

The SAA dataset [42], is an online speech database, available to people who wish to 

compare and analyze different accents of the English language. The archive provides a large 

set of speech samples from a variety of language backgrounds. All data has been sampled at 
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22,050 Hz. All the speakers read the following paragraph. “Please call Stella. Ask her to 

bring these things with her from the store: Six spoons of fresh snow peas, five thick slabs of 

blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and 

a big toy frog for the kids. She can scoop these things into three red bags, and we will go 

meet her Wednesday at the train station.”  

 For our purpose, we have selected six accents in order to classify the speakers which 

are Arabic, American, Indian, Chinese, Russian, and Spanish. Though all subjects were 

recorded in a quiet room environment, the pool used for this purpose had background noise 

in some cases and an echo in some other cases. In order to test the SAA dataset itself, the 

phrase “Please call Stella” was used for training the accent model and “Six spoons of fresh 

snow peas” was used for testing purposes. 10 speakers per accent were used to train each 

accent model. For testing the USF dataset, these training models were used as a reference 

accent database. The performance results of the systems are shown next, starting with hybrid 

fusion system performance. 

 
5.2 Hybrid Fusion Performance 

 
A frame size of 256 samples per window was used for YOHO and USF datasets.  A 

Hamming window was applied and the FFT size used was 256 points. From each speech 

signal, 13 MFCCs (mel- frequency cepstral coefficients) for both datasets was extracted at 

every 256 samples of window (approximately 32 ms for YOHO and 25 ms for USF dataset) 

with overlap of 128 samples (approximately 16 ms for YOHO and 10 ms for USF dataset). 

Each HMM was represented using 30 hidden states with 200 iterations for each enrolled or  
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training speech data sample. Once HMM models were created as described in Section 2.4.2, 

they were compared with the testing data to find the likelihood score. AHS distance measure 

(score matrix) from training and testing speech data was found as described in Section 2.4.1. 

 

 

Figure 28(a). ROC Comparisons of AHS, HMM, and HF systems for YOHO Dataset 

 
 These scores were normalized using Min-Max normalization technique as described 

in Section 2.5.1 so that the scores are between [0, 1]. Lower score represents closer 

likelihood between training and testing subjects. The fusion method described in Section 

2.5.2 was used to determine the mean of AHS and HMM distributions MHMM and MAHS, 

respectively. Once the enhanced weightω  was found algorithmically using Equation (34), 

we fuse both the score metrics to obtain an enhanced score metric. 
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Figure 28(b). ROC Comparisons of AHS, HMM, and HF Systems for USF Dataset 

 
 In order to represent the score matrices, the Receiver Operating Characteristic (ROC) 

curve, which is a plot of the False Acceptance Rate (FAR) versus the True Acceptance Rate 

(TAR) of the system, was used. Figures 28(a), (b) and (c), show the ROC curve for each of 

the recognition methods, i.e., AHS, HMM and HF conducted on YOHO, USF, and SAA 

datasets, respectively. It can be seen that on all the datasets our HF method shows an 

improvement. However, the improvement was better for fusion on YOHO and SAA dataset 

(Figures 28(a), 28(c)) compared to USF dataset (Figure 28(b)). 
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Figure 28(c). ROC Comparisons of AHS, HMM, and HF Systems for SAA Dataset  

 
For better appreciation of the performance gains from hybrid fusion method, Figures 28(a), 

(b) and (c) are expressed in a bar graph in Figures 29, 30 and 31, respectively. It can be seen 

that the proposed HF method works better when the dataset (YOHO) was noise free. For 

YOHO dataset, the TAR performances were 84% and 62% at 5% FAR for HF and AHS 

methods, respectively. A 22% performance increase, when compared to AHS, which 

performed better than HMM at 5% FAR (55% TAR). Therefore it would be prudent to 

compare the performance gain with the better performing algorithm. The HMM method was 

not speaker adapted, thus the accuracy is lower than HMM in conjunction with maximum a 

posteriori probability (MAP) algorithm’s performance [26]. YOHO dataset can provide 
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enough training samples for MAP algorithm to be effective, however USF dataset does not 

have enough training samples (per session) to create speaker adaptation. 
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Figure 29. Comparison of AHS, HMM, and HF Recognition Rate at Various False 

Acceptance Rates for YOHO Dataset 

 
For USF outdoor dataset, the TAR performances were 71% and 65% at 5% FAR for HF and 

AHS/HMM methods, respectively. A 6% increase in performance at 5% FAR. For this noisy 

dataset, performance increase was not as drastic as the cleaner YOHO dataset. From Figures 

29, it can be seen that HF method shows about 22% increase in YOHO dataset at 3% FAR. 

However from Figure 30, it can be seen that HF method does not show such improvement 

when used with USF dataset. TARs were 63% and 59% at 3% FAR for HF and HMM (4% 

performance gain for HF over HMM). For SAA dataset (Figure 31), the TAR performances 

were 71% and 50% at 3% FAR for HF and HMM, respectively (21% performance gain). But 
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at 5%, a TAR of 74% and 65% for HF and HMM systems can be observed, resulting in a 9% 

performance increase.  
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Figure 30. Comparison of AHS, HMM, and HF Recognition Rate at Various False 

Acceptance Rates for USF Dataset 

 
 It is always difficult for any recognition system to perform well when an outdoor 

dataset is used. USF location being in a large metropolitan city of Tampa combined with a 

typical busy campus environment resulted in our outdoor speech dataset to be noisy and 

unpredictable. This explains the lower performance for both AHS and HMM systems when 

compared to noise free YOHO dataset and the SAA dataset. Thus after fusion, we do not see 

much performance gain (6% at 5% FAR and 4% at 3% FAR).  
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Enhanced Recognition at Various FARs (SAA data)
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Figure 31. Comparison of AHS, HMM, and HF Recognition Rate at Various False 

Acceptance Rates for SAA Dataset 

 
  We could not compare our results, with FAR less than 2 to 3% for the USF dataset 

reliably, because the population size was only 65. In other words one erroneous result could 

swing the performance, by ±1.5%. For the same reason, having a smaller number of speakers 

in a dataset, with a performance increase (1% or less), as reported in [26], would not be 

statistically viable.  

 From Figures 29-31, we can see that AHS and HMM show similar performance 

varying around 50-65% for all the datasets at 3 to 5% FAR. Yet we see HF method resulted 

in enhanced performances. In our case HF assigns a larger weight to HMM and a relatively 

much smaller weight to AHS. Even though AHS and HMM are analogous in performance, 

mean enhanced weight method makes HF outperform individual algorithm’s TAR.  The 
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reason behind the success of such weight assignment is the utilization of the means of the 

score distribution, rather than the score distribution itself. 

 
5.3 Accent Classification Performance 

 
The sampling rate of SAA and USF dataset being different, we used fixed window period of 

25.6 ms with 50% overlap for both datasets. A Hamming window was applied and the FFT 

size used was 256 points. We extracted 13 MFCCs, 13 ASCCs, 13 delta ASCCs, delta-delta 

Energy, delta Energy and Energy from each speech signal as described in Section 3.4 from 

both datasets.  

 For each enrolled or training SAA speech data sample we used 6 hidden states and 8 

Gaussians each with a diagonal covariance and 100 iterations to represent a CHMM as 

explained in Section 3.5.2. GMMs were created using 7 components with diagonal 

covariances as explained in Section 3.5.1. The SAA testing data was modeled using 6 states 

and 15 Gaussians for CHMM and 15 components for GMM. On the other hand the USF 

dataset was modeled by using 6 states and 18 Gaussians for CHMM and 16-component 

GMM. Once CHMMs and GMMs were created they were fused according to Equation (49). 

Then, the accent scores and accent classes for each enrolled and test speakers are stored. 

After which the SM algorithm of Section 4.1 is used to enhance the HF score matrix. In the 

case of testing the SAA dataset, the enrolled speakers were already labeled; hence the accent 

classification system was applied only to the test speakers. In case of USF dataset, both the 

enrolled and test speakers were classified using the accent classification system with the 

SAA dataset as a reference.  
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 The weight factor β  in Equation (52) was used to tune the fusion of CHMM and 

GMM accent scores. As Figure 32 shows, best results were obtained for β = 0.95, 0.75 for 

SAA and USF datasets respectively. The graph indicates that as the weight factor is changed 

from 0 to 1, i.e., GMM alone is used when β  is 0, whereas CHMM is used when it is 1. 

There was an improvement of 7% for SAA and 5% for USF datasets, due to fusion of GMM 

and CHMM, instead of using GMM alone. Hence the final accent classification rate is 90% 

and 57% for SAA and USF datasets, respectively. 

 

 

Figure 32. Accent Classification Rate Using Different Weight Factors for SAA and USF 

Datasets 
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5.4 Hybrid Fusion - Accent Performance 

 
It can be seen from Figures 33(a) and 33(b) that for both datasets our HF method shows an 

improvement. However, the improvement was better for fusion on SAA dataset (Figure 

33(a)) compared to USF dataset (Figure 33(b)), because of high accent classification rate. 

Intuitively, accent classification rate in SAA should be better because the reference accent 

models were created from the same SAA dataset. These final results were obtained by 

selecting a CAM value of 30 and 52 for USF and SAA datasets respectively. Also, the accent 

classification rate of SAA was 1.6 times greater than that of USF dataset, interestingly the 

same rule applies for the CAM variable as well. 

 

 

 Figure 33(a). ROC Comparisons for HF and HFA Methods Evaluated on SAA 
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 For better appreciation of the performance gains from Hybrid Fusion – Accent (HFA) 

method, Figures 33(a) and (b) are expressed in a bar graph in Figures 34 and 35, 

respectively. For SAA dataset, the TAR performances were 88% and 71% at 3% FAR for 

HFA and HF methods, respectively, i.e., a 17% performance gain for HFA method over HF 

method.  

 For USF outdoor dataset, the TAR performances were 78% and 63% at 3% FAR for 

HFA and HF methods, respectively. A 15% increase in performance has been achieved for 

HFA method compared to HF method. From Figures 34 and 35, it can be seen that HFA 

method shows about 20% increase in SAA dataset at 5% FAR. Also, it can be seen that HFA 

method shows significant improvement when used with the noisy outdoor USF dataset. At 

5% FAR, a 13% performance increase was observed for HFA method compared to HF 

method. We can see from Figure 33(b), that at very high FARs, HFA method does not 

perform better than HF method. When speaker recognition performs poorly, a higher score is 

assigned to the true speaker, due to which the true speaker’s score lies within the false 

speaker cluster. But when SM algorithm is applied to the HF-score matrix, it modifies the 

imposter scores making those false scores come closer towards the true speaker’s score, 

thereby decreasing the TAR at higher FARs. Since FARs as high as 10% are never useful in 

evaluating a real world speaker recognition system, this specific issue is not a concern. 

 It is always difficult for any recognition system to perform well when an outdoor 

dataset like USF dataset is used. But, incorporation of accent modeling brought a significant 

performance gain at low FARs. A speaker recognition system cannot be considered as a 

better performing system, even though it performs well at high FARs. A good system is  
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always expected to deliver performance at low FARs. We can see from Figures 34 and 35 

that by adding accent information using SM algorithm, significant enhancement has been 

achieved at low FARs. The accent incorporation method can be applied to any general 

speaker recognition system with some adjustments to the weight factor β in the accent 

classification system, distance threshold variable maxvar and CAM in the SM algorithm. 

 

 

Figure 33(b). ROC Comparisons for HF and HFA Methods Evaluated on USF Dataset 

 
Typically in any well performing speaker recognition system, the true speaker’s score would 

be separated from most of the imposter scores, but still poorly separated from some of them. 

Incorporation of accent modeling through the SM algorithm would especially achieve 

significant performance gains in such scenarios. The SM algorithm increases the distance 
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between the true speaker and the some of the closely lying false speakers as well as the 

distant imposters, resulting in two separate clusters where one cluster represents imposters 

and the other cluster representing the rest, while the true speaker score stands separate from 

either of them. 
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Figure 34. Comparison of HFA and HF Recognition Rate at Various False Acceptance 

Rates for SAA Dataset 

 
 On the whole, by implementing the HFA system, for SAA dataset, at 3% FAR, a 

total recognition rate enhancement of 45% had been obtained through HFA. For USF 

outdoor dataset, at 3% FAR, a 19% increase through HFA has been achieved. 
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Enhanced Recognition at various FARs (USF)
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Figure 35. Comparison of HFA and HF Recognition Rate at Various False Acceptance 

Rates for USF Dataset 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 
6.1 Conclusions 

 
A good biometric system needs to deliver a high performance at low FARs. By using a text-

independent accent classification system with our HF system and a score modifier algorithm, 

a significant enhancement has been achieved at low FARs. In this thesis, speaker recognition 

using Arithmetic Harmonic Sphericity (AHS) and Hidden Markov Model (HMM) has been 

studied. Mel-frequency cepstral coefficients (MFCC) have been used as speaker features. A 

linear weighted fusion method (hybrid fusion), has been implemented effectively such that 

the contrastive nature of AHS and HMM is used to benefit the speaker recognition 

performance.  

 For the first time a text-independent accent classification (AC) system has been 

developed without the usage of an automatic speech recognizer. MFCCs, accent sensitive 

cepstral coefficients (ASCCs) and energy have been used as accent features. MFCCs 

emphasize the first formant frequency, whereas ASCCs emphasize second and third 

formants. By combining MFCCs and ASCCs along with energy increases accent 

classification rate. Gaussian mixture model (GMM) and continuous hidden Markov model 

(CHMM) have been used to model these features. Continuous HMM was used instead of 

discrete HMM, as each state in CHMM is modeled as a mixture of Gaussians thereby 
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increasing precision and decreasing degradation. As GMM and CHMM were fused to benefit 

from the advantages of both the modeling algorithms, an increase in accent classification 

performance was observed. Then, the HF-speaker recognition system was combined with 

accent classification system to enhance the true acceptance rate (TAR) at lower false 

acceptance rates (FAR). The AC system produces accent class information and the accent 

score assigned to each speaker. A score modifier algorithm was introduced, to incorporate 

the outputs of the AC system into the HF-speaker recognition system. The score modifier 

enhances the speaker recognition, even for low accent classification rates, as it modifies the 

HF-speaker recognition score as a factor of the confidence measure of the accent score and 

the HF score. But SM algorithm might fail, when a very poor speaker system is paired with a 

poor accent classification system. Although there have been previous efforts in using accent 

to improve speaker recognition, utilizing an accent classification system to enhance a 

speaker recognition has not been reported so far.  

 The HF system was evaluated on the YOHO clean speech dataset and the realistic 

outdoor USF dataset. But the enhancement achieved with HF for the USF dataset was not 

sufficient, due to which an accent incorporation method was developed to achieve substantial 

performance levels at lower FARs. The final accent incorporated HF model called the hybrid 

fusion - accent (HFA) system was evaluated on SAA dataset and USF dataset. Significant 

improvement was observed by using the HFA system. For SAA dataset, at 3% FAR, a total 

recognition rate enhancement of 45% had been obtained through HFA. For USF outdoor 

dataset, at 3% FAR, a 19% increase through HFA has been achieved. Finally, accent 

incorporation and hybrid fusion technique can be applied to any general speaker recognition  
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system with some adjustments to the weight factor in the accent classification system, 

distance threshold variable maxvar and CAM in the SM algorithm. Even though 

performance gains has been achieved at lower FARs using the HFA system, further 

improvements are necessary before the proposed speaker recognition system can be 

considered as a stand alone security system.  

 
6.2 Recommendations for Future Research 

 
The HFA system still needs to be tuned for different datasets, i.e. the weight factor in the 

accent classification system and the distance threshold variable maxvar, CAM in the score 

modifier algorithm. Complete automation of the accent classification system and the score 

modifier, would be useful, so that no tuning needs to be done for different datasets. Higher 

level features other than mel-frequency cepstral coefficients (MFCC), accent-sensitive 

cepstral coefficients (ASCC), delta ASCCs, energy, delta energy and delta delta energy 

needs to be integrated into the system, so that an accent classification rate can be improved, 

which would enhance the HFA system performance inturn. The HFA system needs to be 

evaluated on a variety of larger datasets, so that more inferences can be drawn from the 

results and enhancements to the HFA can be made. Also different fusion techniques at the 

modeling level such as SVM versus GMM, HMM versus SVM needs to be studied, and 

evaluated on a variety of datasets to better understand the effect of different fusions, so that a 

common frame work can be formulated to find the optimal fusion. Finally, as we know from 

the results that accent incorporation enhances speaker recognition, studies have to be 

conducted on several other factors such as gender classification systems.  
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 The process of identifying human through speech is a complex one and our own 

human recognition system is an excellent instrument to understand this process. The human 

recognition system extracts several other features from a single speech signal, due to which it 

achieves high accuracy. The goal of a speech researcher should be to identify such missing 

pieces of information, in a hope to match the human recognition system some day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 
 
 
 
 

REFERENCES 

 
[1] “Homeland Security Advisory System,” [online] Available: 

http://www.dhs.gov/xinfoshare/programs/Copy_of_press_release_0046.shtm. 
 
[2] “Msnbc,” [online] Available: http://www.msnbc.msn.com/id/3078480/. 
 
[3] D. A. Reynolds, “Automatic Speaker Recognition: Current Approaches and 

Future Trends,” Speaker Verification: From Research to Reality, 2001. 
 
[4] S. Furui, “Fifty Years of Progress in Speech and Speaker Recognition,” Journal 

of Acoustical Society of America, vol. 116, no. 4, pp. 2497-2498, May 2004. 
 
[5] T. Mansfield, G. Kelly, D. Chandler, and J. Kane, “Biometric Product Testing 

Final Report,” CESG/BWG Biometric Test Programme, no. 1, March 2001. 
 
[6] J. Kittler, M. Hatef, R. P. Duin, and J. G. Matas, “On Combining Classifiers,” 

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-
239, March 1998. 

 
[7] A. K. Jain, K. Nandakumar, and A. Ross, “Score Normalization in Multimodal 

Biometric Systems,” Pattern Recognition, vol. 38, pp. 2270-2258, December  
2005. 

 
[8] H. Vajaria, T. Islam, P. Mohanty, S. Sarkar, R. Sankar, and R. Kasturi, 

“Evaluation and Analysis of a Face and Voice Outdoor Multi-Biometric System,” 
Pattern Recognition Letters, vol. 28, no. 12, pp. 1572-1580, September 2007. 

 
[9] T. Islam, S. Mangayyagari, and R. Sankar, “Enhanced Speaker Recognition 

Based on Score-Level Fusion of Ahs and Hmm,” IEEE Proc. SoutheastCon, pp. 
14-19, 2007. 

 
[10] F. Bimbot and L. Mathan, “Text-Free Speaker Recognition Using an Arithmetic-

Harmonic Sphericity Measure,” Third European Conference on Speech 
Communication and Technology, 1993. 

 
[11] L. E. Baum and T. Petrie, “Statistical Inference for Probabilistic Functions of 

Finite State Markov Chains,” The Annals of Mathematical Statistics, vol. 37, no. 
6, pp. 1554-1563, 1966. 



77 

[12] D. A. Reynolds and R. C. Rose, “Robust Text-Independent Speaker Identification 
Using Gaussian Mixture Speaker Models,” IEEE Trans. Speech and Audio Proc., 
vol. 3, no. 1, pp. 72-83, January 1995. 

 
[13] B. H. Juang, S. E. Levinson, and M. M. Sondhi, “Maximum Likelihood 

Estimation for Multivariate Mixture Observations of Markov Chains,” IEEE 
Trans. Inform. Theory, vol. 32, no. 2, pp. 307-309, March 1986. 

 
[14] S. Pruzansky, “Pattern-Matching Procedure for Automatic Talker Recognition,” 

Journal of Acoustical Society of America, vol. 35, pp. 354-358, 1963. 
 
[15] P. D. Bricker, R. Gnanadesikan, M. V. Mathews, S. Pruzansky, P. A. Tukey, K. 

W. Wachter, and J. L. Warner, “Statistical Techniques for Talker Identification,” 
Journal of Acoustical Society of America, vol. 50, pp. 1427-1454, 1971. 

 
[16] B. S. Atal, “Text-Independent Speaker Recognition,” Journal of Acoustical 

Society of America, vol. 52, 1972. 
 
[17] J. M. Naik, L. P. Netsch, and G. R. Doddington, “Speaker Verification over Long 

Distance Telephone Lines,” Proc. ICASSP, pp. 524-527, 1989. 
 
[18] H. Gish and M. Schmidt, “Text-Independent Speaker Identification,” IEEE Signal 

Processing Magazine, vol. 11, no. 4, pp. 18-32, 1994. 
 
[19] T. Matsui and S. Furui, “Comparison of Text-Independent Speaker Recognition 

Methods Using VQ-Distortion and Discrete/Continuous HMM's,” IEEE Trans. 
Speech and Audio Proc., vol. 2, no. 3, pp. 456-459, 1994. 

 
[20] G. Doddington, “Speaker Recognition Based on Idiolectal Differences between 

Speakers,” Proc. Eurospeech, vol. 4, pp. 2521-2524, 2001. 
 
[21] A. G. Adami and H. Hermansky, “Segmentation of Speech for Speaker and 

Language Recognition,” Proc. Eurospeech, pp. 841-844, 2003. 
 
[22] D. A. Reynolds, W. Andrews, J. Campbell, J. Navratil, B. Peskin, A. Adami, Q. 

Jin, D. Klusacek, J. Abramson, and R. Mihaescu, “The Supersid Project: 
Exploiting High-Level Information for High-Accuracy Speaker Recognition,” 
Proc. ICASSP, vol. 4, pp. 784-787, 2003. 

 
[23] D. A. Reynolds, W. Campbell, T. T. Gleason, C. Quillen, D. Sturim, P. Torres-

Carrasquillo, and A. Adami, “The 2004 MIT Lincoln Laboratory Speaker 
Recognition System,” Proc. ICASSP, vol. 1, 2005. 

 
[24] A. Park and T. J. Hazen, “ASR Dependent Techniques for Speaker 

Identification,” Proc. of ICSLP, pp. 2521-2524, 2002. 



78 

[25] T. J. Hazen, D. A. Jones, A. Park, L. C. Kukolich, and D. A. Reynolds, 
“Integration of Speaker Recognition into Conversational Spoken Dialogue 
Systems,” Proc. Eurospeech, pp. 1961-1964, 2003. 

 
[26] S. Nakagawa, W. Zhang, and M. Takahashi, “Text-Independent Speaker 

Recognition by Combining Speaker-Specific GMM with Speaker Adapted 
Syllable-Based HMM,” Proc. ICASSP. vol. 1, 2004. 

 
[27] F. Farahani, P. G. Georgiou, and S. S. Narayanan, “Speaker Identification Using 

Supra-Segmental Pitch Pattern Dynamics,” Proc. ICASSP, vol. 1, 2004. 
 
[28] M. M. Tanabian, P. Tierney, and B. Z. Azami, “Automatic Speaker Recognition 

with Formant Trajectory Tracking Using Cart and Neural Networks,” Canadian 
Conference on Electrical and Computer Engineering, pp. 1225-1228, 2005. 

 
[29] J. R. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete – Time Processing of 

Speech Signals, NJ: IEEE Press, 2000. 
 
[30] L. M. Arslan, “Foreign Accent Classification in American English,” Ph. D. 

Dissertation, NC: Duke University, 1996. 
 
[31] D. Crystal, A Dictionary of Linguistics and Phonetics, MA: Blackwell Publishing, 

2003. 
 
[32] S. Gray and J. H. L. Hansen, “An Integrated Approach to the Detection and 

Classification of Accents/Dialects for a Spoken Document Retrieval System,” 
IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 72-77, 
2005. 

 
[33] L. W. Kat and P. Fung, “Fast Accent Identification and Accented Speech 

Recognition,” Proc. ICASSP, vol. 1, 1999. 
 
[34] C. Teixeira, I. Trancoso, A. Serralheiro, and L. Inesc, “Accent Identification,” 

Proc. of ICSLP, vol. 3, 1996. 
 
[35] T. Chen, C. Huang, E. Chang, and J. Wang, “Automatic Accent Identification 

Using Gaussian Mixture Models,” IEEE Workshop on Automatic Speech 
Recognition and Understanding, pp. 343-346, 2001. 

 
[36] X. Lin and S. Simske, “Phoneme-Less Hierarchical Accent Classification,” 

Asilomar Conference on Signals, Systems and Computers, vol. 2, 2004. 
 
[37] K. Bartkova and D. Jouvet, “Using Multilingual Units for Improved Modeling of 

Pronunciation Variants,” Proc. ICASSP, vol. 5, pp. 1037-1040, 2006. 
 



79 

[38] P. Angkititrakul and J. H. L. Hansen, “Advances in Phone-Based Modeling for 
Automatic Accent Classification,” IEEE Trans. Audio, Speech and Language 
Processing, vol. 14, no. 2, pp. 634-646, 2006. 

 
[39] M. V. Chan, X. Feng, J. A. Heinen, and R. J. Niederjohn, “Classification of 

Speech Accents with Neural Networks,” IEEE World Congress on Computational 
Intelligence, vol. 7, pp.4483-4486, July 1994. 

 
[40] S. Deshpande, S. Chikkerur, and V. Govindaraju, “Accent Classification in 

Speech,” Fourth IEEE Workshop on Automatic Identification and Advanced 
Technologies, pp. 139-143, 2005. 

 
[41] J. P. Campbell Jr., “Testing with the Yoho Cd-Rom Voice Verification Corpus,” 

Proc. ICASSP, vol. 1, 1995. 
 
[42] Speech Accent Archive, George Mason University, [online] Available: 

http://accent.gmu.edu. 
 
 

 

 

 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



80 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 

APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



81 

Appendix A: YOHO, USF, AND SAA DATASETS 
 

TABLE 1. YOHO Dataset 
 
 

Sampling Frequency 8 KHz 

# of speakers 138 (106 M/32 F) 

# of sessions/speaker 4 enrollments, 10 verifications 

Intersession Interval Days-Month (3 days) 

Type of speech Prompted digit phrases 

Microphones Fixed, high quality, in handset 

channels 3.8 KHz/clean 

Acoustic Environment Office 

Evaluation Procedure Yes [11] 

Language American English 
 
 

TABLE 2. USF Dataset 
 

Sampling Frequency 11.025 kHz 

# of speakers 78 

# of sessions/speaker 
/utterance/Location 3 sessions 

Period of time 9 months 

Type of speech Fixed , Semi-Fixed and Random Phrases

Microphone Sennheiser E850  

Acoustic Environment Indoor Office and Outdoor Campus 

Language English 
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Appendix A: (Continued) 
 
 

TABLE 3. SAA (subset) Dataset 
 

Sampling Frequency 22.050 kHz 

# of speakers 60 

# of accents 6 

accents Arabic, American, Indian, Chinese, 
Russian and Spanish  

Type of speech Paragraph split into two phrases 

Microphone Sony ECM-MS907  

Acoustic Environment Indoor Office (but has non stationary 
noise) 

Language English 
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Appendix B: WORLD’S MAJOR LANGUAGES 
 
 

 
 

Figure 36. World’s Major Languages [30] 
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