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COMPUTATIONAL APPROACHES FOR THE PREDICTION

OF APICOPLAST-TARGETED PROTEINS

Abstract

by Gokcen Cilingir, Ph.D.
Washington State University

May 2013

Chair: Shira L. Broschat

Motivation: The cells of eukaryotic organisms contain subunits called or-

ganelles. The apicoplast is a unique organelle found in a group of parasites, known

as Apicomplexa, that are responsible for a wide range of serious diseases including

malaria. The apicoplast is an ideal drug target because of its unique properties. Iden-

tifying apicoplast-targeted proteins (ATPs) is necessary for drug target identification

and accurate in silico prediction methods are needed to accelerate this process. Cur-

rent computational approaches concentrate on a single species of Apicomplexa and

are capable of predicting only a subset of ATPs.

Methodology: We have developed two new computational approaches, Api-

coAP and ApicoAMP, that concentrate on different types of ATPs and that are

applicable to multiple species of Apicomplexa. ApicoAP is a generalized rule-based
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classification model. In ApicoAP, we conduct a systematic search over a rule space

using the expected prediction performance of a rule on a training set as the optimiza-

tion criterion. The rule space is formalized by our parametric rule definition. We

devised a genetic algorithm to perform the optimization that results in a classifica-

tion rule. Performance of ApicoAP is evaluated for labeled datasets of proteins from

4 different apicomplexan species, and expected prediction accuracies range between

82%, and 87%. ApicoAMP is an ensemble classification model. In ApicoAMP, differ-

ent algorithms and feature sets are used to train several classifiers that are evaluated

and combined in an ensemble classification model to obtain the best expected per-

formance. ApicoAMP is trained on a set of proteins from 11 apicomplexan species,

and its expected prediction accuracy is found to be 91%. In addition, we developed

ApicoAP Pipeline, where we introduced an automated training data gathering proce-

dure. This pipeline works as an automated ApicoAP classifier generator that does not

require training data to be provided, but instead is capable of generating a classifier

from the information available from public resources at a given time.

Conclusions: Our work significantly broaden the set of apicoplast-targeted

proteins that can be identified computationally. The ApicoAP and ApicoAMP pre-

diction software and ApicoAP Pipeline client software are available for public use at

http://bcb.eecs.wsu.edu.

http://bcb.eecs.wsu.edu


vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Definition and Principal Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. ApicoAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. ApicoAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. ApicoAP Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vii

4.2 ApicoAP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 The ApicoAP Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 ApicoAP-CS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii

LIST OF TABLES

Table Page

2.1 Breakdown of the labeled datasets into positive (ApicoTP) and neg-
ative (non-ApicoTP) classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Averaged expected prediction performance of ApicoAP (standard
deviation (sd) in parentheses) for the labeled datasets. . . . . . . . . . . . . . . 26

2.3 ApicoAP classifier performance on the labeled datasets. . . . . . . . . . . . . . 27

2.4 Comparison of ApicoAP and PlasmoAP for P. falciparum dataset
of 78 positives and 27 negatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Comparison of ApicoAP model with various machine learning algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 ApicoAP predictions for SP-containing P. falciparum, B. bovis, T.
gondii, and P. yoelii proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Label datasets used for ApicoTMP prediction. . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Average expected accuracy of various classification models for the
ApicoTMP prediction problem with different values of the vote thresh-
old(vt) parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Average expected accuracy of ApicoAMP for 11 apicomplexan species. 67

3.4 ApicoAMP predictions for 16 apicomplexan species. . . . . . . . . . . . . . . . . 68

4.1 Cardinalities of the positive interim training sets for the 13 apicom-
plexan species gathered by ApicoAP-CS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Cardinalities of the negative interim training sets for the 13 apicom-
plexan species gathered by ApicoAP-CS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Cardinalities of the final training sets for the 13 apicomplexan species. 84

4.4 ApicoTP classifier performances on the training sets. . . . . . . . . . . . . . . . 85



ix

LIST OF FIGURES

Figure Page

2.1 Schematic representation of a typical apicoplast-targeted protein
(ApicoTP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Averaged frequency distributions of preferred and avoided residues
for the p regions of the training sequences. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Training data mapped onto the PRSS -ARSS plane using final Api-
coAP classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Three subregions of a transmembrane domain (TMD). . . . . . . . . . . . . . . 51

4.1 ApicoAP Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



x

Dedication

This dissertation is dedicated to my parents Cemalettin Alay and Saniye Alay and to

my husband Erdem Cilingir for their everlasting support and encouragement.



1

CHAPTER 1. INTRODUCTION

1.1 Background

In biology, all living organisms can be classified as eukaryotes or prokaryotes

depending on the fundamental structure of their cells. Eukaryotes such as humans

contain cells that have membrane-bound subunits with specialized functions, known

as organelles. On the other hand, prokaryotes such as archaea and bacteria lack

specialized compartments in the cell.

Proteins are biochemical compounds that are made up of amino acids, often

called peptides when several are linked together. Gene sequences are translated into

proteins via the genetic code. The code defines how a unit sequence, called a codon,

will be translated into a single amino acid. Gene sequences are represented by an

alphabet of four (A, C, G and T) and protein sequences are represented by an alphabet

of 20.
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1.2 Motivation

The apicoplast is a unique organelle found in a group of parasites known as

Apicomplexa. Apicomplexa are responsible for a wide range of serious diseases of

humans and livestock including the most deadly form of malaria, caused by the species

called Plasmodium falciparum. As resistance to commonly used drugs is increasing

in apicomplexan parasites, it is important to find new drug targets. The apicoplast

is an essential organelle for the survival of these parasites [Fichera and Roos, 1997,

He et al., 2001]. Moreover, many apicoplast proteins and pathways have prokaryotic

characteristics due to the organelle’s ancestral relationship to bacteria [McFadden,

1996, Ralph et al., 2004]. Because these proteins and pathways are either absent or

divergent from those of its eukaryotic host (e.g., humans), they are seen as promising

drug targets with minimum side effects to the infected host [McFadden and Roos,

1999, Ralph et al., 2004]. Understanding the metabolic activities performed in the

apicoplast is essential for drug target identification, and this requires the ability to

identify apicoplast-targeted proteins. Because experimental identification of these

proteins is a costly and time-consuming task, accurate in silico prediction methods

are needed to accelerate the drug target identification process.

The available computational approaches [Zuegge et al., 2001, Foth et al., 2003]

for genome-wide apicoplast-targeted protein prediction are specifically designed for



3

P. falciparum species and their application to other Apicomplexa is considered to be

unreliable. With the sequence completion of several apicomplexan genomes, there

is a pressing need for computational methods to detect apicoplast-targeted proteins

that are applicable to multiple species rather than to a single model species. Cur-

rently, genomes for 17 different apicomplexan species are available in EuPathDB

[Aurrecoechea et al., 2010].

Available computational approaches [Zuegge et al., 2001, Foth et al., 2003] con-

centrate on predicting a subset of apicoplast-targeted proteins which contain a special

segment called a bipartite signal. Recent experimental findings have confirmed many

apicoplast-targeted membrane proteins, which have been found to lack a bipartite

signal [Karnataki et al., 2007b, DeRocher et al., 2008, Sheiner et al., 2011]. Most of

these findings apply to a subset of apicoplast membrane proteins that are called trans-

membrane proteins. These proteins contain transmembrane domains (TMDs) that

reside in the membrane and function as membrane anchors. Although well-established

prediction algorithms exist for TMD topology prediction, there is no computational

approach in the literature that identifies transmembrane proteins targeted to the api-

coplast. In fact, at present, only a handful of methods developed specifically for

membrane localization prediction exist in the literature.
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1.3 Problem Definition and Principal Findings

Apicoplast-targeted proteins can be classified into two main groups: those that

are localized into the apicoplast lumen (ApicoTPs for APICOplast T argeted lumen

Proteins) and those that reside on or between the four membranes of the apicoplast

(ApicoTMPs for APICOplast T argeted transM embrane Proteins). Since the prop-

erties of these two groups of proteins differ in many ways, we decided to divide the

apicoplast-targeted protein identification task into two parts, developing two indepen-

dent approaches for each sub-task. Each approach involved building a classification

model and training it using labeled datasets. Trained models (i.e., classifiers) label a

given protein as apicoplast targeted or not.

We developed ApicoAP for APICOmplexan Apicoplast lumen Proteins, which

is the first computational model for identifying ApicoTPs in multiple species of Api-

complexa [Cilingir et al., 2012]. ApicoAP is a generalized rule-based classification

model. In ApicoAP, we conduct a systematic search over a rule space using the

expected prediction performance of a rule on a training set as the optimization cri-

terion. The rule space is formalized by our parametric rule definition. We devised

a genetic algorithm to perform the optimization that results in a classification rule.

Performance of ApicoAP is evaluated for labeled datasets of proteins from 4 different

apicomplexan species, and expected prediction accuracies range between 82%, and
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87%. The ApicoAP prediction software is available at http://bcb.eecs.wsu.edu.

We developed ApicoAMP for APICOmplexan Apicoplast transM embrane Proteins,

which is the first computational model capable of identifying apicoplast-targeted

transmembrane proteins in Apicomplexa. ApicoAMP is an ensemble classification

model. In ApicoAMP, different algorithms and feature sets are used to train several

classifiers that are evaluated and combined in an ensemble classification model to ob-

tain the best expected performance. Hydrophobicity and composition characteristics

of amino acids over TMDs are used as features in conjunction with the Support Vec-

tor Machine (SVM) classification model. In addition, we extended and employed the

Projected Gene Ontology Score (PGOS) classification model which is a specialized

model used with the Gene Ontology (GO) terms associated with proteins. ApicoAMP

is trained on a set of proteins from 11 apicomplexan species, and its expected predic-

tion accuracy is found to be 91%. The ApicoAMP prediction software is available at

http://bcb.eecs.wsu.edu.

After publishing our paper on ApicoAP, we received many inquiries from re-

searchers working on different apicomplexan species for which no ApicoAP classifier

is provided by our software. In order to fulfill the current demand and any future

demands, we developed the ApicoAP Pipeline that is comprised of an automated

training data gathering procedure and the ApicoTP classifier training routine. This

pipeline works as an automated ApicoTP classifier generator that does not require

http://bcb.eecs.wsu.edu
http://bcb.eecs.wsu.edu
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training data to be provided, but instead is capable of generating a classifier from

the information available from public resources at a given time. As the results from

experimental confirmation of ApicoTPs are published, which is the main resource

for obtaining training data, this pipeline will not only be useful for an apicomplexan

species for which no ApicoAP classifier exists, but it will also provide ever-improving

classifiers for apicomplexan species for which an ApicoAP classifier already exists.

An implementation of this pipeline, ApicoAP-CS for ApicoAP C omplete Suite, is

available as a collection of web services. ApicoAP-CS can be utilized to generate

a species-specific ApicoAP classifier that can be easily integrated into the ApicoAP

prediction software.

1.4 Organization of the Dissertation

This thesis is organized in five main chapters, including this introduction chapter

as the first chapter. Second and third chapters discusses the ApicoAP and ApicoAMP

models, respectively. Forth chapter discusses a new model of operation for specific

supervised machine learning algorithms that learn from datasets extracted from dy-

namically changing public resources, such as genomic databases. In this chapter,

ApicoAP Pipeline is discussed as a case study. The fifth and the last chapter con-

tains the conclusion.
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CHAPTER 2. APICOAP

2.1 Introduction

The apicoplast is a relict plastid that resides in most of the parasites of the

phylum Apicomplexa [McFadden, 1996, Köhler et al., 1997]. Members of this phy-

lum include Plasmodium falciparum, the causative agent of the most deadly form of

malaria, Plasmodium yoelii, another malaria-causing agent, and Toxoplasma gondii

and Babesia bovis, which cause toxoplasmosis and babesiosis, respectively. The api-

coplast is an essential organelle for the survival of these parasites [Fichera and Roos,

1997, He et al., 2001]. Moreover, many apicoplast proteins and pathways have

prokaryotic characteristics due to the organelle’s ancestral relationship to bacteria

[McFadden, 1996, Ralph et al., 2004]. Because these proteins and pathways are ei-

ther absent or divergent from those of its eukaryotic host, they are seen as promising

drug targets with minimum side effects to the infected host [McFadden and Roos,

1999, Ralph et al., 2004]. Most apicoplast proteins are nuclear-encoded and targeted

post-translationally to the organellar lumen [Waller et al., 1998, Roos et al., 1999,

Waller et al., 2000, Van Dooren et al., 2000]. Understanding the metabolic activities
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performed in the apicoplast is essential for drug target identification, and this requires

the ability to detect apicoplast targeting signals in proteins.

Protein import into the lumen of the apicoplast is facilitated by a bipartite

signaling mechanism that requires an N-terminal signal peptide (SP) followed by a

transit peptide (TP) [Waller et al., 2000]. Although other mechanisms may exist

[Lim et al., 2009], the bipartite signaling mechanism is most easily recognized. Well-

established prediction algorithms exist for determining the existence of an SP in a

protein sequence independent of the organism to which it belongs [Petersen et al.,

2011, Emanuelsson et al., 2007, Reynolds et al., 2008, Käll et al., 2007]. In contrast,

there is no established computational method that determines the existence of a TP

in multiple organisms. In fact, attempts to define a consensus motif that universally

identifies apicoplast TPs have failed because preferred amino acids in TP regions are

heavily influenced by the Adenine-Thymidine (AT) codon bias of parasitic genomes

[Tonkin et al., 2008]. For example, the genome of P. falciparum is approximately

80% AT-enriched [Tonkin et al., 2008], and apicoplast TPs are dominated by amino

acids such as asparagine (N) and lysine (K), which exclusively utilize codons lacking

Guanine and Cytosine. PlasmoAP, a rule-based prediction method, makes use of this

bias and suggests that the anticipated TP region (defined as the region that starts

after the predicted SP-cleavage site with a cutoff of 80 amino acids) of apicoplast-

targeted proteins (ApicoTPs) must contain an NK-enriched sub-region with a basic to
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acidic amino acid ratio of at least 5 to 3 [Foth et al., 2003]. Application of this method

to other Apicomplexa with more balanced AT content is not considered reliable.

As a result, application of PlasmoAP to the Babesia bovis genome revealed only a

handful of candidate ApicoTPs in comparison to more than 460 predicted ApicoTPs

in P. falciparum [Brayton et al., 2007]. With the sequence completion of several

apicomplexan genomes, there is a pressing need to have a computational method for

detecting ApicoTPs that is applicable to different organisms rather than to a single

model organism.

PATS [Zuegge et al., 2001] and PlasmoAP [Foth et al., 2003] are the only com-

putational methods described in the literature that detect TP regions in protein se-

quences. These two methods are specifically designed for the P. falciparum proteome.

PATS follows a black-box approach that is based on training a neural network over

amino acid content-based features harvested from the anticipated TP region (defined

as the region that starts after the predicted SP-cleavage site with a cutoff of 78 amino

acids). Unlike PlasmoAP, PATS offers predictions only, without providing any un-

derstanding of the actual prediction mechanism. As a rule-based method, PlasmoAP

holds an advantage over PATS in the sense that it offers insight into the underlying

targeting mechanism and allows the formulation of testable hypotheses.

In this study, we propose a generalized rule-based classification model to iden-

tify ApicoTPs that use a bipartite signaling mechanism. Based only on the known
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characteristics of ApicoTPs, a parametric model is constructed. Given a training set

specific to an organism, our model, ApicoAP for APICOmplexan Apicoplast Proteins,

employs a procedure based on a genetic algorithm to tailor a discriminating rule that

maximizes the prediction and generalization performance for the given set. An ad-

vantage of ApicoAP is that it is customizable to different organisms when training

data are available.

2.2 Materials and Methods

2.2.1 Selection of a classification model

From a computational point of view, the prediction of a given protein as an Api-

coTP or non-ApicoTP can be stated as a binary classification problem, for which we

choose ApicoTP as the positive class. It is worth noting that we define the ApicoTP

class such that proteins localizing to multiple organelles including the apicoplast are

members of this class in addition to proteins localizing only to the apicoplast. In

a typical supervised learning setting, a training set containing positive and negative

labeled instances is used to learn a mapping from the input to the output. In our

case, the goal is to learn a mapping from protein sequences to the binary class labels:

ApicoTP and non-ApicoTP. Our machine learning approach towards this goal is to

assume a parametric model to define this mapping and estimate model parameters
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using a training set such that the error for parameter estimates is minimized. This

estimation process is often called training. As a result of training, a model with spe-

cific parameters, in other words a classifier, is achieved, which can then be employed

to predict the labels for new instances [Alpaydin, 2004].

After some consideration, we chose a rule-based approach, similar to the one

used by the developers of PlasmoAP [Foth et al., 2003], as the basis for our classifica-

tion model. Properties of ApicoTPs were used to construct a generalized rule defined

by a set of parameters. After completion of training by means of a genetic algorithm,

the resulting classifier was then used to predict a protein sequence as ApicoTP or

non-ApicoTP. Before explaining the details of our generalized rule definition, we will

discuss the known properties of ApicoTPs that underlie our model.

Properties of apicoplast-targeted proteins (ApicoTPs).

A typical nuclear-encoded ApicoTP contains an N-terminal signal peptide (SP)

region followed by a transit peptide (TP) region and a mature protein. The SP is

removed during co-translational import into the endoplasmic reticulum (ER) and the

TP, which guides the protein into the apicoplast, is removed from the mature protein

inside the lumen of the apicoplast [Waller et al., 2000, van Dooren et al., 2002].

Apicoplast TPs vary greatly in length and are biased towards polar (positive

charge preferred), basic, and hydrophilic amino acids [Foth et al., 2003, Tonkin et al.,

2006]. A recent study conducted by [Gallagher et al., 2011] indicates that TPs are
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functionally disordered and therefore biased towards amino acids with low helical

propensity as well. In addition, it has been shown that the absence of negative charge,

in other words the depletion of acidic residues, is important for transit peptide fidelity

[Foth et al., 2003, Tonkin et al., 2006].

Length variance among TP regions of known ApicoTPs points to the possibility

that a smaller sub-region of a perhaps larger TP is used by the apicoplast for recogni-

tion. This smaller sub-region (hereafter referred to as the pattern p) can be expected

to embody the aforementioned properties of TP regions. PlasmoAP makes use of this

idea by searching for a stretch of 40 amino acids in the anticipated TP region (with a

cutoff of 80 amino acids) that is enriched and depleted by certain amino acid groups.

Selection of these amino acid groups and cutoff values was performed only for the

model organism, P. falciparum, which is the main limitation of PlasmoAP for other

organisms.

Generalized model for apicoplast-targeted proteins (ApicoTPs).

A schematic representation of a typical ApicoTP is given in Figure 2.1. Because

the TP region can be variable in length and in most cases its exact length is unknown,

the region r is introduced, which represents the anticipated TP region. The region r

starts immediately after the predicted SP cleavage site and has a length of at most Lr .

A pattern p with length Lp is assumed to exist in region r, which contains the core

information that indicates whether the protein under consideration is an ApicoTP.
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The pattern p is simply a contiguous sub-region of region r enriched by amino acids

that have low helical propensity or are polar (positive charge preferred), basic, or

hydrophilic and depleted of acidic and negative amino acids. H, K, R are the amino

acids that are polar-positive, basic, and highly hydrophilic. N, Q are the amino acids

that are polar-neutral and highly hydrophilic. S, P, Y are moderately hydrophilic

amino acids that have low helical propensity. We refer to these eight amino acids

as the preferred residue set (PRS ). E, D are the amino acids that are polar-negative

and acidic with high helical propensity. We refer to these as the avoided residue

set (ARS ). We determined these sets using Chou-Fasman [Fasman, 1989] helical

propensity predictions and the Kyte-Doolittle [Kyte et al., 1982] hydropathy index.

Figure 2.1: Schematic representation of a typical apicoplast-targeted protein (Api-
coTP): A typical ApicoTP with defined regions r and p is shown, where r is the
anticipated TP region that starts immediately after the predicted SP cleavage site
and p is the pattern that contains the core information for predicting an ApicoTP.
The pattern p is simply a contiguous sub-region of region r.

The preferred residue set score (PRSS ) and avoided residue set score (ARSS )

quantify the existence of PRS and ARS elements in an arbitrary region s. Equations
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(2.1) and (2.2) give the functional forms of these quantities, where f (x , s) is the

frequency of an amino acid residue x in the region s. The PRSS and ARSS are

simply the weighted sums of these frequencies. The weight sets w1 and w2 determine

the relative influence of the residues in the scoring functions. When a weight is 0, the

frequency of the corresponding residue will have no effect on the score, and when it

is 1, it will have the maximum effect.

PRSS (s ,w1) =
8∑

i=1

w1i ∗ f (X1i, s), X1 = {H,K,R,N,Q, S, P, Y } (2.1)

ARSS (s ,w2) =
2∑

i=1

w2i ∗ f (X2i, s), X2 = {D,E} (2.2)

As stated earlier, the anticipated TP region r is assumed to contain a contiguous

sub-region p with length Lp that embodies the core information for identifying an

ApicoTP. We refer to the set containing all contiguous sub-regions with length Lp

in r as Sp . In an ApicoTP, p should have a high PRSS and a relatively low ARSS.

Assuming a linear relationship between the PRSS and ARSS, the p-criterion function

given by Eq. (2.3) defines the criterion for selecting p from Sp . Essentially the sub-

region with the highest ratio of preferred residues to avoided residues is the optimum

choice.
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p − criterion(r , lv ,w1,w2) = arg max
s∈Sp

PRSS (s ,w1)− lv

ARSS (s ,w2)
(2.3)

The limiting value lv is an estimate of the PRSS when e percent of the residues

in a region s of length Ls are from the preferred residue set (PRS ). The reason for

including this limiting value is to ensure that a minimum number of elements from the

PRS are present in the sub-region p. Sole absence of avoided residues is insufficient

for a protein to be an ApicoTP; a minimum number of preferred residues are required

as well. Equation (4) gives the functional form of lv.

lv(e,Ls ,w1) = e ∗ Ls ∗ average(w1) (2.4)

A rule-based classification model for ApicoTPs.

The generalized model for ApicoTPs discussed above defines a mapping from

protein sequences to p-criterion values. In order to use this model as a classifier, a

threshold value over p-criterion values that separates ApicoTPs from non-ApicoTPs

must be determined. This is accomplished via feedback from the training set. We

examine possible locations for the threshold and select the one that maximizes the

prediction performance of the resulting classifier for the training set. The possible

locations for the threshold are the midpoints of each adjacent pair of p-criterion

values in sorted order. The resulting rule-based classifier classifies a protein sequence

with a p-criterion value exceeding or equal to the threshold as an ApicoTP.
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Geometric interpretation of the classification model for ApicoTPs.

The PRSS and ARSS, given by Eqs. (2.1) and (2.2), respectively, associated

with the sub-region p for a given protein sequence map the sequence to a plane

in which a discriminating line separates ApicoTPs and non-ApicoTPs. Protein se-

quences are mapped to a point in the PRSS-ARSS plane where the ones appearing

on or above the discriminating line are predicted to be ApicoTPs. The limiting value

lv, given by Eq. (2.4), determines the PRSS -intercept of the discriminating line. The

threshold over p-criterion values, which is determined via feedback from the training

set, gives the slope of this line.

If the ARSS is zero and the PRSS is greater than or equal to the limiting value

lv, a sequence should be mapped to the ApicoTP region of the PRSS-ARSS plane,

but the p-criterion value is undefined because the denominator in Eq. (2.3) is zero.

For such cases, we set the p-criterion to be sufficiently large to ensure mapping of the

sequence into the ApicoTP region. When the PRSS is smaller than lv and the ARSS

is zero, the p-criterion is set sufficiently low to ensure mapping of the sequence into

the non-ApicoTP region below the discriminating line.

The parameters for the rule-based classification model used in ApicoAP, includ-

ing the weights, Lp , Lr , and e, are optimized using a genetic algorithm as described

below, but before discussing our optimization method we discuss another requirement

for identifying an ApicoTP with a bipartite signaling mechanism, the presence of a
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signal peptide.

Signal peptide identification.

Implicit in our generalized model is that an ApicoTP contains an SP because the

anticipated TP region r starts from the predicted SP cleavage site. We used SignalP

3.0 [Bendtsen et al., 2004] for SP cleavage site prediction, as it is the tool commonly

reported in the literature for apicomplexan genomes. We considered using the most

recent version of this tool, SignalP 4.0 [Petersen et al., 2011], which is believed to

perform better at discriminating SP regions from transmembrane domains existing

downstream from the N terminus of a sequence. However, we observed that SignalP

4.0 predicts significantly fewer SPs than SignalP 3.0 for apicomplexan genomes. For

example, according to SignalP 3.0 the P. falciparum genome contains about 1100

SPs, but SignalP 4.0 identifies only about 600 SPs. Neither of these tools is trained

or tested on apicomplexan genomes because no apicomplexan protein has been ex-

perimentally confirmed to contain an SP. Further study is needed on apicomplexan

genomes to assess the possible causes for the difference in the number of predictions.

2.2.2 Optimizing model parameters

A prediction performance measure calculated with a given labeled dataset demon-

strates how well the classification model performs on the available data, but it does
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not predict how well a classifier can be expected to perform in practice. Instead, for

our optimization criterion we use the expected prediction performance of a model,

i.e., how well it is expected to generalize to new data instances; this can be estimated

using a cross-validation procedure. In n-fold cross validation, a given dataset is ran-

domly divided into n subsets of equal size. A classifier is trained n times by setting

aside one distinct set for validation and using the remaining n-1 sets for training.

The average prediction performance for the validation sets gives an estimate of the

expected prediction performance of the classifier [Alpaydin, 2004].

We use Matthews Correlation Coefficient (MCC) as our performance measure;

the MCC is known as a balanced measure because it weights a true positive prediction

and a true negative prediction equally regardless of how imbalanced a test set might

be [Baldi et al., 2000]. The more commonly used performance measure, accuracy, is

biased toward classifiers that tend to do better on the majority class. The rule-based

classification model used in ApicoAP requires several parameters: the weights that

are used to calculate the PRSS and ARSS, the region length Lr , the pattern length

Lp , and the limiting percentage e from which the limiting value lv is determined. An

optimization procedure based on a genetic algorithm is applied to determine the set

of parameters that produces the model with the maximum expected prediction per-

formance. The problem of choosing the best classification model parameters among

all possibilities is characterized as a search problem in which the parameter space
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is examined using the expected prediction performance as the objective function,

calculated using the MCC measure.

A brief overview of genetic algorithms.

A genetic algorithm (GA) is a heuristic search method inspired by Darwinian

evolution [Holland, 1992b]. Based on the principle of survival of the fittest, a GA

maintains a set of candidate solutions called individuals, represented by a set of genes,

and applies combination and transformation operations on individuals analogous to

crossover and mutation operations in actual genes. A typical iteration for a GA

involves selection of the fittest individuals (solutions with highest objective function

values), application of the crossover operation to these individuals, generation of

random mutations within the newly produced individuals (offspring), and replacement

of a percentage of the total population by these offspring. This simulation of evolution

on solution instances undergoes several iterations until the stop condition is reached.

At this point, the algorithm returns the optimal solution achieved via the iterations.

The power of genetic algorithms comes from the employment of fitness-based

selection and genetic operators (crossover and mutation) during reproduction [Kelly

and Davis, 1991]. Fitness-based selection of individuals for reproduction enables the

fittest ones to have offspring via the crossover operator, which enables the exchange

of genetic information between parents. If we assume that each individual ideally

captures different features of the global optima, combining subparts of these indi-
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viduals from multiple parents on a single offspring greatly speeds up the process of

reaching optima. This phenomenon is known as implicit parallelism in a GA [Holland,

1992a, Mitchell et al., 1994]. The mutation operator introduces localized changes in

offspring, which is essential for sustaining exploration in the search space. Mutations

introduce the genetic diversity that is not necessarily represented in a population but

that may be needed to reach a global optimum.

Many variations of GAs exist in the literature. One can maintain a single

population or multiple populations in parallel. If multiple populations are evolved in

parallel, migration among them during each iteration can be allowed either for the

fittest or for random individuals. At each iteration, the next population may or may

not overlap with the previous one.

The genetic algorithm for ApicoAP.

In the genetic algorithm used in ApicoAP, an individual is represented by a

real-valued parameter set containing ten weights, one region length Lr , one pattern

length Lp , and one limiting percentage parameter e. To simplify the problem, we

introduced constraints on the possible values of each parameter. Weight values can

be 0, 0.5, or 1. Region length values can be between 60 and 90 with increments of

5. Pattern length values can be between 15 and 40 with increments of 1. Limiting

percentage values can be between 0.2 and 0.4 with increments of 0.05. All ranges

were determined by experimentation with the training portion of the available data.
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Experiments conducted with longer region and pattern lengths did not result in sig-

nificant differences in the rules or performance indicating that the lengths chosen are

sufficient.

Uniform crossover and point mutation were defined, and the initial crossover

and mutation probabilities were chosen to be 1.0 and 0.1, respectively. Four parallel

populations containing 40 individuals were used, and migration was allowed (at each

iteration) for the two fittest individuals. Populations were set to be overlapping

where 15 individuals were replaced by the newly generated offspring at all iterations.

A large number of populations with many individuals are desirable, but efficiency in

the computational time required for optimization is also a concern. The replacement

percentage and migration limit often determine how quickly population diversities

converge to zero, but reaching this state too quickly is undesirable because a local

optimum rather than a global optimum is likely to be reached. Maintenance of diverse

populations is important for increasing the likelihood of reaching the global optimum

of the search space. Thus, in determining parameters there is a tradeoff between time

efficiency and maintenance of diverse populations.

To avoid local optimum traps, we implemented a mechanism to monitor pop-

ulation diversities and took preventive action when needed by gradually increasing

the mutation rate and by changing the crossover selection criterion from fittest to

random. When 30 generations had passed without achieving an improvement in the
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optimal solution, we stopped the search. Although additional mechanisms were im-

plemented to avoid local optimum traps, several runs were performed to insure an

optimal solution had been reached.

2.3 Datasets

To evaluate the performance of ApicoAP, we used five labeled sets of protein

sequences from P. falciparum, P. yoelii, B. bovis, and T. gondii, each containing

sequences of a single organism. We used the published dataset employed in the devel-

opment of PlasmoAP [Foth et al., 2003] for the sole purpose of comparing our method

with theirs. In addition, we gathered a new training set for P. falciparum proteins

that incorporates recent experimental findings. We also gathered novel training sets

for P. yoelii, B. bovis, and T. gondii. ApiLoc [Woodcroft et al.] was used as the main

resource for locating experimentally confirmed apicomplexan proteins.

We obtained experimentally-confirmed ApicoTP proteins from the ApiLoc database

(version 3) and identified orthologs of these proteins from the OrthoMCL database

(version 5) [Chen et al., 2006]. Proteins verified as having SPs by SignalP 3.0 were

used in our positive training sets. Additional proteins were added to our training sets

from references [Foth et al., 2003, Fleige et al., 2010, Kumar et al., 2010, Butzloff

et al., 2010, Johnson et al., 2011, Caballero et al., 2011, Sheiner et al., 2011]. Because
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of the scarcity of experimentally-confirmed P. yoelii and B. bovis ApicoTPs (only

three proteins are confirmed to be ApicoTPs for each organism), we used homology

transfer to establish reasonably sized training sets. CDART (Conserved Domain Ar-

chitecture Retrieval Tool) [Geer et al., 2002] was employed to infer protein homology

relationships by means of domain architecture similarity.

We obtained proteins tagged as non-Apicoplast from the ApiLoc database and

found orthologs using the OrthoMCL database. The proteins predicted to have an

SP region were used in our negative training sets. We also found proteins confirmed

to localize to locations other than the apicoplast from the ApiLoc database. We

manually eliminated proteins whose confirmed localization does not necessarily rule

out apicoplast targeting. For example, we eliminated proteins confirmed to localize to

mitochondria, food vacuoles, and the cytoplasm, as dual localization incidents have

been reported in the literature involving apicoplasts and these locations. Because

very few P. yoelii and B. bovis non-ApicoTPs have been experimentally confirmed,

we added proteins annotated as variant erythrocyte surface antigen, merozoite surface

antigen, and rhoptry related/associated to the negative training sets to increase their

size.

All protein sequences were obtained from EuPathDB (version 2.13) [Aurrecoechea

et al., 2010], which is the main biological sequence repository for eukaryotic pathogens

such as Apicomplexa. Table 2.1 shows the breakdown of each training set by positive



24

(putative ApicoTPs) and negative (non-ApicoTPs) classes.

Dataset
Number of
putative ApicoTPs

Number of
putative non-ApicoTPs

P. falciparum* 78 27

P. falciparum 47 41

B. bovis 28 29

T. gondii 35 33

P. yoelii 34 36

Table 2.1: Breakdown of the labeled datasets into positive (ApicoTP) and negative
(non-ApicoTP) classes. P. falciparum* refers to the published dataset used in the
development of PlasmoAP. We used only the SP-containing portion of this set.

For ApicoAP, only proteins containing an SP were used for training. The pub-

lished dataset of proteins for P. falciparum contains 102 non-ApicoTPs of which

75 lack SPs. As with ApicoAP, PlasmoAP requires a protein to contain an SP for

prediction as an ApicoTP. Thus, exclusion of the 75 non-ApicoTPs will not affect

comparison of the two methods. In fact, it is likely that a negative training set that

includes proteins without SPs may well overstate the actual performance of a clas-

sifier given that the objective of such classifiers is to discriminate ApicoTPs from

non-ApicoTPs when an SP is present.
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2.4 Results

2.4.1 Evaluation of ApicoAP

ApicoAP was used with the five datasets described in the previous section. To

estimate the expected prediction performance of ApicoAP, 35 cross validation was

employed. A rule-based classifier is trained on a subset of a labeled dataset, which

will be referred to as the training-validation set. As discussed earlier, this subset is

further divided into training and validation sets, using 35 cross validation, to facilitate

calculation of the objective function value during the parameter optimization phase.

The parameters for our rule-based classifier are optimized in this phase, and the

resulting classifier is applied to the remaining set (test set) to assess the performance

of the model for unknown data. Fifteen test set samples were used to assess the model

performance. The expected prediction performance of ApicoAP was calculated using

Matthews Correlation Coefficient (MCC) by averaging the classifier MCCs over these

samples.

During parameter optimization, often the parameter set found with the opti-

mum objective value is not unique. Small perturbations of one or more parameters

result in different parameter sets with the same optimum objective value. The trained

classifiers with these parameter sets sometimes possess different expected prediction

performances. In Table 2.2 we report the averages of minimum, maximum, and av-
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erage accuracies observed together with the standard deviations. These reflect the

worst-case, best-case, and the most-likely expected prediction performances, respec-

tively.

Dataset
Average
accuracy (sd)

Minimum
accuracy (sd)

Maximum
accuracy (sd)

P. falciparum* 0.88 (0.08) 0.87 (0.09) 0.90 (0.07)

P. falciparum 0.87 (0.06) 0.84 (0.08) 0.91 (0.05)

B. bovis 0.82 (0.06) 0.76 (0.11) 0.87 (0.06)

T. gondii 0.83 (0.10) 0.8 (0.11) 0.86 (0.09)

P. yoelii 0.85 (0.07) 0.82 (0.09) 0.87 (0.06)

Table 2.2: Averaged expected prediction performance of ApicoAP (standard devia-
tion (sd) in parentheses) for the labeled datasets.

The final classifier for each dataset uses a single parameter set. To form this

parameter set we took the averages of the individual parameters obtained during

the cross validation procedure. We then adjusted the threshold value taking into

consideration the entire labeled dataset. Note that the performance measure used

for threshold determination was also the MCC. The resulting classifiers for the four

organisms were implemented in the ApicoAP software used for predicting putative

ApicoTPs (discussed in detail in the next section). Table 2.3 lists the performance

of ApicoAP for the different classifiers. In contrast to the values given in Table 2.2,

the values in Table 2.3 do not estimate how well ApicoAP will perform for unknown
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data but rather how well it performs for the available, labeled data.

Dataset
True positive
count (rate)

True negative
count (rate)

Overall
accuracy

P. falciparum* 73 (0.94) 26 (0.96) 0.94

P. falciparum 46 (0.98) 37 (0.9) 0.94

B. bovis 27 (0.96) 26 (0.9) 0.93

T. gondii 32 (0.91) 27 (0.82) 0.87

P. yoelii 32 (0.94) 33 (0.92) 0.93

Table 2.3: ApicoAP classifier performance on the labeled datasets.

A comparison between ApicoAP and PlasmoAP for the published P. falciparum

dataset is given in Table 2.4. The values in Table 2.4 show that ApicoAP provides

some improvement in both the true positive rate and the true negative rate, the latter

implying fewer false positive predictions.

Classifier
True positive
count (rate)

True negative
count (rate)

Overall
accuracy

ApicoAP 73 (0.94) 26 (0.96) 0.94

PlasmoAP 72 (0.92) 22 (0.81) 0.9

Table 2.4: Comparison of ApicoAP and PlasmoAP for P. falciparum dataset of 78
positives and 27 negatives.
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2.4.2 Comparison of ApicoAP model with various machine learning
approaches

A comparison between ApicoAP and various machine learning algorithms is

given in Table 2.5 using 5-fold cross validation accuracy as the performance metric.

Experiments are conducted with the help of the Weka tool [Hall et al., 2009]. Fre-

quencies of the amino acids appeared in PRS and ARS are calculated for each protein

sequence over the anticipated TP region by assuming a fixed length of 100. These

frequencies are used to define the feature space. Several algorithms are used to train

classifiers in this feature space. Table 2.5 lists the algorithms that provide the most

promising results. When all the amino acids are used in feature extraction, instead

of the ones listed in PRS and ARS, performances were poorer. As anticipated TP

region length, values between 80 and 120 with increments of 10 are explored, and 100

is found to be the value that gave the best performance results. Several kernel choices

and parameters are explored for the SVM classifier and the best results are achieved

with the polynomial kernel with degree 1. The values in Table 2.5 show that Api-

coAP performs significantly better than the other algorithms on the B. bovis dataset.

Among the algorithms competed, ApicoAP is the top performer on the P. falciparum

and P. yoelii datasets, and it performs slightly worse than the top performer, näıve

Bayes algorithm, on the T. gondii dataset.
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Dataset
Näıve
Bayes

Logistic
regression SVM ApicoAP

B. bovis 0.65 0.72 0.65 0.82

P. falciparum 0.80 0.76 0.84 0.87

P. yoelii 0.83 0.76 0.83 0.85

T. gondii 0.84 0.74 0.81 0.83

Table 2.5: Comparison of ApicoAP model with various machine learning algorithms:
5-fold cross-validated classification accuracy is used as the metric. Top performer for
each dataset is shown in bold font.

2.4.3 ApicoAP predictions

After a given training set is used in the classification model, a rule-based clas-

sifier is obtained that predicts an ApicoTP when the following criteria are met:

• The protein sequence is predicted to contain an SP.

• The region of Lr amino acids following the SP cleavage site contains a pattern of

Lp amino acids with a p-criterion value greater than or equal to the determined

threshold.

The classifiers obtained using the training data available for P. falciparum, P.

yoelii, B. bovis, and T. gondii are available in the ApicoAP software package. These

classifiers were used to predict ApicoTPs as described in this section.
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Many proteins expressed in the genomes of P. falciparum, P. yoelii, B. bovis,

and T. gondii are predicted to contain SPs. The cardinality of these proteins for each

organism, excluding the ones that are used for training and testing, is listed in Table

2.6. The number of proteins predicted to be ApicoTPs by ApicoAP is also listed in

Table 2.6.

Organism
SP-containing
protein count*

ApicoAP positive
prediction count

P. falciparum 1046 542

B. bovis 515 194

T. gondii 1037 417

P. yoelii 1049 285

Table 2.6: ApicoAP predictions for SP-containing P. falciparum, B. bovis, T. gondii,
and P. yoelii proteins. *From all SP-containing protein sets, we excluded the training
data.

Of the 1046 SP-containing P. falciparum proteins, 358 are predicted to be

ApicoTPs by PlasmoAP. Of these 358, 261 (261/358 = 73%) are also predicted to be

ApicoTPs by ApicoAP. The remaining SP-containing P. falciparum proteins (1046-

358 = 688) are predicted to be non-ApicoTPs by PlasmoAP. Of these 688, 407

(407/688 = 60%) are also predicted to be non-ApicoTPs by ApicoAP. This leaves

281 (688-407 = 281) that are identified as additional putative ApicoTPs by ApicoAP.
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Due to a lack of prediction tools in the literature for B. bovis, P. yoelii, and T.

gondii, we were unable to compare our prediction results against a reference.

2.4.4 Optimized model parameters for ApicoAP classifiers

Figure 2.2 presents the frequency distributions for the preferred and avoided

residues within the p regions of the training sequences for each organism. These

regions are detected by applying the final ApicoAP classifiers to the sequences. In

general, weight parameter estimates are found to be proportional to the differences

between the frequency of residues for positive and negative sets. For P. falciparum,

lysine (K) seems to have the greatest effect among the amino acids contributing to

the preferred residue set score (PRSS ). The greatest effect on the PRSS for the P.

yoelii and B. bovis classifiers comes from Arginine (R) and for the T. gondii classifier

it comes from Serine (S). All these estimates seem to be consistent with the given

histograms.

The estimated region length parameter r was found to be 60, 62, 70, and 88 for

P. falciparum, P. yoelii, B. bovis, and T. gondii, respectively. The estimated length

of the p region was found to be 31, 36, 35, and 28 for P. falciparum, P. yoelii, B.

bovis, and T. gondii, respectively.

Figure (2.3) shows how training data are mapped onto the PRSS -ARSS plane
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when the final classifiers are applied. The discriminating line is shown, where the

PRSS -intercept of this line corresponds to the estimated limiting value lv, given by

Eq. (2.4), and the slope of the line corresponds to the estimated threshold value over

the p-criterion value, given by Eq. (2.3). One interesting observation is that many

of the T. gondii proteins contain p regions with no acidic residues, i.e. the ARSS is

zero. Misclassifications of negative training data appear to be associated with this

type of p region.

In addition to the content of the p regions presented in Figure 2.2 we analyzed

the locations of these regions among our positive training data (with cardinality of

144). In about 55% of the sequences, the p region identified (with max p-criterion

value) appears immediately after or within 5 residues of the predicted SP cleavage

site. For the remaining sequences, the p region appears (on average) 20 residues

away from the SP cleavage site. We analyzed the region between the predicted SP

cleavage site and the start of the p region, which we refer to as the pre-pattern region.

In order to account for SP cleavage site prediction errors, we assume a pre-pattern

region exists when the p region appears 5 or more residues away from the predicted

SP cleavage site. Our goal was to compare the acidic residue (D and E) frequencies

of these two regions. Hypothesis testing was applied to confirm that the mean of the

difference differs from zero. For this test and for all the interval estimates following,

we used a p-value of 0.05. The acidic residue frequency in the pre-pattern region was
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observed to be higher than in the p region by 8% to 11% in 78% of these proteins.

The highest and lowest differences observed were 33% and 1%, respectively.

We repeated the same analysis on a subset of our positive training data con-

taining only the experimentally confirmed ApicoTPs (with cardinality of 70). In 43%

of these, a pre-pattern region existed. The acidic residue frequency in the pre-pattern

region was observed to be higher than in the p region by 6% to 11% in 90% of these

proteins. Similar tendencies were also observed among the ApicoTPs predicted by

ApicoAP.

Experimental findings for T. gondii transit peptides (TP) indicate that the

absence of acidic residues in the N-terminal portion of the TP is important for TP

fidelity, even more important than the presence of positive charge [Tonkin et al.,

2006]. Tonkin et al. used the acyl carrier protein (ACP) from T. gondii in these

experiments. ApicoAP identifies no pre-pattern region in this particular protein,

which means that the p region is located immediately after the predicted SP cleavage

site. This indicates that the prediction mechanism of ApicoAP, based entirely on the

p region, which does not necessarily appear on the N-terminal portion of a TP, does

not contradict the experimental findings.
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2.5 Discussion

The apicoplast is a unique organelle that resides in a group of eukaryotic para-

sites, known as Apicomplexa, which are responsible for a wide range of serious diseases

among humans and livestock. As resistance to commonly used drugs increases in api-

complexan parasites, it is important to find new drug targets. The apicoplast is an

essential organelle for the survival of these parasites and, with its prokaryotic ori-

gin, is viewed as a promising drug target. The majority of apicoplast proteins are

nuclear-encoded and targeted post-translationally to the apicoplast organelle. Ex-

perimental identification of apicoplast-targeted proteins (ApicoTPs) is a costly and

time-consuming task. Accurate in silico prediction methods are needed to accelerate

the identification of promising drug targets.

The computational approach available for genome-wide ApicoTP prediction,

known as PlasmoAP [Foth et al., 2003], was developed to identify ApicoTPs in P.

falciparum and, as such, application to other Apicomplexa is considered to be unreli-

able. We have developed an alternative computational model ApicoAP. In ApicoAP,

we conduct a systematic search over a rule space using the expected prediction per-

formance of a rule on a training set as the optimization criterion. The rule space

is formalized by our parametric rule definition, and optimization is performed using

a genetic algorithm. A major advantage of our approach to the genome-wide Api-
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coTP prediction task is that it is not restricted to a single organism but rather is

customizable to different organisms for which training data are available.

Performance of ApicoAP is evaluated for labeled datasets of P. falciparum, P.

yoelii, B. bovis, and T. gondii proteins, one of which is the dataset published in

conjunction with PlasmoAP [Foth et al., 2003]. The evaluation utilizes cross valida-

tion, a common approach used to validate classification models. The cross-validation

procedure provides an estimate of the prediction performance of a model by system-

atically retaining a portion of a labeled dataset and using this portion to test the

model obtained using the remainder of the dataset. The expected prediction accu-

racies, i.e., the accuracy for unknown proteins rather than the accuracy for labeled

data, for the current ApicoAP classifiers for P. falciparum, P. yoelii, B. bovis, and

T. gondii are found to be 87%, 85%, 82%, and 83%, respectively. The best expected

prediction accuracy is achieved using the P. falciparum training set, the largest of

the four training sets. The larger the training data set, the more robust and accurate

the resulting classifier is expected to be. With the addition of more training data,

the classifiers can be updated to provide greater accuracy. While the four classifiers

are specifically for use with the four species described, they may assist in the iden-

tification of potential ApicoTPs for related species when the AT-codon biases of the

corresponding genomes are similar.

In this study we present ApicoAP, the first computational model capable of
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identifying ApicoTPs in multiple species of Apicomplexa. In addition, we provide a

user-friendly, Python-based program that includes the ApicoAP classifiers for P. falci-

parum, P. yoelii, B. bovis, and T. gondii. ApicoAP provides a learning framework for

ApicoTP prediction based on a systematic approach to finding the rule-based classifier

with the best expected prediction performance over a training set. This framework

can be applied to other domains for which it is desirable to have a discriminating

rule-finding process that is automated.
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Figure 2.2: Averaged frequency distributions of preferred and avoided residues for
the p regions of the training sequences: This figure presents the frequency distribu-
tions of preferred and avoided residues for the p regions of the training sequences for
each organism. p is the contiguous sub-region with length Lp in the anticipated TP
region r that has the maximum p-criterion value, given by Eq. (2.3). Final ApicoAP
classifiers are used to identify p regions over each sequence. Residue counts over indi-
vidual p regions are divided by the lengths of the p regions, and the resulting values
are averaged over positive and negative training sets for each organism.
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Figure 2.3: Training data mapped onto the PRSS-ARSS plane using final ApicoAP
classifiers: This figure shows how training data are mapped onto the PRSS-ARSS
plane when the final ApicoAP classifiers are applied. The preferred residue set score
(PRSS ) and avoided residue set score (ARSS ) quantify the existence of preferred
residue set (PRS ) and avoided residue set (ARS ) elements in the p regions of the
training sequences for each organism. See Eqs. (2.1) and (2.2) for definitions. The
discriminating lines are shown on each plot, where the PRSS -intercept of each line
corresponds to the estimated limiting value lv, given by Eq. (2.4), and the slope of
each line corresponds to the estimated threshold value over the p-criterion values,
given by Eq. (2.3).
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CHAPTER 3. APICOAMP

3.1 Introduction

Apicomplexan parasites, including the causative agent of the most deadly form

of malaria, Plasmodium falciparum, contain a relict prokaryotic-derived plastid known

as the apicoplast. This organelle is essential for parasite survival and thus is a promis-

ing drug target. Most apicoplast proteins are nuclear-encoded and targeted post-

translationally to the organelle. In silico prediction of proteins that are destined to

the apicoplast lumen can be reliably performed for multiple species of Apicomplexa

because of the known bipartite signaling mechanism that requires an N-terminal sig-

nal peptide (SP) followed by a transit peptide (TP) [Foth et al., 2003, Cilingir et al.,

2012]. However, we have limited understanding of the signaling mechanism for pro-

teins that reside in the four membranes surrounding the apicoplast.

Recent experimental findings have confirmed many apicoplast-targeted mem-

brane proteins, which have been found to lack a bipartite signal [Karnataki et al.,

2007b, DeRocher et al., 2008, Sheiner et al., 2011]. These findings have revealed a

trafficking mechanism that occurs via the endoplasmic reticulum (ER) whereby an
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internal signal sequence anchors the protein on the ER membrane [Lim et al., 2009].

The remainder of the trafficking, explaining the transport of proteins from the ER to

apicoplasts, has not been dissected yet, but studies have confirmed the involvement

of vesicles for some apicoplast membrane proteins [Karnataki et al., 2007b, DeRocher

et al., 2008, Karnataki et al., 2007a]. Vesicular transport is not uncommon for other

cellular destinations by which membrane-bound proteins traffic through the ER en

route to an organelle. Transportation of such membrane proteins within the secretory

system involves short sequence based sorting signals that appear on the cytosolically

disposed regions of membrane proteins [Michelsen et al., 2005, Sato and Nakano,

2002].

Most of the recent findings on apicoplast membrane proteins apply to a subset of

membrane proteins that are called transmembrane proteins. These proteins contain

transmembrane domains (TMDs) that function as membrane anchors. The topology

of TMDs, i.e., the location and orientation of the membrane spanning regions, can

be reliably identified by well-established prediction algorithms [Krogh et al., 2001,

HOFMANN, 1993, Von Heijne et al., 1992]. These methods provide location as

well as direction information for each predicted TMD, indicating whether the non-

TMD regions of a protein reside in the cytosolic side or in the exoplasmic side of the

membrane.

Although well-established prediction algorithms exist for transmembrane do-
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main topology prediction, there is no computational approach in the literature that

identifies transmembrane proteins targeted to the apicoplast. In fact, prediction of

subcellular localization of membrane proteins had not been studied separately from

globular proteins until recent years. At present, only a handful of methods developed

specifically for membrane localization prediction exist in the literature. Pierleoni

et al. have described the shortcomings of not studying membrane proteins separately

from globular proteins, providing evidence that popular predictors mostly trained

on globular proteins fail to classify membrane proteins accurately. They developed

the predictor called MemLoci, which is trained on membrane proteins. MemLoci

greatly outperforms some popular general-purpose predictors on an independent set

of eukaryotic membrane proteins.

The MemLoci algorithm was highly influenced by the work of Sharpe et al.,

in which an original hypothesis regarding membrane protein localization prediction

was developed and tested. It is known that various membranes of eukaryotic cells

differ in composition. Sharpe et al. hypothesized that the sequences of TMDs should

reflect this compositional difference and should have different physical properties be-

cause TMDs are the regions of transmembrane proteins that reside in the membrane.

Through extensive analysis their work clearly demonstrated that there are in fact

identifiable differences in TMDs of known ER, Golgi, and plasma membrane proteins

in both vertebrates and fungi. Pierleoni et al. extended this idea and applied it on
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a larger scale to discriminate plasma membrane, internal membrane, and organelle

membrane proteins of eukaryotes.

In contrast to these two sequence-based methods, Du, Du et al. demonstrated

how the use of external information such as Gene Ontology (GO) annotations might

improve prediction of membrane protein localization. Prediction through annotation

transfer is a common methodology in subcellular localization prediction [Li et al.,

2012, Chi and Nam, 2012, Mei et al., 2011, Blum et al., 2009, Huang et al., 2008].

A downside of this approach is that one cannot predict the subcellular localization

if no annotation is available for a given protein. One generally overcomes this dis-

advantage by combining annotation transfer based predictors with other types of

predictors. This has the advantage of using existing knowledge on a class of proteins,

while still allowing prediction in cases where no prior knowledge exists. Recent studies

on subcellular localization prediction of membrane proteins have demonstrated the

utilization of an array of different feature sets as well as different machine learning

approaches. Sharpe et al. developed a neural network classifier that predicts local-

ization from amino acid composition, hydrophobicity characteristics, and the length

of membrane spanning regions of single-pass transmembrane proteins (proteins with

a single TMD). This method achieved a mean accuracy of 76% over 3 classes (ER,

Golgi, and plasma membrane) for which the highest accuracy achieved was 39% by

other popular localization predictors. Pierleoni et al. used hydrophobicity and com-
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position characteristics of amino acids over highly hydrophobic stretches, as well as

the N and C sequence termini of proteins, to train Support Vector Machine (SVM)

classifiers. Du determined the prospective localization of a given protein solely by

looking at the GO terms associated with a protein. Each GO term was assigned a

likelihood score during training, which was then used to quantify the likelihood of a

given protein belonging to a particular localization class. Du et al. improved this

approach by introducing the use of a sequence similarity search to enrich the set of

GO terms of a protein with the GO terms of proteins that share sequence similarity

with the given protein.

The trafficking of membrane proteins from ribosomes to their final destinations

is a process that involves diverse molecular mechanisms which have been only partially

unraveled [Pierleoni et al., 2011]. The strength of the four prediction approaches

described above [Pierleoni et al., 2011, Sharpe et al., 2010, Du, 2012, Du et al.,

2012] is their ability to discriminate membrane proteins by classes independent of the

trafficking mechanisms involved. Experimental verification of their success indicates

that emergent properties, in fact, do exist that are specific to membrane classes

and, importantly, these properties can be utilized by machine learning approaches to

predict membrane localization of proteins.

In this study, we have developed a method for predicting apicoplast-targeted

transmembrane proteins (ApicoTMPs) over multiple species of Apicomplexa, whereby
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several classifiers based on different algorithms and trained on different feature sets

are evaluated and combined in an ensemble classification model to get the best ex-

pected performance. Hydrophobicity and composition characteristics of amino acids

over transmembrane domains, existence of short sequence motifs over cytosolically

disposed regions, and Gene Ontology (GO) terms associated with given proteins are

the feature sets considered. Our model, ApicoAMP, is an ensemble classification

model that combines decisions of classifiers following the majority vote principle.

ApicoAMP, is trained on a set of proteins from 11 apicomplexan species and achieves

91% overall expected accuracy.

3.2 Methods

3.2.1 The dataset

We obtained experimentally-confirmed apicoplast-targeted proteins from the

ApiLoc database (version 3) [Woodcroft et al.] and from recent references [Sheiner

et al., 2011, Fleige et al., 2010]. Additionally, we identified orthologs of these proteins

from the OrthoMCL database (version 5) [Chen et al., 2006]. Proteins predicted to

contain transmembrane domains are used as the positive training set in the training

of ApicoAMP. The transmembrane Hidden Markov Model (TMHMM) [Krogh et al.,

2001] is used for transmembrane domain prediction.
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We obtained proteins from the ApiLoc database tagged as non-Apicoplast or

confirmed to localize to a parasitophorous vacuole, plasma membrane, rhoptry, mi-

croneme, Golgi, endosome, erythrocyte, dense granule, or host cell plasma membrane.

Additionally, we identified orthologs of these proteins from the OrthoMCL database

(version 5) [Chen et al., 2006]. Proteins predicted to contain transmembrane domains

are used as the negative training set in the training of ApicoAMP.

All protein sequences were obtained from EuPathDB (version 2.13) [Aurrecoechea

et al., 2010], which is the main biological sequence repository for eukaryotic pathogens

such as Apicomplexa. Redundant sequences that share more than 70% sequence simi-

larity were eliminated from both negative and positive sets using the CD-HIT method

[Li and Godzik, 2006].

Proteins from 11 apicomplexan species exist in the resulting sets, namely Plas-

modium knowlesi, Plasmodium berghei, Neospora caninum, Toxoplasma gondii, Plas-

modium yoelii, Plasmodium chabaudi, Plasmodium falciparum, Babesia bovis, Theile-

ria annulata, Plasmodium vivax, and Theileria parva. Table 3.1 shows the breakdown

of the training set by positive (ApicoTMP) and negative (non-ApicoTMP) classes for

the 11 species. Overall, positive and negative training sets contain 56 and 154 pro-

teins, respectively.
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Apicomplexan
species

Putative
ApicoTMPs

Putative
non-
ApicoTMPs

N. caninum 2 5

P. vivax 4 7

B. bovis 5 5

P. yoelii 4 3

T. parva 3 4

P. berghei 4 9

P. chabaudi 5 7

P. falciparum 13 75

P. knowlesi 5 7

T. gondii 8 28

T. annulata 3 4

Total 56 154

Table 3.1: Breakdown of the labeled datasets into positive (ApicoTMP) and negative
(non- ApicoTMP) classes for 11 species of Apicomplexa.

3.2.2 Computational problem definition

From a computational point of view, the prediction of a given protein as an

ApicoTMP or non-ApicoTMP can be stated as a binary classification problem, for

which we choose ApicoTMP as the positive class. A typical supervised learning
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strategy utilizes a training set containing positive and negative labeled instances to

learn a mapping from the input space to the output space. In our case, the input

space is defined as the set of all apicomplexan protein sequences, and the output

space contains two class label values: ApicoTMP and non-ApicoTMP. When applied

to a classification model, the training procedure produces a classifier instance, which

can then be employed to predict the status of unlabeled proteins.

Devising a typical supervised classification model requires a decision of how to

encode inputs—i.e., how to map them into a given feature space—whereby positive

and negative classes can be reliably separated. Another important decision is the

choice of a classification algorithm to actually separate positive and negative classes

in the feature space. In the next sections, we discuss the different classification algo-

rithms and feature extraction strategies we evaluated to develop nine different clas-

sification models, each a candidate solution for the ApicoTMP prediction problem.

The performance of the different classification models is compared in the results sec-

tion, and the model with the best performance is identified. Rather than presenting

only the best model, we present all the candidate models we considered. Because at

present no established computational approaches to our problem exist in the litera-

ture, we believe that including this information will be useful for future development.

In addition, it demonstrates the merits of our choice in comparison to the other viable

candidate models.
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3.2.3 Classification algorithm selection

After considering a number of different classification algorithms, including näıve

Bayes, logistic regression, and neural network algorithms, we chose to use the sup-

port vector machine (SVM) as the main classification algorithm for our experiments.

SVM is a popular classification algorithm [Vapnik, 1999, Vapnick, 1998], which has

been successfully applied in many problem domains including the subcellular local-

ization prediction of proteins. SVM is a supervised learning algorithm that produces

a classifier by constructing an optimal hyperplane dividing the positive and negative

classes with a maximum margin of separation. The SVM-light classifier [Joachims,

1999] was used with the radial basis function kernel. Gamma and C parameters were

set to 1 and 4, respectively, based on a grid search in parameter space. In a grid

search, one defines ranges and increments for all parameters and evaluates possible

combinations in the resulting n-dimensional parameter grid space to find the best

parameter combination. We utilized this approach to determine all the parameters

used in this work. Initially we used relatively large ranges and increment values which

we then gradually reduced. More is said about parameter optimization in the results

section.

For our candidate models, we utilized the SVM classification algorithm with

different feature sets. In addition to the use of SVMs, we evaluated the Projected
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Gene Ontology Score (PGOS) [Du et al., 2012] classification algorithm. Given a

protein associated with a number of GO terms, the PGOS algorithm uses the training

set to calculate the prospect of each GO term being associated with both positive and

negative instances. Scores associated with each GO term are then added over each

class and the one with the maximum score is chosen as the class of the given protein.

As described earlier in the dataset section, our training set consists of 56 pos-

itives and 154 negatives, which means that our training set is imbalanced. Training

a classifier on an imbalanced dataset is often problematic and this is true for SVMs

[Ben-Hur and Weston, 2010, Provost, 2000]. Two common ways of overcoming this

problem are by using separate soft-margin constants for positive and negative classes

and by altering the training balance. From our experiments we found that the latter

approach works best for our training set.

To address the imbalanced training data problem, we evaluate each of the nine

classification models with an ensemble classification architecture consisting of classifi-

cation units that are independently trained on balanced subsets of the training data.

Each balanced subset contains all positive instances and the same number of negative

instances, which are drawn randomly from the negative training set. Each classifica-

tion unit is trained using a different training subset but the same classification model.

Because having 10 classification units guarantees that almost every negative instance

appears at least once in one of the training subsets, we use 10 units. Given a protein
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sequence, each classification units decision is obtained, which can be either positive

or negative. For a protein to be labeled as positive, at least n out of 10 classification

units should give a positive class label. Here, n or the vote threshold is treated as a

parameter in our classification architecture and is set by the user. We evaluate the

use of different classification models assuming this standard ensemble architecture,

and we report performance for several values of the vote threshold parameter.

3.2.4 Extracting features from proteins

As stated earlier, development of a classification model requires both a classi-

fication algorithm and a method for mapping input protein sequences into feature

space. We described candidates for classification algorithms in the previous section,

and in this section we discuss the different feature sets we extract from the training

data for use in differentiating between ApicoAMPs and non-ApicoAMPs.

Feature extraction from transmembrane domains

The sequences of transmembrane domains (TMD) reflect the different physical

properties of various membranes of eukaryotic cells. As demonstrated by Sharpe

et al. and Pierleoni et al., one can exploit this difference for transmembrane protein

classification.

We identified TMDs in protein sequences using the transmembrane Hidden
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Markov Model (TMHMM) [Krogh et al., 2001]. Since N-terminal transmembrane

domains are often confused with signal peptide (SP) regions, we crosschecked pre-

dictions of TMHMM with SignalP 3.0 [Bendtsen et al., 2004] predictions to elimi-

nate proteins with SPs rather than a single transmembrane domain (TMD) at the

N-terminal. A TMD region is composed of 3 sub-regions: a hydrophobic core and pre-

TMD and post-TMD sub-regions that are aligned with the inner and outer leaflets of

the membrane. When TMDs are aligned from the cytoplasmic side to the exoplasmic

side rather than from N terminus to C terminus, pre-TMD and post-TMD regions

are found on the cytoplasmic and exoplasmic end of the TMD region, respectively. A

schematic representation of a typical TMD region is given in Figure 3.1.

Figure 3.1: Three subregions of a transmembrane domain (TMD): A TMD region is
composed of 3 sub-regions: a hydrophobic core and pre- and post-TMD sub-regions
that are aligned with the inner and outer leaflets of the membrane. When TMDs are
aligned from the cytoplasmic side to the exoplasmic side, rather than N terminus to
C terminus, pre-TMD and post-TMD regions are found on the cytoplasmic (c) and
exoplasmic (e) end of the TMD region, respectively.

Hydrophobic cores of TMDs were identified following a procedure similar to the

one proposed by Sharpe et al.. The approximate TMD edges identified by TMHMM
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were used as guides and these edges were indented by i amino acids at each end.

Then the resulting region was scanned through a window of w residues centered

on the measured residue. For each measured residue, a decision for involvement in

a hydrophobic core was reached by comparing the average hydrophobicity over the

window against a threshold (-0.94 kcal/mol) and by comparing the hydrophobicity

of the measured residue against another threshold (8 kcal/mol). If one of these

measurements exceeded the given thresholds for a residue, it was set as the edge

of the hydrophobic core. Scanning was performed from each end toward the other.

Thresholds involved in this procedure were taken directly from [Sharpe et al., 2010].

The hydrophobicity scale of Goldman, Engelman, and Steitz (GES) [Engelman et al.,

1986] was used.

Once the hydrophobic core of a TMD was identified, pre-TMD and post-TMD

regions were found to be the regions of length p that start immediately before and

immediately after the TMD core. The following features were extracted from the

TMDs of a protein:

• Frequency of each amino acid in the identified hydrophobic core of a TMD,

recorded in a 20-valued vector with elements ranging between 0 and 1. An

element-wise average is taken over all TMDs in a protein sequence.

• Average length of the hydrophobic cores of a TMD.
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• Average hydrophobicity of the hydrophobic cores of a TMD as well as the

average hydrophobicity of fractions of the cores such as each half, each one

third, and up to each one eighth of the cores.

• Average hydrophobicity of the pre-core and post-core regions of a TMD.

The parameters used during this feature extraction procedure, namely the in-

dentation amount i, window size w, and pre-core and post-core region lengths p, were

determined via a grid search in parameter space and set to be 5, 5, and 4, respectively.

Feature extraction based on short sequence motifs

Transportation of membrane protein targeting within the secretory system is

known to involve short sequence motifs that appear on the cytosolically disposed

regions of these proteins. A recent study confirmed that a cytosolic tyrosine-based

motif is required but not sufficient for apicoplast targeting of a T. gondii protein,

apicoplast phosphate transporter 1 (APT1) [DeRocher et al., 2012]. The sequence

motif identified was Y[GE], and it was observed in the N-terminal region prior to

the first TM domain. Although this motif does not appear with significant frequency

in our training set, this finding motivated our use of motif discovery algorithms to

identify a set of short sequence motifs for feature encoding. We used TMHMM [Krogh

et al., 2001] to identify the regions of transmembrane proteins predicted to reside on

the cytoplasmic side of the membrane in our training data. Next two different motif
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discovery algorithms, MERCI [Vens et al., 2011] and MEME [Bailey et al., 2006],

were used to perform motif discovery over the cytosolically disposed regions of the

proteins.

MERCI uses a consensus string model as the motif model, which essentially

expresses motifs as regular expressions. This method identifies the top k motifs

that are most frequent in a positive training set and absent from a negative training

set. The MERCI algorithm requires two parameters FP and FN , which denote the

minimal frequency threshold for the positive sequences and the maximal frequency

threshold for the negative sequences, respectively. MERCI performs level-wise search

over the motif space, modifying the basic AprioriAll algorithm, such that motifs that

occur frequently in positive sequences are searched for compliance with the maximal

frequency threshold FN .

MEME uses a position weight matrix model as the motif model, which describes

the probability of each possible letter at each position in a motif. The original algo-

rithm only uses positive training data to determine the set of overrepresented motifs,

but the use of position-specific priors allows the algorithm to make use of negative

training data [Bailey et al., 2010]. MEME applies an expectation maximization al-

gorithm to fit a mixture of motif models. It identifies k motifs with widths between

widthmin and widthmax and uses a p-value threshold p while quantifying the existence

of a motif in a sequence.
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The motifs identified by MERCI were used as features to encode the proteins

where feature quantification was performed as follows: if a protein contains a motif,

its corresponding feature value is taken as 1; otherwise it is taken as 0. Because it is a

probabilistic model, MEME associates p-values with motif occurrences. When MEME

was utilized, feature quantification involved the use of these p-values. The parameters

required by the MERCI algorithm, namely FP , FN , and k, were determined via a grid

search in parameter space and set to be 5, 2, and 20, respectively. The same strategy

was used with MEME, where k, widthmin , widthmax , and p were set to be 10, 3, 5 and

0.1, respectively.

Feature extraction based on GO annotations

The goal of the Gene Ontology (GO) project is to provide a controlled vocab-

ulary for gene and gene product attributes. Ontology covers 3 domains: cellular

component, molecular function, and biological process. GO terms associated with a

protein can be used as descriptors of the protein. Du, Du et al. demonstrated the use

of this approach in subcellular localization prediction of eukaryotic membrane pro-

teins. In their initial work, they determined the prospective localization of a protein

solely by looking at the GO terms associated with the given protein. They improved

this approach by introducing the use of a sequence similarity search to the model.

A sequence similarity search is used to identify proteins that are similar to a given

protein. The GO terms of the similar proteins are then utilized to enrich the set of
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GO terms for the given protein.

We evaluated both feature extraction strategies used in [Du, 2012] and [Du

et al., 2012]. Differing from Du et al., however, we used an e-value threshold of 1e-

05 to ensure that only sufficiently similar sequences were used in the GO term set

enrichment process. This, in fact, improved the performance. We built a custom

database with Blast+ [Camacho et al., 2009] for our sequence similarity search, using

all apicomplexan proteins that share no more than 70% sequence similarity in the

creation of this database. We used the CD-HIT method to identify the clusters of

proteins whose sequences are sufficiently similar to each other. CD-HIT selects a

representative protein from each cluster. If a protein was not the only one in its

cluster, we enriched the GO term list of the representative proteins with the GO

terms of the other proteins in the cluster. Du et al. did not discuss this sort of

enrichment process in the preparation of the database to be used in the sequence

similarity search, but we think it is a crucial step. The only parameter in this feature

extraction method is the number of similar sequences that need to be found in the

database. Because of the e-value threshold we introduced, this parameter indicates

the maximum number of similar sequences to be found. The actual number of similar

sequences to be used for a particular protein varies due to the e-value threshold. The

maximum number of sequences parameter was determined via a grid search and set to

be 25. We observed that as the value of this parameter is increased, the performance
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improves, but after it reaches 25 there is no substantial increase in the performance.

In our training set, the average actual number of similar sequences used for a protein

was observed to be 11. EuPathDB (version 2.13) [Aurrecoechea et al., 2010] was used

to obtain the GO terms associated with all apicomplexan proteins. Both the official

GO annotations and the predicted ones listed in EuPathDB were used in feature

encoding.

Often a protein is not associated with any GO term even following application

of the GO term enrichment process, as was observed in about 15% of the proteins in

our training set. The presence of a GO term provides useful information regarding

the prospect of a protein belonging in a localization class. However, the absence of

a GO term is indeterminate because the GO annotation process only evolves as our

knowledge of genes and gene products grows. Because of this limitation, a binary

classification model using GO terms to encode a protein does not work because there

are 3 possible outcomes: positive, negative, or no-prediction where the no-prediction

outcome indicates the absence of known GO terms. A model has to be designed to

handle this latter outcome.
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3.2.5 Classification models

The two classification algorithms and the various feature extraction methods

were used in combination to create nine candidate classification models for ApicoTMP

prediction. Three of the classification models use the SVM classification algorithm,

two use the PGOS classification algorithm, and the remaining four are ensemble

models that use both algorithms. The SVM-based models are trained on features ex-

tracted from transmembrane domains and on motif features identified by the MERCI

and MEME motif discovery algorithms and are called the SVM-TM Classifier, SVM-

MERCI Classifier, and SVM-MEME Classifier, respectively. The PGOS-based models

are trained using GO terms and enriched GO terms obtained via sequence similarity

searches. These are called the PGOS Classifier and the PGOS-enriched Classifier,

respectively.

Our ensemble models consist of two or more of the classifiers described in the

previous paragraph. The decisions of the individual classifiers are combined following

a majority vote principle, i.e., the final decision is based on the majority vote. For

cases when an even number of votes results in a tie, we optimistically choose the

protein to be a positive instance.

All the trained classifiers except the ones trained on GO terms label a given

protein as either positive or negative. The classifiers that are trained on GO terms do
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not make a prediction if no GO term is associated with the given protein. When this

is the case, the decisions of the rest of the classifiers in the ensemble are combined

following the majority vote principle, ignoring the existence of the classifier trained

on GO terms.

3.3 Results

Our nine classification model candidates were evaluated using an expected pre-

diction accuracy metric obtained via 5-fold cross validation. Earlier we described the

method we employ to balance our training set, which consists of 56 positives and 154

negatives. To implement this balancing approach for 5-fold cross validation, we ran-

domly divided our positive set into 5 groups, each group containing approximately 11

positive instances, and our negative set into 14 groups, each containing 11 instances.

These groups of positive and negative instances were used first to determine the op-

timum parameters for a classification model, next to determine the accuracy of the

classification model with the given parameters, and finally to train the classification

model found to be most accurate in the previous step to serve as ApicoAMP. These

steps are described in the following paragraphs.

From the 5 groups of positives and 14 groups of negatives, two groups from each

were placed in reserve. The remaining 3 groups of positives and 3 groups randomly



60

selected from the 12 remaining groups of negatives were used for training each clas-

sification unit during the parameter optimization step. As we previously described,

our classification architecture consists of 10 classification units. Thus, training was

performed 10 times with the same 3 groups of positives but 3 different groups of nega-

tives, randomly chosen, for each classification model. One of the reserved groups was

used to test the classification accuracy for a given set of parameters. The procedure

was repeated with a different set of parameters until the results converged to the

optimum parameter set, i.e., the set that produced the best classification accuracy.

The parameter test set was then merged with the parameter training set, and the

resulting set comprised of 4 groups was used to train each of the ten classification

units constituting each classification model. The remaining reserved group, the vali-

dation set, was used to determine the accuracy of each classification model. To insure

that each positive and negative group was used at least once in the validation set,

we conducted 70 (14x5 = 70) training sessions for each classification model, and the

prediction performance for each validation set was noted. The average prediction ac-

curacy for the validation sets, i.e., the average of 70 different values, gives an estimate

of the expected prediction accuracy of a classification model [Alpaydin, 2004].

Table 3.2 presents the average expected accuracies of the classification models

for several values of the vote threshold parameter. The PGOS-enriched and SVM-TM

Classifiers both did quite well, and the ensemble classifier combining their decisions
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was found to give the best performance compared to the other models. This classifier

achieved 91% expected prediction accuracy with a vote threshold of 10. Because it

gave the best performance, we chose this ensemble model to serve as ApicoAMP.

Our experiments demonstrated that the use of the GO term enrichment process in

feature encoding results in significantly better performance compared to the approach

described in [Du, 2012]. We attribute the poor performance of the motif classifiers to

the cardinality of our training set. Ab initio motif discovery algorithms like MERCI

and MEME tend to require a substantial amount of training data to avoid overfitting,

i.e., to be capable of identifying motifs that are generalizable.

Table 3.3 lists the average expected accuracy of ApicoAMP for the 11 apicom-

plexan species that appear in our training sets along with their appearance rate in

the test sets. One can observe that the appearance rate of a species in the training

set is not correlated with the estimated prediction performance of ApicoAMP on the

proteomes of these species, which indicates that ApicoAMP does not favor the most

frequently appearing species in the training set, but instead it is able to capture the

general characteristics of ApicoTMPs for multiple species.

All available apicomplexan proteins from 16 apicomplexan species were down-

loaded from EuPathDB (version 2.16) [Aurrecoechea et al., 2010] and subjected to

TMHMM and SignalP 3.0 to identify 16914 transmembrane proteins. ApicoAMP

was used to predict putative ApicoTMPs from these apicomplexan proteins. This
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final ApicoAMP classifier was trained using all 5 groups of positive instances and

14 groups of negative instances, i.e., all the available training data. Following the

same architectural principle we used in performance estimations, we trained 10 clas-

sification units using training subsets, each containing 56 positives and 56 negatives

randomly selected from the set of 154. Table 3.4 presents the prediction statistics for

each apicomplexan species using 10 as the value of the vote threshold.

3.4 Discussion

The apicoplast is an essential organelle for a group of eukaryotic parasites known

as Apicomplexa, which includes Plasmodium falciparum, the causative agent of the

most deadly form of malaria. This organelle is important not only for the survival of

the parasite, but its prokaryotic origin makes it an ideal drug target. As the gatekeep-

ers of this important organelle, apicoplast membrane proteins are potentially excellent

drug target candidates and, as such, their identification is important. Experimental

identification of apicoplast membrane proteins is a costly and time-consuming task.

Accurate in silico prediction methods are needed to accelerate the identification of

promising drug targets. Unfortunately, no such prediction method exists.

With the publication of recent experimental findings on a subset of apicoplast

membrane proteins, called transmembrane proteins, we were able to gather a reason-
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ably sized training set that we utilized to develop a computational approach capable

of identifying apicoplast-targeted transmembrane proteins (ApicoTMP). ApicoAMP

is the first computational model that identifies ApicoTMPs in multiple species of

Apicomplexa. Although the trafficking mechanisms involved in apicoplast membrane

protein targeting have not been fully dissected, existing research on membrane lo-

calization prediction demonstrates the feasibility of finding emergent properties for

specific membrane classes in a group of proteins regardless of the trafficking mecha-

nisms used to reach their destinations. Such emergent properties have been utilized

by existing machine learning approaches [Pierleoni et al., 2011, Sharpe et al., 2010,

Du, 2012, Du et al., 2012] to successfully predict membrane localization of proteins.

Moreover, several of these approaches used heterogeneous training sets for the desti-

nation membrane. For example, Pierleoni et al. combined proteins known to localize

to either mitochondria or plastids in one training set that was used to predict proteins

that localize to a class they defined as the organelle membrane class. Our treatment

of the apicoplast membrane as a single class rather than as four separate classes, one

for each of the four membrane layers, adheres to existing approaches reported in the

literature. When a sufficient number of apicoplast membrane proteins localizing to a

specific membrane layer have been identified, it will be possible to develop prediction

methods with greater granularity.

In the development of ApicoAMP, we exploited the discovery by Sharpe et al.
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that the sequences of transmembrane domains (TMDs) reflect the different phys-

ical properties of various membranes of eukaryotic cells. The SVM-TM classifier

trained using features extracted from the TMDs of apicomplexan proteins achieved

82% overall expected accuracy in the ApicoTMP prediction task, providing support-

ing evidence for this finding.

Du et al. demonstrated the merits of using Gene Ontology (GO) terms as de-

scriptors of proteins with their classification algorithm PGOS. Their feature extrac-

tion strategy included an enrichment process of the GO term set of a given protein

with the help of a sequence similarity search. We revised their method by introducing

an e-value threshold in the sequence similarity search to ensure that only sufficiently

similar sequences are used in the GO term set enrichment process. We also applied an

additional GO term enrichment process to the database that is used in the sequence

similarity search. The PGOS-enriched classifier trained using features calculated by

our revised GO term enrichment procedure achieved 88% overall expected accuracy

in the ApicoTMP prediction task.

ApicoAMP is an ensemble classification model that combines the decisions of the

SVM-TM and PGOS-enriched classifiers. ApicoAMP is trained on a set of proteins

from 11 apicomplexan species and achieves 91% overall expected accuracy. By design,

ApicoAMP uses 10 classification units, each containing one SVM-TM and one PGOS-

enriched classifier. Each unit has a single vote, which can either be ApicoTMP or
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non-ApicoTMP. If one of the classifiers indicates that a given protein is an ApicoTMP,

the vote is given as ApicoTMP. If n of the 10 classification units vote for ApicoTMP,

ApicoTMP is predicted as the label for a given protein. Here n, the vote threshold, is

treated as a parameter in ApicoAMP and is set by the user.

ApicoAMP software allows users to set the vote threshold parameter during

prediction. If a user wants to obtain minimal false positive predictions, this parameter

should be set to a high value such as 9 or 10. If a user wants to obtain minimal false

negative predictions, this parameter should be set to a low value such as 6 or 7.

In this work we presented ApicoAMP, the first computational model capable of

identifying ApicoTMPs in multiple species of Apicomplexa. In addition, we provide

a user-friendly, Python-based program of the ApicoAMP classifier.
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Classifier vt = 6 vt = 7 vt = 8 vt = 9 vt = 10

PGOS-enriched
& SVM-TM
Ensemble

0.868
(0.98, 0.76)

0.888
(0.98, 0.80)

0.903
(0.97, 0.84)

0.903
(0.95, 0.86)

0.911
(0.92, 0.90)

PGOS-enriched
Classifier

0.875
(0.80, 0.95)

0.876
(0.80, 0.95)

0.873
(0.79, 0.95)

0.866
(0.78, 0.95)

0.860
(0.76, 0.96)

PGOS
& SVM-TM
Ensemble

0.842
(0.94, 0.74)

0.855
(0.92, 0.79)

0.862
(0.89, 0.83)

0.856
(0.85, 0.86)

0.858
(0.82, 0.90)

PGOS-enriched,
SVM-TM,
& SVM-MERCI
Ensemble

0.849
(0.82, 0.88)

0.841
(0.78, 0.90)

0.827
(0.73, 0.92)

0.809
(0.68, 0.94)

0.767
(0.58, 0.96)

PGOS-enriched,
SVM-TM,
& SVM-MEME
Ensemble

0.834
(0.82, 0.85)

0.834
(0.79, 0.88)

0.831
(0.76, 0.90)

0.814
(0.72, 0.91)

0.789
(0.64, 0.94)

SVM-TM
Classifier

0.814
(0.83, 0.79)

0.824
(0.81, 0.84)

0.822
(0.76, 0.88)

0.793
(0.68, 0.90)

0.758
(0.58, 0.94)

PGOS
Classifier

0.701
(0.47, 0.93)

0.699
(0.46, 0.94)

0.702
(0.46, 0.94)

0.7
(0.45, 0.95)

0.69
(0.42, 0.96)

SVM-MERCI
Classifier

0.63
(0.57, 0.68)

0.615
(0.51, 0.72)

0.605
(0.44, 0.77)

0.588
(0.37, 0.81)

0.559
(0.27, 0.84)

SVM-MEME
Classifier

0.59
(0.58, 0.60)

0.599
(0.57, 0.63)

0.602
(0.54, 0.66)

0.607
(0.53, 0.68)

0.610
(0.50, 0.72)

Table 3.2: Average expected accuracy of various classification models for the Api-
coTMP prediction problem with different values of the vote threshold(vt) parameter.
The table is sorted from best to worst performance. True-positive and false-positive
rates are in parentheses.
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Apicomplexan
species

Average Expected
Accuracy

Appearance Rate
in Test Sets

P. falciparum 0.833 0.421

T. gondii 0.925 0.172

P. berghei 0.980 0.062

P. chabaudi 1.000 0.057

P. knowlesi 1.000 0.057

P. vivax 0.978 0.053

B. bovis 0.895 0.048

N. caninum 0.906 0.033

T. parva 0.935 0.033

T. annulata 0.774 0.033

P. yoelii 0.982 0.029

Table 3.3: Average expected accuracy of ApicoAMP for 11 apicomplexan species
that appear in our training set together with their appearance rate. The value of the
vote threshold parameter is set to 10 for this analysis.
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Apicomplexan
species

Total
Transmembrane Proteins

ApicoAMP
Positive Predictions

T. gondii 1441 378

P. chabaudi 1178 376

P. berghei 1178 365

B. bovis 591 111

P. falciparum 1400 536

C. muris 694 154

T. parva 624 159

T. annulata 714 195

N. caninum 1188 265

P. knowlesi 1018 318

P. yoelii 2099 634

E. tenella 1261 295

C. parvum 660 139

C. hominis 619 132

P. cynomolgi 1118 319

P. vivax 1131 292

Total 16914 4668

Table 3.4: ApicoAMP predictions for 16 apicomplexan species. The value of the
vote threshold parameter is set to 10 for this analysis.
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CHAPTER 4. APICOAP PIPELINE

4.1 Introduction

Public gene and protein databases such as GenBank [Benson et al., 1997],

UniProt [Bairoch et al., 2005], and EuPathDB [Aurrecoechea et al., 2010] are major

resources for gathering data to train supervised machine learning applications used by

life scientists for a variety of objectives including the detection of targeting sequences

and the prediction of transmembrane domain topology. While these data resources

are quite dynamic in nature, that is to say they are continuously updated by the ad-

dition of new information, machine learning applications are often static and cannot

incorporate the new information. When a supervised machine learning approach is

introduced, by necessity the learning method is developed using the data available

in public resources at the current time to train classifiers or predictors and is then

provided for public use. It is not uncommon to find applications in prevalent use that

are trained using data sets that are outdated not long after their introduction. Given

that the vast majority of the procedures described for gathering training data can

easily be automated, requiring very little, if any, human assistance, it makes sense
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to transform valuable machine learning applications into self-evolving learners that

adapt to the ever-changing data on genes and proteins and to develop new machine

learning applications that are similarly capable.

In this study, we propose a new model of operation for specific supervised ma-

chine learning applications that is aligned with the needs of the fast changing nature

of genomic data. We believe that applications that learn from genomic data should

be defined in a pipeline in which the data gathering procedure for training data is

automated and the learning process is as well. Such a pipeline would function as a

classifier or predictor generator that does not require training data to be provided,

but instead is capable of generating a model from the information available from

public resources at a given time.

Because every learning problem has its own training data requirements and

dataset curation procedures, the proposed model of operation is best explained using

a case study. We have selected the apicoplast-targeted protein prediction problem

for our case study and utilize an existing machine learning model, ApicoAP [Cilingir

et al., 2012], in a pipeline that is comprised of an automated training data gathering

procedure and the classifier training routine defined as part of the ApicoAP model.
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4.2 ApicoAP Model

ApicoAP [Cilingir et al., 2012] is a generalized rule-based classification model

that identifies apicoplast-targeted proteins that use a bipartite signaling mechanism

(ApicoTPs). This model uses a training set containing known ApicoTPs and non-

ApicoTPs for an apicomplexan species as input and outputs a classifier that identifies

ApicoTPs from the proteins of this species. The ApicoAP prediction software cur-

rently offers service for 4 apicomplexan species. No other prediction method offers

such a service for the remaining 13 apicomplexan species whose genomes have now

been sequenced. ApicoAP is a generic model customizable to any apicomplexan

species that has training data. If a training data gathering procedure can be sys-

tematically defined and automated, one can utilize the ApicoAP model as part of

a pipeline to employ proteome information for an apicomplexan species to create a

classifier for identifying ApicoTPs from the proteins of this species. As the results

from experimental confirmation of ApicoTPs are published, the main resource for

obtaining training data, this pipeline will not only be useful for an apicomplexan

species for which no ApicoAP predictor exists, but it will also provide ever-improving

classifiers for apicomplexan species for which an ApicoAP predictor already exists.

In the remainder of this chapter, we will define a generic pipeline for the purpose

of ApicoTP prediction (hereafter referred to as the ApicoAP Pipeline) that consists of
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an automated training data gathering procedure and the ApicoTP classifier training

routine. In addition, we will discuss implementation of this pipeline, ApicoAP-CS for

ApicoAP C omplete Suite, which is a collection of web services. ApicoAP-CS can be

utilized to generate a species-specific ApicoAP classifier that can be easily integrated

into the ApicoAP prediction software. ApicoAP-CS utilizes public databases such

as ApiLoc [Woodcroft et al.], EuPathDB [Aurrecoechea et al., 2010] and OrthoMCL

[Chen et al., 2006], and public bioinformatics tools such as SignalP [Bendtsen et al.,

2004], and BLAST [Camacho et al., 2009]. ApicoAP-CS client software is available

at http://bcb.eecs.wsu.edu.

4.3 The ApicoAP Pipeline

Figure 1 shows the flowchart for the ApicoAP pipeline. The training data

gathering procedure begins with the curation of a set of proteins whose subcellular

localization has been experimentally confirmed. This set constitutes the seed training

set and is used to identify the orthologs of the member proteins from the proteins of

the apicomplexan species of interest. Known ApicoTPs and non-ApicoTPs for this

apicomplexan species together with the orthologs of the seed training set make up the

interim training set. A filtering step follows that eliminates proteins with no predicted

signal peptide as the presence of a signal peptide is a requirement for ApicoTPs. The

http://bcb.eecs.wsu.edu
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resulting set is then screened for redundant sequences, which are removed, and the

remaining elements form the final training set. This set is then fed into the ApicoTP

classifier training routine which produces a species-specific ApicoTP classifier. Each

of these steps is discussed in greater detail below.

4.3.1 Construction of seed training sets

Seed training sets contain proteins whose subcellular localization has been ex-

perimentally confirmed. Because the ApicoAP model requires two training sets, one

containing ApicoTPs (positive set) and the other non-ApicoTPs (negative set), two

disjoint seed sets are needed. These sets may contain proteins from multiple apicom-

plexan species. The positive seed set consists of proteins that are known to localize

to the apicoplast. The negative seed set consists of proteins that are known to lo-

calize to organelles in the cell other than the apicoplast. Proteins whose confirmed

localization does not necessarily rule out apicoplast targeting are not included in this

set. For example, proteins confirmed to localize to mitochondria, food vacuoles, the

endoplasmic reticulum, and the cytoplasm are eliminated because dual localization

incidents have been reported in the literature involving apicoplasts and these other

locations.

ApiLoc [Woodcroft et al.] is an expert-curated database which currently serves
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as the main resource for curating apicomplexan proteins whose subcellular localization

has been experimentally confirmed. Because at present this database is not updated

often, it may be beneficial to perform a literature search to insure that all possible

information is present in the seed training sets.

Figure 4.1: ApicoAP Pipeline.

ApicoAP-CS is capable of automatically parsing different ApiLoc versions to

extract the information necessary to prepare seed training sets. ApicoAP-CS also
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provides functionality for the user to submit additional proteins obtained from recent

experimental studies.

4.3.2 Search for orthologs

Orthologs are defined as genes or gene products in different species which de-

rive from a common ancestor [Fitch, 1970]. Orthologs are expected to retain the

same function in different species, thus having a strong likelihood of localizing to the

same organelle in a cell. Therefore, utilizing orthology search strategies in training

data gathering procedures, especially for subcellular localization prediction tasks, is

a common practice.

Several approaches have been developed to predict putative orthologous proteins

on the basis of various information sources including phylogenic relationships, protein-

protein interaction networks, and sequence similarity relationships. While a simple

BLAST (Basic Local Alignment Search Tool) search with a stringent e-value cut-off

may identify a sequentially conserved subset of orthologs of a protein in a database,

other tools attempt to recognize orthology relationships in the event of low sequence

conservation. Among other orthologous protein prediction tools, OrthoMCL [Chen

et al., 2006] has a special focus on eukaryotic genomes, and it also has the most

up-to-date support for apicomplexan species. EuPathDB [Aurrecoechea et al., 2010]
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provides a user-friendly interface for orthology searches with OrthoMCL.

ApicoAP-CS utilizes the web service interface provided by EuPathDB to au-

tomatically identify orthologs of the seed training set members in an apicomplexan

species. ApicoAP-CS also provides an alternative for newly sequenced genomes that

may not yet have OrthoMCL support. It uses a BLAST-based algorithm with a strin-

gent e-value cutoff of 1e-10, and the best hits for each protein in the seed training

sets are retained as orthologs when present. ApicoAP-CS provides the option of using

both methods and retaining the union set.

The orthology search results in two interim training sets, the positive and neg-

ative training sets. At the conclusion of this step, proteins appearing in both sets are

assumed to be caused by annotation errors and are discarded.

4.3.3 Filtering out proteins with no signal peptide

ApicoTPs must contain a signal peptide. To insure this requirement is met, we

apply a filtering stage in which proteins not predicted to contain a signal peptide are

discarded from both interim training sets. SignalP 3.0 is used to identify proteins with

putative signal peptides because it is the tool commonly reported in the literature

for apicomplexan genomes. ApicoAP-CS utilizes the web service interface of SignalP

to automate this filtering step in the ApicoAP Pipeline. Neto et al. hypothesized
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that divergence in signal peptide predictions within orthologous groups is mainly

due to N-terminal protein sequence misannotation and demonstrated that this is

indeed the case. In addition to providing new gene models for certain proteins of

Plasmodium spp, they suggested the use of thresholds differing from the default values

for interpretation of SignalP [Bendtsen et al., 2004] results. We used their suggested

threshold combination in ApicoAP-CS (D-Score=0.48; HMM probability=0.90).

4.3.4 Redundant sequence removal

It is known that a training set containing redundant members biases the learning

process [Mitchell, 1997, Hobohm et al., 2008], especially when the learning involves

an optimization procedure, as is the case for ApicoAP for which the optimization

criterion is the expected performance of the candidate classifiers. The expected pre-

diction performance of a classifier quantifies how well it is expected to generalize to

new data instances. This performance metric can be estimated using statistical meth-

ods that involve retaining subsets of the training set from the training procedure and

using these subsets to measure the prediction performance. These estimation strate-

gies assume that the members of the training set are independently drawn from the

main population. This assumption would be violated with the existence of redun-

dant members causing either an overestimate or an underestimate of the estimated
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performance.

ApicoAP-CS utilizes the CD-HIT method (version 4.6.1) [Li and Godzik, 2006]

to eliminate redundant sequences that share more than 60% sequence similarity. The

resulting training sets are subjected to user approval because expert knowledge may be

required to identify unlikely ApicoTPs and non-ApicoTPs in the training sets. If the

final training sets have cardinality of about or exceeding 20, the user is recommended

to proceed with the ApicoAP training; for lower cardinality continuation to the next

step is not recommended as the resulting classifier is not likely to have a high expected

accuracy. As the cardinality and precision of the training sets increase, the expected

accuracy of the resulting classifier improves.

4.3.5 Application of the ApicoTP classifier training routine

The ApicoAP model describes a parametric model of ApicoTPs and utilizes

an optimization/training procedure in which the parameters that will lead to the

classifier with the best expected accuracy are identified. For a detailed description

of ApicoAP, the reader is referred to reference [Cilingir et al., 2012]. ApicoAP-CS

utilizes this procedure with the training sets obtained in prior steps to generate an

ApicoTP classifier that is specialized to the apicomplexan species of interest to the

user. This classifier can be easily integrated into the ApicoAP prediction software. A
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supplementary users manual includes detailed instructions on the integration proce-

dure for the ApicoAP prediction software (version 3). The training procedure takes

considerably more time relative to the other steps in the ApicoAP Pipeline due to the

computationally intensive optimization procedure required by the ApicoAP model.

4.4 ApicoAP-CS Results

We applied ApicoAP-CS to the 13 apicomplexan species whose genomes are

available in EuPathDB (version 2.17), namely Babesia bovis, Babesia microti,Cryptosporidium

hominis,Cryptosporidium muris,Cryptosporidium parvum, Eimeria tenella, Neospora

caninum, Plasmodium berghei, Plasmodium chabaudi, Plasmodium cynomolgi, Plas-

modium falciparum, Plasmodium knowlesi, Plasmodium vivax, Plasmodium yoelii,

Theileria annulata, Theileria parva and Toxoplasma gondii. The positive seed train-

ing set contains 75 known ApicoTPs extracted from ApiLoc (version 3) and 18 con-

firmed proteins curated from the recent literature. The current negative seed training

set contains 400 known non-ApicoTPs extracted from ApiLoc.

We used both the OrthoMCL and BLAST-based algorithm (using Blast+ ver-

sion 2.2.27) for the orthology search. Tables 4.1 and 4.2 show the cardinalities of posi-

tive and negative interim training sets that were automatically gathered by ApicoAP-

CS. After the SignalP filtering step was applied, the resulting interim training sets
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(shown as the last column in Tables 4.1 and 4.2) were subjected to the redundancy re-

moval procedure, which produced the final training sets whose cardinalities are shown

in Table 4.1.

For 10 of the 13 apicomplexan species, we were able to gather sufficiently large

training sets to train specialized ApicoTP classifiers. These classifiers are included

in the ApicoAP prediction software (version 3). Table 4.4) gives the prediction ac-

curacies for the resulting ApicoTP classifiers obtained using each training set. These

are not expected accuracy results, which estimate how well the resulting classifiers

will perform with unknown data, but rather they indicate how well these classifiers

perform with the available, labeled data.

All protein sequences were obtained from EuPathDB (version 2.17) except the

ones whose gene models were proposed to be changed by [Neto et al., 2012].

4.5 Discussion

Supervised machine learning algorithms are used by life scientists for a variety

of objectives including the detection of targeting sequences and the prediction of

transmembrane domain topology. Expert-curated public gene and protein databases

are major resources for gathering data to train these algorithms. While these data

resources are continuously updated with the addition of new information, generally
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this information is not incorporated into published machine learning algorithms which

thereby can become outdated soon after their introduction.

In this study, we propose a new model of operation for supervised machine

learning algorithms that learn from genomic data. By defining these algorithms in

a pipeline in which the training data gathering procedure and the learning process

are automated, one can create a system that generates a classifier or predictor using

information available from public resources. Because data requirements and data set

curation procedures vary, the proposed model of operation is explained using a case

study in which an existing machine learning model, ApicoAP, is utilized in a pipeline.

The ApicoAP Pipeline is capable of generating classifiers for different apicomplexan

species without provision of training data.

Given that the vast majority of the procedures described for gathering training

data can easily be automated, it is possible to transform valuable machine learning

algorithms into self-evolving learners that benefit from the ever-changing data avail-

able for genes and proteins and to develop new machine learning algorithms that

are similarly capable. This generic idea is applied to the apicoplast-targeted pro-

tein prediction problem to create the ApicoAP Pipeline. An implementation of this

pipeline as a collection of web services is available. The client software can be found

at http://bcb.eecs.wsu.edu.

http://bcb.eecs.wsu.edu
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Apicomplexan
species

Ortho-
MCL Blast

Confir-
med

All
combined

Conflicts
removed

Non-SP
filtered

B. bovis 46 45 4 61 59 18

B. microti 51 50 0 61 58 23

C. hominis 17 24 0 28 25 1

C. muris 19 27 0 32 29 0

C. parvum 17 24 0 29 26 2

E. tenella 82 61 1 89 84 30

N. caninum 78 68 0 82 77 21

P. berghei 72 73 0 77 73 49

P. chabaudi 72 73 0 77 72 51

P. cynomolgi 70 72 0 77 73 31

P. falciparum 45 60 40 89 85 52

P. knowlesi 72 72 0 77 73 49

P. vivax 69 72 0 75 71 51

P. yoelii 70 68 3 77 73 41

T. annulata 45 47 0 56 54 23

T. parva 49 42 0 59 57 25

T. gondii 53 59 45 102 96 42

Table 4.1: Cardinalities of the positive interim training sets for the 13 apicomplexan
species gathered by ApicoAP-CS: Interim set cardinality after orthology search with
OrthoMCL and with Blast-based algorithm follow the cardinality of the set containing
experimentally confirmed positive proteins. Column named ”‘All combined”’ shows
set cardinalities when the first three sets are merged. Before filtering out the proteins
that are predicted to contain no SP (non-SP) from the resulting set, conflicts between
the negative and the positive interim training sets are identified. The number of
conflicts that are eliminated are shown at the column next to the last.
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Apicomplexan
species

Ortho-
MCL Blast

Confir-
med

All
combined

Conflicts
removed

Non-SP
filtered

B. bovis 144 136 8 161 159 33

B. microti 142 130 0 159 156 23

C. hominis 135 130 0 157 154 28

C. muris 143 137 0 163 160 34

C. parvum 130 129 10 164 161 33

E. tenella 400 175 8 443 438 169

N. caninum 254 220 15 288 283 81

P. berghei 222 212 28 260 256 101

P. chabaudi 238 223 2 258 253 108

P. cynomolgi 259 224 0 273 269 93

P. falciparum 284 173 156 443 439 138

P. knowlesi 236 227 6 258 254 91

P. vivax 261 227 13 281 277 103

P. yoelii 242 216 16 270 266 89

T. annulata 151 133 4 169 167 42

T. parva 186 128 4 204 202 71

T. gondii 194 198 131 333 327 92

Table 4.2: Cardinalities of the negative interim training sets for the 13 apicomplexan
species gathered by ApicoAP-CS: Interim set cardinality after orthology search with
OrthoMCL and with Blast-based algorithm follow the cardinality of the set containing
experimentally confirmed negative proteins. Column named ”‘All combined”’ shows
set cardinalities when the first three sets are merged. Before filtering out the proteins
that are predicted to contain no SP (non-SP) from the resulting set, conflicts between
the negative and the positive interim training sets are identified. The number of
conflicts that are eliminated are shown at the column next to the last.
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Apicomplexan
species

Positive
training set

Negative
training set

B. bovis 18 30

B. microti 23 22

C. hominis 1 28

C. muris 0 34

C. parvum 2 33

E. tenella 30 143

N. caninum 21 77

P. berghei 49 94

P. chabaudi 51 98

P. cynomolgi 31 90

P. falciparum 51 132

P. knowlesi 48 90

P. vivax 51 101

P. yoelii 41 87

T. annulata 23 41

T. parva 25 61

T. gondii 42 86

Table 4.3: Cardinalities of the final training sets for the 13 apicomplexan species.
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Apicomplexan
species

True negative
rate

True positive
rate

Overall
accuracy

B. bovis 1.000 1.000 1.000

B. microti 0.909 1.000 0.956

E. tenella 0.951 0.800 0.925

N. caninum 1.000 0.857 0.969

P. berghei 0.936 0.959 0.944

P. chabaudi 0.959 0.902 0.940

P. cynomolgi 1.000 0.839 0.959

P. falciparum 0.924 0.843 0.902

P. knowlesi 0.922 0.958 0.935

P. vivax 0.901 0.980 0.928

P. yoelii 0.954 0.854 0.922

T. annulata 0.854 0.913 0.875

T. parva 0.820 0.960 0.860

T. gondii 0.977 0.905 0.953

Table 4.4: ApicoTP classifier performances on the training sets gathered by
ApicoAP-CS.
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CHAPTER 5. CONCLUSION

As resistance to commonly used drugs is increasing among apicomplexan para-

sites, it is important to find new drug targets. The apicoplast is an ideal drug target

both because of its unique properties and because it is essential for the survival of

the parasite. Understanding the metabolic activities performed in the apicoplast

is necessary for drug target identification, and this requires the ability to identify

apicoplast-targeted proteins. Because experimental identification of these proteins is

a costly and time-consuming task, accurate in silico prediction methods are needed

to accelerate the drug target identification process.

In this dissertation, we present two computational approaches, ApicoAP and

ApicoAMP, that identifies two different types apicoplast-targeted proteins. ApicoAP

is the first computational model capable of identifying ApicoTPs with bipartite signals

in multiple species of Apicomplexa. ApicoAMP is the first computational model that

identifies apicoplast-targeted transmembrane proteins.

In addition, we propose a new model of operation for specific supervised ma-

chine learning algorithms that learn from datasets curated from dynamically changing

public resources, such as genomic databases. By employing these algorithms as part

of a pipeline in which the training data gathering procedure as well as the learning
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process is automated, one can have a system that functions as a classifier generator

that does not require training data to be provided, but instead has the capability

to utilize the information available in public resources at a given time for training.

The proposed model of operation is explained using a case study where ApicoAP

is utilized in such a pipeline. ApicoAP Pipeline is capable of generating classifiers

for different apicomplexan species, without requiring training data to be provided.

As the results from experimental confirmation of ApicoTPs are published, which is

the main resource for obtaining training data, this pipeline will not only be useful

for an apicomplexan species for which no ApicoAP classifier exists, but it will also

provide ever-improving classifiers for apicomplexan species for which an ApicoAP

classifier already exists. ApicoAP Pipeline is used to train classifiers for 10 more

apicomplexan species in addition to the 4 existing ones. ApicoAP, ApicoAMP and

ApicoAP Pipeline significantly broaden the set of apicoplast-targeted proteins that

can be identified computationally.
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