
SCALABLE PARALLEL METHODS FOR

ANALYZING METAGENOMICS DATA

AT EXTREME SCALE

By

JEFFREY ALAN DAILY

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2015

c© Copyright by JEFFREY ALAN DAILY, 2015
All rights reserved

c© Copyright by JEFFREY ALAN DAILY, 2015
All rights reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of JEFFREY
ALAN DAILY find it satisfactory and recommend that it be accepted.

Ananth Kalyanaraman, Ph.D., Chair

John Miller, Ph.D.

Carl Hauser, Ph.D.

Sriram Krishnamoorthy, Ph.D.

ii

ACKNOWLEDGEMENT

First, I would like to thank Dr. Ananth Kalyanaraman for his supervision and support

throughout the work. I would like to thank Dr. Abhinav Vishnu who encouraged my pursuit

of my Ph.D. before anyone else, suggested Dr. Kalyanaraman as my advisor, and has been

a valuable mentor and friend. I would like to thank Dr. Sriram Krishnamoorthy for his role

on my graduate committee, for his research support at our employer, Pacific Northwest

Northwest Laboratory (PNNL), and for his mentoring role while performing my research.

I would like to thank Dr. John Miller and Dr. Carl Hauser for being on my graduate

committee. Last, but not least, I would like to thank my employer, PNNL, for the tuition

reimbursement benefit that assisted my pursuit of this degree.

iii

SCALABLE PARALLEL METHODS FOR

ANALYZING METAGENOMICS DATA

AT EXTREME SCALE

Abstract

by Jeffrey Alan Daily, Ph.D.
Washington State University

May 2015

Chair: Ananth Kalyanaraman, Ph.D.

The field of bioinformatics and computational biology is currently experiencing a

data revolution. The exciting prospect of making fundamental biological discoveries is

fueling the rapid development and deployment of numerous cost-effective,

high-throughput next-generation sequencing technologies. The result is that the DNA and

protein sequence repositories are being bombarded with new sequence information.

Databases are continuing to report a Moores law-like growth trajectory in their database

sizes, roughly doubling every 18 months. In what seems to be a paradigm-shift, individual

projects are now capable of generating billions of raw sequence data that need to be

analyzed in the presence of already annotated sequence information.

While it is clear that data-driven methods, such as sequencing homology detection,

are becoming the mainstay in the field of computational life sciences, the algorithmic

advancements essential for implementing complex data analytics at scale have mostly

lagged behind. Sequence homology detection is central to a number of bioinformatics

applications including genome sequencing and protein family characterization. Given

millions of sequences, the goal is to identify all pairs of sequences that are highly similar

(or “homologous”) on the basis of alignment criteria. While there are optimal alignment

iv

algorithms to compute pairwise homology, their deployment for large-scale is currently

not feasible; instead, heuristic methods are used at the expense of quality.

In this dissertation, we present the design and evaluation of a parallel implemen-

tation for conducting optimal homology detection on distributed memory supercomput-

ers. Our approach uses a combination of techniques from asynchronous load balancing

(viz. work stealing, dynamic task counters), data replication, and exact-matching filters to

achieve homology detection at scale. Results for a collection of 2.56M sequences show

parallel efficiencies of ∼75-100% on up to 8K cores, representing a time-to-solution of 33

seconds. We extend this work with a detailed analysis of single-node sequence alignment

performance using the latest CPU vector instruction set extensions. Preliminary results re-

veal that current sequence alignment algorithms are unable to fully utilize widening vector

registers.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Quantifying Scaling Requirements . 4

1.2 Contributions . 5

2. BACKGROUND AND RELATED WORK 7

2.1 Algorithms and Data Structures for Homology Detection 7

2.1.1 Notation . 7

2.1.2 Sequence Alignment . 8

2.1.3 Sequence Homology . 10

2.1.4 String Indices for Exact Matching 11

2.2 Parallelization of Homology Detection . 14

2.2.1 Vectorization Opportunities in Sequence Alignment 15

2.2.2 Distributed Alignments . 18

3. SCALABLE PARALLEL METHODS . 20

3.1 Filtering Sequence Pairs . 20

vi

3.1.1 Suffix Tree Filter . 20

3.1.2 Length Based Cutoff Filter . 23

3.1.3 Storing Large Numbers of Tasks 24

3.1.4 Storing Large Sequence Datasets 24

3.2 Load Imbalance . 25

3.2.1 Load Imbalance Caused by Filters 25

3.2.2 Load Imbalance in Homology Detection 26

3.2.3 Solutions to Load Imbalance . 27

3.3 Implementation . 29

4. RESULTS AND DISCUSSION . 31

4.1 Compute Resources . 31

4.2 Datasets . 31

4.3 Length-Based Filter . 32

4.4 Suffix Tree Filter . 33

4.4.1 Suffix Tree Heuristic Parameters 34

4.4.2 Distributed Datasets . 36

4.4.3 Strong Scaling . 36

5. EXTENSIONS . 42

5.1 Vectorized Sequence Alignments using Prefix Scan 42

5.1.1 Algorithmic Comparison of Striped and Scan 44

5.1.2 Workload Characterization . 47

5.1.3 Empirical Characterization . 48

5.1.3.1 Cache Analysis . 51

5.1.3.2 Instruction Mix Analysis 52

5.1.3.3 Query Length versus Performance 54

vii

5.1.3.4 Query Length versus Number of Striped Corrections . . . 56

5.1.3.5 Scoring Criteria Analysis 57

5.1.3.6 Prescriptive Solutions on Choice of Algorithm 58

5.2 Communication-Avoiding Filtering using Tiling 60

6. CONCLUSIONS AND FUTURE WORK 64

viii

LIST OF TABLES

Page

2.1 Enhanced Suffix Array for Input String s = mississippi$. 14

3.1 Notation used in the dissertation. 21

5.1 Relative performance of each vector implementation approach. For this

study, we used a small but representative protein sequence dataset and

aligned every protein to each other protein. The vector implementations

used the SSE4.1 ISA, splitting the 128-bit vector register into 8 16-bit in-

tegers. The codes were run using a single thread of execution on a Haswell

CPU running at 2.3 Ghz. 44

5.2 Cache analysis of all-to-all sequence alignment for the Bacteria 2K dataset

on Haswell. Scan and Striped are using 4, 8, and 16 Lanes. For both

scan and striped, instruction and data miss rates for all cache levels were

less than 1 percent and are therefore not shown. The primary difference

between approaches is indicated by the instruction and data references. . . . 51

5.3 Cache analysis of all-to-all sequence alignment for the Bacteria 2K dataset

on Xeon Phi. Scan and Striped are using only 16 lanes because the KNC

ISA only supports 32-bit integers which restricts this analysis to 16 lanes. . 52

5.4 Decision table showing which algorithm should be used given a particular

class of sequence alignment and query length. 58

ix

LIST OF FIGURES

Page

2.1 Input string s = mississippi$ and corresponding suffix tree Γ. 13

2.2 Known ways to vectorize Smith-Waterman alignments using vectors with

four elements. The tables shown here represent a query sequence of length

18 against a database sequence of length 6. Alignment tables are shown

with colored elements, indicating the most recently computed cells. In or-

der of most recently computed to least recently, the order is green, yellow,

orange, and red. Dark gray cells were computed more than four vector

epochs ago. Light gray cells indicate padded cells, which are required to

properly align the computation(s) but are otherwise ignored or discarded.

The blue lines indicate the relevant portion of the tables with the table ori-

gin in the upper left corner. (Blocked) Vectors run parallel to the the query

sequence. Each vector may need to recompute until values converge. First

described by Rognes and Seeberg (Rognes and Seeberg, 2000). (Diagonal)

Vectors run parallel to the anti-diagonal. Fist described by Wozniak (Woz-

niak, 1997). (Striped) Vectors run parallel to the query using a striped data

layout. A column may need to be recomputed at most P −1 times until the

values converge. First described by Farrar (Farrar, 2007). (Scan) This is

the approach taken in this dissertation. It is similar to (Striped) but requires

exactly two iterations over a column. 16

3.1 Characterization of time spent in alignment operations for an all-against-all

alignment of a 15K sequence dataset from the CAMERA database. 27

x

3.2 Schematic illustration of the execution on a compute node. One thread is

reserved to facilitate the transfer of tasks. Tasks are stolen only from the

shared portion of the deque and delivered only to the private portion. The

set of input sequences typically fits entirely within a compute node and

is shared by all worker threads. The task pool starts having only subtree

processing (pair generation) tasks but as subtree tasks are processed they

add pair alignment tasks to the pool, as well. The dynamic creation and

stealing of tasks causes the tasks to become unordered. 30

4.1 Execution times for the 80K dataset using the dynamic load balancing

strategies of work stealing (‘Brute’) and distributed task counters (‘Counter’).

Additionally, a length-based filter is applied to each strategy. Work steal-

ing iterators are not considered as they performed similarly to the original

work stealing approach. 33

4.2 Execution times for suffix tree filter and best non-tree filter strategy for the

80K sequence dataset. 35

4.3 Execution times for suffix tree filter for the 80K sequence dataset when it

is replicated on each node or distributed across nodes. 37

4.4 Execution times for suffix tree filter strategies for the 1280K, 2560K, and

5120K sequence datasets. The ideal execution time for each input dataset

is shown as a dashed line. 39

4.5 Parallel efficiency with input sizes of 1280K, 2560K, and 5120K. 40

4.6 PSAPS (Pairwise Sequence Alignments Per Sec) performance with input

sizes of 1280K, 2560K, and 5120K. 41

xi

5.1 Distribution of sequence lengths for all [5,448] RefSeq Homo sapiens DNA

(a), all [2,618,768] RefSeq bacteria DNA (b), all [33,119,142] RefSeq bac-

teria proteins (c), and full [547,964] UniProt protein (d) datasets. Protein

datasets are skewed toward shorter sequences, while DNA datasets contain

significantly longer sequences. Because of the presence of long sequences,

figures (a) and (b) are truncated before their cumulative frequencies reach

100 percent. 49

5.2 Instruction mix for the homology detection problem. For each category of

instructions, Scan rarely varies between the three classes of alignments per-

formed, while NW Striped executes more instructions relative to any other

case. Striped performs more scalar operations, while Scan performs more

vector operations. Scan uses more vector memory and swizzle operations,

while Striped is the only one of the two that uses vector mask creation

operations. 53

5.3 The relative performance of Scan versus Striped (a-c) shows that both ap-

proaches have their merits in light of increasing the number of vector lanes.

Shorter queries perform better for NW Striped, SG Scan, and SW Scan.

Longer queries perform better for NW Scan, SG Striped, and SW Striped.

The reasons for the relative performance differences can be attributed to

the number of times the Striped approach must correct the column values

before reaching convergence (d-f). 55

xii

5.4 Total compute times in seconds (Y-axis) for global (NW, left column),

semi-global (SG, center column), and local (SW, right column) alignments

using the bacteria 2K dataset for a homology detection application. The

lane counts increase moving from the first row to the third row, increas-

ing from 4 to 8 and lastly to 16. The fourth row consists of the results

for KNC which is also 16 lanes. For each BLOSUM matrix analyzed,

the default gap open and extension penalties from NCBI were used as in

Section 5.1.3.5. By the time 8 lanes are used, NW Scan consistently out-

performs NW Striped. At 16 lanes, Scan begins to outperform Striped for

many of the selected scoring schemes. 59

xiii

Dedication

To my wife, Nicole. I’m afraid I have no way to repay you.

And to my kids, Abigail, Grace, and Emmett — may you never remember my absence.

xiv

CHAPTER ONE

INTRODUCTION

The field of bioinformatics and computational biology is currently experiencing a data

revolution. The exciting prospect of making fundamental biological discoveries is fueling

the rapid development and deployment of numerous cost-effective, high-throughput next-

generation sequencing (NGS) technologies that have cropped up in a span of three to four

years (AppliedBio; HelicosBio; Illumina; PACBIO; Roche454). Touted as next-generation

sequencing, to now “3rd generation” technologies, these instruments are being aggressively

adopted by large sequencing centers and small academic units alike.

The result is that the DNA and protein sequence repositories are being bombarded with

both raw sequence information (or “reads”) and processed sequence information (e.g., se-

quenced genomes, genes, annotated proteins). Traditional databases such as the NCBI

GenBank (NCBI) and UniProt (Consortium, 2015) are continuing to report a Moore’s law-

like growth trajectory in their database sizes, roughly doubling every 18 months. Other

projects such as the microbiome initiative (e.g., human microbiome, ocean microbiome)

are contributing a significant volume of their own into metagenomic repositories (Sun et al.,

2011; Markowitz et al., 2008). In what seems to be a paradigm-shift, individual projects

are now capable of generating billions of raw sequence data that need to be analyzed in

the presence of already annotated sequence information. Path-breaking endeavors such as

personalized genomics (PersonalGenomics), cancer genome atlas (CancerGenomeAtlas),

and the Earth Microbiome Project (Gilbert et al., 2010) foretell the continued explosive

growth in genomics data and discovery.

While it is clear that data-driven methods are becoming the mainstay in the field of com-

putational life sciences, the algorithmic advancements essential for implementing complex

1

data analytics at scale have lagged behind (DOEKB; National Research Council Commit-

tee on Metagenomics and Functional, 2007). With a few notable exceptions in sequence

search routines (Rognes, 2011; Lin et al., 2008; Farrar, 2007; Oehmen and Nieplocha, 2006;

Darling et al., 2003) and phylogenetic tree construction (Ott et al., 2007), bioinformatics

continues to be largely dominated by low-throughput, serial tools originally designed for

desktop computing.

The method addressed in this dissertation is that of sequence homology detection. That

is, given a set of N sequences, where N is large, detect all pairs of sequences that share a

high degree of sequence homology as defined by a set of alignment criteria. The sequences

are themselves typically short, a few hundred to few thousand characters in length. The

method arises in the context of genome sequencing projects, where the goal is to recon-

struct an unknown (target) genome by aligning the short DNA sequences (aka. “reads”)

originally sequenced from the target genome (Emrich et al., 2005). The expectation is for

reads sequenced from the same genomic location to exhibit significant end-to-end over-

lap, which can be detected using sequence alignment computation. A similar use-case

also arises in the context of transcriptomics studies (Wang et al., 2009) where the goals

are to identify genes, and measure their level of activity (aka. expression) under various

experimental conditions. A third, emerging use-case arises in the context of functionally

characterizing metagenomics communities (Handelsman, 2004). Here, the goal is to iden-

tify protein families (Bateman et al., 2004; Tatusov et al., 1997) that are represented in a

newly sequenced environmental microbial community (e.g., human gut, soil, ocean). This

is achieved by first performing sequence homology detection on the set of predicted protein

sequences (aka. Open Reading Frames (ORFs)) obtained from the community, and subse-

quently identifying groups of ORFs that are highly similar to one another (Yooseph et al.,

2007; Wu and Kalyanaraman, 2008).

At its core, the sequence homology detection problem involves the computation of a

2

large number of pairwise sequence alignment operations. A brute force computation of

all
(
N
2

)
pairs is not only infeasible but also generally not needed as with the sequence

diversity expected in most practical inputs only a small fraction of pairs tend to survive

the alignment test with a high quality alignment. The key is in identifying such a subset

of pairs for pairwise alignment computation, using computationally less expensive means,

without filtering out valid pairs. To this end, there are several effective filtering techniques

using exact matching data structures (Altschul et al., 1990; Kalyanaraman et al., 2003).

After employing some of the most effective pair filters, several billions of pairwise

alignments remain to be computed even for modest input sizes of N ≈ 106. The most rig-

orous way of computing a pairwise alignment is to use optimality-guaranteeing dynamic

programming algorithms such as Smith-Waterman (Gotoh, 1982; Smith and Waterman,

1981; Needleman and Wunsch, 1970). However, guaranteeing optimality is also compu-

tationally expensive — the algorithm takes O(m × n) time for aligning two sequences of

lengthsm and n respectively. In the interest of saving time, current methods resort to faster,

albeit approximation heuristic techniques such as BLAST (Altschul et al., 1990), FASTA

(Pearson and Lipman, 1988), or USEARCH (Edgar, 2010). This has been the approach

in nearly all the large scale genome and metagenome projects conducted over the last 4-5

years, ever since the adoption of NGS platforms.

On the other hand, several studies have shown the importance of deploying optimality-

guaranteeing methods for ensuring high sensitivity (e.g., (Pearson, 1991; Shpaer et al.,

1996)). For example, a recent study of an arbitrary collection of 320K ocean metagenomics

amino acid sequences shows that a Smith-Waterman-based optimal alignment computation

could detect 36% more homologous pairs than was possible using a BLAST-based run

under similar parameter settings (Wu et al., 2012). Improving sensitivity of homology

detection becomes particularly important when dealing with such environmental microbial

datasets (National Research Council Committee on Metagenomics and Functional, 2007)

3

due to the sparse nature of sampling in the input. For large-scale metagenomics initiatives,

it is important to use optimal alignments. Otherwise, a lot of information is lost in addition

to the already highly fragmented, sparse data.

1.1 Quantifying Scaling Requirements

In this dissertation, we evaluate the key question of feasibility of conducting a massive

number of PSAs through the more rigorous optimality-guaranteeing dynamic program-

ming methods at scale. To define feasibility, we compare the time taken to generate the

data to the time taken to detect homology from it. Consider the following calculation:

The Illumina/Solexa HiSeq 25001, which is one of the more popular sequencers today, can

sequence ∼ 109 reads in ∼11 days (Illumina). A brute-force all-against-all comparison

would imply ∼ 1018 PSAs. Whereas, using an effective exact matching filter such as the

suffix tree could provide 99.9% savings (based on our experiences (Wu et al., 2012; Kalya-

naraman et al., 2003, 2006)). This would still leave ∼ 1015 PSAs to perform. Assuming

a millisecond for every PSA, this implies a total of 277M CPU hours. To complete this

scale of work in time comparable to that of data generation (11 days), we need the software

to be running on 106 cores with close to 100% efficiency. This calculation yields a target

of 109 PSAPS to achieve, where PSAPS is defined as the number of Pairwise Sequence

Alignments Per Second.

In addition to achieving large PSAPS counts, achieving fast turn-around times (in min-

utes) for small- to mid-size problems also becomes important in practice. This is true for

use-cases — in which a new batch of sequences needs to be aligned against an already

annotated set of sequences, or in analysis involving already processed information (e.g.,

using open reading frames from genome assemblies to incrementally characterize protein

families) — where the number of PSAs required to be performed could be small (when

1While there are other faster technologies, we use Illumina as a representative example.

4

compared to that generated in de novo assembly) but needs to be performed multiple times

due to the online/incremental nature of the application.

Some key challenges exist in the design of a scalable parallel algorithm that can meet

the scale of 109 PSAPS or more. Even though the computation of individual PSAs are

mutually independent, the high variance in sequence lengths and the variable rate at which

those PSA tasks are identified using an exact matching filter can result in load imbalance.

In addition, the construction of the exact matching filter (such as the suffix tree) and the use

of it to generate pairs for PSA computation on-the-fly need to be done in tandem with task

processing (PSA computation), in order to reduce the memory footprint2.

1.2 Contributions

In this dissertation, we present the design of a scalable parallel framework that can achieve

orders of magnitude higher PSAPS performance than any contemporary software. Our

approach uses a combination of techniques from asynchronous load balancing (viz. work

stealing and dynamic task counters), remote memory access using PGAS, data replication,

and exact matching filters using the suffix tree data structure (Weiner, 1973) in order to

achieve homology detection at scale. Several factors distinguish our method from other

work: i) We choose the all-against-all model as it finds a general applicability in most of the

large-scale genome and metagenome sequencing initiatives, occupying an upstream phase

in numerous sequence analysis workflows; ii) To ensure high quality of the output, each

PSA is evaluated using the optimality-guaranteeing Smith-Waterman algorithm (Smith and

Waterman, 1981) (as opposed to the traditional use of faster sub-optimal heuristics such as

BLAST); iii) We use protein/putative open reading frame inputs from real world datasets

to capture a more challenging use-case where a skewed distribution in sequence lengths

can cause nonuniformity in PSA tasks; and iv) To the best of our knowledge, this effort
2Note that it is not reasonable to assume that all of the generated pairs from the filter can be computed

and stored prior to PSA calculations.

5

represents the first use of work stealing with suffix tree filters.

The key contributions are as follows:

1. A comprehensive solution to scalable optimal homology detection at the largest re-

ported scale of 8K cores.

2. A new, scalable implementation of constructing string indices at large scale.

3. To the best of our knowledge, this is the first work in this domain to use distributed

memory work stealing for dynamic load balancing.

4. Analysis of the homology detection problem on emerging architectures.

This dissertation is organized as follows: Chapter 2 presents the sequence homology

problem in more detail and addresses the current state of computational solutions for the

problem of homology detection. Chapter 3 presents the overall system architecture of our

solution. Chapter 4 describes and experimentally evaluates our parallel algorithm. Ex-

tensions to this work appear in Chapter 5. Key findings and future lines of research are

outlined in Chapter 6.

6

CHAPTER TWO

BACKGROUND AND RELATED WORK

This chapter briefly introduces the reader to the notation, data structures, and algorithms

used in homology detection. In addition, the foundational work in this area is highlighted

to motivate the contributions in Chapter 3.

2.1 Algorithms and Data Structures for Homology Detection

The protein homology detection problem is concerned with finding pairs of similar se-

quences given a set N of sequences. Similar sequences can be identified by performing an

alignment. An exhaustive, brute-force evaluation of all
(
N
2

)
pair combinations of input se-

quences is not feasible given the large values of N expected in practice. As a result, filters

need to be used to identify only a subset of pairs for which alignment computation is likely

to produce satisfactory results. Filters often employ one of a few exact matching string

indices. This section first introduces the reader to the notation used in sequence alignment

and exact matching string indices.

2.1.1 Notation

Let Σ denote an alphabet, e.g., Σ = {a, c, g, t} for DNA, implying |Σ| = 4 for DNA,

whereas |Σ| = 20 for amino acids. An input string s of length n + 1 is a sequence s =

c0c1 . . . cn−1$, where ci ∈ Σ, 0 ≤ i ≤ n−1 and $ /∈ Σ; $ is the end-of-string terminal char-

acter. The ith character of s is referred to as s[i]. A prefix of s is a sequence prefix(s, i) =

s[0..i] = c0c1 . . . ci; (0 ≤ i ≤ n, cn = $) which may include the terminal character. A

suffix of s is a sequence suffix(s, i) = s[i..n] = cici+1 . . . cn−1$; (0 ≤ i ≤ n − 1) which

always includes the terminal character. We also consider prefixes of suffixes of s, com-

monly called a substring of s, as S − prefix(s, i, j) = s[i..i + j − 1] = cici+1 . . . ci+j−1,

where j indicates the length of the S-prefix starting at index i. The unique terminal symbol

7

$ ensures that no suffix is a proper S-prefix of any other suffix. As convenient, we will use

the terms “strings” and “sequences” interchangeably.

2.1.2 Sequence Alignment

An alignment between two sequences is an order-preserving way to map characters in one

sequence to characters or gaps in the other sequence. There are many models for computing

alignments — the most common models are global alignment (Needleman and Wunsch,

1970) where all characters from both sequences need to be involved, semi-global alignment

where the aligning portions may ignore characters at the beginning or end of a sequence,

and local alignment (Smith and Waterman, 1981; Gotoh, 1982) where the aligning portions

can be restricted to a pair of substrings from the two sequences. An alignment is scored

based on the number of character substitutions (matches or mismatches) and the number

of characters aligned with gaps (insertions or deletions). For DNA sequences, positive

scores are given to matches and negative scores to penalize gaps and mismatches. For

protein/amino acid sequences, scoring is typically based on a predefined table called a

“substitution matrix” which scores each possible |Σ| × |Σ| combination (Dayhoff et al.,

1978; Henikoff and Henikoff, 1992). An optimal alignment is one which maximizes the

alignment score.

Sequence alignments are computed using dynamic programming because it is guaran-

teed to find an optimal alignment given a particular scoring function. Regardless of the

class of alignment being computed, a dynamic programming recurrence of the following

form is computed. Given two sequences s1[1 . . .m] and s2[1 . . . n], three recurrences are

defined for aligning the prefixes s1[1 . . . i] and s2[1 . . . j] as follows (Gotoh, 1982): Let Si,j

denote the optimal score for aligning the prefixes such that the alignment ends by substi-

tuting s1[i] with s2[j]. Di,j denotes the optimal score for aligning the same two prefixes

8

such that the alignment ends in a deletion, i.e., aligning s1[i] with a gap character. Simi-

larly, Ii,j denotes the optimal score for aligning the prefixes such that the alignment ends

in an insertion, i.e., aligning s2[j] with a gap character. Given the above three ways to end

an alignment, the optimal score for aligning the prefixes corresponding to the subproblem

{i, j} is given by:

Ti,j = max(Si,j, Di,j, Ii,j) (2.1)

The dependencies for the individual dynamic programming recurrences are as follows: Si,j

derives its value from the solution computed for the subproblem {i− 1, j − 1}, while Di,j

and Ii,j derive their values from the solutions computed for subproblems {i − 1, j} and

{i, j − 1}, respectively.

A typical implementation of this dynamic programming algorithm builds a table of size

O(m× n) with the characters of each sequence laid out along one of the two dimensions.

According to common practice, we call the sequence with characters along the rows i of

the table the “query” sequence and the sequence with characters along the columns j of

the table the “database” sequence. Each cell (i, j) in the table stores three values Si,j , Di,j ,

and Ii,j , corresponding to the subproblem {i, j}. Given the dependencies of the entries at

a cell, the dynamic programming algorithms for all three sequence alignment classes can

be represented using the pseudocode outlined in Algorithm 1. The algorithm has a time

complexity of O(mn).

The three classes of sequence alignment initialize the first row and column differently (lines

1 and 2 in Algorithm 1). SW and SG alignments initialize the first row and column of the

table to zero, while NW alignments initialize the first row and column based on the gap

function. The table values for SW alignments are not allowed to become negative, while

NW and SG allow for negative scores. An optional post-processing step retraces an optimal

9

Algorithm 1 Dynamic Programming Algorithm
Align(s1[1 . . .m], s2[1 . . . n])

1: Initialize the first row of the dynamic programming table
2: Initialize the first column of the dynamic programming table
3: for i: 1 to m do
4: for j: 1 to n do
5: Si,j ← Ti−1,j−1 +W (i, j).
6: Di,j ← max(Di−1,j, Ti−1,j +Gopen) +Gext.
7: I i,j ← max(I i,j−1, Ti,j−1 +Gopen) +Gext.
8: T i,j ← max(Si,j, Di,j, Ii,j).

alignment and can be completed in O(m + n) time assuming the entire table is stored.

Details of that step are omitted.

Due to the computational complexity of the dynamic programming approaches, faster,

heuristic methods such as BLAST (Altschul et al., 1990), FASTA (Pearson and Lipman,

1988), or USEARCH (Edgar, 2010) were developed as an alternative. By using heuristics,

these tools run faster than the optimal methods, however they run the risk of producing

sub-optimal alignments (Pearson, 1991; Shpaer et al., 1996).

2.1.3 Sequence Homology

The sequence homology detection problem is as follows: Given a sequence set S =

{s1, s2, . . . sn}, identify all pairs of sequences that are “homologous”. There are several

ways to define homology depending on the type of sequence data and the intended use-

case. Since for this dissertation, we deal with protein/amino acid sequences, we use the

following definition consistent with some of the previous work in the area (Yooseph et al.,

2007; Wu and Kalyanaraman, 2008; Wu et al., 2012): Two sequences s1 and s2 of lengths

n1 and n2, respectively, are homologous if they share a local alignment whose score is

at least τ1% of the ideal score (with n1 matches), and the alignment covers at least τ2%

of n2 characters. The above is assuming n1 ≤ n2 w.l.o.g. The parameters τ1 and τ2 are

user-specified, with defaults for protein sequences set as τ1 = 40% and τ2 = 80% (Wu

10

et al., 2012). Note that for DNA sequences, these cutoffs typically tend to be higher as

more similarity is expected at the nucleotide level. The lower cutoffs used in protein se-

quences make the homology detection process more time consuming because more pairs

of sequences typically need to be evaluated. Many methods that happen to use even fast

alignment heuristics such as USEARCH (Edgar, 2010) and CD-HIT (Li and Godzik, 2006)

do not even allow specifying such lower settings due to computational constraints. If one

were to deploy dynamic programming methods to evaluate alignments, an optimal align-

ment will be computed regardless of the specified cutoff thus making the solution more

generic. The key lies in scaling the number of alignments computed to the extent that eval-

uation of the identified pairs becomes feasible. However, to the best of our knowledge, no

such parallel implementations exist. Consequently, all the genome and metagenome scale

projects so far have resorted to BLAST-like heuristics to compute homology.

2.1.4 String Indices for Exact Matching

An exhaustive, brute-force evaluation of all
(
n
2

)
pair combinations is not feasible given the

large values of n expected in practice (even if alignment heuristics are to be used). As a re-

sult, filters need to used to identify only a subset of pairs for which alignment computation

is likely to produce satisfactory results (as per the pre-defined cutoffs). A popular filtering

data structure is that of the look-up table (Aluru and Ko, 2005), which is also internally

used in numerous programs that are variants of BLAST and FASTA (Pearson and Lipman,

1988; Altschul et al., 1997; Li and Godzik, 2006; Edgar, 2010). While it is easy to con-

struct and process this data structure, its use is restricted to identifying short, fixed-length

exact matches between pairs of sequences. This is owing to its space complexity, which

is exponential in the length of the exact match sought after — more specifically, O(|Σ|k)

where k is the length of the exact match. Furthermore, a smaller value of k (typically, 3

or 4 used in practice) significantly increases the number of pairwise sequence alignments

11

(PSAs), as more pairs of sequences are likely to share a shorter exact match by random

chance. As an alternative to the look-up table, the use of suffix trees1(Weiner, 1973) over-

comes these limitations as its space complexity is linear in the input size and it has the

ability to allow detection of arbitrarily long exact matches in constant time per matching

pair (Kalyanaraman et al., 2003).

A suffix tree Γ is a trie that indexes all suffixes of s. See Figure 2.1 for an example. For

an input of length n, there are n + 1 leaves in the tree. For any leaf vi, the concatenation

of the edge labels on the path from the root to vi spells out suffix(s, i). Each internal node

other than the root has at least two children and each edge is labeled with an S-prefix of s.

No two edges out of a node can have edge labels starting with the same symbol. Storing

edge labels as strings requires O(n2) space for the tree, so typically they are stored as two

integers representing the starting and ending index of the substring in s which brings the

space requirement down to O(n).

The suffix tree can be divided into a set of sub-trees; Γα denotes the sub-tree that in-

dexes suffixes sharing a prefix α. In Figure 2.1 for example, the tree could be divided into

Γ$,Γi,Γp,Γs. These example sub-trees correspond to the exact match cutoff k = 1 of a

look-up table as mentioned above. Further, Γssi and Γissi are a few examples of sub-trees

rooted at depth/cutoff k = 3 and k = 4, respectively.2 Recall that the suffix tree can be

constructed in linear space compared to the exponential space of the look-up table even

though any one bin of the look-up table corresponds to a sub-tree.

The edges emanating from each internal node in Figure 2.1 are sorted lexicographically.

1Since we have multiple sequences as input, the appropriate data structure here is the “generalized suffix
tree”, which is nothing but a unified suffix tree corresponding to all suffixes of all the input sequences;
however, for convenience, we simply use the term suffix tree in this dissertation.

2The examples all choose subtrees rooted at an internal node. However, it is possible to have subtrees
rooted at a location where there is no naturally occurring internal node, such as at Γm where suffix(s, 0)
would reside.

12

11

$ i

0

mississippi$ p s

10

$

7

ppi$ ssi

4

ppi$

1

ssippi$

9

i$

8

pi$ i si

6

ppi$

3

ssippi$

5

ppi$

2

ssippi$

root$node$

internal$node$

n leaf$node$

edge$

 0 1 2 3 4 5 6 7 8 9 10 11
 m i s s i s s i p p i $

Figure 2.1: Input string s = mississippi$ and corresponding suffix tree Γ.

A depth-first traversal of the sorted tree results in the related suffix array (SA) data struc-

ture with the suffixes listed in lexicographical order as shown in Table 2.1. Suffix arrays

are not typically useful by themselves, instead they are often accompanied with a longest

common prefix (LCP) array indicating the length of the common prefix of two adjacent

suffixes. The LCP array is also indicated in Table 2.1. In addition to the LCP array, some

algorithms using suffix arrays also require the Burrows-Wheeler Transform (BWT) array

which indicates the character immediately preceding the suffix. All together, the SA, LCP,

and BWT arrays are called the enhanced suffix array. All algorithms that can be performed

on a suffix tree can be equivalently performed on an enhanced suffix array (Abouelhoda

et al., 2004).

13

Table 2.1: Enhanced Suffix Array for Input String s = mississippi$.

i s[i] SA[i] LCP[i] BWT[i] suffix

0 m 11 0 i $
1 i 10 0 p i$
2 s 7 1 s ippi$
3 s 4 1 s issippi$
4 i 1 4 m ississippi$
5 s 0 0 $ mississippi$
6 s 9 0 p pi$
7 i 8 1 i ppi$
8 p 6 0 s sippi$
9 p 3 2 s sissippi$
10 i 5 1 i ssippi$
11 $ 2 3 i ssissippi$

Since we are concerned with the case of multiple sequences as input, the appropriate

data structures here are actually the “generalized suffix tree” and the related “generalized

suffix array”. A generalized suffix tree is simply the suffix tree of the n concatenated input

sequences such that a unique terminal character $ separates each input sequence. If two

identical suffixes exist, they share a common internal node with at least two leaf nodes,

one for each uniquely terminated suffix. With respect to generalized suffix arrays, the two

identical suffixes would be adjacent to each other (SA[i] and SA[i+1]) and the LCP value

between them would be equivalent to their length.

2.2 Parallelization of Homology Detection

Parallelizing homology detection focuses on the principle operation, the pairwise sequence

alignment. Pairwise alignments are naturally parallelizable; there are no data dependencies

between any two pairwise alignments. As many alignments can be performed as there

are number of processing elements, e.g., threads, to perform them. Alignments of long

sequences can be accelerated by applying additional processing elements and breaking the

problem into smaller pieces and managing the data dependencies between them. We focus

14

here on the relatively short protein sequences that are prevalent in metagenomics studies.

There are then two problems to address, accelerating the singular pairwise alignment and

load balancing many alignment tasks across computational resources.

2.2.1 Vectorization Opportunities in Sequence Alignment

There have been numerous efforts to parallelize optimal sequence alignments using GPUs

(Sarkar et al., 2010), Xeon Phi accelerators (Liu and Schmidt, 2014; Wang et al., 2014), or

CPU vector instructions (Wozniak, 1997; Rognes and Seeberg, 2000; Farrar, 2007; Rognes,

2011). However, not all of these approaches necessarily address the same bioinformatics

application. For example, database search may group database sequences to improve per-

formance (Rognes, 2011), while protein homology graph applications may prohibit such

optimizations (Daily et al., 2014). That said, pairwise sequence alignments generally fall

into two categories: inter-task and intra-task. Aligning numerous independent pairs of se-

quences represents a case of inter-task parallelism, while intra-task parallelism describes

the alignment of a single (query) sequence against a set of (database) sequences (Rognes,

2011). We focus here on the more generally applicable inter-task pairwise alignments.

Figure 2.2 enumerates the ways to vectorize sequence alignment. Each approach op-

erates in a series of vector epochs, where each vector epoch signifies a timestep during

execution when all processing elements (p) of the vector processor are concurrently work-

ing on different parts of computation, contributing to the calculation of different cells in the

dynamic programming table.

In the Blocked approach (Figure 2.2 (Blocked)), proposed by (Rognes and Seeberg,

2000), a vector epoch spans a subset of p contiguous cells along the dimension of the query

sequence (i.e., columns). Each vector initially ignores the contributions of the upward cells.

After computing a block, the new cell values are checked for correctness and potentially

recomputed. Once the values converge, the last value of the current vector is used by the

15

Diagonal Blocked Striped

Loop at most P-1 times

Scan

Loop 2 times

T0# T$1# T$2# T$3#Vector#Epochs:#

Loop at most P-1 times
for each vector epoch

Figure 2.2: Known ways to vectorize Smith-Waterman alignments using vectors with four
elements. The tables shown here represent a query sequence of length 18 against a database
sequence of length 6. Alignment tables are shown with colored elements, indicating the
most recently computed cells. In order of most recently computed to least recently, the
order is green, yellow, orange, and red. Dark gray cells were computed more than four
vector epochs ago. Light gray cells indicate padded cells, which are required to properly
align the computation(s) but are otherwise ignored or discarded. The blue lines indicate
the relevant portion of the tables with the table origin in the upper left corner. (Blocked)
Vectors run parallel to the the query sequence. Each vector may need to recompute until
values converge. First described by Rognes and Seeberg (Rognes and Seeberg, 2000).
(Diagonal) Vectors run parallel to the anti-diagonal. Fist described by Wozniak (Wozniak,
1997). (Striped) Vectors run parallel to the query using a striped data layout. A column
may need to be recomputed at most P − 1 times until the values converge. First described
by Farrar (Farrar, 2007). (Scan) This is the approach taken in this dissertation. It is similar
to (Striped) but requires exactly two iterations over a column.

16

next vector. The drawback of the Blocked approach is that the data dependencies both

within and between vectors limit the overall performance.

In the Diagonal approach (Figure 2.2 (Diagonal)), an epoch spans a subset of p con-

tiguous cells along a single diagonal of the table (Wozniak, 1997). Note that the cells along

the same diagonal have no interdependencies as their dependent values come from the cells

in the previous two diagonals. However, wasteful computation is caused in this approach

by padding the table with cells to properly align the computation. Another disadvantage is

the irregular memory access along the diagonal.

In the Striped approach (Figure 2.2 (Striped)), proposed by Farrar (Farrar, 2007), a

vector epoch spans a subset of p evenly spaced cells along the dimension of the query se-

quence. This scheme eliminates the data dependencies both within and between vectors by

striping the vector parallel to the query sequence. Similar to Blocked, this approach also

initially ignores the contributions of the upward values and makes additional passes over

each column until the values converge. Often, the values converge before having to com-

pute the column entirely a second time. This significantly improves overall performance.

That said, in the worst case, the column would be recomputed as many times as there are

elements in the vectors.

Lastly, our solution leverages the striped layout, but it uses a prefix scan formulation of

the dynamic programming recurrence (Khajeh-Saeed et al., 2010). The prefix scan recur-

rence is straightforward though it was initially designed for GPUs and requires a lengthy

proof to confirm its equivalence to the original problem. Compared to Blocked and Striped,

which initially ignore the upward cells, the prefix scan calculates a temporary value and

later uses the temporary value to find the final cell value. As shown in Figure 2.2 (Scan),

our solution requires exactly two iterations over each column.

All four vectorization schemes can be summarized using the generic pseudocodes in

Algorithm 2 and Algorithm 3, with Blocked, Striped, and Scan mapping to Algorithm 2

17

Algorithm 2 A generic pseudocode for a column-wise vectorized sequence alignment
Align(s1[1 . . .m], s2[1 . . . n])

for each character in database sequence do
for each vector epoch in column do

Load substitution scores from query profile.
Load previous column’s corresponding cell values.
Compute next cell values.

Algorithm 3 A generic pseudocode for a diagonal vectorized sequence alignment
Align(s1[1 . . .m], s2[1 . . . n])

for every p characters in database sequence do
for each vector epoch in diagonal do

Gather substitution scores for each s1[i], s2[j] pair.
Use previous vector epoch directly.
Compute next cell values.

and Diagonal to Algorithm 3.

2.2.2 Distributed Alignments

The first attempts at large-scale parallel homology detection can be attributed to mpiBLAST

(Darling et al., 2003) and ScalaBLAST (Oehmen and Nieplocha, 2006). These initial ap-

proaches were extensions of the original BLAST (Altschul et al., 1990) heuristic approach,

distributing and load balancing the database search across a cluster. Thereafter, updated

versions of mpiBLAST appear for each new high performance computing system (Thorsen

et al., 2007; Lin et al., 2008, 2011).

There are some design challenges presented by the use of suffix trees for homology

detection. Firstly, constructing suffix trees on massively parallel distributed memory ma-

chines is nontrivial, owing to the inherent irregularity of the underlying data access patterns

(Kalyanaraman et al., 2003; Ghoting and Makarychev, 2009; Mansour et al., 2011). Sec-

ondly, although the data structure has a linear space complexity, the constant of proportion-

ality is high, typically around 40-50. Therefore, the data structure needs to be generated

18

and stored in a distributed manner in order for scalability. Thirdly, despite the high selec-

tivity of pairs, the number of pairs identified could still be in several billions or more for

modest sized inputs containing millions of sequences, precluding the possibility of storing

them before processing them for alignment.

The algorithm presented in this dissertation improves on previous efforts (Wu et al.,

2012; Daily et al., 2012) and tackles the challenges outlined above through the use of work

stealing and task counters. Wu et al. (Wu et al., 2012) use a hierarchy of master and worker

processes on a compute cluster to balance the load of generating pairs from a precomputed,

out-of-core sequence filter while concurrently aligning the generated pairs. They report

scaling up to 2K processors. Daily et al. (Daily et al., 2012) were the first to apply a work

stealing technique to scale sequence homology to over 100K processors but did so by simu-

lating an arbitrary filter which did not introduce compute overhead or load imbalance, thus

their work focused primarily on the work stealing of the brute force
(
N
2

)
set of sequence

pairs. This work represents the first comprehensive solution to scalable optimal homology

detection given an input set of sequences; nothing is computed beforehand and no portions

of the pipeline are simulated. The pipeline applies work stealing to the creation and pro-

cessing of the suffix tree filter concurrently with the pair alignments. Lastly, while there are

numerous solutions available for hardware acceleration of individual PSA computations on

various specialized multicore platforms such as GPUs, FPGAs, etc. (reviewed in (Sarkar

et al., 2010)), the implementation presented in this dissertation does not incorporate those

(future work).

19

CHAPTER THREE

SCALABLE PARALLEL METHODS

In this chapter, we explore many ways of solving the problem of optimal homology detec-

tion. We first attempt to reduce the task space using known filtering techniques. Then we

propose a solution to the load balancing issue caused by using the filters in addition to the

load imbalance inherent to the problem.

3.1 Filtering Sequence Pairs

As noted in Chapter 2, exact matching filters need to be used in practice to reduce the task

space from
(
n
2

)
PSAs. One of the most effective filters designed to date is the suffix tree

filter used by (Wu et al., 2012); however the search for better filters is an open area of

research. We describe the suffix tree filter as well as an alternative length-based filter in the

following sections. Key notation used in this dissertation is summarized in Table 3.1.

3.1.1 Suffix Tree Filter

Using suffix trees to identify “promising” sequence pairs for alignment computation is

detailed in (Wu et al., 2012). We improve upon their work by not precomputing and storing

the suffix trees to disk, and instead generate the suffix tree on-the-fly and use it to identify

promising pairs when different subtrees of the suffix tree become available.

To build the suffix tree in parallel, we independently construct subtrees of the suffix

tree. We first partition all suffixes of the input sequences into |Σ|k “buckets” based on

their first k characters, where k is a short, fixed-length parameter e.g., 5 for amino acid se-

quences. We represent a suffix as a 3-tuple of the sequence index, the offset from the start

of the sequence, and the bucket index. The reason for the sequence index and offset are

clear, however our choice of associating the bucket index with each suffix was for memory

20

Notation Description

Σ Alphabet for sequences, e.g., |Σ| = 4 for DNA,
|Σ| = 20 for amino acids (proteins).

s A sequence of length n+ 1, s = c0c1 . . . cn−1$,
where ci ∈ Σ, 0 ≤ i ≤ n− 1 and $ /∈ Σ.

n Length of a sequence.
S Set of sequences S = s1, s2, . . . sN .
N Number of sequences.
s[i] ith character of s.
$ End-of-string terminal character.
prefix(s, i) Prefix of sequence s from 0 through character at position i.
suffix(s, i) Suffix of sequence s from i through and including the terminal character.
τ1, τ2 Homology threshold heuristics. Alignments must be at least τ1 of the

ideal score and cover at leaset τ2 of the characters.
p Number of processing elements.
Γ Suffix tree.
Γα Suffix subtree where all suffixes share a prefix α.
k Cut depth for forest of generalized suffix subtrees.
ψ Exact-match length cutoff. All sequence pairs generated from the gener-

alized suffix tree filter contain an exact match ≥ ψ.

Table 3.1: Notation used in the dissertation.

21

considerations as well as for ease of implementation. With respect to memory, the num-

ber of suffixes (3-tuples) depends on the size of the input sequences, whereas the number

of buckets depends on |Σ|k which grows quickly as either k or |Σ| becomes large. Our

implementation allows for much larger k than would normally be allowed given memory

constraints. With respect to ease of implementation, we can store the suffixes as a contigu-

ous array instead of using a sparse representation of the buckets. This contiguity enables

easy sorting of the suffixes as well as the direct exchange of the suffixes subtrees when load

balancing.

Once the buckets are constructed, by definition of the suffix tree, each such bucket

contains suffixes that fall into a distinct subtree rooted at a depth of k of the tree. The idea is

to subsequently process all buckets in parallel so that the individual subtrees corresponding

to buckets can be constructed in an independent manner. A challenge here is that the size

of each bucket is not necessarily uniform as it is input dependent, and the amount of work

is proportional to the number of suffixes contained in the tree. Consequently, one option

is to statically partition the buckets onto each process in an attempt to balance the total

number of suffixes to be handled on each process. However, this would require global

knowledge as to the size of each bucket, and if |Σ|k is large this approach is not feasible.

As an alternative, we partition the buckets based on the bucket index modulo the number

of processes, then we apply work stealing to further load balance this problem. The initial

static distribution of the buckets is a simple calculation. In addition, since adjacent buckets,

e.g., “AAB”, “AAC” where k = 3, tend to be similar in size when they share a common

prefix (here “AA”), the initial distribution keeps adjacent buckets from being stored on the

same process in case their shared prefix occurs frequently. Lastly, each subtree requires

a variable amount of suffixes to be present in memory, along with their corresponding

sequences, before processing begins. This may increase the amount of communication in

our implementation, especially when sequences are not stored locally. Non-local sequences

22

are always fetched as needed, which works well for aligning two sequences with at most

two fetches, but in the case of suffix subtree processing which may require many fetches,

we cache non-local sequences until the subtree processing is complete. Caches are not

shared between processes and are discarded once the subtree is no longer being processed.

The suffix subtrees are themselves constructed in a depth-first manner by recursively

bucketing the set of suffixes at increasing node depths. If r denotes the number of suffixes in

a given subtree, and lr denotes the mean length of those suffixes, then the time complexity

to build the subtree using our recursive method is O(rl2r). We do not construct or use

any auxiliary suffix tree data structures such as suffix links. A depth-first traversal of the

constructed subtree generates the promising pairs as described in (Kalyanaraman et al.,

2003), which detects and reports all pairs that share a maximal match of a minimum length.

For our purpose, we generate the tree as a forest of disjoint subtrees emerging at a specified

cut depth k ≤ ψ. The pair generation algorithm detects each pair corresponding to a

maximal match of length at least ψ in constant time (Kalyanaraman et al., 2003). However,

if two sequences contain more than one such maximal match between them it is possible

that the pair is generated multiple times from different parts of the generalized suffix tree

(i.e., leading to duplicates). The individual subtrees can be independently traversed in

parallel to generate pairs.

3.1.2 Length Based Cutoff Filter

The suffix tree filter, although generally effective in terms of reducing the number of align-

ments to perform, takes a non-negligible time to create and process the suffix subtrees. One

way to achieve further savings in the number of PSAs performed, without impacting the

final output, is as follows: we can rule out pairs based upon the length of the two sequences

involved in the potential alignment. As a user-supplied heuristic, if the two sequences could

not possibly produce a positive optimal score because the sequences differ too greatly in

23

length, or if one of the sequence lengths is less than the minimal length cutoff, the pair is

discarded. This length-based filter calculation is in fact used by the suffix tree filter as an

additional filter after it has identified a promising pair using the tree alone. We explore the

merit of using the length based filter on its own in Chapter 4.

3.1.3 Storing Large Numbers of Tasks

Using work stealing as in (Daily et al., 2012) required the tasks to be explicitly enumerated

and stored for a total of
(
n
2

)
tasks stored across P processes. The largest dataset we explored

was 2.56M sequences which resulted in approximately 3.28 trillion tasks. The tasks were

stored as two 8-byte integer sequence identifiers. This could be reduced to a single 8-byte

integer using a combinatorial number system of degree 2, but even so this would require

nearly 24TB of aggregate memory or at minimum nearly 800 compute nodes with 32GB of

usable memory each. This solution of computing and storing the enumerated pairs does not

scale with respect to memory constraints, even if we are able to filter out pairs – eventually

larger datasets will produce enough pairs to invalidate this approach.

An alternative is to dynamically generate and process the pairs using a dynamic load

balancing scheme. The strategy in (Wu et al., 2012) was to use a hierarchy of masters and

workers in such a way to handle pairs being generated faster than they could be consumed.

We use a similar strategy but apply it using work stealing, dynamically creating new work

to be consumed as suffix trees are processed.

3.1.4 Storing Large Sequence Datasets

A significant challenge in the design of parallel homology detection is the management of

the sequence data. The strategy in (Daily et al., 2012) was to store the sequence database

once per compute node rather than once per worker process. In a hybrid MPI+pthread

model this is accomplished by running one MPI process per compute node to hold the

sequences and then using pthreads to access the read-only sequence database. In a standard

24

MPI model, the sequences can be stored in shared memory.

By storing the entire sequence database per compute node, the authors did not address

memory constraints such that the sequences would not fit within a single compute node.

This is a problem as the database sizes continue to grow faster than the amount of memory

per node. Our solution to this problem relies on a PGAS model rather than a shared-nothing

MPI model or a hybrid MPI+pthread model. The PGAS model provides a shared memory

interface to the sequence database while transparently distributing the sequences across

compute nodes.

Using the PGAS model, the aggregate memory of multiple compute nodes is available

with the trade-off of having to communicate sequences that are no longer local. We reduce

the chances of having non-local sequences by replicating the sequence database once per

subset of nodes such that each subset of nodes has enough aggregate memory to store the

complete sequence dataset. As an improvement over (Wu et al., 2012), non-local sequences

are communicated using one-sided operations rather than periodic collective communica-

tions or the alternative of using non-blocking two-sided operations which would require ex-

plicit progress. We use an efficient one-sided communication library (Vishnu et al., 2012)

which performs better than the one-sided primitives of the MPI-2 standard, making this a

viable implementation strategy.

3.2 Load Imbalance

There is significant incidence of load imbalance throughout this problem. We look at the

causes and solutions in detail next.

3.2.1 Load Imbalance Caused by Filters

For the suffix tree filter, each suffix is placed in a bucket based on its first k characters

resulting in at most |Σ|k buckets. Each bucket is processed to yield a distinct subtree of the

suffix tree, which is subsequently processed to generate sequence promising pairs. k must

25

be sufficiently large to create enough work to distribute. Subtree creation is linearly pro-

portional to the sum of the length of all suffixes that constitute the subtree. Pair generation

on the other hand takes time linearly proportional to the number of output pairs. Since the

sizes of the buckets may not be uniform, load imbalance could occur. Further, the number

of pairs generated by a tree is completely dependent on the content of the trees, which also

varies (quadratic in the worst case).

The length-based filter does not directly cause load imbalance since it requires negligi-

ble computation time on its own. However, when used as part of the brute force strategy,

it will reject pairs as they enqueue for computation and will ultimately alter the already

imbalanced workload but in a similarly imbalanced way.

3.2.2 Load Imbalance in Homology Detection

Figure 3.1 shows the histogram and normalized cumulative distribution of alignment pro-

cessing times for all-against-all alignment of 15,000 sequences obtained from a metage-

nomics sequence database (Sun et al., 2011). We observe from Figure 3.1a that a significant

fraction of tasks are of the order of milliseconds or lower, with a non-negligible fraction

consuming well above a millisecond. The large number of tasks together with the wide

disparity in the task processing times exacerbates problems associated with static load bal-

ancers due to small errors in estimation of alignment times. The alignments include a few

large tasks taking few tenths to over one second.

Figure 3.1b shows the cumulative distribution of time spent in processing all tasks that

can be processed under a particular time. As we anticipated, despite their counts, the

smallest alignment operations consume a negligible fraction of the total processing time.

On the other hand, alignment operations that can be processed in 1ms to 100ms consume

almost 90% of the total processing time. This shows that the alignment operations critical

to load balanced execution vary by up to two orders of magnitude in their processing time.

26

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

C
o

u
n

ts

Seconds

(a) Distribution of the number of alignment
operations for different binning times.
x-axis — alignment time in log scale;

y-axis — number of alignment operations.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

P
e

rc
e

n
t

o
f

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

Seconds

(b) Normalized cumulative distribution time spent
aligning tasks of different sizes.

x-axis — alignment time in log scale;
y-axis — normalized cumulative time to process all

alignments in that time or lower.

Figure 3.1: Characterization of time spent in alignment operations for an all-against-all
alignment of a 15K sequence dataset from the CAMERA database.

3.2.3 Solutions to Load Imbalance

The means to load balance computations falls into three broad categories, namely static

partitioning, dynamic repartitioning, and asynchronous repartitioning. In static partition-

ing, the work is collectively distributed among available compute resources based on avail-

able load information. Dynamic repartitioning is similar to static repartitioning; however,

rather than performing once at the beginning of the computation it is performed periodically

and collectively. The last strategy is to asynchronously migrate work between compute re-

sources without exchanging information collectively. In the case of homology detection,

as shown by the characteristics in Figure 3.1 as well as due to the dynamic nature of suffix

subtree processing and pair alignments, the best load balancing approach would also need

to be dynamic and asynchronous. Examples of asynchronous load balancing include work

stealing and distributed task counters.

Work Stealing: Scalable work stealing as a general approach to asynchronous load bal-

ancing is detailed by Dinan et al. (Dinan et al., 2009) and Lifflander et al. (Lifflander

27

et al., 2012) while its application to sequence alignment is covered in (Daily et al., 2012).

Briefly, work stealing models a shared task pool. The task can be represented by any fixed-

size datatype including structures. The implementation of Dinan et al. places a portion of

the task pool on each process in a double-ended queue (deque) which is split into shared

and private portions. Tasks can be released from the private portion to the shared portion

without locks; acquiring tasks from the shared portion to the private portion requires lock-

ing. Tasks may also create additional tasks as part of their execution; however dynamically

adding tasks to the pool is done into the private portion and the process becomes lock free.

When a worker runs out of tasks in both the private and shared portions of its deque, it

becomes a thief. Thieves choose a random victim and attempt to steal half of their tasks,

if available. A termination detection algorithm is used to end the task pool execution. The

implementation of work stealing in Lifflander et al. (Lifflander et al., 2012) and Daily et al.

(Daily et al., 2012) uses an MPI+pthreads execution model and an active message pro-

gramming model instead of the PGAS model used by Dinan et al; however it follows the

same model of a shared task pool. The implementation requires one core per compute node

be reserved as a progress thread. Even so, it was shown to scale to over 100K cores with

75% efficiency (Daily et al., 2012).

Work Stealing with Iterators: A special form of work stealing can be utilized when the

tasks are a finite countable set and can therefore be represented as a contiguous sequence

of natural numbers. Instead of implementing the task pool with one deque per worker, each

worker stores a range of numbers from the task set as a [low..high] interval. Therefore, a

steal operation splits the victims range in half and only transfers two integer values instead

of half of a queue’s tasks. This results in both memory and communication bandwidth sav-

ings. We use a combinatorial number system of degree 2 in order to translate a non-negative

index to a lexicographically ordered 2-combination which represents the two sequences to

align as described by (Daily et al., 2012; Knuth, 2005). We explore using work stealing

28

iterators to improve the efficiency of work stealing for sequence alignments.

Distributed Task Counters: Work stealing iterators are a form of a distributed task counter.

Many high-speed interconnects provide hardware-accelerated implementations of an atomic

integer fetch-and-add instruction which can be used to implement a distributed task counter.

A process requesting a new task increments the value of the counter while reading the old

value. The atomicity of the instruction guarantees that each calling process reads a unique

counter value. We translate the counter value into a pair of sequence IDs using the same

combinatorial number system of degree 2 as with work stealing iterators. Using distributed

task counters does not necessarily require one core per node to be reserved, especially on

high speed interconnects. This can result in improved efficiency with respect to work steal-

ing. Further, although less important, distributed task counters only allocate space for the

counter on a single process which avoids the need to allocate portions of the task pool on

each process. We explore using distributed task counters to improve the efficiency of work

stealing for sequence alignments.

3.3 Implementation

Having evaluated many approaches (see Chapter 4), we arrived at the architecture detailed

in Figure 3.2. The basis of our implementation relies on the work stealing model as de-

scribed in Subsection 3.2.3. One thread per compute node is reserved to facilitate the

transfer of tasks. Tasks are stolen only from the shared portion of a victim’s task deque and

are delivered to the thief’s private portion. Computing (removing) or alternatively adding

a task to the worker’s deque causes the local work to rebalance between the shared and

private portions. After an all-to-all exchange of suffixes, both to statically load balance

subtree work as well as to place all suffixes needed for a given subtree on a single process,

the task pool is initially seeded with only all of the subtree processing (pair generation)

tasks. However, as subtree tasks are processed they add pair alignment tasks to the pool,

29

Input sequences on a shared buffer

`t0 `t1 `tk-2 … Worker threads

… Deques

`tk-1 Helper thread

Local portion
Private portion
Task delivery
Task theft

Key

Compute node with k cores/threads

Network interconnect

Incoming/outgoing steal requests

Mixed task types
T=Tree SW=Alignment

SW SW T T T

Figure 3.2: Schematic illustration of the execution on a compute node. One thread is
reserved to facilitate the transfer of tasks. Tasks are stolen only from the shared portion of
the deque and delivered only to the private portion. The set of input sequences typically
fits entirely within a compute node and is shared by all worker threads. The task pool starts
having only subtree processing (pair generation) tasks but as subtree tasks are processed
they add pair alignment tasks to the pool, as well. The dynamic creation and stealing of
tasks causes the tasks to become unordered.

as well. The dynamic creation and stealing of tasks causes the tasks to become unordered.

The input sequence database is only distributed if there is insufficient memory on a compute

node. Although the system we tested had ample resources, we evaluate both the limited and

unlimited memory cases.

30

CHAPTER FOUR

RESULTS AND DISCUSSION

Here we present our performance analysis which covers our exploration of alternative load

balancing strategies and sequence alignment pair filters for scalable homology detection.

4.1 Compute Resources

Experiments were performed on the Hopper supercomputer at the National Energy Re-

search Scientific Computing Center (NERSC)1. It is a 1.28 petaflop/sec Cray XE6 con-

sisting of 6,384 compute nodes made up of 2 twelve-core AMD ‘MagnyCours’ 2.1 GHz

processors and 32GB RAM per node. Hopper’s compute nodes are connected by the Cray

Gemini Network which is a custom high-bandwidth (8.3GB/s), low-latency (< 1µs) net-

work with a topology of a 3D torus. We compiled our application using the the Intel R© C++

64 Compiler XE, version 12.1.2.273 using the flags -O3 -pthread. The MPI library is a

custom version of mpich2 for Cray XE systems, version 5.4.4.

4.2 Datasets

The following evaluations were performed using input datasets containing 80K, 1280K,

2560K, and 5120K amino acid sequences in FASTA format. The datasets were created by

randomly sampling from the Sorcerer II Global Ocean Sampling dataset (Yooseph et al.,

2007) made available by the CAMERA (Sun et al., 2011) data portal. The 80K, 1280K,

2560K, and 5120K datasets have total sequence character lengths of 43M, 221M, 390M,

and 727M respectively and average sequence lengths of 541.7, 173.1, 152.5, and 142.2.

1https://www.nersc.gov/users/computational-systems/hopper/

31

4.3 Length-Based Filter

The benefit of the length-based filter is that it does not require global knowledge of all

sequences while also taking negligible time to compute. On the other hand, being a local

filter it requires examining all
(
n
2

)
pairs. Because we must examine all pairs we can then

enumerate all pairs which allows us to use the load balancing strategies of work stealing

iterators and distributed task counters in addition to the original work stealing strategy (see

Subsection 3.2.3). Figure 4.1 shows the strong scaling performance of work stealing all

pairs, adding the length-based filter, using task counters, and adding the length-based filter

(Brute, BruteLength, Counters, and CountersLength, respectively) for the 80K dataset. The

work stealing iterators approach is not shown here because it performed similarly to work

stealing with tasks.

What we see in Figure 4.1 is that the dynamic task counters performed better with and

without the length-based filter. This is due to the work stealing approach reserving one

core per compute node for communication progress. The dynamic task counters do not

have that limitation. This amounts to a 6.7% increase in performance which is reasonable

considering on the hopper system we are utilizing the otherwise reserved 24th core (4.2%

of the available cores). There are additional modest gains in performance due to the re-

duced communication requirements of the dynamic task counter approach compared to the

frequent stealing attempts of work stealing.

When considering the length-based filter, the wall clock savings are 20%. When we

look at the number of alignments performed, the efficiency of the length-based filter is

30%. For the four approaches considered here, the scalability is nearly perfect. However,

when considering the 99% filter efficiency of the suffix tree approach, the perfect scalability

of the length-based filter approach is overshadowed. The length-based filter simply leaves

too much work to be performed by the remaining pairs to make this an effective filter on its

32

2
8

2
9

2
10

2
11

2
12

2
13

2
11

2
12

2
13

2
14

2
15

2
16

S
e

c
o

n
d

s

Cores

Brute
BruteLength

Counter
CounterLength

Figure 4.1: Execution times for the 80K dataset using the dynamic load balancing strategies
of work stealing (‘Brute’) and distributed task counters (‘Counter’). Additionally, a length-
based filter is applied to each strategy. Work stealing iterators are not considered as they
performed similarly to the original work stealing approach.

own.

4.4 Suffix Tree Filter

The suffix tree filter was already known to eliminate ∼ 99% of the alignments (Wu et al.,

2012). However, it may produce the same pair for alignment more than once. The theo-

retical maximum number of duplicates per pair (i, j) is bounded by the number of distinct

maximal matches between those two strings (Kalyanaraman et al., 2003). To analyze the

cost of duplicate pairs, we augmented the suffix tree filter with a C++ STL set and inserted

the pairs as they were generated in order to discard duplicate pairs. We processed the

suffix tree for the 80K dataset on a single compute node (without performing alignments)

33

as well as in parallel on 4K cores. The suffix tree constructed entirely on a single com-

pute node (therefore eliminating all duplicates) generated 6,401,316 pairs out of a possible

3,199,960,000 (eliminating 99.8% of pairs). The distributed suffix tree filter, while able to

eliminate duplicates within each subtree, produced 15,136,463 pairs which is an increase

of 136.5% over the perfect duplicate elimination (eliminating 99.5% of pairs).

In order to take advantage of perfect duplicate elimination for distributed suffix subtree

processing, we implemented a simple distributed hash table. The entire time spent remov-

ing duplicates via the distributed hash table never amounted to more than one second of the

total application runtime for all datasets and all core counts we tested. Globally removing

duplicate pairs was thus a viable approach. We use this approach for the remainder of our

evaluations.

Figure 4.2 shows how the length filter compares to the suffix tree filter using the 80K

sequence dataset. For this input, the running time when using the suffix tree filter is already

less than a minute at 1K cores so it’s not surprising that scalability is limited to 4K cores.

What should be noted is the drastic difference in the time to solution and resource needs;

even at the smallest core count the suffix tree filter is over an order of magnitude faster than

the best alternative filter strategy of the length-based filter with distributed task counters.

4.4.1 Suffix Tree Heuristic Parameters

The tree cut depth k and the minimum exact match length cutoff parameters for the suffix

tree can have a direct impact on the number of promising pairwise sequence alignments

suggested by the suffix tree filter. In order to measure this impact, we varied these two

parameters independently for the 80K dataset while keeping the number of processors fixed

at 240.

We found that changing the cut depth k only changed the number of subtrees to create

and process which directly impacts the time to solution. Our fastest times had k = 3 which

34

2
2

2
4

2
6

2
8

2
10

2
12

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

S
e

c
o

n
d

s

Cores

CounterLength
SuffixTree

Figure 4.2: Execution times for suffix tree filter and best non-tree filter strategy for the 80K
sequence dataset.

generated 8, 353 subtrees. Setting k = 5 generated more subtrees (2, 790, 772) but each

of the subtrees contained fewer suffixes and were processed more quickly. However, the

additional subtrees eventually caused modest slowdown compared to k = 3 since after

processing a subtree the duplicate pairs are eliminated which caused contention for the

distributed hash table. Setting k = 1 caused significant slowdown since the number of

buckets generated (21) was much smaller than the number of processes such that there

wasn’t enough work available to be performed in parallel. For all inputs considered in this

evaluation, setting k = 3 was sufficient. Setting k did not have any impact on the number of

alignments to perform because alignment decisions are based on the minimum exact match

length cutoff parameter, which is always greater or equal to the cut depth chosen.

Changing the minimum exact match length cutoff dramatically changed the number of

35

alignments to perform but had less impact on the number of homologous pairs identified.

Our default of 7 produced 2, 707, 143 pairs of which 435, 152 were homologous and ran

for 179 seconds. Setting it higher to 9 produced 1, 303, 842 pairs of which 404, 735 were

homologous and ran for 101 seconds. Setting it lower to 6 produced 6, 401, 179 pairs of

which 442, 828 were homologous and ran for 499 seconds. Setting it to 5 or lower caused

excessive running times. For all experiments hereafter we set this cutoff to 7.

4.4.2 Distributed Datasets

Figure 4.3 shows how the suffix tree filter performs when the 80K dataset has been dis-

tributed across multiple nodes. Although the hopper system has ample resources available,

it is important to measure the effect of a distributed sequence dataset. We limited the re-

sources available to each node’s processes such that the 80K dataset was split across every

two nodes in a round robin fashion. If a sequence was no longer local to a node, it would

request the remote sequence from the nearest rank with that sequence. Distributing the

dataset had no effect on the time taken to compute alignments since any alignment would

require at most two sequence fetches. However, the number of sequence fetches needed

for any particular suffix subtree could be large. The suffix subtree creation and processing

is the primary reason for the decrease in performance when using a distributed sequence

database. The results in Figure 4.3 are from our implementation which caches all needed

sequences during tree construction and processing. In addition, fetching and caching re-

mote sequences one at a time as they are needed by the tree construction algorithm per-

formed better than a bulk request of all needed sequences at the start of tree creation due to

communication contention.

4.4.3 Strong Scaling

Hereafter again considering replicated sequences, Figure 4.4 shows the strong scaling per-

formance of the suffix tree filter running concurrently with sequence pair alignment using

36

2
2

2
4

2
6

2
8

2
10

2
12

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

S
e

c
o

n
d

s

Cores

80K replicated
80K distributed

Figure 4.3: Execution times for suffix tree filter for the 80K sequence dataset when it is
replicated on each node or distributed across nodes.

the 1280K, 2560K, and 5120K sequence datasets. Although using the suffix tree filter is

far better than any other known filter strategy, it does not scale for larger inputs. This

is because the real world datasets we tested have a few highly occurring substrings, thus

resulting in some subtrees containing an inordinate number of suffixes – more than 10 stan-

dard deviations away from the average number of suffixes per subtree. The suffix tree filter

is only as fast as its longest-processing subtree. In the case of the 2560K sequence dataset,

this amounts to approximately 25 seconds for the largest single tree which is why we see

the wall clock time never go far below approximately 32 seconds even as we increase the

number of processors. In the case of the 5120K sequence dataset, the most time spent

processing a single tree was 389 seconds, limiting the scalability to 1K cores. Figure 4.5

further illustrates the poor scaling due to the single long-running subtree task.

37

There are two options for mitigating the scalablity challenges imposed by large suffix

subtrees. First, such large subtrees could simply be ignored since a highly repetitive sub-

string will not produce meaningful homology results, but this comes with the trade-off of

missing some valid homologous pairs. Second, such large subtrees could be subdivided

into additional subtrees rooted at greater depths within the larger subtree. We attempted

the latter approach by dynamically cutting large trees if they were two or more standard

deviations away from the global average number of suffixes per subtree. We continued to

recursively subdivide large trees until either the number of suffixes in the resulting trees

were small enough or if the cut depth reached the minimum exact match length criteria.

However, this did not significantly or consistently improve performance because the com-

monly occurring substrings were as long or longer than the minimum exact match length

criteria – subtrees would be further divided without significantly reducing the number of

suffixes in the problematic subtrees. This result highlights the worst case scenario where

the commonly occurring substring might still be longer than the minimum exact match

length criteria requested by the user (this value was 7 in our tests compared to the cut depth

of 3 also used in our tests). Cutting the suffix tree any deeper than the minimum exact

match length criteria would likely result in missed pairs. This is a possible indication that

either the minimum exact match length cutoff is too short for this subtree or the prefix exact

matching sequence corresponding to this subtree is a highly repetitive sequence in the input

and hence the subtree can be discarded. Removing the bottleneck of large subtrees will be

addressed in future work.

Compared to our preliminary work (Daily et al., 2012) as well as to our non-tree filters

evaluated above, by using the suffix tree filter our time to solution was greatly improved

while parallel efficiencies were reduced. The simulated filter in our prior work was com-

puted in constant time and removed arbitrary pairs such that those prior performance results

cannot be directly compared to the real suffix tree filter which accurately removes candidate

38

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
7

2
8

2
9

2
10

2
11

2
12

2
13

S
e

c
o

n
d

s

Cores

1280K sequences
2560K sequences
5120K sequences

Figure 4.4: Execution times for suffix tree filter strategies for the 1280K, 2560K, and
5120K sequence datasets. The ideal execution time for each input dataset is shown as a
dashed line.

pairs while introducing its own processing costs and load imbalance. If not using a suffix

tree filter, we are then left with the choice of either using a less-effective but computation-

ally insignificant filter, or not using a filter at all. Either choice would waste computation

on poor alignments but would scale better. We believe that in light of trying to process

ever-bigger datasets, a reduced time to solution is preferable over pure scalability. Future

work will continue to address the scalability challenges.

Our approach here running on the same hardware and with the same datasets outper-

formed our preliminary work even when including the suffix tree processing time up to 8K

cores. Compared to Wu et al. (Wu et al., 2012), our parallel efficiencies of over 99% on

2K cores were comparable to their 95% efficiencies on 2K cores. In addition, we were able

to have good parallel efficiencies out to 8K cores. Further, our wall clock time (albeit on

39

 0

 20

 40

 60

 80

 100

2
7

2
8

2
9

2
10

2
11

2
12

2
13

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 (

%
)

Cores

1280K sequences
2560K sequences
5120K sequences

Figure 4.5: Parallel efficiency with input sizes of 1280K, 2560K, and 5120K.

more capable hardware) of 125 seconds at 2K cores for the 2560K dataset is nearly 64×

faster than the previously reported 7975 seconds.

Since our goal was to be able to process sequences at the same rates as they are gen-

erated on current sequencing equipment, we report our PSAPS results in Figure 4.6. We

see from the figure that we did not achieve the same rate of sequence production outlined

in Section 1.1 however our best PSAPS rate is over 2 × 106. This is also less than our

preliminary work reports at 2.4× 107 PSAPS. However, our preliminary work, without us-

ing a suffix tree filter, was performing imprecise and likely unnecessary work as evidenced

by our faster running times when using the suffix tree filter. Our approach, therefore, has

better throughput even with fewer PSAPS.

40

2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

P
S

A
P

S

Cores

1280K sequences
2560K sequences
5120K sequences

PSAPS goal 10
9

Figure 4.6: PSAPS (Pairwise Sequence Alignments Per Sec) performance with input sizes
of 1280K, 2560K, and 5120K.

41

CHAPTER FIVE

EXTENSIONS

The approach presented and evaluated in Chapters 3 and 4 did not utilize a vectorized

implementation of sequence alignments. This was due to the lack of an implementation

providing the necessary statistical results as described in 2.1.3. We describe in Section 5.1

a new vectorized implementation of sequence alignment in light of existing approaches.

Our implementations of all approaches also optionally compute the required statistics for

homology detection.

Since sequence alignment is often the most significant portion of the workload, ad-

dressing the performance of pairwise alignment might mean readdressing the rest of the

framework. On current and future vectorized hardware, the speed at which an alignment

can be performed will increase 10x-20x at which point the cost of stealing an alignment

task for load balancing might outweigh the cost of performing the alignment.

Both problems are treated in the sections that follow.

5.1 Vectorized Sequence Alignments using Prefix Scan

Vectorization is an effective way to improve the performance of many kinds of applications

via replacing a batch of scalar instructions by vector (SIMD) instructions. In addition, with

respect to power consumption, vectorization is considered free because it needs relatively

little extra hardware support, like SIMD extensions.

Since the 1990s, when Streaming SIMD Extension (SSE) were introduced as part of

the x86, they have been widely used in many areas. Recent years have seen SIMD widths

expand. Sandy Bridge doubled the SSE SIMD width from 128-bit to 256-bit with new

intrinsics called AVX. Moreover, the latest Xeon Phi Coprocessor is equipped with a 512-

bit Vector Processing Unit (VPU) with new intrinsics called AVX-512 that can process

42

16 floating point operations with the same type concurrently. Considering the upcoming

Knights Landing CPU with an even more powerful SIMD instructions set, vectorization

will provide us more benefits for many applications and algorithms.

There have been many efforts focusing on the vectorization area, especially for dense

matrix algorithms. In recent years, many irregular applications have been mapped to vari-

ous SIMD architectures. However, there are few works considering the effect of increasing

SIMD widths on the design and implementation of existing SIMD algorithms. Starting

from this viewpoint, we perform a careful study on multiple SIMD sequence alignment

algorithms.

In addition to providing a new SIMD implementation of a parallel scan-based sequence

alignment algorithms, the objective of this extension is to understand the impacts of widen-

ing vector registers on a broad class of sequence alignment algorithms in light of their

workload characteristics and parameter ranges.

The order in which we presented the vectorized approaches in Figure 2.2 corresponds

generally to their relative performance. Table 5.1 briefly lists the relative performance im-

provement of each approach. For this analysis, we compare every sequence to each other

using a small but representative protein sequence dataset. We implemented each vectoriza-

tion technique shown here using the SSE4.1 ISA, splitting the 128-bit vector register into

eight 16-bit integers. The results of each vector implementation were validated against the

scalar result. The first two approaches, namely Blocked and Diagonal, are improved over

the scalar implementation, while the Striped approach performed significantly better. For

this reason, we only consider Striped and our new Scan implementation for the remain-

der of this extension. These results reaffirm similar findings from Farrar (Farrar, 2007) for

Striped.

43

Approach Scalar Blocked Diagonal Striped

Time (s) 70.5 10.6 9.9 4.7
Speedup 1.0 6.6 7.2 15.1

Table 5.1: Relative performance of each vector implementation approach. For this study,
we used a small but representative protein sequence dataset and aligned every protein to
each other protein. The vector implementations used the SSE4.1 ISA, splitting the 128-bit
vector register into 8 16-bit integers. The codes were run using a single thread of execution
on a Haswell CPU running at 2.3 Ghz.

5.1.1 Algorithmic Comparison of Striped and Scan

Prior to our experimental evaluation of the Striped and Scan approaches to vectorizing se-

quence alignment, it is important to understand the algorithmic differences between these

approaches. First, we look at the new recurrences for Scan and discuss how to optimally

implement them using vectors. This is followed by an analysis of each algorithm’s compu-

tational complexity.

There are two known formulations for linearizing the data dependencies within the

sequence alignment recurrences by using parallel prefix (scan) computation. The approach

was first described by Aluru et al. (Aluru et al., 2003), however the formulation by Khajeh-

Saeed et al. (Khajeh-Saeed et al., 2010) is simpler though it requires a lengthy proof to

confirm its equivalence to the original problem. For comparison with the description in

Section 2.1.2, equations from (Khajeh-Saeed et al., 2010) are repeated here in Equations 5.1

through 5.4. Note that this recurrence, computing column by column, initially ignores the

influence of the column maximum Di,j and calculates a temporary variable T̃i,j .

44

Ii,j = max(Ii,j−1, Ti,j−1 +Gopen) +Gext (5.1)

T̃i,j = max(Ti−1,j−1 +Wi,j, Ii,j) (5.2)

D̃i,j = max1<k<j(T̃i−k,j − kGext) (5.3)

Ti,j = max(T̃i,j, D̃i,j +Gopen) (5.4)

The parallel scan approach is the focus of our implementation. Ideally, the parallel

scan would be implemented as described in Blelloch (Blelloch, 1990), mapping a balanced

binary tree over the values and using an upsweep followed by a downsweep and applying

the associative operator at each node. This is indeed the approach taken by Khajeh-Saeed

et al. in (Khajeh-Saeed et al., 2010) though the implementation is written for a GPU. The

optimal time complexity of this operation is O(n/p+ lg(n)).

Unfortunately, such operations are not efficient to implement using SIMD vectors. In-

stead, the parallel scan is implemented in two passes. The first pass has each vector element

p compute its portion of the scan in n/p iterations, where n is the number of cells in one

column of the DP table (equal to the length of the query sequence). Next, a “horizontal”

scan is performed on the resulting vector in p−1 operations. Though horizontal operations

were added starting in SSE3, our scan requires a combination of addition and maximum

rather than just addition or subtraction. Further, the latency and throughput of the horizon-

tal operations are large relative to our approach of shifting the vector p − 1 times. After

the horizontal scan is performed, the resulting vector is shifted to prepare it for the second

pass, where it becomes the initial conditions. The second pass is performed in n/p itera-

tions. Instead of the ideal time complexity for the parallel prefix scan, we are left with a

time complexity of O(n/p + p). The pseudocode for the Scan implementation appears in

Algorithm 4.

45

Algorithm 4 Pseudocode for Scan
Align Scan(s1[1 . . .m], s2[1 . . . n])

1: Create striped query profile
2: L← (m+ p− 1)/p . number of vector epochs
3: for each column j along database sequence do
4: for each vector epoch i in 1 . . .L do
5: Load query profile
6: Compute and store I
7: Compute and store T̃
8: Compute initial pass of D̃
9: Local prefix scan of D̃ result

10: for each vector epoch i in 1 . . .L do
11: Compute second pass of D̃
12: Compute and store T

Algorithm 5 Pseudocode for Striped
Align Striped(s1[1 . . .m], s2[1 . . . n])

1: Create striped query profile
2: L← (m+ p− 1)/p . number of vector epochs
3: for each column j along database sequence do
4: Initialize D
5: Load Tj−1[L]
6: for each vector epoch i in 1 . . .L do
7: Load query profile
8: Compute S
9: Load Ij−1

10: Compute and store T
11: Compute and store next I
12: Compute next D
13: Load previous Tj−1[i] for next iteration
14: while any D > T do
15: for each vector epoch i in 1 . . .L do
16: Recompute T
17: Recompute D
18: if not any D > T then
19: Break

Comparing Algorithms 4 and 5, the Scan approach is only superficially similar to

46

Striped. For example, as in (Farrar, 2007), the Scan implementation is also striped par-

allel to the query sequence. In addition, both approaches make at least one full pass over

each column in the DP table, but this is where the similarities end. The amount of work

performed by each differs in two ways. First, the Striped approach calculates three values

per cell, while the Scan approach calculates an additional, temporary value. Second, the

Striped approach is often able to abort its additional passes over the column if the upper cell

values within the current column no longer contribute to the current cell value. However,

in the worst case, it may recompute the column p− 1 times. The Scan approach will iterate

over a column exactly twice and performs the horizontal scan of the intermediate vector

p− 1 times for each column.

Summarizing, the time complexity to compute a column of the DP table using the

Scan approach is O(n/p + p), where n is the length of the query sequence and p is the

number of lanes, i.e., processing elements. The Striped approach is nearly identical in

its computational complexity with O(C ∗ n/p), where the additional parameter C is the

corrective factor. C represents the number of additional passes until the values converge.

The corrective factor C is not necessarily a whole number. For example, a column might

converge before reaching its end. For Striped to be effective, 0 <= C << (p − 1), and

ideally it would be zero. The detailed evaluation that follows shows that C ∝ p and, due to

C, each algorithm has its respective strengths.

5.1.2 Workload Characterization

The performance of the sequence alignment algorithms depends, in part, on the length of

the input. Therefore, it is important to know the distributions of sequence lengths for any

given set of sequences. We observe that the majority of protein sequences tend to be 300

characters or less, which will have a direct impact on later performance studies.

47

Figure 5.1 characterizes the length distributions of DNA and protein sequences. Ge-

nomic DNA sequences tend to vary greatly and can be of significant length. For exam-

ple, the longest Homo sapiens sequence is 125 Mbp (million base pairs), and the longest

genomic bacteria sequence is 14.8 Mbp. Because of such long sequences, Figures 5.1a

and 5.1b are truncated before their cumulative frequencies reach 100 percent. Protein se-

quences tend to be much shorter than DNA sequences. Figures 5.1c and 5.1d show that in

two widely used datasets, half of the sequences are length 300 or less. This observation has

significant implications for our performance analysis. These four datasets are representa-

tive of the various datasets used in other studies.

For many analyses involving the RefSeq bacteria protein dataset, we used a random

sampling of 2,000 protein sequences. This dataset is hereafter “bacteria 2K”. The se-

quences within this dataset have an average length of 314 with the longest sequence being

3,206. The frequency of sequence lengths and its cumulative distribution are similar to

those found in Figure 5.1c.

For some experiments, we also used the UniProt release mentioned previously (here-

after “UniProt”). In our experiments involving querying a database, UniProt represented

our database of sequences. The sequences within this dataset have an average length of

356 with the longest sequence being 35,213. The frequency of sequence lengths and its

cumulative distribution appear in Figure 5.1d.

5.1.3 Empirical Characterization

To fully understand the impact of future vector widths on sequence alignments, a number

of tests were performed to assess overall algorithm viability. We focus on single-node,

single-thread performance to precisely understand the effect of hardware trends within this

application domain.

48

F
re

q
u
e
n
c
y

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Sequence Length

histogram
cumulative

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20000 40000 60000 80000 100000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) RefSeq Homo sapiens DNA.
F

re
q
u
e
n
c
y
 (

in
 t
h
o
u
s
a
n
d
s
)

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Sequence Length

histogram
cumulative

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) RefSeq bacteria DNA.

F
re

q
u
e
n
c
y
 (

in
 t
h
o
u
s
a
n
d
s
)

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Sequence Length

histogram
cumulative

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c) RefSeq bacteria proteins.

F
re

q
u
e
n
c
y
 (

in
 h

u
n
d
re

d
s
)

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Sequence Length

histogram
cumulative

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(d) UniProt proteins.

Figure 5.1: Distribution of sequence lengths for all [5,448] RefSeq Homo sapiens DNA
(a), all [2,618,768] RefSeq bacteria DNA (b), all [33,119,142] RefSeq bacteria proteins
(c), and full [547,964] UniProt protein (d) datasets. Protein datasets are skewed toward
shorter sequences, while DNA datasets contain significantly longer sequences. Because of
the presence of long sequences, figures (a) and (b) are truncated before their cumulative
frequencies reach 100 percent.

49

Systems and Compilers: The following results were taken on single nodes of two clus-

ters within the PNNL Institutional Computing infrastructure, namely constance and philo.

Constance is based on the Intel Haswell CPU architecture featuring the AVX2 instruction

set architecture (ISA). Each node has dual 12-core Intel Haswell E5-2670 v3 CPUs running

at 2.3 Ghz with 64 GB 2133 Mhz DDR4 memory per node. The compiler used was Intel

ICC 15.0.1 using level three optimization (-O3). The philo cluster consists of nodes with

dual 8-core Intel Sandy Bridge E5-2670 CPUs running at 2.6 Ghz with 64 GB of memory.

Each philo node has one Intel Xeon Phi 7110P accelerator with 61 cores running at 1.1 Ghz.

The compiler used was Intel ICC 13.1.1 using level three optimization (-O3) targeting the

MIC architecture (-mmic). The constance cluster was used to test the SSE4.1 and AVX2

ISAs. This was done intentionally to keep the compiler and hardware identical for each of

these ISAs to compare the effects of the ISAs rather than the hardware or compiler. The

philo cluster was used exclusively to test the performance of the Xeon Phi accelerator that

uses the Knights Corner (KNC) ISA.

Scoring Scheme Defaults: Sequence alignments require a scoring scheme as input. The

components of the scoring parameters include the substitution matrix, as well as the gap

open and gap extension penalties. Unless stated otherwise, all of our experiments use

the BLOSUM62 substitution matrix and gap open and extension penalties of -11 and -1,

respectively. As with BLOSUM62 or any of the other BLOSUM substitution matrices,

we use the default gap open and gap extension penalties as prescribed by the NCBI blastp

program.

Datasets: For all analyses, we used sequence datasets from the NCBI Reference Sequence

(Tatusova et al., 2014) (RefSeq) database and the Universal Protein Resource (Consortium,

2015) (UniProt) database. The RefSeq project is an ongoing effort to provide a curated,

non-redundant collection of sequences, grouped by taxonomy, e.g., fungi, bacteria. UniProt

is a comprehensive resource for protein sequence and annotation data. Specifically, from

50

DP Method Lanes I-refs D-refs

NW striped 4 1.3e12 3.7e11
NW striped 8 9.7e11 2.8e11
NW striped 16 8.6e11 2.3e11
NW scan 4 1.6e12 4.8e11
NW scan 8 8.6e11 2.9e11
NW scan 16 5.9e11 1.9e11
SG striped 4 1.1e12 3.5e11
SG striped 8 7.3e11 2.4e11
SG striped 16 5.9e11 1.8e11
SG scan 4 1.6e12 4.8e11
SG scan 8 8.5e11 2.9e11
SG scan 16 5.8e11 1.9e11
SW striped 4 1.3e12 3.4e11
SW striped 8 7.3e11 2.3e11
SW striped 16 6.1e11 1.8e11
SW scan 4 1.8e12 4.7e11
SW scan 8 9.0e11 2.9e11
SW scan 16 6.1e11 1.9e11

Table 5.2: Cache analysis of all-to-all sequence alignment for the Bacteria 2K dataset on
Haswell. Scan and Striped are using 4, 8, and 16 Lanes. For both scan and striped, instruc-
tion and data miss rates for all cache levels were less than 1 percent and are therefore not
shown. The primary difference between approaches is indicated by the instruction and data
references.

RefSeq we used release 69 which incorporates data available as of January 2, 2015. and

from UniProt we used release 2015 02 from 04-Feb-15.

5.1.3.1 Cache Analysis

We performed a cache analysis of the homology detection problem to examine the total

instruction counts and cache efficiencies for both Striped and Scan across lane counts, as

well as on the Xeon Phi. We used cachegrind to generate reports for the Haswell system

and Intel’s vtune amplifier for the Xeon Phi system. We found, in general, both Striped and

Scan exhibit negligible instruction and data cache miss rates of no more than 1 percent. All

measurements, except instruction and data references, are comparable between Scan and

Striped, which is why much of that information is omitted from Table 5.2 and Table 5.3.

51

NW-Scan NW-Striped SG-Scan SG-Striped SW-Scan SW-Striped

Instructions-Retired 6.3e11 9.1e11 6.0e11 6.3e11 6.4e11 6.5e11
CPI-Rate 2.85 2.68 2.72 2.84 2.70 2.72
L1-Misses 2.8e09 1.8e09 2.0e09 1.8e09 2.0e09 1.9e09
L1-Hit-Ratio 0.98 0.99 0.99 0.99 0.99 0.99
Vectorization-Intensity 14.84 13.81 14.82 13.94 14.98 14.10
L1-Comp-to-Data-Acc-Ratio 27.34 29.14 29.79 26.00 32.02 30.39
L2-Comp-to-Data-Acc-Ratio 1731.86 3375.18 2539.59 2324.74 2761.39 2582.76

Table 5.3: Cache analysis of all-to-all sequence alignment for the Bacteria 2K dataset on
Xeon Phi. Scan and Striped are using only 16 lanes because the KNC ISA only supports
32-bit integers which restricts this analysis to 16 lanes.

All implementations are extremely cache efficient. This is attributed in part to the use

of the striped query profile for both implementations which was already proven by Farrar

(Farrar, 2007) to be efficient. The primary reason for the cache efficiencies in our case is

the size of the problems being computed. The longest sequence in the bacteria 2K database

is 3,206 and easily fits within the cache on both the Haswell CPU and the Xeon Phi CPU.

Other cached data includes the values for the DP column being computed. The primary

factors affecting performance are the number of instruction and data references.

As expected, the number of instruction and data references decrease as the number of

vector lanes increase. However, they decrease more rapidly for Scan than Striped. Striped

initially has fewer instructions than Scan when using 4 lanes. By the time 16 lanes are used,

Scan has surpassed Striped. Except for the case of NW Striped, where Scan is significantly

better, it is not clear whether Scan will continue to outperform Striped for SG and SW.

5.1.3.2 Instruction Mix Analysis

Section 5.1.3.1 described the cumulative instruction counts for the homology detection

problem. To understand the lane count trends shown in Table 5.2 and Table 5.3, we ran the

same homology detection problem with 16 lanes using Intel’s Pin tool (Luk et al., 2005)

to capture the instruction mix as shown in Figure 5.2. For space reasons, we omit similar

52

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

SC
L_

AR
IT

H

SC
L_

C
M

P

SC
L_

JU
M

P

SC
L_

M
EM

VEC
_A

R
IT

H

VEC
_C

M
P

VEC
_M

ASK

VEC
_M

EM

VEC
_S

W
IZ

ZLE

sw_striped
sw_scan

sg_striped
sg_scan

nw_striped
nw_scan

Figure 5.2: Instruction mix for the homology detection problem. For each category of
instructions, Scan rarely varies between the three classes of alignments performed, while
NW Striped executes more instructions relative to any other case. Striped performs more
scalar operations, while Scan performs more vector operations. Scan uses more vector
memory and swizzle operations, while Striped is the only one of the two that uses vector
mask creation operations.

results for the Xeon Phi which also uses 16 lanes. We observe that for each category of

instructions, Scan rarely varies between the three classes of alignments performed. Affirm-

ing previous results, NW Striped executes more instructions relative to any other case. We

observe that Striped performs more scalar operations, while Scan performs more vector

operations. Scan uses more vector memory and swizzle operations, while Striped is the

only one of the two that uses vector mask creation operations.

Many of these instruction mix differences can be explained by the algorithmic differ-

ences noted in Section 5.1.1. The Striped approach recomputes a column until the values

53

converge. It computes a vector mask and uses additional scalar jumps to check for con-

vergence and break out of the recompute loop. Scan does not compute any vector masks.

Assuming the best case, Striped would not need to recompute a column. In such a case,

we would expect to see Scan perform more vector arithmetic and comparison instructions

because it computes each column twice and computes an additional temporary value per ta-

ble cell. However, the Striped approach uses more arithmetic and comparison instructions

overall. This can only be explained by recomputing the columns a significant number of

times. Lastly, Striped performs a few vector swizzle operations before starting a column,

while Scan performs more vector swizzle operations because of the p − 1 horizontal scan

operations performed for each column of an alignment.

5.1.3.3 Query Length versus Performance

The analyses performed thus far indicate that the performance of Striped and Scan depends

on the number of vector lanes applied to the problem. Because the vectors run parallel to

the query sequence, the number of vector lanes determines the number of vector epochs

based on the lengths of the queries. Therefore, we present the effect of both the query

length and number of vector lanes on the relative performance of Striped and Scan.

To that end, we used the bacteria 2K dataset as our query set and performed a database

search against the UniProt database. Figures 5.3a through 5.3e show the relative speedup

of the Scan approach over the Striped approach as the query lengths increase.

The relative performance of Scan versus Striped shows that both approaches have their

merits in light of increasing the number of lanes. Shorter queries perform better for NW

Striped, SG Scan, and SW Scan; longer queries perform better for NW Scan, SG Striped,

and SW Striped.

The different classes of sequence alignments cross over the relative performance thresh-

old (1.0 on the y-axis) at different points. For NW, the cross over points are for query

54

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

Query Length

NW 4 Lanes
NW 8 Lanes

NW 16 Lanes

(a) NW: Query Length vs. Relative Performance
of Scan over Striped

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 2e+10

 0 100 200 300 400 500

C
o

rr
e

c
ti
o

n
s

Query Length

NW 4 Lanes
NW 8 Lanes

NW 16 Lanes

(b) NW: Query Length vs. Total Striped Corrections

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

Query Length

SG 4 Lanes
SG 8 Lanes

SG 16 Lanes

(c) SG: Query Length vs. Relative Performance
of Scan over Striped

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 0 100 200 300 400 500

C
o

rr
e

c
ti
o

n
s

Query Length

SG 4 Lanes
SG 8 Lanes

SG 16 Lanes

(d) SG: Query Length vs. Total Striped Corrections

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

Query Length

SW 4 Lanes
SW 8 Lanes

SW 16 Lanes

(e) SW: Query Length vs. Relative Performance
of Scan over Striped

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 0 100 200 300 400 500

C
o

rr
e

c
ti
o

n
s

Query Length

SW 4 Lanes
SW 8 Lanes

SW 16 Lanes

(f) SW: Query Length vs. Total Striped Corrections

Figure 5.3: The relative performance of Scan versus Striped (a-c) shows that both ap-
proaches have their merits in light of increasing the number of vector lanes. Shorter queries
perform better for NW Striped, SG Scan, and SW Scan. Longer queries perform better for
NW Scan, SG Striped, and SW Striped. The reasons for the relative performance differ-
ences can be attributed to the number of times the Striped approach must correct the column
values before reaching convergence (d-f).

55

lengths of 149, 149, and 149 for lane counts of 4, 8, and 16, respectively. For SG, the cross

overs occur at 121, 188, and 253. For SW, the cross overs occur at 77, 77, and 152. The

performance peak at the top of the bubble for SW occurs at 30, 40, and 87. In general, for

SG and SW, the cross over points increase with lane counts. For SW, the cross over appears

to be jumping dramatically from 8 to 16 lanes. Whether such a dramatic change occurs at

32 lanes needs to be carefully evaluated as new hardware emerges. As for NW, it appears

consistently to cross over at query lengths around 150.

The cross over points are particularly concerning in light of many protein datasets being

skewed toward shorter sequences. As shown in Figures 5.1c and 5.1d, the majority of

protein sequences are 300 amino acids in length or shorter. Therefore, when used as query

sequences for database search applications, the point at which SW performance crosses

over becomes extremely relevant. Our analysis used, at most, 16 lanes, though 32 lanes

will be available in the next wave of CPUs supporting the AVX-512 ISA. Future CPUs and

GPUs may continue to adopt even wider vector registers, which, based on these results,

is expected to further diminish the return of widening vector registers for this problem

domain.

5.1.3.4 Query Length versus Number of Striped Corrections

Combining the results from from the previous analyses, the primary factor influencing

Striped performance is the number of corrections that must be made until the column val-

ues converge. The number of corrections is further impacted by the number of vector

lanes utilized for the Striped computation. This validates the complexity analysis in Sec-

tion 5.1.1.

For the Striped approach, combining the results from the previous analyses, the pri-

mary factor limiting the performance gains afforded by increasing the number of vector

lanes is the total number of corrections. Using the same database search application as in

56

Section 5.1.3.3, Figures 5.3b through 5.3f confirm this observation by showing the plots of

query length versus total number of corrections.

The Striped approach, for each column, initializes its D values to zero in the case of

SW and to a large negative number in the cases of NW and SG. These are, of course,

incorrect values that are later corrected as part of the corrective loop. There is one incorrect

value introduced for each vector lane utilized. As the lanes increase, so do the number of

incorrect values that can propagate across vector epochs.

The trends displayed show that query length has a direct impact on the number of

Striped corrections. For NW, query length is proportional to the number of corrections.

In addition, the number of corrections is increasing as lane counts increase. For SG, the

number of corrections also increases as lane counts increase, though query length has less

of an effect. At shorter query lengths, the number of corrections is less predictable. For

SW, there is a clear trend, forming a bubble in the number of corrections relative to the

number of lanes. The bubble consistently plateaus when the query length reaches ten times

the number of lanes. The peak of the bubbles for SW start at 5E9 for 4 lanes, then 8E9 for

8 lanes, and 16E9 for 16 lanes—roughly doubling as the number of lanes double. Coupled

with the computational complexity discussion in Section 5.1.1, this trend will have a severe

impact on SW performance as lanes continue to widen. The total number of corrections

increases as the number of lanes p increase. This implies a correlation between the number

of lanes and worst-case performance for the Striped approach.

5.1.3.5 Scoring Criteria Analysis

Having performed a detailed, low-level analysis of Striped and Scan, it remains to be seen

whether the observations hold for a user-level analysis. The next experiment is a typical

evaluation of the effect that the gap and substitution matrix scoring criteria has on the

various implementations. We used the homology detection application with the Bacteria

57

Short Crossover Point Long
< Cross 4 Lanes 8 Lanes 16 Lanes > Cross

NW Striped 149 149 149 Scan
SG Scan 121 188 253 Striped
SW Scan 77 77 152 Striped

Table 5.4: Decision table showing which algorithm should be used given a particular class
of sequence alignment and query length.

2K dataset. The substitution matrices used were BLOSUM{45,50,62,80,90} with their

corresponding default gap open and extension penalties of −15− 2k, −13− 2k, −11− k,

−10− k, and −10− k, respectively. The scoring criteria analysis appears in Figure 5.4.

Because the convergence criteria for the column computation in Striped depends on the

values of T and D, different substitution matrices and gap penalties affect how quickly the

values of T and D diverge—the more divergent, the more corrections must be made. A

similar analysis was done by Farrar (Farrar, 2007), though it did not consider NW or SG.

Because the Scan approach does not conditionally compute any of its values, the runtimes

are stable regardless of the selected substitution matrix or gap penalties.

The Scan approach has stable performance relative to the scoring scheme because it

unconditionally makes two passes over each DP table column. The Striped approach

varies a moderate amount between selected scoring schemes, generally performing bet-

ter for smaller gap penalties. As the lane counts increase, the Scan approach eventually

overtakes the Striped approach, confirming the results in Section 5.1.3.3.

5.1.3.6 Prescriptive Solutions on Choice of Algorithm

For the particular input datasets we studied, the choice of algorithm to use given a particular

class of sequence alignment and query length is summarized in Table 5.4.

We observe that the three algorithms, despite their similarities, exhibit distinct charac-

teristics. Specifically, NW requires a different choice of schemes as compared to SG and

SW. In addition, the choice of the schemes is clearly dictated by the input size. Whereas

58

 0

 2

 4

 6

 8

 10

B45 B50 B62 B80 B90

Scan Striped

(a) NW 4 Lanes SSE41

 0

 2

 4

 6

 8

 10

B45 B50 B62 B80 B90

Scan Striped

(b) SG 4 Lanes SSE41

 0

 2

 4

 6

 8

 10

B45 B50 B62 B80 B90

Scan Striped

(c) SW 4 Lanes SSE41

 0

 1

 2

 3

 4

 5

 6

B45 B50 B62 B80 B90

Scan Striped

(d) NW 8 Lanes AVX2

 0

 1

 2

 3

 4

 5

 6

B45 B50 B62 B80 B90

Scan Striped

(e) SG 8 Lanes AVX2

 0

 1

 2

 3

 4

 5

 6

B45 B50 B62 B80 B90

Scan Striped

(f) SW 8 Lanes AVX2

 0

 1

 2

 3

 4

 5

 6

B45 B50 B62 B80 B90

Scan Striped

(g) NW 16 Lanes AVX2

 0

 1

 2

 3

 4

 5

 6

B45 B50 B62 B80 B90

Scan Striped

(h) SG 16 Lanes AVX2

 0

 1

 2

 3

 4

 5

 6

B45 B50 B62 B80 B90

Scan Striped

(i) SW 16 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(j) NW 16 Lanes KNC

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(k) SG 16 Lanes KNC

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(l) SW 16 Lanes KNC

Figure 5.4: Total compute times in seconds (Y-axis) for global (NW, left column), semi-
global (SG, center column), and local (SW, right column) alignments using the bacteria 2K
dataset for a homology detection application. The lane counts increase moving from the
first row to the third row, increasing from 4 to 8 and lastly to 16. The fourth row consists
of the results for KNC which is also 16 lanes. For each BLOSUM matrix analyzed, the
default gap open and extension penalties from NCBI were used as in Section 5.1.3.5. By
the time 8 lanes are used, NW Scan consistently outperforms NW Striped. At 16 lanes,
Scan begins to outperform Striped for many of the selected scoring schemes.

59

NW performs better with the Striped implementations for short sequences, SG and SW

are faster when using the Scan implementation. The choices are reversed for the long se-

quences, with NW performing better with Scan and SG/SW performing better with the

Striped implementation. The cross-over between what is classified as a short vs a long

sequence depended on the SIMD lane width. These widths are shown in columns 3–5 in

Figure 5.4. In general, the cross-over points were well within group of shorter sequences in

Figure 5.1. Therefore, for longer sequences toward the right of the length distributions in

Figure 5.1, the choice of schemes is clear. The cross-over point increased with SIMD lane

width for SG and SW. The number of corrections for NW does not vary significantly with

lane width, explaining the stability of the cross-over point across SIMD width for NW.

In all the cases, widening vector registers makes the parallel scan implementation of the

sequence alignment algorithms more attractive.

5.2 Communication-Avoiding Filtering using Tiling

Mansour et al. (Mansour et al., 2011) classify suffix tree construction algorithms into three

main categories: in-memory, semi-disk-based, and out-of-core. The in-memory algorithms

include McCreight’s (McCreight, 1976) and Ukkonen’s (Ukkonen, 1995) and are charac-

terized by poor locality of reference and random disk I/Os for inputs larger than main mem-

ory. The semi-disk-based algorithms (Hunt et al., 2002; Tian et al., 2005; Phoophakdee and

Zaki, 2007) are characterized by better locality of reference but have random disk I/Os and

O(n2) complexity. Even so, they tend to perform better than the O(n) in-memory algo-

rithms in practice. The out-of-core algorithms (Ghoting and Makarychev, 2009; Barsky

et al., 2009; Mansour et al., 2011) improve further by avoiding random I/Os.

There are only a few fully parallel implementations of suffix tree construction, notably

those classified as out-of-core above, while the semi-disk-based algorithms can only be

60

partially parallelized. The semi-disk-based algorithms all share a common two-phase ap-

proach of first partitioning the input into smaller subtrees and constructing them separately

followed by an expensive merge step which require random I/Os and extensive commu-

nication. The out-of-core algorithms avoid the merge step and are therefore more easily

parallelizable. However, all algorithms require direct access to the entire input dataset

to be available for multiple sequential scans. The best algorithms to date have only been

shown to scale modestly; ERa (Mansour et al., 2011) scales to 16 cores with 78% efficiency

and PWaveFront (Ghoting and Makarychev, 2009) to over 1,000 cores with 50% parallel

efficiency.

If using a suffix tree to filter the
(
n
2

)
pairs of input sequences, a slightly different ap-

proach can be used as opposed to building the entire suffix tree first. Both Wu et al (Wu

et al., 2012) and Daily et al (Daily et al., 2014) first partition the suffix tree into suffix sub-

trees similar to the parallel disk-based algorithms. The suffix subtrees can be constructed

and processed independently, in parallel. Because they are not concerned with constructing

the entire suffix tree, no expensive merge step is required.

Recall from Section 4.4 that the generalized suffix tree filter will generate duplicate

pairs which should be removed. In our previous work (Daily et al., 2014), we remove du-

plicates using a C++ STL set but note an interesting property when processing subtrees

in a distributed fashion. A property of suffix trees as stated by Gusfield (Gusfield, 1997,

page 98) is that for any internal node with a path-label xa there exists another node with

a path-label a. By extension, in the generalized suffix tree, any sequences represented by

the leaves below the node for xa will also be represented by leaves below the node for

a (the leaves under each node will represent unique suffixes of the GST, but the suffixes

will have occurred in the same set of sequences.) If the xa node and a node are processed

by difference distributed processes, they will generate similar maximal pairs. The only

way to globally remove duplicates is then to exchange duplicate pair information between

61

distributed processes. As a result, we implement a distributed hash table to eliminate dupli-

cates globally between the subtrees being processed. Although the global pair elimination

is implemented using an all-to-all communication, we claim the total time spent removing

duplicates was no more than one second on average per request. However, the cost of com-

munication will grow as either the input data size grows or as the number of processors

increase.

Both (Wu et al., 2012; Daily et al., 2014) use an exact match cutoff heuristic to reduce

the number of pairs generated. The assumption is that if two sequences will result in a

good alignment score, they will also have a long common substring. For example, they use

a cutoff of 7 when processing protein/amino acid sequences. That means every maximal

pair generated contains a common substring of at least length 7. However, setting the cutoff

to a small value will result in a significant number of maximal pairs. (Daily et al., 2014)

reports setting it to 5 caused excessive running times for their 80K sequence dataset.

The growing size of input data sets will eventually necessitate distributing them across

the compute cluster. This poses a significant problem as all approaches to date require

frequent access to the entire input data set. (Daily et al., 2014) attempts to address this

issue by distributing the input data set across a cluster while replicating as much of it as

possible on each node to avoid communicating sequences. The resulting strong scaling

study showed poor results when the dataset was split across every two nodes in a round-

robin fashion.

The trend has been to use the best in-memory approaches until the size of the dataset

grows beyond the available resources of a single compute node, at which point either an

out-of-core or distributed algorithm is developed. A simple approach using tiling would

be to construct the generalized suffix tree for each of
(
k
2

)
partitions. The tree construction

cost per partition pair is O(n/k) time, and since we have
(
k
2

)
different pairs of partitions,

the overall time will be O(kN). This idea was first noted in (Barsky et al., 2009), one of

62

the semi-disk-based suffix tree construction algorithms. However, such an approach would

require using a large value of k to allow for efficient utilization of the parallel system. Other,

more sophisticated extensions of this simple tiling strategy can be explored taking into

account the heterogeneity in task and compute resources, and data locality. An advantage

of the tiling approach is that it eliminates the need for duplicate removal. Lastly, since we

are now solving many smaller versions of the original problem, we can leverage the best

in-memory implementations of the pair filter and sequence alignment algorithms.

63

CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

We presented a design of a scalable parallel framework which achieves orders of magni-

tude higher PSAPS performance and at greater scale than contemporary software using

the generally applicable all-against-all sequence alignment model. This represents a com-

prehensive solution to scalable optimal homology detection. This achievement was facili-

tated using the work stealing dynamic load balancing technique, a one-sided asynchronous

PGAS model for data transfer, and a distributed hash table to eliminate duplicate work.

Our results demonstrate a promising step towards analyzing biological sequences as fast as

they can be generated on contemporary sequencing hardware.

As ongoing hardware advances are made in both memory and the number of compute

cores, our solution will continue to remain relevant. As a response to the increasing number

of cores, we are beginning to see an increase in the amount of physical memory, as well.

The increasing amount of aggregate memory per compute node will allow for continued

replication of the entire sequence dataset. As the number of cores increases, the task gran-

ularity used for our work stealing-based solution can adjust accordingly to support other

models of inter- and intra-node parallelism.

Current and future CPU architectures are trending toward wider vector registers. There-

fore, it is imperative that vectorized codes are not adversely affected by these widening

trends. This dissertation selected one of the fundamental algorithms from bioinformatics to

analyze against these trends. The results were clear: the state-of-the-art implementations

based on a striped data layout were inadequate when it comes to realizing the full potential

of wider vector registers. At 8 lanes, NW Scan consistently outperforms NW Striped. At

16 lanes, SG and SW Scan outperform Striped for many of the selected scoring schemes.

We expect Scan to fully surpass Striped in the next generation of SIMD widths.

64

We presented a novel SIMD implementation of a parallel scan based algorithm and

demonstrate that it overcomes the limitations of the striped scheme. Experimental eval-

uation demonstrates the three classes of sequence alignment—Needleman-Wunsch, semi-

global, Smith Waterman—though very similar in their algorithmic structures, differ widely

in their execution times with the Striped and Scan implementations, and in their effective

use of wide vector units. We identify the input lengths and vector widths for which one

scheme is preferable to the other.

There are a number of promising approaches to further reduce the time-to-solution of

homology detection and increase the PSAPS rate. One area for optimization is in reducing

the processing time of the worst-case large subtree outliers. Increasing the window size

k would produce many more and potentially smaller subtrees. However, due to resource

constraints, the window size k cannot simply continue to grow. Using a dynamically sized

k is one solution; however k cannot be larger than the minimum match length heuristic

provided by the user (in our case it was 7). It may very well be that a real dataset has a

frequently occurring substring that is still larger than k.

Our initial results looking at alternative filters and load balancing techniques showed

that distributed task counters performed better than work stealing. However, this load

balancing approach is only applicable to countable, monotonically increasing enumerated

tasks. The extension suggested in Section 5.2 is amenable to all load balancing approaches.

To date, the datasets analyzed contain at most 10M sequences. Our approach, though

promising, should be evaluated in light of ever larger datasets. There are additional larger-

scale real world applications which might stand to benefit from our approach. For example,

the Joint Genome Institute maintains over 100M sequences. A dataset of this size would

be a compelling, real-world application.

65

ATTRIBUTION

Portions of this dissertation proposal were published or have been submitted for publication

in the following conference and journal articles.

Workshop Publication:

• Jeff Daily, Sriram Krishnamoorthy, and Ananth Kalyanaraman. Towards scalable op-

timal sequence homology detection. In High Performance Computing (HiPC), 2012

19th International Conference on, pages 18, 2012. doi: 10.1109/HiPC.2012.6507523.

Journal Publication:

• Jeff Daily, Ananth Kalyanaraman, Sriram Krishnamoorthy, and Abhinav Vishnu. A

work stealing based approach for enabling scalable optimal sequence homology de-

tection. Journal of Parallel and Distributed Computing, 2014. ISSN 0743-7315. doi:

http://dx.doi.org/10.1016/j.jpdc.2014.08.009. URL http://www.sciencedirect.com/

science/article/pii/S0743731514001518.

Conference Submission:

• JA Daily, S Krishnamoorthy, B Ren, and A Kalyanaraman. 2015. On the Impact

of Widening Vector Registers on Sequence Alignment. Submitted to the 24th In-

ternational Conference on Parallel Architectures and Compilation Techniques, San

Francisco, CA.

66

BIBLIOGRAPHY

Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suf-
fix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):
53–86, 2004. ISSN 1570-8667. doi: http://dx.doi.org/10.1016/S1570-8667(03)
00065-0. URL http://www.sciencedirect.com/science/article/
pii/S1570866703000650.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lip-
man. Basic local alignment search tool. Journal of Molecular Biology, 215(3):
403–410, 1990. ISSN 0022-2836. doi: http://dx.doi.org/10.1016/S0022-2836(05)
80360-2. URL http://www.sciencedirect.com/science/article/
pii/S0022283605803602.

Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schffer, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J. Lipman. Gapped blast and psi-blast: a new genera-
tion of protein database search programs. Nucleic Acids Research, 25(17):3389–3402,
1997. doi: 10.1093/nar/25.17.3389. URL http://nar.oxfordjournals.org/
content/25/17/3389.abstract.

Srinivas Aluru and Pang Ko. Lookup Tables, Suffix Trees and Suffix Arrays, book section 5,
page 1104. CRC Press, 2005.

Srinivas Aluru, Natsuhiko Futamura, and Kishan Mehrotra. Parallel biological se-
quence comparison using prefix computations. Journal of Parallel and Distributed
Computing, 63(3):264–272, 2003. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/
S0743-7315(03)00010-8. URL http://www.sciencedirect.com/science/
article/pii/S0743731503000108.

AppliedBio. Applied Biosystems by Life Technologies.
http://www.appliedbiosystems.com/, 2015. Last date accessed: April 2015.

Marina Barsky, Ulrike Stege, Alex Thomo, and Chris Upton. Suffix trees for very
large genomic sequences. In Proceedings of the 18th ACM conference on Infor-
mation and knowledge management, pages 1417–1420, 1646134, 2009. ACM. doi:
10.1145/1645953.1646134.

Alex Bateman, Lachlan Coin, Richard Durbin, Robert D. Finn, Volker Hollich, Sam
GriffithsJones, Ajay Khanna, Mhairi Marshall, Simon Moxon, Erik L. L. Sonnham-
mer, David J. Studholme, Corin Yeats, and Sean R. Eddy. The pfam protein families
database. Nucleic Acids Research, 32(suppl 1):D138–D141, 2004. doi: 10.1093/nar/
gkh121. URL http://nar.oxfordjournals.org/content/32/suppl_1/
D138.abstract.

Guy E. Blelloch. Prefix sums and their applications. Report, Carnegie Mellon University,
1990.

67

CancerGenomeAtlas. Cancer genome atlas. http://cancergenome.nih.gov/, 2015. Last date
accessed: April 2015.

The UniProt Consortium. Uniprot: A hub for protein information. Nucleic Acids Re-
search, 43(D1):D204–D212, 2015. doi: 10.1093/nar/gku989. URL http://nar.
oxfordjournals.org/content/43/D1/D204.abstract.

Jeff Daily, Sriram Krishnamoorthy, and Ananth Kalyanaraman. Towards scalable opti-
mal sequence homology detection. In High Performance Computing (HiPC), 2012 19th
International Conference on, pages 1–8, 2012. doi: 10.1109/HiPC.2012.6507523.

Jeff Daily, Ananth Kalyanaraman, Sriram Krishnamoorthy, and Abhinav Vishnu. A work
stealing based approach for enabling scalable optimal sequence homology detection.
Journal of Parallel and Distributed Computing, 2014. ISSN 0743-7315. doi: http://dx.
doi.org/10.1016/j.jpdc.2014.08.009. URL http://www.sciencedirect.com/
science/article/pii/S0743731514001518.

Aaron Darling, Lucas Carey, and Wu-chun Feng. The design, implementation, and eval-
uation of mpiBLAST. In 4th International Conference on Linux Clusters: The HPC
Revolution 2003, 2003.

Margaret O. Dayhoff, Robert M. Schwartz, and B. C. Orcutt. A Model of Evolutionary
Change in Proteins, volume 5, pages 345–352. National Biomedical Research Founda-
tion, Washington, D.C., 1978.

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha. Scalable work stealing. In Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, pages 1–11, 1654113, 2009.
ACM. doi: 10.1145/1654059.1654113.

DOEKB. DOE Systems Biology Knowledgebase.
http://genomicscience.energy.gov/compbio/, 2015. Last date accessed: April 2015.

Robert C. Edgar. Search and clustering orders of magnitude faster than
blast. Bioinformatics, 26(19):2460–2461, 2010. doi: 10.1093/bioinformatics/
btq461. URL http://bioinformatics.oxfordjournals.org/content/
26/19/2460.abstract.

S. Emrich, Ananth Kalyanaraman, and Srinivas Aluru. Algorithms for large-scale cluster-
ing and assembly of biological sequence data, book section 13, page 1104. CRC Press,
2005.

Michael Farrar. Striped smithwaterman speeds database searches six times over other simd
implementations. Bioinformatics, 23(2):156–161, 2007. doi: 10.1093/bioinformatics/
btl582. URL http://bioinformatics.oxfordjournals.org/content/
23/2/156.abstract.

68

Amol Ghoting and Konstantin Makarychev. Indexing genomic sequences on the ibm blue
gene. In Proceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis, pages 1–11, 1654122, 2009. ACM. doi: 10.1145/1654059.
1654122.

Jack A. Gilbert, Folker Meyer, Janet Jansson, Jeff Gordon, Norman Pace, James Tiedje,
Ruth Ley, Noah Fierer, Dawn Field, Nikos Kyrpides, Frank-Oliver Glckner, Hans-Peter
Klenk, K. Eric Wommack, Elizabeth Glass, Kathryn Docherty, Rachel Gallery, Rick
Stevens, and Rob Knight. The earth microbiome project: Meeting report of the 1(st) emp
meeting on sample selection and acquisition at argonne national laboratory october 6(th)
2010. Standards in Genomic Sciences, 3(3):249–253, 2010. ISSN 1944-3277. doi: 10.
4056/aigs.1443528. URL http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3035312/. sigs.1443528[PII] 21304728[pmid] Stand Genomic Sci.

Osamu Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3):705–708, 1982. ISSN 0022-2836. doi: http://dx.doi.
org/10.1016/0022-2836(82)90398-9. URL http://www.sciencedirect.com/
science/article/pii/0022283682903989.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. ISBN 0-521-58519-8.

Jo Handelsman. Metagenomics: application of genomics to uncultured microorganisms.
Microbiol Mol Biol Rev, 68(4):669–85, 2004. ISSN 1092-2172 (Print) 1092-2172 (Link-
ing). doi: 10.1128/mmbr.68.4.669-685.2004. Handelsman, Jo Review United States
Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85.

HelicosBio. True Single Molecule Sequencing: Helicos BioSciences.
http://www.helicosbio.com/, 2015. Last date accessed: April 2015.

Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.
URL http://www.pnas.org/content/89/22/10915.abstract.

Ela Hunt, Malcolm P. Atkinson, and Robert W. Irving. Database indexing for large dna
and protein sequence collections. The VLDB Journal, 11(3):256–271, 2002. ISSN
1066-8888. doi: 10.1007/s007780200064. URL http://dx.doi.org/10.1007/
s007780200064.

Illumina. Illumina sequencing. http://www.illumina.com/systems.ilmn, 2015. Last date
accessed: April 2015.

Ananth Kalyanaraman, Srinivas Aluru, V. Brendel, and Kotharim Suresh. Space and time
efficient parallel algorithms and software for est clustering. Parallel and Distributed
Systems, IEEE Transactions on, 14(12):1209–1221, 2003. ISSN 1045-9219. doi: 10.
1109/TPDS.2003.1255634.

69

Ananth Kalyanaraman, Scott J. Emrich, Patrick S. Schnable, and Srinivas Aluru. Assem-
bling genomes on large-scale parallel computers. In Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, 2006. doi: 10.1109/IPDPS.2006.
1639259.

Ali Khajeh-Saeed, Stephen Poole, and J. Blair Perot. Acceleration of the smithwater-
man algorithm using single and multiple graphics processors. Journal of Computa-
tional Physics, 229(11):4247–4258, 2010. ISSN 0021-9991. doi: http://dx.doi.org/10.
1016/j.jcp.2010.02.009. URL http://www.sciencedirect.com/science/
article/pii/S0021999110000823.

Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley Professional, 2005. ISBN 0201853949.

Weizhong Li and Adam Godzik. Cd-hit: A fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659,
2006. doi: 10.1093/bioinformatics/btl158. URL http://bioinformatics.
oxfordjournals.org/content/22/13/1658.abstract.

Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant V. Kale. Work stealing and
persistence-based load balancers for iterative overdecomposed applications. In Proceed-
ings of the 21st international symposium on High-Performance Parallel and Distributed
Computing, pages 137–148, 2287103, 2012. ACM. doi: 10.1145/2287076.2287103.

Heshan Lin, Pavan Balaji, R. Poole, C. Sosa, Xiaosong Ma, and Wu-chun Feng. Massively
parallel genomic sequence search on the blue gene/p architecture. In High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference
for, pages 1–11, 2008. doi: 10.1109/SC.2008.5222005.

Heshan Lin, Xiaosong Ma, Wuchun Feng, and N. F. Samatova. Coordinating computation
and i/o in massively parallel sequence search. Parallel and Distributed Systems, IEEE
Transactions on, 22(4):529–543, 2011. ISSN 1045-9219. doi: 10.1109/TPDS.2010.101.

Yongchao Liu and B. Schmidt. Swaphi: Smith-waterman protein database search on xeon
phi coprocessors. In Application-specific Systems, Architectures and Processors (ASAP),
2014 IEEE 25th International Conference on, pages 184–185, 2014. doi: 10.1109/ASAP.
2014.6868657.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. SIGPLAN Not., 40(6):190–200,
2005. ISSN 0362-1340. doi: 10.1145/1064978.1065034.

Essam Mansour, Amin Allam, Spiros Skiadopoulos, and Panos Kalnis. Era: Efficient serial
and parallel suffix tree construction for very long strings. Proc. VLDB Endow., 5(1):49–
60, 2011. ISSN 2150-8097. doi: 10.14778/2047485.2047490.

70

Victor M. Markowitz, Natalia N. Ivanova, Ernest Szeto, Krishna Palaniappan, Ken Chu,
Daniel Dalevi, I-Min A. Chen, Yuri Grechkin, Inna Dubchak, Iain Anderson, Athana-
sios Lykidis, Konstantinos Mavromatis, Philip Hugenholtz, and Nikos C. Kyrpides.
Img/m: A data management and analysis system for metagenomes. Nucleic Acids
Research, 36(suppl 1):D534–D538, 2008. doi: 10.1093/nar/gkm869. URL http:
//nar.oxfordjournals.org/content/36/suppl_1/D534.abstract.

Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM (JACM), 23(2):262–272, 1976. ISSN 0004-5411.

Challenges National Research Council Committee on Metagenomics and Applications
Functional. The New Science of Metagenomics: Revealing the Secrets of Our Microbial
Planet. National Academies Press (US) National Academy of Sciences., Washington
(DC), 2007. ISBN 978-0-309-10676-4. Book NBK54006 [bookaccession].

NCBI. The National Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov/genbank, 2015. Last date accessed: April 2015.

Saul B. Needleman and Christian D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of Molec-
ular Biology, 48(3):443–453, 1970. ISSN 0022-2836. doi: http://dx.doi.org/10.1016/
0022-2836(70)90057-4. URL http://www.sciencedirect.com/science/
article/pii/0022283670900574.

Chris Oehmen and Jarek Nieplocha. Scalablast: A scalable implementation of blast for
high-performance data-intensive bioinformatics analysis. Parallel and Distributed Sys-
tems, IEEE Transactions on, 17(8):740–749, 2006. ISSN 1045-9219. doi: 10.1109/
TPDS.2006.112.

Michael Ott, Jaroslaw Zola, Alexandros Stamatakis, and Srinivas Aluru. Large-scale max-
imum likelihood-based phylogenetic analysis on the ibm bluegene/l. In Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, pages 1–11, 1362628, 2007. ACM.
doi: 10.1145/1362622.1362628.

PACBIO. Pacific Biosciences. http://www.pacificbiosciences.com/products/, 2015. Last
date accessed: April 2015.

William R. Pearson. Searching protein sequence libraries: Comparison of the sen-
sitivity and selectivity of the smith-waterman and fasta algorithms. Genomics, 11
(3):635–650, 1991. ISSN 0888-7543. doi: http://dx.doi.org/10.1016/0888-7543(91)
90071-L. URL http://www.sciencedirect.com/science/article/
pii/088875439190071L.

William R. Pearson and David J. Lipman. Improved tools for biological sequence compar-
ison. Proceedings of the National Academy of Sciences of the United States of America,

71

85(8):2444–2448, 1988. ISSN 0027-8424 1091-6490. URL http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC280013/. 3162770[pmid] Proc Natl Acad
Sci U S A.

PersonalGenomics. Personal Genome Project. http://www.personalgenomes.org/, 2015.
Last date accessed: April 2015.

Benjarath Phoophakdee and Mohammed J. Zaki. Genome-scale disk-based suffix tree
indexing. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pages 833–844, 1247572, 2007. ACM. doi: 10.1145/1247480.
1247572.

Roche454. 454 Life Sciences - a roche company. http://www.genome-sequencing.com/,
2015. Last date accessed: April 2015.

Torbjorn Rognes. Faster smith-waterman database searches with inter-sequence simd par-
allelisation. BMC Bioinformatics, 12(1):221, 2011. ISSN 1471-2105. URL http:
//www.biomedcentral.com/1471-2105/12/221.

Torbjrn Rognes and Erling Seeberg. Six-fold speed-up of smithwaterman se-
quence database searches using parallel processing on common microproces-
sors. Bioinformatics, 16(8):699–706, 2000. doi: 10.1093/bioinformatics/16.8.
699. URL http://bioinformatics.oxfordjournals.org/content/
16/8/699.abstract.

Souradip Sarkar, Turbo Majumder, Ananth Kalyanaraman, and Partha Pratim Pande. Hard-
ware accelerators for biocomputing: A survey. In Circuits and Systems (ISCAS), Pro-
ceedings of 2010 IEEE International Symposium on, pages 3789–3792, 2010. doi:
10.1109/ISCAS.2010.5537736.

Eugene G. Shpaer, Max Robinson, David Yee, James D. Candlin, Robert Mines, and Tim
Hunkapiller. Sensitivity and selectivity in protein similarity searches: A comparison
of smithwaterman in hardware to blast and fasta. Genomics, 38(2):179–191, 1996.
ISSN 0888-7543. doi: http://dx.doi.org/10.1006/geno.1996.0614. URL http://www.
sciencedirect.com/science/article/pii/S088875439690614X.

Temple F. Smith and Michael S. Waterman. Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1):195–197, 1981. ISSN 0022-
2836. doi: http://dx.doi.org/10.1016/0022-2836(81)90087-5. URL http://www.
sciencedirect.com/science/article/pii/0022283681900875.

Shulei Sun, Jing Chen, Weizhong Li, Ilkay Altintas, Abel Lin, Steve Peltier, Karen Stocks,
Eric E. Allen, Mark Ellisman, Jeffrey Grethe, and John Wooley. Community cyberin-
frastructure for advanced microbial ecology research and analysis: The camera resource.

72

Nucleic Acids Research, 39(Database issue):D546–D551, 2011. ISSN 0305-1048 1362-
4962. doi: 10.1093/nar/gkq1102. URL http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3013694/. gkq1102[PII] 21045053[pmid] Nucleic Acids Res.

Roman L. Tatusov, Eugene V. Koonin, and David J. Lipman. A genomic perspective on
protein families. Science, 278(5338):631–7, 1997. ISSN 0036-8075 (Print) 0036-8075
(Linking). Tatusov, R L Koonin, E V Lipman, D J Review UNITED STATES Science.
1997 Oct 24;278(5338):631-7.

Tatiana Tatusova, Stacy Ciufo, Boris Fedorov, Kathleen ONeill, and Igor Tolstoy. Refseq
microbial genomes database: new representation and annotation strategy. Nucleic Acids
Research, 42(D1):D553–D559, 2014. doi: 10.1093/nar/gkt1274. URL http://nar.
oxfordjournals.org/content/42/D1/D553.abstract.

Oystein Thorsen, Brian Smith, Carlos P. Sosa, Karl Jiang, Heshan Lin, Amanda Peters,
and Wu-chun Feng. Parallel genomic sequence-search on a massively parallel system.
In Proceedings of the 4th international conference on Computing frontiers, pages 59–68,
1242542, 2007. ACM. doi: 10.1145/1242531.1242542.

Yuanyuan Tian, Sandeep Tata, RichardA Hankins, and JigneshM Patel. Practical methods
for constructing suffix trees. The VLDB Journal, 14(3):281–299, 2005. ISSN 1066-
8888. doi: 10.1007/s00778-005-0154-8. URL http://dx.doi.org/10.1007/
s00778-005-0154-8.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
ISSN 0178-4617. doi: 10.1007/BF01206331. URL http://dx.doi.org/10.
1007/BF01206331.

Abhinav Vishnu, Jeff Daily, and Bruce Palmer. Designing scalable pgas communication
subsystems on cray gemini interconnect. In High Performance Computing (HiPC), 2012
19th International Conference on, pages 1–10, 2012. doi: 10.1109/HiPC.2012.6507506.

Lipeng Wang, Yuandong Chan, Xiaohui Duan, Haidong Lan, Xiangxu Meng, and Weiguo
Liu. Xsw: Accelerating biological database search on xeon phi. In Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pages
950–957, 2014. doi: 10.1109/IPDPSW.2014.108.

Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool for
transcriptomics. Nat Rev Genet, 10(1):57–63, 2009. ISSN 1471-0056. URL http:
//dx.doi.org/10.1038/nrg2484. 10.1038/nrg2484.

Peter Weiner. Linear pattern matching algorithms. In Switching and Automata Theory,
1973. SWAT ’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11,
1973. ISBN 0272-4847. doi: 10.1109/SWAT.1973.13.

73

A. Wozniak. Using video-oriented instructions to speed up sequence comparison. Com-
puter Applications in the Biosciences : CABIOS, 13(2):145–150, 1997. doi: 10.1093/
bioinformatics/13.2.145. URL http://bioinformatics.oxfordjournals.
org/content/13/2/145.abstract.

Changjun Wu and Ananth Kalyanaraman. An efficient parallel approach for identify-
ing protein families in large-scale metagenomic data sets. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–10, 1413406, 2008. IEEE Press.

Changjun Wu, Ananth Kalyanaraman, and William R. Cannon. pgraph: Efficient parallel
construction of large-scale protein sequence homology graphs. Parallel and Distributed
Systems, IEEE Transactions on, 23(10):1923–1933, 2012. ISSN 1045-9219. doi: 10.
1109/TPDS.2012.19.

Shibu Yooseph, Granger Sutton, Douglas B. Rusch, Aaron L. Halpern, Shannon J.
Williamson, Karin Remington, Jonathan A. Eisen, Karla B. Heidelberg, Gerard Man-
ning, Weizhong Li, Lukasz Jaroszewski, Piotr Cieplak, Christopher S. Miller, Huiy-
ing Li, Susan T. Mashiyama, Marcin P. Joachimiak, Christopher van Belle, John-
Marc Chandonia, David A. Soergel, Yufeng Zhai, Kannan Natarajan, Shaun Lee,
Benjamin J. Raphael, Vineet Bafna, Robert Friedman, Steven E. Brenner, Adam
Godzik, David Eisenberg, Jack E. Dixon, Susan S. Taylor, Robert L. Strausberg, Mar-
vin Frazier, and J. Craig Venter. The ¡italic¿sorcerer ii¡/italic¿ global ocean sam-
pling expedition: Expanding the universe of protein families. PLoS Biol, 5(3):e16,
2007. doi: 10.1371/journal.pbio.0050016. URL http://dx.doi.org/10.1371%
2Fjournal.pbio.0050016.

74

