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Implementation of Unmanned Vehicle Control on FPGA Based Platform Using System 

Generator 
 

Shashikala N. Murthy 
 

ABSTRACT 

The goal of this research was to explore a new and improved software 

development tool for the implementation of control algorithms on Xilinx Field 

Programmable Gate Arrays (FPGA).  The Simulink plug in, System Generator, 

complements traditional Hardware Description Language (HDL) by providing a higher 

level graphical language for the development of FPGA designs.  The design is then 

translated into the lower level required by the Xilinx’s ISE program.  By utilizing this 

graphical based higher level of abstraction at the design entry level, the requirement of a 

detailed knowledge of HDL languages is no longer required.  Because of this new 

environment the time required to implement the previously developed control design on 

the FPGA is reduced.  The initial work began with a study of System Generator 

capabilities.  One of the primary areas of interest is the difference on how the 

mathematical model representations are implemented between Simulink and the logic 

based hardware.  From this initial work, a methodology for conversion between the 

developed and verified Simulink design and hardware implementation was obtained.  As 

a case study, a control design was implemented for a Simulink model of an Unmanned 

Ground Vehicle (UGV) based on an RC-Truck.  The control system consists of a simple 

mission planner to generate a vector of waypoints, a proportional-integral velocity 
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controller and a proportional heading controller.  The derived hardware design process is 

then utilized and validated by converting the control system into the available System 

Generator blocks.  The final verification of the FPGA design was a hardware-in-the-loop 

simulation utilizing a Xilinx prototyping board.  This design example demonstrated the 

validity of the presented approach as an efficient and reliable method for rapid system 

prototyping for designs developed within the Simulink environment. 



1 
 

 
CHAPTER ONE 

INTRODUCTION 

Typically efficient implementation of control system applications utilizing FPGAs 

requires a thorough understanding of both the hardware platform and Hardware 

Description Language.  FPGAs have always had the advantages of parallel processing 

and asynchronous timing capabilities.  Over the past decade both the increased number of 

gates and the development of new software tools have lead to a rapid increase in 

popularity of FPGAs. 

New software tools have been developed to allow for higher level abstraction in 

the development of the FPGA implementations.  Within the past few years, Xilinx has 

presented and made continued improvements to a Simulink add on, System Generator, 

that allows the design of the hardware from within the graphical, high level Simulink 

environment.  System Generator replaces the traditional Hardware Description Language 

(HDL) design, and thus does not require a detailed knowledge of this lower level, 

complex language.  In addition, the graphical language allows an abstraction of the 

design through the use of available System Generator blocks and subsystems.  This 

reduces the time necessary between the derivation of control design and hardware 

implementation.  This software is extremely attractive because of the popularity of 

Simulink as tool for both modeling the physical system and testing the derived control 

design.  It is a natural progression to include the hardware simulation and hardware-in-
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the-loop verification from within this environment.  However, the behavior of the 

Simulink mathematical simulation in comparison to the hardware implementation is not 

an exact match.  Simulink allows for floating point, complicated math to be completed 

within a single, virtual time step by slowing the simulation to allow for precise 

calculations.  In addition, Simulink will adjust the size of the time step when required by 

the underlying calculations.  By comparison, the FPGA hardware implementation 

requires a pre-defined fixed time step that operates in real time.  While rates can be 

adjusted at different points within the hardware to allow for asynchronous timing, each of 

these rates are run at consistent time step with a fixed word length.  The conversion 

between these two forms must be done in a systematic way that takes these differences 

into consideration.  Thus the derivation of the hardware implementation can become a 

difficult and frustrating task for those unfamiliar with the FPGA environment. 

The goal of this research was twofold, to explore this new and improved software 

development tool and to develop a systematic approach of conversion from the verified 

Simulink design to the hardware implementation.  This objective can be broken further 

into three smaller objectives – design, implementation and verification.  The design flow 

allows the developers to quickly explore FPGA design options and to check if the 

resulting module fulfills the design constraints.  The successful development of such a 

systematic approach allows the controls engineer to follow this procedure in order to 

obtain a successful hardware design without extensive knowledge in logic theory.  In 

addition, this work compliments an FPGA based autopilot hardware design for use with 

unmanned systems by simplifying the implementation of the controls algorithm onto an 

available, off-the-shelf platform. 
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A case study utilizing a pre-developed Simulink system model of an Unmanned 

Ground Vehicle (UGV) based on an RC-Truck model was completed.  A Simple Mission 

planner to generate a vector of waypoints, a velocity PI controller and proportional 

heading controller were designed, simulated and verified within Simulink.  The FPGA 

design process was utilized in order to convert these algorithms into the available System 

Generator blocks.  After verification from the simulated hardware, the design was then 

downloaded into the prototype board containing a Xilinx FPGA for Hardware-in-the-

Loop verification.  This design example demonstrated the validity of the presented 

approach as an efficient and reliable method for rapid system prototyping of control 

theory in the area of unmanned systems. 

Chapter Two introduces the MATLAB and Simulink software environment, 

followed by an explanation of the workings of the toolboxes available within System 

Generator.  Chapter Three gives an overview of the prototyping board utilized with this 

research, along with a brief description of the complimentary autopilot platform under 

development.  An overview of the RC-Truck model, mission planner and control design 

is presented in Chapter Four.  Chapter Five discusses the key issues with implementing 

control algorithms on an FPGA platform and then presents the proposed design approach.  

This approach is verified in Chapter Six by following the specified procedure to 

implement and verify the RC-Truck control design on the FPGA prototyping board.  

Chapter Seven completed this presented material with an overview of the knowledge 

obtained and recommendations for future work. 
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CHAPTER TWO 

SOFTWARE PLATFORMS FOR SYSTEM DESIGN 

An efficient rapid system prototyping environment demands a feasible and 

efficient development environment in which the hardware and software modules can be 

co-designed, co-debugged, and co-verified.  The integrated software design platform 

containing MATLAB R2007a with Simulink from MathWorks, System Generator 9.2 for 

DSP and ISE 9.2 from Xilinx present such capabilities.  Although the Xilinx ISE 9.2 

foundation software is not directly utilized, it is required due to the fact that it is running 

in the background when the System Generator blocks are implemented.  An overview of 

the complete design environment is presented in Figure 1.  

 
Figure 1  System Generator Block Diagram 
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2.1  The MathWorks MATLAB® and Simulink®  

MATLAB is an interactive software for doing numerical computations to simplify 

the implementation of linear algebra routines.  Powerful operations can be performed by 

utilizing the provided MATLAB commands.  Simulink is an additional MATLAB 

toolbox that provides for modeling, simulating and analyzing dynamic systems from 

within a graphical environment.  This software allows for both modular and hierarchical 

models to be developed providing the advantage of developing a complex system design 

that is conceptually simplified.  Due to this modular, simplified high level approach, 

Simulink has gained popularity among engineers and researchers for development, 

verification and modification of control algorithms [1].  Because of this wide-spread use, 

the ability to design and verify hardware implementation from within this same software 

environment becomes a great advantage for rapid prototyping of new theory and designs.  

In addition, the capability for hardware-in-the-loop simulation with the Simulink plant 

models provides the additional benefit of this verification to take place without risking 

the loss of hardware.  Because the software this final verification to take place through 

the use of standard computer ports no additional data acquisition hardware is required.  

This presents a far more cost efficient solution than other methodologies.  It is because of 

these advantages that the Simulink/System Generator environment was selected as the 

best available development platform for this project.  

2.2 Xilinx System Generator for DSP  

Xilinx System Generator is a MATLAB/Simulink-based design tool for Xilinx’s 

line of FPGAs.  Typically complicated digital circuits have been developed using 
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multiple Hardware Description Language (HDL) modules.  Because the level of 

abstraction is very low within the HDL environment, the difficulty increases as the design 

becomes more complex.  These designs typically contain such considerations as 

feedback, word length requirements and delays.  Because of the graphical nature of 

System Generator, the overall design is able to be viewed as a modular system with a 

high level of abstraction that does not require HDL code from the designer.  For those 

designers already familiar with HDL, System Generator does provide an additional 

capability of allowing pre-developed HDL modules to be incorporated directly into the 

System Generator model. In addition, the integration with Simulink, provides for the 

hardware design and verification to be performed from within the same environment as 

the mathematical system model, reducing both the required design time and hardware 

resources [2].  

Particularly relevant to this project, is the ability for the hardware-in-the-loop 

simulation, referred to by Xilinx as “hardware co-simulation”.  The integrated Xilinx ISE 

software provides for an automatic generation of HDL code directly from the System 

Generator blocks that is then mapped to the Xilinx FPGA.  This underlying code is 

synthesized and implemented in a Xilinx FPGA in order to perform a hardware-in-the-

loop verification, as defined by Xilinx as “hardware co-simulation”.  Thus, System 

Generator provides engineers a sophisticated platform for developing, simulating and 

implementing bit-true and cycle-true models [2].  Figure 2 presents an overview of the 

software development process from within the Simulink environment. 
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MATLAB/Simulink

Xilinx's System Generator
(Hardware Design)

HDL Synthesis

Simulation  & Verification

FPGA Implementation & Verification

Simulink System ModelSimulink Modelled Control System

 

Figure 2  Software Design Overview 

2.3  Xilinx ISE Overview 

The Xilinx Integrated Software Environment (ISE) is a powerful design 

environment that is working in the background when implementing System Generator 

blocks.  This software environment consists of a set of program modules, written in HDL, 

that are utilized to create, capture, simulate and implement digital designs in a FPGA or 

CPLD target device.  The synthesis of these modules creates netlist files which serve as 

the input to the implementation module.  After generating these files, the logic design is 

converted into a physical file that can be downloaded on the target device.  The software also 

provides a simulation tool where the functionality, behavior and timing can be verified for 

users that are familiar with the ISE software.  
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CHAPTER THREE 

FPGA PLATFORMS 

This research was started in combination with a proposed off-the-shelf autopilot 

hardware design.  The goal of the autopilot is to both provide a flexible platform for 

unmanned system development and a simplification of algorithm implementation by 

allowing for the incorporation with the System Generator programming environment [3].   

Because the hardware is still under development, an available prototyping board was 

selected to provide the co-simulation platform.  This chapter discusses both the 

development board and the autopilot hardware to allow for a comparison between the 

research platform and the final hardware platform that will be utilized when the 

development has been completed.   

3.1 Virtex II Pro Development Board 

Diligent’s Xilinx University Program Virtex-II Pro Development System, the 

XUP board, was selected as the hardware platform for this research.  The XUP board is a 

powerful, multipurpose and low-cost system, which consists of a high performance 

Virtex-II Pro FPGA with PowerPC cores and a comprehensive collection of supporting 

components, such as on-board Ethernet device, serial ports and AC-97 audio codec [4].  

The Virtex –II Pro FPGA consists of the following logic building blocks; 13,969 slices, 

428KB distributed RAM, 136 Multiplier Blocks, 2448 KB of Block RAM and 2 

PowerPC RISC Cores.  The board provides 100MHz system clock which improves the 
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performance of any complicated module.  The development system also includes an 

embedded USB 2.0 microcontroller capable of communications with other USB hosts. 

This interface is used for programming or configuring the Virtex-II Pro FPGA in 

Boundary-Scan mode.  Communication clock speeds are selectable from 750 kHz to 24 

MHz..  The USB 2.0 microcontroller attaches to a desktop or laptop PC high-speed A-B 

USB cable.  

Onboard external devices such as program memory and analog to digital 

converters that directly connects to the FPGA are also available.  Although not necessary 

for the co-simulation verification, these peripheral devices can be used by defining the 

controls and interface logic from within the System Generator design.  Because of the 

available program memory, the FPGA can be configured by the bit stream stored within 

this memory during the power up phase or directly through the volatile internal flash 

memory by utilizing the embedded USB2 high speed interface. 
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Figure 3  Block Diagram of the XUP Virtex-II Pro Development System 

3.2 Overview of Autopilot 

The autopilot hardware design that is currently under development also utilizes a 

Xilinx FPGA and has surrounding peripherals.  However, the surrounding hardware on 

this design is specific for use with unmanned systems.  An overview of the peripheral 

hardware is presented in Figure 4.  This hardware includes the following;  

• On board pressure sensors for a measurement of forward velocity and 

altitude 

• A Field Programmable Analog Array to allow for flexibility in analog 

sensor inputs 

• Digital I/O ports that can be programmed to accept voltage levels ranging 

from 1.8 to 5 volts 
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• Digital 3.3 Volt I/O ports for a custom daughter board connection 

• SPI flash memory for data acquisitions 

• RS232 ports that allow for communication with an external processing 

system 

• A built in safety switch to allow take-over of the actuators by a human 

pilot 

• A standard JTAG connector for both programming and hardware co-

simulation  

It was not necessary to include external program memory because the selected FPGA, the 

Spartan3 1400AN, has non-volatile program memory residing within the FPGA. 

XILINX
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INTERFACE

CONNECTORS TO CUSTOM BOARD

SAFETY SWITCH
CIRCUITRY ACTUATORS
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Figure 4  Autopilot Hardware Overview 
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The selected FPGA consists of the following logic building blocks; 11,264 slices, 

32 multipliers, 176K distributed RAM, 576K RAM Block  and 1,400K system gates.  

Although the Spartan series does not include embedded PowerPCs, Xilinx’s EDK 

program can be utilized to provide soft core DSPs. 

3.3 Comparison of Hardware Platforms 

Although there are major differences in the peripherals available on the XUP 

board and the autopilot, the primary focus of this work is the conversion of Simulink to 

System Generator, which does not utilize this hardware.  Of concern for portability of this 

work to the autopilot design is the actual FPGA utilized for the hardware co-simulation.  

Because the extra functionality of the built in PowerPCs cannot be accessed from within 

System Generator, the portion of the XUP FPGA utilized in the co-simulation is similar 

to the autopilot FPGA in number of available logic gates and accessible RAM.  In 

addition both the XUP board and the autopilot operate at a frequency of 100 MHz.  

Because of the similarities of the two FPGAs and the clock rate, the XUP board is a 

sufficient platform for developing the design process that will be utilized with the 

autopilot in future work.  In addition the work presented is general in its nature and 

applicable to a wide variety of applications. 
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CHAPTER FOUR 

OVERVIEW OF RC-TRUCK MODEL/SYSTEM 

A Simulink model of an RC-truck robot with Ackerman steering was developed 

using the equations given in [5] as the physical system under study.  These equations can 

be divided into separate portions of the overall robot model; the motor, the forward 

dynamics and the kinematics, Figure 5.   

 

 
MOTOR FORWARD

DYNAMICS 1/s
ax

αs

KINEMATICS

vx
Robot

ψ

TmVact
Y
X

 
Figure 5  Open Loop RC-Truck Model 

 

In order to complete the system, a controls design containing a mission planner, 

velocity control and heading control where developed and verified within the Simulink 

environment.  This system was then used to confirm the effectiveness of the design 

procedure presented in Chapter Five. 

4.1 Forward Body-Reference Dynamics 

The primary force on the truck is the forward motion due to the torque produced 

by the motor.  Other forces acting on the robot, such as ground resistance, wind or 

uneven ground, were not included in the model.  Because this work presents a study into 

the design of FPGA hardware implementation of the control of a pre-developed system 



14 
 

model, the simplifications are acceptable.  The calculation of the force providing 

movement in the forward direction is given in Equation(4.1) where Te(t) is the torque 

produced by the motor, Nmw is the motor to wheel ratio and r is the radius of the tire.  The 

forward body-reference velocity is obtained by integrating this force and dividing by the 

mass of the vehicle, Equation(4.2).   

mw

( )
N r

e
x

T tF (t) =                                                       (4.1)                         

0

( )( )
M

t
x

x
F tV t dt= ∫                                                   (4.2)                         

4.2 Motor Model 

Equations(4.3),(4.4) and (4.5) are used to model the electric motor of the RC-

truck.  The input variable, or control variable, is the motor voltage.  The output of the 

motor model is the torque that is applied to the drive train of the RC-truck.  The constants 

relating to the motor specifications are as follows; R is the electrical resistance, L is the 

electrical inductance, Kt is the motor torque constant, Kv is the motor voltage constant, 

and J is the motor inertia.  The motor variables are the current, i(t), the angular velocity, 

ω(t), the input voltage Vin(t), and the output torque, Te(t). 

v

( )R 1( ) ( )
L K L L

inV tdi(t) i t t
dt

= − − ω +                                        (4.3)                         

t vK K( ) ( ) ( )
J J

d t i t t
dt
ω = − ω                                          (4.4) 

t( ) K ( )eT t i t=                                                     (4.5) 
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4.3 Kinematic Calculations 

Kinematic equations for a bicycle model have been used to convert the motion 

along the x-body axis to robot’s position in the world reference frame.  These equations 

are given in Equations (4.6), (4.7), and (4.8) where vs(t) is equal to the velocity in the 

body reference frame, L is the distance between the center of the front and back wheels, 

αs(t) is the steering angle of the front tires, and ψ(t) is the heading in the world reference 

frame.  In addition, the steering angle of the truck has been limited to +/-30 degrees due 

to the physical limitations of Ackerman steering.  

0

( ) ( ) cos( ( ))cos( ( ))
t

s sX t v t t t dt= α ψ∫                                     (4.6) 

0

( ) ( ) cos( ( ))sin( ( ))
t

s sY t v t t t dt= α ψ∫                                   (4.7) 

0

( )( ) sin( ( ))
L

t
s

s
v tt t dtψ = α∫                (4.8) 

4.4 Control System 

The control system comprises of a mission planner, a heading controller and a 

velocity controller, Figure 6.  The velocity controller is proportional-integral (PI) control, 

Equation(4.9) with the proportional gain, KP equal to 0.15 and the integral gain, KI, equal 

to 0.002.  The error between a measured process variable and a desired set point is 

corrected by choosing gain parameters appropriately.  The proportional gain determines 

the reaction to the current error and the integral gain determines the reaction based on the 

sum of recent errors.  The heading control is a proportional controller, Equation(4.10), 

with KP equal to 1.  This forces the wheels to turn in the direction of the error.  With a 
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large error the turning angle is limited to the maximum 30 degrees, which is 

representative of the true behavior of the vehicle.   

P IK ( ) K ( )e t e t dt+ ∫                                                  (4.9) 

PK ( )e t                                                         (4.10) 

The mission planner is contained in a single m-file, given in Figure 7.  The 

individual way points are contained two vectors, Xtraj and Ytraj, with the index of the 

arrays as the way point number.  The distance is calculated so that when the robot is close 

to the current way point, the next way point is sent out as the mission planner as the X 

and Y position set point.   
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Figure 6  RC-Truck System 
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Figure 7 Mission Planner M-File 
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CHAPTER FIVE 

DESIGN PROCESS 

Several issues create difficulties in the process of converting the Simulink design 

to the FPGA implementation due to the underlying hardware characteristics of the 

available System Generator blocks.  The designer must give careful consideration to 

certain issues such as timing synchronization, delays associated with complicated 

mathematical calculations, and conversion to fixed point.  After consideration of these 

issues and the tools provided by System Generator, a design procedure was derived for 

systematically converting the Simulink design into System Generator blocks.  This 

chapter discusses each of these issues, the System Generator tools available and presents 

a detailed overview of the method for development of the hardware implementation. 

5.1 Timing Issues with Algebraic Loops 

In the design of the mathematical algorithms, there are times when the result of 

one calculation must be returned to use in a comparison or cumulative type calculation.  

This is done in the context of an algebraic feedback loop.  Logic gates that occur within 

this loop may have an associated delay that will affect the stability of the system that was 

not present in the Simulink mathematical model.  For example, within the truck control 

system, the set point number is held in a register then returned to the m-file controlling 

the way point generation, creating a delay of one hardware clock cycle. 
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5.2 Math Issues 

System Generator provides a math block set that includes standard functions that 

carry only small delay because of both the efficient algorithms that underlie the blocks 

and the simplicity of the math itself.  This block set includes calculations such as add, 

subtract, shift, multiply, divide by 2n, and the cosine and sine function.  These functions 

can be included within the system with only a slight delay that can be easily compensated 

for with careful timing synchronization.  

A second mathematical block set is provided that contains the Coordinate 

Rotation Digital Computer (CORDIC) algorithms for a few calculations that are not 

easily translated to the gate level.  The provided blocks are for the division, log, sine, 

cosine, square root and inverse tangent functions.  These CORDIC algorithms utilize 

coordinate rotations as the basis for an iterative method for the calculation of more 

complex math functions [6].  It is particularly suited to hardware implementations 

because it does not require any multiplies.  CORDIC revolves around the idea of 

"rotating" the phase of a complex number, by multiplying it by a succession of constant 

values.  However, the "multiplies" can all be powers of 2, so in binary arithmetic they can 

be done using just shifts and adds; no actual "multiplier" is needed.  These provided 

blocks must be used with care due to the longer potential delay that may occur.   

Within the blocks there are settings that allow the user to compromise between 

accuracy and hardware usage.  The user may select the number of number of processing 

elements, the input data word length, and the latency for each processing element.  

Although there is no clear cut process for selecting this, running a few simulations with 

varying selections will allow a good estimation. 
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Although time and resource consuming math cannot always be avoided, certain 

considerations can be taken to minimize this cost.  Whenever a divide by can be replaced 

by a divide by 2n, this should be considered.  For example, if a series of sensor readings 

are to be averaged, selecting a 2n value should prove sufficient.  In addition, selecting the 

minimum number of processing elements and shortest delay for the required precision 

within the CORDIC blocks will also reduce the cost.   

5.3 Floating to Fixed Point Conversion, Quantization and Overflow Issues  

The FPGA requires fixed point arithmetic that must be defined during the 

hardware design phase.  However, a great deal of flexibility is provided by allowing the 

definition of signed or unsigned, word length and binary point position at any point 

within the logic design flow.  In order to determine these settings, the designer must 

weigh the necessary precision against increased logic and potential delays associated with 

long word length.   

FPGAs handle the signed numbers the same manner as a microprocessor.  The 

signed number is represented as twos complement using a binary sequence of 1’s and 0’s. 

It is the designer’s responsibility to select whether or not to utilize the signed extension 

bit in any selected design environment, in this case System Generator.  A simple solution 

is to sign extend as a general rule.  In many cases, since this only requires one additional 

bit, this provides the best solution.  

Because MATLAB/Simulink uses floating point representation any N-bit number 

can have any value from -2N-1 to +2 N.  The standard format assigns an N value of 32 

which is able to provide a fractional resolution as small as 1/2N, equal to 2.3283(10-10), 
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when all the bits are assigned to the binary point.  The only way to assign this type of 

resolution throughout the fixed point design is to allocate 64-bits with 32 for the binary 

point.  This cannot be implemented in the fixed point hardware and still maintain 

hardware and timing efficiency.  For this reason, all the values in logic must be 

represented in a smaller pre-defined word length.  Figure 8 demonstrates the conversion 

of floating point number into fixed.  The decimal in the top number will adjusts as the 

size of the number changes.  When converted to the lower representation, the decimal 

maintains the same position, creating potential issues when the number is either too large 

or too small to be accurately represented. 

 
Figure 8  Floating Point to Fixed Point Conversion 

 

The conversion from floating point to fixed-point is not a lossless transition.  Two 

phenomena can occur, called overflow and quantization.  Quantization can be handled in 

two ways, either truncation which discards the bits to the right of the most significant bit 

after the number of decimal value or rounding which estimates to the nearest 

representable value.  Overflow occurs when the resulting output from mathematical 

calculation lies outside the range of the fixed-point representation set.  The System 
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Generator blocks allow for the output values be either saturated, where the MSB’s are 

neglected, or wrapped to the nearest value.  

Within the System Generator blocks, fields are available to select the necessary 

settings to control the hardware with respect to word length.  Using these settings the 

designer can choose the required type of fixed point number (signed/unsigned or 

Boolean), width and the position of the least significant count of decimal point.  For 

example in the ‘gateway in’ block settings, Figure 9, 16 is written in the ‘no of bits field’ 

and 8 to the ‘binary point’ field.  This directs System Generator to create a 16-bit fixed 

point number with eight bits reserved for the fractional portion.  

 
Figure 9  Gateway In Block Settings 

  
In terms of hardware usage, the saturate and truncate selections are preferable 

because they use less hardware resources as compared to round and wrap.  In addition, if 

the word length is selected only to reflect the necessary precision, rather than all possible 

values, wrap should be avoided due to roll-over to the zero value on overflow. 
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Several iterations may be required to fine tune each block in the system until both 

acceptable amounts of quantization error results and overflow is eliminated.  This 

iterative analysis of quantization and overflow, along with verification within the 

Simulink environment, results in a high level software design tool. 

5.4 Timing Analysis 

While the system generator blocks produce a bit and cyclic true simulation, they 

do not take into account the timing issues that may occur when converted and download 

to the hardware implementation.  This is an advantage because it allows testing the 

System Generator design before optimizing for speed and hardware usage.  However, 

before finalization, the design must be checked with respect to the processor and clock 

speed to be sure that all timing constraints are met.   

Timing violations occurs when the signal form one synchronous output stage does 

not reach the input of the next stage within the required time allocated by the system 

design.  The System Generator timing analysis tool is provided to assist with this aspect 

of the hardware design.  It provides a report on any slow paths within the design flow and 

clearly displays the specific paths that will fail in hardware.    

When the timing analysis is invoked from the System Generator block, the design 

is compiled, netlisted into HDL source and a timing analysis run. The results appear in 

the System Generator timing analyzer tool, Figure 10. Selecting the histogram displays a 

detailed chart providing the path timing information.  In addition, this display will 

highlight each path that does not meet the specifications.  The trace icon provides the 

details about each specific path analyzed.   
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Figure 10 Timing Analyzer 

 

Once an issue is discovered both replication of registers and increased control 

over sampling time can be utilized for correction.  Replication is often performed 

automatically by the tools in order to reduce the capacitance of the neat, which in turn 

reduces the net delay.  While adding these pipelining registers does increases latency and 

the number of logic gates; it should be seen that this provides a balance to other portions 

of the design and also reduces the fan out on the replicated objects.  Up-sample and 

down-sample blocks can be included to be sure that those portions of the design that can 

be operated at a slower rate are calculated this reduced rate. If these blocks are not used, 

then the timing analyzer will generate the over constraint error. 

5.5 Hardware Co-Simulation  

After the System Generator model is verified through both simulation and a 

timing analysis, hardware co-simulation should be performed in order to validate the 

design operating on the FPGA platform.  

The co-simulation process uses Xilinx ISE and core generator to synthesize and 

generate an FPGA programming bit file from the System Generator blocks in the design.  
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A new system block is generated called ‘JTAG co-sim block’.  This block replaces the 

previously used System Generator design.  The hardware implementation is then 

executed by connecting the board to the PC, thereby, closing the loop.  When the model 

is run, a pearl script links the Xilinx ISE and the core generator software.  The Xilinx ISE 

program then generates the bit file and loads it into FPGA through a standard JTAG 

connection.    

There are two selections for the System Generator Hardware co-simulation, the 

single-step mode and free running mode.  In free-running mode, the FPGA is under the 

control internal clock signal on the hardware platform.  In single-step mode the hardware 

receives the clock signal through the JTAG connection which is synchronized to the 

simulation environment.  This allows the co-simulation operating in this mode to be bit-true 

and cycle true [7] to the original design while allowing the correct timing to occur between 

the simulated plant and the logic gates within the FPGA. For this reason, the single step mode 

must be selected when working with a Simulink system model. 

5.6 Proposed Design Procedure 

The design process is an iterative one that requires revisions and re-testing, see 

Figure 11.  The hardware design process begins once the Simulink model containing 

mathematical algorithm used to control the system has been verified. 

Before the hardware model is build consideration must be given to any potential 

simplification of complicated math to help prevent potential timing issues.  This 

modification should be made and re-verified within the Simulink blocks before beginning 

the hardware phase.  Once any mathematical modifications have checked, the design can 
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be optimized for hardware and build with the provided System Generator blocks.  The 

most efficient approach is to look for any effective modularity to the original design that 

can be brought into the hardware blocks and tested a portion at a time.  This optimization 

of hardware involves breaking any long m-file code into smaller blocks and looking for 

any mathematical functions that can run in parallel.  Once the System Generator model is 

developed, an initial check for potential timing synchronization issues should be 

completed, in particular with algebraic loops.  In addition sampling rates at different 

stages of the hardware flow should be considered and ‘sample-up’ and ‘sample-down’ 

blocks inserted where necessary.  At this stage of the design development, the word 

length does not necessarily need to be considered.  Because the timing issues are 

dependent on the clock rate and specific hardware, the hardware simulation process will 

allow for more flexible test of the hardware design.  Once the general design is verified, 

then the word length can be minimized in order reduce the amount of logic gates required 

and reduce the chances of timing issues.  Once the word length modifications are 

checked, then a timing analysis can be run and, after any necessary corrections, a 

hardware co-simulation test can be performed.  
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Figure 11  Design Flow 
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CHAPTER SIX 

TESTING AND VERIFICATION 

The design procedures were applied to the RC-Truck system presented in Chapter 

Four.  This resulted in a systematic conversion of the tested control design into System 

Generator blocks, simulation and modification of these blocks and a final verification of 

the design utilizing co-simulation.  This chapter presents the work done in each of the 

design flow steps along with the results presented by the final hardware co-simulation. 

6.1 Step One: Testing Control Algorithms in Simulink 

Figure 12 presents the Simulink model containing the RC-Truck model, the 

mission planner, the heading control and velocity control.  The system was tested in the 

variable time step setting of Simulink and proved to work properly as demonstrated in 

Figure 14, Figure 15, Figure 16, and Figure 17.   

MISSION PLANNER

CALCULATING HEADING
SET POINT

VELOCITY  PI

HEADING PROPORTIONAL
CONTROLLER

RC-TRUCK MODEL

Figure 12  Simulink Implementation of RC-Truck System 
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Figure 13  Mission Planner M-File 
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Figure 14  Star Trajectory 
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Figure 15  Star Trajectory Velocity 
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Figure 16  Figure Eight Trajectory 
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Figure 17  Figure Eight Velocity 
 

6.2 Step Two:  Simplify Any Complex Math 

A potential simplification is the removal of the square root function utilized when 

calculating the distance.  This function is a potential issue because it requires utilizing the 

‘cordic sqrt’ block which, not only utilizes quite a bit of logic gates, but has a long delay 

associated with it which would occur within an algebraic loop.  Because the distance is 

only used as a measure for determining when to increment to the next way point, an 

acceptable approximation can be obtained utilizing Equation(6.1).  The simulation was 

re-run to confirm this and presented good results. 

6.3 Step Three: Optimize for Hardware Characteristics 

The m-file utilized for generating the way points contains the calculations for the 

approximation of the distance to the way point.  The squared terms shown in Equation 

(6.1) can be calculated in parallel.  For this reason, this equation was removed from the 

embedded m-file and calculated with System Generator blocks.   
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2 2( ) ( )sp spd X X Y Y= − + −                                          (6.1)                      

The mission planner must calculate the next way point from the current position.  

This creates a feedback loop that may create some timing issues.  This must accounted 

for when converting to System Generator blocks.  The memory block was replaced by a 

register, which essentially works the same, except the register adds a delay of one time 

step.  The sampling time of the input port, 0.1 sec, sets the rates of following the blocks, 

including the register. In order for the position set points to ‘line up’ with respect to the 

correct samples of the robot position, X and Y, a delay of one time step must also be 

added to both of these paths.  This was accomplished by utilizing two register blocks. 

When the PI controller was implemented with Simulink blocks, the provided PID 

block was used with the derivative gain set to zero.  This block utilizes the correct digital 

algorithms and time step in order to approximate the continuous time calculations.  

However, implementing this controller in the hardware FPGA requires a digital version 

because a PID block is not provided by System Generator.  The integral portion of the 

controller requires a digital integration algorithm, which is more complicated than the 

proportional which only requires a simple multiplication.  The standard trapezoidal rule is 

implemented for the integral calculation.  The controller algorithm is given in 

Equation(6.2), where KP is the proportional gain and KI is the integral gain. 

P I[K +K ] ( )
1

z E z
z −

                                                    (6.2) 

6.4 Step Four:  Build and Test in System Generator 

The System Generator was developed in two steps, first the heading control, 

Figure 18, and then the velocity control logic, Figure 19.  This system was tested using 
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word lengths of 64 bits, with 32 allocated to the decimal portion and the most significant 

bit as the sign bit.  While this would result in an excessive use of resources and more than 

likely cause issues with timing in the hardware, it allows a verification of the logic design 

before reducing the word length.  An additional a change was made from the Simulink 

model within the register holding the set point number.  This value was started at -1 

because the delay in the loop causes the set point to be incremented immediately.  This is 

due to the multiplier’s initial output of 0. Setting the initial set point number to be equal 

to -1, allows a value of 0 as the starting point, causing the model to start at the first way 

point setting.  It is also important to note that System Generator starts the vector 

numbering at 0, rather than the value of 1 used by Simulink.   

 

MISSION PLANNER
CALCULATING
HEADING SET POINT

HEADING CONTROLLER

 
Figure 18 System Generator Mission Planner and Heading Control 
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CALCULATE ERROR

P*ERROR

I*INTEGRAL OF ERROR  
Figure 19 System Generator Velocity Control 

 

The developed System Generator was simulated to test the hardware design 

before modifying the word size, Figure 20-Figure 23.  It was noticed that there was a 

difference in the behavior of the velocity controller.  It was determined that this was due 

to the sampling time characteristics of the digital implementation.  The digital version 

had more of an overshoot and slightly quicker response, but still performed well.  
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Figure 20 Star Trajectory Hardware 
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Figure 21 Star Trajectory Velocity 
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Figure 22 Figure Eight Trajectory 
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Figure 23  Figure Eight Velocity 

Hardware Simulation 

6.5 Step Five: Calculate Word Length 

The goal in determining the word length is to use the minimum length while still 

achieving the necessary accuracy.  The input ports through which X and Y are sampled 

allow were first considered.  It is sufficient for the RC-Truck to travel within a meter’s 

accuracy, for this reason the decimal accuracy was limited to 1/(24).  Because X and Y 

are limited to approximately +/-100 by the predefined trajectory area, a word length of 12 

is sufficient.  This allows for the 4 binary bits, 7 bits to allow for a maximum magnitude 

of 128 and a sign bit.  The velocity input port along with the controller blocks were set to 

32 bits, with 16 allocated to the decimal and the highest bit for the sign bit.  The longer 

word length was selected due to the potential variation in values within the velocity 

controller calculations.  A timing analysis was run, and indicated that the design met all 

timing constraints, Figure 24.  Had the timing failed for the paths within the velocity 

controller, the word length could have been iteratively reduced until satisfactory results 

obtained. 
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Figure 24  Timing Analysis of RC-Truck System 

 

6.6 Step Seven: Hardware Co-Simulation & Final Results 

The final verification was completed by implementing the hardware co-simulation 

of the system, Figure 25. By selecting the XUP platform and implementing the ‘generate’ 

a new hardware co-simulation block is automatically. A Simulink library is created where 

the hardware co-simulation block present, Figure 26.  This block is copied into the 

Simulink project file replacing all the Xilinx System Generator blocks.  

          

RC-Truck Model
Running in Simulink

Velocity, Position & Heading 
Sent to FPGA Board 

Mission Planner
&

Controllers in FPGA

Motor & Steering servo 
signals sent back to 

helicopter model  
Figure 25  Hardware Co-Simulation Block Diagram 
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 Post-generation script 
creates a new library 
containing a parameterized 
run-time co-simulation 

 
Figure 26  Hardware Co-Simulation Module 

 

The port names on the hardware co-simulation block are matched to the port 

names on the original subsystem. The port types and rates also match the original design. 

When a value is written to one of the block's input ports, the block sends the 

corresponding data to the appropriate location in hardware, the controller output from the 

hardware is read back into the Simulink module using the USB interface, the output port 

converts the fixed data type into the Simulink format and fed into the model. The output 

plots generated is similar to the simulation path. The controller in co-simulation is tested 

for two different paths and the results in both the cases are shown in Figure 27, Figure 28, 

Figure 29 and Figure 30.  
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Figure 27 Star Trajectory Co-Simulation 
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Figure 28 Star Trajectory Velocity Co-

Simulation 
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Figure 29 Figure Eight Trajectory Co-

Simulation 
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Figure 30  Figure Eight Velocity Co-

Simulation 
 

In addition the differences in error between the Simulink and FPGA 

implementation are also considered.  The Simulink system outperformed the hardware 

implementation.  This finding is not unexpected and can be typical of the hardware 

implementations due all the issues previously discussed.  The goal of a designer is not to 

design a perfect system, but meet design specifications within a compromise between 

resources and precision.  Had the hardware results not been acceptable, then the process 

would include iterations until the best compromise found.  Figure 31 through Figure 38 
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demonstrate that for both the Simulink and hardware implementation, the error is less 

than two meters just before a way point update.  This indicates that the robot comes 

within 2 meters for each way point along the trajectory.   

Because the error jumps to a high value each time a new way point is implement 

as the X and Y set points, it is difficult to get a feel for the differences in error between 

the two implementations.  In order to more accurately compare the errors, the vectors 

containing the magnitude of the errors was sorted in descending order and plotted in 

Figure 39 and Figure 40.   
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Figure 31  Simulink Star Trajectory X Vs. Error 
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Figure 32 Simulink Star Trajectory Y Vs. Error 
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Figure 33 Co-Simulation Star Trajectory X Vs. Error 
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Figure 34 Co-Simulation Star Trajectory Y Vs. Error 
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Figure 35 Simulink Figure Eight Trajectory X Vs. Error 
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Figure 36 Simulink Figure Eight Trajectory Y Vs. Error 
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Figure 37 Co-Simulation Figure Eight Trajectory X Vs. Error 
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Figure 38 Co-Simulation Figure Eight Trajectory Y Vs. Error 
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Figure 39  Errors of Star Trajectory 
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Figure 40  Errors of Figure Eight Trajectory 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORK 

This rapid prototyping design flow was initiated from the idea proposed by the 

team of researchers from unmanned systems lab for developing a FPGA based autopilot 

system for research and development across multiple platforms.  The work presented is 

intended to compliment this hardware platform by providing a systematic approach for 

converting designs that have been built and tested in Simulink to FPGA hardware 

implementation. 

Utilizing the System Generator Environment allows the software developers to 

explore the design options in terms of size and speed to fulfill the design constraints.  

This is due to the fact that system generator allows the algorithms designed to be 

implemented from within the Simulink environment.  This allows the designer the 

flexibility to analyze the issues that causes the error when the design is transferred from 

the MATLAB simulation to the FPGA.  While the initial concept seems a simple one, the 

distinct differences between the FPGA hardware behavior and the Simulink simulation 

environment can make this a difficult task for those unfamiliar with logic/FPGA design.  

This research has, not only analyzed and discussed these differences, but in addition, has 

developed a systematic approach to the design process.  Utilizing the presented 

methodology, along with the graphical System generator environment, is extremely 

simple as compared to the manual conversion when done using a hardware description 
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language. In addition the design process was verified by utilizing it to convert an RC-

Truck control system into system generator blocks and then successfully running a 

hardware-in-the-loop simulation. 

While this work has demonstrated the effectiveness and efficiency of System 

Generator for the rapid systems prototyping of control systems on FPGAs, the process is 

still not a simple one.  As the systems become more complex, for example, the inclusion 

of a Kalman Filtering for sensor integration and more complex controllers such as model 

predictive or sliding mode control, the conversion from m-file to simplistic graphical 

math blocks and fixed point also becomes much more difficult.  Within the past few years 

Xilinx has also included AccelDSP to its line of software packages.  This software 

provides assistance to the designer by converting a floating point MATLAB m-file to a 

fixed point Simulink block by running numerous iterations and comparisons to provided 

m-file input and output data.  Future work should include research into this software to 

learn of the capabilities and potentially incorporate into the design flow for further 

simplification of this rapid system prototyping approach. 
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