
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2007

Implementation of unmanned vehicle control on
FPGA based platform using system generator
Shashikala Narasimha Murthy
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Murthy, Shashikala Narasimha, "Implementation of unmanned vehicle control on FPGA based platform using system generator"
(2007). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2297

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Implementation of Unmanned Vehicle Control on FPGA Based Platform Using System
Generator

by

Shashikala Narasimha Murthy

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering
Department of Electrical engineering

College of Engineering
University of South Florida

Major Professor: Wilfrido Moreno, Ph.D.
Kimon Valvanis, Ph.D.

Paris Wiley, Ph.D.

Date of Approval:
October 26, 2007

Keywords: FPGA, SysGen, Matlab, PID, VHDL, Unmanned Systems

© Copyright 2007 , Shashikala Narasimha Murthy

DEDICATION

I dedicate this thesis to my parents.

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my mentor and guide, Dr

Wilfrido Moreno, Associate Professor in the Department of Electrical Engineering,

College of Engineering, University of South Florida. His encouragement, motivation and

personal guidance have provided a basis for the work represented in this thesis.

In addition, I would like thank my committee members, Dr. Kimon Valavanis and

Dr. Paris Wiley for their assistance and expertise throughout the duration of this project.

My special thanks to Wendy Alvis, who did an enormous amount of work for the

Autopilot project. Her experiments and suggestions for further development as well as

her assistance during writing the thesis were invaluable to me.

I also would like to thank the Ibero-American Science and Technology Education

Consortium, ISTEC and Xilinx for supporting my research with the required hardware

and software tools.

Last, but not least, thanks to my husband, Praveen, for his love and support. His

kindness and compassion have helped to keep my sanity throughout the many challenges

faced over the past few years.

i

TABLE OF CONTENTS

LIST OF FIGURES ... iii

ABSTRACT .. v

CHAPTER ONE INTRODUCTION .. 1

CHAPTER TWO SOFTWARE PLATFORMS FOR SYSTEM DESIGN 4

2.1 The MathWorks MATLAB® and Simulink® .. 5

2.2 Xilinx System Generator for DSP ... 5

2.3 Xilinx ISE Overview... 7

CHAPTER THREE FPGA PLATFORMS ... 8

3.1 Virtex II Pro Development Board ... 8

3.2 Overview of Autopilot .. 10

3.3 Comparison of Hardware Platforms ... 12

CHAPTER FOUR OVERVIEW OF RC-TRUCK MODEL/SYSTEM 13

4.1 Forward Body-Reference Dynamics ... 13

4.2 Motor Model ... 14

4.3 Kinematic Calculations ... 15

4.4 Control System.. 15

CHAPTER FIVE DESIGN PROCESS .. 18

5.1 Timing Issues with Algebraic Loops .. 18

5.2 Math Issues ... 19

ii

5.3 Floating to Fixed Point Conversion, Quantization and Overflow Issues 20

5.4 Timing Analysis .. 23

5.5 Hardware Co-Simulation .. 24

5.6 Proposed Design Procedure .. 25

CHAPTER SIX TESTING AND VERIFICATION .. 28

6.1 Step One: Testing Control Algorithms in Simulink 28

6.2 Step Two: Simplify Any Complex Math ... 30

6.3 Step Three: Optimize for Hardware Characteristics 30

6.4 Step Four: Build and Test in System Generator .. 31

6.5 Step Five: Calculate Word Length .. 34

6.6 Step Seven: Hardware Co-Simulation & Final Results 35

CHAPTER SEVEN CONCLUSIONS AND FUTURE WORK 44

REFERENCES ... 46

iii

LIST OF FIGURES

Figure 1 System Generator Block Diagram ... 4

Figure 2 Software Design Overview .. 7

Figure 3 Block Diagram of the XUP Virtex-II Pro Development System 10

Figure 4 Autopilot Hardware Overview .. 11

Figure 5 Open Loop RC-Truck Model .. 13

Figure 6 RC-Truck System .. 16

Figure 7 Mission Planner M-File .. 17

Figure 8 Floating Point to Fixed Point Conversion ... 21

Figure 9 Gateway In Block Settings .. 22

Figure 10 Timing Analyzer ... 24

Figure 11 Design Flow... 27

Figure 12 Simulink Implementation of RC-Truck System .. 28

Figure 13 Mission Planner M-File ... 29

Figure 14 Star Trajectory ... 29

Figure 15 Star Trajectory Velocity .. 29

Figure 16 Figure Eight Trajectory ... 30

Figure 17 Figure Eight Velocity .. 30

Figure 18 System Generator Mission Planner and Heading Control 32

Figure 19 System Generator Velocity Control ... 33

iv

Figure 20 Star Trajectory Hardware Simulation ... 33

Figure 21 Star Trajectory Velocity Hardware Simulation .. 33

Figure 22 Figure Eight Trajectory Hardware Simulation ... 34

Figure 23 Figure Eight Velocity Hardware Simulation ... 34

Figure 24 Timing Analysis of RC-Truck System .. 35

Figure 25 Hardware Co-Simulation Block Diagram ... 35

Figure 26 Hardware Co-Simulation Module ... 36

Figure 27 Star Trajectory Co-Simulation ... 37

Figure 28 Star Trajectory Velocity Co-Simulation ... 37

Figure 29 Figure Eight Trajectory Co-Simulation .. 37

Figure 30 Figure Eight Velocity Co-Simulation .. 37

Figure 31 Simulink Star Trajectory X Vs. Error .. 38

Figure 32 Simulink Star Trajectory Y Vs. Error ... 39

Figure 33 Co-Simulation Star Trajectory X Vs. Error .. 39

Figure 34 Co-Simulation Star Trajectory Y Vs. Error .. 40

Figure 35 Simulink Figure Eight Trajectory X Vs. Error .. 40

Figure 36 Simulink Figure Eight Trajectory Y Vs. Error .. 41

Figure 37 Co-Simulation Figure Eight Trajectory X Vs. Error .. 41

Figure 38 Co-Simulation Figure Eight Trajectory Y Vs. Error .. 42

Figure 39 Errors of Star Trajectory .. 42

Figure 40 Errors of Figure Eight Trajectory .. 43

v

Implementation of Unmanned Vehicle Control on FPGA Based Platform Using System

Generator

Shashikala N. Murthy

ABSTRACT

The goal of this research was to explore a new and improved software

development tool for the implementation of control algorithms on Xilinx Field

Programmable Gate Arrays (FPGA). The Simulink plug in, System Generator,

complements traditional Hardware Description Language (HDL) by providing a higher

level graphical language for the development of FPGA designs. The design is then

translated into the lower level required by the Xilinx’s ISE program. By utilizing this

graphical based higher level of abstraction at the design entry level, the requirement of a

detailed knowledge of HDL languages is no longer required. Because of this new

environment the time required to implement the previously developed control design on

the FPGA is reduced. The initial work began with a study of System Generator

capabilities. One of the primary areas of interest is the difference on how the

mathematical model representations are implemented between Simulink and the logic

based hardware. From this initial work, a methodology for conversion between the

developed and verified Simulink design and hardware implementation was obtained. As

a case study, a control design was implemented for a Simulink model of an Unmanned

Ground Vehicle (UGV) based on an RC-Truck. The control system consists of a simple

mission planner to generate a vector of waypoints, a proportional-integral velocity

vi

controller and a proportional heading controller. The derived hardware design process is

then utilized and validated by converting the control system into the available System

Generator blocks. The final verification of the FPGA design was a hardware-in-the-loop

simulation utilizing a Xilinx prototyping board. This design example demonstrated the

validity of the presented approach as an efficient and reliable method for rapid system

prototyping for designs developed within the Simulink environment.

1

CHAPTER ONE

INTRODUCTION

Typically efficient implementation of control system applications utilizing FPGAs

requires a thorough understanding of both the hardware platform and Hardware

Description Language. FPGAs have always had the advantages of parallel processing

and asynchronous timing capabilities. Over the past decade both the increased number of

gates and the development of new software tools have lead to a rapid increase in

popularity of FPGAs.

New software tools have been developed to allow for higher level abstraction in

the development of the FPGA implementations. Within the past few years, Xilinx has

presented and made continued improvements to a Simulink add on, System Generator,

that allows the design of the hardware from within the graphical, high level Simulink

environment. System Generator replaces the traditional Hardware Description Language

(HDL) design, and thus does not require a detailed knowledge of this lower level,

complex language. In addition, the graphical language allows an abstraction of the

design through the use of available System Generator blocks and subsystems. This

reduces the time necessary between the derivation of control design and hardware

implementation. This software is extremely attractive because of the popularity of

Simulink as tool for both modeling the physical system and testing the derived control

design. It is a natural progression to include the hardware simulation and hardware-in-

2

the-loop verification from within this environment. However, the behavior of the

Simulink mathematical simulation in comparison to the hardware implementation is not

an exact match. Simulink allows for floating point, complicated math to be completed

within a single, virtual time step by slowing the simulation to allow for precise

calculations. In addition, Simulink will adjust the size of the time step when required by

the underlying calculations. By comparison, the FPGA hardware implementation

requires a pre-defined fixed time step that operates in real time. While rates can be

adjusted at different points within the hardware to allow for asynchronous timing, each of

these rates are run at consistent time step with a fixed word length. The conversion

between these two forms must be done in a systematic way that takes these differences

into consideration. Thus the derivation of the hardware implementation can become a

difficult and frustrating task for those unfamiliar with the FPGA environment.

The goal of this research was twofold, to explore this new and improved software

development tool and to develop a systematic approach of conversion from the verified

Simulink design to the hardware implementation. This objective can be broken further

into three smaller objectives – design, implementation and verification. The design flow

allows the developers to quickly explore FPGA design options and to check if the

resulting module fulfills the design constraints. The successful development of such a

systematic approach allows the controls engineer to follow this procedure in order to

obtain a successful hardware design without extensive knowledge in logic theory. In

addition, this work compliments an FPGA based autopilot hardware design for use with

unmanned systems by simplifying the implementation of the controls algorithm onto an

available, off-the-shelf platform.

3

A case study utilizing a pre-developed Simulink system model of an Unmanned

Ground Vehicle (UGV) based on an RC-Truck model was completed. A Simple Mission

planner to generate a vector of waypoints, a velocity PI controller and proportional

heading controller were designed, simulated and verified within Simulink. The FPGA

design process was utilized in order to convert these algorithms into the available System

Generator blocks. After verification from the simulated hardware, the design was then

downloaded into the prototype board containing a Xilinx FPGA for Hardware-in-the-

Loop verification. This design example demonstrated the validity of the presented

approach as an efficient and reliable method for rapid system prototyping of control

theory in the area of unmanned systems.

Chapter Two introduces the MATLAB and Simulink software environment,

followed by an explanation of the workings of the toolboxes available within System

Generator. Chapter Three gives an overview of the prototyping board utilized with this

research, along with a brief description of the complimentary autopilot platform under

development. An overview of the RC-Truck model, mission planner and control design

is presented in Chapter Four. Chapter Five discusses the key issues with implementing

control algorithms on an FPGA platform and then presents the proposed design approach.

This approach is verified in Chapter Six by following the specified procedure to

implement and verify the RC-Truck control design on the FPGA prototyping board.

Chapter Seven completed this presented material with an overview of the knowledge

obtained and recommendations for future work.

4

CHAPTER TWO

SOFTWARE PLATFORMS FOR SYSTEM DESIGN

An efficient rapid system prototyping environment demands a feasible and

efficient development environment in which the hardware and software modules can be

co-designed, co-debugged, and co-verified. The integrated software design platform

containing MATLAB R2007a with Simulink from MathWorks, System Generator 9.2 for

DSP and ISE 9.2 from Xilinx present such capabilities. Although the Xilinx ISE 9.2

foundation software is not directly utilized, it is required due to the fact that it is running

in the background when the System Generator blocks are implemented. An overview of

the complete design environment is presented in Figure 1.

Figure 1 System Generator Block Diagram

5

2.1 The MathWorks MATLAB® and Simulink®

MATLAB is an interactive software for doing numerical computations to simplify

the implementation of linear algebra routines. Powerful operations can be performed by

utilizing the provided MATLAB commands. Simulink is an additional MATLAB

toolbox that provides for modeling, simulating and analyzing dynamic systems from

within a graphical environment. This software allows for both modular and hierarchical

models to be developed providing the advantage of developing a complex system design

that is conceptually simplified. Due to this modular, simplified high level approach,

Simulink has gained popularity among engineers and researchers for development,

verification and modification of control algorithms [1]. Because of this wide-spread use,

the ability to design and verify hardware implementation from within this same software

environment becomes a great advantage for rapid prototyping of new theory and designs.

In addition, the capability for hardware-in-the-loop simulation with the Simulink plant

models provides the additional benefit of this verification to take place without risking

the loss of hardware. Because the software this final verification to take place through

the use of standard computer ports no additional data acquisition hardware is required.

This presents a far more cost efficient solution than other methodologies. It is because of

these advantages that the Simulink/System Generator environment was selected as the

best available development platform for this project.

2.2 Xilinx System Generator for DSP

Xilinx System Generator is a MATLAB/Simulink-based design tool for Xilinx’s

line of FPGAs. Typically complicated digital circuits have been developed using

6

multiple Hardware Description Language (HDL) modules. Because the level of

abstraction is very low within the HDL environment, the difficulty increases as the design

becomes more complex. These designs typically contain such considerations as

feedback, word length requirements and delays. Because of the graphical nature of

System Generator, the overall design is able to be viewed as a modular system with a

high level of abstraction that does not require HDL code from the designer. For those

designers already familiar with HDL, System Generator does provide an additional

capability of allowing pre-developed HDL modules to be incorporated directly into the

System Generator model. In addition, the integration with Simulink, provides for the

hardware design and verification to be performed from within the same environment as

the mathematical system model, reducing both the required design time and hardware

resources [2].

Particularly relevant to this project, is the ability for the hardware-in-the-loop

simulation, referred to by Xilinx as “hardware co-simulation”. The integrated Xilinx ISE

software provides for an automatic generation of HDL code directly from the System

Generator blocks that is then mapped to the Xilinx FPGA. This underlying code is

synthesized and implemented in a Xilinx FPGA in order to perform a hardware-in-the-

loop verification, as defined by Xilinx as “hardware co-simulation”. Thus, System

Generator provides engineers a sophisticated platform for developing, simulating and

implementing bit-true and cycle-true models [2]. Figure 2 presents an overview of the

software development process from within the Simulink environment.

7

MATLAB/Simulink

Xilinx's System Generator
(Hardware Design)

HDL Synthesis

Simulation & Verification

FPGA Implementation & Verification

Simulink System ModelSimulink Modelled Control System

Figure 2 Software Design Overview

2.3 Xilinx ISE Overview

The Xilinx Integrated Software Environment (ISE) is a powerful design

environment that is working in the background when implementing System Generator

blocks. This software environment consists of a set of program modules, written in HDL,

that are utilized to create, capture, simulate and implement digital designs in a FPGA or

CPLD target device. The synthesis of these modules creates netlist files which serve as

the input to the implementation module. After generating these files, the logic design is

converted into a physical file that can be downloaded on the target device. The software also

provides a simulation tool where the functionality, behavior and timing can be verified for

users that are familiar with the ISE software.

8

CHAPTER THREE

FPGA PLATFORMS

This research was started in combination with a proposed off-the-shelf autopilot

hardware design. The goal of the autopilot is to both provide a flexible platform for

unmanned system development and a simplification of algorithm implementation by

allowing for the incorporation with the System Generator programming environment [3].

Because the hardware is still under development, an available prototyping board was

selected to provide the co-simulation platform. This chapter discusses both the

development board and the autopilot hardware to allow for a comparison between the

research platform and the final hardware platform that will be utilized when the

development has been completed.

3.1 Virtex II Pro Development Board

Diligent’s Xilinx University Program Virtex-II Pro Development System, the

XUP board, was selected as the hardware platform for this research. The XUP board is a

powerful, multipurpose and low-cost system, which consists of a high performance

Virtex-II Pro FPGA with PowerPC cores and a comprehensive collection of supporting

components, such as on-board Ethernet device, serial ports and AC-97 audio codec [4].

The Virtex –II Pro FPGA consists of the following logic building blocks; 13,969 slices,

428KB distributed RAM, 136 Multiplier Blocks, 2448 KB of Block RAM and 2

PowerPC RISC Cores. The board provides 100MHz system clock which improves the

9

performance of any complicated module. The development system also includes an

embedded USB 2.0 microcontroller capable of communications with other USB hosts.

This interface is used for programming or configuring the Virtex-II Pro FPGA in

Boundary-Scan mode. Communication clock speeds are selectable from 750 kHz to 24

MHz.. The USB 2.0 microcontroller attaches to a desktop or laptop PC high-speed A-B

USB cable.

Onboard external devices such as program memory and analog to digital

converters that directly connects to the FPGA are also available. Although not necessary

for the co-simulation verification, these peripheral devices can be used by defining the

controls and interface logic from within the System Generator design. Because of the

available program memory, the FPGA can be configured by the bit stream stored within

this memory during the power up phase or directly through the volatile internal flash

memory by utilizing the embedded USB2 high speed interface.

10

AC97 Audio CODEC & Stereo Amp

XSGA Video Output

User LEDs (4)

User Switches (4)

User Push-button Switches (5)

10/100 Ethernet PHY

RS-232 & PS/2 Ports (2)

Serial ATA Ports (3)

Multi-Gigabit Transceiver Port

2 GB DDR SDRAM DIMM Module

5V Tolerant Expansion Headers

High Speed Expansion Port

VIRTEX II PRO
FPGA

External Power

Internal Power
Supplies

3.3V
2.5V
1.5V

CPU Debug Port

100 MHz System Clock

75 MHz SATA Clock

User Clocks (2)

Platform Flash Configurations (2)

Platform Flash Configurations (2)

Platform Flash Configurations (2)

VIRTEX II PRO
FPGA

Figure 3 Block Diagram of the XUP Virtex-II Pro Development System

3.2 Overview of Autopilot

The autopilot hardware design that is currently under development also utilizes a

Xilinx FPGA and has surrounding peripherals. However, the surrounding hardware on

this design is specific for use with unmanned systems. An overview of the peripheral

hardware is presented in Figure 4. This hardware includes the following;

• On board pressure sensors for a measurement of forward velocity and

altitude

• A Field Programmable Analog Array to allow for flexibility in analog

sensor inputs

• Digital I/O ports that can be programmed to accept voltage levels ranging

from 1.8 to 5 volts

11

• Digital 3.3 Volt I/O ports for a custom daughter board connection

• SPI flash memory for data acquisitions

• RS232 ports that allow for communication with an external processing

system

• A built in safety switch to allow take-over of the actuators by a human

pilot

• A standard JTAG connector for both programming and hardware co-

simulation

It was not necessary to include external program memory because the selected FPGA, the

Spartan3 1400AN, has non-volatile program memory residing within the FPGA.

XILINX
SPARTAN 3AN

FPGA

RS232
INTERFACE

CONNECTORS TO CUSTOM BOARD

SAFETY SWITCH
CIRCUITRY ACTUATORS

HUMAN
PILOTMASTER COMPUTER

ANALOG
INPUTS

PRESSURE
SENSOR

PROGRAMMABLE
ANALOG CIRCUITRY
[ANADIGM FPAA IC]

ANALOG SIGNAL
CONDITIONING

A/D CONVERTER

COMMUNICATION LOGIC & SIGNAL CONTROL

CLOCK

RS232 INTERFACE

S
E
L
E
C
T
O
R

S
W
I
T
C
H

SIMULINK
PROGRAMMING

&
HARDWARE-IN-LOOP

ON CHIP
NON-VOLATILE

PROGRAM
MEMORY

USF
SENSOR INPUTS

SWITCH
CONTROL

CUSTOM DAUGHTER BOARD
FOR EMERGENCY TAKE-OVER BY MASTER COMPUTER

VARIABLE
LOGIC LEVEL

INPUT/OUTPUT

VOLTAGE
TRANSLATOR

CIRCUITRY

DATA
ACQUISITION

MEMORY

Figure 4 Autopilot Hardware Overview

12

The selected FPGA consists of the following logic building blocks; 11,264 slices,

32 multipliers, 176K distributed RAM, 576K RAM Block and 1,400K system gates.

Although the Spartan series does not include embedded PowerPCs, Xilinx’s EDK

program can be utilized to provide soft core DSPs.

3.3 Comparison of Hardware Platforms

Although there are major differences in the peripherals available on the XUP

board and the autopilot, the primary focus of this work is the conversion of Simulink to

System Generator, which does not utilize this hardware. Of concern for portability of this

work to the autopilot design is the actual FPGA utilized for the hardware co-simulation.

Because the extra functionality of the built in PowerPCs cannot be accessed from within

System Generator, the portion of the XUP FPGA utilized in the co-simulation is similar

to the autopilot FPGA in number of available logic gates and accessible RAM. In

addition both the XUP board and the autopilot operate at a frequency of 100 MHz.

Because of the similarities of the two FPGAs and the clock rate, the XUP board is a

sufficient platform for developing the design process that will be utilized with the

autopilot in future work. In addition the work presented is general in its nature and

applicable to a wide variety of applications.

13

CHAPTER FOUR

OVERVIEW OF RC-TRUCK MODEL/SYSTEM

A Simulink model of an RC-truck robot with Ackerman steering was developed

using the equations given in [5] as the physical system under study. These equations can

be divided into separate portions of the overall robot model; the motor, the forward

dynamics and the kinematics, Figure 5.

MOTOR FORWARD

DYNAMICS 1/s
ax

αs

KINEMATICS

vx
Robot

ψ

TmVact
Y
X

Figure 5 Open Loop RC-Truck Model

In order to complete the system, a controls design containing a mission planner,

velocity control and heading control where developed and verified within the Simulink

environment. This system was then used to confirm the effectiveness of the design

procedure presented in Chapter Five.

4.1 Forward Body-Reference Dynamics

The primary force on the truck is the forward motion due to the torque produced

by the motor. Other forces acting on the robot, such as ground resistance, wind or

uneven ground, were not included in the model. Because this work presents a study into

the design of FPGA hardware implementation of the control of a pre-developed system

14

model, the simplifications are acceptable. The calculation of the force providing

movement in the forward direction is given in Equation(4.1) where Te(t) is the torque

produced by the motor, Nmw is the motor to wheel ratio and r is the radius of the tire. The

forward body-reference velocity is obtained by integrating this force and dividing by the

mass of the vehicle, Equation(4.2).

mw

()
N r

e
x

T tF (t) = (4.1)

0

()()
M

t
x

x
F tV t dt= ∫ (4.2)

4.2 Motor Model

Equations(4.3),(4.4) and (4.5) are used to model the electric motor of the RC-

truck. The input variable, or control variable, is the motor voltage. The output of the

motor model is the torque that is applied to the drive train of the RC-truck. The constants

relating to the motor specifications are as follows; R is the electrical resistance, L is the

electrical inductance, Kt is the motor torque constant, Kv is the motor voltage constant,

and J is the motor inertia. The motor variables are the current, i(t), the angular velocity,

ω(t), the input voltage Vin(t), and the output torque, Te(t).

v

()R 1() ()
L K L L

inV tdi(t) i t t
dt

= − − ω + (4.3)

t vK K() () ()
J J

d t i t t
dt
ω = − ω (4.4)

t() K ()eT t i t= (4.5)

15

4.3 Kinematic Calculations

Kinematic equations for a bicycle model have been used to convert the motion

along the x-body axis to robot’s position in the world reference frame. These equations

are given in Equations (4.6), (4.7), and (4.8) where vs(t) is equal to the velocity in the

body reference frame, L is the distance between the center of the front and back wheels,

αs(t) is the steering angle of the front tires, and ψ(t) is the heading in the world reference

frame. In addition, the steering angle of the truck has been limited to +/-30 degrees due

to the physical limitations of Ackerman steering.

0

() () cos(())cos(())
t

s sX t v t t t dt= α ψ∫ (4.6)

0

() () cos(())sin(())
t

s sY t v t t t dt= α ψ∫ (4.7)

0

()() sin(())
L

t
s

s
v tt t dtψ = α∫ (4.8)

4.4 Control System

The control system comprises of a mission planner, a heading controller and a

velocity controller, Figure 6. The velocity controller is proportional-integral (PI) control,

Equation(4.9) with the proportional gain, KP equal to 0.15 and the integral gain, KI, equal

to 0.002. The error between a measured process variable and a desired set point is

corrected by choosing gain parameters appropriately. The proportional gain determines

the reaction to the current error and the integral gain determines the reaction based on the

sum of recent errors. The heading control is a proportional controller, Equation(4.10),

with KP equal to 1. This forces the wheels to turn in the direction of the error. With a

16

large error the turning angle is limited to the maximum 30 degrees, which is

representative of the true behavior of the vehicle.

P IK () K ()e t e t dt+ ∫ (4.9)

PK ()e t (4.10)

The mission planner is contained in a single m-file, given in Figure 7. The

individual way points are contained two vectors, Xtraj and Ytraj, with the index of the

arrays as the way point number. The distance is calculated so that when the robot is close

to the current way point, the next way point is sent out as the mission planner as the X

and Y position set point.

RC-TRUCK
MODEL

vx
Robot

ψ Y

XPI
vx
Set Point +

-

WAY POINT
GENERATOR PATAN2

+ -

+ -
+

-
ψsp

Xtraj

Ysp

Figure 6 RC-Truck System

17

Figure 7 Mission Planner M-File

18

CHAPTER FIVE

DESIGN PROCESS

Several issues create difficulties in the process of converting the Simulink design

to the FPGA implementation due to the underlying hardware characteristics of the

available System Generator blocks. The designer must give careful consideration to

certain issues such as timing synchronization, delays associated with complicated

mathematical calculations, and conversion to fixed point. After consideration of these

issues and the tools provided by System Generator, a design procedure was derived for

systematically converting the Simulink design into System Generator blocks. This

chapter discusses each of these issues, the System Generator tools available and presents

a detailed overview of the method for development of the hardware implementation.

5.1 Timing Issues with Algebraic Loops

In the design of the mathematical algorithms, there are times when the result of

one calculation must be returned to use in a comparison or cumulative type calculation.

This is done in the context of an algebraic feedback loop. Logic gates that occur within

this loop may have an associated delay that will affect the stability of the system that was

not present in the Simulink mathematical model. For example, within the truck control

system, the set point number is held in a register then returned to the m-file controlling

the way point generation, creating a delay of one hardware clock cycle.

19

5.2 Math Issues

System Generator provides a math block set that includes standard functions that

carry only small delay because of both the efficient algorithms that underlie the blocks

and the simplicity of the math itself. This block set includes calculations such as add,

subtract, shift, multiply, divide by 2n, and the cosine and sine function. These functions

can be included within the system with only a slight delay that can be easily compensated

for with careful timing synchronization.

A second mathematical block set is provided that contains the Coordinate

Rotation Digital Computer (CORDIC) algorithms for a few calculations that are not

easily translated to the gate level. The provided blocks are for the division, log, sine,

cosine, square root and inverse tangent functions. These CORDIC algorithms utilize

coordinate rotations as the basis for an iterative method for the calculation of more

complex math functions [6]. It is particularly suited to hardware implementations

because it does not require any multiplies. CORDIC revolves around the idea of

"rotating" the phase of a complex number, by multiplying it by a succession of constant

values. However, the "multiplies" can all be powers of 2, so in binary arithmetic they can

be done using just shifts and adds; no actual "multiplier" is needed. These provided

blocks must be used with care due to the longer potential delay that may occur.

Within the blocks there are settings that allow the user to compromise between

accuracy and hardware usage. The user may select the number of number of processing

elements, the input data word length, and the latency for each processing element.

Although there is no clear cut process for selecting this, running a few simulations with

varying selections will allow a good estimation.

20

Although time and resource consuming math cannot always be avoided, certain

considerations can be taken to minimize this cost. Whenever a divide by can be replaced

by a divide by 2n, this should be considered. For example, if a series of sensor readings

are to be averaged, selecting a 2n value should prove sufficient. In addition, selecting the

minimum number of processing elements and shortest delay for the required precision

within the CORDIC blocks will also reduce the cost.

5.3 Floating to Fixed Point Conversion, Quantization and Overflow Issues

The FPGA requires fixed point arithmetic that must be defined during the

hardware design phase. However, a great deal of flexibility is provided by allowing the

definition of signed or unsigned, word length and binary point position at any point

within the logic design flow. In order to determine these settings, the designer must

weigh the necessary precision against increased logic and potential delays associated with

long word length.

FPGAs handle the signed numbers the same manner as a microprocessor. The

signed number is represented as twos complement using a binary sequence of 1’s and 0’s.

It is the designer’s responsibility to select whether or not to utilize the signed extension

bit in any selected design environment, in this case System Generator. A simple solution

is to sign extend as a general rule. In many cases, since this only requires one additional

bit, this provides the best solution.

Because MATLAB/Simulink uses floating point representation any N-bit number

can have any value from -2N-1 to +2 N. The standard format assigns an N value of 32

which is able to provide a fractional resolution as small as 1/2N, equal to 2.3283(10-10),

21

when all the bits are assigned to the binary point. The only way to assign this type of

resolution throughout the fixed point design is to allocate 64-bits with 32 for the binary

point. This cannot be implemented in the fixed point hardware and still maintain

hardware and timing efficiency. For this reason, all the values in logic must be

represented in a smaller pre-defined word length. Figure 8 demonstrates the conversion

of floating point number into fixed. The decimal in the top number will adjusts as the

size of the number changes. When converted to the lower representation, the decimal

maintains the same position, creating potential issues when the number is either too large

or too small to be accurately represented.

Figure 8 Floating Point to Fixed Point Conversion

The conversion from floating point to fixed-point is not a lossless transition. Two

phenomena can occur, called overflow and quantization. Quantization can be handled in

two ways, either truncation which discards the bits to the right of the most significant bit

after the number of decimal value or rounding which estimates to the nearest

representable value. Overflow occurs when the resulting output from mathematical

calculation lies outside the range of the fixed-point representation set. The System

22

Generator blocks allow for the output values be either saturated, where the MSB’s are

neglected, or wrapped to the nearest value.

Within the System Generator blocks, fields are available to select the necessary

settings to control the hardware with respect to word length. Using these settings the

designer can choose the required type of fixed point number (signed/unsigned or

Boolean), width and the position of the least significant count of decimal point. For

example in the ‘gateway in’ block settings, Figure 9, 16 is written in the ‘no of bits field’

and 8 to the ‘binary point’ field. This directs System Generator to create a 16-bit fixed

point number with eight bits reserved for the fractional portion.

Figure 9 Gateway In Block Settings

In terms of hardware usage, the saturate and truncate selections are preferable

because they use less hardware resources as compared to round and wrap. In addition, if

the word length is selected only to reflect the necessary precision, rather than all possible

values, wrap should be avoided due to roll-over to the zero value on overflow.

23

Several iterations may be required to fine tune each block in the system until both

acceptable amounts of quantization error results and overflow is eliminated. This

iterative analysis of quantization and overflow, along with verification within the

Simulink environment, results in a high level software design tool.

5.4 Timing Analysis

While the system generator blocks produce a bit and cyclic true simulation, they

do not take into account the timing issues that may occur when converted and download

to the hardware implementation. This is an advantage because it allows testing the

System Generator design before optimizing for speed and hardware usage. However,

before finalization, the design must be checked with respect to the processor and clock

speed to be sure that all timing constraints are met.

Timing violations occurs when the signal form one synchronous output stage does

not reach the input of the next stage within the required time allocated by the system

design. The System Generator timing analysis tool is provided to assist with this aspect

of the hardware design. It provides a report on any slow paths within the design flow and

clearly displays the specific paths that will fail in hardware.

When the timing analysis is invoked from the System Generator block, the design

is compiled, netlisted into HDL source and a timing analysis run. The results appear in

the System Generator timing analyzer tool, Figure 10. Selecting the histogram displays a

detailed chart providing the path timing information. In addition, this display will

highlight each path that does not meet the specifications. The trace icon provides the

details about each specific path analyzed.

24

Figure 10 Timing Analyzer

Once an issue is discovered both replication of registers and increased control

over sampling time can be utilized for correction. Replication is often performed

automatically by the tools in order to reduce the capacitance of the neat, which in turn

reduces the net delay. While adding these pipelining registers does increases latency and

the number of logic gates; it should be seen that this provides a balance to other portions

of the design and also reduces the fan out on the replicated objects. Up-sample and

down-sample blocks can be included to be sure that those portions of the design that can

be operated at a slower rate are calculated this reduced rate. If these blocks are not used,

then the timing analyzer will generate the over constraint error.

5.5 Hardware Co-Simulation

After the System Generator model is verified through both simulation and a

timing analysis, hardware co-simulation should be performed in order to validate the

design operating on the FPGA platform.

The co-simulation process uses Xilinx ISE and core generator to synthesize and

generate an FPGA programming bit file from the System Generator blocks in the design.

25

A new system block is generated called ‘JTAG co-sim block’. This block replaces the

previously used System Generator design. The hardware implementation is then

executed by connecting the board to the PC, thereby, closing the loop. When the model

is run, a pearl script links the Xilinx ISE and the core generator software. The Xilinx ISE

program then generates the bit file and loads it into FPGA through a standard JTAG

connection.

There are two selections for the System Generator Hardware co-simulation, the

single-step mode and free running mode. In free-running mode, the FPGA is under the

control internal clock signal on the hardware platform. In single-step mode the hardware

receives the clock signal through the JTAG connection which is synchronized to the

simulation environment. This allows the co-simulation operating in this mode to be bit-true

and cycle true [7] to the original design while allowing the correct timing to occur between

the simulated plant and the logic gates within the FPGA. For this reason, the single step mode

must be selected when working with a Simulink system model.

5.6 Proposed Design Procedure

The design process is an iterative one that requires revisions and re-testing, see

Figure 11. The hardware design process begins once the Simulink model containing

mathematical algorithm used to control the system has been verified.

Before the hardware model is build consideration must be given to any potential

simplification of complicated math to help prevent potential timing issues. This

modification should be made and re-verified within the Simulink blocks before beginning

the hardware phase. Once any mathematical modifications have checked, the design can

26

be optimized for hardware and build with the provided System Generator blocks. The

most efficient approach is to look for any effective modularity to the original design that

can be brought into the hardware blocks and tested a portion at a time. This optimization

of hardware involves breaking any long m-file code into smaller blocks and looking for

any mathematical functions that can run in parallel. Once the System Generator model is

developed, an initial check for potential timing synchronization issues should be

completed, in particular with algebraic loops. In addition sampling rates at different

stages of the hardware flow should be considered and ‘sample-up’ and ‘sample-down’

blocks inserted where necessary. At this stage of the design development, the word

length does not necessarily need to be considered. Because the timing issues are

dependent on the clock rate and specific hardware, the hardware simulation process will

allow for more flexible test of the hardware design. Once the general design is verified,

then the word length can be minimized in order reduce the amount of logic gates required

and reduce the chances of timing issues. Once the word length modifications are

checked, then a timing analysis can be run and, after any necessary corrections, a

hardware co-simulation test can be performed.

27

Figure 11 Design Flow

SIMULINK TEST OF SYSTEM UNDER DESIGN

DESIGN
VERIFIED?

REVISE SYSTEM
DESIGN

CAN MATH BE
SIMPLIFIED?

YES

NO

OPTIMIZE FOR HARDWARE

TEST SYSTEM GENERATOR DESIGN

DESIGN
VERIFIED?

YES

NO

NO

OPTIMIZE WORD LENGTH
&

TEST IN SIMULATION

YES

DESIGN
VERIFIED?

NO

TIMING ANALYSIS

TIMING
VERIFIED?

YES

HARDWARE CO-SIMULATION

DESIGN
VERIFIED?

DESIGN COMPLETE

NO

NO

YES

YES

28

CHAPTER SIX

TESTING AND VERIFICATION

The design procedures were applied to the RC-Truck system presented in Chapter

Four. This resulted in a systematic conversion of the tested control design into System

Generator blocks, simulation and modification of these blocks and a final verification of

the design utilizing co-simulation. This chapter presents the work done in each of the

design flow steps along with the results presented by the final hardware co-simulation.

6.1 Step One: Testing Control Algorithms in Simulink

Figure 12 presents the Simulink model containing the RC-Truck model, the

mission planner, the heading control and velocity control. The system was tested in the

variable time step setting of Simulink and proved to work properly as demonstrated in

Figure 14, Figure 15, Figure 16, and Figure 17.

MISSION PLANNER

CALCULATING HEADING
SET POINT

VELOCITY PI

HEADING PROPORTIONAL
CONTROLLER

RC-TRUCK MODEL

Figure 12 Simulink Implementation of RC-Truck System

29

Figure 13 Mission Planner M-File

-100 -50 0 50 100
-100

-50

0

50

100
Trajectory One

X-Coordinate (meters)

Y-
C

oo
rd

in
at

e
(m

et
er

s)

Figure 14 Star Trajectory

0 1 2 3 4
x 104

0

0.5

1

1.5

2

2.5

3

3.5
Trajectory One Velocity

Time Step (10 mSec)

Ve
lo

ci
ty

 m
/S

ec

Figure 15 Star Trajectory Velocity

30

-100 -50 0 50 100
-100

-50

0

50

100
Trajectory Two

X-Coordinate (meters)

Y-
C

oo
rd

in
at

e
(m

et
er

s)

direction
simulation path
way points

Figure 16 Figure Eight Trajectory

0 0.5 1 1.5 2
x 104

0

0.5

1

1.5

2

2.5

3

3.5
Trajectory Two Velocity

Time Step (10 mSec)

Ve
lo

ci
ty

 m
/S

ec

Figure 17 Figure Eight Velocity

6.2 Step Two: Simplify Any Complex Math

A potential simplification is the removal of the square root function utilized when

calculating the distance. This function is a potential issue because it requires utilizing the

‘cordic sqrt’ block which, not only utilizes quite a bit of logic gates, but has a long delay

associated with it which would occur within an algebraic loop. Because the distance is

only used as a measure for determining when to increment to the next way point, an

acceptable approximation can be obtained utilizing Equation(6.1). The simulation was

re-run to confirm this and presented good results.

6.3 Step Three: Optimize for Hardware Characteristics

The m-file utilized for generating the way points contains the calculations for the

approximation of the distance to the way point. The squared terms shown in Equation

(6.1) can be calculated in parallel. For this reason, this equation was removed from the

embedded m-file and calculated with System Generator blocks.

31

2 2() ()sp spd X X Y Y= − + − (6.1)

The mission planner must calculate the next way point from the current position.

This creates a feedback loop that may create some timing issues. This must accounted

for when converting to System Generator blocks. The memory block was replaced by a

register, which essentially works the same, except the register adds a delay of one time

step. The sampling time of the input port, 0.1 sec, sets the rates of following the blocks,

including the register. In order for the position set points to ‘line up’ with respect to the

correct samples of the robot position, X and Y, a delay of one time step must also be

added to both of these paths. This was accomplished by utilizing two register blocks.

When the PI controller was implemented with Simulink blocks, the provided PID

block was used with the derivative gain set to zero. This block utilizes the correct digital

algorithms and time step in order to approximate the continuous time calculations.

However, implementing this controller in the hardware FPGA requires a digital version

because a PID block is not provided by System Generator. The integral portion of the

controller requires a digital integration algorithm, which is more complicated than the

proportional which only requires a simple multiplication. The standard trapezoidal rule is

implemented for the integral calculation. The controller algorithm is given in

Equation(6.2), where KP is the proportional gain and KI is the integral gain.

P I[K +K] ()
1

z E z
z −

 (6.2)

6.4 Step Four: Build and Test in System Generator

The System Generator was developed in two steps, first the heading control,

Figure 18, and then the velocity control logic, Figure 19. This system was tested using

32

word lengths of 64 bits, with 32 allocated to the decimal portion and the most significant

bit as the sign bit. While this would result in an excessive use of resources and more than

likely cause issues with timing in the hardware, it allows a verification of the logic design

before reducing the word length. An additional a change was made from the Simulink

model within the register holding the set point number. This value was started at -1

because the delay in the loop causes the set point to be incremented immediately. This is

due to the multiplier’s initial output of 0. Setting the initial set point number to be equal

to -1, allows a value of 0 as the starting point, causing the model to start at the first way

point setting. It is also important to note that System Generator starts the vector

numbering at 0, rather than the value of 1 used by Simulink.

MISSION PLANNER
CALCULATING
HEADING SET POINT

HEADING CONTROLLER

Figure 18 System Generator Mission Planner and Heading Control

33

CALCULATE ERROR

P*ERROR

I*INTEGRAL OF ERROR
Figure 19 System Generator Velocity Control

The developed System Generator was simulated to test the hardware design

before modifying the word size, Figure 20-Figure 23. It was noticed that there was a

difference in the behavior of the velocity controller. It was determined that this was due

to the sampling time characteristics of the digital implementation. The digital version

had more of an overshoot and slightly quicker response, but still performed well.

-100 -50 0 50 100
-100

-50

0

50

100
Trajectory One

X-Coordinate (meters)

Y-
C

oo
rd

in
at

e
(m

et
er

s)

direction
simulation path
way points
simulated hardware path

Figure 20 Star Trajectory Hardware

Simulation

0 1 2 3 4
x 104

0

0.5

1

1.5

2

2.5

3

3.5

Time Step (10 mSec)

Ve
lo

ci
ty

 m
/S

ec

Trajectory One Velocity

simulation velocity
simulated hardware velocity

Figure 21 Star Trajectory Velocity

Hardware Simulation

34

-100 -50 0 50 100
-100

-50

0

50

100
Trajectory Two

X-Coordinate (meters)

Y-
C

oo
rd

in
at

e
(m

et
er

s)

 direction
simulation path
way points
co-sim path

Figure 22 Figure Eight Trajectory

Hardware Simulation

0 0.5 1 1.5 2
x 104

0

0.5

1

1.5

2

2.5

3

3.5

Time Step (10 mSec)

Ve
lo

ci
ty

 m
/S

ec

Trajectory Two Velocity

simulation velocity
co-sim velocity

Figure 23 Figure Eight Velocity

Hardware Simulation

6.5 Step Five: Calculate Word Length

The goal in determining the word length is to use the minimum length while still

achieving the necessary accuracy. The input ports through which X and Y are sampled

allow were first considered. It is sufficient for the RC-Truck to travel within a meter’s

accuracy, for this reason the decimal accuracy was limited to 1/(24). Because X and Y

are limited to approximately +/-100 by the predefined trajectory area, a word length of 12

is sufficient. This allows for the 4 binary bits, 7 bits to allow for a maximum magnitude

of 128 and a sign bit. The velocity input port along with the controller blocks were set to

32 bits, with 16 allocated to the decimal and the highest bit for the sign bit. The longer

word length was selected due to the potential variation in values within the velocity

controller calculations. A timing analysis was run, and indicated that the design met all

timing constraints, Figure 24. Had the timing failed for the paths within the velocity

controller, the word length could have been iteratively reduced until satisfactory results

obtained.

35

Figure 24 Timing Analysis of RC-Truck System

6.6 Step Seven: Hardware Co-Simulation & Final Results

The final verification was completed by implementing the hardware co-simulation

of the system, Figure 25. By selecting the XUP platform and implementing the ‘generate’

a new hardware co-simulation block is automatically. A Simulink library is created where

the hardware co-simulation block present, Figure 26. This block is copied into the

Simulink project file replacing all the Xilinx System Generator blocks.

RC-Truck Model
Running in Simulink

Velocity, Position & Heading
Sent to FPGA Board

Mission Planner
&

Controllers in FPGA

Motor & Steering servo
signals sent back to

helicopter model
Figure 25 Hardware Co-Simulation Block Diagram

36

 Post-generation script
creates a new library
containing a parameterized
run-time co-simulation

Figure 26 Hardware Co-Simulation Module

The port names on the hardware co-simulation block are matched to the port

names on the original subsystem. The port types and rates also match the original design.

When a value is written to one of the block's input ports, the block sends the

corresponding data to the appropriate location in hardware, the controller output from the

hardware is read back into the Simulink module using the USB interface, the output port

converts the fixed data type into the Simulink format and fed into the model. The output

plots generated is similar to the simulation path. The controller in co-simulation is tested

for two different paths and the results in both the cases are shown in Figure 27, Figure 28,

Figure 29 and Figure 30.

37

-100 -50 0 50 100
-100

-50

0

50

100
Trajectory One

X-Coordinate (meters)

Y-
C

oo
rd

in
at

e
(m

et
er

s)

direction
simulation path
way points
simulated hardware path

Figure 27 Star Trajectory Co-Simulation

0 1 2 3 4
x 104

0

0.5

1

1.5

2

2.5

3

3.5

Time Step (10 mSec)

Ve
lo

ci
ty

 m
/S

ec

Trajectory One Velocity

simulation velocity
simulated hardware velocity

Figure 28 Star Trajectory Velocity Co-

Simulation

-100 -50 0 50 100
-100

-50

0

50

100
Trajectory Two

X-Coordinate (meters)

Y-
C

oo
rd

in
at

e
(m

et
er

s)

 direction
simulation path
way points
co-sim path

Figure 29 Figure Eight Trajectory Co-

Simulation

0 0.5 1 1.5 2
x 104

0

0.5

1

1.5

2

2.5

3

3.5

Time Step (10 mSec)

Ve
lo

ci
ty

 m
/S

ec

Trajectory Two Velocity

simulation velocity
co-sim velocity

Figure 30 Figure Eight Velocity Co-

Simulation

In addition the differences in error between the Simulink and FPGA

implementation are also considered. The Simulink system outperformed the hardware

implementation. This finding is not unexpected and can be typical of the hardware

implementations due all the issues previously discussed. The goal of a designer is not to

design a perfect system, but meet design specifications within a compromise between

resources and precision. Had the hardware results not been acceptable, then the process

would include iterations until the best compromise found. Figure 31 through Figure 38

38

demonstrate that for both the Simulink and hardware implementation, the error is less

than two meters just before a way point update. This indicates that the robot comes

within 2 meters for each way point along the trajectory.

Because the error jumps to a high value each time a new way point is implement

as the X and Y set points, it is difficult to get a feel for the differences in error between

the two implementations. In order to more accurately compare the errors, the vectors

containing the magnitude of the errors was sorted in descending order and plotted in

Figure 39 and Figure 40.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec

M
et

er
s

X-Trajectory for Simulation

X Set Points
X Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 31 Simulink Star Trajectory X Vs. Error

39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec)

M
et

er
s

Y-Trajectory for Simulation

Y Set Points
Y Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 32 Simulink Star Trajectory Y Vs. Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec)

M
et

er
s

X-Trajectory for Co-Simulation

X Set Points
X Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 33 Co-Simulation Star Trajectory X Vs. Error

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec)

M
et

er
s

Y-Trajectory for Co-Simulation

Y Set Points
Y Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 34 Co-Simulation Star Trajectory Y Vs. Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec

M
et

er
s

X-Trajectory for Simulation

X Set Points
X Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 35 Simulink Figure Eight Trajectory X Vs. Error

41

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec)

M
et

er
s

Y-Trajectory for Simulation

Y Set Points
Y Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 36 Simulink Figure Eight Trajectory Y Vs. Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec)

M
et

er
s

X-Trajectory for Co-Simulation

X Set Points
X Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 37 Co-Simulation Figure Eight Trajectory X Vs. Error

42

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

-100

-50

0

50

100

Time Step (10 mSec)

M
et

er
s

Y-Trajectory for Co-Simulation

Y Set Points
Y Trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 104

0

0.5

1

1.5

2
Magnatude of Error < 2 Meter

M
et

er
s

Time Step (10 mSec)

Figure 38 Co-Simulation Figure Eight Trajectory Y Vs. Error

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

20

40

60
Magnatude of Error in Descending Order

M
et

er
s

Sample Number

Y Simulation Error
X Simulation Error
Y Co-Simulation Error
X Co-Simulation Error

Figure 39 Errors of Star Trajectory

43

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

10

20

30

40

50

60
Magnatude of Error in Descending Order

M
et

er
s

Sample

Y Simulation Error
X Simulation Error
Y Co-Simulation Error
X Co-Simulation Error

Figure 40 Errors of Figure Eight Trajectory

44

CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This rapid prototyping design flow was initiated from the idea proposed by the

team of researchers from unmanned systems lab for developing a FPGA based autopilot

system for research and development across multiple platforms. The work presented is

intended to compliment this hardware platform by providing a systematic approach for

converting designs that have been built and tested in Simulink to FPGA hardware

implementation.

Utilizing the System Generator Environment allows the software developers to

explore the design options in terms of size and speed to fulfill the design constraints.

This is due to the fact that system generator allows the algorithms designed to be

implemented from within the Simulink environment. This allows the designer the

flexibility to analyze the issues that causes the error when the design is transferred from

the MATLAB simulation to the FPGA. While the initial concept seems a simple one, the

distinct differences between the FPGA hardware behavior and the Simulink simulation

environment can make this a difficult task for those unfamiliar with logic/FPGA design.

This research has, not only analyzed and discussed these differences, but in addition, has

developed a systematic approach to the design process. Utilizing the presented

methodology, along with the graphical System generator environment, is extremely

simple as compared to the manual conversion when done using a hardware description

45

language. In addition the design process was verified by utilizing it to convert an RC-

Truck control system into system generator blocks and then successfully running a

hardware-in-the-loop simulation.

While this work has demonstrated the effectiveness and efficiency of System

Generator for the rapid systems prototyping of control systems on FPGAs, the process is

still not a simple one. As the systems become more complex, for example, the inclusion

of a Kalman Filtering for sensor integration and more complex controllers such as model

predictive or sliding mode control, the conversion from m-file to simplistic graphical

math blocks and fixed point also becomes much more difficult. Within the past few years

Xilinx has also included AccelDSP to its line of software packages. This software

provides assistance to the designer by converting a floating point MATLAB m-file to a

fixed point Simulink block by running numerous iterations and comparisons to provided

m-file input and output data. Future work should include research into this software to

learn of the capabilities and potentially incorporate into the design flow for further

simplification of this rapid system prototyping approach.

46

REFERENCES

[1] Mathworks, "http://www.mathworks.com."

[2] Xilinx, "User's Guide for Xilinx System Generator for DSP," 2006.

[3] W. Alvis, S. Murthy, K. Valavanis, W. Moreno, S. Katkoori, and M.
Fields, "FPGA Based Flexible Autopilot Platform for Unmanned
Systems," presented at 15th Mediterranean Conference on Control and
Automation, Athens, Greece, 2006.

[4] Xilinx, "Xilinx University Program Virtex II-Pro Development System,
Hardware Reference Manual."

[5] L. Barnes, W. Alvis, M. Fields, K. Valavanis, and W. Moreno,
"Heterogeneous Swarm Formation Control Using Bivariate Normal
Functions," IEEE Workshop on Distributed Systems: Collective
Intellegence and Its Applications, pp. 85-94, 2006.

[6] R. Andraka, "A Survey of CORDIC Algorithms for FPGAs," presented at
Proceedings ACM/SIGDA Conference Sixth International Symposium on
Field Programmable Gate Arrays 1998.

[7] G. D. Michell and R. K. Gupta, "Hardware/software co-design," Proc.
IEEE, vol. 85, pp. 349-365, 1997.

[8] D. N. Borys and R. Colgren, "Advances in Intellegent Autopilot Systems
for Unmanned Aerial Vehicles," 2004 IEEE International Conference on
Industrial Technology, pp. 1394-1397, 2002.

[9] G. Brandmayr, G. Humer, and M. Rupp, "AUTOMATIC CO-
VERIFICATION OF FPGA DESIGNS IN SIMULINK."

[10] C.A.Wisknesky, "Analysis of Xilinx FPGA Architecture and FPGA Test:
A Basis for FPGA Enhanced DSP Algorithmic Acceleration and
Development in Matlab/Simulink via Xilinx System Generator,"
Binghamton University, State University of New York, Master Thesis,
2004.

[11] B. Dhillon, "Optimization of DSSS Receivers Using Hardware-in-the-
Loop Simulations," The University of Tennessee, 2005.

47

[12] G. Gateau, A. M. Lienhardt, and T. Meynard, "Digital sliding mode
observer implementation using FPGA," IEEE Trans. Ind. Electron., vol.
54, pp. 867-880, 2003.

[13] T. H. S. Li, C. Shih-Jie, and C. Yi-Xiang, "Implementation of humanlike
driving skills by autonomous fuzzy behavior control on an FPGAbased
car-like mobile robot," IEEE Trans. Ind. Electron., vol. 50.

[14] E. Monmasson and M. N. Cirstea, "IEEE FPGA Design Methodology for
Industrial Control Systems—A Review," IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS, vol. 54, 2007.

[15] Xilinx, "Presentation Material & Lab Files."

[16] Xilinx, "Processing with FPGAs Workshop," www.xilinx.com.

[17] Xilinx, "Xilinx University Program Virtex II-Pro Development System,
Hardware Reference Manual."

[18] Xilinx, "User's Guide for Xilinx System Generator for DSP," 2006.

[19] Y.-J. Yang, J.-P. Chen, J.-S. Cheng, C. Zhang, and Y.-L. Xiao,
"Autonomous Micro-Helicopter Control Based on Reinforcement
Learning with Replacing Eligibility Traces," Proceedings of the First
International Conference on Machine Learning and Cybernetics, pp. 860-
864, 2002.

	University of South Florida
	Scholar Commons
	2007

	Implementation of unmanned vehicle control on FPGA based platform using system generator
	Shashikala Narasimha Murthy
	Scholar Commons Citation

	Microsoft Word - ShashikalaMurthyThesis

