C CHOLAR
OMMONS University of South Florida

S Scholar Commons
Graduate Theses and Dissertations Graduate School
2007

System approach to embedded system design

Vikram Prabhakar Mehendale
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd
b Part of the American Studies Commons

Scholar Commons Citation

Mehendale, Vikram Prabhakar, "System approach to embedded system design’ (2007). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2287

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate

Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

System Approach to Embedded System Design

by

Vikram Prabhakar Mehendale

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Electrical Engineering
Department of Electrical Engineering
College of Engineering
University of South Florida

Major Professor: Wilfrido Moreno, Ph.D.
James Leffew, Ph.D.
Paris Wiley, Ph.D.

Date of Approval:
April 2, 2007

Keywords: FPGA, Cyclone Il, CMOS sensor, VHDL, Vadsurveillance

© Copyright 2007, Vikram Prabhakar Mehendale

DEDICATION

| dedicate this thesis to my parents.

ACKNOWLEDGEMENTS

| offer my deepest and most sincere “thank youhtomajor professor, Dr.
Wilfrido Moreno, for his encouragement and valuajpédance during this research. |
also extend my gratitude to Dr. James Leffew andMaris Wiley for agreeing to serve
on my supervisory committee. | am grateful to Ronnie Leighty who helped me
throughout this research. | would also like tathany friends and colleagues for their

support during this research experience.

TABLE OF CONTENTS

LIST OF FIGURES ... e e e e e e nmnn e e e ennes iii
AB ST R A C T e rrrm e e e e r e \Y
CHAPTER 1: INTRODUCTION AND MOTIVATION.....couiiiiiee e 1
1.2 INEFOTUCTIONeeieiiiie ettt r e e re e e e e e e e e 1
1.2 The System of Systems APProachceccceeeuuveiiiiiieieeeeeeeeeieeeeeeeiiiiinnns 2..
1.3 Design Methodologyciiiiiii e e e e e e 2
I o T o J o VY] I D 1= o | o R 3
1.5 Embedded System DeSIgNcovvviiceemmmmmniiiiieeeeeeeeeeeeeeeeeeesseennnn e 6
1.6 Programmable LOGIC.........cceeeiiiiieiiieeeeeee e ne e e e 7
1.7 Embedded Processors in Programmable LOgIC......c.cccoovvvvvvviivviiiiiiiinneennn. 7
1.8 Overview of Development Kits USed........ccceeiieiiiiiiiiiieeeeicie e
1.8.1 Altera DE2 BOAIdcocoiiiiiiiimmmmn et 8
1.8.2 XilinX XUP V2PRO BOAId.........cuuuiiiim e Q..
1.9 MOTIVALIONcieeiiiiieie e mmmm et re e e e e es 10
CHAPTER 2: BACKGROUND ...ttt e e e e e e eennnnes 11
2.1 Related WOIKooiiiiiiiiiiee et 11
2.2 Analysis of REQUIFEMENTSccevuvviimmmmmmee e e eeeeeeeee e eeeee e 13
2.3 Altera CyCloNe 1l DEVICEuuuuiiiiiiiee et e e e e aa e 19

2.4 Kodak KAC-9630 CMOS IMage SeNSOr........cuuueeiieeeeeeeieieeeeeeiiiiiiiins 20
2.5 The IrDA INTEITACE.......uuiiiiiiiiii i ieee et 20
2.6 Altera DE2 Development and Education Board.............ccceeeveeieeeeeiineneeee. 21
2.7 Design Software and SUPPOITccooiiiiiieiie e 22
CHAPTER 3: IMPLEMENTATION ...ttt 23
3.1 Image Capture MOAUIEcooooiiiii e 23
3.2 Image Processing Module.............oouuiiiiiiiiiiii e 25
3.2.1 System INitializationcooiiiieeeeee 26
3.2.2 PiXel COMPAIISON.....cutiuiiiiiii e eeeeeeesae e e e e e e e e e eeeeee e 27
3.2.3 ErTOr DELECHON.uuiiiiiiiiiiiiii s e e e 27
3.3 IrDA TranSMISSION.uuuuuiiiiiiiiiisimeeamt et e e e e e e e e e e e e s e s s s r e e eeeeaeaaans 29
CHAPTER 4: TESTING AND VERIFICATIONcootii e 30
4.1 FPGA VErIfICAION ..cceviiiiiiieiee e cmmme ettt 30
4.2 VHDL TeSt BENCH ... 32
CHAPTER 5: CONCLUSION AND FUTURE WORK ...t 35
5.1 CONCIUSION ...ttt et e e e e e eee e e neees 35
5.2 FULUIE WOTK ...ttt ettt e e e e e e e e ee e e e e e 36
REFERENGCESottt e e et e e e e e e 37
APPENDICES ...ttt e e e et et e e e e e e et bt e e e e e e e e eann e e e e 39
Appendix A: VHDL SOUICE COUEuuuuiiiiiie ettt 4Q.
Appendix B: VHDL TeSt BENCN.......cooooiiiiiiiiiiieee e 45

LIST OF FIGURES

Figure 1: Top DOWN DeSIGN FIOW..........c.iii o eeeeeiiiiiiie e e e e e e e e e e e e eeeeeeeaevvennnnneennees 4
Figure 2: Embedded SYSteM.........ccoo oo 6
Figure 3: Altera DE2 BOAIdccooei o s e e e e e e e e e e e eeeeeeeeaasaeann e 8
Figure 4: Xilinx XUP V2PRO BOArd.............coeemvvriimuiiiiiiaieeeeeeeeeeeeeseeeesssnnssnnnnnnenns 9
Figure 5: Typical Video Surveillance SYStemM.........ccoovviiiiiiiiiiiiiciieeeee e, 15
Figure 6: Altera Cyclone I FPGAooveeieeiiiee e s 19
Figure 7: Proposed INEerfacecoo oo eere e 24
Figure 8: Image Data POrcooiis ettt s s s s e e e e e e e e e e eeeeeeeeeeneeeeesnennnes 24
Figure 9: Image Processing Module.............oooeriiiiiiiiiiiiiiiii e 25
Figure 10: Port Map for the Image Processing Module..............ccccceeeeiiiiiiieeeennnnn. 6.2
Figure 11: FPGA DeSigN FIOWuuuuiiiiiiceeeeeiiiee e 30
Figure 12: VHDL TeSt BENCN.......ooiiiii ittt 32

SYSTEM APPROACH TO EMBEDDED SYSTEM DESIGN
Vikram Prabhakar Mehendale
ABSTRACT

During this research, the concepts of Systemsrieeging were applied to
embedded system design. The objective was to dppl$ystems Engineering
methodology to the design of a particular embedgystem. A Video Surveillance
system was chosen as the particular embedded sySigstems Engineering concepts
provide the foundation for an optimized design psscand for the coordination between
system modules. The functionality of the Videowillance system was achieved
through the partitioning of the overall system fumaality into three separate modules.
The three modules were Image Capture, Image Pliagemsd Image Transmission. The
methodology employed resulted in a system thatfleagble and portable.

The three modules were designed using their owafspecifications and with
completely defined linking interfaces. Following@ncrete set of specifications resulted
in a system, which can be modified at any lategestaithout the necessity of changing
the whole architecture. The Video Surveillancdeysfulfilled the overall system
requirements as well as those imposed by the st#msgs The partitioning of
functionality resulted in ease of implementatiod &etter upgradeability. Design based

on Systems Engineering concepts provides for elaseegration. In addition, for

modules that follow the same protocol, the existepfowell defined interfaces enables

connectivity to a variety of external units.

CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

The motivation behind this research was the dé¢sifacilitate the embedded
system design process by applying the conceptysie®s Engineering. The embedded
systems consist of many modules, which are compo$software components,
hardware components and interfaces. All these teedian be independently modeled
as complex systems. In order to achieve a comgaementation of a project all of the
independent designs must work in synergy. Theeefapplication of system design
principles to the design of embedded system camaliaally streamline the design work
and avoid future problems involved with integratthg modules to constitute a larger
system.

The embedded system is a system in which the mimgeanit is actually
embedded between its peripherals and the systdesigned to perform some predefined
tasks. Being dedicated to certain tasks, the eddzkdystem provides a very efficient
solution compared to their general purpose couat&sp The embedded systems are
currently used in many applications from automabitehome appliances. Development
of powerful microcontrollers and programmable logas made the embedded system a

very useful solution. Due to continuous developnadprocessors and peripherals the

use of embedded systems is rising exponentiallsingJembedded processors and
programmable logic makes it simpler to update ylstesn without changing much of the
hardware. The use of EDA (Electronic Design Autbarg tools make it simpler to
debug the system and provide patches for futurkel@mas through the use of advanced

synthesis and simulation tools.

1.2 The System of Systems Approach

When confronted with designing complex systems beneficial to approach the
design via an architecture, which is structured agstem of systems. In this approach
the designers identify the system requirementsudbsystems, which are based on
overall system requirements. The subsystems aigrael independently and then
interfaced to achieve the completed system ardhitec This approach simplifies the
procedures related to testing, debugging and iategr of the subsystems, which are
required to insure proper design of the whole syste

Approaching a complex system as a system of sydteips to divide the
functionality and verify the working of the subsysis independently. This design

methodology also helps to enhance the interopéahitd portability of the design.

1.3 Design M ethodology

A good design methodology can help the system dgsigcess in many ways. It
can help to verify the system for functionality eéoderrors. It can help the design team
to coordinate the design effort. The design presé®uld provide a time line for the
designers and the deliverables, which are duefatelnt times. The design methodology

2

involves the global approach of the chief desigheithe system design. Since the
projects usually involve many teams working onghgect at the same time, this

methodology can help with coordination, which canviry fruitful for achieving the
design goals. The Systems Engineering methoddlelps realize a solution, which
achieves all the goals of the system including nfesturing cost, performance and

power consumption.

1.4 Top Down Design

The Top Down Design approach involves design proces] which are initiated
from requirements for system integration. Thisrapph involves arriving at the right
solution after considering all the possible altéiies. Every so often, the design effort
may focus on trying to fit the solution within thgailable resources. This approach,
which may provide short term gains, may lead to glasations while fulfilling future
needs and not necessarily arriving at an optimupiamentation. The problem may
have a large number of possible solutions and sahecfor the optimum solution based
on the target application can provide a numbedghatages. This can be considered as
the selection of an optimum solution from a lardesign space.

The idea of fitting the problem into an alreadyitakde solution may sound
lucrative to the designer due the ease of impleatiemt. There is always a possibility of
some other better way to implement the projecte Tap Down approach looks at the
requirements in an objective way. In this appradehdesigner will be faced with a large

number of different possible ways and then thenopin way is selected.

The selection of an optimum solution is a very img@ot decision since it
involves the study of all design categories suchvaslable resources, non-recurring
engineering cost, size and power. The selectiongss for choosing an optimum
solution provides a number of advantages in terih@wering the required resources and
better functionality of the solution. Figure luskrates the investigative flow associated

with the Top Down Design process. [11]

Requirements

Specification

Testing and Verification

Architecture

System Integration

Figure 1: Top Down Design Flow
The requirements are abstract descriptions ofytsie, which involves
functional as well as nonfunctional requirementie requirements are the customer’s
expectations about what the system has to achi€le.requirements may put monetary
and timing constraints on the design, which wiké&#o be considered along with the
technical specifications. The designers needdorporate these requirements and

realize a system, which can perform the expect&dstaThe requirements have to be

validated throughout the design process includingl ferification at the end product
level.

The system specifications are more focused onrmsystglementation. They
offer the designer a role map for the design ofsystem. The specifications have to be
written carefully to ensure that they meet requeata. The specifications must be
comprehensible and unambiguous so that the deskgioers exactly what has to be built.
Ambiguous specifications can lead to an incornegilementation, which can defeat the
whole purpose of using a system approach.

The architecture describes how the functions apemented in the system. The
architecture defines the structure of the systé&ime architecture is the framework on
which the technical aspects of the system willroplemented. The architecture will
dictate what resources are used and how the sebsysire interfaced. The architecture
design also needs to consider the constraints ietplyg the skills of the designers. If the
designers are not skilled in some particular tetdgpoused in the architecture, the cost
of providing training to the designers has to besidered.

The components are designed with the architectungimd. The components can
be hardware components as well as software compan&he specifications for the
component are developed with the architecture pattons in mind. The components
perform specific system tasks and together thefpparthe architecture tasks.

The integration of the system is where the benefitssing a system approach are
particularly visible. If the specifications andthitecture are designed correctly and
tested, then this stage can be very simple. Thaerdystem will be put together and the
working system realized. The Systems Engineeramgepts help to keep track of

5

specifications for the separate modules and all@ntodules to be tested separately,

which simplifies the system integration process.

1.5 Embedded System Design

The embedded system consists of an embedded poocdeasdware peripherals
such as RAM, ROM, LCD, keypad, some communicatiwemnael for the processor to
communicate with other devices such as RS232, e¢hddSB, wireless transceiver and
a software code which runs on the processor taaloat the peripherals. The various

elements associated with the embedded systemesernted in Figure 2.

Communication Devices

Hardware Peripherals

Embedded System

——————

Software Code to execute on the
processor

Figure 2: Embedded System
Embedded system design involves division of sysesks between hardware and

software. Some functions are better implementdthndware whereas some functions

give better performance if implemented in softwaféerefore, the designer has to
carefully divide the system tasks between thesectwmoponents in order to get optimum
system performance and meet all system requiremdims selection of communication
channels and the processor has to be accomplistetordance with system

requirements.

1.6 Programmable L ogic

Programmable logic is hardware, which can be prograd to perform the
required task using a Hardware Description Langbig®.). This programmability
makes it a very good choice since it becomes easgltance the functionality or provide
a patch for the system. The programmable logicemakpossible to accept last minute
design changes, if necessary. The FPGA (FieldrBnagpable Gate Arrays) provide an
ideal platform of implementing digital logic cir¢aai With the advent of FPGA
technology, the operating speed of these devicesceeased dramatically. This makes
it possible for the designer to infer high speagidmn these devices. The use of
Intellectual Property (IP) cores can relieve theigleer of some tasks and can
significantly speed up the process. The FPGA dsvitom Xilinx Inc. and Altera Inc.

were employed for this research.

1.7 Embedded Processorsin Programmable L ogic

The FPGA devices, which were used as the basikbloce this research, can
implement both hard core processors and the softpocessors. The Intellectual
Property Core is provided by various vendors amadl Ifh core can be used to instantiate a

v

processor in the embedded system. The designexlsawlesign a processor core,
capable of executing the required instruction &g the Hardware Description
Languages.

The hard core processor is implemented on the FEI§A The advantage of
using such a hard core processor is enhanced pemae. Xilinx Inc. provides a hard
core PowerPC core with some of its FPGA devices.

With a soft core processor, the user can modifyHbBé& code in order to achieve
specific processor requirements. The soft cormppirovides the user more choices.

The soft core processor offered by Altera InchisNIOS 1.

1.8 Overview of Development Kits Used
181 AlteraDE2Board
The DE2 (Development and Education 2) board, pexvidy Altera features the

Cyclone 1I-2C35-FPGA in a 672 pins package. Th&DbBbard is pictured in Figure 3.

EFrTFITEITNEIRTER
..|r-1i- IJ-I||.' ||I:r||"r‘-|'r-l ‘-|||-F:'.'r|-|IJ’F=rm"-rﬁr

ot il el o ol vl i v e vl]] ol el] d

Figure 3: Altera DE2 Board
Courtesy: Altera Corporation Inc.

8

The DE2 board provides a ready to use developmatibpn with many
peripherals already connected to the FPGA pine NIOS Il embedded processor on
this FPGA can be used to develop embedded applisatiThe Quartus Il web edition
design software can be used to program this boalteéra also provides a NIOS II IDE
to create embedded applications. This board als®&SDRAM, SRAM and Flash

memory, which can be used by the NIOS Il core.

1.8.2 Xilinx XUP V2PRO Board
The Xilinx XUP V2PRO board features a Virtex-2 Pi62VP30 FPGA with

30,816 Logic Cells, 136 18-bit multipliers, 2,448&bblock RAM, and two PowerPC

Three high current power supplies
with continuous monitoring
Platform
Pawer Flash for
connactor sloring
and switch " FPGA
config-
urations
xsea il
Videa "l USB2 port
Port for FRGA
config-
urations
Compact
SATA / flash card
connectors port for
for Gigabit FPGA
serial /0 \ config and
ramovable
for Compact '} : storage
Flash 11O)
10/100 =
Mi‘ggm‘ Bg- - ISMA connectors fo
Gigabit serial /O Psi2
mouse and
o keyboard
port
Slereo E
audin via f & i
ACO7 : 0 headers & Ra-252
e \ . serial port

High-spead expansion connecior Buftons, swifches, Low-speed axpansion connector
compalible with Digilenl boards and LEDs compalible with Digilent boards

Figure 4: Xilinx XUP V2PRO Board
Courtesy: Xilinx Inc.

The Xilinx ISE foundation edition can be used togram this board. The
Embedded Development Kit (EDK) must be used to lbigvembedded applications
using the PowerPC cores. The microblaze soft pareessor, provided by Xilinx, can

also be used to develop embedded applicationsthighboard.

1.9 Motivation
Use of embedded systems in all fields relatedeotatal design is rising

exponentially. The design process is getting namiee more complex with development
of processors and peripherals. Therefore, torsiiea the design process and to make it
easy for keeping the designs portable and inteadyperthe System Approach can prove
useful. The thesis will demonstrate the applicabbthe System Approach concepts to

an example system design.

10

CHAPTER 2:
BACKGROUND
This Chapter provides a short description of presiaork on Systems
Engineering. In addition, it describes how thogeaepts are applied to the design of

embedded systems and how they were applied toesigrdof the example system.

2.1 Related Work

The design of complex systems is always a diffitagk since the designers must
be sure, while deciding on the specifications, thatdesign of the proposed system is
feasible. If it becomes impossible for some ofghbsystems to follow the specifications
then the specification set for the whole systersystems has to be changed. While
spelling out the specifications, it is very impattéor the designers to be very certain
about what is expected of the subsystem desigessa guideline for this procedure,
Dale Scot Caffall et al. proposed “a system-of-@yst construct in which we consider a
system-of-systems infrastructure that is composedwmtrolling software for the system-
of systems, an information transport network, amati@act interfaces” [1]. Dale Scot
Caffall et al. also demonstrated application ofrfat methods to system of systems
development for verification purpose in their pahtion [2].

The application of the system approach to manageweas studied by Group

Captain W. W. Robinson in his publication ‘A systapproach to management’ [3]. Dr.

11

John Boardman et al. presented distinguishing chexiatics that can help in
identification and implementation of System of ®ys$ (SoS) [5].

The development of a Video Surveillance systemgupmogrammable logic
design has been undertaken by some researcheeslsenprogrammable logic devices
provide an optimum platform to develop a prototggstem and implement different
architectures on that platform. Suh Ho Lee ehave implemented a motion detection
system using a CMOS image sensor and ARM procé4sor

The concept of a Video Surveillance system involwese work than simple
motion detection. The advanced Video Surveillasystems try to detect the object,
localize the object and classify it so as to addenfonctionality to the Video
Surveillance system. M.H. Sedky et al. proposedctassification of such smart Video
Surveillance systems [6].

The use of FPGA devices in the design of surveibasystems is well
documented. Fei Wang et al. implemented a FPGAddsver drowsiness detection
system in order to detect if the driver has cldsisceyes [7]. Patrick Dickinson et al.
have designed an infant surveillance system inrdaldetect sleeping infants using a
subtraction algorithm implemented on a Xilinx Vikte PRO FPGA [8].

Jason Schlessman et al. implemented a trackingmyisased on optical flow
using a Xilinx Virtex Il PRO FPGA [9]. Michael Mgtean proposed a hierarchical
motion estimator for embedded object tracking usiriPGA [10].

Another motivation for this research work was tbaaepts put forward in the
book “Power to the Edge”, which explains about emgring the nodes for better
performance. This research work aimed to implerttfevge concepts in the design of

12

embedded systems. This research attempted to tqmsg concepts for the design of
embedded system and one of the goals of this i@se&as the development of intelligent
nodes, which could work independently in case stay failure.

The book “Computers as Components” by Wayne Watlars the concepts
related to embedded system design. The book leasvaey helpful in the analysis and

planning of this research work [11].

2.2 Analysis of Requirements

During the study of any system, the requiremerdggtae most important part in
the design. The design of the system has tolfalfithe requirements. In order to
streamline the development of subsystems the spetioins of the subsystems have to be
clearly defined. Any mistake in defining the sfieaitions can lead to future problems.

Validation of these concepts was given the highastity during the design of
the Video Surveillance system. The system desagntd fulfill the system requirements.
Therefore, the planning stage is the most impogtage in the design cycle since it
considers all the available resources and thegrasspecific tasks to subsystems by
delineating, very specifically, the specificatioriBhe technical capabilities and available
resources were also considered during this stabe.specifications were formulated by
considering all the possible solutions and thentifigng the optimal solution for the
current problem.

The architecture of the Video Surveillance syst&pemds on the requirements.
If the proposed system is to be used in some wasshahen it needs to have some
memory where the system can store some imagescarheras in shops need to have a

13

larger memory so that they can store more datdhdse types of systems it is more
important to store the data rather than to proaadsdetect some object. In some
security applications it may be very important &ett the incoming object to enable
quick response from the user. Thus, the architecifithe Video Surveillance system
totally depends on the requirements. The requingsnguide the design team in
assigning priorities and level of effort to the isais components and capabilities of the
design such as deciding whether it is more impotaspend more design effort on data
compression for storage or data processing capabilherefore, it is very important to
write unambiguous specifications for the systenoteef team of engineers begins
designing. A complete specification derived frdra et of requirements is very
important for the considerations involved in opzmg the design effort. In the event
that specifications are not completely defined are@lchanged during the design cycle,
the design effort can result in wasting valuablerhaurs and other resources.

The example system included in this thesis wagydesl for applications where
detection and capture of motion was considered mgpertant to the user than being
able to look at the captured snapshot and take drateenecessary action. The system
was designed for those applications where thewiaemot expecting any particular type
of object so there was not any need to run an odggtection algorithm. A diagram of a

typical Video Surveillance system is presentedigufe 5.

14

Processing Unit Image Capture —— l

Memory

Figure 5: Typical Video Surveillance System

The criteria involved in the selection of variowsponents of a Video
Surveillance system are explained below. The wgrkif the system will be explained
later. The following paragraph explains the congrdrselection process as a function of
the requirements. The effort and resources akalctt designing the different
components are decided by going over the systemreggents. The digital camera
represents any image sensor device. The devickecahosen to be a high speed device
or a high resolution device. The primary criterfonselection of the image sensor
device is the operating speed of the image serndoe. operating speed is specified in
terms of frames per second. The resolution isiatportant and is specified by rows
multiplied by columns. If the user needs to desectller objects, it may be necessary to
select a sensor with more resolution. There i3 at®ther constraint on the image sensor
selection, which derives from the operating frequyenf the clock. For example, if an 8

bit parallel interface for a CMOS image sensorelested and the operating frequency is

15

10 MHz, then the maximum data rate, which can bd kg the system, will be 80 Mbps.
A color image sensor may or may not be specifietiamost often a function of the
financial constraints.

The example system was designed with two sengofGMOS grayscale image
sensor was chosen, which possessed a resoluti?60f 98 and a speed of 580 frames
per second. In addition, a CGA Red Green Blue@enih a resolution of 640 X 480
and a speed of 60 frames per second was selethedsystem was capable of employing
the CMOS sensor if higher frames per second wezeifspd or the VGA sensor if the
requirements demanded better resolution.

The Image Capture block is responsible for settipghe sensor, extracting the
frames and storing them in separate memories ayarrThe Image Capture block has to
take input data from the sensor as per the reqgeinésn This was specified because
sometimes it may not be necessary to read theatith@ maximum rate. If the system is
only supposed to store the snapshots at reguEwvais it can work reasonably well even
with a data rate of one frame per second. Thesks t@re performed by the Image
Capture block. The Image Capture block in the glaraystem works at a clock rate of
50 MHz and reads data from the sensor only wheminedy The data read from the
sensor is processed by the logic implemented oAltieea Cyclone 1l device. The
system is not required to work as very high speRuerefore, the Image Processing
block reads a new frame only when the processiitgcan accept another frame and a
new frame is available from the sensor. The difa@nes are simply discarded.

The memory block has to be designed carefully smemories are costly in
terms of operating time. Memories can slow downwimole system if not designed

16

carefully. The design of the memory block invohadestimate of the required memory.
If the system was required to keep many past simépgihthe memory, this block would
have larger capacity. The system, which is usesbme departmental stores, may need
to have a lot of memory since it will need to keegecord of all the visitors for the
stipulated time.

The memory block in the example system was verylsimee there was no need
to keep track of past events. Moreover, sincestiséem transmits the results to another
entity the memory block could also be used thémequired. The memory used in the
system was required to store only two frames. @fexence frame and an error frame.
The working of the example system will be explaiire@hapter 3.

The processing unit can vary in complexity frommpe comparator, in case of
motion detector, to complex object detection oefeecognition algorithm processors.
The processing unit also decides the type of pemresvhich has to be used. If the
processing unit requirements are not computatipreaipensive, then a simple
microcontroller can be used. However, for algonghsuch as face recognition, a very
powerful processor could be required. The proogsshit can be designed in software
as well as in the hardware.

If the system places more emphasis on record kgethia processing unit will be
the least worked on part of the system. If theéesyss supposed to be used in an object
detection smart surveillance system then the psnagsinit will be the most resource
consuming part of the system. In any circumstdahegrocessing unit will decide the

functionality of the system.

17

The processing unit in the example system was im@fted in an Altera FPGA
device. The processing unit consisted of compesaswithmetic logic and buffer
memory. The processing unit performs a pixel ixelbcomparison over a period of 6
frames. Depending on the results of the compatisemprocessing unit detects the
presence of another object. In case of detecfiam ainwanted object the snapshot, with
the object in the frame, is transmitted over theelgss network to another entity where
the frame can be further analyzed to localize sthasind detect the object.

The system thus consists of an Altera Cyclone [BERBased development board,
a CMOS image sensor, a VGA sensor and a wirelassrtrission channel. The system
was intended to be a prototype for testing varimject detection algorithms. The
different modules were designed separately. Thezeiny module could be used in
another system with small modification in ordenteet requirements, if required.

The example system follows the philosophy of potwehe edge [12]. This
involves empowering the nodes of the system torelttetter functionality. The idea is
the algorithms can be implemented at the nodeseo$ystem, which reduces the data
that has to be transmitted over the network. Tarshelp in reducing the network traffic
and it can also be helpful in making the systemamobust. Since the intelligence is
distributed between various nodes, even is one stoes working the system can still
function with the remaining nodes. This philosoglay greatly reduce system failures
and improve performance. The only disadvantage leayat more processing units for

use at nodes may be required, which will add upéooverall system cost.

18

2.3 Altera Cyclonell Device

The FPGA development board used for the desigheofystem was based on the
Cyclone Il FPGA from Altera. The FPGA device offenany features which can be
used to implement advanced algorithms. The Cyclbdevice was selected because it
makes this system a very good platform for the enm@ntation of prototypes. The Altera

Cyclone Il FPGA is pictured in Figure 6.

Figure 6: Altera Cyclone Il FPGA

The Cyclone Il device family provides from 4,608068,416 logic elements (LE).
The EP2C35F672C6 device contains 33,216 logic ete&snerhe 105 M4K RAM blocks
contain 483,840 total RAM bits, 35 embedded muéigland 4 PLLs. This is sufficient
for the current requirements since the simple @lgoremployed used only 30% of these
resources. This device provides a platform capabieplementing an advanced
algorithm. This device provides the necessary resources tgrdasmart Video
Surveillance system processing unit.

The Cyclone Il device also comes with a soft cbl€S 1l, embedded processor,
which can be used for running software code. Tegssor provides the designer the

freedom to choose whether the implementation welhbrdware based or software based.

19

The Cyclone Il device comprises the most imporpant of the Video Surveillance

System.

2.4 Kodak KAC-9630 CM OS I mage Sensor

The KAC-9630 provides a very high speed (580 frape¥ssecond) sensor. The
disadvantage of this sensor is its low resoluti®he resolution the sensor is 126 X 98
pixels, which does not allow for processing anyadgetfrom the captured snapshot. The
KAC-9630 sensor also possesses a parallel interfidueh was easy to use for
interfacing with the FPGA device. The KAC-9630 s@ncan be very useful for the
capture of high speed objects due to its very higime rate.

The Video Surveillance System employs this sersanplement simple pixel by
pixel processing algorithms. The KAC-9630 sens@resent on the designed printed
circuit board and will provide the designer witle thption to select one of the two

sensors in future research work.

25ThelrDA Interface

The Video Surveillance System used the IrDA integfto transmit the captured
shapshot to another entity. The IrDA interface waslemented on the Altera DE2
board, which was connected to the Cyclone Il device

The IrDA system on the DE2 board was implementéaguhie HDSL 3201
transceiver. The interface is capable of datessmageto 115.2 Kbps. The HDSL 3201

was selected due to availability constraints.

20

The system checks the incoming frames for the poesef any unwanted objects.
Since the system is not intended to look for anyi@aar object, it will check for
dissimilarities between consecutive frames. Ifsigtem discovers that any frame differs
significantly from the previous frame, the frametwilissimilarities will be transmitted

over the IrDA to another entity where object datethlgorithms are implemented.

2.6 Altera DE2 Development and Education Board

The Altera DE2 board, which is pictured in Figurefhapter 1, provides an
excellent platform for a broad range of acadenseaech, industrial research and
prototyping applications. The board is based enGkiclone Il device and comes with a
USB blaster interface for download of a prograno iamh FPGA. The DE2 board also
provides many other features such as an Ether@1QMbps, RS232 and PS/2
interfaces. In addition, the DE2 board containsr®A, which was used during this
research. The DE2 board also provides LED andsiRches, which can be very
helpful for testing small subset modules of theesys The NIOS Il processor provides
an excellent soft core processor, which can be tesederface different peripherals and
implement different algorithms.

The DE2 board also comes with on board SDRAM, SRAMsh and a SD card
connector. These features can be utilized if ts@gther runs out of the on chip memory
resources on the Cyclone Il device. The DE2 bpaottides a very good platform for

both the design and for the testing stage of tbeopype.

21

2.7 Design Softwar e and Support

The support material provided by Altera Inc. isywkelpful in any project. The
University program with Altera Inc. provides Inedtual Property (IP) cores for use with
the DE2 board. Altera Inc. also provided, for dévaal from their website, the Quartus
Il synthesis tool, required to program the FPGA] #re Modelsim software, required for
simulation of the design. These resources alotig thve hardware make this platform

suitable for use in research work.

22

CHAPTER 3:
IMPLEMENTATION
The Video Surveillance system consists of threfeht modules from the
implementation point of view. The modules are ndimeage Capture, Image Processing
and Image Transmission. The source code was wiitt¢ HDL and the Modelsim
simulator was used for functional and timing siniola. The Quartus 1l web edition
software was used as the synthesis tool. The VE@le was tested with a VHDL test

bench for functional verification.

3.1 Image Capture Module

The Image Capture module was implemented partifhemedicated Printed
Circuit Board and partly on the Cyclone Il FPGA dev The function of this module is
to set up the sensor and to provide the processotule with separate frames of data.
This module also provides the sensor with the gmpate clock signal. The data is sent
to the processing module with the necessary hakdghaignals. Figure 7 presents a
block diagram of the interface between the Imaget@a module and the Image

Processing module.

23

8 bit Data pins

Image Capture Module

Clock

new_frame

Image Processing and Transmission unit

Figure 7: Proposed Interface

The Image Capture module provides the specifieztfiate to the Image

Processing block. The KAC-9630 is equipped witfaeallel digital image data port.

The details of the data port are presented in Eigur

Digital
Image Data
Port

g 1[7:0]
P NSYTIC

-~ ysync

Figure 8: Image Data Port

The sensor output is presented at the input of b &/D converter and the

output of the A/D converter, along with the synahization signals, is placed on the
image data bus. This data is synchronized to diséipe edge of the clock. The hsync
(‘horizontal synchronization) signal is used fondyronization of ROW data. The vsync
(vertical synchronization) signal is used for symchization of frame data in video mode

and is also used as input in the snapshot mode.h3ync and vsync signals are used by

all the other modules.

The function of the Image Capture block is to rdedata from the sensor and to

transmit it in required format to the Image Proaegblock. The clock, which is used by

this block, is provided by the Image Processingkla order to maintain

24

synchronization. This arrangement presents nol@mudbas long as both blocks are
implemented on the same device. If required, iinegle Capture block can be made to
work with different clocks.

The vsync signal is provided by the module as #he fiame signal. The same
clock was used for both Image Capture and Imagee®sing modules. The data bus at

the output of the digital image bus is the outptadgort.

3.2 Image Processing Module

A block diagram of the Image Processing moduf@ésented in Figure 9.

LOAD
REFERENCE —N PIXEL —N ERROR |\ DA

= ‘/ COMPARISON ‘/ DETECTION ‘/ TRANSMISSION

Figure 9: Image Processing Module

The Image Processing module only accepts datatlienmage Capture module
when it is ready for processing of the next frarfiée function of the Image Processing
module is to compare the incoming frame with thistexg reference and check for
errors. Whenever a determination of error ocdtes Image Processing module
transmits the suspected frame over the wirelesgankt This block performs the
processing on a pixel by pixel basis. A port n&ghe input and output signals for the

Image Processing module, is presented in Figure 10.

25

1

DATA_IN IMAGE PROCESSING

Figure 10: Port Map for the Image Processing Medul

3.2.1 System Initialization

The Image Processing module has two memories,arstdring the frame under
analysis and the other for store of the referermmé. Initially, the system loads the first
incoming frame in the reference frame memory softitéher analysis can be performed.
The reference memory can be refreshed anytimedsrtasg a load reference memory
signal.

The system uses two counters for keeping trackws$ rand columns. The data
coming in from the Image Capture module is storethe reference frame memory. The
reference frame memory was instantiated using @ony bits available in the Cyclone
Il device. Once the reference frame is loadedhtermal signal is asserted, which paves

the way for further processing of the incoming femm

26

3.2.2 Pixel Comparison

Once the reference frame is loaded, in the referememory, future data can be
compared to the data in the reference frame. @Wwecounters and column counters were
used to keep the track of current frame. Oncesyiseem receives a byte of data on its
input lines, the corresponding pixel value in teerence frame memory is fetched by
providing a correct address to the reference framamory address bus and the two pixels
are compared. The comparison is not bit by blte fequired sensitivity can be defined
by the designer. If the incoming pixel value iarid to be out of the tolerance range of
the system, an error counter is incremented. Titoe eounter keeps track of the number

of pixels in every frame, which are out of the tal&ce zone.

3.2.3 Error Detection

The error detection counter was used to decidéhtleshold value. If the number
of pixels, which are different than the previousnfie, is more than the threshold value
the system flags the particular frame as a suspécme and transmits it for more
processing. If the threshold value is set to & gemnall value the system may flag some
frames as suspected due to noise and changesnmnétion. Therefore, deciding the
threshold is very important for correct operatidrhe threshold value for error detection
decides the minimum object size that can be detecte

If a frame is marked as suspected, that framekentaut of frame memory and
sent over the IrDA channel. If a frame is not ®$ed, then the frame memory is
overwritten. Since the frame memory has to besssxfrequently it was implemented
using the on chip resources. The frame memoryiisew to during almost every clock

27

cycle and the reference frame memory is read dwvegy clock cycle. Therefore, the
memory access times play a major role in decidiegcombinational delay of the
module.

It has to be noted that a smaller object may apipigger in frame if it is close to
the camera. Therefore, the minimum size is thewizich is detected anywhere in the
range of the Video Surveillance system. The smaligects may be detected if they are
too close to the camera and the larger objectsgonaynnoticed if they are far away from
the camera. Thus, while providing the specifigaitor the Video Surveillance system it
is very important to know the altitude of the camand the area which is required to be
covered. Furthermore, an object may go unnotitidsi not captured in any frame.
Therefore, the frame rate places an upper limtherspeed of motion of the object being
detected. This speed can not be specified witbonsidering the operating condition.
An object moving near the camera will appear toroeing at a higher speed than an
object moving at the same speed but further away the camera.

The threshold value was kept programmable so thhathanges which may be
required during operation may be performed. Trstesy will perform better if it is fine
tuned by considering the operating conditions.

The sensitivity can be increased by changing timepawison operation in the
processing unit. If a bit by bit comparison isfpaned, the system will be more
sensitive. However, bit by bit comparison may gateemany more false alarms.
Therefore, the comparison operation and the eeteation threshold have to be decided
by careful review of the requirements. In additihre nature of the objects to be
detected and the environment where the systeming go be used must be considered

28

carefully and their impact on the requirements makéo account. If the system is
supposed to be used inside a warehouse then thgehdue to the daylight will be
negligible since the system will always work und#ificial light. However, a system
which is to be deployed in an outdoor environmeliitivave, as a primary consideration,
factors associated with the changes in illumination

In order to be able to adapt to changing condititims refresh frame memory
signal was provided as an input port. The refexdraame memory can be refreshed
every few minutes when the system is in an out@oeironment in order to take care of
the illumination issues. The refresh frame mensigpal has to be efficiently controlled

to obtain optimum performance of the system undésrdnt kinds of requirements.

3.3 IrDA Transmission

If any frame is found to be suspect it is sent dkierlrDA channel. The IrDA
channel has adata rate of 115 Kbps. The IrDA massion module is activated by the
error signal from the Image Processing module. [fDA reads the frame memory and

transmits the data in the event of an error.

29

CHAPTER 4:
TESTING AND VERIFICATION
The functional verification was the most importatgge in the design flow since
this stage is where logical errors can be idemtiéind rectified. The functional
verification involved testing the design to sei dperated the way it was supposed to

operate. The verification of the VHDL code wasfpened by a VHDL test bench.

4.1 FPGA Verification
A block diagram of the design flow for testing ohgr FPGA verification is

presented in Figure 11.

Design ni Dasign Varification
Entry *
Behavioral
i Simulation
Design *‘
Synthesis
| Functional
Simulation
Dasign Static Timing
Implementation Analysis
- Back - Timing
l Annotation | Simulation
Xilinx Device In-Circuit
Programming Verification

Figure 11: FPGA Design Flow
Courtesy: Xilinx Inc.
The design entry stage included generating the Vid&de for the design. The

behavioral simulation did not consider the comboret! delays and the routing delays.

30

The behavioral simulation was intended only foledehg logical inaccuracies. Once the
design was cleared by the behavioral simulatiovag synthesized by the synthesis tool.
The synthesis tool translated the HDL (Hardwarecbpson Language), description to a
logic circuit. The synthesis tools used the lagpmponents from its component library.
Therefore, once the synthesis process was contpledesign had to be simulated again
to check whether it worked at the desired frequency

After successful synthesis and behavioral simutetii@ design moved to the
implementation stage. During implementation thenbmational delays, associated with
the logic components, were considered and the Wl&@&g, once again, simulated to
check for any timing violations. If the designiéai to follow the timing constraints it
could be fixed, if required, by editing the VHDLdm®m During this stage the synthesis
tool can also assume the routing delay in ord@réeide a designer a rough estimate of
the delay, which will be present when the devicacisially downloaded to the FPGA
board.

Next, the EDA tool routes the design on the taFf&GA device and provides the
designer with fairly exact numbers with respeatoating delays and combinational
delays. At this stage the timing simulation isfpaned and if the design is cleared by
this simulation it can be downloaded to the FPGA.

The EDA tools for synthesis and simulation prouide user with very accurate
delay estimates and functionality checks, whichidsfuture problems related to timing
violations and design failures. The design wateteence again, with the aid of a Logic

Analyzer, after it was downloaded to the FPGA board

31

In the design flow, verification is the most imgaort block and at times it takes
more resources than the design team. The verdica extremely important for large
scale orders since it may prove to be very costlixtany bugs in the design after the
solutions are shipped.

During this research, all verification was perfothi® the Modelsim tool and
logic analyzer. The VHDL test bench was used téope behavioral simulation,
functional simulation and timing simulation. Ortbe design passed these tests it was

ready to be downloaded to the FPGA board.

4.2VHDL Test Bench

The VHDL test bench concept is presented figuedyiin Figure 12.

TEST BENCH

OUTPUT PORTS INPUT PORTS

Figure 12: VHDL Test Bench
A VHDL test bench is VHDL code, which drives theut ports with the
simulated input signals and checks the output gortexpected data. This procedure can

assure the designer of correct functionality sodibgign can be taken to next stage.

32

Simulator software can be used for functional veaitfon. For this research, the
Modelsim simulator from Mentor Graphics Inc. waspéoyed.

The VHDL test bench simulated the input signals eimecked for the output
signals to determine functionality of the systelDduring this research, separate test
benches were developed for different modules. ifitemtion was to ensure correct
functionality of every module before assembly @ thole system.

To verify the Image Capture block, the test benstukated the Image Processing
block. The VHDL test bench code was used to dieeinput signals such as clock and
check for the new frame and data signals. Thedrsaraceived from the Image Capture
block were saved in raw format and checked. Sinegeneration of the image
depended on the sensor, this module had be testeddware. It was not possible to
complete the functional verification of this modwehout the actual hardware board.

The test bench for the Image Processing block sitedlthe signals from the
Image Capture module and Image Transmission moduia files on the computer hard
drive were read by the test bench as input datalendutput observed. The test bench,
for the Image Processing block, involved the usthefVHDL package, TextlO.
Different image files on the computer hard driveeveead and provided as inputs to the
image processing block. The objective was to cheoither the module could identify
the differences in two image frames.

The advantage of writing a test bench is that #mestest bench can be used for
all simulations. The test benches developed duhsgesearch were all used from the

behavioral simulation stage to the timing simulatstage.

33

The final system could not be completely testeé MHDL test bench.

Therefore, for testing of the final system, a haadmtesting platform was employed.

34

CHAPTER &:

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The concepts of the system approach were applittetdesign of a Video
Surveillance system and it yielded results as pesystem requirements. Separate
modules were designed to implement the functionalithe system. As a result of the
application of Systems Engineering concepts, tséesy is easy to modify and debug. It
is very easy to use some module of this systemsabsystem in another design.

The overall system requirements were studied apdrate module system
specifications were written. The various requirataevere divided into separate
modules. Due to the modular approach a desigmetacget specific characteristics of
the system for improvement without modifying thengdete system. For example, if it is
desired and/or required that the resolution ofsygtem be improved, only the Image
Capture block would need to be modified. The cleanghich would be required in the
Image Processing block are simple, since generes wsed in the VHDL code.
Hardware changes would not occur since the same\Rrfe@ice can be used to

implement any new functionality.

35

Any effort to increase the intelligence of thisteys will be directed at the Image
Processing block. Since programmable logic wad,sether revisions simply involve
reprogramming.

The system can be interfaced to any wireless treassom medium by simply

changing the transmission module.

5.2 Future Work
Some improvements could be performed in the futmenhance the functionality
of the system:

* The Image Capture module could be implemented cetelyglon one PCB
board. The Printed Circuit Board has a MSP240gssar, which could
be used for setting up the sensor and providingtiteut rather than using
the Cyclone Il device.

* The Image Processing block could be modified tacedhe number of
false alarms. The system could be made immunbkanges in
illumination. Rather than the current scheme &&pby pixel processing,
block processing could be implemented, which wandlp to localize the
object and could reduce the amount of data semttbheenetwork.

* An Ethernet interface could be provided for trarssin.

36

REFERENCES

Caffall, D.S. and Michael, J.B., “Formal Methadsa System-of-Systems
Development”, Systems: Man and Cybernetics, 20@ElEternational
Conference, Volume 2, Page(s): 1856-1863, 10-12 ZDE5

Caffall, D.S. and Michael, J.B., “Architectuflamework for a System-of-
Systems”, Systems: Man and Cybernetics, 2005 |EEttrational Conference,
Volume 2, Page(s): 1876-1881, 10-12 Oct. 2005

Robinson, W.W., “A Systems Approach to Manageé&mgineering
Management Journal, Volume 6, Issue 4, Page(stT62Aug. 1996

Eisner, H., “A Systems Engineering Approach tohtecting a Unified System of
Systems”, Systems: Man and Cybernetics, 1994, “Hsmniaformation and
Technology”, 1994 IEEE International Conference|lWiee 1, Page(s): 204-208,
Oct. 1994

Boardman, J. and Sauser, B., “System of SystéhesMeaning of System of
Systems Engineering”, 2006 IEEE/SMC Internationahférence, Page(s): 24-26,
6 April 2006

Sedky, M.H., Moniri, M. and Chibelushi, C.C.,|&Ssification of Smart Video
Surveillance Systems for Commercial Applications/aaced Video and Signal
Based Surveillance”, 2005 IEEE Conference on AER)e(s): 638-643, 15-16
Sept. 2005

Fei Wang and Huabiao Qin, “A FPGA Based Driveo\Wsiness Detecting
System”, Vehicular Electronics and Safety, 200&HHnternational Conference,
Page(s): 358-363, 14-16 Oct. 2005

Dickinson, P., Appiah, K., Hunter, A. and Ormst8., “An FPGA-Based Infant

Monitoring System”, 2005 IEEE International Confece on Field-Programmable
Technology, Page(s): 315-316, 11-14 Dec. 2005

37

9.

10.

11.

12.

Schlessman, J., Cheng-Yao Chen, Wolf, W., GZeiFujino, K. and Itoh, K.,
“Hardware/Software Co-Design of an FPGA-Based Erdbddrracking System”
2006 Conference on Computer Vision and Pattern gteton Workshop,
Page(s):123-123, 17-22 June 2006

McErlean, M., “Hierarchical Motion EstimatioarfEmbedded Object Tracking”,
2006 IEEE International Symposium on Signal Praogsand Information
Technology, Page(s): 797-802, Aug. 2006

Wolf, W.H., “Computers as Components”, Prinegpbf Embedded Computing
System Design, Morgan Kaufmann Publishers, Sancisem CA, 2001

David S. Alberts and Richard E. Hayes, “Powehe Edge: Command and Control
in the Information Age”, CCRP Publications, 2003

38

APPENDICES

39

Appendix A: VHDL Source Code

LIBRARY IEEE;

USE IEEE.std_logic_116ALL;
USE IEEE.std_logic_unsignedLL;
USE IEEE.std_logic_aritiALL;

ENTITY object_detectS
GENERIC (
ROWS: INTEGER:=98;
COLUMNS: INTEGER:=126;
VECTOR_LENGTH: INTEGER := 13);
-- the ganeo pass the number of pixels to be read

PORT (

clock_50 IN std_logic; -- system clock from on board source
reset_n EN std_logic; -- system reset signal
clock out OUT std_logic;

-- outpubek to read data from the frame capture block
data_in IN std_logic_vector(DOWNTO 0);

-- data from the frame read

frame_ready IIN std_logic;

-- the frameady signal from the frame capture block
refresh_frame_mem IN std_logic;

error_in_current_frame QUT std_logic;

DUMMY _ref_frame_loaded OUT std_logic; -- DUMMY signal for testing
data_read outl QUT std_logic_vector(DOWNTO 0);
new_frame_analysisl QUT std_logic; -- DUMMY signal for testing
address_frame_mem IN std_logic_vector(VECTOR_LENGTBOWNTO 0);
data_frame_mem QUT std_logic_vector(DOWNTO 0));

-- output signal showing presence of some unwaoigetts
-- in the image

END ENTITY object_detect;

40

Appendix A: (Continued)
ARCHITECTURE object_detect_DF object_detectS
SIGNAL clock_enable, start_clock _enable, clock outl, sgl logic;
-- the dkoenable signal for the output clock going to trafe
capture block
SIGNAL clock_enable_counter : std_logic_vector(VECTOR_IGEN DOWNTO 0);
-- counterensure complete frame is read in
SIGNAL rdaddress,wraddress : std_logic_vector(VECTOR_LEN®OWNTO 0);
-- the adlsls to drive address bus of referance frame
SIGNAL ref_frame_loaded, load_new_frame, new_frame_aisalytd_logic;
-- signéds loading a new frame and to specify that newnkea
is loaded
SIGNAL data_read_out,write_databus_refmem : std_logidcov@dDOWNTO 0);
-- the rematd write databusses for the DPRAM
SIGNAL data_inl, data_in2, data_in3 : std_logic_vect&dQWNTO 0);
-- the retgired data_in to compensate for the registergulibut
from the DPMEM
SIGNAL error_count : std_logic_vector(VECTOR_LENGTHMWNTO 0);
-- the ctemto count how many pixels are in error
BEGIN -- object_detect_1

DUMMY _ref frame loaded <= ref frame_loaded,;
data_read_outl <= data_read_out;
new_frame_analysisl <= new_frame_analysis;

-- purpose: this process controls the clock, wisofoing as output to the frame
--capture block

clock _enable _procesBROCESS (clock 50, reset_H)S
BEGIN -- process clock _enable_process
IF reset n="0THEN -- asynchronous reset (active low)
clock _enable <=0
clock_enable_counter <©THERS =>'0");
ELSIF clock_50'event and clock_50 =TIHEN -- rising clock edge
|F frame_ready = "TTHEN
clock_enable_counter <=
conv_std_logic_vector((ROWS*COLUMNS),VECTOR_LENGTHt
clock _enable <="1",
END IF;

41

Appendix A: (Continued)

|F clock_enable_counter/=conv_std_logic_vector(0, Y& LENGTH+1)THEN
clock_enable_counter <= clock_enable_caunite;

ELSE
clock _enable <=0,

END IF;

END IF;
END PROCESS clock_enable_process;

clock outl <= clock 58VHEN clock_enable ='1" else
IOI;
clock out <= clock outl;

-- purpose: this process accepts data coming m the frame capture block

accept_framePROCESS (clock_50, reset_n)S
BEGIN -- process accept_frame
IF reset_n="0THEN -- asynchronous reset (active low)
load_new frame <="'0'
wraddress <=qQTHERS =>"'0");
ref_frame_loaded <='0',
ELSIF clock_50'event and clock_50 =TIHEN -- rising clock edge
|F (refresh_frame_merAND frame_ready) = THEN
load_new frame <=1
wraddress <= conv_std_logic_vector((ROWS*COINS),VECTOR_LENGTH+1);
ref frame loaded <='0";
END IF;
IF load_new frame = 'THEN
| F wraddress /= "0000000000000HEN
wraddress <= wraddress - '1';
write_databus_refmem <= data_in;
ELSE
ref frame loaded <="1",
load_new frame <='0";
END IF;
END IF;
END IF;
END PROCESS accept_frame;

42

Appendix A: (Continued

Reference_memory DPRAMENTITY work.ref _framePORT MAP (
clock => clock_50,
data => write_databus_refmem,
rdaddress => rdaddress,
wraddress => wraddress,
wren =>load_new_frame,
q => data_read_out);
sigl <= new_frame_analysiR load_new_frame,;
current_frame_mem_DPRAMENTITY work.ref_framePORT MAP (
clock =>clock_50,
data =>data_in,
rdaddress => address_frame_mem,
wraddress => rdaddress,
wren =>sigl,
q => data_frame_mem));

-- purpose: this process takes the input bit straadhcompares it with data inside the
reference memory block

processing_dat®ROCESS (clock_50, reset_n)S
BEGIN -- process processing_data
IF reset_n="0THEN -- asynchronous reset (active low)
rdaddress <<QTHERS =>'0";
error_count <=QTHERS =>'0");
EL SIF clock_50'evenAND clock 50 ="1THEN -- rising clock edge
|F ref_frame_loaded = 'THEN
|F frame_ready = "TTHEN
rdaddress <= conv_std_logic_vector((ROGGELUMNS), VECTOR_LENGTH
+1);
new_frame_analysis <= "1
END IF;
|F rdaddress /= conv_std_logic_vector(0, VECTOR_LENGAH) THEN

43

Appendix A: (Continued)

rdaddress <= rdaddress - '1';

data_inl <= data_in;

data_in2 <=data_in1;

data_in3 <= data_in2;

|F data_in3(DOWNTO 5) /= data_read_out@OWNTO 5) THEN
error_count <= error_count + '1';

END IF;

ELSE

new_frame_analysis <=0’

|F error_count > conv_std_logic_vector(200, VECTORNGTH + 1) THEN
error_in_current_frame <="1",

ELSE
error_in_current_frame <="'0",

END IF;

error_count <<QTHERS =>'0");

END IF;
END IF;
END IF;
END PROCESS processing_data;
END ARCHITECTURE object_detect_1;

44

Appendix B: VHDL Test Bench

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164ALL;

USE IEEE.STD_LOGIC_UNSIGNEDALL;
USE IEEE.STD_LOGIC_ARITHALL;
USE STD.TEXTIOALL;

USE IEEEALL;

ENTITY object_detect_tst_imifs

END ENTITY object_detect_tst_img;

ARCHITECTURE object_detect_tst @F object_detect_tst_imifs
SIGNAL clock_50, reset_n, clock_out, frame_ready, refrésime_mem,
SIGNAL error_in_current_frame : STD_LOGIC :='0';
-- signéds the ports
SIGNAL data_in : STD_LOGIC_VECTOR@OWNTO 0);
SIGNAL DUMMY _ref_frame_loaded : STD_LOGIC;
-- Signakén out of entity for testing
SIGNAL done : STD_LOGIC :='0"; -- flag set when simidatfinished
CONSTANT number_of pixel_values : STD_LOGIC_VECTOR@®WNTO 0) :=

"00000000001111"
-- genevalue
SIGNAL address_frame_mem : STD_LOGIC_VECTOROGWNTO 0) :=
"00000000000000";

SIGNAL data_frame_mem : STD_LOGIC_VECTORIDWNTO 0);
CONSTANT N : INTEGER :=12347; --Number of bytes in fileamas one
SUBTYPE file_elementSSTD _LOGIC_VECTOR(DOWNTO 0);
TYPE mem_array SARRAY (N DOWNTO 0) OF file_element;

45

Appendix B: (Continued)
COMPONENT object_deteckS
GENERIC (
ROWS : INTEGER :=98;
COLUMNS : INTEGER := 126;
VECTOR_LENGTH : INTEGER := 13);
PORT (
clock_50 IN STD_LOGIC; -- system clock from on board source
reset IN STD _LOGIC; -- system reset signal
clock_out OUT STD_LOGIC;

-- outpubek to read data from the frame capture block
data inIN STD_LOGIC_VECTOR(DOWNTO 0); -- data from the frame read
frame_ready IN STD_LOGIC;

-- the frameady signal from the frame capture block
refresh_frame_meniN STD_LOGIC;
error_in_current_frameQUT STD _LOGIC;

DUMMY _ref _frame loadedOUT STD_LOGIC;

data_read_outl OUT STD_LOGIC_VECTOR(DOWNTO 0);

address_frame_meniN STD_LOGIC_VECTOR(VECTOR_LENGTHDOWNTO
0);

data_frame_memQUT STD_LOGIC_VECTOR(DOWNTO 0);

new_frame_analysisIOUT STD_LOGIC);

--output signal showing presence of some unwanted
--object in the image

END COMPONENT;
SIGNAL tmp_data : STD_LOGIC_VECTOR@OWNTO 0); -- temporary data
SIGNAL new_frame_analysisl : STD_LOGIC;

BEGIN -- object_detect tst _a

Ul :COMPONENT object_detecPORT MAP (
clock 50 => clock 50, reset_n esat_n,
clock out => clock _out, frame_read> frame_ready,
refresh_frame_mem => refresh_framem,
error_in_current_frame => error darrent_frame,
data_in => data_in,
DUMMY _ref_frame_loaded => DUMMY frédrame_loaded,
address_frame_mem => addfemme_mem,
data_frame_mem => datan&famem,
new_frame_analysisl => new_fraanalysisl);

clock_50 <=NOT clock_50AFTER 10 ns;

46

Appendix B: (Continued)
Reset_controPROCESSIS
BEGIN -- process Test

reset_n <="0"
WAIT FOR 150 ns;
reset n<="1"
WAIT,;
END PROCESS Reset_control;

load_new framePROCESSIS
BEGIN -- process load_new_frame
WAIT UNTIL reset n="1";
frame_ready <= "1
refresh_frame_mem <="1",
WAIT UNTIL (clock_50'evenAND clock 50 ='1";
frame_ready <= "0
refresh_frame_mem <="0";
data_in <="10101010"
WAIT UNTIL DUMMY _ref _frame_loaded = "1
WAIT FOR 300 ns;
frame_ready <= "1
WAIT UNTIL (clock_50'evenAND clock 50 ="1";
frame_ready <=0’
data_in <="01010101";
WAIT,
END PROCESS load_new_frame;

read_file PROCESSIS -- read file_io.in (one time at start of simulatjon
SUBTYPE INTEGER_8bitlSINTEGER range 0@ O 255;
TYPE char_typd SFILE of INTEGER; --file type for declaring the file
VARIABLE ch : INTEGER;
VARIABLE tmpl, tmp2, tmp3, tmp4 : INTEGER; -- temporaryetdract byets
-- the cheter being read from the file
FILE my_input : char_typ©PEN READ_MODEIS "pirates.raw";
FILE my_check : char_typ@ PEN READ_MODEIS "pirates.raw";
FILE my_check?2 : char_typ®@PEN WRITE_MODEI S "output.raw";
BEGIN
WAIT UNTIL reset n="1";
WAIT UNTIL refresh_frame_mem ="'1";
LOOP
EXIT WHEN (endfile(my_inputOR DUMMY _ref_frame_loaded = '1");
read(my_input, ch);
tmp4:= ciM OD 256;
WAIT UNTIL clock_50 = "1AND clock 50'event;
WAIT FOR 5 ns;

a7

Appendix B: (Continued)
data_in <= CONV_STD_LOGIC_VECTOR (tmp4, 8);
ch :=ch/ 256;
tmp3:= ciM OD 256;
WAIT UNTIL clock_50 ='1AND clock_50'event;
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (tmp3, 8);
ch := ch/256;
tmp2:= ciM OD 256;
WAIT UNTIL clock_50 = "1AND clock 50'event;
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (tmp2, 8);
ch := ch/256;
tmpl:=ch;
WAIT UNTIL (clock_out'evenAND clock_out ='1";
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (ch, 8}p- stdlogicvector(ch_vector);
END LOOP;
REPORT "out of the ref frame loading oo BEVERITY note;
WAIT FOR 250 ns;
WAIT UNTIL frame_ready ='1",
LOOP
EXIT WHEN endfile (my_check);
Read (my_check, ch);
tmp4:= ciM OD 256;
WAIT UNTIL clock_50 = "1AND clock 50'event;
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (tmp4, 8);
ch :=ch/ 256;
tmp3:= ciM OD 256;
WAIT UNTIL clock_50 ='1AND clock_50'event;
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (tmp3, 8);
ch := ch/256;
tmp2:= ciM OD 256;
WAIT UNTIL clock_50 = "1AND clock 50'event;
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (tmp2, 8);
ch := ch/256;
tmpl:=ch;
WAIT UNTIL (clock_out'evenAND clock_out ='1";
WAIT FOR 5 ns;
data_in <= CONV_STD_LOGIC_VECTOR (ch, 8}Jp- stdlogicvector (ch_vector);
END LOOP;

48

Appendix B: (Continued)

WAIT UNTIL new_frame_analysisl ='0",
address_frame_mem <= CONV_STD_LOGIC _VECTOR{r,14),
WAIT FOR 2 ns;
WHILE address_frame_mem > "0000000000000Q0OP
address_frame_mem <= address_frame_mém - '1
WAIT UNTIL clock_50'evenAND clock_50 ="1";
ch := CONV_INTEGER (data_frame_mem);
write (my_check2, ch);
END LOOP;
REPORT "reading the current memory comple®EVERITY note;
WAIT;
END PROCESS read _file;
END ARCHITECTURE object_detect_tst_a;

49

	University of South Florida
	Scholar Commons
	2007

	System approach to embedded system design
	Vikram Prabhakar Mehendale
	Scholar Commons Citation

	vikram thesis rev 5

