
Western Michigan University
ScholarWorks at WMU

Master's Theses Graduate College

12-2016

A Genetic Algorithm Incorporating Design Choice
for the Preliminary Design of Unmanned Aerial
Vehicles
Kenneth Michael Mull
Western Michigan University, ken.m.mull@gmail.com

Follow this and additional works at: http://scholarworks.wmich.edu/masters_theses

Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

This Masters Thesis-Open Access is brought to you for free and open access
by the Graduate College at ScholarWorks at WMU. It has been accepted for
inclusion in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please contact
maira.bundza@wmich.edu.

Recommended Citation
Mull, Kenneth Michael, "A Genetic Algorithm Incorporating Design Choice for the Preliminary Design of Unmanned Aerial Vehicles"
(2016). Master's Theses. 746.
http://scholarworks.wmich.edu/masters_theses/746

http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/grad?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses/746?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:maira.bundza@wmich.edu
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages

A GENETIC ALGORITHM INCORPORATING DESIGN CHOICE

FOR THE PRELIMINARY DESIGN OF

UNMANNED AERIAL VEHICLES

by

Kenneth Michael Mull

A thesis submitted to the faculty of the Graduate College
in partial fulfillment of the requirements

for the degree of Master of Science

Mechanical and Aerospace Engineering

Western Michigan University
December 2016

Thesis Committee:

Kapseong Ro Ph.D., Chair
Jennifer Hudson Ph.D.
Tianshu Liu Ph.D.

A GENETIC ALGORITHM INCORPORATING DESIGN CHOICE

FOR THE PRELIMINARY DESIGN OF

UNMANNED AERIAL VEHICLES

Kenneth Michael Mull, M.S.

Western Michigan University, 2016

Unmanned Aerial Vehicles (UAVs) are currently at the forefront of aerospace

technologies. The design of these aircraft is complex and often performance

characteristics are coupled to multiple design attributes. At the early design phase both

discrete and continuous design choices are present limiting the feasibility of traditional

derivative based optimization techniques. In place of these methods, the design space can

be explored using a genetic algorithm that mimics the process of natural selection,

providing a capable and reliable base airframe constructed from the required performance

metrics. By incorporating a genetic multidisciplinary optimization algorithm early in the

conceptual design phase, aircraft can be moved faster and more cost effectively through

the product development cycle thus reducing research and development costs, the time

necessary to deliver a finished product, and the program and unit costs, while delivering a

vehicle with superior performance characteristics.

Copyright by

Kenneth Michael Mull

2016

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ... vii

LIST OF FIGURES ... ix

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction .. 1

1.1.1 Unmanned Aerial Vehicles ... 1

1.1.2 Unmanned Aerial Vehicle Groups .. 2

1.2 Literature Review ... 4

1.2.1 Multi-Disciplinary Optimization ... 4

1.2.2 Optimization for Aircraft ... 5

1.2.3 Genetic Algorithms for Optimization 7

1.3 Problem Statement ... 12

1.3.1 Mission Based Genetic Algorithm .. 12

iii

Table of Contents – Continued

1.3.2 Phenotype Integration and the Tiered Design Space 14

CHAPTER 2: GENETIC ALGORITHM ARCHITECTURE 15

2.1 General Framework .. 15

2.2 Mixed Variable Design String .. 16

2.2.1 Aircraft Type ... 18

2.2.2 Wing Geometry ... 19

2.2.3 Fuselage Geometry .. 21

2.2.4 Tail Geometry .. 22

2.2.5 Propulsion System ... 24

2.3 Discrete Variable Design Space ... 25

2.4 The Cost Model ... 27

2.5 Mission Parameters .. 29

2.6 Constraining the Design Space ... 32

2.7 Code Flow and Evaluation Diagram ... 33

2.8 The Modified Breeder Pool Algorithm .. 36

iv

Table of Contents – Continued

2.9 Statistical Modeling and Methods of Performance Evaluation 38

 2.9.1 Aircraft Weight Estimation…………... 38

2.9.2 Engine Weight and Sizing ... 39

2.9.3 Aerodynamic Modeling.. 41

2.9.4 Maximum Velocity .. 45

2.10 Convergence .. 46

CHAPTER 3: ALGORITHM AND AIRCRAFT BENCHMARKING 47

3.1 Performance Evaluation .. 47

3.1.1 MQ-1 Predator UAV Benchmark ... 47

3.1.2 MQ-9 Reaper UAV Benchmark .. 49

3.1.3 RQ-4 Global Hawk UAV Benchmark 51

3.2 Design Space Oddities .. 53

3.2.1 The Death Star Case .. 54

3.2.2 The Imploding Star Case ... 54

CHAPTER 4: AIRCRAFT DESIGN .. 56

v

Table of Contents – Continued

4.1 Locked Choice Optimization... 56

4.1.1 Design of Traditional Turboprop V-Tail Group 4 UAV 57

4.1.2 Traditional Turbofan V-Tail ... 60

4.2 Free Space Optimization .. 63

4.2.1 Group 4 UAV .. 63

4.2.2 Stable Stealth Group 5 UAV .. 66

4.3 Additional Design Concepts .. 69

4.3.1 Flying Wing Twin Engine Stealth Bomber 69

4.3.2 Short Field Mid-Range Ground Attacker 72

CHAPTER 5: CONCLUSION ... 75

5.1 Conclusion .. 75

5.2 Future Work ... 76

REFERENCES .. 77

APPENDIX A- Performance Equations .. 79

APPENDIX B- MATLAB Code .. 81

vi

LIST OF TABLES

1.1 Department of Defense UAS Classifications .. 3

2.1 Genetic Chromosome for UAV ... 17

2.2 Gene Interference .. 26

2.3 Departmental Labor Rates .. 27

2.4 Performance Metrics and Associated Variables ... 30

2.5 Design String Constraints ... 32

3.1 Predator UAV Performance Comparison ... 48

3.2 Reaper Performance Comparison ... 50

3.3 Global Hawk Performance Comparison ... 52

3.4 The Death Star Design String .. 54

3.5 The Imploding Star Design String .. 55

4.1 Low Cost Group 4 UAV Evaluation .. 58

4.2 Low Cost Group 5 UAV Evaluation .. 61

4.3 Group 4 UAV Evaluation ... 64

vii

List of Tables - Continued

4.4 Stealth Group 5 UAV Evaluation ... 67

4.5 Stealth Flying Wing UAV Evaluation ... 70

4.6 Fast Attack Canard UAV Evaluation .. 73

viii

LIST OF FIGURES

1.1 Military Unmanned Aerial Vehicles .. 2

1.2 Single Mutation Operation ... 8

1.3 Crossover Operation ... 8

1.4 Killer Queen Method .. 9

1.5 Roulette Method .. 10

1.6 Tournament Method ... 11

1.7 Breeder Pool Method.. 12

1.8 UAV Development Cycle ... 13

2.1 Aircraft Type .. 18

2.2 Half-Span Wing Geometry ... 20

2.3 Aircraft Fuselage Side View .. 21

2.4 Tail Type Geometry .. 22

2.5 Tail Surface Geometry ... 23

2.6 Engine Type Matrix .. 25

ix

List of Figures – Continued

2.7 Code Flow Diagram .. 35

2.8 Modified Breeder Pool Method ... 37

3.1 Predator UAV and Design String ... 48

3.2 Reaper UAV and Design String .. 50

3.3 Global Hawk UAV and Design String .. 52

4.1 Low Cost Group 4 UAV and Design String .. 58

4.2 Group 4 Low Cost UAV Convergence ... 59

4.3 Low Cost Group 5 UAV and Design String .. 60

4.4 Low Cost Group 5 UAV Convergence ... 62

4.5 Group 4 UAV and Design String .. 64

4.6 Group 4 UAV Convergence ... 65

4.7 Stealth Group 5 UAV and Design String ... 67

4.8 Stealth Group 5 UAV Convergence... 68

4.9 Stealth Flying Wing UAV and Design String ... 70

x

List of Figures – Continued

4.10 Stealth Flying Wing UAV Convergence .. 71

4.11 Fast Attack Canard UAV and Design String .. 73

4.12 Fast Attack Canard UAV Convergence .. 74

xi

1

CHAPTER 1

 INTRODUCTION

1.1 Introduction

1.1.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles, (UAVs), represent one of the fastest growing fields in

aerospace engineering. UAVs, also referred to as drones, have been around for several

decades. Militaries around the world field low to middle range reconnaissance aircraft,

and NASA uses a modified Global Hawk, to track and monitor hurricanes and other

severe weather. UAVs comprise thousands of parts, incorporating the cutting edge of

current technologies. This in turn necessitates large research and development operations,

various production facilities and techniques, as well as skilled engineers, machinists, and

administrative personnel to contribute to and oversee the development cycle. While these

aircraft serve in both civilian and military capacities, the airframes with military roles

represent the majority of existing designs and will continue to see heavy military

investment in the future [3].

UAVs come in all shapes and sizes. They range from small radio controlled

hobby planes to aircraft that rival commercial transports in dimension. Current UAVs can

be simply grouped into fixed wing aircraft, and rotorcraft. Rotorcraft represent a large

share of small scale UAVs but few exist outside this range. These small craft include the

2

small commercial multirotors that have become common over the last decade. Fixed

wing aircraft currently dominate the military market share, representing the majority of

large scale UAVs. The MQ-8B Fire Scout unmanned helicopter represents the exception

to this small scale limitation.

Figure 1.1 Military Unmanned Aerial Vehicles

Unmanned Aerial Vehicles currently used by the United States Military [17]. (Top Left)

RQ-2A Pioneer Short Range UAV (Top Right) Raven hand launched UAV [21] (Bottom

Left) MQ-9 Reaper Combat UAV [20] (Bottom Right) RQ-4 Global Hawk Long Range

UAV [16]

1.1.2 Unmanned Aerial Vehicle Groups

UAV’s are classified into various groups by the United States Department of

Defense. The Defense Department uses the broad classification Unmanned Aerial

Systems (UASs), when referring to UAVs. As illustrated in Figure 1.1 the military fields

3

multiple unmanned systems, ranging in size from the tiny handheld launched “Raven” to

the “Global Hawk”. Unmanned Aerial Vehicle groups are formed by considering the

aircraft’s weight, altitude of operation, and maximum speed. There are five of these

groups with Group 1 comprising the smallest, lowest flying, and slowest; and Group 5

containing the largest, highest flying and fastest.

Table 1.1 Department of Defense UAS Classifications [17]

UAS

Groups

Maximum

Weight

 (lbs)

Normal

Operating

 Altitude

Speed

(knots)
Representative UAS

Group 1 0-20
<1200 AGL

(1200 ft)
100

Raven

WASP

Group 2 21-55
<3500 AGL

(3500 ft)

< 250

ScanEagle

Group 3 <1320

<FL 180

(18000 ft)

Shadow

Group 4

>1320
Any

Airspeed

Fire Scout

Predator

Sky

Warrior

Group 5
>FL 180

(18000 ft)

Reaper

Global

Hawk

BAMS

4

1.2 Literature Review

1.2.1 Multi-Disciplinary Optimization

Optimization techniques find many suitable targets in engineering fields [2]. They

can be applied at any part of product development from early preliminary stages to design

tradeoffs before beginning a production run. The subject of an optimization can be as

small as a single part or encompass a whole system. Large engineering projects often

cross disciplines into other fields. The intricacies and often nonlinear dependencies

between disciplines often determine the success or failure of a design. To successfully

evaluate these systems Multi-Disciplinary Optimization (MDO) techniques can be

applied to an objective or cost function that is subject to certain constraints function in

order to select a design that performs optimally in two or more disciplines.

There are several types of optimization architecture. Martins [9]. MDO

architectures are often classified by the order of the method used. First order optimization

requires the computation of the first derivative of the objective function for use in

predicting the increase or decrease of the objective function score for a selected change in

design variables. Second order methods include the use a computed second order

derivative to achieve a higher degree of accuracy with more complicated objective

functions or to increase the rate of convergence. First and second order methods tend to

converge more quickly as the derivatives provide a “best direction” to advance through

the design space. Finally, zeroth order methods, often referred to as metaheuristic

searches, more commonly utilized in a subclass called genetic algorithms (GA’s), explore

5

the design space without the calculation of derivatives. Elbeltagi, Emad, Tarek Hegazy,

and Donald Grierson explore five such algorithms in [5]. This class of algorithm is useful

where derivatives of an objective function are not easily estimated.

1.2.2 Optimization for Aircraft

Aircraft are excellent targets for MDO architectures. The complex nature of

aircraft design, including performance dependent on structure, thermodynamics,

aerodynamics, stability and control, and manufacturing concerns, makes the aircraft as a

whole or even a single part difficult to balance outside of an iterative design process. The

expense of even a single part, or the loss of performance from a suboptimal design is

driving the increased use of varied MDO architectures specifically for aircraft and aircraft

subsystems. The majority of optimization takes place on existing designs, that is to say

the product is already in a desirable form. As such derivative methods are faster [9] and

more applicable to this later stage in the product development cycle. Common MDO

routines have been applied to the aero-structural optimization of wings, cruise speed

versus fuel consumption studies for commercial aircraft, stability and control surface

optimization, airflow and thermal efficiency of a jet engine [9].

An example of an aero-structural optimization routine using a gradient based

method can be seen in [7] where a high-fidelity model was applied to a proposed wide

body commercial aircraft. While providing some guidance on how to decompose the

design space particularly the variables that wing planform. This level of optimization

6

routine requires an existing starting point. As such it is more suited to continued

development of an aircraft design rather than an early preliminary design phase.

Derivative based optimization methods were also applied to the small scale UAV

in [8]. The small electric cargo UAV had a prescribed structure and then a twist and taper

aerodynamic optimization routine was utilized to maximize the lift over drag ratio. The

Reynolds number regime of this small aircraft is significantly different from the designs

explored within this document, limiting the incorporation of concepts to the architecture.

The mission type constraints proposed for this electric UAV including weight, takeoff

distance, stall speed, and operational payload however were adaptable to the genetic

algorithm formulated within this document.

A stealth UAV optimization utilizing a genetic algorithm is described in [16].

Though the major layout of the flying wing aircraft was predetermined. The genetic

algorithm actively searched a limited design space for the stealthiest design. The

incorporation of radar cross section (RCS) as a performance variable within this research

directly inspired its inclusion in this optimization routine.

 A holistic aircraft design utilizing several types genetic algorithms is described

by Raymer [13]. The Breeder Pool method in particular served as the starting point for

the optimization routine developed during this research. Though the configuration of the

aircraft was again predetermined before an optimization process took place, the vast

majority of the constraints and the use of cost as an objective function can be directly

associated with the developments made by Raymer.

7

1.2.3 Genetic Algorithms for Optimization

Genetic algorithms, being a zeroth order method, do not utilize derivatives in the

iterative process. Instead genetic algorithms explore the design space by mimicking the

processes of evolution and natural selection. A design string of variables is selected, and

a population of design strings is rated on how well it performs in an objective function.

The objective function acts as a test, similar to how an environment tests and ultimately

determines the success of the organisms that live within it. The most successful designs

have a high probability of good objective function scores, survival, and thus a high

probability of passing its traits to the next generation. The poor designs are killed off or

have a low probability of surviving to pass their traits to the next generation. Many

genetic algorithms utilize elitism, mutation, and crossover routines when breeding two

design strings together, Mutation and crossover encourage diversity within a population,

exploring all facets of the design space for an advantage. Elitism guarantees a previously

successful design is not lost when transitioning between generations, by immigrating the

design(s) directly into the next generation.

Mutations involving a genetic algorithm are prescribed randomly to occur at a

designed frequency. Mutations can be the sole driver of an optimization routine or used

in conjunction with crossover operations. A pure mutation algorithm may have a single

mutation or multiple mutations in each design generation. In order for a mutation to occur

a random place on the design string is selected. Then the selected gene is perturbed by

some specified amount. This mutated design now proceeds into the new generation. A

single mutation operation is shown in Figure 1.2.

8

[

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺]

 →

[

 𝐵

𝐶
𝐷 + 𝛿 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝐸
𝐹
𝐺]

Figure 1.2 Single Mutation Operation

Crossover operations split the design string of two selected designs and

append them to one another. First two parent designs are selected from the current

generation. Second a specified or randomly selected point on the design string is selected.

The parent strings are then split into four separate design strings. In example parent A

and parent B are split at position three in the design string. Two offspring are created

from the recombination of the split design strings. The top of string A is combined to the

bottom of string B and the bottom of string A is appended to the top of string B. This

process can be seen in Figure 1.3.

 Parent A Parent B Child 1 Child 2

[

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺]

[

𝐻
𝐼
𝐽
𝐾
𝐿
𝑀
𝑁]

 →

[

𝐴
𝐵
𝐶
𝐾
𝐿
𝑀
𝑁]

[

𝐻
𝐼
𝐽
𝐷
𝐸
𝐹
𝐺]

Figure 1.3 Crossover Operation

Cut at

Gene 3

9

The algorithms methods are named depending on how the parents are selected and

by extension how the next generation is created. The Killer Queen algorithm is a hyper

elitist strategy relying solely on large quantities of mutations to generate the new

population. It can be seen naturally in insect colonies [5] [13] where a single queen is

responsible for the creation of a colony. The highest scoring individual is selected as a

queen. The queen is directly immigrated into the next generation and the remaining

members of the generation are created from random mutations of the queen’s design

string. This method can be seen visually in Figure 1.4.

Figure 1.4 Killer Queen Method

Best

“Queen”

Generation Previous Generation After

All Others “Death”

10

The Roulette method shown in Figure 1.5 is dependent on statistical probability to

ensure the continuance of a good design. Each designs objective function score is

weighted against the sum of all objective function scores [13]. These weighted values

represent a portion of a circle radiating from the center like a roulette wheel. The parents

are selected at random by spinning the wheel twice. The resulting offspring then has

some prescribed chance for mutations and crossover to occur. There is no elitism directly

structured into the wheel spin. This produces a chance that a superior design may be

neglected in future generations.

Figure 1.5 Roulette Method

The Tournament method incorporates a random selection process to select four

individuals from the population. They are then made to “fight” against each other with

the winner securing breeding rights and the loser returning to the population. The parents

are the winners of both “bouts” and possess superior objective function scores to their

1

2

3 4

n

5

Result 1

Result 2

Offspring

11

competitors [13]. The random draw process continues until the next generation is full. A

visual representation of this method can be seen in Figure 1.6.

Figure 1.6 Tournament Method

The breeder pool method is a hybrid method created by Dan Raymer for use in

genetic optimization routines of aircraft [13]. It combines elements of the three previous

methods to provide a more stable path to the best aircraft. First the population is ranked,

then a top percentage is removed and placed in a breeder pool. The rest of the population

is discarded. The next generation draws only from the breeder pool which is

automatically immigrated to the next generation. The additional levels cause the

Offspring

Victor 1 Victor 2

Generation

12

algorithm to converge more slowly than the killer queen optimization structure but the

converged result is capable of surpassing the objective function score of the three

previous optimization routines and will be the basis for the optimization routine

developed herein. The breeder pool method can be seen in Figure 1.7.

Figure 1.7 Breeder Pool Method

1.3 Problem Statement

1.3.1 Mission Based Genetic Algorithm

The Department of Defense budgets approximately 4.5 billion dollars a year in

research and development and procurement of unmanned aerial vehicles. And it cites the

Generation

Breeder Pool

Top Percentage

Offspring

Parent 1

Parent 2

13

 Design

Refinement

 Auxiliary

Additions

 Rigorous

Performance

Evaluation

0 % 40% 60 % 100 80 %

 Mission

Requirements

 Possible Design

 Trade Studies

 Technology

Analysis

 Base Geometry

 Design

Freeze

 Detail

Refinements

 Working

Full Scale

Prototype

 Flight Testing

 Full Scale

Manufacture

time to field the latest technology as one of the improvement goals [21]. In order to

provide the most efficient and cost effective UAV for a given mission, a genetic

algorithm is proposed to augment the existing product development cycle shown in

Figure 1.8. By utilizing the non-continuous design space, defined by a continuous and

discrete variable design string, the algorithm will provide a thorough exploration of the

design space in the preliminary design phase of aircraft design, the 0 to 40 percent section

of the development cycle, with no need for a predetermined design layout. At its

convergence, the resulting aircraft will represent a superior airframe suitable for

continued development, reducing the overall cost of the research and design process and

increasing the performance characteristics of the resulting aircraft in its requested mission

profile.

Figure 1.8 UAV Development Cycle

14

1.3.2 Phenotype Integration and the Tiered Design Space

In genetics phenotypes function as gene modifiers. They are small hydrocarbon

chains that attach to individual genes. Phenotypes can turn genes on and off but are

generally defined as how certain genes are represented [6]. In example, every human has

an eye structure defined by a shared genome but iris color is a phenotype addition that

changes how that structure is physically perceived. For aircraft tails, can be considered a

shared genome but the type of tail can be defined as a phenotype addition that changes

how that gene physically manifests.

By integrating discrete phenotype variables into the design string, the genetic

algorithm proposed can weigh various choices of design features against each other. This

inclusion permits the algorithm to explore the various combinations of base layout, tail

configuration, engine type, and number of engines; while simultaneously evaluating

wing, tail, fuselage, and engine geometry and performance.

15

CHAPTER 2

GENETIC ALGORITHM ARCHITECTURE

2.1 General Framework

The primary limitation of aircraft procurement programs is cost. Minimizing this

cost while still providing the necessary performance aircraft provides the goal of the

optimization algorithm. The general framework of this optimization routine is as follows:

Maximize: 𝑓(𝒙)

Where: 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 − 𝐶𝑜𝑠𝑡 𝑖 = 1 𝑡𝑜 𝑛

Subject to: 𝑔𝑖(𝒙) and ℎ𝑖(𝒙)

Where: 𝑔𝑖(𝒙) ≤ 𝑔𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 𝑖 = 1 𝑡𝑜 𝑚

ℎ𝑖(𝒙) = ℎ𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 𝑖 = 1 𝑡𝑜 𝑚

Here 𝑔𝑖(𝒙) and ℎ𝑖(𝒙) represent two sets of constraints consisting of m equations.

These constraints can be grouped into two main types, equality, and inequality

constraints. The inequality constraints are the most prominent. These control the

geometry limits, span, fuselage radius and length, tail size, and the mission requirements

requested by the user, for example range, endurance, speed, etc. The equality constraints

represent limitations on design layout corresponding to tail type, aircraft type, type of

16

engine and number of engines. Additional inequality constraints can be added to require

certain performance values.

2.2 Mixed Variable Design String

The design string is at the core of a genetic algorithm. It represents every possible

combination of attributes, genes, of a proposed design condensed into as few design

variables as possible. It is also referred to as a chromosome, as it performs the same

function as the natural genetic structure in relaying the genetic information that defines

the next generation. In order to fully encompass the design features of unmanned aerial

vehicles the design string for the aircraft is chosen to have twenty genes. The individual

genes their position in the design string, what the gene represents, and the type of

variable associated with the gene are listed in Table 2.1.

17

Table 2.1 Genetic Chromosome for UAV

Gene Number Variable Name Variable Type

1
Aircraft

Type
Discrete

W
in

g
 G

eo
m

et
ry

 2 Wing Half-Span Continuous

3 Wing Root Chord Continuous

4
Wing

Dihedral
Continuous

5
Wing Sweep

(c/4)
Continuous

6
Wing

Taper
Continuous

F
u

se
la

g
e

G
eo

m
et

ry

7
Fuselage

Diameter
Continuous

8
Main Fuselage

Length
Continuous

9
Fuselage Nose

Length
Continuous

10
Fuselage Tail

Length
Continuous

T
a
il

G
eo

m
et

ry

11
Tail

Type
Discrete

12
Horizontal Tail

Span
Continuous

13
Horizontal Tail

Chord
Continuous

14
Horizontal Tail

Taper
Continuous

15
Vertical Tail

Span
Continuous

16
Vertical Tail

Chord
Continuous

17
Vertical Tail

Taper
Continuous

P
ro

p
u

ls
io

n

S
y
st

em

18 Propulsion Type Discrete

19
Number of

Engines
Discrete

20
Propulsive

Power/Force
Continuous

18

2.2.1 Aircraft Type

 The aircraft type represented by the first gene in the design string, is a phenotype

that controls the expression of the aircraft layout, where the tail and wing are located with

respect to one another on the fuselage. The gene is represented as an integer from 1 to 3

with 1 identifying traditional layout, 2 representing a non-lifting canard layout, and 3

representing a flying wing see Figure 2.1.

Figure 2.1 Aircraft Type

 Aircraft type geometry layout (1) Traditional Aircraft Layout (2) Non-Lifting Canard (3)

Flying Wing/Tailless

(1) (2) (3)

19

2.2.2 Wing Geometry

 The wing represents arguably the single most important element of an aircraft.

The geometry of the wing is the primary driver of performance metrics like range,

endurance, and stability. To completely define the wing within the algorithm its geometry

is decomposed into five independent variables, characterized by genes two thru six, with

the genes representing the variables of half-span, root chord length, dihedral angle,

quarter chord sweep angle, and taper ratio. This provides a basic wing shape that can be

later refined by selection of airfoil and more complex geometry. The tip chord is defined

as the taper ratio multiplied by the root chord. The geometry of the wing can be seen in

Figure 2.2.

20

Figure 2.2 Half-Span Wing Geometry

Half Span Wing Geometry designated by the assigned gene number. Half-Span (2), Root

Chord (3), Dihedral (4), Sweep (5), Taper Ratio (6). Notice Dihedral Angle (4) is

exaggerated in the front view to better show its influence on the wing geometry. Taper

ratio (6) in combination with the root chord (3) defines the tip chord, hence its location

in the top view.

(3)

(2)

(5)

(4)

(6)

Front Top

(2)

21

2.2.3 Fuselage Geometry

 Four design variables define fuselage geometry. These variables are represented

by genes seven through ten in the design string. The base level structure is defined as a

cylinder of constant radius, gene seven, and length, gene eight. Two ellipsoid halves cap

this cylinder. These halves begin with the same radius as the cylinder of the main body

and each semi major axis is independently identified in the design string, gene nine for

the nose partition, and gene ten for the tail partition.

Figure 2.3 Aircraft Fuselage Side View

Aircraft Fuselage Side View Geometry as designated by the gene number in the design

string: (7) Fuselage diameter, (8) Fuselage main body cylinder length, (9) Fuselage Nose

Section Length, (10) Fuselage tail section length. The total length of the fuselage is then

the sum of genes eight, nine, and ten.

7

8

10 9

Nose Tail

22

2.2.4 Tail Geometry

Six continuous genes describe tail geometry, twelve thru seventeen, and the

discrete expression of tail type, gene eleven. The algorithm is capable of assigning three

distinct tail types, Traditional Style tails, T-Tails, V-Tails. Traditional tails are more

common but there are instances where T-Tails and V-Tails can be useful, especially if

fuselage length or stealth is a priority in the requested mission.

 (1) (2) (3)

Figure 2.4 Tail Type Geometry

Tail Type Geometry possibilities within design space (1) Traditional Tail, (2) T-Tail, (3)

V-Tail

 The continuous variables then represent the dimensions of the tail structure.

Genes twelve, thirteen, and fourteen describe the horizontal tail span, horizontal chord

root and horizontal stabilizer taper ratio. Similarly, genes fifteen, sixteen, and seventeen

23

represent the vertical stabilizer dimensions of span, root chord, and taper ratio

respectively. The type of tail can define acceptable values of the other stabilizer; the T-

Tail configurations horizontal stabilizer is dependent on the chord of the vertical

stabilizer. The V-Tail is independent of the horizontal stabilizer genes and instead

expresses its genes only for the vertical stabilizer just canted at some user selected angle

usually forty-five degrees. All Horizontal tails have a sweep of thirty degrees and all

vertical tails have a forty-five-degree sweep defined within the algorithm.

 Horizontal Stabilizer Vertical Stabilizer

Figure 2.5 Tail Surface Geometry

Tail geometry with the position number of the gene defining it in the design string. Note

that taper ratio 14 and 17 define the length of the tip chord of the tip section with respect

to the root chord.

13 12

15

14

16

17

24

2.2.5 Propulsion System

There are three types of propulsion system widely seen in larger scale UAV

design, considered for this algorithm. Electric propulsion which is becoming more and

more common is not considered as its fuel consumption and power ratings do not align

when directly compared to existing inline piston propeller engines, turboprop engines and

low bypass turbofan engines. The number of engines is controlled by gene nineteen.

UAVs of significant scale, Group 3 and above, rarely possess more than two engines. As

such, designs with greater than two engines are not considered. Power per engine for

piston and turboprop engines is assigned in gene twenty in the design string while the

maximum thrust producible by the engine is assigned for jet turbofans.

For the purposes of this algorithm propulsion systems will be treated as custom to

a particular airframe. This adds considerable cost when comparing the projected cost to

the cost of utilizing stock engines, but permits near unlimited scaling of precision engines

for a craft. The three engine types permitted within the algorithm are shown in Figure 2.6.

25

(1) (2) (3)

Figure 2.6 Engine Type Matrix

Propulsion elements listed by the corresponding integer in the design string. (1) Inline

Piston engine, (2) Turboprop Engine, (3) Jet Turbofan Engine

2.3 Discrete Variable Design Space

With the inclusion of the discrete variables, the design string potentially identify

aircraft whose design string represents a conflict. In example if gene one specifies a

flying wing but then gene eleven specifies a T-Tail, which gene should be expressed in

the design evaluation. To prevent this a hierarchy is imposed that limits the possible

discrete variable combinations present in the design string. These constraints do not

penalize the design in the evaluation phase and instead alter the interpretation of the

design string. In Table 2.2, one can see the limited effect this has on the possible

combinations of discrete elements with only the canard and flying wing type genes

clashing with the tail type genes.

26

 The need for the aircraft type to dominate is twofold. First it prevents aircraft

configurations like tandem wing, three surface, or a flying wing with a tail. The

aerodynamic analysis incorporated within this algorithm is incapable of accurately

assessing these designs. Secondly its placement at the top of the design string allows

aircraft types to be easily distinguished within the evaluation loop. These conflicting

genes are shown visually in Table 2.2.

 Table 2.2 Gene Interference

Aircraft

Type
Tail Type Engine Type

Engines

 1 2 3 1 2 3 1 2 3 1 2

A
ir

cr
a
ft

T
y
p

e

1 X X X X X X X X

2 X O O X X X X X

3 X O O X X X X X

T
a
il

 T
y
p

e 1 X X X X X X X X

2 X O O X X X X X

3 X O O X X X X X

E
n

g
in

e
T

y
p

e

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

#

E
n

g
in

es

1 X X X X X X X X X

2 X X X X X X X X X

27

2.4 The Cost Model

 To approximate the cost of the procurement program and by extension the cost

per aircraft associated with a specific design the DAPCA IV Model described in [12] is

employed. The Development and Procurement Cost of Aircraft Model (DAPCA) was

developed by the Rand Corporation and provides statistical approximations for the

number of hours of labor from various departments and the cost of particular elements

like engines, internal structures, material cost, machining elements, etc. The model

described in detail below is intended to predict cost of a quantity Q of aircraft delivered

over the course of a five-year program. The cost per hour of the general labor groups

involved in the design process is displayed in Table 2.3.

 Table 2.3 Departmental Labor Rates

Department Cost per Hour (USD 2012)

Engineering (RE) 115.00

Tooling (RT) 118.00

Quality (RQ) 108.00

Manufacturing (RM) 98.00

The number of hours required for each department is then described by the equations

𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 𝐻𝑟𝑠 = 𝑯𝐸 = 5.18 ∗ 𝑊𝑒
0.777 ∗ 𝑉0.894 ∗ 𝑄0.163 (2.1)

𝑇𝑜𝑜𝑙𝑖𝑛𝑔 𝐻𝑟𝑠 = 𝑯𝑇 = 7.22 ∗ 𝑊𝑒
0.696 ∗ 𝑉0.696 ∗ 𝑄0.263 (2.2)

𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐻𝑟𝑠 = 𝑯𝑀 = 10.5 ∗ 𝑊𝑒
0.82 ∗ 𝑉0.484 ∗ 𝑄0.641 (2.3)

28

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐻𝑟𝑠 = 𝑯𝑄 = 0.133 ∗ 𝐻𝑚 (2.4)

The cost per department is then approximated by equations 2.5 thru 2.7

𝐶𝑜𝑠𝑡 𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 = 𝐶𝐸 = 𝑯𝐸 ∗ 𝑹𝐸 (2.5)

𝐶𝑜𝑠𝑡 𝑇𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐶𝑇 = 𝑯𝑇 ∗ 𝑹𝑇 (2.5)

𝐶𝑜𝑠𝑡 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 = 𝐶𝑀 = 𝑯𝑀 ∗ 𝑹𝑀 (2.6)

𝐶𝑜𝑠𝑡 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶𝑄 = 𝑯𝑄 ∗ 𝑹𝑄 (2.7)

Where We is empty weight, V is maximum velocity, Q is quantity of aircraft.

These costs are then added to development support costs, flight testing costs, with two

testing aircraft, manufacturing materials cost, and engine cost.

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶𝑜𝑠𝑡𝑠 = 𝑪𝐷 = 67.4 ∗ 𝑊𝑒
0.630 ∗ 𝑉1.3 (2.8)

𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑒𝑠𝑡 𝐶𝑜𝑠𝑡𝑠 = 𝑪𝐹𝑙𝑡 = 1947 ∗ 𝑊𝑒
0.325 ∗ 𝑉0.822 ∗ #𝐹𝑇𝐴1.21 (2.9)

𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑀𝑎𝑡𝑒𝑟𝑎𝑖𝑙𝑠 𝐶𝑜𝑠𝑡 = 𝑪𝑀𝑎𝑡 = 31.2 ∗ 𝑊𝑒
0.921 ∗ 𝑉0.621 ∗ 𝑄0.799 (2.8)

𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝐸𝑛𝑔𝑖𝑛𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑪𝐸𝑁𝐺 = 3112 ∗ [9.66 ∗ 𝑇𝑚𝑎𝑥 + 243.25 ∗

…𝑀𝑚𝑎𝑥 + 1.74 ∗ 𝑇𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑖𝑛𝑙𝑒𝑡– 2228] (2.9)

𝑃𝑖𝑠𝑡𝑜𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑪𝐸𝑁𝐺 = 1200 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊) (2.10)

Where FTA is flight test aircraft, assumed to be two, Tmax is the engine maximum thrust,

and Tturbine inlet, is the operating temperature at the turbine stage, and Mmax is the designed

29

maximum Mach number for the engine. The cost of piston engines per unit power

derived from [10].

 The program cost is then:

𝐶𝑜𝑠𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 = 𝐶𝐸 + 𝐶𝑇 + 𝐶𝑀 + 𝐶𝑄 + 𝐶𝐷 + 𝐶𝐹𝑙𝑡 + 𝐶𝑀𝑎𝑡 + #𝐸𝑛𝑔𝑖𝑛𝑒𝑠 ∗ 𝐶𝐸𝑁𝐺 (2.11)

Avionics cost is then estimated as five percent of the total cost of the program leaving the

total program cost as:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = .05 ∗ 𝐶𝑜𝑠𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 + 𝐶𝑜𝑠𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 (2.12)

Continued adjustments can be made to the model to adjust for inflation and prices of

materials. Commonly adjustment factors of 10 to 30 percent may be used to incorporate

state of the art structural materials and other technologies into the predictive costs.

2.5 Mission Parameters

 While cost often dictates the number of aircraft built and ultimately which design

wins out, the airframes performance is just as important. The algorithm can produce

several of the UAVs key performance metrics, including range, endurance, maximum

velocity, takeoff distance, rate of climb, and radar cross section. The Table 2.4 lists all

returnable performance values from the algorithm.

30

 Table 2.4 Performance Metrics and Associated Variables

Performance Metric Variable

Weight W

Range R

Endurance E

Zero Lift Drag CDo

Lift Curve Slope CLalpha

Oswald Efficiency e

Lift over Drag Ratio LDmax

Maximum Lift Coefficient CLmax

Maximum Velocity Vmax

Cruise Velocity Vcruise

Loiter Velocity Vloiter

Rate of Climb (sea-level) RCmax

Rate of Climb (altitude) RCmaxalt

Stall Velocity (sea-level) Vstall

Stall Velocity (altitude) Vstallalt

Static Margin StaticMargin

Takeoff Distance takeoff

Landing Distance landing

Maximum Turn Velocity MaxTurnV

Maximum Turn Rate MaxTurnRate

Maximum Turn Load Factor nmax

Minimum Turn Radius MinTurnRadius

Radar Cross Section RCS

31

From these returnable values expectations on aircraft performance can be set. In

example for a stealthy reconnaissance UAV that cruises at 30,000 feet that carries 1250

kg of payload and an additional 150 kg of auxiliary communications gear the following

mission profile may be suggested:

Range Requested: 10000 km

Endurance Requested: 8 Hrs

Velocity Cruise Requested: 100 m/s

Static Margin: 15%

Radar Cross Section: 1 dB m2

Alternatively, for a small tactical UAV operating from a short runway, carrying 50 kg of

payload and an additional 12 kg in auxiliary, the following may be requested:

Range: 200 km

Endurance: 3 hours

Velocity Cruise: 30 m/s

Takeoff Distance: less than 1000 m

Rate of Climb: 5 m/s at sea-level

32

2.6 Constraining the Design Space

 There are several constraints readily enforceable on the aircraft geometry without

the need to specify which aircraft type. Table 2.5 lists the constraints on the design

variables themselves. These hard constraints are penalized with a one billion-point

penalty to the objective function. The severity of the constraint is necessary to prevent

poor performing viable designs from being overlooked in favor of inviable designs within

the selection process.

Table 2.5 Design String Constraints

Gene

Number

Type Minimum Maximum

1 Discrete 1 3

2 Continuous .5 meters 20 meters

3 Continuous .5 meters 10 meters

4 Continuous -7 degrees 7 degrees

 5 Continuous -30 degrees 30 degrees

6 Continuous .1 1.0

7 Continuous .2 meters 5 meters

8 Continuous .2 meters 5 meters

9 Continuous .2 meters 5 meters

10 Continuous .2 meters 5 meters

11 Discrete 1 3

12 Continuous 0 meters 5 meters

13 Continuous 0 meters 5 meters

14 Continuous .1 1.0

15 Continuous 0 meters 5 meters

16 Continuous 0 meters 5 meters

17 Continuous .1 1.0

18 Discrete 1 3

19 Discrete 1 2

33

Notice the absence of gene number 20 in Table 2.5 is due to the statistical engine

modeling incorporated into the algorithm. With three engine types and three separate

statistical models each with their own empirical range of validity these constraints are

enforced on a per aircraft basis.

2.7 Code Flow and Evaluation Diagram

 The proposed algorithm utilizes generations of five-hundred aircraft represented

by their twenty-variable design string to evaluate the cost and performance metrics

associated with an unmanned aerial vehicle mission profile. The algorithm requires inputs

regarding requested mission parameters importantly, requested operational altitude,

payload weight, and auxiliary weight. The user can select then optional inputs to

customize the geometry constraints such as needing to fit in a certain hangar, and

accounting for runway limitations. The user may also choose to lock certain variables in

position. This is particularly suitable for locking an aircraft configuration or engine type

but may also be used to enforce predetermined design decisions. If for instance a designer

knew they wanted a flying wing configuration regardless of the potential benefits of an

alternative design the aircraft type gene, gene 1, could be locked as the flying wing

phenotype three. The same can be said in any combination of discrete variables with the

exceptions of the hierarchy limitations previously expressed in Table 2.2.

 Once the user inputs are defined the algorithm proceeds through its subsequent

sub functions evaluating design performance and then finally evaluating the objective

34

function value for a full generation of designs. The actual genetic algorithm then takes

the sorted generational data and performs a variant on the breeder pool algorithm

developed by Dan Raymer [13]. This genetic algorithm driver alters the design strings

and returns a second generation of aircraft. If after a set number of generations with no

improvement the algorithm immigrates the leader and fills the remaining design strings

with new aircraft with randomly generated design strings. This process of evaluation

modification and elimination is then continued until a specified convergence criterion is

reached. The overview of this optimization cycle can be seen in Figure 2.7.

35

Figure 2.7 Code Flow Diagram

U
se

r

In
p
u
ts

In
it

ia
l

G
en

er
at

io
n

S
et

u
p

D
ri

v
er

 S
cr

ip
t

A
ir

cr
af

t
P

er
fo

rm
an

ce
 E

v
al

u
at

io
n
 F

u
n
ct

io
n

A
er

o
d
y
n
am

ic
s

W
ei

g
h
t

S
tr

u
ct

u
re

P
er

fo
rm

an
ce

C
h
ec

k

C
o
n
v
er

g
en

ce

F
A

L
S

E

T
R

U
E

S

av
e

D
es

ig
n

S
tr

in
g

M
o
d
if

ie
d

B
re

ed
er

 P
o
o
l

M
et

h
o
d

O
b
je

ct
iv

e

F
u
n
ct

io
n

C
o
rr

ec
t

In
fe

as
ib

le

G
eo

m
et

ry

C
o
n
fl

ic
ts

F
in

d
 C

o
n
st

ra
in

t

V
io

la
ti

o
n
s E

X
IT

36

2.8 The Modified Breeder Pool Method

 The main driver of the optimization cycle is the method that determines how

when and where changes to the design string take place. Here a modified version of the

original breeder pool method is utilized. The generation is sorted according to objective

function score. The top twenty percent of the generation are placed into the breeder pool.

The members of this pool are automatically immigrated into the new generation. The

remaining eighty percent of the old generation are discarded. The next sixty percent of

the new generation are created by randomly selecting two members of the breeder pool

and performing a crossover operation. After the crossover operation, there is a chance for

mutations to occur on the new offspring’s design string. The mutations have a minimum

modification of plus or minus five percent of the original design string value. For the

discrete variables, any mutation results in a modification of plus or minus one. The

remaining twenty percent of the new generation are then randomly generated by the same

start function that began the optimization routine. If a design has remained the “leader”,

or best design, for longer than a set number of iterations, in this case one thousand, then a

new generation is instead created by discarding all the designs except for the leader, in

what can be dubbed an “extinction event”. The remaining members of the new generation

are randomly created using the starting design string generator. A pictorial representation

of this architecture is shown in Figure 2.8.

37

Figure 2.8 Modified Breeder Pool Method

N
ew

 R
an

d
o
m

 G
en

er
at

io
n

G
en

er
at

io
n

“N
”

B
re

ed
er

 P
o

o
l

G
en

er
at

io
n

“N
+

1
”

T
o
p
 2

0
%

B
o
tt

o
m

 8
0
%

6
0
%

R
an

d
o
m

 D
ra

w

R
an

d
o
m

 D
ra

w

C
ro

ss
o
v
er

M
u
ta

ti
o
n

If
 l

ea
d

er
(N

)
=

 l
ea

d
er

(N
+

1
)

m
=

m
+

1

L
ea

d
er

If

m
>

1
0
0
0

38

2.9 Statistical Modeling and Methods of Performance Evaluation

The large design space available to the algorithm as well as the differences in

evaluating particular elements like different tails and different engine types using as

simple of a design string as possible necessitate empirical models for the remaining

elements of the geometry or performance not directly specified in the design string.

2.9.1 Aircraft Weight Estimation

Aircraft weight effects a great deal of performance characteristics. In order to

explore as much of the design space as possible weight was not expressly described

within the design string. To estimate the weight of the airframes a weight build up model

from [12].

The weight of the aircraft is approximated by a weight per unit surface area estimation

multiplied by the surface area or wetted area of the existing part. A fraction of the total

weight then is used to estimate landing gear weight.

Aircraft Weight Estimation Model

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑊𝑖𝑛𝑔 = 𝑊𝑊 = 𝑺𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ∗ 20
𝑘𝑔

𝑚2⁄ (2.13)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐹𝑢𝑠𝑒𝑙𝑎𝑔𝑒 = 𝑊𝑓 = 𝑺𝑤𝑒𝑡 ∗ 15
𝑘𝑔

𝑚2⁄ (2.14)

39

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑇𝑎𝑖𝑙 = 𝑊𝐻𝑜𝑟𝑧 = 𝑺𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ∗ 12
𝑘𝑔

𝑚2⁄ (2.15)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑇𝑎𝑖𝑙 = 𝑊𝑉𝑒𝑟𝑡 = 𝑺𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ∗ 12
𝑘𝑔

𝑚2⁄ (2.16)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐸𝑛𝑔𝑖𝑛𝑒𝑠 = 𝑊𝐸𝑛𝑔𝑖𝑛𝑠𝑡 = 𝑾𝑒𝑛𝑔𝑖𝑛𝑒 ∗ 𝑵𝐸𝑛𝑔𝑖𝑛𝑒𝑠 ∗ 1.3 (2.17)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐹𝑢𝑒𝑙 = 𝑊𝐹𝑢𝑒𝑙 = 𝜌𝐹𝑢𝑒𝑙 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒𝐹𝑢𝑒𝑙 (2.18)

Where volume of fuel is estimated as one third of the wing volume between the forward

and rear spars with an additional one half of the fuselage volume.

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝐺𝑒𝑎𝑟 = 𝑊𝐺𝑒𝑎𝑟 = 𝑾𝑇𝑂𝐺𝑊 ∗ 0.033 (2.19)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑇𝑜𝑡𝑎𝑙 = 𝑊𝑊 + 𝑊𝐻𝑜𝑟𝑧 + 𝑊𝑉𝑒𝑟𝑡 + 𝑊𝐹𝑢𝑠𝑒 + 𝑊𝐸𝑛𝑔𝑖𝑛𝑠𝑡 + 𝑊𝐹𝑢𝑒𝑙 + 𝑊𝐺𝑒𝑎𝑟 +

𝑊𝑃𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑊𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 (2.20)

2.9.2 Engine Weight and Sizing

The multiple types of engines possible within the design space require individual

models for each type. These models come with empirical limitations that are then

enforced on the design space as hard constraints.

Inline Piston Engine Model

Empirical Power Range 75 kW to 225 kW

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝐸𝑛𝑔𝑖𝑛𝑒 = 𝑊𝐸𝑛𝑔𝑖𝑛𝑒 = 2.98 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.780 (2.21)

40

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐿𝐸𝑛𝑔𝑖𝑛𝑒 = .17 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.424 (2.22)

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐷𝐸𝑛𝑔𝑖𝑛𝑒 = 0.5 (2.23)

𝐻𝑒𝑖𝑔ℎ𝑡 = 𝐻𝐸𝑛𝑔𝑖𝑛𝑒 = 0.5 (2.24)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑆𝐹𝐶 =
0.068 𝑚𝑔

𝑊−𝑠
(2.25)

𝐵𝑙𝑎𝑑𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(3 − 𝐵𝑙𝑎𝑑𝑒) = 0.52 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.25 (2.26)

Where blade diameter is the propeller disk size for a 3-bladed propeller.

Turboprop Engine Model

Empirical Power Range 370 kW to 3600 kW

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝐸𝑛𝑔𝑖𝑛𝑒 = 𝑊𝐸𝑛𝑔𝑖𝑛𝑒 = 0.96 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.803 (2.27)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐿𝐸𝑛𝑔𝑖𝑛𝑒 = .12 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.373 (2.28)

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐷𝐸𝑛𝑔𝑖𝑛𝑒 = .25 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.120 (2.29)

𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (2.30)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑆𝐹𝐶 = 0.85
𝑚𝑔

𝑊−𝑠
(2.31)

Again equation 2.26 is used for the diameter of the propeller

𝐵𝑙𝑎𝑑𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(3 − 𝐵𝑙𝑎𝑑𝑒) = 0.52 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊)0.25

41

Turbofan Engine Model (Low Bypass Ratio Only)

This model is intended for engines with a thrust range of 15 kN to 300 kN and all

turbofans within this model are assumed to have a bypass ratio, BPR, of two.

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓𝐸𝑛𝑔𝑖𝑛𝑒 = 𝑊𝐸𝑛𝑔𝑖𝑛𝑒 = 14.7 ∗ 𝑇ℎ𝑟𝑢𝑠𝑡1.1 ∗ 𝑒−0.045∗𝐵𝑃𝑅 (2.32)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐿𝐸𝑛𝑔𝑖𝑛𝑒 = 0.49 ∗ 𝑇ℎ𝑟𝑢𝑠𝑡0.4 ∗ 0.92 (2.33)

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐷𝐸𝑛𝑔𝑖𝑛𝑒 = 0.15 ∗ 𝑇ℎ𝑟𝑢𝑠𝑡0.5 ∗ 𝑒(0.04∗𝐵𝑃𝑅) (2.34)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑆𝐹𝐶 =
22.7 𝑚𝑔

𝑁𝑠
(2.35)

𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (2.36)

2.9.3 Aerodynamic Modeling

The drag force on the aircraft is modeled using the drag buildup method described

in [12]. Each component of the aircraft is evaluated for drag and then the total is summed

together to provide the total zero lift drag coefficient for the craft in the subsonic regime.

𝐶𝐷𝑂
=

∑(𝐶𝑓𝑖
∗𝐹𝐹𝑖∗𝑄𝑖∗𝑆𝑤𝑒𝑡𝑖

)

𝑆𝑟𝑒𝑓
+ 𝐶𝐷𝑚𝑖𝑠𝑐+

𝐶𝐷𝐿&𝑃
(2.37)

Where i represents values due to individual components, Cf is the coefficient of friction,

FF is form factor, Q is interference factor and Swet is wetted area. The miscellaneous drag

and leakage and protuberance drag are then assumed to be five percent of the total drag.

42

The algorithm assumes completely turbulent flow over all surfaces leading to the

following equation for coefficient of friction.

𝐶𝑓 =
0.455

(log(𝑅))2.58∗(1+0.144∗𝑀2)0.65
 (2.38)

Where R is Reynolds number and M is Mach number.

For the wing and tail sections form factor can be calculated from the equation:

𝐹𝐹 = [1 +
0.6

(𝑥 𝑐⁄)𝑚
∗ (

𝑡

𝑐
) + 100 ∗ (

𝑡

𝑐
)
4

] ∗ [1.34 ∗ 𝑀0.18 ∗ cos (Λ)0.28] (2.39)

Where t/c is the thickness to chord ratio, x/c is the point of maximum thickness of the

airfoil, and Λ is the sweep of the wing section.

For the Fuselage from factor is:

𝐹𝐹 = (1 + (
60

𝑓3) + (
𝑓

400
)) (2.40)

Where

𝑓 =
𝑙

𝑑
 (2.41)

Where l is fuselage length and d is fuselage diameter.

43

The lift slope is an important measure of aircraft aerodynamic performance,

giving the coefficient of lift for an angle of attack. The equation 2.42 is the DATCOM

method for estimating the lift curve slope of a wing versus angle of attack [12].

𝐶𝐿𝛼
=

2∗𝜋∗𝐴𝑅

2∗√(4+
𝐴𝑅2−1−𝑀2

𝜂2)∗(1+tan(Λ)2)

∗ (
𝑆𝑒𝑥𝑝

𝑆
) ∗ 𝐹 (2.42)

Where η is the Mach Correlation Airfoil Efficiency set at 0.95 for use in this routine.

Oswald efficiency gives a measure of how closely the lift distribution of a given

wing compares with that of an elliptical distribution or its span efficiency. The higher this

efficiency the less impact lift induced drag has on the aircraft. There are many methods

for estimating Oswald efficiency [11]. Evaluating Oswald efficiency at early preliminary

stage requires the use of multiple methods.

Oswald efficiency is calculated in two stages within this algorithm. The first

calculates the wings Oswald efficiency by incorporating a leading-edge suction technique

and then using an interpolation method from the tables as described by Samoylovitch

[14] and returns the Oswald efficiency. Then using the nonplanar adjustment described in

[11] adjusts the efficiency to account for the nonplanar dihedral effect. The Oswald

efficiency at zero leading edge suction is dependent on Aspect Ratio, AR the

compressibility correction β and the lift curve slope 𝐶𝐿𝛼
.

𝑒𝑤/𝑆𝑒=0
= 𝐶𝐿𝛼

/(𝛽 ∗ 𝜋 ∗ 𝐴𝑅) (2.43)

44

The Oswald efficiency at perfect leading edge suction

𝑒𝑤/𝑆𝑒=1
=

𝐶𝐿𝛼

𝛽∗𝐴𝑅
∗ 𝑦̃𝑐𝑔

𝑒 (2.44)

Adds a new term 𝑦̃𝑐𝑔
𝑒 which is the distance between the trailing vortex centers of gravity

in the Treffetz plane.

The leading-edge suction of the actual craft is then

𝑆𝑒 = 0.974 − 0.0976 ∗ 𝑒
−0.456(𝐴𝑅∗

𝜆

cos(Λ)
)

(2.45)

For craft with modest leading edge curvature. The Oswald efficiency, e, is then

𝑒 = 𝑒𝑤 ∗ 𝑘𝑓 (2.46)

Where kf is the correction factor that incorporates the influence of the fuselage cross

section. This factor is interpolated from the data presented in [14] and ew is:

𝑒𝑤 =
𝑒𝑤/𝑆𝑒=1∗𝑒𝑤/𝑆𝑒=0

𝑆𝑒𝑒𝑤/𝑆𝑒=0−(1−𝑆𝑒)∗𝑒𝑤/𝑆𝑒=1
(2.47)

Finally, the Oswald efficiency is adjusted for nonplanar effects [11]

𝑒Γ = 𝑒 (
1

cos(Γ)
)
2

(2.48)

Where Γ is the dihedral angle.

45

2.9.4 Maximum Velocity

The maximum velocity achievable by an aircraft is a strong measure of its performance.

The following equations can be found in [4]. For a jet turbofan engine, the maximum

velocity is relatively easy to calculate. It is found when the acceleration of the aircraft

reaches zero in other words when maximum thrust is equivalent to drag. The thrust

available at altitude for a turbofan is given in equation

𝑇ℎ𝑟𝑢𝑠𝑡 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑇𝐴 = 𝑇𝑠𝑒𝑎𝑙𝑒𝑣𝑒𝑙 ∗ (
𝜌𝑎𝑙𝑡

𝜌𝑠𝑒𝑎𝑙𝑒𝑣𝑒𝑙
)0.6 (2.49)

The maximum velocity is then found from equation

𝑉𝑚𝑎𝑥 = (

𝑇𝐴
𝑊

∗
𝑊

𝑆
+

𝑊

𝑆
∗√[

𝑇𝐴
𝑊

]
2
−4∗𝐶𝐷0∗𝐾

𝜌∗𝐶𝐷0
)

2

 (2.50)

Where

 𝐾 =
1

𝜋∗𝑒∗𝐴𝑅
 (2.51)

The same cannot be said for propeller driven craft as their propulsion units are measured

more typically in power. To accommodate all three types a power relation must be solved

for the maximum velocity. Equations and give the power available at altitude for both

reciprocating and turboprop engines.

𝑃𝑜𝑤𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑃𝐴 = 𝑃𝑠𝑒𝑎𝑙𝑒𝑣𝑒𝑙(1.132 (
𝜌𝑎𝑙𝑡

𝜌𝑠𝑒𝑎𝑙𝑒𝑣𝑒𝑙
) − 0.132) (2.52)

𝑃𝑜𝑤𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑃𝐴 = 𝑃𝑠𝑒𝑎𝑙𝑒𝑣𝑒𝑙(
𝜌𝑎𝑙𝑡

𝜌𝑠𝑒𝑎𝑙𝑒𝑣𝑒𝑙
)0.7 (2.53)

46

The velocity must then be solved for using the relation

𝑃𝐴 =
1

2
𝜌𝑉3𝑆𝐶𝐷0 +

𝑊2

1

2
𝜌𝑉𝑆

∗ 𝐾 (2.54)

To accomplish this an iterative evaluation process is completed within the

algorithm trying velocities from zero to the speed of sound in steps of one-half a meter

per second. The velocity that matches the available power is then returned to the main

evaluation algorithm. The velocity of the aircraft is then limited to the speed where its

previously sized aircraft does not break the speed of sound in full throttle flight.

The remaining performance variables have all been well documented in [1][4]

[12]. The remaining equations used in the performance evaluation phase of the algorithm

can be found in Appendix A.

2.10 Convergence

 The convergence criterion for this algorithm, when the algorithm terminates its

search of the design space, is defined as ten thousand generations without any

improvement in the current best design, simultaneously there must be no violation of any

constraint, else the genetic algorithm continues. Alternatively, due to the size of the

design space, the algorithm will terminate if it exceeds a set number of generations. The

initial selected mark was chosen to be a quarter of a million generations. If by this time a

dominant design is not found the program terminates and returns the current leader.

47

CHAPTER 3

ALGORITHM AND AIRCRAFT BENCHMARKING

3.1 Performance Evaluation

To confirm the reliability of the evaluations of the performance variables within

the algorithm design strings were assembled based on information of currently operation

UAVs. The results of the performance output from the evaluation loop were then

compared to the existing performance specifications. The evaluation loop was tested

against the approximated design strings of the MQ-1 Predator, MQ-9 Reaper, and RQ-4

Global Hawk UAVs based on the information from the United States Air Force Aircraft

Data Sheets [18] [19] [20].

3.1.1 MQ-1 Predator UAV Benchmark

The MQ-1 Preadtor is a low altitude reconnasiance and strike aircraft currently in

use by the United States armed forces. The Predator is on the lower end of Group 4 UAV

only crossing the weight barrier when fully loaded. It is powered by a single

reciprocating four-cylinder engine. It has relatively limited range when compared to

larger Group 4 UAVs [18]. The Predator and its design string are shown in Figure 3.1

48

Figure 3.1 Predator UAV and Design String

The Predator’s actual performance specifications compared to the evalutaion routines

performance is shown in Table 3.1

Table 3.1 Predator UAV Performance Comparison

Weight

Fuel

(kg)

Weight

(kg)

Range

(km)

Velocity

Cruise

(m/s)

Velocity

Max

(m/s)

Cost per

Aircraft

(1e6 USD)

Calculated 201 1073.1 2159 44.0 57.5 17.9

Actual 300 1020 1240 37.5 60 5.0

%

Difference

33.3 5.21 74.1 17.3 4.16 258

P
re

d
at

o
r

D
es

ig
n
 S

tr
in

g

1

8.4 (m)

2 (m)

0

5 (deg)

0.25

0.4 (m)

2.74 (m)

2.74 (m)

2.74 (m)

3

0

0

0

2.1(m)

0.4 (m)

0.5

1

1

85 (kW)

49

Given the approximations necessary to fully decompose the complete geometry of

the Predator the errors seen in table are not as severe as may be interpreted on first

inspection. The weight of fuel within the algorithm is severely limited within the

geometry of the aircraft. No aircraft for example may have more than two thirds of its

total weight be fuel. For range estimation the application of a constant fuel consmption

regardless of airspeed and ignoring the decreases in efficiencies in propeller and shaft

power transmission can easily explain the almost doubled range. Total weight and

velocity provide good comparisons to the existing airframe. This suggests that the drag

model incorporated is reasonably accurate as is the power available curve solver for

reciprocating engines. The real concern is cost, Predators are sold in serialized batches of

four aircraft meaning the unit cost of 20 million USD is much more comparable to the

predicted cost per aircraft returned by the evaluation aircraft.

3.1.2 MQ-9 Reaper UAV Benchmark

The MQ-9 Reaper is a turboprop powered attack platform. It carries triple the

payload of the Predator, hauling 1700 kg of weaponry and equipment. The V-Tail design

supports a large aspect ratio wing that carries the majority of the aircrafts fuel and also

supports weapons hard points [19]. The Reaper and its approximated design string can be

seen in Figure 3.2.

50

Figure 3.2 Reaper UAV and Design String

The Reapers’s actual performance specifications compared to the evaluation routines

predicted performance is shown in Table 3.2

Table 3.2 Reaper Performance Comparison

Weight

Fuel

(kg)

Weight

(kg)

Range

(km)

Velocity

Cruise

(m/s)

Cost per

Aircraft

(1e6 USD)

Calculated 879 4621 2322 97.5 46.35

Actual 1814 4760 1852 103 16.05

%

Difference

51.5 2.9 25.3 5.339 189

R
ea

p
er

 A
p
p

ro
x
im

at
ed

 D
es

ig
n
 S

tr
in

g

1

10.05 (m)

2 (m)

0

0 (deg)

0.8

0.6 (m)

3.66 (m)

3.66 (m)

3.66 (m)

3

0

0

0

5.0 (m)

1.5 (m)

0.35

2

1

671 (kW)

51

Again, the errors in the approximate methods of reducing the Reaper’s geometry

are evident, primarily in fuel capacity and in range. The locking of fuel consumption to

be a single constant rate regardless of the flight conditions being evaluated only

exasperates this effect. The best match again is total weight which despite the fuel

discrepancy is fairly accurate. Cost continues to be greatly over estimated, though less so

than the Predator evaluation. Again, the addition of custom engine design and

development in the process instead of a stock engine and the limits of forty aircraft

delivered over five years contribute to this high cost discrepancy.

3.1.3 RQ-4 Global Hawk UAV Benchmark

The RQ-4 Global Hawk is a Group 5, long range, high endurance, reconnaissance

aircraft currently in use by the United States military and NASA. The V-Tail

conventional design is powered by a single jet turbofan and operates at a much higher

altitude than the Reaper and Predator. The wingspan sits at just under forty meters and

represents the upper span limit incorporated into the algorithms constraints. The Global

Hawk currently holds the record for longest unrefueled flight by a United States Air

Force vehicle at 34.3 hours [20]. The Global Hawk and its approximated design string

can be found in Figure 3.3.

52

Figure 3.3 Global Hawk UAVand Design String

The Global Hawk’s evaluated performance compared with its listed performance can be

found in Table 3.3.

Table 3.3 Global Hawk Performance Comparison

Weight

Fuel

(kg)

Weight

(kg)

Range

(km)

Endurance

(hours)

Velocity

Max

(m/s)

Cost per

Aircraft

(1e6 USD)

Calculated 6746 13846 19160 8.6 166.7 161.1

Actual[16] 6781 14628 22780 34+ 160 104*

%

Difference

0.52 5.3 15.9 74.0 4.19 35.4

*Base model estimation only

R
ea

p
er

 A
p
p

ro
x
im

at
ed

 D
es

ig
n
 S

tr
in

g

1

19.9 (m)

3 (m)

0

15 (deg)

0.3

1.8 (m)

5.0 (m)

4.0 (m)

4.0 (m)

3

0

0

0

4.0 (m)

1.5 (m)

0.35

3

1

36 (kN)

53

The design string much more closely approximates the approximated Global

Hawk as evidenced by the errors in weight of fuel, weight, and maximum velocity. Cost

error is much less exaggerated likely due to the size of the aircraft being more similar to

what the DAPCA IV model was intended to evaluate, something on the order of a Boeing

737 commercial liner as opposed to a Cessna 172. The range and endurance divergence is

not disqualifying for a simple reason. In the model the aerodynamics were assumed to be

that of a flat plate not an airfoil. The true lift to drag ratio of the Global Hawk is

estimated around 36 but the model predicts that a similarly sized UAV can only have a

max lift over drag ratio of 11. This difference is the main driver for under estimation of

both range and endurance.

3.2 Design Space Oddities

During the optimization routine, the design space is explored very rapidly. This

speed coupled with the large size of the design space as a whole allows for some designs

to become either dominant or just represent an interesting point in the design space. One

of these cases the “Death Star” case, never makes an impact on the actual finished result

but it can randomly appear at the beginning of the routine or after one of the extinction

event random repopulations. The second case the “Imploding Star” was discovered by

accident by allowing design in an unconstrained design space. This case exemplifies the

effect fuselage diameter holds over the objective function of cost only.

54

3.2.1 The Death Star Case

During the random design string setup, the fuselage occasionally becomes so

large that the lifting surfaces become completely enclosed within the fuselage. The

resulting body often has two huge engines in the upper echelons of the design space. The

design string can be seen in Table 3.4.

Table 3.4 The Death Star Design String

The Death Star Design String

3 2 1.25 0 0 .2 5 .1 5 5 1 0 0 0 0 0 0 3 2 300

Despite its appearance as a feasible design, the performance requirements find it

desperately lacking. It weighs much more than a typical aircraft of similar scale in part

due to large engines but mostly due to the enormous volume available for fuel. Perhaps

even more disqualifying is its inability to generate lift with no exposed wing surface area,

taken with a coefficient of drag about ten and a negative rate of climb at sea level this

design string represents an almost comical solution. However, it does appear throughout

the optimization routine when random design strings are generated.

3.2.2 The Imploding Star Case

In early versions of the optimization routine no constraint was placed on the low

end of design variables. Since cost is the primary objective function rather than minimize

size and material needs of the aircraft as a whole, a single variable, fuselage radius, gene

55

seven, which directly controls the cost associated with all three sections of the fuselage,

diverged towards negative infinity causing the cost to also diverge towards negative

infinity. Thus, the design string in Table 3.5 became the leader and continued to

propagate forward.

Table 3.5 The Imploding Star Design String

Imploding Star Design String

1 a b c d e -1e38 f g h 1 i j k l m o 1 1 p

The lettered genes represent values that due to the extreme value of the diameter

the value is unable to resolve in the limited format in MATLAB. While this case is not

possible within the fully constrained framework presented by this research, it is worth

noting the power of optimization routines to exploit even the smallest weakness in the

coded limitations. In this case the routine successfully located and abused the diameter of

the fuselage in regards to surface area to completely undermine the utility of the cost

function.

56

 CHAPTER 4

 AIRCRAFT DESIGN

4.1 Locked Choice Optimization

 To fully evaluate the algorithms capability to produce a viable aircraft, two test

cases were run solely based on cost. In each case the discrete phenotype variables in the

design string were locked using equality constraints. This cuts the design space into a

more limited partition. All design runs are set to run ten times until 10000 generations

with no improvement or when a quarter of a million generations have been generated.

The objective function for these cases is given as

𝑂 = −
𝐶𝑃𝐴

1000
− 𝐺 (4.1)

Where CPA is cost per aircraft and G is penalty from the constraint violations.

 The missions listed in the following case studies are primarily payload hauls at

minimum cost however in the unrestricted cases immediately following these cost only

analyses the mission types vary based on performance requirements like takeoff and

landing distance, maximum velocity, range, endurance. The resulting best design of ten

trial runs is then displayed as well as a plot of the change in the leader’s objective

function value as the generations progress.

57

4.1.1 Design of Traditional Turboprop V-Tail Group 4

Mission: Low Cost Group 4 UAV Operating at 5000 m

Weight Payload 500 kg

Constraints: Traditional Planform Only Gene 1 set to 1

 V-Tail Only Gene 11 set to 3

Turboprop Only Gene 18 set to 2

Single Engine Gene 19 set to 1

The resulting design is shown in Figure 4.1 with its accompanying design string.

58

Figure 4.1 Low Cost Group 4 UAV and Design String

The aircraft defined above has the following performance evaluation

Table 4.1 Low Cost Group 4 UAV Evaluation

Weight

 (kg)

Weight

Fuel

(kg)

Range

(km)

Endurance

(hours)

Rate of

Climb

(m/s)

L/D

max

Vmax Cost per

Aircraft

(millions

USD)

3000 1821 1875 27.2 3.0 2 31 9.5

G
ro

u
p
 4

 C
o
st

 O
p
ti

m
iz

at
io

n
 D

es
ig

n
 S

tr
in

g

1

6.6925(m)

3.763(m)

0.122(rad)

0.476(rad)

0.2029

0.2070 (m)

1.2012 (m)

1.4998 (m)

1.0642 (m)

3

0

0

0

2.4 (m)

.500

0.3887

2

1

458 (kW)

59

Attempting to conserve cost the algorithm severely cut the size of the engine

mounted within the fuselage. In so doing the maximum velocity greatly suffered when

compared to the turboprop Reaper. The wings themselves are incredibly thin and tapered.

They are also severely swept. This appears to have resulted from attempting to provide a

requisite static margin of 15% exploiting sweep to push the aerodynamic center behind

the center of gravity rather than increase the length of various fuselage sections.

Additionally, four of the ten runs exploited a weak constraint on tail sizing taking the

constraint penalty of 2000 and gaining the value of the tail instead of putting the requisite

tail or any tail at all. This is demonstrated in the divergence displayed in Figure 4.2.

Figure 4.2 Group 4 Low Cost UAV Convergence

60

4.1.2 Traditional Turbofan V-Tail Group 5

Mission: Stable Low Cost Group 5 UAV Operating at 10000 m

Weight Payload 1700 kg

Constraints: Traditional Planform Only Gene 1 set to 1

 V-Tail Only Gene 11 set to 3

 Turbofan Only Gene 18 set to 3

Single Engine Gene 19 set to 1

 The Resulting aircrafts and its design string can be seen in Figure 4.3.

Figure 4.3 Low Cost Group 5 UAV and Design String

G
ro

u
p
 5

 C
o
st

 O
p
ti

m
iz

at
io

n
 D

es
ig

n
 S

tr
in

g

1

19.99 (m)

4.491 (m)

0.1243(rad)

0.1924(rad)

0.3256

0.2040 (m)

1.0036 (m)

3.7769 (m)

0.5001 (m)

3

0.2102 (m)

0.0317 (m)

0.9160

4.6606 (m)

1.0244 (m)

0.8498

2

1

40 (kN)

61

The performance details of the aircraft shown in Figure 4.3 are given in Table 4.2

Table 4.2 Low Cost Group 4 UAV Evaluation

Weight

 (kg)

Weight

Fuel

(kg)

Range

(km)

Endurance

(hours)

Rate of

Climb

(m/s)

L/D

max

Vmax Cost per

Aircraft

(1e6

USD)

18010 12006 8313 10.3 4.1353 8.274 72.26 67.8

This aircraft is almost exactly two thirds fuel by weight, likely lending to its high

range and endurance. Uniquely the wing dominates the fuselage to the point where the

basic shape resembles more of a flying wing than a traditional planform aircraft. Again,

the stability is achieved from wing sweep and not sizing of the fuselage. The engine size

is comparable to the Global Hawk though it travels at a significantly slower velocity, in

part due to its lower operational altitude. The fuselage diameter took the brunt of the cost

optimization, as the fuselage surface area is among the driving cost factors. Despite this

exploitation, the aircraft is definitely feasible, however, with such a limited internal

volume it is unlikely a continued design would be permitted to have such a small free

space available. The convergence can be seen in Figure 4.4

62

Figure 4.4 Low Cost Group 5 UAV Convergence

63

4.2 Free Space Optimization

The following designs were allowed complete use of the design space. The

objective function is also changed to incorporate various performance metrics depending

on the mission parameters. In example a mission type similar to that of the Global Hawk

would reward all designs with a range and endurance over the requested value. The

objective functions are listed with the mission type in each case study.

4.2.1 Group 4 UAV

The objective function for this optimization routine is defined as:

𝑂 =
𝑅𝑎𝑛𝑔𝑒−3000

1000
+ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 − 5 +

𝑉𝑚𝑎𝑥−120

100
−

𝐶𝑃𝐴

1000
− 𝐺 (4.2)

Mission: Low Cost High Speed Group 4 UAV

Range: 3000 km

Endurance: 5 hours enforced as a hard constraint

Vmax: > 120 m/s

The aircraft and the resulting design string can be seen in Figure 4.5 its performance can

be seen in Table 4.3.

64

Figure 4.5 Group 4 UAV and Design String

Table 4.3 Group 4 UAV Evaluation

Weight

 (kg)

Weight

Fuel

(kg)

Range

(km)

Endurance

(hours)

Rate of

Climb

(m/s)

L/D

max

Vmax Cost per

Aircraft

(1e6

USD)

2664 1347 3117 3.0 3.27 2.4 52.2 22.9

The aircraft returned by the optimization routine is unable to complete its

requested mission with an endurance of only three hours instead of the requested five

triggering a constraint violation penalty. This brings into question the validity of the

G
ro

u
p
 4

 C
o
st

 O
p
ti

m
iz

at
io

n
 D

es
ig

n
 S

tr
in

g

1

6.3589(m)

0.6375(m)

0.1252(rad)

0.0192(rad)

0.9949

1.9099 (m)

1.000 (m)

1.3814 (m)

1.3833 (m)

1

0.9925 (m)

0.3349 (m)

0.4003

1.5063 (m)

1.4838 (m)

0.3502

3

1

15 (kN)

65

supposed range as even at its maximum velocity traveling for the entire time of its

maximum endurance the aircraft can only realistically travel 564 kilometers. All ten cases

repeat this discrepancy runs in which convergence is not achieved within the entirety of

250,000 iterations. This is the result of over constraint of the design space. The

combination of weight limitations, altitude requirements, and performance requirements,

combined with the geometry constraints created an untenable design space. This failure

to find a solution can be seen in Figure 4.6.

Figure 4.6 Group 4 UAV Convergence

66

4.2.2 Stable Stealth Group 5 UAV

The objective function for this case is defined as:

𝑂 =
𝑅𝑎𝑛𝑔𝑒−12000

1000
+ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 − 8 +

𝑉𝑚𝑎𝑥−150

100
− 𝑅𝐶𝑆 ∗ 10 −

𝐶𝑃𝐴

1000
− 𝐺 (4.3)

Mission: Group 5 Low Cost Stable Stealth Long Range

Weight Payload: 1250 kg

Range: 12000 km

Endurance: 8 hours

Vmax: > 150 m/s

Static Margin> 15% enforced as a constraint

With the addition of a stability constraint the possibility of a flying wing is greatly

diminished. The resulting aircraft can be seen in Figure 4.7.

67

Figure 4.7 Stealth Group 5 UAV and Design String

Table 4.4 Stealth Group 5 UAV Performance

The resulting aircraft looks less like a typical UAV and more akin to a long-range

cruise missile. Comparing the traits, a long sleek fuselage, narrow swept wings, high

maximum speed, high range and endurance, small control surfaces and more than half of

its weight is fuel, the result is more pronounced in its favoritism towards this missile

G
ro

u
p
 4

 C
o
st

 O
p
ti

m
iz

at
io

n
 D

es
ig

n
 S

tr
in

g

1

9.7439(m)

0.9825(m)

0.1257(rad)

0.5236(rad)

0.9834

1.709 (m)

8.203 (m)

4.444 (m)

1.0734 (m)

3

0

0

0

1.742 (m)

.0.8519 (m)

0.3524

3

1

27 (kN)

Weight

 (kg)

Weight

Fuel

(kg)

Range

(km)

Endurance

(hours)

Rate of

Climb

(m/s)

L/D

max

Vmax

(m/s)

RCS

dB m2

Cost per

Aircraft

(1e6

USD)

11122 5068 19854 16.08 29.47 22.7 240 45.6 140.5

68

planform, but the basic traits can be observed in the cost only assessment of the Group 4

UAVs as well. The convergent behavior of this case is very different than the locked

choice cases Figure 4.8. Instead the objective function varies wildly as different discrete

variables are tried in combination often resulting in harsh constraint penalties and then

quickly rebounding. Eventually the algorithm stabilizes and follows the more traditional

convergence previously seen in the cost only cases.

Figure 4.8 Stealth Group 5 UAV Convergence

69

4.3 Additional Design Concepts

4.3.1 Flying Wing Twin Engine Stealth Bomber

When running the stealth case above the solver will attempt to reconcile static

margin. Naturally flying wings have difficulty obtaining high to moderate static margins

by simple geometry. The same type of objective function was run again this time with no

constraint placed on stability and added emphasis on stealth.

Mission: Stealth Group 5 UAV

𝑂 =
𝑅𝑎𝑛𝑔𝑒−7000

1000
+ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 − 4 +

𝑉𝑚𝑎𝑥−120

100
− ⋯

…𝑅𝐶𝑆 ∗ 1000 −
𝐶𝑃𝐴

1000
− 𝐺 (4.4)

Max velocity> 120 m/s

Range > 7000 km

Endurance > 4 hours

Weight Payload = 2200 kg

The resulting aircraft and its design string are displayed in Figure 4.9.

70

Figure 4.9 Stealth Flying Wing UAV and Design String

The performance of the resulting aircraft is given in Table 4.5.

Table 4.5 Stealth Flying Wing UAV Evaluation

G
ro

u
p
 4

 C
o
st

 O
p
ti

m
iz

at
io

n
 D

es
ig

n
 S

tr
in

g

3

14.95(m)

4.929(m)

0.1257(rad)

0.5236(rad)

0.2

0.404 (m)

2.615 (m)

0.68 (m)

1.637 (m)

1

0

0

0

0

0

0

3

2

22 (kN)

Weight

 (kg)

Weight

Fuel

(kg)

Range

(km)

Endurance

(hours)

Rate of

Climb

(m/s)

L/D

max

Vmax

(m/s)

RCS

dB m2

Cost per

Aircraft

(1e6

USD)

17997 11998 7332 5.5 7.8 8.94 129 40.08 83.2

71

This aircraft possesses a stealthier airframe than the stable stealth Group 5 UAV,

however its range and endurance are significantly lower likely do to the inclusion of two

engines. However, with the inclusion of a heavier weighted stealth consideration the twin

engines are a viable solution. The geometry of the engines is included in the projected

area that reflects radar signals, therefore two smaller engines despite the increased cost

was chosen over a single large engine to reduce the radar response. This case converged

very quickly most likely because of the heavy stealth weighting limiting the design space

to flying wings almost immediately. This convergence behavior is shown in Figure 4.10.

Figure 4.10 Stealth Flying Wing UAV Convergence

72

4.3.2 Short Field Mid-Range Ground Attacker

Many UAVs perform strike missions from forward operating bases. These bases

have significantly shorter runways adding an additional constraint to the design space.

Mission: Short Range Forward Operating Attacker

𝑂 =
𝑅𝑎𝑛𝑔𝑒−3000

1000
+

𝑉𝑚𝑎𝑥−140

100
− 𝐺 (4.5)

Max velocity> 140 m/s

Range > 3000 km

Weight Payload = 1750 kg

Runway Length <2000m

The resulting aircraft and its design string are displayed in Figure 4.11.

73

Figure 4.11 Fast Attack Canard UAV and Design String

The aircrafts performance evaluation can be found in Table 4.6

Table 4.6 Fast Attack Canard UAV Evaluation

G
ro

u
p
 4

 C
o

st
 O

p
ti

m
iz

at
io

n
 D

es
ig

n
 S

tr
in

g

2

8.34(m)

2.23(m)

0.0179(rad)

0.000 (rad)

0.200

1.840 (m)

1.463 (m)

1.278 (m)

4.993 (m)

1

4.156(m)

1.382(m)

0.56

2.94 (m)

2.46 (m)

.970

3

2

50 (kN)

Weight

 (kg)

Weight

Fuel

(kg)

Range

(km)

Endurance

(hours)

Rate of

Climb

(m/s)

L/D

max

Vmax

(m/s)

Cost per

Aircraft

(1e6

USD)

11092 4146 3510 1.0 63.83 3.66 184 83.2

74

Due to the added constraint of the shortened runway the aircraft returned by the

optimization cycle has two 50 kN engines. These provide a rate of climb of near 64 m/s.

While this increase in thrust accommodates the short runway the velocity condition

coupled with the twin engines drains fuel very quickly. The range requirement was met

and the aircrafts profile does suggest that it fulfills the mission of a forward operating

quick strike UAV. The convergence of this objective function is not similar to any one

case. The objective function again bounces as in the stealth bomber case; however, the

bouncing continues throughout the optimization routine. The objective function was

shifted down by a value of 5000 to accommodate displaying a logarithmic plot of the

designs improvement. The convergence plot is displayed in Figure 4.12.

Figure 4.12 Fast Attack Canard UAV Convergence

75

CHAPTER 5

 CONCLUSION

5.1 Conclusion

 The algorithm presented in this research has demonstrated a capacity to

synthesize an UAV from a set of mission requirements using cost and performance

metrics in its optimization routine. The reliability of the Modified Breeder Pool Routine

has also been demonstrated. While the algorithm is capable of providing a feasible

aircraft, it cannot replicate the knowledge of an experienced designer, and as such should

be considered for use only under the direct supervision of an experienced aircraft

designer. While the proposed algorithm can in fact augment the design period and

provide a reasonable starting point for the continuance of the design process it suffers

from three major flaws.

 The DAPCA IV cost model can be applied as a rough estimate for unmanned

aerial vehicle program cost and per vehicle cost, but the implementation of a more

rigorous model explicitly encompassing the extreme size range of UAVs would benefit

the accuracy of the cost forecast.

 The results of the algorithm layout a major shortcoming in aerodynamic force

prediction, particularly with lift. The flat plate assumption used as the basis for the

aerodynamic buildup is too simplified even for this preliminary case. A method

implementing the use of airfoil sections even in the two-dimensional case would provide

a new layer of accuracy in this early conceptual design phase.

76

 Lastly the majority of the aircraft designed by the algorithm have insufficient

volume to fully perform the mission in a reasonable capacity. To counter this, additional

constraints on the total volume and the useable volume of the aircraft need to be

implemented. This would ensure that the returned aircraft can hold its assigned payload

and still have room for fuel and other systems and look more similar to typical aircraft.

5.2 Future Work

 The genetic optimization routine implemented within will serve as a building

block for more sophisticated versions of this routine. The end goal being to provide

aircraft designers a way to immediately see design tradeoffs regarding choices in both

discrete and continuous geometries. With the refined results from the improved version

of the optimization routine, further optimization using derivative based methods can be

implemented with the basic geometry output from the genetic algorithm. If implemented

successfully the design process could be shortened substantially and the mission

performance of the final aircraft greatly increased.

77

REFERENCES

[1] Anderson, John D. Aircraft Performance and Design. Boston: WCB/McGraw-Hill,

1999.

[2] Arora, Jasbir S. Introduction to Optimum Design. 3rd ed. Boston, MA: Academic,

2011.

[3] Callero, Monti. Assessment of Nonlethal Unmanned Aerial Vehicles for Integration

with Combat Aviation Missions. Briefing. Santa Monica: RAND Corporation,

1995.

[4] Dauwalter, Charles R., and E. Russ Althof, eds. AIAA Aerospace Design Engineers

Guide. 6th ed. Reston, VA: American Institute of Aeronautics and Astronautics,

2012.

[5] Elbeltagi, Emad, Tarek Hegazy, and Donald Grierson. "Comparison among Five

Evolutionary-based Optimization Algorithms." Advanced Engineering

Informatics 19.1 (2005): 43-53.

[6] Lewontin, Richard. "The Genotype/Phenotype Distinction." Stanford University.

Stanford University, 23 Jan. 2004.

[7] Kenway, Gaetan K. W., and Joaquim R. R. A. Martins. "Multipoint High-Fidelity

Aerostructural Optimization of a Transport Aircraft Configuration." Journal of

Aircraft 51.1 (2014): 144-60.

[8] Kontogiannis, Spyridon G., and John A. Ekaterinaris. "Design, Performance

Evaluation and Optimization of a UAV." Aerospace Science and Technology 29.1

(2013): 339-50.

[9] Martins, Joaquim R. R. A., and Andrew B. Lambe. "Multidisciplinary Design

Optimization: A Survey of Architectures." AIAA Journal 51.9 (2013): 2049-075.

[10] McConnico, John Beck, and Patrick W. Moore. "Reciprocating Engines." WADE:

World Alliance for Decentralized Energy. WADE, Jan. 2006.

[11] Niţă, Mihaela, and Dieter Scholz. Estimating the Oswald Factor from Basic Aircraft

Geometrical Parameters. Deutsche Gesellschaft für Luft-und Raumfahrt-

Lilienthal-Oberth eV, 2012.

78

[12] Raymer, Daniel P. Aircraft Design: A Conceptual Approach. 5th ed. Reston, VA:

American Institute of Aeronautics and Astronautics, 2012.

[13] Raymer, Daniel P. Enhancing Aircraft Conceptual Design Using Multidisciplinary

Optimization. Thesis. Royal Institute of Technology, 2002. Stockholm: Tekniska

Högsk., 2002.

[14] Samoylovitch, O., and D. Strelets. "Determination of the Oswald Efficiency Factor

at the Aeroplane Design Preliminary Stage." Aircraft Design 3 (2000): 167-74.

[15] Sobester, Andras, and Andy J. Keane. "Multidisciplinary Design Optimization of

UAV Airframes (AIAA)." 47th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, Structures. Newport, Rhode

Island, May 2006.

[16] Tianyuan, Hu, and Yu Xiongqing. "Aerodynamic/Stealthy/Structural

Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle."

Chinese Journal of Aeronautics 22.4 (2009): 380-86.

[17] UAS Task Force. Department of Defense UAS Integration Plan. Rep. no. 1-

7ABA52E. Washington D.C.: United States Department of Defense, 2011.

[18] USAF. "MQ-1B Predator Fact Sheet." MQ-1B Predator Fact Sheet Display. United

States Air Force, 2015. Web. 28 Oct. 2016.

[19] USAF. "MQ-9 Reaper Fact Sheet." MQ-9 Reaper Fact Sheet Display. United States

Air Force, 2015. Web. 28 Oct. 2016.

[20] USAF. "RQ-4 Fact Sheet." RQ-4 Global Hawk Fact Sheet Display. United States

Air Force, 2014. Web. 28 Oct. 2016.

[21] Weatherington, Dyke. Unmanned Aircraft Systems. Issue brief no. 10-S-1660.

Washington D.C.: United States Department of Defense, 2010.

79

APPENDIX A

Performance Equations from [1][4][11]

𝑅𝑎𝑛𝑔𝑒 𝑃𝑟𝑜𝑝 =
1

𝐶
∗

𝐿

𝐷
∗ ln (

𝑊𝑜

𝑊𝑓
) (A.1)

𝑅𝑎𝑛𝑔𝑒 𝐽𝑒𝑡 =
2

𝐶
∗

√
2

𝜌𝑆
𝐶𝐿

1
2

𝐶𝐷
∗ (𝑊𝑜

1

2 − 𝑊1

1

2) (A.2)

𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝑃𝑟𝑜𝑝 =
1

𝐶
∗

√2𝜌𝑆𝐶𝐿

3
2

𝐶𝐷
∗ (𝑊1

−
1

2 − 𝑊0

−
1

2) (A.3)

𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝐽𝑒𝑡 =
1

𝐶
∗

𝐿

𝐷
∗ ln (

𝑊𝑜

𝑊𝑓
) (A.4)

(
𝐿

𝐷
)max =

1

2
∗ √

𝜋𝑒𝐴𝑅

𝐶𝐷0
 (A.5)

𝑉𝑠𝑡𝑎𝑙𝑙 = √(2 ∗ 𝑊 ∗ 1)/(𝜌 ∗ 𝑆 ∗ 𝐶𝐿) (A.6)

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑙𝑖𝑚𝑏 =
𝑅

𝐶
=

𝑇∗𝑉−𝐷∗𝑉

𝑊
= (𝑒𝑥𝑐𝑒𝑠𝑠 𝑝𝑜𝑤𝑒𝑟)/𝑊 (A.7)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑥 𝑡𝑢𝑟𝑛 = [
2∗(

𝑊

𝑆
)

𝜌
]1/2 ∗ (

𝐾

𝐶𝐷0
)

1

4

 (A.8)

max 𝑡𝑢𝑟𝑛 𝑙𝑜𝑎𝑑 = 𝑛𝑚𝑎𝑥 = (
𝑇

𝑊

√𝐾𝐶𝐷0
− 1)1/2 (A.9)

80

max 𝑡𝑢𝑟𝑛 𝑟𝑎𝑡𝑒 = 𝜔 =
1

2
∗ 𝜌 ∗ 𝑉2 ∗ √

𝜌
𝑊

𝑆

∗ [
𝑇

𝑊

2𝐾
− (

𝐶𝐷0

𝐾
)

1

2
] (A.10)

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑢𝑟𝑛 = 𝑅𝑚𝑖𝑛 =

(

4𝐾 ∗
𝑊

𝑆

(𝑔∗𝜌∗(
𝑇

𝑊
)∗√1−

4𝐾𝐶𝐷0

(
𝑇
𝑊

)
2

)

 (A.11)

𝑡𝑎𝑘𝑒𝑜𝑓𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑜𝑙𝑙 = 𝑠𝑔 ≈
1.21∗(

𝑊

𝑆
)

(𝑔𝜌∗𝐶𝐿𝑚𝑎𝑥(
𝑇

𝑊
))

 (A.12)

𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1.1 ∗ 𝑉𝑠𝑡𝑎𝑙𝑙 +
1.12∗(

𝑊

𝑆
)

𝑔𝜌𝐶𝐿𝑚𝑎𝑥[
𝐷

𝑊
+𝜇𝑟(1−

𝐿

𝑊
)]

 (A.13)

81

APPENDIX B

MATLAB Code

Main Driver Script

%geneticmainscript

close all

clc

n=1;

while n<=10

tic

z=1;

m=0;

itermax=250000;

lscore=zeros(itermax+1,1);

lavera=zeros(itermax+1,1);

lindex=zeros(itermax+1,1);

convergence=false;

START=zeros(1,20,500);

format long

A=getstart(START);

AIRCRAFT=A;

AIRCRAFT=getcorrect(AIRCRAFT);

[O,Av,G]=evaluate(AIRCRAFT);

[maxO,maxI]=max(O);

[C,D]=sort(O,'descend');

leader=AIRCRAFT(:,:,maxI);

lscore(z)=maxO;

lindex(z)=maxI;

lavera(z)=Av;

while convergence==false

 if mod(m,1000)==0

 AIRCRAFT(1,:,1)=leader;

 AIRCRAFT(1,:,2:end)=getstart(START(:,:,1:end-1));

 AIRCRAFT=getcorrect(AIRCRAFT);

 end

 if z>=2

 [O,Av,G]=evaluate(AIRCRAFT);

 [maxO,maxI]=max(O);

 leader=AIRCRAFT(:,:,maxI);

 lscore(z)=maxO;

 lindex(z)=maxI;

 lavera(z)=Av;

 if lscore(z)>lscore(z-1)

 m=0;

82

leader=AIRCRAFT(:,:,maxI);

 [C,D]=sort(O,'descend');

 elseif lscore(z)<=lscore(z-1)

 m=m+1;

 leader=AIRCRAFT(:,:,maxI);

 [C,D]=sort(O,'descend');

 end

 end

 if z>itermax || (m>=10000 && G(1)==0)

 convergence=true;

 end

 [AIRCRAFT]=BreederPool(leader,AIRCRAFT,START,D);

AIRCRAFT=getcorrect(AIRCRAFT);

 z=z+1;

end

toc

[O,Range,Endurance,RCmax,RCmaxalt,edih,W_S,TorP_W,LDmax,CLmax,Vmax,Vmax

Range,VmaxEndurance,Vstall,nMaxRate,MinTurnRadius,StaticMargin,RCS,Cost

,CPA,Swet,Dblade,Deng,Heng,Leng,G,W,WFuel,nmaxturn,AR]=evaluatefinal(AI

RCRAFT);

 R(n)=Range(1);

 E(n)=Endurance(1);

 Vm(n)=Vmax(1);

 Vr(n)=VmaxRange(1);

 Ve(n)=VmaxEndurance(1);

 Co(n)=Cost(1);

 CPAn(n)=CPA(1);

 B(:,:,n)=leader;

 Score(:,n)=lscore;

 Vio(n)=G(1)

 n=n+1

83

Function getstart

function [START]=getstart(AIRCRAFT)

for i=1:length(AIRCRAFT)

 %Design String

 AIRCRAFT(1,1,i)=randi(3);

%AC Type 1

 %Wing Variables

 AIRCRAFT(1,2,i)=2+rand*18;

%Semispan 1 (m) 2

 AIRCRAFT(1,3,i)=0.5+7.5*rand;

%Root Chord (m) 3

 AIRCRAFT(1,4,i)=-pi./25+rand.*pi/12.5;

%Dihedral (rad) 4

 AIRCRAFT(1,5,i)=-pi./4+rand.*2*pi/4;

%Sweep c/4 (rad) 5

 AIRCRAFT(1,6,i)=.25+rand*.75;

%Taper Span 6

 %Fuselage Variables

 AIRCRAFT(1,7,i)=.2+3.8*rand;

%Diameter Fuselage (m) 7

 AIRCRAFT(1,8,i)=.5+rand.*9;

%Length Main Fuselage (m) 8

 AIRCRAFT(1,9,i)=1.3*AIRCRAFT(1,7,i)*rand;

%Length Nose Section (m) 9

 AIRCRAFT(1,10,i)=3.8*AIRCRAFT(1,7,i)*rand;

%Length Tail Section (m) 10

 %Tail Variables

 AIRCRAFT(1,11,i)=randi(3);

%Tail Type Conventional-1 T-Tail-2 V-Tail 45 deg-3 11

 %Horizontal Tail

 AIRCRAFT(1,12,i)=1/4.*AIRCRAFT(1,2,i);

%Horizontal Tail Span (m) 12

 AIRCRAFT(1,13,i)=1+3*rand;

%Horizontal Root Chord (m) 13

 AIRCRAFT(1,14,i)=.35+.55*rand;

%Taper Ratio Horizontal Tail 14

 %Vertical Tail

 AIRCRAFT(1,15,i)=1/4.*AIRCRAFT(1,2,i);

%Vertical Tail Span (m) 15

 AIRCRAFT(1,16,i)=1+2*rand;

%Vertical Root Chord (m) 16

 AIRCRAFT(1,17,i)=.35+.55*rand;

%Taper Ratio Vertical Tail 17

 %Engine Variables

 AIRCRAFT(1,18,i)=randi(3); %1 piston,2 turboprop,3 turbofan 18

84

 AIRCRAFT(1,19,i)=randi(2);

%number of engines limit 2 19

 AIRCRAFT(1,20,i)=15+rand.*3700;

%power or thrust per engine 20

end

START=AIRCRAFT;

end

function getcorrect

function [AIRCRAFT]=getcorrect(A)

%Function Returns feasible values for aircraft based on design string

%choices type engine type number of engines and type of tail

A(:,1,logical(A(1,1,:)<1))=1;

A(:,1,logical(A(1,1,:)>3))=3;

A(:,11,logical(A(1,11,:)<1))=1;

A(:,11,logical(A(1,11,:)>3))=3;

A(:,18,logical(A(1,18,:)<1))=1;

A(:,18,logical(A(1,18,:)>3))=3;

A(:,19,logical(A(1,19,:)<1))=1;

A(:,19,logical(A(1,19,:)>2))=2;

%limit choice constraints

A(:,1,logical(A(1,1,:)~=2))=2;

% A(:,11,logical(A(1,11,:)~=3))=3;

% A(:,18,logical(A(1,18,:)~=3))=3;

% A(:,19,logical(A(1,19,:)~=2))=1;

TTail=logical(A(:,11,:)==2);

A(:,13,TTail)=A(:,16,TTail(:)).*A(:,17,TTail(:));

ACc=logical(A(:,1,:)==2);

A(:,11,ACc(:))=1;

ACw=logical(A(:,1,:)==3);

A(:,11,ACw(:))=1;

A(:,12,ACw(:))=0;

A(:,13,ACw(:))=0;

A(:,14,ACw(:))=0;

A(:,15,ACw(:))=0;

A(:,16,ACw(:))=0;

A(:,17,ACw(:))=0;

A(A(:,5,ACw(:))>50)=50*pi./180;

A(A(:,5,ACw(:))>50)=15.*pi./180;

APo=logical(A(1,18,:)==1 & A(1,20,:)>200);

A(:,20,APo(:))=200;

85

APu=logical(A(1,18,:)==1 & A(1,20,:)<75);

A(:,20,APu(:))=75;

ATo=logical(A(1,18,:)==2 & A(1,20,:)>3600);

A(:,20,ATo(:))=3600;

ATu=logical(A(1,18,:)==2 & A(1,20,:)<370);

A(:,20,ATu(:))=370;

ATFo=logical(A(1,18,:)==3 & A(1,20,:)>300);

A(:,20,ATFo(:))=300;

ATFu=logical(A(1,18,:)==3 & A(1,20,:)<10);

A(:,20,ATFu(:))=10;

A(logical(A(1,:,:)<0))=.1;

AIRCRAFT=A;

end

function BreederPool

function [AIRCRAFT] = BreederPool(leader,A,START,D)

AIRCRAFT=START;

RStart=zeros(1,20,100);

mut=2;

AIRCRAFT(1,:,1)=leader(1,:,1);

AIRCRAFT(:,:,2:1:100)=A(:,:,D(2:1:100));

for n=101:1:400

 s=randi(19)+1;

 m=randi(100);

 q=randi(100);

AIRCRAFT(:,1:s-1,n)=AIRCRAFT(:,1:s-1,m);

AIRCRAFT(:,s:end,n)=AIRCRAFT(:,s:end,q);

 for d=1:1:mut

 x=randi(2);

 z=randi(20);

 r=randi(100);

 if x==1

 if AIRCRAFT(1,z,n)==0

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1/r;

 elseif z==1

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 elseif z==11

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

86

 elseif z==18

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 elseif z==19

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 else

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n).*1/r+AIRCRAFT(1,z,n);

 end

 elseif x==2

 if AIRCRAFT(1,z,n)==0

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1/r;

 elseif z==1

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 elseif z==11

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 elseif z==18

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 elseif z==19

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n)+1;

 else

 AIRCRAFT(1,z,n)=AIRCRAFT(1,z,n).*(-

1)./r+AIRCRAFT(1,z,n);

 end

 end

 end

 end

AIRCRAFT(:,:,401:1:500)=getstart(RStart);

end

Function getSs

function [S,Sexposed,Sfuse,Shorz,Svert,Sfusen,Sfusem,Sfuset]=getSs(A)

indvtail=find(A(1,11,:)==3);

S=A(1,2,:).*A(1,3,:).*(1+A(1,6,:));

%S Wing b/2*cr*(1+taper)

Sexposed=S-(A(1,7,:)./2).*A(1,3,:).*(1+A(1,6,:));

%Sexposed Wing

Sfusem=2.*pi.*(A(1,7,:)./2).*A(1,8,:);

%Sfuse main

Sfusen=((pi.*A(1,7,:)./2)./(6.*A(1,9,:)).*(((pi.*A(1,7,:)./2).^2+4.*A(1

,9,:).^2).^(3/2)-(A(1,7,:)./2).^3)); %Sfuse nose

Sfuset=((pi.*A(1,7,:)./2)./(6.*A(1,10,:)).*(((pi.*A(1,7,:)./2).^2+4.*A(

1,10,:).^2).^(3/2)-(A(1,7,:)./2).^3)); %Sfuse tail

87

Swingcut=-2.*(.12.*(A(1,3,:)).*.8);

%SfuseWing intersect

Sfuse=Sfusem+Sfusen+Sfuset+Swingcut;

Shorz=A(1,12,:).*A(1,13,:).*(1+A(1,14,:));

Svert=1/2.*A(1,15,:).*A(1,16,:).*(1+A(1,17,:));

Svert(indvtail(:,1))=Svert(indvtail(:,1)).*2;

end

Function getSwet

function

[Swetwing,Swethorz,Swetvert,Swet]=getSwet(Sexp,Shorz,Svert,Sfuse)

tcwing=.12;

tctail=.12;

Swetwing=Sexp.*(1.977+0.52.*tcwing);

Swethorz=Shorz.*(1.977+0.52.*tctail);

Swetvert=Svert.*(1.977+0.52.*tctail);

Swet=Swetwing+Sfuse+Swethorz+Swetvert;

end

Function getAspectRatio

function[AR,AReff,ARvert,ARhorz]=getAspectRatio(A,S,Svert,Shorz)

AR=((2.*A(1,2,:)).^2)./S; %aspect ratio

beff=2.*(A(1,2,:)./cos(A(1,4,:)));

Seff=beff./2.*A(1,3,:).*(1+A(1,6,:));

AReff=beff.^2./Seff;

clear beff

clear Seff

ARvert=((2*A(1,15,:).^2))./Svert;

ARhorz=((2*A(1,12,:).^2))./Shorz;

end

Function getEnginesize

function [Weng,Leng,Deng,Heng,SFC,Dblade] = getEnginesize(A)

%Engine Size and Characteristics calculated from Aircraft Design String

A

BPR=2;

%Bypass Ratio TurboFan

88

ind1=find(A(:,18,:)==1);

%piston indices 2770 rpm 45-225 kW

ind2=find(A(:,18,:)==2);

%turboprop indices 370-3728 kW

ind3=find(A(:,18,:)==3);

%turbofan indices 15000-300000 N max Thrust

%Prop inline

Weng(:,:,ind1(:,1))=2.98.*(A(:,20,ind1(:,1))).^0.780;

%kg

Leng(:,:,ind1(:,1))=0.17.*(A(:,20,ind1(:,1))).^0.424;

%m

Deng(:,:,ind1(:,1))=0.5;

%m

Heng(:,:,ind1(:,1))=0.5;

%m

SFC(:,:,ind1(:,1))= 0.068.*A(:,19,ind1(:,1));

%Cbhp mg/W-s

Dblade(:,:,ind1(:,1))=0.52.*(A(:,20,ind1(:,1))).^0.25;

%m

%Turboprop

Weng(:,:,ind2(:,1))=0.96.*(A(:,20,ind2(:,1))).^0.803;

%kg

Leng(:,:,ind2(:,1))=0.12.*(A(:,20,ind2(:,1))).^0.373;

%m

Deng(:,:,ind2(:,1))=0.25.*(A(:,20,ind2(:,1))).^0.120;

%m

Heng(:,:,ind2(:,1))=0;

%m

SFC(:,:,ind2(:,1))=0.085.*A(:,19,ind2(:,1));

%Cbhp mg/W-s

Dblade(:,:,ind2(:,1))=0.52.*(A(:,20,ind2(:,1))).^0.25;

%m

%Turbofan

Weng(:,:,ind3(:,1))=14.7.*(A(:,20,ind3(:,1))).^1.1.*exp(-0.045.*BPR);

%kg

Leng(:,:,ind3(:,1))=0.49.*(A(:,20,ind3(:,1))).^0.4.*0.9.^0.2;

%m

Deng(:,:,ind3(:,1))=0.15.*(A(:,20,ind3(:,1))).^0.5.*exp(0.04.*BPR);

%m

Heng(:,:,ind3(:,1))=0;

%equivalent to diameter

89

SFC(:,:,ind3(:,1))=22.7.*A(:,19,ind3(:,1));

%mg/Ns

Dblade(:,:,ind3(:,1))=0;

%no blades present

clear ind1 ind2 ind3 BPR

end

function getVolumes

function [Vfuse,VFuel,TotalVolume,VWing,Vcut] =getVolumes(A)

tc=.12;

h=A(1,2,:); %a b c d represent sides of bases of

pyrimidal frustrum h represents the height

a=0.65.*A(1,3,:); %root

b=A(1,3,:).*tc ; %root thickness

c=0.75.*A(1,3,:).*A(1,6,:); %tip

d=A(1,3,:).*A(1,6,:).*tc; %tip thickness

VWing=2/3.*h.*((a.*b).^2+(a.*b).*(c.*d)+(c.*d).^2);

eta=(A(1,7,:)./2)./h; %normalized spanstation location of edge of

fuselage

cfuse=(A(1,3,:).*(1-eta.*(1-A(1,6,:))));

cthick=cfuse.*tc;

cfuse=0.65.*cfuse;

Vcut=2/3.*A(1,7,:)./2.*((a.*b).^2+(a.*b).*(cfuse.*cthick)+(cfuse.*cthic

k).^2);

Vfuse=(pi.*(A(1,7,:)./2).^2.*A(1,8,:))+(1/2.*pi.*(A(1,7,:)./2).^2.*A(1,

9,:))+(1/2.*pi.*(A(1,7,:)./2).^2.*A(1,10,:))-Vcut;

cutbig=find(Vfuse(:,:,:)<0);

Vfuse(:,:,cutbig(:,1))=0;

VFuel=1/2.5.*VWing+1/4.*Vfuse;

TotalVolume=Vfuse+VWing;

clear h a b c d eta cfuse cthick cutbig

end

function getDragBuildup

function[CDo,MACs,quarterwing,quarterhorz,quartervert]=getDragBuildup(A

,S,Swetwing,Sfuse,Shorz,Svert,Dblade,Deng,rho)

ind3=logical(A(1,1,:)==3);

%Find Indices of Different Tails

TT1(:,1)=find(A(:,11,:)==1);

TT2(:,1)=find(A(:,11,:)==2);

TT3(:,1)=find(A(:,11,:)==3);

PT12(:,1)=find(A(:,18,:)~=3);

90

PT3(:,1)=find(A(:,18,:)==3);

%Approximate method for Drag Utilizing Wing Only

Cfeapprox=.0030;

% CDoapprox=Cfeapprox.*(Sexposed./S);

%Drag Build Up Method

%Get Form Factors FF

FFwing(1,1,:)=(1+(0.6/.3)*.12+100*.12^4).*(1.34*.4^.18.*(cos(A(1,5,:)))

); %Wing Form

Factor

FFhorz(1,1,:)=(1+(0.6/.3)*.12+100*.12^4).*(1.34*.4^.18.*(cosd(35)));

%Horizontal Stabalizer Form Factor

FFvert(1,1,:)=(1+(0.6/.3)*.12+100*.12^4).*(1.34*.4^.18.*(cos(45)));

%Vertical Stabalizer Form Factor

f=A(1,8,:)./A(1,7,:);

%Fuselage Fineness Ratio

FFfuse(1,1,:)=(1+60./f.^3+f./400);

%Fuselage Form Factor

%Get Interference Factor Component Q

Qwing(1,1,1:1:length(A))=1.0;

%Wing Interference Factor

Qfuse(1,1,1:1:length(A))=1.0;

%Fuselage Interference Factor

Qhorz(1,1,TT1(:,1))=1.05;

%Traditional Tail Interference Factors

Qvert(1,1,TT1(:,1))=1.05;

Qhorz(1,1,TT2(:,1))=1.08;

%T-Tail Interference Factor

Qvert(1,1,TT2(:,1))=1.08;

Qhorz(1,1,TT3(:,1))=1.03;

%V-Tail Interference Factor

Qvert(1,1,TT3(:,1))=1.03;

%Get Mean Aerodynamic Chords

[MACs,quarterwing,quarterhorz,quartervert]=getMACs(A);

%Get Reynbolds Numbers

REwing(1,1,:)=(rho.*100.*MACs(1,:,:))./(1.73*10^-5);

%Wing Reynolds Number

REhorz(1,1,:)=(rho.*100.*MACs(2,:,:))./(1.73*10^-5);

%Horizontal Stabalizer Reynolds

REvert(1,1,:)=(rho.*100.*MACs(3,:,:))./(1.73*10^-5);

%Vertical Stabalizer Reynolds

REfuse(1,1,:)=(rho.*100.*(A(1,8,:)+A(1,9,:)+A(1,10,:)))./(1.73*10^-5);

%Fuselage Reynolds Number

%Get Coefficient of Friction Cf Component

91

Cfwing(1,1,:)=0.455/((log(REwing(1,1,:)).^2.58).*(1+0.144.*.4.^2).^0.65

); %Wing Friction

Coeficient

Cfhorz(1,1,:)=0.455/((log(REhorz(1,1,:)).^2.58).*(1+0.144.*.4.^2).^0.65

); %Horizontal

Stabalizer Friction Coeficient

Cfvert(1,1,:)=0.455/((log(REvert(1,1,:)).^2.58).*(1+0.144.*.4.^2).^0.65

); %Vertical

Stabalizer Friction Coeficient

Cffuse(1,1,:)=0.455/((log(REfuse(1,1,:)).^2.58).*(1+0.144.*.4.^2).^0.65

); %Fuselage

Friction Coeficient

Cfhorz(1,1,ind3(:))=0;

Cfvert(1,1,ind3(:))=0;

%Get CDo

if isempty(PT12)

DragDisk(1,1,PT3(:))=Cfeapprox.*(0.25.*(pi.*(Deng(:,:,PT3(:,1))./2).^2)

).*A(1,19,PT3(:,1));

elseif isempty(PT3)

DragDisk(1,1,PT12(:))=Cfeapprox.*(0.33.*(pi.*(Dblade(:,:,PT12(:,1))./2)

.^2)).*A(1,19,PT12(:,1));

else

DragDisk(1,1,PT12(:))=Cfeapprox.*(0.33.*(pi.*(Dblade(:,:,PT12(:))./2).^

2)).*A(1,19,PT12(:)); %Propulsion Drag

Propeller Disk

DragDisk(1,1,PT3(:))=Cfeapprox.*(0.25.*(pi.*(Deng(:,:,PT3(:))./2).^2)).

*A(1,19,PT3(:)); %Propulsion Drag

Jet Inlet

end

CDo(1,1,:)=((Cfwing(1,1,:)).*FFwing(1,1,:).*Qwing(1,1,:).*Swetwing(1,1,

:))+...

(Cfhorz(1,1,:).*FFhorz(1,1,:).*Qhorz(1,1,:).*Shorz(1,1,:))+(Cfvert(1,1,

:).*FFvert(1,1,:).*Qvert(1,1,:).*Svert(1,1,:))+... %CDo Calculation

(Cffuse(1,1,:).*FFfuse(1,1,:).*Qfuse(1,1,:).*Sfuse(1,1,:))./S(1,1,:)+Dr

agDisk(1,1,:);

CDo(1,1,:)=CDo(1,1,:).*1.05;

%Add Leakage and Protuberance Drag Estimation

92

clear FFwing FFhorz FFvert FFfuse Qwing Qfuse Qhorz Qvert REhorz REvert

REfuse CFwing Cfhorz Cfvert Cffuse DragDisk

end

Function getMACs

function [MACs,quarterwing,quarterhorz,quartervert]=getMACs(Aircraft)

indfw=logical(Aircraft(1,1,:)==3);

A=Aircraft(1,3,:);

B=Aircraft(1,3,:).*Aircraft(1,6,:);

MACwing=A-(2.*(A-B).*(0.5.*A+B))./(3.*(A+B));

C=Aircraft(1,13,:);

D=Aircraft(1,13,:).*Aircraft(1,14,:);

MAChorz=C-(2.*(C-D).*(0.5.*C+D))./(3.*(C+D));

E=Aircraft(1,16,:);

F=Aircraft(1,16,:).*Aircraft(1,17,:);

MACvert=E-(2.*(E-F).*(0.5.*E+F))./(3.*(E+F));

MACvert(1,1,indfw(:))=0;

MAChorz(1,1,indfw(:))=0;

quarterwing=.25*MACwing(:,:,:);

quarterhorz=.25.*MAChorz(:,:,:);

quartervert=.25.*MACvert(:,:,:);

MACs=[MACwing(:,:,:);MAChorz(:,:,:);MACvert(:,:,:)];

end

function getCG

function

[cgnosef,cgmainf,cgtailf,cgwing,qcwing,cgvert,cghorz,armhorz,armvert]=g

etCG(A,MACs)

%cg location 0 is nose tip moving positive towards tail section

ind1=find(A(1,1,:)==1);

ind2=find(A(1,1,:)==2);

ind3=find(A(1,1,:)==3);

TT1=find(A(1,11,:)==1);

TT2=find(A(1,11,:)==2);

TT3=find(A(1,11,:)==3);

cgnosef=2./3.*A(1,9,:);

cgmainf=A(1,9,:)+.5.*A(1,8,:);

cgtailf=A(1,8,:)+A(1,9,:)+1./3.*A(1,10,:);

cgwing(1,1,ind1(:))=A(1,9,ind1(:))+.3.*A(1,8,ind1(:))+MACs(1,:,ind1(:))

./2.*sin(A(1,5,ind1(:)))+0.4.*MACs(1,:,ind1(:));

cgwing(1,1,ind2(:))=A(1,9,ind2(:))+.7.*A(1,8,ind2(:))+MACs(1,:,ind2(:))

./2.*sin(A(1,5,ind2(:)))+0.4.*MACs(1,:,ind2(:));

93

cgwing(1,1,ind3(:))=.25.*A(1,9,ind3(:))+MACs(1,:,ind3(:))./2.*sin(A(1,5

,ind3(:)))+0.4.*MACs(1,:,ind3(:));

qcwing(1,1,ind1(:))=A(1,9,ind1(:))+.3.*A(1,8,ind1(:))+MACs(1,:,ind1(:))

./2.*sin(A(1,5,ind1(:)))+0.25.*MACs(1,:,ind1(:));

qcwing(1,1,ind2(:))=A(1,9,ind2(:))+.8.*A(1,8,ind2(:))+MACs(1,:,ind2(:))

./2.*sin(A(1,5,ind2(:)))+0.25.*MACs(1,:,ind2(:));

qcwing(1,1,ind3(:))=.30.*A(1,9,ind3(:))+MACs(1,:,ind3(:))./2.*sin(A(1,5

,ind3(:)))+0.25.*MACs(1,:,ind3(:));

cgvert(1,1,ind1(:))=sind(30).*MACs(3,:,ind1(:))./2+A(1,9,ind1(:))+A(1,8

,ind1(:))+.40.*A(1,10,ind1(:))+0.4.*MACs(3,:,ind1(:));

cgvert(1,1,ind2(:))=sind(30).*MACs(3,:,ind2(:))./2+A(1,9,ind2(:))+A(1,8

,ind2(:))+.40.*A(1,10,ind2(:))+0.4.*MACs(3,:,ind2(:));

cgvert(1,1,ind3(:))=sind(30).*MACs(3,:,ind3(:))./2+A(1,9,ind3(:))+A(1,8

,ind3(:))+.40.*A(1,10,ind3(:))+0.4.*MACs(3,:,ind3(:));

qcvert(1,1,ind1(:))=sind(30).*MACs(3,:,ind1(:))./2+A(1,9,ind1(:))+A(1,8

,ind1(:))+.25.*A(1,10,ind1(:))+0.25.*MACs(3,:,ind1(:));

qcvert(1,1,ind2(:))=sind(30).*MACs(3,:,ind2(:))./2+A(1,9,ind2(:))+A(1,8

,ind2(:))+.25.*A(1,10,ind2(:))+0.25.*MACs(3,:,ind2(:));

qcvert(1,1,ind3(:))=sind(30).*MACs(3,:,ind3(:))./2+A(1,9,ind3(:))+A(1,8

,ind3(:))+.25.*A(1,10,ind3(:))+0.25.*MACs(3,:,ind3(:));

cghorz(1,1,TT1(:))=sind(20).*MACs(2,:,TT1(:))./2+A(1,9,TT1(:))+A(1,8,TT

1(:))+.40.*A(1,10,TT1(:))+0.4.*MACs(3,:,TT1(:));

cghorz(1,1,TT2(:))=A(1,15,TT2(:)).*sind(30)+sind(20).*MACs(2,:,TT2(:)).

/2+A(1,9,TT2(:))+A(1,8,TT2(:))+.40.*A(1,10,TT2(:))+0.4.*MACs(3,:,TT2(:)

);

cghorz(1,1,TT3(:))=sind(20).*MACs(2,:,TT3(:))./2+A(1,9,TT3(:))+A(1,8,TT

3(:))+.40.*A(1,10,TT3(:))+0.4.*MACs(3,:,TT3(:));

s=find((A(1,11,:)==2) & (A(1,1,:)==2));

cghorz(1,1,s(:))=.60.*A(1,9,s(:))+sind(20).*MACs(2,:,s(:))./2+0.4.*MACs

(3,:,s(:));

qchorz(1,1,TT1(:))=sind(20).*MACs(2,:,TT1(:))./2+A(1,9,TT1(:))+A(1,8,TT

1(:))+.25.*A(1,10,TT1(:))+0.25.*MACs(3,:,TT1(:));

qchorz(1,1,TT2(:))=A(1,15,TT2(:)).*sind(30)+sind(20).*MACs(2,:,TT2(:)).

/2+A(1,9,TT2(:))+A(1,8,TT2(:))+.25.*A(1,10,TT2(:))+0.25.*MACs(3,:,TT2(:

));

qchorz(1,1,TT3(:))=sind(20).*MACs(2,:,TT3(:))./2+A(1,9,TT3(:))+A(1,8,TT

3(:))+.25.*A(1,10,TT3(:))+0.25.*MACs(3,:,TT3(:));

qchorz(1,1,s(:))=.60.*A(1,9,s(:))+sind(20).*MACs(2,:,s(:))./2+0.25.*MAC

s(3,:,s(:));

armhorz(1,1,:)=abs((qcwing(:)-qchorz(:)));

armvert(1,1,:)=abs((qcwing(:)-qcvert(:)));

94

function getTailVolumeCoef

function

[cvt,cht]=getTailVolumeCoef(armhorz,armvert,A,Svertwet,Shorzwet,Swet)

ind3=(logical(A(1,1,:)==3));

TT3=(logical(A(1,11,:)==3));

b=A(1,2,:);

c=A(1,3,:);

cvt=(armvert.*Svertwet)./(b.*Swet);

cht=(armhorz.*Shorzwet)./(c.*Swet);

cvt(TT3(:))=((armvert(TT3(:)).*Svertwet(TT3(:))).*sind(45))./(b(TT3(:))

.*Swet(TT3(:)));

cht(TT3(:))=((armvert(TT3(:)).*Svertwet(TT3(:))).*sind(45))./(c(TT3(:))

.*Swet(TT3(:)));

cvt(ind3(:))=0;

cht(ind3(:))=0;

end

function getCLalpha

function [CLalpha]=getCLalpha(A,AR,S,Sxp)

F=1.07*(1+A(1,7,:)./(2.*A(1,2,:))).^2; %Fuselage Lift Contribution

and Interference Factor F

Betasqr=1-.4^2; %Compresibility Correction

eta=.95; %Mach Correlation Airfoil Efficiency use 0.95 or 1

too ignore all together

CLalpha=((2*pi.*AR)./(2+sqrt(4+(AR.^2+Betasqr)./(eta.^2)).*(1+(tan(A(1,

5,:))).^2))).*(Sxp./S).*F;

end

95

Function getoswald

function [e,e_dih]=getoswald(A,AR,AReff,CLalpha)

Beta=sqrt(1-.4.^2);

[Se]=getSuction(A,AR);

[kf]=getKf(A);

[e]=(1/(((2.*AR)./(CLalpha)).*(1-Se)+Se)).*kf;

e_dih=AReff./AR.*e;

end

function getSuction

function [Se]=getSuction(A,AR)

Se=0.974-0.0976.*exp(-0.456.*((AR.*A(1,6,:))./(cos(A(1,5,:)))));

end

function getKf

function [kf]=getKf(A)

dbar=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1];

factor=[1,.98,.95,.92,.84,.75,.64,.5,.35,.18,0];

kf=interp1(dbar,factor,(A(1,7,:)./(2.*A(1,2,:))),'linear');

end

function getWeight

function

[W,Wempty,WFuel,Wwing,Whtail,Wvtail,Wengines,Wpayload,Wauxiliary]=getWe

ight(A,Sexp,Sfuse,Shorz,Svert,VFuel,Weng)

%Weight Approximation Function for Design String

Wpayload=1360;

Wauxiliary=150;

Wwing=Sexp.*20;

Whtail=Shorz.*12;

Wvtail=Svert.*12;

Wfuselage=Sfuse.*15;

ind1=find(A(1,18,:)==1);

96

ind2=find(A(1,18,:)==2);

ind3=find(A(1,18,:)==3);

WFuel(:,:,ind1(:,1))=720.*VFuel(:,:,ind1(:,1));

WFuel(:,:,ind2(:,1))=800.*VFuel(:,:,ind2(:,1));

WFuel(:,:,ind3(:,1))=800.*VFuel(:,:,ind3(:,1));

Wengines(1,1,:)=1.3.*Weng(1,1,:).*A(1,19,:);

Wempty(1,1,:)=(Wwing+Whtail+Wvtail+Wfuselage)+Wengines;

W=Wempty(1,1,:)+WFuel(1,1,:)+Wpayload+Wauxiliary;

W=W.*0.033+W;

end

Function getW_SandTP_W

function [W_S,W_Sexp,TorP_W,TorP_Walt] = getW_SandTP_W(A,W,S,Sexp,rho

)

id1=find((A(1,18,:)==1));

id2=find((A(1,18,:)==2));

id3=find((A(1,18,:)==3));

W_S=W.*(9.81)./S;

W_Sexp=W.*(9.81)./Sexp;

TorP_W=((A(1,19,:).*A(1,20,:)).*1000)./(W.*9.81);

 TorP_Walt(1,1,id1(:))=TorP_W(id1(:)).*(1.132.*(rho./1.225)-0.132);

 TorP_Walt(1,1,id2(:))=TorP_W(id2(:)).*((rho./1.225).^0.7);

 TorP_Walt(1,1,id3(:))=TorP_W(id3(:)).*(rho./1.225).^0.6;

clear id1 id2 id3

end

function getSteadyLevel

function

[Vmax,Vstall,Vtip,Vstallalt]=SteadyLevel(A,S,W,CDo,K,CLmax,rho,TorP_W,W

_S,Dblade,a)

ind1=find(A(1,18,:)~=3);

ind3=find(A(1,18,:)==3);

Vstall(:,:,:)=sqrt((2./1.225).*(W./S).*(1./CLmax));

Vstallalt(:,:,:)=sqrt((2./rho).*(W./S).*(1./CLmax));

%Prop Maximum Velocity

Vtip=pi.*2770./60.*Dblade./2;

% a=1/2.*rho.*S(ind1(:)).*CDo(ind1(:));

% b=(2.*(W(ind1(:)).*9.81).^2.*K(ind1(:)))./(S(ind1(:)).*rho);

% c=-0.8.*((A(:,19,ind1(:)).*(A(1,20,ind1(:)))*1000));

97

% for i=1:1:length(ind1)

% j=20;

% while j<290

% B(i,j)=a(i).*j.^3+b(i).*j.^(-1)+c(i);

%

% if B(i,j)*B(i,j-1)<0

% V(1,1,i)=1/2.*(j+(j-1));

% end

% j=j+1;

% end

% end

if isempty(ind3)

[i,j]=meshgrid(1:1:length(ind1),20:0.5:290);

a2=1/2.*rho.*S(1,i(1,:)).*CDo(1,i(1,:));

b2=(2.*(W(1,i(1,:)).*9.81).^2.*K(1,i(1,:)))./((S(1,i(1,:))).*rho);

c2=-0.8.*((A(:,19,i(1,:)).*(A(1,20,i(1,:)))*1000));

B=a2(i).*j.^3+b2(i).*j.^-1+c2(i);

for k=1:1:length(ind1);

 if isnan(B(:,k))

 V(1,1,k)=0;

 elseif isempty(find(B(:,k)>0,1,'first'))

 V(1,1,k)=0;

 else

 [q(k)]=find(B(:,k)>0,1,'first');

% q

 if q(k)==1;

 V(1,1,k)=20.5;

 else

 V(1,1,k)=(q(k)+q(k)-2).*1./2.*.5+20;

 end

 end

end

Vmax(:,:,ind1(:,1))=V(1,1,:);

Vmax(logical(sqrt(Vmax(ind1(:)).^2+Vtip(ind1(:)).^2)>=a))=.75.*a;

elseif isempty(ind1)

%Jet Maximum Velocity

Vmax(:,:,ind3(:,1))=sqrt(((TorP_W(:,:,ind3(:,1))).*W_S(:,:,ind3(:,1))+W

_S(:,:,ind3(:,1)).*sqrt((TorP_W(:,:,ind3(:,1))).^2-

4.*CDo(:,:,ind3(:,1)).*K(:,:,ind3(:,1))))./(rho.*CDo(:,:,ind3(:,1))));

Vmax(logical(Vmax>0.8.*a))=0.8.*a;

Else

98

 [i,j]=meshgrid(1:1:length(ind1),20:0.5:290);

 a2=1/2.*rho.*S(1,i(1,:)).*CDo(1,i(1,:));

 b2=(2.*(W(1,i(1,:)).*9.81).^2.*K(1,i(1,:)))./((S(1,i(1,:))).*rho);

 c2=-0.8.*((A(:,19,i(1,:)).*(A(1,20,i(1,:)))*1000));

 B=a2(i).*j.^3+b2(i)./j+c2(i);

 for k=1:1:length(ind1);

 if isnan(B(:,k))

 V(1,1,k)=0;

 elseif isempty(find(B(:,k)>0,1,'first'))

 V(1,1,k)=0;

 else

 [q(k)]=find(B(:,k)>0,1,'first');

% q

 if q(k)==1;

 V(1,1,k)=20.5;

 else

 V(1,1,k)=(q(k)+q(k)-2).*1./2.*.5+20;

 end

 end

end

Vmax(:,:,ind1(:,1))=V(1,1,:);

Vmax(logical(sqrt(Vmax(ind1).^2+Vtip(ind1).^2)>=a))=.75.*a;

Vmax(:,:,ind3(:,1))=sqrt(((TorP_W(:,:,ind3(:,1))).*W_S(:,:,ind3(:,1))+W

_S(:,:,ind3(:,1)).*sqrt((TorP_W(:,:,ind3(:,1))).^2-

4.*CDo(:,:,ind3(:,1)).*K(:,:,ind3(:,1))))./(rho.*CDo(:,:,ind3(:,1))));

Vmax(logical(Vmax>0.8.*a))=0.8.*a;

end

Vmax(isnan(Vmax))=0;

Vmax(logical(imag(Vmax)))=0;

%check imaginary speed

Vmax(Vmax<Vstallalt)=0;

clear ind1 ind3 x a2 b2 c2 B V q

end

99

Function getStaticMargin

function

[StaticMargin,CGx]=getStaticMargin(A,cgnosef,cgmainf,cgtailf,cgwing,cgv

ert,cghorz,Sfusen,Sfusem,Sfuset,WFuel,Whtail,Wengines,Wpayload,Wauxilia

ry,Wwing,Wvtail,MACs,qcwing,W)

ind1=logical(A(1,19,:)==1);

ind2=logical(A(1,19,:)==2);

CG=cgnosef.*Sfusen.*15+cgmainf.*Sfusem.*15+cgtailf.*Sfuset.*15+cgwing.*

Wwing+cghorz.*Whtail+cgvert.*Wvtail+cgwing.*.5.*WFuel+cgmainf.*.5.*WFue

l+Wpayload.*.9.*cgmainf+Wauxiliary.*cgnosef;

CG(ind1(:))=CG(ind1(:))+Wengines(ind1(:)).*.75.*cgtailf(ind1(:));

CG(ind2(:))=CG(ind2(:))+Wengines(ind2(:)).*1.25.*cgmainf(ind2(:));

CGx=CG./W;

StaticMargin=(qcwing-CGx)./MACs(1,:,:).*100;

End

Function getFormFactor

function [FFwing,FFhorz,FFvert,FFfuse]=getFormfactor(A)

FFwing=(1+(0.6/.3)*.12+100*.12^4).*(1.34*.4^.18.*(cos(A(1,5,:))));

FFhorz=(1+(0.6/.3)*.12+100*.12^4).*(1.34*.4^.18.*(cosd(35)));

FFvert=(1+(0.6/.3)*.12+100*.12^4).*(1.34*.4^.18.*(cos(45)));

f=A(1,8,:)./A(1,7,:)

FFfuse=(1+60./f.^3+f./400);

%

end

Function get LDmax

function [L_Dmax, CLmax] = getLDmax(K,CDo,CLalpha)

CDo(isnan(CDo))=60;

CDo(logical(imag(CDo)))=60;

K(logical(imag(K)))=1;

L_Dmax(:,:,:)=1/2.*(sqrt(1./(CDo(1,:,:).*K(1,:,:))));

L_Dmax(logical(isnan(L_Dmax)))=.1;

CLmax=(10.*pi/180).*CLalpha.*1.2;

end

function getPerformance

function

[VmaxRange,VmaxEndurance,Range,Endurance,RCmaxs,RCmaxalt]=getPerformanc

e(A,Wfuel,W,K,S,CDo,SFC,rho,Vmax,W_S,LDmax,TorP_W,TorP_Walt,Enduranceb)

indprop=find(A(1,18,:)~=3);

indjet=find(A(1,18,:)==3);

ind1=find(A(1,18,:)==1);

ind2=find(A(1,18,:)==2);

100

%Minimum Thrust

CL_CD12=3/4.*(1./(3.*K.*CDo.^3)).^(1/4);

V_CL12=((2./rho).*sqrt((3.*K)./(CDo)).*W_S).^(1/2);

TR12=W.*9.81./(CL_CD12);

Cmin12=SFC.*1e-6.*9.81;

%Minimum Power

CL_CD32=1/4.*(3./(K.*CDo.^(1./3))).^(3./4);

V_CL32=((2./rho).*(sqrt(K./(3.*CDo)).*W_S)).^(1/2);

TR32=(9.81.*W)./(CL_CD32);

Cmin32=SFC.*1e-6.*9.81;

%Max L/D

V_LDmax=((2./rho).*(sqrt(K./CDo)).*W_S).^(1/2);

TRmaxLD=(W.*9.81)./(LDmax);

CmaxLD=SFC.*1e-6.*9.81;

%Range

Range(1,1,indprop(:))=((0.8)./(CmaxLD(indprop(:)))).*(LDmax(indprop(:))

).*log(9.81.*W(indprop(:))./(9.81.*(W(indprop(:))-Wfuel(indprop(:)))));

Range(1,1,indjet(:))=(2./Cmin12(indjet(:))).*sqrt(2./(rho.*S(indjet(:))

)).*CL_CD12(indjet(:)).*((9.81.*W(indjet(:)).^(1/2))-

(9.81.*(W(indjet(:))-Wfuel(indjet(:)))).^(1/2));

Range=Range./1000;

Range(logical(isnan(Range)))=0;

Range(logical(imag(Range)))=0;

VmaxRange(:,:,indprop(:))=V_LDmax(indprop(:));

VmaxRange(:,:,indjet(:))=V_CL12(indjet(:));

%Endurance

Endurance(1,1,indprop(:))=(0.8./Cmin32(indprop(:))).*sqrt(2.*rho.*S(ind

prop(:))).*CL_CD32(indprop(:)).*((9.81.*(W(indprop(:))-

0.95.*Wfuel(indprop(:)))).^(-1/2)-(9.81.*W(indprop(:))).^(-1/2));

Endurance(1,1,indjet(:))=(1./CmaxLD(indjet(:))).*(LDmax(indjet(:))).*lo

g(9.81.*W(indjet(:))./(9.81.*(W(indjet(:))-0.95.*Wfuel(indjet(:)))));

Endurance=Endurance./3600;

Range(Range>30000)=30000;

% Endurance=1.14.*(Range.*1000./VmaxRange);

VmaxEndurance(:,:,indprop(:))=V_CL32(indprop(:));

VmaxEndurance(:,:,indjet(:))=V_LDmax(indjet(:));

Endurance(logical(isnan(Endurance)))=0;

Endurance(logical(imag(Endurance)))=0;

VmaxEndurance(isnan(VmaxEndurance))=0;

VmaxEndurance(logical(imag(VmaxEndurance)))=0;

VmaxRange(isnan(VmaxRange))=0;

VmaxRange(logical(imag(VmaxRange)))=0;

%Rate of Climb

%sealevel

Zs(1,1,:)=1+sqrt(1+3./(LDmax(:).^2.*TorP_W(:).^2));

101

Zalt(1,1,:)=1+sqrt(1+3./(LDmax(:).^2.*TorP_Walt(:).^2));

RCmaxs(1,1,indprop(:))=0.8.*TorP_W(indprop(:))-

(2./1.225.*sqrt(K(indprop(:))./(3.*CDo(indprop(:)))).*(W_S(indprop(:)))

).^(1/2).*(1.155./LDmax(indprop(:)));

RCmaxs(1,1,indjet(:))=((W_S(indjet(:)).*Zs(indjet(:)))./(3.*1.225.*CDo(

indjet(:)))).^(1/2).*(TorP_W(indjet(:))).^(3/2).*(1-Zs(indjet(:))./6-

(3./(2.*(TorP_W(indjet(:))).^2.*LDmax(indjet(:)).^2.*Zs(indjet(:)))));

%At requested altitude

 RCmaxalt(1,1,ind1(:))=0.8.*TorP_Walt(ind1(:))-

(2./rho.*sqrt(K(ind1(:))./(3.*CDo(ind1(:)))).*(W_S(ind1(:)))).^(1/2).*(

1.155./LDmax(ind1(:)));

 RCmaxalt(1,1,ind2(:))=0.8.*TorP_Walt(ind2(:))-

(2./rho.*sqrt(K(ind2(:))./(3.*CDo(ind2(:)))).*(W_S(ind2(:)))).^(1/2).*(

1.155./LDmax(ind2(:)));

RCmaxalt(1,1,indjet(:))=((W_S(indjet(:)).*Zalt(indjet(:)))./(3.*rho.*CD

o(indjet(:)))).^(1/2).*(TorP_Walt(indjet(:))).^(3/2).*(1-

Zalt(indjet(:))./6-

(3./(2.*(TorP_Walt(indjet(:))).^2.*LDmax(indjet(:)).^2.*Zalt(indjet(:))

)));

end

Function getRunway

function

[takeoff,landing]=getRunway(A,W_S,TorP_W,CL_max,Vstall,W,K,CDo,Sexp)

ind=(find(A(1,18,:)~=3));

if isempty(ind)

 takeoff=1.21.*(W_S)./(9.81.*CL_max.*TorP_W);

 V=1.1.*Vstall;

 V07=0.7.*V;

landing=V.*3+(1.1.^2.*W_S)./(9.81.*1.225.*CL_max.*(0+(1./2.*1.225.*V07.

^2.*(CDo+K.*(CL_max).^2))./(W.*9.81)+0.4.*(1-

(1./2.*1.225.*V07.^2.*CL_max.*Sexp)./(W.*9.81))));

else

V=1.1.*Vstall;

takeoff=1.21.*(W_S)./(9.81.*CL_max.*TorP_W);

takeoff(ind(:))=1.21.*(W_S(ind(:)))./(9.81.*CL_max(ind(:)).*TorP_W(ind(

:))./(V(ind(:))));

V07=0.7.*V;

landing=V.*3+(1.1.^2.*W_S)./(9.81.*1.225.*CL_max.*(0+(1./2.*1.225.*V07.

^2.*(CDo+K.*(CL_max).^2))./(W.*9.81)+0.4.*(1-

(1./2.*1.225.*V07.^2.*CL_max.*Sexp)./(W.*9.81))));

end

end

102

function getTurn

function

[MaxTurnV,MaxTurnRate,nMaxRate,MinTurnRadius,nmaxturn,TurnRadiusMaxV]=

getTurn(rho,TorP_Walt,Vmax,VmaxRange,VmaxEndurance,CLmax,K,CDo,W_S,A)

ind1=logical((A(1,18,:)~=3));

ind2=logical((A(1,18,:)==3));

%maximumturnrate

VmaxRate(1,1,:)=(2.*(W_S(:))./rho).^(1/2).*(K(:)./CDo(:)).^(1/4);

nMaxRate(1,1,ind1(:))=((TorP_Walt(1,1,ind1(:)).*1./VmaxRate(ind1(:)))./

(sqrt(K(ind1(:)).*CDo(ind1(:))))-1).^1/2;

nMaxRate(1,1,ind2(:))=((TorP_Walt(ind2(:))./(sqrt(K(ind2(:)).*CDo(ind2(

:))))-1).^1/2);

MaxTurnRate(1,1,ind1(:))=1./2.*rho.*VmaxRate(ind1(:)).^2.*sqrt(rho./W_S

(ind1(:)).*((TorP_Walt(ind1(:)).*1./VmaxRate(ind1(:)))./(2.*K(ind1(:)))

-sqrt(CDo(ind1(:))./K(ind1(:)))));

MaxTurnRate(1,1,ind2(:))=1./2.*rho.*VmaxRate(ind2(:)).^2.*sqrt(rho./W_S

(ind2(:)).*((TorP_Walt(ind2(:)))./(2.*K(ind2(:)))-

sqrt(CDo(ind2(:))./K(ind2(:)))));

%minimumTurnRadius

MinTurnRadius=VmaxRate.^2./(9.81.*sqrt(nMaxRate.^2-1));

%m

%maximum load factor

nmaxturn=1./2.*rho.*Vmax.^2.*CLmax./W_S;

nmaxturn(nmaxturn>3.5)=3.5;

TurnRadiusMaxV=Vmax.^2./(9.81.*sqrt(nmaxturn.^2-1));

MaxTurnV=0;

nmaxneg=-2;

MaxTurnRate(isnan(MaxTurnRate))=.1;

MaxTurnRate(logical(imag(MaxTurnRate)))=.1;

end

function getRCS

function [RCS,Bottom]=getRCS(A,Sexp,Shorz,Svert,Dblade,Deng,Leng)

indv=logical(A(1,11,:)==3);

Asidenose=2./3.*2.*A(1,7,:).*A(1,9,:);

Amainside=2.*A(1,7,:).*A(1,8,:);

Asidetail=2./3.*2.*A(1,7,:).*A(1,10,:);

103

Range=1000;

RPower=10000;

Ptarget=RPower./Range.^2;

%side profile

sidewing=1/2.*Sexp.*sin(A(1,4,:))+.12.*A(1,3,:).*A(1,6,:);

sidehorz=.12.*1./2.*(A(1,13,:).*A(1,14,:)+A(1,13,:)).*sind(30);

sidevert=Svert;

sidevert(indv(:))=Svert(indv(:))./2.*sind(45);

sideengine=Deng.*Leng.*1./3;

Awingcut=(.12.*A(1,3,:).*.5).*A(1,3,:);

%front profile

frontfuse=pi.*(A(1,7,:)).^2;

frontblade=(1./2.*Dblade).^2.*pi.*1./3.*A(1,19,:);

frontengine=((1./2.*Deng).*1./4).^2.*A(1,19,:);

frontwing=2.*A(1,2,:).*(.12.*A(1,3,:)+.12.*(A(1,3,:).*A(1,6,:))./2).*co

s(A(1,5,:));

frontvert=sind(30).*.12.*1./2.*(A(1,16,:)+A(1,16,:).*A(1,17,:)).*(A(1,1

5,:));

fronthorz=cosd(20).*2.*A(1,12,:).*.12.*1./2.*(A(1,13,:)+A(1,13,:).*A(1,

14,:));

frontvert(indv(:))=2.*sind(30).*.12.*1./2.*(A(1,16,indv(:))+A(1,16,indv

(:)).*A(1,17,indv(:))).*(A(1,15,indv(:)));

%bottom profile

bottomfuse=Asidenose+Amainside+Asidetail;

bottomwing=Sexp.*cos(A(1,4,:));

bottomtail=Shorz;

bottomtail(indv(:))=Shorz(indv(:)).*cosd(45);

Aside=Asidenose+Amainside+Asidetail+sidewing+sidehorz+sidevert+sideengi

ne;

Front=frontfuse+frontblade+frontengine+frontwing+frontvert+fronthorz+fr

ontvert-Awingcut;

Bottom=bottomfuse+bottomwing+bottomtail;

RCSside=4.*pi.*Range.^2.*(Aside.^2.*.05.*Ptarget)./RPower;

RCSFront=4.*pi.*Range.^2.*(Front.^2.*.05.*Ptarget)./RPower;

RCSBottom=4.*pi.*Range.^2.*(Bottom.^2.*.05.*Ptarget)./RPower;

RCS=[RCSside,RCSFront,RCSBottom];

RCS=10.*log(RCS./1);

end

Function getOBJValue

function[O,P]=getOBJValue(Vmax,Vstall,Vstallalt,StaticMargin,W_S,TorP_W

,takeoff,landing,W,WFuel,Range,Endurance,RCmax,nMaxRate,MaxTurnRate,Min

TurnRadius,Cost,CPA,G,RCS,AR,LDmax)

104

O=(Range-3000)./(3000)+(Endurance-5)./5+(Vmax-150)./150-G-1000*RCS;

P=sum(O)./length(O);

end

function getCPenalty

function

[G]=getCPenalty(A,AR,Vmax,Vstallalt,StaticMargin,W_S,TorP_W,cvt,cht,RCm

ax,RCmaxalt,takeoff,landing,W,Wfuel,Range,Endurance,Deng,a,VmaxEnduranc

e,VmaxRange,ARhorz,ARvert)

G=zeros(1,1,length(A));

minW_S=30; %kg/m^2

maxW_S=586; %kg/m^2

SMpos=15; %percent

SMneg=-5; %- percent

runway=2000; %m

FRW=.666667; %ratio Fuel to TOWeight

Rangemin=3000; %Requested Range km

Endurancemin=6; %Requested Endurance hr

ttclimbmin=700; %time to climb requested

CostReq=10000000; %Price per AIRCRAFT requested

SPmin=1; %Semispan min m

SPmax=20; %Semispan max m

RChmin=.25; %rootchord min m

RChmax=10; %rootchord max m

Dihmin=-pi/25; %dihedral min rad

Dihmax=pi/25; %dihedral max rad

Swmin=-pi/6; %Sweep min rad

Swmax=pi/6; %Sweep max rad

Tpmin=.2; %taper ratio min

Tpmax=1.0; %taper ratio max

Dfmin=0.2; %Fuselage min diameter m

Dfmax=4.0; %fuselage max diameter m

Lfmmin=1; %Length main min fuselage m

Lfmmax=10; %length main max fuselage m

Lfnmin=.5; %Length nose min fuselage m

Lfnmax=5; %Length nose max fuselage m

Lftmin=0.5; %Length tail min fuselage m

Lftmax=5; %Length tail max fuselage m

Horzsmin=0; %Horz Stab span min m

Horzsmax=5; %Horz Stab span max m

Horzcmin=0; %Horz Stab chord min m

Horzcmax=4; %Horz Stab chord max m

Htapermin=.35; %Horz Stab taper min

Htapermax=1; %Horz Stab taper max

Vertsmin=0; %Vert Stab span min m

Vertsmax=5; %Vert Stab span max m

Vertcmin=0; %Vert Stab chord min m

Vertcmax=4; %Vert Stab chord max m

Vtapermin=.35; %Vert Stab taper min

Vtapermax=1; %Vert Stab taper max

105

FuseL=A(1,8,:)+A(1,9,:)+A(1,10,:);

WingL=A(1,3,:)+(A(1,13,:)+A(1,16,:))./2;

%% Constrain Violation and Penalty Assesment

%Geometry Constrants

G(((AR<3)))=G((AR<3))+1e9;%(3-AR(logical(AR<3))).^2;

G((AR>20))=G((AR>20))+1e9;%((30-AR(logical(AR>30))).^2);

%Span Limit Main Wing

G((A(1,2,:)<SPmin))=G((A(1,2,:)<SPmin))+1e9;%+(SPmin-

A(1,2,((A(1,2,:)<1)))).^2;

G((A(1,2,:)>SPmax))=G((A(1,2,:)>SPmax))+1e9;%(SPmax-

A(1,2,((A(1,2,:)>20)))).^2;

%Chord Limit Main Wing

G((A(1,3,:)<RChmin))=G((A(1,3,:)<RChmin))+1e9;%(RChmin-

A(1,3,((A(1,3,:)<RChmin)))).^2;

G((A(1,3,:)>RChmax))=G((A(1,3,:)>RChmax))+1e9;%(RChmax-

A(1,3,((A(1,3,:)>RChmax)))).^2;

%Dihedral

G((A(1,4,:)<Dihmin))=G((A(1,4,:)<Dihmin))+1e9;%(Dihmin-

A(1,4,((A(1,4,:)<Dihmin)))).^2;

G((A(1,4,:)>Dihmax))=G((A(1,4,:)>Dihmax))+1e9;%(Dihmax-

A(1,4,((A(1,4,:)>Dihmax)))).^2;

%Sweep

G((A(1,5,:)<Swmin))=G((A(1,5,:)<Swmin))+1e9;%(Swmin-

A(1,5,((A(1,5,:)<Swmin)))).^2;

G((A(1,5,:)>Swmax))=G((A(1,5,:)>Swmax))+1e9;%(Swmax-

A(1,5,((A(1,5,:)>Swmax)))).^2;

%Taper Ratio

G((A(1,6,:)<Tpmin))=G((A(1,6,:)<Tpmin))+1e9;%(Tpmin-

A(1,6,((A(1,6,:)<Tpmin)))).^2;

G((A(1,6,:)>Tpmax))=G((A(1,6,:)>Tpmax))+1e9;%(Tpmax-

A(1,6,((A(1,6,:)>Tpmax)))).^2;

%Fuselage Diameter

G((A(1,7,:)<Dfmin))=G((A(1,7,:)<Dfmin))+1e9;%(Dfmin-

A(1,7,((A(1,7,:)<Dfmin)))).^2;

G((A(1,7,:)>Dfmax))=G((A(1,7,:)>Dfmax))+1e9;%(Dfmax-

A(1,7,((A(1,7,:)>Dfmax)))).^2;

%Fuselage length main

G((A(1,8,:)<Lfmmin))=G((A(1,8,:)<Lfmmin))+1e9;%(Lfmmin-

A(1,8,((A(1,8,:)<Lfmmin)))).^2;

G((A(1,8,:)>Lfmmax))=G((A(1,8,:)>Lfmmax))+1e9;%(Lfmmax-

A(1,8,((A(1,8,:)>Lfmmax)))).^2;

%Fuselage length nose

G((A(1,9,:)<Lfnmin))=G((A(1,9,:)<Lfnmin))+1e9;%(Lfnmin-

A(1,9,((A(1,9,:)<Lfnmin)))).^2;

G((A(1,9,:)>Lfnmax))=G((A(1,9,:)>Lfnmax))+1e9;%(Lfnmax-

A(1,9,((A(1,9,:)>Lfnmax)))).^2;

%Fuselage length tail

G((A(1,10,:)<Lftmin))=G((A(1,10,:)<Lftmin))+1e9;%(Lftmin-

A(1,10,((A(1,10,:)<Lftmin)))).^2;

106

G((A(1,10,:)>Lftmax))=G((A(1,10,:)>Lftmax))+1e9;%(Lftmax-

A(1,10,((A(1,10,:)>Lftmax)))).^2;

%Horizontal Stabalizer Span

G((A(1,12,:)<Horzsmin))=G((A(1,12,:)<Horzsmin))+1e9;%(Horzsmin-

A(1,12,((A(1,12,:)<Horzsmin)))).^2;

G((A(1,12,:)>Horzsmax))=G((A(1,12,:)>Horzsmax))+1e9;%(Horzsmax-

A(1,12,((A(1,12,:)>Horzsmax)))).^2;

%Horizontal Stabalizer Chord

G((A(1,13,:)<Horzcmin))=G((A(1,13,:)<Horzcmin))+1e9;%(Horzcmin-

A(1,13,((A(1,13,:)<Horzcmin)))).^2;

G((A(1,13,:)>Horzcmax))=G((A(1,13,:)>Horzcmax))+1e9;%(Horzcmax-

A(1,13,((A(1,13,:)>Horzcmax)))).^2;

%Horizontal Stabalizer Taper

G((A(1,14,:)<Htapermin)&(A(1,1,:)~=3))=G((A(1,14,:)<Htapermin)&(A(1,1,:

)~=3))+1e9;%(Htapermin-A(1,14,((A(1,14,:)<Htapermin)))).^2;

G((A(1,14,:)>Htapermax))=G((A(1,14,:)>Htapermax)&(A(1,1,:)~=3))+1e9;%(H

tapermax-A(1,14,((A(1,14,:)>Htapermax)))).^2;

%Vertical Stabalizer Span

G((A(1,15,:)<Vertsmin))=G((A(1,15,:)<Vertsmin))+1e9;%(Vertsmin-

A(1,15,((A(1,15,:)<Vertsmin)))).^2;

G((A(1,15,:)>Vertsmax))=G((A(1,15,:)>Vertsmax))+1e9;%(Vertsmax-

A(1,15,((A(1,15,:)>Vertsmax)))).^2;

%Vertical Stabalizer Chord

G((A(1,16,:)<Vertcmin))=G((A(1,16,:)<Vertcmin))+1e9;%(Vertcmin-

A(1,16,((A(1,16,:)<Vertcmin)))).^2;

G((A(1,16,:)>Vertcmax))=G((A(1,16,:)>Vertcmax))+1e9;%(Vertcmax-

A(1,16,((A(1,16,:)>Vertcmax)))).^2;

%Vertical Stabalizer Taper

G((A(1,17,:)<Vtapermin)&(A(1,1,:)~=3))=G((A(1,17,:)<Vtapermin)&(A(1,1,:

)~=3))+1e9;%(Vtapermin-A(1,17,((A(1,17,:)<Vtapermin)))).^2;

G((A(1,17,:)>Vtapermax))=G((A(1,17,:)>Vtapermax))+1e9;%(Vtapermax-

A(1,17,((A(1,17,:)>Vtapermax)))).^2;

%Tail Aspect Ratio

G(ARhorz<3 & (A(1,1,:)~=3))=G(ARhorz<3 & (A(1,1,:)~=3))+1e9;

G(ARvert<3 & (A(1,1,:)~=3))=G(ARvert<3 & (A(1,1,:)~=3))+1e9;

G(ARhorz>7 & (A(1,1,:)~=3))=G(ARhorz>7 & (A(1,1,:)~=3))+1e9;

G(ARvert>7 & (A(1,1,:)~=3))=G(ARvert>7 & (A(1,1,:)~=3))+1e9;

G(Deng>A(1,7,:).*(2))=G(Deng>A(1,7,:).*(2))+1e9;

%%Performance Restrictions

%Vmax Restrictions

%

 G((Vmax<Vstallalt))=1e9+G((Vmax<Vstallalt));%(-

Vmax((Vmax<Vstallalt))+Vstallalt((Vmax<Vstallalt))).^2;

% %Static Margin Constraints

 G((StaticMargin>SMpos))=100000+G((StaticMargin>SMpos));%+1000.*(-

StaticMargin((StaticMargin>SMpos))+SMpos).^2;

107

 G((StaticMargin<SMneg))=100000+G((StaticMargin<SMneg));%+1000.*(-

StaticMargin((StaticMargin<SMneg))+SMneg).^2;

% %Wing Loading Historical Guidelines

 G((W_S./9.81<minW_S))=1e9+G((W_S./9.81<minW_S));%+(-

W_S((W_S./9.81<minW_S))+minW_S).^2;

 G((W_S./9.81>maxW_S))=1e9+G((W_S./9.81>maxW_S));%+(-

W_S((W_S./9.81>maxW_S))+maxW_S).^2;

%

% %Thrust to Weight Historical Guidelines

G(((TorP_W.*9.81./1000)<0.07 &

A(1,18,:)~=3))=G((TorP_W.*9.81./1000<0.07 & A(1,18,:)~=3))+1000;%(-

TorP_W((TorP_W<0.07 & A(1,18,:)~=3))+0.07).^2;

G(((TorP_W.*9.81./1000)>1 & A(1,18,:)~=3))=G((TorP_W.*9.81./1000>1 &

A(1,18,:)~=3))+1e9;%(-TorP_W((TorP_W>0.50 & A(1,18,:)~=3))+0.50).^2;

G((TorP_W<0.25 & A(1,18,:)==3))=G((TorP_W<0.25 &

A(1,18,:)==3))+1000;%(-TorP_W((TorP_W<0.25 & A(1,18,:)==3))+0.25).^2;

G((TorP_W>1.0 & A(1,18,:)==3))=G((TorP_W>1.0 & A(1,18,:)==3))+1e9;%(-

TorP_W((TorP_W>1.0 & A(1,18,:)==3))+1.0).^2;

%Tail Coefficients Historical Guide

%Vertical cvt

G((cvt(1,1,:)<0.1 & A(1,1,:)~=3))=G((cvt(1,1,:)<0.1 &

A(1,1,:)~=3))+1000;%(-cvt((cvt(1,1,:)<0.02 & A(1,1,:)~=3))+0.02).^2;

G((cvt(1,1,:)>0.15 & A(1,1,:)~=3))=G((cvt(1,1,:)>0.15 &

A(1,1,:)~=3))+1000;%(-cvt((cvt(1,1,:)>0.15 & A(1,1,:)~=3))+0.15).^2;

%Horizontal cht

G((cht(1,1,:)<0.4 & A(1,1,:)~=3))=G((cht(1,1,:)<0.4 &

A(1,1,:)~=3))+1000;%(-cht((cht(1,1,:)<0.4 & A(1,1,:)~=3))+0.4).^2;

G((cht(1,1,:)>1 & A(1,1,:)~=3))=G((cht(1,1,:)>1 &

A(1,1,:)~=3))+1000;%(-cht((cht(1,1,:)>1 & A(1,1,:)~=3))+1).^2;

G((VmaxEndurance>VmaxRange))=G((VmaxEndurance>VmaxRange))+1e9;

G((VmaxRange>Vmax))=G((VmaxRange>Vmax))+1e9;

%Rate of Climb

G((RCmax<3))=G((RCmax<3))+1e9;

G((RCmaxalt<.508))=G((RCmaxalt<.508))+1e6;%(-

G((RCmaxalt<.508))+.508).^2;

%Takeoff and Landing Requirements

G((takeoff>runway))=G((takeoff>runway))+999;%(-

takeoff((takeoff>runway))+runway).^2;

G((landing>runway))=G((landing>runway))+999;%(-

landing((landing>runway))+runway).^2;

%Fuel Weight Ratio

G((Wfuel)>W.*2/3)=G((Wfuel)>W.*2/3)+1e9;

108

G((Wfuel)<W.*.15)=G((Wfuel)<W.*.15)+100000;

G(FuseL<=WingL)=G(FuseL<=WingL)+1e5;

% Mission Requirements

% G(Endurance<Endurancemin)=G(Endurance<Endurancemin)+1e9;

 G(Range>Rangemin+1000)=G(Range>Rangemin+1000)+1e9;

end

Function getCost

function [Cost,CPA]=getCost(A,Vmax,Wempty,a)

% Function uses the DAPCA IV Cost Model to estimate the cost of

producing Q

% aircraft in US Dollars (USD) Adjusted for 2016

Turbofantemp=1500;

Turboproptemp=1250;

Proptemp=273;

ind1=find(A(1,18,:)==1);

ind2=find(A(1,18,:)==2);

ind3=find(A(1,18,:)==3);

FTA=2;

Q=40;

REngineering=115.00;

RTooling=118.00;

RQuality=108.00;

RManufacturing=98.00;

We=Wempty.*9.81;

M=Vmax./a;

V=Vmax.*3.6;

He=5.18.*(We.^0.777).*(V.^0.894).*(Q.^0.163); %Engineering hours

Ht=7.22.*(We.^0.777).*(V.^0.696).*(Q.^.263); %Tooling Hours

Hm=10.5.*(We.^0.82).*(V.^0.484).*(Q.^.641); %Manufacturing

Hours

Hq=0.133.*Hm; %Quality Control

Hours

Cdev=67.4.*(We.^.630).*(V.^1.3); %Development

Support Cost

Cft=1947.*(We.^0.325).*(V.^0.822).*(FTA.^1.21); %Flight Test Cost

Cm=31.2.*(We.^0.921).*(V.^0.621).*(Q.^0.799); %Manufacturing

Materials Cost

Ceng(1,1,ind1(:))=1200.*A(1,19,ind1(:)).*(A(1,20,ind1(:)));

Ceng(1,1,ind2(:))=3112.*(9.66.*A(1,19,ind2(:)).*.8./Vmax(ind2(:))+M(ind

2(:)).*243.25+1.74.*Turboproptemp-2228);

109

Ceng(1,1,ind3(:))=3112.*(9.66.*A(1,19,ind3(:))+M(ind3(:)).*243.25+1.74.

*Turbofantemp-2228);

Cost=REngineering.*He+RTooling.*Ht+RManufacturing.*Hm+RQuality.*Hq+Cdev

(1,1,:)+Cft(1,1,:)+Cm(1,1,:)+Ceng(1,1,:).*A(1,19,:);

Cost=Cost.*1.05; %Cost Avionics

Cost=Cost.*1.1; %Cost Advanced

Materials

Cost=Cost.*1.048; %Inflation Adjusted

CPA=Cost./Q; %Cost per Aircraft

CPA(isinf(Cost))=1e12;

Cost(isinf(Cost))=1e12;

CPA(isnan(CPA))=1e12;

Cost(isnan(Cost))=1e12;

CPA(logical(imag(CPA)))=1e12;

Cost(logical(imag(Cost)))=1e12;

CPA(CPA<0)=1e12;

Cost(Cost<0)=1e12;

end

Function getK

function [K]=getK(AR,edih)

K(:,:,:)=1./(pi.*edih.*AR(:,:,:));

End

Function evaluate

function [O,P,G]=evaluate(AIRCRAFT)

rho=.75;

a=300;

[S,Sexp,Sfuse,Shorz,Svert,Sfusen,Sfusem,Sfuset]=getSs(AIRCRAFT);

[Swingwet,Shorzwet,Svertwet,Swet]=getSwet(Sexp,Shorz,Svert,Sfuse);%

[AR,AReff,ARvert,ARhorz]=getAspectRatio(AIRCRAFT,S,Svert,Shorz);%

[Weng,Leng,Deng,Heng,SFC,Dblade]=getEnginesize(AIRCRAFT);%

[VFuse,VFuel,TVolume,VWing,Vcut]=getVolumes(AIRCRAFT);%

clear Vfuse

clear Vwing

clear Vcut

[CDo,MACs,quarterwing,quarterhorz,quartervert]=getDragBuildup(AIRCRAFT,

S,Swingwet,Sfuse,Shorzwet,Svertwet,Dblade,Deng,rho);

[cgnosef,cgmainf,cgtailf,cgwing,qcwing,cgvert,cghorz,armhorz,armvert]=g

etCG(AIRCRAFT,MACs);

[cvt,cht]=getTailVolumeCoef(armhorz,armvert,AIRCRAFT,Svertwet,Shorzwet,

Sexp);

clear Swingwet

110

clear Shorzwet

clear Svertwet

clear Swet

[CLalpha]=getCLalpha(AIRCRAFT,AR,S,Sexp);

[edih]=getoswald(AIRCRAFT,AR,AReff,CLalpha);

[K]=getK(AR,edih);

[LDmax,CLmax]=getLDmax(K,CDo,CLalpha);

clear AReff

[W,Wempty,WFuel,Wwing,Whtail,Wvtail,Wengines,Wpayload,Wauxiliary]=getWe

ight(AIRCRAFT,Sexp,Sfuse,Shorz,Svert,VFuel,Weng);

clear Vfuel

[W_S,W_Sexp,TorP_W, TorP_Walt]=getW_SandTP_W(AIRCRAFT,W,S,Sexp,rho);

[Vmax,Vstall,Vtip,Vstallalt]=SteadyLevel(AIRCRAFT,S,W,CDo,K,CLmax,rho,T

orP_W,W_S,Dblade,a);

[VmaxRange,VmaxEndurance,Range,Endurance,RCmax,RCmaxalt]=getPerformance

(AIRCRAFT,WFuel,W,K,S,CDo,SFC,rho,Vmax,W_S,LDmax,TorP_W,TorP_Walt);

[MaxTurnV,MaxTurnRate,nMaxRate,MinTurnRadius,nmaxturn,nmaxneg]=

getTurn(rho,TorP_Walt,Vmax,VmaxRange,VmaxEndurance,CLmax,K,CDo,W_S,AIRC

RAFT);

[StaticMargin,CGx]=getStaticMargin(AIRCRAFT,cgnosef,cgmainf,cgtailf,cgw

ing,cgvert,cghorz,Sfusen,Sfusem,Sfuset,WFuel,Whtail,Wengines,Wpayload,W

auxiliary,Wwing,Wvtail,MACs,qcwing,W);

[takeoff,landing]=getRunway(AIRCRAFT,W_S,TorP_W,CLmax,Vstall,W,K,CDo,Se

xp);

[RCS,Abottom]=getRCS(AIRCRAFT,Sexp,Shorz,Svert,Dblade,Deng,Leng);

[Cost,CPA]=getCost(AIRCRAFT,Vmax,Wempty,a);

Range(isnan(Range))=0;

Endurance(isnan(Endurance))=0;

LDmax(logical(imag(LDmax)))=.1;

CPA(isnan(CPA))=1e9;

MinTurnRadius(isnan(MinTurnRadius))=5000000;

MinTurnRadius(logical(imag(MinTurnRadius)))=5000000;

[G]=getCPenalty(AIRCRAFT,AR,Vmax,Vstallalt,StaticMargin,W_S,TorP_W,cvt,

cht,RCmax,RCmaxalt,takeoff,landing,W,WFuel,Range,Endurance,Deng,a,VmaxE

ndurance,VmaxRange,ARvert,ARhorz);

%

[O,P]=getOBJValue(Vmax,Vstall,Vstallalt,StaticMargin,W_S,TorP_W,takeoff

,landing,W,WFuel,Range,Endurance,RCmax,nMaxRate,MaxTurnRate,MinTurnRadi

us,Cost,CPA,G,RCS,AR,LDmax);

end

111

function getlengthfuse

function [lfuse]= getLengthFuselage(A)

lfuse=A(1,8,:)+A(1,9,:)+A(1,10,:);

end

function getycgvortex

function [ycgv]=getycgvortex(A,Beta,AR)

taper=[1 .5 0.2 0.0];

a1m=[.5269 .4919 .5160 .5694];

a2m=[.123 .1413 .1176 .1202];

a3m=[.0441 .0157 0.0156 0.0083];

a4m=[-.0057 0.0054 -0.0023 -0.0028];

a5m=[0.0032 0.0061 0.0071 0.0081];

a1=interp1(taper,a1m,A(1,6,:),'pchip');

a2=interp1(taper,a2m,A(1,6,:),'pchip');

a3=interp1(taper,a3m,A(1,6,:),'pchip');

a4=interp1(taper,a4m,A(1,6,:),'pchip');

a5=interp1(taper,a5m,A(1,6,:),'pchip');

ycgv=a1+a2.*Beta.*AR+AR.*tan(A(1,5,:)).*(a3+a4.*Beta.*AR+a5.*AR.*tan(A(

1,5,:)));

end

	Western Michigan University
	ScholarWorks at WMU
	12-2016

	A Genetic Algorithm Incorporating Design Choice for the Preliminary Design of Unmanned Aerial Vehicles
	Kenneth Michael Mull
	Recommended Citation

	tmp.1487607447.pdf.KPBh1

