

Islamic University of Gaza

Deanery of Higher Studies

Faculty of Information Technology

Information Technology Program

A SOA Based Framework for the

Palestinian e-Government Integrated

Central Database

Prepared By:

Suhail M. Madoukh

Supervised By:

Dr. Rebhi S. Baraka

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information Technology

1432/2011

I

Acknowledgment

First of all, I thank Allah for giving me the strength and ability to complete this study.

Many thanks and sincere gratefulness goes to my supervisor Dr. Rebhi Baraka, without

his help, guidance, and continuous follow-up; this research would never have been.

Also I would like to extend my thanks to the academic staff of the Faculty of

Information Technology who helped me during my Master’s study and taught me

different courses.

I cannot forget to express my thanks to the members of the Governmental Data

Integration Committee and the database administrator and software development staff at

the governmental institutes.

I would like to thank my colleagues and classmates for making my study a great

experience, useful, enjoyable, and full of warm atmosphere.

Last but not least, I am greatly indebted to my family for their support during my course

studies and during my thesis work.

II

Abstract

The Integrated Central Database is one of the core components in the Palestinian e-

Government Technical Framework. The current Integrated Central Database model

lacks features such as: Interoperability, Flexibility, and Manageability. The purpose of

this research is to propose a SOA based solution for the Central Database that achieves

the above features.

This research presents and analyses the current architecture and implementation of the

Palestinian e-Government Central Database model. The research proposes changing the

current model into a Service Oriented Architecture (SOA) framework that is realized

using Enterprise Service Bus (ESB) and Web Services. The proposed framework offers

database replication and connectivity functionalities for central database.

The proposed framework is evaluated by using a scenario based software architecture

evaluation method and proves that it achieves the quality attributes set as goals for the

framework which are: Interoperability, Flexibility and Manageability. Moreover, a

prototype of the framework is implemented and validates the framework correctness. A

specific usage scenario for the framework is discussed and further proves that the

framework accomplishes its functionality and quality attributes.

Keywords e-Government, SOA, ESB, Central Database, Database Replication, Web

Services

III

عنوان البحث

 Service-Oriented Architecture (SOA)

SOA

Enterprise Service Bus (ESB)

Web Services

IV

Table of Contents

Acknowledgment ... I

Abstract ... II

List of Figures .. VI

List of Tables ... VII

List of Abbreviations and Glossaries .. VIII

List of Appendices ... XIII

Introduction ... 1

1.1. The Palestinian e-Government and Integrated Central Database 1

1.2. Problem Statement .. 3

1.3. Objectives .. 4

1.3.1 Main Objective .. 4

1.3.2 Specific Objectives ... 4

1.4. Importance of the Research ... 5

1.5. Scope and Limitations of the Research ... 5

1.6. Methodology ... 6

1.7. Resources, Methods, and Tools ... 7

1.8. Thesis Structure ... 8

Technical Foundations ... 9

2.1. Service Oriented Architecture (SOA) ... 9

2.1.1 SOA Benefits ... 9

2.1.2 SOA Architecture .. 10

2.1.3 SOA Layers ... 10

2.1.4 SOA Implementation ... 11

2.2. Web Services ... 11

2.2.1 Simple Object Access Protocol (SOAP) ... 12

2.2.2 Web Services Description Language (WSDL) .. 13

2.3. Business Process Execution Language (BPEL) .. 14

2.4. Universal Description Discovery and Integration (UDDI) 15

2.5. Enterprise Architecture Infrastructure (EAI) .. 15

2.6. Enterprise Service Bus (ESB) ... 16

2.6.1 ESB Functions and Features .. 17

2.6.2 ESB Implementation ... 19

2.7. Database Replication ... 20

2.7.1 Replication Types .. 20

2.7.2 Materialized Views .. 21

2.8. Evaluation Methods ... 22

2.8.1 Software Architecture Evaluation Using ATAM 22

2.8.2 Framework Validation Using Proof-of-Concept 25

2.9. Technical Foundations Discussion .. 26

Related Works ... 27

3.1 SOA Research Directions .. 27

V

3.2 Information as a Service (IaaS) ... 28

3.3 SOA and Data Integration Solutions ... 28

3.4 SOA and Health Information Systems Integration .. 30

3.5 SOA and e-Government Systems .. 31

Evaluating the Current e-Government Integrated Central Database Model 35

4.1 Palestinian e-Government Technical Framework ... 35

4.2 Analysis of the Current Integrated Central Database Model 37

SOA-based Framework .. 41

5.1 SOA-based Integrated Central Database Requirements 41

5.2 SOA-based Integrated Central Database Architecture .. 43

5.3 Framework Interaction .. 45

5.4 Ethical Considerations ... 46

Framework Prototype .. 47

6.1 Prototype Architecture .. 47

6.2 Web Services Logical Views .. 49

6.2.1 The Informational Services ... 49

6.2.2 The Replication Service.. 50

6.2.3 The Security Assurance Service .. 51

6.3 Framework Prototype Summary ... 53

Framework Evaluation ... 54

7.1 Framework Quality Attributes ... 54

7.2 Framework Evaluation based on ATAM .. 56

7.2.1 Interoperability Evaluation Scenarios ... 57

7.2.2 Manageability Evaluation Scenarios ... 58

7.2.3 Flexibility Evaluation Scenarios .. 59

7.3 Showing Quality Attributes Achievement through a Usage Scenario 60

Conclusions and Future Work... 63

8.1 Conclusions ... 63

8.2 Future Work .. 64

References .. 65

Appendices ... 71

Appendix A: Prototype Working Environment .. 72

Appendix B: Informational Web Services .. 73

Appendix C: The Informational Services Composite Application and BPEL 78

Appendix D: Security Service Assurance Implementation Files 80

Appendix E: Replication Service, Database Binding, and BPEL 85

Appendix F: Front-End Access Interface ... 88

Appendix G: Framework Evaluation Scenarios based on ATAM 94
I. Interoperability Evaluation Scenarios .. 94

II. Manageability Evaluation Scenarios .. 96

III.Flexibility Evaluation Scenarios .. 98

VI

List of Figures

Figure 2.1: A Typical SOA Architecture……………………………………………...10

Figure 2.2: SOAP Message Structure………………………………………………...12

Figure 2.3: WSDL Document Structure………………………………………………13

Figure 2.4: Service Orchestration……………………………………………………..14

Figure 2.5: Simplified Architecture of Message Oriented Middleware………………15

Figure 2.6: A Typical ESB Connecting Diverse Applications………………………..17

Figure 2.7: Technical Foundations Dependencies……………………………………26

Figure 3.1: Dynamic Data Integration Model Architecture…………………………...28

Figure 3.2: Data Propagation System………………………………………………….29

Figure 3.3: Medical Insurance Model………………………………………………….30

Figure 3.4: SOA Based Network of Medical Devices…………………………………31

Figure 3.5: System Structure of SoGoSP……………………………………………...32

Figure 3.6: Data Center Structure……………………………………………………...33

Figure 3.7: WRISP Framework………………………………………………………..34

Figure 4.1: Palestinian e-Government Technical Framework…………………………35

Figure 4.2: Current Integrated Central Database Model………………………………38

Figure 5.1: Proposed SOA-based Integrated Central Database Framework…………..43

Figure 6.1: Prototype Architecture…………………………………………………….48

Figure 6.2: Composite Informational Service Logical View………………………….50

Figure 6.3: Replication Service Logical View………………………………………...51

Figure 6.4: Security Assurance Service Logical View………………………………...52

Figure 6.5: Security Assurance Service Flow Diagram………………………………..52

Figure 7.1: Framework Evaluation Based on ATAM…………………………………56

Figure 7.2: Usage Scenario for the Proposed Framework……………………………..61

VII

List of Tables

Table 7.1: Framework Interoperability Supporting Features…………………………..57

Table 7.2: Framework Manageability Supporting Features……………………………58

Table 7.3: Framework Flexibility Supporting Features………………………………...59

VIII

List of Abbreviations and Glossaries

ATAM Architecture Tradeoff Analysis Method is a Scenario Based Software

Architecture Evaluation Method.

BPEL Business Process Execution Language is an OASIS standard executable

language for specifying actions within business processes with Web

Services. Processes in BPEL export and import information by using Web

Services interfaces exclusively.

CORBA Common Object Request Broker Architecture (CORBA) enables separate

pieces of software written in different languages and running on different

computers to work with each other like a single application or set of

services.

CXF Celtix and XFire: Apache CXF is an open-source, fully featured Web

services framework. It originated as the combination of two open-source

projects: Celtix developed by IONA Technologies and XFire developed by

a team hosted at Codehaus.

DCOM Distributed Component Object Model is a Microsoft technology for

software distributed across several networked computers to communicate

with each other.

EAI Enterprise Application Integration is software and architectural principles

that allow for the integration of applications. EAI attempts to provide real-

time access to data and processes with minimal changes to the existing

applications and their underlying data structures.

EJB Enterprise Java Beans is a managed, server-side component architecture for

modular construction of enterprise applications. The EJB specification is

one of several Java APIs in the Java EE specification.

http://en.wikipedia.org/wiki/OASIS_(organization)
http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Celtix
http://en.wikipedia.org/wiki/IONA_Technologies
http://en.wikipedia.org/wiki/Codehaus_XFire
http://en.wikipedia.org/w/index.php?title=Codehaus&action=edit&redlink=1
http://en.wikipedia.org/wiki/Component_(software)
http://en.wikipedia.org/wiki/Enterprise_software
http://en.wikipedia.org/wiki/Java_(software_platform)
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Java_EE

IX

ESB Enterprise Service Bus (ESB) is a software architecture model used for

designing and implementing the interaction and communication between

mutually interacting software applications in Service Oriented Architecture.

ETL Extract, Transform, and Load (ETL) is a process in database usage and

especially in data warehousing that involves: Extracting data from outside

sources, Transforming it to fit operational needs (which can include quality

levels), Loading it into the end target (database or data warehouse).

FTP File Transfer Protocol (FTP) is a standard network protocol used to transfer

files from one host to another host over a TCP-based network, such as the

Internet.

HTTP Hyper Text Transfer Protocol (HTTP) is a networking protocol for

distributed, collaborative, hypermedia information systems. HTTP is the

foundation of data communication for the World Wide Web.

Hub-and-

Spoke

An abstract software pattern used to transfer data between multiple

systems. In contrast to the bus pattern, it uses a central component that

coordinates all communication between senders and receivers.

J2EE Java 2 Enterprise Edition (J2EE) is a widely used platform for server

programming in the Java programming language. The Java platform

(Enterprise Edition) differs from the Java Standard Edition Platform (Java

SE) in that it adds libraries which provide functionality to deploy fault-

tolerant, distributed, multi-tier Java software, based largely on modular

components running on an application server.

JAX-WS Java API For XML-based Web Services (JAX-WS) is a Java programming

language API for creating Web Services. It is part of the Java EE platform

from Sun Microsystems.

JBI Java Business Integration (JBI) is a specification developed under the Java

Community Process (JCP) for an approach to implementing a service-

oriented architecture (SOA).

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Service_Oriented_Architecture
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Data_extraction
http://en.wikipedia.org/wiki/Data_transformation
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Network_protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/World_Wide_Web
http://www.soa-in-practice.com/soa-glossary.html#bus
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(software_platform)
http://en.wikipedia.org/wiki/Java_Platform,_Standard_Edition
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/Fault-tolerant_design
http://en.wikipedia.org/wiki/Fault-tolerant_design
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Modularity_(programming)
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/Service_oriented_architecture
http://en.wikipedia.org/wiki/Service_oriented_architecture

X

JDBC Java Database Connectivity (JDBC) is an API for the Java programming

language that defines how a client may access a database. It provides

methods for querying and updating data in a database. JDBC is oriented

towards relational databases.

JMS Java Message Service (JMS) is a Java Message Oriented Middleware

(MOM) API for sending messages between two or more clients. JMS is a

part of the Java Platform, Enterprise Edition. It is a messaging standard that

allows application components based on the Java Enterprise Edition (JEE)

to create, send, receive, and read messages. It allows the communication

between different components of a distributed application to be loosely

coupled, reliable, and asynchronous.

JSF Java Server Faces (JSF) is a Java-based Web application framework

intended to simplify development integration of web-based user interfaces.

JSP Java Server Pages (JSP) is a Java technology that helps software developers

serve dynamically generated web pages based on HTML, XML, or other

document types. JSP was designed to address the perception that the Java

programming environment didn't provide developers with enough support

for the Web.

MOM Message-Oriented Middleware (MOM) is software or hardware

infrastructure supporting sending and receiving messages between

distributed systems. MOM allows application modules to be distributed

over heterogeneous platforms and reduces the complexity of developing

applications that span multiple operating systems and network protocol.

QoS Quality of Service (QoS) is sometimes used as a quality measure; it refers

to the level of quality of service, i.e. the guaranteed service quality.

REST Representational State Transfer (REST) is a style of software architecture

for distributed hypermedia systems such as the World Wide Web.

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Message_Oriented_Middleware
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Dynamic_web_page
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Hypermedia
http://en.wikipedia.org/wiki/World_Wide_Web

XI

RPC Remote Procedure Call (RPC) is an inter-process communication that

allows a computer program to cause a subroutine or procedure to execute in

another address space (commonly on another computer on a shared

network) without the programmer explicitly coding the details for this

remote interaction.

SLA Service Level Agreement (SLA) is a part of a service contract where the

level of service is formally defined. The term SLA is sometimes used to

refer to the contracted delivery time or performance.

SOA Service-Oriented Architecture (SOA) is a set of principles and

methodologies for designing and developing software in the form of

interoperable services. These services are well-defined business

functionalities that are built as software components (discrete pieces of

code and/or data structures) that can be reused for different purposes.

SOAP Simple Object Access Protocol (SOAP) is an XML-based protocol for

exchange of information in a decentralized, distributed environment.

TCP Transmission Control Protocol (TCP) is one of the core protocols of the

Internet Protocol Suite. TCP is one of the two original components of the

suite, complementing the Internet Protocol (IP), and therefore the entire

suite is commonly referred to as TCP/IP. TCP provides reliable, ordered

delivery of a stream of bytes from a program on one computer to another

program on another computer.

UDDI Universal Description Discovery and Integration (UDDI) is a platform-

independent, XML-based registry for businesses all over the world to be

listed on the Internet; it is an open industry initiative (sponsored by OASIS)

enabling businesses to discover each other and define how to interact over

the Internet.

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Service_contract
http://en.wikipedia.org/wiki/Methodologies
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet_Protocol

XII

UDP User Datagram Protocol (UDP) is one of the core members of the Internet

Protocol Suite, the set of network protocols used for the Internet. With

UDP, computer applications can send messages, in this case referred to as

datagram, to other hosts on an Internet Protocol (IP) network without

requiring prior communications to set up special transmission channels or

data paths.

W3C World Wide Web Consortium (WWW) was created in 1994 for leading the

World Wide Web to its full potential by developing common protocols

which promote its evolution and ensure its interoperability.

WSDL Web Services Description Language (WSDL) is an XML format for

describing network services as a set of endpoints operating on messages

which contain Document-oriented or procedure-oriented information.

WS-I Web Service Interoperability (WS-I) is an open industry organization that

promotes Web services interoperability.

XML Extensible Markup Language (XML) is a Meta-Language written in

Standard Generalized Markup Language (SGML) that allows using to

allow for easy interchange of documents on the World Wide Web.

XSD XML Schema Definition (XSD) is a recommendation of the World Wide

Web Consortium (W3C), specifies how to formally describe the elements

in an Extensible Markup Language (XML) document. This description can

be used to verify that each item of content in a document adheres to the

description of the element in which the content is to be placed.

http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet_Protocol
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213331,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213404,00.html

XIII

List of Appendices

 Appendix A: Prototype Working Environment

 Appendix B: Informational Web Services

 Appendix C: The Informational Services Composite Application and BPEL

 Appendix D: Security Service Assurance Implementation Files

 Appendix E: Replication Service, Database Binding, and BPEL

 Appendix F: Front-End Access Interface

 Appendix G: Framework Evaluation Scenarios based on ATAM

1

1 Chapter

Introduction

This chapter introduces the thesis by describing the Palestinian e-Government and the

Integrated Central Database, the thesis problem, the research objectives, the importance

of the research, the scope and limitation of the thesis work, the methodology, resources

and tools.

1.1. The Palestinian e-Government and Integrated Central Database

e-Government has drawn an increasing attention recently; it represents a promising

initiative that makes people’s life easier. e-Government can be defined as a way for an

effective use of Information and Communication Technologies (ICT) in the government

conduct in order to enhance government-citizen interaction [76]. The ultimate goal of e-

Government is to improve government–citizen interactions through an infrastructure

built around the ―life experience‖ of citizens [42]. Many aspects of e-Government need

to be addressed thoroughly, at both process and technical levels. In the year of 2005 the

Palestinian Government adopted the e-Government initiative [47]. A Technical

Framework for the e-Government initiative was specified and the Integrated Central

Database, which is one of the main components in the framework, was implemented

[52]. The Integrated Central Database integrates different data sources replicated from

various ministries and consolidates them in one location. The Integrated Central

Database relieves ministries from accessing different data sources by providing a single

point of access to various data sources. The currently used Integrated Central Database

architecture is modeled and realized to provide data integration between governmental

institutes and to provide inter-ministry exchange of data. This database can be thought

of as a broker that integrates data from different sources and then allows the sharing of

data between various ministries.

The current Integrated Central Database architecture lacks Interoperability, Flexibility,

and Manageability features. It is restricted to using a specific database type for the

1 Introduction

2

replication which is based on Oracle DBMS, and connectivity to the database is limited

to be from the Internal Government Network as well as over a specific transport port.

The Integrated Central Database has a limited management capability for the database

integration process.

Distributed systems are considered as a solution to overcome the shortcomings of the

Integrated Central Database. However, while Distributed systems integration models

such as Common Object Request Broker Architecture (CORBA) and Distributed

Component Object Model (DCOM) have been successfully implemented on many

platforms, their limitation arises as enterprises management are not centralized, the

limitations can be obviously seen when the solutions are built on those protocols that

depend on a single vendor. These protocols closely depend on a single administered

environment and hence not used between enterprises, which therefore leads to lack of

interoperability [10].

To remedy the deficiencies of distributed systems, Service Oriented Architecture (SOA)

is introduced. SOA is an architecture that uses the ―service‖ as a basic construct in the

development approach and builds on distributed, loosely coupled, and interoperable

components of software [29][42]. SOA provides a solution to shared and distributed

services development [38][51], and achieves high Interoperability, Flexibility, and

standardization by utilizing the description, discovery, and invocation of services. SOA

based integration helps in achieving qualities such as: Interoperability, Flexibility, and

Manageability [54]. Moreover the concept of SOA was supported by various companies

like IBM and Microsoft. They argue that in order for SOA to succeed it must be

implemented on open standards [10]. Consequently, the shortcomings of the Integrated

Central Database Architecture can be eliminated by transforming the current

architecture into SOA-based, which can be realized using Web services and the

Enterprise Service Bus (ESB) platform.

In this research we propose to use ESB and Web Services in the SOA realization

process. The use of Web services in e-Government enables the governmental

institutions to provide additional services by defining new services that emerge from

other e-Government services [33][42]. To realize the concept of SOA model, one would

use the Enterprise Service Bus [42][53][57]. ESB will act as the middleware glue

1 Introduction

3

infrastructure that holds SOA together. It integrates and manages the communication

between different Web services [51], applications, and data sources. ESB will provide

functionalities such as routing and transporting service requests, security assurance,

service orchestration, and management capabilities. The e-Government Integrated

Central Database framework will be designed based on SOA approach that is realized

through using Web services and ESB.

The work methodology of the research will lead to proposing a framework based on

SOA for the Integrated Central Database of the Palestinian e-Government Technical

Framework. The framework will be evaluated using a scenario based software

architecture evaluation method. And the correctness of the framework will be validated

through using a proof-of-concept methodology in which a prototype will be

implemented.

1.2. Problem Statement

The increasing size of disparate, distributed and heterogeneous government databases

and the high demand for the exchange of data between the different governmental

institutes create an integration problem. The Integrated Central Database is one of the

core components in the Palestinian e-Government Technical Framework. The currently

implemented architecture of the database relies on replicating subsets of the

government institutes databases into the Integrated Central Database. The main

functionalities of the Integrated Central Database are the replication and accessibility.

Both functionalities suffer from the lack of vital features which are: interoperability,

flexibility and manageability. Problems of the current architecture appear when trying

to replicate a government institute database with a different type database of the

Integrated Central Database. The problem also appears when clients trying to access

the Integrated Central Database over a transport, driver, or an Application

Programming Interface (API) that is not natively supported by the Integrated Central

Database. Another problem emerges from the inability to attain a central point of

management for the operation of the Integrated Central Database.

The above shortcomings can be overcome by transforming the current architecture into

a SOA-based one. Even though many researchers proposed SOA-based approaches for

1 Introduction

4

the data exchange and integration issue, but their proposed solutions do not address all

three problems mentioned above, and they are based on requirements that do not

completely match our case.

The problem of this research is how to build a SOA-based framework for the

Palestinian e-Government Integrated Central Database that achieves interoperability,

flexibility, and manageability.

1.3. Objectives

In this section we present both main and specific objectives of the research work.

1.3.1 Main Objective

The main objective of this research is to build a SOA-based Framework for the

Integrated Central Database of the Palestinian e-Government Technical Framework

that achieves interoperability, flexibility, and manageability with emphasis to database

functionalities related to replication, connectivity.

1.3.2 Specific Objectives

The specific objectives of this research are:

 Analyze the current Integrated Central Database Architecture to determine the

shortcomings and requirements with respect to interoperability, flexibility, and

manageability quality attributes.

 Build a framework to transfer the Integrated Central Database Architecture into a

SOA based one.

 Evaluate the proposed framework for interoperability, flexibility, and

manageability using scenario based software architecture evaluation method.

 Validate the framework using a proof-of-concept method through implementing

and deploying a prototype of the framework.

 Present a usage scenario of the prototype to show the framework solution to show

the quality attributes achievement.

1 Introduction

5

1.4. Importance of the Research

 The proposed framework would have a great value towards the advancement of the

e-Government initiative in Palestine, which would result in speeding the

advancement of the e-Government services and hence citizens would be the

ultimate beneficiary of it.

 The framework would also allow for an easy and standard access to the Integrated

Central Database for the non-governmental institutes.

 The framework would allow for the easiness of adding ministries databases to the

replication and access of the Integrated Central Database.

 The idea of the research idea has got an initial approval by the Ministry of Telecom

and IT, the institute that oversees the e-Government initiative, and hence the

research will be adopted and used by the concerned departments.

 The deployment of the framework would present a valuable chance for the IT staff

at the ministries to enhance their experience and knowledge in SOA technology,

and hence would move the current Web computing trends in the government sector

towards SOA based.

 Other e-Government initiatives or related information systems integration projects

can benefit from the framework even though their requirements may vary because

the SOA principles enhance the reusability feature.

1.5. Scope and Limitations of the Research

 The scope of the research will address and achieve all functionalities provided by

the current Integrated Central Database in the e-Government Technical Framework,

in addition to achieving the interoperability, flexibility, and manageability quality

attributes.

 Quality attributes such as scalability, fault-tolerance will not be addressed by the

proposed framework, because of the time constraint for completing the thesis work.

 The framework will not be fully implemented, but rather a prototype of it with a

specific usage scenario will be implemented. The prototype will provide a proof of

concept for the proposed framework.

1 Introduction

6

 Even though the framework will be designed to support different database types,

the implementation of the replication service will consider only two database

products which are Oracle and MySQL.

 The available replication tools that comes with a specific database will be used if

applies, e.g. Oracle to Oracle replication, synchronization, and consistency checks

are supported natively by the vendor, hence they will not be implemented, but the

management of the replication as a service will be addressed.

 The security issue will be addressed in terms of authentication of users and their

authorization to access services. Every service will be accessed based on specific

usage permission and user identification mechanism. The security issue of

messaging exchange and communication between different services will be handled

by the transport, the network layers, and the ESB platform.

 Online help, or system documentation will not be part of the framework, since

services are described by their interface files which are built based on standard

approach.

1.6. Methodology

To accomplish the objectives of the research, the following methodology will be

followed:

 Analyze the current Integrated Central Database architecture against the goals

which are: interoperability, flexibility, and manageability.

 Study and investigate SOA approaches for integrating, sharing, and accessing

distributed and central databases.

 Study alternatives of ESB platforms and decide on the suitable one to be used in

the implementation of the framework.

 Develop the proposed framework:

 Specify the requirements and the framework architecture.

 Define the components of the framework.

 Specify the interaction between framework components.

 Define the accessibility approaches to the Integrated Centralized Database for

the front-end clients.

1 Introduction

7

 Address the ethical concerns related to the framework, this is because the

Integrated Central Database includes huge repository of data including personal

data, governmental institutes’ data, and private data.

 Evaluate the framework for the defined quality attributes using a scenario based

software architecture evaluation.

 Implement a prototype as a validation of the framework using the proof of

concept. The prototype is to allow for a specific usage scenario, including the

front-end access to the Integrated Central Database through a Web portal and

Web services. The prototype is to include the following tasks:

 Choose three informational services from different ministries to be

implemented.

 Decide on service realization strategy for different services, e.g. top-down,

bottom-up, meet in the middle.

 Develop an orchestration service for two of the services.

 Implement the replication service for the support of Oracle to MySQL, and

Oracle to Oracle replication.

 Implement the front-end access Web interface that will invoke the

implemented services.

 Verify the prototype goals achievements by presenting a specific usage scenario.

1.7. Resources, Methods, and Tools

The following resources and methods will be required:

 Working network platform including database server, Web server, and Web client.

 Database Managers in different ministries: For surveying the used database type and

their replication options.

 Other research groups working in the same area: For advice.

 The required software to conduct this research will be software packages and

development tools, and platform that support Web services and ESB framework.

The tools are (Oracle database, Java Business Integration (JBI), MySQL database,

Netbeans IDE, JSP, Apache, Tomcat, Linux)

1 Introduction

8

 Software Architecture Evaluation Methods such as Architecture Tradeoff Analysis

Method (ATAM) for framework evaluation, and proof-of-concept as a means for

validating the framework, where a showcase application has been developed to

prove the correctness of the implementation and the usefulness of the concepts.

 Services realization options such as top-down, bottom-up, and meet-in-the middle.

1.8. Thesis Structure

This thesis consists of eight mainly chapters: Introduction, Theoretical Foundation,

Related Works, Evaluating the Current Palestinian e-Government Central Database

Model, Framework Structure and Components, Framework Prototype, Framework

Evaluation, and Conclusions and Future works. The main points discussed in the

chapters are listed below:

 Chapter 1 Introduction: gives a short introduction about the Integrated Central

Database and the thesis problem and objectives.

 Chapter 2 Technical Foundations: describes the technical foundations needed for

thesis work, SOA, Web Services and BPEL, Replication, and Software Evaluation.

 Chapter 3 Related Works: presents related works to the thesis.

 Chapter 4 Evaluating the Current Palestinian e-Government Central Database

Model: presents and analyze the current Integrated Database model, and discusses

the shortcomings of the model.

 Chapter 5 SOA-based Framework: presents the proposed the SOA-based

framework for the Integrated Central Database and describes the components and

their interaction.

 Chapter 6 Framework Prototype: is devoted to the presenting the implementation

of the framework prototype and describes prototype architecture and the

implemented service.

 Chapter 7 Framework Evaluation: presents the evaluation of the framework using

scenario based software architecture evaluation method, and validates the prototype

using the proof of concept validation approach.

 Chapter 8 Conclusions and Future Work: discusses the final conclusions and

presents possible future works.

9

2 Chapter

Technical Foundations

In this chapter the fundamental concepts and technical knowledge which represent the

basis for understanding of the thesis work are presented. First the Service-Oriented

Architecture (SOA) is introduced, followed by Web services, Business Process

Execution Language (BPEL), Universal Description Discovery and Integration (UDDI),

Enterprise Application Integration (EAI), Enterprise Service Bus (ESB), database

replication, and finally evaluation methods for software architecture and proof-of-

concept.

2.1. Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is considered as an evolution of distributed

computing and modular programming. It is a style of information system architecture

that enables the creation of applications that are built by combining loosely coupled and

interoperable services. SOA is a style of coarse grained, loosely coupled software

architecture [37]. SOA also describes IT infrastructure which allows different

applications to exchange data with one another as they participate in business processes

[68]. SOA is an approach to IT that considers business processes as reusable

components or services that are independent of applications and the computing

platforms on which they run. SOA is not tied to a specific technology; it can be realized

using different technologies, such as: RPC, DCOM, CORBA and Web Services.

Following we discuss the rationale behind using SOA, SOA architecture, SOA layers,

and implementations.

2.1.1 SOA Benefits

Service-orientation aims at a loose coupling of services with operating systems,

programming languages and other technologies which underlie applications [68]. Many

businesses adopted the Service-Oriented Architecture due to the changing in business

10

demands regarding quality and flexible IT [66]. SOA allows software designers to

design solutions such as assemblies of services; and hence SOA-based systems can be

independent of the development technologies and platforms. In SOA environment

independent services can be accessed without knowledge of their underlying platform

implementation [67].

 2.1.2 SOA Architecture

A typical architecture of SOA is depicted in Figure 2.1, which includes three main roles

that interact using standard messaging. The roles are service provider, service registry

and service client [53]. The service is first published by the service provider to the

service registry, which is a repository that holds services interfacing information. The

service client searches the service registry for a specific service, and gets its binding

information. The client uses service binding information to consume the service

provided by the service provider. The service registry in the architecture is optional and

so the SOA solutions can be designed with service provider and client only.

Service

Provider

Service

Registry

P
ub

lis
h

Bind

F
ind

Service

Consumer

Figure 2.1: A Typical SOA Architecture

2.1.3 SOA Layers

SOA solutions are built using layers which provide a level of abstraction; layers show

the conceptual structure of services in SOA even though there is no wide agreement in

the literature regarding the name of the layers. Common layers names and their

explanation is presented as follows [19]:

11

 Presentation Layer: This presentation layer contains the application front-ends and

services. These provide access to the SOA, and provide communication between

end users and the SOA. Access to services is provided for business-to-business

situation, along with users within an organization.

 Business Process Layer: The business process layer contains services that contain a

full business process. These services are composed with orchestration methods

such as BPEL and the services of the services layer (more about BPEL in section

2.3).

 Services Layer: The services layer contains the services that provide access to

internal applications and data. The services layer also contains proxies that can

access services that other companies have in the presentation layer. Different

service consumers use the services in this layer; therefore, they should be as

generic as possible, without being redundant.

 Application Layer: The application layer contains the applications of an

organization. Some sources also include the data stores in this layer. The

applications provide the organization with some sort of functionality (e.g. keep all

employee data in a database).

2.1.4 SOA Implementation

To realize a SOA solution, different technologies can be used such as CORBA, DCOM,

RPC, or Web Services. Web services (discussed in section 2.2) are a suitable choice to

build SOA solutions. SOA Infrastructure is realized through bus approach where point

to point interaction between services and components without a use of a middleware, or

based on a hub and spoke approach using an ESB. An ESB provides an implementation

backbone for an SOA that treats applications as services. It establishes proper control of

messaging as well as applies the needs of security, policy, reliability and accounting, in

an SOA [53], ESB will be explained in section 2.6.

2.2. Web Services

Web services are a good technology to build Service Oriented Architectures. A Web

Service is defined as a software system designed to support interoperable machine-to-

machine interaction over a network [73]. Web services provide the basis for the

12

development and execution of business processes that are distributed over the network

and available via standard interfaces and protocols [56]. Web services may use the

Internet as the communication medium (as well as other transport protocols) and open

Internet-based standards, such as the Simple Object Access Protocol (SOAP) as

transmission medium, the Web Services Description Language (WSDL) for service

definition and the Business Process Execution Language (BPEL) for orchestrating

services. Web services are simple, easy to understand, requires inexpensive technology,

no major investment needed, and can start small and proceed incrementally.

2.2.1 Simple Object Access Protocol (SOAP)

SOAP stands for Simple Object Access Protocol, which is an XML-based protocol for

the communication in a Web Services environment. SOAP messages enable the

communication between the service provider and requester. From the requestor’s point

of view, SOAP is needed for the discovery and invocation of a service. SOAP uses

HTTP and XML to solve the problem of inter-acting the interfaces between the various

platforms in a network, because they are both platform independent. SOAP explains

what data should be in the http-header, as well as what data should be in an body of the

soap environment of a HTTP message, so that an application in one side can call an

application in another computer side and transfer information (data, etc.) between the

two sides. Information needed by a Web server that works with the SOAP protocol is

contained in a SOAP message, which consists of a SOAP Envelope, a SOAP header and

a SOAP body. Figure 2.2 shows the overall structure of a SOAP message [39].

SOAP Header

SOAP Body

SOAP Envelope

Figure 2.2: SOAP Message Structure

The envelope represents the entire package of data that is being used to explain how

information should be transferred. As part of this envelope, the optional header can

13

contain information about the routing and the delivery options for the SOAP message.

The mandatory body, also as a part of the envelope, contains the actual data, which is

usually the method or operation one is invoking.

2.2.2 Web Services Description Language (WSDL)

Web service requesters need to know how to access Web services and get their

description through a standard way, and to provide such facility for the description of

the Web Services, WSDL is introduced. WSDL stands for Web Services Description

Language. It is used to describe Web Services. Usually the service provider creates a

description about the offered service during the development of a service. For a service

requestor it is important to know where a service is located. Furthermore the requestor

needs to know what kind of messages the services will understand and what kind of

operations are offered, as well as how the messages are encoded and which protocol is

used for exchanging the messages. This information can be provided to the requestor by

the WSDL file of a service [77]. Figure 2.3 depicts WSDL document structure which is

an XML file that mainly includes sections for the messages, operations, binding, and

service location.

Figure 2.3: WSDL Document Structure [7]

14

2.3. Business Process Execution Language (BPEL)

As discussed in subsection 2.1.3 in SOA Layers, SOA can have a process layer to

provide a composite process from various Web Services and to provide a way to realize

processes. Business Process Execution Language (BPEL) is used for service

orchestration. One standard for BPEL is Web Services Business Process Execution

Language (WS-BPEL or BPEL4WS) which is maintained by Organization for the

Advancement of Structured Information Standards (OASIS) [74]. In addition to service

composition, BPEL can also be realized by means of virtualization tier and Web

Services [71]. Business processes can be composed of different calls to specific Web

Services. With WS-BPEL the order in which specific services are called can be

controlled and this is referred to as service orchestration. WS-BPEL supports two types

of business processes.

1- The executable processes which specify the exact details of business processes

and are executed by a BPEL engine.

2- Abstract business process which specifies the public message exchange between

the client and the service.

The benefit of WS-BPEL is that it allows business processes to be changed just by

adjusting the WS-BPEL file. Figure 2.4 (from [60]) shows an example of a WS-BPEL

process. Service A wants to consume a service B in the other enterprise. Data is sent

between A and B is in the form of a SOAP document. Service B is a business process

and uses service C and D. Service A does not care what happened behind service B just

as long as it does what is should do. If service B wants to adjust the process by

replacing service B with service E (which is not shown), they can do by changing the

WS-BPEL file. Service A will not notice any change.

Service A Service B

Enterprise A Enterprise B

Service C

Service D

BPEL

BPEL
SOAP

Figure 2.4: Service Orchestration [60]

15

2.4. Universal Description Discovery and Integration (UDDI)

One component of a typical SOA Architecture is the service registry, which is used to

facilitate the finding of services by the requestor and to realize the service registry. To

implement such functionality, the Universal Description Discovery and Integration

(UDDI) initiative was presented by IBM, Microsoft and Ariba. It actually initiated from

the e-business community. UDDI comes to solve the problem that challenges the

requestor to discover and find a service to use. The UDDI registry can be thought as a

centralized Web Services search engine helping the service consumer to find adequate

service offerings [77]. In a UDDI registry consumers may find:

 Information about businesses and organizations offering Web Services.

 Descriptions of the Web Services that these organizations provide.

 Information about technical interfaces to these Web Services.

2.5. Enterprise Architecture Infrastructure (EAI)

To integrate application and data between enterprises, various integration ways are

addressed. Message Oriented Middleware (MOM) is one of the traditional approaches

for enterprise integration which is an infrastructure that uses asynchronous messaging to

decouple applications from each others. It is based on a central message queue called

message broker to which applications are connected through a centralized united

interface. Figure 2.5 depicts a simplified architecture for the MOM.

Message Broker

Application

n

Persistent Storage

Application

1

Figure 2.5: Simplified Architecture of Message Oriented Middleware [44]

As shown in Figure 2.5, the message broker has a persistent storage area for storing

messages so that sender and receiver do not need to be connected at the same time, this

leads to decoupling. Moreover, messages are routed by the message broker, this means

to provide the ability to deliver a single message to multiple recipients and it allows for

16

message transformation where message can be formatted for different application

format [44].

Even though MOM presents a solution for enterprise integration, it faces a problem of

using proprietary protocols and platform specific interfaces and deployments. Such

problem leads to having applications that are dependent on the infrastructure and causes

Interoperability problem. In a typical enterprise such issue turns to having multiple

MOM based infrastructures. Another problem with MOM is that it has popular hub and

spoke Enterprise Architecture Infrastructure (EAI) platform, in which all integrated

applications work through a single message broker, creates a single point of failure,

which presents a high risk for a complex business system. To overcome the

shortcomings of traditional enterprise architecture infrastructure the Enterprise Service

Bus is introduced [18].

2.6. Enterprise Service Bus (ESB)

To realize a SOA solution an Enterprise Service Bus (ESB) can be used. An Enterprise

Service Bus is an open standards, message based distributed integration infrastructure

that provides routing, invocation and mediation services to facilitate the interactions of

disparate distributed applications and services in a secure and reliable manner [44]. ESB

is a critical infrastructure that should be implemented and designed based on

architectural blueprint. So, an ESB is a product, which evolves from architecture. An

ESB is valuable to the implementation of a service-oriented architecture (SOA) [12] and

ESB provides a fundamental support for EAI. It provides a middleware for accessing

and transforming information to several protocols such as Java Message Service (JMS),

SOAP, HTTP, FTP and TCP. It allows the communication between these different

protocols with the support of adaptors [63], where adaptors are used to connect

applications to the ESB. To ensure Interoperability, the components of the ESB and the

mechanism for connecting resources must be based on open standard. ESB is realized

through using service containers distributed over the network. The containers host

integration service such as routers and transformers, and provide services with

communication facilities. Messaging infrastructure is built on top middleware systems

which guarantee message delivery, such as JMS middleware. Figure 2.6 depicts a

simplified general architecture view of an ESB. The ESB, as shown in Figure 2.6,

http://searchsoa.techtarget.com/expert/KnowledgebaseAnswer/0,289625,sid26_gci808822,00.html
http://searchsoa.techtarget.com/expert/KnowledgebaseAnswer/0,289625,sid26_gci808822,00.html

17

integrates a J2EE application using JMS, interfaces with legacy applications, and Web

services. Moreover a distributed query engine is attached to the ESB which is normally

based on XQuery or SQL. The query engine enables the creation of data services to

abstract the complexity of underlying data sources. As shown in Figure 2.5, a main use

for ESB is to act as the intermediary layer between a portal server and the backend data

sources that the portal server needs to interact with [55].

Reliable, Asynchronous Secure Messaging

Portals

Web ServicesJ2EE/JMS
Legacy

Application

Service Interface

Service Container

SOAP/HTTP

Distributed

Query Engine

Data Sources

Figure 2.6: A Typical ESB Connecting Diverse Applications [55]

ESB should achieve a goal of providing interaction, messaging and integration without

writing code. ESB should provide generic components which can be configured to

realize a desired scenario. With its distributed deployment infrastructure, an ESB can

efficiently provide central configuration, deployment, and management of services that

are distributed across the extended enterprise [12]. In the following two sections ESB

functions and features, and ESB implementations are presented.

2.6.1 ESB Functions and Features

ESB performs different functions such as: connectivity, routing, transformation,

security, management, validation and processing of messages, orchestration services,

and performing publish and subscribe functions between disparate and distributed

applications. Below are listing of main functions that may be supported by different

ESBs [44], [20], [63], [45], and [36].

 Invocation: Which is the service ability to send requests and receive responses from

integration services and resources, and handles the underlying protocols such as

18

TCP, UDP, HTTP, SSL, and communication mechanisms could be JBI, RMI,

JDBC, SMTP, FTP, or POP3.

 Routing: Which provides the ability to decide about the destination of a message

during its transport, and routing allows decoupling the source of a message from

the ultimate destination.

 Mediation: In which applications rarely agree on common data format, hence this

feature is important for data transformation.

 Adaptors (connectors): In which ESB provides a whole range of application adaptor,

such as Enterprise Resource Planning (ERP), Supply Chain Management (SCM),

and Customer Relation Management (CRM). Using prefabricated adapters reduces

the work required to integrate applications into a Service-Oriented Architecture,

such as File/FTP adapter service, Database Adapter Service, and JMS Adapter

Service, etc. A typical function of database adapter service can be inbound and

outbound. An inbound database adapter service sends an XML message to e.g. an

Enterprise Service Bus when a SQL insert, update, or delete operation is performed

against a database. An outbound database adapter transforms the contents of an

XML message into a SQL insert, update, or delete operation on the target database

[26].

 Process Orchestration: Which provides an engine to execute business processes

described with the Web Services Business Process Execution Language (WS-

BPEL). This engine is controlled by the process description then coordinates the

collaboration of the services connected to the bus.

 Complex Event Processing: ESB provides a way where an asynchronous message

can be seen as an event especially when using publish-subscribe channel. An ESB

may provide event interpretation, event pattern matching which enable event-driven

architectures.

 Security: In which ESB provides secure messaging, to be able to encrypt and

decrypt the content of messages. Handles authentication and access control for

messaging endpoints and to use secure persistence mechanisms.

 Management: This provides a central mechanism for configuration and

administration of the bus. It offers a unified management console for monitoring

and administration of infrastructure and integration scenario. And provides audit

19

and logging facilities for monitoring infrastructure and integration scenario and

possibly also for controlling process execution.

 Integration Tooling: where ESB provides graphical design-time tooling for

professional development with an ESB. And a deployment and testing tool should

be available.

 Quality of Service: In which transaction control and compensation is addressed,

failover at service and service container, and provides distributed network topology

with flexible deployment for performance and scalability.

2.6.2 ESB Implementation

Some ESB implementations are based on Java Business Integration (JBI), which defines

an architecture that allows integration products to be built based on components that can

be plugged into the JBI environment. JBI is based on two main concepts: the Service

Engines (SEs) and the Binding Components (BCs). SE provides functionality to other

JBI components and can consume services provided by other JBI components. And the

BC allows the connectivity outside the JBI environment. The main benefit of it is that

JBI component may be reusable among JBI-compliant ESB [20].

The majority of ESBs deal with Java Message Service (JMS) for managing the delivery

and reception of messages between different components. Other used technologies in

ESBs are generally REST, HTTP, JDBC, TCP, UDP or CXF [20].

There are several ESBs products, both commercial and open source [20]. Commercial

products such as IBM Web Sphere Message Broker [23], TIBCO Business Work [70]

or Oracle ESB [26], and open-source implementations such as ServiceMix [3], Fuse

ESB [49], Mule [48], Open-ESB[50], JBoss ESB [27] or Petals [59].

A typical usage scenario for Open-ESB, which is built on top of Java Business

Integration (JBI), shows the following components are used: JSP/JSF Web page, JAVA

DB, JMS Queue, Composite Application BPEL, EJB-based Web service, and Servlet-

Based Web Services [6].

http://www.jboss.org/jbossesb/downloads/

20

2.7. Database Replication

The thesis problem presents the integration issue between various types of databases. To

accomplish the integration of such databases to be centralized, a replication technique is

used. Replication is a technique in distributed data sharing where a component is

copied, or replicated, and kept consistent in order to improve availability and

performance [65]. Replication is also defined the process of creation and maintenance

of duplicate versions of database objects in a distributed database system [40].

Replication is used when there is a series of databases that should be and should remain

identical, even when changes are made at one of the replicas. Replication algorithms

process these changes and propagate them to the replicas. The replicas are updated

consistently.

2.7.1 Replication Types

The replication tools may be selected based on the type of replication it supports [1].

The capabilities and performance characteristics varies from one type of replication to

another. A replication strategy may be selected based on two basic characteristics:

Where and When. When the data is updated at one site, the updates have to be

propagated to the respective replicas. When the updates can be propagated can be

achieved by Synchronous (eager) and Asynchronous (lazy) methods and where the

updates can take place can be achieved by update everywhere and primary copy

(master-slave) methods. Synchronous replication (Master-Slave replication) works on

the principle of Two-Phase commit protocol [9]. In a two-phase commit protocol, when

an update to the master database is requested, the master system connects to all other

systems (slave databases), locks those databases at the record level and then updates

them simultaneously. If one of the slaves is not available, the data may not be updated.

The consistency of data is preserved; however it requires availability of all sites at the

time of propagation of updates. There exist two variations of Asynchronous replication

(Store and Forward replication) i.e. periodic and trigger-based. In Periodic replication,

the updates to data items are done at specific intervals and in trigger-based replication

the updates are propagated only when necessary (usually based on firing of event in a

trigger). Various forms of replication strategies are as follows:

21

 Snapshot Replication: In snapshot replication, a snapshot or copy of data is taken

from one server and moved to another server or to another database on the same

server. After the initial synchronization, snapshot replication can refresh data in

published tables periodically. Though snapshot replication is easiest form of

replication, it requires copying all data items each time a table is refreshed.

 Transactional Replication: In transactional replication, the replication agent

monitors the server for changes to the database and transmits those changes to the

other backup servers [40]. This transmission can take place immediately or on

periodic basis. Transactional Replication is used for server-server scenarios.

Materialized views are classified as a transactional replication.

 Merge Replication: Merge replication allows the replicas to work independently

[40]. Both entities can work offline. When they are connected, the merge

replication agent checks for changes on both sets of data and modifies each

database accordingly. If transaction conflict occurs, it uses a predefined conflict

resolution algorithm to achieve consistency. Merge replication is used mostly in

wireless environments.

 Statement Based Replication: The statement based replication intercepts every SQL

query and sends it to different replicas [58]. Each replica operates independently. To

resolve conflicts, Read-Write queries are sent to all servers where as read only

queries can be sent to only one server. This enables the read workload to be

distributed. Statement based replication is applicable for optimistic approaches

where each cache maintains the same replica.

Replication strategies mentioned above need to be implemented using specific

techniques. Materialized view is a transactional replication technique which is adopted

in different database management systems, such as Oracle database. Database

replication in the current model of the Government Centralized Database is achieved

using Materialized Views techniques.

2.7.2 Materialized Views

A view can be described as a union of subparts from different data sources. The view

should have the same properties as the original data, e.g. when original data is changed

22

the view is also changed. The purpose of a view is to increase performance on data that

is commonly accessed [22].

A materialized view (MV) is similar to a view but the data is actually stored on disk.

Materialized views are often used for summary and pre-joined tables, or just to make a

snapshot of a table available on a remote system. A MV must be refreshed when the

data in the underlying tables is changed [41]. Materialized views can be compared to a

cache; they provide fast access to data and since query speed is a critical issue in some

applications it is not effective to recomputed the view for every query. Materialized

views are frequently used in application such as data warehousing, replication servers

and also for query optimization [22].

Since a materialized view is a copy of data, it can contain dirty data if the original data

is updated. The progress for updating a materialized view with the correct information is

called view maintenance [22].

Incremental view maintenance is a technique used to maintain a view without re-

computing it from scratch if changes have occurred in data. It is often cheaper to

compute and propagate the changes to the view for the update of the materialization.

This, since the size of the base relation and the view, compared to the changes are very

small. There have been many proposals of strategies to support incremental view

maintenance [22].

2.8. Evaluation Methods

In this section we introduce evaluation methods used to testify software architecture and

validate the proposed framework. The evaluation considers quality attributes and is

based on a method used for analyzing software architectures against quality attributes

and is called Architecture Tradeoff Analysis Method (ATAM). Additionally, the

evaluation considers a proof-of-concept method for the validating the realization of the

proposed framework.

2.8.1 Software Architecture Evaluation Using ATAM

Here we address software architecture evaluation methods and the ATAM approach as

it is the method to be used for the architecture evaluation. Architectural design decisions

23

determine the ability of the system to meet functional and quality attribute requirements.

In the architecture evaluation, the architecture should be analyzed to disclose its

strengths and weaknesses, while eliciting any risks [8].

Two comparison criteria for software architecture are identified, namely, early software

architecture evaluation and late software architecture evaluation. In the thesis work we

are using the former one for evaluation, since we are proposing a framework and it does

not have detailed architecture components. Early software architecture evaluation has

the following features:

 It is a scenario-based evaluation and do not need data measured from

implementation.

 It does not require metric usage.

 It can be based on mathematical model, simulation based or experience based.

 It requires the participation of the stakeholders.

 It has several methods that are discussed in a large volume of software engineering

literature, among these are: Software Architecture Analysis Method (SAAM),

Architecture Level Maintainability Analysis (ALMA), Architecture Tradeoff

Analysis Method (ATAM), and Performance Analysis of Software Architecture

(PASA)

ATAM is the most suitable for thesis framework evaluation among the mentioned

methods since its superior to SAAM, and both ALMA and PASA evaluate for attributes

other those to be evaluated in the proposed framework.

The ATAM method -developed by the Carnegie Mellon Software Engineering Institute

(SEI)-, relies on the elicitation of quality attribute scenarios from a diverse group of

system stakeholders. The ATAM is an enhanced method for the SAAM. The purpose

of the ATAM is to assess the consequences of architectural decisions in light of quality

attribute requirements [30].

The ATAM gets its name because it not only reveals how well an architecture satisfies

particular quality goals (such as performance or modifiability), but it also provides

insight into how those quality goals interact with each other—how they trade off against

each other. Such design decisions are critical; they have the most far-reaching

24

consequences and are the most difficult to change after a system has been implemented

[30]. The method was created to uncover the risks and tradeoffs reflected in

architectural decisions relating to those quality attribute requirements. Quality

attributes, also known as nonfunctional requirements, include usability, performance,

scalability, and Interoperability, and so on. One of the positive consequences of using the

ATAM is a clarification and concretization of quality attribute requirements.

Quality attribute scenarios give precise statements of usage, performance and growth

requirements, various types of failures, and various potential threats and modifications

[7]. Once the important quality attributes are identified, the architectural decisions

relevant to each high-priority scenario can be illuminated and analyzed with respect to

their appropriateness [5]. The resulting analysis yields:

 Risks: architectural decisions that might create future problems for some quality

attribute. A sample risk:

 Non-risks: architectural decisions that are appropriate in the context of the quality

attribute that they affect.

 Tradeoffs: architectural decisions that have an effect on more than one quality

attribute.

 Sensitivity points: a property of one or more components, and/or component

relationships, critical for achieving a particular quality attribute requirement.

The ATAM analysis of the quality attribute scenarios gives insight into how well a

particular SOA-based architecture satisfies the particular quality attribute goals of these

scenarios and how certain quality attributes interact with each other in an SOA context.

The ATAM focuses on quality attribute requirements. The major goals of ATAM are to

[30]:

 Elicit and refine a precise statement of the architecture’s driving quality attribute

requirements.

 Elicit and refine a precise statement of the architectural design decisions.

 Evaluate the architectural design decisions to determine if they satisfactorily address the

quality requirements.

The ATAM method is performed into nine steps which are [8]: 1- Present the ATAM,

2- Present the business drivers, 3- Present the architecture, 4- Identify architectural

25

approaches, 5- Generate the quality attribute utility tree, 6- Analyze the architectural

approaches, 7- Brainstorm and prioritize scenarios, 8- Analyze architectural approaches,

and 9- Present results.

These steps are typically carried out in two phases. Phase 1 is architect-centric and

concentrates on eliciting and analyzing architectural information. This phase includes a

small group of technically oriented stakeholders concentrating on Steps 1 to 6. Phase 2

is stakeholder-centric, elicits points of view from a more diverse group of stakeholders,

and verifies the results of the first phase. This phase involves a larger group of

stakeholders, builds on the work of the first phase, and focuses on Steps 7 through 9

[28]. The analysis prescribed in the ATAM is not meant to be precise and detailed; it

does not provide numerical values for different qualities. The key is to elicit enough

architectural information to identify risks, which result from the correlation between the

architectural decisions and their effect on quality attributes [8].

2.8.2 Framework Validation Using Proof-of-Concept

To validate and verify the correctness of the framework a proof of concept method can

be used. A Proof-of-Concept can refer to a partial solution which involves a scenario or

case study of the framework that involves a relatively small number of users acting in

business roles to establish whether the system satisfies some aspect of the requirements.

A Proof-of-Concept is used to validate that the architecture and ensures that it meets the

requirements and identify issues and areas for improvement.

In a Proof-of-Concept, a showcase application is developed demonstrating the

correctness of the implementation and the usefulness of the concept, the Proof-of-

Concept is used to validate the correctness of the implementation. A proof-of-concept

is usually small and may or may not be complete. By contrast, the objective of a proof

of technology is to determine the solution to some technical problem, such as how two

systems might be integrated or that a certain throughput can be achieved with a given

configuration. No business users need be involved in a proof of technology [62]. It is a

validation of the applications or concepts formulated. In a proof of concept a partial

software solution running code that realizes key usage scenarios, where those scenarios

provide proof that the concepts will work as planned.

http://en.wikipedia.org/w/index.php?title=Proof_of_technology&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Proof_of_technology&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Proof_of_technology&action=edit&redlink=1

26

A Proof-of-Concept provides laboratory measurable and functional proof that validates

technical choices. The Proof-of-Concept consists of technical solutions to key technical

issues; it is realized by a specific technology mix solution. The Proof-of-Concept

evaluation method will be used as an approach to validate the proposed framework by

implementing a prototype.

2.9. Technical Foundations Discussion

The technical foundations presented so far can be tight together as depicted in Figure

2.7. It is clear how such theories and techniques can be grouped and associated with

each other to lead a SOA solution for the thesis problem. It is apparent from the Figure

2.7 that SOA solutions are linked to different techniques and concepts, such as ESB and

Web Services. Web Services in turn are associated with WSDL and SOAP. Since any

Web Services relies on WSDL and SOAP concepts. Service Registry which is part of a

typical SOA architecture is linked to UDDI, and usually implemented as a web service.

The database replication techniques will be used in the web services that implement the

replication.

Service Oriented Architecture (SOA)

Business Process

(BPEL)

 Services Orchestration

Enterprise Service Bus (ESB)

Web Services

Replication

Service Registry

UDDI

SOAPWSDL

Figure 2.7: Technical Foundations Dependencies

27

3 Chapter

Related Works

In this chapter different related works are studied and investigated. The related works

are introduced and analyzed with respect to the thesis problem to show how far these

works address the requirements of our thesis problem. Parts of the related works can be

a basis for solving the thesis problem, but no one can present a complete solution. The

related works and researches are focused on SOA and how to apply its principles

towards the integration of applications and data sources. The related works presented

addressed the area of SOA and how it is related to e-Government, data integration, data

warehouses, and information systems. The following sections are presented to discuss

related work to thesis: SOA research directions, Information as a Service, SOA and

Data Integration, SOA and Health Information Systems Integration, and SOA and e-

Government Systems.

3.1 SOA Research Directions

In this section we present the research directions in service-oriented computing. One of

the main papers that addressed research topics of SOA was by Papazoglou et al. [57], in

which he addressed the directions in the research roadmap of SOA into 4 layers, which

are: service foundation layer, service composition layer, service management layer, and

service engineering layer. While the four layers are related to our research topic, the

service foundation is the one that is mostly related and close and should be considered.

The state of art for the service foundation layer is to have an infrastructure for Web

services and SOA that is realized based on the concept of ESB. One of the challenges in

this layer is to have an infrastructure that support for data integration, where the

infrastructure has the ability to provide consistent access to all the data by all the

applications that require it, in whatever form they need it. This challenge is addressed

by this thesis work, since we are seeking to integrate different data sources into a

unified one, and provide access support for them.

3 Related Works

28

3.2 Information as a Service (IaaS)

In [16] Dan et al. proposed modeling and realizing information as a service. They

discussed the application of SOA principles which are: reusability, flexibility, and

interoperability, to enable the use of Information as a Service (IaaS) and to unify

information and process service approaches to SOA. They also addressed the benefits in

unifying information and process service approaches to SOA, and key research

challenges in modeling and realization for IaaS in the context of SOA development.

They stated the features of IaaS as loose coupling to data stores and data model, reuse of

data access logic, support of data governance, separation of concerns, ease of

development of data service by DBA, and optimization of data access Logic. Still their

proposal did not present security issues e.g. authorization and authentication, or

distributed databases and replication as a service.

3.3 SOA and Data Integration Solutions

The goal of this section is to show different approaches for data integration based on

SOA concept. Wang et al. proposed in [72] a model for dynamic data integration based

on SOA. The model is dynamic and application oriented, component oriented, and

service oriented for data source. It provides service oriented architecture for the

integration of heterogeneous data and sharing, and integration of data sources between

different platforms is realized. The idea is to integrate data dynamically without

building the temporary centralized database. The model has 4 layers, namely uniform

data accessor, XML view and SOA mapper, processing engine of XML data integration

view and XML data integration view. Figure 3.1 depicts the proposed architecture.

XML Data Integration

Processing Engine of XML Data

XML View and SOA Mapper

Uniform Data Accessor

Figure 3.1 : Dynamic Data Integration Model Architecture[72]

3 Related Works

29

Even though the proposed model solves the problem of data integration, still it cannot

be applied to solve our thesis problem which is the requirement to have a central

database.

In [46] Minguez et al. proposed to reuse and integrate Champagne into a service-

oriented architecture in order to benefit from SOA principles. Champagne [64] is data

propagation system based on XML technologies and event driven propagation and

transformation scripts that ensures the Interoperability of enterprise applications at the

data level, but provides a tightly-coupled integration of applications and lacks

flexibility.

Enterprise Service Bus

Service

Registry

Data

Propagation

Service
ERP Service

Provider

SCM Service

Requestor

AdaptorAdaptor

ERPSCM

Figure 3.2: Data Propagation System

Figure 3.2 presents the data propagation system. The system is restricted to using

champagne software and data access as a service is not presented in the model.

Changyu et al. in [11] proposed a design for intelligent traffic management data center

based on SOA. They offered specific design plan and its implementation. Their work

was motivated by the inability of the traditional data centers to fully meet modem traffic

management work developments. They proposed a framework that includes 4 layers

which are: data service layer, application service layer, integration service layer, and

external published integrated layer. Their proposal does not address replication and

security issue.

3 Related Works

30

3.4 SOA and Health Information Systems Integration

In this section we present different solutions for diverse health information system.

Delin Q. in [17] proposed a design of medical insurance supervision system based on

active warehouse and SOA. The goal of the system is to improve real-time performance

of data analysis and queries, and tries to solve the worldwide problem of the medical

expenditure control, by improving the efficiency of medical expenditure supervision.

The proposed design would overcome the shortcoming of traditional data warehouse

which is not suitable for daily operation decision-making support. The proposal is based

on dividing the data warehouse into two divisions static and dynamic. The proposal

presents an active data warehouse which has two major functions, active data access and

real-time or near real-time data analysis. The methods used for active data access are

Extract Transform Load (ETL) and EAI.

Enterprise Service Bus

Real-Time Monitor

InsurantHospital

SOA

Management

Registry

Service

Director

Service

Supervision

and Audit

Operational

System

Supervision

Database

Operational

Databases

Data

Warehouse

Static

Data

Dynamic

DataExtract/Clean/

Convert

Figure 3.3: Medical Insurance Model [17]

Figure 3.3 depicts the medical insurance model. It’s apparent that the model did not

address replication between databases as well as security issue, and it is domain specific

for insurance database. As well as the data extract is classified into two parts static

(periodically extracted) and dynamic (based on triggers in the operational system). This

model cannot be applied to solve the thesis problem because replication should be

3 Related Works

31

initiated from the central database and not from the operational database systems in the

ministries.

Strähle et al. in [69] proposed a technical concept that employs a SOA as an IT platform

and ecosystem to handle different modalities, devices, and data streams in the operation

room. They proposed SOA for networked medical devices and integrating legacy

medical devices in this network. Their proposed solution addresses accessing medical

devices through Web services which are connected to the ESB. They applied the

orchestration concept to provide data and modalities to front-end applications. Although

their solution provides a SOA based integration for different data accessed from various

devices and realized using an ESB, the solution can’t be used a solution for our

problem. This is because replication and access to different databases issue is not

addressed. Figure 3.4 depicts the architecture of their solution.

Service

RegistryEnterprise Service Bus (ESB)

Service 1 Service 2

Medical Device 1

Service 3

Medical

Device 2

Medical Device 3

Service 5 Portal 1

Medical Device 4

Service 6 Service 7

Service 4

Other

device

Figure 3.4: SOA Based Network of Medical Devices [69]

3.5 SOA and e-Government Systems

In this section we address different SOA based solution for e-Government systems. Ma

proposed in [37] a model for a service-oriented e-Government support platform for the

integration of application and data known as (SoGoSP), the proposed model is able to

effectively integrate applications and data from various business systems deployed in e-

Government external networks and e-Government internal networks. The model

consists of four layers, which include service integration layer, service support layer,

3 Related Works

32

common service layer and application layer. The service integration layer supports

adapting heterogeneous e-Government resources into standardized services by

transforming or wrapping method. The service support layer is the Enterprise service us

and is responsible for management of services, such as service routing, message

transmission, service monitor, security authentication and service transaction. Common

service layer presents business bus which role is to transform service into component

used in application layer. In the application layer more than one application system to

deploy in the (SoGoSP), such as cooperative office system, administrative examination

and approval system, document transmitting system, electronic supervision system,

meeting notice system, bills and measures system. The application bus is responsible for

the management of applications. Figure 3.5 depicts the system structure of SoGoSP.

Application Layer/Application Bus
(Business Systems- Meeting notice system- eSupervision systems- other

operational systems)

Common Service Layer/Business Bus
(E-form – Service Oriented Work flow- Management Systems)

Service Support Layer/ESB
(Authentication Service - UDDI Registry)

Service Integration Layer
(Data Extract - Data Collection – Service Adapter Framework)

e-Government Service Resources
(Legacy Systems- Service-Oriented E-government systems- Other web

services – Public Service Repository)

Figure 3.5: System Structure of SoGoSP [37]

The mentioned system does not fulfill the requirements of the thesis work because the

replication between databases is not addressed and the scope of the system is the e-

Government support as a whole, while our thesis work is focused on data access and

integration into a centralized database.

Guo et al. presented in [21] a solution to data integration problem between

heterogeneous databases. The solution is based on constructing data center with Web

Service technique and XML schema which can give a good solution to problems with

business logic method invocation and transparent data exchange in low layer. It is

3 Related Works

33

based on the definition of a unified data definition rules, exchange protocols, and data

invocation method management so as to create a distributed data center separated into

individual e-Government departments or to create a centralized physical data center.

The method is to construct a sharing database with all the needed shared data. The data

source should guarantee data consistency and the database using the shared data should

guarantee the native data are consistent with that of the shared database.

The users can easily search and subscribe data from each database by a unified interface

Figure 3.6 shows the proposed system structure.

e-Government Systems

e-Government Infrastructure

Web Service Requesters

Web Service Container

Web Service Servers

Data Sources
(Oracle- MS Sql – Mysql - Postgres)

Web Service Facade
(Web Service Interface – Data Exchanger)

Business Management Engine- Application

Integration Monitoring

Figure 3.6: Data Center Structure [21]

Even though the structure of the system addresses security and distributed issue for the

data, it provides methods for data discovery rather than service discovery with database

backend, and it does not provide a solution for database replication, but rather

centralizing metadata about the data sources.

Yang et al. proposed in [75] a SOA-Based platform for water resource information

exchange named Water Resources Information Services Platform (WRISP). The

platform is designed to be a kernel and hub for information exchange between different

agencies and to provide a one-stop service website to get the application of eRiver

information. Thus the platform would solve the problems of integrated information

3 Related Works

34

from different departments and agencies. It is based on acquiring the instant information

of different rivers. The proposed platform is composed of 8 modules which are: Service

Entrance of platform, Directory Services module, Authentication and Authorization

module, Encryption and Decryption module, Information Interchange Infrastructure

module, Service Integrated module, Administration module, and Service Adapter.

Figure 3.7 depicts the proposed framework.

Information

Interchange

Infrastructure

I3

WRISP

Portal

Directory Service

Authentication and

Authorization

Encryption and

Decryption

Service

Integration

Administration

Figure 3.7: WRISP Framework [75]

The proposed framework does not address replication issue, and it considers acquiring

of data from different rivers applications.

Yunliang et al. in [76] addressed the requirements of abstracting, sharing and

integrating the existing multiple heterogeneous information management systems in the

e-Government information technology by introducing an architecture of information

management platform based on SOA. Their proposed system is based on service

components extracted from Government Resource Planning, and framework technology

is based on J2EE, ESB, Ajax front-end access. Their proposal is focused on process

application integration and does not address distributed database replication into a

central one.

35

Chapter 4

Evaluating the Current e-Government

Integrated Central Database Model

This chapter is dedicated to evaluating the current Palestinian e-Government Central

Database model which is one of the core components of the Palestinian e-Government

Technical Framework and will also be presented. Data access and replication of the

Central Database model is discussed, and the pros and cons of the model are addressed.

4.1 Palestinian e-Government Technical Framework

The current Palestinian e-Government Technical Framework that is adopted by the

Ministry of Telecom and IT – Gaza [47] has four layers with different components that

need to be realized in order to have a fully functional technical framework for the

Palestinian e-Government.

Common Use

Application

E-Government

Portal
Ministries PortalsMinistries Websites

E-Payment SystemAuthentication & Accounting

Central DatabaseDecentralized Database

Security Systems
Network

Infrastructure
Systems Software Infrastrucutre Layer

Data Access Layer

Front-End Access Layer

Common Services Layer

Figure 4.1: Palestinian e-Government Technical Framework

Figure 4.1 depicts the e-Government Technical Framework and its main layers. The

Central Database is one of the components that lie in the Data Access layer of the e-

Government Framework. The importance of having such component emerges from the

fact that e-Government processes and services heavily involve and require exchange of

data between different governmental institutes.

4 Evaluating the Current e-Government Integrated Central Database Model

36

The e-Government Framework is composed of four layers: the front end user interface

layer, the common service layer, data access layer, and the infrastructure layer.

1. Front-End Access Layer:

This layer presents the access interface that end user interacts with the e-Government

through it. It is considered the visible part of the e-Government, and all access to e-

Government services can be achieved via interacting with this layer. This layer includes

application such as e-Government portal, ministries websites as well as ministries

applications.

2. Common Services layer:

This layer provides front end layer service providers with services that commonly

needed by e-Services, such as authentication and e-Payment services. Authentication

service authenticate citizens requires access to authenticated services against a single

authentication repository, such service is not incorporated in the front end systems, but

rather developed as common service to be used by front end systems. Also this layer

provides e-Payment capabilities to ministries portals, which is needed since some

services incur charging on the beneficiary of it.

3. Data Access layer:

This layer addresses database access gateway, either centralized or decentralized. Front

end services rely heavily on this layer. For example, online job submission service,

requires access to data from different sources, which turn to be in the Central Database.

We further elaborate on this layer in section 4.2.

4. Infrastructure layer:

This layer includes physical and low level software components, such as government

private network, operating system and services, and security systems. These

components present the interface with networking devices and functionalities such as

hosting and collaboration services, firewalls and intrusion detection and prevention

systems. The private governmental network is a core element in this layer because of its

interconnection capabilities for government offices locations. This is because part of the

inter-ministries traffic should be carried over private, independent, and secure link. The

software parts of this layer includes the operating systems and their low level services

4 Evaluating the Current e-Government Integrated Central Database Model

37

such as Web hosting and email provision capabilities, database hosting, systems and

network management.

The overall e-Government Technical Framework is not fully implemented and parts of

it still need to be realized [47]. Also the interaction between layers is not well defined in

terms of access protocols or standards. SOA can be introduced here to provide standard

way of Interoperability between e-Government components, both software and

hardware based components, though discussing how to change the current e-

Government Technical Framework into SOA is not in the scope of the thesis. In this

research we are proposing to use bottom-up approach in adopting the SOA solution in

the e-Government initiative, in which we start from the components rather than from the

overall framework itself.

4.2 Analysis of the Current Integrated Central Database Model

The database access layer in the e-Government Technical Framework, discussed in

previous section, comprises both centralized database and decentralized databases. In

decentralized databases every ministry uses its own database for its own applications

and business processes and it has full control over the database. For a ministry to have

flexible and efficient information systems there is a need to access data from other

partner ministries. The Central Database comes as a solution to sharing and integrating

data between various ministries. The focus in this research is on the Central Database in

the Data Access layer (Figure 4.1), which is an important part of e-Government

Technical Framework; this is because it has a vital role in building and integrating e-

Government services. Figure 4.2 depicts the current implemented and used Integrated

Central Database model which is approved by the Palestinian Government Data

Integration Committee, which is a governmental committee that oversees and

recommends the regulations and guidelines for the Integrated Central Database [52].

4 Evaluating the Current e-Government Integrated Central Database Model

38

Database Front End Web Access

Ministry01

Ministry02

Web-Client

 Database Access

over the Internet

Central Database

Web-Client

Web-Client

Http

transport

Ministry 1-*:

Oracle DB

 Access Client

Government

Private

Network

Replication over oracle-driver
and Materialized View
Technique

Oracle Client

Figure 4.2: Current Integrated Central Database Model

The Central Database can be thought of as a broker that integrates data from different

sources and then allows the exchange of data between partner ministries through it. The

current model for the Central Database relies on database replication and

synchronization techniques as the low level infrastructure to maintain the Central

Database and to keep its content up to date.

The main characteristics of this model can be classified into three categories which are:

access, replication, and management and monitoring. Following the characteristics are

explained.

 Database Access :

 The Central Database access mode is read-only for ministries use, since it has a

one-way replica for ministries databases, the writing to the database is done at each

ministry that owns the data.

 Web access to the database is done through Web applications connecting to Central

Database over Oracle connectivity driver.

 Direct access to Central Database is allowed from the governmental private

network, and requires Oracle connectivity driver.

 No direct access to the Central Database from the Internet which is classified as un-

trusted zone.

 Client access to the Central Database is realized using Oracle stored procedures,

with predefined parameters.

4 Evaluating the Current e-Government Integrated Central Database Model

39

 Only synchronous mode of invocation is available.

 Database Replication:

 The Central Database operator has read-only access to each ministry's database that

is replicated to the Central Database.

 Replication between ministries and Central Database is achieved using Oracle

utilities and tools such as materialized views and database links.

 Management and Monitoring:

 Monitoring the Central Database is performed based on database parameters, and

the monitoring system is not a proactive one.

 Governance issues are limited to managing the main functionalities of the database

access. The current deployment of the Central Database lacks governance features

such as enforcing Quality of Service (QoS), usage obligations, Service Level

Agreement (SLA), access metric, responsiveness criteria.

 Security policies are implemented at both network and database access level.

The above mentioned characteristics do not impose clear constraint on using SOA

solution in the Central Database. There are no old fashioned legacy applications or rigid

connectivity access mode to the used database, which make SOA a suitable framework

for realizing the Central Database model.

The current Central Database model is being criticized for the various limitations some

of them are listed below:

 Replication between the Central Database and the ministries databases can only be

achieved between Oracle type databases using the Materialized Views technique.

Hence synchronization and consistency is restricted to the options provided by the

Materialized Views. This imposes inflexibility on database usage and force

ministries to using proprietary commercial database systems.

 Access to the Central Database is restricted to Oracle connectivity driver, which

decreases the level of interoperability.

 Direct access to database procedures is achieved only with government private

network and through Oracle standard sql port, which undermines the flexibility and

accessibility.

4 Evaluating the Current e-Government Integrated Central Database Model

40

 Central Database has a read-only access mode which undermines the capabilities of

the database.

 There is no standard way for the describing, finding and invoking the procedures

defined in the Central Database which are accessed by its clients, this leads to less

flexibility and more management overhead.

 System monitoring, management and security assurance is built on Oracle database

itself.

 Limited governance issues are addressed in the system.

The above mentioned limitations undermine the flexibility, interoperability, scalability,

manageability, and governance of the Central Database, such features can be achieved if

we adopt SOA solution. However, we only consider building a SOA-based solution that

accomplishes the three quality attributes: interoperability, flexibility, and manageability

(see section 1.5).

41

Chapter 5

SOA-based Framework

In this chapter we propose an Integrated Central Database model based on SOA

concept. As discussed in section 2.1, the reason behind proposing to adopt SOA is

because of its open architecture and platform standards that cope with heterogeneous

systems and applications in order to achieve high degree of scalability and flexibility.

Web services will be used as the main building blocks to realize SOA architecture. The

fast adoption of Web services emerged from the maturity of XML-based Web services

standards such as SOAP and WSDL [2]. To realize the concept of SOA and to achieve a

suitable and manageable integration infrastructure for Web services, the hub and spoke

approach using ESB will be used [55]. The ESB is the middleware that integrates the

components of the SOA concept; it integrates the applications, services, and the registry

[31],[53]. In reference to the discussion presented in section 2.6, the ESB [15] will

provide functions such as: Routing, Message transformation, Protocol transformation,

Service mapping, Service choreographing, Service orchestration, Transaction

Management, and Security. In next section we present the SOA-based Integrated

Central Database requirements, the proposed framework architecture, components

interactions, and ethical issues related to the framework.

5.1 SOA-based Integrated Central Database Requirements

The requirements for the Central Database need to be defined ahead of presenting the

proposed model. To overcome the shortcomings of the current model as mentioned in

section 4.2, the requirements are specified as follows:

5 SOA-based Framework

42

 Accessibility Mode:

The Central Database accessibility should be based on standard connectivity rather

than proprietary commercial software access mode, such standards are XML, SOAP

and WSDL. In this case, services would access the underlying database without using

its access driver, and hence services would be specific database type independent.

 Replication:

 Government ministries need to replicate and synchronize heterogeneous database type

such as: Oracle, MySQL, MS-SQL, MS-Access, with the Central Database. Hence

different replication options should be provided for the diverse types of used databases,

and only the replication service to be aware of such diversity.

 Governance:

The Central Database should operate around the hour since individual ministries IT

infrastructure lacks the ability to do so. The Central Database should be governed

through QoS and Service Level Agreement (SLA) since different ministries rely on it

providing eServices which should operate without interruption as well as provides a

level of responsiveness.

 Management and Monitoring:

Monitoring and management should be separated from the application logic and

database procedures access. Logging and performance metric recording should be

implemented.

 Security:

Security must be assured and should be managed centrally and imposed on all database

access through the different services. Security policies to be defined and enforced and

must not be configured at the underlying database level only, but also at the service

level.

 Reachability:

Access to government Integrated Central Database should be allowed to both

government and non-government institutes. The access should be allowed through the

government private network, as well as the Internet.

5 SOA-based Framework

43

5.2 SOA-based Integrated Central Database Architecture

To realize the requirements discussed in section 5.1 for the proposed SOA-based

framework of the Integrated Central Database, different components are presented that

constitute the proposed framework. Each component satisfies one or more

requirements and leads to the achievement of the goals of the framework. The

framework which is SOA based and realized using Web Services and ESB is depicted

in Figure 5.1.

Central Database Service Bus (ESB)

e-Gov Portal

Ministries

Portals

Ministries

Business

Applications

SOAP/HTTP

Internet

UDDI

Service Registry

Service

Interface

(WSDL)

Database

Replication

Services

Governmental

Informational

Service

Database

Management

Adapter

Service

Security

Assurance

Service

Oracle
MS-

Access

Ministry 1

Oracle

Integrated Central Gov.

Database

Replication Target

Database Connectivity

Drivers

Systems

Management

Service

Composite

Application –

Service

Orchestration

MySQL MS-

SQL

Ministries Databases

Replication Source

Ministry 2 Ministry 3……. Ministry n

Figure 5.1: Proposed SOA-based Integrated Central Database Framework

The main components and their description are listed and discussed below.

1. Central Database Service Bus:

This bus is considered the central platform of integration between different Web

services, and provides routing and transportation features for Web service requests, as

well QoS feature for the framework. It will be used and accessed by government

institutes via government private network, as well as over the Internet for non-

government institutes, hence accomplish the reach-ability requirement of the

framework.

5 SOA-based Framework

44

2. Service Registry:

The Service Registry will be used to provide a search point of access to services and

database definitions and metadata for all services provided by Central Database model.

This registry will be based on Universal Description Discovery and Integration (UDDI).

3. Government Informational Services:

These Web services provide access to basic informational queries; these services allow

consumers to benefit from government Central Database along with its presentation

logic, this will relief them from invoking services that interacts directly with the Central

Database and return record sets that need to be manipulated by the developer. For

example, Web service that returns social information of a citizen, or employee

administrative record.

4. Service Orchestration:

This component is an important part of the Central Database Bus, which is responsible

for managing composite services. The composite service is invoked by client and in turn

it invokes and orchestrates different services to achieve the requirement of the

composite service.

5. Database Management Adapter:

This adapter will allow the Central Database Service Bus, to accept requests for data

source from client systems then invoke the relevant adapter to retrieve the data, and

return it in a standard format to the requester. It is used to hide the database

management details from the rest of the Web services, and it is the only service that

communicates directly with the underlying data source and should have database

specific connectivity capabilities. This component will accomplish the accessibility

requirement.

6. Database Replication Services:

Such services will be used to manage replication between the Central Database and

ministries databases, connections types, mode of replications, access permission, etc.

are addressed by this service. These services are responsible for achieving the

replication requirement.

5 SOA-based Framework

45

7. Systems Management Service:

The management service will be used to manage and monitor the Central Database

service bus, and Web services. It will collect metrics, provides framework performance

reporting capabilities. Both governance and management requirements of the

framework are achieved in this service.

8. Security Assurance Service:

This service will insure that security policies are adhered to and will achieve the

security requirement in the framework. It will be invoked by different services to add

security layer to their functionality. Security functionalities provided are: authentication,

authorization, and non-repudiation. This service would carry out the security

requirement of the framework.

5.3 Framework Interaction

The interaction between the components is done through the Central Database Service

Bus, which will integrate the components and will act as the glue that tight them

together, it will route, transport, and format the requests and response of the services, it

will also provide service discovery through the registry. The usage scenario in section

7.3 further illustrates the component interaction.

This framework achieves its goals which are Interoperability, Flexibility, and

Manageability. The Interoperability, which allows using diverse types of databases, is

achieved by having different database types as part of this system and can be part of

the replication as well as resource for different governmental information services. The

Flexibility, which allows different ways for performing a specific task, is achieved by

accessing the information services over HTTP transport which generally uses the port

80 which is normally not filtered by internet firewalls, and hence the access to the

Central Database can be both from internal government private network as well as over

the Internet. The Manageability, which provides the ability to control and adjust the

behavior of the system in response to various circumstances, is accomplished by

having metric, performance, QoS as part of the logic in the management services.

More about the evaluation of the framework is presented in Chapter 7.

5 SOA-based Framework

46

5.4 Ethical Considerations

Ethical considerations should address all aspect of the thesis work, from beginning to

end. This is because the e-Government central database usually contains personal and

private data, such as payroll data, health records, population registry information, work

information, and so on. This would impose to take all measures to achieve the

confidentiality of the data. Even though the Security Assurance Service discussed in

the previous section provides security for those accessing the informational services,

still the following questions are raised:

 What if an authenticated staff tries to access data sources for non-work

purposes?

 What if the database administrator goes through database records and uses it for

personal profit?

 What if security measures and mechanisms were uncovered disclosed and

abused by a legitimate and trusted network administrator?

Most of the time it is very difficult to address the above mentioned problems via

technical ways only, and hence comes the requirement to adopt an ethical code of

conduct for those who will be interacting the central database. Such ethical guidelines

are proposed and adopted by the staff responsible for the management of the Integrated

Central Database.

47

Chapter 6

Framework Prototype

In this chapter the implemented framework prototype is presented, first the prototype

architecture, and then the Web Services views. In addition detailed information about

the prototype is included in the appendices. The working environment of the prototype

is included in Appendix A ―Prototype Working Environment‖, and explanatory

technical documentation of the Informational, Security and Replication services, as

well the composite applications using BPEL are presented in the appendices B, C, D

and E, and the front-end interface is more elaborated on in Appendix F.

6.1 Prototype Architecture

To provide a proof of concept of the framework, a prototype should be implemented.

Such prototype would provide a specific usage scenario for the framework, and

through such prototype the framework is validated to perform its requirements. Figure

6.1 depicts the top-level run time view of the prototype architecture which was realized

as a proof of concept for the proposed framework. From the end user perspective, a

user is accessing the front end web interface which provides an access to the services

of the Integrated Central Database (GovDB). The web interface runs in the context of a

web application which interacts with the framework over Web Services interfaces. The

functions available in the front end interface are access to the Informational Services,

that’s query the governmental database for citizen record, and database replication

service trigging.

The framework runs in the context of the Java Business Integration (JBI) which the

realization of the ESB. The JBI ESB used is OpenESB which is an open source product

[50], and selected since the governmental ICT strategy supports the usage of open

source software [47]. The JBI has the BPEL Service Engine, Database Binding

Component, and Composite Applications for Replication and Informational Services.

The Informational Services implemented are four: the Security Assurance Service

48

(SecuritySvc), Citizen Data Service (CtzDataSvc), Employee Data Service

(EmpDataSvc), and Health Insurance Data Service (InsuranceDataSvc).

The prototype is composed of three databases: The governmental database type is

(Oracle 10g), it will be referenced as GovDb, The employee records database with type

Oracle 10g, and the data source is from the general personal office, it will be

referenced as EmpDb, and The Health Insurance data, its type is MySQL, and the data

source is from the health insurance system, and it will be referenced as InsDb. Access

to the database is done over the JDBC. The interaction between Web Services

consumer and providers is done over SOAP/HTTP transport. Direct access to the

GovDb will be using stored procedures which provide more security where database

access is not allowed directly and tables and views are not exposed to clients, only

predefined procedures with specific input/output are allowed in accessing the GovDb.

GovDataReplicate

GovDataRplService

Relational Database

Legend:

Http/https

SOAP Call

Web

Application

Web Service End

Point

Web Browser

Web

Service

ESB

ESB

Component

Web Browser

Front End User Interface

Web Site

GovDataCtznInfo

GovDataCtnzService

EmpDataSvc

InsuranceDataSvc

Ins DB

mysql

Emp DB

Oracle

Gov DB

Oracle

CtzDataSvc BPEL Service

Engine

Database Binding

Component

ESB JBI Environment

Composite

Application/

Replication Svc

Composite

Application/

Informational Svc

SecuritySvc

XML

Authentication

/Authorization

Files

DOM/

XML

JDBCJDBCJDBC

JDBC

JDBC

JDBC

Figure 6.1: Prototype Architecture

The prototype architecture can be associated with the SOA-based Framework proposed

and explained in section 5.2. The framework as seen in Figure 5.1 is composed of

different components that can be mapped to the parts of the prototype. The importance

of the association between the prototype and the framework is that it verifies that the

6 Framework Prototype

49

prototype implementation scope includes the main components of the framework. The

parts of the prototype and their counter mapping in the framework are as follows:

 The ESB JBI Environment is mapped to the ESB.

 The Composite Application/Informational Service is mapped to the Service

Orchestration.

 The Front-End user interface is mapped to the e-Gov. Portal.

 The services (CtzDataSvc), (EmpDataSvc), and (InsuranceDataSvc) are

mapped to the Informational Services.

 The (SecuritySvc) is mapped to the Security Assurance Service.

 The Composite Application/Replication Service is mapped to the Replication

Service.

6.2 Web Services Logical Views

In this section we present the logical views of the prototype Web Services. The main

functional requirements of the Integrated Central Database are: access to database and

replication. Hence we choose to implement the Informational Services and Replication

Services. The services implementation is based on top down approach, since we do not

have an application or existing systems that performs their functions. We start from the

schema XSD, followed by the WSDL, and then the implementation of the service.

Implementing of the services would provide a valuable validation environment to

prove the correctness of the framework

6.2.1 The Informational Services

The prototype implementation has three informational Web Services, and a composite

application which orchestrates two informational services. The informational services

as mentioned earlier in this chapter are:

 Citizen Data Service (CtzDataSvc): Provides Citizen Population Registry

Information for a specific Identification Number of a citizen, e.g. (ID, Full Name,

Birth Date, etc.)

 Employee Data Service (EmpDataSvc): Provides Employee Record for a specific

Identification Number of a citizen e.g. (Employmnet- Job Tile- Salary, etc.).

6 Framework Prototype

50

 Health Insurance Data Service (InsuranceDataSvc): Provide Health Insurance

Record for a specific Identification Number of a citizen e.g. (Insurance Type,

Expiry Date, etc.).

Figure 6.2 presents the logical view of the Informational Service. Two of the services

were orchestrated through a BPEL; the services are the CtzDataSvc and

InsuranceDataSvc. In such case the Web Service client needs only one service access

to the composite application to get information from both services.

GovDb (Oracle)

CtznDb

InsDb

EmpDb

Informational Services

CtzDataSvc

EmpDataSvc

InsuranceDataSvc

 (using OpenESB BPEL)

Running within GlassFish

Application Server

JSP Web Application

Running under

GlassFish Application

Server

using WS-Client

Accessing Informational

Service

soap/http

Jdbc/read
Web Client

Accessing

GovDb

Informational

Services

Application

http
Jdbc/read
Jdbc/read

 Figure 6.2: Composite Informational Service Logical View

The interaction between the Web Application accessing the Informational Services or

the BPEL Composite Application is performed using SOAP over HTTP. For more

information about the implementation of the Informational Services such as XSD,

WSDL, and BPEL are detailed in Appendix B, and C. The front end access to the

Informational Services is done using a web browser, where it interacts with the JSP

Web Application that acts as a service requester that communicate with the

Informational Services or the Composite Application BPEL over SOAP/HTTP

transport. Snapshot and details of the front end access to the Informational services is

presented in Appendix F.

6.2.2 The Replication Service

The replication service will use both BPEL and database binding components, and

snapshot replication will be used in replication service prototype, in which the whole

table is replicated to the GovDb. Figure 6.3 shows the logical view of the replication

service in which InsDB and EmpDB are replicated to GovDB, access to database is done

using the JDBC.

6 Framework Prototype

51

GovDb

(Oracle)

EmpDB

(Oracle)

InsDB

(mysql)

Replication Services

(using OpenESB BPEL

and database binding

component)

Running within GlassFish

Application Server

JSP Web Application

Running under

GlassFish Application

Server

using WS-Client

Replication Trigger

soap/http

Jdbc/read

Jdbc/read

Jdbc/insert

Web Client

Accessing

Replication

Triggering

Application

http

Figure 6.3: The Replication Service Logical View

The replication is triggered from the front end web interface and can be scheduled to be

performed based on a schedule. Each of the source databases has a Web Service to read

the records in the replication tables or views. Such Web Services uses the database

binding component that comes with the OpenESB. There is no need to write any code to

read the records in the source tables, just to create a WSDL file that represent the Web

Service to access a specific database and integrate such Web Service with the BPEL file

that performs the replication. On the target side, were the need to write the records to

the GovDb, the database binding component is used also to insert the records to the

database. Appendix E presents WSDL files for source and target replication database

partners, and the BPEL design.

6.2.3 The Security Assurance Service

The Security Assurance Service is used for authentication, authorization and logging of

the Informational Services Access. Service authentication will be based on identity

management using username and password, and authorization is based on username and

IP addressing. Service consumer will be identified by username and password pairs.

Access to services will be allowed if the user is allowed to access the service from a

specific IP address. This mechanism will ensure that users will access services from

allowed IP addresses. This means gaining access to others username and password

credentials will not allow for accessing services.

The Security Assurance Service logical view is depicted in Figure 6.4. The service is

invoked over SOAP/HTTP transport by the Informational Services, and the service

performs both access and accounting functionality. The authorization, authentication

and logging information are stored in an XML files and accessed using DOM interface.

6 Framework Prototype

52

Access/Log

XML Files

Security Assurance

Service Running within

GlassFish Application

Server

Informational Services

Running withing

GlassFish Application

Service

CtzDataSvc

EmpDataSvc

InsDataSvc

soap/http
DOM

Figure 6.4: Security Assurance Service Logical View

In Appendix D, detailed information about the Authentication, Authorization, and

Logging files are presented, and also XSD, WSDL, and snapshot of the Java Code for

the Security Assurance are presented.

The flow chart and process flow of the Security Assurance Service is depicted in

Figure 6.5.

Web Service

Authentication

Request

Is

Authenticated

Service?

Allow Access

Is valid

username/

password ?

No

Y
es

Invalid username/

password

Exception

No

Is Allowed

username/IP ?

Service Access

denied Exception

No

Y
es

Log Authentication

Request

Y
es

Figure 6.5: Security Assurance Service Flow Diagram

Figure 6.5 shows the Authentication, Authorization, and Logging process flow which

relies on username/password authentication and IP access control. This service will use

JAX-WS annotation. The business logic of the security service starts by checking if the

6 Framework Prototype

53

service access should be authorized or public. In case on unauthenticated service, the

request is allowed. In case of a service that requires authorization, a check is done for

authentication of the user, followed by checking the username/IP authorization, and if

both succeed then authentication is allowed, otherwise fault is raised.

The security issue is one the items discussed in section 1.5 ―Scope and Limitations of

the Research‖ that was determined to be addressed both in the framework and the

implementation of the prototype. The implemented Security Assurance Service shows

the conformance with the thesis work plan.

6.3 Framework Prototype Summary

Coming to the summary of this chapter, it can be said that the prototype architecture

and its implementation as discussed in sections 6.1 and 6.2 provide evidence on how

far the prototype fulfills the goals of the framework. It is clearly seen from the

discussions presented in the last two sections that the prototype performs the main

functionalities of the proposed framework which are: access to the database and

replication between diverse database types using Web Services. It was seen that main

components in the framework are included in the prototype, and the components of the

prototype are mapped to their counter parts in the framework. The use of the ESB

allows for the use of the management and monitoring capability that comes with the

ESB which can be used to stop/start and monitor the services. The implementation of

the security service further allows for using the prototype in a real situation and used

by the governmental institutes. The prototype acts as a proof of concept for the

validation of the framework, since it showed that the framework can be realized and

implemented and hence the concept of the framework is validated.

54

Chapter 7

Framework Evaluation

The goal of this chapter is to present the evaluation of the framework and its prototype.

The evaluation will be conducted against the targeted quality attributes which are

Interoperability, Manageability, and Flexibility. The chapter discusses the quality

attributes and presents the evaluation of the framework based on ATAM (see section

2.8.1) and validation of the framework concept using a prototype usage scenario.

7.1 Framework Quality Attributes

Quality attributes, also known as nonfunctional requirements, are defined as quoted

from IEEE Standard 1061 ―Software quality is the degree to which software possesses

a desired combination of attributes‖.

At the Software Engineering Institute (SEI), they believe that the suitability of

architecture is determined by the quality attribute requirements that are important to the

stakeholders of a system. And hence a given software architecture is suitable for its

intended purpose in case of fulfilling the quality attributes. Quality attribute scenarios

are usually used to specify quality attribute requirements. Also many quality concerns

are primarily handled or strongly affected by the runtime environment. In the thesis

work, the framework quality attributes to be evaluated need to be clearly defined, as

follows:

 Interoperability:

Interoperability is the ability of software and hardware on various machines from

various vendors to communicate with each other without significant changes to either

one [34]. It is in greatly determined by compatibility issues between the two platforms

involved [8]. For SOA concepts, the following aspects of interoperability have been

distinguished [13]: businesses, processes, services, and data interoperability. Businesses

and processes interoperability are considered mainly at the organizational level, whereas

services and data interoperability require focus on Information Technology issues.

7 Framework Evaluation

55

In SOA systems, service consumers and service providers are usually placed in different

ownership domains. They are also developed independently on various platforms and

loosely-coupled by network. Services are consumed generally without direct

management by service consumers [35].

 Manageability:

From the Web Services context, Manageability is defined as a set of capabilities for

discovering the existence, availability, health, performance, and usage, as well as the

control and configuration of a Web Service within the Web Services architecture, it

provides methods for monitoring and managing services and business processes.

It is also defined as an ability which keeps a Web Service and its resources being

manageable. The Web Service resource includes the software and hardware components

used by the Web Service and a platform on which the Web Service operates. The

Manageability capability helps targeting a Web Service, provides a function to monitor

operational status, and controls operations along with Web Service protocol. As the

Manageability capability enables a service consumer to use Web Services with

reliability and stability, it may be an important criterion for one to select a web Service.

The Manageability is classified into 3 sub-factors: informability, observability and

controllability [35].

 Flexibility:

It is defined as the ease of making changes required by changes in the operating

environment, characteristics that allow the incorporation of changes in a design. It is the

ability of a design to be adapted to provide functional related capabilities [4]. Also

defined as the ease with which a system can be modified for use in applications or

environments other than those for which it was specifically designed [24].

To perform the evaluation we need an evaluation method that testifies the framework,

and since we are presenting architecture, one of the software architecture evaluation

methods can be used. The evaluation of the framework will be based on the

Architecture Tradeoff Analysis Method (ATAM), which is an early evaluation

approach for software architecture that is scenario-based. The use of a software

architecture method for the framework evaluation is justified by the deliverable of the

proposed solution which is a SOA based framework and not fully implemented system.

7 Framework Evaluation

56

As for the prototype which is a proof of concept for the correctness of the framework a

specific usage scenario will be discussed to show the quality attributes achievements

 7.2 Framework Evaluation based on ATAM

The quality attributes we are testing the proposed framework for are: interoperability,

manageability, and flexibility. The methodology for evaluation the framework will be

based on ATAM method (see section 2.8), and we need to set a scenario for these goals

and present specific measures for them.

The requirements to conduct the evaluation are evaluation team and stakeholder staff.

The Evaluation team typically probes the architectural approaches used to address the

important quality attribute requirements specified in the scenarios. The goal is to assess

whether these quality attribute requirements can be met. In our case the evaluation team

is the administrators of the current Integrated Central Database model and those use it in

their applications and systems within the governmental institutes.

Figure 7.1 depicts the overall process performed for performing the framework

evaluation based on ATAM method. The evaluation process relies on the evaluation

teams, business drivers and constraints, the framework quality attributes, and

framework architecture approach. The results of the evaluation are the scenarios and

how far the quality attributes are fulfilled. If the scenario presents a non-risk for the

quality attributes, the framework is considered achieving the quality attribute.

Framework quality

Attributes

Framework

Architecture Approach

and Design

Analyze and Present Scenarios

(Associate Scenarios to Architectural Decisions)
Evaluation Team

Framework Architect

Database Managers

Web/Systems Developer

Risks, Non-Risks

Business Drivers and

Constraints

Figure 7.1: Framework Evaluation Based on ATAM

7 Framework Evaluation

57

In the following sections we enumerate a collection of quality attributes general

scenarios for the three important attributes for the framework which are interoperability,

manageability, and flexibility. The main features that support each of the quality

attributes are presented which are inducted from the scenarios. The scenarios which are

based on ATAM methodology are included in the Appendix G. Each scenario has a

question that concerns the quality attribute and has the prompt that shows the

framework answers for the concern which shows that the framework architecture

presents a non-risk for the tested quality attributes.

 7.2.1 Interoperability Evaluation Scenarios

Table 7.1 presents the main features of the framework that provide interoperability

enhancement, the table is a summary for the scenarios (questions and prompts) based on

ATAM methodology that is presented in Appendix G.I.

Table 7.1: Framework Interoperability Supporting Features

Interoperability Supporting Features

1. The framework supports diverse services implemented in various platforms

and languages

2. The framework allows replicating heterogeneous database types.

3. The framework is using BPEL for business process which can orchestrate

web services that uses SOAP and WSDL for service interfacing regardless of

the underlying platform or development languages

4. The framework allows having service users and providers to use different

implementation languages and platforms.

5. The middleware integration approach in the framework will be an ESB. It

would allow connecting diverse applications, technologies, and data

formatting.

6. The authentication mechanism will be centralized and realized using Web

Service.

7. The framework is designed to support standard message-level security; but it

is left for the service provides to implement such features to further enhance

the security of the service.

8. The ESB is responsible for integrating legacy systems to the framework,

7 Framework Evaluation

58

Interoperability Supporting Features

which provides interoperability with old legacy applications.

9. The standards used in the framework and provide interoperability between

framework components when interacting with each others are: WSDL,

SOAP, UDDI, and BPEL which provide capabilities to systems developed

with Web services technology.

10. Not all Web services platforms implement the same version of the additional

standards such as UDDI, BPEL, WS-Security, and hence achieving

interoperability faces some obstacles when using such standards. Still since

the framework is under a centralized unit of administration, this risk can be

mitigated.

7.2.2 Manageability Evaluation Scenarios

Table 7.2 presents the main features of the framework that provide manageability

enhancement, the table is a summary for the scenarios (questions and prompts) based on

ATAM methodology that is presented in Appendix G.II.

Table 7.2: Framework Manageability Supporting Features

Manageability Supporting Features

1. The ESB supports a centralized point of management of the services. The

System Management Service also provides management capability for metric

usage and health monitor of the framework services

2. The Management Service in the framework provides the capability of

accessing all logs related with the services usage, and provides presentation

logic for the framework logs repository.

3. The framework allows for an authentication that is centralized through using

the Security Assurance Service, the authentication can be used by all

services, and hence provide a central point of authentication management.

4. The framework provides metric usage when using Security Assurance

Service which records a log of the services access, in addition to this the ESB

and the application server provides a metric usage and logging of services

usage.

7 Framework Evaluation

59

Manageability Supporting Features

5. The BPEL engine manages BPEL processes and the application server that

runs the engine in its context provides monitoring and logging of event data

and measurement of business metrics such as wait time, transaction volumes,

and exception counts.

6. The framework through the ESB and application server provides a

monitoring facility for the invoked services, and the health of the framework

components.

7. The ESB and the application server under which the services run allow

starting and stopping framework engines, components, and services.

8. The mechanisms for monitoring and event logging allow taking measures,

such as wait times, transaction volumes, and exception counts. These

measures are important to oversee the system in production and for the

testing of reliability and performance analysis.

7.2.3 Flexibility Evaluation Scenarios

Table 7.3 presents the main features of the framework that provide flexibility

enhancement, the table is a summary for the scenarios (questions and prompts) based on

ATAM methodology that is presented in Appendix G.III.

Table 7.3: Framework Flexibility Supporting Features

Flexibility Supporting Features

1. Since the framework is composed of diverse components, most of them are

Web Services, which are self-contained and loosely coupled; the changes

required for any service would be incur little efforts.

2. Services in the process can be changed without affecting every other service

in the BPEL workflow, as far as the input/output types of the service are not

changed.

3. The identity information is not hard-coded in security services

implementation. Depending on the realization of the Web Service, access

information can be stored in an XML file or database data source.

4. The Web Services to be implemented are coarse grain and hence self

7 Framework Evaluation

60

Flexibility Supporting Features

contained and can operate independently, so they provide loose coupling and

enhances flexibility.

5. The credentials are used in Security Assurance Service; they are easily

managed and not hard coded. They are stored in an XML format, which is

flexible for manipulating and easy for understanding.

6. Access to services by consumers can be from the Internet as an open and

insecure network, as well as, from the private governmental network.

7. Using a new data source in the framework, or adding another database type

can be achieved with little efforts, because a minimal change is required in

the code that access the database, if such database connectivity is not

supported by the JDBC.

8. The framework provides support for both synchronous and asynchronous

web service. It is left for the requirement and operation of the service to use

either of them. The services implemented in the prototype are synchronous

services.

7.3 Showing Quality Attributes Achievement through a Usage

Scenario

To further illustrate the idea presented in this section; we consider a usage scenario of

the implemented prototype of framework. Figure 7.2 depicts the flow of this scenario

and the interaction direction between different components, as follows:

1. The end user –e.g. citizen- would like to check his social status in the Citizen

Population Registry, for example, in order to verify that his new born baby was

added to the social section part of his identification card, and over the Internet,

accesses the citizen information section of e-Government portal using his login

credential.

2. The Web application running at the portal would use SOAP messaging and

HTTP to invoke ,say, the Citizen Information Operation which is part of the

Government Informational Services - CtzDataService

7 Framework Evaluation

61

3. The Government Informational Service would then interact with the Security

Assurance Service to make sure security policies are not violated and access for

this context is allowed.

4. The Security Assurance Service and based on username/password pairs and IP

authentication would allow the Government Informational Service.

5. The Government Informational Service would invoke the Database Access

Service for information retrieval from the database.

6. The Database Access Service accesses the Central Database using the JBI

database binding component or database driver.

7. The Database returns the requested records to the Database Access Service.

8. The Database Access Service database returns the response to the Government

Information Service.

9. The Governmental Information Service manipulates and processes the results

and return it back to the Web application at e-Government portal

10. Finally, the Web application renders, formats, and presents the required

information to the citizen.

e-Gov Portal

Ministries Portals

GovDb

CitizenDb

Internet

10

1

9

5
3

4
8

67

2

Security Assurance

Service

Governmental

Informational Services

Database Access Service/

Database Binding

Figure 7.2: Usage Scenario for the Proposed Framework

The presented scenario outlines how the implemented prototype fulfills one of the main

functional requirements, namely the accessibility, as well as two of the quality attributes

which are interoperability and flexibility.

For the quality attributes discussion, first, interoperability achievement is clear in this

scenario, this is because the Web application and the Government Informational Service

are database type independent, and so if the low level database that holds the Citizens

7 Framework Evaluation

62

Population Registry is changed from e.g. Oracle to MySQL, then change is not required

for the Web application that access the Governmental Database. Second, flexibility is

achieved by using standard HTTP transport to carry messages between the Web

application in e-Government portal and the Government Informational Service (either

over the government private network or the Internet); the HTTP transport is generally

allowed and not filtered by firewalls; where in the current model of Central Database

such access would be carried over Oracle-Sql port which most of the time needs

security reconfiguration to allow it, also the portal access to the Central Database is

restricted to be from the government private network.

63

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this research, the current Integrated Central Database model, a core part of the

Palestinian e-Government Technical Framework, was presented and analyzed. A new

Central Database model based on SOA solution was proposed that overcomes the

shortcomings of the currently used model that lacks Interoperability, Flexibility and

Manageability. The proposed framework is based on SOA hub and spoke approach

and was realized using an ESB and Web Services. The framework provides the main

functionalities which are the access to the Integrated Central Database, and the

replication between the diverse database types. The framework structure and

components were presented and explained. The main components of the framework are:

ESB, Web Services, databases, e-Government portals, business applications of

governmental institutes, and front-end applications.

In the evaluation of the thesis work, we used two methods: ATAM based and proof-of-

concept. The ATAM based evaluation method was used to evaluate the framework

architecture, in which we introduced different scenarios that affect the quality attributes

of the framework. The scenarios were presented using questions and their prompts, and

the prompts conclude and verify that the framework achieves the quality goals. A

prototype was implemented for limited functions of the framework. The implementation

included a usage case of three informational services, replication service, security

assurance service, and service orchestration using BPEL for the informational services.

The development environment of the prototype was based on JSP, Netbeans, JBI and

Open-ESB, and the replication between the database Oracle and MySQL was achieved

using database binding component which is part of the JBI. The prototype was the

proof-of-concept to validate the solution of the framework and showed it accomplishes

its requirements.

64

The main contribution and impact of this research is to show that SOA solutions can be

applied to the Integrated Central Database model, also to align SOA concepts to the e-

Government domain problems.

 8.2 Future Work

In this research we focused on building a SOA based framework for the e-Government

Integrated Central Database as a model to replace the legacy one. We evaluated the

framework architecture and validated the solution using a prototype. Yet, the complete

framework was not implemented. Also the Framework did not address features that can

further enhance flexibility and dependability such as service auto-composition.

Moreover the framework did not address the issue of distributed Governmental

Database to provide fault tolerance and reliability. In addition to this, services finding

and invocation in the framework did not address semantic approach. Future direction in

this research could be summarized as follows:

 Full and complete implementation of the framework.

 Enhancing the framework by adding support of services auto-composition.

 Providing semantic capabilities to the framework.

 Adding support for integrated and distributed database backend, instead of

having just one Integrated Centralized Governmental Database.

 Enhancing the framework to support and achieve the following quality

attributes: availability, reliability and fault-tolerance.

65

References

[1] Abdul Moiz S., Sailaja P., Venkataswamy G., and Pal S, ―Database Replication: A

Survey of Open Source and Commercial Tools‖, International Journal of Computer

Applications, Published by Foundation of Computer Science, Jan. 2011.

[2] Alonso G., Casati, F., Kuno H. and Machiraju V., ―Web Services: Concepts

Architecture and Applications‖, Springer, Berlin, 2004.

[3] Apache ServiceMix Open Source ESB, http://servicemix.apache.org/home.html,

Last Accessed 09/10/2011.

[4] Bansiya J., and Davis C.G., ―A hierarchical Model for Object-Oriented Design

Quality Assessment‖, IEEE Transactions on Software Engineering, 2002.

[5] Barbacci M., Clements P., Lattanze A., Northrop L., and Wood W., ―Using the

Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Software

Architecture for a Product Line of Avionics Systems: A Case Study (CMU/SEI-

2003-TN-012, ADA418415)‖, Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2003.

[6] Barret T., ―A Gentle Introduction to GlassFish ESB‖, Sun Microsystems Inc.,

2009.

[7] Bass L., Clements P. and Kazman R., ―Software Architecture in Practice‖, 2nd ed.

Boston, MA: Addison-Wesley, (ISBN 0-321-15495-9), 2003.

[8] Bianco P., Kotermanski R., and Merson P., ―Evaluating a Service Oriented

Architecture‖, Engineering Institute, 2007.

[9] Biemolt G., and Groefsema H., ―Replicating Subsets of Data for the Dutch E-

Government‖, Technical Report, University of Groningen and Ordina Oracle

Solutions, 2008.

[10] Bih J., ―Service Oriented Architecture (SOA) A New Paradigm to Implement

Dynamic E-business Solutions‖, Ubiquity ACM, New York, NY, USA. August

2006.

[11] Changyu Z., Jianyong D., and Zheng X., ―Beijing Traffic Data Center Based on

SOA Technology‖, International Conference on Computer Application and System

Modeling (ICCASM), vol.15, pp.232-235, 22-24 Oct. 2010.

[12] Chappell D., ―Enterprise Service Bus Theory in Practice‖, O’Reilly, 2004.

[13] Chen D., ―Enterprise Interoperability Framework‖, In Proceedings of Enterprise

http://servicemix.apache.org/home.html

66

Modeling and Ontologies for Interoperability EMOI - Interop, vol. 200, 2006.

[14] Correia A. J., Pereira J. O., Rodrigues L., Carvalho N. M. R., Vila_ca R., Oliveira

R., and Guedes S., ―An open architecture for database replication‖, In Proc. of the

6th International Symposium on Network Computing and Applications, Boston,

MA, USA IEEE, pages 287-290, , July 2007.

[15] Curl A., and Fertalj K., ―A review of enterprise IT Integration Methods‖,

Proceedings of the 31st International Conference on Information Technology

Interfaces (ITI '09), Dubrovnik, pp.107-112, 22-25 June 2009.

[16] Dan A., Johnson R., and Rsanjani. A, ―Information as a Service: Modeling and

Realization‖, International Workshop on Systems Development in SOA

Environments, 2007. SDSOA '07: ICSE Workshops 2007, pp. 2, 20-26 May 2007.

[17] Delin Q., ―Design of Medical Insurance Supervision System Based on Active Data

Warehouse and SOA‖, World Congress on Computer Science and Information

Engineering WRI, vol.3, pp.45-49, March 31-April 2 2009.

[18] ESB Tutorial, http://searchsoa.techtarget.com/tutorial/ESB-Tutorial, Last Accessed

5/10/2011.

[19] Fiere J., ―SOA Security‖, Master’s thesis, Faculty of Science, Vrije University

Amsterdam, 2007.

[20] Garcia-Jimeenez F.J., Martinez-Carreras M.A.,and Gomez-Skarmeta A.F.,

―Evaluating Open Source Enterprise Service Bus‖, IEEE 7th International

Conference on e-Business Engineering ICEBE, pp.284-291, 2010.

[21] Guo Q., Zheng H., Lie J., and Wang X., ―Design and Implementation of Data

Management Center Based on Web Services‖, Ninth International Conference on

Hybrid Intelligent Systems HIS 09, vol.2, pp.322-326, 12-14 Aug. 2009.

[22] Gupta A., and Mumick I. S., ―Maintenance of Materialized Views: Problems,

Techniques, and Applications‖, Data Engineering Bulletin, vol. 18, No. 2, June

1995.

[23] IBM WebSphere ESB, http://www-01.ibm.com/software/integration/wsesb/, Last

Accessed 5/10/2011.

[24] IEEE Standard Glossary of Software Engineering Terminology 610.12-1990, vol.

1, Los Alamitos: IEEE Press, 1999.

[25] Introducing OpenESB from development to Administration and Management,

http://oracamp.com/article-introducing-openesb-development-administration-and-

management, Last Accessed 09/10/2011.

[26] Introduction to Oracle Enterprise Service Bus,

http://download.oracle.com/docs/cd/B31017_01/integrate.1013/b28211/esb_intro.h

tm, Last Accessed 25/9/2011.

http://searchsoa.techtarget.com/tutorial/ESB-Tutorial
http://www-01.ibm.com/software/integration/wsesb/
http://oracamp.com/article-introducing-openesb-development-administration-and-management
http://oracamp.com/article-introducing-openesb-development-administration-and-management
http://download.oracle.com/docs/cd/B31017_01/integrate.1013/b28211/esb_intro.htm
http://download.oracle.com/docs/cd/B31017_01/integrate.1013/b28211/esb_intro.htm

67

[27] JBoss ESB, http://www.jboss.org/jbossesb, Last Accessed 09/10/2011.

[28] Jones G. L., and Lattanze J. A., ―Using the Architecture Tradeoff Analysis

Method to Evaluate a Wargame Simulation System: A Case Study (CMU/SEI-

2001-TN-022, ADA399795). Pittsburgh, PA‖, Software Engineering Institute,

Carnegie Mellon University, 2001.

[29] Josuttis M. N., ―SOA in practice‖, O'Reilly Media Inc., 2007.

[30] Kazman R., Klein M., and Clements P., ―ATAM: Method for Architecture

Evaluation‖, August 2000.

[31] Keen M., Bishop S., Hopkins A., Milinski S., NottRick C., Robinson R., Adams J.,

Verschueren P., and Acharya A., ―Patterns: Implementing an SOA using an

Enterprise Service Bus‖, IBM Redbook, 2005.

[32] Kemme B., Alonso G., ―Database Replication: a Tale of Research across

Communities‖, Journal Proceedings of the VLDB Endowment, vol. 3, issue 1-2,

September 2010.

[33] Krolczyk A., Stantchev V., and Senf C., ―Service-Oriented Approaches for E-

Government‖, Proceedings of the 11th International Conference on Information

Integration and Web-based Applications & Services IIWAS 09, ACM, New York,

NY, USA, 2009.

[34] Kuppuraju S., Kumar A., Kumari G.P., ―Case Study to Verify the Interoperability

of a Service Oriented Architecture Stack‖, IEEE International Conference on

Services Computing SCC, pp. 678-679, 9-13 July 2007.

[35] Lee Y., ―QAM: QoS-assured Management for Interoperability and Manageability

for SOA‖, Second Pacific-Asia Conference on Circuits, Communications and

System (PACCS), vol.1, pp.468-472, 1-2 Aug. 2010.

[36] Lublinsky B., ―An ESB Vendors Evaluation by Forrester Research‖,

http://www.infoq.com/news/2009/02/ESBVendors, 2009.

[37] Ma H., ―A Service-oriented e-Government Support Platform for Integration of

Application and Data‖, Second International Conference on Information

Technology and Computer Science (ITCS), pp.398-401, 24-25 July 2010.

[38] MacKenzie M., Laskey K., McCabe F., Brown P., and Metz. R., ―Reference

Model for Service Oriented Architecture‖, OASIS Committee, February 2006.

[39] Mann T. A., ―.NET Web Services for Dummies‖, New York, Wiley Publishing,

Inc., 2003.

[40] Mar O., ―Fault Tolerance by Replication of Distributed Database in P2P System

using Agent Approach‖, International Journal of Computers, issue 1. vol.4, 2010.

[41] Materialized View Concepts and Architecture,

http://download.oracle.com/docs/cd/B10500_01/server.920/a96567/repmview.htm,

http://www.jboss.org/jbossesb
http://www.iiwas.org/conferences/iiwas2009
file:///C:\mywork\MyFlash\Private\mywork\MyFlash\Private\Master\ThesisWorkTheory\report\An%20ESB%20Vendors%20Evaluation%20by%20Forrester%20Research

68

Last Accessed 15/9/2011.

[42] Medjahed B., Rezgui A., Bouguettaya A., and Ouzzani M., ―Infrastructure for e-

government Web Services‖, Internet Computing IEEE, vol.7, no.1, pp. 58- 65,

Jan/Feb 2003.

[43] Meier J.D. , Hill D., Homer A., Taylor J., Bansode P., Wall L., Boucher R., and

Bogawat A., ―Microsoft Application Architecture Guide 2.0a, Patterns and

Practices‖, Microsoft Press, 2nd edition, 2009.

[44] Menge F., ―Enterprise Service Bus‖, Free and Open Source Software Conference,

Vicrtoria, Canda, 2007.

[45] Michelson B., ―Enterprise Service Bus Q&A (Part II of II)‖,

http://www.ebizq.net/topics/esb/features/6117.html, Last Accessed 09/10/2011.

[46] Minguez J., Jakob M., Heinkel U., and Mitschang B., ―A SOA-based Approach for

the Integration of a Data Propagation System‖, International Conference on

Information Reuse & Integration IRI 09. IEEE, pp. 47-52, 10-12 Aug. 2009.

[47] Ministry of Telecom and Information Technology –Gaza - Palestine- Official Web

Site, http://www.mtit.gov.ps, Last Accessed 05/08/2011.

[48] Mule ESB Open Source ESB Community, http://www.mulesoft.org/, Last

Accessed 09/10/2011.

[49] Open Source SOA- Fuse Open Source Community, http://fusesource.com/, Last

Accessed 25/9/2011.

[50] OpenESB, http://java.net/projects/openesb/, Last Accessed 09/10/2011.

[51] Ortiz S., ―Getting on Board the Enterprise Service Bus‖, IEEE Computer

Magazine, vol.40, issue 4, pp.15-17, April 2007.

[52] Palestinian Government Data Integration Committee Official Website,

http://www.takamul.gov.ps, Last Accessed 05/10/2011.

[53] Papazoglou M., ―Service-oriented Computing: Concepts, Characteristics and

Directions‖, Proceedings of the Fourth International Conference on Web

Information Systems Engineering WISE 2003, pp. 3- 12, 10-12 Dec. 2003.

[54] Papazoglou M., and Heuvel W., ―Service Oriented Architectures: Approaches,

Technologies and Research Issues‖, Journal on Very Large Data Bases, 2007.

[55] Papazoglou M., Traverso P., Dustdar S. and Leymann F., ―Service-Oriented

Computing Research Roadmap‖, International Journal of Cooperative Information

Systems, vol. 17 no. 2, p223-255, 2008

[56] Papazoglou M., Traverso P., Dustdar S., and Leymann F., ―Service-Oriented

Computing Research Roadmap‖, International Journal of Cooperative Information

Systems, vol. 17 no. 2, p223-255, 2008.

http://www.mtit.gov.ps/
http://www.mulesoft.org/
http://fusesource.com/
http://java.net/projects/openesb/
http://www.takamul.gov.ps/

69

[57] Papazoglou M., Traverso P., Dustdar S., and Leymann F., ―Service-Oriented

Computing: State of the Art and Research Challenges‖, International Journal of

Cooperative Information Systems, vol. 17, no. 2, 2008.

[58] Paul S., ―Pro SQL Server 2008 Replication‖, Apress, 1st edition June 17th 2009.

[59] Petals ESB, Open source ESB, http://petals.ow2.org/, Last Accessed 09/10/2011.

[60] Philipp L., ―The Strategic Impact of Service Oriented Architectures‖, 14th Annual

IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS'07), pp. 475-484, 2007.

[61] PostgreSQL 8.4 Server Administration, Volume II- The PostgreSQL Global

Development Group, 2009.

[62] Proof of Concept, http://en.wikipedia.org/wiki/Proof_of_concept, Last Accessed

25/9/2011.

[63] RadeMakers T. and Dirksen J., ―Open Source ESB in Action‖, Manning

Publications, 2008.

[64] Rantzau R., Constantinescu C., Heinkel U., and Meinecke H., ―Champagne: Data

Change Propagation for Heterogeneous Information Systems‖, Proceedings of the

28th VLDB Conference, Hong Kong, China, 2002.

[65] Saito Y., and Shapiro M., ―Replication: Optimistic Approaches‖, Hewlett-

Packard Laboratories Palo Alto, Microsoft Research Ltd. Cambridge, 2002.

[66] Sarev V. G., ―Process and Realization of SOA Centralized System‖, Master’s

thesis, University of Sofia ―St Kliment Ohridski‖ Faculty of Mathematics and

Informatics Department: Information technologies, 2007.

[67] Simmons S., Designing SOA with a business focus, IBM WebSphere Developer

Technical Journal, 2007, available at:

http://www.ibm.com/developerworks/websphere/techjournal/0706_col_simmons/0

706_col_simmons.html.

[68] SOA and Web Services— The Performance Paradox, White Paper, Wily

Technology, August 2007.

[69] Strahle M., Ehlbeck M., Prapavat V., Kuck K., Franz F., and Meyer J.-U.,

―Towards a Service-Oriented Architecture for Interconnecting Medical Devices

and Applications‖, Joint Workshop on High Confidence Medical Devices,

Software, and Systems and Medical Device Plug-and-Play Interoperability

HCMDSS-MDPnP., pp.153-155, 25-27 June 2007.

[70] TIBCO ActiveMatrix BusinessWorks,

http://www.tibco.com/software/soa/activematrixbusinessworks/, Last Accessed

09/10/2011.

[71] Wagner R. and Mitschang B., ―Uniform and Efficient Data Provisioning for SOA-

http://petals.ow2.org/
http://en.wikipedia.org/wiki/Proof_of_concept
http://www.tibco.com/software/soa/activematrixbusinessworks/

70

Based Information Systems‖, Sixth International Conference on Information

Technology: New Generations ITNG '09. , pp.1012-1017, 27-29 April 2009.

[72] Wang J., Yu A., Zhang X., and Qu L., ―A Dynamic Data Integration Model Based

on SOA‖, International Colloquium on Computing, Communication, Control, and

Management CCCM, vol.2, pp.196-199, 8-9 Aug. 2009.

[73] Web Services Architecture, W3C Working Group Note, Web Services Definition,

http://www.w3.org/TR/ws-arch/#whatis, Last Accessed 5/8/2011.

[74] Web Services Business Process Execution Language Version 2.0,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[75] Yang C., Huang G., Huang F., Ho T., Huang P., and Jiann-Min Y., ―SOA-based

Platform for Water Resource Information Exchanging‖, 17th International

Conference on Geoinformatics, pp.1-4, 12-14 Aug. 2009.

[76] Yunliang J., Xiongtao Z., Qing S., Jing F., and Ning Z., ―Design of E-Government

Information Management Platform Based on SOA Framework‖, First International

Conference on Networking and Distributed Computing ICNDC , pp.165-169, 21-

24 Oct. 2010.

[77] Zimmermann O., Tomlinson R. M., and Peuser S., ―Perspectives on Web Services

– Applying SOAP, WSDL and UDDI to Real- World Projects‖, Springer

Professional Computing, 2005.

http://www.w3.org/TR/ws-arch/#whatis

71

Appendices

These appendices provide an overview of prototype and excerpts and snapshots from the

development environment, XSD, WSDL files and the part of the implementation codes.

Also includes the scenarios for the evaluation of the framework.

The appendices included in this thesis are:

 Appendix A: Prototype Working Environment

 Appendix B: Informational Web Services

 Appendix C: The Informational Services Composite Applications and BPEL

 Appendix D: Security Service Assurance Implementation Files

 Appendix E: Replication Service, Database Binding, and BPEL

 Appendix F: Front End Access Interface

 Appendix G: Framework Evaluation Scenarios based on ATAM

72

Appendix A: Prototype Working Environment

 The prototype has been implemented using Java Web Services; Table A.1 shows the

used software for the implementation of the prototype.

Table A.1 Software Used in the Implementation of Prototype

Software Function Software Environment

Java Development Kit JDK 1.6 jdk1.6.0_05

Development Environment NetBeans IDE 6.7.1

Application Server GlassFish Application Server 2.1

ESB OpenESB/JBI jbi_components_installer.jar

ESB Engines and Binding Components Open_esb_v2 jbi_components_installer.jar

sub-bpel-engine

sun-database-binding

Database MySQL Database

Oracle 10g Database

Database Connectivity JDBC/ojdbc6.jar

mysql-connector-java-5.1.16-bin.jar

 Figure A.1 depicts a snapshot of the development environment which is NetBeans

IDE 6.71.

Figure A.1: IDE Snapshot

73

Appendix B: Informational Web Services

The GovData Web Application holds the Informational Web Services as well as the

Security Assurance Web Service. Figure A.2 shows the Web Services and their

operations.

Figure A.2: Informational and Security Web Services and their Operations

74

Following the required files for the implementation of the CitizenData Web Service are

presented.

 XSD file for CitizenData Service

Figure A.3 depicts the Schema XSD file for the CitizenData Web Service

Figure A.3: CitizenData Web Service XSD Schema File

75

 WSDL file for the CitizenData Service

Figure A.4 shows the WSDL file the CitizenData Web Service, it has one operation,

three messages (input, output, and fault).

Figure A.4: CitizenData Web Service WSDL

76

 CitizenData Web Service Implementation

Figure A.5 depicts the Java code for the CitizenData Web Service

Figure A.5 (Part 1): Java Code for CitizenData Web Service

77

Figure A.5 (Part 2): Java Code for CitizenData Web Service

78

Appendix C: The Informational Services Composite Application and

BPEL

 Composite Service for the Informational Services

 Figure A.6 depicts the WSDL file for the composite service that orchestrates the two

Informational Services: CitizenData and InsuranceData Web Services.

Figure A.6: WSDL File for the Informational Composite Service

79

 Composite Informational Services BPEL Design View:

In this view the two Informational Services (CitizenData and InsuranceData) are to

right of Figure A.7, and the composite Web Service to the left.

Figure A.7: BPEL Design for Informational Composite Web Services

80

Appendix D: Security Service Assurance Implementation Files

 Figure A.8 depicts the XSD file for Security Assurance Service, which provides the

Authentication Input Request for input message of the service.

Figure A.8: XSD for the Security Assurance Service

 Figure A.9 depicts the WSDL file for Security Assurance Service

Figure A.9: WSDL File for the Security Assurance Service

81

 Security Assurance Authentication, Authorization, and Logging XML Files:

Shown in Figure A.10, A.11, and A.12 a snapshot of the XML files used by Security

Assurance Service to authenticate, authorize, and log users access to operations in the

services, as well as an excerpt from authorization code.

 users.xml file for authentication: An XML file showing username/password pair.

Figure A.10: Authorization XML File

 log.txt file for logging services requests: Each user request to operation is logged

along with its access time.

Figure A.11: Logging File

82

 access.xml for authorizing users for operations access: e.g. as seen from the figure

below users1 is allowed to access the empFinDataWSDLOperation from a specific

IP which is the loopback address 127.0.0.1.

Figure A.12: Authorization XML File

83

 Figure A.13 presents the Java code for Security Assurance Service, access to

authentication, authorization and logging files is done using DOM-SAX.

Figure A.13 (Part 1): Security Assurance Java Code

84

Figure A.13 (Part 2): Security Assurance Java Code

85

Appendix E: Replication Service, Database Binding, and BPEL

The replication service is implemented using composite service and BPEL, in which the

source database access is done using one web service, and the update to the target

database is done using another web service. Both web services use database binding

component that comes with JBI in the OpenESB.

 WSDL file for source table service in the replication composite service:

Figure A.14 shows the WSDL file for service implementation of the source database

which is the EmpContacts. The service performs the read of table rows using JBI

database binding component over jdbc.

Figure A.14: WSDL File Source Table in the Replication Service

86

 WSDL file for target table service in the replication composite service:

This service performs the snapshot replication through deleting the content of the table

in the database and inserting the records that are retrieved from the source table. This

service performs delete and insert of the records in the table using the database binding

component over JDBC binding. Figure A.15 depicts the WSDL of the service for the

target table.

Figure A.15: WSDL File Target Table in the Replication Service

87

 Replication Service Composite Service BPEL Design View:

Figure A.16 shows the BPEL design for the composite web service that performs the

replication between the source and target table. To the right of the Figure A.16 both

target and source service with their operations. The operations in the source table

service are row-count and find, and the operations in the target table are delete and

insert. The replication composite service is shown in the left of the Figure A.16.

Figure A.16: BPEL for the Replication Service

88

Appendix F: Front-End Access Interface

 The Front-End interface is written in JSP and runs in the context of the web

application service GlassFish. The interface allows the user to input an ID and

returns the result for that ID in the Information Services: CitizenData, EmpData, and

Insurance Data. Figures A.17, A.18, A.19 present snapshots from the front end

interface.

 In Figure A.17 no connection to the GovDb exists and Error message is presented.

Figure A.17: Front-End Interface Error when No-Database-Access

89

 In Figure A.18 Invalid ID is searched for and Error Message Response is displayed

Figure A.18: Front-End Interface Invalid-ID Error Message

90

 Figure A.19 depicts a successful record retrieval from the three Informational

Services.

Figure A.19: Successful Record Retrieval from the GovDb

91

 Figure A.20 depicts the JSP Code for the front end interface to access the

Informational Services

 <%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Citizen Info Page</title>

 </head>

 <body dir="rtl">

 <h2> </h2>

 <form name="form2" method="post" action="">

 <table border="0">

 <tr align="right"><td><%out.println("

 ");%>:</td><td><input name="id" type="text" /></td></tr>

 <tr><td colspan="2" align="center"><input type="submit" value="OK"

/></td></tr>

 </table>

 </form>

 <%-- start web service invocation --%><hr/>

<%

 String ino = request.getParameter("id");

 if (ino != null) {

 int i=0;

 try {

 i = Integer.parseInt(ino);

 org.netbeans.j2ee.wsdl.govdata.citizendatawsdl.CitizenDataWSDLService

service = new

org.netbeans.j2ee.wsdl.govdata.citizendatawsdl.CitizenDataWSDLService();

 org.netbeans.j2ee.wsdl.govdata.citizendatawsdl.CitizenDataWSDLPortType

port = service.getCitizenDataWSDLPort();

 try {

 org.netbeans.xml.schema.citizendataschema.CitizenDataInType part1= new

org.netbeans.xml.schema.citizendataschema.CitizenDataInType();

 part1.setId(i);

 part1.setUsername("user1");

 part1.setPassword("password1");

 org.netbeans.xml.schema.citizendataschema.CitizenDataOutType result1=

port.citizenDataWSDLOperation(part1);

 out.print("<h4> </h4>");

 out.print("<table bgcolor=#CCCCCC dir=rtl border=2 width=1000 > <tr> ");

 out.print("<tr align='right'>");

 out.print("<td width=200> : ");

 out.print(result1.getCitizenID());

 out.print("</td>");

 out.print("<td width=300> : ");

 out.print(result1.getFirstName());

 out.print(" "+result1.getSecondName());

 out.print(" "+result1.getThirdName());

 out.print(" "+result1.getLastName());

 out.print("</td>");

 out.print("<td width=250> : ");

 out.print(result1.getBirthDate());

 out.print("</td>");

 out.print("<td width=150> : ");

 out.print(result1.getSGender());

 out.print("</td>");

 out.print("<td width=200> : ");

 out.print(result1.getSMaritalStatus());

 out.print("</td>");

 out.print("<td width=350> : ");

 out.print(result1.getSRegion());

 out.print("-" + result1.getSCity());

Figure A.20 (Part 1): Front-End Application JSP Code

92

 out.print("</td>");

 out.print("</tr>");

 out.print("</table>");

 }

 catch (Exception ex)

 {

 //out.println("
ERROR CitizenData: " + ex.getLocalizedMessage());

 out.print("<h4> </h4>");

 String ErrorMsgMoi = "

 ";

 out.println(ErrorMsgMoi+"
"+ex.getLocalizedMessage());

 }

 try {

 org.netbeans.j2ee.wsdl.govdata.insurancedatawsdl.InsuranceDataWSDLService

service1 = new

org.netbeans.j2ee.wsdl.govdata.insurancedatawsdl.InsuranceDataWSDLService();

 org.netbeans.j2ee.wsdl.govdata.insurancedatawsdl.InsuranceDataWSDLPortType

port1 = service1.getInsuranceDataWSDLPort();

 // TODO initialize WS operation arguments here

 org.netbeans.xml.schema.insurancedataschema.InsuranceDataInType part2 = new

org.netbeans.xml.schema.insurancedataschema.InsuranceDataInType();

 part2.setId(i);

 part2.setUsername("user1");

 part2.setPassword("password1");

 org.netbeans.xml.schema.insurancedataschema.InsuranceDataOutType result2 =

port1.insuranceDataWSDLOperation(part2);

 out.print("<h4> </h4>");

 out.print("<table bgcolor=#CCCCCC dir=rtl border=2 width=1300 > <tr> ");

 out.print("<tr align='right'>");

 out.print("<td width=250> : ");

 out.print(result2.getInsuranceID());

 out.print("</td>");

 out.print("<td width=200> : ");

 out.print(result2.getCitizenID());

 out.print("</td>");

 out.print("<td width=450> :");

 out.print(result2.getFName());

 out.print(" "+result2.getSName());

 out.print(" "+result2.getGName());

 out.print(" "+result2.getLastName());

 out.print("</td>");

 out.print("<td width=250> :");

 out.print(result2.getInsuranceType());

 out.print("</td>");

 out.print("<td width=200> : ");

 out.print(result2.getInsuranceStatusDesc());

 out.print("</td>");

 out.print("<td width=200> : ");

 out.print(result2.getClinic());

 out.print("</td>");

 out.print("<td width=350> : ");

 out.print(result2.getRelTypeDesc());

 out.print("</td>");

 out.print("</tr>");

 out.print("</table>");

 }

 catch (Exception ex)

 {

 // out.println("
ERROR Insurance: " + ex.getLocalizedMessage());

 out.print("<h4> </h4>");

 String ErrorMsg="

";

 out.println(ErrorMsg+"
"+ex.getLocalizedMessage());

 }

Figure A.20 (Part 2): Front-End Application JSP Code

93

 try {

 org.netbeans.j2ee.wsdl.govdata.empdatawsdl.EmpDataWSDLService service2 = new

org.netbeans.j2ee.wsdl.govdata.empdatawsdl.EmpDataWSDLService();

 org.netbeans.j2ee.wsdl.govdata.empdatawsdl.EmpDataWSDLPortType port2 =

service2.getEmpDataWSDLPort();

 // TODO initialize WS operation arguments here

 org.netbeans.xml.schema.empdataschema.EmpFinDataInType part1 = new

org.netbeans.xml.schema.empdataschema.EmpFinDataInType();

 part1.setId(i);

 part1.setUsername("user1");

 part1.setPassword("password1");

 // TODO process result here

 org.netbeans.xml.schema.empdataschema.EmpFinDataOutType result3 =

port2.empFinDataWSDLOperation(part1);

 out.print("<h4> </h4>");

 out.print("<table bgcolor=#CCCCCC dir=rtl border=2 width=1300 > <tr> ");

 out.print("<tr align='right'>");

 out.print("<td width=250> :");

 out.print(result3.getEmpNo());

 out.print("</td>");

 out.print("<td width=300> :");

 out.print(result3.getEmpName());

 out.print("</td>");

 out.print("<td width=250> :");

 out.print(result3.getMinistry());

 out.print("</td>");

 out.print("<td width=250> :");

 out.print(result3.getScale());

 out.print("</td>");

 out.print("<td width=250> : ");

 out.print(result3.getDept());

 out.print("</td>");

 out.print("<td width=200> : ");

 out.print(result3.getGrade());

 out.print("</td>");

 out.print("<td width=250> :");

 out.print(result3.getSal());

 out.print("</td>");

 out.print("<td width=350> : ");

 out.print(result3.getHireDate());

 out.print("</td>");

 out.print("</tr>");

 out.print("</table>");

 } catch (Exception ex) {

 //out.println("
ERROR EmpFin: " + ex.getLocalizedMessage());

 out.print("<h4> </h4>");

 String ErrorMsgMof = " ";

 out.println(ErrorMsgMof+"
"+ex.getLocalizedMessage());

 // TODO handle custom exceptions here

 }

 } catch (Exception ex){

 out.println("ERROR Input: " + ex.getLocalizedMessage());

 }

 }

 %>

 </body>

</html>

Figure A.20 (Part 3): Front-End Application JSP Code

94

Appendix G: Framework Evaluation Scenarios based on ATAM

I. Interoperability Evaluation Scenarios

The evaluation of Interoperability for the SOA framework should consider the

following concerns and their prompts:

1. General Scenario 1:

Question: Does the framework provide support to use services implemented in

disparate platforms and using different languages?

Prompt: The framework is designed to support diverse services implemented in

various platforms and languages. Web Services provide primarily syntactic

Interoperability. Whether two components can interoperate also depends on their

semantic agreement about the meaning of data and operations. Web Services

technology use SOAP and WSDL standards that can be used between different

service providers and users regardless of the need or be aware of the underlying

development language.

2. General Scenario 2:

Question: Does the framework have the ability to replicate and access databases

with heterogeneous database type?

Prompt: The framework allows replicating heterogeneous database types, whether

using Oracle, MS-Sql, MySQL, and so on. It is designed to use general database

connectivity interface which can access any database that support JDBC, and

depends on the list of data sources supported by the connectivity driver.

3. General Scenario 3:

Question: Does the framework have the ability to orchestrate services implemented

in disparate platforms and using different languages?

Prompt: The framework is using BPEL for business process which can orchestrate

web services that uses SOAP and WSDL for service interfacing regardless of the

underlying platform or development languages. The BPEL engine (Orchestration

Engine) allows systems with disparate underlying platforms (e.g., Java and .NET) to

interact through Web services technology.

95

4. General Scenario 4:

Question: Does the framework allow having service users and providers to use

different implementation languages and platforms?

Prompt: Both service users and providers are unaware of their counter platform and

development languages, the only requirement between them is to have a unified

standard that for providing and invoking the service. This is achieved via WSDL,

SOAP and HTTP. Moreover, in the framework, we are using SOAP document-

literal which is more interoperable than RPC-encoding due to incompatibility in

SOAP encoding across platforms.

5. General Scenario 5:

Question: Will the framework middleware (integrator) allows connected

applications with disparate technology and data formatting requirements to

interoperate as service users and providers without major changes to each?

Prompt: The middleware integration approach in the proposed SOA based

framework will be an ESB. It is hub-and-spoke SOA approach, which would allow

connecting diverse applications, technologies, and data formatting.

6. General Scenario 6:

Question: Does the framework allow for compatibility between authentication

mechanisms supported by participant of the service providers?

Prompt: Authentication mechanism will be centralized and realized using Web

Service; the authentication and access information is managed centrally. The

authentication access is interoperable since it is based on Web Services approach

and not other general purpose authentication schemas such as LDAP or Active

Directory, and so on.

7. General Scenario 7:

Question: Does the framework use any standards to support message-level security

(e.g., WS-Security, XML Encryption, and XML Signature)?

Prompt: The framework is designed to support such message-level security; it is left

for the service provides to implement such features to further enhance the security

of the service.

96

8. General Scenario 8:

Question: Is the interaction between a given service user and provider synchronous

or asynchronous?

Prompt: The framework provides support for both synchronous and asynchronous

web service. It is left for the requirement and operation of the service to use either of

them. The services implemented in the prototype are synchronous services.

9. General Scenario 9:

Question: Do legacy systems integrate with the framework?

Prompt: The ESB, the middleware integrator, is responsible for integrating legacy

systems to the framework, which provides Interoperability with old legacy

applications.

10. General Scenario 10:

Question: Which standards provide Interoperability is used in the framework?

Prompt: The standards used in the framework and provide Interoperability between

framework components when interacting with each others are: WSDL, SOAP,

UDDI, and BPEL which provide capabilities to systems developed with Web

services technology.

11. General Scenario 11:

Question: What challenges Interoperability in the framework?

Prompt: Not all Web services platforms implement the same version of the

additional standards such as UDDI, BPEL, WS-Security and hence achieving

Interoperability faces some obstacles when using such standards. Still since the

framework is under a centralized unit of administration, this risk can be mitigated.

II. Manageability Evaluation Scenarios

The evaluation of Manageability quality attributes for the proposed SOA based

framework should consider the following concerns and their prompts:

1. General Scenario 1:

Question: Does the framework support central point of service access management?

Prompt: The ESB supports a centralized point of management of the services. The

System Management Service also provides management capability for metric usage

and health monitor of the framework services.

97

2. General Scenario 2:

Question: Does the framework provide logging access capability?

Prompt: The Management Service in the framework provide the capability of

accessing all logs related with the services usage, and provides presentation logic for

the framework logs repository.

3. General Scenario 3:

Question: Does the framework allow for central authentication directory?

Prompt: The framework allows for an authentication that is centralized through

using the Security Assurance Service, the authentication can be used by all services,

and hence provide a central point of authentication.

4. General Scenario 4:

Question: Does the framework provide metric usage?

Prompt: The framework provides metric usage when using Security Assurance

Service which records a log of the services access, in addition to this the ESB and

the application server provides a metric usage and logging of services usage.

5. General Scenario 5:

Question: Does the BPEL process and environment provide support for monitoring

and logging event data to allow the measurement of business metrics?

Prompt: The BPEL engine manages BPEL processes and the application server that

runs the engine in its context provides monitoring and logging of event data and

measurement of business metrics such as wait time, transaction volumes, and

exception counts.

6. General Scenario 6:

Question: Does the framework support monitoring facility?

Prompt: The framework through the ESB and application server provides a

monitoring facility for the invoked services, and the health of the framework

components.

7. General Scenario 7:

Question: Does the framework support stop/start components and services?

Prompt: The ESB and the application server under which the services run allow to

start and stop framework engines, components, and services.

98

8. General Scenario 8:

Question: What support exists for monitoring and event data logging?

Prompt: The mechanisms for monitoring and event logging allow taking measures,

such as wait times, transaction volumes, and exception counts. These measures are

important to oversee the system in production and for the testing of reliability and

performance analysis.

III. Flexibility Evaluation Scenarios

The evaluation of Flexibility quality attributes for the proposed SOA based framework

should consider the following concerns and their prompts

1. General Scenario 1:

Question: Is the code of framework components easy to change, when a desired

change has been determined?

Prompt: Since the framework is composed of diverse components, most of them are

Web Services, which are self-contained and loosely coupled; the changes required

for any service would be incur little efforts.

2. General Scenario 2:

Question: Are BPEL processes designed with proper decoupling between services?

Prompt: Services in the process can be changed without affecting every other

service in the BPEL workflow, as far as the input/output types of the service are not

changed, this enhances Flexibility.

3. General Scenario 3:

Question: How is the identity and access information used by service

implementations, such as IDs and passwords, stored?

Prompt: The identity information is not hard-coded in services implementation.

Depending on the realization of the Web Service, access information can be stored

in an XML file or database data source.

4. General Scenario 4:

Question: Do the framework provide loose coupling between services?

Prompt: The services to be implemented are coarse grain and hence self contained

and can operate independently, hence provides loose coupling and enhances

Flexibility.

99

5. General Scenario 5:

Question: Is it easy to manage and present credentials such as passwords,

certificates, and tokens if used in the framework?

Prompt: The credentials are used in Security Assurance Service; they are easily

managed and not hard coded. They are stored in an XML format, which is flexible

for manipulating and easy for understanding. It is centrally configured by an

administrator, and can be managed through the System Management Service

6. General Scenario 6:

Question: Is it possible to access the framework from diverse networks or non-

governmental network?

Prompt: Access to services by consumers can be from the Internet as an open and

insecure network, as well as, from the private governmental network. Security

restriction is imposed by Security Assurance Service to guarantee security of the

information. This increases the Flexibility of the framework, as it can be used over

diverse networks.

7. General Scenario 7:

Question: Is it possible to use diverse data sources in the framework?

Prompt: Using a new data source in the framework, or adding another database type

can be achieved with little efforts, because a minimal change is required in the code

that access the database, if such database connectivity is not supported by the JDBC.

