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Abstract 

      The rapid development in cloud infrastructure allows cloud providers to offer 

computing power such as CPU, memory and storage to different customers, and serve 

multiple tenants at the same time. Unfortunately, due to network nature, cloud 

provider give no guarantee of network resource allocation to individual VM, relying 

on the fact that VMs are unlikely to simultaneously maximize their use of their 

nominally assigned bandwidth. However, many research shows that there is potential 

for VM to effect each other due to contention on network resource, or as side effect of 

noisy neighbor, and varying of bandwidth demand across time.   Resulting in a severe 

lack of predictability and fairness of application performances. That cost tenants 

unpredictable cost and provider loss revenue.  

Running cloud application without deprecation of performance require cloud 

provider to offer both computation power and network resource as bundle. The new 

approach that combine both computing and network resource in one form called 

virtual data center (VDC), formally known as VDC embedding problem. In this 

approach, cloud provider should provide tenants with an interface to explicit 

specifying their bandwidth demand. Cloud provider achieve deterministic bandwidth 

guarantee by proper placement of tenant VMs and static enforcement of rate limit. 

However, offering such service to customer is not easy task, and many researchers 

classify this problem as multiple dimension ben packing problem, which been as NP 

hard problem. 

This research contribute to work done in this area. We introduce two stage 

heuristic algorithms. The first stage, preprocess tenant VDC request by consolidating 

VMs and link capacity. The second stage, we map tenants request to physical 

datacenter server and links. We evaluate our approach against other approach using 

cloud computing simulation tools, and find that our approach increase the utilization 

of network, while maximizing the number of accepting VDC request, in addition to 

provide some level of reliability to tenant request against server failure. 

 

 

 

Keywords- bandwidth guarantee; cloud computing; infrastructure-as-a-services; 

performance isolation; resource allocation; virtual data center; virtual network.  
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Chapter 1 : Introduction 
 

Cloud computing, the  new paradigm in which computing is delivered as a service 

rather than a product, and where computing resources (i.e., networks, servers, storage, 

applications, etc.) are provisioned as metered on-demand services over networks, and 

can be rapidly allocated and released with minimal management effort. Cloud 

computing is expected to provide many benefits for consumers as well as for 

providers. Many companies such as Amazon, Google, Facebook, and Yahoo deploy 

this model of computing to support large-scale applications and to store large volumes 

of data using their data center to provide computing as utility.  

One key enabling technology of cloud computing is the data center visualization, 

this technology enables creation of multiple virtual machines (VM) on one physical 

server, which in turn increases server utilization and reduces operation cost. 

Moreover, virtualization technologies provide performance isolation between 

collocated VMs to improve application performance and security. Nonetheless, server 

virtualization alone is insufficient to address all of the limitations of today’s data 

center architectures. In particular, datacenter networking issues.  

The performance of running user applications on cloud platform suffers 

unpredictable network performance, compared to the performance of running the 

same application on isolated environment, due to the impact of network congestion on 

many application run on cloud, i.e. guarantee on bandwidth [1][2][3]. should mention 

that, the bandwidth achieved between tenant VM depend on many factors outside 

control of tenant itself, such as network load, placement of tenant VM, and the natural 

oversubscription of cloud provider network [4]. As there is several commercial cloud 

providers (e.g., Amazon EC2) cannot provide the performance guarantee of network 

resource for tenants (or VMs).  

Research shows that network bandwidth and latency between two VMs can vary 

significantly over time [4]. Which, in turn, has several negative consequences for both 

tenants and providers. Figure 1.1 illustrate the difficulty of sharing bandwidth 

between different tenants. For example, communication flow between X1 and X2 are 

interfered by communication flow from other tenants Y1, Y2 and Z1, Z2.  

 

Figure 1.1: Bandwidth sharing among multiple tenant (X, Y, and Z) (source [5]) 
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To overcome the performance degradation of cloud applications and deployed 

services due to bandwidth sharing problem. Recent research proposals have advocated 

offering both computing and networking resources in the form of Virtual Data Centers 

(VDCs). A VDC consists of virtual machines, routers and switches connected through 

virtual links with guaranteed bandwidth. Figure 1.2 depicts the idea of VDC and its 

mapping to physical data center.  

 

Figure 1.2: Multiple VDC mapping to same physical data center (source [6]) 

VDC aims for not only mapping of VM with its own properties (e.g., CPU, 

memory and storage), but also include mapping virtual switch and links to physical 

switch and link. This problem called VDC embedding problem. Which been known as 

NP-hard problem [7] [4] [8] [9]. Many solution exist [10] [4] [6] [11] [12] [13], both 

exact and heuristic embedding algorithms been proposed, each of which have its own 

pros and cons (refer to chapter three for more in deep comparison between different 

solution). However, finding a solution that can cope with complex tenant request and 

provide simple embedding algorithm is challenging task.  

In this research, we propose an approach to solve the bandwidth-sharing problem 

based on static reservation. Our approach allows tenants to express their needs of both 

computing power and required network bandwidth as network graph, which in turn 

can be transformed into adjacency matrix. In the rest of this chapter, we explore and 

define the research problem. Then set the objective that our research try to achieve, 

and the limitation that define boundary of our research. In Section 1. We describe the 

methodology we use to achieve our objectives. Then we describe our contribution in 

this research. Finally, we give general description of whole structure of the thesis.  
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1.1 Statement of the Problem 

   Cloud computing paradigm brings noticeable performance degradation and 

variation of VMs performance to tenants, due to contention on network resource, which 

has become one of the primary issue of IaaS cloud. The new trend to solve this problem 

is by reserving the bandwidth alongside with computation resource. That is giving the 

tenants the illusion of having his own virtual data center (VDC). In this context, solving 

the bandwidth problem through  implementation of VDC introduce an optimization 

problem that have many objective, our work try to solve the VDC problem, with 

constrain on bandwidth,  reliability, and increasing cloud provider revenue and tenant 

satisfaction.  

   The problem can be decompose into the following sub problems:  

1. How to simplify tenant VDC request, in such way that make embedding VDC 

request more easy. 

2. How to maximize the number of accepted VDC request that share the same 

physical machine and network.  

3. How to provide predictable network performance to tenant (bandwidth), in 

face of varying traffic pattern, varying of bandwidth demand across time, and 

noisy neighbor tenants? 

4. How to enable tenant to describe his needs of computing resource, and 

network topology, as he would do if he build his own data center.  

5. How to map tenant request of VM and network bandwidth to the datacenter 

physical infrastructure? 

1.2 Objectives 

1.2.1 Main Objective 

   To propose a new approach to embedding tenant VDC request into cloud 

provider data center that maximize the accepted VDC request, without violating 

tenant request of bandwidth, same time minimizing the total bandwidth consumption.  

1.2.2 Specific Objectives 

The specific objectives of the thesis are: 

 Enable tenants to express his needs of virtual machine, network topology, and 

the bandwidth requirement between each two virtual machine. Using simple 

adjacency matrix.  

 Simplify VDC request, in such way that make it easier to be embedded, 

minimize bandwidth consumption.  

 Mapping of the tenant request –in the form of virtual data center VDC- 

components, which include virtual machine and link between them to physical 

data center infrastructure.  
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 Evaluate the proposed approach using network simulation tools based on some 

performance metrics, such as acceptance ratio, bandwidth consumption rate. 

and compare this to other similar approaches.  

1.3 Importance of the Thesis 

  Conducting this study is important for both cloud computing provider and tenants. 

It allows cloud provider to maximize the number of accepted VDC request. On the 

other side, tenant will benefit by running their application without performance 

degradation due to bandwidth contention problem.  

 Maximizing the accepted tenant request on the same physical data center imply 

that network and physical server utilization will be improved, this has two main 

advantage: first, it minimize the operational cost by eliminating running unnecessary 

hardware if we can serve tenant with current hardware. Second, this minimize power 

consumption.  

Our work introduce  and prove that using simple heuristic algorithm for 

simplifying tenants VDC request, could be used to improve the performance of 

general VM placement algorithms  

1.4 Scope and Limitations of the Thesis 

 The scope of our solution will be limited to solve the problem of bandwidth 

contention on network within single  data center (DC), for wide area networks 

(WAN) connecting data centers in different physical locations are not included 

and out of our scope.  

 Our approach not include any bandwidth enforcement technique. Our solution 

provide static reservation of bandwidth at request initialization time, enforcing 

such reservation could be done at different level such as hypervisor level or 

switch level, but not include in our approaches.  

 Our scope of this work is limited to Infrastructure as a Service (IaaS), other 

cloud computing model, like Software as a Service (SaaS) and Platform as a 

Service (PaaS) are not included.  

 Our solution should not be limited to specific protocol, e.g. TCP.  

 Our concern in this work is bandwidth, other network metrics “delay, jitter” 

are not included.  

1.5 Methodology 

  Our methodology to achieve the objectives and hence solve the problem starts by 

enabling the tenants to express his needs of both computation resource alongside with 

required bandwidth using undirected weighted graph, where each vertex represents 

VM and edge represents bandwidth demand between linked VMs. The undirected 

weighted graph, which depict tenant request, represent our network abstraction model.   

The tenant request -represented by adjacency matrix- should be simplified with a 

consolidation algorithm, and then tenant VDC request should be mapped to data center 

physical machine and physical links.  We explain the methodology in the following 

stages:   



13 

 

Stage one: Simplify tenant VDC request. VM/link consolidation  

By using heuristic algorithms, cloud provider read VDC request as an 

adjacency matrix, then transform it to simple graph. This is mandatory step 

that we based on to simplify the embedding. 

Stage two: VM/Link  placement 

Design allocation algorithm to map tenant requests of both computing 

resource and network link to data center infrastructure.  We think of the 

datacenter network as tree, - graph- where VM are the leaves and weighted 

edge to denote available bandwidth on this link. – This assumption is subject 

to change based on our study progress, - so the algorithm try to find where is 

the best place to allocate tenant request.  

Stage three: Evaluation 

  As a Proof of concept, we use simulation tools to evaluate our solution on 

large-scale network. Evaluation will focus on performance of allocation 

algorithm. As baseline for evaluation, we use Random algorithm, OLRSA 

algorithm and SAE algorithm.  

1.6 Contributions 

 We present a comprehensive background about data centers, the basic 

concepts of data center virtualization. We also discuss the business model 

associated in cloud environments. We also provide an extensive literature 

survey on VDC embedding solution. 

 We introduce new VDC embedding solution, with reasonable reliability 

objective.  

 Introduce the idea of VDC request pre-processing, with both VMs and links 

consolidation. 

1.7 Thesis Organization 

The remainder of this thesis is organized as follows:  

Chapter 2: Theoretical and Technical Foundation, starts by defining cloud 

computing, cloud computing  characteristic, service delivery models, and the 

deployment mode. Next provides an overview of conventional data centers, the basic 

concepts of data center virtualization, network virtualization, next we introduce the 

subject of scheduling and resource allocation in cloud computing enlivenment, the 

final section will stand for simulation tools, where we introduce FlexCloud toolkit. 

 Chapter 3: Related Works, we start by introducing the problem domain and 

distinguishing it from virtual network embedding domain, and then we introduce and 

analyze key research paper on our research domain.  

Chapter 4: An Approach for Bandwidth Guarantee in Multi-tenant Data Center is 

dedicate for our own approach to solve the problem of sharing bandwidth in cloud 

data center. This chapter includes the mathematical formulation and algorithms used 

to simplify tenant VDC request and mapping of virtual resource to physical data 

center.  
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Chapter 5: Simulation and Performance Evaluation, we define the simulation 

environment and performance metrics. Then we introduce our results, analyze it and 

finally compare our work with others. 

 Chapter 6: A Conclusion and Future Work, we write down our study conclusion 

and point out some direction for future work. 
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Chapter 2 : Theoretical and Technical Foundation 
 

The aim of this chapter is to present the theoretical and technical foundation as 

well as the terminology relevant to our research. We first provide some definitions 

related to cloud computing including its service and deployment model in Section 2.1.  

Section 2.2, introduces some key enabling technologies, that include virtualization, 

the data center, as it is the cloud computing platform and networking issue related to 

data center. In Section 2.3, we introduce basic concept related to scheduling and 

resource allocation. Finally, Section 2.4 is dedicated to simulation tools particularly 

FlexCloud toolkit. 

2.1 Cloud Computing  

2.1.1 Definition and Characteristics  

There are many definitions about what cloud computing is, and it seems that 

experts from the industry, organizations and institutions all have their own 

understandings. Nevertheless, we strict our self to what been defined by the National 

Institute of Standards and Technology (NIST), quoted below:   

• “Cloud computing is a model for enabling convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction.” - 

U.S. National Institute of Standards and Technology (NIST) [14]. 

Cloud computing make fundamental change to how computing services are 

developed, deployed, maintained and delivered. It also called the fifth generation of 

computing [15]. Next we introduce some qualitative and economical feature that 

cloud computing provide. Qualitative features refer to the qualities or properties of 

cloud computing, rather than specific technological requirements, while economic 

features are the feature that make cloud computing distinct compared with other 

computing paradigms form the business point of view:  

• Elasticity means that the provision of services is elastic and adaptable, which 

allows the users to request the service near real-time without engineering for 

peak loads. The services are measured in fine-grain, so that the amount of 

offering can perfectly match the consumer’s usage. 

• High Availability. Making application highly available is usually difficult and 

expensive for companies, which requires specialized tools and highly trained 

staff. In a well-designed cloud computing, the more professional experts from 

cloud service providers can assist to improve reliability by for example simply 

running multiple redundant sites. By hiding many of the underlying 

complexities of disaster recovery, cloud computing can significantly reduce 

the burden of companies to maintain business continuity 

• Reliability represents the ability to ensure constant system operation without 

disruption. Through using the redundant sites, the possibility of losing data 

and code dramatically decreases. Thus cloud computing is suitable for 
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business continuity and disaster recovery. Reliability is a particular QoS 

requirement, focusing on prevention of loss. 

• Pay-as-you-go is the means of payment of cloud computing, only paying for 

the actual consumption of resource. Traditionally, users have to equip with all 

software and hardware infrastructure before computing starts, and maintain 

them during computing process. Cloud computing reduces cost of 

infrastructure maintenance and acquisition, so it can help enterprises, 

especially small to medium sized, reduce time to market and get return on the 

investment. 

• Operational expenditure is greatly reduced and converted to operational 

expenditure. Cloud users enter the computing world more easily, and they can 

rent the infrastructure for infrequent intensive computing tasks. Minimal 

technical skills are required for implementation. Pricing on a utility computing 

basis is fine-grained with usage based options, so cloud providers should mask 

this pricing granularity with long-term, fixed price agreements considering the 

customer’s convenience. 

• Energy-efficiency is due to the ability that a cloud has to reduce the 

consumption of unused resources. Because of central administration, 

additional costs of energy consumption as well as carbon emission can be 

better controlled than in uncooperative cases. In addition, green IT issues are 

subject to both software stack and hardware level. 

2.1.2 Cloud Computing Service Delivery Models and Stakeholder 

Cloud computing provider rent out their IT resource to consumer in different ways 

and scenarios, commonly named, service delivery model. The most common and 

famous service delivery model enumerated below and depicted in Figure 2.1:  

• Infrastructure as a Service (IaaS): provides processing, storage, networks, 

and other fundamental computing resources to users. IaaS users can deploy 

arbitrary application, software, operating systems on the infrastructure, the 

most appealing benefit is that users can dynamically increase or decrease 

several aspects of the environment in an on-demand fashion, along with 

business needs fluctuate. IaaS user sends programs and related data, while the 

vendor’s computer does the computation processing and returns the result. The 

infrastructure is virtualized, flexible, scalable and manageable to meet user 

requirements. Examples of IaaS include Amazon EC2 [16] , Eucalyptus [17], 

and Rackspace [18] Cloud, etc. 

 

• Platform as a Service (PaaS): offers a high-level integrated environment to build, 

test, deploy and host customer-created or acquired applications. Generally, 

developers accept some restrictions on the type of software that can write in 

exchange for built-in application scalability. Customers of PaaS do not manage 

the underlying infrastructure as SaaS users do, but control over the deployed 

applications and their hosting environment configurations. PaaS offerings mainly 

aim at facilitating application development and related management issues. Some 

are intended to provide a generalized development environment, and some only 

provide hosting-level services such as security and on-demand scalability. Typical 

examples of PaaS are Google App Engine [19], Windows Azure [20]. 

 



17 

 

• Software as a Service (SaaS): Is a software delivery model in which 

applications are accessed by using a thin client (normally a web browser). The 

users are not concerned with the underlying cloud infrastructure including 

network, servers, operating systems, storage, platform, etc. this is because 

SaaS hosts software and the associated data centrally. SaaS has now become a 

common delivery model for most business applications; Enterprise 

applications include human resource management (HRM), enterprise resource 

planning (ERP), customer relationship management (CRM), accounting and 

invoicing. The popularity can also been seen from personal applications such 

as online documents (Google Docs [21]), and storage service (Dropbox [22]). 

 

Figure 2.1: Cloud computing service delivery models. 

Traditionally, ISP network and cloud computing environment define two roles, ISP 

or cloud provider roles, and end-user roles. Although, some researchers proposes 

separate the role of ISP / cloud provider into two different rules [10][23][7]. Below 

we define the each roles  

• Infrastructure Providers (InPs): provision infrastructure resources such as virtual 

instances, networks, and storage to consumers usually by utilizing hardware 

virtualization technologies. In the IaaS model, a consumer rents resources from an 

infrastructure provider or multiple infrastructure providers, and establishes its own 

virtualized infrastructure, instead of maintaining an infrastructure with dedicated 

hardware. There are numerous infrastructure providers on the market, such as 

Amazon Elastic Compute Cloud (EC2) [3], and Rackspace.  

 

• Service Providers (SPs): use either their own resources (taking both the SP 

and InP roles) or resources leased from one or multiple InPs to deliver end-

user services to their consumers. SPs are not in charge of maintaining the 

underlying hardware infrastructures. SPs can use performance metrics (e.g., 

response time) to optimize their applications by scaling their rented resources 

from InPs, providing required Quality of Service (QoS) to the end users.  

 

• Cloud End Users: who are the consumers of the services offered by SPs and 

usually have no concerns on where and how the services are hosted.  
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2.1.3 Type of Clouds 

Every organization has different reasons to move their IT infrastructure to a cloud 

environment. While some clients might be looking to cut down on their day to day IT 

operational costs, others might like to project high quality and security as their unique 

selling points. To cater to these diverse demands and requirements, there exist four 

different kinds of cloud setup as described below [24][15][25]: 

• Private cloud: The cloud infrastructure is operated solely for an organization. 

It may be managed by the organization or a third party and may exist on 

premise or off premise. A private cloud offers the highest degree of control 

over performance, reliability and security. 

• Community cloud: The cloud infrastructure is shared by several organizations 

and supports a specific community that has shared concerns (e.g., mission, 

security requirements, policy, and compliance considerations). It may be 

managed by the organizations or a third party and may exist on premise or off 

premise. 

• Public cloud: The cloud infrastructure is made available to the public or a 

large industry group and is owned by an organization selling cloud services. 

Public clouds offer several key benefits to service providers, including no 

initial capital investment on infrastructure and shifting of risks to 

infrastructure providers. 

• Hybrid cloud: The cloud infrastructure is a composition of two or more clouds 

(private, community, or public) that remain unique entities but are bound 

together by standardized or proprietary technology that enables data and 

application portability. In a hybrid cloud, part of the service infrastructure runs 

in private clouds while the remaining part runs in public clouds. This make 

hybrid cloud more flexible than public and private cloud.   

2.1.4 Cloud Infrastructure Management Systems 

Cloud computing services will net be available without cloud management system, 

such platforms are available in both proprietary and open source free forms, The 

proprietary cloud vendors deliver public cloud services as a pay-per-use model. Such 

as Amazon EC2 and Windows Azure. Open source cloud computing management 

system include Eucalyptus, OpenStack, OpenNebula, and Nimbus. These Cloud 

solutions provide various aspects of Cloud infrastructure management such as [26]: 

1. Management services for VM life cycle, compute resources, networking, and 

scalability. 

2. Distributed and consistent data storage with built-in redundancy, failsafe 

mechanisms, and scalability. 

3. Discovery, registration, and delivery services for virtual disk images with 

support of different image formats (VDI, VHD, qcow2, VMDK). 

4. User authentication and authorization services for all components of Cloud 

management. 

5. Web and console-based user interface for managing instances, images, 

cryptographic keys, volume attachment/detachment to instances, and similar 

functions. 
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2.2 Key Enabling Technology 

2.2.1 Virtualization Technology 

“Virtualization, in computing, refers to the act of creating a virtual (rather than 

actual) version of something, including but not limited to a virtual computer hardware 

platform, operating system (OS), storage device, or computer network resources.” 

[27]. Virtualization consider as main enabling technologies that paved the way of 

Cloud Computing towards its extreme success [26], and the underlying technology 

that cloud computing stand on [28].  

 Data center virtualization has three main components [29]: 

 Server virtualization Server or machine virtualization abstracts the OS from 

the physical hardware. This has the benefit of running one or more OSes on 

one physical server, which increases the utilization of the hardware. This 

reduces the number of physical servers needed, which also reduces the power 

and cooling requirements of the data center.  

 

 I/O virtualization: I/O virtualization abstracts the data flows paths from the 

physical network connections. By providing large physical links to each 

device in the data center and then defining the number, types, and capacity of 

the data paths in software, all aspects of I/O can be reconfigured without 

physically moving cables. 

 

 Storage virtualization: Storage virtualization abstracts the data that the OS 

sees from the physical disk. This provides the ability to manage the data in 

different ways without the involvement of the OS. Storage virtualization, for 

example, can relocate data to another physical disk without participation of the 

OS. 

We can summarize the benefits of virtualization technology as follow [30]:   

 Implementing multiple VM in single machine (aka server consolidation), 

allow better utilization of hardware, and reduce physical space consumption 

and hardware cost.  

 

 VM is a collection of files; Like all other files it can be moved or copied from 

one place to another while it is running, (live migration) that enables load 

balancing, gives higher availability ,makes maintenance and manageability 

easier.  

 

 Increase the security level by isolating different application into different VM. 

Therefore, malfunction or malicious software of one VM does not affect the 

others. In short, virtualization provide high-level isolation among VM.  

 

On the other hand, Virtualization, like other systems, has its own limitations, this is 

include magnifying physical failures,  increased system complexity, introduces 

inefficiencies and weakens raw performance [30].  
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2.2.2 Server Virtualization  

In this Section, we focus into server virtualization. Based on architectural 

perspective, server virtualization could be categorize as follows 

1- Type I hypervisor, (also known as, Hypervisor-based virtualization, 

Hypervisor system). Hypervisor is a piece of software that hosts and manage 

VMs on its Virtual Machine Monitor (VMM) components, it is installed and 

run on bare hardware and retains full control of the underlying physical 

system. The VMM partitions and shares the CPU, memory, and I/O devices to 

successfully virtualize the underlying physical system by multiplexes the 

hardware resources among the various running VMs in time and space sharing 

manner [26], Figure 2.2, depicted type I hypervisor virtualization.  

 

Figure 2.2: Type I hypervisor 

2- Type II hypervisor, (also known as Container-based virtualization, OS 

virtualization, Hosted system virtualization, Or application virtualization). The 

virtualization layer is installed and run as an individual application on top of an 

operating system and supports the broadest range of underlying hardware 

configurations. Example of such architecture includes VMware Player, and Oracle 

VM VirtualBox. However, since the virtualized execution is achieved heavily 

through emulation, it suffers great performance degradation especially for I/O. Type 

II hypervisors are mostly used in client environments (PCs), where performance is 

less critical. They allow users to gain rich functionalities by running several 

different types of operating systems like Linux, Windows and Mac. Figure 2.3 

depicted type II hypervisor. 



21 

 

 

Figure 2.3: Type II hypervisor 

2.2.3 X86 Architecture Virtualization 

The functionality of the hypervisor varies greatly based on architecture and 

implementation [31]. We consider virtualization of Intel x86 architecture as it been 

the most successfully and widely adopted architecture. The Intel x86-instruction set 

consists of three kinds of instructions namely privileged, sensitive and non-privileged 

instructions. To protect the valuable resources like CPU, memory, input and output 

devices from unauthorized access, x86 uses four modes of operation (protection 

mechanism)  numbered from ‘0’(privilege level/root level) to ‘3’ (least privilege 

level/user mode), referred as ring. The ring ‘0’ is normally used by OS, user 

application is run in ring ‘3’ ,and the remaining are rarely used in commodity OS. See 

Figure 2.4. 

 

 

Figure 2.4: The x86 processor privilege rings without virtualization. 

Hypervisor Virtualization supposed to be installed and run on bare hardware and 

bellow operating system so that VMs can be created and managed that would share 

the same physical resources. This means the virtualization layer needs to be placed in 

Ring 0; however unmodified operating systems assumes to be run in the same Ring. 

Moreover, there are some sensitive instructions that have different semantics when 

they are not executed in Ring 0 and thus cannot be effectively virtualized. As a 
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consequence, the industry and research community have come up with the following 

three types of alternative virtualization techniques: 

1-  Full Virtualization: This type of virtualization technique provides full 

abstraction of the underlying hardware and facilitates the creation of complete 

VMs in which guest operating systems can execute. Full virtualization is 

achieved through a combination of binary translation and direct execution 

techniques that allow the VMM to run in Ring 0. VMware ESX Server and 

Microsoft Virtual Server are examples of full virtualization. 

 

Figure 2.5: Full Virtualization 

2- Paravirtualization: (also called OS Assisted Virtualization) works through the 

modification of the OS kernel code by replacement of the non-virtualizable 

instructions with hypercalls that communicate directly with the hypervisor 

virtualization layer. Thus, in paravirtualization each VM is presented with an 

abstraction of the hardware that is similar but not identical to the underlying 

physical machine. Example of paravirtualization is the open source Xen 

project 

 

Figure 2.6: Paravirtualization 

3- Hardware Assisted Virtualization: Hardware vendors have come up with new 

hardware features to help and simplify virtualization techniques. Intel 

Virtualization Technology (VT-x) and AMD-V are first generation 

virtualization supports allow the VMM to run in a new root mode below Ring 

0 by the introduction of a new CPU execution mode. With this new hardware 
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assisted feature, privileged and critical system calls are automatically trapped 

by the hypervisor and the guest OS state is saved in Virtual Machine Control 

Structures (VT-x) or Virtual Machine Control Blocks (AMDV),  

 

Figure 2.7: Hardware Assisted Virtualization 

2.2.4 Datacenter Network  

In recent years, datacenters (DC) become the foundations and the platform of 

cloud computing. DC have emerged as the cornerstones of modern communication 

and computing infrastructure. DC is a pool of computing resources clustered together 

using communication networks to host applications and store data [32]. DC consist of 

server (physical host), storage, network device, and power distributed system. Data 

Center network (DCN) is the communication infrastructure in DC and is described by 

network topology, routing/switch equipment, and the used protocol [33]. 

The major network fabrics for implementing data center are Ethernet and 

InfiniBand (IBA) [34]. Our primarily focus on data center network is based on 

Ethernet implementation. In such implementation, nodes can be configured to operate 

in Ethernet-switched mode or IP-routed mode. Nodes addressing schema could be 

ether flat or hierarchical, flat addressing use the Ethernet 6-bye MAC address, where 

an interface can be assigned any address (typically by the manufacturer) without 

consideration of its topological location (i.e., the switch/router to which it is 

connected). Hierarchical addressing are using internet protocol (IP). Which means 

that address is assigned to node by administrator based on nodes topological location. 

Both addressing schemes have its limitation, solutions should be hybrid approaches 

combining both flat and hierarchical addressing schemes [34].  

In this section, we choose to primarily concentrate on a representative Standard 

tree based architectures and their variants are widely used in designing data center 

networks namely: basic tree topology and Fat tree topology.  

1) Basic Tree: Basic tree topologies consist of three levels of switches/routers 

[34] [32], with the servers as leaves. There is a core tier at the root of the tree, 

an aggregation tier in the middle, and an edge tier of switches connecting to 

the servers. . There are no links between switches in the same tier, or in 

nonadjacent tiers. In such topology, each switch are responsible for supporting 

of all traffic between its children. As depicted in Figure 2.6.  
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To understand the problem of such DCN, consider the case where all 

servers in the left half of the tree are sending traffic to the server on the right 

half of the tree. We see that the links between the first level Top of Rack 

Switches (TOR) and the second level Aggregate switches will carry twice the 

load of the links connected to the servers. Furthermore, the links between the 

Aggregate switch and the Core switch will carry four times the load of the 

links connected to the servers. Resulting in an even larger multiplicative load 

factor higher in the tree. Ideally, nodes higher in the tree would leverage links 

with increasing capacities to match these demands. In practice switches with 

high capacity links are far more expensive per Gbps than lower capacity ones. 

To mitigate costs, datacenter networks resorted to high oversubscription rates, 

with switches at each hop having far more downstream bandwidth towards the 

servers than upstream bandwidth towards the Core. The resulting scarcity of 

cross datacenter bandwidth was a performance bottleneck, limiting the 

throughput of datacenter applications. 

 

Figure 2.8: Basic tree topology 

2) FatTree: Al-fares et al [35] propose new topology for DCN called FatTree 

that address basic tree topology limitation. FatTree is special instance of a 

Clos topology that use multiple commodity switch in palace of a single high-

end., consider DCN build using k port switch, that form k pods, each pods 

have 2 layer switch, each layer have k/2 switch. At the first layer –edge 

switch- each switch is connected to k/2 hosts and the rest is connected to the 

second layer –aggregation switch. Each aggregation layer switch is connecting 

to k/2 core switch. Moreover, we have (k/2)2 core switch. In this topology that 

use k port switch it support (k3/4) hosts. Achieving an oversubscription ratio 

of 1:1 

In Figure 2.9 is an example of FatTree topology, in this case we use 4 port switch. 

To build 4 pods, each pod have two layer of switch, the first one is edge layer and 

have 2 switch, and aggregation layer have 2 switch, edge switch are using 2 port to 

connect to hosts, and the other 2 port to connect to aggregation switch. This case 

connect 16 host and use 20 switch.  

FatTree topologies enable datacenters to achieve far greater aggregate bandwidth 

in a cost-effective manner. The primary advantage of fat-tree topology is that it 

provide  k2/4 paths to route the traffic between any two servers, that is oversubscribing 

ratio is 1:1, and server can communicate with each other with full bandwidth -as 

switch port bandwidth-  regardless of server location.  
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Figure 2.9: Fat tree topology. 

 

2.3 Scheduling and Resource Allocation 

According to Wikipedia, scheduling is the process of deciding how to allocate 

resources to a set of processes [36]. In general, scheduling is used to share system 

resource effectively or to achieve some quality of service level. In cloud computing 

scheduling is even more challenging, Also, these data center run many different kinds 

of applications with varying expectations from infrastructure. Cloud schedulers tries 

to optimize the utilization of data center as a whole. It is clear that in such 

environment, the role of a scheduler becomes very important in achieving high 

utilization without effecting application performance. 

Cloud data centers typically make extensive use of virtualization technology, in 

order to ensure isolation of applications while at the same time allowing a healthy 

utilization of physical resources. Traditionally, achieving good utilization of server 

capacities was one of the key drivers behind the wide spread of virtualization 

technology. So that, Good VM allocation also helps to serve as many customer 

requests as possible with the given set of resources 

An extensive research on the context of mapping of virtual resource to physical 

that could be classified into three main categories. The first category concern of 

mapping a VMs into physical host, the second concern on mapping virtual network 

links, in what been known as virtual network embedding problem (VNE). The last 

category, represented by handful of research that combine both filed, add new 

characteristic to it. Moreover, create what called virtual data center embedding 

research.  

Network virtualization is a technology that enables hardware network resources to 

be shared among multiple concurrent software instances. That mean enabling multiple 

virtual instances to coexist on a common physical network infrastructure [37]. The 

network virtualization technology open the door for creating many virtual network, in 

which that virtual network is a collection of virtual nodes and virtual links that 

connect a subset of the underlying physical network infrastructure [37]. mapping a 

virtual network that connects a set of VMs onto a substrate network that connects a set 

of geographically distributed servers known as Virtual Network Embedding (VNE) 

problem, VNE problem been proofed to be (NP-hard) problem. On the other hand, 

VDC is defined as a set of VMs with an associated service level agreement (SLA), 
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specifying the needs of CPU, memory, storage and inter-bandwidth [9]. VDC is 

composed of different types of virtual nodes (e.g. VMs, virtual switches and virtual 

routers) with diverse resources (e.g., CPU, memory and disk). 

The problem of optimally allocating both servers and data center networks to 

multiple VDCs in order to maximize some objective like the total revenue, or 

minimize others like the power consumption. It is clear that designing an efficient 

resource management scheme for VDCs is a challenging problem. In addition, it is 

classified as an NP-hard problem as it generalizes the bin-packing problem. 

As this problem is NP-hard, various heuristics have been proposed in the literature 

to solve this problem, such that using integer linear programming and Performing an 

exhaustive search of all possible solutions. Such approaches can be both time and 

resource consuming. On the other hand, greedy approaches as if the First-Fit 

algorithm that places a VM on is fast, but do not normally generate optimal solutions. 

Overall, approaches to solving the scheduling problem often lead to a trade-off 

between the time to find a solution and the quality of the solution found. 

Before we dive into our main core research and stat of the art in the field of VDCE, 

I should clarify the confusion between this area of research and the area of VNE. 

Even it seems that both problem are related, but the VDC problem is significantly 

different than the VNE problem [38]. Following we explained this difference through 

point  

The VN embedding different from VDC embedding [9].  

 First, VN embedding generally treats all the substrate links equally without 

discrimination, while the significance of links varies in VDC embedding For 

instance, the core links are more important than edge links in data center since 

a core link may be used by more VMs than an edge link ordinarily [9].  

 the VDC embedding has more constraints, as VM placement, virtual link 

allocation, switch resource consumption and special topologies are involved in 

simultaneously [9]. 

 VN embedding only consider CPU and network resource, whereas in VDC 

embedding other resources such as memory and disk also need to be 

considered [10]. 

 minimizing energy consumption has not been addressed in existing VN 

embedding models [10]. but it is significant to VDC problem.  

 The number of nodes in ISP backbones is in order of hundreds, in case of data 

center number in order of thousands, Hence, the solutions to embedding 

problem in the VN domain can potentially raise scalability issues, and increase 

management complexity. 

 Data center networks are built using topologies like the conventional tree, fat-

tree, or Clos topologies, such topology have well-defined properties, 

researcher of VDC problem, may be relay on such properties to facilitate 

develop or optimized  VDC. Substrate network of VN are heterogeneous  and 

can’t rely on it to optimize or develop VN embedding  

 Propagation delay in VDC virtual links is negligible, as nodes are located in 

the same physical area. However, in case of NV virtual link, Low latency 

requirements are becoming increasingly important. Because VN connect nodes 

in different area, and through WAN link. 
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2.4 Simulation Tools  

Researchers and industry-based developers of cloud computing are rely on 

simulation based experiments [39]. Academic researchers use simulation as risk-free 

and charge-free, while industry developers use  simulation environments for the 

evaluation of different kinds of resource leasing scenarios under varying load and 

pricing distributions [40]. Other factors that push on the side of using simulation for 

cloud computing research are follow:  

1. Using real cloud testbeds is expensive, since most research need allot of 

resource for long time.  

2. Repetition of experiments on real cloud testbeds is not possible, since many 

factors are not under control of researchers.  

3. Experiments on real clouds testbeds will be dependence on provider’s specific 

infrastructure, so this will limit the scalability of application.  

Different Cloud simulation tools have been developed. A full review of these tools 

is provided in [41]. Some of the well-known simulator, is CloudSim [42], CloudSim 

is extensible simulation toolkit, written in Java, served as the basis evaluation 

environment for many research works on Cloud. Although, CloudSim mainly 

consider application workload, that may be suitable for PaaS and SaaS.  For IaaS 

simulation, where each virtual machine consider as resource by itself and could be 

requested and allocated to physical machine. Because of this, we try to find a 

simulation tools that concentrate on allocation of VM, and we find FlexCloud [43] 

most appropriate for us.  

2.4.1 FlexCloud Architecture Model  

FlexCloud use four main layers, as depicted in Figure 2.8 Brief description of each 

layer represented next.  

Client Layer: provides the interface for user to configure requests properties and 

have results feedbacks from lower layers. In addition, FlexCloud will send results and 

comparison diagrams as feedback to Client Layer.  

Broker Layer: implement Requests Broker Layer, acting as a mediator between 

Client Layer and Scheduler Layer. This Layer is responsible for verifying the inputs 

from Client Layer and transforming the settings into recognized commands at 

Scheduler Layer. 

Scheduler Layer: implement three main components, VM Requests Generation 

component generates the VM requests with configured properties on user interface; 

Datacenter Scheduler component schedules the particular algorithms to allocate VMs 

to corresponding PM according to algorithms; VM Requests Allocation component 

manages the allocated VMs, including checking the allocation conditions and 

removing VMs at the end of their lifecycles. 

Resource Layer: implements a Resource Management component providing 

resource that VM requests require and supporting services for higher levels. Such as 

physical resource, that include server and storage. 
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Figure 2.10: FlexCloud Architecture Model (source [43]) 

2.4.2 Modeling of Data Center 

In current version of FlexCloud, data center consists of number of physical server 

(PM). A PM contains several kinds of resource, like CPU, memory and storage. The 

physical machine class is instantiated in FlexCloud before scheduling algorithms start. 

The number and property of PM can be defined in xml configuration file. The 

resource capacity decides whether a VM request can be allocated to PM or not.  At 

initialization stage, PM has full capacity resource; mapping and later on removing 

VM from PM will update the available capacity value and influence the later requests 

allocation.  

2.4.3 Modeling of VM Request  

FlexCloud use predefined VM property, eight type of VM been defined, where 

each VM have its own property like CPU, Memory and storage. Beside this each VM 

have start and end time that define its life cycle by the number of time slot the VM 

will be a life. FlexCloud can be used to generate VM request, requests can be 

generated in Poisson, Normal and Random distribution. When the specific distribution 

is selected, the start time or duration of the generated requests would follow the 

distribution. Moreover, FlexCloud can import request data form real data file.  

2.4.4 Scheduling Algorithms in FlexCloud 

Based on scheduling goals and request type, FlexCloud provide four type of 

algorithms. Based on request type, algorithms can be classified as online and offline 

algorithms. The difference lies in whether the requests information is all known 

before scheduling. In online scheduling algorithms, request come and presses one by 

one. In offline scheduling algorithms all request been known before the starting of 

allocation process. Another division principle is via goal: FlexCloud consider load 

balancing and energy saving. 
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 2.4.5 The Scheduling Process in FlexCloud 

We summarize the major steps of scheduling in FlexCloud as follows: 

1. Booting PM:  

2. Generating traces (VM requests): 

3. Comparing scheduling algorithms: 

4. Output results: 

2.4.6 FlexCloud Limitation 

FlexCloud is simple simulation framework designed especially for resource 

allocation at infrastructure as a service level. Unfortunately, FlexCloud not supporting 

multiple user, so that all request belong to one user. Other main issue, FlexCloud not 

support modeling of user request as graph. We have to work around this limitation by 

extending and creating our own classes to support our simulation scenario.  

Table below include summery of main future of different cloud simulation tools. 

Table 2.1: comparison of different cloud computing simulation tools 

 

Item  CloudSim GreenCloud iCanCloud FlexCloud 

Platform  Any NS2 OMNET, MPI Any  

Programming 

language 

Java C++/OTcl C++ Java 

Availability Open source Open source Open source Open source  

Physical Model None Limited Full Full 

Model of public 

cloud 

None None Amazon Amazon 
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Chapter 3 : Related Works 
 

Datacenter plays an essential role in realizing cloud computing paradigm. The 

essence of cloud computing is to allow applications of multiple entities to share 

resources in the underlying datacenters. It has been observed that relaying on 

traditional transport layer protocol to allocate bandwidth to different tenant 

application lead to interfere between these applications, resulting in severe lack of 

predictability and fairness of application performance.  

Many researches [39,4,14,40,41,42,43,44] has done to address the problem of 

bandwidth allocation in data center with a number of new mechanisms to efficiently 

and fairly share data center network among multi-tenant. In this chapter, we try to 

explore such mechanisms and state of the art works, and address theirs advantage and 

disadvantage,  

The network can have significant performance impact on applications in the cloud. 

Network performance has been cited as one of the prime concerns for many 

workloads in data center. Data centers are primarily composed of physical machines 

running virtualization software, with each physical machine hosting many virtual 

machines (VMs) simultaneously. The performance of the workload running inside a 

VM is affected not only by other VMs on the same physical machine, but in the case 

of a workload that uses the network, the location of the VM and other VMs it is 

communicating with in the network topology, and the utilization of all network links 

in between. 

Traffic localization is an approach for minimizing the side effect of physical 

networking status, based on that internal bandwidth between VMs on the same 

physical machine is much more than available on the physical wire  [44]. But here we 

should mention that deploying this approach will decrease the reliability of the 

system. Later on we go into discussion of how the trade-off between VDC bandwidth 

consumption and reliability.  

Recent proposed solutions offers both computing and the network resource as 

virtual data center (VDC) [8]. A VDC is composed of a set of virtual machines 

interconnected by a set of virtual links [38]. The mapping of virtual resources to 

physical ones is commonly known as the VDC embedding problem. Next, we review 

specific efforts and works related to solving VDC embedding problem.  

Guo et al [8] propose virtual data center (VDC) as the abstraction for resource 

allocation in multi-tenant cloud environments. VDC gives the illusion of dedicated 

physical data center.  SecondNET mainly designed to provide high network utilization 

and low time complexity for embedding the VDC request. The authors differentiate 

the service provided by the cloud platform to three basic service types: a high priority 

end-to-end guaranteed service(type0), a better than best-effort service(type1) that offers 

bandwidth guarantees for the first/last hops of a path, and a best-effort service(type2). 

Initially, the type has been determined in SLA itself for unambiguous service 

guarantee. 

 VDC manager is a centralized entity to provide all kind of services like VDC 

creation, allocation, control and reconfiguration. VDC manager should maintain two 

type of data, first type is the data related to physical topology with all residual links 
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capacity, and the second is resource allocation status, which include VM to physical 

mapping and bandwidth reserved for that links. VDC manager create VDCs based on 

a requirement matrix that defines the requested bandwidth between VM pairs.  

SecondNet allocation algorithm consist of main three steps, first it partition the 

physical data center into clusters, and introduce the idea of hop-count as metric to 

group servers into clusters. Appropriate cluster is searched instead of the entire 

physical network when allocating the VDC request in order to minimize the allocation 

time. The second step is to build bipartite graph with the VMs at the left side and the 

physical servers at the right side, then use the min-cost network flow to get a 

matching. In the third step, the algorithm sort the requested bandwidth in descending 

order and allocate paths sequentially. Then allocate paths for the VM-pairs that have 

non-zero reserved bandwidths. SecondNET is simulated and verified the results in 

three network topologies like BCube, fat-tree and VL2. 

Oktopus [4], propose two type of virtual data center abstraction, namely virtual 

cluster (VC)  and virtual oversubscribed cluster (VOC), As depicted in Figure 3.1:  

 

Figure 3.1: VDC request abstraction in Oktopus, (a) show VC, (b) show VOC. (source 

[4])  

A virtual cluster provides the illusion of having all VMs connected to a single non-

oversubscribed virtual switch. However, a virtual oversubscribed cluster emulates an 

oversubscribed two-tier cluster consisting of a virtual root switch that interconnects a 

set of virtual clusters. A tenant can choose the abstraction and the degree of the 

oversubscription of the virtual network based on the communication pattern of the 

applications to be deployed in the VDC. Initially Oktopus work with homogeneous 

environment that is all VM have the same capacity and bandwidth. However. Authors 

argue that both the abstractions and the algorithms can be easily extended to support 

multiple values of bandwidth and variable-sized groups within the same request. 

Oktopus consist mainly of two components, management plane and data plane. In 

management plane implement the allocation algorithm, and in data plane Oktopus 

uses rate-limiting at endhost hypervisors to enforce the bandwidth available at each 

VM. Oktopus uses a greedy algorithm for the resource allocation to the VDCs that 

aims at finding the best trade-off between the performance guarantees offered to 

tenants, their costs, and the provider revenue. They try to map the VDC requests to 

the smallest sub-tree of the data center topology with the least amount of residual 

bandwidth on the links connecting the sub-tree to the rest of the topology. The main 

limitation of Oktopus is it only support two type of VDC request, moreover, VDC 

request can only applied to tree physical topology.  

Zhani et al [10] argue that optimal allocation of server and network to multiple 

VDC in order to maximize the total revenue and minimize total energy consumption 

is not enough, and Suggest solutions that  considered the possibility of using VM 

migration to dynamically adjust the resource allocation, in order to meet the 
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fluctuating resource demand of VDCs. Zhani et al defines a set of objective for VDC 

embedding problem solution from an InP’s perspective as follow:  (1) maximizing the 

total revenue obtained from the embedded VDC requests, (2) minimizing request 

scheduling (i.e., queuing) delay, which refers to the time a request spends in the 

waiting queue before it is scheduled, and (3) minimizing the total energy consumed 

by the data center. 

Increase the problem complexity, allowing SP to scale up and down their VDCs 

according to their needs. This issue not been addressed by previous work related to 

VDC embedding problem one solution to such problem is to re-embed the VDC from 

scratch. But more promising solution is to migrate some embedded VM from one 

server to another.  

Zhani et al propose VDC Planner, a framework that supports migration-aware 

virtual data center embedding. That leverages migration techniques to achieve 

effective and efficient placement of VDCs over time. This problem is intractable 

because it requires solving a multi-dimensional bin-packing problem dynamically 

over time. Therefore, a more scalable yet cost-effective solution is needed.  Figure 3.2 

show the architecture of VDC planner. 

 

Figure 3.2: VDC Planner Architecture (source [10]) 

VDC planner consist of the following components: VDC scheduler, Resource 

Monitor, and VDC consolidation Module, and two heuristic algorithms The first 

heuristic is designed for migration-aware VDC embedding, The second heuristic is 

designed for dynamic VDC consolidation. The framework supports various usage 

scenarios, including VDC embedding, VDC scaling as well as dynamic VDC 

consolidation. By studying the algorithm VDC planner is based on, we note that 

algorithm are not accounting the virtual link between the virtual machine, mapping o f 

of virtual links to physical links have not been incorporated to service the incoming 
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request which enables the communication between the VMs a guaranteed service. 

Moreover, VDC planner not include or use availability information for embedding.  

Zhang et al [6] proposed an availability-aware VDC embedding framework called 

Venice “AVailability-aware EmbeddiNg In Cloud Environments”. Venice try to 

address the availability aspects with VDC embedded. To achieving availability aware 

VDC embedding is a nontrivial problem, first, a single service often consists of 

multiple virtual components. Thus, it is necessary to capture the dependencies among 

virtual components in the VDC availability model. Second, that physical data center 

components have non-uniform failure characteristics in terms of failure rates, impact 

and repair costs. Venice include three main components, namely; reliability analysis 

module, reliability-aware VDC scheduler and monitoring module.  

 

Figure 3.3: Venice Architecture. (source [6]) 

The framework promise to offer the following feature, Migration-based scheduling, 

Dynamic scaling, and Periodic consolidation. The framework use greedy approach for 

VDC scheduling. Venice availability-aware algorithm runs many times to achieve the best 

optimal embedding solution. The machine with lowest availability of resources will be 

dropped in each trial. The high availability of physical machine will be selected for 

embedding the current incoming VDC request. At the same time, over provisioning of 

resources in the name of high availability is also to be considered to avoid high resource 

wastage. 

Venice been implemented through simulation, and evaluated its performance 

against VDC Planner. The simulation is based on VL2 topology, and authors use three 

type of topologies for experiments: Multi-Tiered, Partition-Aggregate, and 

MapReduce.  

Xie et al [11] argue that simple VC abstraction model introduce by [4] using fixed 

bandwidth reservation waste network resource. Authors study traffic pattern of 

application –mainly MapReduce application- and show that such application only 
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generate substantial traffic during only 30%-60% of the entire execution time. Thus 

reserving peak bandwidth requirement for the entire execution waste network 

resource and reduce the number of jobs that can fit in the datacenter to run 

concurrently. Based on this observation, authors propose new network abstraction that 

can express the time varying nature of application called temporally interleaved 

virtual cluster (TIVC). TIVC is very similar to VC, but instead of using fixed B to 

link VM to virtual switch, it use time-varying function B(t). Authors propose four 

type of this function model,   The model generation algorithm takes as input the traffic 

profileof an application profiling run under bandwidth cap Bcap. As proof of concept, 

authors develop PROTEUS, a system that implements the new abstraction. 

   Guo et al [12] propose Falloc, a new bandwidth allocation protocol, with main 

objectives:(i) Guarantee bandwidth for VMs based on their base bandwidth 

requirements, and  (ii) share residual bandwidth in proportion to weights of VMs. 

Authors solve the resource sharing  problem in datacenter by modeling  the bandwidth 

allocation process in datacenters as a asymmetric weighted Nash bargaining game of 

sharing. Contribution of Guo et al can be summarized as, present the design of Falloc, 

an application layer bandwidth allocation protocol to achieve fairness among VMs in 

datacenters. Where each VM is assigned with base bandwidth and weight. Should 

mention that Falloc prototype been implemented with OpenFlow and evaluated on 

MiniNet Test bed, using simulation technique with Mapreuce workload and find that 

Falloc can achieve a utilization approximate to the best effort manner while providing 

performance guarantees for VMs by enforcing a fair bandwidth allocation. 

   Jeyakumar et al [1] look to problem form anther point and try to solve it with 

platform to enforce predictable network bandwidth sharing within the data center, using 

minimum bandwidth guarantee to endpoints, named EyeQ, EyeQ fall under the umbrella 

of network Quality of service (QoS). EyeQ’s design has two main components: (a) a rate 

meter at receivers that sends feedback to (b) rate limiters at senders. A combination of the 

above is needed to address both contention at the receiver indicated using feedback, as 

well as local contention at the sender. The rate limiters work in a distributed fashion using 

a control algorithm to iteratively converge to the ‘right’ rates. 

   Popa et al. [45] define how network sharing is difficult as it does not only depend 

on the VMs running on the same machine with X, but also on the other VMs that X 

communicates with. Authors add one more point to above mentioned problem, that 

network are not shared proportionally to payment. Authors argue that desirable 

solution for sharing cloud networks Should meet three requirements. First is min-

guarantee, which can be define as the lower bounds for the worst-case performance of 

an application. Second is high-utilization, aims to maximize network utilization in the 

presence of unsatisfied demand. Third requirement is network proportionality, this 

mean that two tenant with the same number of VM should get the same aggregate 

bandwidth since they paid the same amount of money. Authors present three 

allocation policies that solve the tradeoff between above mentioned requirement, 

namely Proportional Sharing at Link-level (PS-L), Proportional Sharing at Network-

level (PS-N) and Proportional Sharing on Proximate Links (PS-P).   

Kumar et al [46] argue that static network reservation proposed before in literature 

have not been implemented in real world cloud because it lead to poor performance and 

resource wastage, and propose new adaptive network reservation system named Equinox. 

The proposed system worked at network level and consists of two major components, 

first, Flow Monitoring Service. Second, Network Reservation Service. Flow monitoring 
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service is responsible for monitor the traffic in the network to estimate the demands of the 

VMs. Authors extend OpenStack Quantum to configure flow based monitoring at the 

Open vSwitch on all end hosts. The Network Reservation Service is responsible for 

computing and enforcing reservation through routing and end-host rate limits in the 

network. 

 

 

Summary  

The needs of running cloud application without deprecation of performance, lead 

to rise of research interests in cloud bandwidth allocation, which in turn depend on the 

characteristics of the underlying datacenter networks. In this chapter, we walked 

through existing efforts in sharing datacenter networks. We focus on works that try to 

provide deterministic bandwidth guarantees though using static reservation. 

Deterministic of bandwidth guarantee each tenant to have predictable performance, 

irrespective of other tenant’s behavior. In such approach provider of cloud service 

should provide tenants with an interface to explicitly specify their bandwidth demand. 

Such guarantees are achieved by means of proper placement of tenant VMs and static 

enforcement of rate limits.  
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Chapter 4 : An Approach for Bandwidth Guarantee 

in Multi-tenant Data Center 
 

Adapting virtual data center (VDC) allows user to express his needs in free way, 

such that he expresses his needs of computing power, bandwidth requirements, and 

the network topology. On the other hand, tackling VDC is tackling a set of NP-hard 

problem. This chapter is dedicated to propose our approach of how to deal with VDC 

embedding problem.  In the first section, we introduce the mathematical model of 

VDC request and the physical data center. Then we setup our objective and 

constraints. We finish this section by describing the general properties of Fat Tree 

topology. In next section we introduce our proposed solution, alongside with rational 

of main idea our solution build on. Finally, our two phase algorithms to consolidate 

VM/links and mapping them to physical machine.  

4.1 Mathematical model of VDC and Physical Data 

Center 

This section contain the mathematical model of physical data center and VDC 

request. 

The physical data center network is modeled as a weighted undirected graph, 

Gp(Np,Ep).Where, Np is the set of physical node, Ep is the set of physical links. Each 

physical server in Np is associated with a set of hardware feature, which typically 

include CPU, memory, and data storage, We associate with each physical server n
p 
∈ 

N
p 

a set of featured capacities ci(n
p
), i ∈{1,...,k} where k is the number of different 

reserved hardware capacities. For example, c1(n
p
) can refer to CPU, and c2(n

p
) refer to 

memory capacities.  We also define the residual capacity of each hardware feature 

such that )( p

i nc , i ∈ {1,... k} to denote the residual capacity of hardware feature. For 

example )(1

pnc  can refer to number of residual CPU after some CPU been rented by 

tenants. For each physical link pp Ee  , we associate bandwidth capacity donated by 

)( peb . In addition, residual bandwidth capacity donated by )( peb . Table 1 shows 

notation used for modeling the physical network infrastructure. 
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Table 4.1: Notation for physical network infrastructure 

),( ppp ENG  The physical network infrastructure.  

pN  Set of physical nodes, nodes representing  

physical server 

pE  Set of physical link 

)( p

i nc  the physical node capacity  

)( p

i nc  The residual of physical node capacity. 

)( peb  Physical link capacity  

)( peb  The residual of physical link capacity  

. 

On the other hand, VDC request which donate what tenant wants to reserve has 

been modeled in similar way to physical data center mentioned above. The VDC 

request is also modeled as weighted undirected graph. ),( vvv ENG , where 
vN is a set 

of VMs, vE is the set of virtual links. We associate each vv Nn  with a set of feature 

that VM should have donated by )( v

i nc . Virtual link 
vv Ejie ),(  , associated with 

bandwidth capacity between two mentioned point (i,j) donated by )( veb . Table 4.2 

summarize the used notation for VDC requesting modeling.  

Table 4.2: notation for VDC request 

),( vvv ENG  VDC request 

vN  Set of VMs 

vE  Set of virtual Links 

)( v

i nc  Capacity that VM should have. 

)( veb  Bandwidth required between virtual nodes 

4.2 Functional Objective and Constraints 

From the tenant point of view, VDC is a virtual network abstraction model, that 

tenant use to express his needs of both computing resource alongside with bandwidth 

requirements. From the cloud provider point of view, VDC embedding is an 

optimization problem, in this context, cloud provider want to maximize revenue by 

maximizing number of accepted VDC request, same time minimizing his cost through 

minimizing bandwidth consumption. Based on this, we define a set of objective that 
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our solution try to archives. Moreover, we define set of constraints that control our 

objectives. Next to that, we discuss some trade-off between different objective and 

constraints.  

We define VDC embedding problem objective as follows:   

1. The goal of cloud provider and more specifically the infrastructure provider 

(InP) is to maximize profits, by maximizing its infrastructure utilization. 

Which in turn implies maximizing the number VDC request that successfully 

embedded. 

2. Provide tenants with certain level of reliability against server hardware failure. 

That is, limit the impact of server failure on the overall tenant VMs.  

3. Minimize the bandwidth consumption by tenant’s request. That is implies that 

we try to localize the tenant request.  

Our solution is controlled by following constraints:  

1. We are dealing with online version of VDC embedding problem, thus the 

algorithm will processed with incoming VDC request without knowledge of 

future VDCs request. 

2. Each VM should be embedded on one and only one physical server –no 

redundancy- , at the same time all VMs belong to one VDC request, should be 

embedded. If not possible then the VDC request will be rejected.  

3. Capacity of physical server cannot be overused by embedded VMs.  

4. For successful mapping, Residual capacity of physical link should be equal or 

more than the capacity of virtual link 

5. Capacity of physical link cannot be overused by virtual link,  

6. Virtual link could go through multiple hops; the maximum capacity of such 

link is determined by the minimum residual capacity from source to 

destination.  

7. Minimize hops counts. On other words, minimize communication cost.  

8. We tack into account reliability of user request. We only consider server 

failure. We define reliability factor donated by (R) as (number of VMs failure) 

/ total number of VMs > 75%. R used to determine the maximum number of 

VMs that can be mapped into one physical host. 

Looking deep in our objectives, we consider the trade-off between providing 

reliability and minimizing the bandwidth consumption.   

4.3 Fat-Tree Properties  

Data center based on fat-tree topology is one of the most used topologies in current 

and new build data center. In addition to that, fat-tree topology provide non 

oversubscribing topology making the process of embedding tenant request more easy 

than traditional tree like topology. 

By using fat-tree as data center network topology, we assume that if two physical 

machine v1, and v2, each one have b1 and b2 of network bandwidth that connect each 

physical server to its access server. Then there is existing path between both physical 

machines, the size of this path is min (b1, b2).  That is imply, if required bandwidth 
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between two VMs is equal or smaller than minimum of (b1, b2), then there is existing 

path between both VMs and no need for link mapping. Although, different VMs 

placement could lead to different bandwidth consumption.  

Table 3 shows the general properties of fat-tree topology with an instance example 

of 6-port and 48-port switch. Some interesting propriety of fat-tree is number of hops 

is the same regardless number of switch ports. Figure 4.1 show graphical 

representation of fat tree network topology that use 6 port switches.  

Table 4.3: fat-tree topology with different K-port switch, where K is number of switch 

ports. 

Fat-Tree properties Parameter An example instance 

6 port switch 48 port switch 

Number of core switch (K/2)2 9 576 

Number of pods  K  6 48 

Number of aggregation switch in one pod k/2 3 24 

Number of edge switch “TOR” in one pod k/2 3 24 

Total number of switches 5K2/4 45 2880 

Number of hosts in each rack K/2 3 24 

Number of racks in each pod K/2 3 24 

Number of hosts in each pod K2/4 9  

Total number of hosts K3/4 54 27648 

Number of path in case of intra-rack 

communication 

1 1 1 

Number of path in case of intra-pod communication k/2 3 24 

Number of path in case of inter-pod communication k2/4 9 576 

Number of hop in case of intra-rack communication 1 1 1 

Number of hop in case of intra-pod communication 3 3 3 

Number of hop in case of inter-pod communication 5 5 5 
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Figure 4.1: An instance example of 6-ary fat-tree  

4.4 Proposed Solution 

Neither VM placement nor virtual network embedding (VNE) are classified as NP-

hard problem. For practical implementations, heuristics are needed. our heuristics are 

based on the following criteria:  

 Finding the best groups 

 Bandwidth consumption model 

 Traffic aware placement 

 Minimize defragmentation of resource 

 Next sub-section we discuss these criteria in more details, then we introduce our 

proposed two phase’s algorithm.  

4.4.1 Finding the Best Group   

We observe that mapping the same VDC request into physical machine with 

different arrangements lead to different bandwidth consumption. Figure 4.2 depicted 

this idea. The figure show VDC request and the physical date center where the VDC 

request should be mapped. Next to that, two possible mapping. We see that in the first 

mapping we consume 22 unit of bandwidth, this is because node 4 needs 7 unit of 

bandwidth to communicate with node 3 and 2, also node 1 in the same physical server 

needs 3 unit of bandwidth to communicate with node 3 and 1. The total bandwidth 

required by node 4 and node 1 located in the same physical server is 11 unit of 

bandwidth. The second physical server hold both node 3 and 2, require 11 unit of 

bandwidth to communicate with nodes located in server holding node 4 and 1. While in 

the second mapping only consume 10 unit. This is because node 4 and 2 been holed in 

the same physical server, require only 5 unit of bandwidth for node 4 to communicate 

with node 3 and node 2 to communicate with node 1, while node 4 and 2 communicate 

internally, in the second physical server that hold node 3 and 1. Node 3 need to 

communicate with node 4 by 2 bandwidth unit and node 1 needs 3 unit of bandwidth to 

communicate with node 2. 

We define the best groups to be the set of VMs that when allocated together in the 

same physical machine, the bandwidth consumption will be minimized. To find the 

best group, we use graph partitioning algorithms. We model VDC request as 

undirected weighted graph G = (V ,E) consists of a set of n vertices V = {v1,v2, ...,vn} 

and a set of edges E. An edge ei, j represents a connection between vertex vi and vj 

.Both vertices and edges can have weights associated with them. Weighted vertex 
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represent VM capacity such that, number of cores and RAM. Weighted edge represent 

bandwidth between vertexes. Note that as undirected graphs, the edges are symmetric 

(ei, j =ej,i). 

 

Figure 4.2: different mapping of the same VDC request into the same physical DC 

the partitioning problem objectives is to partition the VDC request graph into sub 

set of graph that have high communication between them, and have low 

communication between different groups. We are not intended to do balance partition, 

where each sub graph have the same number of VMs, instead we most care about is to 

minimize the connection between different sub graph. The partitioning algorithm are 

constrained by three factors: First, the maximum number of node inside each sub 

graph should not exceed the reliability factor defined by customer, and calculated as 

proportion  to total number of requested VMs. The number of VMs inside one group 

donate by M guarantee that single physical server failure will only impact small 

portion of the user VMs. Second, the total capacity of group should not exceed the 

capacity of standard host which been defined by InP provider. Third, the maximum 

bandwidth between groups should not exceed the capacity of physical link defined by 

provider.  

4.4.2 Bandwidth Consumption Model  

The bandwidth consumption of VDC i, that connect VM u and VM v, is the 

summation of the required bandwidth between the two VMs –based on VDC request- 

across all link between theses VM. Mathematically this is can be expressed as follow. 





iVvu

vuvu BWHopsiBC
,

,, ).()(  

Where BC(i) is the bandwidth consumption by VDC I, Hops is the number of hops 

between the two VMs, BW is the bandwidth requested based on VDC request 

between the two mentioned VMs. 
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It is clear here, that increase the distance –number of hops- between VMs that have 

to communicate to each other will increase the bandwidth consumption. In this context, 

One of the main future of our solution is that enforce multiple VMs of the same request 

to be embedded in the same physical machine. This is because that bandwidth 

consumption of VMs located on the same physical server will be assumed to be equal to 

zero, that’s hops count is zero so total bandwidth consumption will be zero. Our 

justification for this is that the internal bandwidth is much larger than the network 

bandwidth. However, we should mention that increasing of VMs consolidation would 

decrease the reliability of the VDC.  

4.4.3 Traffic Aware Placement 

Based on Fat-Tree topology, we can identify four type of communication:  

1. Inside host. In this type, both VMs are located into the same physical 

server, so that hop count is zero. 

2. Intra-Rack communication. In this type of communication VMs located 

into different physical server, but both server are located into the same 

Rack, so that both server are connected through the same TOR switch.  Hop 

count is one. 

3. Intra-Pod communication, communication between different VM located 

into different physical server, and physical server are not connected directly 

though TOR switch, so that each physical server is connected with different 

TOR, but TOR switch are  connected though aggregation switch, hop count 

is three. (TOR switch, Aggregation switch, TOR Switch). 

4. Inter-Pod communication, VMs located into different physical server, each 

physical server are connected with different TOR switch, and TOR switch are 

not connected though the same aggregation switch. That is communication go 

through core switch, hop count is five. (TOR switch, Aggregation switch, Core 

switch, aggregation switch, TOR switch). 

VM placement algorithm try to keep the locality of communication as much as 

possible by following the same order when placing VM. So first, we try to embed VM 

with heavy traffic into the same physical machine. If not possible, then try to embed 

VMs into different physical machine but at the same rack, and if not possible, then try 

to find another physical machine in different rack that belong to same pod. If not 

possible then separate the VDC request into different pod.  

4.4.4 Minimize Defragmentation of Resource 

It been observed that leaving some defragmentation of resource here and their lead 

to waste of resource. For example, suppose the case when we have two server, first 

with two CPU and the other with three CPU, and incoming request of VM that need 2 

CPU, both physical server can embedding the requested VM. In both cases, the 

reminding is three CPU. However, we chose to embed the request in the server with 

two CPU, so that future incoming request have better chance in finding server with 

adequate resource available. Based on this idea, our mapping algorithm try to find 

server with minimal capacity to embedding VDC request to it.  
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4.5 VDC Embedding Algorithms 

Our approach to the VDC embedding problem consist of two phases. Below we 

introduce each phase along with its objective, constraint and algorithm.  

4.5.1 Phase I: VM/Link Consolidation 

Phase I: VDC Request pre-processing and finding of best groups 

The objective of this phase:  

1. Find the best group, as been explained on Section 4.4.1, different arrangement 

of VMs leads to different bandwidth consumption. So finding the best group, 

will save bandwidth, and save the time and efforts needed to allocate virtual 

link.   

2. Save bandwidth, Bandwidth consumption of VM to VM inside one physical 

host are equal to zero.  

3. Simplify the next steps. First, consolidation of multiple VMs into one group by 

combining each VMs capacity together.  For example if VM1 is 2 core and 2 

Gig of RAM, VM2 have 3 core and 3 Gig of RAM, if both VMs been allocated 

on the same group, the next phases of our algorithm will treat both VMs as one 

super VM that have 5 core and 5 Gig of RAM. Second, virtual links connecting 

different groups will be consolidation to make super virtual link.  

4. Partitioning of VDC request serve as reliability factor, by sitting the maximum   

number of VMs inside each group, this lead to increase the reliability of user VDC. 

We build our own algorithm called simple vertices/edge consolidation. It based on 

consolidation of vertices that have strong communication into one super vertices with 

sum of both vertexes capacity. In the next phase of our algorithms, this super vertex is 

embedded in single host. Our algorithm obey to the following constrains.  

1- Number of VM in super node should not exceed reliability number donated by 

reliability factor.  

2- Summation of total VMs capacity in super node should not exceed standard 

physical host capacity.   

3- Virtual link capacity should not exceed standard physical link capacity.  

Figure 4.3 depicted our VM/link consolidation algorithm. The algorithm is 

following greedy approach, a brief explanation is following: suppose a new VDC 

request Gv arrives, represented as adjacency matrix. Algorithm start by biking 

heaviest link, if many exist, pick the first. Check the two end point of this link u, 

and v, if  summation of both vertices capacity not exceed standard physical host 

then combine both vertices into one super node name it uv-. – This will show that 

the new node is a result of summation of u and v node. If, as result of consolidation 

there is multiple path between vertices exists, then consolidate it if its capacity not 

exceed the physical link. At any point if capacity exceed the physical capacity, or 

number of vertices exceed reliability factor. Then pick the next heaviest link and 

start again. Stop when no more vertexes or link could be consolidate without 

violating our constrain. After finishing the consolidation stage, calculate the 

bandwidth of each VM.  
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Figure 4.3: depiction of VM/link consolidation algorithm 

Psedocode of VM/Link consolidation algorithm.  

 
Algorithm: VM/Link consolidation  

 

Input: VDC request, modeled as undirected weighted graph, and represented by 

adjacency matrix.  

Output: simple form of VDC request. 

Step 1: calculate the reliability factor <= 25% of total number of VMs. This 

number will determine the maximum number of VMs in one group.  

Step 2: sort the edge value with its corresponding node in Descending order.  

Step 3: pick the most weighted edge. If more than one exist, select one randomly.  

Determined what vertices are connected by this edge, u1 and u2.  

Step 4: check if (u1 + u2) capacity < = standard host capacity && total number of 

node not exceed R “reliability factor”,  

Step 5: check if u1 + u2 combination will produce multiple arc.  

Step 6: check if summation of multiple arc <= standard physical link capacity. 

Step 7: then combine both vertices into one super vertex named u1u2. 

Step 8: Update adjacency matrix  

Step 9: else, update the value of edge = -1; so this edge will not checked again.  

Step 10: Go to step 3; until no more node can be combined together. 

Step 11: calculate the new bandwidth requirements and associated to each VM.  

4.5.2 Phase II: Virtual Machine Placement and Link Mapping  

In this phase of our solution, we consider both VM placement and link mapping 

together; in fact, we treated bandwidth as a new property of VM. This is based on our 

assumption of using Fat Tree network topology. We assume that each VM is 

connected to central swath, bandwidth between VM and switch been calculated based 

on the output of phase one. We illustrate this idea by an example, suppose we have 
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three VM, x, y, and z, connected in bus like this x—3—y—2—z. so that VM x 

connected with VM y with 3 unit of bandwidth, and VM z connected with VM y with 

2 unit of bandwidth, the bandwidth required by VM y should be 5 unit of bandwidth, 

So that VM y can communicate with both x and z simultaneously. 

We consider the VM placement problem as selecting the most suitable physical server 

to create the required VMs, with the following objectives: traffic aware placement, and 

minimal bandwidth consumption. More details on this objective in Section 4-4.  

The input of this phase is the output of phase one, that is, simple matrix, define 

VMs groups. We consider VDC request as set of subgroups, even for individual VM, 

we account it as group with one element. The bandwidth of each groups will be 

calculated as been mention above. Start by randomly pick up one physical machine. 

Compare its capacity with VDC request groups capacity. If fit, map the group to 

physical machine (PM), and update resource, mark this physical machine so it will not 

be used to embedded any other groups of the same VDC request. If first group been 

embedded, then select another physical machine belong to same rack,  

 
Algorithm: VM Placement.   

 
Input: adjacency matrix of simplified VDC request, and array list of VMs with 

associated bandwidth based on host model. 

 

1. Sort the VDC request in descend order. Based on number of CPU 

2. For each incoming VDC request, select one pod randomly.  Select one 

physical machine.  

3. Check if residual capacity of PM is equal or bigger than VDC request groups.  

4. If residual capacity of PM > VM group capacity,  

a. Embedding the largest group into smallest available host. “this is very 

important to minimize the defragmentation of resource” 

b. Update resource 

c. Mark this PM, so it will not been cheek to serve any future request 

belong to same VDC request. 

d. Select anther PM, belong to the same rack. Go to step 3.  

5. Else, go to step 2.  

4.6 Summary 

This chapter been dedicated for presenting our approach to solve the bandwidth 

sharing problem. We first introduce our mathematical model of both VDC and data 

center, then we discuss functional objective and constrain. Next, we discuss the main 

idea that stand behind our heuristics solution. Finally we introduce our algorithms for 

simplifying VDC and VDC mapping. In next chapter, we show our evaluation of 

proposed solution.  
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Chapter 5 : Simulation and Performance Evaluation 
 

 In this chapter, we realize our proposed approach for bandwidth sharing in multi-

tenant data center using simulation tools. First, we describe the simulation 

environment followed by defining the performance metrics. Next, we conduct the 

necessary experiments to explore stronger and weakness of our approach against 

others.  Finally, we present our result and analyze it.  

5.1 Simulation Environment 

We implement our algorithms in FlexCloud, (see Section 2.5). Our data center 

network use Fat Tree topology. For all three level of switching, we use six-port 

switch, each port bandwidth is 1 Gbps. –for more detail regarding fat-tree 

specification and parameter refer to (Section 4.1.4).  For the physical machine, our 

data center use one type of physical machine, for detailed specification see Table 5.1. 

By using fat-tree Topology, we assume that there is an existing path between any two 

pair of VMs regardless the location of VM. Despite that, allocation of VMs pair in 

different rack or pod lead to different bandwidth consumption, which we try to 

minimize it. Refer to previous section for more details regarding bandwidth 

consumption model.  

The bandwidth consumption model is key point to differentiate our algorithms with 

other work. Unfortunately, Due to limitation of FlexCloud simulator network model 

that not considering bandwidth utilization at switch level. We cannot calculate the 

bandwidth consumption of each VDC request. So, we based on FatTree property that 

define fixed hop count between different VMs pairs based on location of that VMs. 

then manually calculate bandwidth consumption of each VDC request.  

For VDC request, we use two type of pre-defined VM, specification detailed in 

Table 5.1. For the network topology that link these VM, we use star, mesh, and tree 

topology. See Figure 5.1 for the main types of VDC network topology. The number of 

VMs in each topology are distributed from 5 to 19.  Bandwidth between different VM 

belonging to same user –the same request- are distributed between 32 to 192 Mbps. 

All VMs belonging to same request have the same start time, but each VM have its 

own finish time, our algorithm will deal with each request online, and server request 

as it arrive the system. When some of VMs finish, it will leaf the system, and the 

system resource will be updated, even that other VMs belonging to same request still 

active.  

Due to limitation of FlexCloud simulator of not supporting multiple user, and more 

important, not supporting tenant request as a graph. We built java classes that read tenants 

VDC request network as adjacency matrix, alongside with VDC VMs types, start time, 

and finish time. This class also implements our VM/Link consolidation algorithm. The 

output of this class is two text files, in the first one is a list of all requested VMs with the 

bandwidth requirements of each VM based on VDC request graph. The second output file 

contains a list of consolidating VMs, request Id and required bandwidth. Later on, we 

modify the FlexCloud to accept the new request format. To illustrate these input and the 

two outputs , following is a sample of input and output of this class.  
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The Input: 

[101, 102, 103, 104, 105, 106, 107, 108, 109] // name of VMs 

[1, 1, 1, 1, 1, 1, 1, 1, 1] // type of VMs 

[2] // start time of VMs 

[50] // finish time of VMs 

[0, 32, 0, 0, 0, 0, 64, 0, 0] // adjacency matrix of VDC 

[32, 0, 64, 64, 128, 0, 0, 0, 0] 

[0, 64, 0, 0, 0, 0, 0, 0, 0] 

[0, 64, 0, 0, 0, 192, 0, 0, 0] 

[0, 128, 0, 0, 0, 32, 0, 0, 0] 

[0, 0, 0, 192, 32, 0, 0, 0, 0] 

[64, 0, 0, 0, 0, 0, 0, 64, 96] 

[0, 0, 0, 0, 0, 0, 64, 0, 128] 

[0, 0, 0, 0, 0, 0, 96, 128, 0] 

 

The Output 1: // VDC without VM/link consolidation algorithm 

1 1 1 101 2 50 96 1 /* sequence number, VDC id, VM weights, VM name, start time, finish time, 

bandwidth requirements, VM type */ 

2 1 1 102 2 50 288 1 

3 1 1 103 2 50 64 1 

4 1 1 104 2 50 256 1 

5 1 1 105 2 50 160 1 

6 1 1 106 2 50 224 1 

7 1 1 107 2 50 224 1 

8 1 1 108 2 50 192 1 

9 1 1 109 2 50 224 1 

 

The Output 2: // VDC with VM/Link consolidation algorithm 

 1 1 1 101 2 50 96 1 /* sequence number, VDC id, VM weights, VM name, start time, finish time, 

bandwidth requirements, VM type. */ 

2 1 1 103 2 50 64 1 

 3 1 2 104106 2 50 96 1 

4 1 2 102105 2 50 192 1 

5 1 3 107108109 2 50 64 1 

 

Note: VM specifications do not specify a value for bandwidth, because we set the 

bandwidth to be a property of the link that connects different VMs. However, In case 

of the physical machine, we specify bandwidth value as the value of physical link 

bandwidth connecting the physical machine to access switch.  
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Table 5.1: Physical and virtual machine specification  
Specification  VM type 1 VM Type 2 Physical Machine 

CPU 1 4 16 

Memory 1.7 7.5 30 

Storage 160 850 3380 

Bandwidth - - 1024 

 
Figure 5.1: VDC request represented ad physical network 

We implement the second phase of our solution (placement algorithm, namely R-

VDC algorithm) inside FlexCloud framework, by overriding the abstraction allocation 

method. This method accept the new request format, reading the requested VM file 

(the output of phase one file) at once, creating VM object of each individual line. As 

mentioned above, FlexCloud does not support multiple tenant requests, so we work 

around this limitation by grouping each object based on the value of VDC request ID. 

Each group that represent individual tenant VDC request will be mapped to the most 

appropriate physical machine based on VM placement algorithm. 

5.2 Performance Metrics 

We show the advantage of our algorithm by comparing a set of performance 

metrics against based line algorithms that based on randomized heuristics (provided 

by the FlexCloud itself). This algorithm pick one VM based on its start time, and then 

randomly pick a physical machine (PM) to map the VM to it. If PM have enough 

capacity to hold the VM then map this VM to PM, otherwise pick another PM. The 

algorithm will keep iterate until finish all VM, or until no PM have capacity to hold 

that VM. 

We compare our algorithm with other based on the following metrics:  

 VDC Acceptance ratio: it is the ratio of successfully embedded request to total 

number of request at certain point of time. 

 Network bandwidth consumption: defined as summation of bandwidth required 

between pairs of VMs multiple by number of hops, between this pairs of VMs. 

 Network bandwidth utilization: defined as the total bandwidth allocated to 

VDCs divided by the total link capacity.  

 Server bandwidth utilization: defined as the total server bandwidth allocated to 

VDCs divided by the total server link capacity.  

 Active server bandwidth utilization: defined as the total server bandwidth 

allocated to VDCs divided by the total active server link capacity 



49 

 

 Memory utilization: defined as the total server memory size allocated to VDC 

divided by total size of server memory. (for each PM) 

 Storage utilization: defined as the total server storage size allocated to VDC 

divided by total size of server storage. (for each PM) 

 Active physical machine: the number of physical machine that participate in 

severing VDC request. 

The key difference between network bandwidth utilization and server bandwidth 

utilization is that the former defines utilization at aggregation and core switch, while 

the later only considers utilization between physical server and access switches.  

5.3 Simulation Results 

To study the performance of our approach, we run each phase of our approach as 

standalone phase, collecting results, and then combine both phases into one process. 

At each stage of our study, we collect results and analyze them.  

In phase one of our approach (Section 4.5.1, Phase I: VM/Link consolidation) the 

input is set of adjacency matrix with other properties like start and finish time. Table 

5.2 shows sample results of running this phase.  

Table 5.2: Sample request size before and after consolidation.  

VDC request ID Number of VMs Number of 

consolidated 

VMs groups 

Bandwidth 

requirements 

(without 

consolidation) 

bandwidth 

requirements 

(with 

consolidation) 

1 9 5 1728 512 

7 13 11 1920 992 

11 18 15 2304 1536 

22 7 3 1024 224 

27 15 12 1536 1024 

Results show that the number of VMs and bandwidth requirements are decreased. 

The order of decreasing is not specify by any specific parameter, instead it depend on 

the type of graph and weight of link between each VM pairs. The Table 5.3 show total 

number of VDC requests, the total number of individual VMs, and the total number of 

VMs groups.  

Table 5.3: input/output VDC request to VM/link consolidation algorithm 

Number of VDC request Number of individual VMs Number of VMs groups 

38 399 289 

We run phase two (Section 4.5.2, Phase II: VM placement algorithm) of our 

approach, using different load level (number of VDC request). At each load level, we 

calculate the utilization of each server resources, the number of active physical 

machine, and the number of rejected VDC request. Note that, we feed the placement 

algorithm with raw VDC request (without passing though VM/link consolidation 
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algorithm). Table 5.4 shows the resource utilization at physical machine level. and 

Figure 5.2 illustrates them as chart. 

 

Table 5.4: Resource utilization of R-VDC algorithm, second phase only 

Load 

level 

CPU 

utilization 

Memory 

utilization 

Storage 

utilization 

Bandwidth 

utilization 

Average 

utilization 

Active 

PM 

Rejected 

VMs 

100 0.319867 0.290013 0.242266 0.745755 0.399475 19 0 

200 0.333374 0.302259 0.252496 0.756715 0.411211 31 0 

300 0.322124 0.292059 0.243975 0.72462 0.395694 44 0 

400 0.332119 0.301121 0.251546 0.773564 0.414587 48 5 

 

 

Figure 5.2: Resource utilization of R-VDC algorithm, second phase only 

Next, we feed R-VDC request with modified VDC request. The result of 

simulation presented in Table 5.5 and illustrated in Figure 5.3. 

Table 5.5: Resource utilization of R-VDC algorithm, two phases 

Load 

level 

CPU 

utilization 

Memory 

utilization 

Storage 

utilization 

Bandwidth 

utilization 

Average 

utilization 

Active 

PM 

Rejected 

VMs 

100 0.416767 0.377869 0.315658 0.553886 0.416045 13 0 

200 0.425733 0.385998 0.322449 0.593295 0.431869 25 0 

300 0.408982 0.37081 0.309761 0.551334 0.410222 31 0 

400 0.460876 0.417861 0.349066 0.592809 0.455153 33 3 
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Figure 5.3: Resource utilization of R-VDC algorithm, two phases 

Studying these simulation results, we note high utilization of all resources. More 

important, resource utilization is not affected by load level. The reason behind this is 

that our algorithm minimizes defragmentation, so the algorithm will keep mapping 

VMs to the same PM until no more space available. We note also that using the two 

phases together will increase the resource utilization. We also note that our algorithms 

starts to reject VMs even there is still PMs available. 

Next, we perform a set of experiments to evaluate the effectiveness of our 

approach and comparing our approach with a set of placement algorithms. We choose 

three algorithms to compare with, namely Random Algorithm, OLRSA, and SAE 

Algorithms. These algorithms are part of FlexCloud framework.  

In our first experiment, we use VDC request that have not been passed through our 

consolidation phase (we call it raw VDC request). Using the same VDC request, we 

run each algorithm four times, each time with different load level. Results are shown 

in Figure 5.4 to 5.7. 

 

Figure 5.4: Utilization at 100 request 
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Figure 5.5: Utilization at 200 request 

 

 

Figure 5.6: Utilization at 300 request 
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Figure 5.7: Utilization at 400 request 

 

Next, we run the same experiment as before, but using VDC request that passed 

through VM/link consolidation phase. The results are shown in Figure 5.8 to 5.11  

 

Figure 5.8: Utilization at 100 request with consolidated VDC 
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Figure 5.9: Utilization at 200 request with consolidated VDC 

 

 

Figure 5.10: Utilization at 300 request with consolidated VDC 
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Figure 5.11: Utilization at 400 request with consolidated VDC 

 

Studying the above results, we note that they follow the same pattern. We note that 

resource utilization of different resources increases as VDC request load increases. 

Except R-VDC algorithm, where utilization is stable and not affected by load. This is 

because R-VDC tries to use full capacity of the physical machine, while other 

algorithms will start mapping requests to a new physical machine even if the last PM 

still have residual capacity.  

The results from last experiment can be interpreted in a different way to study the 

effect of consolidation phase on each algorithms. For example, Figure 5.12 show the 

utilization of Random algorithm with and without consolidation phase. We see that 

utilization of each resource are increased when using VDC request that passed though 

consolidation phase, We think this is because embedding one VM with high capacity 

is more efficient than embedding multiple VMs with the same capacity. However, 

bandwidth utilization is decreased. This is because consolidation phase remove some 

links so that decreasing bandwidth requirements. Figure 5.13 is another example that 

depict the same idea for OLRSA algorithm.  
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Figure 5.12: Random algorithm with/without VM/link consolidation 

 

 

Figure 5.13: OLRSA algorithm with/without VM/link consolidation 
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Chapter 6 : Conclusion and Future Work  
 

This thesis addressed the problem of application performance degradation due to 

contention on network resource. Many approaches been proposed to solve this 

problem. One of the most promising approaches is to offer both computation power 

and network bandwidth as bundle. This approach have its own drawback, that is, 

reserving bandwidth to tenant that may or may not use this bandwidth is wasting 

valuable resources. In the other hand, tenants will be sure that their application will 

run without performance degradation.  

To tackle this problem which been known as virtual data center embedding 

(VDCE), we went through series of steps. First step was to figure out how to enable 

tenants to express their needs. We model the VDC request and data center resource 

(both physical machine and network paths) as undirected weighted graph, which can 

be represented as an adjacency matrix.  

 The process of mapping virtual machines and virtual path to physical machine and 

path is hard problem, so we think that may be if we could simplify tenant requests and 

hence will simplify next processing steps. We introduce simple heuristic algorithm 

that consolidate VMs and virtual links. In general, the output of this algorithm will be 

simple form of tenants’ request. By simple, we mean that the number of nodes and 

links is less than the original request, while the capacity are the same. At the same 

time, this process helps in minimizing bandwidth requirements and consumptions.  

After that, we designed an algorithm that maps virtual machines into physical 

machines. The design of this algorithm is based on the assumption that the data center 

is using fat-tree network topology. So that, if the physical like between physical  

machines and their access switches have enough bandwidth to satisfy VM 

requirements, then  there is enough bandwidth in upper level switch that satisfy VMs 

pair requirements. However, the algorithm try to place individual VMs as close as 

possible to each other to save bandwidth in upper level switches.  

We used simulation tools to study the performance of the proposed approach, and 

design multiple experiments to compare the performance and effectiveness of our 

approach against other proposed solution, namely, Random Algorithm, OLRSA and 

SAE algorithm.  

Based on the simulation results, we proved that consolidation of user request is 

crucial part of successful embedding algorithms. We use the output of our VM/Link 

consolidation algorithm as input to other placement algorithms, and compare the 

results in both cases and find that placement algorithms perform better in case of 

using VDC requests that pass through the proposed VM/Link consolidation 

algorithms.  

We also found that our placement algorithms have advantage over others from the 

resources utilization viewpoint. Simulation results showed that the utilization of 

different resources is higher than other algorithms at different data center load level. 

The reason behind these results is that our algorithm try to minimize defragmentation 

of resources, i.e., not to map VMs to new PM if current PM still have enough 

capacity. 
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The main drawback of our approach is that not considering switches in both VDC 

request and data center.  This have two bad side effects. First, its limit the design of 

VDC request. Second, it limit our approach to fat tree topology. We consider this 

drawback to be new direction for future works.  

In addition to modeling switches devices in both VDC request and at data center. I 

should expand the idea of consolidation/partition of VDC request into partitioning to 

physical machine, so that partitioning of physical data center into rack/pod. So that, 

instead of mapping VMs to individual physical machine, we try to map VDC request 

to rack or pod that have adequate resource available. This has two advantage, first it 

minimize the search time to locate individual physical machine and second, it keeps 

traffic locally, so that minimizing bandwidth consumption at higher switches level.  

Finally, we should mention that, VDC embedding is a reservation process but not 

including any mechanism that enforce the bandwidth guarantee.  It would be good 

idea to combine it with other to build complete solution that provides reservation 

service and enforces this reservation in face of tenant misuse.  
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