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A B S T R A C T 

Periplakin is a cyto l inker protein wh ich participates in the barrier format ion o f the skin by 

p laymg part in the corni f ied envelope assembly o f epidermal cells. Previous studies had 

ident i f ied per ip lak in, envoplak in and invo lucr in as constituents o f the corni f ied envelope, 

but gene-targeting studies had demonstrated that lack o f the proteins ind iv idual ly or in any 

"double knock-ou t " combinat ion d id not disturb the epidermal di f ferent iat ion or sk in 

barrier funct ion. I n order to gain more in format ion about per ip lak in , wh ich is also 

expressed in s imple epithel ial cells, a stably transfected M C F - 7 subclone overexpressing 

the HA- tagged per ip lak in N-terminus was generated. Co- immunoprec ip i ta t ion was used for 

screening o f prote in complexes associated w i t h the HA- tagged per ip lak in N-terminus to 

ident i fy previously uncharacterised per ip lak in partners. Co- IP w i t h an t i -HA antibody and 

mass-spectrometry revealed a 500 kDa рег ір іаюп interacting protein, p lect in and another 

protein around the size o f 34 Ш а ident i f ied as annexin A 9 . Endogenous рег ір іаюп co-

localised w i t h annexin A 9 in the plasma membrane o f M C F - 7 cells and showed a simi lar 

staining pattern in newborn and adult mouse skin. Transient transfection o f per iplakin 

deletion constructs indicated that the first 133 amino acid residues are essential for the co-

local isation w i t h plect in at cel l borders. Immunofluorescence analysis demonstrated that 

per ip lakin N-terminus and di f ferent plect in isoforms 5 such as plect in-1,-1 f and I k 5 are co-

localise at cel l borders o f M C F - 7 epithelia and also co-localise w i t h endogenous per ip lakin 

at suprabasal layers o f the skin. Ab la t ion o f the plect in by SİRNA transfection in HaCaT 

keratinocytes resulted in aggregation o f per ip lak in into smal l clusters in the cytoplasm. 

Scratch wounded M C F - 7 epithelia expressing the N- terminal ha l f o f рег ір іаюп showed 

accelerated kerat in re-organisation wh ich was hampered by p lect in downregulat ion. The 

role o f per ip lak in and kerat in IFs in the migrat ion o f simple epithel ial cells was also 

investigated. Stable expression o f per iplakin с-terminus increased kerat in bundl ing and 

Ser-431 phosphorylat ion o f kerat in 8 at the free wound edge, delaying wound closure. 

Deplet ion o f per ip lak in or plect in by SİRNA transfection impaired wound closure, wh i le 

simultaneous ablat ion o f both proteins reduced the speed o f wound heal ing even further. 

Knockdown o f kerat in 8 IFs w i t h SİRNA resulted in the loss o f desmoplakin at cel l borders 

and the fai lure o f di f ferent simple epithelial sheets migrat ing as a col lect ive unit. 
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CHAPTER I 

GENERAL INTRODUCTION 



1.1 Pro logue 

Periplakin is w ide ly studied as a protein o f the corn i f ied layers o f the epidermis, wh ich 

are essential for the barrier funct ion o f the skin. Furthermore, per ip lak in is one o f the 

cytol inker proteins that binds to intermediate f i laments and localises to desmosomes. This 

thesis proposes that per ip lak in forms protein complexes w i t h other proteins and has a role in 

cell migrat ion and in organisation o f the keratin intermediate f i laments in simple epithelial 

cells. Th is chapter w i l l give an overv iew o f the cytoskeleton, cyto l inker proteins and adhesion 

j unctions 5 relat ing this to relevant autoimmune skin diseases. 

Each o f the results chapters to fo l l ow w i l l then give a focused insight on the specific 

subject that i t addresses. 

1.2 Cy toske le ton 

1.2.1 I n t r o d u c t i o n to cy toskde ta l ne two rks 

The cytoskeleton o f a cel l is a complex mixture o f structural proteins wh ich are 

essential for the integri ty o f cel l shape, mot i l i t y and internal movement or transport o f 

particles, vesicles and organelles w i th in the cytoplasm. A l l the cytoskeletal networks are 

polymers bui l t f r om small subunits and held together by non-covalent bonds. Instead o f being a 

disorganised array, the cytoskeleton is organized into discrete structures. The mammal ian 

cytoskeleton is composed o f three main networks 5 microtubules ( M T ร ) 5 actin f i laments and 

intermediate f i laments ( IFs) , each o f wh i ch has a specific role w i t h i n the cel l . IFs provide 

mechanical strength and resistance to stress (Fuchs & Cleveland 5 1998; Omary et al., 2004) 5 

microtubules serve as tracks for intracellular transport (Va le , 1987) and fo rm the mi tot ic 

spindle (Cooper, 2000), wh i le actin filaments are necessary fo r whole cel l locomot ion (Bray, 

1992). 

These three types o f filaments of ten have dist inct localisations. In the lumen o f the 

intestine, this d ist r ibut ion is easily distinguishable. A c t i n microf i laments are abundant in the 

apical and lateral regions o f the cell (Drenckhahn & Dermietzel , 1988), whereas IFs fo rm a 

meshwork that is tethered to junct ions between cells (Franke et al, 1979). I n contrast, 
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microtubules al ign w i t h the axis o f the cel l in close p rox imi ty to major organelles such as the 

Go lg i complex (Rogalski & Singer, 1984) or endoplasmic re t icu lum (Buckley & Porter. K， 

1975) (F igu re 1,1 A，， B，， C ' ) . The three networks w i l l be discussed in turn below. 
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Figure LI: Major cytoskeletalfilament networks. 

A. Actin filaments (6-8 議)， also know as microfilamentst are two stranded helical polymers of 

the actin protein. A\ Although microfilaments are dispersed throughout the cell they are mostly 

concentrated beneath the plasma membrane. B. Intermediate filaments (8-10 nm) are rope like 

fibers consist of intermediate filament proteins. B\ In epithelial tissues intermediate filaments 

extend across the cytoplasm from one cell-celljunction to another giving cells mechanical strenght 

С Microtubules are long, hollow cylinders composed of α and β tubulin heterodimers that 

aranges to form protofilaments (25 nm). c\ Microtubules are long1 straight and typically possess 

one end attached to the microtubule-organising center (MTOC). 
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1.2.2 A c t i n 

A c t i n is encoded by a h ighly conserved gene fami l y and is the most abundant 

intracellular protein in most eukaryotic cells, w i t h a molecular we ight o f 42 kDa. Ac t i n , along 

w i th myosin , was discovered in 1861 by Kuhne 5 but was first isolated in 1939-1942 by Straub, 

Bonga and Szent-Györgyi (Szent-Györgyi , 1951). Aet i ո f i laments are about 6-8 nm in 

diameter and are the contracti le elements o f the cel l . A c t i n plays an important role in cel l 

movement, cel l contract i l i ty , cell remodell ing, 1 cel l polar i ty , intracellular transport and 

phagocytosis. The orgamzat ion o f actin is regulated by many signal l ing proteins, inc luding 

Rho, Rac and Cdc42 ? that are activated by extracellular signals (Schmidt & Ha l l , 1998). A c t i n 

exists in t w o forms, globular or G-actin 5 wh i ch polymerizes into the other fo rm, called 

f i lamentous or F-actin. Filamentous actin can be found as bundles called stress f ibers, or as a 

fine network cal led microf i laments. There is also a th i rd f i lamentous structure known as the 

contracti le r ing 5 wh ich is cr i t ical for the separation o f the cel l dur ing cytokinesis. 

Each act in microf i lament has two distinct ends 3 at w h i c h polymer izat ion takes place at 

different rates. There is a fast g rowing (or plus) end and a s low-growing (or minus) end. 

W i th i n the ce l l , the plus end o f the f i laments is oriented towards the cel l membrane, whereas 

the minus end is oriented towards the cytoplasm (Begg et al., 1978; Stossel, 1984). A c t i n 

assembly is coupled w i t h continuous A T P hydrolysis as act i ո is an ATPase. Under 

physiological condit ions 5 M g 2 + - A T P bound G-actin is іпсофогаЇес і into growing filaments at 

the plus end. ATP-ac t in is then converted to ADP-ac t in by s low hydrolysis as actin monomers 

are shifted a long the f i lament toward the minus ends (Carl ier, 1991a; ear l ier 5 1991b). A t a 

signif icant concentrat ion o f G-actin, the plus end o f the microf i lament w i l l constantly g row 

whi le the minus end simultaneously dissolves 5 so the length o f the microf i lament remains 

constant - a process k n o w n as t readmi l l ing (Bonder et aL， 1983; Bonder & Mooseker, 1983). 

The act in cytoskeleton consists o f polymers o f act in along w i t h a large number o f actin 

b inding proteins and associated proteins (Stossel, 1993; Winsor & Schiebe, 1997). Thei r 

b inding to G- or F-actin has various ftmctions: they serve to contro l the length o f f i laments 

(e.g. v i l l i n , co f i l i n 5 gelsol in, f ragmin, and severin), to produce bundles o f actin f i laments (e.g. 

v i l l i n 5 f ı l am in , and fimbrin), to cross-l ink actin f i laments to f o rm a meshwork such as that 

found i n association w i t h the cell membrane (e.g. f i b r i n 5 v incu l i n , α-act in in 3 and tal in) or to 
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control the G-act in pool by preventing the polymer izat ion o f actin (e.g. p ro f i l in ) . Add i t iona l ly , 

the fami ly o f myosins is an important class o f actin-associated proteins wh i ch convert chemical 

energy to produce movement o f actin f i laments. When act in is associated w i t h myos in i t forms 

act inomyosin (Szent-György i , 1949). The best characterised myos in , myosin II， slides act in 

filaments past each other either to power contraction o f the contracti le r ing dur ing cytokinesis 

or to produce cel l migrat ion (Maciver , 1996). 

Dur ing cel l migra t ion, act in f i laments exist i n two alternative forms at the leading edge 

o f the mot i le cells, k n o w n as lamell ipodia and filopodia (also known as microspikes) 

(Mi tch ison & Cramer, 1996; Mej i l lano et al, 2004). These protrusions seem to rely on forces 

generated by actin polymer izat ion to push the plasma membrane outward. Cells use these 

structures to explore their terr i tory and pu l l themselves around. Lamel l ipodia are two -

dimensional sheet-l ike structures containing a cross-l inked mesh o f actin f i laments w i t h un-

branched filaments at the base (Smal l , 1995; Svi tk ina & Bor isy , 1999). F i lopodia contain long 

bundled act i ո f i laments and have been impl icated i n epithel ial sheet closure in development, 

wound healing and metastasis in cancer (Jacinto & Wolper t 3 2001). 

1.2.3 M i c r o t u b u l e s 

Microtubules ( M T ) , wh i ch were discovered by electron microscopy by Mar ton and 

Clarke (1952) and Fawcett and Porter (1954), are large polar filaments composed o f 

heterodimers o f the globular proteins α and β tubu l in , wh ich create a cy l indr ica l r ing o f 13 

linear protof i laments ( l inear polymers), 25 nm in diameter, α and β tubul ins are homologous 

but not ident ical , w i t h each containing a nucleotide b ind ing site and having a molecular weight 

o f approximately 55 kDa . Mos t microtubules occur as single tubes and fo rm cellular structures 

such as the mi to t ic spindle 5 wh i ch posit ions, aligns and separates chromosomes. 

Microtubules grow f r om the microtubule organising centre (Tucker, 1992) and undergo 

rapid remodel l ing w i t h frequent shortening and growth transit ions (Waterman-Storer & 

Salmon, 1998). Microtubules are able to undergo t readmi l l ing, i n a s imi lar manner to act in, 

w i t h addi t ion o f tubu l in heterodimers at the plus end and dissociation o f tubu l in heterodimers 

at the minus end. Microtubules are h ighly dynamic between growing and shr inking phases both 
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in vivo and in vitro (Desai & Mi tch ison, 1997). Micro tubule elongation proceeds when the 

concentration o f free subunits exceeds the cr i t ical concentrat ion 5 whi le below this 

concentration, microtubules depolymerize (Alberts et α/.， 2002). This non-equi l ibr ium 

behaviour, k n o w n as dynamic instabi l i ty (M i tcMson & Kirschner, 1984)， is also based on the 

b ind ing and hydrolysis o f GTP at the nucleotide b ind ing site. Each α and β monomer possesses 

a b inding site for one molecule o f GTP. The GTP that is bound to the α- tubu l in is physical ly 

trapped and is never hydrolysed (Spiegelman et al, 1977). The nucleotide on the ß-tubul in, in 

contrast, is exchangeable 5 and may be either GTP or GDP. Short ly after іпсофога Ї іоп o f a 

tubul in subunit into a f i lament, GTP hydrolysis occurs, but the nucleotide diphosphate remains 

trapped in the f i lament structure. Microtubule s t ruc toe is stabil ized b y a layer o f GTP tubu l in 

subunits (M i tch ison & Kirschner, 1984). When this cap is lost, the protof i laments peel outward 

and the microtubule rapidly depolymerizes. This dynamic instabi l i ty is important in cel l 

mot i l i t y as we l l as i n the posi t ioning o f organelles and movement o f vesicles in the ce l l . 

Microtubules associate w i t h a variety o f proteins known as microtubule associated proteins 

(MAPร) . 

There are t w o main classes o f microtubule motor proteins that carry out A T P -

dependent movement along microณbules (Mi tch ison & Kirschner, 1984; Gross et al, 2007). 

Kinesins are a large f am i l y o f motor proteins, most o f w h i c h wa l k along microtubules toward 

the plus end (Hol lenbeck & Swanson, 1990; Coy et al., 1999), whereas dyneins wa lk along 

microtubules towards the minus end (Hirokawa^ 1998; Vale, 2003). Mo t i l i t y arises f r om 

conformational changes in the motor domain 5 as A T P is bound and hydrolyzed, and products 

are released. 

Microtubules are key organizers o f the cel l interior as they serve as a track for organelle 

movements dr iven by molecular motors. Plus end directed motors such as kinesins distr ibute 

the endoplasmatic re t icu lum, Golg i complex (L ippincot t -Schwartz et ai, 1995) and 

mitochondr ia along microtubules (Fuj i ta et al., 2007). A l so , d i f ferent kinesins are involved in 

chromosome movement dur ing mitosis and meiosis as we l l as in microtubule spindle format ion 

(Chang et al., 2004). I n human keratinocytes, the retrograde microtubule motor dyne in 

mediates the perinuclear aggregation o f melanosomes, w h i c h protects the nucleus f rom U V -

induced D N A damage (Byers et al., 2003). 
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1.2.4 I n t e rmed ia te F i l amen ts 

Evolut ionar i ly 5 IFs appeared more recently than the other two cytoskeleton networks 

(Rash et aL, 1970; Fuchs & Cleveland, 1998), and were first described by Holtzer and 

colleagues, f rom studies o f muscle 5 i n the late 1960ร ( Ish ikawa et al., 1968). They have been 

described as ubiqui tous cytoskeletal scaffolds in both the nucleus and cytoplasm o f higher 

metazoans ( w i t h the except ion o f arthropods) (Erber et α/·， 1998). The name "Intermediate 

F i lament" comes f r o m the fact that their size (10 nm) is intermediate in thickness between the 

th in actin (6-8 n m ) and th ick microtubule (25 nm) filaments. IFs are rope-l ike fibres, fo rm ing 

an internal f ramework that stretches f rom the nuclear envelope to the plasma membrane. IFs 

are encoded by one o f the largest famil ies o f genes i n the human genome (Hesse et al., 2001). 

More than 65 d i f ferent IF protein have been ident i f ied and classif ied into six groups based on 

similarit ies between their amino acid sequences (Tab le 1.1). 

27 



Table LI: Classification of intermediate filament protein superfamily and their associated 

dheases. 

I n t e r n led iate Ш а т ent type 

Speci f ic i ty o f 

expression 
Disease 

K 9 - K 2 4 Soft epithelia K14-Epidermis bullosa simplex 

L 
Ac id ic 

K 3 1 - K 4 0 Hard epithelia K10， K16， K14-Keratoderma disorder 

K12-Meesmann corneal dystrophy 

К 1 3 - W h i t e sponge nevus o f Cannon 

К 16"Pachyonychia congenital type I 

К 1 7 - Pachyonychia congenital type I I 

L 
keratins 

K25^K28 
Inner root 

Sheet (hair) 

K10， K16， K14-Keratoderma disorder 

K12-Meesmann corneal dystrophy 

К 1 3 - W h i t e sponge nevus o f Cannon 

К 16"Pachyonychia congenital type I 

К 1 7 - Pachyonychia congenital type I I 

K 1 - K 8 Soft epithelia Kl， K9， K2-Keratoderma disorders 

K 8 1 - K 8 6 Hard epithelia 
K3-Meesmann corneal dystrophy 

K 4 - Whi te sponge nevus o f cannon 

K6a- Pachyonychia congenital type I Neut ra l 3 

K3-Meesmann corneal dystrophy 

K 4 - Whi te sponge nevus o f cannon 

K6a- Pachyonychia congenital type I 

I I . basic 

keratins 

K 7 1 - K 8 0 
Inner root 

Sheet (hair) 

K 6 b - Pachyonychia congenital type I I 

K81 ( H b l ) , K83 (НЬЗ), K 8 6 (Hb6)֊ 

Mon i le th r i x 

K85 (Hb5)-Pure hair-nai l type 

ectodermal dysplasia 

I I L Desmin Muscles 
Di la ted cardiomyopathy 115 

Fami l ia l restrict ive cardiomyopathy 2 

GFAP(g l ia l f ib r i l la ry 

acidic protein) 

Astrocytes, 

g l ia 

Alexander disease 
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Vimen t in 

Fibroblast, 

endothel ium, 

leukocytes 

Peripherin PSN Neurons Amyot roph ic lateral sclerosis 

I V . 

Neurof i laments 

( L , M , H ) 

Neurons 

N F - L 5 M， and H - Amyot roph ic lateral 

sclerosis 

NF-L-Charco t -Mar ie -Tooth disease 

NF-M-Park inson ' ร disease 

NF-H-Neurona l IF inclusion disease 
I V . 

a-Internexin 

Neurons 

N F - L 5 M， and H - Amyot roph ic lateral 

sclerosis 

NF-L-Charco t -Mar ie -Tooth disease 

NF-M-Park inson ' ร disease 

NF-H-Neurona l IF inclusion disease 
I V . 

Nest in 
Neuroepithel ial 

stem cells 

I V . 

Synemin Muscle 

I V . 

Desmusl in Muscle 

V . L a m i n А / С 
Ubiqui tous ， 

Nuclear lamina 

L a m i n A/C-muscular dystrophies 

(Emery-Drei fuss muscular dystrophy, 

E D M D ) , progeria, (Hutchinson-Gi l ford 

progeria syndrome )， neuropathy 

(Charcot-Mar ie-Tooth disease). 

L a m i n B-l ipodystrophies (Barraquer-

Simons syndrome) 5 leukodystrophy 

(Pelizaeus-Merzbacher disease). 

L a m i n B l 
Ubiqui tous 

(nucleus) 

L a m i n A/C-muscular dystrophies 

(Emery-Drei fuss muscular dystrophy, 

E D M D ) , progeria, (Hutchinson-Gi l ford 

progeria syndrome )， neuropathy 

(Charcot-Mar ie-Tooth disease). 

L a m i n B-l ipodystrophies (Barraquer-

Simons syndrome) 5 leukodystrophy 

(Pelizaeus-Merzbacher disease). 

L a m i n В 2 
Ubiqui tous 

(nucleus) 

L a m i n A/C-muscular dystrophies 

(Emery-Drei fuss muscular dystrophy, 

E D M D ) , progeria, (Hutchinson-Gi l ford 

progeria syndrome )， neuropathy 

(Charcot-Mar ie-Tooth disease). 

L a m i n B-l ipodystrophies (Barraquer-

Simons syndrome) 5 leukodystrophy 

(Pelizaeus-Merzbacher disease). 

Others 
Fi lensin 

Phak imn 

Eye lens 

Fi lensin- Autosomal recessive cataract 

disease 

Phakin in- Autosomal dominant cataract 

disease 
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Table LI: Classification of intermediate filament protein superfamily and their associated 

diseses. 

This classification was based on the new keratin nomenclature which was published 

recently (Porter1 2006; Schweizer et al.1 2006). With the exception of eye lens specific proteins, 

IFs are divided into five groups based on their sequence homology. Group I-IV are localised to 

the cell cytoplasm whereas the type V nuclear lamins build up the nuclear envelope and 

ԽդօբԽտտտ. The keratins are by far the most diverse group of the IFs1 containing over 54 

genes (Hesse et al, 2001; Hesse et al., 2004; Rogers et al, 2004; Rogers et al.1 2005). 

Keratins are subdivided into type I and type II comprising 17 and 20 different proteins 

respectively, which are expressed in epithelial cells. Some of the type I and II keratins, called 

hard ЫгаИт1 are used for production of structures such as hair and nails. In contrast, soft 

keratins are abundant in the cytoplasm of epithelial cells. Type III proteins of the IF family 

include vimentin1 GFAP1 peripherin and de smiห. The type IV IF consists of the three-

neurofilament proteins. These form the major IF of many types of mature neurons and were 

identified by axonal transport studies (Hoffman & Lasek, 1975). Other proteins in this group 

are a-mtemexm, expressed at the early stage of neuron development (Pachter & Liem, 1985), 

nestiň, which plays a role in developmental processes and two other proteins expressed in 

muscle, synemin and desmuslin. Type V IFs consist of nuclear lamins1 which are important 

organisers of the nuclear envelope. Mutations in IFs comprise a large group of human 

diseases. These are represented in all IF groups (Godsei et al. y 2008). 
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Simi lar ly to micro tubฟes and microf i laments, IFs are dynamical ly regulated, fu l l y 

integrated w i th in the cel lular f ramework, and interact w i t h a range o f cellular proteins. 

However there are several basic characteristics that are unique to IFs compared to 

microf i laments and microtubules. They lack the structural polar i ty that is observed for actin 

and microtubules, they are linear rather than globular proteins and are unable to b ind or 

hydrolyze nucleotides as a means o f regulating filament dynamics. The small size o f the 

soluble pool o f I F subunits in vivo1 and their mode and locat ion o f assembly and turnover in 

cells, suggest unique organisation properties (Coulombe et al., 2 0 0 1 ; Windof fer et al, 2004). 

Furthermore, IFs display unique mechanical and biochemical properties. Un l i ke 

microf i laments and microtubules, IFs are flexible and able to cope w i t h stretching to more than 

three t imes their resting length wi thout breaking. (Fudge et al., 2003; Kreplak et ö/.， 2005). 

Under strain, IFs become thinner and more resistant to further deformat ion ("strain s t i f fen ing") 

Moreover, as most o f the changes are reversible, they regain their previous conformat ion once 

the strain is dissipated. This cytoskeletal f i lament network 5 w i t h al l the accessory proteins that 

l ink the filament to ce l l components and other cytoskeletal network systems, contribute to the 

tensile strength necessary for maintaining cel l integri ty (Krep lak et al, 2005; Herrmann et α/., 

2007). 

1.2.4.1 I n t e r m e d i a t e fìlament s t ruc tu re 

Intermediate f i laments show a conserved tr ipart i te domain structure. Most IFs contain a 

conserved central α hel ical rod domain that is usually 310-350 amino acids long. This is 

flanked by non-hel ical carboxyl and amino terminal domains that d i f fer i n length, sequence, 

substructure and properties, leading to the heterogeneity in IF prote in size ( -40 -240 kDa) and 

other characteristics ( K i m & Coulombe, 2007). The rod domain contains heptad repeats 

(subdomains 1A， I B , 2 A , 2 B ) that faci l i tate dimerisat ion between the rod domains (Coulombe 

et αι., 2001). These dimers constitute the fundamental bu i ld ing blocks o f IFs wh ich , depending 

on the I F type, can be either heterodimeric (kerat in) or homodimer ic (v iment in) . The head and 

tai l domains mediate interactions w i t h other f i laments and cel lular proteins, as we l l as serving 

as a substrate for post-translational modif icat ions that regulate funct ion, structure and 
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organisation o f the f i lament (Green et al, 2005; Omary et al., 2006a; Izawa & Inagaki 3 2006; 

Coulombe & Won^^ 2004). 

1.2.4.2 I F assembly p roper t ies in vitro 

The central " r od " domain o f IFs mediates coi led-coi l d imer format ion and represents 

the major d r i v ing force for self-assembly (Chan et aL, 1994; Herrmann & Aeb i , 2004; L i n et 

al, 2005). The assembly o f the IFs includes several steps, starting w i t h the format ion o f 

parallel dimers. Due to the long repeats in the rod domain , cytoplasmic IF proteins fo rm highly 

stable coi led-coi l dimers (42 -44 nm in length) in wh i ch the two part ic ipat ing monomers show 

polar, parallel a l ignment ( K i m & Coulombe, 2007). Subsequently 3 dimers spontaneously 

assemble into ant i-paral lel , non-polar tetramers in the absence o f A T P or GTP (Strelkov et al., 

2003)， w i t h a diameter o f 8-9 nm (Sokolova et al., 2006; Mücke et α ί , 2004). Tetramers 

laterally interact and fo rm octamers, w i th four o f these bu i ld ing up a unit length f i lament 

(ULF) (Sokolova et ö/.， 2006)， wh i ch undergo reorganisation and elongation by longi tudinal 

annealing to f o rm immature IFs. The f inal step is radial compact ion o f the filament v ia lateral 

rearrangements o f protein subunits that reduce the diameter f r om 16 nm to 10-12 n m 

(Sokolova et al, 2006; Herrmann et α/,， 2007; Parry et al., 2007) wi thout increasing the length 

o f the f i lament. 

1.2.4.3 R e m o d e l i n g o f i n te rmed ia te fílaments 

IFs are h igh ly dynamic cel l components wh i ch undergo disassembly and reassembly 

dur ing many processes such as cel l spreading, wound heal ing processes, cell d iv is ion and in 

response to environmental stresses. Phosphorylat ion is a major post-translational event that is 

involved in the regulat ion and reorganisation o f the intermediate f i lament network in cells. IFs 

have specif ic kinases associated w i t h them that control so lubi l i ty 5 assembly 5 interactions and 

disassembly events. In i t ia l experiments highl ighted phosphorylat ion as a major regulatory event, 

w i t h IF proteins observed to be hyperphosphorylated in mitosis (Evans & Fink, 1982). Other 

work showed that v iment in- type IFs were rapidly ЬурефЬозрЬогуІаЇесі and disassembled in cells 
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exposed to phosphatase inhibi tors, wh ich suggested that the assembly o f IFs in interphase cells is 

control led by equ i l ib r ium between phosphatases and kinases (Lee & Cleveland, 1996). A l l 

kinases phosphorylate their target proteins at specific residues ( Inagaki et al, 1996; Kosako et 

al, 1997; Matsuzawa et al., 1998; Goto et al, 2006). In most cases, this targeted 

phosphorylat ion leads to an inh ib i t ion o f IF assembly or faci l i tates disassembly o f the f i laments. 

Those sites o f phosphorylat ion closest to the central rod domain appear to affect f i lament 

assembly 5 wh i ls t those further f r om the rod domain are important for regulat ing the interaction o f 

IFs w i t h other cel lular components (Inagaki et α ί , 1996). In vivo phosphorylat ion o f IFs may 

also inf luence the protein conformat ion as demonstrated by interference w i t h the b inding o f 

antibodies to a dist inct site (Tao et al, 2006). I t has been suggested that IF turnover might occur 

v ia exchanging particles w i th in the f i lament network (V iks t röm et al, 1992) based on v iment in 

fluorescence recovery after photobleaching (FRAP) analysis. More recently, phosphorylat ion o f 

the v iment in end domains have been suggested to regulate IF assembly in vivo (Eriksson et al,, 

2004; Omary et al, 2006b). Studies using fluorescent tagged proteins have identi f ied non-

filamentous "par t ic les" and small f i lamentous port ions o f IFs cal led "squiggles" wh i ch are able 

to incorporate into the po lymer iz ing network o f the cell (W indo f fe r & Leube, 1999; Prahl ad et 

al., 1998; Y o o n et al., 1998). Kerat in particles merge to f o r m squiggles contaimng IF aggregates 

such as U L F s and polymer ized ULFs bu i ld ing up small filaments (Mücke et al., 2004; L i ov i c et 

al., 2003; K i rmse et al., 2007) The cel l periphery has been proposed as a "hot spot" for in i t ia t ion 

o f IF assembly (Windo f fe r et al., 2006). I t is been shown that fluorescent keratin probes in i t ia l ly 

become incorporated into small particles at the cel l periphery, close to act in r ich regions such as 

focal contacts. They then move towards the cel l center 9 becoming rodlets 5 and eventual ly 

integrate into the exist ing IF network (Windof íer et α/., 2004). Th is connection between keratin 

f i laments and focal adhesions became evident after experiments where the focal adhesion 

component ta l in was downregulated and resฟted in the inh ib i t ion o f kerat in f i lament precursor 

format ion (Windo f fe r et al, 2006). Plect in has also been proposed as a possible candidate for 

regulating I F polymer izat ion and dynamics. In addi t ion to having an I F b inding site on the C-

terminus, recently another site (the first C H domain) has been shown to bind IFs. Interest ingly, 

this site is not able to b ind f i lamentous v iment in 5 suggesting that i t m igh t regulate the dynamics 

o f IF polymer izat ion (Sevcik et α/,, 2004). 
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L ive cel l imaging รณdies o f peripherin revealed that 3 0 % o f the non-f i lamentous particles are 

assembled into a cytoplasmic m R N A complex by a process called dynamic co-translation, in 

wh ich IF protein particles are in i t ia l ly formed (Chang et al., 2006). Interediate filaments, such 

as keratin and v iment in precursors 5 are mot i le elements due to their association w i t h M T ร 

(Hel fand et al, 2004) and act in f i lament based motor proteins (Windo f fe r et α ί , 2006). This 

characteristic o f IFs is required for proper assembly into extensive cytoskeletal networks 

(Yoon et al., 1998; Y o o n et al, 2001). The direct ion and rate o f movement o f IF particles 

varies depending on IF type, cel l type and size o f the precursor. However 5 neurofi laments, 

v iment in and per ipher in have several dynamic behaviors in common. They move 6 0 % o f the 

t ime in the anterograde and 4 0 % o f the t ime in the retrograde di rect ion (Wang et al, 2000; 

Hel fand et α/., 2003). For anterograde movement o f v iment in and neurof i laments 3 k inesin has 

been impl icated (Yoon et al, 1998; Prahlad et al, 1998; M o t i l et α/., 2006) whi le dynein has 

been associated w i t h retrograde translocation. Kerat in precursors have been demonstrated to 

move more frequently in the retrograde direct ion compared to type I I I and I V IFs. I n addit ion, 

the kinetics o f kerat in precursors can be d iv ided into two classes, one o f wh ich represents 

slower kinetics requir ing act in filaments and one 3 w i t h a more rapid kinetics invo lv ing 

microtubules ( W ö l l et ๘.， 2005). 

1*2.4.4 M a j o r func t ions o f i n te rmed ia te f i laments 

In contrast to microf i laments and microณbules, intermediate filaments are not 

fundamental ly essential for l i fe at the single cel l level. Unice l lu lar eukaryotes (such as 

Saccharomyces cerevisae) do not have genes encoding IFs (Erber et α/.， 1998) and some 

mammal ian cells can g row in the absence o f a cytoplasmic IF network (Venetianer et a l . , 

1983). Un t i l recently, the ma in role o f IFs was considered to be to ho ld the cell together 

because o f their remarkable mechanical properties. Today, it is k n o w n that they are dynamic, 

mobi le, and in the case o f simple epithelia, that they have a role in apico-basal polar izat ion 

(Or io lo et a l . , 2007). The major role o f IFs in higher vertebrates is to protect epithelial cells, 

muscle cells and astrocytes f rom either mechanical or non-mechanical stresses that cause cel l 

death. Besides structural scaf fo ld ing, IFs also fu l f i l specif ic funct ions in di f ferent cel l types. 

For example, neurof i laments contribute to the radial g rowth o f axons (Lee & Cleveland, 1996)， 
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v iment in IFs play roles in sphingol ip id synthesis (Gi l la rd et a l . , 1998) and keratin 8/18 

filaments protect hepatocytes in the l iver against drug-induced apoptotic stress ( K u et al, 

1998b). 

IFs are connected to desmosomes and hemidesmosomes, v ia a variety o f l inker 

proteins. This IF network gives shape and r ig id i ty to the cel ls, a l low ing them to resist 

mechanical stress. Disrupt ion o f these fibres can occur in certain genetic disorders, result ing in 

skin f rag i l i ty , laminopathies, myopathies, neuropathies, cataracts and premature aging (Omary 

et al, 2004; M a g i n et al, 2004; Godsei et al, 2008) (Human Intermediate Fi lament Muta t ion 

Database, h t tp : / /www. in ter f i l .org) (Tab le 1.1). The importance and funct ion o f kerat in 

intermediate f i laments in skin integrity is wel l -studied in mul t ip le sk in bl istering diseases 

caused by mutat ions in the kerat in genes (Mag in et al., 2007; Omary et al., 2004; G u & 

Coulombe, 2007). I t is clear that mechanical resilience is compromised in epidermal diseases 

w i t h kerat in mutat ions 5 notably in epidermolysis bul losa s implex (EBS) , พЫсһ is a group o f 

heritable bl ister ing disorders o f kerat in 5 and kerat in 14. The mechanical funct ion o f keratins is 

highl ighted in mur ine knockout experiments where the worst phenotypes occur in cells where 

compensation by other keratins is not possible. A n excellent example o f this is shown by the 

targeted delet ion o f kerat in 5, the only type I I kerat in in basal cells 5 that resฟts in neonatal 

death (Peters et al., 2001). I n contrast 5 keratin 14 knockout mice have a m i l d phenotype, most 

l ike ly due to the compensatory expression o f K15 (L loyd et 1995). Simi lar ly 5 patients 

lacking kerat in 5 have not been ident i f ied 5 as it is associated w i t h early lethal i ty, whereas 

humans lacking kerat in 14 display less pronounced phenotypes (Chan et al.1 1994; Batta et al, 

2000; Rugg et al, 1994). This mechanical funct ion o f kerat in is also suggested by 

heterozygous desmoplakin gene mutations in mice wh ich lead to truncated proteins lack ing 

keratin b ind ing domains. These result in neonatal death, accompanied by excessive blister 

format ion, nai l loss and neonatal teeth (Jonkman et al, 2005). 

There is emerging evidence suggesting regulatory funct ions for the keratin intermediate 

f i laments 5 besides the we l l known structural properties. Recently, i t has been suggested that the 

control o f cel l size 3 cel l prol i ferat ion and the response to stress, are dependent on the 

expression o f certain keratins (Pallari & Eriksson, 2006; G u & Coulombe, 2007). IFs, s imi lar 

to other proteins, are regulated by associated proteins and post-translational modi f icat ions. 
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Wi th regard to kerat in associated proteins, several members o f the 14-3-3 protein fami ly 

associate reversibly w i t h kerat in 8/18 in cultured cells, in a phosphorylat ion dependent manner 

(L iao & Omary， 1996). The 14-3-3 protein fami ly 3 the f i rst member o f wh i ch was ident i f ied in 

rabbit brain and named because o f its migrat ion in starch gels (Moore & Perez, 1967)， consists 

o f seven h igh ly conserved proteins that regulate the subcellular d is t r ibut ion and act iv i ty o f 

many proteins, most ly in a serine/threonine phosphorylation-dependent manner ( Izawa & 

Inagaki, 2006). In response to intra- or extracellual signals, reorganisation o f the keratin 

intermediate filaments occurs 3 leading to generation o f IF granules and increases เท the soluble 

pool o f IF subunits. A t the same t ime 5 serine phosphorylat ion creates b ind ing sites for the 14-3-

3cโ adapter prote in, as is observed for keratin 18 ( K u et al, 1998a). This b inding is a 

requirement for cel l cycle progression (Margol is et al, 2006; K i m et al, 2006). Recruitment 

o f the 14-3-3 proteins to kerat in 17 has been shown to regulate protein biosynthesis and cel l 

growth v ia the A k t / m T O R (the mammal ian target o f rapamycin) s ignal l ing pathway, wh ich 

plays an important role in rapid cell g rowth in response to in jury ( K i m et al, 2006). Lately, 

another aspect o f kerat in funct ion has emerged, suggesting a role in melanosome transport. 

Mutat ions residing in the head domain o f keratin 5 and kerat in 14 appear to be a common 

genetic mechamsm in Dow l ing -Degos disease ( D D D ) , a p igmentat ion defect result ing in 

hyperpigmented macules and papules affect ing major areas o f the sk in (Betz et al., 2006; L iao 

et al, 2007). These mutat ions are also observed in EBS w i t h mott led pigmentat ion (Harel et 

ai, 2006) and in Naegeli-Fanceschetti-Jadassohn syndrome, а Ьуреф і§теп Їа Ї І0П o f the skin 

that tends to s lowly disappear w i t h age (Lugassy et ö/.， 2006). Emerg ing data have also shown 

involvement o f kerat in IFs in mul t ip le kinds o f stresses and apoptosis. As an example, 

transgenic mice overexpressing the kerat in 8 G61C mutat ion showed induced vulnerabi l i ty to 

stress-induced l iver in jury and apoptosis ( K u & Omary, 2006). 

Taken together, there is evidence supporting the involvement o f intermediate f i laments 

in six broadly def ined funct ions: structural support, cytoarchitecture 3 stress response, regulat ion 

o f signal l ing pathways towards apoptosis, protein synthesis and organelle/vesicle distr ibut ion. 

36 



1.3 Cytoske le ta l L i n k e r Pro te ins : P l a k i n F a m i l y 

Recent ly 5 i t has become increasingly obvious that the cytoskeletal network systems are 

not fu l f i l l i ng their roles in isolat ion, but are connected to each other to play dynamic roles in 

cel l architecture and cel l integri ty. The proteins that inter l ink the cytoskeletal network systems 

are known as plakinร (U i t to et al, 1996) ог cytol inkers (Wiche , 1998). Further studies have 

opened up this f a m i l y ' ร role and cytol inkers have been found to l i nk to actin and microtubules 

in the nervous system (Yang et al, 1999) and to play a role in scaf fo ld ing o f s ignal l ing events 

(Sonnenberg & L i e m , 2007). 

Plakinร were first ident i f ied in epithelial cells 9 where they tethered IFs to membrane-

associated adhesive junct ions, such as desmosomes and hemidesmosomes, and cel l -matr ix 

junct ions (Ruhrberg & Watt 3 1997). The members o f this fami l y are per ip lakin, envoplakin, 

plect in, desmoplakin, epip lak in, bul lous pemphigoid antigen 1 ( B P A G - 1 ) and the microtubule-

actin crossl ink ing factor ( M A C F ) . These proteins have been proposed to preserve the 

mechanical integr i ty o f the cel l in tissues that are exposed to continuous stress, such as the 

skin, heart and muscle, by network ing intermediate f i laments and l i nk ing them to their 

membrane attachment sites. They have also been found i n the nervous system, where they 

appear more complex (Leung et al., 2001). Each p lak in protein shows a characteristic tissue-

specific expression pattern and subcellular d is t r ibut ion, suggesting a dist inct funct ional role for 

each indiv idual protein. Plakinร may have addit ional roles in signal transduction as they can 

interact w i t h a var iety o f s ignal l ing molecules. Mutat ions in p lak in fami l y genes lead to defects 

in tissue integri ty and funct ion o f the skin, muscle and the nervous system both in human and 

mouse (Tab le 1.2). 

Plakinร are h igh ly conserved through evolut ion, w i t h plect in- l ike proteins also present 

in cells o f algae, Chlamydomonas eugametos (Hendrychová et al., 2002). The invertebrate 

р іаюпร in Drosophila melanogaster and Caenorhabditis elegans were discovered f rom genetic 

screens (Jefferson et al, 2004). The Drosophila gene Shortstop (Shot) was ident i f ied i n a 

screen for genes that control neuromuscular specif ic i ty (Vactor et al,, 1993). Subsequently, i t 

was found to be al lel ic to another mutat ion cal led КаЫро (Lee et ai, 2000) wh ich was 

ident i f ied in a screen to isolate genes required for integrin-mediated adhesion (Prout et al, 

1997; Gregory & B r o w n , 1998). There are three k n o w n Shot isoforms. Shot I mediates c e l l -
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matr ix adhesion, Shot I I mediates lateral cel l adhesion (Roper & B r o w n 5 2003) and the th i rd 

variant, Shot I I I， has been described in one report, but no func t ion has yet been described (Lee 

et al, 2000; Röper & B r o w n , 2003). The c. elegaňs p lak in , vab-J о9 was ident i f ied in a genetic 

screen for embryonic morphological defects (Bosher et al, 2003). vab'io generates protein 

isoforms w i t h dist inct d ist r ibut ion and funct ion in the epidermis (Bosher et al, 2003). These 

isoforms are termed V A B - 1 OA and V A B - 1 0 B . 

1,3.1 S t ruc tu re o f the cy to l inkers 

A l l p lak in fam i l y members are bui l t f r om a combinat ion o f d i f ferent modules i l lustrated 

in F i gu re 1,2， wh ich bui lds up a head-rod-tail structure 5 w i t h a specif ic funct ion for each 

domain (Green et a l . , 1992). I n some fami ly members, an N- terminal calponin-type act iņ 

b ind ing domain ( A B D ) (Bañueloร et al., 1998) is present. Th is calponin-homology (CH) 

domain contains four α-hel ices connected by loops and short helices. Each domain contains 

approximately 10 residues and is present in signal l ing and cytoskeletal proteins (Stradai et al, 

1998; G imona et al., 2002). C H domains are subgrouped into C H I and C H 2 due to funct ional 

diversi ty, and are able to homodimerise and heterodimrise (Fontao et al, 2001 ; Young et al., 

2003). C H I and C H 2 are responsible for actin b ind ing in some cytol inkers. The af f in i ty to bind 

actin is lower in the case o f C H 2 and CH1-CH2 , than in C H I alone (Winder et α/.， 1995). The 

A B D is fo l lowed by a p lak in domain wh i ch is proposed to contain six α-hel ical bundles and 

play a role in protein-protein interactions (Leung et α/.， 2002; Rezniczek et al. 9 2004; Jefferson 

et al,， 2007). These regions were named as N N , z， Y， X， พ and V (Green et al., 1992). Plakinร 

are evolut ionar i ly related to the spectraplakins, cytoskeletal giants w i t h characteristics o f both 

plakinร and spectrin (Röper et al., 2002; Määttä et ai, 2004). The spectraplakins were named 

by Röper and colleagues in 2002， to encompass al l proteins that have similari t ies to p lakinร and 

spectrin fami ly proteins. This includes the Shot gene in Drosophila and the dystonin/BPAGl 

and MAC Fl genes in mammals. This relationship was conf i rmed after crystal lography studies 

o f both plect in and BPAG-1 (Jefferson et ๙.， 2007; Sonnenberg et al, 2007). The crystal 

structure o f the plect in N-terminus revealed the structure o f the first t w o tandem repeats o f the 

p lak in domain. This domain is formed by two spectrin repeats ( S R I , SR2) connected w i t h a a -

hel ix that spans between these two regions (Sonnenberg et al, 2007). A l though these two 
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spectrin repeats are very simi lar, they d i f fer in the hydrophobic core o f the second repeat, 

wh ich sl ight ly alters the structure. This domain is adjacent to the A B D 5 suggesting that it may 

act as a fijnctional unit. Sequence analysis o f the p lakin domain revealed further repeats, w i t h 

up to eight or nine consecutive spectrin repeats. Th i s region is organized into an array o f 

tandem modules, w i t h a Src-homology 3 domain ( ร H 3 ) inserted in the middle o f the fifth 

repeat (SR5) (Sonnenberg et al., 2007). The centre o f the protein forms a coi led co i l rod-

domain (CC-rod) wh ich can adopt many di f ferent conformat ions 5 suggesting that i t may give 

flexibility to the protein 5 fac i l i ta t ing the response to mechanical stress in muscles and sk in. 

The coi led-coi l rod domain contains heptad repeats that mediate homodimerisat ion or 

heterodimerisation. The с-terminal region harbours p lak in repeat domains (PRD) w i t h 

intermediate f i lament-b ind ing properties that in some cases require an associated l inker ( L ) 

subdomain. The p lak in repeat domain comprises vary ing numbers o f repeating uni t 

subdomains wh ich are termed A， в or c, depending on their degree o f s imi lar i ty to each other. 

A l l p lak in repeat domains consist o f 4.5 copies o f a 38 amino acid repeat that adopts a globular 

structure w i t h a unique fo ld (Choi et al., 2002) wh ich is important for b ind ing to IFs (Fontao et 

al., 2003). The flexible l inker region that is present between the в and с subdomains in some 

cytol inkers might be required to a l low these mot i fs to simultaneously b ind to IFs (Sonnenberg 

et al.1 2007). However, in the case o f per ip lakin, only the l inker domain is able to bind the 

protein to IFs. 

I n some proteins such as в P A G - l a , B A P G - l b , N4ACF- la and M A C F - l b , the spectrin 

repeat (SR)-containing rod domain is fo l lowed by t w o ca lc ium b ind ing mot i fs (putative 

calmodul in»l ike EF hands), a Gas2-homology region called the G A R domain and f ina l ly a 

domain containing GSR (Gly-Ser-Arg) repeats. The G A R domain is thought to be required for 

M T b ind ing. Other cytol inkers w i thout a G A R domain, b ind to M T through their GSR repeats 

(รนท et ๘ . , 2 0 0 1 ; Yang et ai, 1999). 
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Figure 1.2։ Schematic diagram of the plakin family members. 

The CH actin binding domain is present in plectin, BPAG-1 a/bf MACF-la/b ond in the 

invertebrate VAB-10A/B and Shot I / I I / I I I proteins. Plakinร (with the exception of epiplakin) 

also contain an N-terminal region consisting of 4-9 spectrin repeats with a central SH3 

domain and a central coiled-coil rod domain. The spectrin rod domain is present in BP AG-1 

and MACF-1 and the invertebrate plakins VAB-1 OB and Shot I / I I . This is followed by a 

microtubule binding domain, consisting of EF hands and a Gas2 related (GAR) domain with a 

glycine-serine-arginine (GSR) domain. In the other plakinร lacking in the microtubule binding 

site, there are three plakin repeat domains (PRD). These are marked as А, в and с or in case 

of incomplete A 'a ' and в ъ ， (PRD) domaพร. In the invertebrate plakins, there are a series of 

plakin repeats that are not organized into PRD. The c֊ է er minal linker region found in the 

epithelial plakins plays a role in the interaction with intermediate filaments. 
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Figure ԼՅ։ Crystal structure displaying the first tandem pair of spectrin repeats found in plectin 

and an overlap comparison with BPAG-L 

A. Cartoon representation of the first two spectrin repeats in plectin. Each of them built up from 

three а-helices arranged in a left handed supercoil. The first bundle contains helices At в and с1 

while the second bundle contains helices A\ B'and c\ The first bundle referred as SRI (Spectrin 

Repeats 1) and the second as SR2. Similar а-helices in each domain are presented in the same 

colour. B. Comparison1 highlighting the orientation of the spectrin repeats in plectin and another 

cytolinker BPAG'L Crystal structures adopted from Sonnenberg et al,, 2007. 
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1.3.2 P e r i p l a i d n 

Or ig ina l ly 5 per ip lak in (195kD) was ident i f ied as a precursor o f the corni f ied cel l 

envelope (CE) in terminal ly dif ferentiated epidermal keratinocytes (S imon & Green, 1984; M a 

& S Ա Ո 3 1986; Ruhrberg et al, 1997). Periplakin has also been found in two-layered and 

transit ional epithel ia such as the mammary gland and bladder (Ruhrberg et αι., 1996; Ruhrberg 

et ai, 1997; A h o et al, 1998) and it is highly expressed in some non-epithel ial tissues, such as 

in the brain (Aho et al 7 1998). Periplakin was also found i n lens f ibre cel ls, fo rming a cort ical 

complex w i th ezr in, per iax in, and desmoyokin (Straub et α/·， 2003). I n both the brain and lens ? 

the pr imary funct ion o f per ip lak in remains unclear. 

1·3.2·1 O v e r a l l s t r uc tu re o f p e r i p l a k i n 

F igu re 1.4 shows a detailed structure o f per ip lak in in comparison w i th another 

cytol inker, p lect in. Per ip lakin is predicted to contain a globular NH2-terminaI domain 3 but is 

distinguished f r o m the other cytol inkers, such as plect in, as i t lacks the act in-binding domain 

( A B D ) and the first, second and sixth ( S R İ , SR2， SR6) spectrin repeats at the amino terminus. 

The domain connect ing the first spectrin pair to the next pair o f per ip lakin, approximately 

corresponds to the N N region o f the p lak in domain, the SR3 to the ζ region, the f irst ha l f o f 

SR4-SR5 to the Y region, X to the SR5 region, พ to the SR7 and f ina l ly V to the SR8-SR9 

region (Sonnenberg et al, 2007). The central rod domain mediates assembly o f per iplakin into 

parallel homodimers 5 or heterodimers w i t h envoplakin (Ruhrberg & Watt , 1997; DiColandrea 

et al., 2000). The C "terminus o f per iplakin also di f fers f r om other p lak in proteins as i t lacks 

any o f the sequence-related subdomains. However, i t does contain the α-hel ical l inker region 

that connects the C-subdomain to intermediate filaments (Karashima & Watt， 2002). 
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Figure 1.4: DetaUed full structure of periplakin and plectin, also daplaying the organization of 

their phkin domains. 

Schematic representation of plectin and periplakin, highlighting that periplakin lacks actin binding 

domain along with spectrin repeats SRI, SR2 andSR6 on the amino terminus. It also lacks in all PRD 

(plectin repeat domain) on the С-terminus, but importantly still contains the linker domain. 
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1.3.2.2 Ro le o f p e r i p l a k i n i n corn i f íed envelope f o r m a t i o n 

The outermost, corni f ied, lay er ร o f the epidermis are composed o f terminal ly 

dif ferentiated keratinocytes know as corneocytes. This specialised structure deve lops as a 

result o f a complex terminal di f ferent iat ion o f strat i f ied squamosus epithel ia (F igu re 1.5). 

Corneocytes provide an insoluble protein structure that is assembled to replace the plasma 

membrane, funct ion ing as a scaffold for l i p id attachment. This prote in and l ip id structure is 

called the corn i f ied cel l envelope (CE) and is assembled from a great variety o f precursor 

proteins (Jarnik et al, 1998). The CE is extremely insoluble, and is composed o f two major 

parts. The lOnm (approximately) th ick protein envelope is formed by covalent cross-l inking o f 

specific structural proteins by sulphydryl oxidases and transglutaminases (TGases) ( Н о Ы , 

1990; Polakowska et ๘.， 1991; Eckert et ๗., 1997). T G 1/3 and 5 are invo lved in CE format ion, 

and these enzymes are essential for normal barrier assembly (Matsuk i et al., 1998). This 

protein layer is coated by the l ip id envelope wh ich is approximately 5nm thick, w i t h layers o f 

l ipids that are covalently attached to the exterior o f prote in envelope (Wertz & Downing; 1 

1990). 

The first step in the format ion o f the C E takes place i n the spinous layers (F igu re 1.6) 

and involves the synthesis o f the corฌ ่ f led envelope structural proteins. It is believed that the 

assembly o f the CE is regulated and triggered by a rise in intracel lular calc ium concentration, 

coincidental w i t h signals to init iate terminal d i f ferent iat ion in epithelia. As the intracellular 

calc ium concentrat ion rises in suprabasal cells, the level o f envoplak in and per ip lakin is 

increased (Ruhrberg et al., 1996; Ruhrberg et al, 1997). A short t ime later, invo lucr in is 

expressed 5 w h i c h was the first described C E precursor (Rice & Green, 1977). T G I and TG5 

enzymes are expressed and crosslink envoplakin and рег ір іаюп to f o rm stable heterodimers 

thereby anchoring them to the desmosomes as the calc ium level rises. Then 5 TGs j o i n together 

the ріаюпร and invo lucr in by forming lysine isopeptide crosslmks (Steinert & Marekov, 1997; 

Nemes & Steinert, 1999) in a calcium-dependent manner. T G I also crosslinks other 

membrane-associated and desmosomal proteins 3 wh i ch leads to changes in cel l-cel l 

connections and communicat ion (Kee & Steinert, 2001). Gradual ly , the involucr in-envoplakin-

per ip lakin protein complexes fo rm a monomolecular layer a!ong the whole inner surface o f the 

cell membrane 3 inc lud ing desmosomes, fo rming a " sca f fo ld " (Ka l i n in et al, 2001). 
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Lor i c r i n and small prol ine-r ich proteins (SPRs) together constitute the main component 

o f the epidermal C E , and seem to funct ion as main strengthening proteins for the CE on its 

cytoplasmic face (Steinert & Marekov 5 1995). A l though lo r ic r in is an insoluble protein and is 

localized in the cytoplasm o f the granular layer cells, the SPRs are very soluble. Therefore 

when these proteins are cross-l inked 5 lor icr in is solubil ised assisting translocalisation to the cel l 

periphery (Ka l i n i n et al.， 2001). M ino r amounts o f other proteins, inc luding repeti l i , 

t r ichohyal in, cystat in a and elaf in also become crossl inked to the CE (Steinert & Marekov, 

1995). 

The epidermal d i f ferent iat ion complex ( E D C ) on human chromosome 1 ( l q 2 1 ) is 

enriched in genes associated w i t h epidermal terminal d i f ferent iat ion (Backendor f & Hoh l , 

1992; Engelkamp et al,, 1993; Mischke et al, 1996). A s w e l l as encoding single-terminal 

di f ferent iat ion genes, the EDC also contains "c lusters" o f related genes, such as s 100 genes, 

small pro l ine-r ich region (SPRR) genes, and a recently ident i f ied gene cluster, the late 

corni f ied envelope ( L C E ) genes (previously XP5 , E I G , smal l pro l ine- r ich- l ike, late envelope 

protein (LEP) genes) ( Z h a o ^ 1997; Marshal l et α/., 2 0 0 1 ; Wang et ai, 2001). Analysis 

o f L C E genes revealed that the cluster is organised into three groups, w i th these genes 

responding as a group to environmental s t imul i such as ca lc ium levels and ultraviolet ( U V ) 

l ight , h igh l ight ing the funct ional signif icance o f these groups (Jackson et al, 2005). 
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Figure L 5: Schematic diagram of the skin structure and its terminal differentiation. 

The basal layer of the epidermis consists of undifferentiated mitotically active keratinocytes 

that are attached to the basement membrane. In the granular layer keratinocytes detach from 

the hasal lamina and start to undergo terminal differentiation. The cells flatten and 

differentiation specific proteins are expressed such as keratin 1 and keratin 10· The granular 

layer of the epidermis is characterized by the presence of keratohyalin granules. In the same 

layer organelles are disintegrated and the plasma membrane is replaced by the cornified 

envelope. The cornified layer consists of dead cells that shed into the environment during 

desquamation. 
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tigure L 6: Schematic diagram detailing the formation of the cornifled envelope. 

As an initiation step structural proteins of the cornifled envelope are synthetised in the spinous 

layer. Trans glut am inas es 1 and 5 (TGI and TG5) crosslink periplakin and envoplakin under the 

cell membrane anchoring them to desmosomes. In the second step1 which takes place in the 

granular layer, lipids are covalently attached to the cornifled envelope proteins whilst loricrin 

and small proline rich proteins become cwsslmked. In the granular layer during the formation 

of the lipid envelope, lipids form lamellar bodies1 which are linked to the comified proteins by 

TGI and TG5. The desquamation phase in the cornifled layer involves further crosslinking of 

loricrin and other proteins to the protein scaffold by TGI. The location of these progressive steps 

are presented in the figure above (Figure adaptedform Candi et ai, 2005). 
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1,3.2.3 Consequence o f p e r i p l a k i n ab la t ion 

I t has been reported that when periplakin is deleted by gene targeting in mice, there is 

normal epidermal barrier format ion (Aho et a l . , 2004). I n l ine w i t h this result, mutations in the 

gene encoding per ip lak in are not associated w i t h genetic disease in humans. Furthermore 3 the 

loss o f expression o f other scaffold proteins that bu i ld up the C E , such as envoplakin and 

involucr in , also results in normal CE assembly and produces v iable, fert i le mice, suggesting 

that this might be achieved through compensatory mechanisms (D i jan et al., 2000; Määttä et 

al,， 2001). Th is has been demonstrated in lor icr in-def ic ient mice, where an increased 

expression o f members o f the SRP fami ly and repetin are thought to compensate for the 

lor icr in def ic iency (Jarnik et al., 2002). Thus, no single molecule has been found to be cr i t ical 

for CE integri ty. Surpr is ingly, the lack o f рег ір іаюп d id not alter the expression level o f other 

epidermal proteins such as envoplakin or invo lucr in ( A h o et a l . ? 2004). Some studies speculate 

that cross- l inking between per iplakin and the CE is a result o f a default mechanism for 

disposing o f these proteins dur ing terminal d i f ferent iat ion (Aho et al . 5 2004). This is known as 

the "dus t -b in " hypothesis and predicts that the composi t ion o f the CE might be determined by 

the avai labi l i ty o f substrate proteins at the moment when TGs mediate cross- l inking (Miche l et 

α ί , 1988; Regmer et α / ·， 1993). This hypothesis is supported by the observation that the 

breakdown o f organelles dur ing terminal d i f ferent iat ion correlates w i t h the appearance o f a 

morphologica l ly def ined CE. O n the other hand 3 not al l proteins that had been targeted for 

destruction (such as filaggrin and keratin 1 and 10) were necessarily cross-l inked to the C E 

(Steven & Steinert, 1994). Recently, t r iple knock-out mice fo r envoplakin, invo lucr in and 

per iplakin were generated, wh ich demonstrated delayed epidermal barrier format ion dur ing 

embryonic development, defects in the corni f ied layer and signs o f hyperkeratosis postnatally 

(Sevi l la et al., 2007). Simultaneous loss o f per ip lak in 5 envoplak in and involucr in also tr iggered 

an accumulat ion o f C D 3 +
 5 C D 4 + τ cells in the skin 3 and down-regulat ion o f proteases, result ing 

in defective f i laggr in processing (Sevi l la et al., 2007). Thus 5 envoplakin, per ip lakin and 

involucr in have been proposed to contribute to pathological human skin condit ions such as 

ichthyosis vulgar is and atopic dermatit is (Sevi l la et al.， 2007). 
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1.3.2.4 Pe r i p l ak ìn i n cancer progress ion 

I n excised tissues f rom patients w i t h pr imary oesophageal cancer, immunoblo t t ing 

revealed that per ip lak in was signif icant ly downregulated in oesophageal cancer. 

Immunohistochemistry subsequently showed that per ip lakin was main ly localized at cel l -cel l 

boundaries in normal ep i the l ium 5 whereas it disappeared f r o m cel l boundaries, shi f t ing to the 

cytoplasm, in early cancers, and was scarcely expressed in advanced cancers. Therefore, i t has 

been suggested that per ip lak in could be a usefti l marker for detection o f early oesophageal 

cancer and evaluation o f tumor progression (N ish imor i et al., 2006). Other plakinร have also 

been impl icated in cancer progression 5 w i t h downregulat ion o f desmoplakin found in poor ly 

differentiated breast tumours (Davies et al, 1999) and mutat ions o f M A C F - l also found in 

breast tumours (S jöb lom et al, 2006). 

1.3.3 E n v o p l a k i n 

Envop lak in (210kD) 5 s imi lar ly to per ip lakin (195kD) , was ident i f ied in a proteomic 

search for CE proteins in keratinocytes (S imon & Green, 1984). I t was also found in terminal ly 

dif ferentiated keratinocytes where it part ial ly colocalised w i t h desmoplakin at desmosomes 

(Ruhrberg et al, 1996). Envoplak in is expressed in the suprabasal layers o f stratif ied 

squamosus epithel ia, but not in simple epithelia or non-epithel ial tissues. The structure o f 

envoplakin is very s imi lar to per ip lakin, as described above, al though a P R D , called the с 

subdomain 5 exists i n the envoplakin C-terminus. Envoplak in and per ip lakin have smaller C-

terminal domains than the other p lakinร and they also have the potential to fo rm heterodimers 

w i th each other (Ruhrberg et α ϊ , 1997). A detailed analysis o f per ip lakin and envoplakin 

revealed that the rod domains o f each protein are more closely related to each other than to 

those o f other plakinร. I t was suggested that the two proteins could fo rm two-stranded 5 parallel 

homodimers or heterodimers wh i ch could be stabil ized by extensive inter-chain ion pai r ing 

(Ruhrberg et al, 1997). EnvoplaWn knockout mice do not have any obvious pathological 

phenotype in the sk in or other epithelia and also show no evidence o f epidermal f ragi l i ty or 

bl ister ing (Määttä et al, 2001). There was only a sl ight delay observed in epidermal barrier 
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format ion, wh ich had no effect later i n l i fe. This mild effect o f envoplaWn loss could explain 

why no inherited human disease caused by envoplakin mutat ion has been reported to date. 

L 3 . 4 Desmop lak in 

Desmoplak in (DP) was first discovered as a protein l inked to the desmosomes in 

isolated epidermis (Sker roพ & Matol tsy, 1974). The cytoplasmic proteins o f the desmosome 

interact w i t h the IF-b ind ing protein desmoplakin, wh ich anchors stress-bearing IFs to the 

desmosomal plaque (Godsei et al., 2004). Al ternat ive spl ic ing in the region o f the central rod 

domain results in two isoforms o f desmoplakin. Desmoplak in I (DPI ) is a 322-kDa protein and 

is expressed in al l tissues w i t h desmosomes. The other iso form, desmoplakin I I (DPI I ) 

weigh ing 259-kDa, is expressed in non-strat i f ied tissues at l o w level and is absent f rom the 

heart (Green et al., 1990). DP I I also lacks most o f the rod domain and therefore can be found 

as a monomer (O ł Keefe et al., 1989). Desmoplakin is targeted at the desmosomal inner plaque 

through interact ion o f its N-terminal p lak in domain w i t h p lakog lob in and plakophi l ins, wh ich 

then l ink to desmosomal Cadherins (Kowa lczyk et al, 1997; Bornslaeger et al., 2001). 

However, there is also evidence that desmoplakin is able to bind desmosomal Cadherins 

directly (Smi th & Fuchs 5 1998; Bornslaeger et al, 2001). Recent ly 5 desmoplakin was found in 

non-classical desmosome-related junct ions in di f ferent tissues, where the junct ional structure is 

considerably d i f ferent f r o m epithelial desmosomes. Desmoplak in ( w i t h Cadherins and 

plakoglobin) is also a constituent o f a specialized vascular and lymphat ic endothelial cel l 

junc t ion cal led the "complexuร adhaerens" (Borrmann et al., 2006; Hämmer l ing et al, 2006). 

Moreover 5 the composi t ion o f the intercalated disk in heart muscle revealed a specialized 

region o f the cardiomyocyte membrane where desmoplakin is combined w i t h Cadherin 

components. A s a result, these junct ions have been reclassified as "area composi ta" o f adhering 

junct ions (Franke et al, 2006). 
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1.3.4.1 S t ruc tu re o f desmop lak in 

The study o f the protein structure o f desmoplakin reveals several spectrin repeats that 

are interrupted by a SH3 region (Röper et al, 2002; Green et al, 1992; Koster et al, 2004). 

The central coi led-coi l rod domain is fo l lowed by the C-terminal region w i th three homologous 

р іаюп repeat domains (PRDs), A , B ， and c . The в and с subdomains o f desmoplakin adopt a 

globular structure that can direct ly b ind to the I F protein v imen t in (Fontao et al., 2003). 

Furthermore, DP—IFs interactions are regulated by phosphorylat ion o f Ser2849 w i th in the DP 

С-terminus (Fontao et α / .， 2003; Godsei et al, 2005). 

1.3.4.2 F u n c t i o n o f desmop lak in i n sk in , card iac muscle and d u r i n g embryogenesis 

Epidermis-specif ic knock-out o f desmoplakin in the developing mouse embryo had 

l i t t le effect on desmosome structure and only the interaction w i t h IFs was affected, result ing in 

skin f rag i l i ty (Vas ioukh in et al., 2001). Interestingly, i n humans haplo- insuff ic ient for 

desmoplakin, the recruitment o f desmoplakin into desmosomes decreases (Armstrong et aL, 

1999; Whi t tock et al, 1999) causing blistered areas on the palms o f the hands and soles o f the 

feet (palmoplantar keratoderma). N o such phenotype was observed in heterozygous 

desmoplakin knockout mice (Gal l icano et α / .， 1998). However , i n some patients, the 

heterozygous phenotype d id not result in skin f rag i l i ty but a missense mutat ion on the other 

allele tr iggered the abnormalit ies to occur (Whi t tock et al, 1999). Th is underl ies the fact that a 

certain amount o f funct ional desmoplatón has to be produced to mainta in normal skin integri ty. 

Desmoplakin has recently been impl icated i n the rearrangement o f the microtubule 

cytoskeleton dur ing epithel ial d i f ferent iat ion. I n the suprabasal layers o f the skin o f w i l d type 

mice, microtubules were concentrated at the cel l junct ions, whereas in desmoplakin knock-out 

mice, the microณbules were found to be aggregated in the cytoplasm (Lechler & Fuchs, 2007). 

Mutat ions in the desmoplakin gene are responsible for other diseases as we l l . A recessive 

homozygous mutat ion (7901delG) in the human desmoplakin gene produces a premature stop 

codon leading to a truncated desmoplakin protein missing the с domain o f the tai l region. This 

truncated desmoplakin causes a generalized striate keratoderma part icular ly af fect ing the 

palmoplantar epidermis 5 woo l l y hair and a di lated left ventr icular cardiomyopathy (Norgett et 
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al., 2000). A lethal condi t ion called acantholytic epidermolysis bullosa was shown to result 

al., 2005). A dominant missense mutat ion (S299R) in desmoplakin 5 located in the p lak in 

domain, results in a f o rm o f arrhythmogenic r ight ventr icular cardiomyopathy ( A V C R ) 

(Rampazzo et α/.， 2002). Other missense mutations in the p lak in domain that affect both the 

heart and sk in have also been reported ( พ h i t t o c k et α ί , 2002). These are l i ke ly to be caused by 

a fai lure o f desmoplakin to b ind p lakoglobin 5 since p lakoglob in mutations cause simi lar 

disorders in both humans and mice (Ruiz et al, 1996; M c K o y et al, 2000). 

Desmoplak in nu l i mouse embryos do not survive beyond E6.5 o f gestation due to the 

fai lure o f the surface endoderm to resist mechanical stress (Gal l icano et al., 1998). 

Desmoplakin -/- embryos showed moφho log ica l abnormali t ies, w i t h the endoderm o f these 

mutant embryos mechanical ly fragi le and the embryos s igni f icant ly smaller than normal. These 

defects are d i rect ly related to the reduction in the number o f desmosomes in developing 

embryos, and the few desmosomes st i l l present were not attached to kerat in IFs. Interestingly, 

the reduction in the numbers o f desmosomes result ing f rom desmoplakin delet ion in epidermis, 

was not observed in mice (Vasioukhin et al, 2001). I n order to overcome the early embryonic 

death when desmoplatón is completely absent f r om the embryo, tetraploid (wi ld- type) and 

d ip lo id (mutant) morulae were aggregated. I n this case, embryos develop beyond E6.5, but die 

after gastrulation due to major defects in heart muscle, the neuroepi thel ium, sk in and the 

microvasculature (Gal l icano et al., 2001). Recently i t was shown that desmoplakin also plays a 

role in format ion o f microvascular tubes in culture, in addi t ion to its funct ion to stabi l iz ing 

these vessels (Zhou et al., 2004). 

1.3.5 P lec t in 

Plectin, a protein o f h igh molecular mass (approximately 500 kDa) , was first isolated f rom 

cultured cells as a major IF-associated protein (Pytela & Wiche, 1980). Add i t iona l ly , a novel 

hemidesmosome protein named as H D 1 was isolated f r om bovine corneal epithel ial cells 5 and 

was later ident i f ied as plect in (Owaribe et al, 1991; Hieda et al., 1992). Plectin is w ide ly 

expressed in a variety o f cel l types 5 inc luding sk in and striated muscle. Plect in play roles in cel l 
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and tissue integri ty by cross-l inking between the three cytoskeletal networks and stabi l ising 

cel l -matr ix and cel l -cel l contacts (Wiche 5 1998; Leung et al., 2002). Plect in has an A B D 

consisting o f calponin-homology subdomains at the N-terminus 5 and a p lak in domain wh ich is 

fo l lowed by a central rod domain. A t the C-terminus, p lect in harbours six plect in repeat 

domains (PRD) , w i t h the last two PRD jo ined by a l inker domain พ Ы с һ is cr i t ical for IF 

binding (N iko l i c et al, 1996). 

Plect in serves as an anchorage site for IFs to the cytoplasmic domain o f integrin α 6 β 4 

(β4 subunit) and B P A G - 2 in hemidesmosomes (Niessen et al., 1997; L i t jens et al., 2006), 

mediat ing firm adhesion o f the basal cells to the basement membrane (Jones et al. 9 1998; 

Borradori & Sonnenberg, 1999). Interestingly, the integr in ß4 b inding site and the act in 

b inding sites are over lapping, wh ich might prevent p lect in f rom b ind ing these two proteins 

simultaneously, possibly explaining the absence o f act in f r om hemidesmosomes (Geerts et ai, 

1999; Koster et al., 2003). Furthermore, plect in is present in focal adhesion contacts and stress 

fibres (Seifert et α / .， 1992; Sánchez-Aparicio et al., 1997)， as we l l as being a component o f 

desmosomes (Eger et al., 1997). I n other studies, plect in has also been localised to Z-discs and 

dense plaques o f striated muscle (Wiche et al., 1983; Zern ig & Wiche, 1985). 

1.3.5.1 Ro le o f p lec tm i n cytoskeletal dynamics 

Another important funct ion o f p lect in is to cross-l ink intermediate filaments to 

microtubules and to the act in cytoskeleton. Plect in has been shown to interact w i t h act in, and 

also bundle act in filaments via dimerisat ion o f the A B D (Fontao et al, 2001). Plectin is also 

understood to regulate actin f i lament dynamics v ia phosphat idyl inosi tol , 4 55-biphosphate 

(PIP2) (Andra et al, 1998). Plectin is an early substrate fo r capsase 8， suggesting that i t may 

play roles in reorganisation o f the act in cytoskeleton dur ing death receptor-mediated apoptosis 

(Stegh et al, 2000). I n addi t ion, plect in is an important organiser o f the IF system. Plect in-

deficient keratinocytes lose proper orthogonal IF cross-l inWng, mak ing them more vulnerable 

to stress induced IF d isrupt ion; this addit ional ly leads to changes in cel l s ignal l ing and cel l 

migrat ion (Osmanagic-Myerร et al., 2006). Simi lar results were observed when the interaction 

o f plect in and integr in ß4 was disturbed (Geui jen & Sonnenberg, 2002). 
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1.3.5.2 P lec t in and s ignal t r ansduc t i on 

The role o f p lect in in signal l ing pathways is beginning to be explored. It has been 

shown that in p lect in deficient keratinocytes, E rk 1/2, С-Src and PKC5 are upregulated 

(Osmanagic-Myerร et al, 2006). Mapp ing o f the protein-protein interactions o f plect in has 

ident i f ied b ind ing sites for several signal l ing molecules, inc luding R A C K 1 (receptor for 

activated с kinase- 1) (Osmanagic-Myerร & Wiche, 2004) 5 the non-receptor tyrosine Wnase 

Fer (Lunter & Wiche, 2002) and the regulatory γ ΐ subunit o f AMP֊activated protein kinase 

(Gregor et α/., 2006). 

1.3.5.3 M u t a t i o n s i n the p lec t in gene 

Mutat ions in the plect in gene result i n f rag i l i ty o f the skin, demonstrating blister 

format ion. These bl ister ing disorders belong to the spectrum o f epidermolysis bullosa (EB) 

phenotypes, and three dist inct variants have been ident i f ied. Plectin-defícient mice exhib i t 

severe sk in b l is ter ing and abnormalit ies in skeletal heart and muscle, in association w i t h a 

reduction in hemidesmosomes (Andra et al 1 1997). Mutat ions in human PLECI result in 

defects in , or loss of, p lect in protein and cause autosomal recessive epidermolysis bullosa w i t h 

muscular dystrophy ( E B S - M D ) (McLean et al 1 1996). The major i ty o f patients carry nonsense 

mutations in the rod-domaiท-encoding exon, leading to premature terminat ion o f translation 

and loss o f expression o f the ftill-length plect in. I n these cases, hemidesmosomes are st i l l 

formed, but their anchorage to IFs is impaired. As a consequence, blister format ion occurs 

(Sonnenberg & L i e m , 2007). A rod-less variant o f p lect in has been described wh ich , in a 

similar manner to fu l l length plect in, is w ide ly expressed in cells and tissues inc luding 

keratinocytes and muscle (El l io t t et al. 3 1997; Koster et ű / . ， 2004). This particular variant o f the 

plect in is believed to play an important funct ion, and to compensate for the loss o f the ftill-

length plect in i n E B S - M D patients. The lack o f both plect in variants results in a more severe 

phenotype and patients die shortly after b i r th (Char lesworth et al., 2003). Plectin mutations at 

the end o f the coi led-coi led rod domain have also been found in patients w i t h EB simplex o f 

the Ogna type 3 wh i ch is a rare autosomal disorder leading to sk in changes in the absence o f 

muscular symptoms (Koss-Harneร et al., 2002). Recent studies have reported plect in mutations 
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in patients w i t h E B w i t h py lor ic atresia, an autosomal recessive syndrome wh ich is frequently 

lethal (Pfendner & U i t t A 2005). 

1.3.5.4 P lec t in isoforms 

Alternat ive spl ic ing provides a mechanism for generating transcript diversity. Mouse 

plect in resides on chromosome 15 and extensive analysis has shown that i t contains over 40 

exons and exhibi ts an unusual complex i ty o f 5， isoforms (Fuchs et al, 1999; Rezniczek et al, 

2003). The mouse plect in gene is organized into variable and constant regions (F igu re 1.7). 

Each variable exon is separately spliced to the first constant exon to generate diverse plect in 

m R N A s . However, not al l variable exons are coding and the variable exons o f the plect in gene 

do not display sequence s imi lar i ty to each other (Zhang et α / .， 2004). 16 mouse plect in 

isoforms have been ident i f ied, o f wh ich 11 ( 1 - l j ) are spl iced onto a common exon two. In 

addit ion, two short alternative exons were found for both the 2 n d and 3 r d exons (2a and 3 a ) , 

increasing the diversi ty in the region o f the gene that encodes the calponin homology A B D 

(exons 2-8). F ina l ly 5 three non coding exons (named exons - 1 , 0 a , and 0)， that are located 5， to 

the first coding exons, l c ， were identi f ied (Fuchs et α ι.7 1999). I n humans, the plectin gene 

spans over 32 exons located at the telomeric region o f chromosome 8 (McLean et al, 1996). 

B io informat ics searches ident i f ied eight putative f irst exons i n the human plect in gene, 

corresponding to the previously ident i f ied mouse exons (Zhang et α ί , 2004). In the last year, 

an addit ional human plect in N-terminal isoform, that was named plect in 1-k, was discovered in 

our research group by Dr . Lorna Mc ln roy (unpublished data). Notab ly , al l plect in isoforms 

discovered so far have been found to contain alternative exons at the 5 ' end o f the gene, w i t h 

only the rod-less fo rm being an exception (El l io t t et ol., 1997). 

This large versat i l i ty in plect in spl ic ing al lows for dist inct isoforms to be expressed in 

di f ferent cel l types and tissues. Plectin-1 is the major iso form expressed in tissues o f 

mesenchymal or ig in (Fuchs et al., 1999). I t has been shown that plect in-1 and plect in 1-f can 

associate w i t h the sarcolemma, 1 whereas p lec t in - Id localises exclusively to Z-disc (Rezniczek 

et al. 1 2007). In epidermal keratinocytes, isoforms 1-а and l-с were shown to interact w i t h 

integr in ß4 (L i t jens et al, 2003). I n contrast to p lect in-nul l mice ( lack ing al l plect in isoforms), 
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which die short ly after b i r th because o f severe skin bl ister ing, p lect in isoform-1 deficient mice 

were v iable at b i r th , had a normal l i fespan, and did not display the sk in bl istering phenotype 

(Abrahamsberg et al, 2005). However 3 dermal f ibroblasts isolated f r o m plect in 1-deficient 

mice exhibi ted abnormalit ies in their actin cytoskeleton and impaired migrat ion potential 

(Abrahamsberg et al., 2005). S imi lar ly , plectin-1 deficient т cells isolated f rom lymph nodes 

showed d imin ished chemotactic migrat ion in vitro. Most s t r ik ing ly , leukocyte in f i l t ra t ion 

dur ing wound heal ing was reduced in the plect in-1 mutant mice (Abrahamsberg et al., 2005). 

These data show a specif ic role for a specific p lect in isoform in immune cel l mot i l i t y . I t has 

been suggested that N- terminal sequences can determine the interact ion o f plect in w i t h other 

structures o f the cel l . For example 5 the p lec t in - lb isoform is found most ly associated to the 

mitochondria 5 p rov id ing a connection o f these organelles to IFs (Rezniczek et al., 2003). The 

N-terminal domain also contains sequences important for regulat ing the b inding act iv i ty o f 

p lec t in -ABD. Indeed, delet ion o f the N-terminal sequences increased the a f f imty o f A D B for 

integr in ß4 in hemidesmosomes, whi ls t decreasing the act in contacts in focal adhesions 

(Li t jens et α / .， 2003). P lec t in - la is the major epithel ial iso form and most l ikely responsible for 

the skin bl ister ing observed in E B S - M D , as in transient transfection experiments, expression o f 

fu l l length p lec t in - la rescued the hemidesmosomal defects in plect in -/- keratinocytes (Andrā 

et а/. 5 2003). 
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Figure L 7: Genomic organisation of the mouse pkctin gene. 

The gene contains an array of multiple first exonร in the variable region9 each of these 

is separately spliced into a common set of downstream constant exons. The -1， Oa and 

0 regions are non coding exons. The first coding exon in the murin plectin gene is exon 

1c. 11 plectin isoforms are spliced into a common exon 2, which with exon 3 also 

contain alternative coding exons (2af 3a) increasing the variety of plectin isoforms. 

(This figure was plotted according to a similar diagram from Fuchs et α ϊ , 1999 and 

Zhang et 2004). 



1·3.6 Bu l lous p e m p h i g o i d ant igen 1 ( B P A G - 1 ) 

There are three di f ferent isoform-specif ic variants o f the B P A G - 1 gene. Interestingly 

these isoforms have specif ic expression patterns in various tissues, w h i c h may indicate dist inct 

functions. The epithel ial fo rm o f B P A G - 1 ( B P A G - l e ) was ident i f ied, w i t h B P A G - 2 , in 

hemidesmosomes o f patients w i t h the skin bl ister ing disease Bul lous Pemphigoid (Stanley et 

al,, 1988). B P A G - l e is expressed in basal epithelial cells, locaüzing close to hemidesmosomes 

(Leung et al, 2002). A l o n g w i t h plect in, B P A G - l e is posit ioned in the inner cytoplasmic 

plaque and l inks kerat in intermediate f i laments to hemidesmosomes by the interactions o f β4 

integrin and B P A G - 2 . The structure o f the epithel ial isoform is s imi lar to that o f desmoplakin, 

consisting o f a p lak in domain fo l lowed by a coi led-coi l rod domain and two sets o f PRDs at the 

C"terminus. Th is C-terminus interacts w i t h cytoplasmic IFs, wh i ls t the p lak in domain is 

responsible for mediat ing the local izat ion o f this protein to the hemidesmosomal plaque 

(Koster et al, 2004). BPAG-1 a is a huge protein o f approximately 600 kDa in molecular 

weight, and is expressed in the nervous system (Leung et al, 2001). I t has al l the properties o f 

the spectrin fami l y , and it is l ike ly that they are evolut ionary related (Röper et al, 2002). 

BPAG-1 a has also been reported to direct ly interact w i t h dynact in, a member o f the dynein 

complex, and ret ro l ink in , v ia its structurally and ftinctionally unique ezrin/radixin/moesin 

( E R M ) domain. D isrupt ion o f their associations results in defects in retrograde axonal transport 

( L i u et αί， 2003; L i u et α ϊ , 2007). BPAG-1 b is the predominant isoform (800 kDa) in muscle 

cells ( L i n et al., 2005) 3 but i t is also expressed in the heart, bone and carti lage o f developing 

mouse embryos (Leung et al 1 2001). 

1.3.6.1 M u t a t i o n s i n the B P A G - 1 gene 

Over 40 years ago, a spontaneous mouse mutant, dystonia muscolorum (dt) was 

characterized as a heritable neuropathy that p r imar i l y affects sensory neurons and results in 

death at 3-5 weeks o f age (Duchen et al.9 1964). I n 1995, two reports (Guo et al, 1995; B r o w n 

et al, 1995) described the gene affected in dt mice as being an orthologue o f B P A G - 1 . 

B P A G 1 - / - mice show obvious degeneration o f sensory neurons and also have muscular 

weakness w i t h instabi l i ty o f the cytoarcMtecture o f mature muscles (Bernier et al., 1995; Dalpé 

et al, 1998; Dalpé et ai, 1999). One case study reports the disrupt ion o f BPAG-1 a and B P A G -
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l b in a g i r l w i t h a chromosome 6; 15 translocation 5 result ing i n encephalopathy w i t h motor and 

mental retardation and delayed visual maturation (Giorda et al, 2004). B P A G ᅳ 1 has also been 

identi f ied as a component in the "disrupted i n schrizophenia 1 " (Disc 1 ) interactome (Camargo 

L et α / .， 2007). Accord ing ly , i t is possible that B P A G - 1 has other, as yet unident i f ied, 

functions. 

1.3,7 M i c r o t u b u l e - A c t i n C ross - l i nk ing Fac to r 1 ( M A C F - 1 ) 

M A C F - 1 was f i rst isolated in a screen for members o f the act in cross-l inking fami ly . 

The ftill length murine A C F 1 c D N A , called M A C F - 1 , encodes a protein w i th a molecular 

weight o f 600 k D a (รนท et al,, 1999). The human c D N A was cloned by two dif ferent groups 

and called t rabecul in and macrophin (Okuda et al., 1999; Sun et α/., 1999). M A C F - 1 is 

expressed in mouse embryos, w i t h the highest levels in the nervous system, fo l lowed by 

skeletal muscles and the myocard ium (Leung et α / .， 1999). I n keratinocytes, M A C F - 1 

colocalises w i t h microtubules and actin at the cel l periphery and relocates to sites o f ce l l -ce l l 

contact upon st imulat ion (Karakesisoglou et al, 2000). M A C F - 1 a is simi lar to B P A G - l a , 

whereas M A C F - 1 b is s imi lar to B A P G - l b ( L i n et al., 2005). M A C F - 1 a has the same domain 

structure as B P A G - l a and they are expressed in the same tissues 3 except that the latter is more 

abundant in dorsal root ganglia. M A C F - 1 b has a more compl icated PRD region than B P A G -

l b , compr is ing three fu l l and two partial PRDs. Interestingly, this isoform has been shown to 

interact w i th the Go lg i apparatus ( L i n et al" 2005). 

M A C F - 1 nu l l mice die shortly after gastrulation 5 w i t h embryos w i t h defects in the 

format ion o f the pr imi t i ve streak, node and mesoderm simi lar to Wnt3a nu l l embryos (Chen et 

αί,， 2006). These results suggest a role for M A C F - 1 downstream o f Wnt signal l ing. N o human 

disease has yet been reported to be l inked to mutations in M A C F - 1 . Bo th B P A G - 1 and M A C F -

1 have been ident i f ied as part o f the D i s c i interactome, interact ing w i t h D i s c i and Dysb ind in , 

another gene product that has been impl icated in schizophrenia (Camargo L et al. 1 2007). In a 

recent screen o f breast and colorectal cancers, M A C F - 1 appeared to be mutated in 12% o f the 

breast cancer tumors 5 although its ñ inc t ion st i l l needs to be ident i f ied (Sjöblom et αι., 2006). 
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1.3.8 E p i p l a k i n 

Epip lak in was imt ia l ly ident i f ied as an autoantigen in a patient suffer ing f rom a sk in 

bl ister ing disease. I t is believed to play a role in bundl ing kerat in intermediate f i laments 

(Fuj iwara et al, 2 0 0 1 ; Spazierer et al., 2003). This part icular protein contains only p lak in 

repeat domains and the last six domains are almost identical. I t is encoded by a single large 

exon and expressed w ide ly in a variety o f tissues, w i t h higher levels in the epidermis, l iver, 

salivary gland and the digestive tract. Ep ip lak in R N A İ knockdown in simple epithelial cells 

resulted in IF d isrupt ion, al though this was not seen in epidermal cells (Jang et al, 2005). 

However, ep ip lak in knockout mice had no obvious defects 5 except that their keratinocytes 

showed accelerated migrat ion in culture (Goto et al, 2006; Spazierer et al, 2006). Recently, i t 

has been revealed that epip lakin plays a role in kerat in f i lament reorganization in response to 

stress5 probably by protect ing keratin filaments against d isrupt ion in a chaperone-like fashion 

(Spazierer et ๘ . , 2008). 
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Figure Լ8: Schematic diagram detaling the interaction of plakinร in epithelial cells. 

Plectin and BPAG-le are present in hemidesmosomes, where they attach to the α6β4 integrin and BPAG-

2 mediating anchorage of intermediate filaments to the plasma membrane. Plectin is also involved in 

linking intermediate filaments to the nuclear envelope via nesprin-3, also interconnecting actin filaments 

with intermediate filaments and microtubules. MACF'l interacts with both actin filaments and 

microtubules, binding them together in the cytoplasm. Desmoplakin is involved in the anchorage of 

intermediate filaments to the desmosomes, where it binds to plakoglobin and plakophillins, which in turn 

interact with the desmosomal Cadherins. Periplakin and envoplakin colocalise with desmosomes rising 

the possibility that they are involved in anchoring keratin filaments to desmosomes. 
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Table 1.2: Summary of mammalian cytolinkers and their related diseases in hwnans and in 

mice. 

Plakin Human disease Phenotype of knock-out mice 

Auto immune diseases: 

Paraneoplastic pemphigus 

Desmoplakin 

Erythema multiforme 

Genetic diseases: 

Striate palmoplantar keratoderma 

Arrhythmogenic right ventricular 

cardiomyopathy 

Embryonic lethal at egg cylinder 

stage (Gallicano et al., 1998) 

Auto immune diseases: 

Paraneoplastic pemphigus 

Plectin 

Bullous pemphigoid 

Genetic diseses: 
Lethal at postnatal day 2-3， skin 

blistering, skeletal and cardiac 

Epidermolysis bullosa simplex with abnormalities (Andra et α/., 1997) 

muscular dystrophy 

Epidermolysis bullosa with pyloric atresia 

Epidermolysis simplex Ogna variant 
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B P A G l 

Auto immune diseases: 

Bullous pemphigoid 

Paraneoplastic pemphigus 

Genetic diseses: 

Single case of patient with 6; 15 chromosome 

translocation resulting in encephalopathy, 

severe motor and mental retardation and 

delayed visual maturation 

Lethal at 4-5 weeks after birth, 

sensory neuron degeneration, skin 

blistering upon mechanical trauma 

(Brown et al., 1995; Guo et α ϊ , 

1995) 

M A C F - 1 None reported 
Lethal at gastrulation (Chen et αι., 

2006) 

Envoplakin 

Auto immune diseases: 

Paraneoplastic pemphigus 

pemphigus foliaceus 

Subtle phenotypes, slight delay in 

epidermal barrier formation 

(Määttä et ๘., 2001) 

Periplakin 

Auto immune diseases: 

Paraneoplastic pemphigus 

Pemphigus foliaceus 

Pemphigus vegetans Neumann type 

No discernible phenotype 

(Aho ๙ ๘ . , 2004) 

Epip lak in 

Auto immune diseases: 

Subepidermal blistering disease 

No discernible phenoiype 

(Goto et al, 2006; Spazierer et al, 

2006) 

Table 1.2: Summary of mammalian cytolinkers and their related diseases in humans and in 

mice. Adaptedfrom (Leung et al1 2002; Sonnenberg & Liem, 2007) and (Uitto et al.1 2007). 
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•4 Ep i the l i a l cel l j unc t i ons . 

Epithel ia, found in mult i -cel lu lar organisms, are cohesive sheets o f ordered epitheiial 

cells (Perez-Moreno et al, 2003). The main types are the strati f ied epithel ia o f the sk in, simple 

epithelia, transit ional epithel ia and pseudostratif ied epithelia. Ce l l adhesion is very important 

for the assembly o f ind iv idual cells into a three-dimensional tissue. I n order to funct ion as a 

tissue, epithel ial cells must have the correct shape and structure to pack together w i th their 

neighbours. I n s imple epithel ia, such as the l in ing o f the intestine or the kidney ШЬиІе, the cells 

have two surfaces w i t h di f ferent adhesive structures. The lateral surface is specialized for 

adhesion to adjacent cells, wh i ls t the basal surface strengthens the connection w i th the 

under ly ing matr ix ( F i gu re 1.9 A ) . I n stratif ied epithel ia l ike the epidermis, the basal cells 

adhere to the basement membrane below, to each other lateral ly 3 and to the suprabasal cells 

apical ly. The suprabasal cel ls, however, lose their connect ion to the matr ix and instead adhere 

to similar cells on al l sides, unt i l they reach the corn i f ied layer o f the skin and eventually 

slough o f f ( F i gu re 1.9 B ) . These junct ions, and the cytoskeletal network systems, contribute to 

the distinct shape, polar i ty and cellular movements o f developing tissue. 
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Α. Simple epithelia 
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t i g ur e 1.9: Schematic digram detailing the organization of simple and startified epithelia. 

A. Simple epithelia containing only one cell layer anchored to the basal lamina by hemidesmosomes 

and focal adhesions. Adjacent cells are linked together via adherens junctions and desmosomes. Cell 

polarity is maintained by tight junctions. B. Stratified epithelia is made up from four distinct layers. 

Neighbouring cells are attached together via desmosomes and adherens junctions in the basal and 

spinous layer. In the upper part of the stratum spinosum and stratum granulomům, tight junctions 

appear and hold cells together. Hemidesmosomes and focal adhesions anchore keratinocytes to the 

stratum basale. (The diagram above is based on a similar figure published by Perez-Moreno et al.1 

2003) 67 



1.4.1 Ce l l -Ce l l j u n c t i o n s 

There are four types o f cel l-cel l junc t ion found in epithel ial layers: t ight junct ions, 

adherens junct ions, gap junct ions and desmosomes, wh ich together constitute the Intracellular 

Junctional Complex ( IJC) (F igure 1,10 A ) , This l inkage o f ce l l - ce l l junct ions to the 

cytoskeleton a l lows adjacent cells to funct ion as coupled tissue. Adhesion complexes can be 

connected through intermediate filaments at desmosomes, or through microf i laments at 

adherens junct ions and t ight junct ions (Braga, 2002). 

1.4.1Л T i g h t j unc t i ons 

I n epithel ial and endothelial cells, t ight junct ions are the most apical intercellular 

junct ions that funct ion as a selective (semi-permeable) size- and ion-specif ic d i f f t is ion barrier 

between ind iv idua l cells (Anderson et ai, 2004). They also mainta in di f ferent concentrations 

o f ions, solutes, proteins and l ip ids between the apical and basolateral plasma membrane 

domains. Furthermore, t ight junct ions regulate the growth and di f ferent iat ion o f epithelial and 

endothelial cells. (Balda & Matter, 1998; Tsuki ta et ai, 1999). The t ight junc t ion is identi f ied 

as a belt- l ike structure in wh i ch two l ipid-apposing membranes l ie close together ( t ight junc t ion 

strands) 5 w i t h the t ight j unc t i on strands o f adjacent cells f o rm ing t igh t ly connected pairs. The 

proteins invo lved in the format ion o f t ight junct ions are d iv ided into two categories: 1) integral 

m e m b r a n e p r o t e i n s , s u c h a s o c c l u d i l i , C l a u d i n a n d j u n c t i o n a l a d h e s i o n m o l e c u l e ( J A M ) ; a n d 2) 

peripheral membrane proteins (cytoplasmic plaque proteins) and M A G U K (membrane-

associated guanylate kinase) homologue proteins, such as Z O » l , 2, 3， cingul in and symplekin 

(F igu re 1.10 B) . Moreover, various signal l ing proteins, inc luding protein kinases, 

heterotrimeric G-proteins and smal l GTP-b ind ing proteins, are either localized at the 

cytoplasmic plaque domain o f the t ight junc t ion , or they have a central role in the assembly or 

funct ion o f the j unc t i on (Tsukita et al, 2001). T igh t junct ions are crucial for proper barrier 

funct ion in mammal ian sk in , w i t h deficiency o f claudin-1 result ing in water loss and ul t imately 

neonatal death in mice (Furuse et al., 2002). I t is also recognized that the variety in strength, 

size and ion specif ic i ty o f t ight junct ions in di f ferent epithel ia is largely due to the di f ferent 
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type o f claudins present in specific t ight junct ions (Anderson et al., 2004; Furuse & Tsukita, 

2006). 

1.4.1.2 Adherens j unc t i ons 

In epithel ial cells, cadherin-based cel l-cel l contacts are specialised regions o f the 

plasma m e m b r a n e , where C a d h e r i n m o l e c u l e s o f the a d j a c e n t c e l l s i n t e r a c t i n a homophi l ic 

calcium-dependent manner. I n tissues, the establishment o f strong adhesion or contract i l i ty is 

dependent on the assembly o f adherens junct ion. In epithel ial cel ls, the apico-lateral belt o f 

adherens junct ions strengthens adhesion by l i nk ing the act in cytoskeleton to sites o f strong 

adhesion. A c t i n f i laments are associated w i t h adherens junct ions through catenins located at 

the adherens junc t ion (Geiger & Ginsberg, 1991; R i m m et α/., 1995; Takeich i 5 1995). Classical 

C a d h e r i n s h a v e a n e x t r a c e l l u l a r part c o n s i s t i n g o f five d i s t i n c t d o m a i n s a n d a c o n s e r v e d 

c y t o p l a s m i c d o m a i n . This e x t r a c e l l u l a r r e g i o n i n t e r a c t s , h o m o t y p i c a l l y 3 w i t h C a d h e r i n s o f 

neighbouring cells. E-cadherin is the best described member o f the fami l y that is expressed in 

epithelia. I t mediates the assembly o f adherens junct ions and affects the format ion o f 

desmosomes and t ight junct ions (Gumbiner, 1988; Wheelock & Jensen, 1992). I t has been 

demonstrated that E-cadherin, through its transmembrane domain 5 is able to b ind direct ly to a 

special catenin, cal led ρ 120 catenin (Reynolds et α/.， 1994; Yap et al, 1998; Thoreson et al, 

2000), wh ich was or ig inal ly characterised as a substrate o f V -Src kinase (Reynolds et aใ^ 

1992). The cytoplasmic ta i l o f E-cadherin is l inked to the act in cytoskeleton through many 

peripheral membrane proteins, inc luding a-catenin 5 ß-catenin 3 v incu l in 3 and α-act inin, wh i ch 

strengthen the cel l -cel l adhesion act iv i ty o f E-cadherin (Nagafuchi , 2001) (F igu re 1.10 C ) . 

The absence o f E-cadherin weakens intercellular adhesion by affect ing other junct ional 

proteins 5 and loss o f its expression or funct ion is associated w i t h tumor cell invasion in 

epithelial cancers (Bi rchmeier & Behrens 5 1994). However , the funct ion o f C a d h e r i n s is not 

l imi ted to format ion o f protein complexes inside cells, or to l inkage o f the ceHs, but also 

includes regulat ion o f s ignal l ing events dur ing di f ferent iat ion, prol i ferat ion and migrat ion 

(Knudsen et al, 1998). Besides the typical cadherin-catenin complex, there is also another 

intracellular adhesion unit i n adherens junct ions consist ing o f a complex o f nectin and afadin. 

Nect in , is a Ca 2 + - independent immunoglobu l in ( Ig) - l ike adhesion receptor, whereas afadin is a 
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nectin- and actin f i lament b ind ing proteinthat connects nectin to the actin cytoskeleton (Takai 

& Nakanishi , 2003). Evidence has accumulated that the trans-interactions o f nectins recruit 

C a d h e r i n s to the n e c t i n - b a s e d a d h e s i o n u n i t , r e s u l t i n g i n f o r m a t i o n o f a d h e r e n s j u n c t i o n s i n 

epithelial cells and fibroblasts^ and in format ion o f synapses in neurons (Takai & Nakanishi , 

2003). 

D. melanogaster lacks the genes that encode cytoplasmic IFs， wh ich indicates that the 

invertebrate spectraplaWn protein Shot, also mediates funct ions that are unrelated to IF b inding 

(Röper & B r o w n , 2003). The largest isoform o f Shot (Shot I I ) , containing p lak in repeats at 

internal sites 5 is localised to adherens junct ions in the embryonic epithel ia o f Drosophila, and 

in the epithel ial cells that surround the developing oocyte. Loss o f this Shot isoform leads to 

tears in the epidermis w h i c h indicates that this isoform is required in act in fi lament-associated 

lateral c e l l junct ions to maintain cel l adhesion (Röper & B r o w n , 2003). I t has also been 

suggested that i f the p lak in repeats are localised at internal sites o f the p lak in proteins, the 

protein has alternative b ind ing partners (Röper & B rown , 2003). 

1.4.1.3 Desmosomes 

Desmosomes are specialized junct ional strucณres that are important in tissue architecture as 

they connect intermediate f i laments to adjacent cells p rov id ing a continuous network 

throughout tissues (Green et al., 1990). They funct ion as cel l -cel l attachment sites in epithelia, 

cardiac muscle, and dendrit ic cells o f the lympho id system. The part icular type o f intermediate 

filaments attached to the desmosomes depends on the cel l type, w i t h kerat in filaments in most 

epithelial cells and desmin filaments in heart muscle cells. The complex desmosomal s t ruc toe 

consists o f several transmembrane adhesive glycoproteins and cytoplasmic plaque proteins 

( G a ^ d , 1993). The glycoproteins, such as desmogleins (Dsg) and desmocoll ins (Dsc), belong 

to the Cadherin superfami ly and fo rm an adhesive interface (Garrod et al., 2002)， although the 

precise m a m e r in w h i c h they mediate adhesion remains elusive. I n simple epithelia, only the 

Dsg2 and Dsc2 pair are expressed, whereas in stratif ied epithel ia such as the epidermis, Dsg 1/3 

and Dsc 1/3 are expressed in the upper granular layer, w i t h l o w levels o f Dsg2 and Dsc2 in the 

basal layers (Nor th et al, 1996; s ผ m i z u et al, 1995; Nuber et öf/.， 1996). It has been proposed 
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that t h e r a t i o s o f d e s m o s o m a l C a d h e r i n s a n d t h e i r s p e c i f i c d i f f e r e n t i a t i o n p a t t e r n s may r e g u l a t e 

epidermal development and di f ferent iat ion (Garrod, 1996; Ish i i & Green, 2001). 

The c y t o p l a s m i c tai ls o f desmosomal C a d h e r i n s i n t e r a c t w i t h p l a k o g l o b i n s a n d 

plakophi l ins (Schmidt & Jäger3 2005). These cytoplasmic plaque proteins interact w i t h p lak in 

proteins such as desmoplakin I and I I (Godsei et al., 2005) and cel l envelope proteins inc luding 

envoplakin, per ip lak in and plect in, wh ich l inks the I F at the desmosomal plaque (Leung et al., 

2002) ( F i gu re 1.10 D ) . A l though desmoplakin is the ma in candidate for mediat ing the IF 

l inkage in strat i f ied cells 5 i t is suggested that plect in might participate in this l inkage in simple 

epithelial cells (Eger et al., 1997), as in vitro b ind ing studies revealed interaction between 

plect in and desmoplakin in M D C K cells. 

I n the suprabasal corni f ied layers o f the sk in, desmosomes are mod i f ied and referred to 

as corneodesmosomes. These structures include a secreted glycoprotein comeodesmosin 

(Jonca et al. y 2002) . These modi f ied desmosomal junct ions are proteolyt ical ly degraded as the 

desmosomes lose their cytoplasmic plaque in the top layer o f the epidermis to a l l ow 

desquamation (Serre et al., 1991). Plakin fami ly members, armadi l lo fami ly members and 

desmosomal plaque proteins might have a role in mod i f y i ng desmosomes dur ing di f ferent iat ion 

in di f ferent tissues or histological layers (Hatzfe ld, 1999; DiColandrea et al., 2000; Getsłos et 

al., 2004). No rma l l y , comeodesmosomes are degraded in the lower stratum corneum, however 

in epidermis lack ing per ip lak in, envoplakin and invo lucr in , these structures are present in the 

outer corni f ied lay er ร พ Ы с һ is a sign o f defective desquamation (Sevi l la et al 1 2007), 

The crucial importance o f desmosomes dur ing embryogenesis, and in the adult, is 

highl ighted by defects i n the sk in, hair and heart i n animal models and human patients w i t h 

mutations in desmosomal proteins (McGra th , 2005). Mutat ions in genes encoding 

transmembrane proteins and desmosomal plaque proteins that anchor the IF cytoskeleton 3 lead 

to many di f ferent phenotypes. Ab la t ion o f desmoplatón i n the heart, or the lack o f p lakoglobin 

and p lakophi l in leads to animals w i th cardiac abnormalit ies and early embryonic lethal i ty 

(Bierkamp et al., 1996; Ru iz et aL, 1996; Grossmann et al., 2004). Plakoglobin (γ-catenin) nu l i 

embryos surv ived unt i l b i r th but skin f rag i l i ty was observed (Bierkamp et al., 1996). 

Desmosomal C a d h e r i n m u t a t i o n s , f o r example i n d e s m o g l e i n 1 g e n e w h i c h d i s p l a y s l i m i t e d 

expression in strat i f ied epithelia, have restricted phenotypes that include skin f rag i l i ty and sk in 
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barrier defects (Hunt et al., 2001). Changing the Dsg3 to D s g l ratio in transgenic epidermis, so 

that it is s imi lar to what is observed in mucous membranes, results in an epidermal stratum 

corneum that h isto logical ly and ultrastructurally resembles the stratum corneum o f mucosal 

epithelia (Elias & Feingold 5 2001). This observation supports a ท idea that was or ig inal ly 

proposed by Garrod (1996)， that the t ight ly regulated expression prof i le o f desmosomal 

Cadherins might be essential for proper patterning o f the strat i f ied tissues (Garrod et al., 1996). 

Dsg4 is m a i ฝ y localised in the granular layer o f the epidermis and in hair fol l ic les (K l ju ic et 

al., 2003)， w i t h a possible role in moφhogenesis o f the hair fo l l ic le . Ab la t ion o f Dsg2 (wh ich 

is expressed early in embryogenesis and throughout epithel ial tissues) suggests a desmosome-

independent funct ion dur ing early development and embryonic stem cell prol i ferat ion. Thus, i t 

is needed fo r early embryonic survival (Eshkind et ál·， 2002). Suφr is ing ly , Dsc3, wh ich is 

prominent ly present in the lower layers o f stratif ied epithel ia, has been proposed to operate 

independently f r om desmosomes, as Dsc3 nu l l embryos die in the first two days o f pre-

implantat ion development, before desmosomes appear (Den et al, 2006). 

1.4Л.3.1 Desmosomes and s igna l l ing 

Plakoglobin and p lakophi l in have mul t ip le funct ions inside and outside the desmosome. 

Plakoglobin (PG) is a potential candidate in adhesion-independent s ignal l ing as i t is h igh ly 

homologous to ß-catenin 5 and a we l l established mediator o f canonical Wnt/wingless pathways 

(Zhur insky et al,, 2000; Y i n & Green, 2004). Canonical Wnt s ignal l ing initiates a cascade o f 

events that a l lows ß-catenin to escape the proteasome degradation machinery wh ich normal ly 

ensures its l o w cytoplasmic levels, ß-catenin can then translocate to the nucleus where i t 

complexes w i t h transcr ipt ion factors and activates transcript ion o f target genes involved in 

developmental patterning, cel l fate decisions, cel l g rowth and survival (Zhur insky et al, 2000). 

Recent reports have demonstrated that PG is able to compensate for deficient ß-catenin, 

inc luding its regulatory role in keratinocyte d i f ferent iat ion and prol i ferat ion (Maeda et al., 

2004; Teulière et al., 2004). PG can be phosphorylated by mul t ip le protein tyrosine kinases, 

w i th the specific effect dependent on the phosphorylat ion site. These phosphorylat ion events 

modulate PGs associations w i t h intraceUular junct ions and regulate s ignal l ing (Mi ravet et al, 

2003). EGF receptor-dependent tyrosine phosphorylat ion o f PG can impair desmoplakin 
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recruitment to junct ions, weakening desmosomal adhesion ( Y i n et al., 2005). Loss o f 

desmoplaWn f r o m cell junct ions in cardiomyocytes can also be a result o f translocation o f PG 

into the nucleus (Garcia-Gras et aL, 2006). Furthermore, another desmosomal protein, 

p lakophi l in 2， may play a role in the transcriptional machinery as part o f the R N A polymerase 

I I I holoenzyme complex (Mertens et al, 2001). Plakophi l ins 1 and 3 were found to associate 

w i th R N A - b i n d i n g proteins and may participate in R N A metabol ism (Hofmann et al, 2006). 

In tissues or cells that have been cultured for extended periods, desmosomes are found 

in a hyper-adhesive state known as u C a 2 + independence", in wh i ch they are insensitive to the 

absence o f extracel lular ca lc ium (Watt et al, 1984; Garrod et al, 2005; K i m u r a et al., 2007). 

Norma l l y 5 l o w C a 2 + wou ld disrupt desmosomes and cause their rapid intemalisat ion (Mattey & 

Garrod, 1986; Windo f fe r et αι., 2002). Subconfluent cells never acquire Ca 2 + - independent 

desmosomes, but once they reach a confluent state, almost 100% o f cells become C a 2 + 

independent (Wal l is et al.， 2000). I f this confluent epithel ial sheet is scratch wounded 5 the 

cells at the wound edge rapidly revert to calc ium dependence (Wal l i s et aL, 2000; Garrod et 

al,, 2005). Interest ingly 5 the act ivat ion o f P K C a , wh ich has been shown to occur at wound 

edges, alters the calcium-dependent state (Wal l is et α ί , 2000). I t has been speculated (Garrod 

et al, 2005) that the P K C act iv i ty may change the phosphorylat ion state o f desmosomal 

proteins such as desmoplakin, af fect ing their interactions and associations w i th intermediate 

fiłaments wh ich could modulate adhesive strength and stabi l i ty. 

1.4.1.3.2 Au toan t i bod ies against p e r i p l a k i n and desmosomal components are detected i n 

a u t o i m m u n e sk in diseases 

Desmosome membrane glycoproteins are not on ly subject to gene mutations but also to 

inactivat ion by autoimmune antibodies. Emerging data suggests that C a d h e r i n stabil i ty and 

internalization are key components o f a group o f autoimmune diseases, known as pemphigus. 

Pemphigus vu!garis ( P V ) is the most frequently diagnosed fo rm o f pempMgus, where the sores 

and blisters usually start i n the mouth. PV is an auto immune 5 intraepithel ial bl ister ing disease, 

af fect ing the sk in and the mucous membranes, mediated by c i rculat ing auto-antibodies to cell 

surface proteins o f keratinocytes (Beutner & Jordon, 1964). These intercellular or P V 

antibodies b ind to keratinocyte desmosome proteins and result i n a loss o f cel l-cel l adhesion 5 a 
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process termed acantholysis (Stanley et al., 1982; Stanley, 1998). I n the mucosal type o f PV , 

auto-antibodies are found only against desmoglein 3, but in the muco-cutaneus type 5 auto­

antibodies against both desmoglein 3 and desmoglein 1 are present (Amagai et al., 1999). 

Recently, per ip lakin auto-antibodies were detected in the sera f r o m patients w i t h a rare variant 

o f PV, called pemphigus vegetans Neumann type (Cozzarli et al., 2007). However, the patho­

physiological signif icance o f ant i -per iplakin reactivi ty in this pemphigus variant remains to be 

determined. 

Pemphigus foliaceus (PF) is an autoimmune skin disorder characterized by the loss o f 

intracellular adhesion o f keratinocytes in the top, dry layer o f sk in. I n PF, crusted, scaly sores 

or fragile blisters usually appear f irst on the scalp, later involve the face, chest and back 5 but 

not the mouth . The auto-antibodies b ind to desmoglein 1， result ing in a format ion o f superf icial 

blisters that are induced by immunoglobu l in G (Hashimoto et al., 2001). A uto-antibodies 

against per ip lak in and envoplakin have also been found in sera f r om patients w i t h PF 

(Kazerounian et al.， 2000). 

The most serious f o r m o f pemphigus is paraneoplastic pemphigus (PNP). PNP, as an 

enti ty, has evolved f rom in i t ia l observations that pemphigus occurred more frequently in 

patients w i t h k n o w n mal ignancy (Younus & Ahmed^ 1990; Anha l t et ai, 1990). I t is n o w 

understood that PNP is a mal ignancy-dr iven autoimmune phenomenon wh ich involves the 

detection o f c i rculat ing antibodies to a variety o f polypeptides that constitute the desmosomes 

and hemidesmosomes o f epithel ial structures (Stanley 5 1993). Painfu l sores o f the mouth, l ips 

and oesophagus are almost always present, and skin lesions o f di f ferent types occur. This 

disease is not usually responsive to treatment. I n some cases, the tumor w i l l be benign and the 

disease w i l l improve i f the tumor is surgical ly removed. More recently, i t has been suggested 

that the condi t ion should be renamed paraneoplastic autoimmune mul t iorgan syndrome, 

because the antigens that are the target o f autoantibodies in the presence o f a malignancy are 

not l imi ted to the skiท 3 but are found in many organs o f the body (Nguyen et al,, 2001). 

Combin ing the antibody prof i le o f al l the cases in the l i terature 5 antibodies to desmoglein 3 

occur in most cases and antibodies to desmoglein 1 are found in approximately two-thirds o f 

cases. The general consensus is that desmoglein 1 and 3 are most l ike ly to be the pr incipal 

antigenic précipitants. Envoplak in and per ip lakin are the next t w o most commonly targeted 
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antigens (Nagata et al, 2 0 0 1 ; Joly et al,, 2000), fo l lowed by desmoplakin. BPAG-1 is also an 

important antigen and could be considered the hemidesmosomal equivalent o f desmoplakin, 

attaching to anchoring f ibr i ls . In fact, BPAG-1 shares 6 0 % homology w i th desmoplakin I 

(Anhal t , 1999). Taken together, PNP sera contains autoantibodies against both shared and 

unique epitopes w i t h i n the l inker regions o f the p lak in fami l y o f proteins (Mahoney et α/.， 

1998). "Epi tope spreading" is the phenomenon o f auto-antibody induct ion to proteins that are 

structurally s imi lar or physical ly close to the or ig inal autoantigens, wh ich widens the range o f 

cl inical morphology seen in PNP (Anhal t 5 1999). 

Per ip lakin has consistently been detected in PNP using immunoblo t t ing techniques, but 

recently another severe skin disease w i t h l i fe-threatening mucocutaneous reactions ( toxic 

epidermal necrolysis; T E N ) , was associated w i t h auto-antibodies against per ip lakin (Park et 

al, 2006). T E N is induced by drugs (sulphonamides and nonsteroidal ant i - inf lammatory drugs) 

wh ich lead to the separation o f large areas o f the skin at the epidermal-dermal junc t ion , 

producing the appearance o f burnt skin (Wolkenste in et al, 1996), The cl in ical features o f 

T E N are s t r ik ing ly s imi lar to those observed for PNP (Anhal t et al, 1990). I t is thus speculated 

that per ip lak in might be involved in the epidermal pathology o f T E N . However 5 i t cannot 

currently be ruled out that the per iplakin autoantibodies are a secondary phenomenon due to 

the exposure o f desmosomal epitopes, as part o f the damage to the epidermis (Park et α/., 

2006). 

Un t i l recently, it was generally accepted that autoantibodies against desmoglein 

molecules prevented the format ion o f desmoglein-mediated adhesion, result ing in cel lular 

dissociation and pemphigus (Amaga i , 2003). Based on a recent study o f PF， IgGs do not inh ib i t 

homophi l ic transinteraction o f D s g l molecules between adjacent cells (Waschke et al, 2005), 

suggesting that d isrupt ion o f adhesion may not be a pr imary disease mechamsm. However 

other mechanisms, inc luding antibody-induced act ivat ion o f extracellular proteolysis 9 

phosphorylat ion o f Dsgs, and activation o f prote in kinase с fo l lowed by p lakoglobin 

dislocation and subsequent deplet ion o f Dsgs from desmosomes, appear to be important for 

pemphigus pathogenesis (K i ta j ima et al., 1999; Aoyama et al, 1999). I t has also been shown 

that h igh levels o f Fas l igand in pemphigus sera induced apoptosis in cultured human 

keratinocytes through the act ivat ion o f the caspase-8 (Puviani et al., 2003) and mi togen 
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activated prote in (MAP)-k inase pathways (Berkowi tz et aL, 2005). Emerg ing data suggest that 

b ind ing o f autoantibodies to desmogleins, or to other molecules at the cel l surface, triggers a 

series o f events that results in desmosome disassembly (Calk ins et al 1 2006). 
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Disease An t i gen A n t i b o d y Reference 

Pemph igus vu lga r i s 

Desmoglein 3 

Desmoglein 1 
I gG 

(Stanley, 1993; 

Amagai et al, 1998) 

(D ing et ai, 1999) 

Pemph igus vegetans 

N e u m a n n type 

Desmoglein 3 

Desmoglein 1 

Periplakin 

IgG (Cozzarli et al, 200า) 

Pemph igus fol iaceus 

Desmoglein 1 

Рег ір іаюп 

Envoplak in 

I gG 

(D ing et ai, 1999; 

Kazerounian et al, 

2000) 

Paraneoplas ic 

pemph igus 

Envoplak in 5 

Рег ір іаюп 

Desmoglein 

Desmoplakin 3 

BP230 

IgG 

(Amaga i et ai, 1998) 

(K i yokawa et al, 

1998) 

(Kazerounian et al, 

2000) 

(Stanley, 1993) 

Table 1.3: Intraepidermal bullous diseases due to autoimmune response to components of 

the desmosome. 
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1.4.L4 G a p j unc t i ons 

Gap junct ions provide communicat ion between neighbour ing cells v ia intercellular 

channels that cluster in specialized regions o f the plasma membrane (Robertson 5 1963; Revel 

& Karnovsky, 1967; We i et aL, 2004). This intercellular space is connected by transmembrane 

proteins (connexinร) that, six by six, fo rm two hemichannels (connexonร) wh ich j o i n in m i r ro r 

symmetry to permi t direct communicat ion between the cytosol o f the coraiected cells (Stauffer 

& U n w i n , 1992) ( F i g u r e 1.10 E ). There are at least 21 connexin isoforms in the human 

genome and nearly al l cells in the body express at least one o f these genes at some point dur ing 

development. Moreover , i n adult l i fe , connexinร show over lapping expression patterns, where 

an indiv idual cel l can use more than one type o f isoform (Wiszn iewsk i et al, 2000; Kretz et al., 

2003). A t least nine connexin genes, including Cx26 3 СхЗО, СхЗО.З, С х З І and Cx43 have been 

shown to be expressed dur ing keratinocyte di f ferent iat ion (Kelsen et al, 2000; D i et al, 2001). 

Various processes are dr iven by gap junct ions, such as rapid transmission o f action potentials 

in heart and in neuronal tissue (Simon et al, 1998; K i r c h h o f f et al, 1998). D i f f us ion o f 

metabolites and nutr ients, such as nucleotides and glucose 5 also occurs through gap junct ions 

(Goldberg et al, 1999). This is dependent on the channel type: Cx32 channels are more 

permeable to adenosine than Cx43 channels. A T P , however, passes more readily through Cx43 

channels (Goldberg et al., 2002). D i f f i i s ion o f second messengers 5 such as Ca2+， inosi to l -

trisphosphate ( IP3) and cycl ic nucleotides (Saez et α/.， 1989; Alexander & Goldberg, 2003) 

might be invo lved in induct ion o f apoptosis, gene transcr ipt ion and growth control . Gap 

junct ional communicat ion is also essential for many other physio logical events, inc lud ing cel l 

synchronizat ion 9 d i f ferent iat ion and metabolic coordinat ion o f avascular organs inc luding 

epidermis and lens (Wh i te & Paul, 1999; V inken et al., 2006). Furthermore, i t has been shown 

that transfer o f smal l interfer ing R N A s through gap junct ions, thus between adjacent cells, was 

possible, al though i t remains unclear i f they are normal ly exchanged v ia this route in vivo 

(Val iūnas et ű/.， 2005). Biosynthesis and assembly o f the gap junct ions is strict ly regulated and 

intercellular junct ions have a short hal f- l i fe o f only a f ew hours (Mus i l et al., 2000). Mutat ions 

in the connexin genes С х З І , СхЗО.З and Cx43 are associated w i t h sk in diseases such as 

erythrokeratoderma var iabi l is and hyperkeratosis 5 h igMigh t ing the role o f gap junct ions in the 

epidermis (Richard et ๘.， 1998a; Richard et al, 1988; Macar i et al, 2000; Paznekas et al., 

2003; Gong et al., 2006). In addi t ion, mutat ion in the Cx26 gene cause non-รyndromic 
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deafness w i t h palmoplantar keratoderma (Richard et al-, 1998b). Reduced gap junc t ion act iv i ty 

has also been impl icated in tumorigenesis. Decreased connexin expression may be an 

important marker o f skin tumours, as normal melanocytes are coupled w i t h keratinocytes by 

gap junct ions, whereas melanoma cells are not (Budunova et al., 1995). Melanoma cells, 

instead, communicate amongst themselves and w i th fibroblasts. 

The spectrins are an increasingly diverse group o f cytoskeletal proteins containing 

spectrin-repeat domains and a calponin-type act in-binding domain w i t h homology to simi iar 

domains found i n p lak in proteins (Röper et al, 2002). Spectrins are found in v i r tual ly every 

mammal ian cel l and play important roles in membrane stabi l i ty, membrane domain 

organization and cytoskeletal structure. Spectrin has as many as five isoforms found in heart 

cells (Vyb i ra l et al., 2001). Recently an alternatively spl iced isoform o f αΙΙ-spectr in has been 

found that directs its local izat ion to gap junct ions in cardiomyocytes (บ rs i t t i et ol., 2007). α Ι Ι -

spectrin binds to Cx43 v ia the first 20 amino-acids adjacent to the ร H 3 domain to regulate 

stress activated protein kinase and modulate intracellular communicat ion (บrs i t t i et al., 2007). 

However, no interactions between p lak in or spectraplakin proteins and gap junc t ion 

components have, so far, been described. 
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Figure LIO: Composition and structure of the cell-cell junctions. 

A. Schematic diagram detailing the intracellular junctions (B-Е) in epithelial cells. 

Tight junctions provide a physical barrier between the apical and basolateral regions of the 

cell. Adherens junctions hold together adjacent cells by their actin filaments through 

transmembrane Cadherins. Desmosomes link L·ratin intermediate filaments via desmosomal 

Cadherins. Gap junctions permit rapid diffusion of water soluble molecules between the 

cytoplasm of adjacent cells. Tight junctions are the most apical cell-cell junctions, in which 

occludins and claudins mediate extracellular binding, whilst Z0֊1, 2 and 3 bind to actin 

filamerits, с Adhereหร junctions are E'Cadherin֊basedjunctions where E-cadherin is a direct 

binding partner of ß-catenin which interacts with several proteins. It binds to a-catenin and 

links Cadherin/catenin complexes to the actin cytosL·leton. D. Desmosomes contain two 

Cadherin subgroups (the desmogleins (Dsg) and desmocollim (Dsc)) and also other specialized 

proteins such as plakophilin, plakoglobin (Armadillo proteins), desmoplakin, plectin, 

envoplakin and periplakin (plakin proteins), anchoring bundled intermediate filaments 

between cells. E. Six COหnexms oligomerise to form hemichannels called connexonร, which 

align in the ex^acellular space to complete the formation of gap junction channels. 
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1.4.2 C e l l - m a t r i x j unc t i ons 

The basal layer o f epithel ial sheets is anchored to the basement membrane v ia ce l l -

matr ix attachments such as hemidesmosomes and focal adhesions (F igu re 1.10 A ) . These 

junct ions include p lak in proteins such as B P A G - 1 and plect in , wh ich connect the actin 

cytoskeleton to these adhesion sites. The transmembrane adhesion proteins in these junct ions 

are integrins which are a large family o f proteins? distmct f r o m Cadherins. 

1.4.2.1 Hemidesmosomes 

Hemidesmosomes are complex protein junct ions present in stratif ied epithelia that 

attach epithelial cells to their under ly ing extracellular matr ix (Jones et al.b 1998; Borrador i & 

Sonnenberg, 1999). They also serve as cel l surface anchorage sites for the keratin cytoskeleton 

and as a channel for signals f r om the extracel luar matr ix to the cytoplasm o f the cel l (Giancot t i 5 

1996; Jones et ai, 1998; Borrador i & Sonnenberg, 1999). I n spite o f the morphological 

similarit ies (cytoplasmic plaques and connection to cytokerat in filaments) w i t h desmosomes, 

the protein composi t ion is dist inct and contains at least six proteins. The p lak in proteins 

BPAG-1 (also named BP230) and plect in fo rm the hemidesmosomal plaque proteins that b ind 

intermediate f i laments to the hemidesmosomes (Stanley et al., 1981; Gâche et α ϊ , 1996; 

Borrador i & Sonnenberg, 1996; Green et al., 1999; Burgeson & Christ iano, 1997). A l o n g w i t h 

the hemidesmosomal plaque proteins, the transmembrane integrins α6β4, the tetraspanin 

CD151 (Sterk et al., 2000) and BPAG"2 (also named BP 180) mediate anchorage o f the basal 

epithelial ceils to the basement membrane (Sonnenberg et al, 1991; Jones et al., 1991; Lee et 

al, 1992). The integr in α6β4 binds part icularly to laminin-5 (a non-collagenous glycoprotein) 

wh ich is prominent ly expressed in the basement membrane o f epithel ial layers (Niessen et α/.， 

1994) (F igu re l · l l A ) . Type I I hemidesmosomes f o r m an adhesion complex lacking B P A G - 1 

(BP230) and B P A G - 2 (BP180) but containing plect in and α6β4 integr in; this structure has been 

described in various cel l types and tissues inc luding intestinal epi thel ium (Jones et al.1 1991; 

Uematsu et al., 1994; Orian-Rousseau et al., 1996; Fontao et al., 1997). Fontao and colleagues 

characterised type I I hemidesmosomes in HT29 cells w i t h electron microscopy, observing 

electron dense regions connected to cytokerat in f i laments that could be modulated by the 
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extracellular matr ix. They found that assembly requires act in f i laments but not microtubules 

(Fontao ๙ ๘. , 1999). 

The b inding o f plect in to α6β4 integr in is essential for the integrity o f the adhesive 

complex in both hemidesmosome types, as indicated by patients w i t h mutations in the a4 

integrin subunit or mutat ions in the plect in gene that prevented this interaction (Pulkkinen & 

Ui t to 5 1999; McLean et al, 1996). Mutat ions in either genes resulted in skin bl istering. 

Furthermore, it has previously been reported that the recruitment o f p lect in by α6β4 integrin is 

one o f the first steps in type I hemidesmosome assembly, as neither BPAG-1 nor BPAG-2 are 

recruited ef f ic ient ly when integr in β4 can not b ind plect in (Koster et ai., 2004). Tetraspanin 

(CD 151) binds to another integrin ( a 3 ß l ) , f o rm ing "pre-hemideรmosomal , , clusters in 

keratinocytes (Sterk et al., 2000). However, i t is not required for the format ion o f true 

hemidesmosomes (Geui jen & Sonnenberg, 2002). Interest ingly 5 tetraspanin deficient mice 

showed defective wound healing wi thout any effect on epidermal integrity (Cow in , 2006), 

whereas mutations i n the human tetraspanin gene lead to sk in bl ister ing (Karamatic et al, 

2004). The ß4 subunit o f integr in is unique as its cytoplasmic domain contains two pairs o f 

fibronectin type I I I repeats (Borrador i & Sonnenberg, 1999). The first and second f ibronect in 

repeats f o r m a complex w i t h plect in (Spinardi et al, 1993), w i t h t w o prol ine residues o f the ß4 

integr in hav ing been found to be cr i t ical for this interact ion (Koster et al., 2004). The th i rd 

f ibronect in repeat is essential for B P A G - 2 binding (Borrador i et al, 1997). I n contrast 5 the 

th i rd and four th f ibronect in repeats are important for b ind ing o f B P A G - 1 (Hopkinson & Jones, 

2000; Koster et α/., 2003). I t has been suggested that the format ion o f hemidesmosomes is 

regulated both w i t h i n the cells v ia the plect in - integr in β4 interact ion, and f rom outside the cel l 

v ia b ind ing o f integr in α6β4 to laminin-5 (L i t jens et al, 2006). 

1.4.2.2 Foca l adhesions 

Most cul tured and stationary cells adhere t ight ly to the under ly ing substrate through 

distinct regions o f their plasma membrane called cel l -matr ix junct ions, otherwise known as 

focal adhesion plaques 3 focal contacts 5 or focal adhesions (FAs) (Burr idge et al" 1988). A t 

these sites, integrins span the cell membrane to l ink the extracel lular matr ix ( E C M ) proteins, 
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such as fibronectin, collagens, lamininร and v i t ronect in, to various intracellular molecules 

inc luding the cytoskeleton (Luo & Springer, 2006). O n the cytoplasmic side o f focal adhesions, 

integrins and cytoskeletal proteins l ink the large bundles o f microf i laments and stress fibres to 

these structures ( F i gu re 1.11 B ) . The short cytoplasmic domain o f the integrin exposes a 

relat ively large accessible b ind ing surface for protein l igands, as in the absence o f these 

proteins the integr in tai l domain appears unstructured (U lmer et al, 2003). Cytoskeletal 

anchoring molecules recruited to FAs include ta l in , v i ncu l i n , α-act in in , pax i l l i n , zyx in 5 and 

focal adhesion kinase ( F A K ) (Zamir & Geiger, 2001). FAs are dynamical ly assembled and 

disassembled by cells. Continuous remodel l ing o f FAs is cr i t ical for cel l movement 

(Lauffenburger & Horw i t z , 1996) and dynamic responses to mechanical forces (Choquet et al.， 

1997). Several regulators o f adhesion turnover 3 inc luding pax i l l i n (Webb et ű/., 2004), G 

protein-coupled receptor kinase-interact ing protein 1 ( G I T I ) (Zhao et al, 2000)， F A K (Ren et 

al, 2000) 5 Src (Webb et al., 2004) and p21-activated tónase ( P A K ) (Manser et α/.， 1997) are 

known. Pax i l l in is a key regulator o f adhesion turnover, as i t interacts w i t h several adhesion 

proteins such as F A K , G I T I (B rown & Turner, 2004) and a serine/threonine phosphatase PP2A 

wh ich might regulate it v ia its S273 phosphorylat ion site (Nayal et al., 2006). Ta l in is a large 

intracellular molecule that binds integrin tails and act in (Cr i tchley, 2005) and that has also been 

shown to be a key regulator o f integrin act ivat ion (Tadokoro et ol, 2003). 

A l t hough plect in has been we l l characterized for its role i n hemidesmosomes as a 

plaque protein, a l ink has also been shown to v iment in-posi t ive focal adhesions (Gonzales et 

α ί , 2001). Dist inct local izat ion o f the p l ec t i n - I f isoform was shown to concentrate at v incu l in -

posit ive focal adhesion contacts in mouse fibroblasts (Rezmczek et α/., 2003). Recently, p lect in 

downregulat ion in breast carcinoma and colon carcinoma cells indicated that plect in plays a 

key role in modulat ing cel l migrat ion and invasion o f tumour cells (unpublished data). 
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Figure 1.11: Cell-matrix junctions. 

A. Hemidesmosomes are complex junctions anchoring cells to the basement membrane 

providing stable adhesion of the cell. The major component of the inner cytoplasmic plaque 

consists of two plakin proteins BPAG-1 and plectin. The transmembrane proteins tetraspanin 

(CD151), BPAG-2 and integrin a6ß4 are also part of the hemidesmosome. The integrin is 

linked to laminin 5 and collagen VII in the extracellular matrix. B, Focal adhesions are 

specific type of large macromolecular assemblies. Connection between focal adhesions and 

proteins such as fibronectin or laminin via their с-terminal domain, while the intracellular 

domain of integrin binds to the cytoskeleton via adapter proteins such as talin, a- actinin, 

paxillin and vinculin. 
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A I M O F Т Ш ร T H E S I S 

In this chapter, c j^o l inkerร have been discussed, part icular ly in relat ion to the 

cytoskeleton and to d i f ferent junct ional complexes. The importance o f the cytol inkers as 

cytoskeletal organiser and/or constituents o f junct iona l complexes is clearly unquestionable. 

Analysis o f gene targeted mouse models and human inherited diseases underlines the role 

plakins in the maintenance o f tissue integrity. Per ip lakin is a component o f the CE and also 

associated w i t h desmosomes in cultured keratinocytes. Remarkably, per ip lakin has been found 

to be dispensable in C E format ion and in maintain ing tissue integri ty. This raises the question 

o f what is the pr imary role o f this cytol inker. 

W i t h the ul t imate goal to contribute to the understanding o f the funct ion o f per ip lak in, 

this w o r k was conducted w i t h the fo l l ow ing aims: 

1. To study the specif ic subcellular local isation o f the с - te rmina l and N-terminal 

constructs o f per ip lakin in simple epithelial M C F - 7 cells. 

2. T o ident i fy any molecular interactions o f per ip lak in N-terminus by co-

immunoprecip i ta t ion experiments using stably transfected M C F - 7 cells. 

3. A s a next step, to investigate the functional correlat ion between co^immunoprecipitated 

proteins through SİRNA transfection and immunofluorescence staining. 

4. To investigate the role o f kerat in 8 intermediate f i laments in col lective epithelia] 

migrat ion dur ing wound healing in human cervical cancer (HeLa) and human 

pancreatic carcinoma cell lines (Panc-1). 
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CHAPTER I I 

MATERIALS AND METHODS 



Chemica ls a n d reagents 

A l l chemicals and reagents used in this study were o f analyt ical grade and were 

purchased f r o m V W R International L td . , Sigma A ld r i ch U K or B D H Laboratory Supplies 3 

unless otherwise stated. 

2.1 P e r i p l a k i n const ructs 

pCI-neo plasmids containing the first ha l f o f the N-terminus and С-terminus o f 

per ip lakin were used to create stable cel l l ines. These vectors were a k ind g i f t f r om Dr . 

Theresa DiColandrea (Kerat inocyte Laboratory, Imper ia l Cancer Research Fund, London, 

England). The f o l l ow ing mutant constructs were created by delet ion f rom the or iginal N -

terminal region o f per ip lakin. These were as fo l lows : Ppl-133, Ppl -80 5 Ppl-63 and P p l l 6 -

133. A l l the delet ion constructs were a k ind g i f t f r om Dr . L isa M . Sevi l la, Kerat inocyte 

Laboratory, Imper ia l Cancer Research Fund, London W C 2 A 3PX 3 England) 
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2.2 M a m m a l i a n cel l cu l t u re 

Ce l l l ine T y p e 
M e d i a 

condi t ions 
Reference 

M C F - 7 Ншпап Caucasian 

breast adenocarcinoma 
D M E M (Sigma) 

(Soule et α/.， 

1973) 

H e L a Human cervical cancer D M E M (Sigma) 
(Puck et al. 1 

1956) 

Panc-1 Human pancreatic 

carcinoma 
D M E M (Sigma) 

(Lieber et al., 

1975) 

HaCaT Immorta l ized human 

keratinocyte 
D M E M (Sigma) 

(Fusenig et 

α/.， 1982) 

Table 2.1: Cell lines used in this study. 

2.2.1 C e l l cu l tu res 

Cells were maintained in Dulbececco'ร m i n i m u m essential medium ( D M E M 

Sigma, U K ) supplemented w i t h 10% foetal ca l f serum and 5 % GPS (L-g lutamine, glucose, 

pen ic i l l in , streptomycin), and incubated at 37 c° in humid i f ied air w i t h 5% C 0 2 . Standard 

sterile tissue culture techniques were used and cells were propagated in T-25 or Ţ-75 flasks 

(Greiner B io-one U K ) , where appropriate. Cel ls were passaged using 0.05% Tryps in 

E D T A (Sigma A l d r i c h U K ) and all washes performed w i t h l x PBS (Sigma A ld r i ch U K 

tissue culture grade). 
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2.2.2 C ryop rese rva t i on o f the cells 

Cells were stored at -80°c and -130°c, thawed qu ick ly in a 37°c circulat ing water 

bath 5 di luted into complete media, pelleted for 5 minutes at 1000 rpm at 4 ๐c， resuspended 

in complete media 3 and plated into the appropriate sized culture vessel. Passages o f cells 

were carried out as fo l lows . The media was removed f r o m the flask by aspiration, the cells 

were washed w i t h l x P B S and then 2 m l prewarmed 1 x t ryps in E D T A (Sigma) was added to 

the T-75 flask. A f te r 5 minutes incubation at 37๐c， the flasks were firmly tapped so that the 

cells were dislodged them f rom the inner surface. Cells were di luted at a 1:10 ratio using 

D M E M containing 10% serum, to inhib i t the t rypsin solut ion. Cells were d iv ided flasks 

according to requirements. For long term storage, cells were centr i fuged at 1000 rpm for 5 

minutes to remove o ld media, and were resuspended on ice in antibiot ic-free media 

containing 10% dimethy l รนlphoxide ( D M S O ) , before final transferral to a -130°c freezer. 

2.2.3 Es tab l i shment o f s tably t ransfected cell l ines 

M C F - 7 cells were g rown in 6-wel l plate (Griener Bio-one U K ) at a density o f 50-

60 % confluence before being stably transfected, using GeneJuice transfection reagent 

(Merck Biosciences, U K ) , w i th pCI-neo mammal ian expression vector, containing the half-

N terminal o f the per ip lak in , whole C-terminal o f the per ip lak in or the empty vector. In 

each case, cells were transfected w i t h 1 o f plasmid and 3 μΐ o f GeneJuice. The 

transfection reagent uses a non-toxic cellular protein and a polyamine to introduce plasmids 

into the ce l l . Once inside the cel l , the plasmid can express the gene o f interest f rom the 

internal p lasmid promoter using the cel l 's transcript ional machinery. Cel ls were a l lowed to 

recover for 48 hours after transfection, before starting the selection w i t h 500 μ ^ ι π ί 

neomycin. The med ium was changed every two days for 3-4 weeks unt i l on ly isolated 

colonies remained. A f te r the selection stage, ind iv idua l colonies were picked and g rown 

in i t ia l ly in 96-wel l -plates, then later in 24-well-plates before finally being transferred to T -

25 flasks. A t the 24 we l l stage, cells were g rown on coversl ips to screen for expression o f 

the transfected genes. Th is was conf i rmed by immunoblo t t ing . 
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2.2.4 Genera t i on o f p e r i p l a k i n specif ic r a b b i t po lyc lona l an t i body 

A polyc lonal antibody was raised against the C-terminal region o f per iplakin. The 

peptide sequence P D T G R E L S P E E A H R A was chosen as i t is conserved between human 

and mouse and as it is the most hydropMl ic (antigemc) region. A cysteine residue was 

added to the start o f the peptide sequence to a l low conjugat ion to the carrier protein, 

keyhole l impet hemocyanin ( K L H ) . Carrier proteins, once coupled to the peptides, provide 

addit ional mot i fs required for association w i t h Class I I molecules and Т-cel l receptors and 

in turn generate a stronger antibody response. Peptide synthesis, raising o f antibodies and 

col lect ion o f serum was conducted by Cambridge Research Biochemicals 5 B i l l i ngham, U K . 

2.3 I m m u n o h i s t o c h e m i s t r y and confocal mic roscopy 

2.3.1 F i x a t i o n 

Cells were seeded on sterile glass coverslips in 24-we l l plates in the presence o f 

D M E M ( 1 0 % FC S and 5% GPS) med ium and g rown for three days to obtain the required 

degree o f confluence. A l l cultures were washed 3 t imes in PBS and either f ixed w i t h 4 % 

formaldehyde in phosphate-buffered saline (PBS) fo r 10 minutes at room temperature and 

permeabil ised in 0.5% Tr i ton X-100 for 15 minutes, or fixed w i t h ice-cold 

methanol:acetone (1:1) for 15 minutes. Fo l low ing f i xa t ion 5 cultures were washed 3 t imes 

w i t h PBS contain ing 0 .5% bovine serum a lbumin ( B S A ) and 0 .02% sodium azide ( N a N 3 ) . 

Subsequently, cultures were blocked w i t h 0.5% Fish Sk in Col lagen Solut ion di luted in l x 

PBS for 40 minutes at room temperature. 

2.3.2 P r i m a r y ant ibodies 

Af te r b lock ing, the coverslips were placed on Paraf i lm and pr imary antibodies were 

applied for 1 hour at room temperature 5 after wh ich cells were washed 3 times in 

P B S / B S A / N a N 3 . Pr imary antibodies used and their d i lut ions are described in Tab le 2.4. A l l 

pr imary antibodies were di luted in PBS/BSA/NaN3 buffer. 
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2,3.3 Secondary ant ibodies 

Secondary antibodies were applied for 1 hour in the dark at room temperature 5 after 

wh ich the cells were washed 3 t imes in washing buffer . A l l the A lexa 488 and A lexa 594-

labelled secondary antibodies were di luted in the same buf fer as their respective pr imary 

antibodies. The cel l nucleus was visualised using 100 ng/ml D A P I ( Invi t rogen U K ) wh ich 

binds to double stranded D N A . Secondary antibodies used in this study and their di lut ions 

are summarized in Tab le 2,5, A f te r several washes in PBS, the coverslips were mounted 

face-down in one drop o f Immunomount (Thermo U K ) and used for microscopy 

immediately or stored at 4°c. 

2.3.4 Immuno f l uo rescence s ta in ing o f f rozen tissue sections 

Frozen tissue blocks were cut w i t h a L E I C A C M 3050ร cryostat and placed on 

slides before air d ry ing and storing at - 8 0 °С. Prior to tissue staining 3 the slides were 

removed f r om the ֊80 ๐ с freezer and al lowed to equil ibrate to room temperature for 30 

ทาinutes-1 hour before transferring into 1 X PBS/BSA/NaN3 for 5 minutes. A wax pen was 

used to circle the sections 5 ensuring the solutions covered the sections at al l t imes. 0.5 % 

f ish skin gelat in was applied to the sections for 40 minutes as a b lock ing step. Sections 

were washed 3 t imes in P B S / B S A / N a N 3 fo r 5 minutes. Pr imary antibodies were di luted in 

PBS/BSA/NaN3 and tissue sections were incubated in the dark for 90 minutes at room 

temperature 5 or alternatively overnight at 4 ๐ c . Sections were washed 3 t imes in PBS/BSA/ 

N a N 3 and secondary ant ibody was applied for 1 hour at room temperature, again in the 

dark. Slides were washed in PBS/BSA/NaN3 before the coversl ips were posit ioned cel l -

side d o w n onto glass slides using Immunomount (Thermo U K ) Slides were dried overnight 

in the dark and stored at 4°c. 
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2,3.5 M i c r o s c o p y 

For v i ew ing and ima g ing cells, a Zeiss L S M 510 M E T A confocal microscope 

imaging system, equipped w i t h 40X N/A1.3 and 63X/1.10 o i l immers ion objectives, was 

used. A dynamic range adjustment was set up to opt imise the signal for the fluorophores 

and the same opt imised condit ions were used for comparisons o f the intensity o f signals 

between di f ferent cultures. The images were collected at a scan speed o f 12.8 μร per p ixe l 

and a resolut ion o f 1024 X 1044. Composite images were generated using Adobe 

Photoshop CS (Adobe System) and L S M 5 1 0 image browser software (Car l Zeiss). On ly 

linear adjustments to brightness and contrast were made. O n some occasions, a B ioRad 

Radiance 2000 confocal microscope imaging system w i t h ЬазегЗһаф software (Bio-Rad) 

was used equipped w i t h 4 0 X and 63X/1.40 o i l immers ion lens. Images were collected in 

Sequential Mode (B io-Rad) or Mu l t i -T rack Mode (Zeiss). 

2.4 Scra tch w o u n d assay 

Cells were g rown to 100% confluence under standard condit ions and wounded 

using the scratch wound assay technique (Lampugnani 3 1999). B r ie f l y , once the cells had 

formed a monolayer in culture 3 they were wounded using a 200 μΐ pipette t ip (Star Lab 

U K ) . For immunob lo t t ing analysis, cells were harvested at d i f ferent t ime points (30 

minutes or 2 hours) post wound ing 5 or the cells were washed 3 t imes w i t h PBS and used for 

immunofluorescence imaging. For real t ime wound heal ing experiments, the wounded area 

was captured using a phase contrast microscope (Ax iover t 10 Zeiss, Co lo rv iew System) 

using the x i o object ive. Progression o f the cells dur ing heal ing o f the wounded area was 

observed under the microscope for a period o f t ime ranging f r om hours to several days 

(F igu re 2.1). 
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Monitor wound edge cells by 
immunofluorescence s taming. 

Follow the rate of wound closure by 
phase contrast microscopy. 

Total cell exWactraction 

Protein analysis 

Figure 2.1: Scratch wound assay. 

A. In order to perform a wound healing assay1 a wound is introduced into a monolayer of cells 

using a sterile pipette tip by scratching a line through the layer. The open gap is then monitored 

by phase շօոԾստէ microscopy focusing on the wound edge cells and/or following the rate of 

wound healing. The monolayers recover and heal the wound in a process that can be observed 

over a distinct timecourse depending on the specific cell type1 conditions, and the extent of the 
uwounded" region. Β· Scratch wound assay is also a usefiil tool for monitoring protein 

expression alterations after wounding the monolayer (images displayed were adopted from 

public site: www. biophysics, com/.. Jwoundhealing. html). 9 6 



2.5 P ro te in analysis techniques 

2.5.1 W h o l e cel l p ro te i n ex t rac t ion 

A l l protein analysis procedures were performed on ice. Whole cel l protein was 

extracted after washing 3 t imes w i t h ice-cold PBS. Cells were lysed on ice in 2x Laemml i 

sample buf fer ( L S B ) ( 0 . 5M Tr is -HCl p H 6.8, 2 0 % v/v Glycero l , 1 % SDS; I m M E D T A ) 5 

supplemented w i t h Complete Protease Inhib i tor Cocktai l (Roche U K ) 5 containing a mixture 

o f protease inhibi tors inc luding serine-, cysteine- and metalloproteases. 1 tablet was added 

to 5 m l o f sample buffer. Keeping the samples on ice dur ing protein extract ion, and the use 

o f protease inhib i tors 5 are important steps to stop degradation o f the proteins. Cells were 

scraped o f f the dishes w i t h a cell scraper and transferred into microcentr i f t ige tubes. The 

samples were boi led for at least 5 minutes and homogenised w i t h a 25G needle to shear the 

genomic D N A . Samples were used fresh or al iquoted and stored at -80 ๐ с unt i l needed. 

2.5.2 P ro te i n Q u a n t i f i c a t i o n Us ing BCA-Assay 

Extracted proteins were quanti f ied using a B C A (bic inchoninic acid) protein assay 

reagent k i t (Pierce U K ) , wh ich is a color imetr ie assay where the samples are read at 562 

nm. Standards were made using BS A (Sigma A ld r i ch U K ) di luted in the same sample 

buffer that the protein samples were stored in . Standard concentrations were: 0， 0.1， 0.25, 

0.5, 1.0, 1.5, and 2.5 m g / m l , and the protein samples were used at di lut ions o f 1:5 in the 

assay. Samples were read on a Beckman D U - 6 0 0 spectrophotometer, wh ich produces a 

standard curve wh ich can be used to determine the concentrat ion o f unknown samples, 

based on their absorbance. 

2.5.3 Subce l lu la r Detergent F rac t i ona t i on o f Pro te ins 

M C F - 7 cells were grown to confluence in 10 c m 2 dishes and extracted using 

saponin 5 w i t h some modif icat ions o f the protocol described by Palka and Green (Palka & 

Green, 1997). B r ie f l y , cells were washed in PBS to remove any medium and extracted w i t h 

saponin buffer ( 0 . 0 1 % พ/V saponin 3 l O m M Tr is p H 7.5, 1 4 0 m M N a C l , 5 m M E D T A , 2 m M 
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E G T A , l m M P M S F and Complete Protease Inhib i tor Cockta i l (Roche U K ) ) on ice, for 10 

minutes. A f te r th is 5 the cells were removed f r om the dishes using cel l scrapers and 

centr i fuged at 14,000 X g for 30 minutes at 4 °С. The saponin soluble fract ion w a s 

transferred to a separate Eppendorf tube and the pellet was further extracted using ice-cold 

Tr i ton buf fer ( 1 % v /v , T r i tonX-100, l O m M Tris p H 7.5, 140mM NaCl， 5 m M E D T A , 2 m M 

E G T A , 1 m M P M S F and proteinase inhibi tor cocktai l ) . A f te r vor tex ing the pellet for 30 

sec, the sample was centr i fuged for 30 minutes at 145000 X g， at 4°c. The supernatant 

(Tr i ton soluble f ract ion) was transferred to a separate tube, leaving the Tr i ton insoluble 

fract ion as the pellet (F igu re 2.2). A l l samples were adjusted to the same volume w i t h 4 X 

L S B and equal volumes were loaded on a 4 - 1 2 % Bis-Tr is gel ( Inv i t rogen) for analysis by 

immunoblo t t ing. Quant i f icat ion o f indiv idual proteins in each f ract ion was determined 

using Image Gauge version 4.0 (Fuj i photo film CO. L td ) . 
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Cells we re g r o w n on 10cm dishes. 

Washed w i t h I X PBS 3 t imes. 

t 
Pro te in ex t rac t ion w i t h 

Saponin bu f f e r 10 m i n on ice. 

14,000 X g f o r 3 0 m i n , 4 °С. 

！ 

Superna tan t : Pel let : 

S A P O N I N S O L U B L E F R A C T I O N ( S I ) Saponin insoluble f rac t i on 

Pro te in ex t rac t ion us ing ice-cold T r i t o n bu f fe r . 

A f t e r 30 sec v o r t e x i n g 9 cen t r i fuge 30 m i n a t 14 9000 X g at 4 ° С . 

Superna tan t : 

™ T O N S O L U B L E F R A C T I O N (S2) 

Pellet: 

T R I T O N I N S O L U B L E F R A C T I O N (P3) 

Figure 2.2: Experimental sutnmary of subcellular detergent fractionation ofproteins. 
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2.6 S D S - P o l y A c r y l a m i d e Ge l E lect rophores is ( P A G E ) f o r p ro te ins w i t h a molecu lar 

we igh t o f 20-200 k D a 

Proteins were separated by SDS Polyacrylamide gel electrophoresis (PAGE) using 

the Thermo Electron m in i gel system. Sodium dodecyl sulphate (SDS) is an anionic 

detergent wh i ch denatures proteins by "wrapp ing around" the polypeptide backbone. 

Polymerisat ion o f the acrylamide was imtiated by the addi t ion o f ammonu im persulphate 

(Sigma, U.K. ) to a f ina l concentration o f 0 . 1 % and 1 i n 2,500 d i lu t ion o f N 5 Ν , Ν ' , Ν ' -

tetramethylethylenediamin ( T E M E D ; Sigma 5 U K . ) . The mixture was immediately poured 

between glass plates on the casting r ig , leaving approximately 1 cm at the top for the 

stactóng gel m ix . Saturated butanol was over laid on top o f the gel for a smooth inter-phase. 

Fo l low ing polymer isat ion o f the separating gel , the saturated butanol was removed and 

washed away w i t h desti l led water several t imes. The stacking gel ( f ina l concentration 4 % 

acrylamide, 0.5 m M T r i s - H C L p H 6.8; 2 0 % SDS (พ / v ) 3 10% (w /v ) ammon ium persulphate 

and 1 in 2500 d i lu t ion o f T E M E D ) was mixed and poured on top o f the separating gel and 

the comb inserted between the plates. The comb was removed after the stacking gel had 

polymerised. The required amount o f each protein sample was denatured by adding an 

equal vo lume o f loading buf fer dye (sample buf fer supplemented w i t h 0 .2% bromophenol 

blue and 1 % ß-mercaptoethanol) and resolved on SDS-PAGE gels 5 at 100 V through the 

stacWng and 200 V in the resolving gel in 1 X SDS-PAGE buf fer ( 2 5 m M Tr is , 2 5 0 m M 

glycme, 0 . 1 % SDS). Depending on the size o f the proteins o f interest, resolving gels o f 7 % 

to 15% were used for higher resolution in the upper and lower part o f the gel 5 respectively 

(Tab le 2.2). 
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Stack ing Ge l So lu t ion ( 4 % A c r y l a m i d e ) 

н 2 0 3.075 m l 

0.5 M T r i s -HC l , p H 6.8 1.25 m l 

2 0 % (w / v ) SDS 0.025 m l 

Acry lamide/Bis-acry lamide 

(30%/0 .8% w/v ) 
0.67 m l 

10% (w / v ) ammonium persulphate (APS) 0.025 m l 

T E M E D 0.005 m l 

Separa t ing gel So lu t ions: 7 % 1 0 % 1 2 % 1 5 % 

H 2 o 15.3 m l 12.3 m l 10.2 m l 7.2 m l 

1.5 M T r i s - H C l , p H 8 . 8 7.5 m l 7.5 m l 7.5 m l 7.5 m l 

2 0 % (w/v ) SDS 0.15 m l 0.15 m l 0.15 m l 0.15 m l 

Acry lamide/Bis-acry lamide 

(30%/0 .8% w / v ) 

6.9 m l 9.9 m l 12.0 m l 15.0 m l 

10% (w /v ) ammon ium persulphate 

(APS) 

0.15 m l 0.15 m l 0.15 m l 0.15 m l 

T E M E D 0.02 m l 0.02 m l 0.02 m l 0.02 m l 

Table 2.2: Preparation ofSDS-PAGE gels. 
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2.7 1-d imensional g rad ien t gel e lectrophoresis 

For improved separation, protein samples were separated on N u P A G E 4 - 1 2 % Bis -

Tr is ( Inv i t rogen), or in the case o f h igh molecular weight proteins such as plect in, 

N u P A G E 3-8% Tris-acetate gradient gels using the N u P A G E M in i -Ce l l system. Proteins 

were resolved on N u P A G E 4 -12% Bis-Tr is gradient gels using I X MOPS m i m i n g buffer. 

In contrast, proteins were resolved on N u P A G E 3-8% Tris-acetate gradient gels using I X 

N u P A G E Tris-acetate running buffer. 

2.8 I m m u n o b l o t t i n g 

Immunob lo t t ing was performed using the semi-dry b lo t t ing technique (Trans-Blot 

SD Semi-Dry Transfer Cel l B io-Rad). Proteins were separated on SDS-PAGE gels 

( Inv i t rogen) and transferred to Hybond nitrocellulose membranes (Amersham Pharmacia 

Biotech) using anode buf fer I (0.3 M Tr is 5 10% methanol , p H 10,4)， anode buffer I I ( 25 

m M Tr is, 10% methanol , p H 10.4) and cathode buf fer (25 m M Tr is , 40 m M glycine, 10% 

methanol, p H 9.4) for 0.8 m A / c m 2 . 

2.9 Ponceau ร s ta in ing o f the n i t rocel lu lose m e m b r a n e 

The nitrocel lulose membranes, containing the transferred proteins were stained w i t h 

Ponceau ร (Sigma Chemical U.K.) for 3-5 minutes and the excess dye was washed o f f w i t h 

dist i l led water unt i l protein bands were vis ib le. Ponceau ร was used to check that protein 

transfer had occurred and that this transfer was un i fo rm and also to ver i fy equal loading o f 

proteins. Membranes were destained in Tr is-buffered saline ( l x T B S ; 20 m M T r i s -HC l , p H 

7.4, 150 m M NaCl ) for 5 minutes. 
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.10 I m m u n o d e t e c t i o n 

For the detection o f protein using antibodies, non-specif ic b ind ing sites on the 

membranes were blocked by incubation w i t h b lock ing solut ion consist ing o f 5% (wt /vo l ) 

dried non-fat m i l k powder in TBS containing 0.2% (vo l /vo l ) Tween-20 for 2 hours at room 

temperature or at 4°c overnight. The membranes were probed w i t h an antibody di luted in 

b lock ing solut ion for 1 hour. A f te r several washes w i t h T B S containing 0.2% (vo l /vo l ) 

Tween 20, the membrane was incubated w i t h horseradish peroxidase-conj ugated secondary 

antibody (di luted 1:800) in b lock ing solut ion for 1 hour, fo l l owed by washing w i t h I X 

T T B S for 30 minutes. An t ibody label l ing was detected by enhanced chemiluminescence 

using an E C L Plus Western B lo t t ing Detect ion System (Amersham), visualized w i t h a 

luminescent image analyser (LAS-1000plus; Fu j i Photo F i l m ( U K ) , London, Uni ted 

K ingdom) . 

2.11 M e m b r a n e s t r i p p i n g f o r r e p r o b i n g 

Hybond p™ nitrocellulose membranes were incubated at 55°c for 1 hour in 

str ipping buffer (100 m M ß-mercaptoethanol, 2 % SDS, 62.5 m M T r i s - H C L , p H 6.7). The 

membranes were washed tw ice , for 3 minutes, i n T B S - Т and then blocked in 10% (w /v ) 

non-fat m i l k i n T B S - Т for 1 hour at 37°c. Removal o f the prote in signal was ver i f ied by 

treatment o f the membranes w i t h E C L Plus. Fo l l ow ing a further three 5-min T B S - T 

washes^ the membranes were ready for reuse and prob ing w i t h other antibodies. 

2.12 I m m u n o p r e c i p i t a t i o n 

2.12Л Ce l l lysis, Pre-c lear ing , I m m u n o p r e c i p i t a t i o n 

Cells were washed 3 t imes in ice-cold PBS ( I m M K H 2 P O 4 5 l O m M N a 2 H P 0 4 ? 

137mM N a C l 2 , 2.7 m M K C l , p H 7.4) and lysed in Lys is buf fer ( 5 0 m M Tr is -HCI p H 7.5, 

150mM N a C l , 1 % Nonident P40 5 0 .5% sodium deoxycholate 3 Complete Protease Inh ib i tor 

Cocktai l (1 tablet /15ml). The cells were scraped into an Eppendor f tube and homogenised 
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on ice, then centr i fuged for 10 m i n at 123OOOxg at 4°c to remove debris. 50μ1 homogenous 

protein G agarose suspension (Roche) were added to the sample (containing 25 μ ΐ bed 

vo lume o f the resin) to 1-3 m l sample and pre-cleared for 3 hours at 4 ๐ с on a rock ing 

p la t form. A f te r centr i fugat ion to pellet the beads, 10 μ ΐ o f ant ibody (di luted 1:100) was 

added to the supernatant and incubated for 1 hour at 4°c on a rotat ing mixer. A f te r 

incubation w i t h 50 μ ΐ Protein G beads5 proteins were immunoprecipi tated overnight at 4๐с 

on a rotat ing mixer. Immunoprecipi tated samples were than washed three t imes, first w i t h 

l m l lysis buf fer 5 then w i t h l m l wash buf fer 2 ( 5 0 m M Tr i s -HC l p H 7.5， 500 m M N a C l , 0.1 

% Noณ ํdent P40, 0.05 % sodium deoxycholate) and finally w i t h 1 m l wash buffer 3 ( 5 0 m M 

Tr i s -HCl p H 7.5， 0.1 % Nomdent P40， 0.05 % sodium deoxycholate) for 20 minutes at 

4°c. This step is crucial to remove non-specif ical ly bound proteins. For a less stringent 

washing procedure, immunoprecipi tated complexes were washed 3 t imes in lysis buffer for 

20 minutes at 4°c. I n order to denature proteins and release them f rom the beads, samples 

were heated to 100°c for 3 minutes i n the presence o f 25-75 μ ΐ electrophoresis sample 

buffer. A f te r pel let ing the beads, proteins from the solubi l ized supernatant were separated 

by electrophoresis using SDS-PAGE gels, or 4 - 1 2 % Bis-Tr is gradient gels ( Invi trogen) for 

better resolution. 

2.12.2 I m m u n o p r e c i p i t a t i o n w i t h the I P / C o I P k i t 

Cells were g rown under the usual condit ions for each l ine. Hav ing reached 100% 

conf luency, culture media was decanted o f f and the cells were rinsed once w i t h ice-cold 

T B S . Tota l protein was extracted w i t h mammal ian lysis buf fer ( M - P E R Reagent; Pro-

Found Mammal ian H A - t a g IP/CoIP k i t and App l ica t ion Set; Pierce) for 5 minutes w i t h 

gentle shaking. The lysate was collected and transferred to a microcentr i fuge tube. Samples 

were centr i fuged at 16,000 X g at 4 ๐ с for 20 minutes to pellet the cel l debris. Supernatants 

were transferred to a clean microcentr i fuge tube and were used immediately or stored at 

-80°c unt i l forther analysis. The immunoprecip i tat ion procedure was carried out w i t h 

immobi l i zed an t i -HA antibody, overnight at 4๐c， w i t h end-over-end m ix ing . Samples were 

washed 3 t imes w i t h T T B S (0 .05% Tween-20 in TBS) . 25μ ΐ o f 2X non-reducing sample 
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buf fer was added to the samples before placing on a heated b lock (95-100°C) for 5 

minutes. For reducing gel analysis, 3 μΐ o f I M D T T was added to each sample. 

2.13 Ge l s ta in ing 

Af te r electrophoresis, gels were stained w i t h normal Coomassie Br i l l iant Blue. Gels 

were placed direct ly in the dye (consisting o f 4 0 % methanol, 10% acetic acid, 0 . 1 % 

Coomassie B lue G-250; Sigma A ld r i ch U K ) and stained overnight at room temperature 

w i th constant agitat ion. Gels were destained w i t h 4 0 % methanol , 10% acetic acid for up to 

24 hours w i t h several changes o f the solut ion. 

Protein gels were also visual ized by Silver staining (Si lver Snap Stain K i t I I ; 

Pierce). Gels were washed in ultrapure water and fixed in fixing solut ion ( 3 0 % ethanol: 

10% acetic acid) for 30 minutes. The gels were then washed i n 10% ethanol for 10 minutes 

and i n ultrapure water for 5 minutes, sensitized for 1 minute in sensitizer work ing solut ion 

(S i lverSNAP Sensitizer di luted in ultrapure water, 1:500)， and stained for 30 minutes. A f te r 

washing the gels w i t h water 5 they were developed for 2-3 minutes and the reaction was 

stopped w i t h 5 % acetic acid for 10 minutes. U n k n o w n proteins were ident i f ied by isolat ing 

the relevant band f rom the gel, before processing for peptide mass fíngeφrinting [matr ix-

assisted laser desorption ionisation mass spectrometry ( M A L D I - T O F ) ] and amino acid 

sequence analysis. 

2.14 2 -D imens iona l gel e lectrophoresis 

As the co- immunoprecip i tat ion k i t leaves the proteins contaminated w i t h charged 

detergents w h i c h are incompatible w i t h the isoelectric focusing 5 SDS had to be removed 

f r om the samples. The samples (25 μ ΐ ) were di luted w i t h 100 μ ΐ double dist i l led water and 

400 μ ΐ o f acetone was added. Af te r 30 minutes incubation at room temperature, 

centr i fugat ion at 13,000 rpm resulted in a pellet w i t h on ly a m in ima l amount o f SDS. W i th 
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the addi t ion o f 60μ ΐ lysis buf fer containing urea, thiourea and C H A P S (see be low) 5 proteins 

were unfo lded and their solubi l i ty was increased. 

2.14.1 Re-Swe l l i ng o f I P G s t r ip 

Preparing the protein samples for the first d imension run, lysis buf fer ( 9 M urea; 2 M 

thiourea; 4 % C H A P S ; 1 % D T T ; 2 % 3-10 ampholytes and a trace o f bromophenol blue) 

was added to make the vo lume 120 μ ΐ. W i t h the addi t ion o f 2.5 μ ΐ 5 0 % D D T and 2.5 μ ΐ 

ampholyte buf fer 5 this made a final vo lume o f 125 μ ΐ 5 w h i c h was suff ic ient to re-hydrate a 

7 cm IPG strip. The samples were pipetted into a we l l o f the Immob i l ine Dryst r ip Re-

swel l ing Tray 5 and the IPG strips were placed into the w e l l over the sample, gel side down , 

avoid ing t rapping o f air bubbles underneath. Paraf f in o i l was placed over the sample and 

the strip was rehydrated overnight. 

2.14.2 1 s t D imens ion r u n . 

Af te r washing and blot t ing dry, the IPG strips were placed into the grooves o f the 

strip tray 3 gel side up. Electro focusing electrode strips were cut to size 5 soaked in water 3 

dried and placed across the IPG strips. Paraff in o i l was added to completely cover the IPG 

strips. The Mu l t i d r i ve X L power was l inearly increased and programmed as shown be low 

(running condi t ions: temperature 20°C; current 2 m A ; power 5 พ total) . 
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Vo l tage (V) m A พ T ime (h) k V h 

1. step 200 2 
5 

0:01 

2. step 3500 2 
5 

1:30 2.8 

3.step 3500 2 
5 

0:35-1:05 2.2-3.7 

Fo l low ing electrophoresis i n the first dimension, IPG strips were removed from the tank, 

rinsed w i t h M i l l i Q ( M Q ) water and placed into an equi l ibrat ion tray, gel side up. 

Equl ibrat ion buf fer ( 5 0 m M Tr i s -HCI , 10mg/ml d i th iothre i to l 5 10% (w /v ) SDS, 6 M urea, 

and 3 0 % glycerol ) was placed over the strips (4-5 m l per strip) and put on a shaker for 15 

minutes. 

The strips were removed and rinsed w i t h M Q water and placed into equi l ibrat ion 

buffer containing iodoacetimide (48mg/ml) (instead o f D T T ) and put back on the shaker for 

a ftirther 15 minutes. 

2.14.3. 2 n d d imens ion r u n 

The second dimension gels (70 X 80 mm) were 10% SDS-PAGE gels, prepared 

using a mul t i -ge l casting system w i t h 1mm spacers, and made in batches o f three. The gel 

was f i l led to approximately 0.8 cm from the top o f the lower glass plate and butan-2-ol was 

added. However , a stacking gel was not required. A standard SDS-PAGE electrophoresis 

buffer system was used. Once the gel had polymer ized 5 the butanol-2-ol was washed out 

w i t h M Q water and gel was covered w i t h I X running buf fer to the top. IPG strips were 

էէՅՈտք€Մ6(1 f rom the tray, a l low ing them to displace the water. Strips were pushed down 

w i t h the spacer to prevent bubbles, and excess water was removed w i t h b lot t ing paper. 

Warm 1 % agarose was made w i th I X running buf fer and poured on top o f the 

strips. The agarose was al lowed to cool and so l id i fy before mov ing on to the 
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electrophoresis step. The gels were run at 200 V fo r two hours 5 by wh ich t ime the 

bromophenol blue dye had reached the end o f the gel. Gels were removed f rom the plates 

and silver stained. 

2.15 Mat r i x -ass is ted laser desorp t ion / ion iza t ion t ime -o f - f l i gh t ( M A L D I - T O F ) 

Proteomics is an important new field o f study o f protein properties (expression 

levels, interactions 3 post-translational modif icat ions etc.) and thus can be described as 

funct ional genomics at the protein level. Matrix-assisted laser ά68θφ ί ίοη/ ΐοηΪ8α ΐ ίοη- ΐ^6 o f 

flight mass spectrometry ( M A L D I - T O F M S ) is a relat ively novel technique i n wh ich a co-

precipitate o f an U V - l i g h t absorbing matr ix and a biomolecule is ionised by a nanosecond 

laser pulse. Most o f the laser energy is absorbed by the matr ix 5 พ Ы с һ protects against 

fragmentation o f the biomolecule. The ionized biomoleculeร are accelerated by an electric 

f ie ld and enter the flight tube where the di f ferent molecules are separated according to their 

mass to charge ratio (m/z) and hence reach the detector at di f ferent t imes. I n this way, each 

molecule yields a dist inct signal. The method is used for detection and characterization o f 

biomoleculeร, such as proteins, peptides 5 oligosaccharides and ol igonucleotides 5 w i t h 

molecular masses between 400 and 350,000 kDa. Protein ident i f icat ion by this technique 

has the advantages o f a short measuring t ime (minutes) and negl ig ible sample consumption 

(less than 1 pmo l ) and also yields addit ional in format ion regarding microheterogeneity (e.g. 

glycosylat ion) and the presence o f by-products. The mass accuracy o f M A L D I - T O F M S is 

suff ic ient to characterise proteins (after t rypt ic digestion) f r o m completely sequenced 

genomes (e.g. methanogens, yeast). I n addi t ion, important progress has been made in the 

use o f M A L D I - T O F M S for typ ing o f single nucleotide po lymorphisms using single 

nucleotide pr imer extension. 

2.15.1 Mass -Spec t romet ry 

Trypt ic digestion was performed on a ProGest Workstat ion f r om Genomic 

Solutions using the standard ProGest long t rypsin protocol . B r ie f l y , gel spots were washed 
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i n 2 5 m M bicarbonate buf fer ( p H 8) 5 destained and dried out in concentrated acetonitri le. 

The gel pieces were rehydrated in 5 0 m M bicarbonate buf fer and the protein spots were 

reductively alkylated w i t h D T T and iodoacetamide. A f te r several washes in bicarbonate 

buffer, 200 ng/sample o f buffered modi f ied trypsin was added and the digestion was 

performed for 8 hours at 3 7 C ๐ . Fo l low ing digestion, the peptide extracts were lyophi l ized 

in a vacuum concentrator, resuspended i n 10 m l 0 . 1 % fo rmic acid and introduced into a 

Voyager D E - S T R mass spectrometer (App l ied Biosystems). A l l M A L D I spectra acquired 

were internal ly calibrated using the t rypsin autolysis peaks 842.5 and 2211.11 m/z present 

in the spectra. The generated peptide masses for each sample (f ingerprints) were than 

matched to theoretical t rypsin digests o f proteins f r o m a complete non-redundant human 

N C B L n n database. The database search was performed using the M A S C O T 

(พЛУพ.matr ixscience.com) software at a mass accuracy o f 50 parts per m i l l i on (ppm). The 

M A S C O T search a lgor i thm takes into account the number o f peptides that match 3 the 

number o f fragment ions that match 3 the accuracy at พ Ы с һ they match, and a weigh ing for 

large peptide matches (Pappin et al, 1993). For each sample 5 the protein w i t h the highest 

M O W S E (molecular weight search) score was reported as a posi t ive result. 

2.16 R N A in ter fe rence ( R N A İ ) . 

Unt i l recently 5 the funct ional characterization o f a part icular mammal ian gene or gene 

product invo lved either e l iminat ion by gene knock-out strategies in mouse models, 

inact ivat ion using r ibozymes, antisense strategies or overexpression o f a dominant-negative 

fo rm o f the protein product in cel l culture systems. The recent discovery o f the natural 

process termed R N A interference ( R N A İ ) offers an alternate too l to ftinctionally characterize 

a gene product (Fire et al., 1998). R N A İ is an ant iv iral post-transcript ion gene si lencing 

defense mechanism i n animals and plants caused by the int roduct ion o f double-stranded 

R N A homologous to the silenced gene (Paddison & Harmon 3 2002; Den l i et al., 2003). Th is 

mechanism o f R N A İ has been found to be conserved in most organisms, w i t h the notable 

exception o f the yeast Saccharomyces cerevisiae (Hutvágner & Zamore 5 2002). R N A İ 

involves the cleavage o f the double stranded R N A by an RNAase I I I enzyme (D ICER) into 

smaller fragments o f 21-23 nucleotides (nt) in length w i t h characteristic dinucleotide 3 ' 
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overhangs referred to a small interfer ing R N A ( s i R N A ) (Zamore et al, 2000). The SİRNA is 

then recruited into a mul t ienzyme complex called the R N A induced si lencing complex 

( ผ S C ) wh i ch binds specif ical ly to a complementary m R N A transcript to target i t for 

cleavage and degradation. In mammal ian cells, in vitro synthesized 21-nucleotide SİRNA 

duplexes provide a new tool for studying gene funct ion (Elbashir et ű/.， 2 0 0 1 ; Harborth et αι., 

2001) as longer dsRNAs resulted in blockage o f in i t ia t ion o f protein synthesis and m R N A 

degradation (Bass, 2001). There are several d i f ferent methods o f carry ing out R N A İ 

inc luding in v i t ro transcript ion, SİRNA vector or chemical synthesis. I n this study, 

chemical ly-synthesized s iRNAs have been used because o f their pur i ty and ease o f use. 
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Figure 23։ Mechanism of gene silencing by SİRNA transfection. 

Expression of individual genes can be inhibited by interfering with the transcribed m RNA. 

This is done via synthetic small double-stranded RNAs (siRNA). Within the cell, double 

stranded siRNA unwinds and is incorporated into the RISC (RNA induced silencing 

complex) forming a stable protein-RNA complex. The RISC then captures an endogenous 

mRNA molecule that complements the short siRNA sequence. If the pairing (native RNA 

and siRNA piece) is perfect, the native mRNA is severed and the mRNA undergoes 

degradation. If the pairing is less complete, however, the RISC complex binds to the mRNA 

and blocks ribosome movement along the native mRNA to stop translation1 again resulting 

in no protein production. 
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2.16.1 Select ion o f S İRNA sequence 

Specif ic SİRNA duplexes were designed to target the reqmred D N A sequences 

wh ich were selected f r o m the open reading frame o f per ip lak in , kerat in 8 and plect in, in 

order to obtain sense and antisense strands w i t h symmetr ic 3 ' overhangs o f identical 

sequence. A l l sequences were submitted to a B L A S T search against the human genome to 

ensure that on ly the desired m R N A was targeted. 

SİRNA 

ol igo 
Sequence 

Ta rge t 

reg ion 

K n o c k 

d o w n 

eff ìc iency 

PPL-1 A U G U A U A A A A U G C U U G G C C t g С-ter, exon22 > 9 5 % 

PPL-2 U G C U C Ģ U A U U U C C G G U U G G t g N-ter, Є Х О П І 5 > 9 5 % 

P P L - 3 G A G G G U A U G U A U A A A A U G C t t С-ter , exon22 > 9 5 % 

K 8 - 1 C A U G U U G C U U C G A G C C G U C t t 
N- te r head 

d o m a i n 
5 0 - 8 0 % 

K8-2 A A U A U C C U C G U A C U G U G C C t t Rod , exon 6 > 5 % 

Plec t in -1 G G A A U G A U G A C A U C G C U G A t t С- te r E x o n 5 > 9 5 % 

Table 2.3: SİRNA sequences used in this study. 

2.16.2 Ce l l c u l t u r e and t rans fec t ion o f SÍRNA 

W i l d type M C F - 7 , HaCaT, HeLa and Panc-1 cells were g rown in normal D M E M 

medium for several days in T-75 flasks. One day before per fo rming the transfection, 
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confluent (90%) cultures were trypsinised and di luted w i t h fresh D M E M . Cells were 

seeded on sterile glass coverslips in 24-wel l plates in the presence o f 10% FCS and 5 % 

GPS. One day before transfection, cells were plated in 0.5 m l med ium wi thout antibiotics 

so that they wou ld be 30-50% confluent at the t ime o f transfect ion. SİRNA transfections 

were carried out us ing ol igofectamine reagent (L i f e Technology) . Prior to transfection, 60 

pmol SİRNA was di luted in 50 μ ΐ serum-free D M E M medium. A t the same t ime, 3 μ ] 

ฝigofec tamine was di luted in 12 μ ΐ serum-free D M E M medium and incubated for 5 

minutes at room temperature. The di luted SİRNA and the di luted ol igofectamine were 

gently m ixed and incubated for 20 minutes at room temperature to a l low the SİRNA-

ol igofectamine complex to fo rm. The s iRNA-ol igofectamine mix ture was then added to the 

culture dish we l l w h i c h was gently rocked back and for th . Complexes were removed from 

the cells and the media replaced after 24 hours, w i thout af fect ing the transfection 

ef f ic iency. Cel ls were processed for immunofluorescence 5 immunoblo t t ing or scratch 

wound assay 48-96 hours after transfection. 

2.17 Student 's T"test 

The Student's t-test was used to compare the quantitat ive data after SİRNA 

transfections. Means o f the scratch wound widths f r om 3 to 5 independent wounds were 

compared by using the Student's t-test at di f ferent t ime-points (10 minutes 5 8 hours, 20 

hours and 24 hours). The results were considered signi f icant i f the ρ value was less than 

0.05 (p<0.05). 

114 



Primary 

antibody Species Name Source IF WB 

α-tubulin Mouse АЫ1304 Abeam 100 1000 

Actin Mouse AC40 Sigma NA 1000 

Annexin A1 Rabbit ANXA1 Abeam 200 N/A 

Annexin A9 Chicken ANXA9 Abeam 200 2000 

Anti-HA Rat clone 3F10 Roche 200 200 

Anti-HA Rabbit Ab9110 Abeam 200 200 

Desmoplakin Mouse DP 1/2 ICN 100 1000 

Desraoplakin Rabbit AHP320 Serotec 100 1000 

HA-probe Rabbit Y - l l Santa Cruz 200 500 

Keratin 14 Rabbit MK14 Covance 500 1000 

Keratin 18 Mouse Ab-2 Oncogene 100 1000 

Keratin 8 Mouse LE41 B.Lane 2 NA 

Keratin 8 Mouse ab9287 AE3 Abeam 100 1000 

Keratin8 

Pser431 
Mouse Ab-5 (5B3) Stratech 100 1000 

Periplakin Rabbit TD2 F. Watt 100 200 

Periplakin Rabbit BOCZ-1 This study 500 500 

Plectin Goat C-20 Santa Cruz 200 500 

plectin isoform 

1 
Rabbit (LM2) plec 1 L. Mclnroy 200 500 

plectin isoform 

l f 
Rabbit (LM5) pleci f L. Mclnroy 200 500 

plectin isoform 

Ík 
Rabbit (LM7) plec l k L. Mclnroy 200 500 

Vimentin Rabbit 3052 R. Quinlan NA 2000 

Vinculin Mouse V-11-5 Sigma 500 100 

Table 2.4: List of used primary antibodies used in this study. Immunofluorescence (IF), 

Western Blot (WB). 
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Secondary 

antibody Species Company IF WB 

Rabbit Anti-goat immunoglubulins-HRP DakoCytomation 1:1000 

Swine Anti-rabbit immunoglubulins-HRP DakoCytomation 1:1000 

Goat Anti-mouse immunoglubulins-blRP DakoCytomation 1:1000 

Donkey Anti-chicken immunoglubulins-URP DakoCytomation 1:1000 

Goat Anti-chicken immunoglubulins-HRP DakoCytomation 1:1000 

Goat Alexa-Fluor Anti-chicken IgG 594 Invitroge molecular 
probes 

1:800 

I Goat Alexa-Fluor Anti-mouse IgG 594 Invitroge molecular 
probes 

1:800 

1 Goat Alexa-Fluor Anti-rabbit IgG 488 Invitroge molecular 
probes 

1:800 

Goat Alexa-Fluor Anti-mouse IgG 488 Invitroge molecular 
probes 

1:800 

Donkey Alexa-Fluor Anti-mouse IgG 488 Invitroge molecular 
probes 

1:800 

Goat Alexa-Fluor Anti-chicken IgG 488 Invitroge molecular 
probes 

1:800 

Donkey Alexa-Fluor Anti-mouse IgG 594 Invitroge molecular 
probes 

1:800 

Donkey Alexa-Fluor Anti-rabbit IgG 488 Invitroge molecular 
probes 

1:800 

Donkey Alexa-Fluor Anti-rabbit IgG 594 Invitrogen molecular 
probes 

1:800 

Dapi Invitrogen 1:1000 

7a¿»/๙ 2.5: List of secondary antibodies used in this study. Immunofluorescence (IF), 

Western Blot (WB). 
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CHAPTER Ш 

CO-IMMUNOPRECIPITATION OF PLECTIN AND 

ANNEXIN A9 WITH PERIPLAKIN IN MCF-7 

EPITHELIAL CELLS 



3 .1 . I n t r o d u c t i o n 

Several studies have looked at the interactions o f the per ip lak in с - te rm ina l 

domain , but the molecu lar interactions o f the N- terminus have been studied to a lesser 

extent. 

The N- te rmina l domains o f the cy to l inker proteins d isplay a h igh degree o f 

structural homo logy and have been noted to be invo lved i n a var ie ty o f interactions. The 

A B D o f p lec t in can b i nd to act in and the same reg ion is also able to b ind to the f i rst t w o 

cytoplasmic domains o f in tegr in ß4 ( f ibronect in type I I I domains) contained w i t h i n 

hemidesmosomes (Geerts et αι., 1999). Ad jacent to the A B D is the p lak in domain , 

w h i c h mediates further p lec t in interact ion w i t h β4 in tegr in (Koster et α/., 2004) . Th is 

p lak in doma in also contains the b ind ing site for the hemidesmosomal transmembrane 

prote in B P A G - 2 (Koster et al., 2003) . The interact ion o f B P A G - 1 w i t h erb in is also 

k n o w n to occur at this site (Favre et al,, 2001) . I n desmoplak in , th is p lak in domain is 

k n o w n to interact พุith desmosomal proteins, such as p lakoph i l i n and p lakog lob in , and 

also desmosomal Cadherins (Bomslaeger et al, 1996; Sm i th & Fuchs, 1998). I n 

add i t ion 5 the N- te rmina l head doma in o f desmoplak in has been suggested to p lay an 

impor tant role i n the development and maturat ion o f the act in cytoskeleton (Huen et al, 

2002). 

I n contrast, the per ip lak in N-terminus has on ly t w o k n o w n prote in b ind ing 

partners. Recent ly , a yeast t w o hyb r i d analysis ident i f ied a pro te in cal led kazr in w h i c h 

interacts w i t h the N- terminus o f per ip lak in i n kerat inocytes (Groot et al-, 2004) . Kaz r i n 

is not exc lus ive ly associated w i t h desmosomes, as i t also appears at the plasma 

membrane between desmosomes, as does per ip lak in . I t has been proposed that kazr in 

m igh t he lp to f o r m heterodimers w i t h envop lak in (Sonnenberg & L i e m , 2007). 

A l t h o u g h the per ip lak in N- terminus is lack ing in the A B D , per ip lak in has been shown 

to co- local ise w i t h cor t ica l act in (D iColandrea et al., 2000) i n cu l tured kerat inocytes. 

Based on F-act in co-sedimentat ion assays, i t has been suggested that per ip lak in head 

doma in may b ind d i rect ly to act in f i laments i n M D C K cel ls ( K a l i n i n et cd.， 2005). 

Thus, re la t ive ly l i t t le is k n o w n about the interact ing partners o f per ip lak in head 

doma in and the mechanisms that regulate per ip lak in loca l iza t ion and funct ion. Th is 

chapter reports the invest igat ions o f the molecular interact ions o f the per ip lak in ì/շ N -
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terminus by co- immunoprec ip i ta t ion on a stably transfected ce l l l ine expressing H A " 

tagged per ip lak in N- terminus. Exper iments i n w h i c h tagged per ip lak in с - te rminus was 

created and used to iden t i f y interact ing partners have been per fo rmed i n the past (van 

den Heuve l et al,, 2002 ; Beekman et al, 2004) . I n th is study, I focused on the N -

terminus o f pe r ip lak in and tota l ce l l extracts f r o m M C F - 7 cel ls were used to ident i fy 

interact ing partners. F o l l o w i n g co- immunoprec ip i ta t ion exper iments, M A L D I - T O F 

Mass Spectrometry was employed for the ident i f i ca t ion o f per ip lak in b ind ing proteins 

v ia pept ide mass f ı ngeφг in t i ng . Speci f ica l ly , 1-D and 2 -D gels were carefu l ly examined 

and any bands or spots that m igh t correspond to per ip lak in interact ing proteins were 

selected f r o m the gel and subjected to t ryps in d igest ion. T w o di f ferent sets o f 

experiments ident i f ied p lect in and annexin A 9 as potent ia l pe r ip lak in b ind ing partners. 

These observations were also con f i rmed by Western b lo t analysis. Subsequent 

immunof luorescence labe l l ing o f the stable cel l l ine and untransfected M C F - 7 cel ls 

revealed co- local isat ion o f the co- immunoprec ip i ta ted proteins. 

The t r yps in d igest ion, mass spectrometry and database search for ident i f ica t ion 

o f per ip lak in b ind ing proteins were per formed w i t h the help o f the Proteomics fac i l i ty 

s ta f f at the Un ivers i t y o f Durham. 
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3.2 Resul ts 

3.2.1 D e m o n s t r a t i o n o f p e r i p l a k i n B O C Z - 1 a n t i b o d y spec i f íc i ty by S İRNA 

t rans fec t i on expe r imen ts 

The ant ibody was characterised by SİRNA t ransfect ion and immunob lo t t i ng to 

determine that i t is speci f ic fo r the endogenous pro te in to w h i c h i t was raised. Dep le t ion 

o f per ip lak in by SİRNA transfect ion i n M C F - 7 cel ls was carr ied out to downregulate the 

expression o f the target prote in. Tota l ce l l lysates o f cont ro l and S İRNA transfected cells 

were loaded onto gel and immunob lo t ted w i t h B O C Z - 1 per ip lak in ant ibody i n a d i lu t ion 

o f 1:500. W h i l e the 195kDa prote in band was st i l l present i n untransfected and contro l 

transfected cel ls, the SİRNA transfect ion reduced the signal w h e n B O C Z - 1 ant ibody was 

used for immunob lo t t i ng . These results con f i rm the speci f ic i ty o f the per ip lak in 

ant ibody ( F i g u r e 3·1)· 

3.2.2 G e n e r a t i o n o f Vi N - P P L overexpress ing cel l l i ne 

Previous immunof luorescence studies had demonstrated that per ip lak in N -

terminus displays the same subcel lular d is t r ibut ion as the who le prote in i n cul tured 

human kerat inocytes (DiColandrea et al, 2000; Groot et α/·， 2004) . The first ha l f o f the 

N- terminus was used to ident i fy u n k n o w n proteins that regulate per ip lak in local izat ion 

to d i f ferent membrane and cytoplasmic locat ions, as i t is able to show a l l the propert ies 

prev ious ly demonstrated fo r the entire per ip lak in N- terminus. The per ip lak in լ/շ N 

construct used fo r stable transfect ion (D iColandrea et al ， 2000) contained subdomains 

N N , z， Y and X (Ruhrberg & Wat t , 1997) ( F i g u r e 3.2). 

A stably transfected subclone o f M C F - 7 breast adenocarcinoma cel l l ine referred 

to as M C F - 7 Vi N -PPL was generated, overexpressing HA- tagged per ip lak in ！/2-N-

terminus w i t h a mod i f i ed pCI-neo vector. Transfect ion was per fo rmed at 5 0 % 

conf luence. Select ion m e d i u m , conta in ing neomyc in , was appl ied to cel ls two days after 

t ransfect ion and the cel ls were lef t to g row for three weeks w i t h regular m e d i u m 

changes. The cells that remained al ive carr ied the neomyc in resistance gene, ind icat ing 

successful t ransfect ion w i t h the pCI-neo vector. Such colonies o f cel ls were p icked and 

g rown i n 96 -we l l plates i n the first instance and then i n 24 -we l l plates, 6 c m dishes, 10 
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c m dishes and T-75 flasks. A stably transfected cont ro l ce l l l ine car ry ing an empty p C I " 

Neo vector ( M C F - 7 E V ) was also established. 
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t i g ure 3J: Confirmation of BOCZ-1 polyclonal antibody spectjicity by SİRNA. 

The polyclonal antibody1 BOCZ-1 used here, was received from Cambridge Research 

Biochemicals. To test the specificity of the antibody1 total cell extracts from untransfected, 

control transfected and periplakin SİRNA transfected MCF-7 cells were immunoblotted 

with BOCZ-1 antibody (1:500 dilution). The antibody recognized a 195 kDa protein in 

control extracts while only a faint band is detected in the extracts from periplakin SİRNA 

^ansfected cells. 
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l/2N-terminus of periplakin ： 1-496 aa 

Figure 3.2: Schematic diagram of the l/2N-periplakitt construct used for stable cell line 

establkhment 

A. S^ucture of periplakin. B. Structure of the periplakin construct containing HA-tagged 

periplakin half N-terminal domain used for the generation of MCF- 7 1/2 N-PPĹ cell line. 
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3.2.3 C h a r a c t e r i z a t i o n o f the s tab ly t rans fec ted cel l l i ne 

The per ip lak in Уг N- terminus construct was fiised w i t h hemagglu t in in ( H A ) 

prote in cod ing sequences w i t h i n the p lasmid to assist i n intracel lu lar local isat ion 

studies. The H A - t a g is a conunon epitope tag, w h i c h consists o f nine amino acids 

( Y P Y D V P D Y A ) der ived f r om inf luenza v i ras and w h i c h is av id l y recognized by ant i -

H A ant ibodies. Thus 5 the cel lu lar local izat ion o f the tagged proteins can be determined 

and immunoprec ip i ta t ion o f the epitope-tagged proteins can be per fo rmed to ident i fy 

interactions w i t h other proteins, thus a id ing filrther molecu lar character izat ion o f the 

gene product . Fur thermore, detect ion o f HA- tagged proteins us ing an t i -HA antibodies 

clear ly dist inguishes the expressed prote in from the endogenous pro te in poo l . 

I m m u n o b l o t analysis and immunof luorescence sta in ing o n 8 d i f ferent stably 

transfected ce l l colonies were per formed i n order to mon i t o r the expression level and 

cel lu lar d is t r ibu t ion o f the construct. A l l cel l l ines indicated constant expression level o f 

the HA- tagged prote in . Subcel lular local isat ion o f the Уг N- te rmina l per ip lak in domain 

in a l l 8 d i f ferent ce l l l ines showed reasonably s imi la r decorat ion o f the plasma 

membrane. A ce l l l ine w h i c h best m i m i c k e d the sub-cel lu lar d is t r ibut ion o f the 

endogenous per ip lak in pro te in was selected and u t i l i zed t føoughout th is research ( M C F -

7 '/ 2 N -PPL) . 

3.2.4 C e l l u l a r l oca l i za t i on o f H A - t a g g e d p r o t e i n a n d endogenous p e r i p l a k i n i n 

M C F - 7 cells by i m m u n o f l u o r e s c e n c e m i c roscopy 

To invest igate the expression level o f the HA- tagged pro te in and the speci f ic i ty 

o f a n t i - H A ant ibody i n the M C F - 7 ւ/շ N -PPL ce l l l ine, to ta l cel l lysates o f conf luent 

untransfected M C F - 7 , empty vector transfected ( M C F - 7 E V ) and M C F - 7  1/շ N -PPL cells 

were loaded onto a ge l . Immunob lo t t i ng w i t h a n t i - H A ant ibody (monoclonal rat 

ant ibody, 1:200) resulted i n a clear 53 k D a band i n the M C F - 7 Уг N -PPL cel l l ine. I n 

contrast, no bands were detected in the two cont ro l ce l l l ines, suggesting that the 

ant ibody was specif ic fo r the H A - t a g (F i gu re . 3-3 A ) . A s a cont ro l to demonstrate equal 

loading o f lanes, the membrane was probed w i t h a cy tokerat in 8/18 mouse ant ibody 

( A B - 2 , Oncogene) at a d i l u t i on o f 1:100으 The results obta ined demonstrated the same 

amounts o f kerat in p ro te in in a l l three lanes ( F i g u r e 3.3 A ) . 
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Whi l s t i rnmunosta in ing o f the N- terminus o f per ip lak in was associated w i t h the 

lateral p lasma membranes, i t also appeared i n the cytop lasm to a lesser degree ( F i g u r e 

3.3 B ) . Th is d is t r ibu t ion was rather s imi lar to that observed i n kerat inocytes where the 

endogenous per ip lak in demonstrated staining at the cel l borders, but overexpression led 

to its red is t r ibut ion towards IFs ( M a & Sun, 1986; R i ù r b e r g & Wat t , 1997; 

D iCo landrea et al, 2000) . The staining pattern w h i c h was obtained suggested that the 

per ip lak in m igh t fillfil the same role i n kerat inocytes as i n s imple epi thel ia, as they 

share the same loca l izat ion i n both cases. A l t h o u g h i t has been proposed that this 

doma in o f per ip lak in has the same d is t r ibut ion as the ftill-length pro te in i n 

kerat inocytes, i t was impor tant to con f i rm this in the s imple epi thel ia l cel l l ine used 

throughout th is study. W h e n the subcel lular loca l izat ion o f per ip lak in N- termina l 

construct and endogenous per ip lak in was invest igated by double sta in ing, i t was found 

that both co- local ised at ce l l borders. Doub le staining o f HA" tagged prote in (rat 

monoc lona l , 1:200) and endogenous per ip lak in stain ing w i t h B O C Z - 1 ant ibody (rabbi t 

po lyc lona l 5 1:200) showed substantial co- local izat ion i n the stable ce l l l ine ( F i g u r e 3.3 

B ) . 

To fur ther invest igate the local izat ion o f these proteins at lateral plasma 

membranes, ver t ica l confocal sections o f the M C F - 7 1/շ N - P P L cells (confocal axis: x -z ) 

were produced. Th is p ro f i l e was constructed by scanning a single l ine across the cells 

(in the X-axis) at different z-axis depths and displaying the series as a merged image. 

F r o m the images obta ined, i t was evident that the per ip lak in  1/շ N - H A constructs 

local ised a long the lateral ce l l border i n the same way as the endogenous fu l l - length 

pro te in ( F i g u r e 3.3 C ) . 
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Figure 3.3: Co-localisation of the endogenous periplakin and the HA-tagged protein in 

MCF-7 mN'PPL cell line. 

A. Western blot analysis showing the expression of the fusion protein. Cytokeratin 8 blot 

is shown as control for even loading. Anti-HA rabbit monoclonal antibody was used in 1: 

200 dilution and mouse monoclonal cytokeratin 8 antibody (Ab-2) in 1:1000 dilution. B. 

Co-localisation of the full length ofperiplakin (green) and the fusion protein (red channel) 

at cell borders (Scale bar equals 20 μηι). с. Optical ζ sectioning demonstrating 

colocalization of the endogenous periplakin and HA-tagged protein at the lateral cell 

borders in the MCF-7 1/2 N'PPL subclone. Dotted line in the merged image in panel A. 

indicates location of xz slice. 



3.2.5 P e r i p l a k i n N - t e r m i n u s does no t co- local ise w i t h k e r a t i n i n t e rmed ia te 

f i l amen ts i n M C F - 7 cel ls 

Imunof luorescence staining was also used to examine the local isat ion o f the 

kerat in 8 filaments and ha l f -N terminal per ip lak in i n M C F - 7 V2 N - P L L cel l l ine, to 

ensure that overexpressed HA- tagged prote in was not associated w i t h intermediate 

f i laments. Th is was impor tant as kerat in cou ld potent ia l ly con found subsequent รณdies 

i f i t acted as a l i n k between var ious immunoprec ip i ta t ing proteins. Cel ls were g rown to 

50 -60% conf luence and fixed i n methanol/acetone (1:1) . The fixed cells were stained 

w i t h a n t i - H A ant ibody (h igh a f f i n i t y rat monoc lona l ant ibody, c lone 3F10, Roche) at a 

d i l u t ion o f 1:200 and L E 4 1 supernatant for kerat in 8 detect ion at a d i lu t ion o f 1:2. For 

the immunodetec t ion o f the HA- tagged prote in and kerat in 8, goat ant i - rabbi t A lexa -

F luor 488 (at a d i l u t i on o f 1:800; Inv i t rogen Mo lecu la r Probes) and goat ant i -mouse 

A lexa -F luo r 594 (at a d i l u t i on o f 1:800， Inv i t rogen Mo lecu la r Probes) secondary 

antibodies were used, respect ively. The results exc luded s ign i f icant co- local isat ion o f 

the per ip lak in N- terminus w i t h kerat in filaments. ( F i g u r e 3.4 A ) I n add i t ion 5 the stably 

transfected contro l ce l l l ine ( M C F - 7 E V ) d i d not show any cel l border staining w i t h 

anti֊HA ant ibody ( F i g u r e 3.4 A ) . 

3.2.6 S o l u b i l i t y p r o p e r t i e s o f t he H A - t a g g e d p r o t e i n by b i o c h e m i c a l f r a c t i o n a t i o n 

A l t h o u g h the immunof luorescence staining showed co- local izat ion o f the H A -

tagged PPL NbÍ2-terminus w i t h endogenous per ip lak in i n the M C F - 7 /2 N -PPL cel l l ine, 

this study ftirther invest igated the cel lular compartments occupied by these proteins 

w i t h regard to thei r so lub i l i t y propert ies. The technique o f subcel lular b iochemical 

f ract ionat ion isolates d i f ferent proteins o f the ce l l based on thei r b iochemica l so lub i l i t y , 

enabl ing studies o f the i r func t ion and d is t r ibut ion. B y sequential add i t ion o f d i f ferent 

extract ion buf fers to a ce l l or ce l l pel let, proteins i n d i f fe rent ce l l compartments can be 

selected. Cel ls were g r o w n to 100% conf luence and extracted w i t h saponin buf fer on 

ice. Saponin is a m i l d detergent, w h i c h a l lows extract ion o f cytosol ic proteins ( S I ) . 

Saponin insoluble proteins were pel leted and extracted i n T r i t on -X lOO, a stronger 

detergent w h i c h solubi l ises plasma membrane associated proteins (S2) and finally the 

T r i ton -X lOO inso lub le pel let was extracted in urea, separating the insoluble cytoskeletal 

proteins i n a th i rd f rac t ion (P3). 
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These cel l f ract ionat ion experiments were per fo rmed on the M C F - 7 Vi N -PPL 

cel l l ine and an untransfected M C F - 7 cel l l ine , w h i c h served as a cont ro l . The ha l f N -

terminus o f the р і а ю п doma in was detected at an expected molecu lar we igh t o f 53 k D a 

i n cytosol ic ( S I ) , Tr i ton-so łub le (S2) and Tr i ton- inso lub le (P3) fract ions. L i kew ise , the 

195-kDa endogenous per ip lak in was also present i n a l l three fractions ( F i g u r e 3.4 B ) . 

The representative Western b lo t shows that per ip lak in was dist r ibuted i n 

approx imate ly equal proport ions i n the saponiท-รoluble cytosol ic poo l , the T r i ton -X lOO 

soluble poo l and i n the T r i t o n - Х insoluble cytoskeletal p o o l , whereas a lower propor t ion 

o f the HA- tagged per ip lak in N-terminus was found i n T r i t o n insoluble cytoskeletal 

f ract ion (P3) compared to the d is t r ibut ion o f the endogenous per ip lak in . Th is was 

probably due to the fact that the HA- tagged  1/շ N - P P L construct lacks i n the IF -b ind ing 

domain . Th i s was also evident from the immunof luorescence study showing that the 

HA- tagged construct does not co-local ise w i t h kerat in intermediate filaments i n the 

cytoplasm ( F i g u r e 3·4 A ) . 

F r o m these data, i t can be concluded that the M C F - 7 У2 N -PPL cel l l ine, 

expressing the h a l f N- terminus o f per ip lak in ? is targeted to the plasma membrane where 

i t co-local ises w i t h the endogenous per ip lak in at the lateral cel l borders. Cel lu lar 

f ract ionat ion studies also supported the f i nd ing that endogenous per ip lak in and У2 N -

terminus o f per ip lak in shows s imi lar b iochemica l characteristics in M C F - 7 cel ls being 

present in bo th soluble and insoluble fract ions. Moreover , the fact that per ip lak in /4 N 

doma in is not co- local ised w i t h the kerat in intermediate filament ne twork is l i ke ly to 

l i m i t non-speci f ic interactions i n co- immunoprec ip i ta t ion experiments. For these 

reasons, the chosen per ip lak in Vi N- termina l doma in and the expressing cel l l ine is a 

suitable mode l for i den t i f y ing prote in f o rm ing complexes w i t h per ip lak in i n a l l three 

subcel lular f ract ions. 
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Figure 3.4: МСґ-/1/2 N-PPL cell line caressing the H A'tagged N-terminus ofperiplakin. 

A. Immunofluorescence staining was carried out with anti-HA rabbit monoclonal antibody 

(Abeam) in 1:200 dilution and monoclonal anti-keratin 8/18 (LE41) in 1:2 dilution after 

methanol/acetone (1:1) fixation. HA-taggedprotein (green) and epithelial cytokeratin 8/18 (red) 

are shown in MCF-7 1/2 N-PPL and control empty pCI-neo vector transfected (MCF-7 EV) cell 

lines. The images were taken as single optical slices and scale bar equals 20 μ/พ. Β· Subcellular 

distribution of endogenous periplakin1 1/2N-PPL'HA fasion protein and keratin 8/18 in the 

cytosolic fraction (SI)1 Triton soluble supernatant (S2) and in Triton insoluble pellet (P3) of MCF-

71/2 N-PPL cells. 
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3.2.7 I d e n t i f i c a t i o n o f p lec t i n a n d a n n e x i n A 9 as c o - i m m u n o p r e c i p i t a t i n g p a r t n e r s 

o f p e r i p l a k i n 

Co- immunoprec ip i ta t ion experiments to ident i fy new b ind ing partners for 

per ip lak in N- terminus were per formed on conf luent M C F - 7 ！/շ N -PPL cells, empty 

vector transfected cont ro l cel ls ( M C F - 7 E V ) and parental M C F - 7 cel ls. Samples were 

immunoprec ip i ta ted w i t h an t i -HA ant ibody and were studied b y electrophoresis after 

runn ing them on S D S - P A G E and pre-cast gradient gels. 

3.2.7.1 S t ra tegy o f c o - i m m u n o p r e c i p i t a t i o n expe r imen ts 

1. A s a first step, rout ine immunoprec ip i ta t ion exper iments were carr ied out 

f o l l o w i n g the pro toco l described i n section 2.12.1 i n order to demonstrate that 

H A - t a g prote in produced by the per ip lak in construct can be successfully 

precipi tated w i t h ant i HA-ant ibod ies . 

2. Secondly, a h igh -a f f i n i t y immob i l i zed a n t i - H A ant ibody ( an t i -HA agarose) co-

immunoprec ip i ta t ion k i t was opt imised. Th is k i t enabled the isolat ion and 

ident i f i ca t ion o f tagged proteins, regardless o f thei r expression levels 5 on regular 

1-dimensional S D S - P A G E gels. 

3. F ina l l y , after co- immunoprec ip i ta t ion exper iments, the precipi tated prote in 

samples were examined on 2-d imensional gels. 

3.2.8 Successful p r e c i p i t a t i o n o f p e r i p l a k i n Vi N - t e r m i n u s w i t h H A - a n t i b o d y 

F o l l o w i n g the immunoprec ip i ta t ion steps w i t h monoc lona l rat a n t i - H A ant ibody 

(Roche) described i n sect ion 2 Л 2 Л a l l samples were run on 1-dimensional 12% SDS-

P A G E gels. The gels were stained w i t h Coomassie-blue after electrophoresis. The 

immunoprec ip i ta t ion exper iment was repeated several t imes as described above but no 

specif ic proteins were detected in the e lu t ion fraction. To examine the poss ib i l i ty that 

proteins may have been washed away i n the process, less str ingent wash ing buf fers were 

used. A f te rwards a l l wash ing steps were carr ied out w i t h the lysis buf fer , w h i c h resulted 

i n v is ib le bands i n the samples. 
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I n i t i a l Coomassie-ชlue staining fa i led to demonstrate un ique bands i n the M C r - / 

Vi N -PPL samples w h e n compared to empty vector transfected cont ro l cel ls ( F i g u r e 3.5 

A ) . To increase the sensi t iv i ty o f the staining and achieve better band separation, 

samples were run on pre-cast gradient gel 4 - 1 2 % ( Inv i t rogen) and were v isual ized by 

si lver sta in ing. T w o bands that were unique to the M C F - 7 Vi N -PPL sample when 

compared to controls were cut out from the gel and sent fo r ident i f ica t ion. B o t h proteins 

were recognized as per ip lak in ( F i g u r e 3.5 B ) . 

131 



Α. 

kDa 

2 0 0 

100 

70 

50 

40 

ЗО 

25 

20 

12%SDS-PAGEgel 

Coomassie blue staining 

В. 

я 

V 

kDa 

4 

ծ ՛ 

70 
60 

50 

40 

4-12 % pre-cast gradient gel 

Silver staining 



Figure 5 .5 ; Immunoprecipitation experiment of the anti-HA antibody using IgG 

beads 

A. MCF-7 V2 N-PPL and control MCF-7 EV total cell lysates were pre-cleared and 

incubated with an anti-HA (3F10, 1:100 dilution, Roche) antibody and IgG beads 

overnight. Samples were separated on a 12% SDS-р AGE gel and stained with 

Coomassie blue. No bands were found exclusively in the MCF-7 V2 N-PPL cell extract 

B. Following overnight immunoprecipitation procedures samples were separated on 4-

12% pre-cast gel for better separation and silver staining was used for more sensitive 

visualisation. Arrowheads showing two bands in the MCF-7 V2 N-PPL cell line 

approximately at a size of 53 kDa. Bands were cut out and both identified as periplakin 

by mass-spectrometry. 

133 



3.2.9 Use o f the M a m m a l i a n H A T a g I P / C o - I P K i t , to i d e n t i i y p e r i p l a k i n 

i n t e r a c t i n g p a r t n e r s 

T o increase the chances to f i n d new b ind ing partners fo r the penp iak in the 

P r o F o u n d ™ M a m m a l i a n H A Tag IP/Co- IP K i t (Pierce) was used and the manufacturers 

pro toco l f o l l o w e d (sect ion 2.12.2). A s a result 5 four bands were ident i f ied as potent ia l 

targets ( F i g u r e 3.6). Due to the l o w resolut ion, other fa int bands were not excised from 

gel , as those w o u l d appear as no hits in Mascot search. Fur thermore, some o f the signals 

were very close to others, mak ing it d i f f i cu l t to cut out a clear band. Bands that were 

present in bo th the cont ro l and sample lanes were ignored. 

The results o f the mass spectrometry f r o m the I D gel showed 4 bands, ( F i g u r e 

3.6 A ) one at h i gh molecular we ight , w h i c h had a very weak score resul t ing i n no 

s igni f icant hi ts. H igher magn i f i ca t ion shows this band i n F i g u r e 3,6 в when less sample 

was loaded. However 3 when a larger amount o f sample was loaded on the gels, i t 

became d i f f i cu l t to d is t inguish between d i f ferent bands leading to pro te in mixtures. One 

o f the clear hi ts obtained was the HA" tagged per ip lak in hav ing the size o f 53 k D a w i t h 

the score o f 123， Ke ra t i n 8 w i t h the score o f 71 and A n n e x i n A 9 w i t h a y ie ld o f 176 

peptide matches i n a Mascot search ( T a b l e 3.1). 
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Figure 3.6: Co-immunoprecipitation of periplakin l/2N-terminus with anti'HA-antibody 

and analysis using silver staining on ID 4-12% gradient pre-cast geL 

A. MCF-7 1/2N-PPL: is the stable cell line overexpress ing the HA-tagged N'terminal of 

periplakin. MCF-7 EV: is the control, emptv transfected cell line. MC F'7 lane represent the 

untransfected cells. Bands marked with black arrow were cut out from the gel and sent for 

mass spectroscopy. B. Higher magnification of the 500 kDa CO-immunoprecipitated protein 

in the MCF-7 1/2N-PPL cell line. (Numbers shown on the left were given to each sample 

that was sent for mass spectrometry.) 
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3.2.10 Resul ts o f the 2 D gel e lec t rophores is 

I n order to obta in better results w i t h the mass spectrometry, a l l samples were run 

on 2-D gels, a l l ow ing the s imi lar-s ized bands to be separated on the basis o f their 

electric charge ( isoelectr ic focus ing 5 ĪEF) . 

Ana lys is o f si lver-stained 2 D gels revealed 14 d i f fe rent un ique spots. Each spot 

was cut out f r o m the gel and sent for analysis by mass spectrometry ( F i g u r e 3.7). 

Interest ingly, one o f the unique spots (1)， an approx imate ly 500-kDa prote in 

precipi tated f r o m M C F - 7 Vi N -PPL extracts prev ious ly seen i n I D gels, was also present 

i n the 2 D gel . Mass spectrometry o f t rypt ic peptides was used to iden t i f y this prote in as 

p lect in , another member o f p lak in cyto l inkers f a m i l y (Leung et al,, 2002 ; Jefferson et 

al, 2004; Rezniczek et al, 2003) as i t y ie lded 67 exact pept ide matches i n a Mascot 

search (score 175, w i t h pro te in scores greater than 77 considered s igni f icant , р < 0.05). 

M a n y other selected spots resulted in no hi ts as shown i n t ab le 3.1 be low. Those 

g i v ing s ign i f icant scores inc luded per ip lak in , as expected 5 because th is prote in is H A -

tagged and therefore w o u l d obv ious ly b ind to the a n t i - H A ant ibody. S imi la r ly , kerat in 

18， kerat in 19， a lpha- tubul in and beta- tubul in were pu l led d o w n as potent ia l partners. 

However , these proteins were not considered direct interact ing partners, as the 

per ip lak in N- terminus has no intermediate filament b ind ing doma in . Nevertheless 3 as 

p lect in is able to b ind intermediate filaments and т іс гоШЬи Іеร , i t is possible that these 

proteins were pu l led d o w n i n a complex w i t h p lec t in and not d i rec t ly w i t h the per ip lak in 

h a l f N- terminus. 
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Figure 3.7: Co-immunoptecipitation of periplakin aminO'terminus with anti-HA 

antibody analysed on silver stained 2-D gels 

A. Immunoprecipitatedproteins from control emvtv transfected MCF֊7 cell line. 

B. Immunoprecipitated proteins from MCF-7 Vi N-PPL cell line. Arrows indicate 

protein spots that were sent for mass spectroscopic analysis. Black arrow below the 

gels indicates the separation as a function of pH. 
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Table 3.1: Summary of mass spectroscopic identification of proteins co֊ 

immunoprecipitating with periplakin N-terminus on ID and 2D gels. 

Sample Highest match Mass Score 

1-Dge bands 

1. No hits 

2. Periplakin 205150 115 

3. Keratin 8 55874 71 

4. Annexin A9 37908 176 

2-Dge 1 spots 

ᄂ Plectin 520111 175 

2. No hits 

3. No hits 

4. No hits 

5. No hits 

6. Periplakin 205150 96 

7 · Periplakin 205150 180 

8. No hits 

9. Keratin 18 47957 110 

10. Keratin 18 47957 89 

11. Keratin 19 44065 354 

12. Keratin 19 45870 190 

13. Beta-tubulin 2 50264 163 

14. Alpha-tubulin 58252 169 
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Table ЗА: Summary of mass spectroscopic identification of proteins CO一 

immunoprecipitating with periplakin N'terminus on ID and 2D gels. 

Bands and spots that were selected from ID and 2D gels (Figure 5.6、 Figure 3.7) were 

identified by peptide mass fingerprinting. The table summarises the results showing the 

highest corresponding match, its molecular weight and its score. 
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Figure 3.8: MS spectrum for the peptide identified as plectin by peptide mass 

fingerprinting. 

From the spectrum the number of peptides generated after trypsin digestion and their 

corresponding mass/charge ratio (m/z) can be seen. Plectin was identified with a 

significant score of 175. 
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Figure 3· 9: MS spectrum for the peptide identified as annexin A9by peptide mass fingerprinting. 

From the spectrum the number of peptides generated after trypsin digestion and their 

corresponding mass/charge ratio (m/z) can be seen. Annexin A9 was identified with a significant 

score of 176. 
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O n the basis o f these results 5 t w o potent ial b ind ing partners o f the per ip lak in N- terminus 

in M C F - 7 cells have been successfully ident i f ied. 

3.2.11 V e r i f i c a t i o n o f c o - i m m u n o p r e c i p i t a i o n o f p e r i p l a k i n a n d p lec t i n by W e s t e r n 

b lo t analys is 

The presence o f HA- tagged per ip lak in N- te rminus and p lec t in i n the 

immunoprec ip i ta ted pro te in complexes was con f i rmed by immunob lo t t i ng . Samples 

were ran on 3 -8% pre-cast gradient gel ( Inv i t rogen) and immunob lo t ted w i t h an t i "HA 

ant ibody (monoc lona l rabbi t ant ibody 5 A b 9 1 1 0 , 1:200， Abeam) and p lect in (goat 

po lyc lona l , c-20, 1:200 Santa Cruz) ant ibody. F i g u r e 3.10 A shows the HA- tagged 

per ip lak in doma in i n the M C F - 7 1/շ N -PPL cel l l ine at a predicted size o f 53 k D a next to 

the t w o cont ro l lanes, where no signal was detected. Immunob lo t t i ng w i t h p lec t in (c-20) 

ant ibody revealed a p lec t in band on ly i n the M C F - 7 Vi N -PPL sample ve r i f y ing the 

mass spectroscopic results ( F i g u r e 3.10 B ) . P lect in was not detected by immunob lo t t i ng 

in a n t i - H A immunoprec ip i ta t ions o f either o f the empty vector transfected cel l l ine or o f 

untransfected M C F - 7 cel ls, w h i c h conf i rms that p lec t in does not interact non-

speci f ica l ly w i t h H A ant ibody conjugated beads used i n the assays. 

I t was impor tant to investigate whether the observed l i n k between per ip lak in 

N- terminus and p lec t in is also appl icable for the endogenous proteins. Therefore 5 co-

immunoprec ip i ta t ions were carr ied out on untransfected M C F - 7 cel ls. The 

immunoprec ip i ta t ion w i t h p lec t in ant ibody (c-20) against endogenously expressed 

proteins was also successful produc ing a clear per ip lak in band after immunob lo t t i ng 

w i t h B O C Z - 1 ant ibody ( F i g u r e зло C ) . 

Standard immunoprec ip i ta t ion o f untransfected M C F - 7 and H a C a T cel l extracts 

w i t h a d i f fe rent ant i -p lect in ant ibody, against the p l e c t i n - I f i so fo rm 5 were also 

per formed. The results demonstrated interact ion between p lec t in and fu l l - leng th 

per ip lak in . Consequent ly , the co- immunoprec ip i ta t ion was not due to over-expression 

o f the HA- tagged per ip lak in domain . ( F i gu re 3.10 D ) Moreover , no per ip lak in prote in 

was immunoprec ip i ta ted w i t h prote in G beads alone as shown in the cont ro l lanes. 
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r i g ure 3.10: Co-immunoprecipitation of periplakin and plectin in MCF-7 1/2N-PPL 

cells. 

Α.9В. MCF-7 1/2 N-PPL cells1 empty vector transfected control cells (MCF-7 EV) and 

untransfected cells were immunoprecipitated with an anti-HA antibody. Precipitated 

protein complexes were immunoblotted with anti-HA (АҺ91109 1:200 dilution1 Abeam) and 

plectin (c-20) antibodies. Visible protein bands were found only in MCF-7 1/2N-PPL 

samples, с Untransfected MCF-7 cell extracts were immunoprecipitated with plectin 

antibody (c-201 1:100 dilution) against endogenous plectin and the samples were 

immunoblotted with BOCZ-1 periplakin antibody (1:500 dilution). D. Plectin-If isoform 

specific rabbit polyclonal antibody (LM-5, 1:100 dilution) was used for immunoprecipita-

tion in untransfected MCF-7 and HaCaT cells. IP samples were immunoblotted with 

BOCZ-1 periplakin antibody. Control lanes show that periplakin antibody does not 

interact non-specifically with protein G beads. 



3.2,12 Co - l oca l i za t i on o f p e n p l a k i n a n d p lec t i n i n M C F - 7 a n d H a C a T cel l l ine 

Doub le stain ing was carr ied out to investigate the local isat ion o f per ip lak in V2 N -

terminus and endogenous p lect in . M C F - 7 Vi N -PPL cel ls were g r o w n on coversl ips to 

80 -90% conf luence and inununolabel led for H A - t a g ( A b 9 1 1 0 , 1:200 d i lu t ion) and 

endogenous p lec t in (c-20, 1:200 d i lu t ion) . The immunof luorescence study revealed that 

both proteins were ma in l y local ized to cel l borders 5 w h i c h 5 i n the case o f HA- tagged 

per ip lak in , was expected i n l igh t o f previous invest igat ions. Th is co- local isat ion at cel l 

borders was more evident i n M C F - 7 V2 N -PPL cells w i t h greater conf luence ( F i g u r e 

З Л 1 A ) . 

Hav ing demonstrated co- local izat ion between the HA- tagged per ip lak in head 

doma in and endogenous p lec t in i n the M C F - 7 V ľN-PPL cel l l ine , i t was necessary to 

explore whether the nat ive proteins co- local ized i n un-transfected M C F - 7 cel ls. Doub le 

immunof luorescence labe l l ing was repeated using ant ibodies against endogenous 

per ip lak in ( B O C Z - 1 ) and p lect in (c-20) i n untransfected M C F - 7 cells and i n HaCaT 

kerat inocytes. 

These immunof luorescence studies demonstrated that the endogenous per ip lak in 

and p lec t in proteins ma in l y co- local ised at cel l membranes i n M C F - 7 cells a l though co-

local isat ion was also detected i n the cytoplasmic, cytoskeletal reg ion i n HaCaT cells 

( F i g u r e 3.11 B ) . Immunof luorescence microscopy also revealed that the ce l l membrane 

local isat ion o f pe r ip lak in and p lect in was much more evident i n M C F - 7 cells than i n 

HaCaT cel ls 3 where the amount o f per ip lak in labe l l ing seen at the ce l l borders increased 

after the fo rma t ion o f a conf luent monolayer, as w e l l as dur ing d i f ferent ia t ion. 
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Figure 3.11: Co-staining of MCF-7 and HaCaT cell with periplakin andplectin. 

A. Immunofluorescence staining of plectin (c-20 antibody, green) and HA-tagged 

periplakin N-terminus (red) in MCF-7 1/2N-PPL cell line. The images were captured as 

single optical section. B. Immunofluorescence staining of periplakin (BOCZ-1 antibody, 

green) and plectin (c-20 antibody, red) in untransfected MCF-7 epithelial and HaCaT 

keratinocyte cell line (Scale bar equals 20 բ.ա). 
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3.2.13 T h e first 133 a m i n o acids o f the p e r i p l a k i n N - t e r m i n u s a re r e q u i r e d f o r co-

loca l i za t i on w i t h p l ec t i n i n s imp le ep i the l ia l cells 

I n order to ftirther map the reg ion i n the per ip lak in N- terminus that is reqmred 

for co- local isat ion w i t h p lec t in , five d i f ferent delet ion constructs were used, w h i c h were 

k i n d g i f t from Dr . L i sa Sevi l la (Kerat inocyte Laboratory , Cancer Research U K , 

London) . F i g u r e 3.12 shows schematic diagrams o f a l l five N- te rmina l subdomain 

delet ion constructs used i n this experiment. 

Transient transfect ions w i t h the per ip lak in delet ion constructs were carr ied out 

when cells reached 5 0 % conf luence. A f te r the t ransfect ion, cel ls were g rown for t w o 

days, fixed and stained w i t h an t i -HA ant ibody ( A b 9 1 1 0 ? 1:200 d i lu t ion) and p lect in (c-

20， 1:200 d i lu t ion ) ant ibody. 

The results obtained by immunof luorescence indicated that per ip lak in N 

terminal domains compr is ing the first 63 amino acid residues and the first 80 amino acid 

residues were not targeted to cells borders and d id not co- local ise w i t h cytoplasmic 

p lec t in ( F i g u r e 3.13). However 3 the constructs conta in ing the first 133 amino acid 

residues (encoding the entire N N subdomain) were local ized at ce l l borders 3 where they 

par t ia l ly co- local ised w i t h p lect in . Surpr is ingly , a construct w h i c h lacked the f i rst 16 

amino acid but had the remainder o f the first 133 amino acid residues could st i l l be 

ident i f ied at cel l borders. However , i n kerat inocytes, a l l o f the first 133 residues (PPL-

133 construct) were required for per ip lak in to local ize e f f i c ien t l y to the plasma 

membrane and associate w i t h the cort ical act in (Groot et a l . , 2004) . 
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Figure 3.12: Schematic diagram of N-terminal subdomains of the HA-tagged deletion 

constructs (Groot et al., 2004). 

Top part of the figure detaih the periplakin in fidi length. The subsequent five schematic 

drawings detail different constructs that were usedfor transient transfections (namely: 1/2N-

Ppl, Ppl-133, Ppl-80, Ppl-63 and Ppl-16-133). 
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Figure 3.13: Localization of periplakin deletion constructs in MCF-7 сеШ. 

Representative images of MC F'7 cells were transiently transfected with the indicated 

constructs (see Figure 3.12. for clarification) and stained with anti-HA (green) and plectin 

(red) antibodies after methanol/acetone fixation. It appears that PPL-1331 PPL-16-133 and 

PPL 1/2N constructs are targeted to lateral plasma membranes and partially co-localise 

with plectin. Arrowheads indicate the main localisation of the constructs (scale bars equal 

2°v^)֊ 1 4 9 



3.2.14. Co - l oca l i sa t i on o f p lec t i n i so fo rms w i t h p e r i p l a k i n 

I n the prev ious sect ion 3 d i f ferent constructs o f the per ip lak in N- terminus 

demonstrated co- loca l izat ion w i t h the endogenous p lec t in pro te in i n M C F - 7 cel ls. 

However 3 al ternat ive sp l ic ing is k n o w n to generate an extensive array o f p lec t in 

isoforms. Spec i f ica l ly , n ine alternative first exons are used to encode N- termina l p lect in 

isoforms that are targeted to dist inct subcellular locations (Rezniczek et al, 2003). Th is 

w o r k therefore sought to determine w h i c h o f these alternat ive isoforms is able to co-

localise w i t h endogenous per ip lak in prote in. Po lyc lona l isoform-spec i f ic antibodies 

against p lec t in-1 (this study), p l e c t i n - I f (this study) and p l e c t i n - I k ( M c l n r o y and 

Määt tä, unpubl ished data) were generated ( F i g u r e 3.14). 

T o characterize these i so fo rm specif ic ant ibodies, tota l pro te in extracts o f cont ro l 

M C F - 7 cel ls and p lec t in SİRNA transfected M C F - 7 cel ls were generated. 

Immunob lo t t i ng was per fo rmed to con f i rm that ant ibodies generated against p l e c t i n - Լ 

p l e c t i n - I f and p l e c t i n - I k recognised p lec t in and that this cou ld be prevented by SİRNA 

knock -down o f p lec t in prote in. A c t i n was used as a reference to standardise loading 5 but 

Ponceau ร stain ing and the B C A prote in assay were also used to ensure accurate prote in 

loadings for each lane ( F i g u r e 3.15 A ) . I n some cases5 such as for the c-20 and plect in-1 

( L M - 1 ) ant ibodies, t w o h igh-molecular we igh t proteins were detected. I t is possible that 

the lower band observed i n immunob lo t t i ng using C- termina l p lec t in antibodies cou ld 

be a rodless p lec t in spl ice var iant w h i c h lacks exon 31 (E l l i o t t et al., 1997). 

A l l the isoform-speci f ic p lect in antibodies studied were able to co-local ise w i t h 

per ip lak in at ce l l borders ( F i g u r e 3.15 B ) suggesting that co- local isat ion o f p lect in and 

per ip lak in is no t restr icted to on ly one part icular p lec t in i so fo rm. I n addi t ion to 

invest igat ing the M C F - 7 cel ls, human epidermis was also studied to see i f these proteins 

co-local ise w i t h i n the same epidermal layers in vivo, as the i r potent ia l fimctions may 

special ly restr ict thei r expression w i t h i n the sk in . For example, a ma jo r fimction o f 

p lect in i n the epidermis is to connect kerat in f i laments to α6β4 in tegr in i n 

hemidesmosomes (L i t jens et aL, 2006). Per ip lak in expression, however , is upregulated 

upon kerat inocyte d i f fe rent ia t ion and the strong expression o f per ip lak in at ce l l borders 

o f suprabasal cel ls is consistent w i t h its proposed ro le as a scaf fo ld pro te in invo lved i n 

corn i f ied envelope assembly (Ruhrberg & Wat t , 1997; D iCo landrea et al, 2000). The in 

vivo analysis revealed l o w levels o f p lect in-1 staining i n the suprabasal layers - apart 
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from some ind i v idua l cel ls i n the spinous layer. I n contrast, bo th p l e c t i n - I f and I k 

antibodies local ised to the cel l borders o f d i f ferent iated epidermal ce l l layers i n a s imi lar 

manner as per ip lak in . ( F i g u r e 3.16) Thus 5 i t appears that a specif ic subset o f p lect in 

spl ice isoforms show s imi lar d is t r ibut ion to per ip lak in i n d i f ferent iated epidermal 

kerat inocytes w i t h i n the granular and corn i f ied ce l l layers o f the human epidermis. 
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Figure 3.14: Schematic diagram illustrating human N-terminalplectin isoforms. 

The 'map ' of the human plectin gene presented here indicates the localisation of the 9 encoding 

first exonร. All human N-terminal first exons spliced directly into exon 2. Plectin 1， IF, ond IK 

isoforms shown in red were investigated in this study. Plectin IK is a new isoform identified by 

Dr. Loma Mclnroy. 
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Figure 3 J 5: Co-localisation of periplakin and N-terminal plectin isoforms. 

A. Western blot analysis of plectin isoform specific antibodies in plectin siRNA transfected cells. 

LM-2, LM-5 and LM-7 recognize plectin in untransfected MC F'7 cells (บทtr.) and in control 

transfected cells with control siRNA (Contr.), while only very faint bands can be detected in 

plectin siRNA transfected cells. Β· Immunofluorescence staining of plectin isoforms (green) and 

HA-tagged l/2N-terminal periplakin (red) in MC F֊7 1/2N-PPL cells. Plectin-lf (LM-5 

antibody, top row) along with Plectin-1 (LM-1, middle row) and plectin-lk (LM'7, bottom row) 

were localised at the plasma membrane in MCF-7 1/2 N-PPL cells (scale bar equals 20\im). 
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Figure 3.16: Immunofluorescence staining of human skin. 

Skin sections stained with periplakin (TD'21) and plectin isoform antibodies1 plectin-l 

(LM-1), plectin-If (LM-5) andplectin-lk (LM-7). Arrows indicate prominent membrane 

staining in upper suprabasal cell layers with periplakin, plectin-lf and plectin-lk 

antibodies. Scale bar = 20թո. 
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3.2.15 I n v e s t i g a t i o n o f A n n e x i n A 9 as a po ten t i a l p e r i p l a k i n i n t e r a c t i n g p a r t n e r 

Immunoprec ip i ta t ion experiments on М С ґ - / Уг N - P P L s imple epi thel ia l cel l l ine 

indicated that the amino terminus o f per ip lak in was capable o f interact ing w i t h a prote in 

approx imate ly 34 k D a i n size. Mass spectrometry o f t ryp t ic peptides ident i f ied this 

pro te in as A n n e x i n A9， a C a 2 + and phosphol ip id b ind ing pro te in (y ie ld ing 60 exact 

peptide matches and scor ing 176 i n a Mascot search. Prote in scores greater than 77 were 

considered s ign i f icant , р < 0.05). 

3.2.16 C o n f i r m a t i o n o f c o - i m m u n o p r e c i p i t a t i o n o f p e ñ p l a k i n a n d annex in A 9 by 

W e s t e r n b l o t analys is 

I n order to val idate the co- immunoprec ip i ta t ion o f per ip lak in and annexin A 9 , 

the immunoprec ip i ta t ion step was repeated. The immunoprec ip i ta ted proteins were 

loaded on 12% pre-cast gel ( Inv i t rogen) and to p rov ide contro ls , immunoprec ip i ta t ion 

was carr ied out i n a s imi lar manner on untransfected and empty transfected M C F - 7 

cells. F o l l o w i n g electrophoresis 5 proteins were b lot ted onto ni t rocel lu lose membrane 

and probed w i t h a n t i - H A (Ab9110 5 Abeam) and A n n e x i n A 9 (chicken po lyc lona l , 

A N X A 9 5 A b e a m ) antibodies at d i lu t ions o f 1:200 and 1:2000， respectively. A s 

expected, annex in A 9 prote in was present i n the immunoprec ip i ta ted sample der ived 

from M C F - 7 Vi N - P P L cells, but miss ing i n both empty vector and untransfected 

immunoprec ip i ta t ion samples ( F i g u r e 3.17 A ) . S im i la r l y , an HA- tagged per ip lak in N -

terminus band was c lear ly seen i n the sample from the M C F - 7 Vi N -PPL cel l l ine and 

was absent f r o m bo th cont ro l samples. 
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3.2 л 7 Exp ress ion levels o f a n n e x i n A 9 p r o t e i n i n un t r ans fec ted , e m p t y t rans fec ted 

a n d M C F - 7 C6-PPL cel l l ines 

A n n e x i n A 9 has not been extensively studied. Thus, hav ing immunoprec ip i ta ted 

the pro te in , ( F i g u r e 3.17 A ) the relat ive levels o f annexin A 9 expression were 

invest igated. To ta l ce l l extracts f r o m untransfected, empty transfected and M C F - 7 Уг N -

PPL ce l l l ines were subjected to gel electrophoresis and Western b lo t t ing . 

Immunob lo t t i ng for HA- tagged prote in, w h i c h was on ly present i n the cells 

overexpressing per ip lak in N- terminus, and annexin A 9 demonstrated reasonably 

constant annexin A 9 levels i n a l l three cel l l ines ( F i g u r e 3.17 B ) . 

3.2.18 A n n e x i n A 9 f o u n d i n mos t l y i n the T r i t o n - X l O O inso lub le cy toske le ta l 

f r a c t i o n i n M C F - 7 cells 

T o ftirther investigate the sub-cel lular local isat ion o f annexin A 9 i n M C F - 7 

cel ls 3 sub-cel lu lar b iochemica l f ract ionat ion experiments were per fo rmed using 100% 

conf luent monolayers. Th is con f i rmed the presence o f annexin A 9 i n the cytoplasmic 3 

Tr i ton-so lub le cytoskeletal and Tr i ton- inso lub le cytoskeletal f ract ions 5 but w i t h a 

greater p ropor t ion i n the (P3) cytoskeletal f ract ion than i n the soluble fract ions. 

Immunob lo t analysis w i t h B O C Z - 1 per ip lak in ant ibody revealed s imi lar subcellular 

d is t r ibu t ion ( F i g u r e 3.18 A ) . Th is observat ion also suggests that the amount o f 

per ip lak in i n the cytoskeletal f ract ion increases once cel ls have fo rmed a conf luent 

monolayer , wh i l e i n less conf luent circumstances the quant i ty o f per ip lak in is almost 

equal ly d is t r ibuted t feoughout a l l three fract ions (prev ious ly shown i n F i g u r e 3.5 B ) . 

Further experiments were carried out to investigate whether the Overexpression 

o f per ip lak in N- terminus w o u l d alter the annexin A 9 pro te in level and d is t r ibut ion. For 

this compar ison 5 untransfected, empty transfected and per ip lak in Уг N- termina l 

overexpressing cel l l ines were studied. F o l l o w i n g b iochemica l detergent extract ion, 

pro te in f ract ions were ran on 12% pre-cast gels. Immunob lo t t i ng w i t h the annexin A 9 

antibody is shown in figure 3.18 B . Th is analysis demonstrated that Overexpression o f 

the per ip lak in amino terminus i n M C F - 7 cells d i d not alter annexin A 9 expression level 

in any subcel lu lar f rac t ion . 
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Ւ lg ure 3.17: Immunoprecipitation of HA-tag periplakin N-terminus and characterisa­

tion of the annexin A9 expression level in untransfected, empty transfected (MCF-7 EV) 

and MCF-71/2 N-PPL cell lines. 

A. Immunoblot analysis after immunoprecipitation with anti-HA antibody. Precipitated 

annexin A9 (34 kDa) appeared specifically in the MCF-7 1/2N-PPL cell line. B. 

Immunoblot analysis showing HA-tagged periplakin N- terminus, annexin A9 and alpha-

tubulin (1:1000 dilution, Abeam) expression in untransfected MCF-7, MCF-7 EV control 

and in MCF-7 1/2N-PPL cell lines. 
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Figure 3.18: Characterization of annexin A9 solubility in untransfected, MCF-7 E Vand 

MCF-71/2N-PPL celis. 

A. Immunoblot analysis of periplakin and annexin A9 after subcellular detergent 

fractionation. Proteins were visualized with specific periplakin (BOCZ-1, 1:200 dilution) 

and annexin A9 (1:2000 dilution) antibodies. Both proteins share the similar subcellular 

dis^ibution in confluent epithelial sheets. B. Subcellular distribution of annexin A9 in three 

different cell line ( MCF-7, MCF-7 EV, MCF-7 1/2N-PPL) showing similar distribution in 

all cases. 
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3.2.19 C e l l u l a r co - loca l i za t ion o f p e r i p l a k i n a n d a n n e x i n A 9 i n s imp le ep i the l ia b y 

i m m u n o f l u o r e s c e n c e m ic roscopy 

Subcel lu lar d is t r ibut ion o f these proteins indicated that penp lak in and annexin 

A 9 cou ld potent ia l ly co-local ise w i t h i n the intact ce l l as they were found i n the same 

detergent f ract ions. H a v i n g established that bo th proteins were foxmd i n the cytosol ic , 

plasma membrane and cytoskeletal f ract ions, their local izat ions w i t h i n intact cells were 

then observed. 

I n order to d i rec t ly compare the local izat ion o f the per ip lak in amino- terminus 

and endogenous annexin A9， bo th proteins were s imul taneously immuno labe l led i n the 

M C F - 7 V2 N - P P L cel l l ine. The an t i "HA ant ibody ( A b 9 1 1 0 ? Abeam) and annexin A 9 

( A N X A 9 , Abeam) were used i n d i lu t ions o f 1:200 and 1:2000, respect ively. The results 

showed that wh i l s t the per ip lak in head doma in ma in l y decorated the plasma membrane 3 

the annexin A 9 ant ibody was local ised throughout the cytosol ic area as w e l l as the 

plasma membrane ( F i g u r e 3.19 A ) . 

Th is local isat ion was further con f i rmed w i t h ant ibodies directed against the 

endogenous proteins i n untransfected M C F - 7 cel ls. L i kew ise 5 the endogenous per ip lak in 

and annexin A 9 showed rather s imi lar d is t r ibut ions 5 hav ing bo th cytosol ic and cel l 

border stainings ( F i g u r e 3.19 B) . 

A detai led analysis o f co- local izat ion at the cel l border was per fo rmed using 

confocal microscopy. Images were constructed by scanning the cel ls at d i f ferent depths 

(z-axis) and then f i na l l y merg ing these images into a single picture ( F i g u r e 3.19 C ) . 

These studies indicated that the local izat ion o f annexin A 9 was very s imi lar to that o f 

per ip lak in , and bo th were distr ibuted a long the lateral ce l l border showing nearly 

over lapp ing labe l l ing . 
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t i g иг e 3.19: Double staining of periplakin and annexin A9 in MCF-7 1/2N-PPL and 

untransfectedMCF-7 cells. 

A. Immunofluorescence staining showing colocalization of periplakin N-terminus and annexin 

A9 at the cell borders in MCF-7 1/2N-PPL cells. B. Endogenous periplakin and annexin A9 

localisation in untransfected MCF-7 cells indicate similar localisation in the cytoplasm and at 

the cell borders. С Optical Z-sectioning demonstrate lateral cell border staining with periplakin 

(BOCZ-1) and annexin A9 (ANXA9) antibodies in MCF-7 cells (scale bar equals 20μπι) . 
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3.2.20 A n n e x i n A 9 a n d a n n e x i n A l are no t co- local ised at M C F - 7 cel l bo rde rs 

The po lyc lona l annexin A 9 ant ibody ( A N X A 9 , Abeam) was the on ly 

commerc ia l ly -ava i lab le ant ibody at the beginn ing o f these studies. A l t hough i t showed 

very good results w i t h immunob lo t t i ng 5 g i v ing on ly one strong band at the expected size 

o f 34 k D a 3 the potent ia l for cross-reaction w i t h other annexin f am i l y members 

remained. I t was therefore interest ing to investigate whether the expression pattern o f 

annexin A l m igh t suggest cross-reaction w i t h annexin A 9 by immunof luorescence. 

Therefore double immuno labe l l i ng w i t h annexin A 9 and annexin A l (another member 

o f the annexin f a m i l y ) ant ibodies was carr ied out on untransfected M C F - 7 cells. 

The annexin A 9 ant ibody decorated the p lasma membrane o f the cells as shown 

prev ious ly , but the annexin A l ant ibody was associated ma in l y i n the cytoplasmic 

reg ion ( F i g u r e 3.20). O n l y the perinuclear area o f the ce l l showed some part ia l co-

local izat ion. I n add i t ion 3 the results o f this immunof luorescence staining demonstrated 

that not a l l annex in f am i l y members are able to co- local ise w i t h per ip lak in . 
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Figure 3.20: Expression of annexin A9 and annexin Al in MCF-7 celh. 

Double staining in untransfected MCF-7 cells with annexin A9 and annexin Al antibodies 

(both in 1:200 dilution) was carried out. Immunofluorescence staining shows no cell border 

staining with annexin Al which indicate that the annexin A9 is specifically localised at the 

lateral cell borders (scale bar equals 20 μπ ι ) . 
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3,2.21 E x p r e s s i o n o f a n n e x i n A 9 i n n e w b o r n a n d a d u l t mouse s k i n 

Based on the immunof luorescence staining, bo th i n adult and newborn mouse 

sk in 3 the annexin A 9 prote in was expressed from the basal to the strat i f ied layers. 

A n n e x i n A 9 showed reasonably even d is t r ibut ion i n these sk in layers and co-local ised 

w i t h the endogenous per ip lak in . Note that i n this figure non-speci f ic label l ing o f 

annexin A 9 observed above the strat i f ied layers o w i n g to the secondary ant ibody 

(A lexa-F luor ant i -ch icken I g G 488, 1:800). The observat ion above indicates that 

annexin A9， along w i t h periplakin;, is expressed i n bo th undi f ferent iated and 

di f ferent iated epidermis ( F i g u r e 3.21). 

Whi l s t the func t ion o f the per ip lak in i n the strat i f ied layer o f the sk in as a 

member o f the C E is k n o w n , the presence o f г іппех іп A 9 as an epidermal protein is 

shown here fo r the first t ime. I t remains for future studies to investigate the role o f 

annexin A 9 i n sk in . 
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Figure 3.21: Immunofluorescence staining of annexin A9 and periplakin in newborn 

and adult mouse skin 

Immunolabelling was performed wi thout fixation using annexin A9 (ANXA9, 1:200 

dilution, Abeam) and periplakin (BOCZ-Լ 1:500) antibodies. Yellow colour indicates 

co-localisation of periplakin and annexin A9 in newborn and adult mouse skin. Scale 

bar equals 20 μηι. 
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3.3 D iscuss ion 

This chapter has reported w o r k w h i c h a imed to iden t i f y prev iously 

uncharacterised interact ing partners for per ip lak in , A stable M C F - 7 subclone was 

created us ing a pci-neo vector carry ing the first h a l f N- terminus o f per ip lak in tagged 

w i t h H A . T w o other cel l l ines, imtransfected M C F - 7 cel ls and empty pCI-neo 

transfected stable ce l l l ine were used as controls. Interact ing partners were ident i f ied by 

a combina t ion o f co- immunoprec ip i ta t ion , gel electrophoresis 5 mass spectrometry and 

peptide mass fíngeφrinting. 

3.3.1 W h y c o - i m m u n o p r e c i p i t a t i o n ? 

The analysis o f prote in-prote in interactions (PPI) y ie lds impor tant insights into 

cel l s ignal l ing and is essential for reveal ing pro te in ftmction in the post-genomic era. 

The t rad i t ional yeast t w o - h y b r i d ( Y 2 H ) screen detects interact ions o f ' b a i ť and ' p rey ' 

proteins fused to t ranscr ipt ional activators i n the yeast nucleus. A l t h o u g h this method is 

sensit ive and can be used to ident i fy transient interact ions, a ma jo r l im i ta t ion is its h igh 

false posi t ive and false negative rates (Bader et a l . 3 2004) . Moreover , the yeast 2 hyb r id 

assay detects pro te in-prote in interactions outside their no rma l cel lu lar envi ronment and 

does not take into account the specif ic subcel lular loca l izat ion, post-translational 

modi f ica t ions and dynamic changes i n the interact ion between bai t and prey proteins. 

Another successful method iden t i f y ing PPIs depends on overexpression o f a tagged 

prote in i n relevant ce l l l ines ( Z h u et al,， 2003) where the interact ing partners that 

precipi tate w i t h the tagged prote in can be ident i f ied by mass spectrometry-based 

proteomics (Aeberso ld & M a n n 5 2003). Th is study used the techmque o f co-

immunoprec ip i ta t ion as i t can ident i fy interact ing proteins or pro te in complexes from 

eukaryot ic to ta l ce l l extracts (regardless o f direct or indi rect b ind ing) . However , bo th 

tagging and overexpression can alter the propert ies o f the pro te in o f interest and y ie ld 

false results. Therefore, PPIs were also con f i rmed by co- immunoprec ip i ta t ing the 

untagged endogenously expressed proteins. 
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3.3.2 M C F - 7 Vi N - P P L cel l l ine p r o v e d a su i tab le m o d e l f o r s t u d y i n g p r o t e i n 

i n te rac t ions 

Screening o f the stable M C F - 7 Vi N -PPL ce l l l ine proved that per ip lak in N -

termina l doma in is local ised at the same cytoplasmic and plasma membrane locations as 

the endogenous per ip lak in i n M C F - 7 cells. Other workers have shown that filli length o f 

per ip lak in expressed i n s imple epi thel ia l COS-7 cel ls showed characterist ic IF staining 

(D iCo landrea et α ί , 2000; Karashima & Watt， 2002) . However 5 i n cul tured k idney 

epi thel ia l cel ls ( M D C K ) overexpression o f per ip lak in showed f i lamentous cytoplasmic 

staining and i n conf luent cells per ip lak in became local ized to ce l l borders (Ka l i n i n et 

al, 2005), Overa l l , the per ip lak in N- termina l construct w h i c h was used m im icked the 

d is t r ibut ion o f the endogenous per ip lak in , ind icat ing that the stable cel l l ine can be used 

as a funct iona l mode l i n fur ther experiments. 

3.3.3 P lec t i n a n d A n n e x i n A 9 i den t i f i ed as c o - i m m u n o p r e c i p i t a t i n g p a r t n e r s o f the 

p e r i p l a k i n N - t e r m i n u s 

In i t ia l immunoprec ip i ta t ion samples were analysed by I D gel electrophoresis. 

T o avo id false pos i t ive results, t w o controls were used. However 5 despite the use o f 4 -

1 2 % gradient gel that separates better than a norma l S D S - P A G E gel , some o f the bands 

obtained were ident i f ied to be a mix tu re o f proteins. 1-D gel electrophoresis 5 a l though 

s imple to pe r fo rm and reproducib le, has a l im i ted reso lv ing power as i t separates 

proteins on ly based o n their molecular mass. I n contrast, 2 -D gel electrophoresis 

resolves proteins accord ing their net charge i n the first d imens ion and according to their 

molecular mass i n the second d imension. I t is capable o f reso lv ing thousands o f proteins 

and peptides f r o m a single complex mix ture i n a single exper iment and produces a 

resolut ion far exceeding that obtained for 1-D gels (Fey & Larsen 5 2001) . App l i ca t i on o f 

this technique revealed clearer results. Carefu l examinat ion o f I D and 2 D gels revealed 

4 bands and 13 spots that were un iquely present i n the M C F - 7 V2 N -PPL samples and 

these were selected and analysed by mass spectrometry. Unfor tunate ly , some bands and 

spots were ident i f ied as contaminat ing proteins such as kerat in 8/18, kerat in 19 and 

tubu l in , or hav ing such a l o w score that they gave stat ist ical ly ins igni f icant match ing 

score. A m o n g these results 3 t w o candidate proteins were ident i f ied. F i rs t ly 5 p lect in , a 
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major cy to l inker pro te in and member o f the p lak in f am i l y ; and secondly, annexin A9， a 

C a 2 + and phospho l ip id -b ind ing prote in. 

Peptide mass f ı ngeφ r i n t i ng ( P M F ) has its l im i ta t ions . I ts ab i l i ty to ident i fy a 

prote in depends on the presence o f the prote in i n the database. P M F is a very ef fect ive 

method i n the analysis o f proteins from di f ferent organisms. A study on the or ig ins o f 

uninterpretable masses i n P M F revealed a number o f other reasons that lead to the non 

ident i f ica t ion o f a pro te in (Kar ty et al., 2002). A m o n g these were errors i n the publ ished 

genome such as incorrect ly assigned prote in start codons and prote in modi f icat ions l ike 

deamidat ion and guanid inat ion that g ive rise to masses cannot be correct ly matched. 

Th is study has ident i f ied proteins such as kerat in 18 and kerat in 19 and tubu l in 

as possible contaminants characteristic for the M C F - 7 Vi N -PPL cel l l ine as these 

proteins appeared very w e l l d ist inguished bands or spots on the gels. A l t hough 

per ip lak in is an interact ing partner o f the kerat in and v imen t i n intermediate filaments 

these interact ions are mediated by the ta i l domain , th is m in im izes the chance that the 

per ip lak in NH2 -domain responsible for the appearance o f these cytoskeletal proteins. 

Based on the 2 -D gel analysis that impl ies p lect in as a possible b ind ing partner for 

per ip lak in 3 i t is possible that p lect in pu l led d o w n kerat in and tubu l in . 

Based o n the evidence prov ided so far, p lec t in has been ident i f ied as a per ip lak in 

co- immunoprec ip i ta t ing partner in the experiments analysed on 2 - D gel electrophoresis. 

A band around the size o f p lect in (500 kDa) was also recognizable on 1-D gel but mass 

fingerprinting cou ld not ident i fy the t ryps in digested prote in as i t appeared to be a 

mix tu re o f proteins. 

3.3.4 P e r i p l a k i n - p l e c t i n co- loca l isa t ion 

Plect in was ident i f ied as an interact ion partner for per ip lak in in a proteomic 

screen o f p ro te in complexes co- immunoprec ip i ta ted from M C F - 7 cel ls expressing H A -

tagged per ip lak in N- terminus. Th is was con f i rmed by co- immunoprec ip i ta t ion o f ñ i l l -

length endogenous proteins and by co- local isat ion o f per ip lak in and p lect in at ce l l 

borders o f M C F - 7 cel ls and i n the cytoplasm o f H a C a T kerat inocytes. Th is co-

local isat ion w i t h p lec t in m igh t suggest a novel mechanism o f act ion for per ip lak in . 

Previously, i t has been shown that per ip lak in is required for a correct targeting o f 
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envop lak in i n cu l tured human pr imary kerat inocytes (D iCo landrea et al, 2000). Over-

expression o f envop lak in resulted i n aggregate fo rmat ion that was rescued by over-

expression o f per ip lak in (DiColandrea et al, 2000) . The interact ion o f per ip lak in and 

envop lak in is mediated by the rod domains o f the proteins and the heptad repeat 

structure and length o f the respective rod domains is compat ib le w i t h 

heterodimer izat ion o f per ip lak in and envop lak in (Ruhrberg & Wat t , 1997; DiColandrea 

et al., 2000) . I n this study, the interact ion between per ip lak in and p lec t in does not 

invo lve the per ip lak in rod domain and, consequently 5 is l i ke l y to have d i f ferent 

funct ions. Studies on fu l l y polar ised M D C K cells indicated that p lect in was 

predominant ly local ized underneath the lateral p lasma membrane 5 and was barely 5 i f at 

a l l , detectable at the basal and apical plasma membrane and throughout the cytoplasm 

(Eger et al, 1997). These f ind ings are ident ical to m y results that showed per ip lak in and 

p lect in co- local isat ion at the lateral plasma membrane o f M C F - 7 cel ls. Furthermore, 

ant i -p lect in ant ibodies also co- immunoprec ip i ta ted another cy to l inker prote in, 

desmoplak in (Eger et al, 1997). However , the desmoplak in pro te in domain responsible 

for in teract ion w i t h p lec t in has not been mapped i n detai l . I t remains to be investigated 

whether per ip lak in and desmoplak in share the same p lec t in - b ind ing mot i f . I t should 

also be noted that i t is possible that yet un ident i f ied proteins are i nvo l ved i n b r idg ing 

per ip lak in and p lec t in , since this opt ion cannot be exc luded by co- local isat ion and co-

immunoprec ip i ta t ion experiments. 

Use o f three d i f ferent isoform-speci f ic antibodies against p lec t in indicates that 

a l l these isoforms can co-local ise w i t h per ip lak in i n s imple epi thel ia l cells and that the 

isoforms p l e c t i n - l f and p l ec t i n - I k are expressed together w i t h per ip lak in i n 

d i f ferent iated, suprabasal epidermal kerat inocytes. I n sk in , p lec t in is found i n 

hemidesmosomes that serve as anchorage sites for the intermediate filaments to mediate 

firm adhesion o f the basal cells to the basement membrane (Bor rador i & Sonnenberg, 

1999; Jones et al,, 1998). I n strat i f ied epi thel ia 3 p lec t in has been found i n mu l t ip le 

locat ions: at the basal cel l surface membranes, i n per ipheral areas o f epi thel ia l cells and 

in other layers o f the sk in (Wiche et ai., 1983). M o r e evidence for an essential role o f 

p lect in i n the in tegr i ty o f muscle and sk in architecture is demonstrated by p lect in nu l l 

mice. P lect in def ic ient mice exhib i t severe sk in b l is ter ing w i t h a reduct ion o f 

hemidesmosomes and abnormal i t ies i n skeletal heart and muscle (And ra et al, 1997). 

The role is fur ther supported by human patients w i t h p lec t in abnormal i t ies, who exhib i t 
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epidermolys is bu l losa s implex (a sk in b l is ter ing disease) w i t h muscular dystrophy 

( E B S - M D ) (And rä et α/.， 1997). The fact that t w o other p lec t in isoforms 3 p l e c t i n - l f and 

p l e c t i n - l k co- local ise w i t h the endogenous per ip lak in i n suprabasal sk in layers suggests 

an addi t ional ro le fo r p lec t in , apart f r o m being a component o f hemidesmosomes. 

Derma l fibroblasts isolated from plect in-1 def ic ient m ice exh ib i ted abnormal i t ies i n 

their act in cytoskeleton and impai red migra t ion potent ia l . S im i la r l y 5 p lect in-1 def ic ient 

Τ cells isolated f r o m l y m p h nodes showed d imin ished chemotact ic m ig ra t ion in vitro. 

M o s t s t r i k ing ly leukocyte in f i l t ra t ion dur ing w o u n d heal ing was reduced i n the mutant 

mice (Abrahamsberg et al., 2005). 

A prev ious study has shown s imi lar t issue-wide expression pattern o f p lak in 

genes for pe r ip lak in and p lec t in i n the bra in , l iver , pancreas, placenta, skeletal muscle, 

co lon and smal l intestine (Kazerounian et al, 2002) w h i c h ս ո ժ շ տ ւ ո ร our results 

suggesting a func t iona l correlat ion between per ip lak in and p lec t in i n bo th simple 

epi thel ia and i n d i f ferent iated layers o f the sk in . A s cy to l inker proteins 5 bo th per ip lak in 

and p lec t in are able to d i rect ly b ind kerat in intermediate filaments and the fact that they 

co-local ise i n M C F - 7 and HaCaT cells suggest that they m i g h t together regulate kerat in 

intermediate filament organizat ion. 

T o fiirther investigate w h i c h doma in o f the per ip lak in amino terminus is 

essential fo r the co- loca l izat ion o f p lec t in 3 M C F - 7 cel ls were transfected w i t h d i f ferent 

delet ion constructs o f the per ip lak in head doma in label led w i t h an H A - t a g at the C-

terminal end. Immunof luorescence studies o f these constructs indicated that the p lect in-

b ind ing doma in o f per ip lak in is l i ke ly to reside w i t h i n the first 133 amino acid residues 

o f the N- terminus 3 as th is f ragment was required for the lateral p lasma membrane 

local isat ion i n M C F - 7 cel ls. These results are i n keeping w i t h a previous study 

proposing that the same first 133 amino acid residues o f the per ip lak in amino terminus 

is required fo r in teract ion w i t h kazr in and membrane target ing i n kerat inocytes (Groot et 

al., 2004) . Though 5 m y experiments produced s imi lar results they also demonstrated 

some di f ferences. I n spite o f the removal o f the first 16 amino ac id residues preceding 

the N N subdomain o f the per ip lak in N- terminus ? the construct st i l l showed co-

local izat ion w i t h p lec t in and was targeted to ce l l borders i n contrast to data from 

kerat inocytes. I t is possible that this per ip lak in doma in is d i rected to the cel l borders by 

other proteins i n s imple epi thel ia l cells wh i l e i n kerat inocytes 5 i t may be that d i f ferent 
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set o f proteins are responsible for membrane target ing or that the b ind ing sites are 

local ised w i t h i n the first 16 residues. 

T o conclude 5 i n M C F - 7 cel ls, the m i n i m a l region fo r per ip lak in to be local ized 

at cel l membrane and to be par t ia l ly co- local ized w i t h endogenous p lect in , is the 

construct PPL 16-133. Based on the p lak in doma in crystal structure, this region is 

equivalent to a spectr in repeat (SR3) (Sonnenberg et a l . , 2007) . 

3.3.5 A n n e x i n A 9 co- local ise w i t h p e r i p l a k i n i n M C F - 7 cells a n d i n mouse s k i n 

A s a second part o f this chapter, the l i nk between per ip lak in and annexin A 9 has 

been invest igated. Based on the evidence above, annex in A 9 was also ident i f ied as a co-

immunoprec ip i ta t ing partner o f per ip lak in w i t h a h i gh score o f mass fingerprinting. 

Immunob lo t analysis d i d not shown any s igni f icant d i f ference between the expression 

levels o f annex in A 9 i n the M C F - 7 Vi N -PPL cel l l ine compared to the t w o contro l cel l 

l ines. Therefore 5 annexin A 9 expression is un l i ke l y to be regulated b y per ip lak in N -

terminus i n M C F - 7 cel ls. 

The name " a n n e x i n " was g iven to these proteins i n 1990 and the 12 annexinร 

c o m m o n i n vertebrates were classif ied as A n n e x i n A f a m i l y are named A N X A 1 -

A N X A 1 3 leav ing A N X A 1 2 unassigned i n the o f f i c i a l nomenclature (Human genome 

Nomencla ture Commi t tee 3 w w w . Gene.ucl .ac.uk/nomenclature/) . Annex ins are found i n 

invertebrates ( f am i l y B ) , i n fung i and unicel lu lar eukaryotes ( fam i l y c)， i n plants 

( fami l y D ) and i n prot ists ( fam i l y E ) . B y de f in i t ion , an annexin pro te in has to f u l f i l l t w o 

major cr i ter ia. I t has to be capable to b ind negat ively charged phosphol ip ids i n a C a 2 + 

dependent maimer and i t has to contain a conserved structure 3 the so-cal led annexin 

permeate (Gerke & Moss , 2002). A l l annexins contain t w o m a i n domains 5 the divergent 

NH2 " h e a d " and a conserved COOH- te rm inus harbour ing the type I I and type I I I C a 2 + 

and membrane b ind ing sites fac ing the membrane ( W e n g et ûf/., 1993). The с-terminus 

is bu i l t from ք օ ա s imi lar repeats, each w i t h a length o f 70 amino acids and fo rm ing five 

α-hel ices i n a l l segments. Therefore, the other side o f the annex in is directed away from 

the membrane and accessible for interactions. 

M a n y reports have prov ided in fo rmat ion about the fimction o f the annexins, 

po in t ing out thei r ro le i n membrane t ra f f i ck ing and organisat ion (Gerke & Moss , 1997)， 
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regulat ion o f ion-channels (Herr et al, 2001) and extracel lular act iv i t ies such as 

cont ro l l ing in f l ammato ry responses (Harmon et al, 2003) . 

A n n e x i n A 9 is a member o f the annexin f a m i l y ( in i t i a l l y termed annexin 31). Its 

c D N A was first ident i f ied from fetal l iver and spleen l ibrar ies ( M o r g a n & Fernand 

1998) in the data search for human expressed sequence tags (ESTs) . The fact that 

annexin A 9 c D N A was found i n l im i ted EST l ibraries led other scientists to i m p l y the 

poss ib i l i ty that annexin A 9 migh t have a special ized func t ion w h i c h cou ld be shared 

w i t h other proteins. 

A n n e x i n A 9 displays rather d i f ferent propert ies compared to other annexinร. Its 

type I I - C a 2 + b ind ing site has been altered and is most l i ke l y dysf tmct iona l . Th is site, i n 

other members o f the annexin f am i l y 5 is norma l ly responsible for reversible membrane 

b ind ing (Goebeler et α/., 2003). However , data f r o m l iposome b ind ing experiments have 

suggested that annexin A 9 is not regulated by intracel lu lar Ca2+， suggesting a nove l 

mode o f func t ion (Goebeler et al,, 2003). Since the structure o f the annexin A 9 is 

closest to the annexin A 2 , its ab i l i ty to b ind act in and S100A10 prote in was also 

studied. I n neither case was annexin A 9 able to b ind even at h igh ca lc ium 

concentrat ions, w h i c h supports a unique func t ion for annexin A 9 i n the annexin f am i l y 

(Goebeler et α/., 2003) . Here, i t has been demonstrated an interact ion between 

per ip lak in and annexin A 9 i n M C F - 7 cel ls, a f i nd ing w h i c h is supported by co-

local izat ion studies. However , the funct ional consequence o f the interact ion is s t i l l 

unresolved. T o fur ther investigate th is l i nk 3 examinat ion o f pro te in expression level and 

subcel lular d is t r ibu t ion should be carr ied out after S İRNA downregu la t ion experiments 

Immunof luorescence studies w i t h annexin A 9 specif ic ant ibody on M C F - 7 cells 

detected cytop lasmic and cel l border staining s imi lar to per ip lak in staining and revealed 

consistent co- loca l iza t ion especial ly at cel l borders. L o w level a imex in A 9 expression 

has also been detected i n HepG2 cells (Goebeler et aL, 2003) . 

I n th is study 5 annexin A 9 and per ip lak in co- local izat ion was observed, not on ly 

in s imple epi thel ia l cel ls but also i n newborn and adult mouse sk in sections. Per ip lak in 

and annexin A 9 were found to be expressed from the basal to the strat i f ied layers o f the 

sk in. A n n e x i n A 9 has not prev iously been shown to localise i n the strat i f ied epithel ia. 

Interest ingly, annex in A 9 is not the first annexin prote in showing expression in d i f ferent 

layers o f the sk in , as a imex in A 8 has also been reported to be found i n strat i f ied 

173 



epi thel ia (Runke l et al., 2006). Suφr i s i ng l y annexin A8， s imi la r l y to annexin A9， was 

also detected i n the basal and suprabasal layers o f the sk in w i t h an increase dur ing 

postnatal days. The presence o f annexin A 9 and annexin A 8 i n the suprabasal layers 

may be associated w i t h terminal d i f ferent ia t ion o f epi thel ia l cel ls. A unique association 

o f annexin A 9 w i t h sk in was also publ ished earlier. Autoant ibodies isolated from 

patients w i t h pemphigus vulgar is , cross-reacted w i t h an annexin l i ke prote in named 

pemphax in (Nguyen et ál·, 2000) that is actual ly annexin A 9 . Coinc ident ly 5 per ip lak in 

w i t h p lec t in ( A h o et α/.， 1999), (Mahoney et a l . 5 1998)， envop lak in ( K i y a k o w a et aL, 

1998) and desmogle in 3 (Ohyama et al., 2001) also showed strong react iv i ty w i t h 

paraneoplastic pemphigus (PNP) sera. I t is rather in t r igu ing that antibodies against bo th 

per ip lak in and the potent ia l per ip lak in b ind ing proteins, p lec t in and annexin A 9 are 

found i n au to immune sk in diseases. 

Study ing the so lub i l i ty properties o f annexin A 9 supported the potent ial l i nk 

between these proteins, as both per ip lak in and annexin A 9 shared the same so lub i l i ty i n 

conf luent M C F - 7 cel ls. Therefore, an interact ion between these proteins cou ld exist i n 

any o f the three ce l l f ract ions. Th is is consistent w i t h the previous proposal o f annexinร 

as cytosol ic proteins w i t h both soluble and insoluble pools w h i c h are stably or 

revers ib ly associated to components o f the cytoskeleton (Moss & Mo rgan 5 2004). 

Annex inร are proposed to b ind a w ide var iety o f other proteins (Gerke & Moss, 2002) 

and many o f these interact ions have already been รณdied ( T a b l e 3.2). 
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Annexin Interacting partners Knock-out model Reference 

ANXA l 
Epithelial growth factor 
receptor, formyl peptide 
receptor, seiectin, actin, 
๒tegrin A4 

Changes in ๒flammatory 
response and in the effects 
of glucocorticoids 

(Hannon et al. ， 

2003) 

ANXA2 
Tissue plasmmogen activator, 

angiostatin5 insulin receptors, 

tenascm c， caveolm I. 

Defects in 

neurovascularization and 

fibrm homeostasis 

(Ling et al., 

2004) 

ANXA3 None known Not done 

ANXA4 Lectins, glycoprotem 2 Not done 

ANXA5 

Collagen type 2， vascular 

endothelial growth factor 

receptor 2, integrm B5， protein 

kinase c， cellular modulator of 

immune recognition (MIR), G-

actin, helicase, DNA -

metiltransferase I 

Subtle phenotypes further 

mvestigation is needed 

(Brachvogel et 

al.， 2003) 

ANXA6 

Calcium responsive heat stable 

protein-28? ras GTPase 

activating protein, chondroitin, 

actin 

Subtle phenotypes further 

mvestigation is needed 

(Hawkins et al-, 

1999) 

ANXA7 Sorein, galectin 

Cause embryonic lethality in 

mice or changes in calcium 

homeotstasis 

(Srivastava et 

al., 1999);(Herr 

et a/., 2001) 

ANXA8 None known Not done 

ANXA9 Periplakin Not done 

ANXA10 None known Not done 

A N X A l 1 Programmed cell death 6 

(PDCD6), sorcm 
Not done 

ANXA13 
Neural precursor cell 

expressed^evelopmentally 

downregulated 4(NEDD4) 

Not done 

Table 3.2: Members of the annexin f amily indicating interacting partners and knock­

out studies. (Adaptedfrom (Moss & Morgan, 2004)). 
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CHAPTER IV 

KERATIN INTERMEDIATE FILAMENT ORGANIZATION 

IS DEPENDENT ON PERIPLAKIN AND PLECTIN IN 

SIMPLE EPITHELIAL CELLS 



4.1 I n t r o d u c t i o n 

Based on the results shown in the previous chapter 5 per ip lakin and plect in 

cytol inkers co-localise and co-immunoprecipitate in simple epithelia. This chapter details 

efforts to ident i fy any funct ional relation between per ip lak in and plect in by using SİRNA 

mediated downregulat ion in M C F - 7 and HaCaT cells. I n addi t ion, the role o f per iplakin 

and plect in in kerat in intermediate f i lament orgamsation dur ing epithelial sheet migrat ion 

has been investigated. Several studies have investigated the organisation o f the 

cytoskeleton i n wounded epithelia. A f te r wound ing epithel ial sheets5 a contracti le act in 

purse-string cable assembles at the free wound edge (Mar t i n & Lew is 3 1992; Bement et aL, 

1993; Danjo & Gipson 5 1998) to facil i tate wound closure. This cable is not exclusive to 

embryonic wounds, but also described in adult cells, p rov id ing a tension that contributes to 

wound closure. The fimction o f the actin cable in the wound edge cells provides a dual 

рифОБе, not on ly to fo rm a contracti le purse-string but also to restrain front cells from 

forward movements (Jacinto et al., 2002). Lately, a new aspect to wound healing has been 

found. T w o hours after wound ing 5 the kerat in network is re-organised at the wound edge 

into a th ick bundles parallel to the free edge o f the epithel ial sheet resembling the actin 

cable. (Long et α ί , 2006) Kerat in cables have been demonstrated at the edges o f embryonic 

wounds wh ich also show the actin purse-str ing (Brock et ű / .， 1996). 

The carboxy l terminal domain o f рег ір іаюп is considerably shorter than in the rest 

o f the members o f the p lak in fami ly , as i t lacks the g lobฝar specific subdomains. 

However, interact ion w i t h intermediate filament proteins such as keratin 8 and v iment in 

gave direct evidence that рег ір іаюп can funct ion as an IF associated protein (Kazeromian 

et al., 2002). As opposed to the N-terminal domain o f per ip lak in, the С-terminus has 

recently been shown to be invo lved in interaction w i t h several other proteins. Yeast-two 

hybr id screening revealed that these b inding partners include per iph i l in 5 a protein that can 

be targeted to nucleus (Kazerounian & Aho , 2003), Fe TRI (CD64) , wh ich appears to be 

regulated by b ind ing to per ip lakin (Beekman et al., 2004) and a serine/threonine kinase, 

protein kinase B (PKB) . Moreover 5 per ip lakin has been proposed to funct ion as a 

local izat ion signal in PKB-mediated signal l ing (van den Heuvel et ai, 2002). I n addi t ion, 

this technology has conf i rmed a specific b inding o f per ip lak in to the miracel iฟar domain o f 
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B P A G - 2 (Aho , 2004). Furthermore, the last 208 amino acids o f the с - te rmina l domain o f 

per ip lakin has been ident i f ied as b ind ing partner for the с - te rmina l region o f M O P 

receptors (wh i ch mediate most o f the actions o f opiates). Per ip lakin is the first op io id 

receptor-interacting protein that disrupts agomst-mediated G-protein activation. M O P 

receptor s ignal l ing may be less effective in neurons that co-express the receptor and 

per ip lakin than in those that do not (Feng et al, 2003). I t is not yet k n o w n whether these 

interactions and I F b ind ing are m u t m l l y exclusive, but i t is conceivable that di f ferent 

per ip lakin pools in the ceU are engaged w i t h unique functions and interactions. 

To elucidate the role o f рег ір іаюп in kerat in dynamics the fo l l ow ing t w o stable cel l 

l ines were used: M C F - 7 C-PPL clone overexpressing the C-termmal domain o f per ip lakin 

and the M C F - 7 Vz N-PPL cell l ine overexpressing the Vi N-terminus o f per ip lakin (see 

chapter 3.2.2). To study the effect o f these domains on kerat in intermediate f i lament 

dynamics, scratch wound experiments (section 2.4) were carried out on both cel l lines 

(MCF-7 C-PPL, M C F - 7 Уг N-PPL) . Subsequently 5 the organisation o f the kerat in 8 IFs was 

monitored at the wound margin. 
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4.2 Results 

4.2.1 T rans fec t i on o f shor t i n t e r f e r i ng R N A (SİRNA) to down- regu la te p e r i p i a k i n , 

p lec t in a n d k e r a t i n 8 expression 

Prior to carry ing out wound healing and migrat ion assays5 i t was first necessary to 

investigate the ef f ic iency o f SİRNA knock down o f protein expression in M C F - 7 cel l l ines. 

I n this study, per ip lak in, plect in and keratin 8 proteins were targeted. Using the onl ine 

SİRNA database f r o m A m b i o n , non-val idated pre-designed SİRNA oligonucleotides 

standard pur i ty were purchased for per ip lakin, plect in and kerat in 8. Several alternative 

s iRNAs were tested for each protein to f ind the most ef f ic ient o l igonudeot ides. The 

val idat ion o f s iRNAs was carried out in M C F - 7 cells that were transfected w i t h the SİRNA 

o f interest or a scrambled control SİRNA. The scrambled contro l contains a mixed sequence 

o f nucleotides that does not correspond to any k n o w n human m R N A sequence and 

therefore provides a negative control for the experiments. Furthermore, another control 

using water instead o f any SİRNA was used to demonstrate normal protein expression. 

A f te r transfect ion 5 cells were harvested at either 48 or 72 hour t ime points and the 

ef f ic iency o f protein knock-down was analysed by immunob lo t t ing . Samples were run 

simultaneously on the same gel in adjacent lanes to ensure that the b lot t ing condit ions were 

constant. Three di f ferent target sites in the per ip lakin m R N A were tested. A l l per ip lakin 

SİRNA ol igonucleotides were effective and resulted in almost complete loss o f per ip lakin 

protein expression. The best deplet ion o f per ip lakin expression (95%) was achieved 48-72 

hours after the transfection w i t h PPL-3 SİRNA. F i gu re 4.1 A shows this in comparison to 

transfection o f the scrambled SİRNA and untransfected control . Kerat in 8/18 was used as a 

loading contro l showing equal loading o f total proteins from each sample. This 

ol igonucleot ide was used for al l SİRNA transfection experiment thereafter. Plectin SİRNA 

(P lec i ) also showed prominent plect in knock-down (>95%) 72-96 hours after transfection 

(F igu re 4,1 B ) , As before, cytokerat in bands il lustrate equal loading o f total proteins in 

each lane. This ol igonucleot ide was also used for al l subsequent SİRNA transfection 

experiments. To achieve kerat in 8 ablation in M C F - 7 cells w i t h double-stranded SİRNA 

oligonucleotides against kerat in 8, two di f ferent s iRNAs were tested. Only one o f the 

examined kerat in 8 s iRNAs resulted in about 20 -50% decrease o f the protein expression 
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compared to controls (F igu re 4.1 C ) . Kerat in 8 SİRNA transfections were carried out i n 

HeLa and Panc-1 cells under condit ions as previously described i n L o n g et al,, 2006. I t was 

observed that SİRNA transfections reached the greatest ef f ic iency when the cells were 

transfected 12 hours after seeding at 4 0 % confluence. Seeding cells at over 4 0 % confluence 

resฟted in increasingly less eff ic ient kerat in deplet ion possibly due to stabil isation o f the 

intermediate f i lament network. 
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Figure 4Л։ Verification of the effect of SİRNA oligonucleotides using Western blot 

analysis in MCF-7 cells. 

A. Periplakin siRNA oligonucleotide used for periplakin downregulation: PPL-3: 

GAGGGUAUGUAUAAAAUGCtt, Target: C-terminus1 exon 22. Knock-down efficiency: 

>95%. The above oligonucleotide was used throughout this research for periplakin 

ablation. As a control lane keratin 8/18 was used to demonstrate even loading of the total 

proteins. B. Immunoblot results of plectin siRNA transient transfection in MCF-7 cells. 

SiRNA oligonucleotide: Plec-1: GGAA UGA UGA CA UCGCUGAtt Target: C-terminus1 

exon 5. Knock-down efficiency: >95%. Keratin bands are shown as control for loading. 

С Immunoblot analysis of keratin 8 SiRNA transfection. siRNA oligonucleotide: K8-1: 

AAUA UCCUCGUACUGUGCCtt. Target region: Rod exon 6. Knock-down efficiency: 50-

80%. In this case the control blot for loading was carried out with vinculin antibody (V-ll-

5, 1:100 dilution1 Sigma). 

Bar diagrams represent densitometric analysis of protein expression after periplakin, 

plectin and keratin 8 siRNA transfections in MCF-7 cells. Values represent means and 

standard deviations for three independent experiments (ท=3). Student's T-test confirmed 

statistical differences (p< 0.05) between control and transfectedcells. 
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4.2.2 P lec t in k n o c k - d o w n i m p a i r s p e r i p l a k i n subce l lu la r t a rge t i ng i n H a C a T 

kera t inocytes 

To investigate whether the l i nk between per ip lak in and plect in has a funct ional role 

in epithel ial cel ls 3 the per ip lakin or plect in expression was downregulated by SİRNA 

transfections in M C F - 7 and HaCaT cells using transfection condit ions wh ich had been 

established earlier ( Long et al., 2006). 

T o determine whether per ip lakin or plect in down-regulat ion changes the 

local izat ion pattern o f the other protein, immunofluorescence staining was performed after 

SİRNA transfection. M C F - 7 and HaCaT cells were seeded onto coverslips and left to g row 

for two days. A f te r reaching 5 0 % confluence 5 SİRNA was applied against per iplakin and 

plect in, respectively. Immunofluorescence microscopy using antibodies against per iplakin 

(BOCZ-1 ) and plect in (c-20) was used to reveal the alterations o f protein distr ibut ion and 

successful protein downregฬat ion. 

B o t h per ip lak in and plect in downregฝat ion were achieved successfully i n M C F - 7 

cells. However , i n neither case were there consistent changes i n the distr ibut ion o f the other 

protein. F i g u r e 4.2 A shows per ip lakin was main ly localised at the plasma membrane in 

control cells, s imi lar ly to that observed i n plect in downregulated cells. Addi t iona l ly , p lect in 

distr ibut ion d id not seem to be altered after per ip lakin ablat ion displaying cell border and 

cytoplasmic staining. S imi lar ly , in HaCaT cells per ip lakin deplet ion d id not affect plect in 

local isat ion ( F i gu re 4.2· B ) . 
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In contrast 5 ablation o f plect in in HaCaT cells caused an altered per iplakin 

distr ibut ion (F igu re 4.2 B) . Transfection o f HaCaT keratinocytes w i t h a plect in SİRNA 

resulted in an ef f ic ient knock-down o f plect in expression ( F i gu re 4.3 A ) and i n periplakin 

aggregate fo rmat ion (F igu re 4.3 B ) . In control transfected HaCaT keratinocytes, per iplakin 

demonstrated most ly cytoskeletal staining where i t part ia l ly co-localised w i t h plect in 

(F igu re 4.2 Β ) · Th is distr ibut ion pattern is di f ferent from that seen in simple epithelial 

M C F - 7 cells ( F i gu re 4.2 A ) and was conf i rmed by subcellular fractionation wh ich 

demonstrated that in HaCaT cells the major i ty o f both plect in and per ip lak in were found in 

the cytoskeletal 3 T r i ton insoluble P3 fraction w i t h on ly a smal l amount o f proteins present 

in the cytosolic S I f ract ion (F igu re 4.4 A ) . 

Upon closer investigation o f subconfluent plect in knock-down cells, i t was noted 

that per ip lakin most ly aggregated in smal l , irregular clusters. Th is clustering o f per ip lakin 

was accompanied by a loss o f soluble per iplakin and kerat in 14 pools in subcellular 

fractionations ( F i gu re 4.4 A ) . In addit ion, per ip lakin clusters were part ial ly distributed 

along intermediate filaments or localised at t ips o f kerat in f i laments at cell periphery 

(F igu re 4.4 B ) . Thus 5 plect in appears to regulate per ip lak in localisation in HaCaT cells. 
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Figure 4.2: Periplakin and plectin downregulation in MCF-7 and HaCaT cells. 

Control transfected MCF-7 cells (A.) and HaCaT cells (Β·) (top row), periplakin SİRNA 

transfected cells (middle row) and plectin downregulated cells (bottom row) are shown. 

Cells were stained with c-20 plectin antibody (green, 1:200 dilution) and periplakin BOCZ-

1 antibody (redy 1:5Œ Scale bars equal 20 բա. 
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Figure 4.3: Images showing clusters of periplakin in plectin SİRNA transfected HaCaT 

keratinocytes. 

Subconfluent HaCaT keratinocytes were transfected with control SİRNA or plectin SİRNA 

oligonucleotides. A. Knock-down efficiency was monitored by immunoblotting of untransfected, 

control siRNA transfected and plectin s і RNA transfected cell extracts with total plectin (c�20) 

antibody using keratin as loading control. B. Control SİRNA transfected cells were stained 96 

hours after transfection with plectin (green) and periplakin (red) antibodies (scale bar equals 5 

\un). С Plectin s і RNA transfected cells stained with periplakin (red) and plectin (green) 

antibodies 96 hours after transfection. Arrowheads show examples of periplakin aggregates 

(scale bar equals 5 \im). 

187 



M(kDa) 

500 

195 

Control SİRNA Plectin SİRNA 

55 

ᅳ 

Sl 

Plectin 

Periplakin 

Keratin ւգ 

S2 РЗ Sl S2 РЗ 

Figure 4.4: Altered periplakin distribution after plectin SİRNA transfection in HaCaT 

keratinocytes. 

A. Immunoblotting of subcellular fractions of control and plectin s і RNA transfected HaCaT 

keratinocytes. Left and right panels indicate control and plectin downregulated samples, 

respectively, probed with periplakin (BOCZ-Լ 1:500 dilution) and keratin 14 (1:1000 dilution) 

antibodies. B. Immunofluorescence staining of periplakin (green)1 and keratin 14 (red) in plectin 

s і RNA transfected cells. Periplakin staining demonstrates aggregates distributed along the 

intermediate filament network (scale bar equals 20 Ատ). 
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4.2.3 P e r i p l a k i n ab la t i on inh ib i t s in te rmed ia te f i l amen t re -o rgan iza t ion at the w o u n d 

site 

To investigate the funct ion o f per iplakin in simple epithel ial M C F - 7 cells, 

confluent epithel ial sheets o f per iplakin d ownregulated cells were scratch wounded as 

shown in F i g u r e 2.1 A and the organization o f the kerat in intermediate filaments was 

รณdied by immunofluorescence. 

Cells were g rown on glass coverslips and after reaching 50-60% confluence 

transient transfect ion w i t h per ip lakin SİRNA was performed. Cells were left i n the 

transfection med ium for 24 hours and after changing the med ium to normal D M E M , cells 

were left to g row for further 3 days to reach confluence. A wound was created before 

staining for kerat in and per ip lakin. 

Immunolabe l l ing revealed that even almost complete ablat ion o f рег ір іаюп d id not 

affect the kerat in organisation o f the unwounded epithel ial sheets that showed normal 

kerat in 8 intermediate f i lament network (Long et α/.， 2006). In the scratch wound 

experiments, control SİRNA transfected wound edge cells were able to re-arrange their 

kerat in f i laments into bundles parallel to the wound (F igu re 4.5 A ) . In contrast, per ip lakin 

SİRNA transfected cells d id not re-arrange kerat in f i laments 5 showing no keratin bundl ing 

at the wound edge (F igu re 4.5 B ) . 

The fai lure o f the intermediate filament cytoskeleton to reorganise was also evident 

by quantitat ive analysis. Fluorescence intensity o f kerat in staining in the monolayer 5 five 

rows o f cells away f rom the wound edge was compared to the staining intensity at the area 

w i t h f i lament bundles at the wound edge. I n wounds transfected w i t h control SİRNA, 

keratin bundl ing was evident by on average 3.5 t imes more intense fluorescence at the 

wound edge. In the per ip lakin down-regฟated cells 3 however 5 there was no difference in 

keratin staining intensity between the wound edge and cells away f r om wound site (F igu re 

4.5 c). Thus, per ip lak in appears to be required for the re-orgamsation o f keratin IF network 

at the wound edge o f simple epithelial cel l monolayer. 
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Figure 4.5: Keratin organization in peripla/dn downregulated wound edge cells. 

Transiently transfected cells that had reached confluence were wounded 72Һ after 

transfection. A. K8 immunofluorescence in control transfected cells 2Һ after wounding. Β· 

K8 immunofluorescence in periplakin siRNA transfected cells 2hours after wounding, с 

Fluorescence intensity at the wound edge compared to intensity of the monolayer (set as 

100 ам.) in control and periplakin siRNA transfected cells. Fluorescence intensity was 

measured using raw Zeiss LSM 510 images (Merged Ζ-stacL·) with ImageJ software from 

20 cells in three independent wounds at the wound edge and in epithelial monolayer 5 to 7 

cell rows away from the wound edge (Scale bar equals 20 μτη). 
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4.2.4 Inves t iga t ion o f i n t race l l u l a r loca l izat ion o f p e r i p l a k m С - t e rm inus by confocal 

m ic roscopy i n s imp le ep i the l ia l cel l 

In order to investigate the association o f the per ip lak in с-terminal l inker domain 

and IFs， a stable cel l l ine was created by transfection o f a pCI-neo vector containing H A -

tagged per ip lak in С-terminus. Cells were a l lowed to recover for 48 hours before selection 

w i t h neomycin (500 ц ^ т і ) . Neomyc in resistant colonies were expanded and analysed by 

immunoblo t t ing and immunofluorescence. This stable cel l l ine was named M C F - 7 C-PPL. 

A schematic representation o f the fu l l - length per ip lakin and the construct used for stable 

transfection is shown in f i gu re 4.6 Α . , в. 

M C F - 7 C-PPL cells were grown on coversl ips to 50-60% confluence. 

Methanol/acetone (1:1) f ixa t ion was applied before staining the HA-tagged periplakin 

l inker domain w i th rabbit an t i -HA antibody ( Y - l 1 Santa Cruz, in a d i lu t ion o f 1:200). 

Th is staining was dif ferent f rom the local izat ion o f endogenous per iplakin that 

predominant ly showed cel l border staining w i t h a weak cytoplasmic signal that d id not co-

localize w i t h kerat in IFs. However, the per ip lakin l inker domain was main ly localised in 

the cytoplasmic region o f the cell decorating the nuclear envelope and showing filamentous 

cytoplasmic staining resembl ing to the keratin intermediate filament distr ibut ion (F igu re 

4.7 A ) . Empty transfected M C F - 7 cells (MCF-7 E V ) were used as a control , where no 

specific staining was observed (F igu re 4.7 B ) , p rov ing the successful generation o f the 

stable cel l l ine. 

Earl ier studies demonstrated that the per ip lakin l inker domain is a specific b ind ing 

partner o f the kerat in 8 intermediate f i laments i n several cel l types 9 such as human 

keratinocytes (Kazerounian et al, 2002) and simple epithel ial COS7 cells (Karashima & 

Watt 3 2002). Therefore, this study has focused on the role o f the l inker domain in keratin 

reorganisation fo l l ow ing scratch wound assays. 
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r ig ur e 4.6: Schematic diagram of the periplakin construct used for stable 

transfection. 

A. Structure of periplakin. B, Structure of the periplakin construct containing HA-

tagged periplakin tail domain used for the generation of MC F֊7 C-PPL cell line. 
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Figure 4ш 7: Localisation of periplakin linker domain in MCF-7 cells. 

A. MCF-7 C-PPL cells expressing the HA-tagged С-terminus of periplakin showing 

perinuclear and cytoskeletal filamentous pattern, Β· Control transfected MCF-7 EV cells 

show no specific staining with antl·l·lA antibody. Staining was carried out with Y-ll 

antibody (Santa-Cruz, 1:200 dilution1 scale bors equal 20 μτη). 
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4.2.5 Inves t iga t ion o f expression levels o f H A - t a g g e d p e r i p l a k i n l i n ke r doma in by 

Wes te rn b lo t analysis 

I n order to examine the expression level o f HA-tagged periplatón С-terminus in 

stably transfected M C F - 7 cells, whole cel l protein extract ion was carried out when cultures 

were at 90 -100% confluence, fo l lowed by Western blot analysis. Immunoblo t t ing o f the 

total cel l extracts showed very l o w amounts o f tagged protein i n al l studied cell clones 

(F igu re 4.8 A ) , so immunoprecipi tat ion w i t h an t i -HA antibody was performed. 

บทtransfected M C F - 7 and a control cel l l ine transfected w i t h empty vector were again used 

as controls. The results o f the immunoprecipi tat ion and the immunoblo t t ing thereafter 

conf i rmed the expression o f the l inker domain wh i ch proved the successful stable 

transfection (F i gu re 4.8 B ) . This a l lowed the use o f this part icular cel l l ine to study the 

effect o f per ip lak in l inker domain on kerat in organizat ion in simple epithelial cells. 

A possible explanation o f the l o w expression level o f the tagged protein is that the 

overexpression o f per ip lak in С-terminus wh ich is responsible for intermediate filament 

b ind ing led to the collapse o f keratin intermediate f i laments i n the transfected cells and 

therefore caused the death o f these cells. I n l ine w i t h this, several attempts to generate 

stable cell l ines that wou ld consti tut ively express detectable level o f eGFP-tagged 

per ip lakin с-terminus were unsuccessful (Long et al, 2006). T o overcome this l imi tat ion, 

M C F - 7 C-PPL cells were only used at early passages. 
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r i g иге 4.8: Detection of periplakin C-terminal linker domain in MCF-7 C-PPL cells by 

immunoprecipitatìon and Western blot analysis. 

A. Western blot analysis of endogenous periplakin and periplakin C-terminal domain with 

TD'2 antibody and anti-HA antibody (both rabbit polyclonal 1:200 dilution) in control 

analysis of HA-tag periplakin С-terminus with anti-HA rabbit antibody (1:200 dilution) after 

immunoprecipitatìon of the tagged protein. MCF-7 cells represent untransfected cells, MCF-

7 EV cells refer to emptv transfected control cells and MC F'7 C-PPL cells are cells 

expressing the periplakin tail domain. 
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4.2.6 Stable expression o f the p e r i p l a k i n l i n k e r d o m a i n in ter feres w i t h k e r a t ๒ 

reorgan iza t ion a t w o u n d edge 

This representative experiment (shown i n F i g u r e 4.9) demonstrates the effect o f 

per ip lakin l inker domain on the kerat in re-organization at the wound edge in stable M C F - 7 

clones expressing HA-tagged per ip lakin C-terminus. 

Cel ls were g rown to 100% confluence and the epithel ial sheet was wounded. Cells 

were washed w i t h I X PBS to clear o f f al l the cells and cel l groups that remained sl ight ly 

attached to the wound edge, before normal D M E D medium was appl ied. 30 minutes after 

wound ing 5 the epithel ia transfected w i t h empty vector showed a wel l -organized kerat in 

cytoskeleton and had started to re-arrange the kerat in cable parallel to the wound edge 

(F igu re 4.9 A ) . O n the other hand, the wound edge cells expressing per ip lakin C-terminus 

showed a variable phenotype 5 containing cells w i t h either very th ick irregular kerat in 

bundles or kerat in aggregates (F igu re 4.9 B ) . Many o f the cells had granular staining, 

indicat ing collapsed kerat in f i laments in the cytoskeletal region wh i ch resembled okadaic-

acid induced kerat in granules (Long et al, 2006). 

4.2.7 Overexpress ion o f p e r i p l a k i n C" te rmtaus is associated w i t h up- regu!a ted Ser-431 

phospho ry l a t i on i n k e r a t i n 8 in te rmed ia te fílament 

The intracel lular organization o f the IF networks is under the control o f protein 

kinases and phosphates (Inagaki et al, 1987; Inagaki et al, 1996; Chang & Goldman, 

2004). Phosphorylat ion and dephosphorylation o f IFs alter their biophysical and structural 

properties ( inducing disassembly o f IF and a change in solubi l i ty) . Therefore, 

phosphorylat ion specif ic antibodies were used to recognise the phosphorylated 

serine/threonine residue i n kerat in IFs. Ser-73 and Ser-431 residues o f kerat in 8 IF are two 

o f the major kerat in 8 phosphorylat ion sites (Omary et al., 1998) wh ich are phosphorylated 

by the E R K 1/2 M A P kinases ( K u & Omary, 1997). 

Interest ingly 5 wound edge staining w i t h a Ser-431-specific phosphokeratin antibody 

(5B3， 1:100, mouse m A B directed against kerat in 8 phosphoserine residue 4 3 1 , Stratech) 
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demonstrated that kerat in bundles in control transfected M C F - 7 cells contained 

phosphorylated kerat in f i laments. This phosphorylated kerat in local izat ion was evenly 

distr ibuted and even far behind the wound site 5 the cells displayed a dense network o f 

phosphorylated keratins (F igu re 4,10 A ) . Conversely 3 the M C F - 7 C-PPL stable cell l ine 

expressing the per ip lak in l inker domain showed tMck phosphorylated keratin bundles 

across the cells localised at the wound edge. Furthermore;, cells behind those in the leading 

edge o f the scratch wound displayed bundled or collapsed phosphokeratin f i laments 

(F igu re 4.10 B ) . 

This increase in phosphorylated keratins at the wound site in M C F - 7 C-PPL cells 

was also evident by Western blot t ing experiments. Cells were g rown, transfected and 

wounded as described above before whole cell protein extract ion. A l so , whole cell proteins 

were extracted f r om monolayers wi thout wounding as control samples. Extracted proteins 

were run on 12% pre-cast gel and immunoblot ted w i t h 5B3 (monoclonal 3 mouse anti-Ser-

431 kerat in 8 ,1 :100, Stratech) antibody. F i g u r e 4.10 с conf i rmed that wounded MCF-7 C-

PPL sheets expressed Ыgheг level o f Ser-431 phosphorylated keratins than unwounded 

control ( M C F - 7 E V ) cells. Cytokerat in 18 band is showed as control for even loading o f 

the total keratins. 

These results conf i rmed that increased bund l ing o f kerat in f i laments close to the 

free wound edges was associated w i t h a change in the distr ibut ion and amount o f Ser-431 

phosphorylated keratins. 
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Figure 4.9: Immunofluorescence staining of keratin 8 at wound edges. 

A. Empty vector transfected control cell line (MCF'7 EV) showing normal keratin 8/18 

cytoskeleton (scale bar equals 100 \im). B. Immunofluorescence staining of keratin 8 

(су toker atin 8/18 antibody, mouse monoclonal, 1:1000 dilution) at wound edges of two 

independent wounds of a clone (MCF-7 C-PPL) overexpressing the HA-tagged periplakin 

linker domain (scale bars equals 100 (top) and 50 μ พ , (bottom) respectively). 
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Figure 4AO: Expression of Ser-431-phosphorylated keratins at wound edges. 

Immunofluorescence staining of control transfected MCF- 7 EV cells (A.) and MCF-7 C-PPL 

cells (Β·) expressing PPL-C-terminus 2 h after wounding, с Western blotting of Ser 431-

phosphorylated keratin in monolayers (เท) and wounded monoloyers (พ) (ten wounds per 

100mm cell culture dish) in control MCF-7 EV and MCF-7 C-PPL cell clones. Keratin 18 blot 

of the same membrane showing no difference in the total keratin expression between the cell 

clones or treatments. Immunofluorescence and immunoblotting was carried out with 5B3 

(monoclonal, mouse anti'Ser-431 keratin 8, 1:100 dilution, Stratech) and cytokeratin 18 

(mouse, monoclonal 1:1000 dilution) antibody (scale bars equal 100 μ พ / 
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4.2.8 P e r i p l a k i n a m i n o - t e r m i n u s accelerates ke ra t i n i n te rmed ia te f i l amen t b u n d l i n g 

at the w o u n d edge 

The changes i n kerat in organisation dur ing migrat ion o f simple epithelial sheets o f 

M C F - 7 cells prompted the study o f the abi l i ty o f рег ір іаюп in cytokerat in dynamics. In 

addi t ion, i t was hypothesised that, i f the observed co-local isat ion o f per ip lakin and plect in 

has funct ional signif icance in these cells, over-expression o f the HA-tagged per ip lakin N -

terminus should affect the distr ibut ion or funct ion o f plect in. To investigate this, confluent 

M C F - 7 ՚/շ N-PPL and empty vector transfected control cel l sheets were scratch wounded 

and the plect in subcellular d istr ibut ion and kerat in IF organizat ion were fo l lowed by 

immunofluorescence staining. 

Recent analysis o f the keratin staining in M C F - 7 wound edge cells revealed that 2 

hours after wound ing 5 the major i ty o f the cells at the free edge formed a th ick cable o f 

bundled kerat in f i laments running parallel to the wound (Long et al, 2006). For 

comparison, M C F - 7 and M C F - 7 Vi N-PPL cells were g rown on glass coverslips and after 

fo rming monolayers the epithelial sheets were wounded. Immunofluorescence staining o f 

keratin 8 demonstrated that the re-organization o f kerat in intermediate f i laments at the 

scratch wound edge occurs faster in M C F - 7 Уг N-PPL cells compared to control transfected 

cells. The M C F - 7 Vi N-PPL cel l l ine assembled a prominent kerat in cable at the wound 

edge already 30 minutes after wound ing (F igu re 4.11 A ) w h i c h was not been observed in 

the control cell l ines. 

To investigate whether this phenomenon is associated w i t h the co-

immunoprecip i ta ion o f per ip lakin and plect in, subcellular d ist r ibut ion o f these proteins was 

examined. B iochemica l fract ionation o f confluent monolayers o f cells revealed di f ferent 

subcellular local izat ion o f plect in in cells overexpressing the per ip lak in amino-terminus 

(F igu re 4 Л 1 B ) . Therefore, the early kerat in bundl ing at the wound edge seen in M C F - 7 Vi 

N - P P L cells was correlated w i t h a shif t i n subcellular d is t r ibut ion o f plect in. A lmost al l 

plect in in M C F - 7 、h N-PPL cells was found in the Tr i ton- insoluble cel l f ract ion compared 

to empty vector transfected control cells (F igu re 4.11 B)， whereas the amount o f soluble 

kerat in subunits in the cytosolic S I f ract ion and insoluble kerat in in the P3 fract ion was 

similar in both cel l l ines, พ Ы с һ conf i rmed even loading. 
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Figure 4.11: Accelerated keratin bundling in MCF-71/2N-PPL cells. 

A. Keratin-8 immunofluorescence of scratch wounded epithelial monolayers at 30 minutes 

after wounding. Keratin cytoskeleton is re-arranged into a cable parallel to the wound 

edge in the MCF-7  տ/շ N- PPL cell line (right) but not in the empty vector transfected 

control cell line (left). Scale bars equal 20 μτη. R Subcellular distribution of plectin in 

empty vector transfected (MCF-7 EV) cells and in cells overexpressing periplakin N-

terminus (MCF-7 1/2N-PPL). SI refers to cytosolic fraction1 S2 represent Triton soluble 

membrane fraction and P3 indicates Triton insoluble fraction c, Immunoblotting of 

soluble keratin 8/18 in the SI cytosolic fractions of empty vector transfected (MCF-7 EV) 

and MCF-7 1/2N-PPL cells. 
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4.2.9 P lec t in downregu la t i on in the M C F - 7 1 /2N-PPL cel l i nh ib i t s r a p i d ke ra t i n 

bund le f o r m a t i o n 

To con f i rm that plect in plays a role i n the early kerat in bundle format ion, plect in 

was downregulated by transient SİRNA transfection and kerat in organization was fo l lowed. 

Cells were g rown , transfected, wounded and stained as described above. Confocal 

microscopy using immunofluorescence conf i rmed that plect in was un i fo rmly down 

regulated in the scratch wound experiments in M C F - 7 cells. The confocal settings for 

detection o f fluorescent signal were unchanged for plectin-depleted cells and control cells 

to demonstrate the dif ference in fluorescent signal. Deplet ing M C F - 7 cells o f plect in 

resฟted i n decreased bundl ing o f keratin at the free wound edge. Kerat in filaments seemed 

to be disorganized i n p lect in knock-down cells and d id not f o r m a un i fo rm cable at the 

wound edge ( F i gu re 4.12). 

Dramat ic changes in keratin bundle format ion at the wound edge in plect in ablated 

M C F - 7 V2 N-PPL cells demonstrate the importance o f p lect in in early kerat in assembly. 

Overa l l , this observation suggests that the accelerated kerat in assembly into a cable at the 

wound edge is indeed dependent on plect in. 
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Figure 4.12: Immunofluorescence images showing that plectin is required for rapid 

keratin bundling at the wound edge. 

MCF-7 1/2N-PPL cell line was transfected (top) with either control or plectin (bottom) 

s і RNA prior to scratch wounding. The cells were stained with plectin (c-20, 1:200 dilution, 

green) and keratin8/18 (LE-41, 1:2 dilution, red) antibodies at 30 m inu tes after wounding 

(scale bars equal 20 μτη). 
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4,2.10 S imul taneous downregu la t i on o f p e r i p l a k i n and p lec t in results i n ke ra t i n 

i n te rmed ia te f i l a m e n t d isorgan iza t ion i n M C F - 7 cells 

The capabi l i ty o f per ip lakin and plect in to control kerat in organisation at the wound 

edge cells was evident in M C F - 7 epithelial cells. To further examine the role o f these 

cytol inkers 5 per ip lak in and plect in double knockdovvn SİRNA transfected M C F - 7 cells were 

generated. The general appearance o f the kerat in cytoskeleton was compared to control 

transfected cells using immunofluorescence microscopy. 

As fîgure 4.13 i l lustrates, the keratin f i laments had a dense cytoplasmic network in 

control cells wh i le those cells depleted in both per ip lak in and p lect in displayed a strong 

kerat in cage around the nucleus w i t h fewer cytoplasmic kerat in filaments. Interestingly ? 

this change in the kerat in network was not detected after per ip lak in SİRNA transfection as 

the lack o f per ip lakin d id not result i n an effect on epithel ial morphology or cytokerat in 

organizat ion in monolayer cells. I n addit ion, plect in ablat ion on M C F - 7 cells d id not 

mod i f y the appearance cytoskeletal network dramatical ly, al though a small percentage o f 

the cells demonstrated bu lky kerat in f i laments around the nucleus. Based on this evidence 5 

per ip lakin and p lect in are required for normal kerat in organization in simple epithelial cells 

and facil i tate the distr ibut ion o f the keratin network inside the cel l . 

206 



Keratin 8/18 

Control 

PPL SİRNA 

Plectin SİRNA 

PPl and Plec SİRNA 

Figure 4.13: The lack of periplakin and plectin alters the appearance of keratin 

intermediate filament network in MCF-7 cells. 

siRNA transfected MCF-7 cells were stained with keratin 8 monoclonal antibody (LE4Լ 

1:2 dilution). Cells lacking in both periplakin and plectin show disorganised keratin 

network with strong bundling around the nucleus compared to single downregulated or 

control transfected MCF-7 cells. 



4.3 Discussion 

4.3.1 E f fec t o f p e r i p l a k i n and plect in ab la t ion i n i n tac t ep i the l ia l sheets 

To investigate the ftmctional signif icance o f the interact ion between per ip lakin and 

plect in, SİRNA transfections were carried out in two di f ferent cel l l ines in order to reveal 

the effects o f downregulat ion o f these proteins. Immunob lo t t ing experiments after 

per ip lakin downregulat ion showed unaltered plect in expression levels in both M C F - 7 and 

HaCaT cells. S imi lar ly , immunofluorescence studies on per ip lakin SİRNA transfected cells 

d id not show signif icant changes in the local izat ion o f the endogenous plect in. The lack o f 

per ip lak in i n gene targeted mice (Aho et al, 2004) resฟted in unaltered plect in distr ibut ion 

and epidermal d i f ferent iat ion. Taken together w i t h our observation 5 i t could be concluded 

that рег ір іаюп downregulat ion in either simple epithel ia or in keratinocytes resulted i n no 

obvious phenotypic differences under unwounded circumstances. 

Downregula t ion o f plect in 3 however, resulted in per ip lak in aggregation in 

subconfluent HaCaT keratinocytes indicat ing that p lect in m igh t play a role in regulating the 

subcellular target ing o f per iplakin. This per ip lakin aggregation appeared throughout the 

cytoplasm o f the cells. Co-Staining with periplakin and keratin 14 displayed co-localization 

w i t h the t ip o f IFs. The changes in per ip lakin d ist r ibut ion demonstrate a funct ional 

correlat ion between рег ір іаюп, plect in and kerat in IFs. 

4.3.2 K e r a t i n i n te rmed ia te fílament o rgan iza t ion 

The current w o r k has conf i rmed that per ip lakin participates in the re-organization o f 

kerat in intermediate f i laments at the wound edge. This observation suggests that per ip lakin 

is essential i n normal wound healing processes in simple epithel ia as its depletion leads to 

loss o f kerat in cable format ion. It has been specฟated that after the rapid imt ia l wound 

response to assemble an actin-purse str ing, the act in structure is consequently used to guide 

the re-organizat ion o f keratins so that i t reinforce the free edge o f epithel ia (Brock et α/ · , 

1996; L o n g et al, 2006). The format ion o f kerat in intermediate f i lament cable could be 

mediated v ia per ip lak in that has previously been described as an actin associated protein 
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even though the protein lacks a classical act in-binding domain (DiColandrea et al, 2000). 

Al ternat ive ly , p lect in, wh ich contains the A B D , could connect per ip lak in to the actin purse-

string cable. Furthermore 3 i t seems that the kerat in filaments fo rm ing the kerat in cable at 

the wound site are more dynamic compared to keratins in an intact monolayer. Kerat in 

f i laments at the wound edges seem to be more vulnerable to okadaic acid treatment (Long 

et al, 2006) that causes disassembly o f keratin filaments and aggregation o f solubil ised 

keratins w i t h per ip lak in. 

4.3.3 In f luence o f p e r i p l a k i n l i nke r d o m a i n on k e r a t i n i n te rmed ia te filaments 

The N-terminus o f per ip lak in has been shown to associate w i t h desmosomes and 

interdesmosomal plasma membranes whereas the per ip lak in l inker domain demonstrated 

constitut ive b ind ing to kerat in intermediate f i laments. To test whether the per iplakin C-

domain has any effect on kerat in re-organization 5 a stable cel l l ine was first created wh i ch 

expressed the l inker domain o f per iplakin. Immunofluorescence studies revealed that 

per ip lak in COOH-doma in was main ly distr ibuted along the cytoskeleton. This stable cell 

l ine showed the same subcellular d istr ibut ion o f the l inker domain in simple epithelia as 

previously seen i n keratinocytes (DiColandrea et al, 2000). EGFP-tagged per ip lakin l inker 

domain was also associated w i t h keratin cytoskeleton, indicat ing that the interaction o f 

per ip lak in с-terminus and keratin f i laments can take place in M C F - 7 cells (Long et al, 

2006). Scratch wound assay on confluent monolayer revealed that wound edge cells 

expressing the per ip lak in с-terminus had collapsed kerat in cytoskeleton and irregular th ick 

keratin bundles. Th is phenomenon was associated w i t h the higher phosphorylat ion level on 

keratin 8 Ser-431 residue. W i t h regard to Ser-431 residue it is known that its 

phosphorylat ion is increased upon mitot ic arrest or st imulat ion o f cells w i t h EGF， wh ich 

suggests a role in mitogen-induced signal l ing ( K u & Omary^ 1997). Cytoplasmic IFs are 

reorganized dramatical ly dur ing mitosis and this reorganization is considered to be 

control led by IF protein phosphorylat ion ( Izawa & Inagaki , 2006). Furthermore, 

phosphorylat ion o f these sites are correlates w i t h disease progression in patients w i t h 

chronic l iver disease (To ivo la et al, 2004; Zat loukal et al, 2004). Based on my results, i t 

appear that per ip lak in l inker domain expression, kerat in bundl ing at the wound edge and 
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Ser-431 residue phosphorylat ion are connected. However 5 i t is st i l l not clear whether 

induced phosphorylat ion was a consequence o f kerat in bund l ing or per ip lakin с-terminal 

overexpression. I t remains for future studies to map the signal l ing and putative 

phosphorylat ion events described above. 

4.3.4 P e r i p l a k i n NH2-terminus is r equ i r ed i n n o r m a l w o u n d heal ing processes 

Based on this study, wounded epithelia over-expressing per ip lak in N-terminus re­

arrange their kerat in network faster than control transfected cells. The rapid bundl ing o f 

keratin f i laments was inhibi ted when the M C F - 7 Vi N -PPL cells were transfected by plect in 

SİRNA ol igonucleotides indicat ing that the effect o f the per ip lak in N-terminus was 

mediated by plect in. The role o f p lect in in contro l l ing s ignal l ing pathways is beginning to 

be explored. Recently, p lect in has been demonstrated to be a b ind ing partner o f the receptor 

for activated с kinase 1 ( R A C K 1 ) and therefore af fect ing P K C signal l ing (Osmanagic-

Myers & Wiche, 2004). Taken together w i t h an earlier report suggesting that plect in is 

invo lved in act in filament regฝat ion v ia Rho/Rac/cdc42 s ignal l ing (Andrä et α/.， 1998)， i t 

is tempt ing to consider cytol inkers to be able to collaborate and provide l ink between 

cytoskeletal dynamics and signal l ing events. I also tested the effect o f double SİRNA 

transfection against per ip lak in and plect in in M C F - 7 cells that, indeed, caused abnormal 

cytokerat in network, result ing in a perinuclear cage structure. M y data support a recently 

investigated role o f p lect in as a major regulator o f cytoarchitecture (Osmanagic-Myerร et 

al, 2006). The role o f p lect in in regulat ing keratin organizat ion was studied by using 

plect in deficient keratinocytes where the loss o f plect in resulted i n larger keratin meshwork 

and accelerated disassembly o f the keratin network in okadaic acid-treated cells 

(Osmanagic-Myerร et al, 2006). Another p lak in fami ly member, epip lakin, has also been 

recently impl icated i n organisation o f intermediate filament networks. Knock -down o f 

epiplakin in simple epithel ial cells resulted in disrupt ion o f kerat in and v iment in networks 

(Jang et ű/.， 2005). U p o n cellular stress in pr imary keratinocytes epip lak in is translocated to 

the kerat in intermediate f i laments and protects the kerat in network from rapid dissociation 

(Spazierer et α ί , 2008). To summarise 5 SİRNA experiments indicate that epiplakin is 

required for the maintenance o f kerat in network i n simple epithel ia and pr imary 
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keratinocytes, whereas periplatón is involved in kerat in bund l ing at the epithelial wound 

edge. The respective domain organisation o f per ip lakin and epiplakin supports this idea. 

Per iplakin N-terminus comprises a typical 'p lak in box ' that can target the protein to 

cellular junct ions and other membrane locations (Ruhrberg & Watt , 1997; DiColandrea et 

α/.， 2000). Ep ip lak in , on the contrary, on ly contains a long array o f IF-b inding repeats 

(Fuj iwara et a l . ? 2001). Despite this, it is notable that epip lak in nu l l animals (Goto et al., 

2006; Spazierer et al, 2006) as we l l as per ip lakin and envoplak in knock-out mice (Aho et 

al. 1, 2004; Määttä et αΙ.„ 2001) are viable Avithout any major defects in epidermal 

d i f ferent iat ion 5 even though epiplakin deficient mice appear to have problems in 

keratinocyte migrat ion and wound healing (Goto et ai, 2006). 

I t should also be noted that the kerat in cytoskeleton affects subcellular localisation 

o f p lak in cyto l inker proteins as demonstrated in M C F - 7 cells where ablat ion o f keratin 8 by 

transient SİRNA transfections prevented localisation o f per ip lak in and desmoplakin at cel l 

borders (Long et α/ .， 2006). L ikewise, plect in local isation is altered in keratin 8 nul l 

hepatocytes (Galameau et al, 2007). 

Associat ion o f transiently expressed plect in domains w i t h simple epithelial keratins 

in cultured cells (Wiche et aL, 1993; N i ko l i c et al, 1996) indicated that plect in is involved 

in both the s t r u c t ^ a l organisation o f the peripheral cytokerat in bundles and their 

association w i t h the submembrane cytoskeleton. I t is also k n o w n that per iplakin is localised 

at the desmosomal junct ions and associated to intermediate filaments. Therefore it is 

tempt ing to speculate that the downregulat ion o f plect in and per ip lakin weaken the 

intermediate f i lament desmosome complexes and change the shape o f the cytokerat in 

network. 
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CHAPTER V 

ROLE OF PLAKIN PROTEINS AND KERATIN 8 IN 

EPITHELIAL MIGRATION 



5.1 I n t r o d u c t i o n 

In the previous chapter the role o f per ip lak in and plect in i n kerat in intermediate 

f i lament organisat ion was studied. This led to an invest igat ion o f their role in cel l 

migrat ion. Ce l l migrat ion is important for many bio logical processes. I t is essentially a 

physical process, wh i ch is regulated by a complex network o f biochemical signal l ing and 

feedback pathways. I n the early stages o f animal embryo development, the format ion o f 

the three fundamental germ layers is achieved through the coordinated cel l movements o f 

gastrulation. I n the adult, key cells in the immune response circulate i n the blood unt i l they 

are tr iggered to leave (migrate) upon detection o f a pathogen. 

In col lect ive migrat ion 9 cells maintain their cel l -cel l comect ions i n order to move 

as a coherent sheet. Du r i ng embryonic development, this common mechanism appears to 

be responsible for several processes. For example, epithel ial dorsal hole closure in 

Drosophila^ ventral closure o f hypodermis in c. elegans embryos and eyel id closure o f 

mammal ian embryos (Mar t i n & Parkhurst, 2004; Fr iedl et al, 2004) involve col lective 

epithelial migrat ion. Despite the importance o f this process, w i t h many examples o f mu l t i -

cel l migrat ion, the mechanisms contro l l ing and regulat ing this behaviour remains poor ly 

understood. 

When a wound disrupts the cont inui ty o f an epithel ial sheet5 i t is cr i t ical for the 

organism to be able to heal that breach. T w o main mechanisms o f epithel ial wound healing 

have been described (Jacinto et al., 2002). The first method is the so called "purse-str ing" 

mechanism. Here 5 closure is achieved through contract ion o f an actin and myos in enriched 

cable that runs along the leading edge o f al l marginal cells around the wound perimeter 

(Mar t in & Lewis， 1992). I n contrast to this purse-string mechamsm seen in embryonic 

closures, sk in wounds in adults close by active migrat ion o f cells into the wounded area 

(Mar t in 3 1997). This is by an acquired mot i l i ty o f the border cel l and involves protrusions 

o f filopodia and r u f f l m g lamellae seen at the leading edge, wh i le the cells crawl 

col lect ively onto the new surface. This method appears to be used in most in vitro 

investigations o f wound closure. However 5 whi le there are sometimes actin cables running 

along the who le or a part o f the adult wound edge, the cables may not be necessary for 

wounds to close at their normal rates. I t is possible that they may contribute to the 
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maintenance o f an even wound front (Fenteany et ai, 2000). I t has also been shown that, at 

least in cul tured intestinal epithelial cells, the method o f closure can depend on the size o f 

the wound (Bement et al, 1993). Small wounds close by the purse-string mechanism 5 large 

wounds close by cel l c rawl ing and intermediate wounds close by the combinat ion o f the 

two. Despite recent advances in the understanding o f how act in dynamics are regulated, 

there are several important unknown aspects in col lect ive migrat ion. For example, i t is not 

yet fu l l y understood h o w sheet migrat ion is coordinated wh i le the intact epithelial nature o f 

the wound edge is maintained. 

Several independent รณdies have indicated a role for kerat in intermediate filaments 

in moderat ing cel l migrat ion. Simple epithel ial , ' so f t ' keratins have been impl icated in cel l 

migrat ion and invasion. F or example, expression o f K 8 and K 1 8 in v iment in-posi t ive 

mouse L f ibroblasts and i n human melanoma cells has been found to increase the invasion 

o f transfected cells through matrigel-coated filters (Chu et aL, 1993; Chu et al, 1996). 

Perinuclear re-organisation o f the kerat in 8/18 network by sphingosylphosphorylchol ine 

increases cel lular elasticity and abi l i ty to migrate through l imited-sized pores (Be i l et al, 

2003). A study by Brock et al. (1996) showed no dif ference in embryonic wound healing 

between kerat in 8 nu l l and control ammałs. The study d id , however, reveal that embryonic 

wounds assemble a kerat in cable at wound edges in addi t ion to the act in "purse-str ing" 

cable (Brock et al, 1996). Nevertheless, the studies on simple epithel ial keratins have not 

fu l l y addressed the role o f intermediate f i lament networks in the col lect ive migrat ion o f 

simple epithel ial sheets. 

Other studies addressing the role o f plakinร in cel l mo t i l i t y have shown that they 

mediate profound effects on cel l migrat ion. BPAG-1 knockout mice show a wound-heal ing 

defect (Guo et al, 1995) due to reduced cel l migrat ion. Plect in к о fibroblasts display 

defects in their ab i l i ty to reorganize actin microf i laments after act ivat ion o f rac/rho/cdc42 

signal l ing cascades5 wh i ch results in reduced mot i l i t y o f p lect in deficient cells (Andra et 

al., 1998). M o r e recently 3 generation o f isoform-specif ic knock-outs for plect in have 

demonstrated h o w plectin-* 1 is involved in migrat ion o f fibroblasts and Т- lymphocytes and 

is required for ef f ic ient leukocyte inf i l t rat ion to wounds (Abrahamsberg et al, 2005). I n 

addi t ion, another p lak in protein 5 epiplakin 5 has also been proposed to regulate the speed o f 
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wound heal ing. Ep ip lak in nu l l mice had no apparent phenotypic abnormalit ies, but the 

closure o f experimental wounds on their back was sl ight ly accelerated compared to w i l d -

type animals (Goto et al, 2005). Thus 3 understanding the role o f cytol inkers in cel l 

migrat ion could lead to new insights into the complex regulat ion o f epithelial wound 

healing processes. 

This chapter presents the results obtained when the M C F - 7 C-PPL cel l l ine was 

used to investigate the effect o f per ip lak in l inker domain overexpression i n wound heal ing. 

Dur ing this study, a scratch wound assay was used as a tool to measure wound closure in 

epithelial cells. Many aspects o f the migratory behaviour o f cells can be conveniently 

studied by this classic scratch-wound assay. I n this model 5 cells are g rown on a f lat surface 

unt i l they f o r m a conf luent monolayer. A strip o f cells is then mechanical ly removed using 

a pipette t ip and the closure o f this open space is observed ( F i gu re 2,1). Norma l l y 5 cells 

respond w i t h cel l spreading and migrat ion into the denuded area unt i l the wound is closed. 

The w id th o f the wound is measured at regular t imeponts 5 a l l ow ing comparison between 

dif ferent treatments. I n addi t ion 5 the progression o f the remain ing cells dur ing healing o f 

the wound can be easily observed by microscopy for di f ferent durations, ranging from 

hours to several days. I n general, most cel l types, for example epithel ial cells 5 behave 

s imi lar ly and, characteristically, enter a lag phase (usual ly lasting a few hours) after 

wound ing , f o l l owed by a steady healing process at an approximately constant rate. 

In addi t ion 5 the effect o f downregulat ion o f endogenous per ip lak in and plect in by 

SİRNA transfect ion was investigated by the scratch wound assay in order to elucidate their 

funct ion in cell migrat ion. This chapter w i l l end w i t h data f r om HeLa and Panc-1 cells 

wh ich extends previously published work suggesting that the kerat in 8 intermediate 

f i lament network is essential for epithelial integri ty in M C F - 7 cells (Long et al 11 2006). 
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5.2 Results 

5.2· 1 Ce l l v i a b i l i t y is not af fected by e i ther p e r i p l a k i n o r k e r a t i n 8 SÍRNA 

t ransfect ions 

To ensure that any effects on epithelial wound closure are not due to increased cel l 

death survival after per ip lak in or kerat in 8 down-regฟat ion, cel l surv ival was analysed 48Һ 

after transfection. I n comparison to control transfected or untransfected cells, both 

per ip lak in and kerat in 8 SİRNA transfected cells showed simi lar, only sl ight ly lower 

number o f v iable cells ( F i gu re 5,1). Overa l l , cel l v iab i l i t y d id not change more than 5% 

compared to the scrambled control after per ip lakin or kerat in 8 knock-down in these cells. 

Since per ip lak in SİRN A transfection o f cells had no effect on the integri ty o f the monolayer 

either, i t can be concluded that the consequence o f keratin 8 downregulat ion, described 

below, were not due to cel l death. 

5.2.2 P e r i p l a k i n l i n k e r d o m a i n delays w o u n d c losure i n M C F - 7 cells 

Wound closure o f the stable cel l l ine overexpressing the conserved l inker domain o f 

per ip lakin was, investigated in comparison to the empty vector transfected control cel l l ine. 

Compared to the control cel l l ine, cells expressing per ip lak in С-terminus showed a 

consistent delay in wound closure. Control transfected cells migrated into the empty 

wound space to heal the wound in 8 hours, whereas the per ip lak in l inker domain 

expressing wounds remained largely open at the same t ime point (F igu re 5.2 A ) . 

Quantitat ive analysis o f the wound closure is shown i n F i g u r e 5.2 B. A f te r 8 hours 5 when 

about 4 0 % o f the contro l wound w id th remained open, the M C F - 7 PPL-C wounds had only 

just started to close and remained st i l l open after 24 hours (F igu re 5.2 B ) . The slower 

migrat ion o f the epithel ial sheets in the case o f M C F - 7 C-PPL cells corresponds to 

abnormal organizat ion o f kerat in filaments at the wound edge wh ich was demonstrated in 

chapter I V . Thus 5 the overexpression o f the per iplakin-C domain caused collapse o f keratin 

intermediate filaments and impaired the normal rate o f wound closure. 
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Fieure 5.1: Celí survival after SİRNA transfectwns. 

The number of cells were measured using CellTiter cell proliferation kit. (Promega). 

Mean and standard deviation of the three measurements are shown (absorbance units 

at 490 nm). Cells without transfection shown in the first column under the name of 

Untr., control (Ctrl) transfected cells shown in the second column, whilst PPL and 

KRT8 refers to periplakin and keratin SİRNA transfected cells, respectively. 
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Figure 5.2: Wound closure in control andPPL-C cell lines. 

A. Confluent MCF-7 C-PPL monolayers were grown in 6-well plates and wounded using 

20 μΐ (white) pipette tips. The wound closure was monitored by phase confasi microscopy 

at 15 minutes, 8 hours and 24 hours time points (scale bar equals 100 μτη). β· 

Quantification of the wound closure in empty vector and PPL-C terminus transfected cell 

clones. For each wound1 the width of the 15 minute time point was designated as 100% 

width and subsequent time points in the graph show the mean relative width of the open 

wound (ท=10). Error bars show standard deviation. As the experiment reached the 24 һ 

time point, the control wounds were closed 
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5.2.3 In vitro w o u n d c losure is i m p a i r e d by р е г і р і а ю п S İRNA t rans fec t ion i n ep i the l ia l 

M C F - 7 and H e L a cells 

To investigate the effect o f рег ір іаюп deplet ion on epithel ial migrat ion 5 epithelial 

sheets transfected w i t h per ip lakin or control SİRNA were subjected to scratch wounding. 

Conf luent monolayers were wounded in tr ipl icate and the wound closure was momtored 

using phase contrast imaging at the same area o f the wound at 30 minutes, 10 hours, 20 

hours and 40 hours unt i l complete closure. 

Delayed wound closure was seen in M C F - 7 cells so that even 20 hours after 

wound ing 3 per ip lak in SİRNA transfected scratch wounds remained open (F igure 5.3 A ) 

when compared to contro l transfeeted cells. To ensure that changes in the cell migrat ion 

were not unique to the M C F - 7 cell l ine, the same experiment was repeated using di f ferent 

epithelial cel l l ines. Simi lar results were found when compar ing the migratory changes in 

per ip lakin ablated H e L a cells and M C F - 7 cells. Bo th cel l lines showed decreased cel l 

migrat ion result ing i n unhealed wounds (F igu re 5.4 A ) . These data indicate that regulation 

o f wound closure is a funct ion o f per ip lakin regardless o f the epithel ial cel l type. 

Quant i f icat ion o f the wound closure is displayed i n F igures 5.3 в and 5.4 B, where bars 

represent mean values and standard deviat ion o f three ind iv idua l measurements. 

The per ip lak in ablated พ o m d s displayed uneven migrat ion characterized by 

irregular wound edges that nevertheless retained cel l -cel l contacts between the wound edge 

cells. Thus 5 i t is possible that periplakin-dependent kerat in bundl ing participates in the 

maintenance o f co-coordinated migrat ion o f wound edge cells. The reduced cel l migrat ion 

in both cases demonstrates the importance o f periplatón in wound heal ing. 
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Figure ร. 3: Wound migration properties of periplakin depleted MCF- 7 cells. 

A. Phase contrast microscopy images of scratch wound closure of control and periplakin 

siRNA transfected MCF-7 monolayers (Scale bars equals ΙΟΟμηι). в. Quantification of the 

wound closure in MCF-7 cells. Open wound distances at the start of the experiment were 

designated as 100% and closure of the wounds are shown as a function of that. The width 

of the wounds at 20 hours time poini were determined using photomicrographic images 

and displayed as the percentage of the remaining wound width compared to the width at 

Oh time point. Mean and standard deviation of the measurements from three independent 

transfections are shown. 
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Figure 5.4: Effect of periplakin downregulation on wound healing in HeLa cells. 

A. Phase contrast microscopy images of scratch wound closure of control transfected and 

periplakin SÌRNA transfected HeLa monolayers (Scale bars equals 100բա), в. The graphs 

show the mean value and standard deviation of the wound closure in HeLa cells at 20 

hours time point. Quantitative analysis of three independent transfections is indicated. The 

widths of the open wound at the start of the experiment were designated as 100% and 

closure of the wounds are shown as a խոշէւօո of that. The width of the wounds at 20 hours 

time point were determined using photomicrographic images and displayed as the 

percentage of the remaining wound width compared to the width at Oh time point 
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5.2.4 Dep le t ion o f e i ther p e r i p l a k i n o r p lec t in i m p a i r s M C F - 7 w o u n d closure i n a 

s im i l a r m a n n e r 

M y earlier observations o f disorganized keratin intermediate f i laments at the wound 

edge f o l l ow ing per ip lak in SİRNA knockdown were associated w i t h a reduction in the rate 

o f normal cel l migrat ion in simple epithelia. Furthermore, since the co-

immunoprecip i ta t ion experiments had revealed a l i nk between per ip lak in and plect in, the 

effect o f single and simultaneous protein downregulat ion was studied in M C F - 7 cells. I n 

these wound heal ing experiments 5 a higher density (50-60%) o f cells is needed i n order to 

fo rm a monolayer at the 72 hour t imepoint. A s this migh t affect the ef f ic iency o f SİRNA 

knock-down I first investigated the expression level o f per ip lak in and plect in after the 

transfections by immunob lo t t ing and immunocytochemistry. F i g u r e 5,5 shows the amount 

o f the expressed proteins after transfections. Bo th single and double SİRNA transfections 

resulted i n a successfii l downregulat ion o f periplatón and plect in expression (F igu re 5.5). 

Tripl icate samples o f confluent M C F - 7 epithel ial sheets were thereafter subjected to 

scratch wound ing and wound closure was moni tored at 7 hours and 24 hours t imeponts. 

Compar ing the control untransfected and control transfected epithelial wounds to 

per ip lakin and p lec t in SİRNA transfected wounds, i t is clear that the lack o f p lect in 5 just as 

the lack o f per ip lak in 5 slows down the cel l migrat ion. Contro l wounds were closed 24 

hours after wound ing , wh i le single transfected epithel ial scratches remained invariably 

open (F igu re 5.6), w h i c h was conf i rmed by measuring the open wounds in al l three 

independent cases. The result shows that the closure o f the cyto l inker ablated wounds were 

delayed at 7 hours t imepoint and str ik ingly impaired at 24 hours t imepoint , when both 

control wounds had closed completely ( F i gu re 5,6), Furthermore 3 epithelial wounds 

lacking in both per ip lakin and plectin cytol inker demonstrated even greater delays in cel l 

migrat ion 3 leaving a w ider gap between the two epithelial faces (F igu re 5.6). 
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Figure 5.5: Verification of effective periplakin and plectin downregulation in 

wound healing experiments. 

A. Western blot analysis indicating successful knock down effect in both single and 

double s і RNA transfected cells. Actin blot shows equal loading of the total protein in 

each lane. Ä . Immunofluorescence staining ofperiplakin (red) and plectin (green) in 

plectin SİRNA (top row) and periplakin s і RNA (bottom row) transfected cell (scale 

bars equal 20 μιฑ). 



Initial wound บทtr. Control 

PPLsiRNA Plec SÍRNA PPL/Plec SÍRNA 

Figure 5.6; Phase contrast microscopy images showing that epithelial migration is 

impaired by ablation of perìplakin or plectìn. 

Images showing representative initial wound at 0 hours time point1 closed control wounds 

(บทtK 1 Contr) and open cytolinker ablated wounds (PPL siRNAy Plec siRNAy PPL/Plec 

siRNA) at 24 hour timepoint (wound edges are indicated by white lines). Illustrative images 

were taken at 1 ox magnification. 
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5.2.5 A b l a t i o n o f k e r a t i n 8 shows d i s rup ted desmosomes i n H e L a and Pane - I cel l l ines 

Kerat in 8 intermediate f i lament downregulat ion by SİRNA transfection resulted in 

reduced cel l -cel l contacts, leading to disrupted M C F - 7 epithel ial sheets (Long et al, 2006). 

I t is possible that this could be due to the fai lure o f cells to create and maintain ce l l -ce l l 

junct ions in the absence o f keratin intermediate network. Hence, this could suggest that the 

cohesive nature o f the epithelial sheet migrat ion o f M C F - 7 cells is regulated by the 

cytokerat in 8 network. 

To further investigate whether keratin intermediate filaments are required for the 

format ion and maintenance o f desmosomes in other epithelial cell l ines, K 8 expression in 

HeLa and Panc-1 cells was downregulated and the expression and subcellular localisation 

o f desmoplakin was investigated. I t should be noted that both HeLa and Panc-1 cells, 

unl ike M C F - 7 cel ls 5 are v iment in posit ive cells (F igu re 5.7). ImmunoblOtting o f total cel l 

extracts f r o m the epithel ial cel l l ines mentioned above a l lowed ident i f icat ion o f the 

expressed intermediate filament proteins compared to M C F - 7 cells. Kerat in 8 and 18 were 

or ig inal ly used as a loading control 5 but i t has to be noted that the di f ferent cel l lines have 

slight differences in kerat in expression. M C F - 7 cells expressed no v iment in and showed 

Mgher amount o f kerat in 8/18 and desmoplakin compared to Panc-1 and HeLa cells 5 where 

both v iment in and kerat in intermediate filaments were expressed simultaneously. 

Kera t in 8 SİRNA transfection was applied to both H e L a and Panc-1 cel l l ines. A f te r 

transfection, who le cel l total protein extracts were loaded on a 4 - 1 2 % Nu-Page Bis-Tr is 

pre-cast gradient gel i n order to ver i fy the knock-down ef f ic iency. The B C A protein assay 

(section 2.7,2) was used to quant i fy protein levels pr ior to loading o f the gel. Equal loading 

was further conf i rmed visual ly by staining o f the filters w i t h Ponceau s , wh i ch stains al l 

proteins red. Immunob lo t t ing conf i rmed the successful downregulat ion o f K 8 expression. 

The same level o f kerat in 8 downregulat ion as in M C F - 7 cells was observed in both Panc-1 

and HeLa cells ( F i gu re 5.7). 
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Figure 5.7: Expression of cytoskeletalproteins in MCF-7 cells in comparison to Panc-1 

and HeLa cell lines. 

A. Immunoblot analysis of three different epithelial cell lines. 20 / / g of total cell extracts 

were immunoblotted with vimeหtin (3052, 1:2000 dilution), desmoplakin (AHP320, 1:100 

dilution, Serotec) and cytokeratin 8/18 (Ab-2t 1:1000 dilution, Oncogene) antibodies. 

MCF-7 cells are vimentin negative cells, which is in contrast to HeLa and Рапс-l cell lines 

where vimentin is expressed. CytoL·ratins 8 and 18 and desmoplakin are expressed in all 

three cell clones showing highest expression in MCF-7 cells. B, & с. Keratin 8 

downregulation in HeLa and Рапс-l ceil line. Vimentin immunoblot was used as a loading 

control The graphs show the mean expression level and standard deviation of three 

independent experiments (p>0.05). 
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Fo l l ow ing transfection, cells were al lowed to establish junct iona l complexes before 

scratch wound ing o f the monolayer. Indirect immunofluorescence and confocal 

microscopy conf i rmed that keratin 8 expression was un i fo rm ly dovraregulated in scratch-

wound migra t ion experiments o f both HeLa and Panc-1 cells. Cont ro l SİRNA transfected 

HeLa cells developed desmosome contacts w i t h neighbour ing cel ls 3 showing punctuate 

desmoplakin staining at cel l borders w i t h kerat in 8 intermediate filaments expanding f rom 

the cytoskeleton to the desmosomes (demonstrated in F i g u r e 5.8 A ) . However, SİRNA 

knockdown o f kerat in 8 intermediate filament abolished cel l-border local ization o f 

desmoplakin to a large extent (F igu re 5.8 B)， the cells showing evenly distributed 

desmoplakin staining throughout the cytoplasm. Cells in the control transfected HeLa 

monolayers were immmo labe l l ed for desmoplakin and counted 30 minutes after scratch 

wounding. N ine ty - f i ve percent o f the control cel l borders (ท=73) retained desmosomal 

local izat ion o f desmoplakin. In contrast in keratin 8 SİRNA transfected monolayers, the 

corresponding percentage was only 6 % (ท=107). Interest ingly, i n a transfection where a 

small island o f H e L a cells had remained untransfected and retained prominent K 8 

expression, punctate desmosomal staining was established on ly between keratin-posit ive 

cells but not between t w o knock-down cells or a knock -down cel l and a keratin posit ive 

cell (F igu re 5.8 c ) . Higher magni f icat ion o f kerat in posit ive cells maintaining 

desmosomal contacts and kerat in negative cells w i t h no cel l-cel l contacts are displayed in 

F igu re 5.8 D. 

The loss o f desmoplakin local izat ion at cel l borders was also observed in Panc- l 

cells transfected w i t h K 8 SİRNA. Punctate desmosomal staining was seen only between K 8 

posit ive cel ls, whereas almost no desmoplatón staining was found at cel l borders o f K 8 

knockdown cells ( F i gu re 5.8 D) . 
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Figure 5.8: The effect of keratin 8 knock-down in HeLa and Panc-1 cells. 

A. Control transfected HeLa monolayers. Red channel shows keratin 8 

immunofluorescence (LE41, 1:2 dilution)1 green channel displays desmoplakin staining 

(AHP320, 1:100 dilution, Ser otec). Β· Keratin 8 and desmoplakin staining in keratin 8 

siRNA transfected cells, c. The image displays an area of the SİRNA transfected HeLa 

monolayer, where a small island of cells have retained their keratin 8 expression next to 

cells with no keratin 8 expression. Note that cells with no keratin 8 expression do not 

display desmoplakin staining at the cell borders. D. Higher magnification of desmoplakin 

(green) staining at HeLa cell borders shows desmosomal staining between heratin positive 

cells in contrast to keratin 8 negative cells (top row). Panc-1 cells (bottom row) 

transfected with keratin 8 SİRNA were stained for keratin 8 (red) and desmoplakin (green). 

The desmoplakin staining at Panc-1 cells shows punctate desmosomal staining between 

K8-positive (red) but not between K8 knock-down cells (scale bars equals 20 μτη for A, B， 

С and 5 μτη for D). 
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I n addi t ion 3 the scratch wound edges o f both cel l lines were irregular after K 8 

SİRNA transfection and frequently contained cells that were attempting to migrate 

ind iv idual ly w i thout any connection to other cells (F igu re 5.9). Notab ly , K 8 knockdown 

increased the wound closure rate due to indiv idual cel l separation in both HeLa and Pane-] 

cel l l ines ( F i gu re 5.9). Wound closure was fo l lowed at t ime points up to 20 hours after 

wound ing , w h i c h conf i rmed this effect o f keratin 8 downregฟat ion . Bo th untransfected 

and control transfected wounds remained open 3 w i t h cells i n the two bordering epithelial 

sheets mainta in ing their cohesion. In contrast, epithel ia lack ing kerat in 8 showed 

indiv idual cells migrat ing into the denuded area wi thout mainta in ing cel l-cel l contacts. 

This observation suggests that the lack o f desmosomes leads to escape o f indiv idual 

keratin-negative cells f r om the wound edge. 
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Figure 5.9: Phase contrast microscopy images of scratch wound closure in keratin 8 

downregulated HeLa and Panc-l monolayers. 

A. Microphotographs showing the wounds at 20 hours time point after wounding in both HeLa and 

Рапс-l cell lines transfected with control or keratin 8 SİRNA oligonucleotides. Note that wounds 

in Рапс-l and HeLa monolayers were wider than in the experiments with MC F-7 cells. Β· 

Quantification of the wound closure. Open wound at 20 hours time point was measured using 

photomicrographs (six measurements were averaged1 each from two transfection for both cell 

lines). 
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5-3 Discussion 

5.3.1 E f fec t o f ab la t i on o f p e r i p l â k i n and p lect in on cell m i g r a t i o n 

The data presented in chapter I V demonstrated that not on ly plect in, but also its co-

immunoprecip i tat ing partner per ip lakin, is l ike ly to be invo lved in the re-orgamzation o f 

the kerat in intermediate f i laments at the wound edge dur ing the course o f wound heal ing. 

In the present chapter, the abi l i ty o f per ip lakin and p lect in in the regulat ion o f cel l 

migrat ion i n s imple epithel ia was studied. In i t ia l ly the effect o f expression o f рег ір іаюп C-

terminus on wound closure was investigated. The clones expressing the per iplakin C-

terminus showed a consistent delay in wound heal ing wh i ch was associated w i t h the 

abnormal organizat ion o f keratin intermediate f i laments at the free wound edges. 

Subsequently 3 the effect o f periplatón ablation in M C F - 7 and H e L a cells was studied. Both 

cell l ines showed identical results, wh ich indicated that the loss o f per iplakin impaired 

wound closure. Therefore 3 the role o f per ip lakin in regulat ing kerat in re-organization and 

epithelia] wound closure is not only evident in M C F - 7 cells but l ike ly to be seen in many 

epithelial cel l l ines. 

I n addi t ion to appearing as part o f the same protein complex, per ip lak in and plect in 

have been shown to regulate the architecture o f the kerat in filament cytoskeleton. To 

investigate their role i n wound closure 5 per ip lak in and p lect in were downregulated by 

SİRNA transfect ion. Lack o f per ip lakin and plect in in simple epithel ia resulted in delayed 

migrat ion compared to controls. Furthermore, epithel ial sheets that had both cytol inker 

proteins s imฟtaneously ablated showed even more impaired m i g r a t i o n suggesting a 

possible co-operat ion between these proteins in M C F - 7 cells. A l though per iplakin knock­

out mice had developed normal ly (Aho et al, 2004) 9 the data presented above suggest that 

per ip lakin ablat ion may lead to decreased cel l migrat ion in s imple epithelia, although the 

effects w i t h i n the embryo may not be evident 3 perhaps because o f funct ional redundancy. 

The consequence o f plect in ablation in cell migrat ion has been รณdied more extensively in 

di f ferent cel l types in vitro. I n keeping w i t h these results 5 cul tured fibroblasts w i t h plect in 

deficiency displayed prominent stress f ibres and increased focal adhesion complexes, 

consequently demonstrat ing decreased cell mot i l i t y (Andra et al.， 1998). Targeted deletion 

o f p lect in 1 iso form, wh i ch is the major plect in iso form expressed in mesenchymal tissues, 
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resulted in reduced recruitment o f leukocytes to the locat ion o f the wound (Abrahamsberg 

et al., 2005). However , loss o f al l plect in isoforms in keratinocytes resulted in larger 

keratin meshwork w i t h fewer kerat in filaments attached to the hemidesmosomes leading to 

increased vu lnerabi l i ty and faster col lect ive migrat ion (Osmanagic-Myerร et al, 2006). 

The opposite effects o f plect in def iciency on cel l migrat ion in di f ferent cel l lines might 

result f rom cel l specif ic expression pattern o f plect in N- terminal splice isoforms. For 

instance 5 p lec t i n - l a is a major isoform expressed in keratinocytes, where the pr imary 

funct ion o f plect in is in the construction o f hemidesmosomes. In contrast, i n f ibroblasts, i t 

is l ike ly that p lect in isoforms have a much more important role in focal adhesion 

complexes and they may also be associated w i t h actin stress f ibres. 

5.3.2 Col lec t ive m i g r a t i o n o f ep i the l ia l sheets 

T o investigate the role o f the intermediate f i lament protein kerat in 8 in epithelial 

cel l migrat ion, H e L a and Panc-1 cells were studied. M y results show that knockdown o f 

kerat in 8 network i n migra t ing epithelia results in a loss o f epithel ial integri ty and affects 

wound closure s imi lar ly to that observed in kerat in 8 downregulated M C F - 7 cells (Long et 

α/., 2006). The role o f keratin in col lective epithel ial migrat ion has previously been 

studied 5 but ma in ly in the context o f epidermal keratinocytes and skin wound healing. 

Studies indicate that gene targeting o f both kerat in 6a and kerat in 6b results in impaired 

wound heal ing in vivo due to increased f ragi l i ty o f mutant keratinocytes (Wong & 

Coulombe, 2003). S imi lar ly to our results in M C F - 7 cells, l o w level o f kerat in 8 expression 

in HeLa and Panc-1 cells appeared to a l low cells to escape from the migrat ing cel l front 

and invade the denuded surface wi thout any col lect ive -movement. Consequently, l iberated 

cells migrated faster than control cells. L ikewise 5 epidermolysis bul losa simplex cell lines 

carrying kerat in 14 mutat ions display faist migrat ion in vivo (Mor ley et al, 2003). Kerat in 

8 ablation resulted in simi lar effect in v iment in negative ( M C F - 7 ) and posit ive (Panc-1, 

HeLa) cells indicat ing that has a role in cell migrat ion regardless o f the presence o f other 

IF proteins. 

238 



I n the l ight o f these f indings i t is possible that the kerat in cytoskeleton could 

regulate the col lect ive mot i l i t y o f epidermal sheets to maintain epithel ial integrity. There is 

an interesting dif ference between the results reported here and the outcome o f embryonic 

wound heal ing i n kerat in 8 deficient mice. When embryonic wound healing was 

investigated in к 8 - / - mice in F V B / N background, no dif ference in the wound closure was 

observed between gene targeted and w i l d type embryos, even when both mesodermal 

contract ion and actual re-epithelial isation were taken separately into account (Brock et al., 

1996). I n spite o f this, Xenopuร embryos depleted o f maternal keratins fa i l to undergo 

normal тофЬо§епе Ї іс tissue movements and have a defect i n epithel ial wound healing 

(Torpey et al, 1992; K l y m k o w s k y et al.， 1992). I t is possible that there are subtle species 

or cel l- type specif ic differences in the requirement for keratins i n epithelial migrat ion. I t is 

also notable that the study by Brock et al. (1996) on ly investigated embryonic wound 

healing in the genetic background that supports the survival o f K 8 - / - embryos. In C57 /BL6 

genetic background K 8 deficiency leads to embryonic !ethality between 12 and 13 days o f 

development 5 apparently due to structural f rag i l i ty o f the foetal l iver (Bar ibaฬէ et ai, 

1993), whereas the same mutat ion in F V B / N background results in viable animals that later 

on develop gastrointestinal hyperplasia and other related problems (Baribaul t et al. 1 1994). 

Adherens junct ions are not the only junct ions that are essential for col lective cell 

migrat ion, as this behaviour is also seen in fibroblasts. These cells can heal scratch พ o m d s 

as a col lect ive sheet wi thout fo rming adherens junct ions in culture (Bindschadler & 

McGra th , 2007). As the adhesiveness o f desmosomes changes dur ing wound healing from 

C a 2 + independent to dependent (Garrod et al, 2005), i t is l i ke ly that they play a major role 

in col lect ive migrat ion. I t remains to be investigated whether the reinforcement o f 

desmosomes to Ca 2 + - independent j m c t i o n s , wh ich is mediated by protein kinase C a 

(Wal l is et al, 2000; Garrod et aí., 2005)， can occur w i thout intermediate filaments. The 

data presented above also supports the concept that intermediate filaments are involved in 

correct subcellular targeting o f desmosomal proteins as SİRNA mediated depletion o f 

keratin 8 resulted in apparent breakdown o f cel l -cel l adhesions and re-distr ibut ion o f 

desmoplakin and per ip lak in f rom cell borders to the cytosol ( Long et α/ · , 2006). Specific 

desmoplakin mutants that either increase or abol ish the association o f desmoplakin w i th 

keratins have been shown to delay incorporat ion o f desmoplakin particles into junct ions 
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(Godsei et al., 2005). L ikewise, desmosomal Cadherins are targeted to cel l membranes in 

particles that are at least part ial ly attached to keratins (Sato et al, 2000). Earl ier studies 

have shown that compromised tissue integri ty can also be achieved by disturbance o f either 

intermediate filament or desmosome anchoring counterparts (Hermieร et al, 1995; Fuchs 

& Cleveland, 1998; M c M i l l a n & ร M m i z u 5 2001). The requirement o f intermediate 

filaments for intercel lular adhesion dur ing epithel ial migrat ion is also supported by the 

work o f Green and co-workers w i th dominant-negative desmoplakin constructs. I n A431 

epithelial cells, the Overexpression of a desmoplakin N"terminal domain that retains 

plakoglobin and p lakoph i l in b inding sites, but lacks the central rod and COOH-doma in 

results in dissociat ion o f epithelial sheets when subjected to mechanical stress (Huen et al, 

2002). The role o f keratins in the maintenance o f desmosomes is also supported by 

f indings o f a careful histological characterisation o f l iver lesions in both K 8 and K18 null 

mice (To ivo la et al, 2001). L ivers o f kerat in ทน11 mice showed large areas that were 

devoid o f both desmoplakin and filamentous actin staining (To ivo la et al, 2001). This is 

supported by the recent f ind ing that kerat in 8 is invo lved in the modulat ion o f desmoplakin 

deposit ion at desmosomes through a phosphoserine dependent process (Loranger et α/., 

2006). 

Together these data suggest that maintaining epithel ial integri ty involves not only 

the presence o f al l desmosomal proteins bu i ld ing up desmosomal junct ions but also i t 

requires intact kerat in cytoskeleton. 
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I n summary, m y results suggest that the cytoskeletal l inker fimction o f per ip lakin, 

a l lows i t to act as an organiser o f intermediate f i lament агсШЇесШге and to regulate cel l 

migrat ion in cooperat ion w i t h plect in. Furthermore, the present study supports the v i ew 

that intermediate filaments can serve a structural role in epithel ial cells by contr ibut ing to 

the maintenance o f the epithelial integrity dur ing col lect ive migrat ion. 
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CHAPTER V I 

G E N E R A L D I S C U S S I O N 



6.1 Imp l i ca t i ons o f c u r r e n t w o r k 

Cyto l inker proteins have been extensively investigated over recent years to 

determine their structure, local ization, regulat ion and funct ion. I n this thesis, I studied the 

funct ion o f per ip lak in through investigation o f its b ind ing partners i n simple epithelial 

cells. The ma in f ind ings were as fo l lows: 

A， In my first result chapter ( I I I ) 5 I investigated the interacting partners o f the 

per ip lakin head domain in the M C F - 7 breast adenocarcinoma cell l ine. I found that 

per ip lakin is able to interact, either direct ly or indirect ly, w i t h another cytol inker protein 3 

plect in. This interact ion occurs not on ly in simple epithel ia, but also in keratinocytes. 

Annex in A 9 is another co- immunoprecipi tat ing partner o f per ip lak in in M C F - 7 cells that 

colocalises w i t h per ip lak in in both simple epithelial cells and in the epidermis. 

B , Secondly, I describe the funct ional relationship between per iplakin and plect in. 

I n chapters I V and V， using SİRNA techniques and scratch wound assays5 I found that 

per ip lakin local isat ion is regulated by plect in in keratinocytes, and that per iplakin and 

plect in together r e b a t e kerat in organization at the wound edge. Moreover, both proteins 

participate in the control o f cel l migrat ion and wound heal ing processes in simple epithelia. 

c， F inal ly , I gathered informat ion on epithelial sheet migrat ion. SİRNA experiments 

revealed that kerat in 8 is essential for epithelia] integri ty, as ablat ion o f kerat in 8 

intermediate f i laments leads to disrupted desmosomes and impaired epithelial sheet 

migrat ion i n several epithel ial cell l ines. 

6.2 P e r i p l a k i n func t ions 

More than 20 years ago, per iplakin was f i rst ident i f ied as a constituent o f the 

corni f ied envelope in terminal ly differentiated keratinocytes (S imon & Green, 1984; M a & 

รนท, 1986). W i t h the a im o f revealing its funct ion, per ip lak in knock-out mice were 
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generated but no apparent phenotype was found ( A h o et ű/.， 2004). Recently, gene 

targeting o f per ip lak in and two other CE proteins, envoplatón and invo lucr in , showed 

defects in the corn i f ied layer inc luding delayed barrier acquisi t ion dur ing embryonic 

development, decreased protease act iv i ty causing excessive accumulat ion o f corn i f ied 

layers dur ing postnatal l i fe and accumฟat ion o f CD3 +, C D 4 + т cells in the skin w i t h a 

decrease in dendrit ic epidermal т cells (DETCs) (Sevi l la et al, 2007). The fact that these 

phenotypes were not observed in single knockout animals (D i j an et al, 2000; Määttä et al, 

2 0 0 1 ; A h o et ai, 2004) supports the idea o f compensatory redundancy o f CE scaffold 

proteins. Thus 5 no single CE protein has been found to be indispensable for barrier 

format ion. 

Per iplakin expression has also been demonstrated i n other tissues w i t h a prominent 

epithelial component inc lud ing pi tui tary, thyro id , salivary and mammary glands (Aho et ՚ 

al.7 1998; Kazerounian et al, 2002). To date, the in i t ia l role o f per ip lakin i n these tissues 

remains elusive. I n this study, I discovered two functions o f per ip lakin in simple epithelial 

cells. The first o f these is periplakin-dependent kerat in I F organisation dur ing wound 

healing i n epithel ial cells. Secondly, per ip lakin forms a protein complex w i t h plect in wh ich 

influences cel l migrat ion processes. 

6.3 Genera l o u t l o o k on ep i the l ia l cel l m i g r a t i o n 

In jury to the surface o f the epithelial monolayers in the gut could occur in many 

ways, inc lud ing infectious col i t is and inf lammatory bowel disease. I n order to re-establish 

epithelial barrier funct ion, the epi thel ium must ef f ic ient ly reseal the mucosal defects. A 

major mechanism by wh ich wound heal ing is achieved involves epithel ial cel l migrat ion 

(Nobes & H a l l 5 1999). Rapid resealing o f the epithelial barrier f o l l ow ing injuries is 

accomplished by a process termed epithelial rest i tut ion, wh ich occurs when epithelial cells 

migrate and spread rapid ly , pr ior to cel l d iv is ion (Fenteany et al, 2000). This is fo l lowed 

by more delayed mechanisms o f epithelial wound heal ing 3 inc lud ing increased epithelial 
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cell pro l i ferat ion and cel l d i f ferent iat ion. The cytoskeletal networks, along w i t h the various 

cytoskeletal associated proteins, are intrmsical ly invo lved i n cel l migrat ion. 

A central event in epithelial wound healing is the reorganization o f the actin 

cytoskeleton 5 f o l l owed by the appearance o f the kerat in cable at the wound edge (Long et 

al, 2006). These kerat in cables have been previously reported at the free wound edge o f 

embryomc tissues, wh ich also showed an actin purse-string (Brock et al, 1996). The results 

presented in էผร thesis demonstrate that two cyto l inker proteins 3 namely per ip lakin and 

plect in, f o rm a protein complex that affects the organization o f the kerat in cytoskeleton and 

regulates cel l migrat ion in simple epithelial cells. The lack o f each p lak in i n isolation 

resฟted in decreased cel l migrat ion, whi le simultaneous ablat ion slowed down the wound 

healing even more. Emerging data suggest that p lak in proteins play roles in signal 

transduction, being large modular proteins, they can interact w i t h a variety o f s ignal l ing 

molecules and have an impact on various signal l ing processes (Sonnenberg & L i em , 2007). 

I t has to be noted that tins involvement in signal l ing processes could be achieved indirect ly, 

v ia their effect on stabi l iz ing the cytoskeleton (Sonnenberg & L i e m , 2007). I demonstrated 

that simultaneous per ip lak in and plect in downregulat ion i n M C F - 7 cells resฝted i n 

alterations in the kerat in cytoskeleton, wh ich migh t lead to downstream modif icat ions i n 

the signal l ing pathways invo lved in epithelial cell migrat ion. Interestingly, i n keratinocytes, 

plect in def ic iency results in an altered keratin network, wh i ch affects E R K 1/2 M A P 

kinases leading to faster in vitro migrat ion (Osmanagic-Myerร et al, 2006). No t only 

plect in and per ip lak in 9 but also other cytol inker proteins, such as B P A G - 1 and epiplakin, 

have been associated w i t h epithelial migrat ion. Loss o f B P A G - 1 in mice disrupted the 

connection o f kerat in IFs to hemidesmosomes and led to reduced cel l migrat ion (Guo et ű/.， 

1995). Ep ip lak in has also been shown to regulate the intermediate f i lament network, as 

epiplakin deplet ion in H e L a cells resulted in a disorganized kerat in and v iment in network 

(Jang et ol., 2005). Տ ս փ ո տ ւ ո £ ] ) / , epip lakin knock-out mice have a s imi lar phenotype to that 

observed in p lect in downregulat ion 5 w i t h accelerated keratinocyte migrat ion (Goto et al, 

2006). Thus, cytol inkers may have an impact on signal l ing processes that regulate cel l 

migrat ion. 
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I n recent years, the term "col lect ive mig ra t ion" has gained use to describe the type 

o f migrat ion in w h i c h cells maintain intercellular junct ions (Fr iedl et al, 2004). Several 

groups have shown previously that the modi f icat ion o f intermediate f i laments or 

intracellular junct ions can alter the cohesiveness o f cel l sheets using dissociation assay 

(Huen et al., 2002; Setzer et αί 5 2004; Y i n et al. 5 2005). In this study, I conf i rmed that the 

loss o f kerat in 8 caused desmosome disrupt ion and led to a disturbance in cohesive 

epithelial sheet migrat ion i n breast carcinoma cells. Understanding col lect ive cel l migrat ion 

is important i n cancer cel l research, as some metastatic cells migrate as a group (Hegerfeldt 

et ál·, 2002) and are able to invade surrounding tissues as mul t icel lu lar aggregates (Friedl & 

Wo l f , 2003). Th is type o f migrat ion has also been observed among colorectal and breast 

tumour cel ls 5 wh i ch can migrate as protruding sheets and tubules connected to the pr imary 

tumour (Nabeshima et al, 2000). 9 0 % o f cancers originate f r om epithel ial tissues and show 

characteristics o f epithel ial to mesenchymal transit ion (Chr is to for i 5 2006)， although recent 

studies suggest that loss o f epithelial morphology is not reqmred for invasion and metastasis 

o f the carc inoma cells (Christiansen & Raj 2006). Pr imary metastatic tissue 

samples taken from patients suffermg f r o m mammary ductal carcinoma, contained t ight 

j unctions 5 adherens j unct ions 5 and desmosomes 5 that were abundantly evident by electron 

microscopy (Ng， 2002). More recently ? alterations i n cel l -cel l adhesion have been shown to 

have a central role in fac i l i ta t ing tumour cell migrat ion (Kartenbeck et al, 2005; Lyons & 

Jones, 2007). 

I n conclusion, understanding the role o f cytol inkers i n the regulat ion o f the kerat in 

intermediate f i lament network, and their inf luence on col lect ive cel l migrat ion, is 

important. Together, these findings might lead to a better understanding o f diseases 

invo lv ing simple epithelial in jury and carcinoma cell migrat ion. 
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6.4 Possible f u t u r e d i rec t ions 

There are several aspects o f this study wh ich mer i t future investigation. 

• To continue the co- immunoprecipi tat ion experiments that revealed per ip lakin and 

plect in protein complexes, it wou ld be o f great interest to investigate the molecular 

interactions o f per ip lak in w i th each alternative N- terminal p lect in isoform, study the 

effect o f these interactions, and map the exact b ind ing sites. 

• SİRNA mediated ablation o f either per ip lakin or p lect in caused disorganization o f 

the cytoskeleton and impairment o f simple epithel ial cel l migrat ion in vitro. W i t h 

the emerging data impl icat ing penp lak in and plect in in various signal transduction 

pathways 3 i t wou ld be interesting to study whether there is any co-operation 

between these proteins in the previously ident i f ied signal l ing funct ions. 

• Iso form specif ic antibodies against plect in isoforms demonstrated that plect in is not 

on ly local ized in the basal layer o f the sk in s but at least t w o isoforms (p lec t i n - I f and 

p lec t i n - I k ) were present and co-localised w i t h per ip lak in in the spinous and 

granular layers as we l l . Studying their specific roles in the assembly o f the 

epidermal barrier wou ld provide a better understanding o f barrier format ion. 

• A n in-depth study o f the funct ion o f kerat in 8 intermediate filaments in desmosome 

format ion and maintenance could be carried out b y invest igat ing other protein 

members o f the desmosome complex f o l l ow ing kerat in 8 deplet ion. This could be 

complemented by phosphorylat ion studies, as desmoplakin deposit ion in 

hepatocytes is dependent on the phosphorylat ion o f kerat in 8 at the Ser24 residue 

(Loranger et α/., 2006). 

• W i t h regard to m y results showing annexin A 9 and periplakin co-

immunoprecip i tat ion, i t wou ld be interesting to show whether this is a direct or 

indirect interact ion by yeast-two-hybrid analyses and/or by carry ing out funct ional 
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studies inc lud ing SİRNA transfections in simple epithel ial cells and keratinocytes. 

Simฟtaneous per ip lak in - annexin A 9 deplet ion could ftuther reveal a ftmctional 

role for these proteins. 

Studies should be continued to investigate whether per ip lak in, plect in and annexin 

A 9 are part o f the same protein complex, as al l three proteins are found to be 

local ized i n the suprabasal layer o f the skin and located at the plasma membrane in 

M C F - 7 cells. 
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