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Material Abstract

Thesis title: ~ Population genetics of Risso’s dolphins (Grampus griseus), Fraser’s
dolphins (Lagenodelphis hosei) and bottlenose dolphins (7ursiops spp.) in the North

Pacific Ocean

Author: Ing Chen

Abstract: Cetaceans are highly mobile mammals, but many species still exhibit
degrees of population structure while inhabiting seemingly boundary-free open waters.
Resource specialisation is hypothesized as one of the main drivers of population
structure. Using multiple diploid and haploid genetic markers, this study reveals, for the
first time, the population genetic structure of Risso’s dolphins, Fraser’s dolphins and
common bottlenose dolphins in the tropical-temperate regions of the western North
Pacific Ocean. For the Risso’s dolphins, the results showed that there are at least three
populations in the North Pacific Ocean, by-and-large parallel to the existing
biogeographic provinces; and the direction of gene flow corresponds with the direction
of the mainstream currents. Mitochondrial DNA (mtDNA) data showed that the Pacific
populations are genetically different from the three populations in the eastern North
Atlantic Ocean and the Mediterranean Sea. For the Fraser’s dolphins, the genetic
differentiation between Japanese and Philippine waters is consistent with the
differentiation suggested in an earlier skull morphometric study. For the common
bottlenose dolphins, the results suggested that there are at least four populations in the
western and central North Pacific Ocean, and the differentiation appears to correspond
to habitat types, resembling the scenario of inshore-offshore differentiation seen in other
populations of the same species in other regions. The analysis also confirmed that there
is no evident gene flow between the two “sister species”, the common bottlenose
dolphin and the Indo-Pacific bottlenose dolphin (7. aduncus), occurring sympatrically
in the region. The mtDNA data suggested that the Risso’s and Fraser’s dolphin
populations in the western North Pacific experienced an episode of expansion in the last
10,000 years. Genetic diversity is high in most of the population examined in this study;
however, a relatively low effective population size is found in some populations and

that may require further conservation attention.
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Chapter 1. Thesis Introduction

Population structure plays an important role in maintaining a species’ genetic diversity
as it buffers selective pressures and prevents large-scale diversity reduction, and
facilitates the development of de novo alleles through local adaptation (Ralph & Coop
2010; Elmer & Meyer 2011). Identifying a species’ population structure is essential for
studying the process of local adaptation and evolution (Kawecki & Ebert 2004), in
addition for developing conservation strategies in natural resource management
(Palsball et al. 2007). The strength of genetic interchange, or gene flow, is one of the
key factors determining the significance of population structure (Hey & Pinho 2012).
The presence of geographic barriers is perhaps the most common and obvious factor
that prevents gene flow and allows genetic differences to accumulate, resulting in
allopatric population structure. In the marine environment, however, such geographic
barriers are usually absent, or at least not well defined. The population structure for
marine species is therefore often attributed to other mechanisms, such as ‘invisible
barriers’ (e.g., the structure of water masses), physical limits for active and/or passive
dispersal, historical vicariant events, and adaptive selection pressure (Palumbi 1994).
Allopatric differentiation plays a role in developing population structure (and
speciation) for cetaceans. Cetacean populations inhabiting different ocean basins,

different hemispheres for species with ‘anti-tropical’ distribution, or different river

14



systems for fresh water species, are generally differentiated (Davies 1963, Rice 1998).

However, in a given ocean basin, hemisphere, or river system, population structure can

still be detected, even though cetacean species are considered highly mobile (e.g.,

Hoelzel et al. 1998a, b; Escorza-Trevino ef al. 2005; Adams & Rosel 2006; Fontaine et

al. 2007; Hollatz et al. 2011). Perrin (1984) suggests there are two major patterns for

small cetacean population divergence: one is between enclosed seas and the open ocean,

and the other is between inshore and offshore waters. Hoelzel (2009) suggests

divergence can be attributed to a reunion of allopatric populations, or a process that

results in assortative mating, such as resource specialisation, or utilising different

breeding grounds. Recent studies further suggest cultural or behavioural differentiation

could also promote population differentiation (Rosel et al. 2009; Rendell et al. 2012;

Cantor & Whitehead 2013).

Determining the cause of population structure can be difficult, because the

mechanisms are not always mutually exclusive. For instance, the evolution of the

sympatric population structure for the transient and resident populations of killer whales

(Orcinus Orca) in the eastern North Pacific Ocean is still under debate. Some studies

suggest that it was the result of a reunion of two allopatrically differentiated populations

(Foote et al. 2011; Morin et al. 2015), while some argue it was due to the high level of

in situ resource specialisation, intense selection and gene drift pressure on the small

populations (Hoelzel et al. 2007; Moura et al. 2014a; Moura et al. 2015). For other
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species, multiple integrated factors including diet specialisation, behaviour

differentiation, and habitat adaptation have been proposed as determining the genetic

divergence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in southwestern

Australian waters (Moller et al. 2007), spinner dolphins (Stenella longirostris) around

Hawaiian archipelagos (Andrews et al. 2010), and Franciscana dolphins (Pontoporia

blainvillei) in the Rio de la Plata estuary, South America (Costa-Urrutia et al. 2012).

Identifying population structure, as well as possible mechanisms that drive

population differentiation, is important for conservation management. For instance, the

impact of climate change, e.g., the rise of sea surface temperature, loss of arctic sea ice,

alternation of ocean circulation, and intensification of El Nifo/Southern Oscillation

events can intensify or remove the barriers, and trigger further threats if the population

is already endangered (Whitehead & Rendell 2004; Fontaine et al. 2007, Gambaiani et

al. 2009; Scheinin ef al. 2011). Population range shifts in recent decades have been

reported for cetacean species off northwest Scotland (MacLeod et al. 2005), and for the

Pacific white-sided dolphins (Lagenorhynchus obliquidens) in southwest Gulf of

California (Salvadeo ef al. 2010). Model simulation studies predict that the changes in

water temperature may affect the distribution ranges of 88% of cetaceans, and marine

mammal richness at lower latitudes will decrease in future decades due to climate

change (MacLeod 2009; Kaschner et al. 2011). A better understanding of current
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population structure will certainly boost the evaluation of climate change impacts on

cetaceans.

Population structure used to be determined according to morphological

differences or distribution gaps (e.g., Perrin 1984; Rice 1998). However, inference

based on genotype and phenotype, or genotype and distribution, can be discordant. Such

discrepancies have been reported, for example, between the morphological characters

and mitochondrial DNA (mtDNA) variation in spinner dolphins in the Eastern Tropical

Pacific (Dizon et al. 1991), between the colour patterns and genotypes in Dall’s

porpoises (Phocoenoides dalli) in the western North Pacific Ocean (Hayano et al.

2003), and between the genotypes and temporal aggregations in short-beaked common

dolphins (Delphinus delphis) in the North Atlantic Ocean (Mirimin et al. 2009; Moura

et al. 2013a). This may occur when phenotypic traits are plastic, leading to a weak

correlation between genetic and phenotypic variation (Mousseau & Roff 1987; Reed &

Frankham 2001; McKay & Latta 2002), or when the phenotypic traits are under strong

selective pressure, resulting in little phenotypic variation among populations (Merila &

Crnokrak 2001; Moritz 2002; Allendorf & Luikart 2006). The discordance between

genotypes and geography can be attributed to seasonal or annual migration between

habitats occupied by the same/different population (e.g., Carvalho et al. 2014), or a

relatively recent segregation event resulting in the lack of sufficient time for lineage

sorting (Avise 1992). Nevertheless, Merila & Crnokrak (2001) examined the data from
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18 independent studies of plants and animals and found that Fsr (the degree of

differentiation in neutral marker loci) and Qst (the degree of differentiation in genes

coding quantitative traits, the genetic basis of phenotypic traits) are highly correlated.

Although using a set of multiple neutral genetic markers is now a favoured method in

assessing population structure (see Moritz 2002; Manel ef al. 2003; Palsbell et al. 2007;

Palstra et al. 2008; Allendorf et al. 2010), morphological characteristics and distribution

breaks may assist the identification of population structure, even though they cannot

fully account for the direction and intensity of gene flow, the key component in

determining population structure.

There are 50 species of cetaceans that can be found in the North Pacific Ocean

(Escorza-Trevifio 2009), and population structure has been identified in many of those

species (Table 1.1). However, some of the inferences are derived from limited genetic

data (e.g., solely from the matrilineal inherited mtDNA markers), small sample size,

and/or restricted sampling range and therefore warrants further examination. Moreover,

most research efforts were spent on the cetaceans in the central and eastern North

Pacific, particularly around the Hawaiian Islands and the western coasts of the North

American Continent, or along the northern limit of the North Pacific. Knowledge about

the population genetic structure for the species inhabiting pantropical western North

Pacific Ocean is limited; such a sampling gap is seen in a number of studies attempting
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to resolve the global phylogeography for some small cetacean species (e.g., Natoli et al.

2006; Amaral et al. 2012; Moura et al. 2013b; Martien et al. 2014).

Population structure of the cetaceans in the coastal regions of the western North

Pacific Ocean, however, deserves particular attention. Morphological studies suggest

that some globally distributed species may have developed a degree of endemism with

distinctive features. For example, the series of distinct morphological features for the

“southern form” short-finned pilot whales (Globicephala macrorhynchus) in Japanese

waters (Kasuya et al. 1988), the distinct colour patterns for the truei type of Dall’s

porpoises found in the coastal waters of western North Pacific (Rice 1998), the

“dwarfism” found in spinner dolphins in Thai waters (Perrin ef al. 1999), and a shorter

body length characterizing Risso’s dolphin (Grampus griseus) in the western North

Pacific Ocean (Amano & Miyazaki 2004; Chen et al. 2011). Distribution gaps have also

been observed in a number of small cetacean species (Miyashita 1993; Morisaka et al.

2005; Shirakihara et al. 2007). However, except that the pattern of distribution clusters

in harbour porpoises (Phocoena phocoena) and Dall’s porpoises is found in agreement

with their population genetic structures (Escorza-Trevifio et al. 2004), and the “southern

form” of short-finned pilot whales has been suggested an evolutionary significant unit

in a global mtDNA data analysis (Oremus et al. 2009), it is unclear whether such

morphological or distribution significances for other species are also genetically

significant.
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Table 1.1. Summary of current knowledge about the population structure of extant

cetaceans inhabiting the North Pacific Ocean. The species list is constituted based on

the table published in Escorza-Treviio (2009), excluding two ambiguous beaked whale

species (Mesoplodon sp. A and sp. B) and further including the newly recognized

baleen whale species, Omura’s whale. The asterisk (*) indicates the species is endemic
to the North Pacific region.

Category Species Genetic Sampling References
method usedl  coverage
No population  Sei whale nuDNA, MS Full Wada & Numachi
structure Balaenoptera borealis 1991
recognized Kanda et al. 2006
Blue whale MS Partial Costa-Urrutia et al.
Balaenoptera musculus 2013
Bryde's whale mtDNA, Partial Wada & Numachi
Balaenoptera brydei nuDNA, MS 1991
Kanda et al. 2007
Indo-Pacific humpback dolphin ~ mtDNA, MS Partial Chen et al. 2010a
Sousa chinensis Lin et al. 2012
Northern right-whale dolphin* mtDNA Partial Dizon et al. 1994
Lissodelphis borealis
Vaquita* mtDNA Full Rosel & Rojas-
Phocoena sinus Bracho 1999
Structure Bowhead whale mtDNA, MS, Full LeDuc et al. 2008
among Balaena mysticetus SNPs Givens et al. 2010
geographic Alter et al. 2012
regions: Morin ef al. 2012a
among discrete  Gray whale* mtDNA, MS Full LeDuc et al. 2002
breeding areas  Eschrichtius robustus Alter et al. 2009
Frasier et al. 2011
D'Intino et al. 2013
Lang et al. 2014
Humpback whale mtDNA, Full Baker et al. 1998,
Megaptera novaeangliae nuDNA, MS 2008
Sperm whale mtDNA, MS,  Partial Lyrholm &
Physeter macrocephalus SNPs Gyllensten 1998
Mensick et al. 2011
Beluga mtDNA, MS Full Meschersky et al.
Delphinapterus leucas 2013
Dall’s porpoise* mtDNA, Full Escorza-Trevifio &
Phocoenoides dalli nuDNA, MS Dizon 2000
Hayano et al. 2003
Structure Indo-Pacific bottlenose dolphin ~ mtDNA Partial Kakuda et al. 2002
among Tursiops aduncus Hayano 2013
geographic Common bottlenose dolphin mtDNA, MS Full Martien et al. 2012
regions: (Hawaiian Islands)
among discrete  Tursiops truncatus
suitable Pantropical spotted dolphin mtDNA, MS Full Courbis et al. 2014
habitats (Hawaiian Islands)
Stenella attenuata
Spinner dolphin (Hawaiian mtDNA, MS Full Andrews et al. 2010
Islands) Stenella longirostris
Killer whale (resident/transient mtDNA, MS, Full Hoelzel et al. 2007
ecotype) SNPs Parsons et al. 2013

Orcinus orca

Moura et al. 2014b

20



Category Species Genetic Sampling References
method usedl  coverage
Harbour porpoise mtDNA, MS Full Chivers et al. 2002
Phocoena phocoena Taguchi et al. 2010
Crossman et al. 2014
Yangtze finless porpoise* mtDNA Full Zheng et al. 2005
Neophocaena phocaenoides
asiaeorientalis
Finless porpoise* (Yellow Sea mtDNA, MS Full Lietal 2011
populations) Neophocaena
phocaenoides
Structure Minke whale mtDNA, Partial Wada & Numachi
among Balaenoptera acutorostrata nuDNA 1991
geographic Pastene ef al. 2007
regions: semi-  Fin whale mtDNA, Full- Wada & Numachi
closed vs. Balaenoptera physalus nuDNA, MS range 1991
open waters Bérubé et al. 2002
Goto 2007
Structure Common bottlenose dolphin mtDNA, MS Partial Segura et al. 2006
among Tursiops truncatus Martien et al. 2012
geographic Lowther-Thieleking
regions: etal 2015
nearshore vs. Spinner dolphin mtDNA, MS Partial Dizon et al. 1991
pelagic waters  Stenella longirostris Andrews et al. 2010
Pacific white-sided dolphin* mtDNA, MS Partial Hayano et al. 2004
Lagenorhynchus obliquidens
Pantropical spotted dolphin mtDNA, MS Partial Yao ef al. 2004
Stenella attenuata Escorza-Trevifio et
al. 2005
Courbis et al. 2014
False killer whale mtDNA, MS Partial Chivers et al. 2007
Pseudorca crassidens Martien et al. 2014
Structure Sperm whale mtDNA Partial Rendell et al. 2012
among cultural  Physeter macrocephalus
clans
Structure Bryde’s whale & pygmy mtDNA, Partial Wada & Numachi
among Bryde's whale nuDNA, MS 1991
sympatric or Balaenoptera brydei & B. edeni Kanda et al. 2007
parapatric Kershaw et al. 2013
morphotypes North Pacific bottlenose whale*  mtDNA, Partial Kitamura et al. 2013
or ecotypes (black & slater-gray forms) nuDNA
Berardius bairdii
Ginkgo-toothed whale (tropical ~ mtDNA, Partial Dalebout et al. 2007
&temperate forms) nuDNA, Y- Dalebout et al. 2014
Mesoplodon ginkgodens & M. cms
hotaula
Short-finned pilot whale mtDNA Partial Oremus et al. 2009
(northern & southern forms) Chen et al. 2014
Globicephala macrorhynchus Van Cise et al. 2016
Short-beaked common dolphin mtDNA, Partial Rosel et al. 1994
& long-beaked common nuDNA Amaral ef al. 2012
dolphin*
Delphinus delphis & D.
capensis
Finless porpoise* mtDNA, MS,  Partial Yang et al. 2002,
Neophocaena phocaenoides SNPs 2008

Wang et al. 2008
Chen et al. 2010b
Juetal 2012
Lietal 2013
Jia et al. 2014
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Category Species Genetic Sampling References
method usedl  coverage
Killer whale (resident, transient ~ mtDNA, MS, Full Hoelzel et al. 1998,
and offshore ecotypes) SNPs 2007
Orcinus orca Morin ef al. 2010
Pilot et al. 2010
Parsons et al. 2013
Moura et al. 2014b
Lack of North Pacific right whale* mtDNA, Partial Rosenbaum et al.
sufficient data  Eubalaena japonica nuDNA 2000
to conclude its Gaines et al. 2005
population Omura's whale mtDNA Partial Sasaki et al. 2006
structure Balaenoptera omurai
Pygmy sperm whale mtDNA Partial Chivers et al. 2005
Kogia breviceps
Dwarf sperm whale mtDNA Partial Chivers et al. 2005
Kogia sima
Cuvier’s beaked whale mtDNA Partial Dalebout et al. 2005
Ziphius cavirostris
Longman’s beaked whale
Indopacetus pacificus
Perrin’s beaked whale* mtDNA Partial Dalebout et al. 2002
Mesoplodon perrini
Pygmy beaked whale* mtDNA Partial Dalebout et al. 2007
Mesoplodon peruvianus
Hubbs’ beaked whale* mtDNA Partial Dalebout et al. 2007
Mesoplodon carlhubbsi
Saber-toothed whale* mtDNA Partial Dalebout et al. 2007
Mesoplodon stejnegeri
Blainville’s beaked whale mtDNA Partial Dalebout et al. 2007

Mesoplodon densirostris

Morin et al. 2012b

Rough-toothed dolphin
Steno bredanensis

Striped dolphin
Stenella coeruleoalba

Fraser’s dolphin
Lagenodelphis hosei

Risso’s dolphin
Grampus griseus

Melon-headed whale
Peponocephala electra

Pygmy killer whale
Feresa attenuata

Irrawaddy dolphin
Orcaella brevirostris

' mtDNA, mitochondrial DNA; nuDNA, nuclear DNA intron; Y-cms, Y-chromosome; MS,

microsatellites; SNPs, single nucleotide polymorphisms.

On the other hand, there is a growing concern for cetacean conservation in the

western North Pacific. Due to the rapid economic development and intensified human

demands on aquatic resources, multiple anthropogenic threats, such as small-scale
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whaling, incidental catches from fisheries, habitat loss/degradation, contaminant

accumulation, acoustic disturbances and recreation abuse, have been proposed as

potential risks to local cetacean fauna in this region (see review in Perrin et al. 2005;

Kasuya 2007, 2011; Robards & Reeves 2011). More than 10,000 individuals,

comprising seven dolphin and one porpoise species, have perished in Japanese waters

every year (Kasuya 2011). A rough estimate of annual cetacean incidental catching rate

in Taiwanese waters is 2,770 dolphins, with about 70% comprised of Risso’s dolphins

and Fraser’s dolphins (Lagenodelphis hosei) (Chou 2006). It is estimated that 2,000

dolphins are bycaught in Philippine fisheries every year and the primary composition is

spinner dolphin, pantropical spotted dolphin, Fraser’s dolphin, bottlenose dolphin,

Risso’s dolphin, and Irrawaddy dolphin (Orcaella brevirostris) (Perrin et al. 2005;

Young & Iudicello 2007). Estimates suggest that there are about 1,700 bottlenose

dolphins and 1,000 spinner dolphins incidentally killed in human fisheries in the central

western Pacific (Young & Iudicello 2007). Moreover, while the popularity of the whale

watching industry grew rapidly in the past few decades, negative interaction with

recreational or transportation vessels also started to emerge (Ng & Leung 2003;

Matsuda et al. 2011; Parsons 2012). These human impacts cannot be properly evaluated

and an effective conservation plan cannot be made without the knowledge of the

cetacean’s population structure, stability and sustainability. However, such information

is still lacking for most of the species in the region (Table 1.1).
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One of the aims of this study was to increase the knowledge of cetacean

population structure and dynamics to enhance the efficiency of conservation

management, and the other was to interpret the significance of biological and

environmental factors in shaping cetacean population structure. This research

investigated the population genetic structure of Risso’s dolphins, Fraser’s dolphins and

bottlenose dolphins in the North Pacific Ocean, with a focus on their population

structure in the western region. Where possible, comparisons were made with

populations of the same species worldwide. These species were chosen because they are

vulnerable to anthropogenic impact in this region (Perrin et al. 2005; Chou 2006;

Kasuya 2011), but their population structure, as well as population size, genetic

diversity, and social structure, were poorly known (Table 1.1; for details, see Chapters

2—4). Moreover, these dolphin species are highly mobile, globally cosmopolitan, and

live sympatrically (or at least parapatrically) in this region, and it was anticipated that

studying these species would ultimately provide further inference about the

evolutionary mechanisms for inter-/intra population structuring in delphinid species.

As earlier studies based on sighting records suggest that some regional

distribution gaps are present for Risso’s and bottlenose dolphins in the North Pacific

Ocean (Leatherwood et al. 1980; Miyashita 1993; Jefferson et al. 2014), and

morphological differentiation is detected in Fraser’s and Risso’s dolphins in the western

part of the Pacific ocean (Perrin et al. 2003; Chen et al. 2011), it would be expected to
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find some degree of population structure for these species, and the differentiation to be

due to oceanographic or resource barriers (i.e., scattered habitat distribution) and

resource specialization (local adaptation). Furthermore, with the genetic data, estimates

were made for the effective population size, migration rate, and the history of

population expansion for each population in each species, to evaluate the dynamics of

the populations and the potential of being affected by human disturbance.

Objectives

The objectives of this study were:

To assess population structure, genetic diversity, effective population size, and

demographic trends of the Risso’s dolphins in the North Pacific Ocean and examine the

contradictory hypotheses derived from earlier studies on the external morphology and

from regional shipboard survey (“there is population structure in the North Pacific”;

Leatherwood et al. 1980; Miyashita 1993; Chen ef al. 2011) and long-term sighting

records (“there is no population structure in the North Pacific”; Jefferson et al. 2014)

(Chapter 2);

To reveal the population genetic structure for the Fraser’s dolphins in the western

North Pacific, particularly to examine the population differentiation between Japan and
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the Philippines that has been proposed in an earlier analysis of skull morphometrics

(Perrin et al. 2003) (Chapter 3);

To study the population structure of bottlenose dolphins in the western North

Pacific with a larger sample size, to confirm there is no gene flow between the two

sympatric sister species (Wang ef al. 1999; Yang et al. 2005) and to examine the

hypothesis that there is no “near-shore” population established along the eastern Asian

coasts due to the presence of Indo-Pacific bottlenose dolphins (Tenzano-Pinto et al.

2009; Oremus et al. 2015) (Chapter 4); and

To review and compare the differences in the pattern of population structure,

genetic diversity and effective population size between and within the species, and to

draw inferences about possible ecological/evolutionary mechanisms, influence of

climate change, and conservation management (Chapter 5).
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Chapter 2. The population structure and dynamics of Risso’s
dolphins (Grampus griseus) in the Northern Hemisphere, with a

focus on the populations in the North Pacific Ocean

Abstract

Cetaceans are highly mobile mammals, but even those species inhabiting seemingly
boundary-free open waters still exhibit degrees of population structure. Habitat/resource
specialisation and fragmented distribution of habitat/resource have been suggested to be
the main processes shaping the population structure of species relying on land-
associated, coastal habitats. Here, it is demonstrated that these factors could also
influence the population structure of species utilising oceanic habitats. By examining
the genetic variation among 19 microsatellite loci in 236 Risso’s dolphin samples
collected from a range of locations in the North Pacific, it was found that there are at
least three Risso’s dolphin populations in the region (K=3 in Geneland analysis;
Fsr=0.009—0.044), and the structure is by-and-large parallel to the biogeographic
provinces, suggesting habitat/resource specialisation. The Migrate and Geneclass2
analyses showed that the direction of gene flow appears to agree with the direction of
the mainstream currents in the North Pacific. Analyses using mitochondrial DNA data

showed that these three populations are genetically different from the populations in the
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eastern North Atlantic Ocean and Mediterranean Sea (Fst=0.024—0.317). The

estimates from mismatch analysis showed, apart from the population occupying the

waters around the Azores and Eastern Tropical Pacific, all populations in the Northern

Hemisphere experienced a period of demographic and spatial population expansion in

the last 10,000 years. An estimation of the effective population size for the three

populations in the North Pacific is presented, although some of the estimates might be

Inaccurate.

Keywords: Risso’s dolphin, Population structure, North Pacific, Oceanic biogeography,

microsatellite DNA, mitochondrial DNA

Introduction

Cetaceans (whales, dolphins and porpoises) are highly mobile mammals that have fully

adapted to live in an aquatic environment. For those species that utilise the open water

environment, there appears to be no physical barrier that would prevent dispersal, and

so panmixia may be expected. However, cryptic population structure has been reported

in a number of species, even when distribution ranges are apparently connected. It has

been suggested that such sympatric or parapatric population structure is a result of a

reunion of allopatrically differentiated populations, and/or assortative mating driven by
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resource specialisation (Hoelzel et al. 2002; Hoelzel 2009). Various examples that

support these hypotheses can be found in earlier studies of the population genetics of

killer whale (Orcinus orca) (Hoelzel et al. 1998a, 2007; Foote et al. 2011; Moura et al.

2014, 2015; Morin et al. 2015) and common bottlenose dolphin (Tursiops truncatus)

(Hoelzel et al. 1998b; Mdller et al. 2007; Rosel et al. 2009; Louis et al. 2014).

Ballance et al. (2006) studied the distribution of several pelagic cetacean species

in the Eastern Tropical Pacific and concluded that the distribution pattern can be greatly

influenced by species-specific ‘distribution-habitat relationships’. These relationships

are proposed to reflect the species’ preference for oceanographic features (such as types

of surface currents or water masses), which is usually associated with the distribution of

the species’ preferred prey, and that in turn is affected by various gradients of physical

features and processes. Therefore, the seemingly boundary-free open water inhabited by

pelagic cetaceans may be partitioned by the unevenness of resource distribution, as the

populations of coastal species are segregated due to the discontinuity of preferred

habitat. This idea is echoed by some pioneering seascape genetics studies for marine

mammals; for instance, Fontaine et al. (2007) found that profound changes in

oceanographic features create barriers that consequently prevent gene flow among the

populations of harbour porpoise (Phocoena phocoena) in European waters; Andrews et

al (2010) suggest that the segregation of the two communities of spinner dolphin

(Stenella longirostris) around the Hawaiian Islands is due to limited resting areas; and
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Amaral et al. (2012) propose that the population structure of short-beaked common

dolphins (Delphinus delphis) is correlated with marine productivity and sea surface

temperature.

The Risso’s dolphin (Grampus griseus) is a moderately small odontocete species

widely distributed in the world’s oceans between 64°N and 46°S, with an apparent

preference for temperate waters (water temperature >10°C) and steep continental shelf-

edge habitats where water depth is about 400—1000m (Baird 2009; Jefferson et al.

2014; Fig. 2.1). This habitat preference reflects an exclusive dependence on cephalopod

prey, which is typically found in the upwelling regions along continental slopes

(Baumgartner 1997; Smith & Whitehead 1999; Olavarria et al. 2001; Frantzis &

Herzing 2002; Azzellino et al. 2008). Several regional populations or stocks have been

proposed according to apparent geographic boundaries or morphological differences.

For instance, Risso’s dolphins in the US waters are assigned to four geographic stocks

for management purposes: the US Atlantic, the Gulf of Mexico, the

California/Oregon/Washington and the Hawaii stocks (Carretta ef al. 2014; Waring et

al. 2014). Risso’s dolphins in the waters around Taiwan and Japan have been suggested

to represent an independent population characterised by having a shorter body length

(Chen et al. 2011). However, such classification of populations/stocks may not always

indicate a demographically independent population, which is an appropriate

management unit for wildlife conservation (Palsbell ef al. 2007). To my knowledge, the
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only genetically assessed population structure for Risso’s dolphins is the populations

between the UK and Mediterranean Sea, and the UK population was found to be

isolated with notably low genetic diversity (Gaspari et al. 2007).

In the North Pacific Ocean, Risso’s dolphins are commonly encountered on both

sides of the ocean (Leatherwood et al. 1980; Miyashita 1993; Forney & Barlow 1998;

Yang et al. 1999; Rosales-Nanduca et al. 2011; Jefferson et al. 2014). Sighting records,

which showed a certain level of geographic clustering, suggest the presence of stock

structure (Leatherwood et al. 1980; Miyashita 1993; Gerrodette et al. 2008; Carretta et

al. 2014). However, Jefferson et al. (2014) argue that many regions in the Pacific Ocean

have yet to be properly surveyed, and “the number of records from the central portion of

the North Pacific Ocean makes it reasonably clear that the species is found continuously

across the North Pacific Ocean basin; there is no evidence of separate western and

eastern Pacific populations (p. 62).” Even so, it is unknown if any of these putative

stocks are demographically independent. Nor is it known if the unified pan-North

Pacific stock has population structure, given that sympatric or parapatric population

structure has been observed in other cetacean species. Since this species is constantly

harvested in a regional dolphin drive fishery (Kasuya 2007), suspected to be negatively

impacted by these regional fisheries (Dolar 1994; Vidal et al. 1994; Perrin et al. 2005;

Chou 2007), and possibly harassed by tourism (Visser et al. 2011), verifying the
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species’ population structure in this region emerges as a critical objective for cetacean

conservation management.

One of the objectives of this study was to test the correspondence between these

apparent demographic stocks and patterns of population genetic structure. The null

hypothesis was there is no population structure for Risso’s dolphins in the North Pacific

Ocean, as Jefferson et al. (2014) suggested. The other objective was to assess the

population dynamics of Risso’s dolphins both at present and in the past, and thus to

provide further key information in support of the effective conservation of this poorly

studied species.
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Figure 2.1.  The global distribution range of the Risso’s dolphin species (inside black
lines). The dots indicate the locations of sighting or capture records of the species in
1950—2012. The figure is published as the Figure 1 in Jefferson et al. (2014), and a
reuse permit for this thesis has been granted by the publisher John Wiley and Sons
under the licence number 3851880562391.
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Material and Methods

Sample collection and genomic DNA extraction

Two hundred and ninety six Risso’s dolphin tissue samples collected from a range of

locations around the North Pacific Ocean were acquired from multiple biological tissue

archives in Taiwan (from National Taiwan University), Japan (from National Museum

of Natural Science and es-Bank at Ehime University) and the United States (from

Southwest Fishery Science Center). The samples were grouped into seven putative

populations according to their sampling locations: Taiwan, East Japan, Sea of Japan, the

Philippines, Central-Northeast Pacific, Oregon-California Coastal and Eastern Tropical

Pacific (Fig. 2.2; Appendix 2.1). Samples from Central-Northeast Pacific, Oregon-

California Coastal and Eastern Tropical Pacific were either biopsied from free-ranging

dolphins or collected from stranded dolphins and incidental catches in fisheries,

whereas those from Taiwan, East Japan and Sea of Japan were chiefly from stranded

dolphins, incidental catches in fisheries, or from a group of dolphins targeted in drive

fishery (c.f. Kim et al. 1996; Amano & Miyazaki 2004). Note that the sample sizes from

the Central-Northeast Pacific and the Philippines were too small for some analyses.

The identity of species and sex of each sample was derived from the archive

records where identification was based on the specimen’s external morphological

characters and made by knowledgeable researchers. However, when in doubt, species
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identity was verified genetically by comparing the sample’s mitochondrial DNA
(mtDNA) control region sequence against the DNA Surveillance reference database
(http://dna-surveillance.fos.auckland.ac.nz; Ross et al. 2003). The samples acquired
from National Museum of Natural Science and Southwest Fishery Science Center were
supplied as titrated DNA reagent; the others were provided as a small portion of skin or
muscle tissue preserved in either 99% ethanol or 20% DMSO solution. For all tissue
samples, their genomic DNA was isolated and purified following a standard proteinase-
K digestion/phenol—chloroform extraction protocol (Sambrook et al. 1989). All
specimens were transported to and examined at the laboratories in University of
Durham (UK) and Kyushu University (Japan), with valid official permits issued by the

authorities of Japan, Taiwan, United States and United Kingdom.
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Figure 2.2. A map showing the sampling locations (solid circle) and the range of each
defined putative populations (as coloured patches). The sample size (n) for each
putative population is indicated in the label box as the n used in microsatellite data

analysis/ the n used in mitochondrial data analysis.
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Microsatellite DNA fragment amplification and genotyping

For microsatellite analyses, 22 microsatellite loci that have been studied and validated

in the same or related species in earlier genetic studies (e.g., Natoli et al. 2004; Gaspari

et al. 2007; Mirimin et al. 2011) were chosen (Table 2.1). The microsatellite fragments

were amplified using a polymerase chain reaction (PCR) method either individually

with GoTaq® Taq DNA polymerase (Promega), or multiplexed with a multiplex PCR

preparation kit (Qiagen). The PCR reagents that contained GoTaq® Taq DNA

polymerase were prepared in a 20uL scale. The temperature cycle included a

denaturation step at 95°C for 120s, followed by 35 cycles of 40s at 94°C, 40s at the best

annealing temperature of the locus (Table 2.1), and 70s at 72°C, and a post-extension at

72°C for 10 min. The reagents using the multiplex PCR kit were prepared in a 10ul

scale, and the PCR cycle included a denaturation step at 95°C for 15 min, followed by

30 cycles of 40 s at 94°C, 90 s at the annealing temperature for the group of loci, and 60

s at 72°C, and a post-extension at 60°C for 30 min. The fragment analysis was

undertaken on an Applied Biosystems 3730 DNA Analyser, and the allele size was

determined by an internal standard marker (Genescan-500 ROX, Applied Biosystems)

visualised in Peak Scanner v.1 (Applied Biosystems). Every locus in each sample was

examined at least twice by the author Ing Chen, and the scores were verified by the

author’s supervisor Rus Hoelzel.
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Table 2.1. The list of used microsatellite markers with optimal annealing temperatures

and fragment size range observed for each locus.

Genbank
Microsatellite Optimal annealing Fragment accession
locus temperature (°C) size range number Reference
AAT44 58 70-90 AF416501 Caldwell ef al. 2002.
EV14 60 132-184 G09079 Valsecchi & Amos 1996.
EV37 53 180-206 G09081
D14 48 106-144 Shinohara et al. 1997.
D22 52 114-138
KWMI1b 49 187 Hoelzel et al. 1998a.
KWM2b 44 167-181
KWMO9b 58 166-198
KWMI12a 55 158-204
TexVet7 50 152 AF004907 Rooney et al. 1999.
MK3 59 139-159 AF237889 Kriitzen et al. 2001.
MKS 59 198-248 AF237890
Dde59 52 306-386 AMO087093 Coughlan et al. 2006.
Dde65 53 184-204 AMO087096
Dde66 52 341-381 AMO087097
Dde69 56 184-220 AMO087098
Dde70 59 105-155 AMO087099
Dde72 58 207-299 AMO087100
Ddeg84 48 144-164 AMO087101
Scoll 56 187-223 AMO087102 Mirimin et al. 2006.
Sco28 50 131-149 AMO087103
Sco55 56 216-228 AMO087105

Mitochondrial DNA sequence amplification

The mtDNA sequences of selected Oregon-California Coastal and Eastern Tropical
Pacific samples were amplified using GoTaq” protocol with a pair of primers designed
to amplify the mtDNA control region sequence in cetaceans, MTCR-F (5’-TTC CCC
GGT CTT GTA AAC C-3’) and MTCR-R (5’-ATT TTC AGT GTC TTG CTT T-3°)
(Hoelzel et al. 1991). The PCR reactions were prepared according to GoTaq” protocol
but converted to a 20uL scale. The PCR cycle included a denaturation step at 95°C for
120s, followed by 35 cycles of 40s at 94°C, 40s at 50°C, and 70s at 72°C, and a post-

extension at 72°C for 10min. The amplified mtDNA fragments were purified using
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QIAquick® PCR Purification Kit (Qiagen) and then sequenced on an Applied
Biosystems 3730 DNA Analyser. The mtDNA sequences for Taiwan, East Japan, Sea
of Japan and Philippine samples were amplified and sequenced in the molecular
ecology laboratory at Kyushu University, using a set of primers tRpro-F.ceta (5’-ACC
ACC AAC ACC CAA AGC TGG AAT-3’) and RCR(mod).ceta (5’-CCA TAG CTG
AGT CGG TGC AAG CCC-3’) (modified by the author’s collaborator Shin Nishida
from Hoelzel ef al. 1998a). The PCR reagent was prepared in a 25uL scale, which
comprised a dose of PCR buffer, 0.2mM of each dNTP, 0.2mg/mL BSA, 0.2mM of
each primer, and 0.625 units TaKaRa”Ex Taq Hot Start Version DNA polymerase
(TaKaRa Bio) and 1puL of DNA sample. The temperature cycle included a denaturation
at 94°C for 60s, followed by 30 cycles of 10s at 98°C, 45s at 60°C, and 45s at 72°C, and
post-extension at 72°C for 60s. The amplified mtDNA fragments were then purified
using USB ExoSAP-IT® Kit (Affymetrix), and sequenced on a CEQ2000XL DNA
Sequencer (Beckman Coulter Inc.). All sequencing results were visualised in FinchTV

(PerkinElmer) and manually corrected using MEGA 5.05 (Tamura et al. 2011).

Microsatellite data configuration
Using samples collected from the same school of dolphins may result in non-random

sampling of closely related individuals (see examples in Amos ef al. 1993; Pilot et al.
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2010; Costa-Urrutia et al. 2012; Kita ef al. 2013). Sampling kin is likely an issue in this

sample because some biopsy and drive fishery samples were likely collected from the

same school of dolphins. The screening procedure applied in Martien et al. (2012) and

Lowther-Thieleking et al. (2015) was used here to identify and remove closely related

kin in the sample. Kingroup v2 (Konovalov ef al. 2004; Konovalov & Heg 2008) was

used to calculate the coefficient of kinship (r) for the sample pairs in the same putative

population and conducted a likelihood ratio test to screen possible parent-offspring or

full-sibling pairs. If the r value in a pair was over 0.4 (Kita ef al. 2013) and the

likelihood ratio test also indicated the pair was a parent-offspring or full-sibling pair,

then one of the samples in the pair would be excluded from further analyses, unless the

samples were collected in a different year or location.

The software Micro-Checker was used to screen for null alleles and scoring

errors (Van Oosterhout ef al. 2004). The jack-knife test implemented in the R package

StrataG was used to screen for samples that are influential to Hardy-Weinberg

equilibrium (Morin et al. 2009). Arlequin 3.5.1 (Excoffier et al. 2005) was used to

calculate the observed heterozygosity (Ho) and expected heterozygosity (He) of each

locus, and to assess any statistically significant deviation in Hardy-Weinberg

equilibrium (HWE) and linkage disequilibrium (LD). Overall deviation, heterozygote

deficiency and heterozygote excess were assessed through the Fisher exact test and

Markov chain method implemented in the same program (Number of steps in Markov
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chain, 1,000,000; number of dememorization steps, 100,000). The significant level for

all tests was set as p<0.05 after Bonferroni correction. FSTAT 2.9.3.2 (Goudet 1995,

2002) was used to determine the allelic richness and inbreeding coefficient (Fis) for

each putative population. Note that the indices associated with Wright’s F-Statistics,

i.e., Ho, Hg, allelic richness and Fis, were only estimated for putative populations with a

sample size larger than 10.

Microsatellite data analysis: population structure

The factorial correspondence analysis (FCA) implemented in Genetix 4.0 (Belkhir et al.

2004) was used to demonstrate the similarity among individuals using the microsatellite

data. Individuals that have similar series of allelic states (e.g., absence, homozygote or

heterozygote) would be clustered in a similar multi-dimensional space. The analysis

was conducted with or without using the population information option (‘sur

population’) to generate different plots for comparison. When the ‘sur population’

option was used, the population information of each individual was referred to the

centre for the individual’s putative population. The result was presented in a two-

dimensional plot using the package graphic available in R 3.1.2 (R Core Team 2014,

http://www.R-project.org).
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STRUCTURE 2.3.4 (Pritchard et al. 2000) was used to estimate the most

probable number of populations (K). The program uses a Bayesian model-based

clustering algorithm to calculate a K that could achieve the minimum HWE and linkage

equilibrium between loci within groups, with or without a priori knowledge of

population information. To estimate the K for the samples, a series of posterior

probability likelihood values, LnP(K), was estimated for each value of K (from 1 to 8),

using an admixture model with correlated allele frequencies (Falush et al. 2003), and

the process was repeated in 10 independent runs. All simulations were conducted under

100,000 burn-in and 1,000,000 repeats. The estimation was undertaken with or without

using sampling location information (the ‘LOCPRIOR’ option in the program). When

the LOCPRIOR option was used, the identity of the putative population for each

individual was taken into account. The best K can be identified as the run with the

highest LnP(K); however, the LnP(K) usually continues to increase when K increases in

natural populations (Pritchard et al. 2000). In this regard, AK, the second order rate of

change of LnP(K) with respect to K, was suggested a better indicator in determining the

highest hierarchical level of K for the samples (Evanno ef al. 2005). The AK was

calculated using a web-based software Structure Harvester

(http://taylor0.biology.ucla.edu/structureHarvester/; Earl et al. 2012), and a graphic

result was optimised using accessory software CLUMPP version 1.1.2 (Jakobsson &

Rosenberg 2007) and Distruct 1.1 (Rosenberg 2004).
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The R package Geneland was also used to assess population structure in a

spatial context (Guillot et al. 2005). This program integrates genotypic (in this case,

microsatellite) and spatial coordinate data and simulates all parameters by Bayesian

inference and Markov chain Monte Carlo (MCMC) simulation, assuming HWE and

linkage equilibrium. The analysis was conducted in two steps (as suggested in Guillot e?

al. 2005): in the first step, the number of clusters (K) was set to vary from 1 to 10

clusters, with 1,000,000 MCMC iterations, 100 thinning, maximum rate of Poisson

process fixed to 236 (the number of samples), uncertainty attached to spatial coordinates

fixed to 100 km, maximum number of nuclei in the Poisson-Voronoi tessellation fixed

to 708. For allelic frequencies setting, the Dirichlet model was used as it has been

demonstrated to perform better than the alternative model (Guillot et al. 2005). In the

second step, the K was fixed to the modal value of K from the 10 runs in the first step,

and then conducted the simulation again with 500,000 MCMC iterations, 100 thinning,

100 repeats and the other parameters remaining the same. The top 10 runs with the

highest mean logarithm of posterior probability (LPP) in the 100 runs were selected for

post-processing. To calculate the posterior probabilities of population membership for

each individual and each pixel of the spatial domain, a burn-in of 100 iterations and a

spatial domain of 290 pixels along the X-axis and 64 along the Y-axis were used. The

consistency of results across these 10 runs was individually checked.
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The level of population differentiation among the putative populations was

evaluated using Analysis of Molecular Variance (AMOVA) and pairwise comparison of

fixation indices, i.e., Fs (Wright 1951) and Rgt (Slatkin 1995). The analysis measures

the variation of allelic frequencies among putative populations and expects further

deviation in more differentiated populations. Since the fixation indices could be less

reliably estimated with small sample size (Balloux & Lugon-Moulin 2002), the

Philippines and Central-Northeast Pacific populations were excluded from this analysis.

In AMOVA, which allows examining the differences for different levels of population

hierarchy, the putative populations were arranged into two groups, the Western North

Pacific (Taiwan, East Japan and Sea of Japan) and the Eastern North Pacific (Oregon-

California Coastal and Eastern Tropical Pacific), to test whether the population

differentiation between two sides of North Pacific Ocean was statistically significant.

Both AMOVA and pairwise comparison of fixation indices were calculated using the

algorithm implemented in Arlequin 3.5.1, with a non-parametric permutation approach

with 10,000 permutations.

To examine whether the population differentiation is a result of isolation-by-

distance, a redundancy analysis (RDA) was conducted to test the significance of the

correlation between genetic distance and geographic distance (Meirmans 2015), using

the R package vegan (Oksanen et al. 2012). The microsatellite data were set as the

matrix of dependent variables and the longitude and latitude of the samples were the
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independent variables. The statistical significance level for the correlation coefficient

was set at p<0.05.

Microsatellite data analysis: population dynamics

The effective population size (N.) and the prevalence of gene flow, i.e., the number of

migrants per generation (N.m), were estimated using maximum likelihood coalescent

methods implemented in MIGRATE 3.6.6 (Beerli & Felsenstein 1999, 2001). The

analysis was conducted using 10 short chains and three long chains, with 20 sampling

increments. Recorded genealogies for short chains were 1,000 and for long chains were

10,000. A 10,000 step burn-in and a heating scheme to allow chains to swap between

four different temperatures (1, 1.5, 3, and 1,000,000) was set as default. For the first run

the start parameters were estimated using an Fsr-based measure (Maynard Smith 1970;

Nei & Feldman 1972), and in the following run the parameters were updated with the

estimates generated from the previous run. The process was repeated five times. The

result was shown as estimates for the N.m, the effective population size times the

mutation rate (N,u) for each population. An approximate N, was calculated as the Nou

divided by a theoretical microsatellite mutation rate, £=0.01—0.02% (Whittaker et al.

2003; Hoelzel et al. 2007; Hollatz et al. 2011).
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To determine whether there was any recent immigration, GeneClass2 was used

to search for potential first generation migrants (Piry et al. 2004). The program utilizes

multilocus genotype data to compute the distribution of genotype likelihoods in a

reference population sample with three types of genetic assignment criteria (distance

criteria, frequency criteria and Bayesian criteria), and then compares the likelihood

computed for the to-be-assigned individual to that distribution. To estimate the

probability that an individual was a first generation immigrant, the likelihood was

computed using the algorithm described in Paetkau et al. (2004), with a frequencies-

based method (Paetkau et al. 1995). The probability was estimated using MCMC

resampling of 1,000 individuals and the type I error was set to 0.01. The sample from

the Philippines was excluded from this analysis because it was the only sample for the

population and was apparently not sufficient to reflect the genetic structure of the

population.

Sex-biased dispersal was assessed using FSTAT 2.9.3.2 (Goudet et al. 2002).

With the assumption that females are the more philopatric sex, the differences between

the sexes were tested for various statistics, including mean and variance of assignment

indices, Fis, Fsr, relatedness, H,, and within-group gene diversity (Hs) with two-tailed ¢

tests, with 1,000 permutations. Since this analysis is based on fixation indices (i.e.,

Fsr), the estimates were calculated for all putative populations except the Philippines
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and Central-Northeast Pacific as was applied in the AMOVA and pairwise F-Statistics

estimations.

Mitochondrial DNA data configuration

To inspect a broader perspective of Risso’s dolphin population structure, the mtDNA

control region sequences of the North Pacific samples were compared against the

samples collected in the North Atlantic Ocean and Mediterranean Sea. The British and

Mediterranean populations were reconstructed according to Gaspari et al. (2007), using

the 16 mtDNA haplotypes available on GenBank

(http://www.ncbi.nlm.nih.gov/genbank/; accession numbers DQ668035-DQ668050).

The mtDNA data of 35 dolphins biopsied in the waters around the Azores were also

included (Hartman er al. unpublished data). Together with the Risso’s dolphin

sequences obtained in this study, all sequences were aligned using MEGA 5.05 or

MEGA 6 to identify the consensus sequence for further analyses.

The software DnaSP version 5.10 (Librado & Rozas 2009) was used to

determine the number of variable sites, mtDNA haplotypes, gene diversity (h) and

nucleotide diversity () for putative populations with a sample size larger than five. To

visualize the genealogical distance among the mtDNA haplotypes, a median-joining
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network map (Bandelt et al. 1999) was constructed using PopART

(http://popart.otago.ac.nz).

Mitochondrial DNA data analysis: population structure

As applied in the microsatellite analysis, the level of population differentiation among

the putative populations was also evaluated using AMOVA and pairwise comparison of

frequency-based and distance-based fixation indices, Fsr and ®@gr, using Arlequin 3.5.1.

In AMOVA, which allows examining the differences in different level of population

hierarchy, the putative populations were classified into two groups, the North Pacific

(Taiwan, East Japan, Sea of Japan, Oregon-California Coastal and Eastern Tropical

Pacific) and the North Atlantic (British, Mediterranean Sea and Azores), to test whether

the population differentiation between the two major ocean basins in the Northern

Hemisphere was statistically significant. For ®@gr, the Tamura and Nei model (Tamura

& Nei 1993) was used, with a gamma value of 0.326, as it was determined as the best

model for the samples, using the Akaike Information Criterion (AIC) implemented in

the model comparison program jModelTest 2.1.6 (Darriba et al. 2012). The level of

differentiation between putative population pairs was estimated with 10,000 non-

parametric permutations. The statistical significance level was set at p<0.05; Bonferroni

correction was applied in pairwise comparison.
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Mitochondrial DNA data analysis: population dynamics

To test the neutrality of the mtDNA control region sequences, Arlequin 3.5.1 was used

to estimate Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) for each putative

population and to test their statistical significance (i.e., different from zero) by

simulating 10,000 samples. The statistical significance was set as p<0.05 for Tajima’s D

and p<0.02 for Fu’s Fs (Fu 1997). The analysis of mismatch distributions implemented

in the same program was also conducted to examine if any putative Risso’s populations

had ever experienced demographic or spatial expansions (Rogers & Harpending 1992;

Schneider & Excoffier 1999; Excoffier 2004; Ray et al. 2003). The confidence intervals

of the estimates were obtained using 10,000 bootstrap simulations of an instantaneous

expansion under a coalescent framework. The sum of square deviations (SSD) between

the observed and the expected mismatch and the raggedness index (r) of the observed

distribution were calculated and tested to evaluate model fitness (Harpending 1994;

Schneider & Excoffier 1999).

The time of population expansion (T) was calculated for each putative

population using the formula T=7/2u, where 7 is the simulated time of demographic or

spatial expansion (derived from the mismatch analysis), and u is the mutation rate per

generation for the sequence in use (Rogers 1995). The u can be calculated by u=(length
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of the sequence)*(generation time)x(substitution rate; A). [ assumed the generation time
of Risso’s dolphin to be 22 years, as an average of the age at sexual maturity (8—10
years) and the known age of oldest reproductively-active female (34.5 year-old)
(Amano & Miyazaki 2004; Chen et al. 2011). For the A, I used an approximate average
of the mtDNA control region A estimated for multiple animal taxa using ancient DNA

samples, which is 1x10~" substitutions/per site/per year (Ho et al. 2011a).

Results

Data overview and microsatellite data configuration

Genomic DNA was successfully extracted in 280 of the 296 tissue samples acquired
from various sources. For microsatellite analysis, 266 samples were fully genotyped at
22 microsatellite loci, although some samples (n=15) showed a minor level of missing
data (ranged from 1 to 4 loci per sample). The genetic assessment showed one sample
(ID#4694) was a pilot whale. The Kingroup analysis showed there were 40 potential
parent-offspring or full-sibling pairs (r>0.4, p<0.001). Among them, five pairs were
from Oregon-California Coastal, one from Taiwan, one from Sea of Japan and the rest
were from East Japan (Table 2.2). The individuals in pairs G1 and G2 were suspected to
be replicated samples with mislabeled ID, because they had the same microsatellite
profile and mtDNA haplotype. There were a large number of potential parent-offspring

or full-sibling pairs from East Japan. Those were samples collected from a single school
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of dolphins taken in a drive fishery, and the school was regarded as a nursery school,

because it contained a considerable number of females and calves (Amano & Miyazaki

2004). The data of one individual from those putative parent-offspring or full-sibling

pairs was discarded to avoid potential sampling bias toward certain kin groups (as the

measure applied in Martien et al. [2012] and Lowther-Thieleking et al. [2015]). For the

five pairs from Oregon-California Coastal, except the pair G15, no individual was

omitted because they were sampled in different years at different sites, under different

occasions. In G15, one of the samples was discarded, because both samples were

collected in the same biopsy trip at the same site. In short, 30 individuals were

excluded, and there were 236 individuals remained for the following analyses.

In the jack-knife HWE test, 15 samples were identified having a rare allele

homozygote (or heterozygote of two rare alleles) that was influential to the estimates of

HWE. Most of the alleles were associated with the locus Dde69 or D22 (Table 2.3).

Morin et al. (2009) suggested poor genomic DNA quality may result in poor

microsatellite amplification and consequently promote the likelihood of finding a

homozygous rare allele. However, the quality of the genomic DNA appears to be not an

issue in these samples, as there was no major difficulty experienced in amplifying the

loci or scoring the allele sizes with these samples. Since the presence of these rare allele

homozygotes could be natural, these samples were retained for further analyses.
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Table 2.2. Potential parent-offspring pairs in the Risso’s dolphin samples identified by

kinship analysis. The letter following the ID indicates the sex (F, female; M, male; U,

unknown), and the ID in bold with asterisk indicates the sample is discarded in further

analyses.
Parent- Full-

Pair Sample Sampling offspring  sibling
no. ID-1 ID-2 sourcel  Pop year r test, p test, p
Gl 10GgO018(F)*  10Ggl00(F) S SOJ  2004/2003 1 0 0

G2 10Gg003(M)  10Gg087(U)* S EIN  1999/1991 1 0 0

G3  EWOI211(F) EWOI229(F)* DF EIN 1991 0.658 0 0

G4 EWO0I1207(F) EWO0I1227(F)* DF EIN 1991 0.622 0 0

G5  SWwW26642(M) SW88952(M)  S/BI OCC 2002/2009 0.615 O 0

G6  EWO0I1223(F) EWO0I1238(F)* DF EIN 1991 057 0 0

G7 EWO0I215(M) EWOI255(F)* DF EIN 1991 0.552 1 0

G8 EWO01196(F) EWOI218(F)* DF EIN 1991 0.539 1 0

G9 EWO01233(M) EWO0I250(F)* DF EIN 1991 0.537 1 0
G10 EWO01196(F)* EWO01210(M) DF EIN 1991 0.534 1 0
Gl11 EWO01214(M) EWOI216(F)* DF EIN 1991 0.523 0 0
G12 EWOI219(F) EWO04585(F)* DF EIN 1991 0.517 0 0
G13 EWO01205(M) EWOI218(F)* DF EIN 1991 0.511 1 0
Gl14 EWO01221(M) EWOI251(F)* DF EIN 1991 0.505 0 0
G15 SW26306(M) SW26309(F)* BI OCC 2001 0.505 1 0
Gl16 EWO1198(F) EWO0I1232(F)* DF EIN 1991 0.494 1 0
G17 EWO0I1235(F)* EWO01256(F) DF EIN 1991 0475 0 0
G18 EWO01197(F) EWO01246(M)* DF EIN 1991 0474 0 0
G19 EWO0I1257(F) EWO01259(M)* DF EIN 1991 0474 1 0
G20 10Gg090(F)* EWO01204(F) DF EIN 1991 047 1 0
G21 EWO0I1252(F) EWO0I1253(F)* DF EIN 1991 0.467 1 0
G22 EWOI218(F)* EWO01243(M) DF EIN 1991 0.465 1 0
G23  10Gg090(F)* EWO0I1217(F) DF EIN 1991 0463 1 0
G24 EWO01196(F) EWO01205(M)* DF EIN 1991 0462 1 0
G25 10Gg094(F)* EWO0I1212(F) DF EIN 1991 0.458 1 0
G26 EWO0I1220(F) EWO01237(M)* DF EIN 1991 0455 1 0
G27 EWO01195(M) EWOI1208(F)* DF EIN 1991 0453 0 0
G28 EWO0I1224(F) EWO05120(M)* DF EIN 1991 0.447 1 0
G29  724(M) 726(F)* FI TWN 2001 0.445 1 0
G30 10Gg094(F)* EWO01202(F) DF EIN 1991 0442 1 0
G31 EWO01199(M) EWO0I1242(F)* DF EIN 1991 0436 0 0
G32 EWOI216(F)* EWO0I1217(F) DF EIN 1991 0434 1 0
G33 EWOI211(F) EWO01245(M)* DF EIN 1991 042 1 0.001
G34 10Gg091(F) EWO01209(F)* DF EIN 1991 0418 1 0
G35 1291(F) 5001(F) FI OCC 1993/1995 0.413 1 0.004
G36 EWO0I1229(F) EWO01245(M)* DF EIN 1991 0.404 1 0.002
G37 EWOI212(F) EWO0I1235(F)* DF EIN 1991 0.401 1 0.012
G38 EWO0I217(F) EWO01225(M)* DF EIN 1991 0.401 1 0
G39 1291(F) 41842(F) FI/BI OCC 1993/2004 0.401 1 0
G40 26642(M) 32940(F) S OCC 2002/2003 0.4 1 0

' Samplie source: BI, biopsy; DF, drive fishery; FI, fishery interaction; S, stranding.

In the 22 loci microsatellite dataset, the observed heterozygosity ranged from

0.666 to 0.722 for the putative populations (Table 2.4). Two loci, KWMIlb and
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TexVet7, were monomorphic. The locus EV14 showed both null alleles and deviation

from HWE in almost all putative populations (Appendix 2.2). The data of these three

loci were therefore discarded. The observed heterozygosity of D22 in the Taiwan

population and Dde59 in the East Japan population also significantly deviated from

HWE, but it appears to be population specific, therefore the data of these two loci were

retained. No locus was eliminated due to significant LD because no pairwise LD was

consistently detected in every population. Therefore the following analyses were then

conducted using microsatellite data derived from 19 loci (AAT44, D14, D22, Dde59,

Dde65, Dde66, Dde69, Dde70, Dde72, Dde84, EV37, KWM12a, KWM2b, KWMOb,

MK3, MK35, Sco28, Scoll, Sco55) for a total of 236 individuals.

Table 2.3. The individuals and alleles that are influential to the HWE of the samples.

Sample 1D Pop Locus Allele ID Observed/Jack-  Observed/Jack- Odds
(frequency) knife P value knife odds ratio
11694 ETP EV37 206 (0.004) 0.000/0.067 0.000/0.072 Inf
1153 TWN Dde65 190 (0.004) 0.000/0.094 0.000/0.104 518.660
294 TWN MKS 200 (0.006) 0.034/0.871 0.035/6.734 194.280
738 TWN Dde66 349 (0.013) 0.013/0.163 0.013/0.194 14.628
38253 ETP Dde69 196 (0.017) 0.032/0.201 0.033/0.252 7.595
1030 TWN Dde69 208 (0.049) 0.032/0.075 0.033/0.082 2.459
724 TWN Dde69 216 (0.094) 0.032/0.061 0.033/0.065 1.969
10Gg023 EJN Dde69 188 (0.126) 0.032/0.055 0.033/0.058 1.748
EW01240 EJN Dde69  200/208 0.032/0.053 0.033/0.056 1.694
(0.239/0.049)
39083 oCcC MKS 208 (0.530) 0.034/0.052 0.035/0.055 1.589
EWO05119 EJN D22 130 (0.194) 0.036/0.054 0.038/0.057 1.517
908 TWN D22 132 (0.105) 0.036/0.052 0.038/0.055 1.458
61944 oCcC D22 132 (0.105) 0.036/0.052 0.038/0.055 1.446
62 oCcC D22 124 (0.188) 0.036/0.050 0.038/0.053 1.399
EW01226 EJN D22 126 (0.160) 0.036/0.050 0.038/0.053 1.396
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Table 2.4. The averages (=SD) of the number of alleles, expected heterozygosity (Hg),
observed heterozygosity (Ho), allelic richness and inbreeding coefficient (Fis) across the
22 microsatellite loci within each putative population examined in this study. See

Appendix 2.2 for the estimates by locus in each population.

Population n No.ofalleles Hg Ho Allelic richness  Fig

Taiwan 49 9.842+4.682  0.711£0.222 0.688+0.213 1.653+0.296 0.056
East Japan 72 9.789+4.826  0.705+0.222 0.680+0.219 1.645+0.294 0.057
Sea of Japan 12 6.105£2.208  0.698+0.203 0.697+0.243 1.634+0.278 0.015
Central-Northeast Pacific 7  5.333+£2.196  0.743+0.178 0.690+0.221 1.637+0.305 0.089
Eastern Tropical Pacific 22 8.389+£3.712  0.739+0.207 0.722+0.210 1.642+0.321 0.052
Oregon-California coastal 73 9.368+4.573  0.691+0.245 0.666+0.238 1.637+0.310 0.062

Microsatellite data analysis: population structure

When sample coordinates were not referenced back to the population centre, the

resolution of FCA for Risso’s dolphin in the North Pacific was poor: the sum of FC1

and FC2 could only explain about 4% of variances, and no obvious population structure

could be found (Fig. 2.3A). However, when using the population centre reference, the

power of the analysis increased to 52%, and a pattern of three clusters emerged (Fig.

2.3B). One cluster was composed of individuals from East Japan, Sea of Japan, Taiwan

and the Philippines, another cluster consisted of individuals from Oregon-California

Coastal and Central Northeast Pacific, and the other cluster consisted of individuals

from the Eastern Tropical Pacific. The most informative factor (FCI), which

represented 30.8% of the variance in the sample, indicated a difference between the

Oregon-California Coastal/Central Northeast Pacific cluster and the other two clusters.

The Eastern Tropical Pacific was isolated by the second most informative factor, FC2
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(21.1%), and its level of overlapping with the other two major clusters was the most

constrained.

A similar pattern of results was found in STRUCTURE analysis. When the

LOCPRIOR option was not used, although the Evanno’s AK suggested the most likely

number of populations (K) was 2, the best estimate is K=1 according to the estimate of

mean LnP(K) and the graphic output (Table 2.5, Fig. 2.4A). When the LOCPRIOR

option was used, on the other hand, the Evanno’s AK, LnP(K) value indicated K=2,

while the graphic result showed meaningful structure for K=2 and K=3 (Fig 2.4B, C). In

the K=2 scenario, the individuals from Oregon-California Coastal and Central Northeast

Pacific were assigned to one cluster, and the individuals from Eastern Tropical Pacific,

East Jap