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Abstract 

Better understanding of the interaction between the soil physical properties determining water 

and nitrate availability and the root proliferation and gene expression components of nutrient 

acquisition could contribute to food security, but may have been limited by experimental 

systems.  

A sand rhizotron system was developed to investigate Arabidopsis (Arabidopsis thaliana) root 

responses to altered water and nitrate supply as manipulated by soil physical properties. When 

this system was compared to agar, root disparities were explained by differences in hydraulic 

properties, highlighting the importance of the soil physical component. The sand rhizotron 

system was adopted to quantify root proliferation and gene expression responses to altered 

water and nitrate availability in wild-type and selected mutant seedlings.  

In the sand rhizotron system, primary root length and lateral root density were oppositely 

regulated by water availability, but similarly independent of nitrate supply. The expression of the 

nitrate transporter AtNRT2.1 and the aquaporin AtPIP2.2 was coordinated across all treatments. 

Their concentration-dependent hydraulic regulation was confirmed for AtNRT2.1 by in situ 

imaging of a Green Fluorescent Protein reporter line. AtNAR2.1 and AtNRT2.1 expression 

demonstrated independent responses to water and nitrate availability despite the requirement of 

AtNAR2.1 for AtNRT2.1 uptake function. Root proliferation responses to water availability under 

high (10.0 mM) nitrate were lost in the atnar2.1 mutant and coincided with altered hormone-

associated gene (AtEIN2, AtABI4 and AtIPT5) expression. Root proliferation and AtNAR2.1 

responses to water availability under high (10.0 mM) nitrate required AtPIP2.2. The coordination 

of root proliferation and gene expression responses to altered water and nitrate availability is 

proposed, that includes novel roles for AtNRT2.1, AtNAR2.1 and AtPIP2.2.  

 

  



3 
 

Contents Page 

Root developmental responses to heterogeneous water and             

nitrogen supply 1 

Abstract 2 

List of Figures 7 

List of Tables 10 

List of Equations 11 

List of Abbreviations and Symbols 12 

Declaration 13 

Acknowledgments 14 

Dedication 16 

1. General Introduction 17 

1.1. Global context 17 

1.1.1. The complex challenge of securing food for 9 billion people 17 

1.1.2. Enhancing nutrient acquisition can contribute to tackling food         

security 20 

1.2. Root nutrient acquisition 21 

1.2.1. Soil physical characteristics determine the delivery of water and       

nitrate to the root surface 21 

1.2.1.2. The limitations of experimental systems in considering the soil       

physical component of root nutrient acquisition 26 

1.2.2. Root growth 27 

1.2.2.1. Root proliferation responses to water and nitrate supply 31 

1.2.2.2. The hormonal regulation of root proliferation responses to water           

and nitrate supply 33 

1.2.3. Root transporters for water and nitrate uptake 37 

1.2.3.1. Root water uptake and movement; the role of aquaporins 37 

1.2.3.2. Root nitrate uptake 39 

1.2.3.3. Nitrate transporters and root proliferation 42 

1.2.3.4. The hormonal regulation of transporter responses to water and       

nitrate supply 43 

1.3. General conclusions 44 

1.4. Thesis outline 48 



4 
 

2. Materials and Methods 49 

2.1. General plant handling methods 49 

2.1.1. Plant material 49 

2.1.2. Handling of seed 49 

2.1.3. Growth conditions 49 

2.2. Experimental systems 50 

2.2.1. Nutrient solution 50 

2.2.2. Sand culture 50 

2.2.3. Agar culture 50 

2.3. Quantification of substrate physical characteristics 51 

2.3.1. Substrate water potential 51 

2.3.2. Substrate water release characteristic 51 

2.3.3. Substrate hydraulic conductivity 51 

2.4. Nitrate-selective microelectrode measurements 52 

2.5. Characterisation of root proliferation and gene expression 57 

2.5.1. Root proliferation measurements 57 

2.5.2. RNA extraction, DNase treatment and cDNA production 57 

2.5.3. RT PCR 57 

2.5.5. GFP-reporter line microscopy 60 

2.6. Statistical methods 60 

2.6.1. General ANOVA 60 

 

3. A Novel Sand Rhizotron System 61 

3.1. The experimental system 62 

3.1.1. The hydraulic characteristics of the root growth environment 64 

3.2. Comparing the sand rhizotron system to agar culture 68 

3.3. Why is root physiology different between sand and agar? 69 

3.4. Using nitrate-selective microelectrodes to measure nitrate at the          

root surface 76 

3.5. Summary and conclusions; the sand rhizotron system is fit for       

purpose 77 



5 
 

4. Root Proliferation Responses to Altered Water and Nitrate Supply 80 

4.1. The influence of different nitrate forms on root proliferation 80 

4.2. The influence of water supply on root proliferation across a range           

of nitrate supplies 81 

4.3. Relating root proliferation responses to hydraulic characteristics 87 

4.4. Root proliferation responses to water flux were independent of         

nitrate availability at the root surface 93 

4.5. The negative influence of ammonium nitrate is exaggerated in the      

sand rhizotron system 95 

4.6. Why is measured nitrate concentration greater than the original        

input? 95 

4.7. Summary and conclusions 97 

 

5. Gene Expression Responses to Altered Water and Nitrate Supply 99 

5.1. The influence of water supply on the expression of selected nutrient 

acquisition genes across a range of nitrate supplies 99 

5.2. The response of nutrient acquisition gene expression to substrate 

hydraulic characteristics 104 

5.3. The influence of water supply on the expression of hormone-    

associated genes across a range of nitrate supplies 107 

5.4. Relating the gene expression and root proliferation responses to     

nitrate and water availability 112 

5.5. The root proliferation and gene expression responses of selected 

mutants to substrate hydraulic characteristics under high nitrate      

supply 113 

5.6. Comparing the gene expression and root proliferation responses            

of selected mutant lines 119 

5.7. Summary and conclusions 120 

 

 



6 
 

6. General Discussion 123 

6.1. Why develop the sand rhizotron system? 123 

6.2. How is nutrient availability manipulated within the sand rhizotron    

system? 125 

6.3. A direct comparison of the sand rhizotron system to agar culture 127 

6.4. Comparing the sand rhizotron system root data with previous work    

using other experimental systems 127 

6.4.1. The influence of water and nitrate availability on root proliferation 128 

6.4.2. The influence of water and nitrate availability on root gene        

expression 130 

6.4.3. Summary 133 

6.5. A proposed coordination of root water and nitrate responses to       

altered hydraulic properties 134 

6.6. Why might water and nitrate transporter expression be           

coordinated? 135 

6.7. Coordinated water and nitrate transporter expression could be    

regulated by nitrate 137 

6.8. A novel role for AtNAR2.1 in coordinating root proliferation and 

transporter expression 139 

6.9. Conclusions 143 

6.10. Future lines of investigation 145 

6.11. The potential of a weed species 147 

 

Appendix 1. Publications and prizes associated with this project 149 

Appendix 2. Chapman et al. 2011, PCE, 34(10): 1630-1638 152 

Appendix 3. Chapman et al. 2012, TiPS, 17(12): 701-710 162 

Appendix 4. cDNA populations 173 

Appendix 5. Gel electrophoresis images 178 

Appendix 6. Conservation of root proliferation responses between 

ecotypes 185 

Bibliography 187 



7 
 

List of Figures  Page 
 

Chapter 1. General Introduction 

1.1. The cycling between the main nitrogen pools (boxes) and fluxes (arrows) within        

terrestrial ecosystems 22 

1.2. Representation of the Arabidopsis root (redrawn from Marchant et al. 1999 by                

Lynda Castle, Rothamsted Research Visual Communications Unit) 30 

1.3. The delivery of water and nitrate to the root surface is determined by the soil            

physical properties and root physiology 45 

 

Chapter 2. Materials and Methods 

2.1. The burette method used to measure the water release characteristic 53 

2.2. The constant head permeability apparatus 54 

2.3. Nitrate-selective microelectrodes 55 

2.4. A Typical nitrate microelectrode recording 56 

 

Chapter 3. A Novel Sand Rhizotron System 

3.1. The sand rhizotron system 63 

3.2. Physical characterisation of the sands 66 

3.3. Comparison of root proliferation responses to high nitrate supply between agar               

and sand 70 

3.4. Relative expression of important nitrate and water uptake genes in agar and                  

sand systems 71 

3.5. Relative expression of hormone-associated genes in agar and sand systems 73 

3.6. Root light exposure had no effect on root length 74 

3.7. Nitrate-selective microelectrodes were used to measure the nitrate                      

concentration of agar 75 

 

  



8 
 

Chapter 4. Root Proliferation Responses to Altered Water and Nitrate Supply 

4.1. Root proliferation responses to different forms of nitrate 82 

4.2. Root proliferation responses to manipulation of water supply by altered sand particle       

size under low (0.1 mM), medium (1.0 mM) and high (10.0 mM) nitrate supply 83 

4.3. Root proliferation responses to manipulation of water supply by altered matric potential 

under low (0.1 mM), medium (1.0 mM) and high (10.0 mM) nitrate supply 84 

4.4. Basal root length was stimulated by high nitrate supply when water supply was     

manipulated by altered matric potential (A) and particle size (B) 85 

4.5. Primary root length (PRL) negatively correlated with unsaturated hydraulic                

conductivity (Kunsat) at low (A), medium (B) and high (C) nitrate supply 90 

4.6. Lateral root density (LRD) negatively correlated with water potential (Ψt) at low (A),                 

medium (B) and high (C) nitrate supply 91 

 

Chapter 5. Gene Expression Responses to Altered Water and Nitrate Supply 

5.1. Expression responses of (A) AtNRT1.1, (B) AtNRT2.1, (C) AtNAR2.1 and (D)             

AtPIP2.2 to manipulation of water supply by altered sand particle size across a                          

range of nitrate concentrations 101 

5.2. Expression responses of (A) AtNRT1.1, (B) AtNRT2.1, (C) AtNAR2.1 and (D)              

AtPIP2.2 to manipulation of water supply by altered matric potential across a                

range of nitrate concentrations 102 

5.3. In situ imaging of a proNRT2.1:eGFP line confirmed that AtNRT2.1 expression                 

decreased with decreasing unsaturated hydraulic conductivity (Kunsat) at high               

nitrate supply 106 

5.4. Expression responses of (A) AtPIN1, (B) AtPIN2, (C) AtTIR1, (D) AtEIN2, (E)                               

AtABI4 and (F) AtIPT5 to manipulation of water supply by altered particle size at                         

a range of nitrate concentrations 109 

5.5. Expression responses of (A) AtPIN1, (B) AtPIN2, (C) AtTIR1, (D) AtEIN2, (E)                          

AtABI4 and (F) AtIPT5 to manipulation of water supply by altered matric potential                              

across a range of nitrate concentrations 110 

5.6. Root proliferation responses of selected mutant lines at extremes of                          

unsaturated hydraulic conductivity (Kunsat) under high (10.0 mM) nitrate supply 114 



9 
 

5.7. Nutrient acquisition gene expression responses of selected mutant lines to the                          

extremes of unsaturated hydraulic conductivity (Kunsat) under high (10.0 mM)                                 

nitrate supply 115 

5.8. Hormone-associated gene expression responses of selected mutant lines to                                   

the extremes of unsaturated hydraulic conductivity (Kunsat) under high (10.0 mM)                              

nitrate supply 116 

 

  



10 
 

List of Tables Page 
 

Chapter 1. General Introduction 

1.1. The soil physical parameters that determine root nutrient acquisition vary between 
experimental systems that use agar, sand or soil (redrawn from Chapman et al.            
2012)  29 

1.2. Selected genes of interest 46 

 

Chapter 2. Materials and Methods 

2.1.  Primer pairs used to investigate relative gene expression changes by RT PCR 59 

 

Chapter 3. A Novel Sand Rhizotron System 

3.1. van Genuchten parameters for all sands 65 

3.2. Summary of sand physical characteristics 67 

 

Chapter 4. Root Proliferation Responses to Altered Water and Nitrate Supply 

4.1. Summary of root proliferation responses to nitrate supply across two manipulations                      
of water supply 88 

4.2. Summary of root proliferation responses to specific hydraulic characteristics 92 

4.3. Nitrate concentration at the primary root surface at altered unsaturated hydraulic 
conductivity (Kunsat) manipulated by the use of sands of different particle size 94 

 

Chapter 5. Gene Expression Responses to Altered Water and Nitrate Supply 

5.1. Summary of wild-type nutrient acquisition gene expression responses to nitrate                
supply across two manipulations of water supply 103   

5.2.  Summary of wild-type hormone-associated gene expression responses to nitrate             
supply across two manipulations of water supply 111 

5.3. Summary of mutant root physiology responses to increased unsaturated hydraulic 
conductivity (Kunsat) under high (10.0 mM) nitrate supply 118 

    

  



11 
 

List of Equations Page 
 

Chapter 1. General Introduction 

1. The determination of the saturated hydraulic conductivity by the constant 

head permeability test 23 

2. The van Genuchten function 24 

3. The Mualem constant 24 

4. The effective diffusion coefficient of an ion in soil 25 

  



12 
 

List of Abbreviations and Symbols 
 

A Cross-sectional area of 
soil column 

 LRN Lateral root length 

ABA Abscisic acid  MIP Major intrinsic protein 
ABI ABSCISIC ACID 

INSENSITIVE 
 N Nitrogen 

ANR ARABIDOPSIS 
NITRATE REGULATED 

 N2 Di-nitrogen gas 

BR Basal root  NAR NITRATE ASSIMILATION RELATED 
BRL Basal root length  NH4

+ Ammonium 

cDNA Complementary DNA  NIP NOD26-like intrinsic protein 
Cl Solution nutrient 

concentration 
 NO3

- Nitrate 

CLC Chloride channel  NRT Nitrate transporter 
Cs Nutrient concentration 

released from soil store 
 PCR Polymerase chain reaction 

D Diffusion coefficient  PEG Polyethylene glycol 
De Effective diffusion 

coefficient in soil 
 PIN PIN-FORMED 

Dl Diffusion coefficient in 
water 

 PIP Plasma membrane intrinsic protein 

DNA Deoxyribonucleic acid  PR Primary root 

EIN ETHYLENE 
INSENSITIVE 

 PRL Primary root length 

f Impedance factor  Q Volume of water per unit time 
gDNA Genomic DNA  RNA Ribonucleic acid 

GFP Green fluorescent protein  SIP Small basic intrinsic protein 
h Hydraulic head  t Time 

HATS High affinity transport 
system 

 TIP Tonoplast intrinsic protein 

IPT ADENOSINE 
PHOSPHATE ISO-
PENTENYL-
TRANSFERASE 

 TIR TRANSPORTER INHIBITOR 
RESPONSE 

k Permeability  TLRL Total lateral root length 

Kr Relative hydraulic 
conductivity 

 θ Soil volumetric water content  

Ksat Saturated hydraulic 
conductivity 

 θh Matric potential volumetric water 
content 

Kunsat Unsaturated hydraulic 
conductivity 

 θr Residual volumetric water content 

L Length of soil column  θs Saturated volumetric water content 

LATS Low affinity transport 
system 

 Ψm Matric potential 

LR Lateral root  Ψo Osmotic potential 

LRD Lateral root density  Ψt Water potential 

  



13 
 

Declaration 
 

I declare that no part of this thesis has previously been submitted for a degree awarded 

by this or any other university. The work in this thesis is entirely my own, unless 

otherwise stated. 

 

 

The copyright of this thesis rests with the author. No quotation from it should be 

published without the author's prior written consent and information derived from it 

should be acknowledged. 

 

 

  



14 
 

Acknowledgments  
 

“L’Agriculture fait sans doute la base du bonheur public, puisqu’elle seule 

fournit à tous les besoins que la nature a liés à notre existence…”  

“Agriculture is without doubt the basis of public happiness, since it alone 

provides all the needs that nature has linked to our existence...”  

Jean-Antoine Claude Chaptal, ‘Eléments de Chimie’ (1790), Vol. 1, Avertissement, 

page 3, line 1, J.F. Picot, Montpellier, France. 

 

Tony, Richard and Keith; I could not have asked for a better supervisory team! It has been a 

pleasure to be your student. Not only have you supported my research efforts, but you have 

also given me great encouragement to pursue my extracurricular activities and our publications 

(Appendices 1-3). I would particularly like to thank you for supporting my Science Technology 

Engineering and Mathematics ambassador and Researcher in Residence activities, and for 

allowing me to complete the Durham University Graduate School funded secondment to the 

Office for Life Sciences (Dept. Business, Innovation and Skills, UK) which gave me invaluable 

experience of the scientific sectors outside of academia.  

I would like to acknowledge useful guidance on specific areas of this project. Sue Smith, I found 

myself thanking you for your help with daily mundane jobs, but I would particularly like to thank 

you for your help with the microelectrode work. Thanks to Andy Gregory and Stephen Powers 

for helpful advice regarding the hydraulic conductivity data and the statistical analyses 

respectively. I am grateful to my assessors Smita Kurup and Keith Goulding for extremely useful 

scientific discussion and guidance regarding the direction of this project.  

I would also like to thank the permanent and temporary members of our research group. I 

extend thanks to Yi Chen and Charlotte Lomax, to the several visiting workers who have spent 

time in the Miller laboratory, to our colleagues in laboratory 105, and to Chris Watts and Colin 

Webster, for helping to make my time in the Rothamsted laboratories reasonably successful! 

Far too many new friends were made over 4 years at Rothamsted than can be mentioned 



15 
 

individually here, but I’d particularly like to acknowledge my housemates and the football lads 

for providing welcome distractions from the day-to-day slog of Ph. D. life. I thank them all for 

many an enjoyable evening spent solving various problems over a pint.  

Thanks are also due to some of my more enduring friends. Colonel Sanders, thank you for 

being a top class mate. Where would this project have been without regular doses of London 

Pride and Lamb Madras? King Sam, my favourite ‘do-as-I-say-not-as-I-do’ dietician, we’ve not 

done badly for a couple of Leek High School alumni. Big Kev, I know academia and ‘The South’ 

are alien to you but ‘it’s a different world innit’.  

The completion of this thesis was driven by a passion for science and the natural world, but I 

could not have hoped to make it this far without the encouragement of the people that I love. I 

am grateful for the support of my grandparents and wider family which has helped me in 

innumerable ways to progress this far.  

Mum and Dad, I am so grateful for your continued loving advice and guidance. Dad, who knew 

that your proof-reading skills would finally be put to such good use? Mum, your love has been 

the driver behind many of my achievements. I hold you both in my thoughts in all that I do and I 

wouldn’t have made it here without you. (At last) I can start earning some money for the granny 

flat!  

Jen, your limitless support continues to help me and is only surpassed by your love that has 

become vital to all that I do. Your daily encouragement and discussion has been central to the 

completion of this work. It’s not been easy to be apart for the last four years, but I can’t wait to 

finally begin living our lives together!  

 

Rothamsted Research receives grant-aided support from the Biotechnology and Biological 

Sciences Research Council (BBSRC) of the UK to whom I am grateful for funding this 

studentship and providing me with a fantastic opportunity to further my scientific education. 

 



16 
 

Dedication 
 

I would like to dedicate this thesis to the memory of my Grandad Norman. One of my earliest 

recollections of the joy that plants can bring is picking peas with you and Nan in the garden. I 

have been frequently reminded of you around Rothamsted. Losing you before this was finished 

affected me more than I anticipated, but I would like to think that I have made you proud.  

  



17 
 

1. General Introduction 

1.1. Global context 

 

 

“We are at a unique moment in history as diverse factors converge to affect demand, 

production and distribution of food over the next 20 to 40 years.” 

Professor Sir John Beddington CMG FRS  

Chief Scientific Advisor to Her Majesty’s Government and Head of the Government Office for 

Science (in The Future of Food and Farming, Final Project Report, Foresight, 2011, 

Government Office for Science, Dept. Business, Innovation and Skills, UK). 

 

1.1.1. The complex challenge of securing food for 9 billion people 

The world is presently faced with a complex challenge to the security of its food supply. Crops 

form the basic diet of the majority of the 7 billion people that currently inhabit the Earth, but just 

over 1 billion of them already live without enough to eat (St Clair and Lynch 2010). In addition to 

what is already a major global problem, accepted estimates describe a rise in global population 

to 9 billion people by 2050 (Foresight 2011). As a result, global agricultural output will need to 

greatly improve if we are to cope with a 30% increase in global population and secure our food 

supplies.  

An increase in global agricultural activity could match food demand but an increase in global 

population intensifies the pressure on land. For example, an increased number of people 

require an increase in the total land used for shelter and energy production. Therefore, it is likely 

that an increase in agricultural productivity will actually need to be achieved during a reduction 

in total land used for agriculture as land-use will face alternative pressures from urban 

population expansion. However, this may be buffered on the global scale by efforts to open up 

the vast Cerrado region of Brazil for agricultural use (Merten et al. 2010). 

The challenge of food security is further complicated by a changing global climate (Adeloye 

2010). In particular, fluctuations in local temperature and precipitation patterns can greatly 
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influence crop yield. This has been evident since the turn of the century with increasingly 

regular severe weather incidents having catastrophic effects on crop yield, such as drought (e.g. 

India in 2009) and flooding (e.g. Pakistan in 2010) episodes. At the time of writing, 18.7 million 

people are affected or at risk across nine countries of the Sahel region of Africa that are facing 

severe problems of food security related to climate (United Nations Office for the Coordination 

of Humanitarian Affairs website, 16th July 2012: http://www.unocha.org/crisis/sahel).  

Drought events are one of the more agriculturally catastrophic products of a changing global 

climate. An insufficient supply of water is a fundamental problem for a growing plant as the 

targeted expansion of organs requires sufficient water pressure within the cells (Tyerman et al. 

2002). It also decreases the distance over which nutrients can move towards the plant root, via 

diffusion or mass-flow, generating nutrient deficiencies, particularly for the less soluble nutrients 

(Nye and Tinker 1977; Bloom et al. 2002). As the soil dries, its strength increases posing more 

resistance to the growing root which is already having to forage further to access nutrients that 

are unable to move towards the root due to decreased water content (Whalley et al. 2006). In 

addition, the dry soil hampers root-microbe interactions and as a result impairs nitrogen and 

carbon cycling within the soil and thus the availability of raw materials for building new plant 

tissues (Gregory et al. 2007). All of these problems result in a decreased capability of the root to 

acquire vital nutrients from the soil and thus impact upon agricultural yield.  

At the opposite end of the precipitation scale, intense rainfall and flooding episodes pose 

equally ruinous problems for agricultural productivity. Heavy rainfall or fast-moving bodies of 

water can influence yield through both short and long term changes in the soil composition. The 

differing mobility of nutrients within the soil profile is dependent on their solubility which in turn 

determines nutrient deficiencies as a result of leaching from the soil (Goulding 2000). 

Furthermore, water-logging in the aftermath of a flooding event can reduce the availability of 

oxygen to the growing plant. This impairs nutrient acquisition as active transport of nutrient ions 

requires oxygen-dependent adenosine triphosphate (ATP) synthesis (Miller and Cramer 2005; 

Tavares et al. 2011). Depletion of N within the plant as a result of decreased capability for 

uptake is further aggravated by the use of soil nitrate by microorganisms as an alternative 

electron acceptor when oxygen is not freely available (Atwell and Steer 1990). 
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In terms of nutrient acquisition, an increase in the temperature of the soil can actually help 

acquisition as root metabolism and ion diffusion and uptake rates increase within the 

rhizosphere. Under adequate water supply, the surface area for nutrient uptake and water influx 

is increased as the root grows and temperature-driven increases in transpiration rates help with 

the acquisition of mobile nutrients through increased mass flow (Nye and Tinker 1977; Jungk 

1996; Miller and Cramer 2005). However, if soil drying occurs with an increase in temperature, 

water pressure differences can actually close stomata thus hampering transpiration and mass 

flow driven nutrient acquisition (Abbate et al. 2003). In addition, altered temperature can impact 

on the habitat range of crops and microorganisms. A change in temperature may shift the areas 

of land within which certain crops are currently agriculturally productive and could alter the 

capability of microorganisms to cycle vital nutrients within the soil, but could also influence the 

capability of pest species and diseases to exploit a particular crop as a host (Ingram et al. 

2008).  

Severe weather episodes can also decrease agricultural productivity via pressure on land-use 

as large numbers of people are forced to migrate in search of food and shelter (Foresight 2011). 

Huge areas of land can be irreparably damaged through intense exploitation of local natural 

resources as people and animals are fed and watered. This often accelerates the deterioration 

of the soil and vegetation within the region in which they settle and can lead to the 

desertification of large areas of land, reducing the total potential land available for agricultural 

activity. 

Any potential solution to the complexities of the food security problem will be required to fall 

within the bounds of sustainable agricultural practice. As our understanding of the long term 

economic and environmental costs of fertilizer and pesticide use has improved, a sense of 

international responsibility to improve the sustainability of agricultural output has emerged 

(Powlson et al. 2011; Sutton et al. 2011). This is a significant point given the central role of 

fertilizer and pesticides in facilitating the first green revolution. The green revolution of the 1960s 

saw global agricultural output jump to keep step with a doubling of the global population, via the 

exploitation of dwarfed high-yield crop varieties in tandem with the widespread adoption and 

application of chemical fertilizers and pesticides (Borlaug 1992; Hedden 2003; Lynch 2007). It is 

likely that this time around there will need to be a more intense focus on the selection and 
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breeding of improved crop varieties, as the liberal use of chemical fertilizers and pesticides is no 

longer viewed as sustainable. 

 

1.1.2. Enhancing nutrient acquisition can contribute to tackling food security 

The complex problem of food security will require a composite agronomic solution, ranging from 

better access to water and soil management to improved plant breeding and enhanced nutrient 

acquisition. The improvement of nutrient acquisition by plants represents one promising 

component of such a solution (Lynch 2007; Garnett et al. 2009; Masclaux-Daubresse et al. 

2010; Kraiser et al. 2011). In particular, the improvement of water and N acquisition will become 

more important in the context of decreased N-fertilizer input and increased flooding and drought 

events. 

Nitrogen and water are fundamental growth-limiting nutrients that partly determine yield and 

their availability is determined by the root growth environment. Plants require di-nitrogen gas  to 

be fixed as either nitrate or ammonium before nitrogen can be acquired by roots (Sanhueza 

1982). The ability of sessile plants to acquire the growth-limiting nutrients water and nitrogen 

from the soil is largely dependent on root growth and the physical characteristics of the 

substrate. Nitrate is more mobile in the soil than ammonium and as a result nitrate is often the 

preferred nitrogen source for plants (Miller and Cramer 2005). Nitrate is delivered to the root 

surface dissolved in water and its availability is subject to spatial and temporal heterogeneity as 

a result of microbial activity, soil physical characteristics and altered water availability.  

As a result, root physiology demonstrates a high degree of plasticity to cope with altered water 

and nitrate supply (Malamy 2005; Gifford et al. 2008; Hodge 2009; Ingram and Malamy 2010). 

By characterizing root physiological responses to altered supply, it may be possible to identify 

desirable root traits for the improvement of acquisition (Lynch and Brown 2012). This is 

particularly important for low input agriculture systems where resource availability to the plant 

may be limited. Better understanding of the root responses to altered nitrate and water 

availability, and particularly their interaction with the soil physical properties of the root growth 

environment, could contribute to sustainably securing our food supply.  
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1.2. Root nutrient acquisition 

Nutrient acquisition in soils is dependent upon several complex biotic and abiotic processes. 

While nutrient mobilisation and cycling by root exudates, symbiotic interactions and 

communities of microorganisms are contributing aspects of root nutrient acquisition (see 

reviews by Watt et al. 2006; Dennis et al. 2010; Richardson et al. 2011; Croft et al. 2012; Dodd 

and Ruiz-Lozano 2012), this work focuses on the major soil physical and root physiological 

components that govern water and nitrate acquisition. The soil physical component determines 

the availability and delivery of water and nitrate to the root, whereas the root physiological 

component is mainly comprised of root proliferation and gene expression responses to water 

and nitrate availability (see reviews by Miller and Cramer 2005; Wang et al. 2006; Kraiser et al. 

2011). These components and the complex nature of their interactions are described in detail 

here. The role of the soil physical properties in the delivery of water and nitrate to the root 

surface is described, before focus shifts onto the growth of the root itself and how the 

physiology of the root responds to altered water and nitrate supply.  

 

1.2.1. Soil physical characteristics determine the delivery of water and nitrate to 

the root surface 

While N forms in soil can be converted from one to another (Figure 1.1.) via the action of 

released exudates or oxygen from the root or microbial activity, ammonium is the major from of 

inorganic N available to plants in flooded or wetland soils and nitrate is the dominant form in 

aerobic soils (Xu et al. 2012). The availability of water and nitrate to the root is determined by 

the physical properties of the soil. The distribution of soil particles defines the soil pore space 

which can be separated into the saturated and unsaturated zones depending on the extent to 

which the space is filled with air and water. The geometry of the soil pores largely determines 

the movement of water through a soil and is described by the water release characteristic 

(Smith and Mullins 1991), which relates gravimetric water content to tension height and can be 

measured for a soil column of known volume and weight (see Chapter 2 for details).  
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Figure 1.1. The cycling between the main nitrogen pools (boxes) and fluxes (arrows) 

within terrestrial ecosystems. Blue boxes, nitrogen losses; Purple boxes, nitrogen input; 

Red boxes, main nitrogen forms. NH4
+, ammonium; NO3

-, nitrate; N2O, nitrous oxide; NO2
-, 

nitrogen dioxide; N, nitrogen. Di-nitrogen gas fixation and animal input are not included here 

(redrawn from Chapman and Miller 2011). 
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The connectivity of pores governs the ease with which water is able to move through the 

substrate, termed the hydraulic conductivity. Darcy proposed the physical law describing the 

movement of water through saturated soil (Darcy 1856), demonstrating that the volume of water 

(Q) flowing per unit time was directly proportional to the cross-sectional area (A) of the soil 

column and to the difference in hydraulic head (h) causing the flow, and inversely proportional 

to the length (L) of the soil column. Therefore, the saturated hydraulic conductivity (Ksat) can be 

experimentally determined:   

K��� = ��

�	�
      (1) 

where: Ksat, saturated hydraulic conductivity (average permeability, cm/s); Q, discharge volume of water (cm3); 

L, length of column (cm); A, area of column (cm2); h, head difference (cm); t, collection time (s).  

 

There are several methods available for determining saturated hydraulic conductivity and their 

suitability depends on the nature of the medium (Smith and Mullins 1991). For example, 

because the pore openings in sand are large and thus exhibit a high permeability (k >10-4 cm/s), 

the constant head permeability test is performed on sands (see Chapter 2 for details).  

In addition to the saturated pore space, the unsaturated pore space contributes to the 

segregation of water between surface water and ground water in the field (Glinski and Lipiec 

1990). The hydraulic properties of the unsaturated zone determine the quantity of water that will 

infiltrate into the soil from the surface and how much will be lost as run-off. The unsaturated 

zone also provides oxygen to roots and controls soil strength as a function of water content. 

Thus it is important to consider both the saturated and unsaturated hydraulic conductivity of 

soils in assessing the delivery of water and dissolved nutrients to plants.  

If the water release characteristic and saturated hydraulic conductivity are known, it is possible 

to predict the unsaturated hydraulic conductivity of a soil (van Genuchten 1980). The change in 

relative hydraulic conductivity with matric potential has been broadly predicted from the water 

release characteristic using the Mualem-van Genuchten approach (van Genuchten 1980; Vogel 

et al. 2000a; Vogel et al. 2000b; Gregory et al. 2010a; Gregory et al. 2010c; Vereecken et al. 

2010; Whitmore et al. 2011). The van Genuchten (1980) function can be fitted to water release 

characteristic data, assuming porosity does not change: 
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θ� 	= 	 θ
 + �����

������������/�    (2) 

where θs, θr and θh are the saturated, residual and h matric potential volumetric water contents (m3m-3), h is 

the matric potential (kPa), and α and n are fitted parameters.  

 

Residual water content is restricted to be non-negative and the Mualem constant is applied 

which is required to obtain the closed-form function for the subsequent hydraulic conductivity 

predictions (van Genuchten 1980). The relative hydraulic conductivity can then be expressed in 

terms of the pressure head (van Genuchten 1980): 

�
�ℎ� = 	  ���������	���	�������!"
#

���������!/# 		   (3) 

where $ = 1 − �

'
     

    

The estimation of unsaturated hydraulic conductivity by this method assumes that porosity 

remains constant across a range of matric potentials. As a result, there are limitations with the 

application of this method to soil because the porosity of a soil changes as soils dry and 

shrinkage occurs (Gregory et al. 2010a; Gregory et al. 2010b). However, the porosity of sand is 

assumed to remain constant and the application of this method to sand allows for a reasonably 

accurate determination of changes in relative hydraulic conductivity with matric potential (Hewitt 

1966; Smith and Mullins 1991).  

Mass flow is driven by the water potential gradient between the atmosphere and bulk soil 

(Marshall et al. 1996). The water potential in soils is mainly determined by dissolved solutes 

(osmotic potential) and the capillary pressure of water held between substrate particles (matric 

potential). While the hydraulic conductivity of a soil can be a limiting step in the delivery of water 

and dissolved nutrient ions from bulk soil to the root surface (Marshall et al. 1996), differences 

in water potential between pores are also important. Therefore, the flux of water from soil to 

plant is determined by differences in water potential, at a given hydraulic conductivity and shoot-

transpiration demand.  
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The total flux of nutrient ions to the root is comprised of a mass flow flux where dissolved 

nutrient ions are delivered with water moving to the root surface, and a diffusion flux which 

requires the formation of gradients along which ions can move (Jungk 1996). The mass flow flux 

is dependent on the water flux into the root and the concentration of the nutrient in the soil 

solution. Transpirational demand of the plant is governed by plant growth and determines water 

flux, but the concentration of the nutrient in the soil solution is not necessarily related to plant 

demand. Therefore, the rate of nutrient ion uptake is often different from the rate of mass flow 

and it is this disparity which determines the diffusion flux component of total flux. The 

spontaneous movement of ions or molecules by thermal agitation is termed diffusion and the 

diffusional flux is described by Fick’s first law when considering a cross-sectional area in a 

homogeneous medium under planar conditions (Fick 1855). The diffusion coefficient of an ion 

describes its relative mobility along a concentration gradient with net movement towards the 

lower concentration.  

The relative contribution of diffusion and mass flow to nitrogen acquisition is dependent upon 

the ion source due to their differing solubilities; nitrate (NO3
-) is a more mobile form (3.26 x 10-10 

m2 s-1) than NH4
+ (2.70 x 10-12 m2 s-1) within soil solution (Owen and Jones 2001). The rate of 

diffusion for each form is influenced by ion size and charge, water viscosity, temperature, soil 

moisture, tortuosity and the soil buffer capacity (Miller and Cramer 2005; Cramer et al. 2009). In 

the field, this is further complicated by the amount of fertilizer applied (Jungk 1996), but also by 

the structure of the soil which creates obstacles for diffusion (Nye and Tinker 1977).  

The diffusion flux in soil is dependent on the physical structure of soil and this led to the 

introduction of an impedance factor (f) which allowed for the impact on the diffusion coefficient 

of an ion of the actual distance water must move during diffusion (Nye 1966): 

() = (*+,
-./

-.�
      (4) 

 

This improved the consideration of the influence of the soil physical properties on diffusion of 

nutrient ions. The effective diffusion coefficient in soil (De) is related to the diffusion coefficient in 

water (Dl) and the volumetric water content of the soil (θ), but also to the total amount of ions in 

solution  (Cl) and those which can be released from the soil store (Cs). For example, the 
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effective diffusion coefficient in soil of nitrate (1.9 x 10-10-11) is several orders of magnitude lower 

than the diffusion coefficient in water (1.9 x 10-9) due to the physical factors impeding diffusion 

within soil (Jungk 1996).  

The significance of the mass flow and diffusion for nutrient acquisition in the field should not be 

underestimated. It was determined that 190 kg of nitrogen per hectare was needed to produce 

9500 kg yield of maize (Zea mays) grain per hectare, of which 79% was delivered to the root 

surface by mass flow and 20% by diffusion (Barber 1984; Jungk 1996). Therefore, mass flow 

and diffusion fluxes of water and dissolved nutrients from bulk soil to the root surface are 

important physical processes for acquisition by roots. Furthermore, these processes are 

inextricably linked to the physical properties of the growth substrate and influenced by water 

and nutrient input into the system. Attempts to improve root water and nitrate acquisition will 

require a better understanding of how these processes are affected by altered water and nitrate 

input and how they influence root physiology. 

 

1.2.1.2. The limitations of experimental systems in considering the soil physical 

component of root nutrient acquisition 

The physical properties of the soil represent a significant component of root nutrient acquisition, 

determining the delivery of water and nitrate to the root and influencing the root physiological 

component. However, investigating root nutrient acquisition in soil is complex (Chapman et al. 

2012). For example, it is difficult to determine what the plant is responding to in a drying soil as 

water potential becomes increasingly negative, mechanical impedance increases, oxygen 

availability increases and water flux to the root decreases simultaneously (Passioura 2002; 

Mittler 2006). As a result, experimental systems with simplified root growth environments were 

developed to cope with the experimental challenges presented by soil.  

These simplified systems enabled the distinct manipulation of treatments and the root 

responses to be non-destructively analysed under regulated laboratory conditions (Zhu et al. 

2011; De Smet et al. 2012). In addition to field studies (e.g. Domenicano et al. 2011; Trachsel et 

al. 2011), root nutrient acquisition has been recently investigated across a range of 

experimental systems, including soil (e.g. Dodd et al. 2010; Sengupta et al. 2011), sand (e.g. 

Clark et al. 2008b; Chapman et al. 2011), vermiculite (Leach et al. 2011), perlite (Choi et al. 
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2011; Samadi 2011), rubber or glass beads (e.g. Evans 2011), agar or gel culture (e.g. Krouk et 

al. 2010b; Blouin and Puga-Freitas 2011), and hydroponics (e.g. Knipfer et al. 2011; Yan et al. 

2011); with the extent to which these systems consider the important influence of soil physical 

properties on root nutrient acquisition decreasing through the list.  

Sand represents a good alternative to soil because as a porous substrate it retains some of the 

hydraulic characteristics of soil (Table 1.1.), but removes the influence of background nutrient or 

microorganisms associated with the experimental use of soil. Sand has been historically used to 

address root nutrient acquisition responses of larger crop species (Drew and Saker 1975; 

Whalley et al. 1999; Clark et al. 2002; Brown et al. 2006), but very few studies have combined 

sand with the superior molecular tools and knowledge associated with Arabidopsis (Arabidopsis 

thaliana) (Chapman et al. 2011). Arabidopsis root growth has been mainly investigated using 

sterile non-porous laboratory systems, such as agar or hydroponics, although their root growth 

environments are different from porous substrates such as sand or soil (Table 1.1.). Significant 

fundamental questions regarding the nutritional and hormonal regulation of root physiology have 

been addressed using Arabidopsis in agar and hydroponic systems and our understanding of 

root growth has been considerably advanced as a result. However, these systems may have 

limited our understanding of the influence of soil physical properties on the root physiological 

component of nutrient acquisition.  

 

1.2.2. Root growth 

The architecture of the root system is defined by continued root development, growth and 

branching in response to internal and external cues (Ingram and Malamy 2010). Significant 

understanding of the molecular and physiological mechanisms underpinning root growth has 

been gained through the widespread adoption of Arabidopsis as the model laboratory plant 

(Benfey et al. 2010; Smith and De Smet 2012). The sequencing of the Arabidopsis genome and 

its short generation time, small size and modest growth requirements (Bowman 1994; Pyke 

1994), have enabled this model organism to become a powerful research tool (Lavagi et al. 

2012), particularly for the investigation of root physiological responses to nutritional cues.  

The structure of the Arabidopsis root is largely constant due to the genetic limitations of root 

developmental plasticity (Bowman 1994; Zobel and Waisel 2010). The primary root (PR) is the 
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first to emerge from the seed and defines the main axis for subsequent root branching. It is 

comprised of central vascular tissue surrounded by concentric layers of single cells and the root 

meristem is located just behind the root tip. Within the PR meristem, cell division occurs to 

produce initial cells which then undergo elongation in the elongation zone located behind the 

apex. The daughter cells of the initials divide and differentiate into the specific root tissues 

(Figure 1.2.). Anticlinal divisions maintain each cell file, whilst turgor pressure from water influx 

into root cells drives expansion of cells. As the root elongates into the growth environment, the 

root cap prevents the root tip becoming damaged through the release of dead border cells to 

reduce frictional resistance.  

Root branching requires the production of entirely new organs called lateral roots (LRs) and is a 

significant contributor to the overall root system size (Bowman 1994; Malamy and Benfey 1997; 

Nibau et al. 2008; Benkova and Bielach 2010; Zobel and Waisel 2010). LRs initiate from 

founder cells within the pericycle that undergo a series of cellular divisions to generate LR 

primordia. The growth of LR primordia is maintained until the LR emerges through the adjacent 

endodermis, cortex and epidermal layers of the PR. It is at this point that a new meristem is 

established within the LR and is identical to that found in the PR. This becomes the new 

determinant of continued growth and formation of mature LRs. The acropetal nature of the 

spatiotemporal positioning of LRs in Arabidopsis is such that new LR primordia are specified on 

the alternate side of the root, and further along, from the previous LR. Secondary or basal roots 

(BRs) represent another additional root component which serves to increase the exploratory 

capacity of the root architecture. A significant component of root architecture (Zobel and Waisel 

2010), BRs originate from the hypocotyl which is the organ located between the shoot and PR 

(Bowman 1994).  
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Table 1.1. The soil physical parameters that determine root nutrient acquisition vary 

between experimental systems that use agar, sand or soil (redrawn from Chapman et 

al. 2012). 

 

Physical parameter Agar Sand Soil 

 
Pore size 
 

 
Small 
 

 
Narrow range 

 
Wide Range 

Pore distribution Regular Approximately 
normal  
 

Log normal 

Pore structure Limited Narrow Complex 
 

Matric potential 
 

Increases with 
substrate 
concentration 
 

Function of saturation 
 

Function of saturation  

Saturated hydraulic 
conductivity 
 

Low Decreases with pore 
size  

Decreases with pore 
size 

Unsaturated 
hydraulic conductivity   
 

Determined by 
diffusion 
gradients 

Function of 
saturation 
 

Function of 
saturation 
 

Strength Increases with 
substrate 
concentration*  

Decreases with  
increasing saturation 
by a limited amount, 
but can be 
manipulated 
independently with 
applied mechanical 
stress 
 

Decreases greatly with 
increasing saturation 
 

Nutrient ion 
distribution 

Homogeneous Heterogeneous over 
a narrow range of 
scales 

Heterogeneous over 
a wide range of scales 

    

*However, this cannot be used as an experimental variable (see Clark et al. 1998). 

 

  



 

Figure 1.2. Representation of the Arabidopsis

by Lynda Castle, Rothamsted Research Visual Communications Unit

 

 

 

 

 

Figure 1.2. Representation of the Arabidopsis root (redrawn from Marchant et al. 1999 

thamsted Research Visual Communications Unit
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redrawn from Marchant et al. 1999 

thamsted Research Visual Communications Unit).  
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1.2.2.1. Root proliferation responses to water and nitrate supply 

The water content of the soil is an important determinant of root proliferation. Decreased water 

content can increase the strength of a soil and lead to the mechanical impedance of root growth 

(Whalley et al. 1999). The water content determines the saturation of the soil and thus the 

hydraulic conductivity. The effect of soil hydraulic conductivity on root development has long 

been recognized (Passioura 1991), but it has received little attention because it is easier to 

manipulate water potential than hydraulic conductivity in high-throughput experimental systems 

such as agar. In the laboratory, the effects of water potential on plant growth have mainly been 

studied by using an osmoticum, such as polyethylene glycol (PEG), in agar/gel culture or 

equilibrated vermiculite to manipulate the osmotic component of water potential (Spollen and 

Sharp 1991; Voetberg and Sharp 1991; Liang et al. 1997; Verslues et al. 1998; Whalley et al. 

1998; van der Weele et al. 2000). These approaches have been useful in identifying 

fundamental responses to decreased water availability, but may underestimate the importance 

of matric potential and hydraulic conductivity in determining root responses to water and nitrate 

availability. 

The availability of water to roots is decreased at more negative water potentials (Marshall et al. 

1996). PR growth increases in response to decreased water availability (Taylor and Ratliff 1969; 

Sharp et al. 1988; van der Weele et al. 2000; Wiegers et al. 2009; Chapman et al. 2011). 

Although root elongation has been described even at water potentials as negative as -1.9 MPa 

(Sharp et al. 1988), -2.0 MPa is generally accepted to be limiting to root growth (Bengough et al. 

2006). Increased PR growth in response to decreased water availability may represent a 

foraging strategy to seek better availability down through the soil profile (Hodge 2009; Croft et 

al. 2012) and has been targeted as a yield-increasing trait for the improvement of water use by 

crop plants (Wasson et al. 2012).  

Although regulated by water availability, PR growth was shown to be unresponsive to nitrate 

supply in barley (Hordeum vulgare) and maize (Drew et al. 1973; Granato and Raper 1989) and 

in all, but one (Nossen 0) of the Arabidopsis ecotypes investigated in work using agar (Zhang 

and Forde 1998; Walch-Liu and Forde 2008). In contrast to Zhang and Forde (1998), Linkohr 

and colleagues found that 0.01 mM nitrate supply suppressed PR length (PRL) in the Columbia 

0 ecotype relative to uniform 1.0 mM supply (see Figure 2A in Linkohr et al. 2002). However, 

this was attributed to a disparity in harvest time between Linkohr et al. (18 days) and Zhang and 
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Forde (14 days), with the increased growth period perhaps enabling another factor to become 

limiting for PRL. However, the strong PR response to water availability independent of nitrate 

supply may reflect the 2-fold economic benefit from investing in roots for water capture relative 

to N capture (King et al. 2003). 

LR growth has also been investigated in response to altered water potential. LR proliferation 

has been shown to be repressed by decreased water availability in Arabidopsis seedlings (Deak 

and Malamy 2005; Roycewicz and Malamy 2012) and this response is independent of nitrate 

(Roycewicz and Malamy 2012). Increasingly negative osmotic potential resulted in altered root 

and shoot size, whilst nitrate altered root system size with no effect on shoot size when osmotic 

potential was controlled (Roycewicz and Malamy 2012). At water potentials of less than -0.49 

MPa, the regulation of LR growth by water availability is specific to LR proliferation with a 

negligible effect on LR number (van der Weele et al. 2000; Deak and Malamy 2005). Therefore, 

it was speculated that LR proliferation is repressed in regions of decreased water availability but 

maintain the establishment of LR primordia (Deak and Malamy 2005). During the elongation of 

the root system, this enables LR primordia to be subsequently proliferated into a region of 

increased water availability when encountered. This repression of LR growth under water deficit 

is maintained in other species, such as barley and maize (Babé et al. 2012). 

Unlike PR growth, LR growth is regulated by water and nitrate. Under uniform supply, 

Arabidopsis LR proliferation is suppressed by increasing nitrate concentration, despite LR 

number and PR growth remaining constant across a wide range of concentrations (Zhang and 

Forde 1998). However, localized patches of high nitrate supply under uniform low nutrient 

availability has been shown to locally stimulate LR proliferation in barley and Arabidopsis (Drew 

et al. 1973; Drew 1975; Drew and Saker 1975; Zhang and Forde 1998). The proliferation of LRs 

towards localised high nitrate patches enables plants to cope with heterogeneous nitrate 

availability in the field and may represent an adaptive strategy to out-compete neighbouring 

plants for patchy resources (Robinson 1996; Hodge et al. 1999; Mommer et al. 2012). 

Root proliferation responses such as those described above are particularly important for the 

acquisition of nutrient ions that are only able to move small distances within the soil. This may 

be due to decreased mobility or physical isolation. It is accepted that root proliferation is an 

adaptive trait for roots to access less mobile nutrient ions, such as ammonium and phosphate 
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(Hodge et al. 1999; Robinson et al. 1999; Bayuelo-Jimenez et al. 2011; Trachsel et al. 2011), 

but there is even a distinct root response to differences in mobility between N forms (Bloom et 

al. 1993), whereby the less mobile ammonium induces LR initiation while nitrate determines LR 

proliferation (Lima et al. 2010). The restricted movement of ions due to physical isolation is by 

nature the result of soil structure. The formation of connected networks of solution is determined 

by the distribution of pores that can cause the spatial isolation of dissolved nutrients regardless 

of the ion’s mobility. The LR proliferation response to the mobile nitrate ion could indicate a 

foraging strategy that has evolved to access isolated nutrient pockets under more patchy supply 

in the field.  

 

1.2.2.2. The hormonal regulation of root proliferation responses to water and 

nitrate supply 

The hormone content of the plant is modified in response to nutrient supply and this can have a 

significant impact on root proliferation (Forde 2002; Rubio et al. 2009). The root proliferation 

responses to water and nitrate are partly determined by the hormones auxin, ethylene, abscisic 

acid (ABA) and cytokinin. Here, the role of these hormones in determining root growth and the 

function of selected hormone-associated genes in mediating root proliferation responses to 

nitrate and water supply are described. 

The orientation of PR growth is determined by gravity which influences auxin distribution and 

determines cell elongation on the basal surface so that the root always proliferates towards the 

gravitational force (Santelia et al. 2008; Rahman et al. 2010). Auxin distribution in the 

Arabidopsis root is regulated through directional cellular efflux facilitated by eight PIN-FORMED 

(PIN) proteins (Benkova et al. 2003; Friml 2003; Friml et al. 2003; Blilou et al. 2005). Of 

particular importance to root architecture are AtPIN1 and AtPIN2. Auxin is made in the shoot 

and transported to the root via AtPIN1 which is located on the basal surface of the central 

vascular tissue. The acropetal flow of auxin along the outer cell layers of the root is achieved 

through AtPIN2, located on the basal surface of cortex cells and on the apical surface of 

epidermal and root cap cells. Cellular uptake of auxin is achieved through lipophilic diffusion, 

proton-driven anionic symport via AUXIN/LIKE-AUXIN (AUX/LAX) permeases, and ATP-

dependent uptake via a P-glycoprotein (PGP), another subset of which helps to achieve cellular 
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efflux in addition to the PINs (Feraru and Friml 2008; Mravec et al. 2008). The directed 

movement of auxin towards, around and away from the root meristem establishes an auxin 

maximum at this site which maintains meristematic cell identity. Consequently, the decreasing 

auxin concentration further away from the meristem has been linked to cell differentiation in the 

mature root.  

As well as a role in pattern formation during root development, the shoot-to-root translocation 

and subsequent oscillation in acropetal redistribution of auxin is required to specify LR growth 

(Bhalerao et al. 2002; De Smet et al. 2007). Localized auxin distribution was shown to promote 

LR initiation (Blakely and Evans 1979; Barlier et al. 2000; Fukaki et al. 2005) and auxin 

accumulates in cells which subsequently become LR primordia, forming a gradient with the 

maximum concentration located at the tip of the LR primordium (Benkova et al. 2003; 

Dubrovsky et al. 2008). This accumulation and gradient formation is mediated by the PIN efflux 

machinery, with AtPIN1 establishing the auxin front at the LR primodrium tip and AtPIN2 

recycling some of the auxin along the outer layers, as is the case in the PR (Benkova et al. 

2003; Geldner et al. 2004). Polar auxin transport and the perception of auxin by 

TRANSPORTER INHIBITOR RESPONSE 1 (TIR1) have been shown to be critical for the 

establishment of a zone of minimum auxin content and auxin response that specifies LR 

initiation (Ivanchenko et al. 2010; Dubrovsky et al. 2011). The AtTIR1 gene encodes an auxin 

receptor that mediates auxin degradation and auxin-regulated transcription (Dharmasiri et al. 

2005; Kepinski and Leyser 2005; Tan et al. 2007). BR growth is less well understood in 

Arabidopsis as BRs are infrequently formed in agar culture, but auxin has been implicated in BR 

growth in the common bean (Phaseolus vulgaris) (Basu et al. 2011) and the mechanism of 

auxin-transport dependent growth is applicable to each component organ of Arabidopsis root 

architecture. 

Increased auxin translocation from shoot to root under conditions of nitrogen starvation has 

been demonstrated in Kohlrabi (Brassica caulorapa) (Avery Jnr. and Pottorf 1945), wheat 

(Triticum aestivum) (Chen et al. 1998), soybean (Glycine max) (Caba et al. 2000) and maize 

(Zea mays) (Guo et al. 2005). This has also been demonstrated in Arabidopsis (Krouk et al. 

2010b) and the expression of the auxin transporters AtPIN1 and AtPIN2 and the auxin receptor 

AtTIR1 are regulated by nitrogen provision (Gutierrez et al. 2007). Therefore, the response of 

LR growth to nitrate supply may be underpinned by changes in the expression of these auxin-
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associated genes. Interestingly, the AtTIR1 transcript is the target of micro-RNA mediated 

cleavage to inhibit LR growth in response to osmotic stress as induced by PEG in agar culture 

(Chen et al. 2012). Given the role of these genes in regulating PR and LR growth, the response 

of PR and LR growth to water availability could also be mediated by altered expression of these 

genes but this has not yet been described.  

Auxin and ethylene interact to regulate root proliferation, acting synergistically to regulate root 

elongation and antagonistically to regulate LR growth (reviewed by Muday et al. 2012). Auxin 

and ethylene have been shown to reduce the rate of cellular expansion in the central elongation 

zone, which is lost in ethylene-insensitive and auxin-resistant mutants (Rahman et al. 2007; 

Swarup et al. 2007). In the root elongation zone, elevated ethylene increases auxin response 

and requires wild-type auxin signalling and transport (Ruzicka et al. 2007; Negi et al. 2008). 

Auxin stimulates LR formation and proliferation, whilst ethylene decreases LR initiation by 

regulating auxin transport (Ruzicka et al. 2007; Ivanchenko et al. 2008; Negi et al. 2008; Lewis 

et al. 2011). The ethylene signal transducer ETHYLENE INSENSITIVE 2 (EIN2) (Alonso et al. 

1999) plays an important role in the nitrate regulation of LR length (Tian et al. 2009), with 

AtEIN2 modulating stress responses via the ABA signalling pathway (Wang et al. 2007) and 

acting upstream of AtTIR1 and AtPINs to modify root growth (Kushwah et al. 2011).  

ABA has been suggested to be the universal plant stress hormone (Wilkinson and Davies 2002; 

Verslues and Zhu 2005; Wasilewska et al. 2008), and plays a role in regulating root growth 

responses to altered water and nitrate supply. The application of external ABA to well-watered 

plants, inhibits shoot and root growth (Sharp and LeNoble 2002). However, increased 

endogenous ABA content under decreased water availability, inhibits shoot growth (Zhang and 

Davies 1990a; Zhang and Davies 1990b; Verslues and Zhu 2005; Dodd et al. 2010). 

Conversely, maize PR growth is maintained at increased negative water potentials, mediated by 

the action of increased ABA to limit excess ethylene production (Spollen et al. 2000; Leach et 

al. 2011). 

In addition, ABA signalling inhibits the activation and elongation of LRs under water stress 

conditions (Deak and Malamy 2005) and ABA and nitrate signalling have been suggested to 

share common regulatory elements due the impairment of LR responses to nitrate in ABA 

mutants (Signora et al. 2001; De Smet et al. 2003; Zhang et al. 2007). Specifically, under high 
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nitrate supply, the ABA related transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) has 

been shown to repress LR growth mediated by decreased AtPIN1 levels, with AtABI4 

expression being repressed by auxin and enhanced by ABA and cytokinin (Signora et al. 2001; 

Shkolnik-Inbar and Bar-Zvi 2010).  

Cytokinin is thought to act antagonistically to auxin in regulating LR development (Fukaki and 

Tasaka 2009). Mutants with reduced cytokinin levels, perception or signalling exhibit an 

increase in the number of LRs (Werner et al. 2003; Mason et al. 2005; Riefler et al. 2006), while 

exogenous cytokinin supply inhibits LR initiation (Laplaze et al. 2007). Cytokinin also induces 

directional root growth, acting upstream of AtEIN2 and thus AtTIR1 and AtPINs to determine 

root elongation (Pernisova et al. 2009; Ruzicka et al. 2009; Kushwah et al. 2011). The limiting 

step in biosynthesis of cytokinin is encoded by ADENOSINE PHOSPHATE ISO-PENTENYL-

TRANSFERASE 3 (IPT3) which modifies root and shoot cytokinin status in response to nitrate 

(Miyawaki et al. 2004; Takei et al. 2004; Wang et al. 2004; Rahayu et al. 2005). However, less 

is known about the nitrate response of other root-specific cytokinin biosynthesis genes, although 

AtIPT5 is regulated by auxin and cytokinin and responds to nitrate and ammonium under 

sufficient supply (Takei et al. 2004).  

Therefore, complex interactions exist between cytokinin, ABA, ethylene and auxin to modify root 

growth in response to both altered water and nitrate supply. It seems that auxin is the main 

driver of these responses, with cytokinin-, ABA- and ethylene-associated genes acting to 

attenuate the transport, signalling and perception of auxin. Much of the fundamental 

understanding held for these responses in Arabidopsis has been gained in the agar Petri dish, 

where understanding of the influence of soil physical properties on these hormonal responses 

may be limited. For example, the maintenance of root growth under water deficit by ABA has 

been described above, but barley root growth was unaffected by the application of an auxin-

stimulating growth promoter under field conditions despite an increase in ABA at the stem base 

(Bingham and McCabe 2006). Therefore, a greater understanding of the interplay between 

these hormone-associated genes in regulating the Arabidopsis root proliferation responses to 

altered soil physical properties is required. 

 



37 
 

1.2.3. Root transporters for water and nitrate uptake  

Root proliferation in response to altered water and nitrate supply represents one significant 

aspect of the root physiological component of their acquisition. A second important aspect is 

represented by root transporter-dependent water and nitrate uptake. Here, the transporters 

responsible for water and nitrate uptake and their regulation in response to water and nitrate 

availability are discussed. 

 

1.2.3.1. Root water uptake and movement; the role of aquaporins 

Once delivered to the root surface, water enters the root passively or actively predominantly 

along the region of elongation (Segal et al. 2008). Inside the root, water flows radially through 

living tissues towards the vascular tissue to be transported throughout the whole plant. Water 

can flow via the cell wall continuum (i.e. apoplastic pathway), via cytoplasmic continuities (i.e. 

symplastic pathway), or across cell membranes (i.e. transcellular pathway) via water channels 

known as aquaporins (Peterson and Cholewa 1998; Steudle 2000; Javot and Maurel 2002; 

Roose and Fowler 2004; Maurel et al. 2010; Ranathunge and Schreiber 2011).  

Although apoplastic barriers can be generated to limit apoplastic water flow (Peterson and 

Cholewa 1998), there is limited regulation of root water movement when driven by large 

transpirational fluxes. However, the regulation of aquaporins offers the plant a means to partly 

control water movement into and throughout the root, particularly when transpiration is 

decreased (Javot et al. 2003; Da Ines et al. 2010). The cellular localization of many aquaporins 

is known and their ability to rapidly respond to environmental cues means that changes in their 

expression are a good indicator of transmembrane pathway activity.  

There is a great abundance and diversity in plant aquaporins (Chaumont et al. 2001; Johanson 

et al. 2001) which demonstrates the need for plants to tightly regulate cellular water content and 

solute transport (see reviews by Tyerman et al. 2002; Maurel et al. 2008). The aquaporin super-

family, or the Major Intrinsic Protein (MIP) super-family, is comprised of hydrophobic proteins 

that fall within the molecular weight range of 26-34 kDa and exhibit six membrane-spanning 

alpha-helices (Hove and Bhave 2011). The MIP super-family has been split into 4 constituent 

groups based on amino-acid sequence comparison and these have different cellular locations 
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(Maurel et al. 2008): small basic intrinsic proteins (SIPs); NOD26-like intrinsic proteins (NIPs); 

tonoplast intrinsic proteins (TIPs); and plasma membrane intrinsic proteins (PIPs).  

Despite the majority of PIPs being expressed in the leaf, certain PIPs are root-specific and may 

be the most important aquaporins for the transcellular pathway of root water movement due to 

their plasma membrane location (Kaldenhoff et al. 1998). Furthermore, the use of antisense-

RNA to down-regulate PIPs increased susceptibility to drought or osmotic stress, and led to 

decreased protoplast osmotic water permeability and an increased root system size (Kaldenhoff 

et al. 1998; Siefritz et al. 2002). The expression of PIPs responds to nutrient stress (Clarkson et 

al. 2000) and decreased water-availability has been shown to down-regulate PIP transcripts 

across several species (Yamada et al. 1995; Li et al. 2000; Alexandersson et al. 2005; Boursiac 

et al. 2005; Alexandersson et al. 2010; Horie et al. 2011).  

Although regulation of PIP-mediated water movement can occur at the protein level (Boursiac et 

al. 2008; Muries et al. 2011; Hachez et al. 2012), overall protein content, cellular localization 

and root hydraulic conductance has been shown to correlate with transcript level (Boursiac et al. 

2005; Parent et al. 2009; McLean et al. 2011). In fact, it may be better to assess root responses 

to altered water and nitrate availability at the transcript level rather than indirect measurements 

such as root hydraulic conductance. The investigation of 13 Arabidopsis accessions found 

some minor differences in root hydraulic conductance (Sutka et al. 2011), but an independent 

study comparing aquaporin expression changes across five Arabidopsis accessions that were 

known to have different water use efficiency found that aquaporin expression responses were 

largely conserved between accessions (Alexandersson et al. 2010).  

Of the AtPIPs, AtPIP1.1 and AtPIP2.2 demonstrate greatest expression within roots 

(Alexandersson et al. 2005). Of particular interest for root acquisition responses to altered water 

and nitrate availability, AtPIP2.2 has been shown to facilitate root water uptake and osmotic 

water transport under low transpiration conditions (Javot et al. 2003; Da Ines et al. 2010). 

Located in the cortex, endodermis and stele of elongated root segments, T-DNA knock-out 

mutants for this aquaporin exhibit a decreased hydraulic conductivity within root cortex cells 

indicating its importance for osmotic water flow. AtPIP2.2 expression has been shown to be 

significantly down-regulated in response to prolonged drought treatment and this down-

regulation was rescued upon rehydration (Kawaguchi et al. 2004; Alexandersson et al. 2005; 
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Alexandersson et al. 2010), highlighting the importance of water availability as a regulator of 

expression. Although no previous work has reported that AtPIP2.2 is regulated by nitrate, water 

channel genes have been shown to be induced by nitrate (Wang et al. 2001) and aquaporin-

mediated changes in root hydraulic conductance have also been reported in response to high 

nitrate supply (Carvajal et al. 1996; Clarkson et al. 2000). 

 

1.2.3.2. Root nitrate uptake  

Nitrate transporters (NRTs) that facilitate nitrate movement have been well characterised in 

Arabidopsis and their roles in nitrate acquisition have been well reviewed (Orsel et al. 2002a; 

Miller et al. 2007; Tsay et al. 2007; Daniel-Vedele et al. 2009; Miller et al. 2009; Chapman and 

Miller 2011; Gojon et al. 2011; Kraiser et al. 2011; Miller and Chapman 2011; Xu et al. 2012). In 

summary, AtNRTs mainly fall into two families based on their transport affinity, with members of 

the large NRT1/PTR family facilitating low-affinity transport and members of the NRT2 families 

enabling high-affinity transport. AtNRT1.1 and AtNRT2.1 both encode proton symporters, 

transporting two H+ ions simultaneously with one nitrate (NO3
-) ion across the plasma-

membrane into the cell, and emerge as two of the most important and interesting nitrate 

acquisition genes. In addition to their different nitrate transport affinities, these two genes 

demonstrate regulatory cross-talk with one another, possess transport-independent 

signalling/sensing roles, regulate root growth and interact with key hormones and hormone-

associated genes. 

AtNRT1.1 was the first of the 53 members of the AtNRT1/PTR family  to be characterized 

(Doddema et al. 1978). This large family can transport a variety of other substrates in addition to 

nitrate, including amino acids, auxin, peptides, ABA and glucosinolates (Tsay et al. 2007; Wang 

et al. 2012). AtNRT1.1 facilitates the proton-coupled transport of nitrate (Tsay et al. 1993) and is 

located in the epidermal cells of the root-tip (Liu et al. 1999; Remans et al. 2006a). The majority 

of the AtNRT1s demonstrate low-affinity nitrate transport and have been consequently assigned 

to the low affinity transport system (LATS) for nitrate (Huang et al. 1999; Chiu et al. 2004; 

Almagro et al. 2008; Lin et al. 2008; Fan et al. 2009; Li et al. 2010a; Wang and Tsay 2011). 

However, AtNRT1.1 is unique among the AtNRTs in demonstrating dual-affinity transport 

function and this capability has been shown to be regulated by the phosphorylation of the T101 
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threonine residue by CIPK23 kinase (Wang et al. 1998; Liu et al. 1999; Ho et al. 2009). 

Orthologues in rice (Oryza sativa; Os08g05910 and Os10g40600) and oilseed rape (Brassica 

napus; BnNRT1.2) have been described (Tsay et al. 2007), and the only other dual-affinity 

transporter to be isolated (MtNRT1.3) was recently identified in Medicago (Medicago truncatula) 

(Morere-Le Paven et al. 2011). 

In contrast to the large NRT1/PTR, there are only 7 genes in the AtNRT2 family which largely 

determine the high affinity transport system (HATS) in Arabidopsis (Chen et al. 2008). AtNRT2.1 

is found at the plasma membrane of cortex and epidermal cells (Nazoa et al. 2003; Chopin et al. 

2007) and plays a particularly important role within the inducible HATS (Cerezo et al. 2001; 

Remans et al. 2006b; Li et al. 2007). Transport function was believed to be achieved by the 

most abundant monomeric form of the AtNRT2.1 protein, but requires the co-expression of 

NITRATE ASSIMILATION RELATED 2.1 (AtNAR2.1, also known as AtNRT3.1) which targets 

the AtNRT2.1 monomer to the plasma membrane (Zhou et al. 2000; Okamoto et al. 2006; Orsel 

et al. 2006; Wirth et al. 2007). More recently however it has been suggested that uptake 

function is facilitated by the formation of an AtNRT2.1/AtNAR2.1 hetero-oligomer at the plasma 

membrane (Yong et al. 2010). NRT2.1 genes have been described in wheat (TaNRT2.1) and 

rice (OsNRT2.1), with the latter also interacting with OsNAR2.1 to achieve uptake function (Yin 

et al. 2007; Yan et al. 2011). 

AtNRT1.1 expression is induced by nitrate and repressed by nitrogen starvation, pH and nitrate 

metabolites such as nitrite (Tsay et al. 1993; Wang and Crawford 1996; Filleur and Daniel-

Vedele 1999; Lejay et al. 1999; Liu et al. 1999; Lejay et al. 2003; Loque et al. 2003; Lejay et al. 

2008; Ho et al. 2009). AtNRT2.1 expression is similarly induced by nitrate, but also by nitrogen 

starvation, and repressed by high nitrate and nitrate metabolites such as ammonium and 

glutamate (Zhuo et al. 1999; Filleur et al. 2001; Nazoa et al. 2003; Okamoto et al. 2003; Lejay et 

al. 2008). Similar phosphorylation mechanisms to that which regulate AtNRT1.1 have been 

suggested for AtNRT2.1 (Liu and Tsay 2003). Evidence for this is provided by a number of 

conserved protein kinase C recognition motifs in HvNRT2.1 (Forde 2000). Furthermore, an 

orthologue of AtNRT2.1 is known in wheat which acts within the HATS but demonstrates 

induction by both high and low external nitrate supplies in a similar dual-affinity response to that 

seen for AtNRT1.1 (Zhao et al. 2004; Yin et al. 2007).  
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Interestingly, AtNRT2.1 expression was found to be regulated by AtNRT1.1 itself, as AtNRT2.1 

expression was not repressed in an nrt1.1 mutant line in response to high nitrate supply (Munos 

et al. 2004). AtNRT2.1 was shown to be regulated by the activity of AtNRT1.1, rather than 

simply by its presence, via a nitrogen demand signal as a function of AtNRT1.1-dependent 

nitrate uptake activity (Krouk et al. 2006). Furthermore, the down-regulation of the 

AtNRT2.1/AtNAR2.1 functional unit by nitrate itself is triggered by AtNRT1.1 and this is 

independent of the negative feedback exerted by downstream nitrogen metabolites (Munos et 

al. 2004; Krouk et al. 2006). Therefore, the down-regulation of AtNRT2.1 under high nitrate 

supply is the response to systemic feedback repression by reduced nitrogen metabolites 

(Crawford and Glass 1998; Gansel et al. 2001) and also to nitrate-specific AtNRT1.1-dependent 

local inhibition (Krouk et al. 2006). 

Nitrate-responsive genes account for up to 10% of the transcriptome (Krouk et al. 2010c) and 

nitrate uptake activity specifically correlates with AtNRT transcript abundance which suggests 

that transcriptional regulation of AtNRTs plays an important role in the plant physiological 

response to nitrate supply (Zhuo et al. 1999; Okamoto et al. 2003; Wang et al. 2012). 

Furthermore, the physiological response to nitrate is likely to be a perception of nitrate as the 

signal because the majority of nitrate-induced effects on gene expression are conserved in 

mutants that are unable to reduce nitrate (Wang et al. 2004; Alboresi et al. 2005; Krouk et al. 

2010a).  

Although regulated by nitrate supply, the expression of these key Arabidopsis nitrate acquisition 

genes has not been investigated in response to altered soil physical properties. However, under 

low nitrogen supply, soil compaction has been shown to result in decreased N uptake in barley 

towards the end of a 14 day growth period (Bingham et al. 2010). In addition, soil strength has 

been shown to regulate rice phosphate and sulphate transporters in a sand column system 

(Brown et al. 2006). Given the significant influence of soil physical properties on water and 

nitrate availability, which themselves are known to regulate the expression of AtPIP2.2, 

AtNRT1.1, AtNRT2.1 and AtNAR2.1, it would be informative to investigate the influence of 

altered soil physical properties on these genes. 
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1.2.3.3. Nitrate transporters and root proliferation 

Transport-independent signalling and/or sensing roles have been suggested for AtNRT1.1 and 

AtNRT2.1 in the regulation of root proliferation responses to nitrate supply. A role for AtNRT1.1 

has been identified in regulating PR growth. PR growth is inhibited by glutamate and this is 

overcome when nitrate is supplied. However, PR growth in chl1 mutant plants was not inhibited 

by glutamate (Walch-Liu et al. 2006; Walch-Liu and Forde 2008). When chl1 mutants were 

complemented with wild-type AtNRT1.1, the inhibition of PR growth by glutamate was restored. 

However, when complemented with a non-phosphoryable NRT1.1T101A mutant protein then 

the inhibitory effect of glutamate was not restored. This mutant line still possessed transport 

function indicating that the ability of AtNRT1.1 to relieve glutamate-inhibition of PR growth is 

dependent upon a transport-independent signalling role for the phosphorylated form of 

AtNRT1.1 (Liu and Tsay 2003). This was confirmed through the use of uptake- and sensing-

decoupled mutants with the phosphorylation of T101 shown to be mediated by CIPK23 during 

high affinity binding (i.e. at low external nitrate supply) and this mechanism was repressed at 

higher external concentration as low-affinity binding occurred (Ho et al. 2009).  

Plants with defective AtNRT1.1 expression also have a decreased LR elongation response to 

high nitrate patches (Remans et al. 2006a). This is associated with a dramatic decrease in 

expression of the MADS-box transcription factor gene ARABIDOPSIS NITRATE REGULATED 

1 (AtANR1) which was described to control the LR colonization of high nitrate patches (Zhang 

and Forde 1998). atnrt1.1 mutant plants exhibited wild-type nitrate uptake but decreased 

AtANR1 expression, suggesting that the high nitrate signal is mediated by AtANR1 downstream 

of AtNRT1.1 and that AtNRT1.1 regulation of the LR response is independent of its uptake 

function (Walch-Liu and Forde 2008). AtNRT1.1 transports auxin in the absence of nitrate, but 

not when nitrate is present, thus controlling the nitrate-promotion of LR elongation by alleviating 

localised auxin repression of LR growth (Krouk et al. 2010b). 

A role for AtNRT2.1 in sensing nitrate supply or transducing the nitrate signal has been 

proposed during LR initiation from the study of atnrt2.1 knock-out mutants (Malamy and Ryan 

2001; Orsel et al. 2004; Little et al. 2005; Remans et al. 2006b). Both AtNRT2.1 and AtNAR2.1 

were found to be positive regulators of LR initiation under limited nitrate or nitrate-free 

conditions, indicating that AtNRT2.1/AtNAR2.1 regulation of LR growth is independent of uptake 

function (Orsel et al. 2006; Remans et al. 2006b). However, this LR regulation by 
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AtNRT2.1/AtNAR2.1 is specific to the nutrient supply as both became repressors of LR growth 

under a high sucrose to nitrate ratio in the root growth environment (Little et al. 2005; Orsel et 

al. 2006). Truncated forms of AtNRT2.1 co-exist with the AtNRT2.1 protein at the plasma 

membrane and these have been suggested to be possible facilitators of the transport-

independent roles described above (Wirth et al. 2007). 

 

1.2.3.4. The hormonal regulation of transporter responses to water and nitrate 

supply 

The expression of key water and nitrate uptake genes is regulated by auxin, ethylene, ABA and 

cytokinin. The link between drought response and the hormone ABA is well known (see Davies 

and Zhang 1991; Peleg and Blumwald 2011). As part of this, AtPIP2.2 expression is increased 

2-fold in response to ABA (Jang et al. 2004) and this response is also seen in maize (Parent et 

al. 2009) and tobacco (Nicotiana tabacum) plants (Mahdieh and Mostajeran 2009). However, 

there is limited evidence for aquaporin regulation by other hormones. In a rare example from 

rubber trees (Hevea brasiliensis), HbPIP2.1 has been shown to be regulated by auxin, with the 

promoter region of HbPIP2.1 possessing an auxin response element (Tungngoen et al. 2011). 

Conversely, auxin plays a key role in the regulation of nitrate acquisition genes. The promoter 

activity of AtNRT1.1 is induced by increased auxin and this is independent of nitrate supply 

(Guo et al. 2002). Interestingly, AtNRT1.1 facilitates auxin uptake in the absence of nitrate and 

this is inhibited in the presence of nitrate. This function is responsible for the nitrate-promotion 

of LR elongation by alleviating localised auxin repression of LR growth (Krouk et al. 2010b). 

AtNRT2.1 expression is rapidly decreased following auxin supply and this requires a shoot-

derived signal (Gan et al. 2005).  

In addition to the important hormone auxin, the key nitrate uptake genes are also regulated by 

ethylene, cytokinin and ABA. The ethylene inhibition of LR growth under high nitrate supply is 

not observed in the atein2-1 and atnrt1.1 mutants, while AtNRT1.1 expression is influenced by 

ethylene signalling, suggesting that AtNRT1.1 has a role in mediating ethylene-regulation of 

nitrate-dependent LR growth (Tian et al. 2009). In fact, AtEIN2 controls the nitrogen regulation 

of AtNRT1.1 and AtNRT2.1 themselves (Tian et al. 2009). Genome-wide approaches found that 
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AtNRT2.1 is also regulated by cytokinin and ABA (Brenner et al. 2005; Nero et al. 2009; Kiba et 

al. 2011). Microarray data demonstrated that the expression of AtNRT2.1 and AtNAR2.1 

undergoes a 2-3 fold down-regulation in response to the exogenous application of cytokinin 

(Kiba et al. 2005; Kiba et al. 2011).  

This study also identified nitrate concentration dependent hormone responses for AtNRT1.1, 

AtNRT2.1 and AtNAR2.1 expression (Kiba et al. 2011). AtNRT1.1, AtNRT2.1 and AtNAR2.1 

expression was also down-regulated by auxin under high (10.0 mM) nitrate supply, although 

only AtNRT1.1 and AtNRT2.1 retained this response under low (0.1 mM) nitrate supply. In 

response to ethylene, AtNRT1.1, AtNRT2.1 and AtNAR2.1 expression was down-regulated 

under high (10.0 mM) nitrate supply, with AtNRT1.1 expression up-regulated under low (0.1 

mM) nitrate supply. The expression of all three genes was up-regulated by ABA and down-

regulated by cytokinin, independent of nitrate supply.  

This led to the suggestion that phytohormones are the signals that coordinate root physiological 

responses to nitrate supply. For example, cytokinin is thought to play a role in both the long-

range signal to increase nitrate and carbon metabolism in leaves in response to increased root 

nitrate supply (Scheible et al. 2004; Brenner et al. 2005), and also in the localised inhibition of 

AtNRT accumulation in roots supplied with nitrate (Brenner et al. 2005; Kiba et al. 2005). 

However, there is a great deal yet to understand relating to the interplay between hormones and 

their influence on the root proliferation and acquisition gene responses to altered water and 

nitrate supply. 

 

1.3. General conclusions  

Enhancing root nutrient acquisition may help to contribute to food security. Soil physical 

properties are important in regulating the mass flow and diffusional fluxes of water and nitrate to 

the root, while root proliferation and the expression of important acquisition and hormone-

associated genes respond to altered water and nitrate supply (Figure 1.3.). The distribution of 

soil particles determines the connectivity of pores and thus the ability of water and dissolved 

nitrate to move towards the root. In some cases the connectivity of pores can be limited and 

result in the physical isolation of water and nutrients. Uptake of nutrients at the root surface can 
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create a diffusional gradient along which dissolved ions can move towards the root from the 

bulk soil.   

The interaction between the soil physical and root physiological components represent a 

significant contribution to water and nitrate acquisition (Figure 1.3.). However, studying root 

physiological responses to water and nitrate supply in simplified experimental systems may 

have limited the understanding of the influence of the soil physical component. This may be 

particularly true for the regulation of selected important genes (Table 1.2.) involved in water and 

nitrate acquisition and the hormonal regulation of root responses. Therefore, the investigation of 

root physiological responses to altered water and nitrate availability as manipulated by soil 

physical properties may provide novel understanding that could help to contribute to sustainably 

tackling food security by enhancing nutrient acquisition.  
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Figure 1.3. The delivery of water and nitrate to the root surface is determined by the 

soil physical properties and root physiology. The distribution of soil particles (brown) 

determines the connectivity of pores and thus soil hydraulic conductivity. This determines the 

ability of water (dashed blue arrow) and dissolved nitrate ions (NO3
-) to move towards the 

root. In some cases the connectivity of pores can be limited and result in the physical 

isolation of water and nutrients. Root (green) proliferation and water (blue circle) and nitrate 

(yellow circle) transporter expression respond to cope with altered availability. Uptake of 

nutrients at the root surface can create a diffusional gradient (white triangle) along which 

dissolved ions can move towards the root from the bulk soil. 
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Table 1.2. Selected genes of interest.   

 

Gene Atg number Reported function 

 

AtNRT1.1 

 

At1g12110 

 

Dual affinity nitrate transporter and nitrate sensor that controls 
LR proliferation and can transport auxin in the absence of 
nitrate 

  

AtNRT2.1 At1g08090 High affinity nitrate transporter and nitrate sensor that controls 
LR proliferation 

AtNAR2.1 At5g50200 Required for AtNRT2.1 nitrate transport function 

 

AtPIP2.2 At2g37170 Osmotic root plasma membrane water transporter 

 

AtPIN1 At1g73590 Basal root auxin transporter in vascular tissue 

 

AtPIN2 At5g57090 Root auxin transporter (basally in cortex cells and apically in 
epidermal and root cap cells) 

AtTIR1 At3g62980 Auxin receptor that mediates auxin degradation and auxin-
regulated transcription 

AtEIN2 At5g03280 Ethylene signal transducer that plays an important role in the 
nitrate regulation of LR length 

AtABI4 At2g40220 ABA-related transcription factor that represses LR growth 
under high nitrate supply 

AtIPT5 

 

At5g19040 Root-specific cytokinin biosynthesis gene that responds to 
high nitrate supply 
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1.4. Thesis outline  

Points raised in the General Introduction were tackled in this research by addressing the 

following project objectives: 

� Develop an experimental system to investigate Arabidopsis (Arabidopsis thaliana) root 

physiological responses to altered water and nitrate supply as manipulated by soil physical 

properties (Chapter 3);   

� Quantify root proliferation responses to altered water and nitrate availability within the 

developed experimental system (Chapter 4);   

� Analyse selected water and nitrate acquisition genes (AtNRT1.1, AtNRT2.1, AtNAR2.1 and 

AtPIP2.2) in response to altered water and nitrate availability within the developed 

experimental system (Chapter 5);  

� Analyse selected hormone-associated genes (AtPIN1, AtPIN2, AtTIR1, AtEIN2, AtABI4 and 

AtIPT5) in response to altered water and nitrate availability within the developed 

experimental system (Chapter 5);  

� Analyse the root proliferation and gene expression responses of selected reporter and 

mutant lines to altered water and nitrate availability within the developed experimental 

system (Chapter 5); and 

� Identify novel interactions between root physiological and soil physical components of root 

nutrient acquisition (Chapter 6). 
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2. Materials and Methods 

 

2.1. General plant handling methods 

2.1.1. Plant material 

The Arabidopsis (Arabidopsis thaliana) ecotype Wassilewskija (Ws) was used for all wild-type 

experiments. The atnar2.1 deletion mutant and atnar2.1xNpNRT2.1 lines were in the Ws 

background (Orsel et al. 2006). The atnrt2.1 insertion mutant was in the Columbia 0 (Col 0) 

background (NASC ID: N859604) and the atpip2.2 insertion mutant was in the Landsberg 

erecta (Ler 0) background (NASC ID: N163821). The green fluorescent protein (GFP) promoter 

reporter line proNRT2.1:eGFP (Kiba et al. 2012) was in the Col 0 background and was a gift to 

AJM from Takatoshi Kiba (Riken Institute, Japan).  

 

2.1.2. Handling of seed 

Seed was sterilised by agitating ~50 seeds in 1.5 ml of 70% ethanol for 8 minutes, before being 

air-dried on Whatman no 2 filter paper in a Laminar Flow Hood (model HF72, Gelaire Flow 

Laboratories, UK) until all ethanol was evaporated. Sterilised seed was transferred onto a 

Whatman no 2 filter paper placed on lint-free paper (Tuddick Mill Ltd., UK.) soaked in distilled 

water in a 90 mm circular Petri dish (Sterilin Ltd., UK). Petri dishes were sealed with Micropore 

tape (3M, UK), stored at 4˚C for 48 hours, and germinated under controlled conditions. 

 

2.1.3. Growth conditions 

Growth conditions were cycled daily, comprising 16 hrs light (290 µmol m-2 s-1) and 8 hrs 

darkness, at 22˚C and 75% relative humidity. At 5 days post-germination (dpg) seedlings were 

selected for a primary root length of 3 mm and transferred to the growth substrate (four 

seedlings per experimental unit). All experiments were positioned 60 cm above the internal 

base of the Controlled Environment Growth Cabinet (model 228, Weiss Gallenkamp, UK). 
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2.2. Experimental systems 

2.2.1. Nutrient solution 

For all physiology experiments a basic nutrient solution was supplied with final concentrations of 

each component: 0.5 mM CaSO4, 0.5 mM MgCl2, 1.0 mM KH2PO4, 10.0 µM MnSO47H2O, 24.0 

µM H3BO3, 3.0 µM ZnSO47H2O, 0.9 µM CuSO45H2O, 0.04 µM (NH4)6Mo7O244H2O, 72.0 µM Fe 

sequestrene (Orsel et al. 2006). Nitrogen was supplied in different forms as 10.0 mM KNO3 and 

5.0 mM NH4NO3. For different nitrate concentrations, KNO3 was added at final concentrations of 

0.1, 1.0 and 10.0 mM. In all experiments, K+ concentration was kept constant by the addition of 

K2SO4. Final volume was achieved by the addition of distilled water. Solutions were autoclaved, 

adjusted to pH 5.7 and buffered with 1.0 mM 2-(N-morpholino)ethanesulfonic acid (MES). All 

chemicals were supplied by Sigma-Aldrich (UK). 

 

2.2.2. Sand culture 

The first aim of the project was to develop a method for the study root nutrient acquisition which 

facilitated the investigation of plant physiological responses to manipulations of nitrogen and 

water supply. A novel sand rhizotron system was developed to investigate root developmental 

responses to altered nitrogen and water supply within a porous growth substrate (see Chapter 3 

for details). Acid-washed Redhill T sand (J Wylie and Sons, UK) was used for all sand 

experiments and sands of a different particle size were obtained by sieving Redhill T into its 

constituent fractions of <250 µm, 250-425 µm and >425 µm. Little transpiration occurred due to 

the seedlings being covered with transparent polythene sheeting. One rhizotron represented 

one experimental unit.  

 

2.2.3. Agar culture  

For the comparison between sand and agar culture, seedlings were grown on vertically 

orientated square agar plates (120 x 120 mm; Fisher Scientific, UK). Agar (Sigma-Aldrich, UK, 

Cat. Num. A7921) was added to the nutrient solution at a final strength of 2%, autoclaved, 

adjusted to pH 5.7 and buffered with 1 mM MES. Plants were positioned 2 cm from the upper 

edge of the plate and orientated so that only roots were in contact with the agar. Plates were 
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sealed with Micropore tape and set at an angle of 60˚ to encourage growth along the agar 

surface. One plate represented one experimental unit. 

 

2.3. Quantification of substrate physical characteristics  

2.3.1. Substrate water potential  

The water potential of growth substrates was measured determined by the chilled-mirror 

dewpoint technique using a Dewpoint PoteniaMeter (model WP4, Decagon Devices Inc., USA) 

as instructed in the manual supplied.  

 

2.3.2. Substrate water release characteristic  

The water release characteristic for sands of different particle sizes was determined using the 

burette method (Figure 2.1.). A 60 mm diameter #3 filter funnel (Fisher Scientific, UK) was 

connected to a burette (double oblique bore class B glass interchangeable PTFE stopcock 10 

mL x 0.02 mL, Fisher Scientific, UK) via 3 m of 15 mm diameter PVC tubing. The whole system 

was saturated with distilled H2O and the filter funnel was positioned 2 m above the ground. 

Sand of a known weight and volume was placed in the filter funnel and the top covered to 

prevent evaporative losses. After overnight stabilisation, the water level of the burette was 

dropped by 1 ml and repeated every 2 hours until there was no detectable change in burette 

water height. The sand was weighed, oven dried for 3 days and reweighed. Volume water 

content (g/100g) was plotted against burette water height (cm). 

 

2.3.3. Substrate hydraulic conductivity  

Saturated hydraulic conductivity was measured using the constant head permeability method 

(Figure 2.2.). A permeameter of known length (L) and area (A) was filled with sand and a funnel 

positioned at a head (h) of 45 cm. A constant flow of water was established in the funnel and 

the sand was saturated. The volume of water (Q) discharged from the bottom outlet was 

measured for (t) 60 s. Saturated hydraulic conductivity (cm/s) was calculated (Equation 1, p 23) 

and measurements were repeated three times. Using MS Excel (Microsoft Inc., USA), data were 
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fitted with Mualem van Genuchten models (Equation 2, p24; van Genuchten 1980) to predict 

unsaturated hydraulic conductivity, enabling direct gravimetric water content to be converted to 

matric potential for each sand. For absolute hydraulic conductivities, the saturated hydraulic 

conductivity of the sand was measured at known water content and multiplied by relative 

hydraulic conductivity to predict unsaturated hydraulic conductivity. 

 

2.4. Nitrate-selective microelectrode measurements 

Double-barrelled nitrate-selective microelectrodes were prepared using filamented double-

barrelled borosilicate glass (Miller and Zhen 1991). Microelectrodes were mounted on a 

micromanipulator (model NMN-21, Narashige, Tokyo, Japan). Both microelectrode reference 

barrels and reference electrodes were backfilled with 200 mM KCl. The experimental unit was 

secured to the stage of an Olympus SZX9 microscope (UK). Calibration curves were generated 

using solutions of known nitrate concentrations (0.01, 0.1, 1.0, 10.0, and 100.0 mM). Root 

surface nitrate activity of intact primary roots (PRs) was measured at the root tip (RT) and 2 mm 

up from the root tip (RT-2 mm; Figure 2.3.). Only those with comparable calibration and 

recalibration curves were used for this study. Care was taken to minimise the area of sand 

exposed for the measurement to avoid drying and steady recordings were obtained indicating 

that evaporative losses were minimal (Figure 2.4.).  

For the analysis of agar, a scalpel was used to cut 0.2 g sections from the plate at the PR 

surface and 20 mm away. Each was dissolved in 1.8 g of distilled water (1 in 10 dilution) by 

heating in a microwave oven and microelectrode measurements made on these solutions. A 

minimum of three replicates was used for all measurements.  
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Figure 2.1. The burette method used to measure the water release characteristic. The 

ability of the sand to retain water is calculated using the volume of water lost from the sand at 

increasing tension (h, cm). 
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Figure 2.2. The constant head permeability apparatus. The rate of water discharged (Q) is 

used to determine the saturated hydraulic conductivity of sand in a permeameter of known 

length (L) at a given pressure head (h). 
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Figure 2.3. Nitrate-selective microelectrodes. A, the experimental unit was secured to the 

stage of an Olympus SZX9 microscope. B, double-barrelled nitrate-selective microelectrodes 

were mounted on a micromanipulator. C, nitrate concentration at the surface of intact primary 

roots was measured at the tip (RT) and 2 mm above the root tip mm (RT-2mm).  
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Figure 2.4. A typical nitrate microelectrode recording. Stable measurements were 

recorded at the root tip (RT) and 2 mm back (RT-2 mm) from the RT of an intact primary root. 

The recording shows the calibration of the microelectrode before (t=0-10 min) and after (t=25-

32 min) the measurement with nitrate solutions of known concentration (0.01 mM, 0.1 mM, 

1.0 mM, 10.0 mM and 100.0 mM).  
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2.5. Characterisation of root proliferation and gene expression 

2.5.1. Root proliferation measurements 

The second aim of the project was to characterise root proliferation responses to changing 

nitrate and water supply. At 12 dpg root proliferation characteristics (as described by Zobel and 

Waisel 2010) were measured and whole root tissue harvested. Primary root length (PRL, mm), 

basal root length (BRL, mm), lateral root number (LRN, of length ≥ 1mm) and total lateral root 

length (TLRL, mm) were measured manually using fine-point forceps and a ruler. Lateral root 

density (LRD, LRN per mm PRL) and total root length (TRL, mm) were calculated from these 

measurements. 

 

2.5.2. RNA extraction, DNase treatment and cDNA production  

RNA was extracted from whole root system tissue samples using the Qiagen RNeasy® Mini Kit 

(Cat. Num. 74903) following the instructions therein. The concentration of RNA obtained was 

estimated by measuring the absorbance at 260nm in a NanoDrop Spectrophotometer (Thermo 

Scientific, UK). RNA was diluted to 10 ng/µl and DNase treatment was carried out using the 

Promega RQ1 RNase-Free DNase (Cat. Num. M6101) as outlined in the user guidelines. The 

treated RNA was used as a template to synthesize cDNA (Ambion RETROscript® Kit, Cat. Num. 

AM1710), and the concentration of each cDNA population was estimated using the Nanodrop 

Spectrophotometer (Appendix 4). Absence of gDNA was checked by carrying out RT PCR 

analysis for ADENINE PHOSPHORIBOSYL TRANSFERASE 1 (AtAPT1) expression (the primer 

pair in Table 2.1. produce a 180 bp band for cDNA and a 320 bp if gDNA is present; Appendix 

4).  

 

2.5.3. RT PCR  

The third aim of this project was to identify relative changes in expression of key genes for root 

nitrate acquisition in response to changing nitrate and water supply. This method was used to 

semi-quantitatively determine the relative abundances of specific transcripts within cDNA 

populations. Care was taken to standardise each step of the method. Equal amounts of starting 

RNA were used in the cDNA synthesis reactions (normalised per ng RNA) and the same 
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concentration of cDNA was used per PCR reaction. Comparison was made between expression 

of a gene of interest and of the AtACTIN2 transcript which is constitutively expressed in 

Arabidopsis thaliana. Primer sequences were used from published work (Table 2.2.) and 

synthesised by Eurofins MWG Operon (Germany). Confirmation that 20 ng cDNA per PCR 

reaction was sufficient to detect changes in gene expression was determined by serial dilution 

PCR reactions for the control gene AtACTIN2 (Appendix 4). 

RT PCR was carried out on 20 ng cDNA using REDTaq® ReadyMixTM PCR Reaction Mix 

(Sigma-Aldrich, UK, Cat. Num. R2523). Reactions were set up as described in the kit instruction 

manual and the PCR conditions used for all reactions were: an initial denaturation step of 30 

seconds at 98ºC, then 35 cycles of 10 seconds at 98ºC, a 30 second annealing step (at 52ºC for 

APT1, 54ºC for AtEIN2, 55ºC for AtPIN1 and AtPIN2, 60ºC for AtTIR1, 63ºC for AtACT2, 

AtNRT1.1, AtNRT2.1 and AtPIP2.2, or 66ºC AtIPT5), and an extension step of 72ºC for 30 

seconds, all followed by a final extension step of 72ºC for 10 min.  

PCR products were separated by electrophoresis on a 1.5% TBE-Agarose gel containing 

Ethidium Bromide (0.5 µl/100ml) to visualize the DNA under UV light. 4 µl aliquots of each 

sample were loaded in separate wells and electrophoresed alongside a 4 µl aliquot of 

Fermentas 100 bp GeneRulerTM (0.5 µg/µl) to size the PCR products. Triplicate samples were 

electrophoresed at 100V (constant voltage) for 40 minutes and photographed under ultra-violet 

light in a Syngene Gel Doc using Syngene Gene Snap software (Syngene, UK; Appendix 4). 

Relative expression raw volumes were calculated using Syngene Gene Tools Software 

(Syngene, UK), transferred to MS Excel (Microsoft Inc., USA) and raw volumes normalised 

against the 300 bp band of the DNA ladder.  
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Table 2.1. Primer pairs used to investigate relative gene expression changes by RT 

PCR. 

Gene Forward Primer Product 

(bp) 

Reference 

 

AtACT2 

(At3g18780) 

 

 

F: TCACAGCACTTGCACCAAGCA 

R: AACGATTCCTGGACCTGCCTCA 

 

 

161 

 

(KL, unpublished) 

AtAPT1 

(At1g27450) 

 

F: CGCCTTCTTCTCGACACTGAG 

R: CAGGTAGCTTCTTGGGCTTC 

 

180 

(320) 

(Postaire et al. 

2010) 

AtNRT1.1 

(At1g12110)  

 

F: AGACCGAACCAAAAGAACGA 

R: CCACGATAACCGCAGCAACC 

 

252 (Orsel et al. 2006) 

AtNRT2.1 

(At1g08090) 

 

F: AGTCGCTTGCACGTTACCTG 

R: ACCCTCTGACTTGGCGTTCTC 

190 (Orsel et al. 2006) 

AtNAR2.1 

(At5g50200) 

 

F: CCAGAAGATCCTCTTTGCTTCACT 

R: CCCAATCGAGCTTAGCGTCCA 

 

199 (Orsel et al. 2006) 

AtPIP2.2 

(At2g37170)  

 

F: GGCAACTTTGCTTGTAAAACTATGC 

R: AGTACACAAACATTGGCATTGG 

 

102 (Postaire et al. 

2010) 

AtPIN1 

(At1g73590) 

 

F: TATGAGATTTGTCGTTGGACCTGCC 

R: CGCGATCAACATCCCAAATATCAC 

 

193 (Casson et al. 

2009) 

AtPIN2 

(At5g57090) 

 

F: CATGTGGAAATGGACCAAGACGG 

R: GACCAAGCAAGGCCAAAGAGAC 

 

209 (Casson et al. 

2009) 

AtTIR1 

(At3g62980) 

F: TGCAGGAATCTGAAAGAGCTTG 

R: GGAAATGGCTAAGCCAGTGG 

 

86 (Shkolnik-Inbar 

and Bar-Zvi 2010) 

 

AtEIN2 

(At5g03280) 

F: TATGACAAGTGGACGTGCATGTT 

R: GCAACTCCCACAACCATGGT 

 

76 (Shkolnik-Inbar 

and Bar-Zvi 2010) 

 

AtABI4 

(At2g40220)  

 

F: TTACCGTGGCGTTCGACAA 

R: GAGTGCGCTTACGTGGCTCT 

 

71 (Shkolnik-Inbar 

and Bar-Zvi 2010) 

 

AtIPT5 

(At5g19040) 

 

F: AGGATTTTCAGCGTGAAGCAA 

R: CTATGATCGGGACACGGTCTCT 

 

69 (Takei et al. 2004) 
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2.5.5. GFP-reporter line microscopy 

Sand-grown GFP-reporter line and wild-type seedlings were imaged in situ using a stereo light-

microscope (M205 FA, Leica, UK) with a GFP2 filter (excitation 480 nm and emission 510 nm) 

and LAS-AF software (Leica, UK). Rhizotrons were opened like a CD-case and positioned 

horizontally and intact whole roots imaged within the sand. Channel settings were as follows: 

Channel 1 (Bright Field), exposure 100ms, gain 1, saturation 50, Zoom 1 (10x), 5 (50x) or 16 

(160x), intensity 330; Channel 2 (GFP2), exposure 1s, gain 3, saturation 50, Zoom 1 (10x), 5 

(50x) or 16 (160x), intensity 750. Images were produced with two-channels overlaid, then auto-

scaled and adjusted to +10% brightness and +10% contrast using MS Word (Microsoft Inc., 

USA). 

 

2.6. Statistical methods 

2.6.1. General ANOVA 

All statistical analyses were carried out using GenStat software (13th Edition, VSN International 

Ltd., UK). For root physiology experiments general analysis of variance (ANOVA) was carried 

out, followed by comparison of means using the LSD (5%). Data were blocked as 

‘Experiment/(Situation.Day.Cases)/Seedling’ where: ‘Experiment’ is taken out as a main 

blocking factor; ‘Situation’ is funnel or agar location; ‘Day’ is day of set-up; ‘Case’ is individual 

CD case or agar plate; ‘Seedling’ accounts for technical replication within cases. By combining 

‘Situation’, ‘Day’ and ‘Cases’, the analysis accounts for all combinations of each factor. When 

appropriate, data were transformed onto the log scale (figure legends will indicate). Graphs 

were made using MS Excel (Microsoft Inc.) or SigmaPlot version 11 (Systat Software Inc., USA) 

and error bars represent standard deviation. 
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3. A Novel Sand Rhizotron System 

In order to improve our understanding of root nutrient acquisition, it is important to consider both 

the plant physiological and soil physical components (Chapman et al. 2012). The first aim of this 

project was to develop an experimental system that facilitated the investigation of Arabidopsis 

(Arabidopsis thaliana) root physiological responses to changes in nutrient supply and that 

utilised a porous growth substrate so that soil physical characteristics can be quantified and 

manipulated.  

The nutrient acquisition responses of Arabidopsis were investigated because this plant has 

been widely adopted as a model laboratory organism due to its short generation time, well 

developed genetics and genomics, small size and modest growth requirements (Bowman 1994; 

Pyke 1994). Its genome has been sequenced (Kaul et al. 2000), leading to the development of 

a superior molecular tool-kit for the analysis of gene expression. Furthermore, a large number of 

mutant and fluorescent reporter line plants with altered expression of genes of interest have 

been characterised. These research tools have been used to investigate many aspects of root 

growth, but this work has largely been undertaken in non-porous laboratory systems which have 

very different physical characteristics than those experienced by a root in soil. The overarching 

aim of this project was to obtain a greater understanding of root nutrient acquisition by exploiting 

the superior research tools available for Arabidopsis within an experimental system that 

facilitates the manipulation of soil hydraulic characteristics and nutrient delivery. 

A sand rhizotron system was developed which enabled the control of nutrient supply and the 

manipulation of soil physical characteristics for the investigation of root responses to changing 

nitrate and water supply (Figure 3.1.). The system built on aspects of previous work that used 

rhizotrons to investigate root growth (Futsaether and Oxaal 2002; Whalley et al. 2004b; 

Devienne-Barret et al. 2006) and other work that utilised sand to manipulate soil physical 

characteristics within the root growth environment (Whalley et al. 1999; Clark et al. 2002; Brown 

et al. 2006). Sand was used as the growth substrate because it retains some of the important 

physical characteristics inherent to soil but, unlike most soils, it has minimal background 

nutrients and microbial activity which have the potential to influence root growth (Hewitt 1966). 

Therefore, by using sand, it is possible to quantify and manipulate the soil physical 
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characteristics that influence nutrient availability and minimise the impact on root growth of 

external factors other than the experimentally manipulated water and nitrate supply. 

 

3.1. The experimental system 

The sand rhizotron system (Figure 3.1.) was set-up by vacuum-saturating a 4 L sintered filter 

funnel (Fisher Scientific, UK) with autoclaved nutrient solution (Figure 3.1.A) in order to support 

water tensions (h, Figure 3.1.B) across a range of 150-450 mm. Rhizotron experimental units 

were created by the modification of clear jewel compact-disc (CD) cases (142 x 124 x 10 mm; 

DVD-and-Media.com, UK) to remove the inner CD holder and top and bottom edges (Figure 

3.1.C). Rhizotrons were positioned on an even 30 mm layer of acid-washed Redhill T sand (J 

Wylie and Sons, UK) within the 4 L sintered filter funnel, filled with acid-washed Redhill T sand 

(J Wylie and Sons, UK) and saturated with autoclaved nutrient solution (Figure 3.1.D). This 

facilitated the continuous connection of nutrient solution from the nutrient reservoir (aspirator) to 

the seedling. Orientation of rhizotrons was at an angle of ~60˚ to encourage the roots to grow 

near to the surface for easy access at harvest. 5 days after germination (see Chapter 2 for 

details), four Arabidopsis seedlings were transferred to the growth media on the exposed upper 

surface before being covered with a clear polythene sheet to minimise evaporative losses. The 

rest of the system was covered with opaque polythene sheets to restrict exposure to light.  

The main purpose of the system was to facilitate independent and combined manipulations of 

water and nitrogen supply to seedlings within a porous growth substrate. The composition of the 

nutrient solution was modified to alter the supply of nitrogen to the seedlings. Nitrate 

concentration (0.1, 1.0 and 10.0 mM) and supply form (KNO3 and NH4NO3) were altered. Water 

supply was manipulated within the system by the use of sands of a different particle size (<250 

µm, 250-425 µm and >425 µm) and by altering the tension height (h, Figure 3.1.B) (150, 300 

and 450 mm) between the top of the nutrient reservoir and the seedlings. The hydraulic 

characteristics for these water treatments were quantified to determine exactly how the water 

availability to roots is altered within the sand rhizotron system. 
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Figure 3.1. The sand rhizotron system. A, the sintered filter funnel was vacuum saturated to 

support tension heights of 150-450 mm; B, rhizotrons were constructed from modified plastic 

jewel CD cases; C, schematic of the system; D, photograph of the uncovered system. 
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3.1.1. The hydraulic characteristics of the root growth environment 

Robust soil physical methods exist to measure the movement of water through a porous 

substrate such as sand (Chapter 1, Section 1.2.1.). These were utilised to determine the 

hydraulic characteristics of each manipulation of water supply within the sand rhizotron system 

(see Chapter 2 for details). The water release characteristic of each sand used was quantified 

(Figure 3.2.A) and the saturated substrate hydraulic conductivity was measured (Figure 3.2.B). 

It was possible to determine relative substrate hydraulic conductivity (Figure 3.2.C) and the data 

were fitted to the van Genuchten model (using the parameters in Table 3.1.) to estimate the 

unsaturated substrate hydraulic conductivity (Table 3.2.).  

The water potential, osmotic potential, matric potential, and the saturated and unsaturated 

substrate hydraulic conductivity were characterised for the sands used in this work (Table 3.2.). 

As expected, the saturated substrate hydraulic conductivity for Redhill T (1.81 m.d-1) was within 

the range of its constituent particle size fractions (1.42-3.23 m.d-1) and saturated substrate 

hydraulic conductivity increased with increasing particle size. Unsaturated substrate hydraulic 

conductivity decreased from 0.99 to 0.17 m.d-1 with increasing particle size and from 1.35 to 

0.18 m.d-1 with increasingly negative matric potential (Table 3.2.).  

Water potential is determined by matric and osmotic potentials and as a result all three 

parameters became increasingly negative with increasing tension height (Figure 3.1.B, h). In the 

sand rhizotron system, manipulation of tension height served to change water supply by altering 

the matric potential. Tension heights of 150, 300 and 450 mm correspond to matric potentials of 

-0.0015, -0.0030 and -0.0045 MPa respectively. Although the matric potential adjacent to the 

root drops as roots extract water (Carminati et al. 2010), the matric potentials in the sand 

rhizotron system are a reasonable estimate of the matric potential at the sand-root interface 

because the hydraulic conductivities are at relatively high bulk matric potential (Whalley et al. 

2000). For all sands, water potential decreased by more than could be accounted for by matric 

potential as the contribution of osmotic potential to water potential is around 100 fold larger than 

that of the matric potential (Table 3.2.). Therefore, the water potential within the sands was 

predominantly determined by the osmotic potential of the nutrient solution. The influence of 

comparatively small changes in matric potential on water potential is minor but can be viewed 

as a way of manipulating the flux of water through the sand. 



65 
 

 

Table 3.1. van Genuchten parameters for all sands. θs and θr are the saturated and residual 

volumetric water contents and α, m and n are fitted parameters. 

 

Sand 
θs  

(cm
3
/cm

3
) 

θr  
(cm

3
/cm

3
) 

α  
(hPa

-1
) 

m 
 

 
n 

      

Redhill T 0.3972 0.915 0.022 0.768 4.311 

<250 µm 0.4490 0.991 0.024 0.839 6.224 

250-425 µm 0.4421 1.055 0.032 0.889 8.980 

>425  µm 0.4339 1.021 0.034 0.891 9.193 
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Figure 3.2. Physical characterisation of the sands. A, the water release characteristic 

(dashed lines indicate the tension heights used); B, saturated hydraulic conductivity (Ksat); and 

C, relative hydraulic conductivity.  
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Table 3.2. Summary of sand physical characteristics. Total water potential (Ψt), matric 

potential (Ψm), osmotic potential (Ψo), saturated hydraulic conductivity (Ksat) and unsaturated 

hydraulic conductivity (Kunsat) for all sands. Water potential was altered in Redhill T sands by 

varying the tension height of the system, which is an approximation to the matric potential 

seen by the root. 

 

Sand 
 

Ψt 
(MPa) 

Ψm 
(MPa) 

Ψo 
(MPa) 

Ksat 

(m.d
-1

) 
Kunsat 

(m.d
-1

) 

      

Redhill T -0.1100 -0.0015 -0.1085 - 1.35 

Redhill T -0.3300 -0.0030 -0.3270 1.81 0.79 

Redhill T -0.4000 -0.0045 -0.3955 - 0.18 

<250 µm -0.0600 -0.0030 -0.0570 1.42 0.99 

250-425 µm -0.2600 -0.0030 -0.2570 2.01 0.36 

>425 µm -0.3300 -0.0030 -0.3270 3.23 0.17 

      

   



68 
 

In summary, unsaturated substrate hydraulic conductivity decreased as water potential became 

increasingly negative. Whilst the water potential within the sands was predominantly determined 

by the osmotic potential of the nutrient solution, manipulation of matric potential can serve to 

alter sand water flux and represents an estimation of matric potential at the root-soil interface. 

The effect of manipulating matric potential or the size of sand particles was primarily to change 

the hydraulic conductivity of the sand to water and hence the flux of water to the root surface. 

Consequently, these two manipulations alter the availability of water (and dissolved nutrient 

ions) to roots, but via slightly different combinations of water potential and substrate hydraulic 

conductivity. 

 

 

3.2. Comparing the sand rhizotron system to agar culture 

Agar culture is a common laboratory system for the investigation of root physiology and has 

been widely used to determine the influence of nitrate and water on root development. 

However, the physical characteristics of gel (e.g. agar) and porous (e.g. sand) substrates are 

different and may alter the availability of water and nitrate to influence root physiology (Spomer 

and Smith 1996; Zhang et al. 2005; Prunty and Bell 2007; Whalley et al. 2009).  

To confirm the suitability of the sand rhizotron system for the investigation of root physiological 

responses to nutritional supply, a direct comparison of root physiological responses was made 

with agar culture under identical growth conditions at high nitrate (10.0 mM KNO3) supply. The 

comparison was made with Redhill T sand at a matric potential of -3.0 kPa. Arabidopsis ecotype 

WS seedlings were germinated and grown either on agar plates or sand rhizotrons for 7 days. 

At 12 dpg, root proliferation parameters were measured and seedlings were harvested. RNA 

was extracted for RT PCR gene expression analysis (see Chapter 2 for details). 

Comparing the sand rhizotron system with agar culture identified some important differences 

and similarities in the response of root physiological characteristics. The primary root length 

(PRL) of sand-grown seedlings was significantly longer (P < 0.01; d.f. 57) than that of agar-

grown plants (Figure 3.3.). Conversely, total lateral root length (TLRL) was significantly longer 

(P < 0.05; d.f. 57) in agar-grown seedlings when compared with those grown in sand. However, 
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the same relative response of individual characteristics was observed in both systems, i.e. PRL 

was longer than BRL and BRL was longer than TLRL in both substrates. 

The expression of key genes relating to nutrient acquisition was measured using semi 

quantitative RT PCR. AtNRT1.1, AtNRT2.1 and AtPIP2.2 expression was unaltered between 

agar- and sand-grown seedlings (Figure 3.4.). AtNAR2.1 expression was increased for agar-

grown seedlings relative to sand-grown seedlings (Figure 3.4). For the suite of nutrient-

regulated hormone genes, no relative change in expression was detected between seedlings 

grown in agar or sand for AtPIN1, AtPIN2, AtTIR1 or AtEIN2. However, AtABI4 and AtIPT5 were 

both slightly increased in agar-grown seedlings relative to sand-grown seedlings (Figure 3.5.).  

 

3.3. Why is root physiology different between sand and agar? 

When the root growth environments of sand and agar are compared there are several potential 

factors that could influence root proliferation and gene expression, including differences in 

sterility, light exposure, gas exchange, and the physical characteristics of the substrates.  

It is not possible to state that the sand rhizotron system was as sterile as agar culture. However, 

the potential influence on root growth of nutrient cycling from microbial activity or growth-

promoting bacteria (Kraiser et al. 2011; Jiang et al. 2012) was minimised in the sand rhizotron 

system through acid-wash treatment of the sand, autoclave treatment of the nutrient solution 

and by covering the system in opaque sheeting. Thus, it is unlikely that microbial or algal activity 

is responsible for the differences in root physiology observed between agar and sand. 

Phytohormone-mediated light inhibition of root growth has been demonstrated (Adams and 

Turner 2010) and light exposure to roots is different between agar culture and the sand 

rhizotron system. Interestingly, AtABI4 and AtIPT5 expression was increased in agar-grown 

seedlings (Figure 3.5.). However, there was no significant difference in total root proliferation 

between normal agar-grown seedlings and those with limited root light exposure (Figure 3.6.). 

Hence, the difference in light exposure to roots is unlikely to be driving the altered root 

proliferation responses between sand and agar. 
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Figure 3.3. Comparison of root proliferation responses to high nitrate supply between 

agar and sand. PRL, primary root length; BRL, basal root length; LRN, lateral root number; 
TLRL, total lateral root length; LRD, lateral root density; TRL, total root length. For each 
treatment, n = 120; d.f. 57. Significance, ** P < 0.01, * P < 0.1. 
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Figure 3.4. Relative expression of important nitrate and water uptake genes in agar and 

sand systems. For each treatment, n = 120. Level of AtNRT2.1 expression may be 

underestimated due to saturation. 
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Agar and sand may also differ in gas exchange at the root surface which may impact on root 

growth. Oxygen availability or the supply of gaseous hormones (e.g. ethylene) can influence 

root growth (Verslues et al. 1998; Ivanchenko et al. 2008). Localised gradients may develop 

differently for roots in wet sand where there is less opportunity for gas exchange compared to 

roots on the surface of agar where one half of the root is permanently exposed to air. However, 

all but one sand treatment (Table 3.2., row 1) subjected roots to unsaturated conditions and 

previous work concluded that oxygen availability did not limit growth in a similar sand system 

(Whalley et al. 1999). In addition, Arabidopsis seedlings have a relatively low transpiration 

demand (Christman et al. 2008) and the seedlings were grown in a covered system. As a result, 

it is unlikely that significant moisture gradients will develop near the root in the sand rhizotron 

system. Furthermore, there was no observable difference for the expression of the ethylene 

signalling gene AtEIN2 (Figure 3.5.) indicating that external gaseous ethylene concentration 

was similar between substrates. Therefore, it is reasonable to assume that roots are sufficiently 

aerated in the sands used in this study and that differences in availability of air or gaseous 

exchange are not responsible for divergent root physiological responses in agar and sand. 

Mechanical impedance in some porous substrates can alter root proliferation and is particularly 

important for PR growth (Lachno et al. 1982; Bengough and Mullins 1991; Clark et al. 1996; 

Whalley et al. 2004a; Brown et al. 2006). Physical impedance to root growth is not typical of 

agar culture because roots grow along the surface of agar. Also, the pore size of sand used in 

this work is sufficient for fine Arabidopsis roots (typical diameter 150 µm; Bowman 1994) to 

grow between particles and thus not be impeded. Furthermore, PRL was actually increased in 

the sand system not decreased as would be expected if the sand was offering mechanical 

impedance to root growth. Therefore, differences in mechanical impedance between agar and 

sand cannot explain the root proliferation differences observed in these experiments.  
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Figure 3.5. Relative expression of hormone-associated genes in agar and sand 

systems. For each treatment, n = 120. 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

A
t
P
IN
1

0.0

0.2

0.4

0.6

0.8

1.0

A
t
P
IN
2

0.0

0.2

0.4

0.6

0.8

1.0

A
t
T
IR
1

0.0

0.2

0.4

0.6

0.8

1.0

A
t
E
IN
2

0.0

0.2

0.4

0.6

0.8

1.0

Agar Sand

A
t
A
B
I4

0.0

0.2

0.4

0.6

0.8

1.0

Agar Sand

A
t
IP
T
5



74 
 

 

Figure 3.6. Root light exposure had no effect on root length. Seedlings were grown on 

normal agar plates or on plates with light excluded from the roots by opaque sheeting. There 

was no significant difference in total root length (TRL, mm). For each treatment, n = 24; d.f. 5. 
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Figure 3.7. Nitrate-selective microelectrodes were used to measure the nitrate 

concentration of agar. A, samples of agar were removed at the primary root surface and 20 

mm away; B, the concentration at 20 mm away from the primary root was significantly greater 

than at the primary root surface. Agar with no plants was used as a control. For each 

treatment, n = 3; d.f. 6. Significance: *, P < 0.01.  
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3.4. Using nitrate-selective microelectrodes to measure nitrate at the root 

surface 

Differences in physical characteristics between gel (e.g. agar) and porous (e.g. sand) substrates 

could alter the availability of water and nitrate (Spomer and Smith 1996; Zhang et al. 2005; 

Prunty and Bell 2007; Whalley et al. 2009). A change in water and nitrate availability influences 

root proliferation (Sharp et al. 1988; Verslues et al. 1998; Zhang and Forde 1998; Malamy and 

Ryan 2001; Deak and Malamy 2005) and transporter gene expression (Alexandersson et al. 

2005; Krouk et al. 2010a; Bao et al. 2011). Unfortunately, it was not possible to obtain steady 

water potential readings or to determine substrate hydraulic conductivity for agar using the 

same methods that were used to characterise the sands. However, AtNAR2.1, AtABI4 and 

AtIPT5 expression is known to be responsive to nitrate and differed between agar- and sand-

grown seedlings, indicating that nitrate availability may have been altered between the two 

systems. 

It was postulated that an area of localised depletion could occur around the root as nitrate is 

taken up and that this is not easily replenished in agar relative to sand due to different hydraulic 

properties. This depletion effect was tested by the use of nitrate-selective microelectrodes to 

determine the nitrate concentration of agar next to the root and 20 mm away (see Chapter 2 for 

details; Figure 3.7.A). In agar without plants the nitrate concentration was equal to the original 

10.0 mM supplied and nitrate concentration at 20 mm away from the root was around 4 times 

greater than at the surface of the root (P < 0.01; d.f. 6; Figure 3.7.B). The concentration 

observed at 20 mm away from the root was greater than the initial 10.0 mM added to the agar.  

This indicates that rather than a localised depletion of nitrate by root uptake decreasing nitrate 

availability, water is moving from the edge of the plate towards the root as the plant takes up 

water from the substrate during growth. This decrease in water content could be due to the finite 

volume of water within the agar Petri dish system and create the perceived increase in nitrate 

concentration at 20 mm away from the root.  

A relative difference in the volume of water supplied in each system may be important. PRL was 

increased in the sand rhizotron system compared to agar culture (Figure 3.3.) and increased 

nitrate concentration at 20 mm away from the root is caused by decreased water content 

(Figure 3.7.). PRL depends on cellular expansion driven by the influx of water (see review by 
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Maurel et al. 2008) and has been shown to be unresponsive to nitrate concentration in agar 

(Forde and Zhang 1998; Linkohr et al. 2002; Deak and Malamy 2005; Walch-Liu and Forde 

2008). Consequently, a decreased PRL in agar compared to sand could be explained by a 

decreased volume of available water to drive cellular expansion. 

LR growth is increased in response to patches of high nitrate when initially supplied with low 

nitrate (Drew 1975; Zhang et al. 1999; Malamy and Ryan 2001) and is repressed in response to 

decreased water availability (Deak and Malamy 2005). TLRL was increased in agar relative to 

sand (Figure 3.3.) and the availability of water in agar was decreased compared with the sand 

rhizotron system. Although initially supplied with high nitrate (10 mM KNO3), the nitrate 

concentration at 20 mm away from the root greatly increased (Figure 3.7.) and this was 

sufficient to induce the LR high nitrate patch response. Thus, an increased TLRL for agar-grown 

seedlings is likely to be a response to the formation of high-nitrate patches as water content 

decreases due to the finite volume of water supplied in agar Petri dishes. This response is not 

seen for sand-grown seedlings at this unsaturated hydraulic conductivity because the greater 

volume of nutrient solution available and the connectivity of solution mean that patches are less 

likely to form. 

 

3.5. Summary and conclusions; the sand rhizotron system is fit for purpose 

The results obtained indicate that differences in the root physiological response to nitrate supply 

between agar culture and the sand rhizotron system are caused by differences in the physical 

characteristics of the substrate. These differences are further compounded by the dissimilarity 

in volume of nutrients supplied in the respective systems. These data emphasise the need to 

consider the impact of the soil physical component of root nutrient acquisition on nutrient-

regulated root physiology changes. 

In addition to some important root physiology differences between the sand and agar systems, 

there were some conserved responses that highlight the suitability of the sand rhizotron system 

to investigate nutrient-regulated root physiology changes. The overall response of the root 

proliferation characteristics was conserved between growth substrates, e.g. PRL was longer 

than BRL and BRL was longer than TLRL in both substrates (Figure 3.3.). Thus, the sand 
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rhizotron system detected the same relative response of individual root characteristics that was 

observed in agar.  

The expression of AtNAR2.1 (Figure 3.4.), and AtABI4 and AtIPT5 (Figure 3.5.) was altered 

between systems (Figure 3.4.). This suggests that differences in hydraulic characteristics that 

alter nutrient availability can directly influence both root proliferation and gene expression. 

Therefore, a greater understanding of nutrient acquisition is likely to be gained by investigating 

root physiological responses to manipulation of the soil physical characteristics that determine 

nitrate and water availability.  

The quantification of the hydraulic characteristics of the sands and the ability to alter the nitrate 

supply enables the sand rhizotron system to be used for the consideration of both the root 

physiological and soil physical aspects of nutrient acquisition. The overall nutrient responses 

observed in agar culture are detected using the sand rhizotron system but there were some 

important differences driven by disparities in hydraulic characteristics and the volume of 

nutrients supplied. 

 

The main conclusions of this chapter are summarised below: 

� A novel sand rhizotron system was developed to investigate Arabidopsis root nutrient 

acquisition responses to altered water and nitrate availability as a result of manipulated soil 

physical characteristics;  

� Methods to analyse root proliferation and gene expression components of root nutrient 

acquisition were developed;  

� Disparities in several root proliferation and gene expression parameters between seedlings 

grown on agar and sand culture may be explained by differences in hydraulic properties of 

the root growth environment and the volume of nutrients available in each system; 

� These results highlighted the importance of considering soil physical properties in root 

nutrient acquisition studies. 
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The consideration of root physiological responses in a porous substrate may identify responses 

that are not observed in agar culture. These may be important in order to better understand root 

nutrient acquisition in the field as some of the physical characteristics of soil are better retained 

in sand compared to agar (Chapter 1, Table 1.1., p29). Therefore, the sand rhizotron system 

was adopted to investigate Arabidopsis root proliferation (Chapter 4) and gene expression 

(Chapter 5) responses to manipulations of nitrate and water supply. 
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4. Root Proliferation Responses to Altered Water and Nitrate Supply 

The continued growth and proliferation of the root is a significant physiological component of 

nutrient acquisition (Jungk 1996). In order to better understand the response of this component 

to altered nitrate and water supply, the root proliferation responses of Arabidopsis (Arabidopsis 

thaliana) seedlings were measured under a series of manipulated nutrient regimes within the 

sand rhizotron system.  

 

4.1. The influence of different nitrate forms on root proliferation 

The influence of nitrogen form on root proliferation in the sand rhizotron system was 

investigated by comparing nitrogen supplied as potassium nitrate (10.0 mM KNO3) or as 

ammonium nitrate (5.0 mM NH4NO3; Figure 4.1.). Arabidopsis ecotype WS seedlings were 

germinated and grown on sand rhizotrons for 7 days. At 12 dpg, primary root length (PRL, mm), 

basal root length (BRL, mm), lateral root number (LRN, of length ≥ 1mm), total lateral root 

length (TLRL, mm), lateral root density (LRD, LRN per mm PRL) were measured (see Chapter 2 

for details).  

When supplied with 10.0 mM KNO3, PRL, BRL and total root length (TRL, mm; the sum of PRL, 

BRL and TLRL) were significantly longer than those provided with 5.0 mM NH4NO3 (P < 0.001; 

d.f. 72; Figure 4.1.). There was no effect on LR growth (LRN, TLRL or LRD). An increased PRL, 

and no effect on LRN, was observed when 10.0 mM nitrogen was supplied only as nitrate (10.0 

mM KNO3) relative to a combined supply (5.0 mM NH4NO3; Figure 4.1.). LR growth has been 

previously shown to be unresponsive to the availability of different mineral forms in soil (Bloom 

et al. 1993).  

In a previous agar culture study, no effects were observed for LRN, but PRL was shown to 

decrease by ~20% for a 20.0 mM increase in ammonium provision relative to potassium (Li et 

al. 2010b). Despite maintaining a constant potassium supply (via the supply of K2SO4), a ~20% 

decrease in PRL was observed for a 5.0 mM increase in ammonium availability, and a 5.0 mM 

decrease in nitrate availability, within the sand rhizotron system (Figure 4.1.). As it is not 

possible to categorically say that the sand rhizotron system is completely sterile, there is the 

possibility for bacterial conversion of ammonium to nitrate (Miller and Cramer 2005), but this is 



81 
 

probably minimal in acid-washed sand. Moreover, PRL has been shown to be unresponsive to 

altered nitrate availability (Walch-Liu and Forde 2008), so our data suggest that PRL is 

responding to an increase in ammonium supply within our system. The aim of the sand 

rhizotron method is to remove the influence of other factors (i.e. ammonium inhibition) on root 

proliferation. Therefore, potassium nitrate was adopted as the sole means of nitrate provision 

for the following experiments that investigated root proliferation responses to altered water and 

nitrate supply. 

 

4.2. The influence of water supply on root proliferation across a range of nitrate 

supplies 

The influence of altered water supply was investigated at low (0.1 mM), medium (1.0 mM) and 

high (10.0 mM) nitrate (KNO3) supply to determine the impact of combined manipulations of 

water and nitrate supply on root proliferation. Water supply to the root was manipulated via the 

use of sands of different particle size or sands at different matric potential. These manipulations 

subjected the seedlings to altered water potentials and substrate hydraulic conductivities 

(Chapter 3, Table 3.2.). For each treatment, Arabidopsis ecotype WS seedlings were 

germinated and grown on sand rhizotrons for 7 days. At 12 dpg, root proliferation parameters 

were measured and seedlings were harvested (see Chapter 2 for details). 

At low (0.1 mM) nitrate input, PRL increased with increasing particle size (P < 0.001, d.f. 149; 

Figure 4.2.A) and was increased at the most negative matric potential (P < 0.001, d.f. 169; 

Figure 4.3.A). BRL was decreased at the largest particle size (P < 0.01, d.f. 149; Figure 4.2.B) 

and increased at the least negative matric potential (P < 0.01, d.f. 169; Figure 4.3.B). LRN was 

unresponsive to manipulation of water supply by particle size but was greatly increased at the 

least negative matric potential (P < 0.001, d.f. 169; Figure 4.3.C). TLRL (P < 0.01, d.f. 149) and 

LRD (P < 0.001, d.f. 149) decreased at the largest particle size (Figure 4.2.D and E) and both 

increased at the least negative matric potential (P < 0.001, d.f. 169; Figure 4.3.D and E). 
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Figure 4.1. Root proliferation responses to different forms of nitrate. Significance: * P < 

0.001; n = 72. Key:  10.0 mM KNO3;  5.0 mM NH4NO3. 
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Figure 4.2. Root proliferation responses to manipulation of water supply by altered 

sand particle size under low (0.1 mM), medium (1.0 mM) and high (10.0 mM) nitrate 

supply. Significance compared at each nitrate concentration: ***, P < 0.001, **, P < 0.01, *, P 

< 0.05. D.f. 149. Key:  <250 µm;  250-425 µm;   >425 µm. 
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Figure 4.3. Root proliferation responses to manipulation of water supply by altered 

matric potential under low (0.1 mM), medium (1.0 mM) and high (10.0 mM) nitrate supply. 

Significance compared at each nitrate concentration: **, P < 0.001, *, P < 0.01. D.f. 169. Key: 

 -1.5 kPa;   -3.0 kPa;   -4.5 kPa. 
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Figure 4.4. Basal root length was stimulated by high nitrate supply when water supply 

was manipulated by altered matric potential (A) and particle size (B). Significance: *, P < 

0.001, A, d.f. 169. B, d.f. 169. Key:  0.1 mM;  1.0 mM;  10.0 mM. 
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Under medium (1.0 mM) nitrate supply, PRL again increased with increasing particle size (P < 

0.001, d.f. 149; Figure 4.2.A) and was increased at the most negative matric potential (P < 

0.001, d.f. 169; Figure 4.3.A). BRL again decreased at the largest particle size (P < 0.01, d.f. 

149; Figure 4.2.B) and increased at the least negative matric potential (P < 0.01, d.f. 169; Figure 

4.3.B). LRN was increased at the smallest particle size (P < 0.05, d.f. 149; Figure 4.2.C) and the 

least negative matric potential (P < 0.001, d.f. 169; Figure 4.3.C). TLRL was increased at the 

smallest particle size (P < 0.01, d.f. 149; Figure 4.2.D) and the least negative matric potential (P 

< 0.001, d.f. 169; Figure 4.3.D). LRD was also increased at the smallest particles size (P < 

0.001, d.f. 149; Figure 4.2.E) and the least negative matric potential (P < 0.001, d.f. 169; Figure 

4.3.E). 

At high (10.0 mM) nitrate provision, PRL retains its positive response to increasing particle size 

(P < 0.001, d.f. 149; Figure 4.2.A) and increases with increasingly negative matric potential (P < 

0.001, d.f. 169; Figure 4.3.A). BRL increases with increasing particle size (P < 0.01, d.f. 149; 

Figure 4.2.B) and is increased at the most negative matric potential (P < 0.01, d.f. 169; Figure 

4.3.B). LRN was once again increased at the smallest particle size (P < 0.05, d.f. 149; Figure 

4.2.C) and decreased with increasingly negative matric potential (P < 0.001, d.f. 169; Figure 

4.3.C). TLRL was unresponsive to changes in particle size but decreased with increasingly 

negative matric potential (P < 0.001, d.f. 169; Figure 4.3.D). Once more, LRD was strongly 

increased at the smallest particle size (P < 0.001, d.f. 149; Figure 4.2.E) and decreased with 

increasingly negative matric potential (P < 0.001, d.f. 169; Figure 4.3.E). 

The root proliferation responses to altered water and nitrate supply are summarised in Table 

4.1. PRL was negatively regulated by increased water supply and this appeared to be 

independent of nitrate input (Figures 4.2.A and 4.3.A). By contrast, the response of BRL to 

water supply was much more dependent on nitrate supply (Figure 4.2.B, 4.3.B and 4.4.). LR 

growth (LRN, TLRL and LRD) characteristics were all strongly increased in response to water 

supply as manipulated by altered matric potential. This was the case at each nitrate supply, 

although LRN, TLRL and LRD were all increased at high nitrate supply under medium water 

availability (Figure 4.3.C, D and E). Whilst LRN and TLRL responded to increased water supply 

as manipulated by particle size, only LRD retained a strong positive response to increased 

water supply that was observed at each nitrate supply (Figures 4.2.E and 4.3.E). At increased 

water availability LRN, TLRL and LRD were all decreased at low (0.1 mM) nitrate supply. 
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4.3. Relating root proliferation responses to hydraulic characteristics  

PRL has been shown to be stimulated at small negative (-0.1 to -0.2 MPa) water potential, 

before decreasing with increasingly negative matric potential in a linear fashion (Taylor and 

Ratliff 1969; Sharp et al. 1988; Verslues et al. 1998; van der Weele et al. 2000; Passioura 2002; 

Wiegers et al. 2009; Bengough et al. 2011). The water potentials experienced within the sand 

rhizotron system (-0.06 to -0.40 MPa) exceed the narrow range reported for the stimulation 

response. However, PRL continued to increase with increasingly negative water potential rather 

than exhibiting the linear decrease, indicating that PRL may be responding to something other 

than water potential.  

The contribution of matric potential and osmotic potential to water potential was varied for the 

two manipulations of water supply, but both manipulations achieve an ~85% change in 

unsaturated hydraulic conductivity (Chapter 3, Table 3.2.). When PRL data from both 

manipulations of water supply were pooled, the strongest relationship found was the negative 

correlation with unsaturated hydraulic conductivity at low (r -0.85, P < 0.001; Figure 4.5.A), 

medium (r -0.88, P < 0.001; Figure 4.5.B) and high (r -0.78, P < 0.001; Figure 4.5.C) nitrate 

supplies and in fact the strong regulation of PRL by unsaturated hydraulic conductivity was 

independent of nitrate supply (r -0.84, P < 0.001). Thus, the conserved PRL response between 

the two manipulations of water supply was a response to altered unsaturated hydraulic 

conductivity rather than water potential.   

BRL showed no clear relationship with water supply manipulated by either particle size or matric 

potential, but instead was positively regulated by increasing nitrate concentration (P < 0.001; 

Figure 4.4., A d.f. 169, and B d.f. 149). A ~45% increase in BRL was observed when nitrate 

provision was doubled (from 5.0 mM to 10.0 mM) at constant unsaturated hydraulic conductivity 

(0.79 m.d-1; Chapter 4, Figure 4.1., p86). This doubling of nitrate also coincided with the removal 

of ammonium supply. Here, a ~65-70% increase was observed for a 10-fold increase (from 1.0 

mM to 10.0 mM) in nitrate supply at low unsaturated hydraulic conductivity (0.17-0.18 m.d-1; 

Figure 4.4.). This suggests that BRL is positively regulated by increased nitrate supply at 

constant unsaturated hydraulic conductivities and could be negatively regulated by ammonium 

in a similar manner to PRL. 
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Table 4.1. Summary of root proliferation responses to nitrate supply across two 

manipulations of water supply.   

 

Root trait Water manipulation Low nitrate Medium nitrate High nitrate 

 

PRL 

 

Increasing particle size 

Increasing matric potential 

 

 

Increased 

Increased 

 

Increased  

Increased 

 

Increased  

Increased 

BRL* Increasing particle size 

Increasing matric potential 

 

No trend 

Decreased 

 

Decreased 

Decreased 

 

Increased  

No trend 

LRN** Increasing particle size 

Increasing matric potential 

 

Unresponsive 

Decreased  

Decreased 

Decreased 

Decreased 

Decreased  

TLRL** 

 

Increasing particle size 

Increasing matric potential 

 

Decreased 

Decreased 

Decreased 

Decreased 

Unresponsive 

Decreased 

LRD** Increasing particle size 

Increasing matric potential 

 

Decreased 

Decreased 

Decreased 

Decreased  

Decreased 

Decreased 

*BRL was positively regulated by nitrate supply rather than water supply. 

**LRN, TLRL and LRD were increased at high (10.0 mM) nitrate supply at medium matric 
potential and decreased at low (0.1 mM) nitrate supply at smallest particle size. 
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Manipulation of matric potential had a more profound effect on LR growth (Figures 4.2. and 

4.3.). LRN, TLRL and LRD all increased at the least negative matric potential (P < 0.001, d.f. 

169; Figure 4.3.C, D and E) at each nitrate concentration supplied. In fact, when data from both 

manipulations of water supply were pooled, LRD was negatively correlated with water potential 

at low (r -0.87, P < 0.001; Figure 4.6.A), medium (r -0.89, P < 0.001; Figure 4.6.B) and high (r -

0.62, P < 0.05; Figure 4.6.C) nitrate supplies. However, LRN, TLRL and LRD were increased at 

high (10.0 mM) nitrate supply at medium matric potential and decreased at low (0.1 mM) nitrate 

supply at the smallest particle size. Therefore, it is not possible to say that the response of LR 

growth to water supply was independent of nitrate.  

Water potential is mainly determined by the osmotic component in our sand rhizotron system 

and a similar range of unsaturated hydraulic conductivity is achieved for both manipulations of 

water supply (Chapter 3, Table 3.2., p71). It has been previously shown that LRD decreased by 

~40% in response to a ~25% increase (from -0.514 to -0.6746 MPa) in osmotic potential under 

constant 10.0 mM nitrate supply (Deak and Malamy 2005). In response to a ~70% increase in 

osmotic potential (from -0.1085 to -0.3955 MPa) at constant 10.0 mM nitrate supply, a 

decreased LRD of ~60% was observed (Figure 4.3.E) and a similar change (~65%) was 

observed for an ~80% increase (from -0.0570 to -0.3270 MPa; Figure 4.2.E). The regulation of 

LRD by osmotic potential was independent of nitrate supply. LRN demonstrated a similar 

response (Figures 4.2.C and 4.3.C). This suggests that LRD and LRN are also responding to 

altered osmotic potential within our system. 

In addition to LRN and LRD, TLRL has been shown to decrease by ~60% in response to a 

~25% increase (from -0.514 to -0.6746 MPa) in osmotic potential under constant 10.0 mM 

nitrate supply (Deak and Malamy 2005; Roycewicz and Malamy 2012). A ~65% decrease in 

TLRL for a ~70% increase (from -0.1085 to -0.3955 MPa) in osmotic potential at constant 10.0 

mM supply was found when water flux was manipulated by changing matric potential (Figure 

4.3.D). Interestingly, no change in TLRL was observed for an ~80% increase (from -0.0570 to -

0.3270 MPa) in osmotic potential under constant 10.0 mM nitrate supply at constant matric 

potential (Figure 4.2.D). Therefore, it seems that TLRL is responding to small changes in matric 

potential (from -0.0015 to -0.0045 MPa) independent of changes in osmotic potential and 

unsaturated hydraulic conductivity. The root proliferation responses to hydraulic characteristics 

are summarised in Table 4.2.. 
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Figure 4.5. Primary root length (PRL) negatively correlated with unsaturated hydraulic                

conductivity (Kunsat) at low (A), medium (B) and high (C) nitrate supply. Data were plotted 

for both particle size (white circles) and matric potential (black circles) manipulations of 

substrate hydraulic conductivity (Kunsat). Each point represents the mean value for one replicate 

of 24 seedlings. 
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Figure 4.6. Lateral root density (LRD) negatively correlated with water potential (Ψt) at 

low (A), medium (B) and high (C) nitrate supply. Data were plotted for both particle size 

(white circles) and matric potential (black circles) manipulations of water potential. Each point 

represents the mean value for one replicate of 24 seedlings. 
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Table 4.2. Summary of root proliferation responses to specific hydraulic 

characteristics. The strongest relationship for each parameter is presented here.  

 

Parameter Manipulation of water supply 

 

PRL 

 

Negatively regulated by increasing unsaturated hydraulic conductivity* 

 

BRL Negatively regulated by increasing unsaturated hydraulic conductivity under 

high nitrate supply 

 

LRN Negatively regulated by increasingly negative osmotic potential* 

 

TLRL Negatively regulated by increasingly negative matric potential* 

 

LRD Negatively regulated by increasingly negative osmotic potential* 

 

*at each nitrate supply. 
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4.4. Root proliferation responses to water flux were independent of nitrate 

availability at the root surface 

PRL was regulated by unsaturated hydraulic conductivity and LRD by water potential, at each 

nitrate supply (Figures 4.5. and 4.6.). Manipulation of hydraulic characteristics influences the 

delivery of water and dissolved nitrate ions to the root. This makes it difficult to determine 

whether root proliferation changes are a direct response to water supply or an indirect response 

to altered nitrate delivery.  

Although nitrate has been excluded from PRL regulation in agar (Linkohr et al. 2002; Walch-Liu 

and Forde 2008), LR growth has been shown to respond to both water availability and high 

nitrate patches (Drew 1975; Zhang et al. 1999; Ryan et al. 2003; Deak and Malamy 2005). 

Changes in nitrate availability have been suggested to be sensed by nitrate transporters (NRTs) 

at the PR tip (AtNRT1.1) and along the PR (AtNRT2.1) which then coordinate root proliferation 

changes in response to nitrate availability (reviewed by Ho and Tsay 2010). 

To determine whether root proliferation was directly responding to water flux or indirectly 

responding to nitrate availability, nitrate concentrations were determined at the sensing regions 

of the PR using nitrate-selective microelectrodes for seedlings grown under low (0.1 mM) or 

high (10.0 mM) nitrate supply at three different unsaturated hydraulic conductivities. For each 

treatment, Arabidopsis ecotype WS seedlings were germinated and grown on sand rhizotrons 

for 7 days. At 12 dpg, root proliferation parameters were measured and seedlings were 

harvested (see Chapter 2 for details).  

There was no statistical difference in nitrate concentration at the root surface when compared 

by general ANOVA (Table 4.3.), despite being subjected to altered unsaturated hydraulic 

conductivity under both low (0.1 mM) and high (10.0 mM) nitrate supply. However, this could be 

due the variation in measured nitrate activity and the conversion to nitrate concentration. 

Evaluation of Table 4.3. reveals that measured nitrate concentrations appeared to be very 

different at extremes of unsaturated hydraulic conductivity under low (0.1 mM) supply. The 

difference in nitrate availability at the root surface under low (0.1 mM) nitrate supply may explain 

why LRN, TLRL and LRD were decreased under low (0.1 mM) supply at increased water 

availability. Interestingly, the measured nitrate concentrations were much greater than the 

concentrations originally supplied (Table 4.3.).  
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Table 4.3. Nitrate concentration at the primary root surface at altered unsaturated 

hydraulic conductivity (Kunsat) manipulated by the use of sands of different particle 

size. Nitrate-selective microelectrodes were used to measure the nitrate concentration at the 

root surface of Arabidopsis seedlings supplied with 0.1 and 10.0 mM KNO3. Values 

presented are the mean values of 3-5 measurements.  

 

  

Nitrate concentration (mM) 

0.1 mM supply   10.0 mM supply 

 

Kunsat (m.d
-1

) 

 

Root Tip 

 

Root Tip - 2mm 

 

Root Tip 

 

Root Tip - 2mm 

 

0.17 

 

0.36 

 

0.99 

 

102.1 ± 2.75 

 

78.8 ± 9.88 

 

14.4 ± 0.66 

 

69.4 ± 3.13 

 

81.4 ± 5.06 

 

32.3 ± 3.90 

 

59.7 ± 7.31 

 

26.9 ± 8.25 

 

48.4 ± 6.45 

 

88.6 ± 12.5 

 

73.1 ± 6.19 

 

67.2 ± 6.45 
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4.5. The negative influence of ammonium nitrate is exaggerated in the sand 

rhizotron system 

PRL decreased within the sand rhizotron system by more than would be predicted from agar 

culture experiments in response to 5.0 mM increase in ammonium provision (Li et al. 2010b). 

However, larger-than-normal concentrations are required in agar culture to reproduce 

responses observed in soil or solution culture because of the diffusion limitations of agar (Li and 

Shi 2007; Barth et al. 2010; Li et al. 2010b). This is likely to be further compounded by 

differences in the relative mobility of nitrate and ammonium (Owen and Jones 2001), due to a 

disparity in the effective soil diffusion coefficient (De) of around two orders of magnitude 

between nitrate (3.26 x 10-10 m2 s-1) and ammonium (2.70 x 10-12 m2 s-1) (Miller and Cramer 

2005). Indeed, variation in root proliferation responses to altered ammonium and nitrate supply 

have been reported between soil and solution culture (Bloom et al. 1993), presumably due to 

altered physical characteristics between these substrates that impact on ion delivery to the root. 

Therefore, a difference in hydraulic characteristics between agar and sand is likely to account 

for the exaggerated PRL response to ammonium supply observed for sand-grown seedlings, 

compared to that previously reported for agar (Li et al. 2010b).  

There are no reports of nitrate regulation of BRL. The nutritional regulation of BRL can be 

distinct from the PRL, as is the case for phosphate (Bonser et al. 1996; Liao et al. 2001; Fitter et 

al. 2002; Zhu et al. 2005; Basu et al. 2011; Péret et al. 2011). Here, the BRL response to 

ammonium nitrate paralleled that of the PRL (Figure 4.1.) but BRL was regulated by increasing 

nitrate supply (Figure 4.4.) whilst PRL was not (Figure 4.5.). The decreased BRL under 

decreased nitrate supply could be a negative response to increased ammonium supply or a 

response to decreased nitrate supply.  

 

4.6. Why is measured nitrate concentration greater than the original input? 

An increase in measured nitrate concentration could be the result of decreased water content, 

as was suggested for agar nitrate measurements (Chapter 3, Section 3.4., p80). This may 

indicate that drying of the sand had occurred during measurements, but care was taken to limit 

the area of sand exposed to the air and steady recordings were obtained suggesting that the 

evaporative losses were minimal (Chapter 2, Figure 2.4., p55). Furthermore, the duration of 



96 
 

exposure to potential evaporative losses was consistent for all measurements, but the 

measured nitrate concentrations were similar regardless of nitrate input. This would not be 

expected if the duration of evaporative losses were equal for 0.1 and 10.0 mM nitrate 

treatments. Therefore, it is unlikely that the increase in measured nitrate concentration was the 

result of decreased water content due to evaporative losses.  

Alternatively, an increase in measured nitrate concentration could be caused by modified root 

water or nitrate fluxes (influx and/or efflux). Although nitrate efflux can be high for well supplied 

and non-stressed plants, it has been shown to remain less than nitrate influx and in fact net 

nitrate efflux usually only occurs when seedlings are under stress (Aslam et al. 1996; Aslam et 

al. 1997; Williams and Miller 2001; Segonzac et al. 2007; Wang et al. 2011). Whilst the 

manipulation of substrate hydraulic characteristics in the sand rhizotron system alters water and 

nitrate supply, it does not subject the seedlings to stress conditions and so net nitrate efflux is 

unlikely to contribute to the increased nitrate concentration observed.  

An increase in the measured nitrate concentration at the root surface could be generated if the 

delivery of nitrate ions to the root surface exceeds the net influx of nitrate ions into the root. 

Interestingly, the exaggerated PRL response to increased ammonium supply in sand (Figure 

4.1.) relative to agar (Li et al. 2010b) might also be explained if the delivery of ammonium ions 

exceeded net influx in a similar manner. However, the rate of accumulation would likely be less 

than nitrate due to differences in mobility between these ions (Miller and Cramer 2005).  

The measured nitrate concentrations at both locations were lower, not higher, at high 

unsaturated hydraulic conductivity (Table 4.3.). At high unsaturated hydraulic conductivity the 

connectivity of water is relatively increased and the supply of dissolved nitrate to the root is 

increased as a result. Therefore, the increased nitrate concentration measured at the root 

surface could be related to altered water flux rather than the delivery of nitrate to the root 

surface exceeding the net influx of nitrate.  

An increased water influx could result in a localised decrease in water content at the root 

surface, producing an increase in measured nitrate concentration. The measured nitrate 

concentrations at both locations were lower at high unsaturated hydraulic conductivity than low 

unsaturated hydraulic conductivity for both low and high nitrate input (Table 4.3.), which 

indicates that the greater connectivity of solution at high unsaturated hydraulic conductivity is 
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sufficient to replenish the water taken up by the root. At low unsaturated hydraulic conductivity, 

the connectivity is decreased and water taken up is less able to be replenished resulting in an 

increase in measured nitrate concentration. Thus, the increase in measured nitrate 

concentration is likely to be due to altered localised water content which is determined by the 

unsaturated hydraulic conductivity of the sand.  

 

4.7. Summary and conclusions  

The negative regulation of PRL by ammonium is exaggerated in the sand rhizotron system 

(Figure 4.1.) relative to agar (Li and Shi 2007) because of disparities in substrate hydraulic 

characteristics and because the manipulation of substrate hydraulic characteristics has a 

greater effect on nitrate delivery than ammonium due to differences in mobility. Two 

independent manipulations of water supply had large effects on root proliferation characteristics 

(Figures 4.2. and 4.3.).  

PRL and LRD were strongly negatively regulated by unsaturated hydraulic conductivity and 

water potential respectively at each nitrate input (Figures 4.5. and 4.6.). The response of LRD 

(and LRN) to water potential was probably a response to osmotic potential (Deak and Malamy 

2005), whilst TLRL responded to small changes in matric potential (Deak and Malamy 2005; 

Roycewicz and Malamy 2012). BRL was regulated by nitrate supply and the difference was 

particularly large at low unsaturated hydraulic conductivities (Figure 4.4.).  

Whilst the manipulation of hydraulic conductivity within the sand rhizotron system did not 

significantly alter the nitrate availability at the root surface under high (10.0 mM) supply, 

measured concentrations appeared to be higher at decreased hydraulic conductivity under low 

(0.1 mM) supply. As a result a difference in nitrate or water availability could be influenced root 

physiology. An increase in the measured nitrate concentration at the root surface relative to 

nitrate input was probably due to altered hydraulic conductivity. These results indicate that 

nitrate concentration at the root surface is kept relatively constant despite changes in water 

supply, presumably facilitated by modifications to water and/or nitrate influx and related to the 

high mobility of nitrate.  
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The main conclusions of this chapter are summarised below: 

� The negative regulation of root proliferation by ammonium is exaggerated in the sand 

rhizotron system; 

� In the sand rhizotron system, PRL and LRD were regulated by water availability at each 

nitrate supply (0.1, 1.0 and 10.0 mM). 

 

Changes in the expression of some nitrate transporter (NRT) and aquaporin genes represent a 

significant mechanism for the regulation of nitrate and water influx at the root surface (reviewed 

by Maurel et al. 2008; Wang et al. 2012). As a result, relative changes in gene expression for 

selected genes were investigated in response to manipulations of water and nitrate supply 

within the sand rhizotron system (Chapter 5). 
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5. Gene Expression Responses to Altered Water and Nitrate Supply 

Water and nitrate uptake by roots helps to maintain the delivery of dissolved nitrate ions to the 

root surface by mass flow and diffusion, whereas altered hormone transport and signalling 

underpin root proliferation changes. The expression of selected nutrient transporters and 

hormone-associated genes (Chapter 1, Table 1.2., p46) are important root physiological 

components of nutrient acquisition responses to altered water and nitrate availability. To better 

understand the responses of these components to altered nitrate and water supply, the 

expression of selected Arabidopsis (Arabidopsis thaliana) acquisition genes (AtNRT1.1 

AtNRT2.1, AtNAR2.1 and AtPIP2.2) and hormone-associated genes (AtPIN1, AtPIN2, AtTIR1, 

AtEIN2, AtABI4 and AtIPT5) was analysed (see Chapter 2 for details) for a series of 

manipulated nutrient regimes within the sand rhizotron system.  

 

5.1. The influence of water supply on the expression of selected nutrient 

acquisition genes across a range of nitrate supplies 

The dual affinity nitrate transporter AtNRT1.1 facilitates nitrate uptake at a wide range of 

concentrations depending on its phosphorylation status (Walch-Liu and Forde 2008; Ho et al. 

2009; Krouk et al. 2010b), whereas the high-affinity nitrate transporter AtNRT2.1 facilitates 

uptake at lower concentrations (<1.0 mM) and requires AtNAR2.1 for this function (Nazoa et al. 

2003; Little et al. 2005; Orsel et al. 2006). Furthermore, both AtNRT1.1 and AtNRT2.1 have 

been proposed to facilitate nitrate sensing (Ho and Tsay 2010; Gojon et al. 2011). The plasma 

membrane intrinsic protein (PIP) family aquaporin AtPIP2.2 has been identified as a major 

contributor to root water uptake and its expression responds to water availability (Javot et al. 

2003; Alexandersson et al. 2005; Da Ines et al. 2010). 

Gene expression of these important nitrate and water acquisition genes was investigated at 

different water availabilities in seedlings grown under low (0.1 mM), medium (1.0 mM) and high 

(10.0 mM) nitrate supply. Arabidopsis ecotype WS seedlings were germinated and grown on 

sand rhizotrons for 7 days. At 12 dpg, seedlings were harvested and RNA was extracted for 

semi-quantitative RT PCR gene expression analysis (see Chapter 2 for details).  
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When nitrate supply was low (0.1 mM), the expression of AtNAR2.1 was decreased at the 

largest particle size and AtPIP2.2 expression was increased at medium matric potential, 

whereas the expression of AtNRT1.1 and AtNRT2.1 were not changed at different particle sizes 

(Figure 5.1.). The expression of AtNRT1.1 was increased at the least negative matric potential, 

whilst AtNRT2.1 and AtPIP2.2 was decreased at the intermediate negative matric potential and 

AtNAR2.1 expression was unresponsive to altered matric potential (Figure 5.2.). 

At medium nitrate supply (1.0 mM), AtNRT1.1 expression was decreased at the smallest 

particle size, AtNRT2.1 expression was slightly decreased at the medium particle size whereas 

AtNAR2.1 expression was increased at the largest particle size (Figure 5.1.). AtPIP2.2 

expression was apparently unresponsive to particle size (Figure 5.1.). AtNRT1.1 expression 

was decreased at the most negative matric potential and AtNAR2.1 expression was greatly 

increased at the least negative matric potential (Figure 5.2.). Conversely, the expression of 

AtNRT2.1 and AtPIP2.2 was greatly increased at the most negative matric potential (Figure 

5.2.). 

Under high nitrate provision (10.0 mM), the expression of AtNRT1.1 and AtNAR2.1 was greatly 

increased compared to low (0.1 mM) and medium (1.0 mM) nitrate supply (Figures 5.1. and 

5.2.). The expression of AtNRT1.1 was increased at medium particle size, whilst AtNRT2.1 and 

AtPIP2.2 expression increased with increasing particle size and AtNAR2.1 expression was 

relatively unresponsive to particle size (Figure 5.1.). AtNRT1.1 expression was greatly 

increased at the most negative matric potential, whilst AtNAR2.1 expression was slightly 

increased at medium matric potential (Figure 5.2.). The expression of AtNRT2.1 and AtPIP2.2 

decreased with increasingly negative matric potential (Figure 5.2.). The transporter gene 

expression responses are summarised in Table 5.1.  
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Figure 5.1. Expression responses of (A) AtNRT1.1, (B) AtNRT2.1, (C) AtNAR2.1 and (D) 

AtPIP2.2 to manipulation of water supply by altered sand particle size across a range 

of nitrate concentrations. Treatments:  <250 µm;  250-425 µm;  >425 µm. Actual level 

of AtNRT2.1 expression may be underestimated at due to saturation. 
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Figure 5.2. Expression responses of (A) AtNRT1.1, (B) AtNRT2.1, (C) AtNAR2.1 and (D) 

AtPIP2.2 to manipulation of water supply by altered matric potential across a range of 

nitrate concentrations. Treatments:  -1.5 kPa;  -3.0 kPa;  -4.5 kPa. Actual level of 

AtNRT2.1 expression may be underestimated due to saturation. 
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Table 5.1. Summary of wild-type nutrient acquisition gene expression responses to 

nitrate supply across two manipulations of water supply.  Overall trends where found are 

presented here. 

 

Gene Water manipulation Low nitrate Medium nitrate High nitrate 

 

AtNRT1.1 

 

Increasing particle size 

Increasing matric potential 

 

 

No trend 

Decreased 

 

Increased 

Decreased 

 

Increased 

Increased 

AtNRT2.1 Increasing particle size 

Increasing matric potential 

 

No trend 

No trend 

 

No trend 

Increased 

Increased 

Decreased 

AtNAR2.1 Increasing particle size 

Increasing matric potential 

 

Decreased 

No trend 

 

Increased 

Increased 

No trend 

No trend 

 

AtPIP2.2 Increasing particle size 

Increasing matric potential 

No trend 

No trend 

No trend 

Increased 

Increased 

Decreased 
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5.2. The response of nutrient acquisition gene expression to substrate hydraulic 

characteristics 

Sands of a different particle size were used to subject seedlings to a range of altered water 

potentials and unsaturated hydraulic conductivities at a constant matric potential (Chapter 3, 

Table 3.2., p71).  

Overall AtNRT1.1 expression was increased at high (10.0 mM) nitrate supply when water 

availability was manipulated by altered particle size (Figure 5.1.). When water supply was 

manipulated by altered matric potential, AtNRT1.1 expression decreased with increasingly 

negative matric potential at low (0.1 mM) and medium (1.0 mM) nitrate supply, but increased 

with increasingly negative matric potential at high (10.0 mM) nitrate supply (Figure 5.2.). 

AtNAR2.1 expression was increased at high (10.0 mM) nitrate supply when water availability 

was manipulated by altered particle size (Figure 5.1.). When water supply was altered by 

manipulation of matric potential, AtNAR2.1 expression was not regulated by water availability at 

low (0.1 mM) or high (10.0 mM) nitrate supply, but was increased at the least negative matric 

potential under medium (1.0 mM) nitrate supply.  

Across all treatments, the expression of AtNRT2.1 and AtPIP2.2 was coordinated (comparing 

Figures 5.1. and 5.2.). When water availability was manipulated by particle size of the sand, 

expression of both genes demonstrated no overall trend at low (0.1 mM) or medium (1.0 mM) 

nitrate supply (Figure 5.1.). When water availability was manipulated by altered matric potential, 

the expression of both genes showed no trend at low (0.1 mM) nitrate supply but increased at 

the most negative matric potential under medium (1.0 mM) nitrate supply (Figure 5.2.).  Under 

high (10.0 mM) nitrate supply, the expression of AtNRT2.1 and AtPIP2.2 was decreased at the 

largest particle size (Figure 5.1.) and increased at the most negative matric potential (Figure 

5.2.). Therefore, it seems that expression of these two genes was unregulated by water 

availability at low (0.1 mM) nitrate supply, increased at relatively decreased water availability 

under medium (1.0 mM) nitrate supply, but becomes oppositely regulated by water availability at 

high (10.0 mM) nitrate supply.  

In order to confirm whether expression was actually regulated by water availability under high 

(10.0 mM) nitrate supply, a proNRT2.1:eGFP reporter line (Kiba et al. 2012) was imaged in situ 

in sand rhizotrons at 12 dpg at extremes of unsaturated hydraulic conductivity under high (10.0 
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mM) nitrate supply (Figure 5.3.). AtNRT2.1 expression was decreased at low unsaturated 

hydraulic conductivity relative to high unsaturated hydraulic conductivity under high (10.0 mM) 

nitrate supply. Expression decreased from unsaturated hydraulic conductivity of 1.35 m.d-1 

(Figure 5.3.A and B), to 0.99 m.d-1 (Figure 5.3.C and D) and again to 0.17 m.d-1 (Figure 5.3.E 

and F). Thus, AtNRT2.1 expression was regulated by water availability at high (10.0 mM) nitrate 

supply. The responses of these key nutrient acquisition genes to water availability was 

apparently dependent on nitrate supply.  

  



Figure 5.3. In situ 

expression decreased with decreasing unsaturated hydraulic conductivity (K

high nitrate supply. 

supply at Kunsat of 1.35 (A 

images are presented for comparison at K

captured at 80x magnification (A, C, E and G) and 256x magnification (B, D, F and H).

 

A 

C 

E 

G 

 imaging of a proNRT2.1:eGFP line confirmed that 

expression decreased with decreasing unsaturated hydraulic conductivity (K

 proNRT2.1:eGFP seedlings were grown under high (10.0 mM) nitrate 

of 1.35 (A and B), 0.99 (C and D) and 0.17 (E and F) m.d

images are presented for comparison at Kunsat of 1.35 (G) and 0.17 (H) m.d

captured at 80x magnification (A, C, E and G) and 256x magnification (B, D, F and H).

  

  

  

  

B 

D 

F 

H 

106 
 

line confirmed that AtNRT2.1 

expression decreased with decreasing unsaturated hydraulic conductivity (Kunsat) at 

seedlings were grown under high (10.0 mM) nitrate 

and B), 0.99 (C and D) and 0.17 (E and F) m.d-1. Wild-type (Col 0) 

of 1.35 (G) and 0.17 (H) m.d-1. Images 

captured at 80x magnification (A, C, E and G) and 256x magnification (B, D, F and H). 
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5.3. The influence of water supply on the expression of hormone-associated 

genes across a range of nitrate supplies 

The directional transport of auxin by the efflux transporters AtPIN1 and AtPIN2 and the 

perception by the receptor AtTIR1 contribute to specific root proliferation changes (Blilou et al. 

2005; Dharmasiri et al. 2005; Gutierrez et al. 2007; Vidal et al. 2010). The ethylene signal 

transducer AtEIN2 controls the nitrogen regulation of LR length (Tian et al. 2009). Cytokinin 

biosynthesis in roots is partly achieved by AtIPT5 which responds to nitrate and ammonium 

under sufficient supply and is regulated by auxin and cytokinin (Takei et al. 2004). The ABA-

related transcription factor AtABI4 is involved in the repression of LR growth under high nitrate 

supply (Signora et al. 2001; Shkolnik-Inbar and Bar-Zvi 2010). Gene expression of these 

important hormone-associated genes was investigated at different water availabilities in 

seedlings grown under low (0.1 mM), medium (1.0 mM) and high (10.0 mM) nitrate supply. 

Arabidopsis ecotype WS seedlings were germinated and grown on sand rhizotrons for 7 days. 

At 12 dpg, seedlings were harvested and RNA was extracted for RT PCR gene expression 

analysis (see Chapter 2 for details).  

Under low (0.1 mM) nitrate supply, the expression of AtPIN2 decreased, whilst AtABI4 

expression increased, with increasing particle size (Figure 5.4.). The expression of all other 

hormone-related genes was unresponsive to water availability as manipulated by altered 

particle size at low (0.1 mM) nitrate supply (Figure 5.4). When water availability was 

manipulated by matric potential, the expression of AtTIR1 and AtABI4 was decreased at the 

most negative matric potential (Figure 5.5.). The expression of all other hormone-related genes 

was unresponsive to water availability as manipulated by altered matric potential at low (0.1 

mM) nitrate supply (Figure 5.5.). 

At medium (1.0 mM) nitrate supply, the expression of AtTIR1 was decreased at the smallest 

particle size, whilst AtEIN2, AtABI4 and AtIPT5 expression was increased at the intermediate 

particle size, and all other hormone-related genes were unresponsive to particle size (Figure 

5.4.). The expression of AtPIN1 and AtTIR1 was increased, whilst AtEIN2 expression was 

decreased, at the most negative matric potential (Figure 5.5.). AtIPT5 expression decreased 

with increasingly negative matric potential, whilst all other hormone-related genes were 

unresponsive to matric potential (Figure 5.5.). 
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Under high (10.0 mM) nitrate supply, AtPIN2, AtABI4 and AtIPT5 expression was increased at 

the intermediate particle size, whereas AtTIR1 expression was decreased at the smallest 

particle size (Figure 5.4.). The expression of AtPIN2 increased with increasingly negative matric 

potential, while the expression of all other hormone-associated genes was unresponsive to 

matric potential at this nitrate concentration (Figure 5.5.). 

The response of several hormone-related genes to water supply was dependent on nitrate 

supply. At the smallest particle size, AtTIR1 expression decreased, while AtEIN2 expression 

increased, with increasing nitrate supply (Figure 5.4.). AtIPT5 expression increased with 

increasing nitrate supply at the intermediate particle size (Figure 5.4.). AtPIN2 expression 

increased, whilst AtABI4 expression decreased, with increasing nitrate concentration at the 

largest particle size (Figure 5.4.).  

AtPIN1 expression decreased, whilst AtABI4 expression increased, with increasing nitrate 

supply at the least negative matric potential (Figure 5.5.). At the intermediate matric potential, 

AtEIN2 expression was decreased at low nitrate supply (Figure 5.5.). At the most negative 

matric potential, AtPIN1 expression was increased at medium nitrate supply, while AtTIR1, 

AtEIN2, AtABI4 and AtIPT5 expression increased with increasing nitrate supply (Figure 5.5.).  

Therefore, the expression of several hormone-associated genes was regulated by water and 

nitrate supply, with the expression of certain genes coordinated in their responses (Table 5.2.).  
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Figure 5.4. Expression responses of (A) AtPIN1, (B) AtPIN2, (C) AtTIR1, (D) AtEIN2, (E) 

AtABI4 and (F) AtIPT5 to manipulation of water supply by altered particle size at a 

range of nitrate concentrations. Treatments:  <250 µm;  250-425 µm;  >425 µm. 
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Figure 5.5. Expression responses of (A) AtPIN1, (B) AtPIN2, (C) AtTIR1, (D) AtEIN2, (E) 

AtABI4 and (F) AtIPT5 to manipulation of water supply by altered matric potential 

across a range of nitrate concentrations. Treatments:  -1.5 kPa;  -3.0 kPa;  -4.5 kPa. 
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Table 5.2. Summary of wild-type hormone-associated gene expression responses to 

nitrate supply across two manipulations of water supply.   

 

Gene Water manipulation Low nitrate Medium nitrate High nitrate 

 

AtPIN1 

 

Increasing particle size 

Increasing matric potential 

 

No trend 

No trend 

 

 

No trend 

Increased 

 

No trend 

No trend 

 

AtPIN2 Increasing particle size 

Increasing matric potential 

Decreased 

No trend 

 

No trend 

No trend 

 

Increased 

Increased 

 

AtTIR1 Increasing particle size 

Increasing matric potential 

No trend 

No trend 

 

Increased 

Increased 

Increased 

No trend 

 

AtEIN2 Increasing particle size 

Increasing matric potential 

No trend 

Decreased 

No trend 

Decreased 

No trend 

No trend 

 

AtABI4 Increasing particle size 

Increasing matric potential 

Increased 

Decreased 

No trend 

No trend 

 

No trend 

No trend 

 

AtIPT5 Increasing particle size 

Increasing matric potential 

No trend 

No trend 

No trend 

Decreased 

 

No trend 

No trend 
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5.4. Relating the gene expression and root proliferation responses to nitrate and 

water availability 

When water supply was manipulated via altered particle size at low (0.1 mM) nitrate supply, the 

decrease in the expression of AtNAR2.1 (Figure 5.1.C) and AtPIN2 (Figure 5.4.B) coincided 

with an increase in PRL (Figure 4.2.A) and a decrease in LRD (Figure 4.2.E). BRL, LRN and 

TLRL increased at intermediate particle size (Figure 4.2.B-D) and the same response was seen 

for AtPIP2.2 expression (Figure 5.1.D). At medium (1.0 mM) nitrate supply, an increase in PRL 

corresponded to a decrease in LRN, TLRL and LRD (Figure 4.2.) and also to an increase in the 

expression of AtNAR2.1 (Figure 5.1.C) and AtTIR1 (Figure 5.4.C). BRL again increased at 

intermediate particle size (Figure 4.2.B), which coincided with increased AtEIN2, AtABI4 and 

AtIPT5 expression (Figure 5.4.D-F). At high (10.0 mM) nitrate supply, an increase in PRL and 

BRL coincided with a decrease in LRN and LRD (Figure 4.2), which corresponded to an 

increase in the expression of AtNRT2.1, AtPIP2.2 (Figure 5.1.B and D) and AtTIR1 (Figure 

5.4.C). 

When water supply was manipulated via altered matric potential at low (0.1 mM) nitrate supply, 

PRL increased with a decrease in BRL, TLRL and LRD (Figure 4.3), which coincided with a 

decrease in the expression of AtNRT1.1 (Figure 5.2.A),  AtTIR1, AtEIN2 and AtABI4 (Figure 

5.5.C-E). LRD decreased at the intermediate matric potential (Figure 4.3.E) and this coincided 

with a similar change in AtPIP2.2 expression (Figure 5.2.D). Under medium (1.0 mM) nitrate 

supply, an increase in PRL corresponded with a decrease in BRL and LRD (Figure 4.3) and a 

decrease in the expression of AtNRT1.1 and AtNAR2.1 (Figure 5.2.A and C), an increase in 

AtNRT2.1 and AtPIP2.2 expression (Figure 5.2.B and D) and decrease in AtEIN2 and AtIPT5 

expression (Figure 5.5.D and F). At high (10.0 mM) nitrate supply, an increase in PRL occurred 

with a decrease in LRN, TLRL and LRD (Figure 4.3), an increase in AtNRT1.1 and a decrease 

in AtNRT2.1 and AtPIP2.2 (Figure 5.2), and an increase in the expression of AtPIN2 (Figure 

5.5.B). 

Therefore, a change in root proliferation parameters appears to be linked with a change in 

nutrient and hormone associated gene expression responses to specific nutrient supplies.  The 

interaction of these components of nutrient acquisition was further investigated in selected 

mutant lines at extremes of water availability under high nitrate supply. 
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5.5. The root proliferation and gene expression responses of selected mutants 

to substrate hydraulic characteristics under high nitrate supply  

The coordination of AtNRT2.1 and AtPIP2.2 expression and the apparent opposite responses 

under high nitrate supply for each manipulation of water supply, the separate hydraulic 

regulation of the partner genes AtNRT2.1 and AtNAR2.1, and the role of these three genes in 

controlling root proliferation responses was investigated using selected loss of function mutant 

lines (see Chapter 2) at extremes of water availability under high (10.0 mM) nitrate supply. The 

root proliferation and gene expression responses of atnrt2.1, atnar2.1, atnar2.1xNpNRT2.1 and 

atpip2.2 mutant lines were characterised at extremes of unsaturated hydraulic conductivity (0.18 

and 1.35 m.d-1) under high (10.0 mM) nitrate supply. The atnar2.1xNpNRT2.1 mutant line over-

expresses NpNRT2.1 in the atnar2.1 loss of function mutant but does not restore HATS activity 

(Orsel et al. 2006). All seedlings were germinated and grown on sand rhizotrons for 7 days. At 

12 dpg, root proliferation parameters were measured and seedlings were harvested. RNA was 

extracted for RT PCR gene expression analysis (see Chapter 2 for details).  

The root growth responses to water deficit and the gene expression responses to a range of 

abiotic stresses of Ws, Col 0 and Ler 1 have been previously shown to be conserved (Des 

Marais et al. 2012), and may be a reflection of the fact that all three ecotypes are spring 

accessions collected along the 52° line of latitude. To confirm this idea, the PRL, LRN, TLRL 

and LRD responses to extremes of unsaturated hydraulic conductivity were compared between 

Ws and Col 0 ecotypes and all responses were found to be conserved (Appendix 5). As a 

result, mutant line responses were compared to Arabidopsis Ws responses (Figures 5.6., 5.7. 

and 5.8.). 

The increased PRL response to low unsaturated hydraulic conductivity (0.18 m.d-1) was lost in 

all mutant lines except the atnar2.1 mutant (P < 0.001, d.f. 406; Figure 5.6.A). For the 

atnar2.1xNpNRT2.1 line, PRL was significantly longer than wild-type (P < 0.001, d.f. 406). As 

with wild-type, BRL remained unresponsive in all the mutant lines (Figure 5.6.B). The increased 

LRN and TLRL observed in the wild-type at high unsaturated hydraulic conductivity (1.35 m.d-1) 

was conserved in the atnrt2.1 mutant (P < 0.001, d.f. 406; Figure 5.6.C and D), but lost in the 

other mutant lines. Finally, the increased LRD observed in the wild-type at high unsaturated 

hydraulic conductivity (1.35 m.d-1) was lost in all the mutant lines (Figure 5.6.E).   
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Figure 5.6. Root proliferation responses of selected mutant lines at extremes of 

unsaturated hydraulic conductivity (Kunsat) under high (10.0 mM) nitrate supply. *, P < 

0.001. D.f. 406. Treatments:  1.35 m.d-1;  0.18 m.d-1. 
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Figure 5.7. Nutrient acquisition gene expression responses of selected mutant lines to 

the extremes of unsaturated hydraulic conductivity (Kunsat) under high (10.0 mM) nitrate 

supply.  Treatments:  1.35 m.d-1;  0.18 m.d-1. Level of AtNRT2.1 expression may be 

underestimated due to saturation. 
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Figure 5.8. Hormone-associated gene expression responses of selected mutant lines to 

the extremes of unsaturated hydraulic conductivity (Kunsat) under high (10.0 mM) nitrate 

supply. Treatments:  1.35 m.d-1;  0.18 m.d-1. 
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The positive response of AtNRT1.1 expression to decreased water availability was lost in all 

mutant lines, with expression significantly decreased compared to wild-type in all mutant lines 

(Figure 5.7.A). The response of AtNRT2.1 expression was lost in the atnar2.1 and 

atnar2.1xNpNRT2.1 mutant lines and AtNRT2.1 expression actually increased in the atnar2.1 

mutant compared to wild-type (Figure 5.7.B). In the atnrt2.1 mutant line, AtNAR2.1 expression 

remained unresponsive but expression was decreased relative to wild-type (Figure 5.7.C). 

Although not responsive to water availability in the wild-type, AtNAR2.1 expression decreased 

at decreased water availability in the atpip2.2 mutant (Figure 5.7.C). Interestingly, the response 

of AtPIP2.2 expression was lost in the atnar2.1 mutant line (Figure 5.7.D). 

The loss of PRL, LRN, TLRL and LRD responses to extremes of unsaturated hydraulic 

conductivity in the atpip2.2 mutant (Figure 5.6) also coincided with a decrease in AtNAR2.1 

expression at decreased water availability (Figure 5.8.C). Loss of the PRL response to water 

availability in the atnrt2.1 mutant coincided with severely decreased AtNRT1.1 (Figure 5.7.A), 

AtPIN1 and AtPIN2 expression (Figure 5.8.A and B). Altered AtNRT2.1 expression in the 

atnar2.1 and atnar2.1xNpNRT2.1 mutant lines (Figure 5.7.B) also coincided with the loss of 

LRD responses within these lines (Figure 5.6.E). The LRN, TLRL and LRD response to water 

availability under high (10.0 mM) nitrate supply in the atnrt2.1 mutant was equivalent to wild-

type indicating that these responses were independent of AtNRT2.1 (Figure 5.6.C-E). 

The atnar2.1 mutant was the only line that displayed a change in expression of the hormone 

signalling genes relative to wild-type expression, whereby expression of AtEIN2, AtABI4 and 

AtIPT5 all decreased at decreased water availability (Figure 5.8.D-F). The change in the 

expression of these genes also coincided with the decreased PRL response, loss of LRN, TLRL 

and LRD responses (Figure 5.6), a loss of AtPIP2.2 and AtNRT2.1 responses (Figure 5.7.B and 

D) to water availability in the atnar2.1 mutant line. The mutant line responses are summarised in 

Table 5.3.. 
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Table 5.3. Summary of mutant root physiology responses to increased unsaturated 

hydraulic conductivity (Kunsat) under high (10.0 mM) nitrate supply.   

 

Parameter atnrt2.1 atnar2.1 atnar2.1xNpNRT2.1 atpip2.2 

 

PRL 

 

Unresponsive 

 

Increased 

 

Unresponsive 

 

Unresponsive 

BRL Unresponsive Unresponsive Unresponsive Unresponsive 

LRN Decreased Unresponsive Decreased Unresponsive 

TLRL Decreased Unresponsive Decreased Unresponsive 

LRD Decreased Unresponsive Unresponsive Unresponsive 

AtNRT1.1 Unresponsive Unresponsive Unresponsive Unresponsive 

AtNRT2.1           - Increased Unresponsive Decreased 

AtNAR2.1 Decreased           -           - Decreased 

AtPIP2.2 Decreased Decreased Decreased           - 

AtPIN1 Unresponsive Unresponsive Unresponsive Unresponsive 

AtPIN2 Unresponsive Unresponsive Unresponsive Unresponsive 

AtTIR1 Unresponsive Unresponsive Unresponsive Unresponsive 

AtEIN2 Unresponsive Decreased Unresponsive Unresponsive 

AtABI4 Unresponsive Decreased Unresponsive Unresponsive 

AtIPT5 Unresponsive Decreased Unresponsive Unresponsive 
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5.6. Comparing the gene expression and root proliferation responses of 

selected mutant lines 

The role of selected genes in controlling root proliferation responses to unsaturated hydraulic 

conductivity under high (10.0 mM) nitrate supply was investigated using selected homozygous 

loss of function mutants. The expression of AtNRT1.1, AtPIN1 and AtPIN2 was decreased in all 

mutant lines relative to wild-type and coincided with altered PRL and LR responses to water 

availability under high (10.0 mM) nitrate supply. Therefore, altered expression of these genes 

may be responsible for altered root proliferation responses observed in mutant lines grown in 

the sand rhizotron system.  

In the atnar2.1 mutant, wild-type AtNRT2.1 and AtPIP2.2 expression responses were disrupted, 

AtEIN2, AtABI4 and AtIPT5 expression became responsive and coincided with a decrease in 

the PRL response and a loss of LRN, TLRL and LRD responses to water availability. AtIPT5 

has an important role in root cytokinin biosynthesis which can induce root growth (Takei et al. 

2004; Kushwah et al. 2011) and the expression of AtEIN2, AtABI4 and AtIPT5 has been linked 

with the nitrate regulation of LR growth. The pathway that determines cytokinin-induced root 

growth acts on AtABI4 and AtEIN2. Therefore, the level of AtNAR2.1 expression could play a 

role in the hormonal regulation of the root proliferation and nutrient gene expression responses 

to water availability. All LR responses to water availability were lost in the atnar2.1 and the LRD 

response was also lost in the atnar2.1xNpNRT2.1 lines, supporting previous work (Orsel et al. 

2006) demonstrating that it is the AtNAR2.1 gene product which is important in determining LR 

growth responses to nitrate supply. 

The atnrt2.1, atnar2.1 and atnar2.1xNpNRT2.1 mutant lines lack AtNRT2.1 at the plasma-

membrane and are impaired in high affinity nitrate uptake (Filleur et al. 2001; Orsel et al. 2006; 

Wirth et al. 2007) but these are unlikely to be governing the PRL response to water availability 

because differences in the PRL response occur between the atnrt2.1, atnar2.1 and 

atnar2.1xNpNRT2.1 mutant lines. However, it does indicate that AtNRT2.1 must be plasma-

membrane located to demonstrate wild-type hydraulic regulation. In addition, when NpNRT2.1 

is overexpressed wild-type uptake capacity is not restored (Orsel et al. 2006), but the hormone 

responses observed in the atnar2.1 mutant are no longer observed suggesting that NRT2.1 
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expression in the cell but not at the plasma-membrane can interfere with the AtNAR2.1-

hormone interactions.  

The atnar2.1 mutant line was the only mutant line that displayed a change in expression of 

nutritionally regulated hormone genes relative to wild-type (Figure 5.10.). This change in 

hormone gene expression with unsaturated hydraulic conductivity corresponded to the 

reduction in the PRL response and a loss of the LRN, TLRL and LRD responses (Figure 5.8.). 

These results indicate that AtNAR2.1 is required for the wild type root response to unsaturated 

hydraulic conductivity at high (10.0 mM) nitrate supply and this is likely to be related to the 

constraint of hormone gene expression. 

Interestingly, the hormone response demonstrated by the atnar2.1 mutant line is similar to that 

for wild-type seedlings subjected to the same extremes of unsaturated hydraulic conductivity 

(0.18 and 1.35 m.d-1) at low (0.1 mM) and medium (1.0 mM) nitrate supply. For the wild-type 

under low (0.1 mM) nitrate supply, the expression of AtEIN2 and AtABI4 decreased with 

decreasing water availability, whilst under medium (1.0 mM) nitrate supply, the expression of 

AtEIN2 and AtIPT5 decreased with decreasing water availability. Under high (10.0 mM) nitrate 

supply, the expression of these hormone genes was unresponsive to water availability. 

Therefore, it would seem that AtNAR2.1 may have a nitrate-dependent role in regulating root 

physiological responses to nutrient availability. 

 

 

5.7. Summary and conclusions 

The expression of key nitrate and water acquisition genes was determined by specific water and 

nitrate availabilities within the sand rhizotron system.   

Similar AtNRT2.1 and AtPIP2.2 expression was observed for all treatments, including the 

apparent opposite regulation at high (10.0 mM) nitrate supply seen for the two different 

manipulations of water supply. Therefore, the expression of these genes appears to be 

regulated by independent hydraulic parameters and also nitrate dependent. 
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AtNRT2.1 expression has been shown to be induced by nitrate supply in the short term and 

decreased in response to high external nitrate supply and downstream nitrogen metabolites 

(Filleur and Daniel-Vedele 1999; Lejay et al. 1999; Zhuo et al. 1999; Gansel et al. 2001). 

Therefore, it is likely that AtNRT2.1 expression is responding to altered delivery of dissolved 

nitrate ions to the root surface or a direct response of AtNRT2.1 to water availability. The 

hydraulic regulation of AtNRT2.1 expression is a novel observation. 

AtPIP2.2 expression is responsive to water availability (Alexandersson et al. 2005) and the 

expression of AtNRT2.1 and AtPIP2.2 was positively coordinated across all treatments. All root 

proliferation responses to water availability were lost but the AtNRT2.1 expression response to 

water availability was conserved in the atpip2.2 mutant. Furthermore, AtNAR2.1 expression 

actually became responsive to water availability (decreasing at low unsaturated hydraulic 

conductivity) in the atpip2.2 mutant and AtNRT1.1 expression was decreased relative to wild-

type. This indicates that AtPIP2.2 is required for wild-type root proliferation and AtNAR2.1 

expression responses to water availability under high (10.0 mM) nitrate supply, which is a novel 

observation. 

AtNRT1.1 is known to interact with auxin in the regulation of PR and LR growth in response to 

nitrate supply (Remans et al. 2006a; Walch-Liu and Forde 2008). The expression of AtNRT1.1, 

AtPIN1 and AtPIN2 was decreased in all mutant lines relative to wild-type and coincided with 

altered PRL and LR responses to water availability under high (10.0 mM) nitrate supply. 

Therefore, the decreased expression of these genes may also be responsible for the loss of 

certain root proliferation responses in the mutant lines.  

The LR growth responses to water availability were lost in the atpip2.2 mutant, although the 

expression of AtNAR2.1 was also disrupted in this mutant line. Therefore, the loss of root 

proliferation responses in the atpip2.2 mutant could be an indirect result of altered AtNAR2.1 

expression. Wild-type AtNAR2.1 expression was important for the LR response to water 

availability and the atnar2.1 mutant line was the only mutant line that displayed a change in 

expression of hormone-associated genes known to determine nitrogen-regulation of root 

proliferation. 

In the atnar2.1 mutant, the expression of AtEIN2, AtABI4 and AtIPT5 became decreased 

relative to the wild-type under low water availability and this was associated with a loss of LR 
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growth responses to water availability. These hormone-associated genes have important roles 

in regulating LR growth responses to nitrogen supply (Signora et al. 2001; Tian et al. 2009; 

Shkolnik-Inbar and Bar-Zvi 2010) and their expression altered similarly across several nutrient 

regimes. In addition, AtIPT5 expression also became responsive to water availability in the 

atnar2.1 mutant and associated with a reduction in the PRL response. AtIPT5 is important for 

root cytokinin biosynthesis (Takei et al. 2004) which can induce root growth via a pathway that 

interacts with AtABI4 and AtEIN2 (Kushwah et al. 2011), which were altered in the atnar2.1 

mutant. Therefore, at high (10.0 mM) nitrate supply, AtNAR2.1 is important for the root 

proliferation responses to water availability. This function appears to be independent of 

AtNRT2.1 and could be dependent on specific hormone-associated gene expression that has 

been previously described to regulate root growth.  

Taken together, these data demonstrate the novel findings that: 

� The expression of the high affinity nitrate transporter AtNRT2.1 and the aquaporin AtPIP2.2 

responsible for root water uptake and osmotic fluid transport were coordinated across 

treatments; 

� Under high (10.0 mM) nitrate supply, AtNRT2.1 and AtPIP2.2 expression was oppositely 

regulated by the different manipulations of water supply; 

� Although usually found to closely follow each other, AtNAR2.1 and AtNRT2.1 expression 

demonstrated separate responses to water and nitrate availability; 

� Certain wild-type root proliferation responses to water availability under high (10.0 mM) 

nitrate supply were lost in the atnar2.1 mutant line and this coincided with a change in 

hormone gene expression;  

� AtPIP2.2 was required for wild-type root proliferation and AtNAR2.1 expression responses to 

water availability under high (10.0 mM) nitrate supply. 

 

The novel findings and conclusions of Chapters 3, 4 and 5 will now be discussed in relation to 

the wider literature (Chapter 6). 
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6. General Discussion 

The physical properties of the growth substrate (agar culture compared to the sand rhizotron 

system) were found in this thesis to influence Arabidopsis (Arabidopsis thaliana) root 

proliferation responses to nutrient supply (Chapter 3). Within the sand rhizotron system, 

manipulation of hydraulic properties had large effects on root proliferation (Chapter 4). The 

expression of nitrate and water transporter genes was regulated by hydraulic properties of the 

substrate that determined nutrient availability and specific interactions were observed with 

hormone signalling genes (Chapter 5). In this Chapter, the interactions between these 

responses are defined using simplified regression models and are explored in the context of the 

sand rhizotron system and other published work. 

 

6.1. Why develop the sand rhizotron system? 

Previous research has shown that the physical characteristics of the substrate can determine 

the availability of water and dissolved nutrient ions to the root (Nye and Tinker 1977; Tinker and 

Nye 2000; Miller and Cramer 2005). Root physiology is significantly affected by substrate 

physical properties such as mechanical impedance (Eavis 1972; Young et al. 1997; Bingham 

and Bengough 2003; Whalley et al. 2004a; Bengough et al. 2006; Bingham et al. 2010), soil 

strength (Masle and Passioura 1987; Bengough 1997; Kirby and Bengough 2002; Clark et al. 

2008a; Whalley et al. 2008), aggregate size (Braunack and Dexter 1989; Murungu et al. 2003), 

pore size (Matthews et al. 2010), water potential (Sharp et al. 1988; Verslues et al. 1998; 

Whalley et al. 1998; van der Weele et al. 2000; Roycewicz and Malamy 2012) and hydraulic 

conductivity (Whalley et al. 2004b; Matthews et al. 2010; Chapman et al. 2011).  

The relationship between these characteristics is complex and interdependent. In porous 

substrates, particle size determines the connectivity of pores which affects the ease with which 

water can move through the substrate (i.e. the substrate hydraulic conductivity). The ease with 

which water moves through the substrate is also determined by the water potential and 

specifically the matric potential component which defines the strength with which water is held 

between particles. Furthermore, these soil hydraulic characteristics are especially important for 

the highly mobile nitrate ion and can determine root proliferation responses to the delivery of 
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water and dissolved nitrate ions by mass flow and diffusion (Nye and Tinker 1977; Tinker and 

Nye 2000; Miller and Cramer 2005).  

Simplified laboratory experimental systems, such as agar Petri dishes and hydroponics, have 

generated a great deal of fundamental understanding regarding the root physiological 

component of nutrient acquisition, but these systems may be of limited use for our 

understanding of the importance of soil physical characteristics (Zhu et al. 2011; Chapman et al. 

2012). Therefore, it may be unsurprising that disparities occur when experiments are compared 

across different experimental system. 

Attempts have been made to investigate the influence of water potential on root growth within 

the agar culture system. In these studies, water potential is manipulated by an increase in 

substrate concentration or the introduction of an osmoticum such as polyethylene glycol (Clark 

et al. 1998; Verslues et al. 1998; van der Weele et al. 2000). The strength of agar increases as 

water content decreases but the responses of root growth to the water content of agar were not 

explained by its mechanical strength (Clark et al. 1998). This emphasizes the difficulty in 

understanding the complexity of root growth environments, even in simplified laboratory 

systems such as the agar Petri dish. 

In studies on a selection of barley sub-species, root proliferation data were inconsistent when 

roots were compared between gel and soil culture methods (Hargreaves et al. 2009). Total root 

lengths and average root diameters of seedlings grown in soil were decreased relative to gel-

grown seedlings. A similar disparity between soil and gel methods was described for root 

characteristics in dwarf wheat cultivars (Wojciechowski et al. 2009). Again, total root length of 

dwarf lines was decreased in soil, by between 24-33%. These two examples found that results 

were confirmed in different soil culture methods, but that these differed from the results obtained 

using gel culture. These disparities highlight the challenge of translating observations from 

simplified experimental systems to the complex root growth environment within soil. 

Disparities do not only arise when comparing soil to gel culture, but also when comparing 

porous experimental systems to the field. The use of vermiculite to replicate low water potential 

in a seed-bed demonstrated that the shoot emerged even at water potential of -1.64 MPa 

provided the seed germinated (Liang et al. 1997), but a strong soil at relatively high water 

potentials has been shown to prevent shoot elongation (Whalley et al. 1999). In other work, 
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good root penetration was identified in rice cultivars after screening with a flooded wax layer 

system or a sand-core system, but these cultivars did not always exhibit good hard-pan 

penetration in the field (Clark et al. 2002). This was speculated to be caused by an improved 

root penetration response to a gradual increase in soil strength in the field which was not 

replicated in the simplified laboratory screening systems (Dennis et al. 2008). This further 

highlights the complexity of the root growth environment in the field (Mittler 2006), where soil 

physical properties and nutrient and water availability are often difficult to quantify as more than 

one aspect changes almost concurrently. 

Simplified experimental systems are useful for high-throughput screening and identifying 

fundamental responses and it is likely that a greater understanding of root nutrient acquisition 

will require investigation using a combination of systems (De Smet et al. 2012). However, the 

physical characteristics of experimental systems are important factors that influence root 

nutrient acquisition responses and the limitations of each system must be considered in the 

interpretation of results.  

It was within this context that the aim was set to develop an experimental system to study both 

the plant physiological and soil physical components of root nutrient acquisition. Central to this 

aim was the importance of using a porous growth substrate, so that hydraulic characteristics 

could be manipulated and thus the delivery of water and dissolved nutrients could be altered in 

a way that may more closely represent the field situation. To investigate only the effects of 

manipulation of water and nitrate supply, it was also necessary to remove the external influence 

on root growth of anything other than nutrient and water availability. Furthermore, by developing 

the system for use in combination with the model experimental plant Arabidopsis, the potential 

exploitation of a superior molecular tool-kit that includes well established gene expression 

analyses and a large number of mutant and reporter lines was facilitated. Moreover, this 

enabled results to be considered within the context of the advanced root physiological 

understanding held for this model plant (van Norman and Benfey 2009; Benfey et al. 2010).  

 

6.2. How is nutrient availability manipulated within the sand rhizotron system? 

To understand the root physiological responses to water and nitrate supply in the sand rhizotron 

system, it is important to consider how their availability is manipulated. In the sand rhizotron 
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system, several steady-state conditions were explored where Arabidopsis seedlings were grown 

in water-saturated environments under a range of nitrate concentrations. As young Arabidopsis 

seedlings were investigated in a covered system, little transpiration occurs (Christman et al. 

2008) and water potential at the surface of the root was likely to be constant. As a result, the 

flux of water towards the root was regulated by the difference in water potential between the 

root and the sand, as well as the hydraulic conductivity of the sand (Lang and Gardner 1970). 

Relative to decreased unsaturated hydraulic conductivity and more negative water potential, a 

greater connectivity of solution occurs at increased unsaturated hydraulic conductivity and less 

negative water potential (Chapter 3, Table 3.2., p71), and thus the availability of water and 

dissolved ions to the root is increased under these conditions. 

Adjusting matric potential within a narrow range had only a small influence on the change in 

water potential but a large effect on hydraulic conductivity. In addition, water potential was 

mainly determined by the osmotic potential component which was altered by changing the 

nitrate concentration in the nutrient solution. Therefore, sand hydraulic conductivity and nitrate 

concentration were the principal treatments used to adjust the flux of water to the root in the 

sand rhizotron system. The increase in nitrate supply not only manipulates water flux but is also 

likely to have a direct nitrate nutritional effect on some root physiological parameters that 

respond to nitrate itself (e.g. AtNRT expression). 

The sand used in this work can drain to residual water content at decreased matric potential. In 

this situation, water potential will no longer be controlled by the tension height (Chapter 3, 

Figure 3.1.B, h) or water table (Whalley et al. 2011), but instead by isolated water structures 

that form in drying sand (Bird et al. 2005). Under these conditions, the availability of water and 

nitrate to the root is likely to be less predictable due to the stochastic nature of encounters 

between the roots and any isolated pockets of water that may form. 

Therefore, the hydraulic characteristics that determine the availability of water and nitrate to the 

root within the sand rhizotron system are likely to be very different to that encountered in the 

most widely used experimental system, the agar Petri dish. This is largely due to the difference 

in physical properties between the two growth substrates that determine the hydraulic 

conductivity and the relative contribution of matric and osmotic components to total water 
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potential. To investigate the impact of these differences, the root proliferation and gene 

expression components of root nutrient acquisition were directly compared.  

 

6.3. A direct comparison of the sand rhizotron system to agar culture 

Comparing the sand rhizotron system with agar culture identified some important differences 

and similarities in the response of root physiological characteristics (Chapter 3). For example, 

the PRL of sand-grown seedlings was significantly longer than that of agar-grown plants and 

AtNAR2.1, AtABI4 and AtIPT5 expression was increased for agar-grown seedlings relative to 

sand-grown seedlings. However, the relative response of individual characteristics to nutrient 

supply was conserved between systems and no relative change in expression was detected 

between seedlings grown in agar or sand for AtPIN1, AtPIN2, AtTIR1 or AtEIN2.  

Therefore, several of the overall nutrient responses observed in agar culture were detected 

using the sand rhizotron system, but there were some important differences. These were 

speculated to be driven by disparities in hydraulic characteristics and the volume of nutrients 

supplied. It was concluded that the consideration of the root physiology responses in a porous 

substrate should identify root responses to water and nitrate that were previously identified in 

simplified experimental systems such as the agar Petri dish. Additionally, there may be the 

potential to identify important responses that are not observed in agar culture due to the 

influence of the physical properties of the porous root growth environment on water and nitrate 

availability.  

 

6.4. Comparing the sand rhizotron system root data with previous work using 

other experimental systems  

Up to this point, the rationale for developing the sand rhizotron system has been described. 

Examples of disparities in results between porous and non-porous systems, including a direct 

comparison between the sand rhizotron system and agar culture, have been presented to 

illustrate the limitations of some simplified experimental systems in considering the soil physical 

component of root nutrient acquisition. In this section, the influence of water and nitrate 
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availability on root proliferation and gene expression in the sand rhizotron system is explored 

and compared with other published studies that used a range of experimental systems.  

 

6.4.1. The influence of water and nitrate availability on root proliferation  

PRL has been shown to increase at small negative water potentials in agar (van der Weele et 

al. 2000) and soil (Taylor and Ratliff 1969) systems, and under large negative water potentials 

in vermiculite (Sharp et al. 1988). PRL was also correlated with water potential in the sand 

rhizotron system. However, sand hydraulic conductivity determined PRL more strongly than 

water potential in the sand rhizotron system. This may be explained by the fact that unsaturated 

hydraulic conductivity changes with water potential and the sand rhizotron system serves mainly 

to manipulate unsaturated hydraulic conductivity. In addition, this hydraulic regulation of PRL 

was seen under each nitrate supply, which is in agreement with previous agar studies that 

demonstrated PRL to be unresponsive to nitrate concentration in (Forde and Zhang 1998; 

Walch-Liu and Forde 2008).  

In finding that water availability regulates PRL at each nitrate supply, the sand rhizotron system 

supports previous studies undertaken in a range of growth substrates that report a lack of PRL 

regulation by nitrate. However, a stronger influence of sand hydraulic conductivity than water 

potential on PRL is reported in the sand rhizotron system. This may not have been identified in 

non-porous growth substrates such as agar or hydroponics because hydraulic conductivity is 

dependent on pore distribution and connectivity. Although PRL has been described to be 

determined by hormones in agar (Blilou et al. 2005; Ruzicka et al. 2007), hydroponic (Liu et al. 

2010), vermiculite (Spollen et al. 2000; Leach et al. 2011) and soil (Santisree et al. 2011) 

studies, these were not found to be the main regulators of PRL in the sand rhizotron system.  

BRL increased with increasing nitrate concentration, but increased with decreasing water flux at 

high (10.0 mM) nitrate supply. In addition, a change in BRL was often associated with a similar 

change in AtABI4 expression. AtABI4 expression has been shown in agar studies to regulate 

LR growth in a nitrate-dependent manner (Signora et al. 2001; Shkolnik-Inbar and Bar-Zvi 2010) 

and here it seems to similarly associate with BRL changes. AtABI4 has been shown on agar to 

act up-stream of important auxin and ethylene genes to determine root growth (Kushwah et al. 

2011) and the basal root growth of common bean (Phaseolus vulgaris) has been shown to be 
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determined by auxin and ethylene in a hydroponic-style germination pouch system (Basu et al. 

2011).  

Due to limited reports of BR growth in agar and hydroponic studies, it is difficult to consider the 

BRL data in the context of previous work. However, BRL seems to respond in a similar fashion 

to that reported for LR proliferation. The positive regulation of BRL by AtABI4 expression in the 

sand rhizotron system could be similar to that reported for the hormonal regulation of BR growth 

in common bean or the nitrate-dependent AtABI4 regulation of LR growth. Similar regulation of 

BRL and TLRL could enable the plant to coordinate an increase in the total size and exploratory 

capacity of the root system.  

The proliferation responses of BRL and TLRL could be coordinated as an adaptive strategy to 

increase root system size. Nitrate patches that may be formed under conditions of decreased 

water availability could be of sufficient concentration to induce the BRL proliferation response to 

increased nitrate supply, perhaps in a similar fashion to high nitrate regulation of TLRL 

classically reported in sand (Drew and Saker 1975) and agar (Zhang et al. 1999; Malamy and 

Ryan 2001). In the same way that LR proliferation has been studied in these systems, basal 

root proliferation could be investigated in the sand rhizotron following the introduction of patches 

of increased nitrate concentration in proximity to established basal roots growing under 

decreased water availability.  

Previous work using the agar Petri dish system reported that LRN was responsive to water 

availability (Deak and Malamy 2005; Roycewicz and Malamy 2012). In support of this, both 

manipulations of water availability influence LRN in the sand rhizotron system. The importance 

of auxin transport in specifying LR growth has been identified in agar (Casimiro et al. 2001; Bao 

et al. 2007; Dubrovsky et al. 2011), but no interaction with AtPIN1 or AtPIN2 was observed in 

the sand rhizotron system. 

Agar studies have previously identified the osmotic regulation of TLRL (Deak and Malamy 2005; 

Roycewicz and Malamy 2012). In the sand rhizotron system the regulation of TLRL by water 

potential is reported, but water potential in the sand rhizotron system is mostly determined by 

the osmotic component. Therefore, the regulation of TLRL by water potential in the sand 

rhizotron system confirms the identification of osmotic regulation of TLRL reported in previous 

agar studies.  
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LRD was negatively regulated by water potential independent of nitrate input and LRD has been 

shown to be negatively regulated by increased osmotic potential independent of nitrate in agar 

systems (Deak and Malamy 2005; Roycewicz and Malamy 2012). The water potential within the 

sand rhizotron system is mainly determined by the osmotic potential of the nutrient solution and 

increases with increasing nitrate concentration. Therefore, the regulation of LRD by water 

potential may be viewed as a response to the osmotic component. As with previous studies 

using agar (van der Weele et al. 2000; Deak and Malamy 2005; Roycewicz and Malamy 2012), 

LRD responded to water potential in a similar manner as LRN and TLRL, but the relationship 

with water availability was stronger for LRD in the sand rhizotron system.  

LRD has been previously shown to be regulated by auxin in agar systems (Casimiro et al. 2001; 

Bao et al. 2007; Dubrovsky et al. 2008; Ivanchenko et al. 2008), but no interactions with the key 

auxin associated genes were identified in the sand rhizotron system.  However, LRD responded 

to water potential in a similar manner to AtABI4, AtEIN2 and AtIPT5 at low (0.1) or medium (1.0 

mM) nitrate supply. AtABI4 acts upstream of key auxin associated genes to determine root 

proliferation (Kushwah et al. 2011). AtABI4, AtEIN2 and AtIPT5 have been reported in agar 

studies to regulate LR growth by disrupting auxin transport (Signora et al. 2001; Shkolnik-Inbar 

and Bar-Zvi 2010). Thus, an interaction between LR growth and certain hormone associated 

genes is supported by previous work in agar.  

 

6.4.2. The influence of water and nitrate availability on root gene expression  

The repression of AtNRT2.1 at high nitrate concentrations has been demonstrated to be 

mediated by AtNRT1.1 in agar and hydroponic systems (Munos et al. 2004; Krouk et al. 2006). 

Consistent with this previous work, the decrease in overall expression of AtNRT2.1 at high (10.0 

mM) coincided with an increase in AtNRT1.1 expression, while decreased AtNRT1.1 expression 

at low (0.1 mM) and medium (1.0 mM) nitrate supply corresponded to increased overall 

AtNRT2.1 expression.  

AtNRT1.1 expression has been shown to be regulated by nitrate and auxin in agar and 

hydroponic systems (Guo et al. 2002; Okamoto et al. 2003; Wang et al. 2004; Remans et al. 

2006a; Bao et al. 2011). Under high (10.0 mM) nitrate supply, the expression of AtNRT1.1 

appeared to show a similar patter to that of AtPIN1 and AtPIN2 in the sand rhizotron system. 
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AtNRT1.1 has been shown to regulate the expression of AtNRT2.1 which requires AtNAR2.1 for 

wild-type uptake function (Okamoto et al. 2003; Munos et al. 2004; Orsel et al. 2004; Krouk et 

al. 2006; Orsel et al. 2006; Wirth et al. 2007). In the sand rhizotron system, the response of 

AtNRT1.1 and AtNAR2.1 were similar under several treatments, suggesting that the regulation 

of AtNRT2.1 previously reported may be mediated by AtNAR2.1.  

Agar and hydroponic studies have demonstrated that the expression of AtNRT2.1 is induced by 

nitrate and repressed by high nitrate supply (Nazoa et al. 2003; Okamoto et al. 2003; Orsel et 

al. 2004; Wang et al. 2004; Alboresi et al. 2005; Little et al. 2005; Remans et al. 2006b; Krouk et 

al. 2010a; Bao et al. 2011). Consistent with these studies, AtNRT2.1 expression was increased 

at low (0.1 mM) and medium (1.0 mM) nitrate supply in the sand rhizotron system when water 

supply was manipulated by particle size.  

AtNAR2.1 is required for wild-type AtNRT2.1 function and AtNAR2.1 expression has been 

shown to closely follow AtNRT2.1 expression in agar and hydroponic studies (Nazoa et al. 

2003; Orsel et al. 2004; Little et al. 2005; Krouk et al. 2006; Orsel et al. 2006; Remans et al. 

2006b; Girin et al. 2007; Bao et al. 2011). Although it is widely reported from agar and 

hydroponic studies that the expression of AtNRT2.1 and AtNAR2.1 closely follow each other, 

the response of the genes to nutrient supply in the sand rhizotron system was often distinct.  

In fact, the expression of AtNRT2.1 and AtPIP2.2 was coordinated across treatments. A similar 

response of AtNRT2.1 and AtPIP2.2 expression across all treatments may indicate a 

coordination of nitrate and water uptake and/or sensing systems in response to altered water 

availability. Previous studies have not identified an interaction between AtNRT2.1 and AtPIP2.2 

or AtNRT2.1 and water availability. This could be due to differences in the pore structure 

between the sand rhizotron system and agar or hydroponics that determine water and nitrate 

availability; responses to altered connectivity of solution are unlikely to be identified in non-

porous growth media such as agar or liquid culture.  

Interestingly, no regulation of LR growth by AtNRT2.1 expression was identified in the sand 

rhizotron system, despite this being reported in agar culture (Little et al. 2005; Remans et al. 

2006b) and LR growth remained unaltered in the atnrt2.1 mutant in the sand rhizotron system. 

However, the wild-type LR response was perturbed in atnar2.1 and atpip2.2 mutants, and this 

was associated with altered expression of AtEIN2, AtABI4 and AtIPT5 in the atnar2.1 mutant. 
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The ethylene signal transducer AtEIN2 has been shown to control LR growth in response to 

nitrogen supply on agar plates (Tian et al. 2009). AtNAR2.1 was required for the wild-type 

response of AtEIN2, AtABI4 and AtIPT5 expression at low water availability under high (10.0 

mM) nitrate supply which coincided with a loss of LR growth responses to water availability. 

Interestingly, the investigation of atnar2.1 mutants in agar and hydroponic systems previously 

identified a LR phenotype under high (10.0 mM) nitrate supply and the AtNAR2.1 gene product 

was speculated to be more important for LR responses than AtNRT2.1 (Orsel et al. 2006). 

Thus, in the sand rhizotron system, AtNAR2.1 appears to have an AtNRT2.1-independent role 

in facilitating root proliferation responses to water availability under high (10.0 mM) nitrate 

supply, which may be mediated by hormone associated gene expression.  

AtPIP2.2 expression has been shown to be responsive to water availability in hydroponically 

grown seedlings (Javot et al. 2003; Alexandersson et al. 2005; Da Ines et al. 2010) and 

AtPIP2.2 was potentially required upstream of AtNAR2.1 for wild-type root proliferation and 

hormone signalling responses to water availability under high (10.0 mM) nitrate supply in the 

sand rhizotron system. A specialized role for AtPIP2.2 in osmotic root water uptake was 

previously reported in hydroponic culture (Javot et al. 2003) and it is possible that the same is 

true for the sand rhizotron system.  

Although there is no evidence in the literature for auxin-regulation of AtPIP2s, this has been 

reported in rubber trees (Tungngoen et al. 2011) and a loss of root proliferation responses in the 

atpip2.2 mutant coincided with decreased AtPIN1 and AtPIN2 expression. AtPIN1 plays an 

important role in auxin transport to the root tip that determines auxin-dependent directional root 

growth (Blilou et al. 2005). Therefore, this aquaporin could have a role in the hormonal 

regulation of root proliferation responses to altered water availability. 

Nitrate-dependent regulation of AtPIP2.2 has not been previously reported, but the expression 

of AtPIP2.2 in the sand rhizotron system was regulated by water availability differently at 

different nitrate concentrations. Water channels have been previously shown to be regulated by 

nitrate (Wang et al. 2001). However, this aquaporin is responsive to water availability 

(Alexandersson et al. 2005; Alexandersson et al. 2010) and has been demonstrated to facilitate 

osmotic root water uptake (Javot et al. 2003). Water potential in our sand rhizotron system is 

mainly determined by the osmotic potential of the nutrient solution. Therefore, it is more likely 
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that the expression of AtPIP2.2 is responding to an altered osmotic potential as determined by 

nitrate concentration rather than a direct response to nitrate.  

 

6.4.3. Summary 

The investigation of root physiological responses to altered water and nitrate availability as 

manipulated in the sand rhizotron system has generated several results that are consistent with 

simplified experimental systems such as agar and hydroponics. For example, the results 

support previous agar studies that found PRL and LRD to be mainly regulated by water supply 

rather than nitrate concentration. Responses that are conserved between systems are important 

for the validation of the sand rhizotron system as another useful experimental tool for the 

investigation of root nutrient acquisition. 

However, the use of the sand rhizotron system also identified some novel findings. For 

example, AtNRT2.1 and AtPIP2.2 expression was responsive to soil hydraulic properties and 

their expression was coordinated across treatments. A new role was identified for AtNAR2.1, 

independent of AtNRT2.1, in the regulation of LR responses to altered water availability under 

high (10.0 mM) nitrate supply. This was regulated at the transcript level and probably mediated 

by the hormone-associated genes AtEIN2 and/or AtABI4. The sand rhizotron data also suggest 

that AtPIP2.2 may act upstream to coordinate acquisition responses to altered water and nitrate 

availability.  

The majority of these novel results were responses to altered water availability as manipulated 

by altered sand hydraulic conductivity or matric potential. These findings may not have been 

identified in experimental systems (such as agar or hydroponic culture) that do not utilise a 

porous growth substrate, as the substrate physical properties that determine water and nitrate 

availability are very different in these systems compared to the sand rhizotron system 

(Chapman et al. 2012). The use of the sand rhizotron system also enabled root physiological 

responses to be considered within an added layer of information regarding the physical 

properties that determine water and nitrate availability. 
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6.5. A proposed coordination of root water and nitrate responses to altered 

hydraulic properties 

The consideration of the water and nitrate nutrient acquisition responses to altered availability 

within the context of an extra layer of understanding relating to the sand physical properties that 

govern their availability enabled a conceptual model to be proposed for the coordination of the 

nitrate and water root acquisition. Taken together, the data indicate that there could be a 

coordination of root proliferation and gene expression in response to altered water or nitrate 

availability.  

PRL decreased, and LRD and LRN increased, under relatively high water availability conditions 

presumably to exploit good water availability (Mommer et al. 2012). Conversely, LRD and LRN 

is decreased, and PRL increased, under relatively low water availability probably to forage for 

better water availability down the soil profile (Hodge 2009). As water availability decreases, 

nitrate distribution may become more heterogeneous, with TLRL increasing to capture localized 

patches of high nitrate (Robinson et al. 1999). This competitive advantage may be enhanced by 

increased BRL under increased nitrate supply.  

A decrease in water availability (i.e. under low unsaturated hydraulic conductivity or more 

negative water potential) increased the heterogeneity of nitrate supply within the root growth 

environment and regulated expression of AtNRT2.1 and AtPIP2.2. This may be either to 

maintain acquisition of these growth-limiting nutrients or as a sensory response to determine 

downstream root proliferation responses. This is not seen at low water availability under high 

(10.0 mM) nitrate supply because when patches are encountered the nitrate concentration is 

sufficiently high to enable the repression response. Consequently, AtNRT2.1 and AtPIP2.2 

expression becomes tightly regulated by water flux over a much narrower expression range.  

Under high (10.0 mM) nitrate supply, the root proliferation response to low water availability 

requires AtNAR2.1 and may be mediated by the expression of AtEIN2 and/or AtABI4. An 

increase in ethylene signalling (AtEIN2) and the reduced expression of auxin-related 

transcriptional repressors (AtTIR1) positively determines cytokinin biosynthesis (AtIPT5) which 

inhibits LR growth in response to high nitrate. The lack of regulation of AtNAR2.1 expression by 

increased water availability under high (10.0 mM) nitrate supply may require AtPIP2.2 

upstream. This, in addition to the fact that AtPIP2.2 expression is responsive to altered water 
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availability and may overlap with auxin transport, suggests that this aquaporin could play a 

significant role in sensing, or facilitating downstream signalling responses to, altered water 

availability and thus determine downstream root physiological responses to altered water and/or 

nitrate availability. 

Whilst this conceptual model is simplified, it provides a framework to understand how the root 

proliferation and gene expression components of water and nitrate acquisition may be 

coordinated in response to altered soil hydraulic properties. It also helps to identify testable 

elements for future lines of enquiry. 

 

6.6. Why might water and nitrate transporter expression be coordinated? 

The regulation of aquaporin expression provides a degree of control in the uptake of water into 

the root and could help to maintain the mass flow of water (and dissolved solutes such as 

nitrate) to the root when transpiration is low (Nye and Tinker 1977; Jungk 1996; Tinker and Nye 

2000; Javot and Maurel 2002; Maurel et al. 2008). AtPIP2.2 has been shown to predominantly 

facilitate root water uptake under conditions of reduced transpiration to enable osmotic transport 

within the root (Javot et al. 2003) and its expression is sensitive to water supply (Jang et al. 

2004; Alexandersson et al. 2005; Alexandersson et al. 2010). 

At the root surface, transporter-dependent ion uptake may create localised depletion and a 

gradient along which nitrate ions can diffuse towards the root (Nye and Tinker 1977; Tinker and 

Nye 2000). AtNRT2.1 achieves high-affinity root nitrate uptake and AtNRT2.1 expression is 

repressed by high external nitrate concentrations (Lejay et al. 1999; Zhuo et al. 1999; Cerezo et 

al. 2001; Gansel et al. 2001; Orsel et al. 2002b; Nazoa et al. 2003; Orsel et al. 2004; Bao et al. 

2011). This function requires AtNAR2.1 and AtNAR2.1 expression normally closely follows that 

of AtNRT2.1 in response to nitrate supply (Okamoto et al. 2006; Orsel et al. 2006; Wirth et al. 

2007; Yong et al. 2010). The work in this thesis describes a link between AtPIP2.2 and 

AtNRT2.1 expression across all treatments and that their expression decreased and became 

regulated by water availability under high (10.0 mM) nitrate supply. Furthermore, under high 

(10.0 mM) nitrate supply, root proliferation was linked to AtNAR2.1 expression responses to 

water availability, which in turn required AtPIP2.2 expression upstream.  
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Considering these results within the context of the wider literature, it is possible to speculate 

that a feedback loop may be established between the water and nitrate uptake systems 

whereby activity is modified in response to altered availability. Nitrate delivery to the root is 

decreased under conditions of decreased water availability (Nye and Tinker 1977; Tinker and 

Nye 2000). An increase in the expression of AtPIP2.2 serves to counter the decreased water 

availability and maintain water uptake when transpiration is low (Javot et al. 2003). Expression 

of AtNRT2.1 is induced by the subsequent delivery of dissolved nitrate ions to the root surface 

to facilitate high-affinity nitrate acquisition (Cerezo et al. 2001; Nazoa et al. 2003; Orsel et al. 

2004). An increase in nitrate uptake by AtNRT2.1 alters the osmotic potential of the cell and 

drives an increase in AtPIP2.2 expression to increase water uptake and maintain radial osmotic 

transport within the root (Javot et al. 2003). As increased AtPIP2.2-mediated water uptake 

increases the delivery of water and dissolved nitrate ions to the root surface, AtNRT2.1 

expression becomes repressed as external nitrate concentration increases (Lejay et al. 1999; 

Zhuo et al. 1999; Gansel et al. 2001). This decreases net nitrate uptake and a decrease in 

AtPIP2.2 expression follows because less water is required to be taken up in order to maintain 

radial osmotic transport within the root (Javot et al. 2003).  

Under high (10.0 mM) nitrate supply, a relative decrease in water availability facilitates a relative 

increase in the concentration of nitrate at the root surface and AtNRT2.1-mediated nitrate 

uptake is subsequently decreased. The expression of AtNRT2.1 is then further decreased in 

response to a relatively increased nitrate concentration. Consequently, AtPIP2.2 expression 

decreases as less water uptake is needed to maintain radial osmotic transport within the root. 

Under relatively increased water availability, the nitrate concentration at the root surface is 

decreased and the result is that expression of both genes becomes positively regulated by 

water availability. This is probably a result of an overall decreased level of expression over a 

much narrower range than that observed under low (0.1 mM) or medium (1.0 mM) nitrate supply 

and enhanced AtNRT2.1 repression in response to high (10.0 mM) nitrate supply at decreased 

water availability.  
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6.7. Coordinated water and nitrate transporter expression could be regulated by 

nitrate  

Manipulating matric potential within our sand rhizotron system alters the availability of water and 

the subsequent delivery of dissolved nitrate ions to the root surface. A major component of root 

water uptake and osmotic fluid transport under conditions of low transpiration (Javot et al. 

2003), AtPIP2.2 has been shown to be responsive to altered water availability (Alexandersson 

et al. 2005) and important for systemic water flux (Da Ines et al. 2010). Root responses to 

nitrate availability have been suggested to be mediated by the perception of nitrate itself as the 

signal (Wang et al. 2004; Alboresi et al. 2005; Krouk et al. 2010a). 

As water flux to the root increases, dissolved nitrate ions begin to be delivered to the root 

surface and the expression of AtNRT2.1 is induced. AtNRT2.1 expression is induced by nitrate 

supply and strongly repressed by sustained high supply (Filleur and Daniel-Vedele 1999; Lejay 

et al. 1999; Zhuo et al. 1999). AtNRT2.1 expression is also repressed by reduced nitrogen 

metabolites (Crawford and Glass 1998; Gansel et al. 2001; Miller et al. 2007; Gojon et al. 2009), 

but additionally requires a specific AtNRT1.1-dependent inhibition of local AtNRT2.1 transcript 

accumulation under high nitrate supply (Krouk et al. 2006). Therefore, the decrease in 

AtNRT2.1 expression observed under high (10.0 mM) nitrate availability requires the activation 

of two different signalling pathways that integrate plant nitrogen demand and locally high nitrate 

availability.  

Nitrate regulates AtNRT2.1 expression in a concentration dependent manner, but how is 

AtPIP2.2 expression repressed under high nitrate supply? It is possible that the expression of 

AtPIP2.2 could also be sensitive to nitrate itself as water channel genes have been shown to be 

induced by nitrate (Wang et al. 2001). Aquaporin-mediated changes in root hydraulic 

conductance have also been reported in response to high nitrate supply (Carvajal et al. 1996; 

Clarkson et al. 2000), but change in conductance has been shown not to be directly mediated 

by aquaporins (Gorska et al. 2008b). Aquaporin homologues have been shown to transport 

ammonia via proton exclusion (de Groot et al. 2003; Jahn et al. 2004; Hove and Bhave 2011) 

and two members of the Arabidopsis TONOPLAST INTRINSIC PROTEIN 2 (AtTIP2) family 

have been shown to mediate extracytosolic transport of ammonia (Loque et al. 2005). In fact, 

changing just a single amino acid in a mammalian aquaporin was shown to switch function to an 
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anion channel (Liu et al. 2005). Although no previous work has reported that AtPIP2.2 can 

transport nitrate as AtNRT2.1 does, this could be tested in vitro in the frog (Xenopus laevis) 

oocyte expression system which has been used to characterise nitrate transporter activity (Miller 

and Zhou 2000). 

In addition to high external nitrate supply, AtNRT2.1 repression is also regulated by nitrogen 

demand and metabolite feedback repression (Crawford and Glass 1998; Gansel et al. 2001; 

Miller et al. 2007; Gojon et al. 2009). Under high nitrate supply, nitrate availability is increased 

for use by the plant until such a point that supply exceeds demand. At this point nitrate (De 

Angeli et al. 2006; Wege et al. 2010) or downstream metabolites (Loque et al. 2005) may be 

transported into the vacuole and stored preferentially as a readily available energy store (Miller 

et al. 2009). As this happens, the effective cytoplasmic solute concentration, and the osmotic 

potential of the cytoplasm, becomes decreased. The decreased expression of AtPIP2.2 could 

therefore be the result of less water being required to be taken up into the cell in order to 

maintain the radial osmotic transport of water from the soil towards the vascular tissue of the 

root (Steudle and Frensch 1989; Javot et al. 2003; Maurel et al. 2008).  

Nitrate is known to play an important role in the regulation of osmotically-driven cellular 

expansion that determines root growth (Steudle and Frensch 1989; Miller et al. 2009; Bloom et 

al. 2012). A change in cytoplasmic osmotic potential as a result of altered vacuolar nitrate 

allocation could explain the nitrate-mediated changes in root hydraulic conductance (Clarkson 

et al. 2000; Gorska et al. 2008a; Gorska et al. 2008b). Root hydraulic conductance has been 

shown to correlate with the external supply and uptake rates of water and nitrate (Nobel and 

Alm 1993; Gallardo et al. 1996; Nardini and Pitt 1999; Clarkson et al. 2000; Li et al. 2005; 

Gorska et al. 2008b; Gorska et al. 2010). Although the modification of root hydraulic 

conductance in response to nitrate supply has been previously reported not to be regulated by 

changes in aquaporin expression (Gorska et al. 2008b), the vacuolar-nitrate transport-

dependent change in cytoplasmic osmotic potential could act as the upstream signal to modify 

AtPIP2.2 expression in response to nitrate availability (Gorska et al. 2010). This may be further 

elucidated by investigating AtPIP2.2 expression and root hydraulic conductance in mutant lines 

with defective vacuolar-nitrate transport in the sand rhizotron system. 
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Root hydraulic conductance and aquaporin abundance have been shown to respond rapidly to 

decreased water availability (McLean et al. 2011) and the atpip2.2 mutant exhibits decreased 

root water uptake and root hydraulic conductivity (Javot et al. 2003; Da Ines et al. 2010). In the 

atpip2.2 mutant under high (10.0 mM) nitrate supply, AtNAR2.1 expression is decreased at 

decreased water availability, while the expression of AtNRT2.1 is no longer responsive to water 

availability and AtNRT1.1 expression is overall greatly decreased. Therefore, it seems that 

AtPIP2.2 could play a role in the coordination of the expression of important nitrate acquisition 

genes. Furthermore, the disturbance of root hydraulic conductance, as a function of a change in 

the osmotic potential of the cell, could be the driver of disrupted transporter expression and root 

proliferation in the atpip2.2 mutant. The question of whether the AtPIP2.2 gene product or 

AtPIP2.2-mediated root hydraulic conductance is more important for wild-type root proliferation 

and gene expression responses could be addressed in the sand rhizotron system by analysing 

these acquisition responses in seedlings with decreased root hydraulic conductance, either in 

mutant lines that retain wild-type AtPIP2.2 expression or perhaps where aquaporin activity is 

inhibited by HgCl2 (Javot and Maurel 2002; Tyerman et al. 2002; Knipfer et al. 2011). 

 

6.8. A novel role for AtNAR2.1 in coordinating root proliferation and transporter 

expression 

AtNRT2.1 has been shown to be crucial in the perception or transduction of the high nitrate 

repression signal (Little et al. 2005; Remans et al. 2006b) and to activate LR initiation under low 

nitrate conditions (Remans et al. 2006b). However, AtNRT2.1 is dependent upon AtNAR2.1 for 

its translocation to the plasma membrane (Wirth et al. 2007) where it functions in nitrate uptake 

activity (Okamoto et al. 2006; Orsel et al. 2006). Moreover, mutants for both genes have a 

similar LR phenotype (Orsel et al. 2006). Although the exact function of AtNAR2.1 itself remains 

elusive (Gojon et al. 2011), it has been suggested that the nitrate transporter is actually formed 

of an AtNRT2.1/AtNAR2.1 hetero-oligomer in the plasma membrane (Yong et al. 2010) and 

AtNAR2.1 can strongly interact with all bar one (AtNRT2.7) of the other AtNRT2 family members 

to facilitate nitrate transport (Kotur et al. 2012). However, unlike the well-characterised 

AtNRT1.1 or AtNRT2.1, no role has yet been identified in root proliferation or nitrate signalling 

responses to altered availability.  
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Due to the requirement of AtNAR2.1 for AtNRT2.1 uptake function, the expression of AtNAR2.1 

usually closely follows that of AtNRT2.1 (Okamoto et al. 2006; Orsel et al. 2006; Wirth et al. 

2007; Yong et al. 2010). However, it should be noted that there was no nitrate-dependent 

response to water availability for AtNAR2.1 expression, like that seen for AtNRT2.1. Although 

expression of these genes correlates with transport activity, this dissimilarity in expression 

responses to sand hydraulic characteristics could be due to the suggested importance of post-

transcriptional regulation of the high-affinity uptake system (Laugier et al. 2012). Nevertheless, 

this represents the novel finding that independent expression responses to sand hydraulic 

characteristics exist for AtNRT2.1 and AtNAR2.1. 

AtNRT2.1 has been identified as an important coordinator of LR responses (Little et al. 2005; 

Remans et al. 2006b), although the partner AtNAR2.1 gene product itself has been suggested 

to be important for this (Orsel et al. 2006). In the sand rhizotron system, a potential role was 

identified for AtNAR2.1 in mediating hormonal regulation of root physiology in response to water 

and nitrate availability. The PRL response to water availability under high (10.0 mM) nitrate 

supply was greatly reduced and all other root proliferation responses were lost in the atnar2.1 

mutant. In addition, AtPIP2.2 expression remained responsive to water availability in the 

atnar2.1 mutant, but the expression of AtNRT1.1 was greatly decreased while AtNRT2.1 

expression became unresponsive to water availability. Intriguingly, AtNAR2.1 expression 

became responsive to water availability in the atpip2.2 mutant. The changes in root proliferation 

and transporter expression in the atnar2.1 mutant coincided with a change in AtABI4, AtEIN2 

and AtIPT5 expression with altered water availability. Taken together, these results could 

indicate a role for AtNAR2.1 in mediating hormone-regulated root proliferation responses to 

water availability within the sand rhizotron system. 

The expression of the ABA-signalling gene AtABI4 is enhanced by ABA and repressed by auxin 

(Shkolnik-Inbar and Bar-Zvi 2010). In addition, the polar transport of auxin to the root tip by 

AtPIN1 is decreased in response increased AtABI4 expression (Shkolnik-Inbar and Bar-Zvi 

2010). Auxin transport in the root is essential for PR growth, establishment of LR primordia and 

the elongation of emerged laterals (Friml et al. 2003; Blilou et al. 2005; Scheres and Xu 2006; 

De Smet et al. 2007; Nibau et al. 2008; Fukaki and Tasaka 2009). Therefore, the sand rhizotron 

results linking nitrate-dependent changes in hormone-associated gene expression are 

consistent with the literature.   
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Although no direct link between AtNAR2.1 and hormone-dependent root proliferation responses 

have been described in response to nutrient availability, evidence exists that links 

AtNAR2.1/AtNRT2.1 to hormone signalling in response to biotic stress. AtNAR2.1 was first 

identified as Wound Responsive 3 (WR3) and was shown to be transcriptionally induced in 

response to wounding (Léon et al. 1998). Although the induction of WR3 was via a pathway that 

was independent of the plant hormone jasmonic acid, cross-talk between defence and other 

stress responses share some common elements between jasmonic acid, salicylic acid, ABA and 

ethylene pathways (Knight and Knight 2001; Boursiac et al. 2008; Anjum et al. 2011; Aroca et 

al. 2012; Moffat et al. 2012; Saeed et al. 2012; Wathugala et al. 2012). The capacity of plants to 

mount a successful defence response against the bacterial plant pathogen Pseudomonas 

syringae has also been linked to nitrogen status (Modolo et al. 2006) and interestingly atnrt2.1 

mutants demonstrate a reduced susceptibility to a Pseudomonas syringae strain associated 

with the hormone salicylic acid (Camanes et al. 2012). In addition, the high affinity transport 

system in wheat is regulated by ABA and glutamine (Cai et al. 2007). Therefore, there is some 

evidence that links AtNAR2.1/AtNRT2.1 to hormone-dependent changes in root growth in 

response to abiotic or biotic stress, but it remains unclear whether this is mediated by hormones 

or nitrate itself (Wang et al. 2012). A greater insight could perhaps be gained by investigating 

the interaction between AtNAR2.1 and biotic stress across a range of mutants with defective 

hormone signalling and nitrate metabolism in the sand rhizotron system. 

Root growth is dependent upon the osmotically driven influx of water that determines cellular 

expansion (Sharp et al. 1990; Spollen and Sharp 1991; Ingram and Malamy 2010). Although 

nitrate has been implicated as an important osmoticum for this process (Steudle and Frensch 

1989; Miller et al. 2009; Bloom et al. 2012), PRL increased at low water availability independent 

of nitrate supply. This indicates that PRL can be sustained independent of nitrate availability at 

the root surface and its subsequent use as an osmoticum. Maize PRL has been previously 

demonstrated to be maintained by osmotic adjustment at low water potentials. This was the 

result of segment specific accumulation of other solutes, including downstream nitrate 

assimilates such as the amino acid proline (Sharp et al. 1990; Voetberg and Sharp 1991), and 

by more than could be attributable to the anticipated accumulation from inhibited growth (Munns 

1988; Yamaguchi and Sharp 2010). This accumulation of proline was the result of increased 

proline transport to the root tip (Verslues and Sharp 1999) and was shown to require an 
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accumulation of ABA (Ober and Sharp 1994). Therefore, at decreased water availability the 

ABA-mediated accumulation of nitrate assimilates in the Arabidopsis root tip could be the signal 

to maintain PRL independent of nitrate supply. Despite the difference in root size between 

maize and Arabidopsis, this could be tested by quantifying Arabidopsis root tip proline (Verslues 

and Juenger 2011) and/or ABA content at a series of water availabilities in the sand rhizotron 

system. 

In summary, the expression of AtNAR2.1 and AtNRT2.1 has been described to closely parallel 

one another in agar or hydroponic systems, assumed to be due to the requirement of AtNAR2.1 

for AtNRT2.1 uptake function (Orsel et al. 2006; Wirth et al. 2007; Yong et al. 2010). The 

investigation of root physiological responses to altered water and nitrate availability in the sand 

rhizotron system has identified a potential novel role for AtNAR2.1 in the determination of 

certain root proliferation responses to nutrient supply. The data indicate that this is independent 

of AtNRT2.1 and may be mediated by interaction with hormone-associated genes. Therefore, 

the manipulation of sand hydraulic characteristics to alter water and nitrate supply has identified 

the first example of an ‘un-coupling’ of the expression responses of these two genes.  
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6.9. Conclusions 

The main findings of this research are summarised below: 

� A novel sand rhizotron system was developed to investigate Arabidopsis thaliana root 

nutrient acquisition responses to altered water and nitrate availability as a result of 

manipulated soil physical characteristics (Chapter 3); published in Chapman et al. 2011 

(Appendix 2); 

� Methods to analyse root proliferation and gene expression components of root nutrient 

acquisition were developed, including the novel in situ imaging of GFP-reporter lines 

(Chapters 3, 4 and 5); the novel use of GFP lines was published in Chapman et al. 2012 

(Appendix 3); 

� Disparities in several root proliferation and gene expression parameters between seedlings 

grown on agar and sand culture may be explained by differences in hydraulic properties of 

the root growth environment and the volume of nutrients available in each system (Chapter 

3); published in Chapman et al. 2011 (Appendix 2); 

� These results highlighted the importance of considering soil physical properties in root 

nutrient acquisition studies; reviewed by Chapman et al. 2012 (Appendix 3); 

� In the sand rhizotron system, PRL and LRD were regulated by water availability at each 

nitrate (0.1, 1.0 and 10.0 mM) supply (Chapter 4);  

� This may have been the result of no significant difference in the nitrate concentration at the 

root surface as determined by nitrate-selective microelectrode measurements (Chapter 4); a 

novel result published in Chapman et al. 2011 (Appendix 2); 

� The expression of the high affinity nitrate transporter AtNRT2.1 and the aquaporin AtPIP2.2 

responsible for root water uptake and osmotic fluid transport were coordinated across all 

treatments (Chapter 5); 

� AtNRT2.1 and AtPIP2.2 expression was increased and more varied under low (0.1 mM) and 

medium (1.0 mM) nitrate supply, before decreasing overall and becoming regulated by water 

availability under high (10.0 mM) nitrate supply, and this was particularly evident at low water 

availability (Chapter 5); 

� Although usually found to closely follow each other, AtNAR2.1 and AtNRT2.1 expression 

demonstrated independent responses to water and nitrate availability (Chapter 5); 
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� Certain wild-type root proliferation responses to water availability under high (10.0 mM) 

nitrate supply were lost in the atnar2.1 mutant line and this coincided with a change in 

hormone gene expression (Chapter 5);  

� Wild-type root proliferation and AtNAR2.1 expression required AtPIP2.2 upstream for wild-

type responses to water availability under high (10.0 mM) nitrate supply (Chapter 5);  

� Some gene expression results (e.g. the regulation of AtNRT2.1 by unsaturated hydraulic 

conductivity or the ‘un-coupling’ of AtNRT2.1 and AtNAR2.1) may not have been detected in 

agar or hydroponic culture due to the difficulty of manipulating soil hydraulic characteristics in 

these systems;  

� The coordination of root proliferation and transporter and hormone gene expression may be 

regulated by nitrate as a response to external availability, downstream metabolites and/or its 

function as an osmoticum (Chapter 6). 
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6.10. Future lines of investigation 

A novel sand rhizotron system was developed that facilitated the investigation of root 

physiological and molecular responses to manipulations of hydraulic properties that determine 

water and nutrient supply to the root. By exploiting the superior molecular tool-kit available for 

the model laboratory plant Arabidopsis, it has been possible to determine the influence of 

altered water and nitrate availability on some important root proliferation and gene expression 

components of nutrient acquisition. This approach has enabled a greater understanding of the 

coordination of water and nitrate acquisition responses to be achieved. However, it has also 

raised several potential future lines of investigation and here some possible ways forward are 

discussed.  

Within the sand rhizotron system in situ imaging of promoter-tagged GFP-reporter lines under 

specific nutrient regimes was developed. However, only steady-state conditions under certain 

nutrient supply have been investigated and at one time point. It would be exciting to utilise 

readily available GFP-reporter lines to investigate rapid expression changes that underpin root 

acquisition responses to nutrient availability. For example, if a locally high nitrate patch was 

introduced into a sand rhizotron under low nitrate supply, it may be possible to image the 

expression of key auxin genes that regulate the LR proliferation response to colonise the patch. 

The exploitation of FP-reporter lines in the current system could enable several fundamental 

acquisition mechanisms to be addressed. If there more time, it would be extremely useful to 

create promoter-tagged FP-reporter lines for AtPIP2.2 and AtNAR2.1 before crossing them with 

the proAtNRT2.1:eGFP line. By using different FPs with different excitation ranges it would be 

possible to image simultaneous expression changes and thus address the regulation of 

proliferation responses to altered water and/or nitrate availability. This would be particularly 

useful to address the point at which AtNRT2.1 and AtPIP2.2 expression becomes decreased by 

high nitrate concentration and to elucidate the nature of their interaction in response to specific 

changes in water or nitrate supply.  

The nature of the coordination of AtNRT2.1 and AtPIP2.2 could be further elucidated by the use 

of 15N uptake experiments to determine whether the coordination was a sensory and/or uptake 

response. Although coordination of AtNRT2.1 and AtPIP2.2 was identified at the transcript level 

in this project, it could be informative to investigate changes in protein abundance and post-

translational modification because regulation at this level may be important for aquaporin and 
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nitrate transporter function (Ho et al. 2009; McLean et al. 2011; Laugier et al. 2012). Split-root 

experiments could be used to investigate whether the coordination of AtNRT2.1 and AtPIP2.2 

expression is a systemic or localized response to altered water or nitrate availability (Boukcim et 

al. 2006; Girin et al. 2010; Ruffel et al. 2011).  

It would be informative to investigate the speculated regulation of AtNRT2.1 and AtPIP2.2 

coordination by an osmotic nitrate signal. Investigation of the expression of AtCLCs or AtTIPs 

and the use of FP-reporter or mutant lines (Loque et al. 2005; De Angeli et al. 2009), could 

address the hypothesis that vacuolar transport of nitrate and/or assimilates may be the drivers 

for changes in cell osmotic potential and determine AtNRT2.1 and AtPIP2.2 expression. 

Although difficult to undertake in Arabidopsis, microelectrode measurements of the vacuolar 

solute concentration or pH (Miller and Smith 1992; Walker et al. 1995; Miller and Smith 1996; 

Miller and Smith 2008), and the quantification of root hydraulic conductance changes (Sutka et 

al. 2011), could enable the speculated nitrate-mediated osmotic signal to be better understood. 

The latter would also add more information about difference in water conductivity between the 

root and the sand (which was quantified) that drives water uptake in the sand rhizotron system.  

The ‘un-coupling’ of AtNAR2.1 and AtNRT2.1 expression was detected in the sand rhizotron 

system but not previously reported in agar or hydroponics so may be a response to the sand 

physical properties (e.g. hydraulic conductivity, matric potential or osmotic potential). This ‘un-

coupling’ could be further tested in response to other soil physical properties, e.g. mechanical 

impedance or soil strength, while the possibility of osmotic regulation of the 

AtNAR2.1/AtNRT2.1 transporter could be tested in vitro using Xenopus oocytes across a range 

of osmotic potentials (Miller and Zhou 2000). The interaction of AtNAR2.1 and hormone-

associated gene expression could be further investigated by analysing root physiological 

responses of the atnar2.1 mutant and mutants with defective hormone signalling across a range 

of biotic and abiotic stresses in the sand rhizotron system. These approaches have the potential 

to identify a new role for AtNAR2.1 or the nitrate signal in a general stress response.  

The sand rhizotron system is based on robust physical methods that could be scaled up to 

generate a larger system for the investigation of nutrient acquisition responses in larger plant 

species. This research has identified some interesting relationships for nutrient acquisition 

genes that could be explored in related Brassicacae species (e.g. Tilsner et al. 2005), or in 
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crops where some information is known about the relevant acquisition genes, such as wheat 

(e.g. Yin et al. 2007), maize (e.g. Hachez et al. 2006) or barley (e.g. Knipfer et al. 2011). 

Although the reduced availability of advanced molecular tools in most of these species still 

represents an experimental challenge, there are some advantages in using a larger 

experimental system. The split-root approach could be used to gain a greater insight into the 

root physiological responses to spatial variation in soil hydraulic properties (Bingham and 

Bengough 2003), e.g. the impact on the nitrate-dependent hydraulic regulation of NRT2.1 of 

exposure of a split root system to different hydraulic conductivities. In addition, as the 

competition of roots is driven by nutrient concentration (Hodge et al. 1999; Nord et al. 2011), the 

influence of altered soil hydraulic properties on the competition between roots for nitrate could 

be investigated in a larger system.  

 

6.11. The potential of a weed species 

It is clear that Arabidopsis root physiology is developmentally plastic in response to altered 

water and nitrate supply. This is presumably a function of the roots of this weed species being 

well adapted to obtaining sufficient nutriment from the patchy soil environment associated with 

its natural habitat. As a result, Arabidopsis roots may be well adapted to nutrient acquisition 

under more patchy resource supply (Fitter et al. 2002). The characterisation of root nutrient 

acquisition responses to altered water and nitrate availability in the ‘weed’ species Arabidopsis 

could help identify useful root traits to enhance the acquisition of nutrients in crop species 

(Rensink and Buell 2004; Smith and De Smet 2012). Furthermore, comparing the vast amount 

of information on Arabidopsis root growth in agar or hydroponic systems with data obtained 

using porous growth systems has identified the importance of the soil physical component of 

nutrient acquisition (Chapman et al. 2012). 

Beyond the obvious advantages of the superior molecular tools and understanding possessed 

for this model laboratory plant, it is the natural adaptation to patchy resource provision that 

holds the potential for enhancing nutrient acquisition in our crop species. Furthermore, 

identifying root traits for improved nutrient acquisition in experimental systems that consider the 

important soil physical properties determining water and nitrate availability may help to 

accelerate the transition from experimental understanding to field results that can help to 
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address the challenge of food security. The identification of these beneficial root traits can 

inform crop breeding programmes that are likely to continue to be the selection platform for 

nutrient use efficiency (Bingham et al. 2012; Wasson et al. 2012).  

By investigating beneficial root traits for acquisition under patchy (or low) nutrient supply, there 

is potential to improve yield in low input agricultural systems that dominate the developing world 

where the security of food supply is most fragile (Lynch and Brown 2012). This approach will 

also be important where heterogeneous environments are adopted for agriculture, e.g. the 

newly adopted Cerrado region in Brazil (Merten et al. 2010). This phenomenon may happen 

more frequently as land-use pressure associated with an increasing global population intensifies 

agricultural practice (Gaiser et al. 2011) and as the changing global climate impacts upon the 

availability of water and the mobile nitrate ion in current agricultural regions (Adeloye 2010). 

Furthermore, enhancing water and nitrate acquisition under low supply can also help to improve 

the sustainability of agricultural practice (Sutton et al. 2011).  

The potential of a weed species may be exploited to realise crop improvements in the field. 

Understanding the strategies used by a weed species to acquire sufficient water and nutrients 

from a more heterogeneous environment could provide useful information for the improvement 

of nutrient acquisition in crops, particularly those crops that may have become accustomed to 

the high water and nutrient availability that is presently changing with the global climate or that 

is no longer sustainable. Furthermore, considering the influence of the soil physical properties 

determining water and nitrate availability may continue to identify novel interactions that are 

important for root nutrient acquisition strategies. Therefore, by adopting both fine-scale 

molecular Arabidopsis and scaled-up crop system approaches, while maintaining the 

consideration of soil physical properties determining water and nitrate availability, the challenge 

of enhancing nitrate and water acquisition to help achieve food security may be addressed more 

rapidly.  
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Appendix 4. cDNA populations 

  



174 
 

 
The concentration of each cDNA population determined using a Nanodrop 
Spectrophotometer. 
 

 
ID 

 
Treatment 

 
[cDNA] 
ng/µl 

   
1 2% agar, 10 mM KNO3 1143.91 
2 2% agar, 10 mM KNO3 1163.40 
3 Redhill T sand, -3.0 kPa, 10 mM KNO3 1403.78 
4 Redhill T sand, -3.0 kPa, 10 mM KNO3 1321.64 
5 <250 µm sand, -3.0 kPa, 10 mM KNO3 1477.97 
6 <250 µm sand, -3.0 kPa, 10 mM KNO3 1533.46 
7 250-425 µm sand, -3.0 kPa, 10 mM KNO3 1317.82 
8 250-425 µm sand, -3.0 kPa, 10 mM KNO3 1699.56 
9 >425 µm sand, -3.0 kPa, 10 mM KNO3 1428.31 

10 >425 µm sand, -3.0 kPa, 10 mM KNO3 1493.10 
11 Redhill T sand, -1.5 kPa, 10.0 mM KNO3 1457.26 
12 Redhill T sand, -1.5 kPa, 10.0 mM KNO3 1514.73 
13 Redhill T sand, -1.5 kPa, 10.0 mM KNO3 1404.05 
14 Redhill T sand, -3.0 kPa, 10.0 mM KNO3 1358.38 
15 Redhill T sand, -3.0 kPa, 10.0 mM KNO3 1316.41 
16 Redhill T sand, -3.0 kPa, 10.0 mM KNO3 1351.15 
17 Redhill T sand, -4.5 kPa, 10.0 mM KNO3 1433.78 
18 Redhill T sand, -4.5 kPa, 10.0 mM KNO3 1337.05 
19 Redhill T sand, -4.5 kPa, 10.0 mM KNO3 1330.35 
20 Redhill T sand, -3.0 kPa, 0.1 mM KNO3 1357.45 
21 Redhill T sand, -3.0 kPa, 0.1 mM KNO3 1343.31 
22 Redhill T sand, -3.0 kPa, 0.1 mM KNO3 1375.55 
23 Redhill T sand, -3.0 kPa, 1.0 mM KNO3 1283.79 
24 Redhill T sand, -3.0 kPa, 1.0 mM KNO3 1178.11 
25 Redhill T sand, -3.0 kPa, 1.0 mM KNO3 1449.57 
26 Redhill T sand, -3.0 kPa, 10.0 mM KNO3 1282.79 
27 Redhill T sand, -3.0 kPa, 10.0 mM KNO3 341.51 
28 Redhill T sand, -3.0 kPa, 10.0 mM KNO3 336.84 
29 Redhill T sand, -1.5 kPa, 0.1 mM KNO3 2458.83 
30 Redhill T sand, -1.5 kPa, 0.1 mM KNO3 2838.75 
31 Redhill T sand, -1.5 kPa, 0.1 mM KNO3 2645.73 
32 Redhill T sand, -4.5 kPa, 0.1 mM KNO3 955.22 
33 Redhill T sand, -4.5 kPa, 0.1 mM KNO3 2137.99 
34 Redhill T sand, -4.5 kPa, 0.1 mM KNO3 3728.29 
35 Redhill T sand, -1.5 kPa, 1.0 mM KNO3 1643.36 
36 Redhill T sand, -1.5 kPa, 1.0 mM KNO3 1798.79 
37 Redhill T sand, -1.5 kPa, 1.0 mM KNO3 1351.93 
38 Redhill T sand, -4.5 kPa, 1.0 mM KNO3 1384.66 
39 Redhill T sand, -4.5 kPa, 1.0 mM KNO3 2056.24 
40 Redhill T sand, -4.5 kPa, 1.0 mM KNO3 2005.66 
41 <250 µm sand, -3.0 kPa, 0.1 mM KNO3 1697.02 
42 <250 µm sand, -3.0 kPa, 0.1 mM KNO3 1421.10 
43 <250 µm sand, -3.0 kPa, 0.1 mM KNO3 1547.05 
44 <250 µm sand, -3.0 kPa, 1.0 mM KNO3 1683.89 
45 <250 µm sand, -3.0 kPa, 1.0 mM KNO3 1489.78 
46 <250 µm sand, -3.0 kPa, 1.0 mM KNO3 1385.81 
47 250-425 µm sand, -3.0 kPa, 0.1 mM KNO3 1510.01 
48 250-425 µm sand, -3.0 kPa, 0.1 mM KNO3 1682.33 
49 250-425 µm sand, -3.0 kPa, 0.1 mM KNO3 1612.86 
50 250-425 µm sand, -3.0 kPa, 1.0 mM KNO3 1407.67 
51 250-425 µm sand, -3.0 kPa, 1.0 mM KNO3 2243.92 
52 250-425 µm sand, -3.0 kPa, 1.0 mM KNO3 1863.62 
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The concentration of each cDNA population determined using a Nanodrop 
Spectrophotometer. 
 

 
ID 

 
Treatment 

 
[cDNA] 
ng/µl 

 
53 

 
>425 µm sand, -3.0 kPa, 0.1 mM KNO3 

 
1543.05 

54 >425 µm sand, -3.0 kPa, 0.1 mM KNO3 2015.65 
55 >425 µm sand, -3.0 kPa, 0.1 mM KNO3 1723.61 
56 >425 µm sand, -3.0 kPa, 1.0 mM KNO3 1475.01 
57 >425 µm sand, -3.0 kPa, 1.0 mM KNO3 1642.40 
58 >425 µm sand, -3.0 kPa, 1.0 mM KNO3 1930.71 
59 atnrt2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 1641.05 
60 atnrt2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 1717.11 
61 atnrt2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 1368.66 
62 atnrt2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 1310.33 
63 atnrt2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 1337.32 
64 atnrt2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 1297.01 
65 atnar2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 2720.37 
66 atnar2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 3001.26 
67 atnar2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 2314.06 
68 atnar2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 2303.13 
69 atnar2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 2338.71 
70 atnar2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 2149.01 
71 atnar2.1xNpNRT2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 1249.59 
72 atnar2.1xNpNRT2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 1265.00 
73 atnar2.1xNpNRT2.1, Redhill T sand, -1.5 kPa, 10 mM KNO3 1266.75 
74 atnar2.1xNpNRT2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 1342.60 
75 atnar2.1xNpNRT2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 1277.64 
76 atnar2.1xNpNRT2.1, Redhill T sand, -4.5 kPa, 10 mM KNO3 1260.09 
77 atpip2.2, Redhill T sand, -1.5 kPa, 10 mM KNO3 1307.75 
78 atpip2.2, Redhill T sand, -1.5 kPa, 10 mM KNO3 1253.81 
79 atpip2.2, Redhill T sand, -1.5 kPa, 10 mM KNO3 1362.35 
80 atpip2.2, Redhill T sand, -4.5 kPa, 10 mM KNO3 1554.21 
81 atpip2.2, Redhill T sand, -4.5 kPa, 10 mM KNO3 1708.06 
82 atpip2.2, Redhill T sand, -4.5 kPa, 10 mM KNO3 1394.08 

   
 

  



 

 Absence of gDNA in cDNA populations was confirmed by RT PCR for 

refers to the cDNA populations in Table 2.1.; 83, no cDNA control; 84
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Absence of gDNA in cDNA populations was confirmed by RT PCR for AtAPT1. 1-82 

85, gDNA control. 
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AtACTIN2 expression (average raw volume) demonstrates a linear relationship (r
2
 = 

0.91) with increasing cDNA concentration present in the RT PCR reaction. Bars = SEM. 
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Appendix 5. Gel electrophoresis images. 
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RT PCR gene expression analysis. 1-29 refers to the cDNA populations. Ladder bands: 100, 200 and 
300 bp. Highlighted gels are those that may have an AtNRT2.1 saturation problem. 
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RT PCR gene expression analysis. 1-29 refers to the cDNA populations. Ladder bands: 100, 200 and 
300 bp.  
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RT PCR gene expression analysis. 30-58 refers to the cDNA populations. Ladder bands: 100, 200 
and 300 bp. Highlighted gels are those that may have an AtNRT2.1 saturation problem. 
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RT PCR gene expression analysis. 30-58 refers to the cDNA populations. Ladder bands: 100, 200 
and 300 bp.. 
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RT PCR gene expression analysis. 59-82 refers to the cDNA populations. Ladder bands: 100, 200 
and 300 bp. Highlighted gels are those that may have an AtNRT2.1 saturation problem. 
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RT PCR gene expression analysis. 59-82 refers to the cDNA populations. Ladder bands: 100, 200 
and 300 bp.  
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Appendix 6. Conservation of root proliferation responses between 

ecotypes. 
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Root proliferation responses to extremes of unsaturated hydraulic conductivity (Kunsat, 

m.d
-1

) were conserved between Arabidopsis ecotypes Ws and Col 0. Treatments:  1.35 
m.d-1;  0.18 m.d-1.  
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