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Abstract 

The heterogeneous epithelial cell network of the thymus provides the 

microenvironments required for intrathymic T cell differentiation and repertoire 

selection. When grafted in vivo a population of fetal thymic epithelial cells, marked by 

the monoclonal antibodies MT S20 and MTS24, can generate all major thymic epithelial 

cell subtypes. Furthermore, the resultant thymic organoid can recruit T cell precursors 

and support their differentiation into mature CD4 and CD8 T cells. The work 

presented here evaluates the potential of MTS20 thymic epithelial progenitor cells to 

form the basis of a thymus equivalent in vitro. 

To assess the ability of the MTS20 thymic epithelial progenitor cell population to 

support T cell differentiation in vitro, improvements were made to the established 

reaggregate fetal thymic organ culture (RFTOC) method that permitted the reliable 

generation and culture of TEPC-based RFTOC (TEPOC). Subsequent analysis 

demonstrated that both MTS20 and MTS20 fetal thymic epithelial cells were able to 

support the differentiation of c4 and yi T cells and also supported the differentiation of 

several other haematopoietic populations including dendritic cells and thymic 

macrophages. 

However, while immunofluorescence analysis showed that MTS20 cells were able to 

differentiate in vitro to generate all major thymic epithelial cell- populations, only 

limited differentiation was observed in MTS20 cell-based cultures. Strikingly, the 

TEPOCs were able to form organised epithelial structures in vitro, characterised by 

clearly distinguished adjacent medullary and cortical areas. No evidence of organisation 

was seen in MTS20 cell-based cultures. Together, these data establish that MTS20 but 

not MTS20 thymic epithelial cells can generate functional in vitro thymus-equivalents 

that recapitulate the epithelial and haematopoietic landscape of the wild-type thymus. 

Furthermore, the unique organisational ability inherent within the TEPOCs iiay be 

useful as an in vitro model of the processes governing thymus organisation. 
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Chapter One: Introduction 

Abbreviations 

BM - Bone marrow 

BMP - Bone morphogenetic protein 

CLP - Common lymphoid progenitor 

CMJ - Cortio-medullary junction 

cTEC - Cortical thymic epithelial cell 

CTES - Clusters of thymic epithelial staining 

DC - Dendritic cell 

DETC - Dendritic epidermal T cell 

DGS - DiGeorge's syndrome. 

DN - Double negative 

DP - Double positive 

ECM - Extra-cellular matrix 

EGF - Epidermal growth factor 

FACS - Fluorescence Activated Cell Sorting 

FGF - Fibroblast growth factor 

FTOC - Fetal thymic organ culture 

HOS - High oxygen submersion 

HPC - Haematopoietic progenitor cell 

HSC - haematopoietic stem cell 

ICN - Intracellular Notch domain 

IFN - Interferon 

IGF - Insulin-like growth factor 

IL - Interleukin 

LT - Lymphotoxin 

LTI3R - Lymphotoxin-3 receptor 

mAb - Monoclonal antibody 

MDC - Macrophage-derived chemokine 

M}IC - Major histocompatibility complex 

MLR - Mixed lymphocyte reaction 

mTEC - Medullary thymic epithelial cell 

7 



Chapter One: Introduction 
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Chapter One: Introduction 

Chapter 1: Introduction 

1.1 The thymus 

The thymus is a bibbed organ situated at the midline above the heart in humans and 

rodents. It has a complex structure consisting of a highly organised epithelial network, 

which is tightly packed with thymocytes and interspersed with non-epithelial stromal 

elements (Boyd et al., 1993; Kendall, 1991). Broadly, the thymus can be subdivided 

histologically into three main areas, the medulla, the cortex, and the subcapsular region 

as shown in Figure 1.1. 

The thymus is encapsulated by connective tissue layers that penetrate the structure, as 

trabeculae, at intervals to create lobulations (Boyd et al., 1993). Trabeculae reach 

through the cortex to the cortico-medullary junction (CMJ) providing a link between the 

outermost regions and the inner medulla (Figure 1. 1)(Boyd et al., 1993). Trabeculae are 

well innervated and harbour the vessels that form the basis of the extensive thymic 

vascular network (Boyd et al., 1993). The stromal compartment constitutes a minor 

fraction of the total cellularity of the thymus, but its complexity is indicative of the 

array of functions that it performs in order to support the differentiation of thymocytes 

(Boyd et al., 1993; Gray et al., 2002). The stroma consists of various cell types 

including epithelial cells, mesenchymal fibroblasts, macrophages, dendritic cells (DC) 

as well as components of the vascular network (Figure 1.1) (Boyd et al., 1993). 

1.1.1 The Thymic Stroma 

1.1.1.1 Thymic Epithelial Cells 

The epithelial component of the stroma is estimated to be less than 3% of total thymus 

cellularity (Gray et al., 2002). Thymic epithelial cells (Montecino-Rodriguez and 

Dorshkind) are morphologically atypical and, unlike in most epithelial structures, form 

a three-dimensional lattice (van Ewijk et al., 1999). Tonofilaments and desmosomes 
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provide stability and anchorage throughout the reticular network (Fan and Anderson, 

1985). Initial studies into the heterogeneity of the epithelium revealed that the human 

thymic epithelium could be divided ultra-structurally into six subtypes based on 

differences in morphology and electron lucency summarised in (van de Wijngaert et al., 

1983). Later studies elaborated on these findings with the use of monoclonal antibody 

panels against unknown determinants and Keratin species (Godfrey et al., 1990; Kiug et 

al., 1998; Nicolas et al., 1985; Van Vliet et al., 1985). A standard nomenclature known 

as Clusters of Thymic Epithelia! Staining (CTES) was adopted to amalgamate these 

studies, a summary of which is shown in Table 1.2 (Kampinga et al., 1989). Together, 

these studies map morphologically distinct epithelial subsets to specific areas within the 

thymus. 

The outermost subcapsular and sub-trabecular epithelium consists of a layer of flattened 

simple Type I epithelium that stains with CTES type II mAbs and is supported by a 

basal lamina (Kampinga et al., 1989). Although morphologically and phenotypically 

distinct subtypes exist within the Type I epithelium, it is generally major 

histocompatibility complex (MHC) Class IF (Boyd et al., 1993; Godfrey ét al., 1990). 

Underlying the Type I epithelium are the Type II epithelial cells of the outer cortex, 

which have a pale appearance in electron micrographs (Kampinga et al., 1989). 

Typically, cortical epithelial cells (cTEC) have long cytoplasmic processes that have 

been shown to interact with the densely packed cortical thymocytes (Pereira and 

Clermont, 1971) and are radially orientated with respect to the thymic capsule (van 

Ewijk, 1988). Type II TEC have been shown to be metabolically active, indicating a 

possible function in cytokine production (van de Wijngaert et al., 1984). Beneath these 

cells is the Type III epithelium, which shows even greater electron lucency (Kampinga 

et al., 1989). Deeper into the thymus, type III epithelium gradually gives way to Type 

IV epithelium (Kampinga et al., 1989). TEC Types II to IV form an area known as the 

cortex proper, identifiable with CTES III staining pattern, which is MHC Class II and 

appears to express MHC Class I at lower levels (Kampinga et al., 1989; Rouse et al., 

1985). The orientation of the cTEC, so that cells generally extend in directions 
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perpendicular to the capsule, is believed to facilitate the directed migration of 

thymocytes within the thymus (van Ewijk et al., 1999). 

The innermost regions of the thymus are populated with heterogeneous medullary 

epithelial cells (mTEC) designated as Type III, Type V and Type VI, which mainly 

stain with CTES II and IV mAbs (Kampinga et al., 1989). Among these cell types MI-IC 

Class II staining is not uniform although MHC Class I is expressed by most, if not all, 

mTEC (Rouse et al., 1985; Surh et al., 1992b). In addition, some TEC express non-

polymorphic MHC Class II molecules that are typically found on cells of the bone 

marrow (Surh et al., 1992b). Small clusters of Type V and VI epithelium exist at the 

CMJ. The epithelial cells of the medulla are proportionally more numerous and are 

generally rounder with shorter processes (Bearman et al., 1978; Chan and Sainte-Marie, 

1968; Lundin and Schelin, 1965). In addition, multicellular structures known as 

Hassall's corpuscles are also present in the medullary region (Bearman et al., 1978; 

Chan and Sainte-Marie, 1968). 

Epithelial cells can be identified by a characteristic cytoskeletal network of cytokeratin 

filaments (Sun et al., 1979). The different epithelial cells of the thymus contain a 

number of cytokeratin heterodimer species, with specific anti-cytokeratin antibodies 

being able to identify thymic subpopulations (Nicolas et al., 1985; Savino and 

Dardenne, 1988). Cytokeratins can be grouped into two groups based on their acidic or 

basic nature. Type I molecules are acidic and have molecular weights in the range 40 to 

56 KDa. Type II cytokeratins are basic and have higher molecular weights between 53 

and 68 KDa. Broadly, cTEC express type I cytokeratins, which are otherwise generally 

expressed by simple epithelial structures. Medullary epithelial cells express keratin 

species with higher molecular weights, typical of more structurally complex epithelia 

(Savino and Dardenne, 1988; Sun et al., 1979). 

One study combined the use of cytokeratin antibodies with other markers of thymic 

epithelia to characterise the epithelia and to investigate their interrelationships and 

origin (Kiug et al., 1998). The findings of the study indicated that two populations 
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Figure 1.1 Morphology of the postnatal thymus 

Organisation of the thymus into lobules containing outer cortical and inner 
medullary areas (M. Ritter, Imperial College, London). 

Electron micrograph of the thymus showing the epithelial network and developing 
thymocytes (W. van Ewijk, University of Leiden). 

Composition of the postnatal thymus (Picture adapted from Nature Reviews 
Immunology). 
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Table 1.1 Summary of epithelial subtypes (van de Wijngaert et al., 1984) 

DESIGNATION LOCATION 

Type 1 Subcapsular/Perivascular (believed 'to 	form the blood-thymus 
barrier) 

Type 2 Outer cortical 

Types 3 and 4 Inner cortical (active cytokine producers) 

Type 5 Medullary (small foci) 

Type 6 Hassall's corpuscles 

Table 1.2 Summary of the CTES Classification (Kampinga et at., 1989) 

CTES GROUP SPECIFICITY 

I Pan epithelial 

II Subcapsular/perivascular/medullary 

III Cortical 

IV Medullary/Hassall's Corpuscles 

V Hassall's Corpuscles 

VI Type 1 Epithelial 

XX Miscellaneous 

13 
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were consistently found in the cortex: a majority population of K (keratin) 8K18K5 

K14 cells were found in the cortex and the subcapsular cortex and a minority 

K8K18K5K14 population was found as scattered cells throughout the cortex but 

with a concentrated band at the CMJ (Klug et al., 1998). When analysed with keratins 

and several other markers including the lectin, UEA- 1, and CTES II type antibody, 

MTS 10, the medullary epithelium proved similarly heterogeneous. In agreement with 

earlier studies, UEA-1 and MTS10 were found to be almost entirely restricted to the 

medullary region although UEA- 1 was also found to extend to the CMJ (Fan and 

Anderson, 1985; Godfrey et al., 1990; Klug et al., 1998). 

1.1.1.2 Multicellular complexes 

Hassall's corpuscles are small clusters of keratinised medullary epithelial cells, which 

have a characteristic whorled appearance (Hassall, 1849). Although these are common 

in the human thymus, they are infrequently found in the medulla of the murine thymus 

(Fan etal., 2002). Cells within Hassall's corpuscles are highly metabolically active and 

produce a variety of factors associated with signalling between different cell types 

including IL-7 (He and Kabelitz, 1995), thymic stromal lymphopoietin (TSLP) 

(Watanabe et al., 2005), stromal cell-derived factor 1 (SDF-l) (Zaitseva et al., 2002) 

and macrophage-derived chemokine (MDC) (Annunziato et al., 2000), suggesting that 

these structures act as communication centres. Several roles have been proposed for 

these structures, including a site of advanced thymocyte death (Blau, 1973; Senelar et 

al., 1976). Recently work has shown that human Hassall's corpuscles are able to 

activate CD 11 c thymic DCs in a TSLP-mediated manner. The resulting activated DCs 

are then able to recruit CD25CD4 thymocytes into the CD25CD4FoxP3 regulatory 

T cell lineage (Watanabe et al., 2005). 

Thymic nurse cells (TNC) were originally identified in stromal cell suspensions as 

single epithelial cells containing up to 200 thymocytes within their cytoplasm (Ritter et 

al., 1981; Wekerle et al., 1980). Although there has been some debate whether these are 
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an artefact of the stromal dissociation process, analogous structures have been found in 

situ throughout the subcapsular cortex and in close association with capillaries in the 

deep cortex (Kyewski and Kaplan, 1982; van de Wijngaert et al., 1983). The 

identification of the thymocytes within TNCs as immature CD3CD4CD8 triple 

negative (TN) or CD4CD8 double positive (DP) thymocytes has lead to the 

hypothesis that these may play a role in the maturation of thymocyte populations 

(Andrews and Boyd, 1985; Kyewski and Kaplan, 1982; Shortman et al., 1986). 

Thymic epithelial cysts are well documented features of the thymus of wild-type mice 

(Fan et al., 2002; Khosla and Ovalle, 1986). Encapsulating a lumen and laterally joined 

by intercellular junctions, these were believed to form an integral part of the thymic 

lymphatic system (Khosla and Ovalle, 1986). Some evidence however suggests that 

these structures result from inappropriate epithelial differentiation into non-thymic 

epithelial lineages. Arising in the fetal thymus, and persisting through adult hood, 

epithelial cysts clearly show features of lung, thyroid and gut tissue, including the 

presence of cilia and luminal microvilli (Chan, 1986; Khosla and Ovalle, 1986) (Fan et 

al., 2002). In addition, genes expressed by other endodermally-derived tissues have 

been observed in the thymus, and antibody staining for proteins such as respiratory 

surfactants and thyroglobulin show their presence in the cells of the cyst (Dooley et al., 

2005b; Fan et al., 2002). There is considerable phenotypic and structural similarity of 

cysts found in wild-type animals with the prominent cysts of mutant mice showing 

aberrant epithelial development such as in the nude mouse (Blackburn et al., 1996; Fan 

et al., 2002). Interestingly, widespread co-expression of cortical and medullary markers 

(Bennett et al., 2002; Fan et al., 2002; Gill et al., 2002; Kiug et al., 2002) in cells of 

TEC cysts was detected in addition to MTS24 reactivity (Blackburn et al., 1996; Fan et 

al., 2002). 

1.1.1.3 Non-epithelial stromal elements 

Many non-epithelial cells contribute to the architecture of the thymus. These include 

cells derived from the neural crest as well as bone marrow, which are present in all 
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areas of the thymus (Boyd et al., 1993). Macrophages are found throughout the thymus 

but are more numerous in the cortex than in the medulla (Boyd et al., 1993). These 

show great heterogeneity in morphology and MHC expression patterns, although 

cortical macrophages can be characterised by the presence of numerous lysosomes 

containing remnants of thymocytes indicating a role in the maintenance of the thymic 

microenvironment through the removal of apoptosed thymocytes and cellular debris 

(Duijvestijn and Hoefsmit, 1981; Milicevic and Milicevic, 1988). It is also possible that 

they play a role in cytokine secretion and antigen presentation, which is important 

during intrathymic selection events (Kendall, 1991). Similarly, dendritic cells are 

present throughout the stroma but are concentrated at the CMJ and in the medulla and 

typically show uniformly high M}IC Class II expression (Boyd et al., 1993; Nabarra 

and Papiernik, 1988). DCs play an important role in imposing negative selection 

through the presentation of antigens to maturing thymocytes (Ardavin, 1997). 

The thymic stroma contains mesenchymally derived fibroblastic cells which, along with 

cTEC, have been shown to secrete extracellular matrix (ECM) components including 

collagens, laminin and fibronectin, which form an integrated network throughout the 

medulla, the subcapsular region, and less extensively, the cortex (Boyd et al., 1993). 

ECM receptors are widely expressed by both thymocytes and TECs and have been 

shown to have effects upon thymocyte differentiation and migration as well as TEC 

differentiation (Boyd and Hugo, 1991; Cardarelli et al., 1988; Savino et al., 

1993(Cardarelli, 1988 #329; Schreiber et al., 1991). 

1.1.2 Thymic microcirculation 

The thymus is a heavily vascularised organ, with a blood supply provided by one or 

more thymic arteries via the thymic capsule and trabeculae (Kato and Schoefi, 1989). 

Entering the parenchyma at the CMJ, these branch into arterioles, which in turn support 

an extensive capillary network. The capillaries reach outwards through the cortex, 

subcapsular, and capsular region before returning deep into the parenchyma and 

draining into postcapillary venules in the medulla and at the CMJ (Boyd et al., 1993; 
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Kato and Schoefi, 1989; Sainte-Marie et al., 1986; Ushiki, 1986). Blood exits the 

thymus through a one of a few thymic veins (Kato and Schoefi, 1989). There is 

considerable evidence for a partial blood-thymus barrier, having been demonstrated that 

inter-endothelial cell junctions, and delineation by Type I epithelium, forms a double-

walled barrier to blood-borne antigen (Clark, 1963; Kato, 1997; Marshall and White, 

1961; Ushiki, 1986; Weiss, 1963). The use of electron opaque tracers functionally 

confirmed that the blood-thymus barrier is limited to the cortex and that the medulla 

shows no such barrier (Raviola and Karnovsky, 1972). Vascular vessels of the thymus 

are accompanied by lymphatic vessels in many mammals (Odaka et al., 2006). Both the 

vasculature and lymphatic system appear to constitute a possible route of efflux of 

lymphocytes into the microcirculation (Emstrom, 1965; Kato, 1997; Kato and Schoefi, 

1989; Miyasaka et al., 1990). In addition to the typical role of vascularisation in an 

organ, it has been suggested that the elements of the vascular system play a role, in the 

organisation of the thymic medulla. It was found that vessels of intermediate diameter 

spatially dolocalise to areas of medulla (Anderson et al., 2000). This was more clear in 

recombinase activating gene (RAG) null mice, which have small areas of medulla 

appearing as perivascular cuffs (Anderson et al., 2000). An example of the organisation 

of lymphoid structures around vascular structures is in the spleen, where central arteries 

are surrounded by the white pulp . Vascular elements also interact with epithelial cells 

to orchestrate the development of other endodermally derived organs such as the liver 

and pancreas development (Cordier and Haumont, 1980; Lammert et al., 2001; 

Matsumoto et al., 2001; Nikolova and Lanimert, 2003). 

1.2 Thymus Organogenesis 

1.2.1 Formation of the thymic rudiment 

The pharyngeal arches are transient structures comprising ectoderm covered bulges of 

mesenchymal cells formed in a rostral to caudal manner during embryogenesis (Hogan 

1994). The arches are separated by out-pocketings of pharyngeal endoderm known as 

pharyngeal pouches, and opposing ectodermal invaginations known as pharyngeal clefts 
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(Cordier and Haumont, 1980). Both the endodermal pouches and the ectodermal clefts 

initially form as a single layer of simple epithelium. 

At around embryonic day (E)9.5 of development in the mouse, the endoderm of the 

third pharyngeal pouches undergoes a proliferative burst that establishes the outgrowth 

of common primordia that will give rise to both the thymus and the parathyroid (Cordier 

and Haumont, 1980; Smith, 1965). Evidence for the patterning of the common 

primordia into respective thymus and parathyroid domains can be found early in 

development, with the parathyroid domain being delineated by the transcription factor, 

Gcm2 in the dorsal aspect of the third pharyngeal pouch by E9.5 (Gordon et al., 2001). 

By El 1.25, the transcription factor, Foxnl is expressed in a complementary manner to 

Gcm2, defining the ventral aspect of the pouch that is destined to become the thymus 

(Gordon et al., 2001). Evidence that the cells of the third pharyngeal pouch are specified 

to a thymic fate prior to this time point comes from experiments demonstrating that 

upon transplantation, isolated E8.5-E9.0 foregut endoderm generates functional 

thymus-like structures (Gordon et al., 2004). This also shows that Foxnl is not the 

specifying factor. 

Each of the common primordia are surrounded by a condensing neural crest-derived 

mesenchymal layer that persists to form the thymic capsule (Jiang et al., 2000; Le 

Lievre and Le Douarin, 1975; Schreier, 1.952). The encapsulated anlagen continue to 

proliferate, and segregate from the pharynx so that by E12.5 they have formed discrete 

structures (Smith, 1965). By E13.5, the thymic and paráthyroid primordia have 

separated and the thymus lobes have begun their migration towards their final 

anatomical location at the midline (Hammond, 1954; Manley, 2000; Schreier, 1952). 

The seeding of extrinsic hàematopoietic cells into the thymus takes place in cyclical 

waves throughout embryonic life (Jotereau and Le Douarin, 1982; Moore and Owen, 

1967). Initial colonisation of the thymic anlage begins several days before 

vascularisation can be seen, with haematopoietic cells migrating into the mesenchymal 

capsule at El 1 (Itoi et al., 2001). By E12.5, colonising cells have entered the epithelial 
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rudiment and begun to proliferate (Itoi et al., 2001; Jotereau et al., 1987; Suniara et al., 

1999). This first wave of precursor influx peaks between E11.5 and E12.5, with 

successive waves of seeding following. Phenotypic and functional differences have 

been observed between thymocytes of E12 thymi and those of E14 and E15 thymi, with 

those from older thymi displaying greater T cell potential when transferred in vivo or 

maintained in vitro (Douagi et al., 2000). 

1.2.2 Cellular origins of the thymus 

1.2.2.1 The thymic epithelium 

The origin of the thymic epithelium remained, until recently, a source of controversy 

with conflicting hypotheses suggesting that the thymus had either a dual 

endodermal/ectodermal origin or that origin of the epithelium was purely endodermal. 

Resolution was provided by a study that addressed both lineage and potency of the 

ectoderm and endoderm (Gordon et al., 2004). Failure to see contribution of labelled 

early ectoderm to the forming thymic rudiment in cultured embryos strongly suggested 

that the ectoderm did not contribute to thymic lineage (Gordon et al., 2004). Further 

investigations into the potency of E8.5 and E9.5 endoderm grafted under the kidney 

capsule of recipient mice found that both cortical and medullary epithelium could 

differentiate from endoderm, analogous to results observed in earlier quail-chick 

chimaera studies (Gordon et al., 2004; Le Douarin and Jotereau, 1973; Le Lievre and Le 

Douarin, 1975). Taken together, these studies establish that the endoderm can give rise 

to both cortical and medullary epithelial cells thus supporting the single origin 

hypothesis. 

1.2.2.2 Thymic epithelial progenitor cells 

Development of the complex mature thymic epithelial network requires the presence, 

proliferation and differentiation of an immature progenitor cell population in the 

developing thymus. Once formed, the maintenance of the thymic structure may require 

the presence of a persistent postnatal epithelial progenitor or stem cell population. In 

this way, the cells within the thymic epithelial network could be replenished during 

19 



Chapter One: Introduction 

adulthood or following thymic injury in an analogous manner to the replenishment and 

recovery of other epithelial organs such as the gut and the skin, which is mediated by 

epithelial stem cells. 

Evidence suggestive of the existence of a postnatal thymic progenitor cell has come 

from a number of epithelial marker studies. A study on human thymic epithelial cancer 

cells showed that some cells, able to give rise to cells with mTEC and cTEC identity, 

co-expressed medullary and cortical markers (Schluep et al., .1988). Further analysis 

showed that a cell type displaying the same staining pattern exists as an epithelial subset 

in both fetal and postnatal human thymus, supporting the view that a bipotent cortical 

and medullary precursor exists in human (Schluep et al., 1988). Studies of thymi from 

mice with developmental blocks have also proved useful in the search for an epithelial 

progenitor population. One such study comparing the thymus of wild-type and 

CD3E26tg mice identified an epithelial sub-population that similarly co-expressed the 

medullary marker, K5 and the cTEC marker, K8, indicating that an analogous 

population may also exist in wild-type mice (Kiug et al., 1998). 

An earlier study of contributions in nude/wild-type thymic chimaeras showed that 

although nude cells did not contribute significantly to the chimaeric thymus, a few 

nude-derived cells were able to persist amongst the wild-type cells (Blackburn et al., 

1996). Interestingly, the nude-derived cells expressed MTS20 and MTS24, a phenotype 

shared by some TEC within the nude thymic rudiment, but did not express markers of 

TEC differentiation such as MHC Class II (Blackburn et al., 1996). These experiments 

proved that the nude gene product Foxnl is cell-autonomously required for epithelial 

differentiation and suggested that in its absence, cells undergo maturational arrest and 

remain in a functionally immature state (Blackburn et al., 1996). 

The markers that identify these cells have been analysed further with ontogenic analysis 

showing that MTS24 and MTS20 are expressed throughout the pharyngeal endoderm 

by E10.5. At E12.5, a major population of epithelial cells within the thymus 

primordium expresses MTS20 and MTS24 (Bennett et al., 2002). The proportion of 

20 



Chapter One: Introduction 

MTS24 TECs subsequently decreases so that the MTS20 and MTS24 expression is 

restricted to only a small fraction of postnatal medullary epithelial cells (Bennett et al., 

2002; Gill et al., 2002). In both the embryo and the adult, immunofluorescence analysis 

showed that there was widespread co-expression of K5 and K8 in the MTS24 

compartment (Bennett et al., 2002; Gill et al., 2002). 

Functional data regarding the identity of the fetal TEPC was gained through ectopic 

grafting of fetal MTS24 TEC. MTS24 TEC had the capacity to differentiate into all 

major TEC subtypes and to recruit and mature T cells precursors (Bennett et al., 2002; 

Gill et al., 2002). Conversely, the MTS24 compartment exhibited no thymus function 

and did not persist under similar conditions, suggesting that progenitor capacity was 

limited to the MTS24 population. A recent study using direct functional analysis of 

sorted E12 TECs concluded that a bipotent progenitor exists in the E12 thymus, with 

both cortical and medullary cells being shown to be clonally derived from E12 MTS24 

cells (Rossi et al., 2006). The existence of a common progenitor of both cTEC and 

mTEC has also recently been reported in experiments using conditionally reactivatable 

Foxn] null mice (Bleul et al., 2006). Rare recombination events occurring in these mice 

led to the apparently clonal reactivation of Foxnl in cells which were subsequently able 

to generate mini thymi containing cortical and medullary regions (Bleul et al., 2006). 

These data indicate that in the absence of Foxn], bipotent progenitors remain. 

1.2.3 Cellular interactions in thymus organogenesis 

1.2.3.1 Epithelial-mesenchymal interactions in thymus development 

An essential role for neural crest cells (NCC) in the, development of fetal thymic 

epithelial rudiments beyond E12.5 has been demonstrated using tissue culture and 

grafting experiments, which showed that culture of the thymic rudiment lacking the 

mesenchymal capsule (Auerbach, 1960) and experimental disturbance of the migrating 

NCCs (Bockman and Kirby, 1984) results in a failure of normal thymus development 

and thymic hypoplasia. Chick-quail chimaeras revealed that the early pharyngeal 

endoderm could induce non-pharyngeal mesenchymal cells to contribute to thymic 

21 



Chapter One: Introduction 

structure (Le Douarin and Jotereau, 1973) Furthermore; the perturbed development of 

the thymic epithelium observed when cultured in the absence of mesenchyme could be 

corrected by co-culture with mesenchyme from a variety of sources including thymus, 

kidney and lung, indicating that the ability to support thymic epithelium is not limited to 

thymus-derived mesenchyme (Auerbach, 1960; Shinohara and Honjo, 1997). Although 

specific data indicating a role for NCCs prior to E12 of mouse thymus development is 

lacking, collectively these data suggest that NCCs may respond to pharyngeal 

endoderm-derived signals in order to establish identity, before playing a role in thymus 

organogenesis. 

Later in development, the role of NCC-derived mesenchyme is less clear. Analysis of 

the fate of labelled NCCs in Wntl-cre reporter mice (Jiang et al., 2000) and myelin 

protein 0-cre reporter mice (Yamazaki et al., 2005) has demonstrated that despite early 

heavy incorporation of NCCs into the thymus capsule and stroma, beyond E16.5, few 

labelled cells remain in the thymus although large numbers of mesenchymal cells can 

be found in the capsule, trabeculae and vascular structures as well as intermittently 

among epithelial cells of the thymus. This decrease in labelled cells could be due to the 

gradual replacement of NCC-derived cells with those from other sources. However, the 

caveat still remains that the loss of labelling may be due to promoter silencing and does 

not accurately reflect a diminishing contribution of NCCs. 

The molecular mechanisms through which NCC influences thymus development are 

poorly understood, although soluble growth factors expressed by the thymic 

mesenchyme have been shown to play an important role. Fibroblast' growth factor 

(FGF) 7 and FGF1O are expressed by the mesenchymal component of the thymus 

(Jenkinson et al., 2003; Revest et al., 2001) whilst their common receptor, FGF receptor 

(FGFR)2-IIIb is reciprocally expressed by the thymic epithelium. FGFR2-IIIb null mice 

exhibit thymic hypoplasticity beyond E12, indicating a role for FGFR2-IIIb signalling 

in normal thymus development (Revest et al., 2001). In vitro studies demonstrated that 

the loss of proliferation caused by the removal of mesenchyme from FTOC and RTOCs 
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could be corrected by the provision of exogenous FGF 7 and FGF 10, indicating that the 

epithelial-mesenchymal interaction required to maintain epithelial proliferation may be 

mediated by FGF signalling (Jenkinson et al., 2003). Expression of Insulin-like growth 

factor (IGF)-I and IGF-II, but not FGF7 and FGF1O has also been reported in the E12 

thymic mesenchyme, with the IGF-1 receptor reciprocally expressed in the E12 thymic 

epithelium (Jenkinson et al., 2007). In vitro experiments have indicated a role for IGF-1 

and IGF-II and epidermal growth factor (EGF) in the development of the early thymic 

epithelium with the addition of these factors to cultures leading to upregulation of MHC 

Class II on the developing epithelium (Shinohara and Honjo, 1997). Recent experiments 

have additionally implicated the IGFs as mediators of early TEC proliferation with 

differential expression between mesenchymal cells from thymus and other sources as a 

possible explanation for the effective but impaired recovery of epithelial proliferation 

upon grafting under the kidney capsule or in combination with other mesenchymal cells 

(Jenkinson et al., 2007). 

1.2.3.2 Lympho-epithelial interactions in thymus development 

The mechanisms that promote the development of mature thymic epithelial cells from 

immature TEPCs are poorly understood. Several mutant mouse strains, which have 

defects in thymocyte development, have secondary thymus stromal defects resulting in 

missing epithelial subsets and/or disorganisation (Naquet et al., 1999). Thus thymic 

cross-talk between developing thymocytes and the epithelium contributes positively to 

the establishment and maintenance of microenvironmental niches within the thymus 

(reviewed in van Ewijk, 1994). Reconstitution experiments using haematopoietic 

progenitor cells (HPC) from various strains of mutant mice showed that the 

development of mature thymic epithelial compartments is regulated by distinct. 

thymocyte subsets in a stepwise manner (van Ewijk et al., 2000). In support of this 

model, CD4CD8 double negative (DN) subsets have been shown to regulate the 

expansion and organisation of cTEC (Hollander et al., 1995; van Ewijk et al., 2000) 

with more mature CD4CD8 -  or CD4CD8 single positive (SP) cells promoting the 

expansion and organisation of medullary subsets (Palmer et al., 1993; Shores et al., 
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1991; Surh et al., 1992a; van Ewijk et al., 2000). Although the adult thymic epithelium 

is co-dependent upon developing thymocytes for their maturation and maintenance, it is 

clear that the initial patterning of the thymus is thymocyte-independent. This was 

demonstrated in both CD3E26tg and RAG2/yc-deficient mice, which have profound 

and early blocks in thymocyte development yet show normal TEC development prior to 

E15.5 (Kiug et al., 2002). Despite the apparent lack of further epithelial development 

beyond E15.5 in mice with thymocyte defects, it is possible to rescue normal thymic 

organisation by the transfer of wild-type HPCs. 

Although the mechanisms involved in lympho-epithelial cross-talk remain unclear, the 

role of lymphotoxin 3 receptor (LTf3R) signalling in the development of mature mTEC 

is established (Boehm et al., 2003). Several mouse models have shown that interruption 

of this pathway, by interfering with the LTI3R expressed on the epithelial cells, LTI3R 

ligands reciprocally expressed on thymocytes, or downstream signalling molecules such 

as NF-KB-inducing kinase (NIK) or the transcription factor, RelB, results in a failure to 

generate a normal mature medullary compartment and leads to an autoimmune 

phenotype (Boehm et al., 2003; Burkly et al., 1995). In these mice, although cTEC 

appear unaffected, the medulla appears disorganised with particular abnormalities 

among the UEA-1 mTEC cells, a phenotype that cannot be corrected by the presence 

of wild-type haematopoietic cells (Boehm et al., 2003). Furthermore, an LTf3R-Fc 

fusion protein designed to interrupt LTI3R signalling was sufficient to qualitatively and 

quantitatively negatively affect the mTEC compartment in wild-type mice (Boehm et 

al., 2003). Taken together, this data indicates that sustained interaction of LT3R 

mediates lympho-epithelial cross-talk is required for the development and maintenance 

of mature mTECs and thus central tolerance. 

1.2.4 Genetic control of early thymus development 

1.2.4.1 Tbxl 

The heterozygous deletion of contiguous genes on human chromosome 22q1 1.2 results 

in complex pathologies typified by DiGeorge's syndrome (DGS), with craniofacial 
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defects, cardiovascular pathologies and thymic and parathyroid hypoplasia or aplasia 

(Kirkpatrick and DiGeorge, 1968). This region contains the Tbxl locus, which has been 

demonstrated in mouse mutants as the causative gene for DGS. Tbxl is expressed in 

both the third pharyngeal endoderm and the adjacent mesenchyme but not in the 

pharyngeal ectoderm or the NCCs of the pharyngeal arches (Garg et al., 2001). TbxF' 

mice have thymic hypoplasia and defects in other derivatives of the third and fourth 

pharyngeal arch regions, a phenotype similar to that resulting from ablation of NCC 

prior to migration (Bockman and Kirby, 1984; Jerome and Papaioannou, 2001). Timed 

deletion of Tbxl in conditional mutant mice indicates that it may function in several 

ways (Xu et al., 2005). Loss of functional Tbxl between E9 and E9.5 results in a failure 

of the formation of a normal third pouch as well as structures located caudally, and a 

consequent failure in the development of pharyngeal structures (Xu et al., 2005). The 

loss of TbxI from E10.5 results in thymic hypoplasia although the precise nature of the 

thymic defect has not been analysed, while later deletion of Tbx] from El 1.5 has no 

appreciable effect upon thymus morphogenesis (Xu et al., 2005). In timed fate mapping 

studies, cells that express Tbx] at E8.5 were shown to incorporate heavily into the 

thymus whereas those form later stages only demonstrated minor incorporation 

suggesting that the mild hypoplasia seen in the mice with Tbxl deletions post E9.5, are 

likely to result from an indirect effect on thymic organogenesis such as poor factor 

provision (Xu et al., 2005). Collectively, these experiments indicate that Tbxl has two 

main roles: an early role in development of the pharyngeal endoderm, and a later role in 

the correct development of pharyngeal derivatives that is likely to be indirect (Hollander 

et al., 2006; Xu et al., 2005). 

1.2.4.2 Hoxa3 

The Hox family of transcription factors function to regulate embryonic development 

along the anterior-posterior axis and tissue remodelling in adults. Hoxa3 is expressed in 

third pharyngeal pouch endoderm and neural crest-derived mesenchyme of the third and 

fourth arches (Manley and Capecchi, 1995). Targeted disruption of Hoxa3 indicated. 

that Hoxa3 directly affects the development of organs such as the thymus and 
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parathyroid, which derive from this region (Manley and Capecchi, 1995). As a result, 

homozygous mutants die soon after birth, have neither thymus nor parathyroids and 

have several other abnormalities including heart defects (Chisaka and Capecchi, 1991; 

Manley and Capecchi, 1995). Prior to El 1.5, thymus organogenesis is normal in Hoxa3 

mutant mice but by E12, although mutant mice retain a discernible third pharyngeal 

arch, they fail to form a Foxnl-expressing thymic anlage (Manley, 2000; Manley and 

Capecchi, 1995). These observations parallel those seen in DGS, although it has been 

shown that the defects in Hoxa3 mutant mice are not attributable to an abnormal 

number or distribution of NCC cells (Kirkpatrick and DiGeorge, 1968; Manley and 

Capecchi, 1995). Reduced proliferation among epithelial cells is also apparent, despite 

the presence of NCCs, suggesting that Hoxa3 plays a role in the intrinsic ability of NCC 

to induce the normal proliferation and differentiation of epithelial cells (Chisaka and 

Capecchi, 1991; Manley and Capecchi, 1995). Analysis of compound mutants of Hox 

paralogs, Hoxb3 and Hoxd3, showed that although thymus development in Hoxb3 

Hoxd3 mice was normal, H6xa3Hoxb3H6xd3 thymi failed to migrate normally 

thus Hox genes also play a role in thymus migration (Manley and Capecchi, 1998). 

1.2.4.3 Paxi and Pax 9 

Following the onset of pharyngeal pouch development, several transcription factors 

control the continued development of the third pharyngeal pouch. The paired box (Pax) 

family of transcription factors plays important roles in embryonic development and 

organogenesis. Both Pax] and Pax9 are expressed in an overlapping pattern in 

proliferating regions of the pharyngeal endoderm by E9.5 (Muller et al., 1996; Wallin et 

al., 1996). Pax] is expressed throughout the pharyngeal pouch endoderm at E10.5 

before becoming distributed throughout the developing lobe by E12.5. Expression 

becomes further restricted to cortical epithelium by E14, and Pax] is detected in only a 

small cTEC subpopulation in the adult thymus (Wallin et al., 1996). Pax] is required 

for correct spinal column development and for normal thymus development. Pax]--' 

mice exhibit mild to moderate thymus hypoplasia (Wallin et al., 1996). Pax9 mutants 

show a more severe phenotype having many developmental defects and lacking some 
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structures deriving from the third and fourth branchial pouches (Peters et aL, 1998). The 

thymus of these mice fails to migrate caudoventrally and are ectopically located in the 

larynx (Hetzer-Egger et al., 2002). Despite an ability to recruit HPCs, the thymus is 

severely hypoplastic and does not support y8 T cell development (Hetzer-Egger et al., 

2002). Taken together, these findings indicate that Pax9 is able to instruct TEC in a 

Foxnl-independent manner to maintain thymic epithelial cell functionality. Both Paxi 

and Pax9 are downregulated from E10.5 in Hoxa3 mice indicating that both operate 

downstream of Hoxa3. 

1.2.4.4 Eyal and Sixi 

Eyal is a murine homologue of the Drosophila Eyes Absent gene (Bonini et al., 1993). 

The Eya genes are frequently involved in the regulation of genes involved in tissue 

growth. Sixi is a transcriptional regulator that is co-expressed with Eya] during 

organogenesis of a number of embryonic structures. Analysis of the mutant Eyal 

phenotype revealed that, in addition to general hypoplasia of the pharyngeal pouch 

endoderm, thymus organogenesis was terminated and no thymus was present at E12.5 

(Xu et al., 2002). Eyal is expressed in pharyngeal endoderm, ectoderm and NCC 

between E9.5 and E10.5 and therefore interpretation and explanation of the phenotype 

is difficult (Xu et al., 2002). In Eya] null mice, thymic primordia are not formed and 

thymus-specific genes are not expressed. However, expression of Hoxa3, Pax] and 

Pax9 in these mice is unchanged in the endoderm and NCC prior to outgrowth of the 

thymus indicating that Eyal operates downstream or independently of these genes (Xu 

et al., 2002; Zou et al., 2006). Interestingly, Six] expression is markedly lower in the 

endoderm and ectoderm of the pharyngeal region in Eyal mutant mice, indicating that 

Sixi operates downstream of Eyal (Xu et al., 2002). Although the specification of the 

third pharyngeal pouch is initiated in Six] mice, failure to maintain previous Gcm2 or 

Foxnl expression is followed by increased apoptosis and the resultant loss of the 

thymus and parathyroid primordia by E12.5 (Zou et al., 2006). Consistent with this 

observation, upon interaction with Eyal, Six! is converted from a repressor to an 
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activator of transcription and is believed to play a role in the proliferation and survival 

of epithelia at early stages of development of other organs. 

1.2.4.5 BMP4 and Shh 

There is strong evidence to suggest that opposing gradients of Bone Morphogenetic 

Proteins (BMP) and Sonic Hedgehog (Shh) play a role in the specification of the 

thymus and parathyroid domains of the third pharyngeal pouch. BMP4 is expressed by 

the ventral aspect of the third pharyngeal pouch at E10.5 (Moore-Scott and Manley, 

2005). While Shh is expressed at the opposing dorsal end of the pouch. In the absence 

of Shh, the BMP4 expression domain has been shown to extend dorsally and the Foxnl 

expression domain also extended in a similar manner (Moore-Scott and Manley, 2005), 

consistent with a role for BMP4 as a positive regulator of Foxnl expression (Moore-

Scott and Manley, 2005; Tsai et al., 2003). Noggin, a BMP inhibitor, is expressed 

reciprocally to BMP4 in the prospective parathyroid domain at E10.5, suggesting a role 

in constraining the prospective thymus domain (Patel et al., 2006). 

1.2.4.6 Foxnl 

Foxnl is a gene mutated in the classical mouse mutant nude, characterised by hair loss 

and athymia (Blackburn et al., 1996; Flanagan, 1966; Nehls et al., 1996; Nehls et al., 

1994). Nude mice retain small cystic thymic rudiments, which are devoid of T cell 

precursors (Blackburn et al., 1996; Scheiff et al., 1978). Foxnl is a transcription factor 

that plays a crucial role in the development of the thymic epithelium (Blackburn et al., 

1996; Nehls et al., 1996). High levels of Foxnl expression can be detected from Eli by 

in situ hybridisation and in LacZ reporter strain analyses (Manley and Blackburn, 

2003), although expression from E9.5 can be detected by RT-PCR (Balciunaite et al., 

2002). By E17.5, Foxnl expression is restricted to specific tissues including the skin 

and the thymic primordia (Nehls et al., 1994). Foxnl expression within TEC becomes 

gradually restricted so that postnatal expression of Foxnl is restricted to a subset of 

TEC (Itoi et al., 2007). In the skin, FOxnl expression is found in the epidermis and hair 

follicle, where it affects hair growth (Flanagan, 1966). 
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Foxnl is not required for the initiation of thymus organogenesis (Nehis et al., 1996) but 

is subsequently absolutely required cell autonomously for the differentiation of all 

thymic epithelial subtypes after E12.5 (Blackburn et al., 1996; Itoi et al., 2001). The 

phenotype of nude cells within the thymic rudiment is heterogeneous with cells having 

morphological and expression profiles of various non-thymic tissues including 

respiratory and glandular epithelium and some retain markers of immature thymic 

epithelial cells (Dooley et al., 2005a; Dooley et al., 2005b). As a result, it has been 

suggested that in the thymus, Foxnl plays a role in the maintenance of the TEC 

differentiation programme and limiting alternative fate choices. Recent confirmation of 

this came from experiments utilising a conditional Foxnl null mouse. When Foxnl was 

reactivated, individual TECs in the thymus of postnatal mutant mice were able to 

differentiate to produce both cortical and medullary TEC indicating that in the absence 

of Foxnl, TEC are maintained in a progenitor state (Bleul et al., 2006). 

1.2.4.7 Wnts 

The Writ gene family members are secreted glycoproteins that have roles in intercellular 

signalling (Nusse and Varmus, 1992). Wnt glycoproteins are highly conserved between 

vertebrate species and are known to have important roles in development and 

organogenesis. Writs are pivotal in lymphocyte development (van de Wetering et al., 

2002) with Writs 1 and 4 providing thymocyte proliferation and survival signals (Staal 

and Clevers, 2001; Staal et al., 2001). Wnt expression is observed in thymic tissue and 

Writ receptors are specifically expressed in TEC of both the nude and wild-type fetal 

thymi and wild-type adult thymi (Balciunaite et al., 2002). Balciunate et al correlated 

the spatial and temporal patterns of embryonic Wnt4 and Wnt5b expression with the 

onset of Foxnl expression and hypothesised a role for Wnt signalling in the positive 

regulation of Foxnl. This is supported by the observation that thymic epithelial cell 

lines that overexpress Wnt4 also demonstrate elevated levels of Foxnl expression 

(Balciunaite et al., 2002). 
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1.3 In tra thymic haema topoletic development 

1.3.1 Postnatal T cell development 

Intrathymic T cell development is characterised by the ordered progression of 

haematopoietic progenitor cells through phenotypically defined stages. These stages are 

supported by a phenotypically and spatially distinct thymic microenvironments, which 

provide cues that enable the commitment, differentiation and expansion of relatively 

few HPCs into a diverse T cell repertoire (Figure 1.2). 

1.3.1.1 Intrathymic T cell differentiation 

The programmed differentiation of bone marrow-derived haematopoietic precursors 

into mature T cells is a well characterised process that can be conceptually divided into 

three phases. Thus the most immature stage, characterised as double negative (DN) due 

to the absence of the co-receptors CD4 and CD8, gives rise to the more mature 

intermediate CD4CD8 double positive (DP), which then develop into either 

CD4CD8 or CD4CD8 single positives (SP) (Figure 1.2). Upon colonisation of the 

thymus, the DN cells have their T cell receptor (TCR) genes in the germline 

configuration and therefore they express no cell surface TCR molecules (Zuniga-

Pflucker and Lenardo, 1996). The DN thymocytes can be further subdivided into 4 

distinct subsets based on their expression of CD44 and CD25 as well as a range of other 

markers (Godfrey et al., 1993; Porritt et al., 2004) 

The most immature CD3CD4CD8 triple negative (TN) subset, TN1, is characterised 

by CD44 and c-kit expression without CD25 co-expression (Godfrey et al., 1993; 

Ogawa et al., 1991). Cells within this compartment have the ability to differentiate into 

B cells, DCs, macrophages, natural killer (NK) cells as well as T cells (Antica et al., 

1993; Ardavin et al., 1993; Balciunaite et al., 2005; Porritt et al., 2004). DN1 have 

recently been shown to be a heterogeneous population of cells that can be subdivided 

into 5 subpopulations using CD24 and c-kit (Porritt et al., 2004). These populations 

show varied expression of Thy-i and CD127 (IL-7R) (Porritt et al., 2004). The 

subpopulations have been shown to have, differing 
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Figure 1.2 Intrathymic T cell differentiation 

Thymocytes undergo a well characterised differentiation process that is supported by 
distinct thymic stromal microenvironments (Adapted from Zuniga-Pflucker, 2004). 
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lineage potentials as well as proliferative capacities, indicating that each subpopulation 

may represent a separate precursor (Porritt et al., 2004). 

The progression from DN1 to DN2 is marked by the maintenance of CD44 and c-kit 

and the upregulation of both CD25 and Thy-i (Godfrey et al., 1993). These phenotypic 

changes are not accompanied by a limiting of lineage potency, and DN2 cells can give 

rise to NK cells, DCs, macrophages and T cells (Balciunaite et al., 2005; Lee et al., 

2001; Lucas et al., 1998; Schmitt et al., 2004a). At this stage cells undergo IL-7 and 

SCF-dependent proliferation, thereby increasing the pool of progenitors available for 

differentiation (Godfrey et al., 1992; Moore and Zlotnik, 1995; Penit et al., 1995). 

Subsequent transition to the DN3 stage is accompanied by downregulation of both 

CD44 and c-kit expression and upregulation of CD24, as well as continued expression 

of CD25 and Thy-i (Godfrey et al., 1993). It is during the DN3 stage that widespread 

rearrangement of TCRI3 and TCRy chains is initiated (Dudley et al., 1994; Godfrey et 

al., 1993; Hozumi et al., 1994; Mombaerts et al., 1992a; Shinkai et al., 1993). The 

production of functional TCRI3 or TCRy chain is required for the continued 

differentiation of thymocytes beyond the DN3 stage, thus thymocytes of recombinase 

activating gene (RAG)-deficient mice, which are unable • to carry out V(D)J 

rearrangements, show a severe developmental block at DN3 (Kishi et al., 1991; 

Mombaerts et al., 1992b; Shinkai et al., 1993). Severe combined immunodeficiency 

(SCID) mice, which are unable to initiate TCRP rearrangement also show a similar 

phenotype (Rothenberg et al., 1993). Interestingly, the onset of TCR rearrangements is 

not immediately initiated by the expression of either RAG1 or RAG2 as these are 

readily detectable in DN1 and DN2 thymocytes (Wilson et al., 1994). 

In c43 T cell precursors, the pre-TCR complex is formed when the product of successful 

TCRI3 rearrangement pairs with the pre-Ta chain, a transmembrane glycoprotein that 

shares homology with TCR chains (Saint-Ruf et al., 1994) (Groettrup et al., 1993). The 

formation and expression of the pre-TCR is an important checkpoint in cl T cell 

differentiation, termed f3 selection (Godfrey and Z!otnik, 1993; Groettrup and von 
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Boehmer, 1993) and acts as a mediator for the allelic exclusion of the second TCR13 

allele (Aifantis et al., 1997; Uematsu et al., 1988). While complexed with both CD3 

subunits and p56', the pre-TCR mediates the 13-selection process, enabling the 

transduction of a selective signal that permits the proliferation and further 

differentiation of the developing thymocyte (Fehling et al., 1995; Godfrey et al., 1993; 

Levelt et al., 1995; Penit et al., 1995). Thus the disruption of pre-TCR formation via the 
ck ablation of either pre-Tu, CD3 or p56', leads to a developmental arrest between the 

DN3 and DN4 stages (Groettrup and von Boehmer, 1993; Malissen et al., 1995). 

That TCRyÔ thymocytes differentiation in the thymi of pre-Ta deficient indicates that 

the pre-TCR does not play a role in y8 T cell differentiation mice (Fehling et al., 1995). 

Although the rearrangement of the 13  locus is critical in the development of a13 T cells, it 

is clear that the complete rearrangement of the TCR13 locus does not preclude 

development along the yô lineage as DN4 cells retain the capacity to generate both a1 3  

and y8 T cells upon intrathymic transfer, despite pre-TCR expression (Petrie et al., 

1992). Furthermore, y8 T cells with in-frame TCR13 rearrangements are common 

(Burtrum et al., 1996). The successful rearrangement of the TCR? and TCR8 genes 

ensures that DN cells commit to the yi lineage (Burtrum et al., 1996). 

The progression beyond 13-selection to the DN4 stage is accompanied by loss of CD25 

expression (CD44CD25) as well as increased pre-Tu expression and the onset of 

TCRa gene rearrangement (Godfrey et al., 1993; von Boehmer et al., 1999). The 

successful rearrangement of the TCRa gene produces a TCR chain that has a greater 

affinity for the TCR chain already being expressed than the Pre-Tct chain (Trop et al., 

2000). This competition permits the formation of TCRaI3 heterodimers (Trop et al., 

2000). Moreover, expression of the pre-Ta is terminated ensuring that the TCRã13 and 

pre-TCR complexes are never co-expressed (Trop et al., 2000). In contrast to the allelic 

exclusion event following TCR13 rearrangement, the successful rearrangement of one 

TCRct allele does not preclude further TCRa rearrangement (Malissen et al., 1988; 

Marolleau et al., 1988). Only cells that express a TCRa chain that is able to form a ap 
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heterodimer that recognises a self peptide-MIHC complex will terminate recombination 

(Borgulya et al., 1992; Brandle et al., 1992). Cells at this stage begin to express both 

CD4 and CD8 at the cell surface, marking the transition from the DN stage to the 

CD4CD8 double positive (DP) stage of development. 

The process of positive selection ensures that only thymocytes whose c3 TCRs have a 

propensity to interact with self peptide-MHC complexes are able 'to survive. Most DPs 

either non-productively rearrange their TCR chains or express c4 TCRs that do not 

react to self-MHC ligands present on the cortical stroma with sufficient affinity to 

generate the intracellular signals required to sustain viability and it is estimated that 

greater than 95% of DPs die as a result (Benoist and Mathis, 1989; Egerton et al., 1990). 

Those cells that are able to interact with self peptide-MHC ligands do not die by neglect 

and are instead selected for further maturation by the multi-step process of positive 

selection. As a result of positive selection cells terminate RAG1 and RAG2 activity, 

thus preventing further rearrangements of the TCR locus (Borgulya et al., 1992; Brandle 

et al., 1992). In addition, they increase cell-surface TCR expression and elevate Bcl-2 

protein levels, protecting the cells from programmed cell death (Linette et al., 1994; 

Veis et al., 1993). It is at the TCRhi  DP stage that early markers of activation such as 

CD69, CD44 and MHC Class I are expressed or upregulated (Bendelac et al., 1992) 

(Swat et al., 1993) and CD24 is downregulated (Bendelac et al., 1992; Scollay et al., 

1984). CD4CD8CD69 cells represent a population of cells that are actively 

undergoing positive selection, as upon completion of positive selection, cells 

downregulate either CD4 or CD8 as well as CD69 and no longer require continued 

MHC-peptide interaction (Hare et al., 1999). CD4 and CD8 bind non-polymorphic 

regions of MHC Class II and MHC Class I respectively (Doyle and Strominger, 1987; 

Norment et al., 1988), and cells that bear a MHC Class I restricted a13  TCR retain CD8 

expression (Teh et al., 1988), where as those bearing a MHC Class II restricted c4ETCR 

continue to express CD4 (Kaye et al., 1989). 
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The SP subsets leave the cortex so that cells undergoing negative selection are mostly 

SPs that reside either at the CMJ or in the medulla (Surh and Sprent, 1994). Negative 

selection ensures that most cells with strong affinity for self-peptides presented by the 

thymic stroma are deleted from the emerging repertoire (Bevan, 1997). In this way, 

autoreactive clones are deleted to leave a T cell repertoire biased towards self-MHC 

recognition but that shows minimal self-reactivity. To ensure tolerance to self antigens, 

other mechanisms also limit the activation and proliferation of autoreactive clones that 

have escaped negative selection, in the periphery. The induction of clonal anergy and 

the activity of regulatory T cells (T reg) both serve to limit the destructive nature of 

autoreactive clones that have escaped negative selection (Maloy and Powrie, 2001; 

Sakaguchi et al., 1995; Schwartz, 1990). 

1.3.2 Thymocyte progenitors and lineage commitment 

1.3.2.1 Seeding of the postnatal thymus 

HPCs enter the postnatal thymus via a process of extravasation at the cortico-medullary 

junction (Kyewski, 1987; Lind et al., 2001; Ushiki, 1986). This process is likely follow 

other leukocyte extravasation models and involves three steps: leukocyte rolling, 

characterised by a loose attachment of the leukocyte to the endothelium; firm adhesion, 

whereby integrins on the surface of rolling leukocytes form a strong attachment to their 

receptors expressed on the surface of endothelial cells; and finally transendothelial 

migration, involving a multitude of cellular adhesion molecules and factors that enable 

the leukocyte to repeatedly attach and reattach itself to endothelial cell membranes and 

finally attach itself to the ECM of the thymus (Petrie, 2003). 

The ingress of HPC to the thymus is a non-continuous process with the thymus 

demonstrating periods of receptivity interspersed with longer periods of refractivity 

(Foss et al., 2001; Jotereau and Le Douarin, 1982). The observed competition for 

stromal niches required to mediate the DN stages of development is likely to be a 

limiting factor that moderates the number of imported HPCs and ultimately means that 

the size of the thymus remains constant and does not fluctuate with the cyclical seeding 
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(Foss et al., 2001). It has been proposed that the bone marrow periodically releases 

HPCs that are able to home to the thymus in response to the requirement for renewed 

thymic seeding (Donskoy et al., 2003). The expression of P-selectin on thymic 

endothelium, and the reciprocal expression of P-selectin ligands such as PSGL- 1 on 

both intrathymic HPCs and circulating LineageSca-1c-kit (LSK) cells, is consistent 

with a role in HPC ingress (Rossi et al., 2005). PSGL-1 deficient mice show reduced 

numbers of c-kit TN! cells despite the thymus being receptive to wild-type cell influx 

in transplantation experiments indicative of a homing defect (Rossi et al., 2005). 

Furthermore, upregulation of P-selectin in thymi with stromal niche availability is 

consistent with a specific role for P-selectin as a mdiator for the gated importation of 

HPCs (Rossi et al., 2005). 

Although the mechanisms of HPC homing to the thymus are poorly understood it is 

likely that chemokines play a pivotal role. Several chemokines are expressed in the 

thymus including lymphotactin, CCL12 (SDF-1), CCL17 (TARC), CCL19 (MIP3), 

CCL2 1 (SLC) and CCL25 (TECK) (Takahama, 2006). That the seeding of fetal lobes in 

vitro is mediated by soluble, diffusible factors via a G-protein coupled signal, strongly 

supports this notion (Jotereau et al., 1980; Wilkinson et al., 1999). Studies using mice 

deficient for CCR9 (the receptor for CCL25), showed that although CCR9-deficient BM 

is able to seed the thymus and produce normal T cell subsets in a non-competitive 

situation (Wurbel et al., 2001), CCR9-deficient BM is out-competed by wildtype BM 

cells in competitive reconstitution experiments (Uehara et al., 2002). Using anti-CCL25 

antibodies in blockade experiments did not prevent cells from seeding irradiated lobes 

in vitro (Wilkinson et al., 1999). These studies establish a likely role for CCL25 in 

prothymocyte recruitment to the thymus although the lack of a severe phenotype 

indicates the presence of functional redundancy and suggests that the recruitment 

process is mediated by multiple chemokines. 
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1.3.2.2 HPCs 

There has been much controversy surrounding the phenotype and functional 

characteristics of the cells that seed the postnatal thymus (Bhandoola and Sambandam, 

2006; Petrie and Kincade, 2005). What is known is that commitment to the T cell 

lineage requires Notch signalling mediated by Notch ligands, and that these are 

expressed in both the thymic microenvironment and by the haematopoietic and stromal 

cells of bone marrow (Felli et al., 1999; Singh et al., 2000; Tsukamoto et al., 2005). 

Furthermore, there are inherent difficulties in determining the functional capacity of 

thymus seeding progenitors (TSP) as contact with the thymic microenvironment during 

the seeding process is likely to have immediate effects on phenotype and function. Thus 

it remains a source of debate whether TSPs show commitment to the T cell lineage prior 

to or as a result of exposure to the thymic microenvironment. 

There is general agreement that cells within the postnatal TN  fraction, can give rise to 

T cells, B cells, NK cells, DCs and myeloid lineage cells (Allman et al., 2003; Wu et al., 

1991). As previously discussed, the TN1 compartment is heterogeneous and contains 

cells that exhibit differentiation and proliferation kinetics expected of a canonical T cell 

precursor (Bhandoola et al., 2003; Porritt et al., 2004). In addition, cells that can home 

to the thymus and show both T and B-image potential do exist in the postnatal DN1 

fraction but do not show strong proliferation or normal developmental kinetics (Porritt 

et al., 2004). Thus, it remains possible that the thymus is seeded by several progenitor 

cell types that have different phenotypes and functional properties. 

The LSK population identified in the bone marrow contains the haematopoietic stem 

cell (HSC) population and these cells are known to circulate in the bloodstream (Wright 

et al., 2001). Despite this, few people believe that these cells are the TSP and instead 

focus on downstream progenitor populations isolated from the bone marrow, blood or 

thymus, which show skewed potential to generate T cells. 

A population of LinIL-7RThy- 1 lOW5.  1 IowckitIow  cells were purified from adult bone 

marrow and were able to give rise to T cells, B cells, NK cells and DCs but not myeloid 
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cells upon in vivo transfer (Kondo et al., 1997). This population corresponded to a 

common lymphoid progenitor (CLP) population, indicating that the long-hypothesised 

bifurcation between the lymphoid and myeloid lineages existed (Kondo et al., 1997). 

However, despite this increased propensity to give rise to lymphoid cells, these could be 

induced to differentiate along the myeloid lineage under appropriate conditions (Kondo 

et al., 2000) highlighting the importance of distinguishing between artificially induced 

lineage choices and those that are actually made in vivo. These results still supported the 

view that cells exist in vivo that preferentially give rise to lymphoid cells and that cells 

homing to the thymus may already have undergone some lineage restriction or fate-

skewing process. Several studies attempting to find analogous cells in the thymus and 

blood failed to do so, raising the question of whether the CLP homes to the thymus 

under normal conditions to act as a T cell progenitor (Allman et al., 2003; Bhandoola et 

al., 2003). The discovery of a population of cells, which was common to both the 

thymus and the bone marrow and had a propensity to generate T cells and B cells, 

appeared to satisfy the criteria of a lymphoid-biased progenitor that could originate in 

the BM and home to the thymus (Gounari et al., 2002; Martin et al., 2003) As it 

appeared downstream of the CLP, with an IL-7RB220c-kit' °" phenotype, it was 

termed the CLP2 (Gounari et al.,2002; Martin et al., 2003). 

In addition to the BM CLP, other BM populations are also candidates for TSPs. A 

RAG1Lin-Sca-1+ c-kit Flt-31L-7RcC cell with minimal myeloid potential and 

preferential differentiation towards the lymphoid lineage was identified in BM by 

Kincade and colleagues using GFP expressed under the RAG1 locus. These cells, 

known as early lymphoid progenitors (ELP) are considered less differentiated than the 

CLP population as RAG1 locus is active before IL-7Ra, used to recognise the CLP, is 

expressed. 

1.3.3 Fetal T cell differentiation 

As previously discussed, HPCs can first be detected in the mesenchymal capsule of the 

thymic anlage at Eli (Itoi et al., 2001). Between El 1 and E12, these traverse into the 
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epithelial core of the lobe with the migration coinciding with, but not triggering, 

phenotypic changes in the epithelial structure so that epithelial cells form a clustered 

structure (Douagi et al., 2000; Itoi et al., 2001). Currently, the regulation of the influx of 

precursors into the fetal thymus is poorly understood, although transfilter migration 

assays have indicated a role for soluble, diffusible chemoattractant factors produced by 

thymic epithelial cells (Fontaine-Penis et al., 1981; Jotereau et al., 1980; Wilkinson et 

al., 1999). Several chemokines are expressed in the fetal thymus, including IVIIP1-y, 

RANTES, MCP-1 and SDF-1 (Bleul and Boehm, 2000; Liu et al., 2006; Wilkinson et 

al., 1999). However, their role as chemoattractants for thymic precursors is uncertain as 

these are also detectable in non-attracting tissues (Bleul and Boehm, 2000; Liuet al., 

2006; Wilkinson et al., 1999). In contrast, the level of CCL25 expressed by fetal TECs 

is greatly increased over those of non-attracting tissues and CCL25 is able to mediate 

the chemotaxis of isolated E14 precursors in vitro (Bleul and Boehm, 2000; Wilkinson 

et al., 1999). Interestingly, both CCL25 and SDF-1 expression is lacking in the nude 

mouse thymus and in these mice prothymocyte entry into the fetal thymus does not 

occur, although localisation to the CCL2 1-expressing parathyroid proceeds normally 

(Bleul and Boehm, 2000). The use of neutralising antibodies to block the action of 

CCL25 or CCL21 in fetal thymus colonisation experiments showed markedly reduced 

colonisation efficiency, whereas those against SDF-1 showed no reduction (Liu et al., 

2005). Taken together, these studies show that CCL25 is a candidate agent for the 

chemoattraction of HPC into the fetal thymus prior to vascularisation although some 

degree of functional redundancy is likely to operate. 

Until E16, thymocytes cells appear DN with most cells exhibiting a CD3CD2Linc-kit 

phenotype. By E17, most cells have reached the DP stage and these rapidly mature so 

that both CD4 SP and CD8 SP populations are present prior to birth (Antica et al., 

1993). In addition to af3 T cells development, the fetal thymus generates yi T cells, with 

the first cells to express y8 appearing by E16 (Pennington et al., 2005). Unlike c3 T 

cells, ?ô T cells are produced in waves that populate specific tissues. The first wave that 

appears at E15 expresses invariant TCR chains and populates the skin as dendritic 
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epidermal I cells (DETC). Subsequently, fetally produced 'yö T cell cohorts populate 

the tongue, the reproductive tract, and the intestines (Allison et al., 1991; Havran et al., 

1991). Functionally, this represents an inherent difference between fetal and postnatal 

HPCs as the TCR restriction is cell intrinsic and is not seen in cells developing from 

postnatal HPCs. 

In addition to differences in differentiation potential, fetal and postnatal thymocytes 

have different requirements for their survival and differentiation. In Ikaros null mice, 

fetal thymocyte development is absent where postnatal development is evident despite 

some abnormalities (Wang et al., 1996). In contrast, despite the profound block at the 

DN stage in postnatal IL-7Ra null mice, fetal thymocytes in these mice are able to 

express CD25, express RAG proteins and produce neonatal SPs (Crompton et al., 

1998). 

1.3.4 The role of the thymic stroma in thymocyte differentiation 

The T cell differentiation programme consists of several waves of regulated gene 

expression. The resultant changes in cell-cell signalling receptivity and cytokine 

responsiveness sequentially mediate the downregulation of non-T lineage genes, the 

upregulation of T-lineage associated genes and the commitment to the T cell lineage, as 

well as later events involved in T cell differentiation. Inherent in this is the survival and 

proliferation of cells that have successfully passed the checkpoints that mediate the 

production of a suitable T cell repertoire. 

The intrathymic differentiation of T cells from HPCs is critically dependent upon 

interactions with the thymic stroma. The ability of the thymus to support the 

differentiation of T cells has been shown in vitro to be dependent upon the presence of 

MHC Class 1I epithelia! cells (Anderson et al., 1993). The thymic epithelium exerts its 

functional capacity via several mechanisms including cell-cell signalling and the 

provision of soluble factors. 
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1.3.4.1 Intrathymic thymocyte migration 

The complexity of the heterogeneous thymic epithelium and the compartmentalisation 

of the thymus structure provides spatially distinct microenvironments that support the 

various stages of thymocyte development (Figure 1.1; Figure 1.2). The ordered 

migration of thymocytes within the thymus permits thymocytes at distinct stages of 

development access to specific niches that are likely to control differentiation events. 

Chemokines play an important role in the control of intrathymic migration, events and 

cells at different stages of development have been shown by a number of mutant mouse 

models to differentially respond to several TEC-expressed chemotactic factors. In 

response to SDF- 1, a factor expressed by cortical TEC, early thymocytes expressing the 

SDF-1 ligand, CXCR4, display a migratory response in vitro (Plotkin et al., 2003). In 

CXCR4' mice, early thymocytes fail to efficiently colonise cortical areas and 

demonstrate a block in development at TN1 (Plotkin et al., 2003). In addition, to 

CXCR4, CCR7 has also been implicated as a factor controlling the intrathymic 

migration of early thymocytes to the outer cortex (Misslitz et al., 2004). CCR7 

expression in TN thymocytes is limited to the TN1-TN2 population and these cells 

accumulate at the CMJ in mice lacking CCR7 (Misslitz et al., 2004). Paradoxically, 

CCR7 expressing SP cells and a proportion of DP cells has been implicated in 

thymocyte migration towards the medullary region (Ueno et al., 2004). Further, 

overexpression of CCR7 in thymocytes led to the accumulation of DPs in the medulla 

(Ueno et al., 2004). That CCR7 ligand expression is concentrated in the medulla as well 

as at the SCZ supports the view that CCR7 plays roles in both the outward migration of 

immature thymocytes and the inward migration of more mature thmocytes (Misslitz et 

al., 2004; Ueno et al., 2004). 

In the thymus, CCR9 expression is limited to cortical DP and early SP thymocytes and 

is not found on late medullary SPs, TECK expression is limited to the cortex (Bleul and 

Boehm, 2000). Consistent with a role in cortical thymocyte migration, the CCR9 ligand, 

TECK is reciprocally expressed in the cTEC and macrophages of the newborn thymus 

(Bleul and Boehm, 2000). Post-selection thymocytes expressing CCR4 have been 
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shown to migrate in response in vitro to CCR4 ligands, TARC and MDC: In vivo, both 

TARC and MDC show medullary-restricted expression, indicating that in addition to 

CCR7 ligands, CCR4 ligands also play a role in cortex to medulla migration (Bleul and 

Boehm, 2000; Campbell et al., 1999; Suzuki et al., 1999). 

The data presented above indicate that differential expression of chemokines expressed 

by the thymic epithelium ensures that thymocytes expressing chemokine receptors 

follow an ordered migratory pathway. The complete dissection of the actual role played 

by each chemokine-ligand pairing in the thymus is made difficult by the functional 

redundancy that appears to operate in the system. This is reflected in the normal 

lymphopoiesis and thymocyte migration observed in the thymus of mutant mice that 

lack CCR9 (Uehara et al., 2002). 

1.3.4.2 Major histocompatibility complex 

The development of a self-tolerant T cell repertoire is heavily reliant upon interactions 

with MHC Class I and II complexes in the thymus. The MHC is a polymorphic gene 

complex, whose products are known to be associated with cell-cell recognition and 

discrimination. MHC Class I and II molecules are both membrane-bound glycoproteins, 

which present antigen to cells of the immune system. M-1C Class I is expressed on 

somatic cells at varying levels, and functions to present processed peptides to CD8 T 

cells, often referred to as cytotoxic T cells. CD4 restricted T cells, referred to as helper 

T cells, are responsive to peptides presented by MHC Class II molecules expressed on 

specialist antigen presenting cells such as macrophages, dendritic cells and B cells as 

well as subtypes of the thymic epithelium. 

All TECs express MHC I at high density (Ritter and Palmer, 1999). MHC Class II 

shows differential expression levels between different stromal cell types. Cortical 

epithelium has high level MHC Class II expression, as does a subpopulation of 

medullary epithelium. In addition, 50-70% thymic macrophages and all dendritic cells 

also show strong MHC Class II expression, while all express MHC Class I (Surh et al., 

1992b; Van Ewijk et al., 1980). 
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1.3.4.3 Notch signalling in T cell differentiation 

The Notch family of proteins regulates cell fate decisions during fetal and adult 

development. The thymic epithelium expresses several Notch ligands including Jagged-

F, Jagged-2 and delta-like 1 (Dl1-1) and delta-like 4 (Dl1-4) (Felli et al., 1999; Harman 

et al., 2003; Tsukamoto et al., 2005). Evidence that Notch-1 plays a critical role in 

thymopoiesis comes from experiments on mice with induced loss of Notchi (iNotch). 

Deletion of Notch] using cre-recombinase under an IFN-ct responsive element resulted 

iry a block at the TN  stage of development with a coincident increase in B cells in the 

thymus (Radtke et al., 1999; Wilson et al., 2001). Reciprocal experiments utilising an 

active form of Notch, the intracellular Notch domain (ICN) to act as a signal transducer, 

demonstrated that Notch can commit Linc-kit cells to the T cell lineage in conditions 

that would normally induce B cell differentiation (Hozumi et al., 2003). Similarly, DP 

cells develop in transplanted BM transduced with ICN, with a simultaneous block in B 

cell development (Pui et al., 1999). 

Deletion of Notch] in thymocytes prior to pre-TCR expression using cre-recombinase 

driven by the Lck proximal promoter, severely restricts the development of a43 but not 

y8 T cells by impairing VDJ/3 TCR rearrangements (Wolfer et al., 2002). These cells, 

which would ordinarily undergo apoptosis as a result of lack of Pre-TCR signalling, 

instead bypass this checkpoint, a result that would ordinarily lead to the production of 

an inappropriate repertoire. Controversially, Notch 1 signalling has also been implicated 

in subsequent lineage decisions such as those deciding whether cells adopt an ap or 

fate, and also the CD4 and CD8 fate decision (reviewed in Radtke et al 2002). 

Collectively, these studies suggest that Notchi signalling is an essential actor for the 'T 

cell versus B cell fate decision with the ability to induce T cell differentiation in 

uncommitted progenitors. This fact has been exploited in the production of the 0P9-

DIM and 0P9-Dli-4 cell lines, which have proved a useful tool for analysis of T cell 

development (Hozumi et al., 2004; Ponitt et al., 2004; Schmitt and Zuniga-Pflucker, 

2002). 
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1.3.4.4 Soluble factors in T cell development 

Several cytokines are involved in the proliferation of early thymocytes with SCF, IL-7 

and Flt-3-ligand all being secreted by the thymic epithelium (Moore et al., 1993). The 

SCF receptor, c-kit is expressed on both DN1 and DN2 thymocytes but is 

downregulated by DN3 (Godfrey et al., 1993; Lind et al.). C-kit is a tyrosine kinase 

with an essential role in the proliferation of early thymocytes (Rodewald et al., 1995). 

IL-7Ra is similarly expressed on subpopulations of DN1 and DN2 thymocytes (Moore 

et al., 1993; Porritt et al., 2003). Whilst cell culture experiments indicate that many 

factors are required to maintain TN1 cells, IL-7 signalling is sufficient to maintain TN2 

cells (Moore and Zlotnik, 1995). IL-7R signalling promotes rearrangement of TCR'y 

locus (Durum et al., 1998) (Appasamy, 1992) and in mice lacking the IL-7Ra chain, y 

thymocytes are absent (Maki et al., 1996). IL-T' mice and IL-7Ra mice show severely 

reduced thymic and peripheral lymphocyte numbers (Peschon et al., 1994; von Freeden-

Jeffry et al., 1995). Interestingly, in contrast to the severe developmental arrest seen in 

the postnatal thymus of IL-7Ra null mice, fetal thymopoiesis proceeds normally, 

although total numbers remain reduced indicating that the IL-7Ra chain is not essential 

for fetal thymopoiesis (Crompton et al., 1998). IL-7 signalling retains a role in later 

differentiation and is responsible for post-positive selection thymocyte expansion (Hare 

et al., 2000). Other factors that have been implicated in the differentiation of the earliest 

thymocyte subsets such TNFa and IL-la (Zuniga-Pflucker et al., 1995) are also 

expressed by TEC (Moore et al., 1993). 

1.3.4.5 Cortical epithelial cells 

In addition to providing factors for the commitment and early differentiation of 

thymocytes, cTECs have been implicated in the positive selection of immature 

thymocytes. Mice in which MHC Class II expression was limited to different stromal 

compartments illustrated that only when MHC Class II was expressed on the cortical 

epithelium, were normal numbers of intrathymic and peripheral CD4 T cell 

populations found (Benoist and Mathis, 1989; Cosgrove et al., 1992). This is consistent 

with reports of mice with transgenic restricted TCR expression, which demonstrate that 
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when the selecting MHC-peptide complex is expressed on cTEC, positive selection is 

observed (Berg et al., 1989). These data indicate that cTECs can drive positive selection 

efficiently using MHC-peptide complexes as a ligand for the thymocyte-expressed 

TCR. It is likely that some of this activity is dependent upon the provision of co-

stimulatory accessory signals. Some studies have cast doubt on the unique ability of 

cTEC to mediate positive selection. The demonstration that intrathymic injection of 

fibroblasts bearing either MHC Class I or MHC Class II into the thymi of M}{C 

deficient mice could rescue CD8 and CD4 SP compartments, respectively suggests that 

any cell expressing an MHC-peptide complex can mediate positive selection events 

(Hugo et al., 1993) (Pawlowski et al., 1993). However, these studies do not exclude the 

possibility that the endogenous epithelial cells provide accessory co-stimulatory signals 

to developing thymocytes during positive selection. 

The nature of the signals provided by the cTEC are yet to be elucidated. Notch 

signalling has been suggested to occur during positive selection as the transition from 

DP to SP phenotype is accompanied by the expression of downstream regulators of 

Notch including Deltex and Hes-1 (Deftos et al., 1998). Despite this, Notchi deletion in 

thymocytes from DN3 onwards showed that the absence of Notch 1 signalling during 

positive selection did not impede the DP generation or selection events (Wolfer et al., 

2001). 

1.3.4.6 Medullary epithelium 

Following positive selection in the cortex, newly generated SP cells migrate across the 

CMJ to the medullary region. The most efficient mediators of clonal deletion in the 

thymus are thymic DCs, which are concentrated at the CMJ (Anderson et al., 1998a; 

Barclay and Mayrhofer, 1981; Barclay and Mayrhofer, 1982). However, several lines of 

evidence have suggested that the medullary epithelium is essential for the avoidance of 

autoimmune phenotypes resulting from inefficient negative selection and the 

breakdown of central tolerance. Several studies have demonstrated that murine and 

human mTECs express a wide range of tissue specific antigens as well as other proteins 
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such as a-fetoprotein that are temporally regulated (Gotter et al., 2004; Kyewski et al., 

2002). Following the introduction of liver-specific human C-reactive protein (hCRP) 

gene and its regulatory elements into mice, /iCRP was detected in both the liver and 

mTEC (Klein et al., 1998). When these mice were crossed with others that had TCRs 

specific for CRP, tolerance was induced, providing strong evidence for the direct 

involvement in the induction of tolerance to medullary expressed antigens (Klein et al., 

1998). 

Work investigating the role of the transcription factor, Autoimmune regulator (AIRE), 

analysed the medullary expression profile of thymic cells taken from mice deficient in 

AIRE and noted a reduction in the expression of peripheral tissue-restricted genes 

(Anderson et al., 2002). The AIRE knockout animals used in this study exhibited 

autoimmune diseases, which were attributed to the loss of AIRE activity indicating that 

that AIRE plays an important role in the promotion of ectopic expression of TSAs. The 

AIRE-associated disease spectrum parallels with that which is seen in humans known to 

possess a defective form of ATRE (Anderson et al., 2002; Liston et al., 2003). 

In addition to the enforcement of central tolerance, mTECs support post-selection 

thymocyte maturation. Medullary thymocytes have been shown to reside in the medulla 

for upto two weeks, during which time several markers of late maturation are 

upregulated (Gabor et al., 1997; Ge and Chen, 1999). During this time, SPs undergo 

TEC-dependent proliferation to increase the size of the post-selection pool prior to 

export to the periphery (Hare et al., 2000; Hare etal., 1998). 

1.3.5 Molecular regulation of intrathymic T cell differentiation 

During T cell differentiation, several transcriptional regulators have been identified 

which either regulate T cell specific genes or repress alternative lineage genes, thus 

mediating commitment. Ikaros is a zinc finger transcription factor that plays an 

important role in the development of many haematopoietic lineages 

(Nichogiannopoulou et al., 1998). Ikaros null mice lack fetal T cell development 

although postnatally some T cell development is seen, which generally results in T cell 
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leukaemia (Wang et al., 1996). A more severe phenotype is seen in mice expressing a 

dominant negative form of Ikaros, which show a complete early block in all lymphoid 

differentiation as well as defects in the haematopoietic stem cell compartment 

(Nichogiannopoulou et al., 1999). Taken together, these studies indicate that Ikaros 

plays an important role in the regulation of lineage branch points of haematopoietic 

lineages from the HSC onwards, and exerts an effect on the T cell lineage at various 

time points. Furthermore, Ikaros plays a vital rle as a tumour suppression agent in the 

postnatally produced T cell compartment. 

GATA-3 is another zinc-finger transcription factor expressed in thymocyte and mature 

T cell populations. In chimaeric experiments, GATA3' cells are unable to contribute to 

even the earliest thymocyte populations indicating that it is an essential early regulator 

of the T cell lineage (Ting et al., 1996). Upregulation of GATA-3 expression in DP 

thymocytes is triggered proportionally to the strength of TCR stimulation signal and is 

ultimately expressed more highly in CD4 SPs than CD8 SPs (Hernandez-Hoyos et al., 

2003). Overexpression of GATA-3 in DP thymocytes inhibits CD8 SP development 

(Hernandez-Hoyos et al., 2003) whereas interference resulting in reduced GATA-3 

expression limits CD4 SP development (Pai et al., 2003) illustrating that in addition to 

being an early positive regulator, GATA-3 is indispensable for the later stages of CD4 

T cell development. 

PU. 1 is a haematopoietic cell specific transcription factor expressed in HSCs and the 

earliest thymocyte compartments. Maintenance of high levels of PU. 1 expression drives 

cells towards the myeloid lineage, with lower levels favouring B cell development 

(DeKoter and Singh, 2000). PU. 1 levels diminish as T cell development progresses and 

it is possible that this reduction is an important shield against development along 

inappropriate lineages, which might otherwise be mediated by PU. 1 in the thymus 

(Anderson, 2006; Dionne et al., 2005). 

Mediators of thymocyte proliferation and cell cycle status are vital to ensure that only 

appropriately selected thymocyte populations are able to expand whilst others, which 
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fail checkpoint controls, are unable to continue cycling and are susceptible to apoptosis. 

E box binding factors, also known as basic helix-loop-helix (bHLH) factors, such as 

E2A, HEB and ITF- 1 and their inhibitors Id-2 and Id-3 are critical for the control of cell 

cycle entry and exit that is vital for the controlled differentiation of thymocytes. 

Generally speaking, interplay between bHLH factors, which inhibit entry into GI and 

promote differentiation, and the Id proteins that mediate entry into the cell cycle thus 

inhibiting further differentiation, accompanies several thymocyte differentiation 

checkpoints (Bain et al., 2001; Engel et al., 2001; Morrow et al., 1999; Peverali et al., 

1994). In this way, the E box binding factors and their Id protein inhibitors exert cell 

cycle control over many of the processes that govern T cell differentiation and ensure 

the generation of a large, appropriate, and self-tolerant repertoire. 

1.4 In vitro models of thymocyte development 

The differentiation of cells towards a more restricted cell fate is a complex process 

involving an interplay of various environments and cell intrinsic factors. The ability to 

control the environment that differentiating cells occupy permits the dissection of these 

processes and this requires the dissociation of the system from influences that cannot be 

regulated or altered. Therefore, development of an in vitro organ system, which can be 

easily controlled and manipulated is an attractive goal. 

1.4.1 Organ culture systems 

Early attempts to differentiate T cells in vitro were made' using ex vivo fetal thymic 

lobes (Ceredig et al., 1982; Kamarck and Gottlieb, 1977). As with other ex vivo culture 

systems, fetal thymic organ culture (FTOC) permits study of T cell precursor 

differentiation and allows macro-environmental conditions to be controlled. Organ 

cultures are routinely used in the assessment of T cell competency of haematopoietic 

progenitors in multipotency assays where they have been pre-treated with 

deoxyguanosine to eliminate haematopoietic cells before being reseeded with 

haematopoietic progenitors (Kawamoto et al., 1997). 
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Stromal elements from dissociated lobes have been found to reaggregate in culture to 

produce an organoid capable of T cell differentiation (Anderson et al., 1993). 

Reaggregate fetal thymic organ culture (RFTOC) has been effectively used to elucidate 

the cellular requirements for thymocyte differentiation as well as providing a model for 

studying positive selection (Anderson et al., 1993; Anderson et al., 1994). However, the 

reliance upon fresh fetal tissue and the limitations that this places upon the scale of 

experiments is a drawback with both FTOC and RFTOC. 

1.4.2 Scaffold cultures 

Biocompatible materials have been successfully used to provide mechanical support and 

niche availability with the three-dimensional structure acting as an artificial matrix 

offering stability and spatial organisation to the cells, which they harbour. The belief 

that the open-meshwork of the thymic reticulum was of great importance in the 

differentiation of T cells, made the use of scaffolds a good candidate for improving in 

vitro T cell differentiation cultures, with experiments being undertaken to establish the 

optimal pore size for the maturation of T cell precursors (Poznansky et al., 2000). 

Experiments in which a carbon coated tantalum matrix supporting a co-culture of a 

murine thymic cell line with human haematopoietic progenitor cells showed that in 

principle, artificial matrices may be of used to enhance the vitro production of T cells 

(Poznansky et al., 2000). Recently, another group has used a similar protocol to support 

the differentiation of HPCs on a matrix seeded with human skin cells and keratinocytes, 

with resultant cells showing a diverse repertoire with evidence of self-tolerance (Clark 

et al., 2005). Although potentially useful, it remains unclear whether these matrices 

form a three-dimensional cell structure or are elaborate monolayer cultures due to 

imaging limitations. 

1.4.3 Monolayer cultures 

The in vitro development of a simple culture system capable of supporting the 

differentiation of lymphocytes has proved more difficult than the production of other 

haematopoietic lineages in simple cultures although a number of BM-derived stromal 
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cell lines have been shown to support the full differentiation of other non-T lineage 

lymphocyte populations (Kodama et al., 1994; Williams et al., 1999). One such line, 

OP-9, is particularly suited for the differentiation of lymphocytes because its derivation 

from a macrophage colony-stimulating factor (M-CSF) deficient mouse (op/op) means 

that this cell line does not support the extensive monocyte expansion typically seen on 

other BM cell lines (Kodama et al., 1994). However, despite this advantage, full T cell 

differentiation using OP-9 remained difficult (Kodama et al., 1994; Tong et al., 1999). 

Stromal cell lines derived from the thymic epithelium also proved to be similarly 

inefficient at supporting T cell differentiation. The reasons for this remain unclear, but 

the morphological and functional changes in stromal cells grown in monolayer lines are 

suggestive of changed in functional capabilities (Anderson et al., 1998b). This led to the 

suggestion that the microenvironment provided by the three-dimensional lattice of the 

thymic epithelium was required to support T development (Anderson et al., 1998b). 

However, recent advances in our understanding of the requirements for T cell 

commitment and differentiation led to re-evaluation of stromal cell lines as a tool for the 

differentiation of T cells. Many molecules such as IL-7 and SCF were known to have 

important roles in the fate and activity of T cells although these were unlikely to be the 

critical missing factors in T cell differentiation cultures, as they have roles in the 

differentiation of many other cell types that have been supported by monolayer culture. 

The discovery of the critical role for Notch signalling in the B versus T cell decision 

was of particular interest, suggesting that Notch signalling provides a unique signal that 

permits the choice of a T cell fate at the expense of other cell fates (Radtke et al., 2004). 

The finding that delta-like Notch ligands were essentially missing from stromal cultures 

but present on thymic epithelium provided impetus for further investigations into a 

potential role as the missing component in stromal cultures. Transduction of the Notch 

ligand Dll-1 into the OP-9 BM stromal cell line dramatically altered their lymphocyte 

supporting potential (Schmitt and Zuniga-Pflucker, 2002). While the OP-9 cell line 

efficiently supported B cell differentiation, the transduced 0P9-D111 cell line supported 

T cell differentiation at the expense of B cell lineage (Schmitt and Zuniga-Pflucker, 

2002). The simplicity of the culture system and the ease of working with cell lines has 
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meant that the OP9-Dll- 1 has become a commonly used method for studies into the 

commitment status and differentiative potential of HPCs. However, although the OP-9-

Dli- 1 line efficiently supports differentiation to the DP stage, the absence of MHC Class 

II and CD1d precludes efficient positive selection of CD4 SPs (Schmitt and Zuniga-

Pflucker, 2002). As yet, efficient positive and negative selection has not been 

demonstrated on the OP-9-Dll- I cell line and currently requires transfer of thymocytes 

FTOC for this to be facilitated (Schmitt et al., 2004b; Schmitt and Zumga-Pflucker, 

2002). Furthermore, the inability of unmanipulated OP-9-1311-1 cells to express the 

range of AIRE, or the range of self-antigens that can be found in mTECs, would 

indicate that negative selection of self-reactive T cells would not be possible without 

further manipulation of the cell line (Zuniga-Pflucker, 2004). 

1.5 Aims 

The heterogeneous epithelial cell network of the thymus provides the 

microenvironments required for intrathymic T cell differentiation and repertoire 

selection. When grafted in vivo, a population of fetal thymic epithelial cells, marked by 

the monoclonal antibodies MTS20 and MTS24, can generate all major thymic epithelial 

cell subtypes and form an organised thymus-like structure. Furthermore, the resultant 

thymic organoid can recruit T cell precursors and support their, differentiation into 

mature CD4 and CD8 T cells. This was not achieved in grafts of MTS20MTS24 

TEC or fibroblasts alone. Despite efforts to elucidate the mechanisms involved in 

thymic epithelial cell differentiation, little is known about the processes that govern the 

differentiation and compartmentalisation of the thymic epithelium. 

The overall aim of this thesis was therefore to establish whether MTS20MTS24 fetal 

TEPC could provide the basis for an in vitro thymus-equivalent that could be used as a 

means of generating haematopoietic populations in vitro and also as a manipulatable 

model for TEC differentiation. Chapter Three describes the characterisation of fetal 

thymic stroma and also outlines the development of the experimental system, which 

was to be utilised in subsequent chapters. Chapter Four details the establishment of in 

~' NE04" 
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vitro conditions permissive for the differentiation of T cells in MTS20 cell-based 

cultures and characterises the haematopoietic populations supported by such cultures. 

Chapter Five describes the in vitro differentiative capacity of defined MTS20 and 

MTS20 fetal TEC populations and outlines the potential for these populations to 

become organised in these cultures. 

52 



Chapter Two: Materials and Methods 

Chapter 2: Materials and Methods 

2.1 Materials and Solutions 

Unless otherwise stated, materials were obtained from either BDH laboratory supplies, 

Gibco, Sigma, or Invitrogen. 

RFTOC Medium: 

lx Dulbecco's modified eagle medium F12:NUT mix 

10% fetal calf serum (FCS) 

4mM glutamine 

2mM sodium pyruvate 

50U/ml penicillin 

50tg/mi streptomycin 

0.1% non-essential amino acids 

0. 1mM 2-mercaptoethanol 

Fibroblast Medium: 

1 x lx Dulbecco's modified eagle medium 

10%FCS 

2mM sodium pyruvate 

50Ufml penicillin 

50tg/m1 streptomycin 

Lobe dissociation mixture: 

1 .4mg/mi hyaluronidase 

0.7mg/ml collagenase 

0.05mg/mI deoxyribonuclease 

imi PBS 

FACS Wash: 

95m1 Ca2 /Mg2tfree PBS 

5m1FCS 

Thymocyte Wash: 

95m1 Hanks balanced salt solution (HBSS) 

5m1FCS 
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Table 2.1 Antibody clones and their source 

NAME CLONE AND SOURCE SPECIES 

MTS20 
from R.L. Boyd, Monash University Medical School, 

Australia 
Rat 1gM 

MTS24 
from R.L. Boyd, Monash University Medical School, 

Australia 
Rat lgG2a 

aK14 LL002; from B Lane, Dundee Mouse lgG3 

anti-pancytokeratin polyclonal anti-keratin, Dako Corporation Rabbit 

aK5 polyclonal anti-keratin 5, Covance Research Products Rabbit 

aK8 Troma 1; DSHB Rat lgG 

CDR1 
from B Kyewski, German Cancer Research Center, 

Heidelberg 
Rat lgG 

UEA1 biotinylated, Vector labs Lectin 

aCD31 MEC13.3, BD PharMingen Rat lgG2a 

aMHC Class II M5114, BD PharMingen Rat lgG 

aCD3 145-2C11, BD PharMingen Hamster lgGl 

aCD4 RM4-5, BD PharMingen Rat lgG2a 

ciCD8 53-6.7, BD PharMingen Rat lgG2a 

aCDllc HL3, BD PharMingen Hamster 

aCD25 
7D4, BD PharMingen 

PC61, BD PharMingen 

Rat 1gM 

Rat IgGi 

aCD44 1M7, BD PharMingen Rat lgG2b 

aCDllb M1170, BD PharMingen Rat lgG2bk 

aCD45 30-Fl 1, BD PharMingen Rat lgG2b 

cLTCRf3 H57-597, BD PharMingen Hamster lgG2 

cxCDl4Oa 
- 

(PDGFR(x) 
APA5, BD PharMingen Rat IgG2a 

TER1 19 BD PharMingen Rat lgG2bk 

aNK1.1 PK136, BD PharMingen Mouse lgG2ak 

ERTR7 From W van Ewijk, University of Leiden Rat lgG2a 
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2.2 Mice 

All animals were housed within the Division of Biological Sciences Animal Facility at 

the University of Edinburgh under conditions outlined in the Animals (Scientific 

Procedures) Act 1986. Mice were housed in a stabilised environment with a 12 hour 

light/dark cycle and were supplied with food and water ad libitum. Adult mice were 

sacrificed by the schedule 1 method of cervical dislocation. 

2.2.1 Embryo collection 

Matings to provide embryos were between C57BL16 females and CBA males. To this 

end, male and female mice were together overnight and females were examined the 

following morning for the presence of a vaginal plug. This was taken as time point 

E0.5. Pregnant females at the desired stage were sacrificed and the uterine horns were 

isolated and placed in PBS. Embryos were removed from the uterus and transferred to 

clean PBS for further dissection. 

2.3 Cell Preparations 

Embryonic thymic lobes were dissected of excess extrathymic tissue and dissociated 

into a single cell suspension by incubation at 37°C for 15 minutes in dissociation 

mixture followed by 5 minutes in 0.025% trypsin at room temperature. Pelleted cells 

were resuspended in FACS wash for antibody staining. E13.5 fdetal livers were mashed 

between frosted slides into room temperature PBS before being transferred to 

PharMLyse (BD Bioscience) for RBC depletion as per manufacturers instructions. 

Following this depletion step, cells were spun and resuspended in FACS wash for 

further processing. For the isolation of adult thymocytes, thymi from 6-8 week old mice 

were homogenised by mechanical disaggregation on ice between two frosted glass 

slides and rinsed with cold thymocyte wash to liberate thymocytes from stromal cells. 

Cell suspensions were then transferred to 1 5m1 Falcon tubes, spun at 1300rpm for 5 

minutes at 40C in a bench top centrifuge and resuspended at 1x10 8  cells/ml in cold 

thymocyte wash. 
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2.3.1 Complement depletion 

For the enrichment of adult DN cells prior to sorting, complement depletion was used. 

Adult thymi were collected into cold thymocyte wash from mice aged between 4 and 8 

weeks. On ice, thymi were mashed between frosted slides to release thymocytes into a 

single cell suspension. The cell suspension was spun at 1,300 rpm for 5 minutes at 4 °C. 

The cell pellet was resuspended in 2m1 cold HBSS and 2 ml supernatant from 

hybridoma RL172.4 and 3.16881 were added. Following a 30 minute incubation on ice, 

lOmi HBSS was added to the tube and the cells were respun. The supernatant was 

removed and discarded and the cells were resuspended in 4m1 cold HBSS. To this, iml 

reconstituted LowTox rabbit complement (Cedarlane) was added and incuated at 37°C 

for 60 minutes with gentle agitation every 20 minutes. Cold HBSS was added to the mix 

before a further centrifuge spin was used to pellet the cells and debris. The pellet was 

resuspended in 4 ml HBSS and gently layered above 4m1 Lymphoprep M (Cedarlane). 

The gradient was spun for 20 minutes at 1,400rpm to allow debris to settle at the bottom 

of the tube. The cells at the interface between the HBSS and the Lymphoprep M were 

collected and thoroughly mixed with fresh HBSS to remove the contaminatig 

Lymhoprep M. The cell pellet was then resupended in thymocytes wash and ready to be 

stained as per the flow cytometry protocols. 

2.4 Cell Culture 

All cell manipulations were carried out in Class II laminar flow sterile hoods (Heraeus) 

using aseptic technique. Solutions were routinely sterility tested. 

2.4.1 Organ culture 

FTOC and RFTOC culture protocol was adapted from protocols published by Anderson 

et a! and Dou et al. Briefly, fetal thymic lobes were isolated as described previously and 

RFTOC were generated as described in Chapter Three. These were cultured overnight at 

the gas-liquid interface, floating on a polycarbonate (Millipore) raft in RFTOC medium. 

Subsequently, FTOC and RFTOC were submersed in RFTOC medium and cultured 

under high oxygen submersion (HOS) conditions for defined periods in a gas chamber 

containing a gas mix of 80% oxygen, 5% carbon dioxide and 15% nitrogen (BOC). 
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2.4.2 Murine embryonic fibroblast culture 

E13.5 embryos were decapitated and stripped of all internal organs and extra-embryonic 

tissue. The remaining tissue was washed in PBS before being gently mashed between 

frosted slides and immersed in 5m1 trypsin. Following incubation at room temperature 

for 10 minutes, 1 Oml fibroblast medium was added and the cell solution was centrifuged. 

for 3 minutes at 200rpm. The cell pellet was resuspended in 5m1 fibroblast medium and 

filtered to removed cell aggregates using a 40tm filter. The resulting cell suspension 

was added at a range of volumes to 25cm 2  tissue culture treated flasks and incubated 

with 5 ml fibroblast medium at 37°C for at least 5 hours but typically overnight to allow 

viable cells to adhere to the flask. The media was completely changed after this time to 

remove cellular debris. The medium was partially changed every 3 days and MEFs were 

used at confluence. 

2.4.3 Hybridoma supernatant production 

Hybridomas were maintained at 37°C in 7% CO2 in an upright position. Every three 

days, an equivalent volume of medium was added to the flask so that the total volume in 

the flask doubled. Once the volume reached the desired level, the cultures were allowed 

to continue growth without further media addition. When the medium turned yellow 

and the cultures showed signs of cell death, the cultures were spun to pellet the 

hybridoma cells then the supernatant was filtered to remove any remaining cells. The 

hybridoma supernatant was then batch tested for potency using flow cytometry before 

being aliquoted and stored at 4°C until use. 

2.5 Flow cytometry 

2.5.1 Sample preparation 

Cells in a suitable volume of FACS wash or thymocyte wash were incubated with 

primary antibody for 20 minutes on ice and then washed and incubated for 20 minutes 

with secondary antibody if necessary. In some cases, a further 20 minute incubation 

with a tertiary antibody was also required. In the case of intracellular antigen detection, 
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cells were fixed and permeabilised using the BrdU Flow Kit (BD Bioscience) prior to 

staining with antibodies against intracellular determinants. Following staining, cells 

were washed in appropriate buffer and were resuspended in thymocytes or FACS wash 

containing 1:25 7AAD (BD Bioscience) or 1:2000 ToPro3 (Molecular Probes) as 

viability markers if needed. Sorting strategies included the consideration of events with 

low take-up of viability dyes and appropriate scatter and stainig characteristics. 

2.5.2 Flow cytometric cell sorting and analysis 

Cells were sorted on either a MoFlo (Dakocytomation) or a FACStar (BD Bioscience) 

into cold FACS wash using isotonic sheath fluid. Analysis events were acquired on 

either a FACSCalibur (BD Bioscience) or a Cyan ADP (Dakocytomation) using either 

CellQuest (BD Bioscience) or Summit (Dakocytomation) software, respectively. 

Downstream analysis was performed using FlowJo (Treestar Inc). 

2.6 Immuno fluorescence 

2.6.1 Frozen section preparation 

Tissues were embedded in OCT compound (Tissue Tek, Miles Inc., USA), snap frozen 

on dry ice and stored at -80°C. Prior to sectioning, frozen embedded tissues were placed 

in the cryostat (Leica CM1900) and allowed to equilibrate for 30 minutes at -20°C. 

Sections were then cut at 10tm thickness and collected onto poly-L-lysine coated glass 

slides (VWR International). Sections were air dried for 20 minutes before being fixed 

for two minutes in 100% acetone (-20°C) and air dried for a further 20 minutes. 

Prepared slides were stored at -80°C prior to use. 

2.6.2 Cytospin preparation 

Cells suspended in 1 00}.il of PBS were loaded into a cytospin chamber which includes a 

polysine coated slide (VWR International) and a filter card (Thermo). Preparations 

were centrifuged at 1,000rpm (Cytospin 3; Shandon) for five minutes at room 

temperature. Slides were removed from the chamber and allowed to air dry for two 

minutes and then fixed in 100% acetone (-20°C) for two minutes. Following fixation 
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slides were left to air-dry for 2 minutes. Prior to staining the area around the cells was 

marked using a PAP pen (Daido Sangyo). 

2.6.3 Staining 

Frozen, fixed sections were allowed to air dry for 5 minutes before briefly rinsing in 

PBS. Slides were subsequently blocked for 15 minutes with PBS containing 5% serum. 

In order to minimise non-specific antibody binding, the species from which the serum 

was obtained was the same species in which the secondary antibody was raised. Primary 

antibody solutions diluted in PBS were then added to the sections and incubated at room 

temperature for 1 hour. Sections were then washed for 3 x 5 minutes using PBS 

containing 0.1% Tween 20 (PBS-Tween). Following the washes, the slides were then 

incubated at room temperature in the dark for 30 minutes with PBS containing 

fluorescent protein-conjugated secondary antibody combinations at a suitable dilutions, 

and DAPI (1:2000). Typically, anti-rat IgG Alexa 488 (Molecular Probes), anti-mouse 

IgG Alexa 568 (Molecular Probes), Streptavidin-conjugated Alexa 568 (Molecular 

Probes) or anti-rabbit IgG Alexa 647 (Molecular Probes) were used in combination to 

provide secondary fluorescence. After washing with PBS-Tween for a futher 3 x 5 

minutes, slides were rinsed with water and air dried before mounting with Vectashield 

Hardset mountant (Vector Labs). 

2.6.4 Imaging 

For detection of immunofluorescence, slides were examined with a Leica AOBS 

confocal microscope under the appropriate excitation conditions. Images were 

processed using Adobe Photoshop CS. 
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Chapter 3: Results: Investigation into the cellular composition 

of the developing thymus. 

3.1 Introduction 

The overall aim of this work was to investigate the potential of MTS20MTS24 fetal 

TEPCs to form the basis of a functional in vitro thymus equivalent. Recent work has 

identified that MTS20 and MTS24 mAbs recognise the same antigen (M. Depreter and 

C. Blackburn, manuscript in preparation). It is well established that the developing 

thymus rudiment contains TECs, fibroblasts, vascular cells and haematopoietic cells 

(Boyd et al., 1993). At the outset of this project, the relative contributions of these cell 

types to the developing thymic stroma between E12.5 and E15.5, a period critical to the 

establishment of stromal organisation, were poorly defined. Although recent 

publications have added some understanding to this area, the roles that these cell types 

play during the organisation and maturation of the developing thymic 

microenvironment remain poorly understood. Therefore, there was a requirement to 

characterise the populations of cells used during any in vitro experiments in order to. 

interpret the outcome of experiments. 

The RFTOC technique is a well established method of supporting T cell differentiation 

in vitro and has proved a powerful tool for the identification of cell types required in the 

thymic microenvironment (Anderson et al., 1993). Standard RFTOCs are cellular 

reaggregates formed from a cell slurry, which is drawn into a finely-pulled pipette and 

then pipetted onto filter paper raft floating on medium, where it is allowed to 

reaggregate at the gas-liquid interface (Anderson et al., 1993). The success of this 

reaggregation is dependent upon the generation of a cell slurry having great enough 

viscosity and a small enough volume to enable the creation of a standing drop on the 

filter. Inherent in the creation and use of a small volume of cell slurry are the cell losses 
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resulting from the residual cells that remain outside the RFTOC following the 

reaggregation process, as well as those incurred in the pipetting process. The variability 

introduced using this method has lead to inconsistency in size and productivity among 

successful reaggregates, and is a likely contributory factor in the relatively high failure 

rate of standing drop RFTOC (unpublished observation). This ultimately limits the 

utility of RFTOC for analysing the functional potential of TEC populations. 

In Chapter Three I therefore determine the cellular composition of the developing fetal 

thymus and the spatial relationship between the different cell types, between E12.5 and 

E1 5.5. Particular attention is paid to the thymic epithelial populations present during 

this time. In addition, I describe the development and optimisation of an improved 

RFTOC method that minimises cell loss and generates greater intra- and inter-

experimental reproducibility than existing techniques. 

3.2 Composition of fetal thymic lobes (E12.5-E15.5) 

To determine the composition and organisation during the development and maturation 

of the thymic microenvironment, monoclonal antibodies against markers of stromal 

elements were used in flow cytometric and imrnunofluorescence analyses of thymic 

lobes dissected from E12.5 - E15.5 mouse embryos. 

3.2.1 Thymic mesenchyme 

PDGFRa identifies NC-derived mesenchymal cells in and around the early thymic 

primordia (Jenkinson et al., 2007; Morrison-Graham et al., 1992). An anti-PDGFRa 

antibody was therefore used to identify mesenchymal cells by flow cytometric analysis. 

As shown in Figure 3. 1, PDGFRcL cells initially make up a significant proportion of 

stromal cells in the primordium and steadily decline in percentage as the thymus 

matures. At E12.5, PDGFRU stains 39% of all viable cells, although it is likely that this 

figure overestimates the true proportion of thymic mesenchyme due to the presence of 
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extrathymic connective tissue carried through the dissection process (Figure 3.1). At 

E13.5, PDGFRcL cells are approximately one fifth of the viable cells, with this figure 

dropping to 9% by E14.5. This decrease continues so that by E15.5, fewer than 2% of 

cells express this marker (Figure 3.1). Confirmation that these cells were non-epithelial 

was provided by cytospin analysis with routinely greater than 95% of purified 

PDGFRU cells not staining with anti-pancytokeratin (Figure 3.2 and (Table 3.1). These 

observations are consistent with recently published data showing that at E12 PDGFRcL 

is not co-expressed with EpCam, a marker of thymic epithelium, and that beyond E12, 

PDGFRct cells decrease as a proportion of the EpCam CD45 compartment (Jenkinson 

et al., 2007). 

The monoclonal antibody ERTR7 marks  an unknown intracellular determinant of 

thymic fibroblasts. The localisation and arrangement of ERTR7 fibroblasts was 

visualised in E13.5 and E15.5 fetal thymic lobes by immunofluorescence (Figure 3.3). 

In E13.5 thymic lobes, the epithelial core of the primordium is surrounded by a capsule, 

which stains brightly with ERTR7. Scattered ERTR7 cells can be seen throughout the 

epithelium but more commonly the intra thymic fibroblasts are present as clusters 

(Figure 3.3). Some cells appear to be projections of the capsule that extend into the 

epithelial areas of the lobes, possibly representing the early stages of trabecularisation 

(Figure 3.3). By E15.5, the number of ERTR7 cells appears to be increased 

proportionally with thymic size, and the staining pattern remains very similar with 

trabecular fibroblast projections now extending from the capsule deep into the epithelial 

core of the lobes (Figure 3.3). The relationship between ERTR7 cells and those that are 

PDGFRcL is not clear as studies rarely use both antibodies, and where both are used, 

they are not compared due to technical difficulties. The loss of PDGFRct may represent 

developmental progression. Despite the proportional reduction in PDGFRQ cells 
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Figure 3.1 PDGFRa staining of fetal thymic lobes 

Flow cytometric analysis was performed on cleanly dissected fetal thymic lobes 
following enzymatic dissociation. Cells were incubated with anti-PDGFRa antibody to 
identify mesenchymal fibroblasts. A large population of cells in the E12.5 lobes 
expresses PDGFRcL. As the lobes mature and increase in size, this population becomes 
relatively smaller and constitutes only a small portion of the stromal compartment by 
El 5.5. Plots shown are representative of at least two experiments. 
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Figure 3.2 PDGFRa cells are non-epithelial 

Flow cytometrically isolated E13.5 PDGFRU cells were cytospun onto glass slides 
prior to fixation and stained with anti -pancytokeratin (PanK) and DAPI. Three fields of 
view were scored to establish the total number of DA-PI cells and PanK epithelial cells 
present following three separate sorting experiments. Only two epithelial cells were 
identified within the PDGFRQ population in any of the sorts consistent with the level 
expected as a result of contamination. The results presented are representative of at least 
three separate experiments. 
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Table 3.1 PDGFRcz 4  cells are non-epithelial 

EXPERIMENT 

1 2 3 

Cell (DAPI) count 56 80 77 

PanW count 2 0 0 

% Epithelium 3.6 0 0 

Flow cytometrically purified E13.5 PDGFRU cells were cytospun onto glass slides 
prior to fixation and staining with anti-pancytokeratin (PanK) and DAPI. Fields of view 
were scored to establish the total number of DAPI cells and PanK epithelial cells. The 
PDGFRcL cells exhibit PanK staining in fewer than 5% of cells consistent with their 
non-epithelial identity. The level of PanK staining is equivalent to that expected from 
contaminating epithelial cells given sort purities of greater than 95%. 
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Figure 3.3 Distribution of fibroblasts within fetal lobes 

Representative immunofluorescence staining of fetal thymic lobes showing the 
localisation of ERTR7 fibroblasts in the Pan-K +  epithelial core. At both E13.5 (Panels 
A-E) and E15.5 (Panels F-J), fibroblasts encapsulate the lobes and are beginning to 
infiltrate the epithelial core at several points (white arrowheads). Dotted line represents 
the capsule between two adjacent lobes. Scale bars, I OOtm. 
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beyond E12.5 and the implication in published data that this represents a decrease in 

actual PDGFRcL cell number from data analysing the minority non-epithelial, non-

haematopoietic population of the embryonic thymus (Jenkinson et al., 2007), it remains 

unclear whether or not this is the case as other minority populations were not excluded 

in the analysis. A possible contaminant would be the vascular compartment of the 

thymus, which makes up an increasing proportion of cells beyond E13.5 (Figure 3.4). 

3.2.2 Thymic vasculature 

The mature adult thymus is a heavily vascularised organ, with a complex network of 

vascular elements that form during organogenesis. In other epithelial organs, vascular 

endothelium plays a critical role in outgrowth or organisation (Nikolova and Lammert, 

2003). Vascular elements and their spatial relationship with the developing thymic lobes 

was investigated using immunofluorescence. Analysis of E13.5 and E15.5 lobes was 

performed on frozen sections using CD3 1 as a marker of vasculature and pancytokeratin 

as a counterstain for TEC (Figure 3.4). Figure 3.4 illustrates that at E13.5, endothelial 

cells are located throughout the epithelial structure and have begun to cluster into 

tubular structures. Of note are the endothelial cells that appear to be associated with the 

capsule and outermost epithelial regions. This staining pattern is more obvious at E15.5 

when the epithelium is interspersed with tubular endothelial structures, many of which 

lie perpendicular to the subcapsule in an arrangement typical of mature cortical 

vasculature (Kato and Schoefi, 1989) (Figure 3.4). 

3.2.3 Phenotypic characterisation of the MTS20 and MTS20 populations. 

To analyse the remaining compartment of the thymic stroma, a lineage (Lin) cocktail of 

mAbs against haematopoietic (anti-CD45 and TER-119), vascular (anti-CD3 1) and 

fibroblastic (anti-PDGFRa) components of fetal thymic lobes was used to exclude 

CD45 and most CD45 stromal elements. The composition of the MTS20Lin and 

MTS20Lin populations was then analysed by flow cytometric analysis of thymus lobes 

and cytospin analysis of populations purified, using the protocol shown in Figure 3.5. 
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In the latter analysis, total cell numbers were counted in a field using DAPI as a nuclear 

stain and Photoshop CS to provide an artificial grid across the field to aid with 

orientation and enumeration. 

As shown in Figure 3.6, cells identified as haematopoietic cells, fibroblasts or vascular 

cells by the use of an antibody lineage cocktail accounted for roughly 45% of total cells 

at E13.5 and were initially excluded by electronic gating. The relative proportion of 

MTS20 and MTS20 cells are summarised in Table 3.2 and show that at E13.5, 70% 

(S.D ± 8) were MTS20 and 30% (S.D ± 8) were MTS20. Cytospin analysis revealed 

that 96% (S.D± 0.8) of MTS20 cells and 86% (S.D± 4) of MTS20 cells express 

cytokeratin (Figure 3.7, Table 3.4 and Table 3.5). The expression of two cell-surface 

markers of epithelial cells, H2-AIH2-E and UEA-1 was then detected by flow 

cytometric analysis in E13.5 thymic lobes. In the example shown, 18% of E13.5 

MTS20 cells expressed MHC Class II, indicating functional maturation of some cells 

within the population (Figure 3 .6D). A similar proportion of MTS20 cells also showed 

MHC Class II staining (16%)(Figure 3.6E). Cytospin analysis showed reasonable 

concordance with these data with an average of 16% (S.D. ± 0.2) of MTS20 cells, and 

6% (S.D. ± 2) of E13.5 MTS20 cells showing detectable MITIC Class II staining (Figure 

3.9, Table 3.8 and Table 3.9). Variability amongst samples and/or increased detection 

sensitivity in flow cytometric analysis could contribute to observed differences. 

Furthermore, the cell sorting protocols as shown in Figure 3.5 necessitate a conservative 

gating strategy to ensure that high purities are obtained for selected populations whereas 

flow cytometric analysis gating was based on isotype control staining thus cytospin data 

reflects the phenotype of input populations used in later experiments. 

In the example shown in Figure 3.6G, 5% of the MTS20 cells costained with UEA- 1, 

whereas few or no MTS20 cells appeared to express UEA-1 (Figure 3.61I). 

Furthermore, at 13.5 MTS20 cells were invariably K14 although occasional MTS20 

K14 cells were present in cytospins (Figure 3.9, Table 3.8 and Table 3.9). The presence 
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Figure 3.4 Distribution of endothelial cells within fetal thymic lobes 

Representative immunofluorescence showing the presence of CD3 I endothelial cells 
within the PanK epithelial core of E13.5 (Panels A-E) and E15.5 (Panels F-J) fetal 
thymic lobes. Cells of the developing vascular system are scattered throughout the 
PanK epithelial core at E13.5 and E15.5 and have begun to form tubular networks. 
Scale bars, 100tm. 
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of UEA-1 cells in the MTS20 compartment is interesting as this perhaps reflects a 

population of cells destined to maintain UEA- 1 expression and give rise to mature 

UEA- 1 + cells in the medulla, as demonstrated in a recent publication investigating the 

lineage of adult UEA1 mTEC (Hamazaki et al., 2007). The absence of these cells in 

the MTS20 population may therefore reflect restricted potential. 

A similar data set showing analysis of dissociated and stained E15.5 lobes is presented 

in Figure 3.8 and Table 3.3. At E15.5 24% cells do not stain with markers of non-

epithelial lineages. 25% (S.D. ± 3.4) of these Lin cells are MTS20, whereas the 

remaining 74% (S.D.. ± 3.4) are MTS20. The representative flow cytometric analysis 

shown in Figure 3.81) indicates that 26% of the E15.5 MTS20, and 44% of the MTS20 

population expressed MHC Class II, while few cells showed UEA- 1 staining (Figure 

3.8G). Cytospin analysis however indicated MHC Class II expression on 63% (S.D. 

±4.5) of the MTS20 and 78% (S.D± 1.9) of the MTS20 population (Figure 3.9 and 

Table 3.10) This discrepancy is likely to be attributable to the intracellular detection of 

MHC Class II with cytospin analysis. No MTS20 cells were found to co-express K14 

by cytospin and only a very small number of MTS20 K14 cells were detected (Figure 

3.9, Table 3.10 and Table 3.11). 

The expression analysis of cytokeratins revealed further differences among the flow 

cytometrically purified populations. The most common cell phenotype in all 

populations tested was K8K5, a phenotype consistent with cortical identity or early 

simple epithelium. K8 K5 cells, probably representing a developing mTEC population, 

were present only at E15.5 but not at E13.5, with fewer than 5% of epithelial cells 

staining with this combination in both the E15.5 MTS20 and MTS20 fractions (Figure 

3. 10, Table 3.12, Table 3.13, Table 3.14 and Table 3.15). Of particular interest were the 

differing proportions of K8K5 cells, since this phenotype is thought to represent more 

primitive thymic epithelial cells that lack obvious cTEC or mTEC identity. It should 
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Table 3.2 MTS20 expression in Lin cells of E13.5 thymic lobes 

% LIN CD45MTS20 % L1N CD45MTS20 

Experiment 1 30 70 

Experiment 2 19 81 

Experiment 3 35 65 

Experiment 4 37 63 

Mean 30.3 70 

Standard Dev. 8.1 8.1 

Dissociated E13.5 thymic lobes were stained with anti-CD45 and an antibody lineage 
cocktail including TER-119, CD31 and PDGFRa as well as MTS20 for flow cytometric 
analysis. 

Table 3.3 MTS20 expression in Lin cells of E15.5 thymic lobes 

% UN CD45MTS20 % LIN CD45MTS20 

Experiment 1 80 20 

Experiment 2 74 26 

Experiment 3 72 28 

Experiment 4 76 24 

Mean 76 25 

Standard Dcv. 3.4 3.4 

Dissociated E15.5 thymic lobes were stained with anti-CD45 and an antibody lineage 
cocktail including TER- 119, CD3 1 and PDGFRU as well as MTS20 for flow cytometric 
analysis. 
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Figure 3.5 Sort criteria for the purification of MTS20 thymic epithelial cells, fetal 

thymocytes and MTS20 thymic epithelial cells from E13.5 lobes 

Following enzymatic dissociation and antibody staining, cells were identified for flow 
cytometric sorting. A, staining for MTS20 and CD45. B, after gating against CD45 
cells, anti-PDGFRa and anti-TER-1 19 antibodies are used to mark other non-epithelial 
lineage cells (Lin t). C, after gating against CD45 and Lin k  cells, remaining cells are 
further analysed to reveal MTS20+ and MTS20- populations. D, panels show purity 
checks on flow cytometrically purified CD45, MTS20 and MTS20populations. 
Following sorting, population purities are routinely greater than 95%. 

72 



942  .8 

E 
too 

80 

to 

40 

ca 
20 

-x 

Chapter Three: Results : Investigation into the cellular nature of the developing thymus. 

A 

11 	40- 

->0 
012 

L to' 10,  

Lin 

C, 

cli 

•
65 

iot 	102 	00 	io' 

MHCII 

	

F, 
63 	 2.2 

to  

10°  

to,-  

io  

14417.. 
0 

000  ... . 2  

	

100 	10 1 	102 	10 	108 

UEA-1  

to 
It I 

... 	io 	to' 	io 	10 	tO' 

MTS2O 

D 

81.6 18 

10 

100 

80 

60 

40 

5.1 

20 
>0 
(12 

0° 	0 1 10 	103 	10 

:tJE: 

00 

80 

to 

•0 

99 ! 1.4 

20/ 
->0 

(01 

0° 	101 	le 	to' 
UEA11 

IA/1-E 	 IA/ILE 

G 	 . 	 H 

/ 

Figure 3.6 Phenotypic analysis of E13.5 thymic epithelial cells 

Dissociated thymic lobes were stained with a cocktail of antibodies against 
haematopoietic cells, vascular cells and fibroblasts. A, at E13.5 approximately 55% of 
cells do not stain with the lineage cocktail and represent an epithelium-enriched fraction 
of the lobes (See also Figure 3.7 and Table 3.5). B, most Lin cells express MTS20. C-
E, co-staining with MTS20 and I-AII-E reveals MHC Class II is expressed by a 
significant proportion of both MTS20 (C and D) and MTS20 cells (C and E). F-H, co-
staining with MTS20 and UEA- 1 shows that UEA- 1 is expressed by few if any Lin 
cells (F). Expression is mainly restricted to the E13.5- MTS20 fraction (G). Cells 
staining brightest with MTS20, express little or no MIHC Class II although some express 
UIEA- 1 (C and F) 
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Table 3.4 Determination of the proportion of epithelial cells in the E13.5 MTS20 
population by cytospin analysis 

EXPERIMENT MEAN±S .D. 

1 2 3 

Cell (DAPI) count 130 143 110 

PanK+  count 127 137 106 

% epithelium 98 96 96 96±0.8 

Flow cytometrically purified E13.5 LinMS20 cells were cytospun and stained for 
immunofluorescence analysis. 

Table 3.5 Determination of the proportion of epithelial cells in the E13.5 MTS20 -  
population by cytospin analysis 

EXPERIMENT MEAN±S.D. 

1. 2 3 4 5 

Cell (DAPI) count 106 56 76 31 34 

PanK+  count 93 47 69 28 27 

% epithelium 88 84 91 90 79 86±4.3 

Flow cytometrically purified E13.5 LinMS20 cells were cytospun and stained for 
immunofluorescence analysis. 
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Table 3.6 Determination of the proportion of epithelial cells in the E15.5 MTS20 
population by cytospin analysis 

EXPERIMENT MEAN±S .D. 

1 2 3 4 5 

Cell (DAPI) count 108 108 154 166 112 

PanlCcount 96 103 142 156 102 

% epithelium 89 95 92 94 91 92±2.3 

Flow cytometncally purified E15.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 

Table 3.7 Determination of the proportion of epithelial cells in the E15.5 MTS20 -  
population by cytospin analysis 

EXPERIMENT MEAN±S .D. 

1 2 3 4 

Cell (DAPt) count 230 331 161 77 

PanK+  count 181 290 135 65 

% epithelium 79 88 84 84 84±3.2 

Flow cytometrically purified E15.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 
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be noted that throughout these experiments, the reactivity of the anti-K8 antibody clone 

used, was not restricted to the cTEC compartments, as published for K8 expression 

(Klug et al., 1998), and instead appeared to detect to all cytokeratin expressing cells. 

This alternate reactivity profile has been observed by several independent research 

groups (personal communication) and may reflect differing sensitivity of confocal 

versus conventional fluorescence microscopy. Therefore, the profiling described above 

does not accurately distinguish between the K5K8 and K5K8 populations and will 

consistently overestimate the size of the K5K8 compartment. 

A caveat of the flow cytometric analysis of fetal thymic lobes is the absence of data on 

cell losses incurred as a result of the cell processing method. Despite attempts to 

optimise the dissociation method, some cells are notably under-represented in the 

analyses. In particular, cells expressing markers of differentiation such as K14 are easily 

detectable by immunofluorescence analysis of whole fetal thymic lobes, but rarely seen 

in either the flow cytometric analysis or the in the cytospin preparations (data not 

shown, Table 3.9 and Table 3.11). The probable reason for this is that some cell types 

are either difficult to digest or prone to cell damage, and are therefore selectively lost 

during isolation. It is also possible that some markers may be lost during sample 

processing and the cells, despite being present, are not identifiable. 

An interesting feature of the cytospin analyse is the evidence presented that supports 

the presence of a cell type that does not express any of the markers tested. In particular, 

the MTS20 populations, which are sorted on the basis of their non-reactivity to a panel 

of antibodies, contain a small proportion of non-epithelial cells beyond the boundaries 

explicable by impurities resulting from the sort procedure (Table 3.5 and Table 3.7). 

Thus, 14% (S.D± 4.3) and 16% (S.D± 3.2) of MTS20 cells at E13.5 (Table 3.5) and 

E15.5 (Table 3.7) respectively, do not stain with anti-PanK or the lineage cocktail that 

includes antibodies against CD45, TER-119, CD31 and PDGFRcL. On the basis of 
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Figure 3.8 Phenotypic analysis of thymic epithelial cells at E15.5 

Dissociated thymic lobes were stained with a cocktail of antibodies against 
haematopoietic cells, vascular cells and fibroblasts. A, at E15.5 24% of cells do not 
stain with the lineage cocktail and represent an epithelium-enriched fraction of the lobes 
(See also Figure 3.7 and Table 3.7). B, expression of MTS20 is heterogeneous in Lin 
cells and staining intensity is lower than at E13.5 (see Figure 3.6). C-E, co-staining with 
MTS20 and I-AII-E reveals MHC Class II is expressed by both MTS20 (C and D) and 
MTS20 cells (C and E). F-H, UEA-1 is expressed by relatively few cells within the 
E13.5 Lin- fraction (F) and l.JEA-1 cells are mainly restricted to the MTS20 
compartment (G). Similar to E13.5, TECs staining brightest with MTS20 express little 
or no MHC Class II, although some express UEA- 1 (C and F). These profiles are 
representative of three experiments. 
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typical 95% sort purity, still greater than 10% of cells remain unidentifiable. Many cell 

types could comprise some of this remaining compartment. For example, poor flow 

cytometric resolution of the PDGFRcX and PDGFRc( cell populations means that some 

PDGFRaI0v mesenchymal cells are likely to remain in the negative fraction (Figure 

3.1). Furthermore, the lineage cocktail would not exclude mesenchymal cells from non-

neural crest sources if they do not express PDGFRa. In addition, cell types that 

comprise the thymic lymphatic system are not all excluded on the basis of either 

PDGFRct or CD3 1 staining and will contribute to the non-epithelial fraction particularly 

at later stages (Odaka et al., 2006). 

3.3 Improvement of the RFTOC protocol. 

Since the analysis of fetal TEC populations requires the ability to utilise small numbers 

of cells, I initially elected to optimise the reproducibility of the RFTOC technique and 

to increase its utility for analysis of small but defined cell numbers. This was achieved 

as follows: in initial experiments the hanging drop method described in Bennett et a!, 

2002, was employed to generate RFTOCs as shown in Figure 3.12. Briefly, cells were 

mixed and suspended in a small volume of medium before being deposited onto the lid 

of a tissue culture plate. This was then inverted and incubated for 24-48 hours in 

humidified conditions to allow reaggregation to occur, prior to subsequent submersion 

and culture. Although small structures could be retrieved using this method, many 

problems were apparent. The size of reaggregates that could be made was severely 

limited as the use of increased cell number resulted in cell death and cell loss probably 

due to exhaustion of the culture medium constituting the drop. Significantly, many cells 

remained peripheral to the solid structure of the reaggregate and as these often 

comprised a great proportion of the total input cells, the eventual size and composition 

of the reaggregates was difficult to control. 
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Figure 3.9 Cytospins of purified populations for K14 and MHC Class H 

Lineage negative MTS20 and MTS20 populations were sorted and cytospun onto glass 
slides before fixing and staining, with anti-PanK, anti-K14 and anti-MHC Class II 
mAbs. Scale bar, 100im. These cytospins are representative of three experiments. 
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Table 3.8 Phenotypic analysis of purified E13.5 MTS20 cells 

CELLS EXPERIMENT MEAN±S.D. 

1 2 3 

PanK 127 106 137 

IvIIHC Class II 20 - 22 

K14-'- 0 - 0 

%PanKMHC Class IF 15.8 - 16.1 15.9±0.2 

%K14 0 - 0 

Flow cytometrically purified E13.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 

Table 3.9 Phenotypic analysis of purified E13.5 MTS20 cells 

CELLS EXPERIMENT MEAN±S.D. 

1 2 3 

PanKTh  93 43 69 

MHC Class 11Th 8 2 3 

K14Th  0 1 0 

% PanKMHC Class 11Th 8.6 4.3 4.4 5.7±2.0 

% K14Th  0 2.3 0 0.8±1.1 

Flow cytometrically purified E13.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 
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Table 3.10 Phenotypic analysis of purified E15.5 MTS20 cells 

CELLS EXPERIMENT 
MEAN±SD 

1 2 3 

PanK 96 103 142 

MHC Class 11' 55 65 97 

K14 0 0 0 

% PanKMHC Class H 57.3 63 68 63±4.5 

%Kl4 0 0 0 0 

Flow cytometrically purified E15.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 

Table 3.11 Phenotypic analysis of purified E15.5 MTS20 cells 

CELLS EXPERIMENT MEAN±S.D. 

1 2 3 

PanK 181 290 135 

MHC Class IF 145 219 106 

K14 0 1 0 

% PanKMHC Class IF 80.1 76 79 78.1±1.9 

% K14 0 0.4 0 0. 1±0.2 

Flow cytometrically purified E15.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis 
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Figure 3.10 Cytospins of sorted populations to reveal K5 and K8 expression 

Lineage negative MTS20 and MTS20 TEC populations were sorted and cytospun onto 
glass slides before fixing and staining, with anti-K5 and anti-K8 mAbs. Scale bar, 
1OOm. These profiles are representative of three experiments. 
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Table 3.12 Phenotypic analysis of purified E13.5 MTS20 cells II 

CELLS EXPERIMENT MEAN±S.D. 

Total cell number (DAPF) 111 102 74 

K8-'- 109 100 71 

K5 42 30 28 

K8K5 42 30 28 

% K8-'-K5 -  60.4 68.6 58 62±4.5 

%K8K5 Th  0 0 0 0 

%K8K5 37.8 29.4 38 35±4 

Flow cytometrically purified E13.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 

Table 3.13 Phenotypic analysis of purified E13.5 MTS20 cells II 

CELLS EXPERIMENT MEAN±S.D. 

Total cell number (DAPF) 92 49 58 

K8Th  82 38 44 

K5 Th  3 10 8 

K8K5 3 10 8 

%K8K5 89.1 78 76 81±6 

%K8K5 0 0 0 0 

% K8K5 3.3 20 14 12±7 

Flow cytometrically purified E13.5 LfnMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 
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Table 3.14 Phenotypic analysis of purified E15.5 MTS20 cells II 

CELLS EXPERIMENT MEAN±S.D. 

1 2 3 

Total cell number (DAPF) 112 136 116 

K8Th  60 118 98 

K5 34 54 44 

K8K5 29 53 41 

% K8-'-K5 -  27.7 48 49 42±9.8 

% K8-K5 -'- 4.5 0.7 2.6 3.3±1.5 

%K8K5 25.9 39 35 33±5.5 

Flow cytometrically purified E15.5 LinMTS20 cells were cytospun and stained for 
immunofluorescence analysis. 

Table 3.15 Phenotypic analysis of purified E15.5 MTS20 -  cells II 

Cells Experiment Mean±S.D. 

1 2 3 

Total cell number (DAPI) 90 94 212 

K8 65 70 165 

KS Th  10 16 33 

K8ThK5 Th  6 16 18 

% K8 -'-K5 -  65.6 57 69.3 64. 1±5.0 

%K8K5 Th  4.4 0 7.1 3.8±2.9 

% K875Th  6.7 17 8.49 10.7±4.5 

Flow cytometrically purified E1 5.5 LinMST20 cells were cytospun and stained for 
immunofluorescence analysis. 
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In order to overcome the difficulty of controlling the number and type of cells present in 

each reaggregate, a cell pellet method was therefore investigated. Cells that were to 

comprise each reaggregate were mixed to form a cell suspension and added to a well of 

a 96 well V-bottomed plate. The plate was then centrifuged to pellet the cells at the 

bottom of each well. After a 24-48 hour incubation period it was clear that although the 

cells remained as a pellet at the bottom of the well, they did not adhere into a solid 

structure using this method, and the pellets obtained were easily disturbed and 

dispersed. It appeared that under these conditions the cells were unable to form or be 

maintained as a reaggregates. 

A possible explanation for these observations was that the location of the cells at the 

gas-liquid interface is a critical factor in, reaggregate formation. Therefore, a method 

permitting the deposition of pelleted cells on a filter at the gas-liquid interface was 

devised (Figure 3.13). Thus, a suspension containing the cells to make the reaggregate 

was drawn into a 200tl pipette tip and the aperture at the apex of the tip blocked using a 

small piece of folded Parafilm. The blocked pipette tip containing the cell solution was 

then placed into a 1 5m1 centrifuge tube and centrifuged for 3 minutes at 300xg so that a 

cell pellet formed at the covered end of the tip. The tip was then removed from the tube 

and the cell pellet gently pipetted onto a filter paper raft floating on medium in a 6-well 

plate. This was then cultured overnight to allow reaggregation. Using this method, 

robust reaggregates formed within 18 hours. These were then transferred to high oxygen 

submersion cultures (HOS) (Dou et al., 1994) for further incubation. 

The pellet-based technique has several advantages over previously published RFTOC 

protocols. Firstly, the cellularity of RFTOCs produced in this manner can be well 

controlled, as few cells are lost in the formation of a pellet or remain outside the 

RFTOC following reaggregation. This allows a consistent and predictable RFTOC size 

to be achieved. In addition, the system is more amenable to manipulation than the 
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Most of the supernatant is drawn off 
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The cell slurry is pipetted as a 
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Following reaggregation, the RFTOC 
is submerged under HOS conditions 
for further culture. 

Figure 3.11 Production of a standard standing-drop RFTOC 

Cells that will make up the RFTOC are mixed and pelleted. As much of the supernatant 
as possible is removed and the pellet subsequently disturbed along with the remaining 
medium, to produce a cell slurry. The cell slurry is pipetted onto a filter paper raft 
floating on the surface of tissue culture medium using a drawn-out glass pipette 
(Anderson et a!, 1993). 
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L Epithelial cells + 1 cell progenitors + I 
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Cell slu 

I 
Drop of cell 
solution 
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II 
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Weliwith__________ 
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Most of the supernatant is removed 
to leave the cells in a small volume 
medium. The cell solution is drawn 
into a pipette pipette. 
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droplets on an inverted lid 

Lid is inverted and with drops 
positioned over a well 
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Following reaggregation, the RFTOC 
is submerged under HOS conditions 
for further culture. 

Figure 3.12 Production of a RFTOC by the hanging drop method 

Cells that will make up the RFTOC are mixed and centrifuged. As much medium as 
possible is removed, and the cell pellet resuspended in a small volume of medium. The 
cell suspension is then pipetted onto the underside of a tissue culture plate lid. The lid is 
inverted and placed above a well containing PBS so that the cells remain in a hanging 
drop above the humidified well (Bennett eta!, 2001). 
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Figure 3.13 Production of a pellet RFTOC 

The required cell populations for the RFTOC are mixed and drawn into a pipette tip. 
The apex of the tip is then sealed with Parafilm before being transferred to a centrifuge 
tube. Following centrifugation, the tip is removed from the tube and the paraflim is 
peeled away. The pellet formed during the centrifugation is then deposited onto a filter 
paper raft floating on the surface of tissue culture medium. 
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slurry method. Of note is the ability to localise cell types to specific areas within the 

reaggregate by adding further cells to the pipette tip after the initial centrifugation step, 

thus creating cell layers. Taken together, the modified RFTOC protocol therefore 

improved the efficiency and cellular yield of cultured RFTOCs to an extent that allowed 

individual RFTOCs to be analysed by flow cytometric analsysis, when previously the 

pooling of several RFTOCs had been required (See Chapter Four). 

3.4 Concluding Remarks 

Chapter three details the types and location of the various cell types that constitute the 

fetal thymus. At E13.5, prior to overt thymus organisation, several non-haematopoietic 

cell types that will eventually complement the epithelial stroma in the adult thymus are 

already present. Although the roles of observed mesenchymal and vascular cell types in 

the patterning of the fetal thymus are poorly understood, roles as inducers of epithelial 

proliferation (Jenkinson et al., 2003; Jenkinson et al., 2007) and possible mediators of 

epithelial patterning (Anderson et al., 2000) have been reported. 

At the stages analysed, the epithelial populations are already heterogeneous and 

beginning to show MHC Class II expression at El3.5 indicating that some of the 

epitheliäl cells are maturing even at this early stage. Although both the MTS20 and 

MTS20 fractions show increasing levels of MHC Class II expression as the thymic 

lobes mature, the MTS20 fraction has a consistently smaller MHC Class II population 

than the respective MTS20 population, suggestive of a less mature phenotype. There 

are several other interesting differences between the MTS20 and MTS20 populations 

such as the presence of UEA1 population restricted to the MTS20 compartment, and 

the observed K14 cells in the MTS20 fraction. One possible explanation is that these 

populations represent the divergence of two medullary epithelial cell lineages and 

therefore could indicate that MTS20 and MTS20 cells do not have equivalent 

differentiation potentials. In summary, the data presented in Chapter Three outlines the 
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phenotype of cells in the fetal thymus and the composition of populations that will be 

used for downstream experiments in Chapters Four and Five. 

Chapter three provides an overview of the development of an improved RFTOC 

method, 'the pellet RFTOC', and its uses. Principally adapted from the hanging drop 

RFTOC method, the use of a pellet to produce the RFTOC structure has several features 

that make it particularly useful as a means to study T cell development as well as TEC 

differentiation. The minimisation of cell loss during pellet RFTOC generation enables 

more accurate input cell counts and improved size consistency between RFTOCs. The 

formation of a pellet enables cells prior to reaggregation to be tightly packed, which 

may confer a reaggregation or incorporation advantage over those in RFTOCs formed 

by a cell slurry method. This may be particularly true when many non-adherent cells 

such as thymocytes are present as these incorporate poorly and many remain external to 

the reaggregated structure in standard reaggregation methods. In addition, the greater 

control afforded by the use of the pellet method could be used to further manipulate the 

RFTOC structure as the use of repeated cell additions with subsequent centrifugation 

steps could be used to spatially separate cell types in to cell layers. Taken together, 

these advantages recommend the pellet method for use in other systems, which 

currently rely upon the use of the standing drop method. 

Taken together, data presented in Chapter Three provides the starting point for detailed 

analysis of differentiative and functional potential of the MTS20 and MTS20 

populations of fetal mouse thymus, which is described in Chapters Four and Five. 
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Chapter 4: Results: Haematopoietic development within TEPOC 

4.1 Introduction 

Previous data have shown that E12.5 or E155 MTS20 TEC were able to generate a 

properly organised functional thymus-like structure upon ectopic transplantation in vivo 

(Bennett et al., 2002; Gill et al., 2002). Surprisingly neither E12.5 nor E15.5 MTS20 

TEC were able to persist in similar grafts and failed to support T cell differentiation in 

vivo (Bennett et al., 2002; Gill et al., 2002). The normal thymic microenvironment is 

characterised by the presence of several haematopoietic populations including 

thymocytes, B cells, NK cells and NKT cells, macrophages and DCs as seen in Figure 

4.1 panels F, G, H and I, respectively. Recent publications (Bleul et al., 2006; Rossi et 

al., 2006) have confirmed the hypothesis that a common TEPC gives rise to all TEC 

subpopulations (Bennett et al., 2002; Blackburn et al., 1996; Gill et al., 2002). This 

raises the possibility of using TEPC to generate a thymus-equivalent that is able to 

support T cell differentiation in vitro, providing a potentially scaleable system based on 

a single cell type. 

In Chapter Four I optimise conditions permissive for T cell differentiation from adult 

and fetal HPCs in TEPOC and assess the capacity of TEPOC to support the 

development of normal intrathymic haematopoietic populations. In addition I 

investigate the ability of MTS20 cells to support T cell development in vitro using the 

pellet RFTOC protocol described in Chapter Three. 

4.2 In vitro T cell differentiation in the MTS20cell-based 

RFTOC system 

The optimised RFTOC protocol summarised in Chapter Three was utilised to test the 

potential of MTS20 cells harvested from El 3.5 thymi to support T cell development in 
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Figure 4.1 Haematopoietic profile of the adult thymus 

Cells were mechanically released from a thymus dissected from an 8 week-old mouse. 
Following appropriate antibody staining, cells were analysed by flow cytometry. Panels 
A to C, typical antibody staining patterns of developing thymocytes with a large DP 
population and emerging CD4 and CD8 TCRI3CD3s SP thymocytes. Panels D and E, 
greater than 95% of cells stain with an antibody lineage cocktail that includes CD3E, 
CD8a and CD4, and those that remain can be subdivided into four DN populations 
based on CD44 and CD25 staining. Panels F to J, show the expected minor populations 
of CD19 + B cells, NKl.lCD3E NKT cells, cells which stain with Gr-1 and Mac-1 
with varying intensity, indicative of non-lymphoid identity as well as CD 11 cI-A/1-E 
dendritic cells. 
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vitro. Reaggregates established as previously described were routinely analysed after 10 

days in culture for the presence of CD4, CD8 and CD3E populations by flow 

cytometry. 

4.2.1 Adult thymocyte development can be supported by TEPC-based 

RFTOC 

In these preliminary experiments, TN thymocytes harvested from 6 to 10 week old mice 

were used as a source of HPCs. Initially, 50,000 purified MTS20 cells, 300,000 TN 

adult thymocytes and 200,000 MEFs were used to form TEPOCs. As shown in Figure 

4.2 and Table 4.1, following the 10 day (dlO) culture, routinely above 85% of dells 

harvested from the reaggregates showed light scatter profiles characteristic of 

lymphocytes (Figure 4.2 and Table 4.1). The presence of DP and CD4 SP and CD8 

SP indicated maturation of the DN cells had taken place. Some DN cells remained 

following culture although the exact nature of these remained unconfirmed. The DP and 

both SP populations expressed low and high levels of CD3E, respectively, consistent 

with phenotypes exhibited during intrathymic T cell development. In keeping with 

previous reports, this T cell differentiation depended on TEC, no DP or SP cells were 

present in parallel cultures containing 250,000 MEFs and 300,000 TN adult thymocytes. 

The altered cell input number ensured that the size and therefore set-up of the cultures 

were approximately the same. Following 10 days of culture, it was often the case that 

the MEF-only cultures had dissipated or decreased in size. Flow cytometric analysis 

revealed that most cells within the culture could not exclude 7-AAD and therefore were 

deemed to be non-viable (Figure 4.2). The small fraction of cells, which appeared viable 

were invariably CD4 CD8 and it was clear that T cell development could not be 

supported by MEFs alone (Figure 4.2 and Table 4.1). In contrast, the reproducibility of 

the RFTOC-supported T cell differentiation is demonstrated by Figure 4.3 and Table 

4.1. All RFTOCs set up produced viable lymphocytes that contributed up to 96% of 

total viable cells on the basis of 7AAD exclusion, scatter characteristics and antibody 
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staining. DP and SP populations were present at varying frequencies, reflecting some 

variation in maturity level achieved within the RFTOCs during the 10 day culture 

period. This is best illustrated by the differing percentage of the most mature CD3E 1  

cells among the replicate RFTOCs in Figure 4.3, which varies between 16 and 30%. 

The robust and reproducible T cell maturation observed in this system is comparable 

with the widely used fetal thymic organ culture (FTOC), which uses the intact ex-vivo 

fetal thymic lobes to culture endogenous or exogenous haematopoietic precursors. 

4.2.2 Maturation of fetal T cell precursors 

4.2.2.1 Differentiation of E13.5 TN1 and 2 thymocytes into T cells. 

To test whether TEPOCs were able to support T cell differentiation from fetal HPCs, 

RFTOCs were established using fetal HPCs. E13.5 thymic lobes can be isolated and 

maintained in culture and demonstrate robust development of T cells from their resident 

immature TN thymocytes. Thus, E13.5 thymocytes were purified by FACS from 

embryonic lobes and added to RFTOCs as a. direct replacement for the adult 

thymocytes. Specifically, 300,000 E13.5 thymocytes were mixed with 50,000 TEPC 

and 200,000 MEFs and allowed to reaggregate for 18 hours before being transferred to 

high oxygen submersion for a further 9 days. Unexpectedly, despite the successful 

reaggregation of these cultures and their normal appearance at early media changes, 

they did not survive for 10 days (Figure 4.4A). As represented in Table 4.2, repeated 

experiments indicated that this was a reproducible phenomenon. 

In order to address this issue, an attempt was made to better recapitulate the E13.5 

thymic environment that is known to be permissive for E13.5 thymocyte maturation. 

The E13.5 thymus has proportionally far fewer thymocytes than the adult thymus, 
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Figure 4.2 TEPCs are responsible for T cell differentiation in TEPC-based 
RFTOC 

TEPOCs were established and allowed to reaggregate before being transferred to HOS. 
Following a total of 10 days in culture, TEPOCs were mechanically dissociated and 
stained with appropriate antibodies and 7-AAD for flow cytometric analysis. A, 50,000 
TEPCs were reaggregated with 300,000 adult TN thymocytes and 200,000 MEFs. 
Approximately 90% of viable cells are lymphocytic based on flow cytometric light 
scatter profiles. Both DP and SP populations are present. B, 250,000 MEFs were 
reaggregated with 300,000 TN adult thymocytes. Greater than 95% of cells showed 
uptake of 7-AAD indicating that most if not all cells in the culture had died. The 
remaining viable cells did not express either CD4 or CD8a. 
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Table 4.1 Reproducibility of T cell maturation in TEPC-based RFTOC 

RFTOC MTS20 ADULT 
TN 

MEF % 
LYMPHOCYTE 

DP 
PRESENT 

RFTOC A 50,000 220,000 150,000 94 Yes 

RFTOC B 50,000 240,000 100,000 96 Yes 

RFTOC C 50,000 240,000 100,000 94 Yes 

RFTOC D 50,000 350,000 100,000 91 Yes 

RFTOC E 50,000 300,000 200,000 82 Yes 

RFTOC F 50,000 300,000 200,000 62 Yes 

RFTOC G 50,000 300,000 200,000 76 Yes 

RFTOC H 50,00,0 300,000 200,000 72 Yes 

RFTOC I 50,000 300,000 200,000 84 Yes 

RFTOC J 50,000 300,000 200,000 79 Yes 

RFTOC K 0 300,000 200,000 2 No 

RFTOC L 0 300,000 200,000 - - 

RFTOC M 0 300,000 250,000 - - 

Cell numbers as indicated were mixed and reaggregated for 18 hours before being 
transferred to HOS for a further 8 or 9 days. T cell production is represented here as the 
percentage of cells within the RFTOC that are within a lymphocyte gate, as determined 
by flow cytometric analysis. RFTOC A to RFTOC J all contained TEPCs and show 
high lymphocyte proportions and contain DP cells, which have matured from the TN 
precursors. RFTOC K, L and M did not contain TEPCs and following culture, these had 
either few or no cells within the lymphocyte gate (RFTOC K) or died during culture so 
that no analysis was possible (RFTOC L and M). 
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Figure 4.3 Reproducibility of the T cell maturation supported by TEPC-based 

RFTOC 

Flow cytometric analysis of 3 representative RFTOCs established and cultured under 
identical conditions. In each case, 300,000 TN adult thymocytes were mixed with 
50,000 TEPC and 200,000 MEFs and allowed to reaggregate for 18 hours before being 
transferred to high oxygen submersion for a further 9 days. 
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giving the E13.5 thymus a high TEC:thymocyte ratio. It was therefore possible that 

E1 3.5 thymocytes might require a proportionally higher contribution of epithelial cells 

thus it would be necessary to provide far more epithelial cells than were present in the 

failing RFTOCs. Therefore, RFTOCs were established at various HPC:TEC ratios. 

These experiments demonstrated that RFTOC with HPC:TEC rations close to 1:1 were 

able to support the differentiation of E13.5 DN cells. These conditions were termed 

RFTOChigh  as compared to the RFTOC" w  conditions established to support adult TN 

cells. 

In the Jy0hih  the number of MEFs in the cultures was reduced proportionally to the 

increased TEC contribution, to compensate for the increase in size afforded by the 

increased epithelial cell number. This ensured that the cell pellets generated were 

comparable and thus avoided complications associated with limitations of the tip 

diameter and dislodging of the pellet during the set up procedure. The reaggregation 

procedure resulted in a RFTOC of similar size as RFTOCI0\V  that were set up in parallel. 

Flow cytometric analysis following enzymatic dissociation revealed that the JJ0high 

could support the development of DN E1 3.5 thymocytes DP and SP thymocytes, as 

shown in Figure 4.4B. Virtually all that were set up survived the culture 

period (Table 4.2). It should be noted that despite the apparent drop in resultant 

lymphocyte proportions in the RFTOC containing fetal thymocytes compared to those 

seen in Table 4.1 with adult TN cells, the proportions are not comparable as fewer 

haematopoietic cells were included in the initial cell pellet. In addition, data presented 

in Table 4.2 and Figure 4.4 were obtained using an enzymatic harvesting method 

introduced for the dissociation of the RFTOCs, which released a greater proportion of 

the non-lymphocytic cell populations than the mechanical method used previously. 
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4.2.3 Extrathymic fetal T cell precursors mature in RFTOC but require a 

high contribution of TEPC 

To determine whether the TEPOCs were sufficient to support the commitment and 

differentiation of extrathymic HPC to the T cell lineage, 50,000 TEPC were mixed with 

300,000 RBC-depleted E13.5 fetal liver cells (FL) and 200,000 MEFs and cultured as 

described above. These RFTOC 1°" were unable to support T cell differentiation from FL 

(Figure 4.5A and Table 4.3). These often died and dispersed during 

culture, although some remained as a small remnant that could be analysed. Invariably, 

the cells contained both in the RFTOC remnant and the culture medium were no longer 

viable, as determined by 7AAD exclusion during flow cytometric analysis. Therefore, 

the conditions described in 4.2.2.1 as permissive for fetal DN development were 

utilised. These cultures were viable and gave rise to robust DP 

populations within 10 days of culture; SP populations were also beginning to develop 

(Figure 4.513 and Table 4.3). The small number of SPs produced in these cultures likely 

reflects a differentiation delay, which was expected due to the immature developmental 

stage of these cells compared to those that are DN1 or DN2 (Figure 4.3, Figure 4.4 and 

Figure 4.5). As a result, extra culture time would be required to produce mature cell 

populations of a size comparable with those produced from intrathymic progenitors. As 

before, the inclusion of TEPCs into the cultures was necessary to enable reaggregate 

survival and produce DP lymphocytes as determined by 7AAD exclusion, scatter 

characteristics and antibody staining of cultures containing only MEFs and FL in the 

absence of MTS20 TEC. (Table 4.3). 

Taken together, these data indicate that MTS20 cells can form the basis of an in vitro 

system for supporting T cell differentiation. They further suggest that innate differences 

between the fetal and adult HPC populations that were used in these experiments exist 

with respect to the requirements for epithelial support during the differentiation process. 
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Therefore, it was important to address the developmental stage of the HPCs that were 

added to RFTOCs. 

4.2.4 Adult TN1 &2 thymocytes do not require high-level TEPC 

contribution to differentiate in RFTOC 

Adult DN thymocytes can be subdivided into DN 1, DN2, DN3 and DN4 populations 

based on their expression of CD44 and CD25 (Figure 4.6A). E13.5 thymocytes contain 

DN1 and DN2 populations only (Figure 4.6B). It was therefore possible that the failure 

of RFTOC1O\V  to support T cell differentiation from E13.5 thymocytes was due to the 

insufficiency of the RFTOCI0V  conditions to support T cell differentiation from HPCs 

prior to the DN2 to DN3 transition. To establish whether the ability of RFTOCI0\V  to 

support T cell differentiation was dependent upon the presence of cells beyond DN2, 

RFTOChigh  were set up containing 200,000 adult DN1 and 2 thymocytes, 200,000 TEPC 

and 100,000 MEFs. As expected, following culture, these precursors matured to 

produce DP and SP populations (Figure 4.7B). However, RFTOCI0V  containing 300,000 

adult DN1 and 2 thymocytes, 50,000 TEPC and 200,000 MEFs also produced DP and 

SP cells, indicating that the absence of DN3 and DN4 in the El 3.5 thmocytes could not 

explain the differences observed between adult and fetal HPCs (Figure 4.7A). The 

principle difference between these conditions was that with increased TEPC input, the 

RFTOCs became more robust with a greater proportion of RFTOCs surviving culture. 

In addition, in those reaggregates that survived culture, far more lymphocytes were seen 

in RFTOChh  than RFTOC"w  and showed a greater level of maturity (Figure 4.7B and 

Table 4.4). 
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Figure 4.4 Maturation of fetal thymocytes is supported by RFTOC but requires a 

high proportion of TEPCs 

Following reaggregation and a further 9 days HOS culture, TEPOCs were 
enzymatically dissociated and stained with suitable antibodies for flow cytometric 
analysis. A, 50,000 TEPCs were reaggregated with 150,000 E13.5 thymocytes and 
200,000 MEFs. Following culture, most cells in this TEPOC are inviable (7-AAD+) and 
any viable cells were invariably CD4-CD8a-. B, 190,000 TEPCs were reaggregated 
with 200,000 E13.5 thymocytes and 120,000 MEFs. Following culture, most cells had 
light scatter lymphocytes and both DP and SP populations of thymocytes had 
developed. 
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Table 4.2 RFTOCs that have a low ratio of TEPC:HPC are unable to support 

E13.5 fetal thymocyte development 

RFTOC TEPC E13.5 
THYMOCYTES 

MEFS PERCENTAGE 
LYMPHOCYTES 

DP? 

RFTOC A 50,000 150,000 200,000 1 No 

RFTOC B 100,000 275,000 150 1 000 1 No 

RFTOC C 75,000 250,000 100,000 2 No 

RFTOC D 170,000 100,000 100,000 55 Yes 

RFTOC E 170,000 100,000 100,000 50 Yes 

RFTOC F 170,000 100,000 100,000 30 Yes 

RFTOC G 190,000 200,000 120,000 74 Yes 

RFTOC H 200,000 200,000 100,000 65 Yes 

RFTOC I 200,000 200,000 100,000 42 Yes 

RFTOC J 210,000 200,000 100,000 82 Yes 

RFTOC K 220,000 200,000 100,000 78 Yes 

RFTOC L 230,000 200,000 100,000 80 Yes 

RFTOC M 230,000 200,000 100,000 85 Yes 

Cell numbers as indicated were mixed and reaggregated for 18 hours before being 
transferred to HOS for a further 8 or 9 days. T cell productivity is represented here as 
the percentage of cells within the RFTOC that are within a lymphocyte gate, as 
determined by flow cytometric analysis. The presence of DP thymocytes demonstrates 
T cell differentiation. RFTOCs A to C contain relatively low TEPC: HPC ratios and 
most cells are non-viable following culture. RFTOC D to M shows that RFOCs with 
higher TEPC:HPC ratios (approximately 1:1) result in robust T cell development. 
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Figure 4.5 Maturation of E13.5 fetal liver cells is supported by RFTOC but 

	

requires a high proportion of TEPCs 	 - 

Flow cytometric analysis of representative examples of TEPOC illustrating the 
viability, size and staining pattern with anti-CD4 and anti-CD8a mAbs. A, 50,000 
TEPCs were added to 300,000 E13.5 (red blood cell-depleted) FL cells and 150,000 
MEFs. The cells comprising this RFTOC had died during culture so that very few 
viable cells were present during analysis. B, 200,000 TEPCs were mixed with 200,000 
E13.5 (RBC-depleted) FL cells and 100,000 MEFs. Typical of a RFTOC with high 
TEPC:HPC ratio, this TEPOC contains a large lymphocyte population, which contains 
both DP and emerging SP populations. 
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Table 4.3 RFTOC that have a low TEPC:HIPC contribution are unable to support 
T cell development from E13.5 fetal liver cells 

RFTOC TEPC FL (RBC- 

DEPLETED) 

MEF PERCENTAGE 

LYMPHOCYTES 

DP? 

RFTOC A 50,000 300,000 150,000 3 No 

RFTOC B 50,000 300,000 150 5 000 1 No 

RFTOC C 50,000 300,000 150,000 2 No 

RFTOC D 200 5 000 200,000 100,000 76 Yes 

RFTOC E 200,000 200,000 100,000 86 Yes 

RFTOC F 200,000 200,000 100,000 88 Yes 

RFTOC G 200,000 200,000 100,000 82 Yes 

RFTOC H 0 300,000 200,000 2 No 

RFTOC I 0 300,000 200,000 1 No 

RFTOC J 0 300,000 200,000 6 No 

Cell numbers as indicated were mixed and reaggregated for 18 hours before being 
transferred to HOS for a further 8, 9 or 10 days. T cell productivity is represented by the 
percentage of cells within a lymphocyte gate as determined by flow cytometric scatter 
analysis. The presence of DP thymocytes demonstrates T cell differentiation. RFTOCs 
A to C, RFTOCs with a low TEPC:HPC ratio do not support T cell differentiation from 
E13.5 FL cells and most cells die during the culture period.RFTOCs D to G, RFTOCs 
with high TEPC:HPC ratio support robust lymphocyte development. RFTOCs H to J 
demonstrate that without the addition of TEPCs, the RFTOCs die during culture and do 
not support T cell differentiation. 
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Adult 	 E13.5 	 E15.5 

F!! 
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CD25 

Figure 4.6 Representative flow cytometric analysis of DN thymocytes in adult and 

embryonic thymi 

Thymic cells in single cells suspensions were stained with anti-CD25 and anti-CD44 
mAbs to demarcate DN populations. Adult thymocytes gated against lineage positive 
cells can be seen to have DN1, DN2, DN3 and DN4 subsets. Total E13.5 thymocytes 
can be seen to be made up of DN1 and DN2 only and lack major DN3 and DN4 
compartments. E15.5 thymocytes gated against a lineage cocktail can be seen to contain 
DN1 to DN4 populations. 
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4.2.4.1 E15.5 thymocytes do not require high-level TEPC contribution to 

mature in RFTOC 

The above data indicated different requirements for TEC represented an innate 

difference between the adult and fetal HPCs. To determine when this change occurred, 

the outcome of culturing E15.5 thymocytes, which contain DN1, DN2, DN3 and DN4 

populations as shown in Figure 4.6C, were tested for differentiation potential in the 

RFTOC. E15.5 thymocytes were co-cultured in RFTOCs of both high and low TEPC 

contribution. In contrast to E13.5 fetal thymocyte RFTOCs, Figure 4.8 illustrates the 

robust T cell development that was seen in both RFTOCl0\1  and pj0hih  with a very 

high proportion of cells being TCR'CD3E', consistent with a mature phenotype. The 

survival of the E15.5 thymocyte RFTOCs demonstrated that the difference in HPC 

potential occurred between E13.5 and E15.5. This time frame correlates with the 

reported end of first wave thymus seeding and the proposed beginning of another. It is 

thus possible that the conditions of the RFTOC1O\V  are not able to support T cell 

differentiation from the cells that seed the fetal thymus prior to E13.5 as these have 

requirements that are only met by the RFTOC high  Another possibility is that E13.5 

thymocytes are less proficient at supporting TEC survival than the other HPCs tested. 

4.2.4.2 TEPOC support T cell differentiation from adult thymus-derived 

DN1 precursors 

In order to determine whether thymocyte differentiation in the RFTOCh  system 

followed the normal developmental progression, the earliest stages of thymocyte 

differentiation were investigated in MTS20 + cell-based RFTOC seeded with DN1 cells 

from postnatal thymus. Thus, 200,000 TEPC were reaggregated with 200,000 DN1 cells 

conditions, isolated from the thymus of five week-old mice and 100,000 MEFs, under 

the optimised conditions established in Chapter Four. Following three further days 
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Figure 4.7 Maturation of Adult TN1&2 thymocytes is supported by RFTOC and is 

not dependent upon a high TEPC input 

Flow cytometric analysis of representative examples of TEPOC, illustrating the 
viability, size and staining pattern with anti-CD4 and anti-CD8a mAbs. A, 200,000 
TEPCs were mixed with 200,000 thymocytes and 100,000 MEFs. B, 50,000 TEPC5 
were added to 300,000 TN1&2 thymocytes and 200,000 MEFs. Both RFTOCh  and 
RFTOC"w  contain a large lymphocyte population and have developing DP and SP 
populations although the CD4 SP population is greatly reduced with the lower 
TEPC:HPC ratio. 
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Table 4.4 T cell development from TN1&2 thymocytes is supported by the RFTOC 

system and does not require high-level TEPC contribution 

RFTOC TEPC TN 1&2 MEFS VIABLE 
CELLS 

% 
LYMPHOCYTE 

DP 

RFTOC A 50,000 300,000 200,000 22 64 Yes 

RFTOC B 50,000 300,000 200,000 35 75 Yes 

RFTOC C 50,000 300,000 200,000 1 7 No 

RFTOC D 50,000 300,000 200,000 59 44 Yes 

RFTOC E 180,000 200,000 120,000 64 91 Yes 

RFTOC F 190,000 200,000 120,000 0 0 No 

RFTOC G 200,000 200,000 100,000 68 87 Yes 

RFTOC H 200,000 200,000 100,000 60 88 Yes 

RFTOC I 200,000 200,000 100,000 40 74 Yes 

RFTOC J 200,000 200,000 100,000 48 84 Yes 

RFTOC K 220,000 160,000 100,000 54 68 Yes 

RFTOC L 200,000 200,000 100,000 61 81 Yes 

RFTOC 
M 

200,000 200,000 100,000 63 75 Yes 

Cell numbers as indicated were mixed and reaggregated for 18 hours before being 
transferred to HOS for a further 8 or 9 days. Cell viability was determined by scatter 
profiles and the exclusion of 7AAD. T cell productivity is represented here as the 
percentage of cells within the RFTOC that are within a lymphocyte gate as determined 
by flow cytometric analysis. The presence of DP thymocytes demonstrates T cell 
differentiation. RFTOCs A - D contain relatively low numbers of TEPCs and cell 
viability is generally lower ranging from with a smaller proportion of lymphocytes. 
RFTOCs E - M demonstrate that the inclusion of higher numbers of TEPCs results in 
more robust T cell development 
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Figure 4.8 Maturation of E15.5 DN fetal thymocytes is supported by RFTOC and 

is not dependent upon a high TEPC input 

Flow cytometric analysis of representative examples of RFTOC illustrating the 
viability, size and staining pattern with anti-TCRI3 and anti-CD3E mAbs. A, 50,000 
TEPCs were added to 300,000 E15.5 DN thymocytes'and 200,000 MEFs. B, 200,000 
TEPCs were mixed with 200,000 E15.5 DN thymocytes and 100,000 MEFs. Both 
RFTOCligh  and RFTOCI0V  contain a large lymphocyte population and have mature 
CD3 E l 1  TCR1 populations indicating successful and comparable T cell differentiation 
capabilities. 
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under HOS RFTOCs were enzymatically dissociated and stained with antibodies against 

CD45 and markers of differentiating thymocytes. Figure 4.9 shows flow cytometric 

analysis of two representative TEPOCs established under these conditions. At day 4, 

populations of DN1, DN2, DN3 and DN4 cell populations are present suggesting that T 

cell differentiation proceeds normally in TEPOC culture. A small DP population was 

also evident in these cultures, although no SP populations were yet apparent. Notably, 

many cells remained in the DN1 population at this stage. 

4.2.5 Haematopoietic development from adult-derived DN thymocytes 

To investigate whether the normal array of haematopoietic cell types were supported by 

the TEPOCs, 200,000 TEPC were reaggregated with 200,000 Lin TN cells isolated 

from the thymi of postnatal (6-8 weeks old) mice and 100,000 MEFs under the 

optimised conditions established in Chapter Four. 

Large DP populations were seen in all TEPOC at dlO of culture, and in most cases, 
hi constituted the majority of cells (Figure 4.10A and B). A TCRp CD3 ,F hi population was 

always present and both CD4 SP and CD8 SP cells developed during culture (Figure 

4.1OA, B and Q. Typically more CD8CD4 cells than CD4CD8 cells were produced 

under these RFTOC hi,h  conditions, although many CD4CD8 cells were 

identifying these as immature single positives rather than mature CD8 SP cells. As 

shown in Figure 4.10C, large immature SP populations are most commonly seen in 

RFTOC, which have a lower DP frequency and a large DN fraction, consistent with 

these RFTOCs being developmentally less mature than other RFTOC examples made 

under identical conditions (see Figure 4. 1 O and B). In addition, yCD3 cells were 

present in all RFTOCs, typically at a frequency of less than 6% (Figure 4.10). Although 

the proportion of y8 T cells produced from DN cells was much higher in TEPOCs 

(Approximately 5%) (Figure 4.10) than in wild type thymus (Less than 1%) (Figure 

4.1C), the number of yô cells always remained several fold lower than the number of 

u13
+  cells (Figure 4.10). In some cultures, substantially elevated numbers of yô

+  cells 
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were observed (Figure 4. 1OC) and in these cases an unusually large DN population were 

also present. TEPOCs were also analysed for the presence of other haematopoietic 

populations (Figure 4.11). When compared with wild type adult thymus, relatively high 

numbers of NK1.lCD3Ecel1s were observed within TEPOC (Figure 4.1G and Figure 

4.11 A).  As would be expected from an adult precursor population, the expression of 

TCR chains that are fetally restricted in vivo, such as TCR Vy3 were not found in 

RFTOCs seeded with adult-derived DN thymocytes and few or no mature CD19 B 

cells were present (Figure 4.11A). The presence of CD  lc haematopoietic cells, which 

express high levels of MHC Class II, is indicative of the development or maturation of 

dendritic cells (Figure 4.1 1B). These data establish that TEPOC support development of 

all normal intrathymic populations. However, the reason for the observed development 

of the unexpectedly low a13:y8  lineage ratio was affected by the RFTOC conditions. To 

gain a clearer picture of ap:y8 lineage ratio attained in the TEPC-RFTOC system, 

TEPOCs were also seeded with postnatal DN1 and DN2 progenitors, a stage when 

HPCs have not yet completed TCRfE gene rearrangement and are not committed to the 

ctI3  lineage. Thus, RFTOCs containing 200,000 TEPC, 200,000 DN1&2 and 100,000 

MEFs were generated, maintained for a further 9 days under standard conditions then 

analysed for the presence of appropriate haematopoietic cell types by flow cytometric 

analysis. 

Haematoietic differentiation in these cultures was essentially as described above (Figure 

4.10 to Figure 4.11), except that proportionally more DN cells were present after 10 

days in culture (Figure 4.10 to Figure 4.13). The uf3:yô lineage ratios obtained in 

TEPOC seeded with TN thymoc'tes (17.5±2.5)(Figure 4.10) was several fold greater 

than that produced in TEPOCs cultured for 10 days with adult-derived DNI-2 

thymocytes (6.4± 1 .7)(Figure 4.12). This difference may be due to either an increase in 

the number of y8 cells generated from DN1 and 2 cells or may represent reduced 
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Figure 4.9. DN2, DN3 and DN4 thymocytes develop from DN1 cells in TEPOCs 

Purified MTS20 cells, postnatal DN1 thymocytes and MEFs were allowed to 
reaggregate at the gas-liquid interface for 18 hours before transfer to HOS for a further 
72 hours after which they were harvested and processed for flow cytometric analysis. A, 
staining with anti-CD45 and isotype control mAbs against CD44 and CD25. B and C, 
examples of TEPOCs showing the development of DN2, DN3, DN4 and DP 
populations from DN1 thymocytes. Results are representative of at least three 
experiments. 
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Figure 4.10 TEPOC-support CD4 and CD8 aI as well as yb T cell differentiation 

from adult TN thymocytes 

200,000 E13.5 TEPCs, 200,000 Lin adult TN thymocytes and 100,000 MEFs were 
reaggregated for 18 hours, then transferred to HOS and maintained for a further 9 days. 
Following enzymatic dissociation, the cells were stained with appropriate antibodies 
and analysed by flow cytometry. A-C, replicate RFTOCs showing the development of 
DP and SP populations from DN progenitors. A large TCR CD3E population 
illustrates the presence of mature a13  T cells. In addition, a variable number of 
CD3ETCRy8 T cells are also produced. 

C) 

CD8a 

C 

114 



Chapter Four: Results: Haematopoietic development within TEPOC 

A 

LII 

	

100 	101 	102 	10 	10 	 100 	10 1 	102 	1 3 	io 	 100 	101 	102 	103 	io 

	

CD3E 	 1TCRVy3 

B 

	

100 	101 	102 	10 1 	104 	 io° 	101 	102 	10 	io 

	

CD45 	 I-A/17E 

Figure 4.11 TEPOC high  support the development of all normal haematopoietic 
populations of the thymus from adult TN thymocytes 

200,000 E13.5 TEPCs, 200,000 Lin thymocytes and 100,000 MEFs were reaggregated 
for approximately 18 hours, then transferred to HOS and maintained for a further 9 
days. Following enzymatic dissociation cells were analysed by flow cytometry. A, 
NK1.1CD3E NKT cells can be identified along with a small number of NK1.1 CD3E 
cells. Few, if any, CD19 B cells are present. Analysis shows populations following 
electronic gating for lymphocyte populations. B, CD45 dendritic cells expressing 
CD 11 c and high-level MHC Class II are also generated. 
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numbers of a13  lineage cells being generated due to time constraints upon the system. In 

either case, the ap:y8 ratio appears low compared to wildtype adult thymus 

(188:1)(Figure 4.1). 

4.2.6 TEPOCs support the differentiation af and yô T cells from fetal 

thymocytes 

To determine whether similarly appropriate haematopoietic populations, and in 

particular, fetal-thymus specific T cell populations develop in fetal thymocyte seeded 

TEPOCs, reaggregates containing 200,000 TEPC, 200,000 E13.5 thymocytes and 

100,000 MEFs were generated and analysed for the presence of various haematopoietic 

cell types after 9 days in culture. As shown by the three examples in Figure 4.14A, B 

and C, in contrast to RFTOCs seeded with adult-derived thymocytes, the relative 

proportions of the CD4CD8 -  and CD4CD8 populations after 10 days of culture varies 

considerably between individual RFTOCs so that a 'typical' output is difficult to 

describe. However, a large CD4CD8 population is routinely present although the 

relatively small TCRI3CD3E population suggests that these are not mature SPs. A 

large TCRyCD3E T cell population is always present, which contributes to the large 

DN population seen in E13.5 thymocyte seeded RFTOCs(Figure 4.14). Figure 4.15 

demonstrates that other haematopoietic cell types normally found in the thymus develop 

from E13.5 thymocytes, including NK1 .l CD3E NKT cells and NKI.I +CD3F, -Aow  cells, 

which are present in appreciable numbers. All RFTOCs seeded with E13.5 thymocytes 

produced TCRVy3 y8 T cells (Figure 4.15A), consistent with the TCR repertoire that 

would be expected to result from the differentiation of fetal thymocytes in vivo (Ikuta et 

al., 1992). CD  I c+MHCII hi  DCs were also present in the cultures, and the presence of 

CD 11 b population possibly corresponds with the presence of a small number of thymic 

macrophages (Figure 4.15C). 
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Figure 4.12 TEPOC supports CD4 and CD8 ap as well as yb T cell 

differentiation from adult TN! and 2 thymocytes 

200,000 E13.5 TEPCs were mixed with 200,000 Lin TN1 and TN2 thymocytes and 
100,000 MEFs and reaggregated for 18 hours. TEPOCs were then transferred to high 
oxygen culture and maintained for a further 9 days. Following enzymatic dissociation 
cells were analysed by flow cytometry. A-C, replicate RFTOCs showing the 
development of DP and SP populations from TN  and TN2 progenitors. A large TCR 
CD3E population illustrates presence of mature ap T cells. A consistently large 
proportion of TCRy CD3 population is always present. 
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Figure 4.13 TEPOC-supported haematopoietic development from adult-derived 
TN1 and TN2 thymocytes 

200,000 E13.5 TEPCs were mixed with 200,000 Lin CD44 thymocytes and 100,000 
MEFs and then reaggregated for 18 hours. TEPOCs were then transferred to HOS 
conditions and maintained for a further 9 days. Following enzymatic dissociation cells 
were stained with suitable antibodies and analysed by flow cytometry. A, cells within a 
lymphocyte scatter gate include NKTs and NK1 . l±CD3 E 10  cells. Few or no B cells or 
TCRVy3 cells were identified. B, CD  1cMHCII dendritic cells were present in these 
TEPOC. 

too 

80 

60 

40 

20 

Co 
0 

118 



	

lü° 	101 	102 	to' 	io 	01 	100 	I0 	102 	102 	10' 	 io° 	to 	10 	i0 	10' 

	

CD8a 	 TCRB 	 TCRy6 

B 
10' 

10' 

io2  

lot 

lou  

to 

10' 

402  

10 1  

to° 

 

to 	102 	10 	104 	 io° 	10 	102 	10 	io' 

CD8a 	 TCRI3 

Chapter Four: Results: Haematopoietic development within TEPOC 

A 	 - 
lu 

10 

102  

10 1  

100  

0' 

10 

10 1  

CO I ioo C') 

C 
10' 	 -'  

10' 

102 

lot 

100  

7.8 	 0.07 

to' 

102- 

10 1  

log k74 

	

10° 	I& 	102 	10' 	to' 	 100 	lOt 	102 	to' 	io' 

	

CD8a 	 TCRf 

Figure 4.14 TEPOC-support CD4 and CD8 ap as well as yb T cell differentiation 

from E13.5 thymocytes 

200,000 E13.5 TEPCs were mixed with 200,000 E13.5 thymocytes and 100,000 MEFs 
and reaggregated for 18 hours. TEPOCs were then transferred to HOS conditions and 
maintained for a further 9 days. Following enzymatic dissociation cells were stained 
with appropriate antibodies and analysed by flow cytometry. A, B and C, replicate 
TEPOCs showing the development of DP and SP populations from DN E13.5 
thymocytes. A large TCR3 CD3E population illustrates presence of mature a13  T cells. 
A large population of TCRy CD3E T cells is also present in each of the examples. 

119 



Chapter Four: Results: Haematopoietic development within TEPOC 

us 

z 
I 

B 
l0 

10' 
1.7 

Q 

60 

 130 

 
92 	/ 

40- 

20 

' in2  In 1  In 	ir 10, 
L) I_, 

CD45 	 I-NI-E 

C 

02  

Lu 

Figure 4.15 TEPOC-supported haematopoietic from E13.5 thyinocytes 

200,000 E13.5 TEPCs were mixed with 200,000 E13.5 thymocytes and 100,000 MEFs 
and reaggregated for 18 hours. TEPOCs were then transferred to high oxygen culture 
and maintained for a further 9 days. Following enzymatic dissociation cells were 
stained with appropriate antibodies and analysed by flow cytometry. A, Following 
application of a gate for cells of lymphocytic light scatter properties, NK1. 1CD3E+ 
NKT cells and TCRVy3 T cells were present. B, CD  1c MHCIIhI  DCs were found to 
have developed in situ. C, CD1 lb cells indicative of a macrophage population were 
also present. 
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In conclusion, TEPOCs were able to support the differentiation of haematopoietic 

populations normally found in the thymus from E13.5 fetal thymocytes. Interestingly, 

the ctp:y8 ration of cells produced in these cultures was variable (range 3.1 to 9.5) but 

was consistently low when compared to he ratios produced from adult thymocytes in 

wild-type thymus and TEPOC discussed above, consistent with the skew towards y 

cell generation typically observed from fetal HPCs. 

4.2.7 Haematopoietic differentiation in E13.5 MTS20-based RFTOC 

Previous attempts to test the functional potential of the E12.5 and E15.5 MTS20 fetal 

thymic compartment using grafting experiments demonstrated the failure of these grafts 

to persist in vivo. However, since these populations clearly contain differentiated TECs, 

it seemed possible that the failure could be attributed to the experimental assay system 

used. For example, low cell numbers or increased immunogenicity could have resulted 

in graft failure. The modified RFTOC protocol was therefore used to address the 

functional potential of MTS20Lin fetal thymic cells in vitro. 

Initially, 50,000 MTS20Lin cells, 300,000 adult DN cells and 200,000 MEFs were 

used to generate RFTOC"w  under standard conditions then transferred to HOS for a 

further 9 days. These RFTOCs generally disintegrated during culture, leaving only cell 

debris remaining following culture. On occasions where remnants of the cultures could 

be identified and harvested, the cells in these were invariably non-viable based on 

uptake of 7AAD (Figure 4.16A). These data indicate a clear functional difference 

between the MTS20 and MTS20 epithelial fractions, consistent with data described in 

Bennett et al and Gill, et al. 

Therefore, the level of epithelium was raised to a one to one ratio with the HPC such 

that 200,000 MTS20 cells, 200,000 adult TN cells and 100,000 MEFs were 

reaggregated and cultured as RFTOCh.  These RFTOCs remained viable and were 

capable of supporting differentiation of both CD4 and CD8 c3 T cells as well as a 
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small proportion of yô T cells (Figure 4.1613 and Figure 4.17). These data indicate that 

MTS20 fetal TEC are functionally competent to support T cell differentiation although 

a greater number of TEC are required when compared to the MTS20 population. In 

addition to differences in functional potency, there is some evidence of qualitative 

differences, as MTS20 cell-based RFTOC hi,h  also show a higher ctp:.y8 ratio with fewer 

y8 T cells (Figure 4.17) than TEPOCh  (Figure 4.10). 

4.2.8 Haematopoietic differentiation within E15.5 epithelial cell based 

RFTOC 

To determine whether E15.5 MTS20 cells showed improved capacity to support T cell 

differentiation over those from E13.5 thymi, RFTOC" w  containing E15.5 MTS20 cells, 

adult T thymocytes and MEFs were set up. In contrast to similar RFTOCs set up with 

E13.5MTS20 cells, these RFTOCs were able to support the differentiation of both uf3 T 

cells and y8 T cells (Figure 4.16A and Figure 4.18A). To compare the functional 

capacity of E15.5 MTS20 and MTS20 cells, parallel RFTOChighs  were set up 

containing 200,000 TEC, 200,000 adult TN thymocytes and 100,000 MEFs. Following 

enzymatic dissociation and appropriate antibody staining, flow cytometric analysis 

revealed that both types of RFTOCs had CD3E populations sizes that were greater than 

50%. Of these cells, approximately 75% were TCR3 and 25% were TCRyô (Figure 

4.18C and D). As shown in Figure 4.18C, E15.5 MTS20 cells, when mixed with adult 

TN cells and MEFs, performed as efficiently as the comparable MTS20 cell-based 

cultures shown in Figure 4.18B. Interestingly, the apparent differential capacity of 

MTS20 cells to support increased yô T cell differentiation over E13.5 MTS20 cells 

was not retained at E1 5.5, a stage when both epithelial populations show similar 

capacity to support yô differentiation. The level of SP thymocyte maturity as determined 

by surface CD3c staining was greater in these RFTOCs than in those based on E13.5 
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Figure 4.16 E13.5 MTS20 cells can support T cell development in-vitro but only at 

greater TEC:HPC ratios than required for MTS20 cells 

A, 50,000 E13.5 MTS20 cells were reaggregated with 300,000 TN cells and 200,000 
MEFs and cultured for 10 days. B, 200,000 MTS20 cells were reaggregated with 
200,000MEFs and 100,000 MEFs and cultured for 10 days. Following culture, RFTOCs 
with low-level MTS20 cell incorporation invariably resulted in cell death as shown by 
the uptake of 7AAD (A). In contrast, higher level inclusion of MTS20 cells permitted 
the survival of the RFTOC cultures and the development of lymphocytes (B). 
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Figure 4.17 ap and yô T cell development can be supported by E13.5 MTS20 -  cell-

based RFTOC 

200,000 MTS20 cells were reaggregated with 200,000 TN and 100,000 MEFs and 
cultured for 10 days. RFTOCs were then transferred to HOS conditions and maintained 
for a further 9 days. Following enzymatic dissociation cells were stained with 
appropriate antibodies and analysed by flow cytometry. A, B and C, Three replicate 
examples showing the range and reproducibility of such cultures. CD4 and CD8 a13  T 
cells are produced in these cultures as well as a small proportion of ?ö T cells. 
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Figure 4.18 E15.5 MTS20 and MTS20 cells support T cell differentiation 

E15.5 MTS20 or MTS20 cells were reaggregated with HPCs and MEFs. Following 
reaggregation and 10 days of culture RFTOCs were dissociated and stained with 
antibodies for flow cytometric analysis. A, 50,000 MTS20 cells were mixed with 
300,000 adult TN thymocytes and 200,000 MEFs. Following culture, CD4 and CD8 
af3 T cells were found as were a small proportion of yö thymocytes. B, 200,000 MTS20 
cells were mixed with 200,000 adult TN cells and 100,000 MEFs. Following culture, 
greater than 50% of cells expressed CD3E with 75% of these coexpressing TCRI3 with 
the remaining 25% being TCRy8 1 . C, 200,000 MTS20 cells were mixed with 200,000 
adult TN cells and 100,000 MEFs. The majority of these cells expressed CD3E with 
either TCRI3 or TCRyi in a similar manner to MTS20 cell-based RFTOC shown in B. 
Few cells remained DP and CD4 SP and CD8 SPs were present. D, 200,000 MTS20 
cells were mixed with 200,000 E13.5 thymocytes and 100,000 MEFs. 70% of cells were 
TCRCD3E, with both CD4 SP and CD8 SPs present in this population. A small 
population of CD3TCR?8 cells was also observed. 
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Figure 4.19 Haematopoietic development from adult TN cells in E15.5 TEC based 

RFTOC 

200,000 E15.5 epithelial cells were reaggregated with 200,000 TN cells and 100,000 
MEFs and cultured as RFTOC for 10 days. Following dissociation cells were stained 
with appropriate antibodies for flow cytometric analysis. A, MTS20 epithelial cells 
support the development of a large proportion of NK1 .1 CD3E NKT cells. Few or no 
cells express the B cell marker CD 19 at a high level. CD11 c +MHCII dendritic cells 
developed in situ. B, MTS20 epithelial cells similarly support the development of NKT 
cells and CD 19 +  B cells at a comparable level. 
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TEC, with large SP populations and a relatively small population of DP cells remaining 

(Figure 4.10, Figure 4.17 and Figure 4.18). This ability is also evident in E15.5 

TEPOChigh  incorporating E1 3.5 thymocytes, which, following culture, differentiate to 

produce a particularly high proportion (70%) of TCRI3CD3s cells (Figure 4.18D). 

MTS20 cells and MTS20 cells also produced similar levels of other haematopoietic 

cell types, such as B cells and NKT cells (Figure 4.19). 

4.3 Discussion 

Chapter Four demonstrates that the in vitro generation of mature T cell populations 

from immature intrathymic and extrathymic haematopoietic populations in TEPOC is 

both efficient and robust. This ability is conferred by the MTS20 TEC component of 

these RFTOCs, as MEFs alone fail to support this maturation. Differentiation along the 

c4 T cell lineage follows the normal DN to DP to SP progression and is able to produce 

both CD4 and CD8 T cells. Furthermore, yö T cell development is also supported and 

shows the TCRy chain usage expected from fetal or adult HPCs. 

Unexpectedly, RFTOC"w  did not support the maturation of fetal thymocyte or FLC 

populations. This could be rectified by increasing the TEC:HPC ratio to approximately 

1:1 in the RFTOC hi,h system. Although the reasons for this remain unclear, it is not 

related to the lack of DN3 and DN4 cells in these cultures, as adult DN1 and DN2 cells 

survive and differentiate normally in RFTOCIOW.  As the development of E15.5 

thymocytes proceeds normally in RFTOCI0V,  it seems plausible that unknown 

differential requirements of E13.5 thymocytes versus those from E15.5 and adult thymi 

are the reason for the observed failure. Fundamental differences between E13.5 

thymocytes and those from older mice would best be compared using E13.5 thymocytes 

that have been cultured for 2 days to the DN3 and DN4 stage of development. Failure of 

these cultures would support the hypothesis that maturation from early thymocytes 

cannot be supported by RFTOCI0V  due to the absence of unidentified factors. Successful 
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maturation would indicate that it is only the very immature E13.5 DN1 and DN2 

thymocytes that require additional stimulus, with later thymocytes having no such 

requirement. It is however difficult to imagine why, when so many E13.5 thymocytes 

are added to RFTOCI0%V,  all cells in these cultures die with no cells appearing to receive 

the signals required for their survival. This is all the more striking when considered 

alongside RFTOChigh,  where such robust fetal T cell maturation is seen. It remains 

possible that E13.5 thymocytes are unable to support the in vitro survival of fetal TEC 

as efficiently as HPCs from older mice. 

Importantly, DCs involved in the education of the thymocytes, are' generated alongside 

T cells populations. These results confirm that TEPOCs are able to support the 

development of normal intrathymic haematopoietic populations from both fetal and 

adult progenitors. Although mature cell types arise in the TEPOCs, these often appear at 

levels inconsistent with those seen in either the adult thymus. This is particularly true of 

the TCRy population and the NK1 .1 CD3E populations. Many factors may 

contribute to the qualitative and quantitative differences observed in these cultures. The 

effect of the contribution ofpre-committed progenitors in the DN input populations is 

one such factor. For example, in RFTOCs seeded with adult DN1-4 cells, the lineage 

skew of some cells to the TCRc43 lineage fate is established due to the expression of a 

Pre-TCR complex, a factor known to direct cells towards the ctI3  lineage. This is 

demonstrated by a comparison between the cells stained with anti-CD4 and anti-CD8 in 

Figure 4.10 and Figure 4.12, where the total number of cells having entered into the c4 

lineage (DP+SP) in the DN1-4 seeded RFTOCs is approximately one and a half fold 

higher than those in the RFTOCs seeded with DN1 and DN2 cells only, despite both 

having achieved similar CD3c staining levels indicating the number of mature afr' and 

cells. 

Interestingly, a relatively high proportion of jô thymocytes is evident in all TEPOCs 

when compared to wild type thymus. This suggests that cells still to make a fate choice 
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may be influenced by factors in TEPOCs that favour the development of y8 T cells. A 

similar explanation might be offered for the abundance of NK1.l cells that co-express 

CD3E, indicative of their identity as NKT cells. Another possible reason for the 

abundance of ordinarily minor haematopoietic cell populations is possible that the 

microenvironmental conditions within the RFTOCs orchestrate the proliferation of 

some populations that would otherwise be dwarfed by more abundant thymic 

populations. This might be compounded by conditions limiting the proliferation of other 

cell types. For example, cells entering the c43 T cell lineage may not undergo the 

proliferative bursts that would normally accompany their maturation. The consequent 

reduction in the majority DP and SP populations could account for the comparatively 

large non-a13 lineage cell populations. The acquisition and compilation of data on 

cellular proliferation rates in vitro may begin to elucidate the mechanisms at play in the 

formation of the observed populations identifiable in the RFTOCs. 

Data presented in Chapter Four shows that MTS20 cells, although apparently unable to 

support T cell maturation under limiting conditions in vivo, are able to persist in culture 

and support T cell differentiation. This ability is dependent upon the incorporation of 

large numbers of epithelial cells, although the reasons for this remain unclear. It is 

possible that these cells die more readily following isolation due to damage sustained 

during their preparation. Alternatively, these cells may be terminally differentiated and 

may not be able to persist in the cultures. In either case, the resultant cell loss would 

mean more cells would be required to provide an equivalently permissive environment 

as that provided by fewer MTS20 cells. 

The ability of fetal epithelial cells to support T cell differentiation in vitro is maintained 

until at least E15.5, when both the MTS20 and MTS20 fractions can efficiently 

support differentiation of T cell precursors. The large CD3E fractions found in E15.5 

TEC-based RFTOCs indicates that by El 5.5, the epithelium is more competent to drive 
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T cell development, possibly reflecting the increasingly mature nature of the epithelium 

at E15.5 as ontogeny proceeds (Chapter Three). 

The data presented above clearly demonstrate .that MTS20 cells are able to support the 

generation of cell populations that would be expected of the in vivo thymic 

microenvironment, and therefore demonstrate that these cells could form the basis of an 

in vitro thymus-equivalent. Although the MTS20 compartment is able to support the 

differentiation of HPCs in RFTOCs, these cells are considerably less efficient than the 

MTS20fraôtion. 
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Chapter 5: Results: Characterisation of differentiative potential 

and organisational properties of MTS20 and MTS20 fetal 

thymic epithelial cells. 

5.1 Introduction 

Upon ectopic transplantation, MTS20 cells isolated from both E12.5 and E15.5 mouse 

thymi give rise to a thymus-like structure containing all major thymic epithelial 

subtypes that is organised into clear medullary and cortical regions comparable to those 

of the wild-type thymus (Bennett et al., 2002; Gill et al., 2002). Since thymic 

architecture is believed to be important for the correct functioning of the thymus with 

respect to the imposition of T cell selection (Naquet et al., 1999), the nature of the 

organoid generated in RFTOC cultures of MTS20 cells is of critical importance. The 

data presented in Chapters Three and Four support the view that MTS20 fetal TEC 

could be used to form the basis of an in vitro thymus-equivalent, capable of fully 

supporting T cell development. 

In Chapter Five, I therefore investigate and compare the in vitro differentiative capacity 

and organisational properties of E13.5 MTS20 and MTS20 fetal TEC. 

5.2 Results 

5.2.1 RFTOCs contain spatially separated cell types 

Although the ability of standard RFTOC (Anderson et al., 1993) to efficiently support T 

cell development is well described, the organisation of their epithelial structure has been 

reported to be poor unless grafted (Rodewald, 2000). The outcome of culturing the 

MTS20 and MTS20 populations defined in Chapter Three under the optimised 

conditions studied in Chapter Four was therefore investigated. Thus, 100,000 and 
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organisational properties of fetal thymic epithelial cells. 

200,000 epithelial cells were reaggregated with 100,000 to 200,000 MEFs and 200,000 

to 300,000 TN thymocytes. Following culture under HOS conditions, these 

reaggregates were snap-frozen, cryosectioned and fixed briefly. Antibody staining was 

then used to identify specific TEC subtypes. 

The first striking observation that can be made from these studies is the early clustering 

of cell types. At day (d) 2 of culture, ERTR7 fibroblasts appear as tight clusters that are 

already largely segregated from the PaniC epithelial cells in both MTS20 and MTS20 

cell-based RFTOCs (Figure 5. 1A-E). These epithelial and fibroblastic cells remained 

spatially segregated at dlO of culture (Figure 5.1F-J and K-O). However, at dlO, 

substantial differences between the MTS20 cell-based (Figure 5.1F-J) and MTS20 

cell-based (Figure 5.I K-0) RFTOCs were apparent. Epithelial cells within MTS20-

derived RFTOC exhibited a compacted structure at d2, but had adopted a more open 

meshwork structure by dlO (Figure 5.1F-J). This sparse, networked appearance is 

reminiscent of the epithelium of the wild type thymus, where the epithelial stroma is 

tightly packed with developing thymocytes. The images in Figure 5. 1K-O show that 

epithelial cells similarly cluster to one side of the MTS20 cell-based RFTOC at dlO, 

with fibroblasts making up the remainder of the area in this section. Note that the 

MTS20 cell-based RFTOC characteristically contains only a relatively small area of 

epithelium (Figure 5.1). 

The intense DAPI staining in Figure 5.1 indicates the presence of many non-epithelial, 

non-fibroblastic cells colocalising with the epithelial area. These cells are CD45 

haematopoietic cells (Figure 5.2) and are largely spatially restricted to the epithelial 

areas of the RFTOC, as expected. 
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organisational properties of fetal thymic epithelial cells. 

Figure 5.1 Mesenchymal and epithelial cells within the RFTOC are segregated by 

day two of culture 

A-E 120,000 TEC were reaggregated with 120,000 E1 3.5 thymocytes and 150,000 
MEFs. After 2 days in culture, E13.5 MTS20 -denved epithelial cells (PanK ) were 
clustered at the edge of the RFTOC adjacent to the ERTR7 fibroblasts. This 
arrangement persists through culture so that at day 10, MTS20 cell-derived (F-J) and 
MTS20 cell-derived epithelial cells (K-O) remain clustered. However, MTS20 cell-
derived TEC exhibited an open meshwork structure, reminiscent of thymic epithelium. 
White scale bar, 100tm. 
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Figure 5.2 Localisation of haematopoietic cells to the epithelial region within the 

RFTOC 

An RFTOC containing 200,000 MTS20 cells, 200,000 adult TN and 100,000 MEFs 
was generated and cultured for 10 days. After this time, developing thymocytes 
(CD45) almost exclusively reside in the network of MTS20 cell-derived epithelium 
(PanK). White scale bar, 100tm. 
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organisational properties of fetal thymic epithelial cells. 

To test the differentiation capacity of E13.5 MTS20 and MTS20 cells, reaggregate 

cultures were set up and cultured for up to 10 days under HOS conditions before being 

snap frozen and cryosectioned for immunofluorescence analysis. Thus, 100,000 to 

200,000 epithelial cells were reaggregated with 100,000 to 200,000 MEFs and 200,000 

to 300,000 TN thymocytes. Immunofluorescent detection of MTS24 expression 

showed that MTS24 antigen expression was downregulated on most cells, such that by 

d2 of culture a large MTS24 population was present (Figure 5.3). However, after 10 

days in HOS conditions, small areas of intense MTS24 staining remained, either as part 

of a small cluster of cells or in the cystic structures (Figure 5.3 and Figure 5.4). Higher 

magnification revealed that in cystic structures, the MTS24 expression was generally 

strongest along the lumenal side of cystic epithelial cells (Figure 5 .4D). Interestingly, in 

cases where TEPOCs were generated in the absence of HPCs, immunofluorescent 

analysis showed that  similar to nude thymic epithelium (Blackburn et al., 1996), the 

MTS20 cell-derived epithelium had become cystic and retention of MTS24 antigen 

expression persisted for at least 10 days (data not shown). Furthermore, the subsequent 

addition of HPCs to these RFTOCs showed that they retained the ability to support the 

differentiation of E13.5 thymocytes but that the epithelium was cystic, and that these 

cysts showed continued MTS24 expression (data not shown). 

5.2.2 Differentiative capacity of MTS20 epithelial cells in RFTOC 

As discussed in Chapter Four, although RFTOC' Ow  generated with E13.5 MTS24 cells 

do not survive in culture or support T cell development, MTS24-based RFTOC high  

survive for 10 days in HOS culture and can support the development of T cells. Due to 

the failure of MTS20 cells to persist following grafting under the kidney capsule, a 

hypothesis was adopted that these cells had very limited or no capacity to function as 

progenitor cells for either cTEC or mTEC (Bennett et al., 2002; Gill et al., 2002). The 

data detailed above and in Chapter Four clearly demonstrates that fetal MTS20 cells are 
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able to persist and support T cell differentiation under certain conditions, raising 

questions surrounding their differentiation capacity and the nature of the relationship 

between MTS20 cells and their MTS20 counterparts. The data presented by Bennett et 

al, Gill et al and herein shows that MTS24 cells can give rise to MTS24 cells. 

However, the question still remained whether MTS24 cells can give rise to MTS24 

cells. Figure 5.5 shows a representative RFTOC example, indicating that no MTS24 

staining can be detected in the cultured MTS20 cell-based RFTOCs. This result 

strongly suggests that there is a lineal relationship between the MTS20 cells and the 

MTS20 cells, with MTS20 cells of the E13.5 thymus differentiating from an earlier 

•MTS20 population. The possibility that a lineal relationship does not exist also 

remains, with the E13.5 MTS20 and the MTS20 cells arising separately both with the 

capacity to give rise to MTS20 cells but MTS20 cells being able to give rise to further 

MTS20 cells. 

In order to address the nature of the E13.5 MTS20 compartment further, the 

differentiative potential of this population was therefore assessed using further markers 

of mature thymic epithelium. Three examples of MTS20 cell-based RFTOCs 

containing 200,000 MTS20 fetal TEC are represented in Figure 5.6. These RFTOCs 

routinely show broad MHC Class II staining (Panel K) consistent with the functional 

competence demonstrated in Chapter Four. Panels F and K illustrate the presence of 

widespread K14 staining, which is consistent with either some differentiation occurring 

towards mTECs or towards an aberrant cell type, or expansion of the small K14 

population already present in the MTS20 input population, as identified in Chapter 

Three. Despite staining indicative of mTEC identity, these cells do not occupy distinct 

areas within the RFTOCs. A large epithelial cyst can be seen in panels G to K, a feature 

common to epithelium exposed to aberrant differentiation signals or inadequate 

lymphostromal cross-talk in vivo. Another interesting feature of the MTS20 cell-based 
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organisational properties of fetal thymic epithelial cells. 

Figure 5.3 Epithelial cells rapidly downregulate MTS24 expression in culture 

A-E, 120,000 MTS20 cells, 120,000 adult TN thymocytes and 150,000 MEFs were 
reaggregated and cultured for 2 days. Immunofluorescence analysis reveals that MTS24 
is rapidly downregulated by most epithelial cells. F-J, RFTOC containing 200,000 
MTS20 cells, 200,000 adult TN thymocytes and 100,000 MEFs cultured for 10 days 
demonstrating that small MTS24 areas persist at dlO (same RFTOC pictured in Figure 
5.2F-J). Images are representative of greater than three replicate experiments. 
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organisational properties of fetal thymic epithelial cells. 

Figure 5.4 Retention of MTS24 phenotype following culture in TEPOC 

Cells that retain MTS24 expression at d 1 were found as clusters (Panels A and B) or in 
cyst-like structures (Panels C and D). White arrowheads indicate MTS24 staining that 
mostly lines the cyst lumen. Scale bars, 25tm. 
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organisational properties of fetal thymic epithelial cells. 

Figure 5.5 MTS20 cells do not give rise to MTS24 cells 

RFTOCs made with E13.5 MTS20 epithelial cells were cultured for 10 days and 
processed for the immunofluorescent detection of MTS24 expression. MTS24 
epithelial cells were never found in these structures. White scale bars, 100tm. 
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Figure 5.6 MTS20 cells have limited differentiative potential 

MTS24 cell-based RFTOCs were cultured for 10 days and processed for 
inimunofluorescence analysis. Staining for markers of mature epithelium in three 
examples of MT524-based RFTOCs is represented in panels A-C, D-E, and G-L. 
MTS24-derived epithelial cells show widespread MHC Class II expression and 
heterogeneous K14 expression. CDR-1 expression at levels above the isotype control 
was not detected. MTS20 cells can form epithelial cysts (white asterisk). Scale bar, 
100tm 
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Chapter Five: Results: Characterisation of the differentiative potential and 

organisational properties of fetal thymic epithelial cells. 

Figure 5.7 The differentiation capacity and organisational ability of MTS20 -  cells is 

limited 

MTS20 cell-based RFTOCs were cultured for 10 days and processed for 
immunofluorescence analysis. Epithelial areas of the RFTOC delineated with anti-K8 
and anti-K5 staining are found within the larger RFTOC structure. Panels F and G 
highlight the compacted nature of the epithelium and widespread strong K8 and K5 co-
staining. Very few UEA1 cells are found following culture (white arrowhead). White 
scale bars, lOOiim. Grey scale bars, 251A.m. 
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RFTOCs is the almost total lack of UEAl cells, with the only UEA-1 cell observed in 

several MTS20 cell-based RFTOCs shown by the arrowhead in Figure 5.7 (Figure 5.6). 

Figure 5.7 shows another example of a MTS20 cell-based RFTOC, which was analysed 

for the presence of cTEC using CDR-1, a marker of cortical cells. Little or no CDR1 

staining was observed in the MTS20 cell-based RFTOC, consistent with the absence of 

mature cortical lineage cells. Widespread co-expression of K8 and KS in these RFTOCs 

could be indicative of failed or improper differentiation but also may correspond to a 

singular differentiation, expansion, and persistence of the K5K8 cell type, found at the 

CMJ or in the cortex of wild-type thymus. Although some K8K5 cells are present, this 

phenotype preceeds the cortical CDRl phenotype in vivo, indicating that these may be 

immature. Moreover, there is no evidence of a morphologically normal K8K5 cell 

type that corresponds to cTEC (Figure 5.7). Further evidence for this is the absence of 

any morphologically distinct areas within the RFTOCs, which could correspond to the 

sparse network of cTEC (Figure 5.7). These data establish that MTS20 cells have only 

limited ability to differentiate in vitro. 

5.2.3 Differentiative potential of MTS20 cells in vitro 

The functional capacity of the thymic epithelium is dependent upon the expression of 

MHC Class I and II molecules, and MHC Class II molecules are expressed on the 

surface of most thymic epithelial cells. As discussed in Chapter Three, prior to culture, 

only a minority of E13.5 MTS20 TECs (16%) expressed MHC Class II. Figure 5.8 

shows three examples of a TEPOC after 10 days in culture indicating that by this time, 

MHC Class II expression is widespread with strong reactivity being limited to TEC. 

Figure 5.8 panels G to I illustrate that the strongest MHC Class II staining often 

colocalises to areas of epithelium showing K5 staining, suggestive of mTEC identity, 

although MHC Class II expression also extends into K5 areas. 
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Figure 5.8 Epithelial cells in TEPOC express MHC Class II 

Immunofluorescent staining of fixed frozen sections of RFTOC following culture. 
Using anti-pancytokeratin and anti-keratin 5 antibodies to stain epithelial cells and anti-
I-Ai'I-E to demonstrate MI-IC Class II expression, it can be seen that the epithelial areas 
of the RFTOCs show broad MHC Class II expression. Panels A - C, D - F, and G - 
represent three examples of MHC Class II staining in RFTOCs. Dotted line indicates 
the outline of each RFTOC. Scale bars, 1OO.tm 
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Figure 5.9 Epithelial areas in TEPOC express markers of differentiated epithelium 

Immunofluorescent staining of MTS20cell-based RFTOC following culture. Staining 
for the mature medullary markers, Keratin 14 and UEAI demonstrate good medullary 
development. cTEC are identifiable with CDR1. White arrowheads indicate examples 
of medullary epithelial areas. Scale bars, 100tm 
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In order to assess the diversity of the maturing MTS20 cell-derived epithelium, the 

presence of other markers of differentiated thymic epithelium was analysed using 

confocal microscopy. Figure 5.9 shows analysis of markers of medullary epithelium 

including K5, K14 and UEA-1, and of CDR1, a late marker of cortical epithelial 

development. Figure 5.9 Panels A to C, D to F and G to L represent three examples of 

TEPOCs that have been cultured for 10 days prior to processing and analysis. The 

RFTOCs illustrate that the MTS20 cells readily differentiate in vitro to produce 

different subsets of mTEC. A common feature is that the K14 areas appear to stain 

more brightly with PanK than other TEC, a characteristic typical of mTECs in vivo 

(Figure 5.9). The cells in the areas of presumptive medullary epithelium also appear 

more compacted and globular, a feature consistent with the morphology expected of 

mTEC (Figure 5.9). Figure 5.9 panels D to F illustrate heterogeneity within the 

medullary epithelium established in TEPOCs. A small proportion of the K5 mTECs 

co-expresses UEA-1, as would normally be seen in the wild-type thymus (Figure 5.9). 

Figure 5.9 panels J, K and L demonstrate low-level CDR1 staining in a proportion of 

epithelium, that is adjacent to the medullary areas identified in panels H and I. 

5.2.4 Self-organisation is limited to the MTS24 cells-based RFTOCs 

The presence of segregated epithelial subpopulations within the MTS24 cell-based 

RFTOCs is interesting and reveals a self-organising ability inherent that has not 

previously been demonstrated in vitro. This effect is most striking in TEPOCs set up 

with high numbers of MTS20 epithelial cells, which demonstrate varying degrees of 

cortex-medulla segregation. Figure 5.10 shows a representative example; panels A to E 

show that the MTS20cel1-derived epithelium formed a differentiated network, which in 

this plane, completely enclosed a non-epithelial area consisting of autofluorescent 

fibroblasts. Panels F and G reveal that while some cells expressed K14, typical of 
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mTEC, others expressed CDR1, a marker of postnatal cTEC. Of great interest is the 

obvious segregation of CDR  and K14 cell types (Figure 5.10). 

Figure 5.11 shows a further example of self-organisation within an MTS24 cell-based 

RFTOC. Panels A to E demonstrate that several types of epithelial cell have developed 

within this RFTOC and were segregated in regions suggestive of cortical-medullary 

organisation. Panel F shows this structure in greater detail. Two main areas are present, 

one, characterised by a compacted cluster of K5 cells and the presence of UEA-1 

cells, represents an area of mTECs (Figure 5.1 1E, F and G). Adjacent to this is a larger 

area of K8 staining, with K8 cells appearing as elongated cells, sparsely spread and 

more tightly packed with haematopoietic cells (Figure 5.11), indicative of cTEC. 

In summary, Figure 5.9 to Figure 5.11, demonstrate that TEPOCs exhibit clearly 

segregated cortical and medullary areas characterised by the differential expression of 

markers of TEC subtypes including UEA-1, CDR-1, as well as Keratin 5, and 14. These 

data indicate that fetal MTS20 epithelial cells have the capacity to generate an 

organised thymus in modified RFTOC. 

In summary, the data presented in Figure 5.5 to Figure 5.7 demonstrate that in striking 

contrast to MTS20 cells, MTS20 cells do not have the ability to organise into discrete 

medullary and cortical areas in RFTOC. This may reflect their limited differentiation 

potential, as they appear unable to produce cells of a cortical lineage based on absence 

of CDR1 cells, K8K5 cells, or cells of stellate morphology typical of cTEC. The 

question still remains whether the MTS20 population contains a progenitor for the 

mTEC lineage. Although lack of UEA-1 staining but widespread K14 staining would 

suggest that the MTS20 population shows some restricted medullary potential, small 

numbers of K14 cells are present prior to culture and thus K14 cells following culture 

could be derived from population expansion and not differentiation. Overall, these data 
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Figure 5.10 Evidence of self-organisation in MTS20 cell-derived RFTOC I 

Immunofluorescent staining of MTS20 RFTOC with antibodies against cortical and 
medullary epithelium following 10 days in culture. An enclosed ring of MTS20 cell-
derived TEC is present around a central core of autofluorescent non-epithelial cells. 
CDR1 cortical epithelial cells and K14+ medullary epithelial cells are both identifiable 
in the RFTOC. White scale bars, IOOi.tm. Grey scale bars, 25tm. 
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Figure 5.11 Evidence of self-organisation in MTS20 cell-derived RFTOC II 

Staining of the epithelial cells by anti-K8 delineates the epithelial clusters within the 
larger TEPOC structure. Areas of K5 UEA1 cells are present, consistent with a 
medullary identity. White scale bars, 1OOtm. Grey scale bars, 25tm. 
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support the conclusions of Bennett et al, which highlighted the progenitor nature of the 

E12.5 MTS20 TEC compartment, and conclusively demonstrate that the E13.5 

MTS20 but not the MTS20 population can generate all major epithelial TEC subtypes. 

5.3 Discussion 

The data presented in Chapter Five demonstrate that the modified RFTOC system 

provides a suitable environment for the differentiation of MTS20 cells into mature TEC 

subtypes. The MTS20 cell-derived mTECs and cTECs that developed exhibited 

staining patterns and morphologies comparable to TEC subtypes found in' vivo. In 

contrast, although MTS20 cells or their progeny persisted in RFTOC, they were unable 

to generate a range of normal mature TEC subtypes. No K8K5 or CDRl cells were 

found, and no cTEC cells were identifiable by morphology, indicating a total lack of 

cortical development from MTS20 cells. 

Although K14 cells were found following culture, few or no UEA1 mTECs 

developed. A recent report identifies UEA- 1 as a marker of the AIRE mTEC lineage 

progenitors at E13.5 (Hamazaki et al., 2007), known to be important for thymic 

expression of tissue restricted antigens (Anderson et al., 2002; Derbinski et al., 2001). 

The restriction of UEA- 1 to the MTS20 compartment suggests that only the MTS20 

population would be able to give rise to UEA-1 mTEC subset consistent with data 

presented in Chapter Five. Thus, AIRE expression and thymic TRA expression would 

similarly be limited to the MTS20 cell-derived progeny indicating that only RFTOC 

generated using MTS20, but not MTS20 cells, could give rise to cells expressing 

AIRE and thus be fully competent to support negative selection and tolerance to TRAs. 

In summary, no markers of mature TEC were present following culture of MTS20 cell 

based RFTOC that had not previously been identified in the MTS20 population prior to 

culture. However some differentiation markers, such as MHC Class II and K14, became 
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more prevalent, indicating that limited differentiation or maturation had occurred in the 

cultures and/or existing minority populations had proliferated or selectively survived to 

dominate in these cultures. These data are consistent with the hypothesis that the 

MTS20 population contains the TEPC population in the E13.5 thymus, with MTS20 

cells representing either terminally differentiating medullary cells or an intermediate 

medullary progenitor. It is also possible that continued interaction with MTS20 cells is 

required to maintain cell identity in MTS20 TEC. In any case, the ability to 

autonomously generate cTEC and a diverse medullary compartment is limited to the 

MTS20 population. 

The striking ability of TEPOCs to organise into spatially segregated cortical and 

medullary regions, is in contrast to the lack of any epithelial organisation in the MTS20 

cell-based RFTOCs and to a previous reports of standard RFTOCs, which showed no 

compartmentalisation (Rodewald, 2000). It remains possible that the lack of cTEC and 

the absence of clustered mTECs within MTS20 cell-based RFTOCs are causally related 

to the absence of epithelial organisation and vice-versa. Thus, experiments that assess 

the ability of MTS20 cells to contribute to TEC lineages and not just their ability to 

autonomously differentiate into those lineages would be informative. This could be 

achieved by incorporating small numbers of labelled MTS20 cells into self-organising 

TEPOCs and assessing lineage contribution. 

Although Chapter Five demonstrates that TEPOCs become organised, it remains 

unclear where the organiser capacity lies. It is possible that the MTS20 population 

contains cells with organisational capacity or alternatively, organisation observed in 

MTS20 cell-based cultures may result from de novo organogenesis. RFTOCs 

incorporating irradiated MTS20 cells could address whether RFTOCs become 

organised in the absence of proliferating MTS20 cells. The observation that areas of 

mTECs in organised RFTOCs are, for the most part, adjacent to the fibroblast cluster is 
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perhaps indicative of the involvement of organising factors provided by the fibroblasts. 

Although this aspect remains to be investigated, cross-talk between the thymic 

epithelium and LTI3R-ligands detected in MEFs is one mechanism that would be able to 

provide inductive cues for the formation of medullary areas adjacent to the MEFs 

(Boehm et al., 2003). 

151 



Chapter 6: Concluding remarks 

Immune deficiency can be caused by many factors including age, genetic disorders, 

infectious diseases, and as a result of chemotherapy or radiation therapy. Strategies to 

overcome the slow recovery of T cell compartments in cases of immune -deficiency 

include attempts to enhance T cell reconstitution following HSC transplantation by the 

provision of exogenous factors, thymic tissue transplantation and techniques based on 

ex vivo culture systems. 

When grafted in vivo, fetal MTS20MTS24, but not MTS20MTS24 fetal thymic 

epithelial cells, can generate all major thymic epithelial cell subtypes and form an 

organised thymus-like structure. Furthermore, the resultant thymic organoid can recruit 

T cell precursors and support their differentiation into mature CD4 and CD8 T cells. 

The generation of a single cell line corresponding to fetal TEPC would enable the 

generation and expansion of thymic epithelial cells in vitro. These could be used as a 

source of tissue forthymic epithelial tissue or to support T cell differentiation in vitro. 

The possibility of supporting T cell differentiation in vitro using a TEPC-based thymic-

equivalent has several advantages over currently used in vitro systems. A thymus-

equivalent would necessarily be capable of supporting both T cell differentiation and 

selection processes thus producing a self-tolerant T cell repertoire. In vitro, this has 

been dependent upon the use of fetal thymic lobes, which not only inherently limits the 

scale of T cell generation but the intact nature of the lobes means that this is not easily 

manipulatable, features which ultimately limit the usefulness of FTOC for research or 

therapeutic purposes. The in vitro generation of an organised heterogeneous thymic 

epithelial structure based on the RFTOC system capable of supporting the 

differentiation of HPCs into therapeutically useful T cell populations would overcome 

both of these caveats. 
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6.1 TEPOC-based T cell repertoire generation 

The work presented in this thesis aimed to assess the ability of MTS20 fetal TEPC to 

form the basis of an in vitro thymus-equivalent. Chapter Three outlines the development 

of a modified RFTOC method, which has several advantages over the established 

RFTOC method developed by Anderson and colleagues (Anderson et al., 1993). As 

demonstrated in Chapter Four, using this method it is possible to reliably and 

reproducibly support T cell development in MTS20 fetal TEPC-based TEPOC. 

Although unable to support T cell differentiation when grafted in vivo (Bennett et al., 

2002; Gill et al., 2002), fetal MTS20 TEC are competent to support T cell 

differentiation using the modified reaggregation protocol, in vitro, but remain less 

efficient than the MTS20 cells. 

The highly organised thymic epithelial stroma provides the developing thymocytes with 

temporally and spatially separate microenvironments that support distinct stages of 

thymocyte development. These microenvironments are believed to provide factors that 

are specifically required for a given stage of thymocyte development. For example, 

upon production of an appropriate TCRI3 chain, and also following positive selection, 

thymocytes are able to respond to stroma-derived IL-7 that supports the expansion of 

post-selection thymocytes in a microenvironmentally controlled manner thereby 

ensuring that only the most useful thymocytes are expanded in number. Similarly, the 

medullary stromal cell compartment instructs potentially autoreactive T cells to 

apoptose or become anergic. In this way, the provision of organised specialised 

microenvironments in the thymus ensures the production of a large self MHC-restricted, 

self-tolerant repertoire. As such, organisation of the TEPOC structure should aid the in 

vitro production of such a repertoire. 

In future experiments the ability of the T cells produced in TEPOC to respond to 

mitogen stimulation will be tested as an indicator of functional maturity. Such 

experiments routinely include incubation with phytohemagglutinin or concanavalin A 

followed by analysis for responses such as a proliferative burst, upregulation of 

153 



activation markers, and cytokine production. Once the functional maturity of these cells 

has been established, the relevance of the observed repertoire should be established. It is 

envisaged that these experiments will include mixed lymphocyte reaction experiments 

to establish whether self-tolerance could be established by the organised TEPOC. 

6.2 Epithelial differentiation within TEPOC 

Under the conditions of the modified RFTOC, E13.5 MTS20 cells showed limited 

differentiation capacity and only generated one mTEC subtype and aberrant cell types 

similar to those seen in the thymus of nude mice and those with thymocyte deficiencies. 

However, in analogous RFTOC, E13.5 MTS20 cells showed the capacity to generate 

all major thymic epithelial subtypes. Furthermore, in contrast to MTS20ce11-based 

RFTOC, TEPOC demonstrated the ability to self-organise into cortical and medullary 

regions indicating that MTS20 cells are unique in their potential to form the basis of an 

organised in vitro thymus-equivalent. While this is limited to the MTS20 compartment 

it remains undetermined whether this potential is retained by the E1 5.5 MTS20 

population. Similarly, the failure of MTS20 cell-based grafts to survive precluded any 

analysis of their potential in previous experiments (Gill et al., 2002) and so it remains 

possible that these cells can contribute to normal epithelial subtypes in an organised 

thymus structure. As it is clear from Chapter Four that E15.5 MTS20 and MTS20 cells 

can survive and mature T cells under the conditions of the modified RFTOC cultures, 

their potentials can now be tested. These experiments may also add to our current 

understanding of the relationship between the cell populations at E13.5 and those at 

E15.5. 

6.3 TEPOC as a model for thymus organo genesis 

It is hypothesised that the method used to make these RFTOC plays a role in 

establishing the compartmentalisation that is observed, a feature lacking in cell slurry-

based RFTOCs (Rodewald, 2000). The ability to separate cell types to produce a desired 

structural order is desirable due to the potential for possible effects on cell-cell 

signalling and through the implementation of factor gradients, both features that are 
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essentially abrogated by the random distribution of cell types produced by the cell 

slurry-based RFTOC protocol. The early segregation of cell types illustrated in Figure 

5.1, is likely achieved through differences associated with the large size of MEFs and 

the smaller epithelial and haematopoietic cells, meaning that upon centrifugation, larger 

cells coalesce and become overlaid by smaller cells. In this way, prior to and following 

the reaggregation process, the epithelial cells are clustered adjacent to the MEFs (data 

not shown and Figure 5.1). The ability to purposefully layer cells with repeated 

centrifugation steps during RFTOC generation could be used to make this process more 

complete or be used to generate more complex RFTOC structures involving several cell 

layers or placement of a given cell layer in relation to another regardless of cell size. 

The observed organisation within RFTOC opens up the possibility for using RFTOC to 

dissect the pathways that organise and maintain the thymic microenvironment. There 

are several possible means by which the organisation seen in these RFTOC is 

established. In one scenario, organisation could be achieved by an initial period of 

epithelial differentiation in a non-organised or semi-organised manner followed by a 

phase of restructuring, during which time cells of a given identity coalesce, or 

proliferate thus creating areas rich in a particular cell type. Post-differentiation 

reorganisation could be identified in these cultures by analysis of a time-course during 

the maturation process. In this way, an initial period of epithelial disorganisation would 

be identifiable if the RFTOCs if organisation was taking place following differentiation. 

Alternatively, organisation could result from de novo organisation, where the in situ 

generation of mTEC and cTEC could result in medullary and cortical areas being 

generated. Analysis of early time points during TEPOC culture would be able to 

identify the emergence of cortical and medullary areas as bodies of similar cell types 

that are spatially distinct. 

Pre- or post-differentiation organisation may be driven by an external organising factor 

or may be a population-intrinsic activity. In vivo, although small areas of medulla have 

been shown to arise as clonal islets (Rodewald et al., 2001), expansion of medullary 
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areas can be driven by signalling along the LTR or TRAF6 pathways (Akiyama et al., 

2005; Boehm et al., 2003). In this way, the organisation of the medullary compartment 

is mediated by ligands expressed on non-epithelial cells. Although it remains possible 

that MTS20 cells harbor the capacity to self-organise in vitro, the observation that 

medullary compartments within organised TEPOC are typically adjacent to the MEF 

compartment, would indicate that interplay between developing the epithelium and 

adjacent MEFs is exerting an organising influence on the epithelium. Although the 

mechanism of this cross-talk is unclear, preliminary RT-PCR results suggest that the 

MEFs express several factors including several TNF receptor ligands including the LTci 

and LTI3 (data not shown). Future experiments will aim to establish whether the 

provision of LT3R ligands by MEFs plays a significant role in the development of 

medullary areas within TEPOC and whether, in the absence of LTf3R signalling, 

medullary areas persist and/or are abberent. Such experiments will provide be proof of 

principle for the use of TEPOC as a manipulatable in vitro model of thymus patterning. 

Although it seems likely that LTI3R signalling is playing a role in the expansion of the 

developing medullary compartment in TEPOC, in vivo, some medullary differentiation 

occurs in the mice deficient for members of the LTR pathway suggesting that LTI3R 

signalling is not absolutely required for the induction of mTEC differentiation along all 

mTEC lineages (Boehm et al., 2003; Burkly et al., 1995). This would indicate that a 

pathway that is not dependent upon LTI3R signalling is determining the formation of the 

medullary compartment although again, the coincident localisation of medullary 

epithelium and MEFs may suggest thatMEF-epithelial cross-talk may play a role in this 

process in TEPOC. 

6.4 Summary 

In summary, the data presented in this thesis supports the view that a fetal thymic 

epithelial population can be used to form the basis of an in vitro thymus organoid. 

Uniquely, the MTS20MTS24 population is able to generate an organised thymic 

epithelial structure under the conditions of the modified RFTOC. It is believed that this 

structure will support the development of a self-tolerant repertoire. Future experiments 

156 



will address the functional nature of the T cell repertoire produced in these cultures. 

Further experiments using this system as an in vitro model of thymus organogenesis 

will attempt to elucidate the mechanism of epithelial organisation, which is observed in 

TEPOC. 
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