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III. Abstract 

 

The effect of mechanical stimulation in plants has been studied in depth for more 

than a century. This type of stress has been shown to trigger alterations in 

development such as stunting, thickened stems and differential cell wall deposition. 

These responses are very likely to be initiated at a subcellular level, but the 

molecular mechanisms transducing mechanical signals into intracellular responses 

still remain unknown in plants. In this thesis I test the hypothesis that the 

membrane anchored protein Defective Kernel 1 (DEK1) could act as a plant-specific 

mechanosensor in plants. 

 

Constitutive overexpression of the cytoplasmic CALPAIN domain DEK1 causes a 

phenotype in Arabidopsis, that that resembles that of mechanically stressed plants. 

The CALPAIN domain of DEK1 shows a very high homology with animal calpains; 

a class of calcium-dependent Cysteine proteases which undergo a calcium-

stimulated CALPAIN domain-releasing autolytic cleavage event during activation. 

A similar autolytic cleavage event has been observed in DEK1 which, together with 

the fact that the CALPAIN domain alone can rescue the embryo-lethality associated 

with loss of DEK1 function, has led to the suggestion that this domain represents an 

activated form of the protein. I show that like mechanically stressed plants, 

CALPAIN overexpressing plants show a modified call wall composition. Consistent 

with this, transcriptional analysis of these plants shows a deregulation of genes 

encoding cell wall modifying enzymes, amongst others. Other characteristics of 

mechanically stimulated plants which I have characterized in CALPAIN 

overexpressing lines include late flowering and thickened stems. Therefore, I 

proposed a model in which the CALPAIN domain of DEK1 acts as an effector which 

is normally activated by mechanical stimulation.  In this model, the transmembrane 

domains of DEK1 would regulate activation (cleavage) of the CALPAIN domain, 

potentially in response to mechanical stress. 
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In order to test this model further, CALPAIN overexpressing lines were generated 

in a dek1 mutant background. If the model is correct, these plants should not only 

behave as if responding constitutively to mechanical stimulation, but should also 

lack appropriate responses to applied mechanical stimuli due to lack of the 

mechanosensory integral membrane domain of DEK1. My results confirm that the 

absence of the transmembrane domains of DEK1 is indeed translated into a lack of 

some, but not all responses to mechanical stimulation compared to wild-type plants. 

Furthermore, the lack of the transmembrane domains of DEK1 correlates with the 

absence of a mechanically-triggered calcium flux in the plant. Thus my work 

suggests that the transmembrane domains of DEK1 are involved in sensing 

mechanical stimulation, via the regulation activity of a mechano-sensitive calcium 

flux at the plasma membrane. 

 

In summary, my proposal is that Defective Kernel 1 (DEK1) acts both as a key 

mechanosensory cellular component, and as the first effector of the signalling 

cascade in response to mechanical stimulation, via an autolytic activation in 

response to mechanical stress. 
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V. Abbreviations 

 

Ag Silver 

AIR Alcohol insoluble residue 

Arg Arginine 

Asp Aspartic acid 

Ba2+ Barium ion 

bp Base pair 

BSA Bovine serum albumin 

Ca2+ Calcium ion 

cDNA complementary DNA 

Cl- Chlorine ion 

cm2 Square centimetre 

Cys Cysteine 

dATP 2'-deoxyadenosine 5'-triphosphate 

dCTP 2'-deoxycyidine 5'-triphosphate 

dGTP 2'-deoxyguanosine 5'-triphosphate 

dH2O Distilled water 

DNA Deoxyribonucleic acid 

dNTPs Deoxyribonucleotide triphosphate 

dTTP 2'-deoxythymidine 5'-triphosphate 

EDTA Ethylenediaminetetraacetic acid 

EtOH Ethanol 

g Gram 

Gd3+ Gadolinium ion 

GFP Green Fluorescent Protein 

Gly Glycine 

H+ Proton/Hydrogen ion 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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HPLC High performance liquid chromatography 

Hz Hertz 

I Current 

K+ Potassium ion 

kb Kilobase 

l Litre 

La3+ Lanthanum ion 

LB Lauria Broth 

MES 2-(N-morpholino)ethanesulfonic acid 

mg Milligram 

min Minute 

ml Millilitre 

mM Millimolar 

mOsm Milliosmolar 

mPa Millipascal 

mRNA Messenger RNA 

MS Murashige and Skoog 

mV Millivolt 

mΩ Milliohm 

N2 Nitrogen 

Na+ Sodium ion 

ng Nanogram 

nM Nanomolar 

nm Nanometer 

pA Picoampere 

PCR Polymerase chain reaction 

pH Hydrogen Potential 

Q-RT-PCR Quantitative-RT-PCR 

revs Revolutions 

RNA Ribonucleic acid 
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RPM Revolutions per minute 

RT-PCR Real time PCR 

SD Synthetic defined media 

SDS Sodium dodecyl sulphate 

SEM Scanning electron microscopy 

TAE Tris-base acetic acid buffer 

TE Tris-EDTA buffer 

Tris Tris(hydroxymethyl)aminomethane 

UTR Untranslated region 

UV Ultra violet 

V Volt 

V/V Volume-volume 

Y2H Yeast two hybrid 

YPAD YPD plus adenine 

YPD Yeast Extract Peptone Dextrose 

μA Microampere 

μg Microgram 

μl Microliter 

μM Micromolar 
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1. Introduction 

 

1.1. Mechanosensing in plants 

 

Although plants lack specialised sensory organs and cannot sense what surrounds 

them in the same way as animals do, they are still able to perceive and respond to 

stress imposed by the environment. In particular, mechanical stress could be 

potentially harmful if plants did not evolve to respond and acclimate to it. Already 

in 1881, Charles Darwin reported in detail, the effects of mechanical stimulation in 

plants. In his book “The Power of Movement in Plants” he described how roots can 

change their growth direction away from sources of mechanical stimulation 

(Darwin and Darwin 1880). In 1893 he expressed his amazement at the touch-

induced response of the specialised leaves of the carnivorous plants Drosera 

rotundifolia and Drosera muscifera, referring to them as ‘one of the most wonderful in 

the world’ (Darwin 1893). These plants respond to mechanical perturbations with 

impressive rapidity and are one of the best examples of plant species that respond 

within instants after sensing a mechanical stimulus. The very rapid folding up of the 

leaflets of the compound leaves of Mimosa pudica is also very spectacular and has 

attracted the attention of scientists. In this case the fact that the touch response is not 

only restricted to the touched leaflet, but propagates to the surrounding leaflets has 

been a subject of considerable interest (Malone 1994).  

 

Although not all plants have specialized sensory organs that allow them to respond 

immediately to mechanical stimulation they all still respond to this type of stress. 

Most species, if exposed to repetitive mechanical stimulation such as wind or touch, 

can respond with different types of morphological alterations. According to Jaffe 

and Forbes these touch-induced morphological changes have been recognized since 

very early, the first document referring to them being the third century B.C. book 

“De Causis Plantarum”, by Theophrastus (Jaffe and Forbes 1993). Some of these 
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slower morphological responses to mechanical stress include touch sensitive tendril 

coiling or vine climbing (Darwin 1906). 

 

In 1973 the term “thigmomorphogenesis” was introduced by Mark Jaffe, to describe 

growth responses that can be induced by mechanical stimulation (Jaffe 1973). 

Thigmomorphogenesis happens in a vast variety of plants species including both 

herbaceous species (Biddington 1986; Braam and Davis 1990) and woody species 

(Coutand et al. 2009; Porter et al. 2009; Telewski and Pruyn 1998). 

Thigmomorphogenetic responses are thought to confer an evolutionary advantage 

that allows plants to resist and acclimate to environmental mechanical perturbations 

and their potentially damaging consequences (Rodriguez et al. 2008). For example, 

trees grown in windy conditions have a higher root growth rate and root carbon 

allocation than trees grown in sheltered conditions, as has been demonstrated in the 

angiosperm Prunus avium (Coutand et al. 2008). Dwarfed forms, reduced leaf size 

and allocation of biomass to below ground organs are also observed as responses in 

aquatic plants that suffer periodic hydrodynamic forces, for instance plants grown 

in tide zones or in streams (Boeger and Poulson 2003; Doyle 2001). 

 

In the case of the model plant Arabidopsis thaliana, clear developmental alterations 

are observed in plants undergoing mechanical stimulation. If stressed twice daily 

they develop shorter petioles, begin to bolt later and have shorter bolts than 

untouched wild-type plants (Fig. 1-1) (Braam and Davis 1990). Thigmotropic events 

are also observed in the roots of this model plant. When roots find a glass obstacle 

in their culture substrate, a thigmotropic response occurs. Instead of growth 

towards the gravity vector, following normal gravitropism, they change their 

growth pattern and grow away from the point of contact with the mechanical 

barrier, thus avoiding it (Kimbrough et al. 2004; Massa and Gilroy 2003). This 

response is believed to be triggered at a subcellular level, as it is known that 

mechanical stimulation causes an increase of free Ca2+ (Knight et al. 1991; Legue et 
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al. 1997). This phenomenon is seen in root tips that encounter an obstacle 

(Monshausen et al. 2009).  

 

Mechanical stress is usually classified into two categories, exogenous or 

endogenous. There are several ways in which the environment imposes the first 

type, such as wind or rain. However, mechanical stresses not only depend on 

exogenous stimuli, but can also be a consequence of the expansive growth of 

pressurized cells (Boudaoud 2010; Hamant and Traas 2010). Although 

mechanosensing in plants has been widely studied and physiologically 

characterised thoroughly, the molecular responses to this second type of stimulus 

still remains unknown. It is likely that certain molecules could participate in 

detecting both types of mechanical stress. 

 

 

 

Figure 1-1. When stimulated mechanically in a repetitive way, Arabidopsis 

thaliana plants show a delay in flowering and a decreased inflorescence 

elongation. The group of plants on the right were stimulated mechanically 

twice daily throughout their development; while the plants on the left are 

untreated controls. From Braam J., 2005. 
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1.2. Mechanical design of developing plants 

 

Biological shape is not the product of an intelligent design, but it is, as described by 

Jacob in 1977, a bricolage, and therefore it “oscillates around the state of minimal 

energy without ever reaching it” (Jacob 1977). As all other living organisms, plants 

have to follow physical laws when determining their size, shape and structure. In 

plants, the shape is mainly defined by the rate and direction of growth (Coen et al. 

2004; Dumais et al. 2006; Hamant and Traas 2010; Kwiatkowska and Dumais 2003; 

Silk and Erickson 1979). The mechanical design of plants depends on several factors, 

that include cell wall properties, supporting tissues, and spatial organization of the 

body of the plant (Niklas 1992). How biomechanics affect a biochemical substrates 

may therefore be important in determining the morphological and anatomical 

characteristics of organisms. In contrast to animals, which have different food 

sources depending on the species, all plants require basically the same resources 

(light, water, minerals, space, atmospheric gases), and they are therefore more 

strongly influenced by abiotic factors than by biotic ones when determining their 

shape and size, leading to a much higher plasticity in their development (Wojtaszek 

2011). This was summarized elegantly by E.J.H. Corner in 1964: “A plant is a living 

thing that absorbs in microscopic amounts over its surface what it needs for growth. 

It spreads therefore an exterior whereas the animal develops, through its mouth, an 

interior.” (Corner). 

 

 A certain amount is known about the role of mechanical forces in driving the 

cellular growth of plants. Internal pressure, which is consequence of osmotic 

pressure, is counterbalanced in plant growing cells by a continuous synthesis and 

remodelling of the cell wall. It is generally accepted that this pressure is the driving 

motor of growth (Hamant and Traas 2010). Osmotic pressure was first measured in 

an indirect way by Pfeffer, by determining the point of plasmolysis of cells (Pfeffer 

1877). In the 1960s Paul Green developed, for the first time, a method that could 

measure the turgor pressure in cells in a direct manner (Green 1968; Green and 
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Stanton 1967). This technique was developed over time to obtain the modern 

pressure probes. This original probe consisted of an oil-filled microcapillary, 

connected to a pressure sensor and a movable plunger, which was introduced into 

cells of interest. It was observed that the value of internal turgor pressure of plant 

cells is extremely high, going up to 10 bar. Considering the fact that 0.03 bar 

corresponds to high blood pressure in humans, it becomes clear why plants are able 

to grow and push their way through hard materials such as road surfaces (Hamant 

and Traas 2010).  

 

1.2.1. Role of the epidermis in growth and mechanosensing 

 

The idea of internal pressure as a developmental force is not restricted to the single 

cell level. The proposition that the epidermis, i.e; a tissue, could work as a 

biophysical barrier to expansion is very old, existing at least since the 19th century, 

when it was observed that different tissues present different tensions. This led to the 

conclusion that certain tissues grow passively pushed by the driving force 

generated by others. In support of this idea, stems of the houseplant Solenostemon 

scutellarioides sectioned longitudinally and placed in water always bend outwards, 

suggesting that the expansion of the inner layers is normally constrained by the 

outer ones (Sachs 1882; Sachs 1865).  

 

Paul Green proposed a model in which the epidermis restricts and controls the rate 

and direction of plant growth, since this tissue can resist more stress than it 

generates (Green 1992). Savaldi-Goldstein and Chory recently argued that this 

argument seems logical since the turgor pressure that is generated and experienced 

by the inner cells is predicted to generate a force in all directions equally, as they are 

completely surrounded by other cells. Their internal pressure will thus, to some 

extent, be balanced by that of their neighbours. On the other hand, epidermal cells 

interface with environment; therefore they have a free face that does not press 
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against another tissue. As a result, the wall properties of the epidermis and its 

ability to counteract internal forces are expected to significantly influence and 

regulate the extent of growth. In agreement to this, the outer wall of the epidermis is 

usually at least 5 to 10 fold thicker than internal cell walls (Savaldi-Goldstein and 

Chory 2008). Furthermore, Kutschera and Niklas presented experimental data that 

supports this classic theory. Their work added new considerations into the model of 

the “tensile skin theory”. These include, in addition to the presence of thickened 

outer cell walls, the mechanical constraints that are associated with the presence of a 

cuticle, and the interactions between cell layers through hormonal signals 

(Kutschera and Niklas 2007). 

 

Studies carried out recently also support the premise that the epidermis controls 

growth at the shoot apex. When applied exogenously and locally to stem apical 

meristems, cell wall loosening enzymes, such as expansins, can induce a 

primordium-like structure (Fleming et al. 1997). However, expression of expansin in 

all cell layers of the meristem, and not just application to the L1 of these primordia, 

is necessary for the production of fully developed leaves (Pien et al. 2001). Laser 

ablation of cells of the L1 of the meristem showed that the epidermis is essential for 

organ formation, as leaf primordia are unable to arise in sites of epidermal ablation 

(Reinhardt et al. 2003).  

 

The fact that the epidermis can resist and control pressure generated from within 

the plant, as well as within its own cells, suggests that this tissue may have a 

particularly well developed mechanosensing network. It is to be noted that nearly 

all the experiments that will be described in this introduction, and thesis, which 

look for subcellular responses to mechanosensing, have been performed in 

epidermis. This is almost exclusively for reasons of practicality since the tissue is 

very well described and is easy to reach and work with. However this fact may 

somewhat bias our thinking regarding the mechanosensitivity of plant cells. Despite 

this, it is known that internal tissues also respond to mechanical stimulation, as is 



27 

 

seen in the case of reaction wood, a type of wood formed as a response to 

mechanical stress. However, very little is known about the molecular mechanisms 

underlying these reactions. This leaves a gap in current knowledge regarding 

responses to mechanical stress in underlying cells, and opens the question of 

whether responses are due to transmitted signals from the epidermis. However, it is 

more likely that mechanical stimulation is directly sensed in internal tissues, at least 

in the root pericycle, where there is an elevation in free cytoplasmic Ca2+ as a 

response to bending (Richter et al. 2009). 

 

1.3. Role of the cell wall in plant mechanics 

 

As previously mentioned, in plant cells, the cell wall controls the speed and 

direction of growth driven by internal turgor pressure. Cell wall behaviour is 

regulated by molecular effectors located in the cell wall. Cell walls have a very 

important role in plant cells as, in addition to absolute growth, they control the 

shape and size of all types of cells, thus shaping tissues and organs.  

 

1.3.1. Introduction to plant cell walls 

 

Classically plant cell walls are divided into two categories: primary and secondary 

cell walls. Primary cell walls are relatively thin and dynamic and surround cells that 

are either growing or can potentially grow. Secondary cell walls are laid down after 

growth has ceased, and provide mechanical stability. They are thicker and can be, 

lignified such as those present in vessels and fibres. Nowadays it is known that 

almost all differentiated cells present a characteristic type of cell wall. Therefore, cell 

walls exist in a spectrum of varieties with primary and thickened, lignified 

secondary walls at the extremes (Keegstra 2010). 
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The primary and most abundant component of the plant cell walls is cellulose. It is a 

polymer of β-1,4-linked glucans. These chains are able to interact with each other 

through hydrogen bonds giving rise to a crystalline structure, the cellulose 

microfibril (Somerville 2006). Apart from cellulose, plant cell walls contain other 

polysaccharides in their matrix. These can be separated into two categories. One of 

these is the pectic polysaccharides, which include xylogalacturonan, 

rhamnogalacturonan and homogalacturonans. The different pectins are not present 

in the wall as independent molecules, but as covalently linked chains. These chains 

consist of a backbone of D-galacturonic acid, which can be substituted in certain 

positions by other sugars. From this backbone, complex side chains emerge. These 

side chains are formed by 12 types of glycosyl residues, bonded by 22 different sorts 

of bonds (Harholt et al. 2010). The pectin matrix is often described as a hydrated 

“gel” or “filler” which occupies much of the space between cellulose microfibrils. 

The other category is the hemicellulosic polysaccharides. They include xylans, 

xyloglucans, glucomannans and mixed-linkage glucans. These are polysaccharides 

that present backbone chains of sugars with β-1,4 links. They interact with, and 

cross-link cellulose microfibrils, and in some cases have been shown to interact with 

lignin (Scheller and Ulvskov 2010).  

 

Lignins comprise another important saccharidic component of cell walls. They are 

derived from three main monolignols: p-coumaryl, coniferyl and synaptyl alcohols. 

These monolignols are present in discrete quantities in certain types of cell walls. 

There they are polymerised and form cell wall reinforcement components (Davin 

and Lewis 2005). 

 

Plant cell walls are also rich in proteins and glycoproteins that include both 

enzymes and structural proteins (Rose and Lee 2010). One example are the 

arabigalactan proteins. These are structural proteins present on the plasma 

membrane and in the cell wall. They have been proposed to have a role in cell 

surface recognition and signalling (Ellis et al. 2010). A very important group of 
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enzymes present in cell walls are expansins. They are involved in cell wall 

modifications during cell elongation (McQueen-Mason et al. 1992) and have been 

proposed to play a role in the regulation of tissue differentiation (Goh et al. 2012; 

Pien et al. 2001; Reidy et al. 2001) 

 

Many different models have been proposed to explain how cell wall components 

are organized to form the final structure. One of the first models that described the 

molecular structure of the cell wall was that presented by Keegstra and 

collaborators in 1973. Thanks to the action of degradative enzymes, cell wall 

fragments could be isolated, purified and characterised structurally. Based on 

results from such experiments they proposed that covalent connections were 

possible between xyloglucans and pectic polysaccharides. These pectins could also 

bind to the structural proteins of the cell wall. Due to the existence of strong bonds 

between cellulose and xyloglucans they proposed that all the components would be 

arranged in a crosslinked network (Keegstra et al. 1973). Aided by the advances in 

electron microscopy, Carpita and Gibeaut proposed in 1993 a much more detailed 

and accurate model of how the polysaccharides are arranged in the cell wall. They 

proposed a network of cellulose microfibrils interlocked with xyloglucan chains. 

They stated that this network is embedded in a matrix of pectic saccharides (Carpita 

and Gibeaut 1993). More recently, the use of molecular biology techniques helped to 

elucidate roles of specific molecules in the structure and function of cell walls 

(Somerville et al. 2004). 

 

It is important to note that the cell wall is not a static structure, but a highly dynamic 

one. New wall material is being continuously synthesized and laid down during cell 

growth. Some of this new material is intercalated with existing material, and some is 

laid down directly adjacent to the membrane, pushing “old” material outwards. 

This process can lead to non-uniformity within the cell wall. One example of this is 

that of pectins, which are believed to be strongly synthesised soon after cell division. 

This gives rise to a “middle lamella”, the border between the cell walls of two cells, 
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which is rich in pectic components, and plays an important role in cell adhesion 

(Keegstra 2010). 

 

1.3.2. Role of cell walls in the determination of plant 

mechanical properties 

 

During growth, newly synthesised cellulose is constantly deposited outside the 

plasma membrane, preventing the wall from becoming thinner and, therefore, 

weaker. These deposited cellulose microfibrils have a very high tensile strength, and 

are the principal determinant of cell stiffness (resisting turgor pressure). Cellulose 

microfibrils have a filamentous structure and are often aligned in parallel arrays, 

forming bundles. This characteristic means that they are also the main determinants 

of cell wall anisotropy. This is a term describing the situation when a cell wall has 

different mechanical properties when stressed in different directions. In situations 

where cells are surrounded by organized bands of cellulose microfibrils, such as it is 

the case of internal stem tissues, cells generally show very little growth in the 

direction parallel to the spirals of cellulose, and grow mainly perpendicular to fibrils 

(Baskin 2005; Cosgrove 2005; Kutschera 2000; Kutschera and Niklas 2007; Lloyd and 

Chan 2004; Marga et al. 2005). Expansion driven by turgor pressure is a non-

reversible process and it involves a gradual and slow reorganization of microfibrils 

and their surrounding matrix as the cell grows. This matrix first loosens (a process 

thought to involve the activity of enzymes such as hydrolases, transglycolases and 

expansin (Cosgrove 2005)) allowing the microfibrils to slide and help the cell wall to 

yield to the forces generated by the internal pressure. 

 

Cellulose orientation not only affects the physical properties of primary cell walls. 

For instance, it has been observed that the orientation of cellulose fibrils relative to 

the longitudinal axis in the cell wall affects the mechanical properties of wood. This 

was studied by small-angle-X-ray scattering, and it was seen that the angle was 
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higher in the case of softwood than in hardwood. It was also noted that the angle 

changed substantially from one species to another, and correlated with their 

mechanical properties (Lichtenegger et al. 1999).  

 

Components other than cellulose fibrils also help to determine the mechanical 

properties of the wall. Amongst them are hemicelluloses. These are complex 

polysaccharides which are divided in several groups, including xyloglucan, xylans, 

mannans, and mixed-linkage glucans (Buchanan et al. 2000). It is believed that they 

are responsible of forming a three-dimensional network, linking cellulose 

microfibrils. This network has been proposed to be the main load-bearing structure 

of the cell wall (Fry 1989; Hayashi and Kaida 2011; Somerville et al. 2004; Willats et 

al. 2001).  

 

Xyloglucan, in particular, has a role of great importance in the mechanical 

properties of cell walls. xxt1/xxt2 double mutant plants lack detectable xyloglucan, 

as the genes affected code for key enzymes for its synthesis; Xyloglucan 

Xylosyltransferase 1 and 2 (Cavalier and Keegstra 2006; Faik et al. 2002). This double 

mutant leads to slight dwarfism, and the formation of atypical root hairs, but most 

importantly the cell walls show significant changes in their mechanical properties, 

as they present a reduced stiffness and an decrease in resistance to imposed 

mechanical stress before breaking (Cavalier et al. 2008).  

 

Classically, it has been thought that the mechanical characteristics of the cell wall 

depended only on the network formed by cellulose fibrils and hemicelluloses. 

Recently, however it has been shown that pectins also play very important roles 

(Ryden et al. 2003). Mutants with pectin alterations, such as murus1 and quasimodo2, 

show a reduced tensile stiffness in their hypocotyls when compared to wild-type 

plants. Based on the existing mechanical data and the current cell wall models, it is 

thought that that the hemicellulose xyloglucan, which is generally folded, may 

unfold between cellulose fibrils during straining of the hypocotyls. Pectins may 
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resist this unfolding (Abasolo et al. 2009). In fact, pectins have been proposed to 

play a key role in both the determination of the mechanical properties of organs and 

on organ initiation. It is believed that processes as fundamental as phyllotactic 

patterning  are under the control of the methyl-esterification of the pectins in the cell 

wall, and therefore the activity of pectin methylesterases (Braybrook et al. 2012; 

Höfte et al. 2012; Peaucelle et al. 2011; Peaucelle et al. 2008). 

 

1.4. Role of mechanical forces in patterning 

 

Despite molecular techniques providing a large amount of information on how cells 

behave; the processes that integrates mechanical signals within single cells, plant 

tissues and organs still remain unknown. Plants generate their complexity by a 

process of reiterative growth, meaning that cells, tissues, meristems and organs, are 

produced in a repeated and predictable arrangement. Patterning is a highly complex 

process, and understanding its co-ordination necessitates knowledge of how cells 

interact and communicate (Dupuy et al. 2008). Bending of roots triggers new lateral 

roots to emerge in the bent area and stress-driven buckling has been proposed as a 

method for primordium initiation in both the capitula of Helianthus annuus 

(sunflower) and phyllotaxial events on shoot apical meristem (Dumais 2007; Newell 

et al. 2008; Yin et al. 2008). Thus organogenesis and patterning are determined, in 

part, by mechanical forces.  

 

Recent studies suggest that patterns of plant organ emergence and formation may 

depend on a very complex network that links the phytohormone auxin with 

mechanical signalling (Kuhlemeier 2007). In the Solanum lycopersica shoot apical 

meristem it has been shown that mechanical strain in the plasma membrane 

regulates the abundance of the auxin transporter PIN1 (Li et al. 2012a; Nakayama et 

al. 2012). Interestingly, auxin accumulation is directly linked with cell wall physical 

properties, both through non-transcriptional and transcriptional processes (Murray 
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et al. 2012). Auxin is thought to trigger the acid growth mechanism, described in a 

model that proposes that cell growth can be driven by an acidification-dependent 

cell wall loosening process. In particular, the activity of plasma membrane H+-

ATPases has been shown to be induced by auxin (Takahashi et al. 2012). In addition 

a transcriptional pathway working over longer periods of growth has been 

suggested, as auxin deficient mutants, such as arx3, have dwarfed phenotypes 

(Leyser et al. 1996). Transcriptional analyses showed that a set of approximately 100 

genes are repressed in this mutant in comparison to wild-type plants (Overvoorde 

et al. 2005). These genes include several pectin methylesterases, known to be 

directly associated with organ emergence (Peaucelle et al. 2011; Peaucelle et al. 

2008).  

 

Since both cell walls and mechanical signals can be thought of as regulators of cell 

plant growth, it seems likely that a significant interplay exists between the plant cell 

wall and the perception of mechanical signals. One possibility is that a feedback 

loop exists whereby mechanical signals lead to local changes in cell wall deposition, 

and these changes in the cell wall subsequently alter the capacity of the cell to 

perceive mechanical signals. Although this idea is appealing it is technically difficult 

to investigate, especially given the current and extremely frustrating lack of 

knowledge regarding the nature of mechanoreceptors in plants. 

 

1.5. How are mechanical signals perceived and what 

responses do they elicit? 

 

1.5.1. Mechanoperception in animals 

 

As in most aspects of molecular biology, much more is known about 

mechanoperception in the animal field in comparison to what is known in the plant 

field. The best described mechanisms of mechanosensing in animal cells are the ones 
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linked to membrane deformation. This deformation is not sensed directly by the 

membrane, but through stretch deformable proteins embedded in membranes. 

 

The basic concept that any mechanosensitive system has to follow is that it should 

be able to change between different conformational states. These states should have 

specific functional properties such as a response to the tension present in the 

membrane in which the system is present. The topology of proteins depends of 

several parameters. These parameters are the conformational equilibrium to tension 

and the functional properties of the relaxed and stimulated states. In the case of 

mechanosensitive channels, the best described mechanosensitive molecules in 

animals, the functional property that changes between one state and the other is the 

capacity to mediate the transport of solutes across the membrane (Haswell et al. 

2011). The activity of this type of channel can be described in a very simple and 

reductionist way, as the mechanical tension-dependent equilibrium between two 

functionally different states, closed (C) and open (O), that present different 

conductance properties (Sukharev et al. 1997). This can be expressed by the a kinetic 

scheme, 

  
 
↔    

where k is the equilibrium constant between both states in total absence of tension. 

The presence of tension in the membrane displaces this equilibrium towards the 

open side of the equation. This is a consequence of changes in its topology, which 

can change the energetic balance of embedded proteins, stabilizing, for instance, the 

open state of a channel and therefore activating a transport of solutes (Phillips et al. 

2009).  

 

Several proteins have been described as good models for mechanosensitive channels 

in yeast and animals. Some of these belong to the transient receptor potential (TRP) 

channel family and their homolog in yeast, TRPY (Christensen and Corey 2007; 

Folgering et al. 2008), the TREK K+ channel family (Folgering et al. 2008) and the 
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DEG/ENaC voltage-independent Na+ channel family (Bianchi 2007; Christensen and 

Corey 2007). 

 

It has been proposed that phenomena other than membrane deformation may also 

be responsible for perception of mechanical stresses in animals. Ingber proposed a 

model in which surface adhesion receptors would act like “pegs” and mechanically 

couple the extracellular matrix with the cytoskeleton. For this reason integrins have 

been proposed to have a role in mechanoperception (Ingber 1991; Ingber and 

Jamieson 1985; Wang et al. 1993). 

 

Integrins are transmembrane heterodimers, which in humans have 18 α-subunits 

and 8 β-subunits. These subunits are known to be combined in at least 24 different 

ways, giving rise to a multitude of different potential receptors. These different αβ 

heterodimers perform different functions, with both tissue and ligand specificity. 

Even though the prototypical ligand of integrins is fibronectin, there are several 

other binding proteins such as laminin or collagen, all of which are components of 

the extracellular matrix (Barczyk et al. 2010; Hynes 2002). Nevertheless, all integrins 

share a common general structure and mechanism of action (Anthis and Campbell 

2011). 

 

In order to test the hypothesis that integrins were mechanoreceptors, a very elegant 

technique was developed by Ingber and his collaborators. They created a magnetic 

cytometry technique in which they could control the mechanical stress applied 

directly to the integrins of mammal endothelial adherent cells. Integrins were bound 

to magnetic microbeads coated with integrin ligands. In this way the mechanical 

forces applied to single molecules could be controlled by magnetic fields (Alenghat 

et al. 2004; Matthews et al. 2006; Overby et al. 2005; Wang et al. 1993; Wang and 

Ingber 1994). Thanks to this technique they observed that when integrins are 

mechanically stimulated, cells are stiffened, a response that does not occur when 
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growth factor receptors or transmembrane scavenger receptors are stressed (Wang 

et al. 1993; Yoshida et al. 1996). 

 

It was observed that this stiffening response involved more players than just 

integrins. In fact, this process is mediated by a mechanical interplay in which all 

three types of cytoskeleton elements participate: microfilaments, microtubules and 

intermediate filaments (Geiger et al. 2009). It was also observed that the level of 

stiffening could be increased or decreased, depending on the enhancement or 

dissipation of cytoskeletal tension, known as pre-stress (Pourati et al. 1998; Wang et 

al. 1993; Wang and Ingber 1994). It was shown that the level of stiffening varies 

proportionally to the level of pre-stress in the cell (Wang et al. 2001; Wang et al. 

2002). This led to the deduction that the cytoskeleton is a key player in the 

regulation of the response to mechanical stimulation. 

 

In the last few years some light has been shed on how mechanoperception can 

translate stimulation into a biochemical signal. For instance, it has been shown that 

the tension present in the cytoskeleton can change the conformation of p130Cas 

(Sawada et al. 2006), a regulator of cell mobility (Meenderink et al. 2010). This 

change opens the molecule and a hidden phosphorylation site, target of the Src 

family of kinases, emerges and is phosphorylated. This phosphorylation event leads 

to the activation of p130Cas’ enzymatic activity, which is a transducer of mechanical 

stimulation to downstream signalling molecules, that include several types of 

kinases and tyrosine phosphatases (Geiger 2006; Sawada et al. 2006). 

 

It has also been shown that focal adhesions, which are formed by integrins at sites 

exposed to  high stress, are mechanically reinforced by other proteins, such as talin 

(del Rio et al. 2009) and α-catenin (Yonemura et al. 2010). When a mechanical force 

is applied to these adhesion complexes, talin rods stretch and expose binding sites 

for vinculin (del Rio et al. 2009; Grashoff et al. 2010). The observations gave rise to a 

new concept, which is that any deformable structure can act as a potential 



37 

 

mechanosensor through conformation changes which are a consequence of strain 

(Farge 2011). 

 

In addition to mechanosensitive proteins, another primary mechanosensing entity 

has been proposed to exist, in the form of the plasma membrane itself. It has been 

experimentally proved that membrane tension is able to block endocytosis and thus 

reduce the degradation of receptor-ligand complexes within endosomes (Rauch et 

al. 2002; Raucher and Sheetz 1999). In the presence of receptor ligands, this lack of 

endocytosis and degradation could increase the number of activated receptors at the 

membrane and thus enhance the activation of downstream pathways. This 

mechanism has been shown to be important in regulating the internalization of 

BMP2, affecting the differentiation processes of bone cells and myoblasts (Rauch et 

al. 2002). In this case the membrane is acting as the mechanosensor itself, without 

the need for any embedded protein (Farge 2011). 

 

1.5.2. Mechanoperception in plants 

 

 Animal mechanoreceptors, such as integrins, link the cytoskeleton with the 

extracellular matrix, which has very distinct chemical and structural compositions 

in animals and plants. In animals the extracellular matrix is mainly composed of 

modified proteins, whilst in plants it is mainly composed of polysaccharides. 

Structurally the presence of a cell wall, in addition to allowing the generation of 

high internal turgor pressures, may also mean that plants and animals perceive 

mechanical stress differently. These differences could well mean that completely 

different molecules might have adapted to perform the function of receptors of 

mechanical stress in animals and plants (Kasprowicz 2011a).  

 

Despite the analysis of several higher plant genomes, no true integrin homologues 

have been found. Nevertheless, in plants experimental data that suggests the 
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presence of integrin-like proteins. In animals, integrins bind to an Arg-Gly-Asp 

(RGD) motif, which is present in extracellular matrix proteins, which are responsible 

for adhesion. In Arabidopsis, proteins have been identified that have high affinity for, 

and can bind to, RGD motifs. In fact, if peptides containing the RGD sequence are 

added to plasmolysed Arabidopsis cells they are capable of disrupting adhesion 

between the plasma membrane and the cell wall (Senchou et al. 2004). Amongst the 

12 RGD -binding proteins identified in Arabidopsis, eight are predicted to encode 

receptor-like kinases (RLKs). Even though these proteins have been thoroughly 

described structurally, very little is known about their physiological role 

(Kasprowicz 2011a). These RLKs, amongst others (described below) might be 

involved in mechanosensing.  

 

1.5.2.1. Cell walls as mechanosensors 

 

In other walled model organisms, such as yeast, it has been proposed that the cell 

wall may act as an osmosensor. This process happens through sensing the integrity 

of the cell wall in response to changes in volume, and thus, the apparition of new 

tensions and forces in the periphery of the cell (Hohmann 2002). The pathways 

triggered by this type of stress have as players, a family of plasma membrane 

proteins containing a periplasmic ectodomain. It has been proposed that this 

ectodomain functions as a cell surface sensor, which transmits the perceived signals 

of cell wall integrity to the small G-protein Rho1. Changes in the architecture of the 

actin cytoskeleton are observed in response to Rho1 activation. Interestingly the 

actin cytoskeleton controls several subcellular processes, such as cell polarization 

and synthesis of new cell wall components (Levin 2005).  

 

The detection of cell wall integrity as a means of mechanical stress perception has 

been proposed for plant cells (Marshall and Dumbroff 1999; Nakagawa and Sakurai 

2001). Members of the Catharantus roseus RLK1-Line (CrRLK1L) protein-kinase 
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family of proteins, with 17 members in Arabidopsis, have been proposed as putative 

cell wall integrity sensors (Boisson-Dernier et al. 2011; Hematy and Hofte 2008). One 

protein member of this family is Theseus1 (THE1), which is expressed in elongating 

cells and in the vasculature. It has been shown that this protein can mediate growth 

repression in the presence of perturbations in cellulose synthesis in growing cells. It 

has also been observed that, in the case of cellulose deficient mutants, THE1 controls 

the ectopic accumulation of lignin (Hematy and Hofte 2008; Hematy et al. 2007). 

 

Another member of this family is Feronia (FER), which is localized almost 

ubiquitously but has a known function in the mycropilar pole of synergid cells 

(Escobar-Restrepo et al. 2007). It has been proposed that this protein can sense cell 

wall changes when synergids encounter pollen tubes (Rotman et al. 2008). Two very 

closely related proteins to FER are Anxur1 (ANX1) and Anxur2 (ANX2). These 

proteins, unlike FER, are present only in the tip of the pollen tube (Boisson-Dernier 

et al. 2009; Miyazaki et al. 2009). Double mutants for anx1 anx2 present a phenotype 

of almost complete male sterility as pollen tubes burst (Boisson-Dernier et al. 2009). 

This phenotype is very similar to that of vanguard (vgd) mutants, which lack a cell 

wall pectin methylesterase that plays an important role in the rigidification of cell 

walls (Jiang et al. 2005; Mohnen 2008). 

 

Other CrRLK1L family genes, such as Hercules1 (HERK1), have been proposed to act 

as regulators of cell growth pathways (Boisson-Dernier et al. 2011), as the double 

herk1 the1 mutant presents a down-regulation of several cell wall loosening enzymes 

(Guo et al. 2009).    

 

Apart from being an indicator of the mechanical state of the cell via their integrity, 

cell walls might also act in the mechanosensing processes in a more direct way. In 

plants, as in animal cell wall, plasma membrane and cytoskeleton form a 

continuum. It is believed that this complex is involved in perception and 

transduction of signals that come from the environment to the inside of cells (Wyatt 
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and Carpita 1993). A large number of plasma membrane proteins present 

ectodomains embedded in the cell wall. Some also interact strongly with 

components of the cell wall. It has been proposed that these proteins may act as 

linkers within the continuum. The ectodomains interacting with the cell wall are 

connected to transmembrane domains and, in many cases to cytoplasmic domains 

that can transmit the signal sensed in the cell wall (Kasprowicz 2011b).  

 

This is a similar scenario to the animal integrin model presented previously. 

Nevertheless, there are no integrin homologues present in plants, where other 

molecules have been suggested to play an equivalent role (Baluška et al. 2003). Some 

examples are of these are lectin receptor kinases (Gouget et al. 2006), 

arabinogalactan proteins (Pont-Lezica et al. 1993) and wall associated kinases 

(WAKs) (Anderson et al. 2001; Kohorn 2001; Verica and He 2002). In particular, it 

has been shown that WAK2 interacts with pectins present in the cell wall. It is likely 

that the signal generated by this protein is transduced by the Mitogen-Activated 

Protein Kinase (MAPK3). The latter is capable of activating the vacuolar invertase, 

which produces fructose and glucose from sucrose. These products could 

collaborate in the increase of osmotic pressure, thus triggering cell elongation 

(Kohorn et al. 2009; Kohorn et al. 2006). Indeed, if grown without any available 

sucrose, wak1 mutants show a reduced rate of cell elongation. This phenotype can be 

rescued by the expression of a maize sucrose phosphate synthase (Kohorn et al. 

2006). However, although it is tempting to speculate, no concrete links have yet 

been made between mechanical signals and the function of WAK2. 

 

Although there is still considerable controversy regarding the role of Receptor 

kinases as mechanosensors in plants, it is widely accepted that membrane stretch-

dependent ion currents, especially Ca2+ currents, are key players in 

mechanoperception in plants. 
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1.5.2.2. Mechanosensitive ion channels 

 

The idea of the presence of mechanosensitive ion channels is not new, and they have 

been previously described in both prokaryote and animal cells (see above). In 

plants, action potentials were successfully recorded in the specialised 

mechanosensitive leaves of Dionaea muscipula as early as the 19th century (Burdon-

Sanderson and Page 1876; Darwin 1893; Sanderson 1872).  

 

In plants, the activities of multiple mechanosensitive channels have been described. 

When a patch pipette is attached to the plasma membrane of a plant protoplast their 

activity can be measured since, when forming a tight seal between the membrane 

patch encircled by the tip of a glass capillary, the patch tends to be exposed to 

negative hydrostatic pressure. While establishing seals, most patch clampers have 

experienced current fluctuations in the picoampere range (Cosgrove and Hedrich 

1991; Ding and Pickard 1993; Martinac et al. 1987), which can no longer be seen 

when the negative pressure is released (Hedrich 2012). These currents are triggered 

by mechanical forces on the membrane, and are generally attributed to stretch-

activated or mechanosensitive channels (Sachs 2010).  

 

Even though several mechanosensitive channels have been proposed in animals, 

these putative mechanosensitive channels do not have any known homologs in any 

sequenced plant genome to date (Monshausen and Gilroy 2009b).  

 

In contrast, bacterial mechanosensitive channels have been, so far, a very useful 

template for the identification of potential plant mechanoperceptors. Bacterial 

mechanosensitive channels of small (MscS) and large (MscL) conductance work in a 

similar way to the animal mechanosensitive channels described above. When 

tension is present in the membrane they open, allowing water to flux out of the cell 

in the case of hyperosmotic stress and, therefore, they regulate internal osmotic 

pressure and prevent cells from bursting (Corry and Martinac 2008). These proteins 
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were first identified from their electrophysiological activities regulated by 

membrane stretch. They were first described as plasma membrane proteins seen in 

studies carried out in giant E. coli spheroplasts (Cui et al. 1995; Martinac et al. 1987; 

Sukharev et al. 1993). Their ion transport activities were characterised by 

heterologous expression in the oocytes of the African frog Xenopus laevis and 

subsequently in patch clamp experiments (Maksaev and Haswell 2011).  

 

In Arabidopsis ten MscS-like genes have been identified, but only the single 

knockouts of two of them (msl2 and msl3) gave a phenotype, which affects plastid 

division, with especially enlarged plastids found in the case of the double mutant 

msl2 msl3 (Haswell and Meyerowitz 2006; Wilson et al. 2011). It has been recently 

shown that these genes play a key role in the maintenance of osmotic balance in 

plastids, consistent with their roles in bacterial systems (Veley et al. 2012). The 

quintuple mutant of all root expressed MSL genes (msl4 msl5 msl6 msl9 msl10) has 

been shown to disturb the mechanosensitive channel activity of root cells. Even 

though there is no published material about the subcellular localization of most of 

these channels, it has been shown electrophysiologically that MSL9 and MSL10 are 

plasma membrane tension sensors (Haswell et al. 2008; Peyronnet et al. 2008). MSL9 

and MSL10 proteins are likely to be part of a multimeric Cl--permeable channel 

(Corry and Martinac 2008; Haswell et al. 2008). However, no developmental 

perturbations were reported to be associated with this electrophysiological 

phenotype, and, in addition, no major phenotypes are observed upon osmotic, salt, 

mechanical, dehydration and rehydration stresses (Haswell et al. 2008), suggesting 

the likely presence of other, as yet uncharacterized mechanosensitive channels in 

plants. 

 

A novel class of mechanosensitive channels, only recently discovered in animals, are 

the members of the Piezo family. Piezo1 and Piezo2 are expressed and have been 

characterized in animals (Coste et al. 2010). Piezo1 has been shown to be a cation 

selective channel (Gottlieb and Sachs 2012). Homolog genes of this family have been 
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found in all kingdoms. In Arabidopsis in particular, only a single gene that encodes a 

Piezo protein (At2g48060) is known. However, whether this protein presents any 

mechanosensitive channel function or not, remains to be demonstrated (Hedrich 

2012). 

 

1.5.2.3. Mechanical stimulation and Ca2+ transport 

 

For mechanosensitive Ca2+ channels in particular, activities have been recorded and 

physiologically characterized in various cell types. Nevertheless, the specific 

function and molecular identity of the molecules responsible for these currents are 

practically unknown (McAinsh and Pittman 2009).  

 

The MCA1 protein, which is expressed in Arabidopsis roots, has been described to be 

involved in Ca2+ influx. This protein was first identified in a screen for plant Ca2+-

permeable stretch-activated channels. In order to do this, a cDNA library was 

constructed in a yeast expression vector and expressed in mid1 mutants of 

Saccharomyces cerevisae. These lethal mutants lack a Ca2+-permeable stretch-activated 

channel (Kanzaki et al. 1999). Of all the screened transformants, one was found to be 

viable and the protein responsible was named mid1 Complementing Activity 1 

(MCA1). In Arabidopsis, loss of MCA1 activity in the mca1 mutant gives rise to 

problems in root growth and in responses to mechanical stress. If expressed 

constitutively, MCA1 gives rise to plants with strong defects in development and an 

increased basal Ca2+ uptake (Nakagawa et al. 2007). This gene was heterologously 

expressed in Chinese hamster ovary cells and in Xenopus laevis oocytes and a spike 

of free cytoplasmic Ca2+ was observed after stretching the membranes of the cells 

(Furuichi et al. 2012; Nakagawa et al. 2007). 

 

A single paralogue of the MCA1 gene was found in the Arabidopsis genome and 

named MCA2. These two genes are very similar in sequence and encode proteins 
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similar in their structure. Their N-terminus has a region with high homology to a 

putative regulatory element present in Oryza stativa protein kinases, an EF-hand 

(free Ca2+-binding structure) and a coiled-coil motif. Their C-terminus consists of 

several (2 to 4) transmembrane domains and a cys-rich domain, of which the 

function still remains to be described (Nakagawa et al. 2007). 

 

MCA2 was studied and found to be able to complement the mid1 mutant of yeast, 

suggesting functional similarities with MCA1. In contrast to MCA1 which is 

expressed almost exclusively in the root, MCA2 expression is practically ubiquitous. 

The expression of both genes overlaps in vascular tissues and neither is expressed in 

root hairs (Yamanaka et al. 2010). At a subcellular level, consistent with their 

predicted structure, both proteins are plasma membrane anchored (Nakagawa et al. 

2007; Yamanaka et al. 2010). MCA2 has been proposed to interact with molecules of 

the cell wall because if roots of MCA2-GFP plants undergo plasmolysis, part of the 

fluorescent signal of GFP remains in the cell wall (Yamanaka et al. 2010). 

 

Knockout mca2 mutants were obtained and they showed normal growth although 

defects in Ca2+ uptake were seen in their roots. In contrast, the double mutant mca1 

mca2 presents important growth defects, with retarded apparition of leaves and late 

bolting. This phenotype is also seen to a lesser extent in the mca1 single mutants, but 

not in the mca2 single mutant. Double mutants also show shorter roots than the 

single mutants and wild-type plants. MCA2 overexpressing plants gave no apparent 

phenotype, suggesting differences in the function of this protein to that of MCA1 

(Yamanaka et al. 2010). 

 

More recently the regions responsible for Ca2+ uptake in these proteins were 

identified. It was concluded that the EF-hand and the N-terminus of both proteins 

were necessary for Ca2+ transport. The coiled-coil region appeared to have a 

regulatory role, which was negative in the case of MCA1 and positive in the case of 
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MCA2. These genes have been proposed to work as Ca2+-permeable 

mechanosensitive Ca2+ channels (Nakano et al. 2011). 

 

Even though stretch-activated cation channels have been more widely studied, 

some activity of stretch-activated anion channels has also been described in plants. 

Mechanosensitive channels with a high affinity for anions have been detected in 

Nicotiana tabacum protoplasts. Pressure steps of 10 mmHg or more were observed to 

trigger transport through these channels (Falke et al. 1988). Channels with a very 

similar activity have also been detected in Arabidopsis mesophyll cells. These 

Arabidopsis channels have the characteristic that they are activated when positive 

pressure is applied, but not during application of negative pressure (Qi et al. 2004). 

  

In summary, even though many ion currents have been described to be activated by 

stretching of membranes in plants, only a few of the proteins mediating this 

transport have been identified. With the exceptions described above, almost no 

homologues of mechanosensitive ion channels from other kingdoms are found in 

plants. Thus, even though the plant electrophysiology field has advanced a great in 

the last few decades and several currents have been characterized, the molecules 

responsible for mechanosensitive fluxes, and particularly Ca2+ fluxes, still remain to 

be discovered. 

 

1.5.2.3.1. Effects of mechanically activated Ca2+ fluxes 

 

Studies carried out in roots of Arabidopsis expressing the free Ca2+ reporter Yellow 

Chameleon showed that mechanical stimulation triggers a transient elevation in 

cytosolic concentrations of free Ca2+ (Monshausen and Gilroy 2009b). Changes in 

Ca2+ concentrations can be triggered in different ways, including by touching single 

cells, bending whole organs or by endogenous mechanical stresses, such as those 

present during thigmotropic growth responses. In all these cases, the effect of 
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mechanical stimulation can be impeded using Ca2+ channel blockers, such as 

lanthanum (La3+) or gadolinium (Gd3+), which suggests the rise of cytosolic Ca2+ is 

initially due to an influx from the extracellular space and not from endomembrane 

compartments (Monshausen et al. 2009). 

 

In other higher plants, such as Nicotiana plumbaginifolia, the relation between 

mechanoperception and an increase in cytosolic Ca2+ was shown by transgenically 

expressing the bioluminescent protein aequorin, which can bind to free Ca2+ and 

emit a blue signal. When genetically transformed seedlings are stimulated 

mechanically by wind, there is an immediate and transient increase in Ca2+-

dependent luminescence of this protein (Cessna et al. 2001; Knight et al. 1992). 

 

A range of subcellular responses are thought to occur in response to local increase in 

the cytoplasmic Ca2+ concentration. Chloroplast movements, dependent on external 

Ca2+, were recorded after mechanical stimulation in the fern Adiantum capillus-veneris 

(Sato et al. 1999; Sato et al. 2001) and the moss Physcomitrella patens (Sato et al. 2003). 

For both cases, chloroplast relocation is abolished totally by Ca2+-permeable channel 

inhibitors. In Arabidopsis, after touching one point of the surface of a cotyledon 

epidermal cell, actin filaments, peroxisomes and endoplasmic reticulum are 

reorganised and accumulate beneath the point of contact shortly after the 

stimulation. Around the contact point a depolymerisation of microtubules also 

occurs. All these reorganization events of subcellular structures are likely to be 

caused by a local increase in the cytoplasmic Ca2+ concentration induced after 

mechanical stimulation (Hardham et al. 2008).  

 

Changes in the concentration of cytosolic free Ca2+ are also thought to be crucial for 

cell growth events, as has been demonstrated during the elongation of the pollen 

tube in various species, such as Lilium longiflorum, Nicotiana tabacum, Petunia hybrida, 

Gasteria verrucosa and Zea mays. This growth involves the extension of the cell wall 

and addition of plasma membrane components to the elongating tip. A cytosolic 
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gradient of Ca2+ is necessary for growth of the pollen tube, and any disruption of 

this gradient causes the cessation of the tip elongation (Franklin-Tong 1999; Messerli 

et al. 2000; Messerli et al. 1999). Thus, Ca2+ signalling seems not only to take part in 

growth signalling indirectly, but also directly. Stretch-activated Ca2+ channels have 

been identified in Lilium longiflorum pollen protoplasts (Dutta and Robinson 2004), 

so it is formally possible that this growth could be dependent upon mechanical 

stimuli, although this remains to be demonstrated. 

 

Responses to increased Ca2+ in the cytoplasm are likely to be mediated by calcium 

sensors.  In plants the presence of four families of Ca2+-sensor proteins, which are 

characterized by the presence of EF-hands (Ca2+-binding structures) has been 

demonstrated. Even though EF-hands were first described in animal proteins, they 

seem to be much more numerous in plants, with 250 putative proteins identified in 

the Arabidopsis genome in comparison to 132 in Drosophila and 83 in humans 

(Hashimoto and Kudla 2011).  

 

Out of the four protein families characterized as Ca2+ sensors in plants only one is 

highly conserved along eukaryotes, the calmodulin (CaM) family. The other three, 

the calmodulin-like protein (CML) family, the calcineurin B-like protein (CBL) 

family and the Ca2+-dependent protein kinase (CDPK) family are only found in 

plants, with homologues in just a few species of protozoans (Batistič and Kudla 

2009; Billker et al. 2004; Weinl and Kudla 2009). 

 

Of all families, only CDPKs present an enzymatic activity, a protein kinase activity. 

CaMs and CMLs are known to work by interacting with target proteins. In the case 

of CBLs, although they do not have an enzymatic activity themselves, they interact 

in a specific manner with a family of protein kinases named CBL-interacting protein 

kinases (CIPKs). Therefore, CDPKs and CBL-CIPK complexes can be considered 

“sensor responders”, while CaMs and CMLs are “sensor relays” (Hashimoto and 

Kudla 2011). 
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CDPKs form a family of 34 proteins in Arabidopsis. They present a serine/threonine 

protein kinase domain, an auto-inhibitory domain and a CaM-Like domain that 

contains four EF-hands (Hrabak et al. 2003). Activation of these proteins involves 

the displacement of the auto-inhibitory domain as a consequence of Ca2+ binding 

(Ludwig et al. 2004). This is followed by a self-phosphorylation event that 

contributes to a state of full kinase activation. Targets of these proteins consist of a 

wide range of membrane, cytoplasmic and nuclear proteins (Hashimoto and Kudla 

2011).  

 

CBL proteins show a partial similarity to animal calcineurin and Ca2+-sensors in 

neurons. They interact specifically with CIPKs, which are serine/threonine kinases 

(Kudla et al. 1999; Shi et al. 1999). The Arabidopsis genome contains 10 CBL-coding 

genes and 26 CIPK genes (Weinl and Kudla 2009). The encoded proteins can be 

paired in several different combinations which appear to be very stable in in vivo 

conditions and, therefore, can be considered as complexes (Batistič et al. 2008; 

Batistič et al. 2010). It is believed that the different combinations determine target 

specificity (Batistic and Kudla 2004). Interestingly, several ion channels have been 

shown to be targeted by these complexes (Ho et al. 2009; Li et al. 2006; Xu et al. 

2006a). 

 

CaMs in plants show a high structural homology to those in animals. In Arabidopsis 

there are 7 genes that encode for CaMs (Hashimoto and Kudla 2011). In addition, 50 

genes encode for CMLs, which are thought to have evolved from ancestral CaMs, 

and show a difference in the number of EF-hands. As in animals, CaM-dependent 

kinases exist and are known to interact specifically with different CaMs/CMLs 

(Zhang and Lu 2003). These proteins have been shown to play a key role in 

regulation of gene expression, as several transcription factors are regulated by 

phosphorylation mediated by these kinases (Finkler et al. 2007; Galon et al. 2010; 

Kim et al. 2009; Liu et al. 2008).  
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In addition to all these relatively direct effects to the presence of free Ca2+ in the cell, 

more indirect effects are also likely to take place. A model of possible plasma 

membrane signalling events in response to mechanical stimulation has been 

proposed by Monshausen and Gilroy. Membrane tension leads to a change in 

structure and opening of a Ca2+-permeable channel or channels (Monshausen and 

Gilroy 2009a; b). This would cause a peak in free cytosolic Ca2+, amplified locally by 

release of internal calcium stocks in the ER, which in turn would be sufficient to 

activate a proton transporter. These transporters may acidify the cytosol and 

alkalinize the cell wall. In parallel, a NADPH oxidase is thought to be activated by 

Ca2+, generating an accumulation of ROS in the cell wall, which could leak back to 

the cytoplasm (Monshausen et al. 2009). Changes in pH and the accumulation of 

ROS have a profound effect on cell physiology. Apart from their roles as modulators 

of gene expression (Apel and Hirt 2004; Lapous et al. 1998) many other non-

transcriptional responses have been described. For example, it is known that pH is a 

regulator of many plasma membrane transporters (Blatt 1992; Regenberg et al. 

1995), of cytoskeleton associated proteins (Allwood et al. 2002; Frantz et al. 2008) 

and of aquaporins (Verdoucq et al. 2008).  Furthermore, alterations in extracellular 

ROS and alkalinisation of the cell wall caused by Ca2+-permeable channels 

(Monshausen and Gilroy 2009b) are likely to cause changes in the rigidity and 

growth of this structure by facilitating the formation of intermolecular crosslinks 

(Brady and Fry 1997; Cannon et al. 2008). These changes could underlie at least 

some of the thigmotropic responses observed in plants stressed mechanically in a 

periodic way.  

 

1.5.2.4. Effect of mechanical stimulation on gene expression 

 

In addition to cytoplasmic re-organization, mechanical stimulation is known to 

cause profound changes in gene expression. The first described touch-inducible 

genes in plants were the Arabidopsis TCH genes (Braam and Davis 1990). Of these 
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genes, three encode for possible Ca2+ sensors. Calmodulin 2 (CaM2) is encoded by 

TCH1 (Braam and Davis 1990; Lee et al. 2005). TCH2 and TCH3 code for 

Calmodulin-like 24 and 12 (CML24 and CML12), respectively (Braam and Davis 

1990; Khan et al. 1997; McCormack et al. 2005; Sistrunk et al. 1994). A genome wide 

microarray analysis to identify touch-inducible genes in Arabidopsis also detected an 

enrichment for genes encoding Ca2+-binding proteins amongst the most up-

regulated genes (Lee et al. 2005). This transcriptional response of genes encoding 

Ca2+ sensors to mechanical stimulation is also seen in species other than Arabidopsis. 

Solanum tuberosum and Vigna radiata show CaM and CML gene induction after being 

stimulated mechanically (Botella et al. 1996; Botella and Arteca 1994; Gawienowski 

et al. 1993; Ling et al. 1991; Oh et al. 1996; Perera and Zielinski 1992). Therefore, the 

touch-induced expression of genes encoding Ca2+ sensors is conserved throughout 

all higher plants (Chehbab et al. 2011). This could be considered as a possible 

feedback loop, in which an event of mechanical stimulation would cause an influx 

of Ca2+ into the cell, which in turn enhances the expression of Ca2+ sensors. The up-

regulation of these sensors would make the cell more sensitive in the case of 

subsequent mechanical stimulation events. 

 

As discussed previously, responses to mechanosensing lead to many morphological 

changes throughout the plant. These changes often implicate modifications in the 

cell wall. Plant size, form, and mechanical properties are determined, to a large 

extent, by the structural characteristics of the cell wall and its extensibility 

capabilities (Carpita and Gibeaut 1993; McNeil et al. 1984; Varner and Lin 1989). It is 

therefore relatively unsurprising that genes encoding enzymes involved in cell wall 

modification are regulated by mechanical stimulation. A very good example of this 

is a family of genes encoding endotransglucosylase/hydrolases (XTHs) (Braam and 

Davis 1990; Lee et al. 2005; Xu et al. 1995). This gene family is thought to be 

responsible for cell wall modification. In particular they have been proposed to 

incorporate xyloglucans into the cell wall via a “cut and paste” mechanism which 

both maintains the strength of the cell wall and facilitates cellular growth (Campbell 
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and Braam 1998; Liu et al. 2007; Maris et al. 2009; Osato et al. 2006; Shin et al. 2006). 

TCH4, part of the set of TCH genes first identified as touch-sensitive, is also known 

as XTH22 (Braam and Davis 1990). Lately, other cell wall modifying enzyme 

encoding-genes were identified as being up-regulated in response to mechanical 

stimulation, including 12 out of the 33 XTH encoding genes present in Arabidopsis, 

making this family one of the most highly represented amongst touch up-regulated 

genes (Lee et al. 2005). 

 

In fact a vast number of genes (equating to approximately 2.5% of the Arabidopsis 

genome) respond to mechanostimulation. In addition to Ca2+-binding proteins other 

genes shown to be to be highly regulated include genes potentially involved in the 

response to pathogens, suggesting a possible mechanosensitive component in plant 

defence. Genes that encode transcription factors are also regulated by touch. Indeed 

66 out of the 634 transcription factors whose expression was detected in this 

experiment were found to be regulated. A similar effect was seen in protein kinase 

encoding genes (Lee et al. 2005).  

 

These drastic changes in transcription levels are likely to present far reaching effects 

of immense complexity. Primary touch regulated genes can affect the transcription 

levels of a second tier of genes or have activities as protein modifiers. Thus the 

genetic response to mechanical stimulation remains obscure as and both the 

consequences and kinetics of these changes still remain to be described.  

 

1.5.2.5. Role of the cytoskeleton in mechanosensing 

 

In order to respond to mechanical stress, plant, as well as animal cells, need to be 

capable of sensing it and translating it into a signal. This signal should trigger 

cascades that end in changes of the cell metabolism. In order to explain this process, 

a new way of understanding cells was needed, as models of them as elastic balloons 
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filled with a viscous cytoplasm were not useful. Ingber visualized animal cells in a 

completely new way, as tents of cytoplasm and membrane outstreched over the 

cytoskeleton, like muscles and skin over a real skeleton (Ingber 1993; 1998). This 

idea is actually based on an architectural model, tensegrity. The term “tensegrity” 

was used for the first time by Buckminster Fuller, an American architect, to explain 

structures that rely on the balance between tensile and compressive elements, giving 

rise to a dynamic state in which there is a constant prestress which mechanically 

stabilizes all its constituents (Fuller 1961).  

 

In the case of animal cells, actomyosin fibrils can generate tension forces that are 

resisted by the extracellular matrix, neighboring cells and other components of the 

cytoskeleton. All elements of the system are in a permanent state of isometric 

tension so that a minor disturbance in only one of the elements will immediately 

trigger alterations in all the other components. The fact that the system is delicately 

balanced makes it very responsive to any sort of external stimulation (Ingber 1993; 

2003b). In contrast to actomyosin fibrils which are contractile and flexible, 

microtubules are stiff and rigid elements. They have a much higher rigidity than 

actin filaments and their behaviour can be compared to that of very thin glass fibers 

(Gittes et al. 1993).  

 

The tensegral model in cells is based in the assumption that mechanical stress is 

perceived by specialised receptor proteins spanning the plasma membrane of cells 

(integrins in the case of animals). The detected signal is then transmitted to the rest 

of the cells through changes in cortical and internal cytoskeleton networks (Ingber 

2003a; 2008; 2010; Wang et al. 2009). 

 

In the case of plants, even before the first description of microtubules was made by 

Ledbetter and Porter in 1963 (Ledbetter and Porter 1963), a cytoskeleton-like 

structure was predicted to exist on the basis of biomechanial considerations. The 

eminent biophysicist Paul Green started from the geometry of growing plant cells 
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and arrived at the conclusion that growth repartition was following a 

“reinforcement mechanism”. He predicted that cells were establishing and 

maintaining the mechanical anisotropy of cell walls. This would require a “yet-

unknown lattice of tubular elements that are oriented in an ordered fashion” (Green 

1962).  

 

Plant cells have a particularity that makes them work in a different way to animal 

cells, which is the prescence of a cell wall, a composite structure consisting of load-

absorbing elements (cellulose microfibers) that are embedded within an amorphous 

matrix (hemmicelluloses, pectins, proteins). The cell wall is generally described as 

combining bending flexibility with mechanical stability (Niklas 1992). The existence 

of this structure fullfils the tensegrity function, replacing the cytoskeleton interface 

of animals cells by the tensegrity of the cell wall of plant cells. The plant 

cytoskeleton is therefore not directly required to support cellular architecture, 

gaining a potential freedom to adopt other roles (Nick 2011). 

 

It has been proposed that this “freedom” in plants may have led microtubules to 

gain the funtion of being transducers for mechanical integration, even across the 

borders of cells, thanks to their high degree of rigidity (Nick 2011). 

 

1.5.2.5.1. Microtubules play a key role in plant 

mechanosensing  

 

 One of the most popular recent theories regarding microtubules in plants states that 

microtubules can respond to mechanical stimuli by reorienting in a parallel fashion 

to the main axis of the force present in the cell membrane (Hamant et al. 2008; 

Hardham et al. 1980). This transducing function has been reported specifically to 

have a strong impact during phyllotactic patterning (Traas 2013). The participation 

of auxin in the outgrowth of new primordia has been studied in depth (Hamant and 



54 

 

Traas 2010). Local accumulation of this hormone can lead to wall loosening and can 

increase growth rates. Recently, it has been shown that feedback mechanisms 

involving mechanical forces, developmental patterning and growth, also affect the 

localization of the auxin PIN transporters. In fact, a very high correlation is seen 

between the localization of the PIN transporters and microtubule orientation. 

Transporters are usually localized in membranes that are parallel to microtubules, 

and therefore along stress vectors (Heisler et al. 2010). In silico simulations showed 

that auxin fluxes regulated in this way could generate phyllotactic patterns identical 

to those seen in vivo (Heisler et al. 2010; Jonsson et al. 2012). Interestingly however, a 

mechanistic link between microtubule organization and PIN protein polarity has 

not yet been made, and it may be that both processes are regulated in parallel within 

cells rather than depending upon each other. 

 

A clearer and more concrete link has however been established between 

microtubules and cell wall deposition. Microtubules have long been proposed to 

guide the deposition of cellulose microfibrils in the cell wall (Heath 1974; Paredez et 

al. 2006), and therefore, determine the principal axis of force bearing in the tissue. It 

was observed as early as the 1960s that microtubule disrupting drugs, such as 

colchicine, lead to abnormal cell elongation (Green 1962). This fact, alongside the 

observation that microtubules and cellulose microfibrils align, gave rise to a theory 

proposing that microtubules orient the cellulose deposition process (Heath 1974; 

Ledbetter and Porter 1963). This theory originally became controversial and 

received criticisms (Himmelspach et al. 2003; Sugimoto et al. 2003). However, in the 

last few years it has been shown using fluorescently labelled cellulose synthase 

(CesA), that this enzyme tracks along microtubules in the cortical area of the cell 

(Paredez et al. 2006). 

 

The mobility of cesA complexes is proposed to derive from their catalytic activity. 

The process of cellulose microfibril immobilisation in the cell wall is thought to 

push the synthesising complex through the membrane (Bringmann et al. 2012a; 
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Emons et al. 2007; Guerriero et al. 2010). The co-localization of CesA and 

microtubules has been observed even in cases in which the later are being 

reoriented. Indeed, the rotation of these two elements, one driven by the other, has 

been proposed to explain polylamellate structure that outer epidermal cell walls 

have in the hypocotyl (Chan et al. 2010). 

 

Several models have been proposed to explain how microtubules might guide the 

self-generated motion of the the CesA complex. One model proposes that the closed 

space between cortical microtubules and the plasma membrane could form a sort of 

barrier that traps the synthesising complexes and constrains them to move along the 

microtubules (Giddings and Staehelin 1991). Another model, known as the 

“templated-incorporation” model, proposes that the synthesised cellulose 

microfibrils stick to a scaffolding determined by microtubules. In this case the 

deposition would be guided by the scaffolding and not directly by the microtubules 

(Baskin 2001; Wasteneys 2004). This “templated-incorporation” model coincides 

with the observation by Paredez and colleagues, that the CesA complexes are able to 

follow their linear path even if microtubules are not present (Paredez et al. 2006). 

 

Recent discoveries showed that the link between the CesA complex and 

microtubules is, in fact Cellulose Synthase Interacting 1 (CSI1) (Bringmann et al. 

2012b; Li et al. 2012b; Mei et al. 2012). CSI1 is a protein that contains 21 Armadillo 

(ARM)/β-catenin-like repeats (Gu et al. 2010). These ARM repeats are repetitive 

clusters forming a superhelix structure that acts as a protein-protein interaction site 

(Conti et al. 1998), through which CSI1 is capable of binding to microtubules (Li et 

al. 2012b; Mei et al. 2012). 

 

The discovery that CSI1 binds directly to microtubules and to CesA complexes 

allowed the proposition of  more detailed models explaining the observed 

microtubule-CesA allignment, even though several possibilities have been proposed 

to explain the role of this linkage protein. It has been proposed that gliding or 
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sliding of some nature has to exist in vivo, even though it has never described under 

in vitro conditions (Li et al. 2012b). One  model proposes that continuous and 

repeated switches may occur between CSI1 binding and a release of microtubules. 

This would result in a movement similar to that seen for ATP-dependent kinesins. 

This could be due to shape changes in CSI1, which is thought to form a “V” shape 

where the vertex binds the CesA complex and the “legs” bind microtubules (shape 

described in Gu et al. 2010). This motion has been proposed to be fuelled by cycles 

of phosphorylation and dephosphorylation (Bringmann et al. 2012a). Another 

proposed model suggests that the CesA complexes could move due to the energy 

generated by the complex itself during deposition of microfibrils of cellulose. In this 

case CSI1 would act as a mere link to the microtubule tracks that guide the 

synthesising complexes (Bringmann et al. 2012a). The main criticism to this is that if 

CSI1 was only a linker, the csi1 mutants should not show any change in the speed of 

movement of the CesA complexes. However, the speed of movement of the CesA 

complexes in the mutants has been described to be one third of that in wild-type 

plants (Gu et al. 2010). Therefore, CSI1 seems to be important for both the guidance 

and the funtion of CesA (Bringmann et al. 2012a). 

 

Through their role in guiding cellulose biosynthesis, microtubules have been 

proposed to control the growth direction and rate in plants (Chan 2012). Recent 

experiments performed in hypocotyls showed that microtubule-cellulose microfibril 

alignment is possibly also related to growth coordination of tissues. These studies 

found that the alignments of microtubules and cellulose microfibrils in the inner 

face of epidermal cells is always perpendicular to the growth direction during 

hypocotyl elongation (Chan et al. 2011; Crowell et al. 2011). This generates a co-

ordination in the microtubule alignment in all epidermal cells, independent of the 

elongation rate. It has been shown that this alignment in the inner face of the 

epidermis mirrors that of inner tissues. Furthermore, the orientation of these 

microtubules determines the direction of elongation (Chan et al. 2011; Crowell et al. 

2011). Other experiments support this same idea. One example is that if hormones 
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that affect the direction of growth, such as ethylene, are added to stems, the only 

microtubules that show changes in orientation are those present in internal tissues 

(Lang et al. 1982; Sawhney and Srivastava 1975). It is believed that this alignment of 

microtubules of the internal faces of epidermal cells is therefore a response to the 

tension generated by the expanding inner tissues (Chan 2012). 

 

The proposal that growth direction is driven by inner tissues came with the 

suggestion that the outer epidermal cell walls could be the determinant of the rate of 

growth. This is because, as discussed previously, they impose a mechanical 

constraint on the underlying tissues. In fact, this scenario was also predicted by 

previous research showing that the addition of growth rate regulating hormones, 

such as auxin and gibberelic acid, and phototropic and gravitropic stimulation 

generated the reorganization only of the microtubules underlying the outer 

epidermal cell wall (Bergfeld et al. 1988; Ishida and Katsumi 1992; Mayumi and 

Shibaoka 1995; Nick et al. 1990). Recent experiments in hypocotyls showed that the 

organization of these microtubules was transverse and persistant in internal 

epidermis cell walls, but was transverse only during events of rapid growth in outer 

epidermal cell walls (Chan et al. 2011) (figure 1-2). 
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Figure 1-2 Image of epidermal cells of slow-growing hypocotyls of 
Arabidopsis expressing TUA6-GFP. A non-coordinated microtubule 
orientation can be appreciated (A). Image of epidermal cells of rapid cell 
elongation hypocotyls of Arabidopsis expressing TUA6-GFP showing a cross-
border transverse arrangement of microtubules. Scale bar: 12 μm. From Chan 
et al. 2011. 

 

1.6. Is DEK1 involved in mechanoperception? 

 

A highly conserved, plant-specific phytocalpain has been shown to regulate several 

key aspects of plant growth. This protein is encoded in higher plants by the gene 

DEFECTIVE KERNEL1 (DEK1).  

 

AtDEK1 is a plasma membrane protein of 2159 amino acids, with a predicted 

structure of 21 transmembrane stretches and an extracellular loop. At its C-terminus 

AtDEK1 also contains a predicted intracellular domain with Cys protease activity, 

which has a high homology with the human m- CALPAIN domains II and III (in 

figure 1-2) (Lid et al. 2002). 
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Figure 1-3. A. Domain structures of different calpains: maize DEK1, human m-

calpain and Drosophila CG3692 calpain. B. Predicted structure of maize DEK1. 

Taken from Lid et al., 2002. 

 

1.6.1. Introduction to calpains 

 

Calpains are cytoplasmic, Ca2+-dependent cysteine proteases, with an activity 

comparable to that of papain. They are characterised by having a highly conserved 

molecular structure in the catalytic domain (Croall and DeMartino 1991; Murachi et 

al. 1981). The most thoroughly characterized members of this family of proteases are 

the human m- and µ-calpains, both of which were first purified in 1976 and 

described as Ca2+-activated proteases (Dayton et al. 1976a; Dayton et al. 1976b).  

 

These proteins are present in most eukaryotes and in a few eubacteria, but never in 

archaea (Sorimachi et al. 1997). They have a very high diversity in domain structure 

and physiological roles (Sorimachi et al. 2012). Single copies of calpain-coding genes 

have been found in a small number of protozoan genomes, such as those of 
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Plasmodium falciparum, Theileria annulata, Cryptosporidium parvum and Entamoeba 

histolytica (Abrahamsen et al. 2004; Gardner et al. 2005; Gardner et al. 2002; Loftus et 

al. 2005). However, no calpain-like structures could be identified in the genome of 

the human pathogen Giardia lamblia, a protozoan usually considered as the most 

basal eukaryotic species (McArthur et al. 2000). The calpains of protozoans present 

some structural similarities to the calpains present in plants and fungi, as they do 

not have EF-hands, Ca2+ binding structures (Croall and Ersfeld 2007). An expansion 

of calpain genes appears in some parasitic protozoans, such as Trypanosoma brucei, 

with 14 genes encoding calpain-related proteins, Leishmania major with 17 and 

Trypanosoma cruzi with 15 (Ersfeld et al. 2005). This tendency of having multiple 

genes coding for calpains is maintained in most animal genomes, with 14 genes 

generally present in mammals (Goll et al. 2003). Other vertebrates have at least one 

orthologue, though generally more, of mammal calpains (Sorimachi et al. 2011a). 

 

1.6.1.1. Structure of calpains 

 

The classical calpain structure, based on that of human m-calpain, is divided into 

four major domains (Imajoh et al. 1988; Ohno et al. 1986). Domain I (DI) is an N-

terminal α-helix that undergoes autocleavage events, either before or in parallel 

with external proteolytic activity. The conservation of this domain in other members 

of this protein family is low, and in some cases this region presents a completely 

different sequence and function (Margis and Margis-Pinheiro 2003). Domain II (DII) 

contains the catalytic core of the protein and is divided in two subdomains, IIa and 

IIb (Hata et al. 2001). Even though this domain does not have a known Ca2+-binding 

site, recombinant human calpains, composed only of DII, show in vitro activity only 

when incubated with Ca2+ (Hata et al. 2001). A cysteine residue in DIIa and histidine 

and asparagine residues in DIIb form the catalytic triad of this enzyme. It has been 

proposed that Ca2+ neutralizes the negatively charged residues in the active domain 

and causes a three-dimensional reorganization of DII, forming the “closed” active 
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site conformation (Hata et al. 2001; Moldoveanu et al. 2002). Domain III (DIII) has a 

β-sandwich tertiary structure. This resembles the C2-like (C2L) structure that can be 

found in a large number of enzymes, including Protein Kinase C and one 

phospholipase, both of which show a tendency to bind transiently to membranes 

(Corbalan-Garcia and Gomez-Fernandez 2010; Rizo and Südhof 1998). The C2L 

domain presents two regions rich in acidic amino acids, which present a negative 

charge that can be neutralized by Ca2+, thus becoming potential Ca2+ binding sites 

(Campbell and Davies 2012; Tompa et al. 2001). It has been suggested that the 

calpain C2L domain may bind to phospholipids in a Ca2+ dependent fashion, as seen 

for other C2 domains.  

 

DIV of m- and µ-calpains carries EF-hands, which are Ca2+-binding structures 

present in other Ca2+-binding proteins such as calmodulin (Blanchard et al. 1997; Lin 

et al. 1997). However, this structure is not present in all calpains, even though most 

are Ca2+-dependent with respect to their protease function (Margis and Margis-

Pinheiro 2003). The presence or absence of EF-hand structures in calpains has led to 

a classification of this family of proteins into two subfamilies. The calpains that 

present this structure, such as m- and µ-calpain, are considered part of the classical 

calpain subfamily and are present only in animals and in the protozoan Tetrahymena 

thermophyla. Calpains that lack these Ca2+-binding structures, and which were 

originally thought to have a Ca2+-independent activity, are considered part of the 

atypical or non-classical calpain subfamily and can be found in all eukaryotes 

(Croall and Ersfeld 2007; Sorimachi et al. 2010). All protozoan calpains, apart from 

that of Tetrahymena thermophyla, lack a domain containing EF-hand-type Ca2+-

binding sites, as also do plant and fungal calpains, even though it has been proved 

that their activity depends on Ca2+ (Sorimachi et al. 2010). It is therefore likely that 

the evolutionary origin of “classic” calpains was a cysteine protease-calmodulin 

gene fusion, that gave place to the “classical” calpain structure, but which occurred 

exclusively within the animal lineage (Croall and DeMartino 1991; Croall and 

Ersfeld 2007; Goll et al. 2003; Sorimachi and Suzuki 2001). Interestingly, a 



62 

 

phylogenetic analysis of the active domain of calpains, with a phylogenetic tree 

rooted to the calpain-related sequence of the prokaryote Porphyromonas gingivalis, 

suggests that the EF-hand-containing calpains from animals (carboxy-terminal EF-

hands) and Tetrahymena (amino-terminal EF-hands) are well separated 

evolutionarily. This raises the intriguing possibility that the acquisition of EF-hands 

may have occurred through two completely independent gene-fusion events. 

Phylogenetic analysis also reveals a close relationship between this Tetrahymena 

calpain, which contains 21 transmembrane motifs, with the only plant calpain 

phytocalpain/DEK1, thus raising the possibility of a common evolutionary origin for 

these unusual calpains. A lateral gene transfer via a green alga-type endosymbiont 

of ciliates to plants is one of the possible mechanisms proposed and the one most 

widely accepted (Croall and Ersfeld 2007). 

 

Recently it has been proposed in the calpain community that the different domains 

should be renamed more descriptively (Ono and Sorimachi 2012; Sorimachi et al. 

2011b). The proposal is to rename the Protease Core domains PC1 and PC2, instead 

of IIa and IIb. Domain III would be renamed C2L, standing for C2-Like domain. As 

domain IV contains Penta-EF hands it has been proposed to refer to it as PEF 

domain (Campbell and Davies 2012). 

 

1.6.1.2. Localization and activity of calpains 

 

The subcellular localization of calpains was studied by Hood and colleagues in 

human lung adenocarcinoma cells. They showed through immunofluorescence 

techniques that calpains co-localized with the ER marker proteins Calcinexin, a 

transmembrane chaperone, and the chaperone Grp78/KDEL, present in the lumen of 

the ER. Their results gave rise to the suggestion that calpains were associated with 

the cytoplasmic face of the ER, as well as the luminal side. Through very similar 

experiments they showed that calpains are also co-localized with the vesicle marker 
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protein COPβ and the Golgi apparatus marker protein P230. Through velocity 

gradient centrifugation it was shown that calpains also associate with a plasma 

membrane compartment (Hood et al. 2004). Calpains had been classically thought to 

be principally cytoplasmic proteins (Sato and Kawashima 2001), but it has been 

recently proposed that some members of this protease family may also have an 

activity within mitochondria, constituting the mitochondrial calpain system (Kar et 

al. 2010). 

 

The crystalline structure of inactive classical calpains shows a topology that 

suggests that structural changes may occur in the presence of Ca2+, triggering the 

activation of the protein (Hosfield et al. 1999; Strobl et al. 2000). In fact, later 

discoveries showed Ca2+ to be crucial for activation events in all calpains, 

independent of the presence or absence of specialised Ca2+-binding structures. This 

is thought to be because the active domain of calpains includes single Ca2+ ion 

binding sites (Moldoveanu et al. 2002; Moldoveanu et al. 2003). As mentioned 

above, it has additionally been shown that when the active domain binds to Ca2+, it 

changes its conformation and closes to form the active catalytic site (Moldoveanu et 

al. 2004).  

 

In vitro assays showed that the activation of calpains requires concentrations of Ca2+ 

of up to 10 µM, which are very rarely found in vivo. However, the concentration of 

Ca2+ needed for activation decreased considerably if phospholipids were added to 

the media used in the in vitro protease activity assay (Saido et al. 1992; Shao et al. 

2006; Tompa et al. 2001). This supports the theory that classical calpains need to be 

associated with membranes, possibly via their C2L domain, which shows a high 

affinity for phospholipids (Tompa et al. 2001), in order to become active, despite 

their mainly cytoplasmic localization (Croall and DeMartino 1991; Goll et al. 2003). 

This, together with the presence of several transmembrane domains in some 

calpains, including phytocalpains, points to a functional link between membranes 

and calpain activity (Croall and Ersfeld 2007; Lid et al. 2002). 
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In 1981 it was shown that m-calpain undergoes an autoproteolytic event in the 

presence of Ca2+ (Suzuki et al. 1981a; Suzuki et al. 1981b), a characteristic that has 

now also been shown for other calpains, such as the µ-calpain (Cong et al. 1989). 

This type of autolytic event is common in many different proteolytic enzymes (Goll 

et al. 2003). Even though the autolysis of µ-calpain is a very rapid process, it 

happens in several clear steps. First the 14 N-terminal amino acids are removed, 

reducing the molecular weight of the protein from 80 kD to 78 kD. A second 

proteolysis then takes place, cutting off 12 further amino acids from the N-terminus. 

This gives a 76 kD protein (Zimmerman and Schlaepfer 1991). In the case of the m-

calpain 9 amino acids are removed in the first event and 10 in the second, giving a 

final 78 kD protein (Brown and Crawford 1993). 

 

Because of these results, in the early 1990s it was proposed and widely accepted that 

the calpains were, in fact, pro-enzymes and that the autolytic events were involved 

in activation. This was because several kinetic studies suggested that prior to 

detection of the catalytic protease activity, calpains needed to be autolytically 

cleaved (Baki et al. 1996; Cottin et al. 1991; Hayashi et al. 1992). However, it was 

subsequently shown that a point mutation in the cleaved amino acid domains could 

give rise to a non-cleaved but none-the-less active calpain (Elce et al. 1997), 

suggesting that the cleavage event is likely a consequence of, and not a cause of 

activation. This autolytic event is very likely to happen in other calpains, even non-

classical ones, as they have a very high level of conservation in their sequence and 

their structure.  

 

Interestingly, in the case of Drosophila calpain B, it has been shown that autolysis is 

necessary for activation. This raises the question of whether the events needed for 

activation of calpains are always identical or if calpains with longer N-terminus 

domains, such as calpain B, might undergo a self-cleavage activation event, whereas 
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calpains with a short N-terminus, such as m- and µ-calpain, do not (Farkas et al. 

2004).  

 

1.6.1.3. Function and regulation of calpains 

 

Mammalian calpains have been described as actors in an extensive list of processes, 

that include cytoskeletal remodelling (Lebart and Benyamin 2006), cell mobility and 

migration (Franco and Huttenlocher 2005), myofibril maintenance (Goll et al. 2008), 

signal transduction (Evans and Turner 2007), cell cycle progression (Janossy et al. 

2004), regulation of gene expression (Storr et al. 2011) and apoptosis (Johnson et al. 

2004) amongst others. Some calpains are of vital importance, as defects in them give 

rise to lethality in early development of animal embryos (Arthur et al. 2000; Dutt et 

al. 2006; Takano et al. 2011; Zimmerman et al. 2000). Similarly, calpains have been 

shown to play a very important role in normal embryonic development in Xenopus 

laevis (Moudilou et al. 2010). This role extends beyond early stages of 

embryogenesis, as they also seem to play a fundamental role during organogenesis 

and in the activation of metamorphosis in this species (Moudilou et al. 2010). In 

mice, m-calpain expression is detected throughout development from the 8-cell 

stage up to neurulation (Raynaud et al. 2008). Expression of some calpains is even 

maintained in adult proliferating tissues, such as muscle and bone precursor cells 

(Raynaud et al. 2004) and in the proliferating cells of adult brains (Konig et al. 2003). 

In the case of muscle, the most highly expressed calpain is the m-calpain, which is 

believed to be involved in the cell cycle of proliferating myoblasts. M-calpain is also 

involved in the permanent regulation of the plasma membrane and the cytoskeleton 

organization (Raynaud et al. 2004). In adult rat brains calpain 3 is expressed, but 

restricted to the glial cells, astrocytes. It is believed that this enzyme has a role in 

protecting these cells against apoptosis, as it cleaves pro-apoptotic proteins. It is also 

thought that it might have a role in motility control, as it cleaves proteins involved 

in cellular movement (Konig et al. 2003). 
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In vertebrates, the regulation of calpains has been widely studied and their best 

known interactor and activity regulator is calpastatin (Nishimura and Goll 1991; 

Otsuka and Goll 1987). Calpastatin is the only known protein that inhibits calpains 

specifically and does not inhibit any other proteases with which it has been tested, 

including other cysteine proteases such as papain, cathepsin B, bromelin, or ficin 

(Goll et al. 2003). Neither calpastatin nor calpastatin-like activities have been 

reported in any invertebrate tissues, and genes having sequence homologies to 

calpastatin have not been detected in Drosophila melanogaster (Friedrich et al. 2004), 

Caenorhabditis elegans (1998; Goll et al. 2003) or Arabidopsis thaliana (Margis and 

Margis-Pinheiro 2003). Thus, the calpastatin genes seem to be restricted to 

vertebrates (Goll et al. 2003). 

 

1.6.1.4. Calpain substrates 

 

Calpain protease activity has a specific nature, as the same substrates are always 

proteolized in the same positions, even if there is a variation in the reaction 

conditions. However, the rules driving this specificity have yet to be fully 

understood (Sorimachi et al. 2012). Classically, it has been thought that calpains do 

not recognize specific amino acid sequences in substrate proteins; but rather, they 

cleave inter-domain linkers (Hayashi et al. 1985; Sakai et al. 1987; Stabach et al. 

1997). However, unlike other proteases that do not show high substrate selectivity, 

calpains cleave only a small number of proteins in a highly selective fashion. This 

selectivity appears to rely on a complex, and poorly understood substrate-

recognition mechanism that depends on the structural features of the target proteins 

to be cleaved (Croall and Ersfeld 2007). Therefore, calpains perform a limited 

proteolysis, mainly cleaving inter-domain unstructured regions. Two known 

exceptions for this are the animal proteins casein (Malik et al. 1983) and myelin basic 
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protein (Yanagisawa et al. 1983), which are proteolized intensively by many 

calpains.  

 

Recently, by the analysis of 267 known cleavage sites of numerous calpains through 

multiple kernel learning, a sequence-based calpain cleavage site predictor was 

generated. Some of the obtained prediction sites were tested experimentally, 

confirming the viability of this prediction method (duVerle et al. 2011). 

 

Sorimachi and collaborators have proposed a theory to explain the fact that only 

inter-domain unstructured regions are cleaved by calpains. It is based on the 

topology of these proteins. Once activated and restructured, the active site cleft 

within the domains DIIa-DIIb is narrower and deeper than that in other papain-like 

cysteine proteases (Moldoveanu et al. 2004). This suggests that the conformation of 

the substrate appropriate for cleavage has to be “soft” or “malleable” around the 

cleavage site, helping the enzyme to preferentially proteolyze inter-domain regions 

(Sorimachi et al. 2012). 

 

Rules that govern the target specificity at an amino acid sequence level are unclear 

and that is the reason why calpains have been classically thought to have a method 

of recognition of substrates based on their overall 3D structure and not on their 

primary structure (Hayashi et al. 1985; Sakai et al. 1987; Stabach et al. 1997). In some 

cases, however, certain sequence preferences have been seen for different types of 

calpains (Hirao and Takahashi 1984; Ishiura et al. 1979; Sasaki et al. 1984). However 

the consensus sequences observed are not strongly enough supported to permit 

prediction of potential substrates from sequence information alone.  

 

Some of the known substrates for calpains include Ca2+-ATPase, aquaporins, tubulin 

and several kinases and phosphatases, amongst others (Goll et al. 2003).  
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1.6.2. Phytocalpains 

 

DEK1 is the only identified member of the calpain gene superfamily in plants (Lid et 

al. 2002). It is an atypical calpain as it lacks DIV, and in addition, one of its main 

peculiarities is the presence of an elongated N-terminus, which is subdivided into 

five domains. Domain A (DA) has predicted ER and plasma membrane targeting 

signals. Domains B1 (DB1) and B2 (DB2) have 8 and 13, respectively, predicted 

transmembrane stretches. These domains are interrupted by domain C (DC), which 

constitutes the predicted extracellular loop. Domain D (DD) is an intracellular 

region that can be found between DB2 and DII (Lid et al. 2002).  

 

Homologs of the phytocalpain DEK1 have been found even in basal plants such as 

the moss Physcomitrella. DEK1 proteins in different plant species show a very high 

level of conservation. For example, maize DEK1 shares 70% identity with Arabidopsis 

DEK1. There is an especially high conservation in DII (88%) and DIII (83%) (Lid et 

al. 2002). This conservation suggests that the arrangement of the residues is essential 

for the catalysis and binding of substrates of the CALPAIN domain. However, a 

very high conservation level is also seen in the N-terminus of DEK1, being of 72% 

identity in DB1 and of 64% in DB2 (Lid et al. 2002). The lowest identity is found in 

DC, the extracellular loop, where identity is only 57% (Lid et al. 2002). Their high 

level of conservation suggests that the transmembrane structures of DEK1 

presumably also have an important physiological role in the plant. 

 

An independent in silico analysis of the rice DEK1 sequence, and topological 

predictions, has recently been carried out by Kumar and collaborators. Their 

published material supports the presence of a large transmembrane N-terminus. 

This structure is predicted to contain 23 transmembrane helices, and contrary to 

predictions published by Lid and colleagues for maize and Arabidopsis DEK1, the 

“extracellular” loop was found to face the cytoplasm and not the outside of the cell. 

These researchers furthermore argue that if closely inspected, the sequence of the 
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transmembrane helices shows that many of them present conserved charged or 

strongly polar residues and they conclude that there must be a functional relevance 

for this. Charged and polar residues usually have an important role in the function 

of transmembrane proteins involved in the transport of charged molecules. Thus, 

generally, Voltage-gated K+, Na+ and Ca2+ channels show conservation of polar 

residues in their TM helices which help in voltage sensing and, therefore, their 

transport activity (Kumar et al. 2010). 

 

Most published literature about DEK1, is centred on the study of the CALPAIN 

domain and its physiological role. Nevertheless, due to the high level of 

conservation, the transmembrane domains of DEK1 are likely to carry out an 

important an important function. Even though no homologs of this structure are 

known in any other kingdom, in silico analyses suggest that the transmembrane 

domains of DEK1 could possibly act as an ion channel. Many ion channels are 

formed from associations of several proteins. However, the large number of 

transmembrane domains present in DEK1 could suggest that it is capable of forming 

a monomeric channel. The presence of the loop structure within the transmembrane 

domains might indicate some form of gating. One intriguing possibility, which will 

be investigated in this thesis, is that the transmembrane domains of DEK1 act as a 

stretch activated cation channel. 

 

It has been shown that AtDEK1 expression is very strong during early 

embryogenesis, but it is restricted to the embryo and excluded from the suspensor. 

Expression is also seen in all adult tissues (Johnson et al. 2005). In the case of maize 

ZmDEK1 is expressed ubiquitously with peaks of expression in early endosperm, 

mid-development of embryos and seedling roots (Lid et al. 2002). In the case of 

Nicotiana benthamiana NbDEK1 is expressed in all tissues as it is seen in other species 

(Ahn et al. 2004). 
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Figure 1-4. In vitro activity assay of DEK1 domains IIa and IIb expressed in 

bacteria. DEK1 domains IIa and IIb were incubated with β-casein and 5 mM 

Ca2+ (lanes 4–9) or 2 mM EDTA (lanes 10–15) to study their Ca2+-dependent 

protease activity. Samples were incubated at 30°C and were collected in the 

time points shown in the picture. Lane 1, molecular marker; lane 2, β-casein; 

lane 3, domains IIa and IIb of DEK1. Arrowhead and arrow indicate the 

domains IIa and IIb of DEK1 and β-casein, respectively. From Wang et al., 2003 

 

 

 

 

Figure 1-5. Wild-type embryo (A) and dek1 mutant embryo with a T-DNA 

insertion in AtDEK1 (B) at the globular stage. Embryo (e), suspensor (s). From 

Johnson et al., 2005. 
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1.6.2.1. Activity and function of the CALPAIN domain of DEK1 

 

In the case of AtDEK1, and as in classic calpains, the CALPAIN domain has been 

shown to be proteolitically cleaved from the rest of the protein. This cleavage is very 

likely to be an autocatalytic event (Johnson et al. 2008). Recombinant domains II and 

III of the CALPAIN domain of maize DEK1 were expressed in E. coli. They were 

purified and shown to be active in in vitro assays. The protease activity of this 

recombinant version of the CALPAIN domain was tested in the presence and 

absence of Ca2+. Degradation of casein was recorded when the CALPAIN domain of 

DEK1 was incubated with 5 mM Ca2+, an activity that was very weak and appeared 

very late in the presence of 2 mM EDTA, a chelating agent that traps free Ca2+ ions 

(figure 1-3). The results obtained suggested an activity is similar to that of m-

calpain, and showing that Ca2+ enhances the activity of DEK1 (Wang et al. 2003). 

 

 A recombinant mutated version of the CALPAIN domain was also generated and 

purified. This mutant has a single amino acid substitution in position 71, 

substituting a cysteine of the catalytic domain with a serine residue. Even though 

this mutation did not cause any structural change in the protein, it was shown that it 

caused a complete loss of the protease activity (Wang et al. 2003). In Arabidopsis this 

mutation not only makes the DEK1 protein non-functional, but also blocks the self-

cleavage event (Johnson et al. 2008). This autocleavage can be considered equivalent 

to that which occurs in animal calpains and is predicted to release the active form of 

the CALPAIN domain into the cytoplasm (Johnson et al. 2008).  

 

Knockout and knock-down dek1 mutants have been obtained in different species. 

Thanks to these lines it is known that in maize, DEK1 plays a crucial role in early 

development of the plant embryo; as mutants exhibit slower, abnormal early 

embryogenesis with arrested embryos and a loss of identity in the aleurone-like 

layers of the endosperm (Becraft and Asuncion-Crabb 2000; Becraft et al. 2002). In 

Arabidopsis, atdek1 knockout mutant embryos show defects at the early globular 



72 

 

stage, both in the embryo and in the apical segment of the suspensor, which is 

thickened. There are irregularities in the surface of the embryo and abnormal 

division planes can be observed. Embryos arrest their development at the globular 

stage (Fig.1-4) (Johnson et al. 2005). Endosperm defects have also been observed in 

comparison with the wild-type (Lid et al. 2002).  

 

Knock-down dek1 seedlings were obtained in Arabidopsis using an RNAi strategy 

but died as seedlings, showing a profound loss of epidermal identity. In these lines 

there was an apparent replacement of epidermal cells with mesophyll-like cells and 

plants showed either a complete absence of meristematic cells or a severe lack of 

organization in the shoot apical meristem (Johnson et al. 2005). In the case of 

Nicotiana benthamiana a decreased expression on NbDEK1 leads to defects in 

epidermal development and arrested flower development (Ahn et al. 2004). 

 

In maize, some weak dek1 mutants are capable of completing embryogenesis, 

producing viable plants. These plants show an altered epidermis cell fate , with a 

proliferation of so-called “bulliform” cells (Becraft et al. 2002). A weak allele of 

DEK1 has also recently been described in Arabidopsis. This allele is called dek1-4 and 

carries a missense mutation, (C to T substitution at base 6816). This change causes a 

Cys to Arg change at the amino acid 2106 in domain III of the protein. This allele 

fails to complement the lethality of dek1-3 mutants. One of the consequences of this 

mutation is the near absence of giant cells (a specialized epidermal cell-type) in 

sepals (Roeder et al. 2012). 

 

Complementation of dek1 mutants is possible not only by reintroduction of the full-

length DEK1 cDNA under a constitutive promoter, but also by the introduction of 

constructs designed to express synthetic proteins mimicking the smallest self-

cleavage product of DEK1 which corresponds to the free cytosolic CALPAIN 

domain (Johnson et al. 2008). Thus, the CALPAIN domain is essential for plant 

development and the cleaved form is likely to be the active form of the protein. 
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During complementation experiments CALPAIN overexpressing (OE) plants were 

obtained, which should allow uncoupling the activity of the CALPAIN domain 

from its normal regulation (Johnson et al. 2008). These lines show a phenotype 

different to that of full-length DEK1 OE plants, which resemble wild-type 

individuals. Therefore, these genotypes allow the dissection of the phenotypic 

characteristics that are a consequence of the OE of the active form of the CALPAIN 

domain, and of the loss of the transmembrane domains of the protein. CALPAIN 

OE plants have a darker green colour than the wild-type individuals and show 

severe rumpling in leaves. This corresponds to an increase in the number and 

density of mesophyll cell layers. In addition, epidermis cell size appears to be less 

uniform than in wild-type plants (Johnson et al. 2008). At a more physiological level, 

it has been observed that CALPAIN OE plants show a late flowering phenotype 

with shortened stems (Galletti personal communication). A microarray analysis 

showed that genes up-regulated in CALPAIN OE plants, showed an over-

representation in cell wall related functions. Amongst the most highly up-regulated 

were pectin methyltransferases, expansins and xyloglucan endotransglycosylases 

(Johnson et al. 2008), supporting a hypothesis that the phytocalpain could be 

involved in responses to mechanical stimuli. 

 

1.7.  Aims and objectives 

 

Aspects of the morphological and transcriptional phenotype of calpain over-

expressing plants are reminiscent of those observed during mechanical stimulation. 

In addition the topology and primary structure of the highly conserved 

transmembrane domains of DEK1 suggest that they could act as a cation-permeable 

channel.  

 

Based on these observations I propose a hypothesis that DEFECTIVE KERNEL1 

(DEK1) could act as a stretch-activated cation channel. Since the CALPAIN domain 
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of DEK1 is known to possess a Ca2+ activated protease activity one possibility is that 

DEK1 transports Ca2+, currents of which are the main electrophysiological response 

seen in cells when undergoing mechanical stimulation events. I further propose that 

the CALPAIN domain of DEK1 acts as the first effector in the cascade in response to 

a Ca2+ influx into the cell. Thus DEK1 could auto -regulate its activation by self-

cleavage of the CALPAIN domain during mechanical stimulation.  

 

In this thesis I investigate these hypotheses. I centre my work on investigating the 

roles of the different domains of DEK1 in the process of mechanosensing. In the case 

of the transmembrane domains I propose that they act as a primary mechanosensor, 

and study their role in sensitivity to mechanical stimulation. This is possible thanks 

to the knockout mutant lines, expressing the CALPAIN domain alone. These lines 

allow me to dissect the roles of the different domains of the protein and study the 

morphological, transcriptional physiological and electrophysiological phenotypes 

existing in absence of the transmembrane domains. I also studied the possible role 

of the CALPAIN domain as an effector of mechanical stimulation. This was studied 

by the characterization of the phenotypes in a variety of lines that show different 

levels of activity of DEK1. Furthermore, the effects of the CALPAIN domain as a 

transductor of mechanical stress were studied by hunting for potential interactors, 

and therefore potential proteolysis targets of this protein. 
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2. Material and methods  

  2.1.   Plant culture and plant material  

    2.1.1.   Cultivation of plant lines  

    2.1.2.   NPA treated plants  

  2.2.   DNA techniques  

    2.2.1.   Genomic DNA extraction  

    2.2.2.   PCR reactions  

    2.2.3.   Agarose gel electrophoresis of DNA  

    2.2.4.   PCR product and gel clean-up  

    2.2.5.   Digestion and ligation of DNA  

    2.2.6.   Construction of Gateway® plasmids  

    2.2.7.   Transformation of plasmids into E. coli  

    2.2.8.   Preparation of plasmid DNA from bacterial cultures 

    2.2.9.   Sequencing of plasmid DNA  

  2.3.   Phenotypic analysis: microscopy techniques  

    2.3.1.   Fluorescence microscopy  

    2.3.2.   Cryofracture scanning electronic microscopy  

   2.3.3.   Atomic force microscope  
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  2.4.   Phenotypic analysis: biochemical analysis  

    2.4.1.   Cellulose quantification  

    2.4.2.   Lignin quantification  

  2.5.   Q-RT-PCR  

    2.5.1.   Plant material collection  

    2.5.2.   RNA extraction and DNAse treatment  

    2.5.3.  Determination of RNA concentration and reverse 

transcription  

    2.5.4.   RT-PCR  

  2.6.   Ion fluxes and concentrations  

    2.6.1.   Flame photometry  

    2.6.2.   In planta ion flux measurements (impalement) 

    2.6.3. Electrophysiological measurments in Xenopus 
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2. Material and methods 

 

2.1. Plant culture and plant material 

 

2.1.1. Cultivation of plant lines 

 

Sterilization of seeds was performed using 70% ethanol (EtOH), 0.05% Triton-X-100 

for 15 minutes (mins), inverting tubes every 5 mins. They were then rinsed using 

96% EtOH in three washes of one min each. Seeds were then pipetted onto sterile 

3mm filter paper (Whatman, Maidstone, UK) under a sterile tissue culture hood, to 

allow the evaporation of the EtOH. As an alternative method, seeds were sterilised 

in a Cl2 (gas) atmosphere for 120 mins. This was done by placing the seeds in 

opened microfuge tubes inside a tightly closed container with a beaker containing 

50 ml of bleach (NaClO 2.6%, Oxena, Portes-Lès-Valance, France) and 5 ml of 

concentrated hydrochloric acid (HCl). 

 

To grow plants in long day conditions (Photoperiod of 16 hours; day: 20.5°C, 50% 

humidity; night: 19.5°C, 55% humidity), seeds were sprinkled evenly on plates 

containing Murashige and Skoog (MS) nutrient medium agar (1X MS basal salt 

mixture (Duchefa, Haarlem, The Netherlands), 0.5% Sucrose (Duchefa, Haarlem, 

The Netherlands), 0.8% Plant agar (Duchefa, Haarlem, The Netherlands); pH5.7). 

Plates were sealed with microporous tape and incubated at 4°C for 3 days to stratify. 

After stratification, the plates were transferred to a growth chamber and incubated 

at 21°C with a photoperiod of 16 hours. After 10 days of growth in the growth 

chamber, seedlings were transferred to a soil mixture (Favorit, Lohne-Kroge, 

Germany) with the insecticide Vectovac® 12-AS (Biobest, Orange, France) and 

placed in long day growth conditions. The humidity level was increased for early 
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stages of growth by keeping plants inside clear plastic bags for the first four days. 

This permits root establishment. 

 

For growth in short day conditions, seeds were suspended in 0.1% agarose 

(Euromedex, Souffelweyersheim, France) and stratified at 4°C for 3 days covered 

with aluminium foil. The seeds were then sown directly onto soil (Favorit, Lohne-

Kroge, Germany) containing the insecticide Vectovac® 12-AS (Biobest, Orange, 

France) with a pipette. The humidity level was increased for germination and early 

stages of development by keeping plants inside clear plastic bags for the first six 

days. After approximately 10 days of growth seedlings were thinned to leave only 

one seedling in each pot. 

 

Genetic crosses were made between plant lines between by first emasculating non-

dehisced flowers on the lateral shoots of acceptor (mother) plants. 24 hours later, 

carpels were hand pollinated with pollen obtained from the donor (father) plant. 

Tweezers used for the whole procedure were sterilised with 96% EtOH between 

each cross to avoid cross contamination. Once seed was mature it was collected and 

stored in air-permeable paper envelopes. 

 

Mechanical stimulation of plants was carried out exposing them to a force of 4 g/cm2 

twice daily for one minute. This was carried out by placing a flat tray, adapted to 

the size of the plant pots used, and carrying appropriate weights gently onto the 

plants. Treatment was started when the first two true leaves appeared, and 

continued until flowering.  

 

In order to obtain seedling tissue, plants were grown in liquid culture in 6-well 

plates (Corning, Corning, USA). Seeds were sterilised as described in section 2.1.1 

and transferred into liquid half MS medium (0.5X MS basal salt mixture (Duchefa, 

Haarlem, The Netherlands), 0.5% Sucrose (Duchefa, Haarlem, The Netherlands); 

pH5.7). 3 ml of medium and 10 seeds were placed in each well. Seed were stratified 
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at 4°C for at least three days in darkness. Plates were transferred and incubated at 

21°C with a photoperiod of 16 hours. If agitation was required plates were placed 

on an orbital shaker and agitated at a speed of 180 revs/min. Edge effects were 

minimised by regularly interchanging the positions of the plates. 

 

2.1.2. NPA treated plants 

 

In order to obtain naked stem apical meristems, plants were grown on plates 

containing N-1-Naphthylphtalamic Acid (NPA). Seeds were sterilised as described 

in section 2.1.1.  They were sprinkled evenly on plates of Arabidopsis medium 

(47.28g Arabidopsis medium powder (Duchefa Haarlem, The Netherlands), 2 mM 

Ca(NO3)2∙4H2O, 0.5% Agar-Agar (Merk, Darmstadt, Germany); pH5.8; to which 

NPA was added to a final concentration of 10 µM before plates were poured). Seeds 

were stratified on plates at 4°C, in darkness, for three days. Plates were transferred 

and incubated at 21°C with a photoperiod of 16 hours. 

 

2.2. DNA techniques 

 

2.2.1. Genomic DNA extraction 

 

For small sample numbers, leaves were collected and stored in microfuge tubes 

(Eppendorf, Hamburg, Germany) at -20°C. Frozen leaves were then transferred to 

liquid N2 and crushed into a fine powder with the aid of a mini-pestle inside the 

collection tube. 500 μl of extraction buffer (50 mM EDTA, 0.1M NaCl, 0.1M Tris∙HCl, 

1% SDS) were added, followed by vortexing thoroughly to mix. Samples were 

incubated at 65°C for five minutes in a heating block. A phenol/chlorophorm 

extraction was then performed. 500 µl of phenol/chlorophorm (equilibrated 

phenol:chlorophorm:isoamylalcohol 25:24:1) were added to the mix. The sample 



82 

 

was mixed thoroughly and incubated at room temperature for five minutes. After 

centrifugation at a speed of 14,000 RPM for five minutes, the upper (aqueous) phase 

was recovered to a clean tube and the phenol/chlorophorm extraction repeated. 50 

µl of 3M NaAc (pH5.2) and 350 µl of isopropanol were then added to the second 

recovered aqueous extraction (400 µl). The sample was inverted gently several times 

and centrifuged at a speed of 14,000 RPM for five minutes. The pellet was washed 

with 70% EtOH and air-dried before resuspension in 50 µl of R40 buffer (TE (10 mM 

Tris∙HCl pH8, 1 mM EDTA) containing 40 µg/ml ribonuclease A) and stored at a 

temperature of -20°C. 

 

For large numbers of samples, leaves were collected and stored in 96 format 

collection tubes with two small metal beads (QIAGEN, Hilden, Germany) at -20°C. 

Tubes were frozen in liquid N2 and then subjected to two cycles of 30 seconds at 30 

Hz in a TissueLyser II® (QIAGEN, Hilden, Germany). DNA extractions from this 

powder were performed using a BioSprint 96® (QIAGEN, Hilden, Germany), 

following the protocol provided by the manufacturer. 

 

2.2.2. PCR reactions 

 

For standard PCR, a mastermix containing: 4 µl 5X Green GoTaq® Flexi Buffer, 1 µl 

of a 10µM stock of each primer, 0.2 µl of 20 mM dNTPs (20mM of each: dATP, 

dCTP, dGTP, dTTP (Promega, Madison, USA)), 0.1 µl of GoTaq polymerase 

(Promega, Madison, USA) and dH2O up to 20 µl per sample (taking into account 

DNA sample volume). The mastermix was distributed into PCR tubes/strips/plates 

and the the plasmid/genomic/cDNA used as a template was then added. Primers 

were generally designed by eye, assuring that no secondary structures generated. 

PCR tubes/strips/plates were placed in a 2720 Thermalcycler (Applied Biosystems, 

Foster City, USA) and the following program was run: 95°C for 2 mins, followed by 

30 cycles of 95°C for 30 seconds (denaturing), 55°C to 60°C (depending on primers) 
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for 30 seconds (annealing), 72°C for 1 minute per expected 1000 base pairs (bp) 

(extension). This program was finished by a final extension at 72°C for 5 mins. 

 

As an alternative method, for high fidelity PCR reactions PhusionTM Hot Start 

(Finnzymes, Espoo, Finland) was used. The mastermix contained 4 µl 5X Phusion 

HF Buffer, 1 µl 10µM forward primer, 1 µl 10µM reverse primer, 0,2 µl 20 mM 

dNTPs (20mM of each: dATP, dCTP, dGTP, dTTP (Promega, Madison, USA)), 0.2 µl 

Phusion Hot Start DNA polymerase and dH2O up to 20 µl (taking in to account the 

DNA sample volume). After preparing the reaction in PCR tubes, they were placed 

in a 2720 Thermalcycler (Applied Biosystems, Foster City, USA) and the following 

program was run: 98°C for 30 seconds, followed by 30 cycles of 98°C for 10 seconds, 

60°C -72°C (depending on primers) for 30 seconds and 72°C for 15-30 seconds per 

expected 1000 base pairs (bp) of product. Reactions were finished by a final 

extension at 72°C for 5 to 10 mins. 

 

2.2.3. Agarose gel electrophoresis of DNA 

 

DNA fragments were separated by electrophoresis in agarose gel. 1% agarose gels 

were made dissolving agarose powder (Euromedex, Souffelweyersheim, France) in 

hot  1X TAE buffer (0.04M Tris acetate, 0.001M EDTA; pH8) in a microwave. 0.1 

µg/ml EtBr was added after the gel had cooled and prior to pouring.  Gels were 

poured with a thickness of approximately 7 mm in moulds (Fisher Scientific, 

Hampton, USA) and run in the corresponding tanks in 1x TAE buffer. 

 

DNA samples were loaded in the gel after the addition of 6X of loading buffer (50% 

Glycerol, 49.5% TE buffer pH8, 0.5% Orange G (Sigma-Aldrich, St Louis, USA)). 0.5 

µg of either 1kb (Smartladder, Eurogentec, Seraing, Belgium) or 100bp (Promega, 

Madison, USA) ladder were used as a size marker. Migrations were carried out at 

room temperature at 80 to 160 volts (depending on gel size). Following the 
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electrophoresis, the separated DNA fragments were viewed and photographed on a 

transilluminator. 

 

2.2.4. PCR product and gel clean-up 

 

PCR products and gel fragments were purified using a NucleoSpin® Gel and PCR 

Clean-up kit (Macherey-Nagel, Düren, Germany) following the instructions 

provided by the manufacturer. 

 

2.2.5. Digestion and ligation of DNA 

 

Restriction digestions were carried out following the instructions provided by the 

manufacturer (Invitrogen, Carlsbad, USA/ New England Biolabs, Ipswich, USA/ 

Takara, Kyoto, Japan) at optimal suggested temperatures using a mix containing the 

restriction enzyme, the indicated buffer and bovine serum albumin (BSA) if 

required. Digestions were incubated for periods of one to three hours. In the case of 

double digests both enzymes were added simultaneously if they required the same 

buffer. Sequential digestions were carried out either by adapting the buffer 

concentrations between enzymes, if possible, or by purifying the first digestion 

product (as explained in section 2.2.4) followed by the second digestion. If required, 

the digested DNA was then separated in agarose gels and purified from excised 

bands as explained in sections 2.2.3 and 2.2.4.  

 

When necessary, calf intestinal alkaline phosphatase (dCIP) (New England Biolabs, 

Ipswich, USA) was used to dephosphorylate the restricted ends of vectors, 

preventing re-ligation. 

 

Ligation of insertions into vectors was carried out using T4 DNA ligase (New 

England Biolabs, Ipswich, USA) following the guidelines provided by the 
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manufacturer. Reactions were incubated at 16°C overnight and transformed into 

bacterial cells (as explained in section 2.2.7). 

 

2.2.6. Construction of Gateway® plasmids 

 

Some PCR products were cloned into Gateway® (Invitrogen, Carlsbad, USA) 

vectors. When designing the primers to generate the PCR products to create entry 

vectors, Gateway® B sites were added to the 5’ of the forward primer and 3’ of the 

reverse primer. 

 

Gateway® BP and LR reactions were performed following the guidelines provided 

by the manufacturer. The resulting products were transformed into bacterial cells 

(as explained in section 2.2.7). 

 

2.2.7. Transformation of plasmids into E. coli 

 

Vectors were transformed into Escherichia coli thermo-competent cells by heat-shock 

induced transformation. These were either DH5α cells, available at the lab, and 

prepared using the protocol described by  (Inoue et al. 1990), or TOP10 cells 

(Invitrogen, Carlsbad, USA). 

 

Ligation or Gateway® BP and LR reaction products were transformed into 25 µl of 

TOP10 cells or 50 μl of DH5α cells, which had been thawed on ice. The tubes were 

incubated on ice for at least 30 minutes. Cells were heat-shocked at 42°C for one 

minute and immediately placed on ice for 5 mins. 1 ml of Luria broth (LB) (1% 

tryptone, 0.5% yeast extract, 0.5% NaCl; pH7) was then added before incubating at 

37°C for one hour. 
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Plates of solid LB (LB Broth (BD, Franklin Lake, USA), 0.8% BactoAgar (BD, 

Franklin Lake, USA)) containing the appropriate concentrations of the required 

selective antibiotic were prepared. Ampicillin (Duchefa, Haarlem, The Netherlands) 

at a final concentration of 100 µg/ml, or kanamycin (Duchefa, Haarlem, The 

Netherlands) at a final concentration of 50 µg/ml were routinely used. After 

bacterial transformations had been incubated at 37°C, 100 µl were taken from and 

plated onto one plate. The remaining culture were centrifuged at a speed of 3,000 

RPM, resuspended in a volume of 100 µl of LB and plated onto another plate. 

Incubation of inverted plates was at a temperature of 37°C, placed upside-down and 

overnight.  

 

2.2.8. Preparation of plasmid DNA from bacterial cultures 

 

Plasmid DNA was mini-prepped from E. coli using NucleoSpin® Plasmid kit 

(Macherey-Nagel, Düren, Germany), following the protocol provided by the 

manufacturer. 

 

If large amounts of DNA were required a, NucleoBond® Xtra Midi (Macherey-

Nagel, Düren, Germany) kit was used following the guidelines provided by the 

manufacturer. 

 

2.2.9. Sequencing of plasmid DNA 

 

Plasmids mini-prepped as explained in section 2.2.8 were diluted to a final 

concentration between 30 and 100 ng/µl in a volume of 30 µl. Samples were 

processed by GATC Biotech (Konstanz, Germany) using en ABI 3739xl (Applied 

Biosystems, Foster City, USA) sequencer. 
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The primers used to sequence full length DEK1, and smaller versions were: 

 

Primer Sequence 

DekGW5 CACCATGGAAGGGGATGAGCG 

QXCDEK1F1 CTTGAGAGAAGGTTTTCGGAG 

QXCDEK1R1 CCTGTTCGAGTTAGATTGTCA 

DEKSEQ1 ATCGTCAGTACTTCTGGG 

DEKRKpn CATGATAACTGTGGAACC 

DEKXhoF1 GACGATTGTTGGATACTCTCT 

DEKSEQ2 AGGATGTCTGTTTCCTGG 

DEKFPst CTCTGCAGCTCTTCTGGTTGG 

DEKRBam CTTTATCACGCATTGCAGAGGG 

DEKXcmF1 CTGGACCTGTATGTCTTTTTG 

DEKXcmR1 CTCAGAACCAGCAACCAGAATC 

DEKFBst TTGCATGCAGCCATTGGCATGG 

DEKRBst TCTAAGTCAGCCATGCCAATGG 

QDEKF1 AAACAAGAGGGGTTCTTACTT 

QDEKR1 TTCGAATCTGAACAAGTCTGT 

DekSTOP CTACAAAGCTTCAAGAACAAT 

 

2.3. Phenotypic analysis: microscopy techniques 

 

2.3.1. Fluorescence microscopy 

 

Cross cuts of the basal centimetre of stems were made and fixed in FAA (3.7% 

Formaldehyde (from 37% solution, VWR International, Fontenay-sous-Bois, France), 

50% ethanol, 10% acetic acid) at 4°C. Samples were vacuum infiltrated for three 

hours and then left overnight in fresh FAA. Samples were dehydrated through one 

hour baths of  ethanol (50%, 70%, 85%, 96%,100%) , infiltrated with Histo-clear 

(National diagnostics, USA) and then with Paraplast X-tra (Leica Biosystems, 

Richmond, UK) using an ASP300 S automated tissue processor (Leica Microsystems, 

Wetzlar, Germany). Following the wax infiltration the stems were taken out of the 

infiltration cassette cassettes and transferred into a hot wax filled moulds, which 

were then allowed to solidify.  
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10 µm sections were made using a RM2025 microtome (Leica Microsystems, 

Wetzlar, Germany). Sections were floated onto Polysine glass slides (Menzel GmbH 

+ Co., Germany) and allowed to dry overnight. Removal of paraffin was carried out 

using two sequential baths of 5 mins in Histo-clear (National Dignostics, Atlanta, 

USA) and two sequential washes of 5 mins in absolute EtOH. Tissue was afterwards 

rehydrated in successive baths of 30 seconds in 95%, 85%, 70%, 50% and 30% EtOH. 

A final bath of dH2O was carried out for 15 minutes, and slides were allowed to air 

dry. 

 

Samples were treated with 1 mg/ml Fluorescent Brightener 28 (calcofluor) (Sigma-

Aldrich, St Louis, USA) for 5 minutes. Pictures were taken using a TE2000-E 

Motorized Focus microscope (Nikon, Tokio, Japan) using a 10X Nikon lens, under 

UV illumination using a long-pass filter. Confocal microscopy 

 

All confocal observations were done on LSM700 (Carl Zeiss, Oberkochen, Germany) 

using either Achroplan® 40X (Carl Zeiss, Oberkochen, Germany)  or Neofluar® 5X 

(Carl Zeiss, Oberkochen, Germany)  objectives. The source of laser light was a Laser 

Rack LSM700 (Lasos, Jena, Germany). A HXP120C Illuminator (Carl Zeiss, 

Oberkochen, Germany) was used for widefield eyepiece observations. 

 

Projections of stacks of images were made using Merryproj software (Barbier de 

Reuille et al. 2005). The analysis of microtubule orientation was carried out using 

the MT plugin for Fiji (Uyttewaal et al. 2012). 

 

2.3.2. Cryofracture scanning electronic microscopy 

 

Stems and fully developed leaves were cryo-fixed using liquid N2 and afterwards 

freeze-fractured in a cryo-manipulation chamber. The samples were coated using 
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gold-sputter in an argon saturated atmosphere. Cryo-SEM images were taken with 

the aid of an S-4700 Scanning Electronic Microscope (Hitachi High Technologies, 

Chiyoda, Japan). 

 

2.3.3. Atomic force microscope 

 

AFM experiments were performed using a Catalyst Bioscope (Bruker Nano, Inc.), 

mounted on an optical fluorescence macroscope (MacroFluoTM, Leica) with an 

objective (2x plano objective, Leica). Surface topology and maps of apparent 

modulus were recorded in PeakForce QNMTM AFM mode (Bruker Nano, Billerica, 

USA / Veeco, Inc., Painview, USA) using a Nanoscope V controller and Nanoscope 

software versions 8.1. All measurements were carried out using a 0.8µm diameter 

spherical probe (SD-Sphere-NCH, Nanosensors, Neuchâtel, Switwerland). The 

spring constant used for cantilevers was quantified using the thermal tuning 

method ranging between 35-45 N/m. Calibration of deflection sensitivity of 

cantilevers was done against a clean sapphire wafer.  

 

All recordings were carried out in an aqueous media at room temperature. The 

standard cantilever holder for experiments in liquid media was used. 30 mm 

diameter petri-dishes containing the sample were positioned on a XY motorized 

stage placed on a sample holder designed for the purpose. The AFM head was then 

mounted on the stage and positioning with respect to cantilever using GFP-signal 

was performed. 

 

The requested applied force (PeakForce setpoint) throughout the experiments was 

1.5 µN. For each sample, the topology and apparent modulus images were collected 

in areas of 100 x 40 µm2 and using a digital resolution of 128 pixels x 128 pixels. A 

rate of 0.3 Hz was used. 
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2.4. Phenotypic analysis: biochemical analysis 

 

2.4.1. Cellulose quantification 

 

This protocol was adapted from Foster el al. 2010b. 

 

Plants were incubated for 24 hours prior material collection in complete darkness, to 

eliminate starch. Fully developed adult leaves were collected into 2 ml Eppendorf 

tubes (Eppendorf, Hamburg, Germany) and lyophilised with a Crios lyophilizer 

(Cryotec, Saint-Gély-du-Fresc, France) equipped with en EMF10 vacuum pump 

(Edwards, Crawly, UK). Lyophilised tissue was ground into a fine powder using 

metallic beads and three cycles of 30 seconds at 30 Hz in a TissueLyser II® 

(QIAGEN, Hilden, Germany). 

 

From this powder the alcohol insoluble residue (AIR) was extracted. This was done 

by adding 1.5 ml of 70% EtOH to the sample and vortexing thoroughly. The sample 

was centrifuged at 10,000 RPM for 10 mins and the supernatant was removed. A 

second wash was done with 1.5 ml chlorophorm/methanol (1:1 v/v) prior to a 

second centrifugation in the same conditions. After removal of the supernatant the 

pellet was resuspended in 500 µl of acetone and the left overnight at 35°C to 

evaporate. 

 

Once dry, between 3 and 6 mg of AIR were weighed in a screw cap 2 ml tube 

(Starstedt, Nümbrecht, Germany). 1 ml of Updegraff reagent (acetic acid/nitric 

acid/H2O 8:1:2 v/v) was added to each sample and they were incubated for 30 

minutes in a boiling water bath. Samples were centrifuged at 10,000 RPM for 15 

mins and the supernatant was discarded. One wash with dH2O and one with 

acetone were performed. The pellet was left overnight at 35°C to dry. 175 µl of 72% 

H2SO4 were added to dry pellets, and samples were incubated at room temperature 
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for 30 mins, vortexed and incubated for a further 15 mins. 825 µl of H2O were added 

and the sample was mixed thoroughly and then centrifuged for 5 minutes at 10,000 

RPM to pellet any solid residue. 

 

Glucose content of these samples was quantified by mixing 10 µl of the liquid 

supernatant and 90 µl of dH2O in the wells of a microtiter plate (Corning, Corning, 

USA). A triplicate standard curve of 0, 2, 4, 6, 8 and 10 µg of glucose was included 

on the same plate. 200 µl of Anthrone reagent (2 mg anthrone (Sigma-Aldrich, St 

Louis, USA) per 1 ml of pure H2SO4) was added to each well and the plate was 

incubated at 80°C for 30 mins. Glucose containing samples turn from yellow to blue-

green, and the absorption of all samples was read at 625 nm using an Infinite 200 

PRO microtiter plate reader (Tecan, Mënnedorf, Switzerland). 

 

2.4.2. Lignin quantification 

 

This protocol was adapted from Foster el al. 2010a. 

 

The two basal centimetres of stem were collected into 2 ml Eppendorf tubes 

(Eppendorf, Hamburg, Germany) and lyophilised with a Crios lyophilizer (Cryotec, 

Saint-Gély-du-Fresc, France) equipped with en EMF10 vacuum pump (Edwards, 

Crawly, UK). Lyophilised tissue was ground into a fine powder using metallic 

beads and three cycles of 30 seconds at 30 Hz in a TissueLyser II® (QIAGEN, Hilden, 

Germany).  AIR was prepared from these samples as described previously. 

 

1 to 1.5 mg of AIR was weighed into a screw cap 2 ml tube (Starstedt, Nümbrecht, 

Germany). The walls of the tube were rinsed with 250 µl of acetone to collect the cell 

wall material in the bottom of the tube and the solvent was evaporated. Once dry, 

100 µl of a freshly made acetyl bromide solution (25% v/v acetyl bromide (Sigma-

Aldrich, St Louis, USA) in glacial acetic acid) was added gently to avoid splashing. 
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The tubes were capped and incubated at 50°C for 2 hours. They were then heated 

for another additional hour vortexing every 15 mins. After cooling down to room 

temperature 400 µl of 2M sodium hydroxide and 70 µl of freshly prepared 0.5M 

hydroxylamine hydrochloride (Sigma-Aldrich, St Louis, USA) were added. The 

tubes were filled up to exactly 2 ml with glacial acetic acid. 200 µl of the solution 

were pipetted into the wells of a UV specific 96 well plate, and read in an Infinite 

200 PRO microtiter plate reader (Tecan, Mënnedorf, Switzerland) at 280 nm. 

 

The percentage of acetyl bromide soluble lignin (%ABSL) was determined using the 

following formula: 

 

        
   

     
   

     

           
 

 

Were C is 15.69 and PL is the path length for the used plate. If multiplied by 10 the 

result gives µg of lignin per mg of cell wall. 

 

2.5. Q-RT-PCR 

 

2.5.1. Plant material collection 

 

All plant samples were generated at least in triplicate. Seedlings were grown under 

liquid culture conditions as explained in section 2.1.2 and tissue was treated and 

collected 7 days after germination. At day 4 after germination, the liquid media in 

all wells was replaced by clean fresh ½ MS.  

 

Plants stimulated osmotically were exposed to an osmotic step of 300 mOsm 

(reached by the gentle addition of 500µl of a concentrated stock of 1.8M Sorbitol to 

each well (Sigma-Aldrich, St Louis, USA)). 
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Plants stimulated mechanically were exposed to a force of 4 g/cm2. An upside-down 

50 ml Falcon tube (BD, Franklin Lake, USA) containing 52g of glass beads, with its 

bottom end cut off and  its lid pierced with small holes (to allow it to sink),  was 

placed gently into each well . 

 

Plant material was collected, blotted briefly, placed into 2ml eppendorf tubes with a 

large metal bead, (Eppendorf, Hamburg, Germany) and frozen immediately after 

collection in liquid N2.  

 

2.5.2. RNA extraction and DNAse treatment 

 

Frozen tissue was ground into a fine powder using two cycles of 30 seconds at 30 

Hz in a TissueLyser II® (QIAGEN, Hilden, Germany).  

 

RNA was extracted from collected samples using the SpectrumTM 

Plant Total RNA Kit (Sigma, St Louis, USA). Guidelines provided by the 

manufacturer were followed. 

 

The obtained RNA preps were treated using Turbo DNA-Free DNaseI (Ambion, 

Austin, USA) following to the instructions provided by the manufacturer. 

 

2.5.3. Determination of RNA concentration and reverse 

transcription 

 

The RNA concentration of the samples was measured with the aid of a NanoDrop 

ND-1000 UV-Vis spectrophotometer (Thermo Scientific, Wilmington, USA). 
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1 µg of the extracted RNA was reverse transcribed using a SuperScript® VILOTM 

cDNA synthesis kit (Invitrogen, Carlsbad, USA) following the instructions provided 

by the manufacturer.   

 

2.5.4. RT-PCR 

 

To carry out RT-PCR, cDNAs were diluted 1:30 with sterile water, and 5 µl were 

used in each reaction. The RT-PCR reactions were carried out in optical 96-well 

plates (Eurogentec, Seraing, Belgium) in a StepOne Plus Real Time PCR System 

(Applied Biosystems, Foster City, USA). A mastermix was prepared using 

Platinum® SYBR® Green qPCR SuperMix (Roche Diagnostics, Meylan, France) in a 

final volume of 20 µl per sample according to provided instructions. The program 

used in the thermalcycler for these reactions was: 50°C for 2 mins, 95°C for 2 mins, 

40 cycles of 95°C for 15 seconds, 60°C for 15 seconds and 72°C for 15 seconds. 

Dissociation curves were recorded during the reaction after cycle 40 heating 

gradually from 60°C to 95°C. A ramp speed of 1°C per minute was used. Data were 

analysed aided by the StepOne Software V2.2 (Applied Biosystems, Foster City, 

USA). Every RT-PCR reaction was carried out in technical triplicate.  

 

Primers for EIF4 cDNA (     were used as a reference. The PCR efficiency (E) was 

then estimated from the standard curve amplification obtained data using the 

equation: 

 

               

 

 The level of expression (R) of the genes of interest (   ) was calculated using the 

equation: 
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Where 

 

                    

  

Standard curves were obtained by amplifying the RT-PCR amplicon from cDNA 

using classic PCR (explained in section 2.2.2). These PCR products were purified as 

explained in section 2.2.4 and quantified using a NanoDrop ND-1000 UV-Vis 

spectrophotometer (Thermo Scientific, Wilmington, USA). 

 

A 1:100 dilution was made and used as S0. The standard curve was prepared as 

following: 

Standard Sn-1 dH2O 

S1 50 µl 450 µl 

S2 50 µl 450 µl 

S3 50 µl 450 µl 

S4 50 µl 450 µl 

S5 50 µl 450 µl 

S6 50 µl 450 µl 

S7 50 µl 450 µl 

S8 50 µl 450 µl 

 

The primers used for Q-RT-PCR were: 

Primer Sequence 

EIF4 FW GAACTCATCTTGTCCCTCAAGT 

EIF4 RV TTCGCTCTTCTCTTTGCTCTCC 

QXCDEK1 FW CTTGAGAGAAGGTTTTCGGAG 

QXCDEK1 RV CCTGTTCGAGTTAGATTGTCA 

QDEK1F1 AAACAAGAGGGGTTCTTACTT 

QDEK1R1 TTCGAATCTGAACAAGTCTGT 

QDEK1F2 AGTGGACTGATAGGATGAAGC 

QDEK1R2 AAGGTGAGTAACACATGAATT 

POST3 FW GGCTAGTTCACATTATGTTCCAAA 
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POST3 RV TCTTCTAATCTCAAGCTTCTTGGTG 

POST4 FW TCATTTCCGCCATTAAAGAAG 

POST4 RV GCACTGGTCCTCTCAACGTC 

POST5 FW CATTTCTGGTCTCAACCCAAG 

POST5 RV CGACGTAAGCTTCCATTTCAC 

POST8 FW CTGGTGCTAAACCTTGGAGATT 

POST8 RV CATTGTAAATGTCCCACCATTTC 

POST9 FW AAAGCTGGTGAGACCAGAGG 

POST9 RV AGCCTTGTCCCTCATCGTT 

PTT2 FW TTGAAGAAGATCCACCGACA 

PTT2 RV CGAGAGCTTCTTGTTCTCAGC 

PTT3 FW TCTTCTCAATTTCATTCCAGGAT 

PTT3 RV TGTTAAGGTTCTTGAAGAGCAGAG 

TOD1 FW CGTCACAACATTCTATCTTAAATCTCC 

TOD1 RV AATTGTTGTTCTTTGTCTCCTGAG 

TOD2 FW ACATCCCTCTATCTCTCAAACAACC 

TOD2 RV TTTCATTTCTCTTCCAATGACATTTCG 

TOD3 FW CCTTAAAAACATGGCCAGTACAACC 

TOD3 RV TCATCACCTCACGGTGTTGC 

TOD4 FW AAAGGAGCTTCTGTGGTTATTACAG 

TOD4 RV TTGTAACAGCTTACTCTTTGGAAAACG 

TOD5 FW ATCCACGTTCAGTCTTCCTCC 

TOD5 RV CAAACTACCAATGCTGATGCC 

TOD19 FW AAAGAGAGGATCGAGTGTGG 

TOD19 RV TTGCAAGCATCAATGCAAGGC 
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2.6. Ion fluxes and concentrations 

 

2.6.1. Flame photometry 

 

Samples were prepared by weighing between 0.5 g and 1 g of fresh tissue. This was 

placed into containers of aluminium foil and heat dried at an incubator at 60°C for 

one week. Dried samples were weighed and placed in 50 ml Falcon tubes (BD, 

Franklin Lake, USA).3 ml of 1.5M HCl per 0.5 g of dry tissue was added. These 

samples were incubated at 37°C for 10 days and the concentrations of Ca2+ and Na+ 

were measured using a Model 410 flame photometer (Sherwood Scientific, 

Cambridge, UK) after diluting 200 µl of extract in 5ml of dH2O. 

 

Readings were compared with calibration curves of 250, 125, 67.5, 33.73, 16.875, 

8.4575 and 2.218 µM of NaCl or CaCl2. 

 

2.6.2. In planta ion flux measurements (impalements)  

 

Double barrelled microelectrodes were made in order to give a tip resistance within 

the range of 300–500 mΩ when filled with 200 mM of potassium acetate. The 

microelectrodes built were approximately 2.0 cm-long and tips were shaped with a 

1–1.5° angle. These microelectrodes were stored before in a paraffin-coated glass 

desiccator in order to reduce capacitance before impalement. 

 

A Narashige C2 micromanipulator (Narashige, Tokyo, Japan) containing a brace 

that had a fixed clamp for one amplifier headstage and an adjustable clamp, was 

used. Ag|AgCl-KCl type half cells were prepared as follows: a 0.5 mm diameter 

wire of Ag was soldered into a 2-mm diameter socket and fitted with the aid of a 

silicon plug behind the tip segment of a 2-ml graduated plastic pipette tip. The 
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electrode was then filled with electrode buffer (10mM BaHEPES, 33mM CsHEPES, 

pH7.5) and then fixed to the half-cell with the aid of dental resin. 

 

Impalements were performed by positioning the tip of the microelectrode within the 

cytoplasm of a root epidermal cell of a seedling grown in liquid culture conditions 

as explained in section 2.1.2 for 4-5 days. The system was then allowed to rest for a 

period of 2 to 3 mins in order to stabilize after impalement. Impalements were 

carried out with the samples immersed in Recovery buffer (10mM KCl, 5mM 

NaMES; pH6.1). 

 

Voltage clamp data was then recorded with the samples immersed in an osmotic 

step solution (20mM BaCl2, 5mM NaMES, 30mM mannitol; pH6.1). Buffer change 

was performed using a gravity-fed system. Data recorded was analysed using 

Henry’s EP Suite software (Blatt 1987; 2004). 

 

2.6.3. Electrophysiological measurements in Xenopus 

oocytes 

 

2.6.3.1. Building of constructs 

 

Full length and the transmembrane domain coding region of DEK1 were cloned into 

pGEMXho plasmids. In order to do this I adapted the plasmid to the Gateway® 

system. For this the Gateway® R1 and R2 sites were amplified with a high fidelity 

PCR (as described in section 2.2.2) from the cDEST vector. This reaction was carried 

out using the primers TTTGGATCCGGCTAGTTAAGCTATCAACAAGTTTG and 

AAAACTAGTCGGATAGGCTTACCTTCG. The reaction products were cleaned up 

(as described in section 2.2.4) and cloned into a pENTR vector (Invitrogen, Carlsbad, 

USA) following the manufacturer’s guidelines. The obtained plasmid was digested 

using the restriction enzyme SpeI (as described in section 2.2.5).  
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The expression plasmid was linearized using SpeI and treated with dCIP 

phosphatase to avoid relinearization (as described in section 2.2.5). The digested 

PCR product and linearized vector were ligated using T4 DNA ligase (as described 

in section 2.2.5). 

 

LR Gateway® reactions were then carried out with the genes of interest as described 

in section 2.2.6.  

 

2.6.3.2. Injection in Xenopus oocytes and 

electrophysiological measurements 

 

Oocytes were obtained from ice-anesthetized Xenopus laevis through a surgical 

process. Once isolated, oocytes were defoliculated by a treatment in a solution 

containing 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM Hepes-NaOH pH 7.4 and 

2 mg ml-1 collagenase for 60 minutes. Oocytes in phases V and VI were selected and 

placed in a solution containing 96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM 

CaCl2, 2.5 mM Na-pyruvate, 5 mM Hepes-NaOH pH 7.4 and 50 mg ml-1 gentamicin. 

 

Injection of oocytes was carried out using a 10-15 µm tip micropipette attached to a 

pneumatic injector. 30 ng of cRNA or dH2O were injected. Oocytes were 

subsequently incubated for 4 days at 19°C. 

 

Electrophysiological recordings were carried out with the voltage-clamp technique 

using a GeneClamp 500B (Axon Instruments, Sunnyvale, USA). Protocols, 

acquisition and analysis of data were carried out using pCLAMP10 (Axon 

Instruments, Sunnyvale, USA) and SigmaPlot (Jandel Scientific, San Rafael, USA). 

Both current and voltage applied were recorded. 
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2.7. Yeast techniques 

 

2.7.1. Bait and prey construction for yeast 2 hybrid (Y2H) 

assays 

 

The gene or gene fragment of interest was amplified using a high fidelity 

polymerase (Phusion). Specific sequences were added to primers in order to 

introduce SfiI sites. PCR products were purified as detailed in section 2.2.4. 

Overnight digestions were made using SfiI (Takara, Shiga, Japan) at 50°C. The 

digestion products were run on gels, and purified. Ligations were set up using T4 

DNA ligase with SfiI digested vectors; pDHB1 for bait vectors and pPR3N for prey 

vectors (vectors as sold by Dualsystems Biotech, Schlieren, Switzerland). 

 

The primers used for cloning of genes into Y2H vectors were:  

Primer Sequence 

Y2H_CALP_FW GTGGCCATTACGGCCCGGAGAATGCGTTCAGTTGAG

TTG 

Y2H_CALP_BAIT

_RV 

CGACATGGCCGAGGCGGCCAACAAAGCTTCAAGAA

CAATGGATGC 

Y2H_CALP_PRAY

_RV 

AGGCCGAGGCGGCCGAAACAAAGCTTCAAGAACA

ATGGATGC 

IXR15yeastF AGGCCATTACGGCCATGAAAAGTGGAGGGAACACA

AAC 

IXR15yeastPREY AAGGCCGAGGCGGCCGAGCCGATGGAGAAGAAAC

TG 

LUNG7TMyeastF AGGCCATTACGGCCATGACGAGACTACCCCTCTTC 

LUNG7TMyeastP

REYr 

AAGGCCGAGGCGGCCGGAGTTCAAAATCATCCTCC

TTCAAG 

TUB2yeastF AGGCCATTACGGCCATGCGTGAGATTCTTCAC 

ATC 

TUB2yeastPREYr AAGGCCGAGGCGGCCGGTACTCTTCCTCCTGTTGAT

ATTC 

TUB2yeastBAITr AGGCCGAGGCGGCCAAGTACTCTTCCTCCTGTTGAT

ATTC 

Y2H_FLmaMYB_F

W 

AACGCGGCCATTACGGCCATGGATTTTTTCGACGAA

GAC 
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Y2H_CLmaMYB_F

W 

AACGCGGCCATTACGGCCTCTCTCCTTCTTCTACTTC

G 

Y2H_maMYB_BAI

T_RV 

CGACATGGCCGAGGCGGCCTTAATTAGCTGGAGTTT

TCGA 

 

The vectors were sequenced as described on section 2.2.9 using the following 

primers: 

 

Primer Sequence 

pDHB1 FW TTTCTGCACAATATTTCAAGC 

pDHB1 RV GTAAGGTGGACTCCTTCT 

pPR3N FW GTCGAAAATTCAAGACAAGG 

pPR3N RV AAGCGTGACATAACTAATTAC 

 

2.7.1. Screening of interactions of calpain bait with cDNA 

library 

 

1 mg of silique RNA was extracted as detailed in section 2.5.2 and sent with a bait 

construct containing the calpain-encoding domain of DEK1, to Dualsystems Biotech, 

where a cDNA library was prepared. Dualsystems Biotech also performed a 

functional assay for the bait, a pilot screen to test for self-activation and screened the 

cDNA library following their own protocols. Sequences of potential preys were 

eventually provided, but a prolonged delay meant that I was unable to follow up as 

many of these interactors as I would have liked.  

 

Once sequences had been returned, prey vectors were constructed to retest 

interactions (by co-transformation with the calpain containing bait vector), and to 

test for false positives (by co-transformation with an empty bait vector). 
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2.7.2. Double transformation of plasmids in to yeast 

 

Several fresh colonies of yeast strain NMY51 (Saccharomyces cerevisae), provided by 

Dualsystems Biotech, were inoculated into 50 ml of YPAD medium (20g Difco 

bacto-peptone, 10g Yeast extract, 50mls of 40% (W/V) Dextrose, and water to 1L. 15 

ml of filter-sterile Adenine hemisulphate was added after autoclaving). Cutures 

were incubated overnight with agitation at 28°C. An optical density (OD) at 546 nm 

between of 0.6 was sought, and if the culture passed this density it was diluted to an 

OD of 0.2 and left to grow up to 0.6). In order to continue the transformation, the 

cells were pelleted by centrifuging for 5 mins at 2,500 RPM and resuspended in 2.5 

ml of dH2O. Both plasmids to transform were mixed (1.5 µg of each) with 300 µl of 

PEG/LiOAc mix (240 µl polyethylene glycol, 36 µl LiOAC) 25 µl DNA carrier 

(Sonicated Salmon sperm DNA denatured by two baths of 5 mins at 99°C)) and 100 

µl of resuspended cells. This mix was mixed thoroughly by vortexing. A heat shock 

of 42°C for 45 mins was applied. The suspension was centrifuged for 5 mins at 700 

RPM, resuspended in 100 µl of dH2O, and spread on dropout (SD) media (6.8g Difco 

Yeast Nitrogen base w/o amino acids, 20g glucose, amino acid mix lacking 

Tryptophan and Leucine to allow selection of bait and prey vectors (as 

manufacturer’s instructions) (TAKARA Bio, Shiga, Japan), pH5.8, 20g Bacto Agar, 

autoclave 115°C for 15 minutes) and left incubating for 3-4 days at 30°C. 

 

2.7.3. Serial drop test 

 

After transformation and growth in selective SD media, two colonies were taken 

with a sterile loop and suspended in 1 ml of dH2O. Serial dilutions of 1:10, 1:100 and 

1:1000 were prepared and placed as drops of 11-12 µl on selective SD media as 

above, but made with amino acid mixes additionally lacking either Histidine (to 

detect mild interactions), or Histidine and Adenine (to detect strong interactions). 

Tests were left to grow at 30°C for several days before being photographed. 
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3. Effect of mechanical stress in Arabidopsis 

thaliana plants 

  3.1.   Introduction 

  3.2. Mechanically stressed wild-type Arabidopsis show an 

increase in cellulose content 

  3.3. Mechanically stressed wild-type Arabidopsis show an 

increase in lignification 

  3.4. Transcriptional changes in osmotically and 

mechanically stimulated Arabidopsis wild-type plants 

    3.4.1.  Osmotic stress up-regulates both osmotic and 

mechanical sensitive genes 

    3.4.2.   Mechanical stress cannot be used as a proxy for 

osmotic stress 
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3. Effect of mechanical stress in Arabidopsis 

thaliana plants 

 

3.1. Introduction 

 

Thigmomorphogenetic responses are different from species to species and they 

generally occur slowly over time. The most common touch triggered alterations 

reported in the literature include reduction of shoot elongation, but 

thigmomorphogenesis also correlates with changes in hormone levels, chlorophyll 

content, stomatal distribution, cell wall structure and composition, leaf size and wax 

composition (Biddington 1986; Jaffe 1973; Jaffe and Forbes 1993; Mussell et al. 1979; 

Saidi et al. 2010; Whitehead and Luti 1962). 

 

Changes in the cell walls of mechanically stimulated plants have been reported. In 

Solanum lycopersicum (tomato) subjected to mechanical elicitations, an enhancement 

in the rate of cell wall lignification was described (Saidi et al. 2010). Similarly, it has 

been shown that an accumulation of lignin increases the rigidity of the cell wall in 

mechanically stimulated Phaseolus vulgaris (bean plant), leading to plants showing 

more resistance to herbivorous pests compared to non-stimulated plants (Cipollini 

1998; Cipollini Jr 1997).  

 

Although very few studies have been made on the effects of mechanical stimulation 

in the cell wall of Arabidopsis, the effects of altered gravity have been widely 

described. Plants grown in outer space, and therefore exposed to reduced 

gravitational forces, show a decrease in cellulose content (Cowles et al. 1984; 

Nedukha 1996) and in matrix polysaccharides (Hoson et al. 2002). Hypergravity, 

which is considered to have similar effects on plants to mechanical stimulation, was 

tested by treating plants for 24 hours at 300g. These plants had shortened and 

thickened stems, with an increased development of primary xylem and an increase 
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in lignin deposition (Nakabayashi et al. 2006; Tamaoki et al. 2004; Tamaoki et al. 

2006). Similar results were seen in other species, such as Brassica rapa (Allen et al. 

2009). 

 

Even though not all changes seen in the cell wall are directly due to transcriptional 

changes, many of these effects could be due to changes in the expression level of 

touch-induced genes. These may have diverse functions contributing to the diverse 

morphological and physiological phenotypes associated with mechanical stress. 

Genes up-regulated by mechano-stimulation have been implicated in biotic 

resistance (Ma et al. 2008), ion stress responses (Delk et al. 2005), regulation of 

transition to flowering (Tsai et al. 2007) and cell wall biosynthesis (Xu et al. 1995) 

amongst others. 

 

In Arabidopsis thaliana the effect of direct mechano-stimulation has been relatively 

poorly described, although it has been shown that it has an effect in flowering time, 

inflorescence elongation and petiole length (Braam 2005; Braam and Davis 1990; 

Paul-Victor and Rowe 2011). Until now the effects of this type of stress on the 

composition of the cell wall are largely unknown. 

 

Osmotic stress has been used for years as an approximation to mechanical 

stimulation is several organisms, including bacteria (Berrier et al. 1992; Levina et al. 

1999). Osmotic stress or shock involves sudden changes in solute concentrations 

outside the cell. This triggers changes in water transport through the plasma 

membrane. These changes in water transport are driven by passive forces. Under 

high osmolarity water flows out of the cell through osmosis. Under low osmolarity 

it flows into the cell, leading to swelling. Both types of osmotic stress generate 

membrane stress. This is a consequence of the fluidity of cell membranes. Changes 

in water activity lead to changes in membrane shape that can alter the mechanically 

imposed strain of the membrane. Hyper-osmolarity can make the surface of a 

spherical cell become non-spherical. This requires an in-plane extension and 
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changes in curvature. Hypo-osmolarity can lead non-spherical cells to become more 

spherical. This also requires an in-plane extension and changes in curvature (Wood 

1999). These changes in the membrane topology have the characteristic of changing 

the mechanical forces pattern present in the membrane. This is the reason why 

osmotic stress has been proposed as an approximation for mechanical stress. 

However, the validity of this proxy remains controversial. 

 

It has been shown that osmotic stress causes characteristic transcriptional changes in 

several organisms, including yeast (Causton et al. 2001; Gasch et al. 2000), animals 

(Ho 2006) and plants (Xiong and Zhu 2002). Several datasets studying the effects of 

osmotic stress in plants are available in literature. It was observed that different 

tissues show different responses to this type of stress. When treated for 3 hours with 

an osmotic step very different changes are seen in (483 genes misregulated) and 

roots (285 genes misregulated) (Kreps et al. 2002).  More recent data has been 

published on the effect of this treatment in seedlings, with significative changes in 

the transcription level of around 900 genes. This included an important number of 

transcription factors (around 100) (Zeller et al. 2009). This is useful, as response to 

osmotic stress can be detected and quantified through transcriptional analysis. 

 

Less is known about touch-regulated genes. In 2005 Lee and collaborators published 

for the first, and only list to date of genes up- or down-regulated in response to 

mechanical stimulation. 589 genes were described as showing increased expression 

and 171 genes with decreased expression in this dataset (Lee et al. 2005).  

 

In this chapter I studied the responses seen in mechanically stressed Arabidopsis 

thaliana. In particular I focused on changes in the cell wall. I also compared 

transcriptional changes in Arabidopsis under mechanical and osmotic stimulation in 

order to test whether these two types of stress are truly interchangeable and 

whether osmotic stress represents a valid proxy for mechanical stress in the case of 

plants. 
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3.2. Mechanically stressed wild-type Arabidopsis show an 

increase in cellulose content 

 

In order to investigate the possible changes in the cell wall of mechanically stressed 

Arabidopsis thaliana plants, the content in cellulose of the cell wall in mechanically 

stimulated vs. non-stimulated plants was studied. 

 

The contents of the cell wall can be quantified from the alcohol-insoluble residue 

(AIR) after its extraction from plants which are first incubated in the dark for at least 

24 hours to remove starch. During this extraction process all soluble components of 

the sample are washed out by several rinses with ethanol, leaving mainly the 

polysaccharides of the cell wall, and lipids. Using a simple technique, cellulose can 

be isolated from the rest of polysaccharides and quantified by colorimetric assays, 

such as the anthrone method. This technique assays the coloured products of the 

reaction of cellulose hydrolysis products with the aromatic molecule anthrone.  

These products have a maximum absorbance at 620 nm and can be easily quantified 

by classical colorimetry (Foster et al. 2010b; Trevelyan et al. 1952). 

 

Wild type plants were treated with mechanical stimulation of 4 g/cm2 twice daily for 

one minute, starting at the appearance of the first pair of true leaves. Fully 

expanded adult leaves were collected and their content in cellulose was quantified 

using the above technique (see materials and methods for details). 

 

Unstressed plants had a content of cellulose of 0.55 µg of glucose equivalents per µg 

of AIR. Mechanically stimulated plants showed an increase of approximately 50 % 

in the cellulose content of their cell walls with a value of 0.84 µg of glucose 

equivalents per µg of cell wall (Table 3.1; Figure 3.1). 

 



109 

 

Table 3-1 Quantification of the cellulose content of the cell walls of leaves of 

wild-type mechanically unstressed and stressed plants. Expressed in glucose 

equivalents per µg of AIR. 

 

 WT 

UNSTRESSED 0.55 

STRESSED 0.84 

 

 

 

Figure 3-1 Quantification of cellulose content of cell walls of leaves of wild-

type mechanically unstressed and stressed wild-type plants. Error bars show 

standard deviation. Statistical significance tested with a t-test, n=10, p<0.01.  

 

3.3. Mechanically stressed wild-type Arabidopsis show an 

increase in lignification 

 

Several publications suggest that changes in stem lignin content and, in particular, 

lignification of secondary cell walls, are a characteristic of mechanically stressed 

plants (Cipollini 1998; Cipollini Jr 1997; Saidi et al. 2010). I therefore tested if this 

response is present in the stems of wild-type Arabidopsis plants under my conditions 

(treatment with mechanical stimulation of 4 g/cm2 twice daily for one minute 

starting at the appearance of the first pair of true leaves).  
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Lignin can be quantified by its auto-fluorescence after being extracted with acetyl 

bromide (Foster et al. 2010a) . My results showed that this component of secondary 

cell wall increases by approximately 55% in mechanically stimulated plants in 

comparison to non-stimulated individuals (table 3.2, figure 3.2). A value of 121.6 µg 

of lignin per cm of stem was detected in non-stimulated plants while stimulated 

individuals showed a value of 213.2 µg of lignin per cm of stem. 

 

Table 3-2 Quantification of content of lignin in µg per cm of stem in 

mechanically stimulated and non-stimulated wild-type Arabidopsis. 

 

 WT 

Unstressed 121.64 

Stressed 213.17 

 

 

 

Figure 3-2 Quantification of content of lignin in mechanically stimulated and 

non-stimulated wild-type Arabidopsis. Error bars show standard deviation. 

Statistical significance tested with a t-test, n=4, p<0.01. 
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3.4. Transcriptional changes in osmotically and 

mechanically stimulated Arabidopsis wild-type plants 

 

3.4.1. Osmotic stress up-regulates both osmotic and 

mechanical sensitive genes 

 

All experiments in this section were carried out in collaboration with Kimberly 

Berthet, a project student who worked under my technical supervision for a 3-

month period. 

 

Osmotic steps have long been used as a proxy for mechanical stress in bacteria 

(Berrier et al. 1992; Levina et al. 1999). In order to develop tools for the analysis of 

responses to mechanical stresses in Arabidopsis, I therefore wanted to test if osmotic 

stress could be used as an alternative to mechanical stimulation in Arabidopsis 

plants. The rationale for this is that osmotic stresses are much easier to apply to 

plants in a uniform manner, and without the risk of wounding, than mechanical 

stimuli. 

 

In order to test this we used an RT-Q-PCR assay. We selected a set of genes to use as 

transcriptional markers for responses to stress. These genes included both potential 

targets of osmotic stimulation and potential targets of touch stimulation extracted 

from the literature and from in silico resources. The potential targets of osmotic 

stimulation were obtained from the Arabidopsis eFP browser (Winter et al. 2007), 

named POST (Putative Osmotic Stress Target) and designated by a number. The 

potential touch targets are a selection of published touch sensitive genes (Lee et al. 

2005), were named PTT (Putative Touch Target) and designated by a number. 
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POST3 is At1G53180, a gene encoding an expressed protein of unknown function. It 

is expressed in several structures including leaf, flower, apical meristem and root 

(Winter et al. 2007).  

 

POST5 is At5G59320, a gene encoding for LTP3 or Lipid-Transfer Protein 3. The 

LTPs genes are a family of lipid-transfer proteins that facilitate the transfer of lipids 

between membranes (Harryson et al. 1996; Kader 1996; Maxfield and Mondal 2006). 

They have putative roles in several processes including cutin formation (Sterk et al. 

1991), embryogenesis (Sterk et al. 1991; Thoma et al. 1994) and defence reactions 

against pathogens (Molina et al. 1993), amongst others.  They are known to be 

accumulated in various cellular compartments (Yeats and Rose 2008). 

 

POST8 is At1G56600, which encodes GolS2, a Galactinol Synthase. This enzyme is 

responsible for the catalysis of the first step in the synthesis of Raffinose family 

oligosaccharides from UDP-galactose (Taji et al. 2002). Expression of this gene is 

induced by drought and high-salinity stress. It seems to be involved in controlling 

cytokinin levels (Guo et al. 2010; Taji et al. 2002). 

 

POST9 is At3G15670, encoding a Late Embryogenesis Abundant family protein 

(LEA). These proteins are named after certain family members that are accumulated 

during the late phases of embryo development (Dure et al. 1981). Expression studies 

showed that several genes encoded by genes of this protein family respond to 

abscisic acid, low temperature or drought stress (Hundertmark and Hincha 2008). 

 

The potential touch targets were chosen from a published list of touch sensitive 

genes (Lee et al. 2005). These genes in particular were chosen on the basis that they 

should not show strong transcriptional responses to wounding, which can be easily 

confused with mechanical stimulation. For these targets we found that they show a 

fairly weak response to wounding and that this response disappears within the first 
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30 minutes after the wounding event. This was checked in the eFP browser (Winter 

et al. 2007). 

 

PTT2 is At1G80840, which encodes a WRKY40, a member of the WRKY Family of 

Transcription Factors. It has been reported that this protein interacts with the other 

pathogen induced proteins WRKY18 and WRKY60 (Xu et al. 2006b). The expression 

of these transcription factors seems to be responsive to abscisic acid and abiotic 

stress (Chen et al. 2010a). 

 

PTT3 is At3G55980, gene encoding a putative zinc finger transcription factor. This 

protein seems to be involved in the molecular mechanisms governing the response 

to salinity stress. Over-expressers of this gene show a reduced response to salt stress 

detected by Q-RT-PCR (Sun et al. 2007). 

 

In order to test the effects of osmotic stress on gene expression we had to set up a 

robust experimental procedure. We chose to use seedlings, as they are an accessible 

and uniform material, which is easy to grow in sterile liquid culture and under 

controlled conditions. For all these experiments to set up the technique, we decided 

to test only to targets: POST5 and POST9. These targets were shortlisted from the 

original list as they gave very good results in the preliminary tests.  

 

The first variable we tested was the means of generating the osmotic stress on the 

seedlings. Classically these sort of experiments have been carried out using the 

saccharides mannitol and sorbitol, as they are not metabolizable, thus they do not 

affect parameters other than those related to osmotic pressure (Flores and Galston 

1982; Patching and Rose 1971; Riov and Yang 1982). Increasing concentrations of 50 

mM, 150 mM, and 300 mM were used to generate the stress. Treatments were 

carried out for a time lapse of 3 hours. Defined volume of different concentrated 

stocks were added to the media in which the seedlings were growing. Controls were 
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treated with the same volume of liquid media as that administered with the osmotic 

stress treatment.  

 

 

Figure 3-3 Transcriptional responses of osmotic sensitive genes in seedlings 

treated with 300 mOsm of mannitol in a time lapse of 24 hours. POST3 (A), 

POST5 (B), POST8 (C) and POST 9 (D). Taken from eFP Browser (Winter et al. 

2007). 

 

A positive correlation was observed between the increasing concentrations of both 

sorbitol and mannitol and the increased up-regulation of proposed osmotic stress 

genes. All osmotic stress targets showed the same trend, with the greatest 

transcriptional response observed at a concentration of 300mM for both sorbitol and 

mannitol (Figure 3-4). The decision was made to osmotically stimulate the seedlings 
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with sorbitol at a concentration 300mM, as sorbitol was much more easily dissolved 

than mannitol. This decision was based purely on practical reasons as mannitol 

would have been as efficient creating osmotic stress as sorbitol.  

 

 

 

Figure 3-4 Relative expressions of POST5 (A) and POST9 (B) under treatments 

with 50 mM, 150 mM and 300 mM of mannitol and sorbitol. Controls treated 

with an isosmotic solution. Error bars show standard deviation between three 

biological replicates. ANOVA test shows a statistical significance between 

samples treated with 300 mM of mannitol or sorbitoland all others, p<0.01. 
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We next wanted to test the effectiveness of continuous vs. transient osmotic stress. 

An osmotic treatment was administered with 300 mM sorbitol contained in the 

media. Transient stress was administered for 30 minutes and the media was then 

replaced by fresh media that no longer contained the osmoticum. Seedlings were 

left incubating for 3.5 hours longer before collecting the tissue. Continuous stress 

was administered for 4 hours, replacing the media after 30 minutes with new 

sorbitol containing media. Controls were treated with the same volume of liquid 

media as the one administered in the osmotic treatment, with the corresponding 

change of media after 30 minutes. 

 

A greater transcriptional response was observed in seedlings treated continuously 

in comparison to the ones treated transiently (Figure 3-5).  Therefore continuous 

treatment with sorbitol at a concentration of 300mM was used in the following tests. 

 

In order to determine the ideal time span of osmotic exposure in order to detect a 

transcriptional response, sorbitol was administered to create a hypertonic 

environment of 300 mOsm. Controls were treated in the same way, but using iso-

osmotic media. All the seedlings were treated at time points of 30 minutes, 60 

minutes, 2 hours and 3 hours.  

 

Proposed osmosensitive genes were up-regulated in the presence of hyperosmotic 

stress.  The  length  of  exposure  was  positively  correlated  with  the  increased  

transcriptional  response  in putative osmosensitive targets (Figure 3-6). From this 

analysis the greatest exposure length of 3 hours was chosen for hyperosmotic stress 

induction. 
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Figure 3-5 Relative expressions of POST5 (A) and POST9 (B) under transient 

or constant treatments with 300 mM of sorbitol. Controls treated with an 

isosmotic solution. Error bars show standard deviation between three 

biological replicates. ANOVA test shows a statistical significance between 

samples treated with continuous stress and all others, p<0.01. 

 

Even though we only tested time points up to 3 hours, in silico data suggests that 

longer time points might have also been effective.  Different targets can show 

different kinetics in their response to stress. Response can vary from a robust and 

constant up-regulation, to a more transient up-regulation that decreases with 

acclimation. One of the reasons why we chose to test osmotic stress for 3 hours was 

because we felt that this was more likely to allow us to observe these transient 

responses than longer time lapses.  
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Figure 3-6 Relative expressions of POST5 (A) and POST9 (B) under treatment 

with sorbitol 300 mM for 30 minutes, 60 minutes, 2 hours and 3 hours. 

Controls treated with an isosmotic solution. Error bars show standard 

deviation between three biological replicates. ANOVA test shows a statistical 

significance between samples treated for two and three hours and all others, 

p<0.01. 
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Having identified the conditions required to give a robust transcriptional response 

to osmotic stress, we then tested the behaviour of the two other POSTs and the two 

PTTs which we had chosen to analyse. The experiments were carried out with an 

osmotic step of 300 mOsm, generated with sorbitol. This was applied in a 

continuously way for 3 hours immediately before collecting the tissue, from which 

RNA was obtained in order to do RT-Q-PCRs. Controls were treated in the same 

way, but using isosmotic liquid media. 

 

For all cases, both targets of osmotic stimulation and “touch genes”, we saw an 

induction of expression as a response to an osmotic step of 300 mOsm. In most 

cases, these genes are induced at least 5 fold compared to the untreated control 

(figure 3-7). It should be pointed that there is discrepancy between the experimental 

data we obtained and the available in silico data regarding the over-expression of 

PTT2 and PTT3 under hyper-osmotic stress conditions, since neither gene is 

detectably induced in this dataset. However the technique we used to obtain our 

results is different to the one used to build the eFP browser. In particular, in our 

case we used RT-Q-PCR, while in silico data comes from microarray data.  

 

These results suggest that an osmotic step of 300 mOsm, generated with sorbitol, 

can be used as a good proxy to mechanical stress, as using this kind of osmotic 

stimulation generates a clear response in both osmotic stimulation and touch 

stimulation target genes. 
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Figure 3-7 Q-RT-PCR recordings of the transcriptional changes in the 

expression of POST3, POST5, POST8, POST9, PTT2 and PTT3 in response to 

increasing osmotic shocks of sorbitol (S 50 mM, S 150 mM and S 300 mM). 

Error bars show standard deviation between three biological replicates. 

ANOVA test shows a statistical significance between samples treated with 300 

mM of sorbitol and all others, p<0.01 for all except for PTT3, where p<0.05. 
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3.4.2. Mechanical stress cannot be used as a proxy for 

osmotic stress 

 

We observed that an osmotic step would mimic the effects of mechanical 

stimulation, seen as the up-regulation of mechanical stress reporter genes. 

Therefore, it can be used as a proxy for mechanical stress in Arabidopsis. We 

therefore decided to test whether the inverse situation was true, and whether we 

could consider mechanical and osmotic stimulation as interchangeable. 

 

In order to answer this question we had to develop a mode of administering 

mechanical stimulation to plants grown in liquid media. To do this we created and 

tested two different methods. The first method consisted of adding a single round 

clean glass bead to each well in which the seedlings were growing and placing the 

plates on a shaker. The second method was to place an inverted 50 ml falcon tube, 

filled with a constant number of glass beads (52 grams), in each germination well. 

 

After one hour of incubation we could see that the first method did not generate a 

detectable change in the transcription level of “touch genes” PTT2 and PTT3.  This is 

probably because the glass bead tended to roll around the periphery of the well and 

hardly touched the plants. The stress induced simply by agitation alone appears to 

have been insufficient to activate “touch genes”. On the other hand, the second 

method proved to be very effective in generating a transcriptional response (figure 

3-8). 

 

Stimulation of full seedlings might not be the ideal method as some tissues might be 

responding in different way to the applied stress. Nevertheless, I strongly believe 

that using isolating a certain organ/tissue for this experiment could generate a 

transcriptional response to wounding, possibly masking the transcriptional effects 

of the applied mechanical stress.  
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Therefore, we decided to stimulate the plants mechanically by applying a force to 

liquid culture grown seedlings using an inverted, glass bead filled, 50 ml falcon tube 

(figure 3-9). The bottoms of the tubes were removed and the lids were perforated 

repeatedly with a needle to allow the liquid media flow into the tube and, therefore, 

reduce buoyancy. This stimulation was carried out for 3 hours. For these 

experiments we tested POST5, POST9 and PTT2. 

 

 

 

 

 

 

Figure 3-9. Scheme of the mechanical stimulation system.  6-well plate liquid 

culture grown seedlings (A) were treated with inverted, glass bead-filled 

falcon tubes (B). 
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Figure 3-8 Relative expressions of PTT2 (A) and PTT3 (B) under mechanical 

treatments with a glass bead (shaking) or an inverted falcon tube. Controls 

were untreated samples. Error bars show standard deviation between three 

biological replicates. ANOVA test shows a statistical significance between 

samples treated with an inverted tube and all others, p<0.01. 
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Figure 3-9 Q-RT-PCR recordings of the transcriptional changes in the 

expression of POST5, POST9 and PTT2 in the presence (Mechanical St) or 

absence (Unst) of a mechanical stimulus. Error bars show standard deviation 

between three biological replicates. Statistical significance between samples 

was obtained with a t-test, p<0.01 for PTT2 and PPT3. Differences in POST5 

and POST9 are not statistically significant. 

 

The presence of mechanical stimulation did not generate any visible change in the 

expression level of osmotic stress targets, even though it was proven effective by the 

up-regulation of the control genes PTT2 and PTT3, which are touch targets (figure 3-

9). Therefore we can conclude that even though osmotic stimulation can be used as 

a proxy for mechanical stimulation, the inverse may not be true, at least at the level 

of the control of the marker genes which we tested in these experiments. 

 

 

 

 A 
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3.5. Summary and conclusions 

 

As discussed in the introduction, plants show specific phenotypes in response to 

mechanical stress. Many of these responses involve changes in the cell wall 

composition and mechanics, as well as a lower rate of primary growth.  

 

These changes have been described in a wide variety of species, with relatively little 

known about responses in the model plant Arabidopsis. In addition, much of the 

previous work carried out in Arabidopsis was centred on the effect of mechanic stress 

on growth of the primary stem, which is retarded in comparison to the one of non-

stressed plants (Braam 2005; Braam and Davis 1990; Paul-Victor and Rowe 2011). 

This aspect in particular corresponds strongly with the phenotypes reported in 

other species, such as woody plants (Leblanc-Fournier et al. 2008; Telewski and Jaffe 

1986; Telewski and Pruyn 1998). However, changes in the cell wall of mechanically 

stressed Arabidopsis thaliana plants remained to be characterized. 

 

In wind stressed Phaseolus vulgaris plants an induction of peroxidase activity was 

detected (Cipollini 1998; Cipollini Jr 1997), which is thought to be responsible for the 

polysaccharide-polysaccharide cross linking reaction in the cell wall and involved in 

regulating cell wall extension processes (Ralph et al. 2004) and in lignin synthesis 

(Barceló et al. 2004). In woody species it has been demonstrated  that mechanically 

stressed trunks generate modifications in their cell walls by a deposition of extra 

layers of cell wall material (Frankenstein and Schmitt 2006; Melcher et al. 2003). 

Even though we do not know the nature of this cellulose deposition I observed that 

mechanically stressed Arabidopsis also present a higher amount of cellulose in their 

cell walls. Therefore the response of this species is consistent with that seen in 

woody species. 

 

I also detected a modification in the quantity of lignin in the stems of mechanically 

stressed Arabidopsis plants.  A similar situation has been reported in other species, 
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such as Solanum lycopersicum, where stems show a higher lignification rate after 

undergoing a mechanical stress treatment (Saidi et al. 2010). In previous 

experiments done in Arabidopsis, such as the one performed by Paul-Victor and 

Rowe, no changes in lignification were seen (Paul-Victor and Rowe 2011). I believe 

that the differences seen between my experiments and those performed by Paul-

Victor and Rowe is that they express lignin per unit of AIR, while I express it per cm 

of stem. It is possible that the increase in lignin I see is, at least in part  a reflection of 

an increase in stem circumference, an effect present in mechanically stressed plants 

(Telewski and Jaffe 1986). Unfortunately, due to severe black-fly infestations in the 

growth rooms in Lyon, I was unable to test this hypothesis, despite numerous 

aborted attempts. 

 

It is interesting to note that all the phenotypes I observed in mechanically stressed 

plants, fit very well with the phenotypes observed in Arabidopsis plants grown in 

hypergravity conditions, which could be considered to perceive increased 

mechanical stimulation. Such plants have been described as presenting shortened, 

thickened stems (Allen et al. 2009; Nakabayashi et al. 2006; Tamaoki et al. 2006) and 

a higher content of lignin (Tamaoki et al. 2004; Tamaoki et al. 2006). It is also 

noticeable that they show a phenotype opposed to that of plants grown under 

microgravity conditions, which could be considered to lack exogenous mechanical 

stimulation. These are characterized by a decrease in cellulose content (Cowles et al. 

1984; Nedukha 1996) and in matrix polysaccharides (Hoson et al. 2002). 

 

Even though my results show quantitative differences in the cell wall composition 

of mechanically stimulated plants, they do not allow me to describe the qualitative 

changes in this structure. In the case of cellulose we do not know if the increase is 

due to a thickening of the wall, to a different architecture or both. In the case of 

lignin it could be due to an increase in lignin content, to an ectopic lignification of 

walls or to both.  In any case, the obtaining of chemically measurable differences in 

cell wall composition by the imposition of mechanical stresses requires very long 
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time-scales, and technically challenging experiments. Measurements of this type of 

parameter are therefore impracticable as a means of ascertaining sensitivity to 

mechanical stress as a routine procedure in the laboratory. 

 

Work remains to be done in the characterization of mechanically stressed Arabidopsis 

thaliana. It would be of great interest to study the biomechanical properties of the 

leaves and stems of stressed and unstressed plants. Leaf strength, toughness and 

stiffness can be measured by the punch and die technique (Aranwela et al. 1999), 

that has been successfully used to characterize leaves of Plantago major (Onoda et al. 

2008). This technique is based in an indentation system that “punches” the tissue 

with growing forces in order to calculate its mechanical properties. 

 

In the longer term it would be useful to quantify changes in the quantities of 

components of the cell wall, other than cellulose and lignin in mechanically stressed 

plants. It has been shown that many other components of the cell wall play a vital 

role in the micromechanical properties of this structure. Even though, classically, 

most studies on the mechanical properties of the cell wall were centred on the study 

on cellulose-xyloglucan networks; recently a model in which non-cellulosic 

components plays a key role in the determination of physical properties of the wall 

has been proposed (Höfte et al. 2012). In particular, pectin has been shown to be 

vital for control of the extensibility of the cell wall (Peaucelle et al. 2011; Peaucelle et 

al. 2008). When pectin methylesterases, enzymes that modify the properties of 

pectins (Pelloux et al. 2007), are inhibited, a general stiffening of the walls can be 

recorded. This has profound effects on the morphogenesis of the plant, as it 

prevents the apparition of new primordia in the SAM (Braybrook et al. 2012; Höfte 

et al. 2012; Peaucelle et al. 2008). 

 

 It would be of great interest to know as well how these other components of the 

wall behave in response to mechanical stimulation. This could be done by extracting 

the saccharides with trifluoroacetic acid followed by an analysis using gas 
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chromatography or high performance liquid chromatography (HPLC) (Foster et al. 

2010c). 

 

Even though not all responses generated by mechanical stress are direct 

transcription-mediated responses, specific transcriptional phenotypes are known to 

appear as a response to mechanical stress (Lee et al. 2005). This fact has been known 

since the early 1990s, when the first touch induced genes (TCH) were identified 

(Braam and Davis 1990). Part of the aim of this chapter was to develop a 

transcriptional assay for the perception of mechanical stimuli that would 

subsequently allow me to assay changes in perception in various mutant and 

transgenic backgrounds. I therefore investigated various methods of inducing 

reproducible transcriptional responses to mechanical stimuli. 

 

Mechanical stimulation has been applied in other organisms, such as bacteria, by 

using an osmotic step as a proxy (Berrier et al. 1992; Levina et al. 1999). In plants it 

has been known that an osmotic shock generates incipient plasmolysis (Oparka 

1994) and that this leads to changes in the ultrastructure of the cell, such as a 

retraction and compression of the cytoplasm, as described in the green algae 

Zignema (Kaplan et al. 2012). In theory, these changes could generate differences of 

tension in the plasma membrane, therefore mimicking the effect of mechanical 

stress. I showed that in plants, using a restricted set of transcriptional reporters, this 

is a valid approximation. When osmotic stress is applied in our system, not only 

osmotic stress reporters, but also touch reporter genes, show changes in their 

transcriptional level.  Nevertheless, the converse is not true, as when mechanical 

stimulation is applied, osmotic stress reporters are not up-regulated, even though 

touch reporters show changes. One possibility is that even though osmotic stress, 

like mechanical stress, generates changes in the membrane tension the later does not 

generate the movement of solutes through the plasma membrane, and the 

subsequent effects of this, that is triggered by hyperosmotic stress.  
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Concerning the transcriptional response to mechanical and osmotic stress, I believe 

that this subject requires considerable further work. The generation of a complete 

transcriptome of plants grown side by side and stressed with both conditions for a 

range of times would provide an extremely useful tool, and would allow the direct 

comparison of the transcriptional behaviour of genes to these two stresses.  This 

would open new paths allowing more extensive analysis of which targets can be 

used as proper indicators of mechanical stimulation when using osmotic steps as 

proxies. It would also facilitate the analysis of novel downstream targets of osmotic 

stress, giving hints about whether they respond to a signal originating from changes 

in membrane topology (events shared with mechanical stimulation) or from other 

factors. However, despite the fact that many transcriptomic analyses of the effects of 

different sources of abiotic stress, including osmotic and mechanical stress have 

been carried out (Fowler and Thomashow 2002; Kilian et al. 2007; Kreps et al. 2002; 

Lee et al. 2005; Seki et al. 2001). Osmotic and touch stress have never been analysed 

together in a comparative manner. I believe that the conditions developed and 

tested in the work described in this chapter would provide an ideal basis for such a 

study in the future. 
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4. Phenotypic effects of calpain deregulation 

 

4.1. Introduction 

 

As described in the introduction, calpains are cytoplasmic, Ca2+-dependent cysteine 

proteases with a highly conserved molecular structure in the catalytic domain 

(Croall and DeMartino 1991).  

 

Conventional calpains, like human m-calpain, are cytosolic enzymes, which are 

activated by a rise in the intracellular levels of the Ca2+. These proteins are 

intracellular proteases, expected to function as bio-modulators of cell physiology 

(Sato and Kawashima 2001).  

 

In the case of DEK1, the CALPAIN domain is proteolitically removed from the rest 

of the protein. This cleavage is very likely to be an autocatalytic event (Johnson et al. 

2008). In maize, substituting the active cysteine by serine eliminates calpain activity 

against -casein in vitro (Wang et al. 2003).  In Arabidopsis this mutation blocks the 

autolytic-cleavage event in GFP-tagged protein expressed in planta (Johnson et al. 

2008). This autolytic cleavage may be similar to the one that occurs in animal 

calpains, and is predicted to release the CALPAIN domain into the cytoplasm 

(Johnson et al. 2008).   

 

Knockout mutants (dek1) show an early embryo lethal phenotype. Defects in the 

embryo can be detected at the globular stage. Wild-type siblings present a normal 

globular stage with a smooth and round profile and a well-defined protoderm. In 

dek1 embryos, defects are observed throughout the embryo proper and in the apical 

portion of the suspensor. Abnormal cell divisions in the protoderm lead to 

irregularities on the embryo surface and abnormal division planes are seen in 

underlying tissues. During later embryogenesis, the morphology of these mutants 
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does not show strong changes, keeping a shape and size comparable to that of 

globular stage embryos, and arresting development at this stage. This phenotype 

can be observed in both available knockout lines, dek1-2, with a T-DNA insertion in 

the fourth intron, and dek1-3, with a T-DNA insertion in the 22nd intron  (Johnson et 

al. 2005).  

 

This lethal phenotype can be complemented by the expression of a transgene 

containing the active version of the CALPAIN domain of DEK1. The majority of 

complemented lines present a fairly wild-type appearance. This indicates that the 

cytoplasmic (CALPAIN) domain alone is sufficient for normal plant development, 

suggesting that this cleavage product may represent the active form of DEK1 

(Johnson et al. 2008).  

 

 CALPAIN domain over expressing (CALPAIN OE) plants have a distinct 

phenotype from wild-type plants. They are darker green than the wild-type, show 

severe rumpling in leaves, have more compact rosettes (Johnson et al. 2008) and 

show a delay in flowering time (Galletti unpublished results). Multiple aspects of 

plant development are highly affected by the OE of this cysteine protease domain. 

10th leaves from the apex of 8-week old short-day-grown CALPAIN OE plants 

appear smaller in area and show an increase epidermal cell density compared with 

the wild-type, especially on the adaxial surface (Johnson et al. 2008). 

Complementation with the active form of the CALPAIN domain and 

overexpression are possible in both knockout backgrounds dek1-2 and dek1-3. 

 

The phenotypes shown by CALPAIN OE plants present superficial similarities with 

those shown by mechanically stressed plants. This similarity in phenotype is best 

illustrated by comparison with mechanically stressed Arabidopsis plants presented 

by Janet Braam and collaborators (1990, 2005). In particular, both mechanically 

stressed plants and CALPAIN OE plants present a late flowering phenotype 
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(Galletti unpublished results) and have more compact rosettes with shorter petioles 

(Johnson et al. 2008).  

 

Based on these observations I hypothesised that DEK1 might be involved in 

mechanoperception and that deregulating the CALPAIN domain of DEK1 could 

alter plant responses to mechanical stimuli. In this chapter I focused on the 

characterization of the effects of constitutive expression of the active, cleaved 

CALPAIN domain of DEK1. 

 

4.2. dek1[CALPAIN] plants have thicker epidermal cell walls 

than wild-type plants 

 

The transcription of several cell wall-related genes is misregulated in CALPAIN OE 

plants (Johnson et al. 2008), leading to the hypothesis that this structure could be 

modified in these mutants.  

 

The outer epidermal cell wall is much thicker and less extensible than the walls of 

the inner tissues. For example, it is 20 fold thicker in the epidermis of hypocotyls of 

Helianthus compared to walls of internal tissues. Moreover, in the outer epidermal 

wall the amount of cellulose per unit wall mass is considerably greater than in the 

inner tissues (Kutschera 2008). It has been proposed that this thickening may be a 

direct response to the perception of endogenously generated mechanical stresses, 

and for this we reasoned that the outer cell wall of epidermis is the ideal tissue in 

which to test this hypothesis.  

 

Measuring cell wall thickness in sections of plant cells is notoriously difficult due to 

variations and artefacts which can be caused by the fixation process. In particular, 

because the wall is basically a fibrous gel, dehydration steps can cause spurious 

thickness measurements to be obtained.  However, very high quality images of 
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unfixed cell walls can be obtained with cryo-scanning electron microscopy (SEM), 

using freeze fractured sections of the desired tissue. In this way, accurate  

measurements of the thickness of this structure can be made (Derbyshire et al. 2007). 

Wild type and dek1[CALPAIN] plants were analysed in this way. Cell walls of 

mature adult leaf adaxial surfaces and basal stem epidermal cells were measured. A 

set of 11 images in the case of leaves and 17 for the case of stems were taken.  

 

Ten measurements were taken in the central zone of each imaged cell. The outer 

central zone was chosen as we believe that this reduces the measurement error 

compared to measurements made near cell junctions, as it is much more obvious in 

which direction measurements perpendicular to the plasma membrane should be 

made. The average thickness of the cell wall of each cell was calculated and the 

average thickness of the cell wall for each phenotype was then obtained. 

 

Significant differences in the thickness of the cell wall were observed in both leaf 

and stem epidermis between Calpain over-expressing and wild-type plants (figure 

4-1). Results show that the outer epidermal cell wall is approximately two fold 

thicker in dek1[CALPAIN] than in wild-type in  both the adaxial surface of leaves 

and the stem (Figure 4-1). All the measurements were statistically tested with 

student’s t test, and the difference has a significance level of <0.1%.  

 

4.3. dek1[CALPAIN] plants produce more cellulose per unit 

of dry mass that wild-type plants 

 

Differences in cell wall thickness can be caused by changes in the architecture of cell 

wall components, or due to differences in their quantities. In order to investigate the 

later possibility, the different components of the cell wall can be quantified.  
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The contents of the cell wall can be quantified by extracting the alcohol-insoluble 

residue (AIR). By this process, involving several washes with alcohol, most proteins 

and alcohol-soluble sugars are eliminated. The AIR contains all polysaccharides 

present in the cell wall as well as lignin, waxes and other lipids. Cellulose can be 

isolated from the AIR after solubilisation by acid hydrolysis of all other cell wall 

saccharides, and quantified by colorimetric assays such as the anthrone method (see 

previous chapter).  

 

Cellulose was quantified using this technique and a difference in content was 

observed in the CALPAIN OE mutants compared to wild-type plants. There is an 

increase of approximately 35% in the cellulose content of AIR isolated from 

CALPAIN OE plants compared to the value seen in wild-type individuals (figure 4-

2, table 4-1). 0.55 µg of glucose equivalents per µg of AIR was measured in wild-

type fully developed leaves while in different CALPAIN OE lines the values 

obtained were of 0.69 and 0.68 µg of glucose equivalents per µg of AIR.  
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Figure 4-1 Cryofracture scanning electron micrographs of wild-type leaf 

adaxial epidermis (A), CALPAIN OE leaf adaxial epidermis (B), wild-type stem 

epidermis (C) and CALPAIN OE stem epidermis (D). Examples of measured 

distances are marked with red lines. Scale bars of 5μm. Measurement of cell 

wall thickness of these same tissues and in mesophyll cells from the same 

tissues (E). Stem and leaf epidermis show statistically significant differences 

(analysed with an ANOVA test) in thickness (p<0.01) while the mesophyll does 

not. Error bars show standard deviation. N=10. 
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Table 4.1 Cellulose content of mature leaves of wild-type (Col-0) and CALPAIN 

OE lines (in µg of glucose equivalents per µg of AIR). 

 

 WT dek1-2[CALPAIN] dek1-3[CALPAIN] 

Cellulose content 

(in glucose eq 

per µg of AIR) 

0.55 0.69 0.68 

 

 

 

 

Figure 4-2 Cellulose content of mature leaves of wild-type (Col-0) and 

CALPAIN OE lines (in µg of glucose equivalents per µg of AIR). Error bars 

show standard deviation. Statistical significance tested with an ANOVA test 

show a difference between wild-type and both of the over-expressing lines, 

n=4, p<0.05. 

 

Although cellulose fibres are one of the main structural components of the cell wall 

other polysaccharides have an important cross-linking role. Glucans can bond with 

the cellulose microfibrils and link them, forming a network (Albersheim et al. 1994). 

Of these, the most important are xyloglucans and glucoarabinoxylans which can be 

broken down with trifluoroacetic acid, to which cellulose is resistant. The product 
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from this reaction can be characterized and quantified using various modes of 

chromatography (Foster et al. 2010b).  

 

A high performance liquid chromatography (HPLC) was run and the quantity of 

non-cellulosic polysaccharides in the AIR of CALPAIN OE plants was found to be 

23% greater than in the wild-type (data shown in table 4-2). (S Fry unpublished 

results).  

  

Table 4-2 Content of non-cellulosic cell wall components of the AIR of fully 

developed leaves of wild-type (Col-0) and CALPAIN OE (dek1-3[CALP]) plants. 

N=3. 

 

Averages 

(mg/ml) 

dek1-3[CALP] 

(µg/ml) 

Col-0 

(µg/ml) 

dek1-3 as % of 

Col-0 

Fucose 2,0 2,0 100 

Rhamnose 14,1 12,4 114 

Arabinose 18,8 15,5 121 

Galactose 30,2 24,2 124 

Glucose 8,7 8,1 108 

Xylose 10,6 8,3 128 

b-Mannose 5,3 4,2 127 

GalA 63,5 50,2 126 

TOTAL 153,1 124,8 123 
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4.4. dek1[CALPAIN] plants have thicker stems with an 

increased lignification 

 

 CALPAIN OE plants show differences compared to wild-type plants in tissues 

other than the epidermis. In leaves they have up to three tightly packed layers of 

palisade mesophyll instead of one palisade mesophyll layer seen in wild-type 

plants. Additionally extra spongy mesophyll layers can also be observed (Johnson et 

al. 2008).  

 

We used stems in order to study the changes in response to mechanical stimulation 

(Chapter 3). This organ responds in a very clear way to mechanical stimulation, as 

observed in previous studies on the effect of mechanical stress in Arabidopsis (Allen 

et al. 2009; Nakabayashi et al. 2006; Paul-Victor and Rowe 2011; Tamaoki et al. 2006). 

In addition, we were very interested in recording the changes in lignification, a 

process which is very visible in the vasculature of stems. For these reasons, cross 

sections of stems were observed with a fluorescence microscope. Cellulose in the 

base of the stem was stained with calcofluor white, which emits a blue fluorescence  

when excited with UV light (Hughes and McCully 1975), to observe the primary cell 

wall. Lignin exhibits auto-fluorescence (Radotic et al. 2006), which allows the 

observation of secondary cell wall in vascular bundles.  
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Figure 4-3 8m cross sections of fixed basal stems of wild-type (A) and 

CALPAIN OE plants (B) stained with calcofluor white.  The blue signal shows 

cellulose and the red signal is due to the auto-fluorescence of lignin. In the 

diagrams the lignified zones are marked in red in wild-type (C) and CALPAIN 

OE (D) stems. Scale bars: 0.2 mm. 

 

 CALPAIN OE plants have a thickened stem with a thicker layer of vasculature 

(figure 4-3). This layer shows an increase in area of approximately 45% (statistical 

significance of p<0.01; n=3). It is very likely that, as the vascular bundles are thicker, 

the stems contain a higher content of lignin per unit of length of the stem. 

 

Lignin can be quantified by its auto-fluorescence after being purified with the acetyl 

bromide method (Foster et al. 2010a) . This component of cell walls shows an 

increase of nearly 50% in CALPAIN OE plants in comparison to wild-type 

individuals (figure 4-4). A value of 180.6 µg of lignin per cm of stem was detected in 

CALPAIN OE plants while wild-type individuals show a value of 121.6 µg of lignin 

per cm of stem. 

A B 

D C 
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This increase in lignin follows the increase in the thickness of the vasculature; 

therefore I cannot conclude that what I see is an increase in lignification rate. On the 

other hand, I can say that the increase in lignin we see per unit of length of the stem 

is likely to be due to a thickening of the vasculature of the stem. This thickening of 

stems was previously observed after performing other types of mechanostimulation, 

such as three-point bending (Paul-Victor and Rowe 2011) or in hypergravity 

conditions (Allen et al. 2009; Nakabayashi et al. 2006; Tamaoki et al. 2006). 

 

 

Figure 4-4. Content of lignin per cm of basal stems in wild-type and CALPAIN 

OE plants. Error bars show standard deviation. Statistical significance tested 

with a t-test, n=4, p<0.01. 

 

4.5. Wild type cell walls show a different stiffness patterns 

compared to those of CALPAIN OE plants 

 

All experiments in this section were carried out in collaboration with Dr Pascale 

Milani. 

 

Cell walls are one of the main factors that determine the mechanical properties of 

plant cells, being crucial also for shape determination. The internal pressure 
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generated within of plant cells is an isodiametric force, thus without the presence of 

mechanical irregularities in this “contention wall” cells would be spherical (Baluška 

et al. 2003; Mathur 2006). Consistent with this view, the cell walls that surround 

plant cells do not generally have the same mechanical properties throughout the cell 

and are composed of several domains (Wojtaszek et al. 2007). This, combined with 

cell turgor helps to controls anisotropic cell growth (Wojtaszek 2000). 

 

The micromechanical design of cell walls depends mostly on their biochemical 

composition. Cellulose, its most abundant component, is the polymer the most 

resistant to tension polymer in the cell wall(Niklas 2000).  
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Figure 4-5. Simplified scheme of an atomic force microscope (AFM). 
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Figure 4-6. Example of a typical stress-strain curve for a ductile metal. The 

first portion of the curve is linear with a slope (E), corresponding to the 

Young’s or Elastic Modulus. In the linear zone of the graph the sample 

deforms reversibly or elastically. Above this stress the sample deforms 

irreversibly or plastically. The maximum stress (σST), or tensile strength is the 

maximum stress that the material can support before failure.  

 

Mechanical properties of samples can be measured using an atomic force 

microscope (AFM). This microscope uses a nanometric cantilever ending in a sharp 

tip that is used to scan the surface of the sample. When the tip makes contact with 

the sample this cantilever is deformed, allowing measurement of forces through 

laser deflection (figure 4-5). This technique gives measurements both of the elastic 

modulus of the sample and its topography. 

 

Atomic force microscopy measures the resistance to forces of the material in the 

sample, i.e. its “mechanical behaviour”. The cantilever applies a known force to the 

sample and the displacement of this cantilever is measured. This force is measured 

as a stress (σ), which is defined as a force that acts perpendicularly to a surface, 
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divided by the area to which this force is applied (the area of the tip of the 

cantilever). Stress is expressed in units of pressure (Newtons per square metre, 

given in Pascals). The displacement of the cantilever is measured as strain (ε), which 

is the change in length divided by a reference length and thus has no units. From 

these direct measurements, the elastic modulus, also known as the Young’s 

modulus, can be deduced. This is deduced from the first portion of the curve 

relating stress and strain. In the linear portion of this curve, its slope (E) corresponds 

to the Young’s modulus. A higher value of E implies a less elastic tissue; therefore a 

bigger force, thus more stress, is necessary to generate deformation (figure 4-6). 

 

Although the technique was initially conceived to test the properties of inert 

samples, AFM has now been used in a large number of biological samples including 

bacteria, yeast and animal cells. Results have shown differences in elasticity 

between different tissues and subcellular zones in these organisms, and have also 

aided in the understanding of  how these properties vary in response to mechanical 

stimuli and in response to chemical or enzymatic treatments (Alonso and Goldmann 

2003; Jacot et al. 2010; Kumar and Weaver 2009; Scheuring and Dufrene 2010). 

Differences at a subcellular level have been described with this technique, such as 

the difference in stiffness present in the bud of budding yeast cells (Touhami et al. 

2003). In plants this technique has been used principally to image the structures of 

cell walls (Kirby 2011) and to study the mechanical properties of the shoot apical 

meristem (Braybrook et al. 2012; Milani et al. 2011). 

 

In our case we expected a change in the mechanical properties of the cell wall, as 

CALPAIN OE plants show variations in the composition of their cell wall compared 

to those of wild-type individuals. We observed the abaxial surface of cotyledons of 7 

day-old seedlings and saw that there is a slight change in the apparent modulus (E) 

of the tissue of CALPAIN OE compared to wild-type cotyledons. The mutant shows 

a decreased E, therefore a lower degree of stiffness of the cell walls. No apparent 

changes in the deformability of the tissue were observed (Figure 4-7 C and D).  
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The most noticeable difference in the E maps of the samples was that the CALPAIN 

OE epidermis shows a very different pattern of E values than that of the wild-type 

sample. In wild-type samples we can see that central bodies of the cells tend to be 

stiffer than the lobes (figure 4-7). On top of this pattern there is an organization of 

stiffer and softer “bands”, which are very likely to reflect the disposition of cellulose 

microfibrils (O. Hamant, personal communication). In CALPAIN OE plants, not 

only does the general stiffness of the cell wall appear to be more homogeneous, but 

the “microfibril-like” stiffness pattern is lost completely. Therefore, it is very 

possible that there is a profound difference in architecture of the cell wall. My 

interpretation of data is that this is due to a difference in the deposition patterns of 

the cellulose microfibrils. This deposition process in guided by the organization of 

the microtubules, which I therefore hypothesized might be affected in the 

CALPAIN OE mutants. 

 

Even though the results in the AFM maps obtained are promising they should be 

considered very preliminary results, as the data obtained should be tested in a 

quantitative manner by analysing the curves obtained in the experiment. 
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Figure 4-7. Apparent modulus (E) maps of Col-0 (A) and dek1[CALPAIN] (B) 

cotyledon abaxial epidermis. Deformation maps of Col-0 (C) and 

dek1[CALPAIN] (D) for the same tissue. Lobes marked as L. 

 

 

L 
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4.6. Stem apical meristems of OE plants show lower 

anisotropy in microtubule orientation 

 

A widely accepted theory proposed by Paul Green, and based on experiments 

carried out by Sachs in the 19th century, states that at organ levels tissue tensions 

develop due to a higher growth rate in the underlying tissues than in the epidermis. 

This would generate tensions in the external layer, which would apply continuously 

a strain to the deeper layers (Green 1962; Sachs 1882; Sachs 1865). Anisotropic 

mechanical forces exist in the walls of all turgid plant cells. These forces give 

important directional information and could offer location-specific information 

(Williamson 1990). This tension may be used for mechanointegration when, for 

instance, new organs emerge and generate new tension patterns. Such events have 

been described thoroughly for phyllotaxis in the SAM where Paul Green and co-

workers created models of stress-strain that could predict the position of new 

primordia (Green 1980). Cortical microtubules take part in this process, as they 

reorient parallel to the main axis of the force in the cell membrane (Cleary and 

Hardham 1993; Fischer and Schopfer 1998; Hamant et al. 2008; Hardham et al. 1980) 

and as microtubules guide cellulose deposition (Bringmann et al. 2012b; Li et al. 

2012b) the existence of a feedback loop between cytoskeleton and cell wall is very 

likely to exist (Williamson 1990). Experimental data supported the fact that cell 

growth responds to external forces and that this response process is microtubule 

dependent since microtubules need to be intact for this response to take place 

(Wymer et al. 1996).  This phenomenon has been revisited using microtubules 

marker lines labelled with fluorescent proteins in the SAM of Arabidopsis thaliana, 

where it was again seen that morphogenesis depends on microtubules, which are 

regulated by mechanical stress. Feedback loops have also been proposed to 

coordinate tissue morphology, stress patterns and microtubule-mediated cellular 

properties in this tissue (Hamant et al. 2008). These feedback loops are supported by 

the fact that the stability and organization of cortical microtubules is affected in 

mutants for genes involved in cellulose biosynthesis, such as PROCUSTE1 and 
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KORRIGAN. A similar effect is seen in plants treated with isoxaben, an inhibitor of 

cellulose synthase activity (Paredez et al. 2008). 

 

I used transgenic lines provided by Dr Olivier Hamant expressing a GFP-tagged 

version of the protein MBD (Microtubule Binding Domain) (Hamant et al. 2008). 

This line was crossed with CALPAIN OE lines (in this case dek1[CALPAIN:HIS], so 

that GFP fluorescence from microtubules would not be confused with that from the 

calpain domain). Double homozygous lines were selected and grown on N-1-

Naphthylphtalamic Acid (NPA) containing plates. This generates a pinoid 

phenotype due to the blocking of auxin transport. Pinoid plants are unable to 

generate primordia on the flanks of their inflorescence meristems, and thus present 

stems with a naked apical meristems (Casimiro et al. 2001). These NPA grown 

plants were observed under a confocal microscope to determine the distribution of 

microtubules. 

 

I observed that the microtubules of CALPAIN OE stem apical meristems follow the 

force-responsive pattern seen in wild-type plants. This consists in an orthoradial 

(circular) orientation in the lateral regions and base of the meristem and a random 

orientation in the apical tip (figure4-8) (Hamant et al. 2008). The main difference in 

the microtubules of CALPAIN OE SAMs is that they present a lower level of 

anisotropy in the flanks of the meristem; therefore the microtubules are strongly 

oriented parallel to the predicted stress pattern if compared to those of wild-type 

plants (figure 4-9). 

 

The cortical microtubule orientation can be measured using the MT macro 

(Uyttewaal et al. 2012). This analyses the anisotropy of the microtubule bundles in 

each cell. I carried out this analysis for three meristems of each analysed phenotype, 

analysing 10 cells in each. The chosen cells are in the side of the meristem, as this 

area is the one that presents the higher stress, and therefore, organization of 

microtubules (Hamant et al. 2008). In the selected cells only the centre was used for 
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quantification of microtubule orientation, therefore avoiding measuring the cortical 

microtubules, which could mask results due to their high level of anisotropy. I 

found that the level of anisotropy was twice as high in the flanks of CALPAIN OE 

meristems compared to wild-type ones. The average anisotropy value obtained for 

CALPAIN OE was of 0.623 (±0.016), while for wild-type plants it was of 0.291 

(±0.007). A t test was performed on these data sets and these results are different 

with a significance of < 0.01%. 

 

This observation can be interpreted as a possible influence of the active CALPAIN 

domain on microtubule dynamics, consistent with the observed interaction of the 

CALPAIN domain with microtubules. It is possible that the DEK1 CALPAIN 

domain is involved in the process of microtubule severing which is necessary for 

their reorganization. The phenotype observed is opposite to that present in the 

atktn1 (katanin) mutants (Uyttewaal et al. 2012). This mutant is known to present 

decreased microtubule dynamics (Burk et al. 2001; Burk and Ye 2002; Nakamura et 

al. 2010; Stoppin-Mellet et al. 2006; Wasteneys and Ambrose 2009). Thus, my results 

support a model in which CALPAIN OE plants respond more strongly to the 

mechanical stress patterns in tissues. 
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Figure 4-8. Direction of stress patterns in the SAM (in red). The direction of 

microtubules is in agreement with the highest-stress orientations (in blue). 

From Hamant et al. 2008. 
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Figure 4-9 Projections of a stacks of images of SAMs of NPA grown MBD:GFP 

(A) and dek1[CALP:HIS] MBD:GFP (B) plants. 

 

 

A 

B 
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4.7. Transcriptional effects of the deregulation of the 

CALPAIN domain of DEK1 

 

Microarray analysis of RNA extracted from young leaves of wild-type and 

CALPAIN OE plants showed a change in the level of transcription of a number of 

genes in CALPAIN OE plants compared to the wild-type and to CALPAIN-NULL 

OE plants (Johnson et al. 2008). 

 

In order to further characterize potential targets identified during this analysis, I 

carried out an experiment to correlate the transcriptional phenotype of CALPAIN 

OE plants to the level of overexpression of the active CALPAIN domain. Different 

lines expressing the CALPAIN domain of DEK1 at different levels were used.  These 

lines used were fusion versions of the CALPAIN domain of DEK1, tagged with HIS 

in the case of lines named KJ79 and MYC for lines named KJ80. This was performed 

by Q-PCR on inflorescence tip cDNA, as in this organ the levels of expression of 

DEK1 are higher.  

 

Three pairs of primers within the DEK1 cDNA were designed; two of them target 

the CALPAIN domain and the third targets the predicted extracellular loop present 

amongst the transmembrane domains. This last pair, named QXDEK1, was used to 

confirm the level of endogenous DEK1 expression, as this part of the cDNA is not 

present in the calpain over-expression construct (figure 4-10). Analysis using this 

primer pair shows that levels of endogenous dek1 transcripts are not affected in the 

transgenic lines used. 
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Figure 4-10 Level of expression of endogenous full length DEK1 in leaves of 

different lines. Tested with the primers QXDEK1, that amplifies a fragment in 

the extracellular loop. Error bars show standard deviation between three 

biological replicates. ANOVA test shows a no statistical significant difference 

between samples. 

 

A set of 30 target genes present in the microarray data from Johnson et al. 2008 were 

chosen, corresponding to those most  strongest supported in the original data, and a 

final analysis was performed on a shortlist of 3 targets. These last 3 targets were 

chosen on the basis of a pre-screen carried out by by Yassir Naouli and Dr Nathalie 

Depege-Fargeix in collaboration with myself (unpublished). The three chosen 

targets were named TOD (target of DEK1) and identified as TOD4, TOD5 and 

TOD19.  

TOD4 is Expansin11 (AT1G20190), a member of the alpha-expansin family gene 

family, which is characterised by the presence of an “α-insertion” of approximately 

14 residues that contains a motif of 4 highly conserved residues (GWCN) at its 3’ 

end (Li et al. 2002). These proteins are wall-loosening enzymes responsible for plant 

cell wall growth (Sampedro and Cosgrove 2005). 

 

TOD5 is part of the Pectin lyase-like superfamily (AT2G43870), and more 

specifically the polygalacturonase family (Kim et al. 2006a). Polygalacturonases are 
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an enzyme family known to catalyse pectin modification and disassembly. They are 

capable of reducing the apparent molecular size of pectic polymers, cleaving neutral 

side chain residues (De Veau et al. 1993). Although polygalacturonases have been 

mainly studied in relation to fruit ripening, it is known that they have functions in 

all developmental stages, and may play roles in cell expansion (Hadfield and 

Bennett 1998).  

 

TOD19 is Cor413im (AT1G29395), a protein present at the inner membrane of 

chloroplasts (Okawa et al. 2008). Structure predictions and comparative genome 

analysis suggests that the Cor413 genes encode putative G-protein-coupled 

receptors (Breton et al. 2003). This protein seems to be related to stress response 

pathways, in particular to providing freezing tolerance (Breton et al. 2000; Seki et al. 

2001; Thomashow 1999).  

 

For all three targets the same trend was observed. Expression levels of these 

putative targets of DEK1 mirror the OE level of the active CALPAIN domain, 

although not perfectly. TOD5 mirrors in the level of expression of the CALPAIN 

domain of DEK1 well (Figure 4-11 D). On the other hand, TOD4 and TOD19 do not 

show such clear tendency for the samples KJ79-77 and KJ80-22 (Figure 4-11 C and 

E). This problem could be due to the fact that these are not direct targets of the 

CALPAIN domain, but are regulated by downstream responses. Therfore their 

regulation is much less direct. 

 

The transcriptional phenotype of the weak allele dek1-4 was also characterised. This 

allele presents a single nucleotide mutation at the position 6316 of the gene (T 

instead of C), which changes a cysteine residue into an arginine residue. This 

mutation is located close to the C-terminus of the protein, in domain III of the 

CALPAIN domain. This missense mutation appears to generate a less active version 

of DEK1, as the allele is unable to complement strong knockout alleles such as dek1-

3 (Roeder et al. 2012). 
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In the case of dek1-4 the level of expression of the CALPAIN domain of DEK1 stays 

constant compared to wild-type. This is expected as the allele is caused by a point 

mutation, and no results from our studies support any form of transcriptional 

feedback on DEK1 expression levels. Changes were observed in the level of 

expression of downstream potential targets of the CALPAIN domain of DEK1 in 

dek1-4 mutants. TOD4, TOD5 and TOD19 expression levels were analysed by Q-RT-

PCR and a statically significant decrease in expression levels of each gene was 

observed. This is the opposite result to that observed in CALPAIN OE plants (figure 

4-11 F). 
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Figure 4-11 RT-PCR analysis of gene expression of the CALPAIN domain of 

DEK1 and several of its targets.  A-B Level of expression of the CALPAIN 

domain of DEK1 in several different OE lines. C Level of expression of TOD3 in 

several different CALPAIN OE lines. D Level of expression of TOD4 in several 

different CALPAIN OE lines. E Level of expression of TOD19 in several 

different CALPAIN OE lines. F Level of expression of the CALPAIN domain and 

of  TOD4, TOD5 and TOD19 in wild-type (Ler) and dek1-4 mutant plants. Error 

bars show standard deviation between three biological replicates. ANOVA test 

shows a statistical significant difference between Col-0 and all other lines, 

p<0.01 (A-E). In F a t-test shows significant differences (p<0.01) between all 

pais except for Q-DEK1-1 and Q-DEK1-2. 
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4.8.  CALPAIN OE plants may show constitutive mechanical 

and osmotic stress responses 

 

The phenotypes of the CALPAIN OE lines reminded us of those of mechanically 

stressed Arabidopsis. These lines, as discussed earlier in this chapter, show modified 

cell walls and a late flowering phenotype. There are very clear effects on growth, 

including stunting and thickening of stems, that can also be seen as an effect of 

direct mechanical stimulation (Braam 2005; Braam and Davis 1990; Paul-Victor and 

Rowe 2011)  or of hypergravity conditions (Nakabayashi et al. 2006; Tamaoki et al. 

2004; Tamaoki et al. 2006). Effects in the composition of the cell wall can also be seen 

as a response to both of these types of stimulation (Cipollini Jr 1997; Nakabayashi et 

al. 2006; Saidi et al. 2010; Tamaoki et al. 2004; Tamaoki et al. 2006).  

 

I, therefore decided to test for the level of expression of mechanical and osmotic 

stress reporter genes, such as those described in chapter 3, in CALPAIN OE lines. I 

did this in 7 day old seedlings grown in sterile culture through Q-RT-PCR. The 

targets used were POST5, POST9, PTT2 and PTT3. 

 

The level of overexpression of the CALPAIN domain in these seedlings was tested 

with two different pairs of primers located in the CALPAIN domain, named DEK1-

1 and DEK1-2 (figure 4-13). In order to check that the over-expression seen was only 

due to the expression level of the transgenic CALPAIN domain and not due to 

changes in the level of expression of the full length protein we used as a control a 

pair of primers present in the transmembrane domains of DEK1. For this last pair of 

primers the expression level remained unchanged in the calpain OE lines compared 

to the wild-type (figure 4-12). 
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Figure 4-12 Level of expression of endogenous full length DEK1 in seedlings 

of wild-type and dek1-2[CALPAIN], a CALPAIN OE line. Tested with the primer 

pair QXDEK1, which amplifies a fragment in the extracellular loop-encoding 

region. Error bars show standard deviation between three biological 

replicates. No statistical differences between the samples were seen when 

tested with a t-test. 

 

I observed an over-expression of all tested mechanical and osmotic stress reporter 

genes in the CALPAIN OE line (figure 4-13). This could indicate that the OE of the 

CALPAIN domain of DEK1 causes a constitutive response to mechanical and 

osmotic stimulation, even in absence of the stimuli. 
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Figure 4-13 Q-RT-PCR analysis of the CALPAIN-encoding domain of DEK1 

(DEK1-1 and DEK1-2), osmotic stress reporter genes (POST5 and POST9) and 

touch stress reporter genes (PTT2 and PTT3), in wild-type and CALPAIN OE 

plants. Error bars show standard deviation between three biological 

replicates. Statistical differences between the samples were seen when tested 

with a t-test (p<0.05). 
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4.9. Summary and conclusions 

 

Arabidopsis plants that over express the CALPAIN domain of DEK1 were described 

previously to show a very interesting phenotype of compact rosettes with shorter 

petioles in their leaves, which are darker and show a rumpled surface (Johnson et al. 

2008). It was also shown that these mutants show a delay in flowering time (Galletti 

unpublished results). Interestingly this phenotype mimics in several aspects that of 

mechanically stimulated plants. This rosette phenotype of CALPAIN OE described 

by Johnson and collaborators (2008) and the flowering time recorded by Galletti 

reminded us of the phenotype of mechanically stressed Arabidopsis published by 

Braam and collaborators (1990; 2005). 

 

The epidermis, and in particular the outer cell wall of this cell layer,  is responsible 

for the mechanical integrity of organs (Kutschera 2008). According to the tensile-

skin theory, first proposed in the 19th century (Peters and Tomos 1996; Sachs 1882; 

Sachs 1865), the expansion of underlying tissues generate a tension in the epidermis, 

which has a lower expansion rate, posing a mechanical constraint (Kutschera and 

Niklas 2007; Savaldi-Goldstein and Chory 2008). 

 

I observed a very dramatic increase in the thickness of the outer cell wall of 

CALPAIN OE plants leaf and stem epidermis. This structural change in the cell wall 

could be due to several causes. These cell walls could show a change in architecture 

and different organization of the components (mostly cellulose microfibrils), fact 

that would lead to a thickening. The other possible explanation would be a change 

in composition, thus an increase in cell wall polysaccharides. 

 

As I showed in chapter 3 of this thesis, mechanically stimulated Arabidopsis have 

higher quantities of cellulose in their cell walls. I proceeded to quantify the cellulose 

of CALPAIN OE lines, and showed that they also synthesize more cellulose than 

wild-type plants, as is the case in mechanically stressed plants.  These changes in 
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synthesis are very probably due to the calpain regulated cell wall modification 

enzymes being up-regulated constitutively, as a response to the over expression of 

the CALPAIN domain of DEK1. Although no changes were reported in the 

expression level in any cellulose synthesis related enzymes, genes encoding 

enzymes involved in extension of cell wall, such as pectinases and expansins, were 

found to show altered expression in CALPAIN OE plants. It is possible that the 

activity of cellulose synthases, rather than their transcription, is altered by DEK1. If 

this is the case it would not be the first described example of cellulose synthesis 

regulation where gene transcription is not altered. One of the main enzymes 

responsible for cellulose synthesis, CesA1, regulates the mobility of the synthesising 

complex through phosphorylation (Chen et al. 2010b). In wild-type cells these 

complexes move at a constant speed in opposing directions, following the “tracks” 

laid by the microtubules (Paredez et al. 2006). When a mutated version of CesA1, 

lacking phosphorylation sites, is expressed, complexes show an asymmetry in their 

movement (Chen et al. 2010b). This affects the cell wall properties, as the mutant 

form cannot recover the cellulose-deficient phenotype of the rsw1 mutant (Arioli et 

al. 1998). In the immediate future it would therefore be for great importance in to 

confirm the expression levels of cellulose synthases in wild-type and CALPAIN OE 

plants. This would allow us to know if the changes in cellulose content which I have 

observed are regulated via transcriptional changes, or through a cytoplasmic 

mechanism.     

 

In leaves, other components of the cell wall are also present in different quantities in 

CALPAIN OE plants. Other saccharides, including those responsible for the cross 

linking of cellulose microfibrils, are more abundant than in wild-type plants. On the 

other hand, even though these quantities are higher, they do not increase by the 

same proportion as cellulose. Therefore the cell walls of these CALPAIN OE plants 

are very likely to have a change in their architecture. Even though the effects of 

different ratios of non-cellulosic polysaccharides and cellulose  have not been 

described in depth,  these other saccharides are thought to interact with cellulose to 
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form a three-dimensional network that functions as the principal load-bearing 

structure of the primary cell wall (Fry 1989; Hayashi and Kaida 2011; Somerville et 

al. 2004; Willats et al. 2001). In rice it has been shown that adult plants that have a 

reduction of 97% in mixed-linkage glucan have weaker cell walls (Vega-Sánchez et 

al. 2012). Thus the cell walls of CALPAIN OE plants could also show changes in 

their micromechanical properties, as these components are vital for this character 

(Abasolo et al. 2009; Cavalier et al. 2008).  

 

Consistent with a change in architecture, AFM apparent modulus maps show 

changes in the micromechanical properties of cotyledon adaxial epidermis outer cell 

walls of CALPAIN OE plants measured with AFM, compared to wild-type.  In these 

experiments we see a much more homogeneous pattern of resistance in the surface 

of cells, which is very likely to be explained by a disorganization of the cellulose 

microfibrils in the cell wall. As previously discussed this data should be confirmed 

statistically by the analysis of the indentation curves of the experiment in order to 

state sound conclusions. Even though it is known that mechanical force patterns 

guide the position and direction of cellulose microfibrils in meristems, the effects in 

cotyledons still remain to be studied.  

 

 Mechanical forces have an effect on microtubules, which are ideal transducers for 

mechanical integration in plants, due to their high degree of rigidity, even across the 

borders if individual cells (Nick 2011). It was proposed in the 1970s’ that 

microtubules could act as a guidance for the deposition of cellulose microfibrils 

(Heath 1974). Experimental proof that indicating that cellulose synthase has a 

functional association with microtubules was obtained recently (Paredez et al. 2006). 

And more recently still, the molecular link between microtubules and cellulose 

synthase complexes has been pinpointed (Bringmann et al. 2012b; Li et al. 2012b).  In 

order to understand whether the mechanical property maps obtained using AFM 

are directly related to the position of cellulose microfibrils it would be of great 

interest to carry out this same experiment using the lines we used to observe 
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microtubules. MBD:GFP lines would allow us to do sequential observations, first 

generating a mechanical property map of wild-type and CALPAIN OE lines with 

AFM. Secondly, the samples could be observed under a confocal microscope in 

order to record the position and direction of microtubules and see if they can be 

directly related to the mechanical properties of the cell wall. The problem that arises 

with this experiment is that if we compare the obtained images of the mechanical 

properties map and the pictures of the microtubule disposition they might not 

coincide. This is because with the microtubules observed would predict the 

orientation of microfibrils in the newly synthesised cell wall (next to the membrane), 

whilst the AFM would be imaging the properties of “historical” cell walls, 

synthesised earlier. 

 

Synthesis of non-saccharidic components of the cell wall has been reported to be 

modified in response to mechanical stimulation. A very good example of this is 

lignin. Changes in degree of lignification have been observed in species such as  

Solanum lycopersica (Saidi et al. 2010) or Phaseolus vulgaris (Cipollini 1998; Cipollini Jr 

1997), in response to mechanical stress. In the case of Arabidopsis, it was shown that 

the increase in lignin that could be seen was proportional to the overall increase of 

cell wall material, extracted as AIR. Therefore, the weight-weight ratio of lignin and 

other cell wall components remains unchanged (Paul-Victor and Rowe 2011). I 

detected an increase in lignin in the stems of CALPAIN OE plants. However, I 

expressed the amount of lignin per unit of length of the stem and not as a weight-

weight relation. My results suggest that the observed increase of lignin is 

proportional to the increase in radius of the vasculature in the stem, suggesting that 

if I had expressed my data as a proportion of lignin in the AIR, I could expect 

similar results to those obtained by Paul-Victor and colleagues (2011). As explained 

previously I was unable to repeat these experiments satisfactorily due to pest 

problems in the growth rooms in Lyon. 
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In addition to changes in cell wall composition, I observed a lower level of 

anisotropy (higher level of orientation) of the microtubules of the stem apical 

meristem of these plants. Very interestingly this is the opposite phenotype to the 

one seen in katanin1 (ktn1) mutants which have decreased microtubule dynamics, 

therefore a lower level of orientation (Nakamura et al. 2010; Stoppin-Mellet et al. 

2006).  It has been described that this is due to decreased sensitivity to mechanical 

stress (Uyttewaal et al. 2012). In our case I observed an opposite reaction. A 

tempting interpretation of this is that it could be due to a constitutive response to 

mechanical stress in CALPAIN OE plants. This may also be linked to my 

observations regarding the properties of the cell wall, since microtubules are very 

clear integrators of mechanical signals, and guide the deposition of cellulose 

microfibrils, as discussed previously in this chapter and in depth in the general 

introduction of the thesis. Thus, if the CALPAIN OE plants respond to mechanical 

stress constitutively they could be involved in enhancing the activity of the cellulose 

synthase complexes. However, this pinpoints the fact that two of the results of my 

work seem contradictory, one showing that there is a disorganization in the cell wall 

in the cotyledons of CALPAIN OE plants, and the other one showing that the 

cortical microtubules have a higher degree of organization in the meristems of these 

same plants. This latter observation might lead to the prediction that the cell wall 

would presents a much more organized structure, as the cellulose synthase 

complexes are guided by microtubules (Paredez et al. 2006). One explanation for 

this discrepancy is based on the fact that the observations are made in different 

tissues. I propose that in the meristems the active calpain can interact with 

microtubules and it is responsible for cutting them in order to allow their 

reorganization. There are examples of calpains interacting with microtubules in 

published literature. One of them is the case of the animal calpain CAPN6, which is 

a key player in the stabilization of microtubules in mice osteoblasts (Hong et al. 

2011). The peculiarity of CAPN6 is that it is very likely, a non-active protease, as it 

lacks the typical cysteine active site (Dear et al. 1997). In the case of the CALPAIN 

domain of DEK1, we have an active cysteine protease (Wang et al. 2003), opening 
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the possibility that this enzyme could be cleaving one of the components of the 

microtubule. It is possible that such cleavage events in the microtubules could allow 

other effectors to mediate their reorganization following the existing tension of the 

cell. Thus an increased cutting activity in CALPAIN OE plants would explain the 

“over-organization” of microtubules in the meristem. This leaves open the 

important question of the identity of the effector that reorganizes the microtubules 

and of how is the directionality of the tension in the tissue sensed. In the cotyledons 

similar events may occur, with the over-expression of the active calpain leading to 

the cutting of the microtubules. However, in this tissue, tensions levels are much 

less anisotropic, especially during early cotyledon growth, when the outer cell wall 

would have been laid down. Increased cutting of microtubules in such a system 

might prevent the deposition of a structured cell wall, leading to a stochastic 

organization, and also affecting the characteristics of the cell wall. This might also 

explain the decrease in lobbing observed in CALPAIN OE cotyledon cells. . 

 

My transcriptional analysis also supports our theory that CALPAIN OE plants 

respond, to some extent, in a constitutive manner to mechanical stimulation. Using 

some of the touch sensitive targets published by Braam in 2005 (Lee et al. 2005) and 

osmo-sensitive genes found in the eFP browser (Winter et al. 2007) I saw an up-

regulation of these genes in CALPAIN OE seedlings. This suggests that at the 

nuclear level CALPAIN OE plants leads to a continuous stimulation of the 

expression of these genes. 

 

Most of these experiments indicate that it would be of great utility to generate 

inducible lines for the OE and silencing of the CALPAIN domain of DEK1. These 

lines would allow characterising the dynamics of transcriptional responses to the 

overexpression of the CALPAIN domain allowing the study of the kinetics of the 

response to overexpression and absence of this protease. These lines have now been 

generated in the laboratory and will open the way for more detailed studies of both 
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the transcriptional and cytoplasmic responses to changes in the level of active 

calpain. 

 

The idea of calpains being effectors to mechanical stimulation is not a new idea. It 

has been described in animal homologs of the CALPAIN domain of DEK1 that they 

have a role in mechanosensing. In particular the ubiquitous human m-calpain and 

µ-calpain have been shown to have a function in integrating the traction forces in 

migrations of fibroblasts. Mutants for the regulatory domain of these calpains are 

less adhesive than wild-type cells and they fail to respond to mechanical stimulation 

(Undyala et al. 2008). Other calpains, such as calpain 3, have been shown to form a 

complex with mechanosensitive proteins such as the members of the MARP family 

(Belgrano et al. 2011; Frey et al. 2004; Toko et al. 2002).  

 

In summary, the phenotypes of plants overexpressing the CALPAIN domain of 

DEK1 coincide in several respects with those of mechanically stressed Arabidopsis 

plants. Substantial changes are seen in the micromechanical characteristics of the 

cell walls, which is of great interest since these structures are one of the main actors 

in determining the mechanical properties of plants, as well as being modified in 

response to mechanical stimulus. Therefore, my results support the hypothesis that 

the function of the CALPAIN domain of DEK1 is very likely to be related to 

responses to mechanical stimulation in plants. 
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5. Identification of targets of the CALPAIN 

domain of DEK1 

  5.1.   Introduction 

  5.2.   Introduction to Yeast two-hybrid (Y2H) experiments 

  5.3.   Y2H screening of CALPAIN domain putative interactors 

against a cDNA library  

      5.3.1.   Identified potential targets of the CALPAIN domain 

of DEK1  

        5.3.1.1. Lung seven transmembrane receptor family 

protein (At3g09570) 

        5.3.1.2.   Irregular Xylem 15 Like (At5g67210)  

        5.3.1.3.   D-xylose-proton symporter-like 2 (At5g17010) 

        5.3.1.4.   Cellulose synthase like A9 (At5g03760) 

        5.3.1.5.   NOD-26 Intrinsec Protein 5;1 (At4g10380) 

        5.3.1.6.   Membrane Anchored MYB (At5g45420) 

        5.3.1.7.   Eceriferum 9 (At1g34100) 

        5.3.1.8.   Sodium/hydrogen exchanger 4 (At3g06370)  

        5.3.1.9.   Tubulin β chain 2 (At5g62690) 

  5.4.   Summary and conclusions 
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5. Identification of targets of the CALPAIN 

domain of DEK1 
 

5.1. Introduction 

 

As discussed in depth in the general introduction, calpains are specific proteinases. 

A given calpain substrate is always proteolized at the same position; however, the 

rules governing this specificity are not yet understood (Sorimachi et al. 2012). 

 

Calpains have been described as having a Ca2+-dependent activity. After binding to 

Ca2+ the topography of the protein changes in such way that the active catalytic site 

is assembled together (Moldoveanu et al. 2001; Moldoveanu et al. 2002; Moldoveanu 

et al. 2004). It is believed that this triggers self-cleavage events, either before or in 

parallel with  external proteolysis (Margis and Margis-Pinheiro 2003). 

 

It has been classically believed that calpains cause limited proteolysis; mainly within 

inter-domain unstructured regions (Sakai et al. 1987; Stabach et al. 1997). However, 

although the question of whether there are any rules governing specificity at an 

amino acid level has been raised, the answer still remains quite unclear. 

Nevertheless, some sequence preferences have been described (Hirao and 

Takahashi 1984; Ishiura et al. 1979; Sasaki et al. 1984).  

 

This lack of information regarding the characteristics of direct targets for general 

calpains is acute in the case of the phytocalpain DEK1. Even though an extensive list 

of indirect transcriptional effects of deregulating the CALPAIN domain of DEK1 has 

been published by Johnson and colleagues in 2008, nothing is known about its direct 

targets. Unpublished results of co-immunoprecipitations of calpain-GFP in siliques 

carried out by Roberta Galletti in the Ingram lab show putative interactions with 

Heat Shock Protein 70 (HSP70) proteins, several members of the β-tubulin family, 
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actin 2 and the vesicle related proteins clathrin and coatomer.  However it should be 

borne in mind that interactions detected in this way are not always direct, and could 

require an intermediate protein or complex. 

 

Similar interactors to the ones detected by Roberta Galletti have been described in 

animals. It has been shown that several vesicle related proteins interact with animal 

calpains. For example, calpains are known to regulate clathrin dependent 

endocytosis in rat neural tissues. In this case the interaction has been described to be 

indirect, as it is mediated through the hydrolysis of the α- and β-subunits of the 

tetrameric adaptor complex 2 (Rudinskiy et al. 2009). A similar case has been 

described for extracts of bovine brain, in which calpains cleave the clathrin assembly 

molecule (Kim and Kim 2001). Other vesicle-related proteins have been detected as 

interactors of calpains, such as it is the β-subunit of the coatomer complex, which 

was found to be cleaved by a stomach-specific rat calpain (Hata et al. 2006). 

 

The interaction between members of the calpain family and cytoskeleton proteins 

has also been observed in other systems. It has, for example, been shown that the 

calpain CAPN6 participates in the stabilization of microtubules in mice osteoblasts. 

CAPN6 is a non-classical calpain that does not present a cysteine active site, being 

very likely a non-active protease (Dear et al. 1997), even though is a protein relevant 

for development (Tonami et al. 2007). This protein has been described to be 

responsible for the acetylation of tubulin, the basic building block of microtubules, a  

process should promote the stabilization of this structure (Hong et al. 2011). 

 

As discussed into depth in the general introduction of this thesis, calpains are 

capable of interacting with substrates through their domains IIa and IIb. These 

domains present the catalytic triad of amino acids that perform the protease activity 

(Hata et al. 2001). This active catalytic site has a narrow and deep conformation 

(Moldoveanu et al. 2004), possible requiring the targets to be “malleable”. 
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In order to shed some light on the possible substrates of the CALPAIN domain of 

DEK1, and other potential interacting proteins, I performed a Yeast two-hybrid 

experiment, which it was hoped would provide complementary data to the 

immunoprecipitation approach, and potentially identify direct calpain substrates.  

 

5.2. Introduction to Yeast two-hybrid (Y2H) experiments 

 

In the last two decades new methods for the study of protein-protein interactions 

have been developed. In the early ‘90s it was very difficult to identify any protein-

protein interaction, mostly due to technical limitations. The development of two-

hybrid systems contributed to making this type of study technically accessible , and 

ultimately high-throughput (Hamdi and Colas 2012).  

 

The first described two-hybrid system was the classical yeast two-hybrid (Y2H) 

method. It was published by Fields and Song in 1989 (Fields and Song 1989). This 

original method, developed in Saccharomyces cerevisae, is based in the fact that many 

transcription factors (including the GAL4 transcription factor used by these 

researchers) are modular, having domains with independent functions. One such 

domain can be involved in DNA-binding while another, physically distinct domain 

in responsible for the regulation of transcription. This classical method involves the 

expression of two chimeric proteins in yeast cells. One of them is the DNA-binding 

domain of GAL4 fused to a bait protein; the other is the activation domain of GAL4 

fused to a prey protein. If a protein interaction occurs between the bait and the prey, 

the functional transcription factor is reconstituted. This triggers the transcription of 

one or more reporter genes, which can be factors that either allow the growth of the 

cells under selective conditions or encode enzymes that can produce coloured 

products upon provision of defines substrates. Using this method the bait protein 

can be co-expressed together with different preys, for example, a whole cDNA 
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library. This allows the screening of  potential interactions with a whole population 

of characterized and novel proteins (Suter et al. 2008). 

 

A large number of variants of this original classic two-hybrid technique are now 

available. Some of these systems do not even involve yeast. For example, 

mammalian two-hybrid systems were developed mainly to study human proteins, 

as the context in which the interaction is studied is much more realistic (Luo et al. 

1997). Bacterial two-hybrid systems were generated by Hochschild and 

collaborators (Dove et al. 1997; Hu et al. 2000), and can be useful  in the avoidance of 

the classic problem in yeast systems, auto-activation by either bait or prey, giving 

rise to false positives (Serebriiskii et al. 2005). A modified bacterial system has also 

been designed to study protein-DNA interactions (Joung et al. 2000). 

 

In this study I used a variant of the Y2H system, based on the properties of split 

ubiquitin. The reasons for doing this were first that classic Y2H experiments were 

previously carried out by former members of our group and they showed a very 

high level of auto-activation of bait constructs containing the CALPAIN domain, 

and secondly, that the CALPAIN domain is usually located in the cytoplasm rather 

than the nucleus. The split ubiquitin anchors the bait to the plasma membrane, 

allowing interactions to be detected in a cytoplasm/membrane context. In our case, 

we used the DUALhunter system (Dualsystems Biotech, Schlieren, Switzerland).   

 

The split ubiquitin system (Johnsson and Varshavsky 1994; Stagljar et al. 1998) is 

based in the reconstruction of ubiquitin, a highly conserved small protein that is 

attached to other proteins, marking them for degradation (Hershko 2005; Mayer 

2000). When a protein has to be degraded, a cascade of enzymatic reactions attaches 

a tail of ubiquitin molecules to it through covalent bonds. The poly-ubiquitin tagged 

protein is then degraded by the 26s proteosome. In order to recycle the ubiquitin, a 

group of ubiquitin specific proteases (UBPs) act. These UBPs recognise intact, folded 
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ubiquitin and cleave multimeric or ligated ubiquitin after the last residues. 

Therefore, free monomeric ubiquitin is released into the cytosol. 

 

The creators of the split ubiquitin system discovered that ubiquitin can be split into 

two halves, called Nub (for N-terminal ubiquitin) and Cub (for C-terminal 

ubiquitin). If they are expressed separately, they remain only partially folded, so 

they cannot be recognised by the UBPs.  However, if both halves are co-expressed in 

the same cell, they show a very strong affinity for each other. This leads to assembly 

of Nub and Cub into a “split-ubiquitin” which will assume the native conformation 

of ubiquitin, and thus becomes recognisable by UBPs (Johnsson and Varshavsky 

1994). 

 

The strong affinity between the wild-type Nub and Cub can be avoided. This is 

done by interchanging isoleucine for glycine in the residue in position 3 of the Nub 

(turning the NubI into NubG). This way, the two halves of the “split ubiquitin” do 

not re-assemble automatically when co-expressed, and stay unrecognisable by 

UBPs. 

 

This modified system can thus be used as the basis of a protein complementation 

assay. A protein of interest can be fused to Cub and possible interactors fused to 

NubG. In the case of an interaction between the proteins of interest, NubG and Cub 

are forced into very close proximity, leading to the reassembly of the split-ubiquitin. 

This split-ubiquitin can therefore be recognised and cleaved by UBPs. 
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Figure 5-1 Schematized view of how the split ubiquitin –based Y2H system 

used in this study works in case of a lack of interaction (A) or a positive 

interaction (B) between bait and prey. 

 

In our experiment (using the Dual Hunter system) we fused our protein of interest 

(bait) at its N-terminus to a small membrane anchor and at its C-terminus to a 

reporter cassette composed of the C-terminal half of ubiquitin (Cub) and a 

transcription factor (LexA-VP16). The prey (a cDNA library from young Arabidopsis 

seeds) is expressed fused to the N-terminal half of ubiquitin (NubG). Any 

interaction between bait and prey leads to reassembly of the split-ubiquitin and 

makes it recognisable by UBPs. This leads to a cleavage of LexA-VP16, which would 

be transported into the nucleus and trigger the transcription of a set of reporter 

genes (Figure 5-1). In our case the reporter genes used are responsible for the 

synthesis of histidine and alanine. 
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5.3. Y2H screening of CALPAIN domain putative interactors 

against a cDNA library  

 

In order to find putative interactors of the CALPAIN domain of DEK1 we cloned 

the cleaved version of the CALPAIN domain (domains IIa and IIb) into the bait 

vector. This allowed us to obtain a fusion protein with a membrane anchor in the N-

terminus and Cub and a transcription factor in the C-terminus. 

 

The vector carrying this construct was transformed into yeast cells, and tested for 

auto-activation of reporter genes, which was found to be minimal (unlike the 

situation in previous nuclear Yeast-two hybrid screens where the CALPAIN domain 

was found to activate reporter expression to unacceptably high levels). Transformed 

strains then underwent a secondary transformation with a normalized Prey-cDNA 

library produced from siliques containing embryos up to the torpedo stage of 

embryogenesis.  

 

Around 1.2 million cDNA containing plasmids were screened for interactions with 

the DEK1 CALPAIN domain, on selective media. Prey plasmids were rescued from 

positive clones, and sequenced. 

 

This experiment gave a list of putative interactors of the CALPAIN domain of 

DEK1, which is detailed in table 5-1. 
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Table 5-1 List of potential target proteins of the CALPAIN domain of DEK1 

detected by a Y2H experiment. 

 

Prey-ID Protein Name (description) Uniprot code TAIR code 

Prey_077 HR-like lesion-inducing protein-like protein O22690 At1g04340 

Prey_017 
ZCF37 protein Q9SLT9 At1g59590 

Prey_051 

Prey_018 
Lung seven transmembrane receptor 
family protein 

Q9C5T6 At3g09570 

Prey_043 
Defective Accumulation of Cytochrome 
B6/F Complex 

Q94BY7 At3g17930 

Prey_029 Albino or Pale Green Mutant 1 (APG1) Q9LY74 At3G63410 

Prey_070 
DNAJ heat shock N-terminal domain-
containing protein 

Q9FMX6 At5g23240 

Prey_019 
HR-like lesion-inducing protein-like protein Q9LSW5 At5g43460 

Prey_033 

Prey_009 
Unknown function protein Q9LVV4 At5g52980 

Prey_074 

Prey_062 Irregular Xylem 15 Like (IRX15L) Q9FH92 At5g67210 

Prey_020 
Bi-functional inhibitor/lipid-transfer 
protein/seed storage protein 

Q94AQ3 At1g48750 

Prey_048 D-xylose-proton symporter-like 2  Q6AWX0 At5g17010 

Prey_038 
Unknown function protein Q9MAL3 At1g44920 

Prey_046 

Prey_040 Cellulose synthase like A9 (CSLA9) Q9LZR3 At5g03760 

Prey_002 
Acclimation of Photosynthesis to 
Environment 2 (APE2) 

F4KG18 At5g46110 

Prey_021 ORMDL-like protein  Q9C5I0 At1g01230 

Prey_045 
Proton Gradient Regulation 5-Like 1 
(PGRL1)  

Q8H112 At4g22890 

Prey_005 
Reduced Oleate Desaturation 1 (ROD1) Q9LVZ7 At3g15820 

Prey_066 

Prey_015 NOD-26 Intrinsic Protein 5;1 (NIP5;1) Q9SV84 At4g10380 

Prey_026 Protein RER1C  Q9ZWI7 At2g23310 

Prey_065 
Translocation at Inner-membrane of 
Chloroplasts 21 (TIC21) 

Q9SHU7 At2g15290 

Prey_012 
Putative uncharacterized protein  Q9LPD7 At1g44920 

Prey_031 

Prey_022 Putative uncharacterized protein  Q9SKQ1 At2g21120 

Prey_023 
Acclimation of Photosynthesis to 
Environment 1 (APE1) 

Q8H0W8 At5g38660 

Prey_028 
Membrane Anchored MYB (maMYB) Q9FHJ4 At5g45420 

Prey_059 

http://www.uniprot.org/uniprot/O22690
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=O22690
http://www.uniprot.org/uniprot/Q9SLT9
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9SLT9
http://www.uniprot.org/uniprot/Q9C5T6
http://www.uniprot.org/uniprot/Q9C5T6
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9C5T6
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q94BY7
http://www.uniprot.org/uniprot/Q9LY74
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9LY74
http://www.uniprot.org/uniprot/Q9FMX6
http://www.uniprot.org/uniprot/Q9FMX6
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9FMX6
http://www.uniprot.org/uniprot/Q9LSW5
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9LSW5
http://www.uniprot.org/uniprot/Q9LVV4
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9LVV4
http://www.uniprot.org/uniprot/Q9FH92
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9FH92
http://www.uniprot.org/uniprot/Q9FH92
http://www.uniprot.org/uniprot/Q94AQ3
http://www.uniprot.org/uniprot/Q94AQ3
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q94AQ3
http://www.uniprot.org/uniprot/Q6AWX0
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q6AWX0
http://www.uniprot.org/uniprot/Q9MAL3
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9MAL3
http://www.uniprot.org/uniprot/Q9LZR3
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9LZR3
http://www.uniprot.org/uniprot/F4KG18
http://www.uniprot.org/uniprot/F4KG18
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=F4KG18
http://www.uniprot.org/uniprot/Q9C5I0
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9C5I0
http://www.uniprot.org/uniprot/Q8H112
http://www.uniprot.org/uniprot/Q8H112
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q8H112
http://www.uniprot.org/uniprot/Q9LVZ7
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9LVZ7
http://www.uniprot.org/uniprot/Q9SV84
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9SV84
http://www.uniprot.org/uniprot/Q9ZWI7
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9ZWI7
http://www.uniprot.org/uniprot/Q9SHU7
http://www.uniprot.org/uniprot/Q9SHU7
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9SHU7
http://www.uniprot.org/uniprot/Q9LPD7
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9LPD7
http://www.uniprot.org/uniprot/Q9SKQ1
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9SKQ1
http://www.uniprot.org/uniprot/F4KG18
http://www.uniprot.org/uniprot/F4KG18
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q8H0W8
http://www.uniprot.org/uniprot/Q9FHJ4
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q9FHJ4
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Prey_041 
Rhodanese/Cell cycle control phosphatase-
like protein  

F4J9G2 At3g59780 

Prey_030 
Eceriferum 9 (CER9) F4JKK1 At4g34100 

Prey_054 

Prey_036 Sodium/hydrogen exchanger 4 (NHX4) Q8S397 At3g06370 

 

5.3.1. Identified potential targets of the CALPAIN domain of 

DEK1 

 

Even though the proteins detected as potential interactors of the CALPAIN domain 

of DEK1 show a great variation regarding their function, we can see that there are 

certain patterns that are repeated in most of them. 

 

We noticed that most of the putative interactors obtained from this Y2H assay are 

integral membrane proteins. This is an encouraging result, as calpains have been 

described to be tightly associated with membranes. Calpains are known to be 

enzymes with a Ca2+-dependent protease activity and in vitro tests showed that they 

have very high Ca2+ concentration requirements in order to activate. These required 

concentrations are in the order of 10 µM, which is very rarely found in vivo. This 

requirement of very high Ca2+ concentrations is reduced dramatically if 

phospholipids are added to the reaction media in the in vitro assay (Saido et al. 1992; 

Shao et al. 2006; Tompa et al. 2001). This supports the observation that calpains need 

to be associated with membranes in order to be active (Goll et al. 2003).  

 

Another characteristic found throughout the whole list of potential interactors is 

that they all present disorganized regions, which have previously been shown to be 

likely cleavage sites for calpains. As discussed in the general introduction, calpains 

have a tendency to cleave unstructured inter-domain regions. This is due to the 

topology of the active calpain molecule. Once active, the catalytic site of this enzyme 

is assembled and localized in a narrow and deep structure (Moldoveanu et al. 2004). 

This fact suggests that the substrate, in order to be cleaved by the calpain, should 

http://www.uniprot.org/uniprot/F4J9G2
http://www.uniprot.org/uniprot/F4J9G2
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=F4J9G2
http://www.uniprot.org/uniprot/F4JKK1
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=F4JKK1
http://www.uniprot.org/uniprot/Q8S397
http://harvester.fzk.de/cgi-bin/h4arabidopsis/search.cgi?zoom_query=Q8S397
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present a “soft” conformation around the cleavage site, which is usually present in 

inter-domain regions (Sorimachi et al. 2012). Even though these topology 

predictions have been made for animal classical calpains, we can extend it to 

phytocalpains as most described calpains, including the phytocalpains, present a 

very highly conserved sequence in the active domains. Therefore we can assume 

that most calpains have very similar requirements when it comes to substrate 

selectivity. 

 

Using in silico resources (Winter et al. 2007) we noted that the detected proteins are 

predicted to be expressed in multiple different organs of the plant, which vary from 

seeds to fully developed adult tissues. This is not a problem for co-localization, as 

DEK1 is present ubiquitously throughout the whole plant and at all developmental 

stages (Lid et al. 2002). 

 

Despite these positive aspects, some of the putative interactors described in the 

previous list are very unlikely to be true interactors of the CALPAIN domain of 

DEK1. We can see that there is an extensive list of integral thylakoid membrane 

proteins, which, in the plant cell would not co-localize with DEK1, which has never 

been reported to be found in chloroplasts either using fusion proteins, or in 

proteomics studies. DEK1:GFP fusion proteins give a florescent signal in the plasma 

membrane and around the nucleus. The latter is believed to be due to localization in 

the ER (Johnson et al. 2008). 

 

In order to ascertain which proteins might be true interactors of DEK1, a series of 

confirmation experiments were carried out in yeast in collaboration with Pauline 

Wagnon. These experiments aimed to test 1) that prey constructs did not cause 

positive signals in the presence of the empty bait vector and 2) that we could 

recapitulate the interaction observed in yeast. They generally involved remaking 

prey vectors expressing the full-length prey protein detected in the screen, and co-
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expressing these with the original bait vector. Unfortunately these experiments are 

still on-going, due to time constraints caused by the late delivery of the data. 

 

5.3.1.1. Lung seven transmembrane receptor family protein 

(At3g09570) 

 

This protein is closely related to human GPR107 and murine GPR108, initially 

cloned from different mammalian lung tissues. The LUNG7 family proteins are 

predicted to have an amino-terminal hydrophobic signal peptide sequence, an 

extracellular domain and a C-terminus that consists of a seven transmembrane 

domain, known also as a LUSTR domain. Human GPR107 has been described to be 

a G-protein coupled receptor, whose activity is regulated by small peptides (Ben-

Shlomo et al. 2003). This receptor binds, in particular, to neurostatin (Yosten et al. 

2012), which is a 13-aminoacid peptidic hormone that regulates several 

cardiovascular and metabolic actions in a whole variety of tissues (Hua et al. 2009; 

Samson et al. 2008; Yosten et al. 2011).  

 

G protein coupled receptors are responsible for perceiving extracellular signals and 

transducing them to G proteins. These proteins are capable of sending these signals 

to downstream effectors. Thus, they play a crucial role in a variety of signalling 

pathways (Tuteja 2009). G proteins are so-named because of their ability to bind to 

the guanidine residue of GTP (Temple and Jones 2007). Even though this family has 

been very well characterized in animals, with more than 1,000 homologues known, 

they have not been thoroughly characterized in plants (Tuteja 2009). In plants there 

is only one known regulator of G protein coupled receptors, RGS1. This protein has 

a positive regulatory activity (Chen et al. 2003). 

 

This protein would be a very interesting potential interactor of the CALPAIN 

domain of DEK1, as the later could act on these proteins as a regulator. Due to its 
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proteinase activity, DEK1 could have a negative effect. This process has already 

been described in animals, where it was described that a G-protein coupled receptor 

kinase 2 (GPK2) of lymphocytes is degraded through a calpain mediated process 

(Lombardi et al. 2002; Salim and Eikenburg 2007).  

 

We tried to confirm this interaction by cloning the full length cDNA of At3g09570 

into the prey vector. However, we were unable to detect any interaction (figure 5-2). 

Therefore, it is not possible for us to confirm the interaction between these two 

proteins. However, the version of the protein identified in the Dual hybrid screen 

was not a full length version of the protein. We will therefore recreate this version of 

the protein in future experiments. 

 

 

 

 

Figure 5-2. Y2H test with the CALPAIN domain encoding region of DEK1 in the 

bait vector and the Lung seven transmembrane receptor family protein in the 

prey vector. Transformed cells were grown on media lacking leucine and 

tryptophan to confirm the presence of both plasmids (-LT), and on media 

additionally lacking histidine (-LTH) and media additionally lacking histidine 

and alanine (-LTHA) to test for interactions. From left to right: serial dilutions 

of 1:10. 
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5.3.1.2. Irregular Xylem 15 Like (At5g67210) 

 

IRX15-LIKE is closely related to the protein Irregular Xylem 15 (IRX15). They both 

contain a Domain of Unknown Function 579 (DUF579). Neither of the single 

mutants for these genes presents phenotypic changes in comparison to wild-type, 

but the double mutant irx15 irx15-l has a moderate reduction in stem xylose (Jensen 

et al. 2011). Therefore, it is believed that these proteins are very likely involved in 

the biosynthesis and deposition of xylan (Brown et al. 2011). 

 

Xylan is one of the main hemicellulose components present in the secondary cell 

wall of eudicots and in the primary cell wall of grasses and cereals. Its content can 

go up to 30 % of the dry mass of some grasses and woody species (Gibeaut and 

Carpita 1994; Heinze et al. 2006). 

 

This protein seemed to be a very promising potential interactor of DEK1 as it affects 

directly the mechanical properties of the cell wall. Xylan, as other hemicelluloses, 

forms a network with cellulose fibrils that is the main load-bearing structure of the 

cell wall (Hayashi and Kaida 2011; Somerville et al. 2004) and as we described in 

previous chapters, the CALPAIN domain of DEK1 may play a role in regulating the 

mechanical characteristics of the cell wall. Unfortunately, when we tested this 

protein in the yeast-two hybrid system we found that it was capable of activating 

reporter expression when expressed with the empty bait vector. Therefore, although 

we cannot state categorically that this protein does not interact with the DEK1 

CALPAIN domain, it seems unlikely.  
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Figure 5-3 Y2H test with full length IRX15-L in the prey vector and the 

CALPAIN encoding domain of DEK1 in the bait vector (A) and the empty bait 

vector with IRX15-L in the prey (B). Transformed cells were grown in media 

lacking leucine and tryptophan to confirm the presence of both transgenes (-

LT), in media additionally lacking histidine (-LTH) and media additionally 

lacking histidine and alanine (-LTHA) to test for interactions. From left to right: 

serial dilutions of 1:10. 
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5.3.1.3. D-xylose-proton symporter-like 2 (At5g17010) 

 

This protein is also known as VGT2, and it is a member of the sub-family of VGT-

like proteins. Originally it was described as a sugar transporter, due to its high 

homology to the bacterial xylose permease LbXyIT. However, it should be born in 

mind that this bacterial transporter shows a very high resemblance to most 

Monosaccharide transporter-like proteins. Nevertheless, when different saccharide 

transporters are compared, they all show a very high homology, independently of 

the solute they transport. Therefore, a high homology in these proteins does not 

necessarily means that it is reflected in a substrate specificity (Büttner 2007).  

 

  VGT2 is closely related to another gene of the VGT sub-family, VGT1 (At3g03090), 

not described as a xylose transporter, but as a glucose transporter with its main 

activity during germination and flowering (Aluri and Buttner 2007). Both VGT1 and 

VGT2 have been described as vacuolar membrane proteins (Aluri and Buttner 2007). 

This VGT-like family is closely related to another sub-family of sugar transporters, 

the Sugar Transport Protein-like (AtSTP-like) (Büttner 2007). AtSPTs are some of the 

best characterised hexose transporters in Arabidopsis. All members of this family are 

plasma membrane localized. They catalyse hexose uptake from the apoplast into the 

cell. To date, all described AtSPTs are found in sink tissues with one exception: 

AtSTP3. This protein was shown to have very low affinity to glucose and is 

expressed in photosynthetic tissues. It has been proposed to have a role in sugar 

retrieval (Büttner et al. 2000).  

 

In this case the version of the protein detected in the Dual hybrid system was not 

the full length version of the protein. It was a short version that has only 245 amino 

acids instead of the 503 present in the full length protein. This version of the protein, 

according to in silico structure predictions (Letunic et al. 2012; Schultz et al. 1998), 

would contain 5 of the 6 most C-terminal transmembrane domains of the protein 

and most of an unstructured region present in the centre of the protein, which is 
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likely to be a cytoplasmic domain, and therefore, a potential target of the CALPAIN 

domain of DEK1.  

 

Confirmation experiments have not yet been performed for this target, but it would 

be of great interest to test the potential interaction between the CALPAIN domain of 

DEK1 and VGT2.  

 

5.3.1.4. Cellulose synthase like A9 (At5g03760) 

 

 

Cellulose synthase like A9 (CSLA9) is a member of the Cellulose Synthase-Like (CSL) 

gene family. The genes in this family contain conserved motifs that are needed for 

nucleotide-sugar binding and processive glucosyltransferase activity. This is the 

synthesis of 1→4)-β-linked polysaccharide backbones, in which residues are turned 

180° with respect to their immediate neighbour (Delmer 1999; Richmond and 

Somerville 2001). The different proteins of this family have different sequences, 

which has led to speculation that they may actually be  involved in the synthesis of 

several different cell wall polysaccharides (Zhu et al. 2003).  

 

CSLA9 has been described as a Golgi apparatus membrane protein, like several 

other members of the CSL family (Davis et al. 2010; Sandhu et al. 2009). This protein 

is predicted to be an integral membrane protein, with very probably five 

transmembrane domains. Its active site is predicted to face the lumen of the Golgi 

apparatus (Davis et al. 2010).  

 

The version of the protein detected with the assay is a short version, which contains 

from amino acids 424 to 511. This fragment of the protein includes the C-terminal 

two transmembrane domains and a low complexity region. Even though the protein 

does not have any described cytoplasmic domains, this disorganised region could 

potentially face the cytoplasm.  



189 

 

 

Confirmation experiments are currently being carried out for this interaction, which, 

given my results regarding changes in cell wall composition induced by CALPAIN 

expression, is an intriguing candidate.   

 

5.3.1.5. NOD-26 Intrinsic Protein 5;1 (At4g10380) 

 

NIP5;1 is part of the major intrinsic protein family (Johanson et al. 2001). Members 

of this protein family work as water-selective or relatively non-selective channels 

that transport water and other small size molecules (Tyerman et al. 2002). NIP5;1 

transcription is up-regulated in roots that are grown under boron deficient 

conditions  (Takano et al. 2006).  Subsequently, the activity of this plasma membrane 

localized protein was characterized by expressing it in Xenopus laevis oocytes, where 

its boric acid transport activity was recorded (Takano et al. 2006). T-DNA insertion 

lines in this gene have problems in boron uptake in roots. Lower biomass 

production and an increased sensitivity to boron deficiency were seen in the 

mutants. If grown under boron deficiency conditions, a lower growth rate was 

recorded in its shoots and roots (Takano et al. 2006). An overexpression of this gene 

gave rise to an improved elongation of roots under low boron conditions (Kato et al. 

2009). 

 

Boron is an element of great importance for cell walls, as it participates in the cross-

linking of rhamnogalacturonan-II, a pectic polysaccharide (Kobayashi et al. 1996; 

O'Neill et al. 1996). This ion forms part of the covalent bridge in the cross-linking of 

saccharide molecules (O'Neill et al. 2001; O'Neill et al. 1996). In Arabidopsis, a 

reduced degree of cross-linking of rhamnogalacturonan-II gives reduced growth 

both in aerial tissues and roots (O'Neill et al. 2001). 
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The fact that this possible interactor of the CALPAIN domain of DEK1 has a direct 

effect on cell wall properties is very interesting since, as described in previous 

chapters, the misregulation of the CALPAIN domain gives place to changes in the 

cell wall, which could have an origin in structural changes in its architecture. If this 

interaction were confirmed, it would be very interesting to measure boron flux 

through the plasma membranes of different dek1 mutants to know more about its 

possible role in regulating the activity of these channels. 

 

5.3.1.6. Membrane Anchored MYB (At5g45420) 

 

MaMYB is a membrane anchored protein. It is a non-classic member of the R2R3-

MYB transcription factor family (Dunkley et al. 2006). The R2R3-type MYB-proteins 

form a subgroup with 126 members. No homologues of this family have been found 

outside the plant kingdom, making them plant exclusive (Dubos et al. 2010; Stracke 

et al. 2001). Transcription factors of this family are characterized by their structure 

which contains two imperfect MYB repeats. These repeats form helix-turn-helix 

structures that have the ability to bind to DNA. It has been suggested by 

bioinformatics analyses that MaMYB is the only membrane-anchored member of the 

R2R3-MYB family (Kim et al. 2010). Homologs have been identified as far back at 

the moss Physcomitrella patens, but not in Chlamydomonas reinhardtii, which suggest 

that MaMYB is conserved throughout multicellular plants (Altschul et al. 1997).  

 

MaMYB was identified as an ER membrane-anchored protein. The transcription 

factor domain, its N-terminus, is exposed to the cytosol. Truncated versions of 

MaMYB containing only the R2R3-MYB transcription factor domain, are retained in 

the nucleus, where MaMYB presumably regulates gene expression. Silencing of 

MaMYB resulted in the production of significantly shorter root hairs compared to 

wild-type plants, but no changes in root hair density. This phenotype of could be 
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rescued using auxin analogues. This suggests a role of maMYB, in auxin signalling 

in root hair elongation of Arabidopsis (Slabaugh et al. 2011).  

 

We found this protein to be a very interesting candidate. In fact, the interaction of 

calpains with membrane-bound transcription factors has been suggested 

previously. The membrane-anchored transcription factors NTL1 and NTL6, both 

members of the plant specific NAC transcription factor family have been suggested 

to interact with the CALPAIN domain of DEK1. According to Park and 

collaborators, these transcription factors are cleaved, and therefore activated, by a 

cysteine protease. It has to be noted that even though this interaction was suggested, 

it has not yet been shown proved by molecular or genetic methods (Kim et al. 2006b; 

Seo et al. 2010). 

 

On top of this, we also found very interesting the fact that MaMYB may act 

upstream of auxin in signalling pathways determining root hair length. This could 

be due to the fact that the active transcription factor could trigger the transcription 

of an enzyme involved in the auxin synthesis pathway. Therefore we checked for 

the presence of auxin synthesis-related genes in the published microarray data, 

finding that TAA1 is overexpressed in plants overexpressing the CALPAIN domain 

of DEK1 (Johnson et al. 2008). TAA1 stands for Tryptophan Aminotransferase of 

Arabidopsis 1, and is the gene encoding a protein involved in tryptophan-dependent 

auxin biosynthesis (Mashiguchi et al. 2011; Stepanova et al. 2008; Tao et al. 2008).  

 

The MaMYB clones we obtained were truncated, lacking the first out of the three 

predicted transmembrane domain. We therefore ran tests to confirm this interaction 

using both the full length and a truncated version of MaMYB fused as bait for an 

Y2H experiment with the CALPAIN domain of DEK1 as prey. Both tests showed 

negative results, (figure 5-4 A-B). In addition, the truncated version of MaMYB as 

prey produces positive results with an empty bait vector (figure 5-4 C), suggesting 

that this interaction was, very probably, a false positive result.  
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Figure 5-4 Y2H test with full length MaMYB asthe bait and the CALPAIN 

domain of DEK1 as the prey (A), the truncated version of MaMYB asthe bait 

and the CALPAIN domain of DEK1 as the prey (B) and the empty bait vector 

with truncated MaMYB asthe prey (C). Transformed cells were grown in media 

lacking leucine and tryptophan to confirm the presence of both transgenes (-

LT), in media additionally lacking histidine (-LTH) and media additionally 

lacking histidine and alanine (-LTHA) to test for interactions. From left to right: 

serial dilutions of 1:10. 
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5.3.1.7. Eceriferum 9 (At1g34100) 

 

CER9 is a protein described as being involved in wax metabolism. In Arabidopsis, the 

knockout mutant of the cer9 gene was originally described as  having a semi glossy 

stem as a  consequence of wax defects (Koornneef et al. 1989). Mutants for this gene 

have a very different wax profile in comparison to that of wild-type plants. Mutants 

showed an elevation in the amounts of very long chain fatty acids (VLCFAs) 

tetracosanoic acid (C24) and hexaxosanoic acid (C26) compared to wild-type plants 

(Goodwin et al. 2005; Jenks et al. 1995). Apart from these changes in the VLCA 

components of cuticular waxes, the cer9 mutant also presents important changes in 

cutin monomer composition, leading to a modified cuticle membrane ultrastructure. 

The amount of the cutin monomer is 1.6-fold higher in the mutant if compared to 

wild-type individuals. Stem cuticle membrane thickness is increased 2.1-fold in the 

mutant.  These mutants also  show  physiological changes, such as a delayed wilting 

of leafs in the case of drought, very probably a consequence of reduced 

transpiration rates (Lü et al. 2012).  

 

CER9 is expressed in the plant in a constitutive manner (Lü et al. 2012). In roots, the 

levels of suberin are elevated in comparison to wild-type plants in cer9 mutants. 

This is not of great surprise as suberin is chemically very similar to cutin, shown to 

be over-synthesized in aerial tissues of cer9 mutants. It has been proposed that this 

increase in suberin could restrict the uptake of water in the roots, helping to the 

altered water relations seen in cer9. Other mutants with alterations in suberin, such 

as esb1, which also presents high suberin levels, have lower transpiration rates than 

wild-type plants. This supports the model that suberin works as an extracellular 

barrier for water and solutes transport in the apoplast (Baxter et al. 2009). However, 

grafting experiments where cer9 plants were grafted onto wild-type roots showed 

that the increase in suberin in the mutant roots does not play an apparent role in the 

low transpiration rates observed in cer9. Therefore the cuticular differences in the 
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aerial parts are likely to be responsible for the low transpiration rates and the delay 

in wilting of leafs (Lü et al. 2012).   

 

Recently, it has been shown that the coding sequence of CER9 encodes a protein that 

shows very high homology to a yeast protein called Doa10, and its human 

orthologue, TEB4. Within the sequence there is a particularly high conservation in 

two domains, a transmembrane region and the RING-CH-type zinc finger domains 

(Kreft and Hochstrasser 2011; Swanson et al. 2001). In fact, the mutation present in 

the cer9-1 allele is a point mutation in the RING-CH domain, which changes a Cys to 

a Tyr. This domain is very likely to play an important role, as this mutant, which 

expresses the full length protein with just one amino acid change, shows a 

phenotype comparable to the one of cer9-2, which expresses a highly truncated 

version of the protein (Lü et al. 2012).  

 

It has been observed that the yeast protein Doa10 has a role as an E4 ubiquitin 

ligase, which participates in ER-associated degradation of proteins that have been 

misfolded or unassembled (Vashist and Ng 2004). The active domain of this protein, 

the RING domain, is cytosolic (Hassink et al. 2005; Swanson et al. 2001). It is has 

been proposed that CER9 could be involved in the cuticle wax synthesis process as a 

negative regulator of the wax synthesising enzymes through its putative ubiquitin 

ligase activity (Lü et al. 2012). However, the fact that CER9 works as an E3 ubiquitin 

ligase and the processes that lead to the altered wax profile phenotype still remain 

to be proved. 

 

I believe that this protein could be a good potential interactor of the CALPAIN 

domain of DEK1, and tests to confirm this interaction are underway in the 

laboratory. When cryofracture scanning electronic microscopy images of calpain 

over-expressing plants were generated (figure 5-5), changes in the structure of the 

wax crystals seen on the surface of the stem were observed (figure 5-5). It would be 

very interesting to analyse the wax profiles of CALPAIN OE plants and compare 
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them to those of wild-type plants. This is technically possible thanks to mass 

spectrometry techniques (McNevin et al. 1993).  

 

 

 

Figure 5-5 Cryofracture scanning electron micrographs of wild-type stem 

epidermis (A) and CALPAIN OE stem epidermis (B) in which differences in the 

structure of the epicuticular waxes crystals can be readily observed. 
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5.3.1.8. Sodium/hydrogen exchanger 4 (At3g06370) 

 

NHX4 is a protein present in the vacuolar membrane. It is part of the NHX 

subfamily, a group of Na+/H+ antiporters (Pardo et al. 2006). This subfamily belongs 

to a family of monovalent cation/proton antiporters (monovalent cation/proton 

antiporters (CPA1) (Maser et al. 2001). This type of protein plays key roles in the 

homeostasis of Na+, K+ and pH (Apse and Blumwald 2007; Yokoi et al. 2002). In 

plants, these antiporters mediate the transport and exchange of monovalent ions 

and protons. As a motor to drive ion transport, they use the pH gradients generated 

by the H+-ATPases of the plasma membrane and the H+-ATPase and H+-PPase 

present in the vacuolar membrane (Brett et al. 2005; Pardo et al. 2006; Rodríguez-

Rosales et al. 2009). 

 

The nhx4 mutant has a very high tolerance to salt stress when compared to wild-

type plants, and has decreased internal concentrations of Na+ if grown under NaCl 

stress. If NHX4 is expressed heterologously in E. coli it gives rise to salt 

hypersensitive bacteria (Li et al. 2009). 

 

Exchangers member of the NHX family are predicted to have a classic transporter 

topology. This consists of 10 to 12 transmembrane domains and a C-terminus that is 

predicted to face the cytosol (Pardo et al. 2006). This makes this protein  a valid 

potential interactor of calpains, as it is associated with a membrane and moreover it 

presents an unstructured loop between the transmembrane domains 4 and 5, 

according to the predictions made by the structure predictor SMART (Letunic et al. 

2012; Schultz et al. 1998).  

 

Interestingly, this is not the first clue on potential interaction between calpains and 

Na+ channels. Such interactions have previously been described for voltage-gated 

channels in brain cells (von Reyn et al. 2012; von Reyn et al. 2009). Furthermore, I 

detected a relation of plant calpains with Na+ homeostasis, as dek1[CALPAIN] 
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mutants show significantly increased concentrations of Na+ if compared to wild-

type plants. 

 

The technique used for the quantification of Na+ is AAS (atomic absorption 

spectroscopy) in which a solution obtained from the sample is atomized as a spray 

into a flame. The heat of the flame causes an excitation of the electrons in the outer 

orbital of the element. The lifetime of this excited species is limited and the electron 

will rapidly return to its ground state emitting a photon of radiation of a particular 

wavelength. For example, in the case of sodium this photon is of a wavelength of 

589 nm, radiation that can be detected and quantified. A calibration curve is used to 

compare the measurement of the photometer with a set of standards of known 

concentration (Walsh 1955). 

 

Preliminary tests were run to quantify the concentrations of three different ions: 

calcium (Ca2+), potassium (K+) and sodium (Na+). No significant differences were 

detected for Ca2+ and K+, but the concentration of Na+ was significantly higher in the 

dek1[CALPAIN] mutants.  

 

Measurements of Na+ in a larger number of samples were made in two different 

complemented dek1 mutant lines (dek1-2[CALPAIN] and dek1-3[CALPAIN]) and 

wild-type plants. The two complemented mutant lines show different levels of 

calpain overexpression. The tissue used for this purpose was full soil-grown rosettes 

prior to flowering. 

 

An increase of approximately 40% in the sodium concentration was seen in both 

mutant lines compared to the wild-type rosettes. Values were around 7 mg of Na+ 

per g of fresh tissue for wild-type rosettes and of 10 mg in both of the mutants 

(figure 5-6). 
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These data could be interpreted as a problem in the exclusion of Na+ from plants 

that express the active CALPAIN domain constitutively, or could be due to the lack 

of the DEK1 transmembrane domains. This remains to be resolved. 

 

Confirmation of the interaction between the DEK1 CALPAIN domain and NHX4 

are on-going in the laboratory.  

 

 

 

Figure 5-6 Concentrations of Na+ detected in wild-type (Col0) plants and in 

dek1-2[CALPAIN] and dek1-3[CALPAIN] detected by acid extraction and flame 

photometry. Error bars show standard deviation. Statistical significant 

differences between the wild-type and CALPAIN over-expresser samples were 

seen when tested with a t-test (p<0.01). N=5. 

 

5.3.1.9. Tubulin β chain 2 (At5g62690) 

 

In order to test if we could detect a direct interaction between the CALPAIN domain 

of DEK1 and β-tubulin we set up an Y2H experiment using TUB2. This gene was 

chosen as it is the highest scoring member of the β-tubulin family detected in co-

immunoprecipitations (Galletti unpublished results). TUB2 is one of the basic 

components of microtubules, which consist of heterodimers of globular α- and β-
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tubulin subunits. They are arranged in a head-to-tail fashion and form a bundle of 

13 protofilaments. These protofilaments form a cylindrical structure, the 

microtubule. They have an outer diameter of approximately 25 nm (Amos and 

Schlieper 2005). In the case of A. thaliana there are 6 genes encoding for α-tubulin 

subunits and 9 encoding for β-tubulin subunits.  

 

The TUB2 gene was cloned into the prey vector and was co-transformed with the 

bait containing the CALPAIN domain of DEK1. This experiment gave a negative 

result for the interaction (figure 5-6). This result, however, merely shows that 

Calpain does not interact with monomeric TUB2 in yeast. We cannot exclude either 

an interaction with polymerized tubulin (microtubules) or an indirect interaction  

 

 

Figure 5-6 Y2H test with the CALPAIN-encoding domain of DEK1 as the bait 

and TUB2 as the prey. Transformed cells were grown in media lacking leucine 

and tryptophan to confirm the presence of both transgenes (-LT), in media 

additionally lacking histidine (-LTH) and media additionally lacking histidine 

and alanine (-LTHA) to test for interactions. From left to right: serial dilutions 

of 1:10. 
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5.4. Summary and conclusions 

 

Even though Y2H screens are a simple way to recognise putative protein-protein 

interactions, their results have to be interpreted in a cautious way as this is a 

technique that presents numerous drawbacks. The main criticism usually made of 

Y2H screens, is the possibility of their resulting in a high number of false positive 

and false negative detections. This could be partially due to the fact that the proteins 

that are used in these screens are not native proteins, but chimeras, fusion proteins. 

Fusion of proteins can lead to changes is the topology of both the bait and the prey, 

affecting their functionality. Misconformation can give place to a limited activity or 

it can make binding sites either inaccessible, or abnormally accessible.  

 

A common cause for false positives is that for these assays the genes encoding the 

fusion proteins are driven by strong promoters. This gives rise to a much higher 

concentrations of the proteins than are usually present in cells. This can have as a 

consequence interactions that are not seen under the normal concentrations. 

Moreover, Y2H assays can involve the expression of proteins in cellular 

compartments other than those in which they are usually localized. This may be 

exemplified, for example, by the high occurrence of chloroplast-localized proteins as 

false positive interactors in Y2H screens. 

 

On the other hand, false negatives are seen in many cases as in most Y2H screens 

only direct binary protein-protein interactions are tested. The consequence of this is 

that interactions that require a third protein are usually ignored. Nowadays, some 

commercial kits allow the detection of ternary protein complexes, such as the 

pBridgeTM method developed by Clontech (Mountain View, USA). Through this 

method, two of the potential interactors are expressed as fusion proteins, similar to 

the situation in the classic Y2H method. The difference is that a third proteins can be 

expressed and screened for interactions. 
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The use of yeast cells for this type of experiment may also affect results, as proteins 

from heterologous systems may be incorrectly folded in the yeast cell context. 

Another problem could involve toxicity for yeast cells, leading to the sequestration 

of fusion proteins in protein bodies where they are inaccessible.  In our case, we 

screened a whole cDNA library, which can also cause problems. It has been shown 

that single domains often show more and better interactions than full length 

proteins in yeast (Criekinge and Beyaert 1999). In our case, sequencing of random 

library clones demonstrated that the vast majority were full length, and this could 

have caused problems in our screen. 

 

We decided to carry out an Y2H screen as a complement to immunoprecipitation, as 

DEK1 is a protein which, even though it is ubiquitously expressed, is found in low 

concentrations in tissues. Furthermore, the levels of expression of tagged calpain in 

transgenic plants are rarely highly elevated, and this means that 

immunoprecipitation techniques are likely only to detect a subset of interactions. 

The fact that only cDNA sequences are needed to launch a yeast-two hybrid screen 

gives a clear advantage if contrasted to classical biochemical assays, which require 

very high protein concentrations or highly efficient antibodies. These facts were 

decisive for us as we considered that a Y2H screen would allow us to detect 

interactions that would be very hard to see using an in planta assay.  

 

Results obtained in this experiment so far have been very disappointing as all the 

confirmation tests we ran ended up either in the identification of false positives or in 

the inability to replicate the results seen in the first screen. Another fact was that we 

found a large number of thylakoid integral membrane proteins, which cannot be 

interactors of the CALPAIN domain of DEK1 because they are unlikely to be found 

in the same subcellular compartment. Nevertheless, with this experiment we 

detected several putative interactions of the CALPAIN domain of DEK1 of great 

potential interest, which merit further investigation.  
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One of these is a Lung seven transmembrane receptor family protein, a protein that 

is closely related to G-protein coupled receptors. Interactions between animal G-

protein coupled receptors and calpains have been described in several cases. The G-

protein coupled receptor kinase 2 (GPK2) of lymphocytes have been described to be 

degraded via a calpain mediated process (Lombardi et al., 2002; Salim and 

Eikenburg, 2007). Another very interesting example of calpains and G-protein 

coupled receptors interacting involves  the mammal calpain Capns1 which binds to 

a class II G-protein coupled receptor (Juppner et al. 1991) altering its receptor 

function (Shimada et al. 2005) by  causing a partial  hydrolysis, at of the receptor.  

 

Unfortunately we were not able to confirm this interaction by cloning the full length 

gene into the prey vector. However, the version of the protein identified in the first 

screen was not the full length version. In the future, it would be of great interest to 

obtain this short version of the transcript used for the initial screen. This would 

allow us to test and confirm the results and study the possible activity of this shorter 

transcript.  

 

I detected several proteins that have a channel activity in my experiment. These 

include VGT2, NIP5;1 and NHX4. Several cases of channels with an activity 

regulated by a member of the calpain family have been described. In particular, 

calpains play a key role in the regulation of glutamate receptors. The NMDA 

receptor, activated by glutamate and glycine as well as membrane depolarization, is 

a hetero-tetrameric channel of which both main subunits are necessary for 

functionality. Subunit NR1 contains a glycine-binding site and is encoded by a 

single gene. Subunit NR2 has four subtypes (NR4A-D) that are encoded by four 

different genes. NR2 includes a glutamate-binding site (Ishii et al. 1993). A third 

subunit has been identified (NR3), but its function still remains unknown 

(Andersson et al. 2001; Sucher et al. 1995). While NR1 and NR3 are not proteolysed 

by calpains, three of the variants of NR2 (NR2A-C) have been proved to be calpain 

substrates. They are cleaved at their C-terminus (Guttmann et al. 2001). This 
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proteolysis seems to lead to further degradation and, therefore, a loss of NMDA 

receptor function (Guttmann et al. 2002). Another type of glutamate receptor 

regulated by calpains are AMPA receptors, glutamate-gated ion channels. In 

particular they act as cation channels when glutamate molecules bind to two of their 

four glutamate-binding sites (Platt 2007).  They can undergo cleavage events that 

affect channel activity (Bi et al. 1996). Calpains modulate their transport function by 

cleaving the GluR1 subunit in the C-terminus (Burnashev et al. 1995). 

 

Other channels, such as voltage-gated ion channels are regulated by calpains as 

well. One example is the voltage-gated Na+ channels (NaChs), present in rat brain 

cells. When high Ca2+ concentrations are present, a calpain-dependent degradation 

of their α-subunit is triggered. This α-subunit regulates channel activity (von Reyn 

et al. 2009). There is also evidence that some calpain-like proteases may be 

responsible for the cleavage and regulation of Ca2+ permeable voltage-gated 

channels. This proteolysis inactivates the channel, so it has been proposed that, as 

calpain activity is Ca2+ dependent, it could represent a form of  feedback loop (Abele 

and Yang 2012). 

 

I identified several cell wall-related proteins as potential interactors of the DEK1 

CALPAIN domain. One of them is CSLA9. This protein is related to the CesA 

protein, and contains conserved motifs that are needed for nucleotide-sugar binding 

and for the catalytic activity of processive glycosyltransferases (Delmer, 1999; 

Richmond and Somerville, 2001). Alongside other members of the CSLA family 

(CSLA3 and CSLA7), CSLA9 plays a role in the synthesis of the cell wall saccharide 

glucomannan (Goubet et al. 2009). Glucomannan is involved in the micromechanical 

properties of the cell wall because glucomannan fibres are arranged in a parallel 

fashion to cellulose microfibrils (Salmén 2004). 

 

Another potentially interesting interactor of the CALPAIN domain of DEK1 was 

CER9.  CER9 has a role in wax and cutin biosynthesis (Kunst and Samuels 2009).  
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From Scanning Electron Microscope observations we suspect that the CALPAIN OE 

plants have a different epicuticular wax composition and/or load compared to wild-

type plants. This interaction remains to be confirmed, but nonetheless it would be 

interesting to do a qualitative and quantitative analysis of the components of the 

epicuticular waxes, in various backgrounds. No direct roles for calpain activity have 

been described in animals for any major lipid metabolism pathway. Nevertheless, 

direct interactions between calpains and lipids have been described repeatedly. 

Fatty acids have been shown to be key regulators, inactivators in particular, of many 

different members of the calpain family (Kang et al. 2009; Lee et al. 2012; Park et al. 

2012; Perez-Martinez et al. 2011). As discussed in the general introduction of this 

thesis, calpains also interact with phospholipids through their C2-like domain 

(Tompa et al. 2001). In this case the lipids are thought to be key regulators of the 

activity of the protein, as it happens in other proteins that contain C2-like domains 

(Corbalan-Garcia and Gomez-Fernandez 2010). 

 

Finally, I tested for interaction between the CALPAIN domain of DEK1 and TUB2. I 

could not detect a positive interaction between the two proteins in yeast, even 

though a potential interaction was observed in immunoprecipitations, and a 

microtubule phenotype is observed as a result of CALPAIN overexpression, as 

discussed in chapter three. As introduced previously in this chapter, it has been 

observed in animals that members of the calpain family interact with tubulin, the 

basic component of microtubules (Hong et al. 2011). In the future experiments 

studying the possible protein-protein interaction between calpains and 

microtubules, rather than concentrating on  monomeric tubulin, should be carried 

out in planta, for example by taxol mediated microtubule isolation. In this technique, 

microtubules are forced to polymerize in cellular extracts using taxol. Therefore, 

they can be isolated and their associated proteins can be characterized (Vantard et 

al. 1991). In addition, it seems probable that a third protein or a complex mediates 

this interaction. Pulling down tagged TUB and trying to detect calpain in co-

immunoprecipitations has already been attempted in our lab, but was unsuccessful. 
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Again the problem in this case is that, as in the Y2H assays, monomeric TUB is the 

primary form pulled down in immunoprecipitations.  

 

In summary, the work carried out with the Y2H technique may have provided hints 

regarding potential interactors of the CALPAIN domain of DEK1. Nevertheless, a 

lot of work remains to be done regarding the verification of these potential 

interactors both in yeast and in plants.  
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6. Role of the transmembrane domains of DEK1 

in mechanosensing 
 

6.1. Introduction 

 

As discussed in depth in previous chapters, mechanically stressed plants present a 

very characteristic phenotype that involves stunting, delayed flowering, thickening 

of stems and changes in cell wall composition, amongst other traits (Braam 2005; 

Braam and Davis 1990; Cipollini 1998; Paul-Victor and Rowe 2011; Saidi et al. 2010).  

 

Even though not all changes seen in the plants are due to transcriptional changes, 

many of these effects may be consequences of changes in the expression level of 

touch-induced genes. These may have diverse functions contributing to the diverse 

morphological and physiological phenotypes associated with mechanical stress.  

 

Events leading to transduction of mechanical stimulation into a molecular signal 

that triggers processes at a subcellular level are not yet completely understood. The 

mechanosensor or mechanosensors that lead to the phenotype of mechanically 

stressed plant still remain to be described. As a consequence of this obscurity in the 

field, most ideas about receptors for physical signals in plants are based on 

comparisons and possible homologies with sensors present in other organisms 

which include ion channels, osmotic sensors and cell-wall associated kinases 

(Decreux and Messiaen 2005; Guo et al. 2009; Hedrich 2012; Hematy and Hofte 2008; 

Hematy et al. 2007; Kohorn et al. 2012; Monshausen and Gilroy 2009b).  

 

There is wide evidence from patch clamp analyses that the plasma membranes of 

plant cells contain an important diversity of mechanosensitive ion channels. 

However, few of the effectors for these mechanosensitive conductances, which have 

been characterized electrophysiologically, have yet been identified (Haswell et al. 

2011; Monshausen and Gilroy 2009b). There is strong evidence linking changes in 
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ion fluxes, mainly Ca2+ fluxes, to mechanical stimulation events both at the whole 

plant and at the cellular level, with stimulation ranging from touch to wind 

disturbance leading to a transient increase in cytosolic Ca2+ levels (Haley et al. 1995; 

Knight et al. 1992; Monshausen et al. 2008; Trewavas and Knight 1994).  

 

Changes in membrane potential have been proposed to have an early role in 

response to touch stimuli (Shimmen 2006). Membranes in plant cells show different 

resting potential values, ranging from -110 to -150 mV in the case of the plasma 

membrane (Roelfsema et al. 2001; Thiel et al. 1992) and of 0 to -30 mV in vacuolar 

membranes (Bethmann et al. 1995; Walker et al. 1996). Therefore, plants operate 

with a trans-cytoplasmic potential that is close to a value of -100 mV, due mainly to 

an asymmetry in the distribution and nature of ion transport proteins present in the 

plasma and vacuolar membranes (Hedrich 2012). As discussed in the general 

introduction of this thesis, fluxes of ions lead to numerous cellular effects, including 

changes in these resting potentials, thus triggering the generation of action 

potentials. Action potentials are very likely the cause of changes in the gating of 

voltage-sensitive channels (Grabov and Blatt 1998; 1999; Hodick and Sievers 1988; 

Iijima and Sibaoka 1981; Schroeder and Keller 1992; Shimmen 2006). A very good 

example that shows that action potentials are a consequence of mechanical 

stimulation and of mechanosensitive Ca2+-permeable channels in particular, is the 

case of the green algae Chara corallina. When this alga undergoes strong mechanical 

stimulation, mechanosensitive Ca2+-permeable channels trigger an immediate 

increase in the concentration of cytoplasmic free Ca2+. This current is capable of 

activating Ca2+-sensitive Cl--permeable channels, generating a Cl- outflow that 

depolarizes the membrane. If this depolarization is strong enough to reach a certain 

threshold it is propagated to the neighbouring cells (Shepherd et al. 2001). 

 

In many plant species, such as Arabidopsis and Nicotiana plumbaginifolia, cells show 

rapid and transient fluctuations of intracellular Ca2+, under mechanical stimulation 

(Allen et al. 1999; Monshausen et al. 2009; Trewavas and Knight 1994). The 
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amplitude and duration of this presence of free cytosolic Ca2+ depends both on the 

stimulated tissue and intensity of stimulus (Allen et al. 1999; Haley et al. 1995; 

Knight et al. 1991; Legue et al. 1997). It has been proposed that the elevation of free 

cytosolic Ca2+ is, in fact, a process more complex that a simple influx of Ca2+ across 

the plasma membrane of the cell. It is believed that small increases of Ca2+, mediated 

by the plasma membrane and hardly detectable, triggers a large wave of release of 

internal Ca2+. This model, known as Ca2+-induced Ca2+ release (CICR), was described 

in plants in guard cells (Ward and Schroeder 1994). The channel responsible for this 

secondary release , described in red beet root cells, is the family of slow activating 

vacuolar (SV) channels, which are both activated by, and permeable to, Ca2+ (Bewell 

et al. 1999). 

 

In this chapter I try to elucidate the role that the transmembrane domains of DEK1 

might play in mechanosensing. I also test as well the potential role they might have 

in Ca2+ transport across the plasma membrane as the first molecular response to 

stretching of the plasma membrane.  

 

6.2. dek1[CALPAIN] plants show a decreased sensitivity to 

mechanical stress 

 

6.2.1. Effect on flowering time 

 

As discussed in previous chapters, Arabidopsis plants are sensitive to mechanical 

stimulation, showing shorter petioles, later bolting and shorter bolts in mechanically 

stressed plants than untouched wild-type plants (Braam and Davis 1990). 

dek1[CALPAIN] mutants lack the transmembrane domain of DEK1, which we 

propose that could work as a mechanosensor in the plasma membrane in Arabidopsis 

cells. We believed that the absence of this structure could lead to a reduced 

sensitivity to externally applied mechanical stress. In order to investigate this 
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hypothesis, duplicate trays of wild-type and dek1[CALPAIN] mutant plants 

expressing the active CALPAIN domain at different levels were grown under long 

day conditions. One of the duplicate trays was mechanically stimulated twice every 

day for one minute applying a pressure of approximately 4 g/cm2 on the rosettes. 

This mechanical stimulation treatment was begun after the emergence of the first 

pair of true leaves and carried out throughout the whole developmental process. 

 

Bolting time was recorded as number of rosette leaves at the time of flowering for 

wild-type and two different lines of CALPAIN OE plants, dek1-2[CALPAIN] and 

dek1-3[CALPAIN]. Both of these lines, as introduced in chapter 4, lack the full length 

wild-type DEK1 protein and the resulting lethal phenotype is complemented by the 

expression of transgenic versions of the CALPAIN domain. In wild-type plants a 

statistically significant difference (p<0.01) in bolting time was observed. In 

untouched plants an average of 9.66 leaves were produced prior to bolting and in 

touched plants, 12.56 leaves. In the case of mutants that lack the transmembrane 

domain of DEK1 the variation in flowering time was not significantly different. 

10.05 leaves were produced prior to flowering in untouched and 10.17 leaves for 

touched dek1-2[CALPAIN] plants and for dek1-3[CALPAIN] plants flowering 

occurred with 11.21 leaves for untouched plants and 10.67 leaves for touched plants. 

 

We conclude from this experiment that adult plants that lack the transmembrane 

domain of DEK1 are less sensitive to mechanical stimulation than wild-type plants 

that undergo the same treatment. This lack of sensitivity is likely to be due to the 

lack of the transmembrane domains of DEK1, rather than to the calpain expression 

level, as both CALPAIN OE lines, which have differing levels of Calpain expression, 

show similar results (Galletti unpublished results). 
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Figure 6-1 Flowering time in stressed and unstressed wild-type and in two 

different lines of dek1[CALPAIN] plants expressed as number of leaves by the 

time of flowering. Error bars show standard deviation. Statistical differences 

(p<0.01) where seen with a Mann-Whitney U test between wild type unstressed 

and stressed plants, but not in the mutants. N=15. 

 

6.2.2. Effect on cellulose content 

 

Cell wall components were quantified by extracting the alcohol-insoluble residue 

(AIR) of plants after they had been kept in the dark for 24h to eliminate starch. 

Cellulose was isolated from the rest of the polysaccharides in the AIR and 

quantified by the anthrone method as described in depth in chapter 3 (Foster et al. 

2010b; Trevelyan et al. 1952). 

 

A difference in cellulose content was observed in the wild-type plants, with or 

without mechanical stimulation (figure 6-2, table 6-1). A value of 0.55 µg of glucose 

equivalents per µg of AIR was seen in wild-type fully developed leaves whilst in 

mechanically stimulated plants the corresponding value was of 0.84 µg of glucose 

equivalents per µg of AIR. This difference was statistically significant (p<0.1). 
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In the case of dek1-2[CALPAIN] mutants a value of 0.69 µg of glucose equivalents 

per µg of AIR was measured in unstressed plants. In stressed plants the value was 

of 0.68 µg of glucose equivalents per µg of AIR. For dek1-3[CALPAIN] mutants the 

measured value in non-stressed plants was of 0.68 µg of glucose equivalents per µg 

of AIR. In mechanically stressed plants the value was of 0.67 µg of glucose 

equivalents per µg of AIR.  Thus, unlike the situation in wild-type plants, 

mechanically stressing dek1[CALPAIN] plants results in no detectable increase in 

cellulose content. 

 

Table 6-1. Quantification of the cellulose content of the cell walls of leaves of 

wild-type, dek1-2[CALPAIN] and dek1-3[CALPAIN] mechanically unstressed 

and stressed plants. Expressed in glucose equivalents per µg of AIR. 

 

 

 WT dek1-2[CALPAIN] dek1-3[CALPAIN] 

UNSTRESSED 0.55 0.69 0.68 

STRESSED 0.84 0.67 0.66 

 
 
    

 

Figure 6-2 Quantification of cellulose content of cell walls of leaves of wild-

type dek1-2[CALPAIN] and dek1-3[CALPAIN] mechanically unstressed and 

stressed wild-type plants. Error bars show standard deviation. Statistical 

differences (p<0.01) where seen with an ANOVA test between wild type 

unstressed and stressed plants, but not in the mutants. N=10. 
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6.2.3. Effect on lignin content 

 

In other species, such as the common bean (Phaseolus vulgaris), when stimulated 

mechanically, an increase in the lignification of tissues has been recorded. This is 

thought to be due to an induction of enzymes such as phenylalanine ammonialyase 

and peroxidase, which leads to an accumulation of phenolic compounds such as 

lignin (Cipollini 1998; Cipollini Jr 1997).  

 

Lignin was quantified by its auto-fluorescence after being purified using the acetyl 

bromide method (Foster et al. 2010a). Measurements were carried out on the base of 

the inflorescence stems of mechanically perturbed and non-perturbed plants. A 

strong increase in lignin content was observed in mechanically stimulated wild-type 

plants in comparison to non-stimulated individuals (figure 6-3, table 6-2). A value of 

213.2 µg of lignin per cm of stem was detected in mechanically stimulated plants 

while non-stimulated show a value of 121.6 µg of lignin per cm of stem. 

 

In the case of dek1[CALPAIN] plants the value of lignin for non-stimulated plants 

was of 180.6 µg of lignin per cm of stem. Stimulated plants showed a value of 203.3 

µg of lignin per cm of stem.  Thus, the response of dek1[CALPAIN] plants to 

mechanical stimulation in terms of lignin production was less strong than in wild-

type plants, although the treatment still produced a statistically significant increase 

in lignin content in this background. 

 

Table 6-2 Quantification of content of lignin in µg per cm of stem in 

mechanically stimulated and non-stimulated wild-type and dek1[CALPAIN] 

plants. 

 

 WT dek1[CALPAIN] 

Unstressed 121.6 180.5 

Stressed 213.1 203.3 
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Figure 6-3 Quantification of content of lignin in mechanically stimulated and 

non-stimulated wild-type and dek1[CALPAIN] Arabidopsis. Error bars show 

standard deviation. Statistical differences (p<0.01) where seen with an ANOVA 

test between wild type unstressed and stressed plants, but not in the mutant. 

N=4. 

 

6.2.4. Transcriptomic analysis of stressed wild-type and 

DEK1 mutants 

 

In order to understand the role of the transmembrane domains of DEK1 in the 

perception of mechanical and osmotic stress we decided to assess the transcriptional 

phenotype of wild-type and dek1[CALPAIN] plants. We chose the same downstream 

targets of the CALPAIN domain as we used in other transcriptomic analysis 
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culture. Osmotic stress consisted of a shock of 300 mOsm sorbitol, and samples were 

collected at different time points (0, 30, 90 and 180 minutes). Plants were stimulated 

mechanically by applying a force to liquid culture grown seedlings using an 

inverted, glass bead filled, 50 ml falcon tube and samples were collected at the same 

time points as for the osmotic stress treatment. 

 

In order to detect if the plants showed a transcriptional response to being stressed 

osmotically and mechanically, the transcript levels of the osmotic and mechanical 

stress marker genes POST5 and PTT2 were measured. The use of these genes for this 

purpose has been previously discussed in chapter 3. In the case of POST5 we see 

that this osmotic stress target is up-regulated in response to osmotic stress but not in 

response to mechanical stress in wild-type plants (figure 6-4 A-B), an effect 

previously described in chapter 3. As previously observed, PTT2 shows a response 

to both mechanical and osmotic stress (figure 6-4 C-D). 

 

Interestingly, the responses of dek1[CALPAIN] plants and wild-type plants to 

osmotic and mechanical stress as determined by the expression of these genes 

appears very similar to that of wild-type, suggesting that the transmembrane 

domains of  DEK1 are not necessary for the transcriptional responses of these genes 

to either osmotic or mechanical stresses. 

 

In order to take this analysis further we analysed the expression of the CALPAIN-

regulated genes TOD4 and TOD5. As previously shown these genes respond to both 

osmotic and mechanical stress in wild-type plants, and are over-expressed in 

untreated CALPAIN over-expressing plants.  Interestingly, in the case of these 

genes, dek1[CALPAIN] mutants that lack the transmembrane domains of DEK1 do 

not show coherent transcriptional changes in response to either osmotic or 

mechanical stress (figure 6-5 B and D). This supports the hypothesis that the 

transmembrane domains of DEK1 may be important for the transcriptional 

responses of some genes to mechanical stimulation, but not others.  



218 

 

 

 

 

 

 

 

 

Figure 6-4 RT-PCR analysis of the expression level of POST5 (A and B) and 

PTT2 (C and D) in wild-type plants (A and C) and dek1-2[CALPAIN] mutants (B 

and D). All of them were treated with mechanical stress and an osmotic step 

of 300 mOsm. Samples collected at 0, 30, 90 and 180 minutes. Error bars show 

standard deviation between three biological replicates. ANOVA test shows a 

statistical significant difference between time point 180 min and all others for 

osmotic stress, p<0.01 (A-B). In C and D also shows statistical significant 

differences between time point 30 min and time 0 for mechanical and osmotic 

stress (p<0.05). 

 

 

0

0.5

1

1.5

2

0
MIN

30
MIN

90
MIN

180
MIN

0
MIN

30
MIN

90
MIN

180
MIN

MECH OSM

R
e

la
ti

ve
 e

xp
re

ss
io

n
 Col-0 (POST5) 

0
1
2
3
4
5
6
7

0
MIN

30
MIN

90
MIN

180
MIN

0
MIN

30
MIN

90
MIN

180
MIN

MECH OSM

R
e

la
ti

ve
 e

xp
re

ss
io

n
 dek1-2[CALP] (POST5) 

0

0.2

0.4

0.6

0.8

1

0
MIN

30
MIN

90
MIN

180
MIN

0
MIN

30
MIN

90
MIN

180
MIN

MECH OSM

R
e

la
ti

ve
 e

xp
re

ss
io

n
 Col-0 (PTT2) 

0

0.2

0.4

0.6

0.8

1

0
MIN

30
MIN

90
MIN

180
MIN

0
MIN

30
MIN

90
MIN

180
MIN

MECH OSM

R
e

la
ti

ve
 e

xp
re

ss
io

n
 dek1-2[CALP] (PTT2) 

 

A 

C D 

B 



219 

 

 

 

 

 

Figure 6-5 RT-PCR analysis of the expression level of TOD4 (A and B) and 

TOD5 (C and D) in wild-type plants (A and C) and dek1-2[CALPAIN] mutants (B 

and D). All of them were treated with mechanical stress and an osmotic step 

of 300 mOsm. Samples collected at 0, 30, 90 and 180 minutes. Error bars show 

standard deviation between three biological replicates. ANOVA test shows a 

statistical significant difference between time point 30 min for mechanical 

stress and 90 min for osmotic stress and time point 0 min in A (p<0.01), 

whether no statistically significant differences are seen in B. In C statistical 

significant difference between time point 180 min for mechanical and osmotic 

stress and time point 0 min in A (p<0.05), whether no statistically significant 

differences are seen in D. 
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6.3. Implication of DEK1 in Ca2+ flux through the plasma 

membrane 

 

6.3.1. dek1[CALPAIN] root epidermal cells show decreased 

Ca2+ intake under osmotic stress 

 

The activity of ionic channels within membranes can be studied thanks to a variety 

of electrophysiological techniques. Classical voltage clamp techniques implying the 

application of two or three electrodes to large plant cells, particularly giant algal 

cells, provided the foundations, to a large extent, of the current field of plant 

electrophysiology (Beilby et al. 1982; Findlay 1961; Gradmann et al. 1978; Kishimoto 

1964; Lunevsky et al. 1983). Technical developments applied to voltage and patch 

clamp techniques have allowed more wide-ranging studies. A key advance in 

conventional two-electrode voltage clamp studies has been the use of double-

barrelled electrodes to impale single small cells, such as those present in higher 

plants. This opened the possibility of performing in planta analysis of membrane 

fluxes. In this configuration, one of the barrels of the electrode is used to measure 

voltage while current is applied through the other barrel. One of the best examples 

of the use of this technique is the work carried out by Blatt and his co-workers on 

the stomatal guard cell (Blatt 1987; 1991; 1992; Chen et al. 2010c; Wang et al. 2012). 

This type of plant cell, with its dramatic ion fluxes, is probably the most intensively 

studied and has acted as a model for the description of higher plant cells from an 

electrophysiological point of view. In the studies of Blatt and co-workers, electrodes 

were filled with 200 mM K+-acetate in order to minimise the effects of Cl− leakage 

into the relatively small cytoplasmic volume, therefore avoiding the masking other 

currents with this leakage. 

 

The double-barrelled voltage clamp method presents one major advantages over 

patch clamping of plant protoplasts, another extensively used technique. This is that 
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it can be used in situ on cells that are still inside their cell walls, and thus probably 

reflects a situation closer to physiological conditions. Nevertheless, this technique 

presents drawbacks. Complications are seen if the cells studied are electrically 

coupled to other cells, which is the case for many types of plant cells (but not 

stomatal guard cells). The other main disadvantages of this method is that it is a 

technically challenging as it is difficult to impale the cytoplasm of highly vacuolated 

small plant cells without causing any damage to the membranes (Brownlee 1994). 

 

In order to test the electrophysiological consequences of loss of the DEK1 

transmembrane domains, in vivo tests were run, measuring ion currents using 

electrodes implanted  in cells of the root epidermis of Arabidopsis seedlings of wild-

type and dek1[CALPAIN] mutant plants. The method used was an adaptation of the 

double barrelled electrode technique described before. All experiments were done 

in collaboration with Dr Zhong-Hua Chen and Yizhou Wang at Dr Michael Blatt’s 

laboratory at the University of Glasgow.  

 

In wild-type plants, steady-state current-voltage relations studies were carried out 

with and without an osmotic step. As discussed previously, osmotic steps are often 

considered as proxies for mechanical stimulation of cells, as the tension of the 

plasma membrane can be altered by variations in the osmotic pressure. We 

observed that in cells that underwent the osmotic step, an activation of the influx of 

Ca2+ to the cytoplasm was detectable. In cells without the osmotic step the influx of 

this cation is substantially smaller. This lets us confirm the existence of Ca2+-

permeable channels sensitive to osmotic stimuli in the plasma membrane of 

Arabidopsis root cells (Chen unpublished results; figure 6-6). These currents do not 

resemble fluxes previously reported from protoplasts, although the fact that our 

measurements were carried out in planta, and in electrically coupled cells, may have 

affected the characteristics of this flux. 
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It should be noted that in these experiments Ca2+ is substituted by Ba2+ in the 

solutions used. The reason for this is that channels with selectivity for Ca2+ are also 

permeable to Ba2+ which is a divalent cation with similar properties. However, the 

use of Ba2+ presents significant advantages over Ca2+ in electrophysiological studies. 

The first advantage is that it avoids the triggering of all the processes, including 

activation of secondary ion currents, which would be caused by increases in free 

cytoplasmic Ca2+. The other is that this ion is capable of blocking monovalent cation 

channels, such as K+ channels, therefore blocking currents that could mask the 

movements of divalent cations (Sabirov et al. 1997; Syeda et al. 2008). 

 

 

 

Figure 6-6 Voltage ramp and currents at iso-osmotic potential and with a 30 

mOsM differential imposed between bath and pipette solutions. 

Measurements carried out in root epidermal cells. 
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I then carried out the same experiments but comparing the behaviour of wild-type 

plants and dek1[CALPAIN] mutants. Mechanical stimuli were mimicked by an 

osmotic step of 30 mOsM. In wild-type cells an increase in the influx of Ca2+ to the 

cytoplasm was recorded as previously described. In dek1[CALPAIN] mutants that 

lack the transmembrane domain of DEK1, the calcium influx is practically 

inexistent. If these currents are quantified a very significant difference is seen, with 

currents being more than 20 fold bigger in wild-type plants than in dek1[CALPAIN] 

mutants (figure 6-7) 

 

My results led me to conclude that dek1[CALPAIN] mutants which lack the 

transmembrane domains of DEK1 also lack a Ca2+-permeable channel activity 

sensitive to osmotic stimulation. It seems likely, therefore that the activity of DEK1 

is closely related that of a Ca2+-permeable channel, either being the channel itself or 

a regulator of a channel.  
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Figure 6-7 Steady-state current-voltage relations from wild-type and 

dek1[CALPAIN]  complemented  Arabidopsis. Bath and pipette solutions with 

3 and 10 mM Ba2+, respectively, as the charge carrying ion (A). Current 

amplitude means ±SE taken at -150 mV from six independent experiments in 

wild-type and dek1[CALPAIN]  epidermal root cells. Error bars show standard 

deviation. A t-test showed a statistically significant difference (p<0.01) (B).   
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6.3.2. Xenopus oocytes expressing the transmembrane 

domains of DEK1 show Ca2+-activated Cl--

conductances 

 

 Molecular cloning techniques have made possible the functional study of ion 

channels and transporters encoded by identified genes in a variety of heterologous 

systems, which should be done in order to prove a certain protein presents an ionic 

transport activity. This approach generally makes use of certain cell types that do 

not express endogenous proteins which could generate currents that could 

potentially confound results.  The cell types used should also be responsive to 

genetic transfection or permit the direct injection of genetic material. For those 

reasons we chose Xenopus laevis oocytes to carry out our experiments. 

 

The Xenopus laevis oocyte is one of the most commonly used cell types for 

electrophysiological studies. These cells are a very popular model as they present a 

very large size, they express and faithfully insert channel proteins in their cell 

membrane, and they have a relatively low number of endogenous channels which 

could complicate the analysis of electrophysiology measurements (Papke and 

Smith-Maxwell 2009). All these characteristics make them very attractive as models 

for electrophysiological experiments. Oocytes are the precursors of mature egg cells 

in amphibians. They are harvested from the ovarian lobes present in the adult 

female frog by survival surgery. They can be classified into several developmental 

stages (named stage I to stage VI), of which stages V and VI are those that can be 

used for electrophysiological experiments.  

 

  Xenopus oocytes were first used by Miledi and co-workers. In 1982 they used this 

cell type to study nicotinic acetylcholine receptors. This experiment was carried out 

by injecting mRNA obtained from cat muscle (Miledi et al. 1982). Within the last 20 

years Xenopus oocytes have been used as a tool to study a large number of ion 

channels and receptors. In the few years following the invention of this technique 
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very important discoveries were made in the field of neurotransmitter receptors that 

were not themselves ion channels (e.g., G-protein coupled receptors). Xenopus 

oocytes contained the components needed to transduce the activation of receptors 

into a current mediated by Ca2+-dependent Cl- channels (Gundersen et al. 1983; 

Miledi and Parker 1984). In the late 1980s, cloned receptors and channels became 

available thanks to the developing molecular biology techniques and the Xenopus 

oocyte system became a tool of great utility. (Papke and Smith-Maxwell 2009).  

 

Membrane proteins from yeast (Yu et al. 1989), bacteria (Calamita et al. 1995) and 

plants have been expressed in oocytes with full functionality, showing that there is 

no major kingdom or codon usage limitation for this technique. The first plant 

membrane proteins expressed in this system were a hexose carrier (Boorer et al. 

1992) and K+ channels (Cao et al. 1992). Since then, a large number of different types 

of membrane proteins have been characterised including several transporters 

(Miller and Zhou 2000).  

 

In our case, we wanted to test if the transmembrane domains of DEK1 presented an 

ion transporter activity, by expressing the protein in Xenopus oocytes and 

characterizing their electrophysiological activity across the plasma membrane using 

the voltage clamp technique. In order to do this we had to clone the protein into a 

vector containing a promoter for vertebrates. Our first choice was to clone out DNA 

fragment into a Gateway® vector. For this purpose we used the vectors cDEST and 

NEO. This did not work as we could not obtain bacterial colonies carrying the right 

clone. Finally, we chose pGEMHXho, which contains a T7 promoter located 

between the untranslated regions of the 5’ and 3’ Xenopus β-globin gene (figure 6-8 

A) (Zhang et al. 2011). This vector was injected as DNA into Xenopus oocytes, but 

the expression of full length DEK1 in these cells resulted in lethality before any 

measurement could be carried out. 
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To avoid this problem we decided to inject the RNA of DEK1 into oocytes and carry 

out the electrophysiological measurements in the following days. RNA was 

obtained by transcription with the transcriptase SP6 from the linearized vector 

pGEMXho containing the DEK1 gene (figure 6-8 B). Several experiments involving 

the full length DEK1 gene were carried out, but gave irreproducible results, 

probably because the gene is too long to be transcribed fully  in vitro, resulting in the 

production of a variety of shorter RNAs which may be unstable.  Therefore, we 

prepared a new clone that encoded only the transmembrane domains of DEK1 

(figure 6-8 C) and which was transcribed successfully and injected into oocytes. 

Control oocytes were injected with water. 

 

The transcription of DEK1, injection of oocytes and following electrophysiological 

measurements were carried out in collaboration with Dr Anne Aliénor Very in the 

laboratory of Dr Hervé Sentenac, INRA Montpellier. I carried out the majority of the 

electrophysiological measurements on the oocytes, as well as being responsible for 

the design and construction of all the vectors 

 

The oocytes injected with the DEK1 RNA were incubated for 4 days and impaled 

with two glass electrodes. After the introduction of the electrodes into the cell the 

oocytes were treated with a set of solutions containing different solutes and with 

different osmolarities. Three different combinations of solutes were used: one was 

30mM BaCl2, another one 10mM CaCl2/ 20mM MgCl2 and the other 40mM NaCl/ 10 

mM KCl/ 20.5 mM CaCl2. All of them were prepared at two different osmolarities: 

140 mOsm and 220 mOsm. Osmolarities were adjusted with mannitol. Control 

oocytes were injected with distilled water. 

 

In the DEK1 injected oocytes treated with the high Ca2+ containing solutions,  

specific Ca2+-activated Cl- currents were seen, even though Ca2+ currents were not 

reproducibly detectable, probably they are below the sensitivity limit of the method 

used.  These Ca2+-activated Cl- currents were not observed in water-injected oocytes. 
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Figure 6-8 pGEMXho plasmid, Ampicillin resistant (APr) and containing the β-

globin 5’UTR (5’UTR) and 3’UTR (3’UTR) (A). pGEMXho plasmid carrying full 

length DEK1 (B) and the region coding for the transmembrane domains of 

DEK1 (C). 
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Figure 6-9 Voltages applied to oocytes injected with water (A). Whole currents 

recorded by voltage-clamp in oocytes undergoing a treatment of 40mM NaCl/ 

10 mM KCl/ 20,5 mM CaCl2 (B and E); 30mM BaCl2 (C and F) or 10mM CaCl2/ 

20mM MgCl2 (D and G). They were treated with an osmotic step of 140 mOsm 

(B to D) or 220 mOsm (E to G). 
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Figure 6-10 Voltages applied to oocytes injected with 30 ng of RNA coding for 

the transmembrane domains of DEK1 (A). Whole currents recorded by 

voltage-clamp in oocytes undergoing a treatment of 40mM NaCl/ 10 mM KCl/ 

20,5 mM CaCl2 (B and E); 30mM BaCl2 (C and F) or 10mM CaCl2/ 20mM MgCl2 (D 

and G). They were treated with an osmotic step of 140 mOsm (B to D) or 220 

mOsm (E to G). 
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Figure 6-11 I:V (current:voltage) diagrams of oocytes injected with water (A) or 

with 30 ng of RNA encoding for the transmembrane domains of DEK1 (B). 

They were treated with 40mM NaCl/ 10 mM KCl/ 20,5 mM CaCl2; 30mM BaCl2  

and 10mM CaCl2/ 20mM MgCl2 and an osmotic step of 140 mOsm  or 220 

mOsm. 

 

In our experiments, changes in osmolarity did not cause changes in the Cl- currents. 

This could be interpreted in several different ways. One is that Ca2+ currents 

provoked by the transmembrane domains of DEK1 give rise to a background that 

reaches a threshold current enough to activate completely the Cl- channels. Another 

and probably more likely possibility, as the putative Ca2+ fluxes are small, is that the 
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placing of the electrodes used might cause a stretch force in the membrane that 

activates mechanosensitive Ca2+ currents, probably mediated by the transmembrane 

domains of DEK1.  

 

6.4. Summary and conclusions 

 

In animal cells it has been proposed that, rather than sensing mechanical signals 

directly through plasma membrane deformation, cell surface adhesion receptors 

mechanically couple the cytoskeleton to the extracellular matrix. Therefore, 

extracellular matrix receptors such as integrins and associated  molecules  are likely 

to be amongst the first molecules on the membrane to sense physical forces, and 

could act as primary mechanoreceptors (del Rio et al. 2009; Ingber 1991; Ingber and 

Jamieson 1985; Wang et al. 1993; Yonemura et al. 2010). It has also been proposed 

that deformation of plasma membrane proteins can directly influence biochemical 

activities, providing another mechanism of stress-sensing (Ingber 1997; 2006). 

Examples of this phenomenon include stress-activated ion channels (Ingber 2008). In 

other kingdoms, such as fungi, mechanosensitive ion channels have been described 

(Watts et al. 1998; Zhou et al. 1991) and integrin-like molecules have been predicted 

(Kumamoto 2008; Pelling et al. 2004). 

 

In plants, no role for integrins or integrin-like molecules in mechanoperception has 

yet been proven and it has been suggested that ion channels play a major role in 

mechanosensing (Haswell et al. 2011; Monshausen and Gilroy 2009b). Therefore I 

was interested in the link between the transmembrane domains of DEK1 and their 

potential role as a mechanosensor.  In particular I was interested in the possible link 

between this structure and Ca2+-permeable channel activities that have been 

described electrophysiologically, but for which the effector molecules still remain to 

be determined.  
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I was able to observe with the experiments in this chapter that the presence of the 

transmembrane domains of DEK1 is important for mechanosensing at the whole 

plant level. I stressed plants mechanically from early in their development up to late 

stages in the life cycle. This allowed me to observe a major difference between the 

response to this type of stress in wild-type plants and mutants lacking the 

transmembrane domains of DEK1. While the wild-type plants presented a delay in 

flowering and an increase in cell wall components in response to mechanical stress, 

none of these effects could be seen in DEK1 transmembrane-domain-lacking-

mutants when compared to the unstressed control.  

 

The response to mechanical stress regarding flowering time has been widely 

described in Arabidopsis (Braam 2005; Braam and Davis 1990) and it is known to 

exist in other plant species (Chehbab et al. 2011). However, the effects of mechanical 

stress on cell wall composition, even though they have been described in depth for 

several species (Biddington 1986; Chehbab et al. 2011; Telewski and Jaffe 1986; 

Telewski and Pruyn 1998) were practically unknown for Arabidopsis, with the 

exception of the effects of three-point bending in stems (Paul-Victor and Rowe 

2011).  

 

I described the effects of mechanical stress on cellulose and lignin content in depth 

in chapter 3. I saw coherence between the results in this chapter and those in chapter 

3, regarding the effect of mechanical stress on wild-type plants, but this effect was 

totally lost in the case of plants that lacked the transmembrane domain of DEK1. It 

would be very interesting, for future work, to compare the responsiveness of plants 

lacking the transmembrane domains of DEK1 regarding the physical properties of 

their organs. This could be studied using the same system proposed in chapter 3. 

This would allow the measurement of tissue strength, toughness and stiffness using 

the punch and die technique (Aranwela et al. 1999). 
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In addition to whole plant responses to mechanical stress I tested responses to 

mechanical stress at a transcriptional level. Even though not all the phenotypic 

responses to mechanical stress can be linked to changes in gene transcription, it has 

been shown that specific transcriptional phenotypes are present in mechanically 

stressed plants (Lee et al. 2005). Unlike whole plant responses to mechanical stress, 

transcriptional responses can be detected almost immediately after the stimulus is 

applied.  Interestingly in my experiments, I showed that plants lacking the 

transmembrane domains of DEK1 were still able to respond normally to both 

mechanical and osmotic stress, as gauged by the expression of the marker genes 

POST5 and PTT2. This is very interesting, as it may indicate that transcriptional 

responses to stress do not require the DEK1 transmembrane domains in the 

presence of the cleaved CALPAIN domain. One possible explanation for this 

observation is that other proteins present in the cell membrane can compensate for 

the role of the DEK1 transmembrane domains in transmitting mechanical stress 

signals to the nucleus. If this were the case then it might suggest that the lack of 

growth responses seen in dek1[CALPAIN] plants are largely attributable to 

cytoplasmic functions of DEK1, which could include spatially localized (at the 

subcellular level) growth modifications possibly mediated by microtubule 

regulation and/or modification  of cell wall properties. 

 

Interestingly, though mechanical  and osmotic stress transcriptional reporters 

responded normally in dek1[CALPAIN] plants, genes identified as being regulated 

by calpain over expression, and which respond to mechanical and osmotic stress in 

wild-type backgrounds no longer appeared responsive to either osmotic or 

mechanical stress in the absence of the transmembrane domains of DEK1 . 

However, it should be noted that these genes are markedly over-expressed in the 

dek1[CALPAIN] backgrounds used in this study, which may mean that they have 

reached an expression maximum above which further stress-responsiveness is not 

possible. Alternatively, DEK1 could regulate gene expression via two different, as 

yet unknown mechanisms. 



235 

 

 

Studies carried out in Arabidopsis roots showed that mechanical stimulation triggers 

an elevation in cytosolic concentrations of calcium ion (Ca2+). Changes in Ca2+ 

concentration can be triggered either by touching individual root cells, bending the 

whole organ or by endogenous mechanical stress, as observed during thigmotropic 

growth responses. In all cases the effect can be impeded using calcium channel 

blockers, such as lanthanum (La3+) or gadolinium (Gd3+), which suggests the rise of 

cytosolic Ca2+ is due to a flux from the extracellular space (Monshausen et al. 2009; 

Monshausen and Gilroy 2009a; Monshausen et al. 2008). 

 

We were able to document the existence of mechanically activated Ca2+ currents in 

root epidermal cells using an in planta voltage-clamp technique. This technique, as 

previously discussed, allows the measurement of ion fluxes in close to normal 

physiological conditions, as it is carried out impaling single cells within intact plant 

tissues. In this experiment we observed that inward Ca2+ currents were provoked by 

an osmotic step, which is thought to mimic mechanical stress. This current 

disappeared completely in the absence of the transmembrane domains of DEK1. 

This is a tantalising and important result supporting the idea that transmembrane 

domains of DEK1 sense mechanical stress and are involve in its transduction into an 

ion flux. It would be of great interest to test this technique in more lines that lack the 

transmembrane domains of DEK1 and express the CALPAIN domain at different 

levels.  In addition, it would be interesting to test the effects of overexpressing the 

CALPAIN domain of DEK1 in a wild-type background on ion fluxes. This would 

allow us to completely dissect the ion transport activity from the presence of the 

active version of this cysteine protease. 

 

The in planta results suggested the possibility that the transmembrane domains of 

DEK1 could act as a channel themselves. In order to test this hypothesis I carried out 

experiments in Xenopus oocytes.  
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Even though we were not able to detect Ca2+ currents, we found Ca2+-dependent Cl- 

current activities specifically in DEK1 injected oocytes. Ca2+-activated Cl- channels 

(CaCCs) are one of the best described endogenous ion transporters in Xenopus 

oocytes. They are ligand-activated Cl- channels that have the characteristic of being 

activated by intracellular Ca2+ (Weber et al. 1995). These channels have been 

proposed to present physiological role in the oocyte maintaining a potential of 

~+20mV across the plasma membrane. This potential is known as the fertility 

potential and is an amphibian specific method to avoid polyspermia, the 

fecundation by more than one spermatozoid (Hartzell et al. 2005; Webb and 

Nuccitelli 1985).  

 

An increase in cytosolic Ca2+ is enough to activate CaCCs. This can happen due to 

two different phenomena. One is the influx of Ca2+ into the cell and the other is its 

release from internal membrane compartments, such as the ER. Activation appears 

to be direct. This was proved by the activation of CaCCs present in isolated 

membrane patches of oocytes by the sole addition of Ca2+ (Kuruma and Hartzell 

2000). 

 

The presence of this Ca2+-dependent Cl- current has been used in published material 

as an indirect proof of the presence of heterologous Ca2+ channels in the membrane 

of Xenopus oocytes, even if their current is not detectable. One example is an 

experiment performed by Limon and collaborators, in which they transplanted 

patches of plasma membrane of human brain cells to Xenopus oocytes in order to 

measure electrophysiological activities (Limon et al. 2008). 

 

A possible Ca2+ current mediated by DEK1 might not have been observed because it 

was too small and under the threshold of detection of the technique. A low 

conductance of Ca2+ could have several explanations. It is possible that in Xenopus 

oocytes, DEK1 lacks an interactor that helps to enhance the current. This enhancer 

could be the cell wall, present in the in planta experiments but not in the 
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heterologous system. The idea of the cell wall being involved in mechanosensing 

processes is not new. In yeast it has been proposed that it could be involved in 

osmosensing processes by enhancing the perception of shape changes (Hohmann 

2002). In plants several plasma membrane proteins  that interact with the cell wall 

and could be involved in the mechanosensing process  have been described, such as 

lectin receptor kinases  (Gouget et al. 2006) and wall associated kinases (Anderson et 

al. 2001; Kohorn 2001; Kohorn et al. 2006; Verica and He 2002).  Interestingly, 

proteomics experiments have led to the detection of phosphorylated DEK1 peptides 

from the juxta- CALPAIN domain, suggesting that DEK1 activity might be 

regulated by phosphorylation (Kumar et al. 2010).  

 

Another possible enhancer of the Ca2+ currents could be DEK1 itself through the 

protease activity of its CALPAIN domain. However, calpains have never been 

described as activators of channels. Indeed, although they have been proposed to 

interact with channels on several occasions, this was always described in the context 

of negative regulation (Abele and Yang 2012; Guttmann et al. 2001). Furthermore, 

initial tests with full length DEK1 in oocytes, whilst giving very irreproducible 

results, tended to suggest that the presence of the CALPAIN domain had a negative, 

rather than a positive effect on ion fluxes. However, this regulation could be easily 

tested by expressing the active version of the CALPAIN domain of DEK1 alongside 

the transmembrane domains in Xenopus oocytes in order to observe whether the 

presence of the CALPAIN domain affects the putative conductance of the 

transmembrane domains. 

 

Summing up, in this chapter I was able to observe the role that the transmembrane 

domains of DEK1 play in mechanosensing at the phenotypic and 

elecrophysiological level. I also noted an interesting disparity in the fact that some 

transcriptional responses to mechanical and osmotic stresses were not abolished in 

plants lacking the DEK1 transmembrane domains.  I have provided strong evidence 

that the transmembrane domains of DEK1 are involved in a mechanosensitive 
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process of ion transport, in particular the transport of Ca2+. It is therefore possible 

that plants lacking the DEK1 transmembrane domains are impaired in local 

cytoplasmic responses to stress at the membrane, which can effect growth, but that 

other, as yet unidentified mechanosensitive channels at the membrane can 

compensate for the lack of the DEK1 transmembrane domains in terms of 

transcriptional regulation, in the presence of the cleaved CALPAIN domain. 
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7. Discussion 

  7.1.   The transmembrane domains of DEK1 play a role in the 

process of sensing mechanical signals at a plasma 

membrane level 

  7.2.   The CALPAIN domain of DEK1 has a role as effector in 

mechanosensing pathways 

  7.3.   Proposed model of action of DEK1 
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7. Discussion 

 

7.1. The transmembrane domains of DEK1 play a role in the 

process of sensing mechanical signals at a plasma 

membrane level 

 

As thoroughly discussed throughout this thesis, mechanosensing processes in 

general, and in plants in particular, are mainly unknown. In the last few decades a 

number of publications have been released on this field and several mechanosensors 

have been identified, especially in animal cells. 

 

In plants, several candidates have been proposed as mechanosensors. These 

proteins include kinases involved in sensing changes in the structure and integrity 

of the cell wall (Baluška et al. 2003; Boisson-Dernier et al. 2011; Hematy and Hofte 

2008; Kohorn et al. 2009; Kohorn et al. 2006).  However the relevance of these 

proteins to mechanosensing, in the strictest sense of the term, remains controversial. 

My results, especially those presented in chapter 6, support the idea that DEK1 is 

involved in a mechanosensing process. One of the main characteristics of the 

phenotype of mechanically stressed Arabidopsis is a delay in flowering time 

compared to non-stressed plants (Braam and Davis 1990). In my case, although I 

succeeded in recording this delay in flowering time in mechanically stressed wild-

type plants; I could not record any statistically significant difference for this 

parameter in plants that lack the transmembrane domains of DEK1, between 

stressed plants and non-stressed controls. 

 

I wanted to test this insensitivity using other parameters, at a molecular level. It has 

been described for several other species that mechanical stimulation causes changes 

in the composition of the cell wall (Biddington 1986; Chehbab et al. 2011; Saidi et al. 

2010; Telewski and Jaffe 1986; Telewski and Pruyn 1998). This type of response had 
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not been characterized in Arabidopsis, with the sole exception of one recent 

publication that analyses responses to mechanical stimulation in terms of changes in 

lignin quantities (Paul-Victor and Rowe 2011). Therefore, in order to test the 

responsiveness of cell walls of mutants to mechanical stress I had to first describe 

the behaviour of wild-type Arabidopsis plants. For this reason I carried out 

quantifications of cellulose and lignin in stressed plants and non-stressed controls. 

In these experiments I was able to show that both cellulose and lignin showed 

quantitative differences in mechanically stressed plants. 

 

Having established this fact, I could proceed to analyse the responses of 

mechanically stressed mutants lacking the transmembrane domains of DEK1, where 

the results were comparable to those seen for flowering time. The loss of the 

transmembrane domains of DEK1 correlates a loss of responsiveness to mechanical 

stimulation, probably due to a lack of sensitivity. 

 

Interestingly, contrary to what I observed in whole plants, the transcriptional 

analysis of stressed plants showed that dek1[CALPAIN] mutants, lacking the 

transmembrane domains, were still responsive to mechanical and osmotic stress, the 

latter being considered as a proxy for  the former. My interpretation of this is that it 

is that possibly there are one, or of several proteins in the plasma membrane of cells, 

which can compensate for the loss of the transmembrane domains of DEK1. This 

would point the existence of a redundancy in the mechanosensing role of DEK1 at 

the plasma membrane. This hypothesis could explain the fact that the CALPAIN 

domain alone can compensate for loss of DEK1 function, and give rise to relatively 

normal looking plants.  This compensation appears to act at the transcriptional level,  

but may be less efficient at the cytoplasmic level, explaining why plants lacking the 

DEK1 transmembrane appear unresponsive to mechanical stress at the level of 

morphology. 
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It has been proposed that ion channels play key roles in mechanosensing events in 

plants and the electrophysiological activity of some of  these has been characterized 

(Cosgrove and Hedrich 1991; Ding and Pickard 1993; Martinac et al. 1987; Sachs 

2010). In particular, mechanosensitive Ca2+-permeable channels have been proposed 

to represent one of the main mechanosensing elements present in plant cells 

(Hedrich 2012; McAinsh and Pittman 2009; Monshausen and Gilroy 2009b). Even 

though the currents generated by these channels have been electrophysiologically 

described the molecules responsible for them still remain to be identified. Indeed, 

the identification of the molecules responsible for these currents is held, by some, to 

be one of the “Holy Grails” of electrophysiology. 

 

My results strongly support the hypothesis that the transmembrane domains of 

DEK1 are responsible for Ca2+ mechanosensitive currents through the plasma 

membranes of cells. Our collaborators were able to identify the presence of 

mechanically-activated Ca2+ currents across the plasma membrane of root epidermal 

cells using voltage-clamp experiments. I was subsequently able to show, by 

comparing wild-type and dek1[CALPAIN] plants that mutants lacking the 

transmembrane domains of DEK1 a completely lack these currents. This strongly 

suggested that these currents are somehow mediated by the transmembrane 

domains of DEK1. 

 

Because one possibility was that the transmembrane domains of DEK1 could act as 

channels themselves, as suggested by in silico predictions (Kumar et al. 2010),  I 

generated constructs to  express the transmembrane domains of DEK1 in a 

heterologous system (Xenopus oocytes) and, in collaboration with researchers in 

Montpellier,  recorded the currents in these cells compared to control oocytes. Even 

though Ca2+ currents could not be measured directly, I demonstrated the activity of 

presence of Ca2+-activated Cl- currents (CaCCs) specifically in the oocytes expressing 

the DEK1 protein. These currents are an indirect indication of the presence of an 

elevated level of Ca2+ in the cytoplasm of these cells, which could be caused by the 
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presence of Ca2+ currents, which themselves are of too low magnitude to be detected 

in a direct manner. 

 

One reason why the Ca2+ flux mediated by the DEK1 transmembrane domains might 

be too weak to be detected, it is that the transmembrane domains need an interactor, 

or modifier, in order to enhance their channel activity. This interactor could be the 

cell wall, as has been shown for several wall associated kinases (Anderson et al. 

2001; Kohorn et al. 2006; Verica and He 2002). In silico analysis led to the proposal 

that phosphorylation could be as well responsible for regulating the activity of 

DEK1 (Kumar et al. 2010). Unfortunately attempts to identify interactors of the 

DEK1 CALPAIN domain by Yeast two hybrid approaches (this work), and 

interactors of either the CALPAIN domain or the full length DEK1 protein using 

Immunoprecipitation (Roberta Galletti unpublished results), have not yet identified 

a kinase as a potential interactor. Having said this, interactions of kinases with their 

substrates are notoriously fleeting, and are rarely detected using these approaches.  

 

The idea that the transmembrane domains of DEK1 act as a mechanosensitive 

calcium channel is consistent with the observation that dek1[CALPAIN] plants lack  

mechanosensitive calcium fluxes, as I was able to observe in planta. However, this 

later finding conflicts somewhat with the hypothesis that there is redundancy 

within the cell for the activity of the DEK1 transmembrane domains.  Taken to its 

logical conclusion this hypothesis would suggest that in the absence of DEK1, other 

mechanosensitive calcium channels should still be detected. However, although 

background calcium fluxes were still apparent in dek1[CALPAIN] plants, they were 

very reduced. It is however, possible that the channels giving this background flux 

are sufficient to permit the activity of the CALPAIN domain. Another possibility is 

that mechanosensitive channels permeable to other ions can cause membrane 

depolarization in response to mechanical stress, which is sufficient to activate 

voltage-gated calcium channels either in the plasma membrane or in other 

compartments. These types of currents have been described for several plant cell 
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types, but no molecules have been identified as effectors (Demidchik et al. 2002; 

Stoelzle et al. 2003; Very and Davies 2000). These fluxes would not have been 

observed under our conditions as we used a barium containing solution, which can 

block the activity of monovalent ion channels (Sabirov et al. 1997; Syeda et al. 2008). 

As a result, this question remains to be elucidated. 

 

7.2. The CALPAIN domain of DEK1 has a putative role as 

effector in mechanosensing pathways 

 

Previous studies on AtDEK1 and its homologues in other species have been centred 

in on its C-terminal domain, which shows a very high homology with animal 

calpains (Lid et al. 2002), a class of Ca2+-dependent cys-protease. 

 

In our group, previous members had generated a variety of calpain overexpressing 

lines (Johnson et al. 2008), which show a phenotype characterized by compact 

rosettes, short petioles, dark colour, rumpled leaf surface (Johnson et al. 2008) and a 

delay in flowering time (Galletti unpublished results). Interestingly this phenotype 

coincides with that of mechanically stressed plants (Braam 2005; Braam and Davis 

1990). This phenotype is the opposite of those associated with plants showing 

reduced  DEK1 activity due to either co-suppression or incomplete 

complementation (Johnson et al. 2005), constitutive or inducible expression of 

artificial microRNAs targeted against DEK1 (Galletti unpublished results), or in 

dek1-4 mutants (Roeder et al. 2012). 

 

In this project I probed more deeply the resemblance to mechanically stressed plants 

shown by CALPAIN OE lines, and focused on the differential deposition of cell wall 

components. In order to record these changes I quantified cellulose and lignin 

present in the cell walls of CALPAIN OE plants. Through these experiments I could 

see that both cell wall components showed a quantitative increase in response to 
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CALPAIN over-expression. I was also able to confirm that this phenotype is similar 

to that of mechanically stressed Arabidopsis, as previously discussed. 

 

I additionally showed that CALPAIN OE plants present a thicker outer epidermal 

cell wall than wild-type plants. The outer epidermal cell wall is thought to be 

thickened in response to mechanical signals perceived during growth (Kutschera 

and Niklas 2007), and this phenotype is therefore consistent with our hypothesis 

that CALPAIN OE plants act as if they are constitutively stressed. As microtubules 

are responsible for laying the “tracks” needed by cellulose synthase complexes for 

oriented cellulose microfibril deposition (Bringmann et al. 2012a; Chan 2012; 

Paredez et al. 2006), I decided to study microtubule deposition in CALPAIN OE 

lines. With the aid of fluorescent microtubule markers, I could observe microtubule 

deposition in the stem apical meristem, where recent work has shown their 

exquisite responsiveness to mechanical forces in the cell surface, and where they 

have been shown to  align parallel to the main axis of the force perceived (Hamant 

et al. 2008; Hardham et al. 1980). In my case I saw a higher degree of organization of 

microtubules in CALPAIN OE mutants than in wild-type plants. This could be, once 

again, interpreted as a higher responsiveness to mechanical stress in plants that 

present augmented levels of the active CALPAIN domain.  Interestingly however, 

recent results from cell ablation studies in the meristems of CALPAIN OE plants, 

carried out by a project student in the lab, have shown that the microtubules of 

CALPAIN OE lines, although they appear very organized DO NOT realign in 

response to exogenous stresses. This is true both in rescued dek1 mutant 

backgrounds, and wild-type backgrounds. This is intriguing in the light of 

measurements which I made on the cell walls of dek1[CALPAIN] lines which 

suggested that although the walls of these plants are thicker than those of wild-type, 

they are also softer, and possibly more disorganised. One interpretation is that 

deregulated CALPAIN activity may uncouple microtubule reorientation from the 

perception of “real” mechanical stress, and possibly also affect the microtubule-

mediated regulation of cell wall deposition by microtubules. Analysis of the genetic 
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interactions between lines with different activities of  DEK1 and lines lacking 

players involved in some of these processes such as csi1 (Gu et al. 2010) or cellulose 

synthesis complexes, such as procuste1 (prc1) (Fagard et al. 2000) would help 

elucidate these possibilities.  

 

Through transcriptional analysis of CALPAIN OE plants I could demonstrate that 

these plants are, as proposed, likely responding to mechanical stimulation in a 

constitutive fashion. I recorded the transcriptional levels of several mechanical and 

osmotic stress reporter genes. All of them showed an over-expression in the mutant 

if compared to wild-type levels.  

 

It has to be pointed that one of the most obscure aspects of plant calpains is the 

identities of their direct targets. Even though I performed a yeast two-hybrid assay 

in order to find putative interactors of the CALPAIN domain there is still a long 

way to go in this direction. Results of this experiment were disappointing, but a few 

putative interactors of the CALPAIN domain of DEK1 were found, which remain to 

be tested. These include cellulose synthesising proteins and membrane channels, 

amongst others. 

 

Immunoprecipitation results from other members of the laboratory (Galletti, 

unpublished results) are strongly indicative of interactions between DEK1 and both 

the microtubule and secretory networks within cells. Since both microtubules and 

secretion have been shown to be mechanoresponsive in plants (Hamant et al. 2008; 

Hardham et al. 1980; Jaffe et al. 2002), and similar interactions have been seen in 

animals (Farge 2011; Rauch et al. 2002; Raucher and Sheetz 1999), it appears that this 

type of approach may be more promising than yeast-two hybrid studies. However, 

it remains to be proved whether candidates identified by immunoprecipitation are 

direct interactors, and whether they include true targets of DEK1.  
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Although this discussion is centred on the possible role of the CALPAIN domain in 

mechanosensing is should not be forgotten that this protease potentially plays a 

much wider role in plant physiology. 

 

One of the phenotypes observed in CALPAIN over-expresser lines is the presence of 

a thicker and visually different epicuticular wax layer. A priori this phenotyope 

cannot be related to that of mechanically stressed plants, and therefore could 

therefore involve pathways not related to mechanical stimulation and 

mechanoperception. However, it should be pointed out that cuticular changes in 

response to mechanical stress have not been studied, and thus a link cannot be 

officially excluded.  This phenotype, in my opinion, deserves further study, as Cer9 

is a putative proteolytic target of the CALPAIN domain.  

 

The phytocalpain DEK1 has been proposed as a regulator of the cell cycle. As 

observed by Roeder and collaborators in their 2012 paper, dek1-4 plants present an 

absence of giant cells in sepals. The lack of these cells is interpreted as a defect in cell 

cycle regulation, and in particular in the switch from proliferative to 

endoreduplication cell cycles, which are needed for the formation of giant cells.  In 

the weak-allele DEK1 allele dek1-4, giant cells are not found as cell cycles are 

completed by cell division. Again, this phenotype cannot be directly connected with 

mechanosensing events in plants since direct links between mechanical stresses and 

the regulation of cell division have not been studied. However, indirect connections 

are starting to become apparent. For example mechanical stress has recently been 

shown to regulate auxin transport (Nakayama et al. 2012), and auxin accumulation 

is known to influence cell proliferation (Perrot-Rechenmann 2010).  In addition, 

Integrin-mediated perception of mechanical stresses in animals has long been 

known to affect proliferation (Streuli 2009). Thus, although changes in the 

regulation of the cell cycle associated with DEK1 activity cannot be definitively 

linked to mechanical signalling, a possible link cannot, to date, be excluded. 
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It is known that in other systems, such as animals, calpains are key regulators of cell 

death events. It has been shown that BAX activation, one of the early and crucial 

steps in apoptosis, can be activated by calpains. This activation happens as a Ca2+-

dependent cleavage of BAX, but has the particularity that it takes place within the 

mitochondria (Smith and Schnellmann 2012; Sobhan et al. 2013; Wood et al. 1998). In 

animals calpain-mediated apoptosis has been described to have a crucial role in 

neural development (Momeni 2011). Apoptosis regulation by calpains is unlikely to 

happen in plants for two reasons. Firstly the CALPAIN domain of DEK1 was never 

shown to be present in mitochondria, despite the growing number of proteomics 

studies carried out on this organelle. Furthermore neither CALPAIN over-

expressers nor the weak DEK1 alleles (dek1-4) show any apparent phenotype 

affecting the hypersensitive response or developmental cell death processes (Galletti 

personal communication). 

 

Finally, Calpains have been described in animals as key regulators in signal 

transduction pathways (Sorimachi et al. 2010). For instance, mammal Calpain 1 has 

been described as a regulator of phosphorylation activities through the proteolysis 

of ezrins (McRobert et al. 2012). More classically, calpains have been described as 

regulators of tumor supressors such  as p53 (Gonen et al. 1997), of phospholipid-

dependent kinases (Kishimoto et al. 1983) or of cytokine receptors (Noguchi et al. 

1997). These processes represent only a small fraction of those in which calpains 

have been implicated in animals. Although some animal calpain substrates have no 

obvious homologues in plants, many are, at least partially conserved; although 

whether they are bona fide substrates for DEK1 activity remains to be tested. At 

another level the results in this study show that DEK1 regulates calcium influx into 

plant cells. Calcium regulates innumerable signalling pathways in plant cells, as 

extensively discussed in the introduction to this thesis. Thus, although I believe that 

role of DEK1 activity in mechanoperception investigated in this thesis is real; it 

seems more than possible that this is only one of multiple signalling pathways in 

which phytocalpains could potentially participate. 
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7.3. Proposed model of action of DEK1 

 

As a summary for my thesis I am now in a position to propose a mechanism of 

action mechanism for the Arabidopsis thaliana DEK1 protein.  

 

I have provided evidence that the transmembrane domains of DEK1, present in the 

plasma membrane, act as a mechanosensor. In particular, they appear to control, or 

form, a mechanosensitive (stretch activated) Ca2+-permeable channel. Therefore, in 

the event of presence of tension in the membrane this structure would open to allow 

a local Ca2+ flux into the cell. Once inside the cell, I propose, based on parallels with 

animal systems, that free Ca2+ would activate the CALPAIN domain, triggering an 

autolytic cleavage event, and subsequently permitting  the action of calpain  on  

targets that remain to be described (figure 7-1).  Based on animal systems it seems 

likely that the activity of CALPAIN, even after autolytic cleavage, requires elevated 

cytoplasmic calcium, explaining the maintenance of transcriptional responses to 

mechanical stress in CALPAIN over expressing plants. 

 

This would not be the first described case of a calpain activated by the activity of a 

mechanosensitive Ca2+-channel. A similar case, necessary for the normal 

development of Xenopus nervous system has recently been described (Kerstein et al. 

2013). It is therefore possible that calpains form part of mechanosensitive cascades 

in many other organisms. The major difference and apparently plant-specific 

innovation of DEK1 is that the CALPAIN domain (effector) is covalently associated 

with its proposed activator (the transmembrane domains). One possibility is that, in 

plant cells, where in most cases the cytoplasm is present as a thin layer covering a 

large vacuole, the physical association of the mechanosensor and the effector 

permits accurate and finely spatially controlled local subcellular responses to 

mechanical stress, without necessitating massive calcium influx into the cell 

cytoplasm. The loss of this coupling, and thus of the subcellular localization of 

responses in dek1[CALPAIN], or CALPAIN OE plants may explain many of the 
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observed differences in development, in these lines, including changes in the 

organization of cell walls.   

 

 

 

Figure 7-1 Inactive DEK1 (A). When tension is sensed in the membrane the 

transmembrane domain opens generating a Ca2+ influx into the cell (B). Ca2+ 

binds to the calpain (intracellular) domain, which is activated, cleaved and 

released into the cytoplasm (C). The active CALPAIN domain acts on unknown 

target proteins (D). 

 

In addition to the need to identify the substrates of DEK1, further studies are 

required to elucidate the requirements for calcium binding, and potentially for 

phospholipid association in the regulation of CALPAIN activity. To this end, 

current experiments within the laboratory are focussed on the analysis of the 

activity of the CALPAIN domain, in vitro, as well as understanding in more detail 

the behaviour of the DEK1 protein in planta, including the continuation of studies, 

which I initiated but was unable to complete, regarding changes in sub-cellular 

localization of the CALPAIN domain of DEK1 in response to mechanical and 

osmotic stress. 
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