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ABSTRACT 

Plant primary cell walls are hydrated extracellular complexes composed largely of 

polysaccharides: cellulose, hemicellulose and pectin. Cell wall constituents and 

composition vary in cell-, environment-, and species-dependent manners. For 

example, within land plant hemicelluloses xyloglucan is ubiquitous while mixed-

linkage (1→3),(1→4)-β-D-glucan (MLG) is found only in the Poales and Equisetum. 

Glycosyl hydrolase 16 (GH16) enzyme family members include numerous enzymes 

with pertinence to the understanding of the ‘lives’ of cell wall hemicelluloses. 

However, despite this, the details of the interactions between GH16 enzymes and their 

substrates have often not been elucidated. Likewise, the true preferences of many of 

these enzymes and the range of substrates which they can utilise remain to be fully 

explored. By providing a greater wealth of information for the correlation of enzyme 

structure with reaction catalysed, such an understanding would enable better 

predictions of the activities of novel enzymes. Crucially, this would also allow better 

identification of roles performed by these enzymes in planta as well as of the potential 

applications of these enzymes. 

This work sought to further our understanding of the interactions between GH16 

enzymes and their substrates by the study of five activities exhibited by GH16 

enzymes – xyloglucan endotransglucosylase (XET), xyloglucan 

endoglucanase/hydrolase (XEG/XEH), mixed-linkage glucan : xyloglucan 

endotransglucosylase (MXE), lichenase and cellulose : xyloglucan 

endotransglucosylase (CXE). All of the analysed activities act on xyloglucan and/or 

MLG. Of particular focus is the novel enzyme MXE from the evolutionarily isolated 

genus Equisetum (horsetail), which acts on both. Notable findings include: 

identification of MXE/CXE gene; determination of the substrate specificity of MXE; 

defining of the sites of attack of lichenase, XEG, XET and MXE; discovery of novel 

xyloglucan structures and discrepancies between the xyloglucan present in different 

barley organs. 
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LAY SUMMARY 

Plant primary cell walls are hydrated extracellular complexes composed largely of 

three types of carbohydrate: cellulose, hemicellulose and pectin. Cell wall constituents 

and composition vary in cell-, environment-, and species-dependent manners. For 

example, within land plant hemicelluloses xyloglucan is ubiquitous while mixed-

linkage (1→3),(1→4)-β-D-glucan (MLG) is found only in the crop plants and in 

horsetails. GH16 enzymes have particular pertinence to the ‘lives’ of cell wall 

hemicelluloses. Here, a collection of projects which study five activities exhibited by 

GH16 enzymes is described; all of the analysed activities act against xyloglucan 

and/or MLG. Of particular focus is a novel enzyme called MXE found in horsetails, 

which acts on both of these hemicelluloses. Notable findings include: identification of 

the DNA sequence which codes for MXE; determination of the preferences that MXE 

exhibits for different substrates; defining of the sites of attack of two gycanases and 

two transglycanases (including MXE); discovery of novel xyloglucan structures; and 

discovery of discrepancies between the xyloglucan present in different barley organs. 

 



Thomas J. Simmons        GH16 enzymes 

 v 

ABBREVIATIONS AND ACRONYMS 

BAW   Chromatography solvent: butan-1-ol : acetic acid : water (2:1:1)  

BMLG  Barley mixed-linkage (1→3),(1→4)-β-D-glucan 

CXE  Enzyme activity: cellulose : xyloglucan endotransglycosylase 

DP Degree of polymerisation; the number of glycosyl residues in a 
carbohydrate molecule. 

EAW   Chromatography solvent: ethyl acetate : acetic acid : water (10:5:6)  

EMLG Equisetum mixed-linkage (1→3),(1→4)-β-D-glucan 

EPW Chromatography solvent: ethyl acetate : pyridine : water (8:2:1) 

GH Glycosyl hydrolase (class of carbohydrate-active enzymes defined in 
CAZy database) 

IMMLG Iceland moss mixed-linkage (1→3),(1→4)-β-D-glucan (aka lichenan) 

LC-MS/MS Analytical technique: liquid chromatography-mass spectrometry 

MLG Type of hemicellulose: mixed-linkage(1→3),(1→4)-β-D-glucan (see 
1.3.1 for description) 

MLGO  Mixed-linkage (1→3),(1→4)-β-D-glucan oligosaccharide 

MXE  Enzyme activity: mixed-linkage (1→3),(1→4)-β-D-glucan : xyloglucan 
endotransglucos-ylase 

PNW  Chromatography solvent: propan-1-ol : nitromethane : water (5:2:3)  

PyAW  Buffer: pyridine : acetic acid : 0.5 % (w/v) aqueous chlorobutanol 
(1:1:98, pH 4.7, unless otherwise stated) 

SEC  Size-exclusion chromatography 

SEPs Sloughed extracellular polysaccharides; yielded from a cell culture 
medium. 

TLC   Analytical technique: thin-layer chromatography 

TXyG  Tamarind xyloglucan 

U-14C Universally 14C-labelled; 14C-labelled compounds in which all 
constituent carbons have equal specific activity. 

XEG   Enzyme activity: xyloglucan endoglucanase 

XEH  Enzyme activity: xyloglucan endohydrolase 

XET   Enzyme activity: xyloglucan endotransglycosylase 

XGO  Xyloglucan oligosaccharide 

XGO-ol Reduced xyloglucan oligosaccharide  

XTH  Xyloglucan endotransglycosylase/hydrolase (enzyme/gene family)   

XXXG A specific xyloglucan oligosaccharide. For a guide to xyloglucan 
oligosaccharide nomenclature, see Fry (1993) 
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XXXGol A specific reduced xyloglucan oligosaccharide. For a guide to 
xyloglucan oligosaccharide nomenclature, see Fry (1993) 

XyG Type of hemicellulose: xyloglucan (see 1.3.1. for description) 

 
 



Thomas J. Simmons        GH16 enzymes 

 vii 

CONTENTS 

1. INTRODUCTION ..................................................................................................... 1 

1.1. The plant cell wall ............................................................................................... 1 

1.1.1. Cell wall evolution and phylogeny .............................................................. 3 

1.2. Glycosyl Hydrolase Family 16 (GH16) .............................................................. 3 

1.3. Pertinent hemicelluloses and corresponding hydrolases ..................................... 5 

1.3.1. Xyloglucan ................................................................................................... 5 

1.3.1.1. Xyloglucan endoglucanase (XEG) ....................................................... 7 

1.3.2. Mixed-linkage (1→3)(1→4)-β-D-glucan (MLG) ........................................ 8 

1.3.2.1. Lichenase: an MLG-specific endohydrolase....................................... 10 

1.3.2.3. The technological significance of MLG ............................................. 11 

1.2.2.4. Subunit arrangements of MLGs .......................................................... 11 

1.4. Endotransglycosylases ...................................................................................... 12 

1.4.1. The XTH subfamily and the XET:XEH distinction .................................. 13 

1.3.1.1. Situation and roles of XET ................................................................. 16 

1.4.2. Other endotransglycosylase activities ........................................................ 18 

1.5. Equisetum: an extremely evolutionarily-isolated genus ................................... 20 

1.5.1. Equisetum cell walls .................................................................................. 23 

1.5.1.2. Equisetum cell walls have high levels of deposited silica .................. 24 

1.5.1.3. Mixed-linkage glucan : xyloglucan endotransglucosylase ................. 24 

1.5.1.4. Cellulose:xyloglucan endotransglucosylase ....................................... 25 

1.6. Scheme of work ................................................................................................ 26 

2. MATERIALS AND METHODS ............................................................................. 28 

2.1. General materials .............................................................................................. 28 

2.2. Plant sources ..................................................................................................... 28 

2.3. Enzyme preparations ......................................................................................... 29 

2.3.1. Equisetum crude extract ............................................................................. 29 

2.3.2. Yorkshire fog grass (Holcus lanatus) crude extract .................................. 29 

2.3.3. Mung bean (Vigna radiata) crude extract .................................................. 29 

2.3.4. MXE purification ........................................................................................... 30 

2.4. Polysaccharide extractions ................................................................................ 30 

2.4.1. Alcohol-insoluble residue (AIR) creation .................................................. 30 

2.4.2. Hemicellulose extractions .......................................................................... 31 



Thomas J. Simmons        GH16 enzymes 

 viii 

2.4.2.1. General hemicellulose extraction from AIR ....................................... 31 

2.4.2.2. E. arvense hemicellulose extractions (For EaMLG and EaXGO 

purification) .......................................................................................... 31 

2.4.2.2.1. E. arvense MLG purification ....................................................... 31 

2.4.2.2.2. E. arvense XGO purification ....................................................... 32 

2.4.2.3. Maize (Zea mays) soluble extracellular polysaccharide isolation and 

deacetylation of one half ...................................................................... 33 

2.4.2.4. Creation of comparable maize cell wall and SEP xyloglucan-

containing samples ............................................................................... 33 

2.5. Enzyme and chemical treatments ...................................................................... 33 

2.5.1. Enzyme treatments ..................................................................................... 33 

2.5.1.1. General soluble-donor endotranglycosylase reactions ........................ 33 

2.5.1.2. Cellulose : xyloglucan endotransglucosylase (CXE) .......................... 34 

2.5.1.2.1. NaOH pre-treatment of Whatman No. 1 chromatography paper . 34 

2.5.1.2.2. CXE reaction ................................................................................ 34 

2.5.1.3. In vivo endotransglycosylase action assay .......................................... 34 

2.5.1.4. Xyloglucan endoglucanase (XEG) digestion ...................................... 35 

2.5.1.6. Lichenase digestion ............................................................................. 35 

2.5.1.7. Driselase digestion .............................................................................. 35 

2.5.1.8. β-glucosidase digestion ....................................................................... 35 

2.5.1.9. Cellobiohydrolase digestion ................................................................ 35 

2.5.1.10. Cellulase digestion ............................................................................ 35 

2.5.1.11. α-xylosidase digestion ....................................................................... 36 

2.5.1.12. Stopping enzyme reactions ............................................................... 36 

2.5.2. Chemical treatments ................................................................................... 36 

2.5.2.1. TFA hydrolysis ................................................................................... 36 

2.5.2.2. Sodium borohydride (NaBH4) reduction ............................................ 36 

2.6. Chromatographic and electrophoretic methods ................................................ 36 

2.6.1. Thin layer silica-gel chromatography (TLC) ............................................. 36 

2.6.2. Paper chromatography ............................................................................... 37 

2.6.3. Size-exclusion chromatography (SEC) ...................................................... 37 

2.6.4. SDS-PAGE ................................................................................................ 38 

2.6.5. Isoelectric focusing .................................................................................... 38 

2.6.6. Concanavalin A lectin-affinity chromatography ....................................... 38 



Thomas J. Simmons        GH16 enzymes 

 ix 

2.6.7. Muniscus agarose gel electrophoresis ........................................................ 38 

2.6.8. Cation exchange chromatography .............................................................. 39 

2.6.9. HPLC ......................................................................................................... 39 

2.6.10. Immobilised metal ion affinity chromatography (IMAC) ....................... 39 

2.7. Staining and quantification methods ................................................................. 40 

2.7.1. Silver nitrate staining ................................................................................. 40 

2.7.2. Thymol staining ......................................................................................... 40 

2.7.3. Anthrone assay ........................................................................................... 40 

2.7.4. Coomassie blue staining ............................................................................ 41 

2.7.5. Bradford assay ........................................................................................... 41 

2.8. Radioactive labelling, detection and analysis ................................................... 41 

2.8.1. Autoradiography and fluorography ............................................................ 41 

2.8.2. NaB3H4 oligosaccharide reductive radiolabelling ..................................... 41 

2.8.3. Radioisotope plate reader ........................................................................... 42 

2.9. Mass spectrometry ............................................................................................ 42 

2.10. Molecular biology ........................................................................................... 43 

2.10.1. RNA extraction ........................................................................................ 43 

2.10.2. Reverse transcription ............................................................................... 43 

2.10.3. 454 sequencing ......................................................................................... 44 

2.10.3. PCR .......................................................................................................... 44 

2.10.4. Primers used ............................................................................................. 44 

2.10.2. Gene cloning ............................................................................................ 44 

2.10.4. Recombinant protein expression (Pichia pastoris system) ...................... 45 

2.11. Nuclear magnetic resonance spectroscopy (NMR) ......................................... 46 

3. RESULTS AND DISCUSSION .............................................................................. 48 

3.1. Identification of MXE/CXE gene in Equisetum fluviatile ................................ 48 

3.1.1. MXE purification ....................................................................................... 48 

3.1.2. Mass spectrometric/transcriptomic identification of MXE ........................ 49 

3.1.3. Transient expression of MXE candidate .................................................... 52 

3.1.4. Phylogenetic relationship between MXE and other, functionally related, 

GH16 enzymes ........................................................................................... 53 

3.2. MXE substrate specificity ................................................................................. 55 

3.2.1. Preparation of authentic E. arvense MXE substrates ................................. 55 

3.2.2. Preparation of non-native MXE substrate candidates ................................ 59 



Thomas J. Simmons        GH16 enzymes 

 x 

3.2.3. MXE donor substrate specificity analysis .................................................. 60 

3.2.4. MXE acceptor substrate specificity analysis ............................................. 61 

3.2.4.1. Equisetum MXE and XET acceptor substrate specificity toward 

[3H]EaXGO-ols .................................................................................... 61 

3.3. Identification of the nature and location of the bonds broken and formed during 

the MXE reaction. .................................................................................................... 64 

3.3.1. Identification of the local site of MLG cleavage during MXE activity ..... 64 

3.3.2. Testing the nature of the bond created by MXE ........................................ 69 

3.3.3. Identification of the global site of MLG cleavage during MXE activity ... 71 

3.4. Presence of MXE in other species and tissues .................................................. 76 

3.4.1. Presence of extractible MXE activity in E. arvense strobili crude extracts

 .................................................................................................................... 76 

3.4.2. Presence of MXE action in various barley tissues ..................................... 77 

3.5. Analysis of cellulose : xyloglucan endotransglucosylase (CXE) activity ........ 82 

3.6. An unexpectedly lichenase-stable hexasaccharide yields new information on 

MLG subunit composition and distribution ............................................................. 84 

3.6.1. Lichenase digestion of MLGs from three widely divergent taxa yield an 

unexpected oligosaccharide ....................................................................... 84 

3.6.2. Stability of 6x during prolonged lichenase digestion ................................ 86 

3.6.3. Partial characterisation of 6x by acid hydrolysis and enzymic dissection . 87 

3.6.4. Determination of the structure of the reduced hexasaccharide, 6x-ol, by 

NMR spectroscopy ..................................................................................... 89 

3.6.5. Quantification of 6x (G3G4G4G4G3G) content of MLG ......................... 91 

3.6.6. Implications of 6x’s discovery for MLG subunit composition .................. 93 

3.6.7. Implications for lichenase activity ............................................................. 94 

3.7. The mode of recognition and site of attack of xyloglucan-cleaving enzymes .. 97 

3.7.1. Identification and structural characterisation of novel 3H-labelled products 

of XET:XEG sequential treatments ........................................................... 97 

3.7.2. [3H]GnXXLGols are formed when Poaceaen, but not when tamarind, 

xyloglucan is used as the XET donor substrate ......................................... 99 

3.7.3. Interpretation of the presence of [3H]GnXXLGols for enzymic sites of 

attack ........................................................................................................ 103 

3.7.4. XEG digestion of maize xyloglucan is directed by xyloglucan acetylation

 .................................................................................................................. 106 



Thomas J. Simmons        GH16 enzymes 

 xi 

3.7.5. Xyloglucan from maize cell culture SEPs and walls appear structurally 

identical .................................................................................................... 108 

3.7.6. The XEH-active enzyme AtXTH31 exhibits a distinct site of attack from 

XET activities .......................................................................................... 109 

3.7.7. Cell wall identity dramatically influences the [3H]GXXLGol : 

[3H]XXLGol ratio when XET acts in barley in situ ................................ 113 

4. CONCLUSION ...................................................................................................... 116 

4.1. MXE conclusion ............................................................................................. 116 

4.1.1. MXE is a highly acidic XTH homolog .................................................... 116 

4.1.2. The role of MXE in planta ....................................................................... 117 

4.1.3. Implications for the roles of XTHs and MLG in poalean cell walls ........ 117 

4.2. Novel hexasaccharide conclusion ................................................................... 119 

4.2.1. Highlighted importance of use of multiple chromatographic techniques 119 

4.2.2. It remains conjectural whether other lichenases would produce 6x ........ 119 

4.2.3. MLG2 units are found disproportionately at the non-reducing end of 

MLG4 units .............................................................................................. 119 

4.3. Synoptic conclusion ........................................................................................ 121 

5. FUTURE WORK ................................................................................................... 122 

5.1. Further probing of the substrate specificity of MXE ...................................... 122 

5.2. Investigation of potential roles and applications of CXE/MXE in vivo via gain-

of-function mutants ................................................................................................ 122 

5.3. Identification of the features of MXE which confer on it its novel substrate 

specificity ............................................................................................................... 123 

6. BIBLIOGRAPHY .................................................................................................. 124 

 

 



Thomas J. Simmons        GH16 enzymes 

 1 

1. INTRODUCTION 

1.1. The plant cell wall 

A defining feature of plant-life as distinct from other life forms is the presence of 

unique extracellular matrices which encases virtually all plant cells – plant cell walls. 

Plant cell walls (from hereon referred to as cell walls) are dynamic hydrated 

structures composed largely of complexed polysaccharides and other less 

predominant polymers (e.g. proteins and polyphenolics). The first recognised 

description of cell walls was by Grew (1682), who described plant organs as being 

composed of compartments with rigid walls, akin to the way that a house is made 

from bricks. It wasn’t until the 19th century however, that Julius von Sachs first 

recognised the cell wall as a dynamic structure with a pivotal role in cell growth and 

differentiation (Sachs, 1887). Contemporary science also recognises roles in pest and 

pathogen defence (Hückelhoven, 2007), cell signalling, cell-to-cell adhesion, the 

determination of cell morphology (Albersheim et al., 2011) and as a source of 

biologically-active signalling molecules (Fry, 1994; Creelman & Mullet, 1997). In 

addition, cell walls are an invaluable resource of raw materials for medicinal and 

pharmaceutical products (Guo et al., 1998; Jackson et al., 2007; Smelcerovic et al., 

2008; Laurienzo et al., 2010; Dilbaghi et al., 2013), food additives (Geshi et al., 

2010), novel materials (Travan et al., 2012; Kochumalayil et al., 2013; de Souza et 

al., 2013) as well as conventional materials (such as paper and wood), and are a 

source of bioenergy (Perlack et al., 2005; Sticklen, 2008; Carroll & Somerville, 

2009). For all these applications, the potential of plant cell wall material is far from 

exhausted (Persin et al., 2011). 

It was comparatively recently that the apoplastic enzymes responsible for cell wall 

dynamism and physiology were first elucidated. Now a plethora of apoplastically-

active enzymes are known to exist. Indeed, it is estimated that 10% of the 

Arabidopsis thaliana genome (~2,500 genes) is devoted to cell wall construction, 

sensing functions, dynamic architecture and metabolism (Carpita, 2011). A widely 

accepted model of the plant cell wall stems largely from work pioneered by 

Albersheim’s school in the 1970s, having studied sycamore cell walls (Keegstra et 
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al., 1973). Despite various significant counter-evidences (e.g. Cavalier et al., 2008), 

this model has thus far largely withstood the test of time. The polysaccharide 

components of the cell wall can generally be categorised into three groups (cellulose, 

hemicellulose and pectin) based on their structures and chemistries and, within this 

model, members of each group perform distinct roles (Cosgrove, 2005):-  

1) Cellulose microfibrils are the major strength-giving components of the cell 

wall. They are composed of multiple chains of β-D-(1→4)-linked 

glucopyranosyl residues hydrogen-bonded together in a semi-crystalline 

structure. A cross-section at any point along the microfibril contains ~ 36 

such chains. 

2) Hemicelluloses hydrogen bond to cellulose microfibrils, coat them and 

perform a tethering role between adjacent ones. The result is a 

supermolecular structure in which each microfibril is linked to every other 

through a complex network of polysaccharides. A consistent feature of 

hemicelluloses is a structure which restricts the attractive forces that cause 

individual cellulose chains to crystallise together to form microfibrils. This 

can be caused by a variation in backbone structure (e.g. mixed-linkage 

glucan) or by sidechain decoration (e.g. xyloglucan).  

3) This cellulose : hemicellulose network is embedded in a pectic 

polysaccharide ‘gel’. There is some evidence of hemicellulose : pectin 

covalent linkage (Popper and Fry 2008), though typically pectins are isolated 

from cell walls without breaking such bonds. A classical structural 

characteristic of pectic polysaccharides is a high galacturonic acid (GalA) 

composition, to which they owe a negative charge. 

There further exist two developmentally and structurally distinct types of cell wall: 

the primary and the secondary. The primary cell wall surrounds plant cells 

throughout their lives, and it is the ability of it to yield to, or to resist, Turgor 

pressure which the plant controls to regulate the direction and rate of cell expansion 

(Cosgrove, 2005). The secondary cell wall is deposited following/during growth 

cessation and provides a structural role only. In comparison to the primary cell wall, 

the secondary cell wall is more rigid, having a distinct polymeric constitution 
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(Scheller & Ulvskov, 2010). It is deposited between the primary cell wall and the cell 

membrane of some cells during and/or following the cessation of growth (Taylor, 

2000). 

1.1.1. Cell wall evolution and phylogeny 

The occurrence, prevalence and structure of cell wall components often exhibit 

phylogenic, cell-type and stimulus-dependent variation, the result of the different 

evolutionary pressures and the differing characteristics granted to cell walls by each 

component. Despite this diversity, the cell walls of many land plants can be 

categorised in one of two ways, based on similarities in occurrence, prevalence and 

structure of cell wall components (Scheller & Ulvskov, 2010). Consistent with the 

crucial role the cell wall appears to have played in plant evolution, these two groups 

are compatible with an important distinction in land plant phylogeny: type I cell 

walls, characterised by a large amount of xyloglucan and pectin, are found in 

eudicots and some monocots; while type II cell walls, characterised by low amounts 

of xyloglucan (levels in barley are extremely low or absent: 2–5% (w/w), Scheller & 

Ulvskov, 2010) and pectin with large amounts of glucuronoarabinoxylans and MLG, 

are found in all Poaceae and and a small number of related Poales (Smith & Harris 

1999; Popper & Fry 2004). However, while generally applicable to a wide array of 

plants, (typically angiosperms) this classification system is not broad enough to 

encapsulate the whole range of cell wall architectures observed in nature; many 

species, those in the primitive and/or evolutionarily isolated taxa (for example 

Equisetum) in particular, often contain cell walls which cannot be made to fit 

comfortably into either group. 

1.2. Glycosyl Hydrolase Family 16 (GH16) 

Members of the Glycosyl Hydrolase 16 (GH16) enzyme family are found throughout 

the eukaryotic and prokaryotic taxa. Despite significant sequence variation, they 

share a conserved catalytic machinery and structure: a β-jelly-roll fold in which two 

anti-parallel β-sheets align and fold around a substrate binding cleft orientated 

perpendicular to the β-strands (Summary in Strohmeier et al., 2004). Almost all 

GH16 enzymes catalyse endo-hydrolysis of β-(1→3) and β-(1→4) glycosidic bonds 

and they utilise a canonical retaining catalytic mechanism to do this; a group of non-
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enzymically active invertebrate GH16 proteins involved in Toll pathway immune 

response activation are the only exception (Lee et al., 2009). GH16 and GH12 

families together comprise GH clan-B, indicating their distant homology (Michel et 

al., 2001).  

The Carbohydrate Active enZyme (CAZy) database (http://www.cazy.org; Cantarel 

et al., 2009) shows the fundamental importance of the GH16 family to the study of 

the plant cell wall; GH16 contains enzymes involved in backbone hydrolysis of 

various cell wall polysaccharides: xyloglucan (EC 3.2.1.151), laminarin/callose (EC 

3.2.1.39), mixed-linkage (1→3)(1→4)-β-D-glucan (MLG) (EC 3.2.1.6; EC 3.2.1.73), 

and the algae-specific polysaccharides κ-carrageenan (EC 2.4.1.207); as well as the 

in situ remodelling of xyloglucans through xyloglucan endotransaglucosylase 

activity (XET; EC 2.4.1.207). The scope of GH16 activity extends beyond the cell 

wall however, also catalysing endo-cleavage of the glycosaminoglycans among 

others (See http://www.cazy.org). 

Barbeyron et al. (1998) showed that, using sequence homology, GH16 family 

members cluster in accordance with their substrate specificities, regardless of their 

pro/eukaryotic phylogeny, suggesting their having arisen through gene duplication. 

The authors suggest that common GH16 ancestor proteins which existed before the 

separation of archaea, bacteria, and eukaryotes, were laminarinases. This is akin to a 

proposal previously made of GH17s (Høj & Fincher 2003); it is interesting to note 

that both of these families now share lichenase activity. Those GH16 clusters 

pertinent here are the XTHs and the mixed-linkage (1→3)(1→4)-β-D-

endoglucanases (lichenases; for relationship between these enzyme groups see Eklöf 

et al., 2013) which, together with Crh enzymes – which catalyse chitin : laminarin 

endotransglycosylation in yeast (Cabib et al., 2007; Cabib et al., 2008; Cabib, 2009) 

– comprise the subfamily GH16b, all members of which contain active site residues 

on a regular β-strand. Other GH16 enzymes (those in subfamily GH16a) contain 

active site residues on a β-bulge, a feature they share in common with GH7 β-(1→4)-

D-glucanases. This work investigates five inter-related enzyme activities catalysed by 

GH16b family members, all of which are active against plant cell wall 

polysaccharides: xyloglucan endotransglycosylase (XET, xyloglucan 

endohydrolase/endoglucanase (XEG/XEH), mixed-linkage glucan : xyloglucan 
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ednotransglycosylase (MXE), lichenase and cellulose : xyloglucan 

endotransglycosylase (CXE); the first four of these activities are schematised in Fig. 

3b. 

1.3. Pertinent hemicelluloses and corresponding hydrolases 

Of all hemicelluloses, xyloglucan and mixed-linkage (1→3)(1→4)-β-D-glucan 

(MLG) are those most pertinent to the present work. Hydrolytic activities against 

both of these polysaccharides are found in the GH16 family. 

1.3.1. Xyloglucan  

Xyloglucan comprises a (1→4)-linked β-D-glucopyranosyl backbone with 

taxonomically dependent substitution patterns. Typically the first two or three of 

every four consecutive glucosyl residues are α-D-xylosylated at position six (hence 

XXGG, XXXG; Vincken et al., 1997; see Fry et al., 1993 for a description of 

xyloglucan nomenclature). Poacean xyloglucan differs markedly from those of many 

other species, as they exhibit exceptional variation in subunit length: XX(G)n, where 

n = 1–4 (Hsieh and Harris 2009). Gibeaut et al. (2005) identified XXGG and 

XXGGG as the major repeat units of the xyloglucan of 3-day old barley coleoptiles 

with slightly more of the latter, but the presence of XXGGGG and XXGGGGG was 

also significant; they were unable to confirm the presence of L structures there. 

These xyloglucan ‘base units’ are then further decorated by other residues, providing 

a wide scope for final xyloglucan structure (Fry 1989). Xyloglucan side chain 

structures can also vary widely in different plant tissues and species (Vincken et al., 

1997). An easily accessible xyloglucan is Tamarind (Tamarindus indica) seed 

xyloglucan whose physiological role is as a storage polysaccharide. Tamarind 

xyloglucan is commonly used in research; its most common subunits are XXXG, 

XXLG, XLXG and XLLG. Consistent with the observed variation in xyloglucan 

structure across the plant taxa and Equisetum’s evolutionary isolation, the 

oligosaccharides produced by enzymatic degradation of Equisetum hyemale 

xyloglucan have been shown to differ considerably from those of most other plants 

(Fry et al., 2008; Peña et al., 2008; current work). Notably, Equisetum xyloglucan 
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contains D and E groups (Fig. 1) α-L-Arap residues only known elsewhere in the 

lycopodiphytes (Peña et al., 2008). 

β4β4 β4
α6 α6 α6

X X X G

α6 α6 α6

α2 α2

β4β4 β4

X L L G

α6 α6 α6

α2

β4β4 β4

X X F G

α6 α6 α6

α2 α2

β4β4 β4

X L D G

α6 α6 α6

α2 α2

β4β4 β4

α2

X L E G

L-Fucp

D-Galp

L-Arap

D-Glcp

D-Xylp

 

Fig. 1. Xyloglucan subunit structures and nomenclature. Structures of 

various xyloglucan subunits observed in different species. The α-L-Arap-

containing side chains D and E are highly uncommon, being found in only 

Equisetum and related taxa (Peña et al., 2008). Following carbohydrate symbol 

scheme described by Varki et al. (2009) and xyloglucan nomenclature scheme 

described by Fry et al. (1993). 

The phylogenic distribution of xyloglucan is a case in point for the significance of 

changes in cell wall content to plant evolution and adaptation. Xyloglucan appears 

ubiquitous in the embryophytes and absent elsewhere (Popper & Fry 2003; Popper & 

Fry 2004; Popper 2008), suggesting a pivotal role in the transition from water to the 

colonisation of land. A comparative genomic approach lends support to this 

hypothesis suggesting the acquisition of the synthetic machinery for a primordial 

xyloglucan-like polymer by streptophytic algae was a pre-adaptation that 

subsequently allowed the colonisation of the land (Del Bem & Vincentz 2010). The 

assumption that xyloglucan-containing cell walls are a prerequisite for survival on 

land was challenged more recently by the discovery of Cavalier et al. (2008) that an 

Arabidopsis mutant deficient in two xylosyltransferase genes and lacking detectable 



Thomas J. Simmons        GH16 enzymes 

 7 

xyloglucan, exhibited no gross morphological phenotype. Despite this, xyloglucan 

continues to play a central role in the standard model of the cell wall and remains 

crucial to the story of plant evolution. The proper understanding of spatio-temporal 

distributions of distinct xyloglucan moiteties within individual plants (Gibeaut et al., 

2005; Peña et al., 2012) may be crucial to fully comprehending the role(s) of 

xyloglucan in planta, but the scope of these variations are yet to be fully assessed. 

1.3.1.1. Xyloglucan endoglucanase (XEG) 

Xyloglucan endoglucanase (XEG; also called endo-xyloglucanase or xyloglucan 

endo-hydrolase; EC 3.2.1.151) activity resides in six glycosyl hydrolase enzyme 

families: GH5, GH7, GH12, GH16, GH44 and GH 74 (Gilbert et al., 2008; Gilbert 

2010), two of which (GH7 and GH16) are members of GH clan B (Henrissat & 

Bairoch 1996; Eklöf and Brumer 2010). By cleaving xyloglucan’s β-D-glucosyl 

backbone at specific points, XEG can liberate xyloglucan subunits (now xyloglucan 

oligosaccharides) greatly facilitating structural studies of the polysaccharide. Despite 

this, the exact site of attack and mode of recognition of different XEGs is poorly, if 

at all, understood. Gloster et al. (2007; using GH5 and GH12 enzymes), Martinez-

Flietes et al. (2006; GH74 enzyme) and Warner et al. (2011; GH44 enzyme) all 

demonstrate XEG activity against tamarind xyloglucan. Further, Gloster et al. (2007) 

and Martinez-Flietes et al. (2006) characterise the oligosaccharides produced: 

XXXG, XXLG/XLXG and XLLG. Importantly, these enzymes are not routinely 

used to characterise xyloglucans; because these studies are performed using tamarind 

xyloglucan alone, detailed accounts of the substrate specificity of these enzymes 

cannot be attained.  

Structural characterisation of different xyloglucans has largely been the preserve of a 

single fungal GH12 XEG (Pauly et al., 1998) and, because of this, this XEG is by far 

the best understood. This XEG typically (e.g. in the ‘XXXG’ repeat unit structure of 

dicot xyloglucan) cleaves the bond ---GX--- in the xyloglucan backbone. However, 

the oligosaccharides produced by digestion of some more exotic xyloglucans (e.g. 

GGXXG-based subunits; Peña et al., 2008) shows this understanding to be far too 

simplistic. By observing XEG digestion of tomato (Solanum lycopersicum) 

xyloglucan, Jia et al. (2003) were able to determine some more specific requirements 
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for XEG digestion, though the task of characterising the enzyme is far from 

complete. 

1.3.2. Mixed-linkage (1→3)(1→4)-β-D-glucan (MLG) 

Mixed-linkage (1→3)(1→4)-β-D-glucan (MLG) (Fig. 2) is an unbranched β-D-

glucopyranosyl homopolysaccharide in which cellosyl (1→4)-linked regions – of 

variable length, but typically 3-4 residues – are connected by single (1→3) bonds; 

(1→3) bonds are never found consecutively (Peat et al., 1957; Parish et al., 1960). 

Owing to their structural similarity to cellulose, these (1→4)-bonded regions are 

commonly referred to as cellobiose, cellotriose, cellotetraose etc. A small proportion 

of considerably longer subunits, e.g. of DP 12, also occur in some species (Wood et 

al., 1994; Izydorczyk et al., 1998; Papageorgiou et al., 2005; Sørenson et al., 2007; 

Liu & White, 2010). The cello units are rigid while the (1→3) bonds connecting 

them tend to be flexible, giving mixed-linkage glucan molecules a kinked 

appearance, but with overall flexibility (Burton & Fincher 2009). 

(b) (c)

(a)
β3

β3

β3

β4β3β3β4

β3

β3

β3

β3

β3

β3

 

Fig. 2. Mixed-linkage (1→3)(1→4)-β-D-glucan (MLG) and sites of attack of 

a Bacillus subtilis lichenase and an Aspergillus japonicus cellulase (a) MLG 

polymer structure showing kinks caused by β-(1→3) bonds as well as distinct 

sites of enzymic attack: a Bacillus subtilis lichenase cleaves β-(1→4) bonds 

after β-(1→3) bonds (gray downward arrowheads; Planas, 2000), an Aspergillus 

japonicus cellulase cleaves β-(1→4) bonds before β-(1→3) bonds (black 

upward arrowheads; Grishutin et al., 2006). DP 3–5 products of lichenase (b) 

and cellulase (c) activity on MLG. Reducing termini on right; blue circles, D-

Glc residues; β3, β-(1→3)-linkage (highlighted in orange); β4, β-(1→4)-

linkage; cello-like β-(1→4)-linked regions underlined 
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In contrast to the wide phylogenic distribution of xyloglucan, MLG is known only in 

three widely separated lineages: the Poales (grasses, cereals, reeds and their relatives; 

Smith & Harris, 1999; Popper & Fry, 2004), Equisetum (horsetails; an evolutionaily 

isolated genus of non-flowering vascular plants), and some lichens, e.g. Cetraria 

islandica (Iceland ‘moss’, whose MLG is known as lichenan; Perlin & Suzuki 1962); 

MLG does not occur in the majority of plants, algae or fungi. Its presence in 

Equisetum was an unexpected recent discovery (Fry et al., 2008; Sørensen et al., 

2008; Xue and Fry, 2012); the Poales had long been assumed to be the only vascular 

plants possessing it (Stone & Clark 1992), though an MLG-related polysaccharide 

was found in the leafy liverwort Lophocolea bidentata (Popper & Fry, 2003). 

The phylogenetic distance between these species indicates that the acquisition of 

MLG is most probably an example of convergent evolution. In both Poales and 

Equisetum, MLG is regarded as a hemicellulose because it is extractable from cell 

walls with alkali, and because MLG chains are thought to hydrogen-bond to 

cellulosic surfaces, possibly tethering adjacent microfibrils and contributing to wall 

architecture. Further, MLG’s observed ability to (cause) silica formation from 

silicilic acid (Law & Exley, 2011), may be a shared role of MLG between these two 

embryophyte taxa, both of which maintain high levels of silica. As far as I am aware, 

the presence of silica in MLG-possessing lichens (e.g. C. islandica) has yet to be 

assessed. However, there is evidence to suggest that MLG can play distinct roles 

within these distinct taxa. For example, in the Poales MLG is often metabolically 

labile, being hydrolysed to glucose after germination and thus serving as a 

carbohydrate reserve (Inouhe & Nevins 1991; Hatfield & Nevins 1987); there is no 

evidence for this in Equisetum, whose MLG tends to be abundant in both young and 

senescing tissues (Sorenson et al., 2008). Further, the presence of MXE (See 1.3.2.3) 

in Equisetum, but not in members of the Poaceae (Fry et al., 2008; Mohler et al., 

2012), suggests another distinct functional role.  

Given the likelihood of MLG’s independent evolution in the Poales, Equisetum and 

lichens, their wide phylogenetic separation, and MLG’s possible independent roles 

therein, it is understandable that their MLGO subunit ratios differ. The MLG3 : 

MLG4 ratio of MLG is typically >24 in C. islandica (Lazaridou et al., 2004, Tosh et 
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al., 2004a), ~1.5–4.5 in various species of the Poales (Lazaridou & Biliaderis, 2007; 

Fry et al., 2008b), and <0.25 in Equisetum (Fry et al., 2008; Sørensen et al., 2008; 

Xue & Fry, 2012). As well as being documented in the literature, a comparison of the 

structure of these three polysaccharides appears in the current work. Even slight 

structural variations with MLGs have been shown to cause dramatic variations in 

physical and chemical attributes such as viscocity etc. (see 1.3.2.3.). Because of this, 

the functions of MLG in vivo could be entirely different within these different taxa.  

While MLG2 (aka laminaribiose) is a clearly established constituent of Equisetum 

MLG (Fry et al., 2008; Sørensen et al., 2008; Xue & Fry, 2012) and some have 

reported its presence in poalean MLG (e.g. Roubroeks et al., 2000), many 

investigators have failed to report it in the latter and in Iceland moss MLG (Wood et 

al., 1994; Izydorczyk et al., 1998; Wood et al., 2003; Lazaridou et al., 2004; Tosh et 

al., 2004; Vaikousia et al., 2004; Papageorgioua et al., 2005; Liu & White, 2011).  

1.3.2.1. Lichenase: an MLG-specific endohydrolase 

Lichenase (EC 3.2.1.73) is an MLG-specific endohydrolase which resides in the 

GH16 and GH17 families in the microbial and plant kingdoms respectively (Planas, 

2000). It is often used analytically to characterise the subunit composition of MLG 

(e.g. Fry et al., 2008; Sorenson et al., 2008; Xue & Fry, 2012), its target site 

classically understood as being all (1→4) bonds immediately following a (1→3) 

bond (in the non-reducing to reducing terminal direction; Fig ANa,b); it does not 

hydrolyse pure (1→3)-β-D-glucans or (1→4)-β-D-glucans (Planas, 2000). The result 

of such classical lichenase activity on MLG would be a range of oligosaccharides in 

which the reducing end is always G3G and any other G residues are 4-linked as 

extensions at the non-reducing end. Such oligosaccharides are described here as 

MLGOs, or specifically MLG2, MLG3, MLG4 etc. according to their DP. MLG2/3/4 

etc. are used interchangeably here to refer to these oligosaccharides and the units 

within the polysaccharide from which they are created. Thus, although lichenase-

generated MLGOs are not themselves cello-oligosaccharides, they indicate the 

presence of differently sized cello-oligosaccharide subunits in the original 

polysaccharide. For example, the yield of MLG3 in a lichenase digest is taken to 

indicate the abundance of cellotriosyl units in the polysaccharide prior to digestion.  
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Cellulase can also be used for analytical hydrolysis of MLGs in a manner analogous 

to the use of lichenase (Fig. 2a,c). However, cellulases can exhibit sites-of-attack 

distinct to that of lichenase: they can target (1→4) bonds immediately before a 

(1→3) bond (Grishutin et al., 2006). Thus the result of cellulase activity on MLG is 

believed to be solely a range of oligosaccharides in which the non-reducing end is 

always G3G and any other G residues are 4-linked as extensions at the reducing end. 

1.3.2.3. The technological significance of MLG 

The technologically exploitable properties of MLGs are thought to be a product of 

their concentration, molecular weight and subunit composition. To better understand 

this, numerous studies have been aimed at characterising MLGs from different 

(usually poalean) sources, particularly with respect to the ratio of the two most 

common subunits: MLG3 and MLG4.  For example, Tosh et al. (2004) showed that 

differences in the MLG3 : MLG4 ratio affect the gelation characteristics and 

elasticity of MLG systems, lichen MLG (high DP3:DP4 ratios) forming gels at a 

quicker rate and with a higher ‘melting’ point than cereal MLGs. Likewise, cereal 

MLGs with the highest MLG3 : MLG4 subunit ratios form gels the quickest 

(Lazaridou & Biliaderis, 2007). 

MLGs are also important components of the human diet. MLG consumption can 

affect blood glucose and cholesterol concentrations (Battilana et al., 2001; Bell et al., 

1999; Bourdon et al., 1999; Dikeman & Fahey, 2006; Kahlon et al., 1993; Lazaridou 

& Biliaderis, 2007; Wood, 1994; Wood, 2007), alleviate constipation by increasing 

faecal bulk (Malkki & Virtanen, 2001; Lazaridou & Biliaderis, 2007), and can also 

have beneficial effects on the immune system (Porter et al., 2006). For these reasons, 

a better understanding of MLGs, and the enzymes that act on them, is desirable.  

1.2.2.4. Subunit arrangements of MLGs 

Few studies have attempted to characterise the distribution of MLGO subunits along 

the intact MLG chain, probably because of the lack of suitable techniques for doing 

so. Despite this, subunit distribution would presumably have a dramatic effect on the 

physical properties of MLG solutions. Staudt et al. (1983) attempted this by 

mathematically modelling the production of the four main penultimate products of 
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lichenase digestion, i.e. DP6–8 oligosaccharides with two (1→3) linkages, namely 

G4G3G4G4G3G, G4G3G4G4G4G3G, G4G4G3G4G4G3G and 

G4G4G3G4G4G4G3G. They concluded that cellotriose and cellotetraose subunits 

are distributed randomly throughout the polysaccharide, but did not discuss the 

distribution of other, less predominant, units. Any observed pattern in the distribution 

of MLG subunits must be explained by any scheme seeking to model MLG 

synthesis. 

1.4. Endotransglycosylases 

Plants make use of many different mechanisms to modulate the extensibility of their 

cell walls (Cosgrove, 2005), a common mechanism being the covalent modification 

of hemicelluloses by apoplastic endotransglycosylases (Fry et al., 1992, Nishitani & 

Tominaga, 1992; Schroder et al., 2004; Fry et al., 2008; Franková & Fry, 2011; 

Johnston et al., 2013). The need for such a group of enzymes – that are able to cleave 

and reform intermicrofibrillar hemicellulosic tethers – was proposed more than thirty 

years ago (Albersheim, 1974/) to enable controlled loosening of intermicrofibrillar 

hemicellulosic tethers during Turgor-driven growth without ever compromising the 

strength of the wall. A similar proposal was made for yeast cell walls over twenty 

years ago (Cabib et al., 1988). 

All sequenced endotransglycosylases are members of the glycosyl hydrolase (GH) 

CAZy enzyme class (Okazawa et al., 1993; Schröder et al., 2006; Johnston et al., 

2013) and catalyse a two-step reaction utilising a retaining mechanism: the first step 

involves the endo-cleavage of the donor polysaccharide after which an enzyme-

substrate intermediate exists; the second step involves formation of a glycosidic bond 

between the new potentially-reducing terminus and the non-reducing terminus of a 

nascent oligo/polysaccharide (the acceptor substrate; Fig. 3a), thereby liberating both 

enzyme and product (Fig 3a; e.g. Saura-valls et al., 2008). Because the difference 

between endohydrolysis and endotransglycosylasation is a competition between 

glycans and water for the place as acceptor substrate, all retaining hydrolases can, 

given sufficient substrate, catalyse endotransglycosylation. However, this is typically 

far above natural substrate concentrations and thus is not considered physiologically 

significant. In this work, the term endotransglycosylase is reserved for those enzymes 
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which catalyse these reactions at physiologically significant (in μM range) substrate 

concentrations. While endotransglycosylases are thought in vivo to catalyse 

endotransglycosylation between polysaccharides, in vitro assays are typically 

performed using a polysaccharides donor and a labelled oligosaccharide acceptor 

(Fig. 3). There is however evidence that polysaccharide-to-polysaccharide 

endotransglycosylation does occur (Purugganan et al., 1997; Fry et al., 2008).  

Acceptor substrate (glycanase/transglycanase)

H2O (glycanase) XyG (transglycanase)
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Fig. 3. Glycanase and transglycanase reaction mechanisms and four inter-

related activities studied in this work (a) Canonical retaining 

glycanase/transglycanase mechanism. Where R = H, glycanase (endo-

hydrolase) activity occurs; where R = part of a glycan, transglycanase (endo-

transglycosidase) activity occurs. (b) Four of the activities studied in this work. 

Blue lines, xyloglucan; red lines, mixed-linkage glucan (MLG). 

1.4.1. The XTH subfamily and the XET:XEH distinction 

Xyloglucan endotransglucosylase (XET; Fry et al., 1992; Nishitani & Tominaga, 

1992; Fig. 3b) – which uses xyloglucan both as donor and acceptor – is catalysed by 

members of GH16, appears ubiquitous in the land plants and is believed to play 

crucial roles in cell wall physiology. As well as containing XET-active enzymes, 

GH16 also contains xyloglucan endohydrolase (XEH)-active enzymes (aka XEG), a 

reaction, biochemically similar to XET (Fig 3a), which, unlike XET, is exhibited by 

members of six different GH families (see 1.2.1.1.). In acknowledgement of the 
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biochemical similarity of the XET and XEH reactions (Fig. 3a), and because the 

structural (primary and tertiary) similarity of the GH16 enzymes exhibiting them 

suggests a distinct phylogenetic clade, nomenclature recognises xyloglucan 

endotransglucosylase/hydrolase (XTH) as a subfamily which encompases all XET- 

and XEH-active GH16 enzymes (Rose et al., 2002). This is also highly fitting given 

that many XTHs exhibit both activities to varying degrees and that our ability to 

accurately predict enzyme function is not sufficiently advanced. 

Despite the biochemical and structural similarity between XET- and XEH-active 

GH16 enzymes, they have significant potential for functional disparity in vivo: XEH 

would presumably be unable to produce the controlled wall-loosening that XET 

could. The fact that XEH activity appears entirely dispensible while XET holds an 

apparently crucial role in cell expansion (Kaewthai et al., 2013) underlines the 

physiological significance of these activities’ relatively minor biochemical 

distinction. The XTH distinctions previously identified (I, II and III; Rose et al., 

2002) have since been redefined – in accordance with the more detailed biochemical 

study and the deeper collection of genes now available – as I/II, which contains the 

majority of XTHs, III-A and III-B (Baumann et al., 2007; Eflöf & Brumer, 2010). 

The phylogenetic distinction between clade III-A and the rest appears functionally 

significant, with this clade containing the only predominantly hydrolytic members 

(Eflöf & Brumer, 2010). Such phylogenic analyses suggest that XTHs share a 

common endotransglycosylase ancestor, from which endohydrolysis activity evolved 

(Baumann et al., 2007), an evolutionary path which is presumably distinct from that 

of XEHs from other GH families. There is currently no firm experimental evidence 

that other clades within XTH (e.g. within I/II) exhibit any functional disparity (Eflöf 

& Brumer, 2010).  

Baumann et al. (2007) show that a loop around that active site of a GH16 XEH is a 

major, though not the sole, contributing factor to defining the XET:XEH distinction. 

The loop 2 extension is missing from TmNXG1 and TmNXG2, both strict 

hydrolases, but present in PttXET16-34, a strict transglycosylase. It also represents 

an important distinction between XTH clade III-A and all other clades (of XET is the 

sole known activity), being present only in the former. The three dimensional 
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structure of TmNXG1 shows the extension of loop 2 is capable of interacting with 

substrates when bound in the positive subsites of the enzyme; this might confer the 

ability to modulate the binding of xylogluco-oligosaccharide acceptor substrates. As 

proof of concept, a hybrid Ptt-XET16-34–like enzyme with a truncated loop 2 has a 

slightly boosted rate of transglycosylation and diminished hydrolytic activity. 

However, their inability to generate a strict transglycosylase from a predominant 

hydrolase indicates that this is not the only determinant. In support of this contention, 

a different group analysed XTHs by homology modelling and suggested that clade 

III-B members, though containing a truncated loop 2, might be XEHs rather than 

XETs (Xu et al., 2010). 

Just as xyloglucans have varying structural decoration of their backbones, XET 

activities exhibit varying substrate specificities. For example, Maris et al. (2009) and 

Maris et al. (2011) showed that seven recombinant XTHs from A. thaliana display 

distinct acceptor substrate specificity profiles using various purified [3H]XGO-ols (as 

well as distinct pH optima), but were unable to efficiently use xyloglucan like 

substrates as acceptor or donor substrates. Campbell & Braam (1999) showed that 

four Arabidopsis XTHs exhibit distyinct pH and temperature optima as well as 

distinct substrate specificities. Also, although XETs clearly prefer xyloglucan, they 

can often display significant promiscuity with regard to their substrates outside of 

this particular glycan (see 1.4.2.). This physiological significance of this is also 

unknown. 

Much effort has been invested in the identification of the structural determinants of 

XTH substrate specificity. XTH active sites contain seven subsites (-4, -3, -2, -1, +1, 

+2, +3), each binding a xyloglucan backbone residue and/or its substitutions; donor 

cleavage occurs between subsites -1 and +1, before the acceptor substrate occupies 

the positive subsites. It is also possible that glucoses at a putative +4 position (i.e. the 

reducing terminal residue in XXXG; Mark et al., 2009) and those behind subsite -4 

(Saura-Valls et al., 2008) can exhibit some interactions with XTHs. Three loops 

around the active site (1, 2 and 3) may interact with the substrate and influence 

substrate specificity (Mark et al., 2009). In addition, XETs contain an N-glycan, 

removal of which often destroys XET activity (Campbell & Braam, 1998; Campbell 
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& Braam, 1999). This glycan interacts closely with the polypeptide chain and is 

unlikely to play a direct role in catalysis, perhaps instead merely promoting enzyme 

stability (Johansson et al., 2004). Because of this, eukaryotic recombinant expression 

systems such as the yeast Pichia pastoris provide the greatest promise for XTH 

expression (Bollock et al., 2005; Kaewthai et al., 2010). 

There is also evidence that XET activities can exhibit distinct preferences with 

regard to the length of their substrates. For example, VaXTH1 only acted efficiently 

using donor xyloglucans of over 10 kDa (Nishitani & Tominaga, 1992). Tabuchi et 

al. (1997) characterised an XTH from azuki bean epicotyls which transferred 50 kDa 

portions from high-Mr xyloglucans to labelled XGOs and separately hydrolysed the 

high-Mr xyloglucans to 50 kDa products; xyloglucans of 60 kDa were not 

hydrolyzed at all. In contrast, other work (Fanutti et al., 1993; Fanutti et al., 1996; 

Schröder et al., 1998; Baumann et al., 2007; Saura-Valls et al., 2008) has shown that 

(for some enzymes) oligosaccharides can function as efficient donor substrates. With 

regard to acceptor substrate, VaXTH1 acted equally regardless of differences in size 

(Nishitani and Tominaga 1992), whereas recombinant AtXTH22 protein had a much 

higher affinity for xyloglucan polysaccharides (Km = 0.3 μM) than for XLLGol (Km 

= 73 μM; Purugganan et al., 1997). It remains conjectural how XTHs appear able to 

‘measure’ glycans of far greater size than them; one possibility is that the xyloglucan 

used exhibits some structural pattern which the enzyme recognised, though there is 

currently no evidence for this. Such abilities to measure xyloglucan length may have 

dramatic effects on XET roles in situ. Nonetheless it appears that most XTHs exhibit 

a random cleavage mechanism (Nishitani & Tominaga, 1992; Steele et al., 2001).  

1.3.1.1. Situation and roles of XET  

XTHs are apoplastic enzymes which can be found bound ionically – to charged cell 

wall components – from which they can be extracted using high salt solutions 

(Nguyen Phan & Fry, unpublished results) – or, because XTHs can form stable 

enzyme-substrate intermediates (Sulová et al., 1998; Piens et al., 2008), covalently 

bound in a ‘primed state’ to cell wall xyloglucans (Sulová et al., 2001) – from which 

they can be extracted by application of xyloglucan oligosaccharides (or presumably 

by interaction with endogenous xyloglucan polysaccharides), which act as acceptor 
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substrates allowing endotransglycosylation to occur. This remarkable stability has 

also been exploited for purification of XETs, based either on the intermediate’s high 

molecular weight (Steele & Fry, 1999) or its increased affinity for cellulose (Sulová 

& Farkaš, 1999), or by the use of conjugated XGO-columns (Baumann et al., 2007). 

It is not known whether this intermediate stability is a feature of all 

endotransglycosylase reactions.  

Despite over twenty years of study the precise role/s of XETs remain conjectural. An 

observed negative correlation between XET activity and cell age, led Fry et al. 

(1992) to speculate that XETs may indeed be performing the hypothesised role of 

endotransglycosylases in controlled wall-loosening during cell expansion; it was also 

suggested that XETs might participate in cell wall assembly. More recent reports 

have further implicated XETs in regulated cell expansion (Van Sandt et al., 2007; 

Lee et al., 2010; Sasidharan et al., 2010; Harada et al., 2011; Miedes et al., 2011). 

However, various counter-evidences for the role of XETs in the promotion of cell 

expansion have appeared. McQueen-Mason et al. (1993) suggested that XET activity 

does not enhance wall extension in in vitro assays, though the fact that they used 

boiled plant material limits the conclusions that can be drawn here (Rose et al., 

2002). Also Miedes et al. (2010) suggest XTHs from group I are probably involved 

in the restructuring of the cell wall during growth and development, and are not the 

limiting factor for plant growth. 

It has become apparent in addition, that XTHs may be implicated in other 

physiological phenomena, such as cell wall restructuring (Thompson & Fry, 2001), 

the development of vascular tissues (Hernández-Nistal et al., 2010) and, by allowing 

the integration of newly secreted xyloglucans into the pre-existing cell wall 

architecture, cell wall assembly (Thompson et al., 1997; suggested previously by Fry 

et al., 1992). Some evidence supports the hypothesis that XTHs may exhibit 

functional disparity in response to varying conditions. Vissenberg et al. (2005b), for 

example, showed that XTH localisation can vary with the mechanical properties of 

the cell wall. They showed two patterns of XET localisation: fibrillar and uniform – 

the fibrillar pattern (transverse to the long axis of the cell) appeared to correlate with 

the diffuse growth – which suggests distinct roles of XTHs. Further, it appears that 
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some XTHs may also, in some situations, be implicated in the cessation of cell 

expansion. Mellerowicz et al., (2008) suggest XTH proteins produced during wood 

secondary cell wall development are involved in the strengthening of xylem tissues. 

Nishikubo et al., (2011) propose that the ratio of newly synthesised xyloglucan to 

XTH within Golgi vesicles can dictate whether XET action strengthens or loosens 

the cell wall. Maris et al., (2009) showed that application of AtXTH14 or AtXTH26 

to onion epidermal peels during constant-load extensiometry actually decreased wall 

extensibility.  

Finally, various authors have reported presumed relationships between XTHs and 

phenomena not directly-related to cell wall structure; some of these are possibly 

pleitropic effects (Miedes & Lorences, 2007; Choi et al., 2011; Singh et al., 2011). 

Because of their effects on a multitude of plant characteristics, XTHs represent a 

sensible target of genetic modifications and/or breeding. For example it has been 

shown that decreasing XTH activity (antisense RNA) can increase the shelf-life of 

lettuce (Wagstaff et al., 2010). 

Such a range of apparent roles for XETs should not however appear too surprising. 

The fact that all higher plants maintain large XTH families (20–60 genes; Eklöf & 

Brumer, 2010) whose members are actively transcribed in spatio-, temporal- and 

stimulus-dependent manners (Rose et al., 2002; Yokoyama et al., 2004; Becnel et 

al., 2006; Mellerowicz & Sundberg, 2008; Miedes & Lorences, 2009), and exhibit 

varying substrate specificities, pH optima and expression patterns, supports the 

hypothesis that each might perform a distinct function (Nishitani & Vissenberg, 

2006). This line of reasoning is countered however, by the observation that 

bryophytes, which contain significantly fewer cell-types than tracheophytes, 

maintain similar numbers of XTHs (Yokoyama et al., 2010).  

1.4.2. Other endotransglycosylase activities 

With the prevalence of XET activity throughout the plant kingdom, its’ proposed 

fundamental role(s) in the regulation of plant growth and development, and the vast 

diversity displayed by cell wall hemicelluloses, the relative recentness of the 

discovery of other endotransglycosylases is perhaps surprising. There now exists 
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evidence for endotransglycosylases which utilise three of the four main 

hemicelluloses as both donor and acceptor: XET, mannan endotransglycosylase 

(Schröder et al., 2004; Schröder et al., 2006; Schröder et al., 2009) and xylan 

endotransglycosylase/trans-β-xylanase (Franková & Fry, 2011; Johnston et al., 

2013). At the ouset this project there existed no evidence for endotransglycosylases 

using MLG as both donor and acceptor. 

In spite of the dearth of direct evidence for any further endotransglycosylase 

activities, other lines of inquiry provide tantalising indications. Firstly, Carpita & 

McCann (2010) observed an increase in the molecular mass of a portion of the MLG 

from maize (Zea mays) seedlings upon deposition into the cell wall from the Golgi. 

Secondly, Thompson & Fry (2000) and Popper & Fry (2005) provide evidence for a 

covalent linkage between xyloglucan and pectin fractions of suspension-cultured 

angiosperm cells; despite their attempts to identify an appropriate 

endotransglycosylase they were also unable to. The previous observation of Kerr and 

Fry (2003) that the molecular mass of xylans in walls of suspension-cultured maize 

cells dramatically increases in the first few hours after wall-deposition might now be 

attributed to xylan endotransglycosylase/trans-β-xylanase. 

However, as well as from undiscovered endotransglycosylase activities, these 

phenomena could also arise as the product of XTH side-reactions. Indeed, as well as 

exhibiting the xyloglucan specificity to which they owe their name, XTHs often 

exhibit further promiscuity with respect to the substrates they utilise (e.g. Mohand & 

Farkaš, 2006; Garajová et al., 2008; Hrmova et al., 2007; Hrmova et al., 2009; Maris 

et al., 2009; Kosík et al., 2010; Stratilová et al., 2010; Maris et al., 2011). This 

promiscuity might also reconcile the apparent incongruity between the abundance of 

XET throughout the plant kingdom and xyloglucan’s chequered albeit ubiquitous 

distribution (Fincher, 2009). One notable case is the Poaceae, whose cell walls 

possess low xyloglucan content (Scheller & Ulvskov, 2010; Capita & Gibeaut, 1993) 

despite the large number of putative XTH genes they maintain (Yokoyama, 2004; 

e.g. 30 and 32 in rice and maize respectively, Eklöf & Brumer, 2010). Indeed, 

Hrmova et al. (2007) suggested that the 44.2% and 0.2% activity (compared to the 

XET reaction), of a barley XTH, when hydroxyethylcellulose and MLG respectively 
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are used as donor substrates, could translate in situ into a physiologically-meaningful 

activity against the more prevalent polysaccharide members of the barley cell wall. 

The evolutionary and structural relationship between XTHs, GH16 lichenases and 

GH11 xylan endohydrolases provides a potential mechanism as to how such an 

evolution in specificity to more prevalent components of type II cell walls might 

occur (Strohmeier et al., 2004). Until 2007, while numerous accounts of these 

promiscuous XTHs had been described, their ability to catalyse XET activity always 

exceeded their ability to catalyse other activities. This favouring of xyloglucan is 

typically so stark that physiological significance of the side-reactions is dubious. 

In addition, the scope of endotransglycosytion – which could, in theory utlise any 

substrate combination imaginable – is further revealed when searching outside of the 

plant kingdom. Fungal GH16 enzymes are capable of catalysing the formation of a 

glycosidic bond between chitin and the β-(1→6)-D-glucan side chains of laminarin 

(Cabib et al., 2007; Cabib et al., 2008; Cabib, 2009). A fungal GH17 enzyme is 

capable of laminarin endotransglycosylation by cleavage of the donor substrate two 

residues from the reducing terminus and formation of a β-(1→6) bond between the 

non-reducing terminal portion and the non-reducing terminus of anoth laminarin 

(Mouyna et al., 1998). 

1.5. Equisetum: an extremely evolutionarily-isolated genus 

The order Equisetales (for Equisetum taxonomy see taxonomic classifications Table 

1) is one of the most ancient and distinctive clades of extant tracheophytes, whose 

rich fossil record (Brown, 1975; McIver & Basinger, 1989; Stewart & Rothwell, 

1993; Taylor & Taylor, 1993) can be used to trace the evolutionary path that led to 

its single extant genus – Equisetum (aka horsetails). Today, species of the genus 

Equisetum, together with the ferns, form a monophyletic group and are together the 

closest extant relatives of seed plants (Pryer et al., 2001). Despite this, Equisetum is a 

highly evolutionarily isolated genus, whose ancestors are thought to have diverged 

from its closest extant relatives ~ 370 Mya (Bell & Hemsley, 2000; Smith et al., 

2006). Molecular dating (Des Marias et al., 2003) suggests that the probable 

divergence of the extant crown group of the genus Equisetum was approximately 65 

million years ago in the Paleogene. However, paeleobotanical findings (Stanich et 
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al., 2009; Channing et al., 2011) indicate that that the characteristic synapomorphies 

of Equisetum had already evolved by the Lower Cretaceous (136 Ma) and the extant 

crown group may have originated far earlier in the Mesozoic. This would probably 

make Equsietum the oldest extant vascular plant genera in the world (Arnold, 1947).  

Kingdom: Plantae 

Division: Pteridophyta 

Class: Equisetopsida (aka Sphenopsida) 

Order: Equisetales 

Family: Equisetaceae 

Genus: Equisetum 

Subgenera: Equisetum and Hippochaete 

Table 1. Equisetum taxonomy 
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Fig. 4. Geological eras and periods of the Phanaerozoic eon and notable 

points in Equisetum evolution Divergence of Equisetum ancestors, formation 

of the genus itself and other notable phenomena are shown. 

Comparisons between extinct and extant members of the Equisetales show clear 

transformational series of both morphology and anatomy documenting a 

monophyletic group that has developed over an exceptionally long time scale with 
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relatively few character state changes (Brown, 1975; McIver & Basinger, 1989; 

Stewart & Rothwell, 1993; Taylor & Taylor, 1993). This has lead researchers in the 

field to call the Equisetum body plan one of the most successful body plans ever 

(Rothwell, 1996). Morphologically, species within the genus Equisetum are non-

flowering vascular plants with unique upright jointed aerial stems which arise from 

an extensive underground rhizome system. All species are herbaceous perennials, the 

aerial stems of some species die back seasonally. Small microphyllous leaves are 

arranged in true whorls and are fused together to form a cylindrical sheath around 

each node.  Some, but not all, species (e.g. E. arvense but not E. fluviatile) form 

whorls of lateral branches at the nodes of the aerial stems (Golub & Wetmore, 1948). 

The stobilus is the specialised reproductive structure of Equisetum, consisting of a 

stem with short internodes and sporangium-bearing appendages, generally modified 

leaves called sporophylls, attached in a spiral pattern. A cross-section of an 

Equisetum internode shows an alternating sub-epidermal pattern of chollenchyma 

strengthening tissue and chlorenchyma, with the former present at ridges and the 

latter at furrows. Internally, vallecular canals are found in the cortex opposite 

furrows, and carinal canals, together with vascular bundles, opposite ridges; all of 

this surrounds a large central cavity (Leroux et al., 2011 and references therein). 

It is now widely recognised that Equisetum contains 15 extant species, as is the 

presence of two distinct subgenera (Des Marais et al., 2003; Guillon, 2004; Guillon, 

2007): Equisetum (E. arvense, E. bogotense, E. diffusum, E. fluviatile, E. palustre, E. 

pratense, E. sylvaticum and E. telmateia) and Hippochaete (E. gigateum, E. hyemale, 

E. laevigatum, E. myriochaetum, E. ramosissimum, E. scirpoides and E. variegatum). 

These subgenera can be readily distinguished by characteristics such as stomatal 

position, among others. In addition to these 15 species many interspecific hybrids are 

readily found in the wild, most of which have also been experimentally synthesised 

using controlled crosses (Guillon, 2004). These hybrids are considered to be sterile, 

relying on vegetative growth for survival. In agreement with the subgenera 

distinction described here, hybridisation appears strictly confined within the two 

subgenera with none occurring between them (Duckett, 1979). 

http://userwww.sfsu.edu/biol240/labs/lab_10plantoverview/pages/10vocab.html#Internode:�
http://userwww.sfsu.edu/biol240/labs/lab_10plantoverview/pages/10vocab.html#sporangium�
http://userwww.sfsu.edu/biol240/labs/lab_10plantoverview/pages/10vocab.html#Sporophyll:�
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1.5.1. Equisetum cell walls 

Fittingly, in light of the evolutionary isolation in which Equisetum is found and the 

distinctiveness of its general morphology, Equisetum cell walls are equally unique, 

being comprised of a distinct complement of polymers that transcends the typical 

type I : type II cell wall classification. While containing high levels of mixed-linkage 

glucan – characteristic of type II cell walls – they lack type II levels of 

(glucurono)xylans and contain high levels of cellulose and pectin – features 

characteristic of type I walls (Popper & Fry, 2004; Fry et al., 2007; Nothnagel & 

Nothnagel, 2007; Sorenson et al., 2007). Equisetum species also contain unusual 

lignins. For example, Espiñeira et al. (2010) showed that Equisetum telmateia 

contains lignin composed purely of guaiacyl (coniferyl) monomer, Equisetum 

fluviatile however contains significant proportions of syringyl monomers (Logan & 

Thomas, 1985). 

At least two studies have attempted to characterise the spatial distribution of 

polysaccharides within the Equisetum cell wall, both using an immunological 

approach; Leroux et al. (2011) use E. ramosissimum while Sørensen et al. (2007) use 

E. arvense and their findings are not entirely compatible. In Leroux et al. (2011), an 

anti-MLG antibody was shown to bind to the inner wall regions of the cells of the 

sclerenchymic strengthening tissue found in internodal ridges and far less intensely 

to the walls of some cortical parenchyma cells between the chlorenchyma and the 

vallecular canals. In Sørensen et al. (2007) the same antibody again bound to the 

sclerenchymic strengthening tissues, but here the labelling was found throughout the 

thickness of the cell walls and extended into the middle lamella, though it was less 

prevalent here. However, in Sørensen et al. (2007) the signal was much more 

widespread, occurring also in the epidermis, pith parenchyma and throughout the 

cortical parenchyma. In both studies labelling was weak or absent in vascular tissues 

and, except for sclerenchymic tissue, in the middle lamella. The significant 

discrepancies in the results in these two studies are unlikely to be explained by 

species differentiation alone and are possibly the result of epitope masking (Marcus 

et al., 2008; Marcus et al., 2010) and/or developmental regulation of MLG 

incorporation into cell walls. 
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1.5.1.2. Equisetum cell walls have high levels of deposited silica 

One of the most distinguishing features of Equisetum cell walls, in addition to their 

unusual polymer complement, is the abnormally high level of deposited silica (up to 

25% dry weight; Timell, 1964): an oxide of silicon with the chemical formula SiO2. 

Despite silicon being a mineral constituent of all terrestrial plants, it is not considered 

an essential element for general plant life (Epstein, 1994), endowing plants with 

merely beneficial effects such as increased drought and heavy metal tolerance, and 

pest and pathogen resistance. In Equisetum however, silicon is considered essential 

and is speculated to play various roles in the life cycle (Chen & Lewin, 1969; 

Hoffman & Hilson, 1979; Epstein, 1994). 

As well as MLG, Equisetum also share this unusually high silica content with the 

type II cell walls of the Poaceae. Indeed, recognition of this led Fry et al. (2008b) to 

propose that MLG may play a role in silica deposition in planta. The prior  

observation of Perry et al. (1987), that a large increase in MLG biosynthesis during 

the development of Phalaris (canary grass) trichomes correlated with a shift from 

sheet-like to globular silica deposition, provides further support for this. Law & 

Exley (2011) later demonstrated the ability of barley MLG to stimulate the 

production of silica from a solution of silicic acid in vitro. Various anatomical 

correlations support the contention that MLG stimulates silica formation in 

Equisetum. For example, the observations of Perry & Fraser (1991) that silica is 

absent from the middle lamella and found exclusively in the secondary cell wall is 

consistent with the localisations of MLG by Leroux et al. (2011) and Sørensen et al. 

(2007). Sapei et al. (2007) report that, silica is found in the epidermal cell walls of E. 

hyemale hydrogen-bonded to polysaccharides, but also that amorphous, colloidal 

silica which is associated with little organic matter is concentrated in ‘knobs’ on the 

ridges of stems 

1.5.1.3. Mixed-linkage glucan : xyloglucan endotransglucosylase 

A recent kingdom-wide screen for novel endotransglycosylases made the surprise 

finding of the first apparently predominant hetero-endotransglycosylase within crude 

extracts of all Equisetum species tested. The novel activity: mixed-linkage glucan : 

xyloglucan endotransglucosylase (MXE), catalyses a reaction identical to that of 
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XET activity, but uses mixed-linkage glucan as a donor substrate instead of 

xyloglucan (Fry et al., 2008a) (Fig. 3b). This makes MXE particularly important as it 

is the first known example of an apparently predominant hetero-

endotransglycosylase. While MLG may perform some shared function in the cell 

walls of all species in which it is present, because MXE activity has not been found 

in any other of these species (Fry et al., 2008), it seems feasible that MLG may also 

perform a unique function in Equisetum.  

MXE activity has thus far only been assayed using non-natural substrates – barley 

(Hordeum vulgare) and Iceland moss (Cetraria islandica) mixed-linkage glucan as 

the donor substrate and tamarind (Tamarindus indica) xyloglucan-derived 

oligosaccharides as the acceptor substrate (Fry et al., 2008a). These were used owing 

to their low cost and high availability but also because Equisetum mixed-linkage 

glucan and [3H]XGO-ols had yet to be prepared. Fry et al. (2008a) showed that MXE 

activity is higher against MLG from barley than against that of Iceland moss lichen. 

This increase in activity correlates with an increase in the predominance of 

cellotetraose units within the mixed-linkage glucan of barley, suggesting that MXE 

may exhibit specificity toward cellotetraose units. This positive correlation between 

MXE activity and cellotetraose content has led to the hypothesis that MXE would 

favour Equisetum MLG over BMLG as the former contains an even higher 

cellotetraose content. No such correlation between the activity of MXE against 

different [3H]XGO-ols is known that could be extrapolated to aid such a prediction of 

the suitability of the Equisetum xyloglucan structures for MXE activity. However 

one could predict that MXE, an enzyme only known to occur within higher plants in 

Equisetum, might favour those xyloglucan structures (see Fig. 1) also native to 

Equisetum and while not genus-unique, nonetheless rare within the kingdom. 

1.5.1.4. Cellulose:xyloglucan endotransglucosylase 

In addition to MXE activity, crude enzyme extracts from Equisetum are able to 

catalyse a further novel endotransglucosylase reaction – cellulose:xyloglucan 

endotransglucosylase (CXE); CXE has yet to be identified in any other species 

(unpublished data). The structural similarities between MLG, cellulose and 

xyloglucan, as well as the co-occurrence of MXE and CXE in Equisetum alone, 
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suggest that these activities could be catalysed by the same enzyme, which displays a 

somewhat promiscuous ability to utilise different donor substrates.  

1.6. Scheme of work 

While many GH16 enzyme family members are known to play crucial roles in plant 

cell wall metabolism and breakdown, there are fundamental gaps in our knowledge 

of how their structure is able to impart on them their substrate specificities and 

reaction preferences (e.g. transglycosylation vs. hydrolysis, specificity for 

xyloglucan vs. for mixed-linkage glucan). Further, in many cases the specific 

functions of these enzymes are unknown; elucidation of the enzymic preferences will 

be invaluable in reliably inferring function.  

This work sought to aid the identification of structural motifs which confer enzyme: 

carbohydrate recognition, and the determination of enzyme function(s) by 

investigating the range of substrate specificities exhibited by GH16 members and the 

sites of cleavage and mode of recognition of substrates by GH16 members and 

related enzymes. This work investigated five distinct, but related, enzymes: 

xyloglucan endotransglucosylase (XET); xyloglucan endoglucanase/endohydrolase 

(XEG/XEH); lichenase; mixed-linkage glucan : xyloglucan endotransglucosylase 

(MXE); and, cellulose : xyloglucan endotransglucosylase. This involved numerous 

related, but not reliant, areas of work, all investigating GH16 enzyme family 

members, their activities and/or their hemicellulosic substrates. Accordingly, this 

thesis is divided into 7 distinct research areas: (1) Identification of MXE gene in 

Equisetum fluviatile – this section sought further to compare the identified MXE 

gene with related enzymes (XTHs and lichenases) in an attempt to 

elucidatedifferences which might account for MXE’s novel substrate specificities; 

(2) MXE substrate specificity – this section sought to probe the substrate specificity 

of the MXE enzyme, a necessary step for the understanding of how its structure 

relates to its novel specificity; (3) Identification of the nature and location of the 

bonds broken and formed during the MXE reaction – this section sought to identify 

the mechanism of recognition of MLG by MXE as determined by the location of 

cleavage of the MLG polysaccharide; (4) Presence of MXE in other species and 

tissues – this section sought to investigate the prevalence of MXE actuivity in other 
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members of the plant kingdom and in other Equisetum tissues; (5) Analysis of 

cellulose : xyloglucan endotransglucosylase (CXE) activity – this section sought to 

determine whether the activity CXE was catalysed by the same enzymes as MXE; (6) 

An unexpectedly lichenase-stable hexasaccharide yields new information on MLG 

subunit composition and distribution – this section sought to better understand the 

substrate specificity of a commonly used GH16 lichenase by the biochemical 

characterisation of its oligosaccharide products; and (7) The mode of recognition and 

site of attack of xyloglucan-cleaving enzymes – this section sought to better 

understand the site of attack and mode of recognition of GH16 XTHs and a 

commponly used GH12 XEG.  
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2. MATERIALS AND METHODS 

2.1. General materials 

Barley mixed-linkage glucan (beta glucan, medium viscosity) and Iceland moss 

mixed-linkage glucan (lichenan) were from Megazyme (Bray, Republic of Ireland). 

Tamarind seed xyloglucan was a generous gift from Dr K. Yamatoya, Dainippon 

Pharmaceutical Co. (http://www.ds-pharma.co.jp). Dialysis tubing (12–14-kDa cut-

off) was purchased from Medicell International, Ltd. (London, UK). Miracloth was 

from Calbiochem (http://www.emdbiosciences.com). Solvents and scintillant were 

from Fisher Scientific (Loughborough, UK). Whatman papers (No. 1, 3 MM; 

http://www.whatman.com) were purchased from VWR (Lutterworth, UK). Other 

general chemicals came from Sigma-Aldrich (UK). 

2.2. Plant sources 

Early (Apr–May) and late (Sep–Nov) season E. fluviatile lateral shoots were taken 

from the King’s buildings pond in Edinburgh. Lateral E. arvense shoots (Sep–Nov) 

and strobuli (Apr–May) were taken from a roadside in Edinburgh. Yorkshire fog 

grass (Holcus lanatus) was taken from the King’s buildings campus in Edinburgh. 

Mung bean (Vigna radiata) was purchased from Sainsbury’s (UK). Winter barley 

(Hordeum vulgare L.) cultivar Pearl was grown from seed in a glasshouse under 

natural light for up to 12 wk. Barley seedlings were germinated on wet tissue paper 

at 25°C for 3 days. 

Maize (Zea mays L., Black Mexican sweetcorn) cell-suspension cultures were grown 

under constant light on an orbital shaker at 25°C. Cells were sub-cultured fortnightly 

into 200 ml fresh medium [0.47% (w/v) Murashige and Skoog basal inorganic 

medium (Sigma, M5519), 2% (w/v) sucrose and 2 mg l-1 (w/v) 2,4- 

dichlorophenoxyacetic acid, pH 4.6–4.8], in 500-ml conical flasks. Maize cells and 

cell media were extracted from 4-day old cultures. 
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2.3. Enzyme preparations 

All enzyme extraction procedures were carried out at 5°C, and samples were 

aliquotted and stored at -80°C. Before use aliquots were allowed to thaw completely 

in an ice bucket. 

2.3.1. Equisetum crude extract 

Equisetum tissues (lateral shoots, strobili, strobili stalk) were homogenised in a pestle 

and mortar with extractant buffer (10 mM CaCl2, 165 mM Na:citrate, 20 mM 

ascorbate 3% (w/v) polyvinylpyrrolidone at pH 6.1; 4 ml g-1 plant material) and a 

pinch of sand. The homogenate created was incubated for 1–2 hours to facilitate 

desorption of ionically-bound enzyme and filtered through miracloth. The 

homogenate was the centrifuged at 12000 g for 5 mins. The supernatant was retained 

as the enzyme sample. 

2.3.2. Yorkshire fog grass (Holcus lanatus) crude extract 

Yorkshire fog grass was homogenised in a pestle and mortar with extractant buffer 

(0.2 M Na:succinate, pH 5.5, 10 mM CaCl2; 4 ml g-1 plant material) and a pinch of 

sand. Polyvinylpolypyrrolidone (PVPP; 2% w/v) was suspended in all extractants. 

The homogenate was stirred slowly with a magnetic stirrer for 3 h at 5°C. After 

filtration through two layers of Miracloth, the extract was centrifuged at 12 000 g for 

40 min. The supernatant was retained as the enzyme sample.  

2.3.3. Mung bean (Vigna radiata) crude extract 

Fresh mung beans were homogenised in a benchtop blender in extractant buffer (200 

mM Na:citrate, pH 5, 10 mM CaCl2; 2 ml g-1 plant material). Suspension was 

agitated for 4 h at before it was filtered using a miracloth. Filtrate was centrifuged at 

4000 rpm at and supernatant was precipitated in 75% (v/v) saturated ammonium 

sulphate. Ammonium sulphate was resuspended in 75% (v/v) saturated ammonium 

sulphate three times before finally being resuspended in 100 ml 200 mM pH 5.5 10 

mM CaCl2. The supernatant was retained as the enzyme sample. 
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2.3.4. MXE purification 

All purification steps were performed at 5°C. 100 ml crude E. fluviatile extract was 

precipitated in 10% ‘cuts’ from 10–60% (v/v) saturated ammonium sulphate by 

adding dry ammonium sulphate with constant stirring followed by centrifugation. 

Each ‘cut’ was then redissolved in 25 ml 10 mM Na:citrate 0.05% triton X-100 pH 

6.1. The majority of MXE precipitated in the 30–40% fraction, 6 ml of which was 

fractionated by SEC (Biogel P100). MXE-rich (~ 30 kDa) SEC fractions 30–33 were 

then further fractionated using a 1.8 ml bed-volume Concanavalin A column; MXE 

activity eluted from the column in the presence of 640 mM methyl-α-

mannopyranoside (MeManp). MXE-rich Concanavalin A fractions 26–31 were 

fractionated by isoelectric focusing after which MXE was found in a region of pH ~ 

4.0.  

2.4. Polysaccharide extractions 

2.4.1. Alcohol-insoluble residue (AIR) creation 

In general: plant material was homogenised either with a food blender/pestle and 

mortar in 75% (v/v) ethanol or in a bead mill after drying in vacuo, before 

suspending in 75% (v/v) ethanol. Alcohol-insoluble material (AIR) was extracted 

either by centrifugation or by collection on miracloth and this step was repeated 

numerous times with 75% (v/v) ethanol. 

For Equisetum arvense batch AIR creation: 437 g of late season E. arvense lateral 

shoots were vigorously blended in 75% (v/v) ethanol (~ 8 ml g-1). The suspension 

was then stirred at 70°C for 4 hours. AIR was then collected on Miracloth and 

washed with 75% (v/v) ethanol again while still in the Miracloth before being 

squeezed dry. The AIR was stirred overnight (~16 hours) at room temperature in 2 l 

0.5% (w/v) SDS before again being collected on miracloth and squeezed dry. The 

AIR was then stirred over two nights (~55 hours) at room temperature in 3.5 l 0.5% 

(w/v) SDS before being heated to 60°C while stirring for 6 hours, collected on 

miracloth and squeezed dry to remove any excess SDS. The AIR was then stirred in 

successive 5 l portions of distilled water allowing at least 4 hours to stir until water 

ran without froth (~8 times). The remaining AIR was squeezed dry in miracloth. AIR 
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was then stirred at room temperature in ~ 1.5 l acetone for ~ 4 hours before being 

filtered through a miracloth and squeezed dry. AIR was then left to dry in an open 

container for ~ 2.5 days. The final dry weight of AIR recovered was 42.12g (96 mg 

g-1 fresh plant material). 

2.4.2. Hemicellulose extractions  

2.4.2.1. General hemicellulose extraction from AIR 

AIR was stirred in 0.5 M NaOH, 0.1% (w/v) NaBH4 at room temperature for 16 

hours (hemicellulose fraction 1) or in 6.0 M NaOH, 0.1% (w/v) NaBH4 at 37°C for 

16 hours (hemicellulose fractions 1 and 2). 

2.4.2.2. E. arvense hemicellulose extractions (For EaMLG and EaXGO 

purification) 

Hemicellulose fraction 1 was solubilised by stirring 5 g E. arvense AIR in 250 ml 0.5 

M NaOH, 0.1% (w/v) NaBH4 at room temperature for 16 h. Insoluble hemicellulose 

was pelleted by centrifugation. The pellet (AIR minus hemicellulose 1) was then 

resuspended in 250 ml 6 M NaOH, 0.1% (w/v) NaBH4 and stirred at 37°C for 16 

hours, thereby solubilising hemicellulose fraction 2. Hemicellulose 2 was also 

collected in the supernatant following bench centrifugation of the suspension; the 

pellet was rejected. Both supernatants were slightly acidified (pH 5−6) with acetic 

acid and dialysed at 5°C against several changes of deionised water in a 12 kDa cut-

off sac, before being centrifuged and rejecting pellets. 

2.4.2.2.1. E. arvense MLG purification 

To hemicellulose fraction 1, 0.025 volumes of 10% (w/v) aqueous ammonium 

formate were added, followed by ethanol (added with vigorous shaking) to a final 

concentration of 45% (v/v). The suspension was stood overnight without stirring 

before being centrifuged. The supernatant was rejected and the inside of the tube was 

lightly blotted with tissue paper to remove as much ammonium formate as possible 

without allowing the pellet to dry out. The pellet was then thoroughly resuspended in 

70% (v/v) ethanol and after incubating for 2 hours at room temperature centrifuged 

again. The supernatant was again rejected and the inside of the tube lightly without 
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drying. The pellet was redissolved 14 ml water by boiling and prolonged agitation 

before any remaining insoluble matter was pelleted by centrifugation. Saturated 

aqueous ammonium sulphate was added to the isolated supernatant to a concentration 

of 47% (v/v) with vigorous shaking before incubation at 4°C for ~ 16 hours. The 

suspension formed was centrifuged, the supernatant rejected and the inside of the 

tube again lightly blotted without drying. The pellet was redissolved in 20 ml water 

and dialysed for 3 hours at 5°C against deionised water in a 12 kDa cut-off sac. Post 

dialysis, insoluble material was then pelleted by bench centrifugation and the 

supernatant was extracted. Using the anthrone procedure the total hexose mass of the 

supernatant sample was shown to be ~ 27.0 mg. Concentrating, where necessary, was 

achieved by heating in a stream of cool air (up to 5.7 mg ml-1). 

For batch purification of 6x: hemicellulose was solubilised by stirring 5 g Equisetum 

arvense alcohol-insoluble residue (AIR) in 250 ml 6 M NaOH 0.1% (w/v) NaBH4 at 

37°C for 16 hours before being centrifuged, acidified, dialysed and centrifuged again 

as above. This hemicellulose solution was then digested with lichenase, after which 

ethanol was added to 75% (v/v) and undigested polysaccharides were pelleted by 

centrifugation. 

2.4.2.2.2. E. arvense XGO purification 

To hemicellulose fraction 2, saturated aqueous ammonium sulphate was added with 

vigorous shaking to give a final conc of 47% (v/v). The solution was then stood at 

4°C for ~ 16 h before being centrifuged. 50 ml of the supernatant was then dialysed 

at 5°C against several changes of deionised water in a 12 kDa cut-off sac. 0.025 

volumes 10% (w/v) ammonium formate was then added to the solution post dialysis 

to which ethanol was added to a final conc. of 75% (v/v). The solution was then 

stood at 4°C for ~ 16 hours before being centrifuged. The pellet was collected and 

thoroughly resuspended in 75% (v/v) ethanol before being centrifuged again. The 

pellet was digested with XEG before being dried in vacuo, redissolved in water and 

centrifuged. The supernatant was fractionated by SEC (Biogel P-2 column 1) from 

which XGO-containing fractions (determined by TLC) were pooled. The total hexose 

mass of the solution was shown to be 0.9 mg anthrone Glc equivalent. 
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2.4.2.3. Maize (Zea mays) soluble extracellular polysaccharide isolation and 

deacetylation of one half 

A 4-day old 200-ml maize (Zea mays) cell culture suspension was filtered through 

miracloth, after which cloth-bound material was rejected. The filtrate was 

centrifuged and the supernatant was boiled for 30 mins before being centrifuged 

again. The remaining supernatant was split into two halves. One half was incubated 

in 0.1 M NaOH at room temperature for 2 h before being slightly acidified with 

acetic acid. An equimolar (~pH 5) solution of sodium acetate was added to the 

second half. Both solutions were dialysed with numerous changes of water and 

concentrated (without drying) to 300 µl by boiling in a constant flow of air.  

2.4.2.4. Creation of comparable maize cell wall and SEP xyloglucan-containing 

samples 

A 4-day old maize suspension culture was centrifuged and the cell-containing pellet 

was separated from the SEPs-containing supernatant. The supernatant was filtered 

through miracloth and cloth-bound material was rejected. AIR of both pellet and 

filtered supernatant was created and hemicellulose fractions 1 and 2 were extracted 

together. Both were concentrated to 2.5 ml by boiling in a constant flow of air. 

2.5. Enzyme and chemical treatments 

2.5.1. Enzyme treatments 

2.5.1.1. General soluble-donor endotranglycosylase reactions 

General soluble-donor endotransglycosylase (e.g. XET and MXE) reactions were 

performed by incubating buffered enzymes with 0–0.7% (w/v) donor substrate and 

≤3 μM acceptor substrate in the case of MXE or ≤80 μM acceptor substrate in the 

case of XET. Reactions were stopped by the addition of 0.5 reaction volumes of 50% 

(v/v) formic acid. Unless otherwise stated reaction mixtures were dried onto 4 x 4 cm 

squares of Whatman 3 MM paper and washed for 24–48 hours in running tap water. 

Incorporated radioactivity was then assayed by scintillation counting using 1 ml 

paper scintillant. Alternatively, products were precipitated by the use of 75% (v/v) 

ethanol, before being redissolved and quantified by scintillation counting.  
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2.5.1.2. Cellulose : xyloglucan endotransglucosylase (CXE) 

2.5.1.2.1. NaOH pre-treatment of Whatman No. 1 chromatography paper 

Whatman No. 1 paper was incubated overnight at 37°C in 45 ml 6.0 M NaOH. The 

paper was then subjected to numerous washing steps with water, until the washings 

had a pH of 7.2, before being washed with a solution of pyridine : acetic acid : water 

(ratio 33:1:300, pH 6.5). The paper was then washed again after which the water was 

pH ~6.8. Finally, the paper was lyophilised, and aliquotted by mass. 

2.5.1.2.2. CXE reaction  

Reaction mixtures (110 μl) containing 18% (v/v) rotofor enzyme fraction, 0.1 μM (1 

kBq) [3H]XXXGol, 0.05% (w/v) chlorobutanol, 140 mM Na:citrate buffer pH 6.1 

were applied to 35 mg ‘aliquots’ of NaOH-treated paper, such that the paper was 

totally soaked without excess liquid. Reactions were then incubated in a sealed 

environment for 24 h at 25°C before addition of 50 µl 50% (v/v) formic acid directly 

to the paper. Paper was washed 0.5% (w/v) chlorobutanol for 6–16 hours with gentle 

agitation in successive 15 ml portions, after which the liquid was removed from the 

paper following centrifugation. This washing was performed 6 times after which no 

enzyme controls gave a background reading. Paper-incorporated radioactivity was 

detected by incubating the paper with 2 ml dH2O and 20 ml aqueous scintillant and 

counting for 10 minutes twice 

2.5.1.3. In vivo endotransglycosylase action assay 

Unless otherwise stated, razor blade-cut cross-sections (~0.5 mm thick; total 50 mg) 

of various barley organs (Fig. 29) were immediately immersed in 250 µl water 

containing 1 µM (25 kBq) [3H]XXLGol in a 1.5-ml tube and incubated with constant 

agitation for 16 h at 20°C.  AIR was then prepared, by shaking in a bead mill before 

hemicellulose 1 and 2 were extracted together (6 M NaOH).  Total extracted 

hemicelluloses were then digested with XEG, lichenase, or neither. Reaction 

products were subjected to incubation in 75% (v/v) ethanol and centrifugation before 

supernatants (oligosaccharide products) were analysed by TLC. 
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2.5.1.4. Xyloglucan endoglucanase (XEG) digestion 

Samples were incubated in 20% (v/v) PyAW/CB 10-3% (w/v) xyloglucan 

endoglucanase (XEG; a generous gift from Novo Nordisk A/S, Bagsværd, Denmark; 

Pauly et al., 1999) at 25°C for 1 h. 

2.5.1.6. Lichenase digestion 

Lichenase (from Bacillus subtilis; 330 U mg-1; Megazyme, Inc.) was pelleted from 

ammonium sulphate by centrifugation after which the supernatant was rejected. The 

pellet was redissolved at 2 U ml–1 in PyAW/CB and stored at –20°C. For digestion, 1 

volume of lichenase solution was added to 1 volume of sample solution and 

incubated at 20°C for 4 h, unless otherwise stated. 

2.5.1.7. Driselase digestion 

One volume of 0.5% (w/v) purified driselase (partially purified as described by Fry, 

2000) in PyAW/CB was added to 1 volume of carbohydrate sample and incubated at 

37°C for 48 h with constant agitation.  

2.5.1.8. β-glucosidase digestion 

β-D-glucosidase (from Aspergillus niger; 52 U mg-1) from Megazyme, Inc. (Bray, 

Ireland) was pelleted from ammonium sulphate and redissolved at 0.25 U ml–1 in 

PyAW/CB. 1 volume sample solution was mixed with one volume enzyme solution 

and incubated at 20°C.  

2.5.1.9. Cellobiohydrolase digestion 

Cellobiohydrolase (CBH1 from Trichoderma longibrachiatum; 0.07 U mg-1) from 

Megazyme, Inc. was pelleted from ammonium sulphate and redissolved at 0.5 U ml–1 

in PyAW/CB. 1 volume sample solution was mixed with one volume enzyme 

solution and incubated at 20°C for 2 h unless otherwise stated.  

2.5.1.10. Cellulase digestion 

Cellulasea (from Aspergillus niger; 86 U mg-1; incapable of digesting xyloglucan) 

from Megazyme, Inc. was pelleted from ammonium sulphate and redissolved at 10 U 

ml–1 in PyAW/CB. 1 volume sample solution was mixed with one volume enzyme 

solution and incubated at 20°C for 2 h unless otherwise stated.  
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Cellulaseb (endo-1,4-β-D-glucanase from Trichoderma longibrachiatum; capable of 

digesting xyloglucan; a GH7 family member from E.C: 3.2.1.4) from Megazyme, 

Inc. was pelleted from ammonium sulphate and redissolved at 10 U ml–1 in 

PyAW/CB. 1 volume sample solution was mixed with one volume enzyme solution 

and incubated at 20°C for 2 h unless otherwise stated.  

2.5.1.11. α-xylosidase digestion 

Thermostable α-xylosidase (specific activity 2.6 U g-1) was from CPC Biotech, 

Agrate Brianza, Milan, Italy. Reaction mixtures contained (10 µl) containing 1% 

(w/v) enzyme and trace amounts of radiolabelled oligosaccharitol was incubated in 

0.15% (v/v) acetic acid, 0.55% (v/v) pyridine (pH 5.5), 0.5% (w/v) chlorobutanol at 

65ºC. The reaction was stopped on ice and products were purified by PC or TLC. 

2.5.1.12. Stopping enzyme reactions 

Unless stated otherwise, all reactions stopped by the addition of 0.5 reaction volumes 

of 50% (v/v) formic acid or by boiling thoroughly. 

2.5.2. Chemical treatments 

2.5.2.1. TFA hydrolysis 

Samples were incubated in 2 M trifluoroacetic acid for 1 h at 120°C. 

2.5.2.2. Sodium borohydride (NaBH4) reduction 

Samples were incubated at room temperature for 16 h in 0.5 M NaBH4 in 1 M NH3; 

before NH3 was allowed to evaporate in moving air. The sample was then slightly 

acidified with acetic acid and applied to a cation exchange column. The eluted 

sample was dried in vacuo before being redissolved and dried in a methanol : acetic 

acid (9:1 by volume) solution. This redissolving and drying was repeated at least six 

times. 

2.6. Chromatographic and electrophoretic methods 

2.6.1. Thin layer silica-gel chromatography (TLC) 

Merck silica-gel 60 TLC plates (VWR, Lutterworth, UK) were either used from the 

box, or were pre-washed by incubating in a flat-bottomed plastic box with 4-5 
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changes of acetone : acetic acid : water (1:1:1) solution with constant agitation before 

drying. Samples were applied along a pencil line drawn 20 mm from the bottom of 

the sheet. A malto-oligosaccharide ladder (produced by degraded starch) plus 

glucose was routinely used as a marker mixture. After drying, sheets were typically 

developed in butan-1-ol : acetic acid : water (BAW; 2:1:1) with two ~ 8 h ascents or 

propan-1-ol : nitromethane : water (PNW; 5:2:3) with one 6 h ascent. When used 

preparatively, the desired oligosaccharides were extracted from pre-run TLCs by 

cutting the TLC region containing the oligosaccharide (identified by fluorography, 

autoradiography, or by partial thymol-staining) from the rest of the gel, and 

incubating with constant agitation in 0.05% (v/v) chlorobutanol for 8–16 h before 

drying in vacuo. This was done once or twice, in which case solutions were pooled. 

2.6.2. Paper chromatography 

Samples were pipetted as spots or streaks onto a pencil line drawn 90 mm from one 

end of a sheet of Whatman No. 1 or Whatman 3 MM chromatography paper. A 

marker mix containing ~ 75 μg GalA, Gal, Glc, Man, Ara, Xyl, Rib and Rha was 

often separately pipetted onto each chromatogram. The paper was folded 20 and 70 

mm from that same end. The opposite end was serrated. Paper chromatograms were 

developed in one of two chromatography solvents: 

EPW (for monosaccharide analysis): developed for 16 h in ethyl 

acetate/pyridine/water (8:2:1 by volume).  

BAW (for purification of [3H]XGO-ols): developed for 16 h in ethyl 

acetate/pyridine/water (8:2:1 by volume) 

2.6.3. Size-exclusion chromatography (SEC) 

Five different size-exclusion chromatography (SEC) columns were used during the 

present work. The void volume (Kav 0) and the whole included volume (Kav 1) of 

each column was determined using 5–40 MDa Dextran and [3H]H2O/glucose 

respectively. 

Three different Biogel P2 columns (Bio-Rad, Inc.): 

P2 column 1: internal diameter 75 mm, column bed volume 166 cm3. 
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P2 column 2: internal diameter 1.4 mm, column bed volume 69 cm3. 

P2 column 3: internal diameter 9 mm, column bed volume 19 cm3. 

Biogel P100 (Bio-Rad, Inc.): column diameter 14 mm, column bed volume 82 cm3. 

Sepharose Sephadex CL-6B (column bed volume ~ 250 ml, internal diameter ~ 1.4 

mm) equilibrated with PyAW (1:1:23), from which 80 ~ 3.6 ml fractions were 

collected.  

2.6.4. SDS-PAGE 

SDS-PAGE was performed using a Bio-Rad Mini PROTEAN Tetra Cell system. 

Protocols followed Laemmli (1970). Gels were composed of a 5% stacking gel above 

a 12% resolving gel. Gels were run at 75 V for ~15 mins then at 100 V for ~ 75 mins.  

2.6.5. Isoelectric focusing 

A Rotofor isoelectric focusing kit (BioRad) was assembled and used according to the 

manufacturer’s instructions. Prior to focusing, the inside of the equipment was 

washed with 0.25% (w/v) triton X-100. Ampholytes (address) 3–5 or 3–10 were 

added to protein-containing solutions. Focusing was performed at 10 W until voltage 

and current stabilised. Recovered fractions were immediately assayed using pH 

meter before storing at -80°C.  

2.6.6. Concanavalin A lectin-affinity chromatography 

Concanavalin A (from jack bean)-Sepharose 4B beads (1 ml) were packed in a Poly-

Prep (Bio-Rad) column and washed with excess 50 mM citrate (pH 6.3) containing 

CaCl2, MnCl2, MgCl2 (1 mM each). The protein-containing solutions was applied to 

the column and eluted in wash buffer containing increasing concentrations of methyl-

α-mannopyranoside (MeManp). 

2.6.7. Muniscus agarose gel electrophoresis 

Agarose powder (0.75–1.5% (w/v)) was solubilised in TBE (89 mM Tris:boric acid, 

2mM disodium EDTA) by heating. The solution was allowed to cool slightly before 

ethydium bromide was added to 2 x 10-3% (v/v). 25 ml was applied to a glass sheet 
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with well-comb positioned before being allowed to cool. After immersing in TBE, 

PCR products were applied to wells and the gel was developed at ~ 150 V for 1–2 h. 

2.6.8. Cation exchange chromatography  

A 1–2 ml bed-volume of Dowex-5 (H+ form; Sigma–Aldrich) resin column was 

incubated for > 1 h in 1M HCl before being washed thoroughly with distilled water 

until no salt (determined using a conductivity meter) eluted. Sample was then applied 

to the column before being eluted in dH2O. 

2.6.9. HPLC 

HPLC was performed on a CarboPac PA1 column (high-performance anion-

exchange chromatography, HPAEC; Dionex, Camberley, UK) with elution at 1 ml 

min–1. For oligosaccharide analysis the elution profile was 0.1 M NaOH which also 

contained: 0–30 min, 0→0.3 M sodium acetate (linear gradient); 30–36 min, 1 M 

sodium acetate; 36–42 min, 0 M sodium acetate. For TFA hydrolysate analysis the 

elution profile was: 0–3 min, 20 mM NaOH (isocratic); 3–44.5 min, H2O (isocratic); 

44.5–75 min, 0→800 mM NaOH (concave gradient); 75–81 min, 800 mM NaOH 

(isocratic); 81–82 min 800→20 mM NaOH (linear gradient); 20 mM NaOH 

(isocratic). A pulsed amperometric detector (PAD) with a gold electrode was used. 

PAD response was calibrated by use of known weights of malto-oligosaccharides. 

For preparative HPLC, collected fractions were slightly acidified with acetic acid (to 

pH<6) immediately, then desalted by cation-exchange on Dowex-5. 

2.6.10. Immobilised metal ion affinity chromatography (IMAC) 

IMAC was performed on a Chelating Sepharose Fast Flow (2 ml bed vol.) column. 

The column was charged beforehand with 0.2 M nickel sulphate. The binding buffer 

was 0.02 M sodium phosphate, 0.75 M NaCl, pH 7.0. The elution buffer was 0.02 M 

sodium phosphate, 0.5–1.0 M NaCl, 0.05 M imidazole, pH 7.0. Following elution, 

the desired protein fraction was further purified using a PD-10 desalting column. 

Proteins were eluted in 0.1 M sodium citrate, 0.025 % (w/v) triton X-100, 0.5 % 

(w/v) chlorobutanol, pH 6.3. 
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2.7. Staining and quantification methods 

2.7.1. Silver nitrate staining 

For paper chromatograms (PCs): PCs were dipped through three solutions 

consecutively, allowing 15 mins to dry in between: Dip1, 5 mM silver nitrate in 

acetone (dH2O used to dissolve any precipitate); Dip 2, 124 μM NaOH in 96% (v/v) 

ethanol; Dip 3, 10% (w/v) sodium thiosulphate in dH2O. Dip 2 was sometimes used 

up to three times to increase staining. The paper was immediately washed in running 

water and left for up to 24 hours before being allowed to dry. 

For SDS-PAGE gels: Gels were fixed by incubating in a solution of 50% (v/v) 

ethanol, 12% (v/v) acetic acid, 1.875% (v/v) formaldehyde for half an hour. Gels 

were washed briefly in 50% (v/v) ethanol three times before being incubated in 

0.01% sodium thiosulphate for 60 sec. After washing them three times in distilled 

water, I stained the gels by incubating in 0.1% (w/v) silver nitrate, 2.77% (v/v) 

formaldehyde for 20 min. Gels were washed three times in distilled water and then 

developed in 3% (w/v) sodium carbonate , 18.75% (v/v) formaldehyde, 10-4% (w/v) 

sodium thiosulphate until staining became apparent. Staining was stopped by 

incubation of gels in 4% (w/v) Tris, 2% (v/v) acetic acid. 

2.7.2. Thymol staining 

Thin layer chromatograms (TLCs) were dipped through 5% (v/v) sulphuric acid, 

0.5% (w/v) thymol in ethanol. TLCs were left to dry before being baked at 105°C for 

~ 5 minutes (Jork et al., 1994). 

2.7.3. Anthrone assay 

To one volume of sample (containing < 10-2% (w/v) hexose sugars) two volumes 

0.2% (w/v) anthrone in conc. sulphuric acid were added. Mixtures were thoroughly 

mixed by vortexing before boiling for 5 minutes. Samples were cooled slightly in an 

ice bucket before being measured by A620. 
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2.7.4. Coomassie blue staining 

SDS-PAGE gels were incubated with water for 5 min three times before being 

incubated for 1 h with agitation in GelCode Blue stain (Pierce). After staining, 

destaining was performed by incubating numerous times in water until background 

gel was clear. 

2.7.5. Bradford assay 

Bio-Rad Protein Assay Dye (0.2 ml) was added to a protein-containing solution (0.8 

ml) and mixed thoroughly by inversion. A595 was measured immediately and 

calibrated using known concentrations of BSA. 

2.8. Radioactive labelling, detection and analysis 

2.8.1. Autoradiography and fluorography 

Autoradiography was performed by incubating paper chromatograms or TLCs 

containing 14C-labelled moieties with Kodak BioMax MR film at room temperature. 

Fluorography was performed by dipping TLCs containing 3H-labelled moieties 

through a solution of 7% (w/v) poly(vinylpolypyrrolidone) (PPO) in (diethyl)ether 

before allowing to dry. Plates were then incubated with preflashed Kodak BioMax 

MR film in a cassette at -80°C. 

2.8.2. NaB3H4 oligosaccharide reductive radiolabelling 

To 50 MBq of 4.33 MBq μmol−1 NaB3H4 (8 μmol), 100 μl 2M NH3 followed 

immediately by ~ 0.3 mg (Glc equivalent by anthrone) of purified  Equisetum XGOs 

in 330 μl water was added. Mixture was left un-capped overnight to allow 

evaporation of ammonia. The solution was then purified by cation exchange 

chromatography. The sample was dried in vacuo and resuspended in 100 μl 

methanol/acetic acid (10:1) before being redried in vacuo again. This step was 

preformed 8 times before the sample was finally redissolved in H2O. Four distinct 

radioactive bands were subsequently isolated by preparative paper chromatography 

(BPW; fluorography) and preparative TLC (BAW; fluorography).  
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2.8.3. Radioisotope plate reader 

TLC plates were quantitatively profiled by counting on a LabLogic AR2000 

radioactivity scanner (http://www.lablogic.com/). 

2.9. Mass spectrometry 

After coomasie blue-staining an SDS-PAGE gel, protein bands were tightly cut from 

the minigel with the minimum amount of surrounding acrylamide. Gel pieces were 

stored at –20oC. Gel pieces were incubated twice in 300 µl 200mM ammonium 

bicarbonate (ABC) in 50% (v/v) acetonitrile (ACN) at room temp for 30min before 

decanting solvent – to remove SDS. Pieces were then incubated in 300 µl 20 mM 

dithiothreitol, 200 mM ABC, 50% (v/v) ACN at room temp for 1h – to reduce 

protein. Pieces were washed three times in 300 µl 200 mM ABC, 50% (v/v) ACN for 

~ 30 sec. Protein cysteines were alkylated in 100 µl 50 mM iodoacetamide, 200mM 

ABC, 50% ACN (made fresh) at room temperature in the dark for 20 min.  Pieces 

were washed three times in 500 µl 20mM ABC, 50% (v/v) ACN for ~ 30 sec. Gel 

pieces were then carefully cut into 2 x 1mm pieces, centrifuged and covered with 

ACN for 5 min until they turned white. ACN was decanted and gel pieces were 

allowed to dry. 

 

Stock solution of trypsin was prepared by adding 50 μl 50 mM ABC to a new vial of 

trypsin (Promega) at 4oC. Gel pieces were incubated in 29 μl 50 mM ABC 

containing 1 μl trypsin at 4oC. This solution was stored at 4oC until the gel swelled, 

after which the solution was incubated at 32oC for 16–24 h. Internal calibration peaks 

were created by setting up a trypsin digest blank. Samples were then sonicated for 10 

min after which peptide fragments were observed in the solution. Digests were stored 

long term at –80oC. 

For MALDI-TOF analysis, aliquots of 0.5 µl digests were mixed with 0.5 µl α-

cyano-4-hydroxycinnamic acid (Sigma) matrix on a MALDI sample plate and 

allowed to dry.  The samples were then analysed on a Voyager DE-STR MALDI-

TOF MS (Applied Biosystems).  
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For LC-MS analysis, the 5 µl desalted sample was loaded onto a HTC PAL 

autosampler (CTC Analytics, Switzerland) in series with an Agilent 1200 Series 

HPLC with a PicoTip Emitter (FS 360-100-8-N-20-C12, New Objective).  The 

PicoTip Emitter was packed with Reprosil-Pur C18-AQ 3um (Dr Maisch GmbH) to 

a length of 6.5-7.5cm.  The PicoTip column was equilibrated with solvent A (0.5% 

acetic acid in 5% acetonitrile) and eluted with a linear gradient, from 0%B over 

8min; from 0 to 60%B over 8 to 38 min; from 60 to 80% B over 38 to 45min; solvent 

B (0.5% acetic acid in 99.5% acetonitrile), over 70 min at a flow rate of 0.7 µl/min 

for the first 8min and 0.3ul/min thereafter.  Data dependent acquisition was 

controlled by Xcalibur software (ThermoScientific).  

Processed spectra were searched against the NCBI non-redundant database and an E. 

fluviatile transcriptome database using in-house licensed MASCOT software. 

2.10. Molecular biology 

2.10.1. RNA extraction  

Approximately 500 mg lateral shoot of a single E. fluviatile individual were finely 

ground in liquid N2 using a pestle and mortar and was allowed to dry before being 

thoroughly mixed with 3 ml Trizol (Invitrogen). The suspension was then 

centrifuged (12,000 g, 4ºC for 5 min) and 200 µl chloroform was added per ml of the 

extracted supernatant and mixed by shaking. The mixture was then centrifuged 

(12,000 g, 4ºC for 15 min) and the upper phase was removed to which 0.54 volumes 

of ethanol was added. The solution was then applied to a Purelink spin cartridge and 

purified as described (Invitrogen). Nanodrop analysis showed total yield was ~ 34.6 

μg. 

2.10.2. Reverse transcription 

5’ RACE templates were created using the SMART oligo system (Clontech) 1 µl (30 

µM) oligo dT, 1 µl (10mM) dNTP, 1 µl (30 µM) SMART II oligo and 600 µg RNA 

were made up to 11.5 µl with water and heated at 65ºC for 5 min before chilling on 

ice. 4 µl 5 x RT buffer, 2 µl (0.1 M) dithiothreitol. 
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2.10.3. 454 sequencing  

The transcriptome of a single late season E. fluviatile individual was sequenced using 

454 sequencing technology (Roche). Raw data was assembled using Roche Newbler 

assembler version 2.5. 

Sequencing stats: No. of raw reads   268,000 

  Mean read length   248.73 

   S Dev of read length 111.19 

  N50 read length   311  

  No. of reads in N50  91,568 

2.10.3. PCR 

Unless otherwise stated: Primers were designed to have a salt-adjusted annealing 

temperature of ~ 60ºC using OligoCalc (Kibbe 2007); standard PCR reaction 

mixtures contained 7.4 µl dH2O, 1 µl yellow buffer, 0.2 µl primer 1 (10 µM), 0.2 µl 

primer 2 (10 µM), 0.2 µl dNTPs (10 mM) and 0.4 µl 5-fold diluted Taq (diluted from 

concentrate in storage buffer; PCR reaction cycles consisted of 1 min 94 ºC, 35 

cycles of (10 sec 94ºC, 15 sec 55ºC, 30 sec 72ºC), 2 min 72 ºC. High fidelity PCR 

was performed by use of Phusion® High-Fidelity DNA Polymerase (New England 

Biolabs, USA) according to the manufacturer’s instruction. 

2.10.4. Primers used 

UpstreamFw MXE:pPICZαA (EcoRI-incorporating): GAA TTC GGT TTC TAT 

GGG GAC TTT CAG  

DownstreamRv MXE:pPICZαA (XbaI-incorporating): TCT AGA TAG AAA CCA 

CGG TTT GAG CAT T 

2.10.2. Gene cloning 

Gene cloning was performed using the pJET1.2 vector system (Fermentas) in E. coli 

(DH5α). In brief: amplicons (0.5 µl) were blunted by incubating with 5 µl 2x buffer, 

3 µl dH2O and 0.5 µl blunting enzyme at 70°C for 5 mins before resting on ice. 0.5 

μl pJET1.2 vector and 0.5 μl ligase were then added and thoroughly mixed before 

incubating at room temp for 5-10 mins. 5 μl ligation mixture was added gently to 100 
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μl thawed competent E. coli cells and incubated for 15 mins on ice. Cells were heat-

shocked at 42°C for 90 sec before returning to ice. 750 μl L-broth was added and 

cells were incubated at 37°C with constant agitation for 1 hour. Cells were pelleted 

by centrifugation at 6000 RPM, resuspended in ~100 μl of their L-broth solution, 

spread onto ampicillin Petri dishes (100 µg ampicillin/ml) and grown overnight at 

37°C. Isolated colonies were screened by applying to a PCR mix (extra 1 μl dH2O 

added) with appropriate primers. Plasmids were extracted using a QiaQuick 

Miniprep kit (QiaGen, UK). 

Primers were designed to amplify putative mature proteins (i.e. coding region 

without signal peptides) and incorporate EcoRI and XbaI restriction sites upstream 

and downstream respectively. A high fidelity amplicon was then cloned and after 

screening, four colonies were selected. Cloning vectors were extracted from these 

and inserts were extracted using EcoRI and XbaI before ligation into a pPICZαA 

vector pre-cut with the same restriction enzymes. The consensus sequence was 

created by site-directed mutagenesis by use of the QuikChange (Quickchange, UK) 

method. 

2.10.4. Recombinant protein expression (Pichia pastoris system) 

Inserts were ligated into the pPICZαA expression vector by EcoRI, XbaI forced 

ligation. pPICZαA:insert vectors were cloned in E. coli using low salt L-B (10 g 

tryptone, 5 g NaCl, 5 g yeast extract, pH 7.5 with NaOH in 1 l. For agar, 15 g l-1 

added before autoclaving) with 40 μg ml-1 Zeocin (Invitrogen). Plasmids were 

extracted from positive colonies by the use of the QuiaQuik kit (Quiagen) and 

linearised by the use of SacI. 0.1 vol. 10% (w/v) 3 M sodium acetate pH 5.2 and 2.5 

vol. ethanol was then added to the sample and the sample was incubated at -20°C for 

1 h before centrifugation. The pellet was washed with 70% (v/v) ethanol before 

being redissolved in H2O). Plasmids 0.2–2 μg were applied to Pichia pastoris strain 

SMD1168H (pep4; pre-washed, as described in pPICZαA manual; Invitrogen) and 

electroporation was performed in 1 mm cuvettes at 1.6 kV with time constants of 

4.6–5 ms. Cells were streaked on plates (10 g tryptone, 5 g NaCl, 5 g yeast extract, 

15 g agar, 20 g glucose, pH 7.5 with NaOH in 1 l, 100 μg ml-1 Zeocin). Positive 

colonies were selected and grown in liquid growth media (90% (v/v) low salt LB, 1% 
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(w/v) glycerol, 0.00004% (w/v) biotin, 100 μg ml-1 zeocin). Expression was 

stimulated by centrifugation and resuspention of the culture in expression medium 

(identical to growth medium but with glycerol replaced with 10% (v/v) methanol). 

After 24 h the culture media was harvested and assayed for endotransglycosylase 

activity. 

2.11. Nuclear magnetic resonance spectroscopy (NMR) 

Samples were initially dried in vacuo, redissolved in 2H2O and dried again before 

redissolving 2H2O. 1D CSSF–TOCSY spectra were acquired with the pulse 

sequences described by Robinson et al. (2004). The anomeric protons were inverted 

by the use of a 40-ms Gaussian pulse, while the protons of the Glcol were inverted 

with an 80-ms Gaussian pulse. The CSSF was set to yield zero excitation 60 Hz 

(residues a, e), 6.2 Hz (residues b-d), 25 Hz (Glcol(1–3)) and 15 Hz (Glcol(4–6)) 

from the chemical shift of the inverted resonance. Ten increments of the CSSF were 

acquired with 8 scans each (80 scans in total). The DIPSI-2 mixing times of 20, 40, 

80 (data not shown) and 160 ms were used. A 20-ms adiabatic pulse was applied 

concurrently with an 11% PFG (Thrippleton & Keeler 2003). Acquisition and 

relaxation times were 2.7 and 3 s, respectively, yielding the total acquisition time of 

8.5 min per spectrum. 1D CSSF–NOESY spectra (Robinson et al. 2004) were 

acquired with identical CSSF parameters as used for 1D TOCSY–CSSF spectra. A 

200-ms mixing time was used and 64 scans were accumulated in each CSSF 

increment resulting in total acquisition time of 1 h per spectrum.  

A sensitivity-enhanced multiplicity-edited echo–antiecho 1H–13C HSQC spectrum 

with adiabatic pulses (Bruker pulse program hsqcedetgpsisp2.3) was acquired with 

standard Bruker parameters. Relaxation time was 2 s, and acquisition times 160 and 

25 ms in t2 and t1, respectively, were used. Eight scans were accumulated into each 

of 1024 complex points in t1 resulting in the total acquisition time of 5 h. Identical 

parameters were used to acquire a 2D 1H–13C HSQC–TOCSY spectrum with a HH 

mixing time of 20 ms (Bruker pulse program hsqcdietgpsisp). A constant-time 2D 

HMBC experiment (Claridge & Perez-Victoria 2003; Cicero et al. 2001) with 

adiabatic pulses and two-stage low-pass J-filter (Bruker pulse program 

hmbcctetgpl2nd) was used for mapping the long-range proton–carbon correlations. 
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The spectrum was acquired with standard Bruker parameters. The low-pass filter was 

optimised for 140 and 160 Hz, the long-range correlation interval was set to 83 ms. 

Relaxation time was 1.5 s, and acquisition times 286 and 16 ms in t2 and t1, 

respectively, were used. 44 scans were accumulated into each of 768 complex points 

in t1, resulting in the total acquisition time of 18 h.          
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3. RESULTS AND DISCUSSION 

3.1. Identification of MXE/CXE gene in Equisetum fluviatile 

3.1.1. MXE purification 

MXE activity was discovered previously in crude extracts of Equisetum species (Fry 

et al., 2008a) but the identity of the enzyme which catalyses MXE was not then 

determined. Identification of this enzyme is crucial to allowing elucidation of the 

structural features which confer on it its novel substrate specificity. The stratregy I 

used to identify MXE was purification and MS/MS analysis of the native MXE 

protein from E. fluviatile coupled with concomitant transcriptomic analysis of a late 

season E. fluviatile individual. Transcriptomic analysis was necessary owing to the 

adsence of a sequenced Equisetum genome. Late seaon E. fluviatile was used owing 

to the correlation of MXE activity prevalence with tissue age (Fry et al., 2008a). 

MXE was purified from a crude E. fluviatile extract by four sequential techniques: 

differential ammonium sulphate precipitation, SEC, lectin affinity-chromatography 

and isoelectric focusing (Table 2). Preliminary analyses had showed MXE to have an 

unusually low pI of ~ 4, indicating that isoelectric focusing is a particularly useful 

purification strategy. The resultant sample was analysed by SDS-PAGE showing a 

single predominant ~ 30 kDa coomassie blue-stained protein (Fig. 5). 

Purification 
strategy 

Protein 
(mg) 

Total MXE 
activity (cpm) 

Specific activity 
(cpm mg-1 protein) 

Yield (%) Purification 

n/a (crude 
extract) 75.3 5685500 75505 100 1 

(NH4)2SO4 
precipitation 20.0 3326063 166303 59 2 

Biogel P100 
SEC 2.4 1110259 462608 20 6 

Lectin affinity 
chromatography 0.7 849348 1249041 15 16 

Isoelectric 
focusing 0.1 572631 5205732 10 69 

Table 2. Four step strategy for MXE purification MXE activity assayed by 

incubating reaction mixtures (10 µl containing 0.5% (w/v) BMLG and 50% 

(v/v) enzyme) at 25ºC for 4 h. Protein concentration was determined by use of 

the Bradford assay. 
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Fig. 5. SDS-PAGE gel analysis of purified MXE protein. Gel stained using 

Coomassie blue. M, marker ladder (sizes in kDa); MXE, purified MXE sample 

from rotofor. Arrow indicates putative MXE protein. 

3.1.2. Mass spectrometric/transcriptomic identification of MXE 

A coomassie blue-stained band was cut and subjected to in-gel trypsin digestion. 

Digestion fragments were analysed by MALDI-ToF (Fig. 6) and LC-MS (Fig. 7). 

Because there is currently no sequenced genome for an Equsietum species, the 

transcriptome of a late season E. fluviatile individual – chosen owing to the 

correlation of MXE activity with age – was sequenced by the use of 454 technology 

(Database statistics in materials and methods) and MS data was used to search the 

transcriptome for candidate genes. The two highest scoring putative partial gene 

products from the transcriptome database were partial gene sequences for XTH 

homologous proteins; collectively four fragmentation spectra matched predicted 

fragmentation spectra of in silico digestion products – three fragmentation spectra 

matched the putative partial gene product and one spectrum matched the second. 

Further, two of the ions identified as matching these genes (doubly charged m/z: 

482.3 and 774.9; corresponding to expected Mr = 962.5 and 1547.8 respectively) are 

very similar to major ions identified in the MALDI spectrum (m/z: 964.5 and 1549.7; 

Fig. 6; MS/MS fragmentation spectra shown in Fig. 7). No candidate glycan-acting 

proteins were identified by searching public databases.  

 



Thomas J. Simmons        GH16 enzymes 

 50 

 

Fig. 6. MALDI-ToF spectrum of purified putative MXE The two ions with 

apparent masses matching those of LC-MS ions in Fig. 7 are indicated by 

arrows. 

The full length sequence of the two candidate genes were identified by the use of 5’ 

and 3’ RACE from late season E. fluviatile cDNA, results showed that these were 

two parts of the same full-length gene. Having identified the gene, new primers were 

designed to enable the amplification of the DNA coding for the putative mature 

protein (i.e. total protein without signal peptide) by use of high fidelity RT-PCR and 

incorporation of EcoRI and XbaI restriction site upstream and downstream 

respectively. Following cloning of PCR products, genes A, C, F and G were 

identified as distinct MXE candidates. The consensus sequence of these genes was 

created by site-directed mutagenesis of G (Fig. 8); E. fluviatile transcriptome analysis 

provided no evidence that mutations which distinguish A, C, F and G from the 

consensus are real.  
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Fig. 7. Two LC-MS spectra and putative amino acid sequences Two (of the 

four in total) example LC-MS spectra produced by analysis of trypic digest 

fragments of the putative MXE protein. Each identified a different partial XTH 

homolog gene. The putative peptides that they encode are shown below each 

spectrum, positive ion fragment m/z values are highlighted in red. Spectrum and 

sequence (a) is shown in green, and spectrum and sequence (b) in blue, within 

the putative mature protein in Fig. 9.   
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A   GFYGDFQVEPVPDHVIIQSDSLLQLTMDKDSGGSVVSKSNYLFGYFNMKMKLISGNSAGT 60 
C   GFYGDFQVEPVPDHVIIQSDSLLQLTMDKNSGGSVVSKSNYLFGYFNMKMKLISGNSAGT 60 
F   GFYGDFQVEPVPDHVIIQSDSLLQLTMDKNSGGSVVSKSNYLFGYFNMKMKLISGNSAGT 60 
G   GFYGDFQVEPVPDHVIIQSDSLLQLTMDKNSGGSVVSKSNYLFGYFNMKMKLISGNSAGT 60 
Con GFYGDFQVEPVPDHVIIQSDSLLQLTMDKNSGGSVVSKSNYLFGYFNMKMKLISGNSAGT 
    *****************************:****************************** 

A   VTTFYIFSDEANHDEIDFEFLGNYSGDPYLLHTNIFASGVGNREQQFFLWFDPTADFHDY 120 
C   VTTFYIFSDEANHDEIDFEFLGDYSGDPYLLHTNIFASGVGNREQQSFLWFDPTADFHDY 120 
F   VATFYIFSDEANHDEIDFEFLGNYSGDPYLLHTNIFASGVGNREQQFFLWFDPTADFHDY 120 
G   VTTFYIFSDEANHDEIDFEFLGNYSGDPYLLHTNIFASGVGNREQQFFLWFDPTADFHDY 120 
Con VTTFYIFSDEANHDEIDFEFLGNYSGDPYLLHTNIFASGVGNREQQFFLWFDPTADFHDY 120 
    *:********************:*********************** ************* 

A   TIIWNPQQILFLVDGRAVRSFPNNEAIGVPYLKSQWMNVHLSLWNGETWATLGGLRRIDW 180 
C   TIIWNPQQILFLVDGRAVRSFPNNEAIGVPYLKSQWMNVHLSLWNGETWATLGGLRRIDW 180 
F   TIIWNPQQILFLVDGRAVRSFPNNEAIGVPYLKSQWMNVHLSLWNGETWATLGGLRRIDW 180 
G   TIIWNPQQILFLVDGRAVRSFPNNEAIGVPYLKSQWMNVHLSLWNGETWATLGGLRRIDW 180 
Con TIIWNPQQILFLVDGRAVRSFPNNEAIGVPYLKSQWMNVHLSLWNGETWATLGGLRRIDW 180 
    ************************************************************ 

A   NSAPFVASYSTFVGDSCFDSADSPCMAPKWWNQAAYQSLSTSDAGSIQWVRENYLKYDYC 240 
C   NSAPFVASYSTFVGDSCFDSADSPCMASKWWNQAAYQSLSTSDASSIQWVRENYLKYDYC 240 
F   NSAPFVASYSTFVGDSCFDSADSPCMASKWWNQAAYQSLSTSDASSIQWVRENYLKYDYC 240 
G   NSAPFVASYSTFVGDSCFDSADSPCTASKWWNQAAYQSLSTSDASSIQWVRENYLKYDYC 240 
Con NSAPFVASYSTFVGDSCFDSADSPCMASKWWNQAAYQSLSTSDASSIQWVRENYLKYDYC 240 
    ************************* *.****************.*************** 

A   YDTKLYPNGFPRECSNRGF 259 
C   YDTKLYPNGFPRECSNRGF 259 
F   YDTKLYPNGFPRECSNRGF 259 
G   YDTKLYPNGFPRECSNRGF 259 
Con YDTKLYPNGFPRECSNRGF 259 
    ******************* 

Fig. 8. ClustalW alignment of the four isoforms of the putative mature 

MXE proteins Sequences A, C, F and G were directly amplified from E. 

fluviatile cDNA. The consensus sequence was created by site-directed 

mutagenesis of G. These sequences were inserted into P. pastoris for 

recombinant expression. The four peptide fragments identified from MS/MS 

data are highlighted in blue, red, green and by underlining. 

3.1.3. Transient expression of MXE candidate 

All five candidate genes were inserted into the pPICZαA pichia expression vector 

and the resultant vector was used to transform P. pastoris (SMD1168H) from which 

expression was induced. A high expressing line was identified by MXE reaction 

analysis of crude cell medium. A large batch of cell medium from this line was 

subjected to Nickel affinity chromatography (IMAC) and assayed for MXE and XET 

activity (Fig. 9). The ratio of MXE : XET (~3) is typical of that observed for the 

endogenous purified MXE protein (Fig. 17; Fig. 32) and distinguishes MXE from 

other XTHs which typically have a ratio of far less (<<0.1; e.g. Hrmova et al. 2007). 
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Fig. 9. MXE and XET activity in P. pastoris recombinantly-expressed 

enzyme A P. pastoris culture was transformed with pPICZaA vector containing 

the consensus putative MXE gene (Fig. 8). Following induction of gene 

expression, the cell medium was purified by IMAC. Reaction mixtures (13.3 µl) 

containing 0.75% (w/v) BMLG or tamarind xyloglucan and 25% (v/v) purified 

enzyme were incubated for 6 h at 25ºC. Data are the average of three reactions 

± standard error. 

3.1.4. Phylogenetic relationship between MXE and other, functionally related, 

GH16 enzymes 

Homology comparison of MXE and other members of the GH16b subfamily, 

including three bacterial lichenases and all A. thaliana XTHs showed MXE to be a 

member of the XTH subfamily Group I/II (Fig. 10). This group is known otherwise 

to be composed of ‘standard’ XTHs and contains no enzymes with significant XEH 

activity (Rose et al., 2002). There is nothing from the phylogenetic tree here which 

suggests that MXE is in any way an unusual XTH subfamily member. 
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Fig. 10. Rooted cladogram showing relationship between MXE and other 

GH16b subfamily members Sequences aligned by use of ClustalW 

(http://www.bioinformatics.nl/tools/clustalw.html) with the Gonnet weight 

series. Bootstrap values (created using 1000 replicates) are displayed. 

Cladogram created using interactive tree of life (http://itol.embl.de). Clading 

annotation (XTH groupings I/II, III-A and III-B) according to Eklöf et al. 

(2013).  
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3.2. MXE substrate specificity 

Elucidation of enzyme substrate specificities can hugely improve our understanding 

of how protein structure affect enzyme : carbohydrate interactions. This is 

particularly pertinent to the study of MXE, due to its already known unique substrate 

preferences. While the substrate specificity of MXE has been probed to some extent 

(Fry et al. 2008a), there remains much scope for further analyses. For example, it is 

highly likely that MXE exhibits a preference for the type of substrate native to 

Equisetum. Given that Equisetum MLG and xyloglucan are unique/highly unusual 

structures (see 1.3.1. and 1.3.2. for descriptions) these substrates were purified from 

Equisetum in order to enable deeper probing of MXE’s substrate specificities. 

3.2.1. Preparation of authentic E. arvense MXE substrates 

MLG and XGOs were purified from E. arvense lateral shoots and the purity of the 

Equisetum arvense MLG (EaMLG) sample was assessed by four hydrolytic 

methods: TFA, driselase, XEG and lichenase. These showed that the sample was a 

fraction of soluble polysaccharide material rich in EaMLG with no detectable 

contaminating polysaccharides (Fig. 11). The sample was stored at −20°C in an 

aqueous solution and thoroughly boiled before further use. To demonstrate the 

structural distinction between MLG and xyloglucan from E. arvense and those from 

other species, three different MLGs (E. arvense, barley and Iceland moss) and 

tamarind xyloglucan was subjected to enzymic hydrolyses. These, as well as the 

purified EaXGOs, were compared by TLC (Fig. 12). Consistent with previous 

reports (Fry et al., 2008b) there is a decreasing tetramer content moving from 

Equisetum to barley to Iceland moss MLGs. EaMLG is shown to be constructed 

predominantly from tetramer units, barley MLG has a slight predominance of trimer 

over tetramer, these two being its main constituent subunits. Finally, Iceland moss 

MLG is composed largely of trimer also, but has significantly more pentamer than 

tetramer. In addition, a band which did not match to any of the standard MLGOs was 

prevalent in EaMLG (see 3.6.). The pattern of XGOs produced by XEG digestion of 

Equisetum xyloglucan is shown to be distinct from that of tamarind xyloglucan; this 

again is consistent with previous reports (Peña et al., 2008). EaXGOs were 

reductively tritiated producing [3H]XGO-ols and, after purification by preparative 
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paper chromatography were shown on preparative TLC to contain 6 distinct bands 

who migrated in comparison to [3H]XXXGol with what would be expected of 

Equisetum [3H]XGO-ols. Each was eluted from TLC and quantified by scintillation 

counting and tested for purity by TLC fluorography (Fig. 13). Results (Fig. 14) 

suggest a high degree of purity, though because this TLC analysis was performed 

using the same solvent as the purification it is unable to assess the purity of co-

migrating [3H]EaXGO-ols. 
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Fig. 11. Demonstration of purity of EaMLG fraction TFA (a) and driselase 

(c) (both analysed by paper chromatography) and XEG and lichenase (b) 

(analysed by TLC) hydrolyses. M, marker mix; X, XEG; L, lichenase; B, XEG 

and lichenase sequentially; N, no enzyme; BMLG, barley MLG. 
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Fig. 12. Comparison of three MLGs and two xyloglucans TLC analysis of 

the subunit composition of three different types of MLG (post lichenase 

digestion; left) and two different types of xyloglucan (post XEG digestion; 

right). M, maltose oligosaccharide markers; polysaccharide substrate sources: 

Ea, E. arvense; B, barley; IM, Iceland moss; T, tamarind; NS, no substrate; 

xyloglucan nomenclature scheme described by Fry et al. (1993).  
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Fig. 13. [3H]EaXGO-ol preparative TLC-purification (a) Nine (1–9) [3H]-

labelled oligosaccharitol fractions resolved from each other during TLC and 

were detected by fluorography. Cold XGO and malto-oligosaccharide markers 

were thymol-stained. XGO, tamarind xyloglucan digestion products. (b) 

Amount of radioactivity eluted in each fraction. 
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Fig. 14. Purity of [3H]EaXGO-ols Nine [3H]EaXGO-ols and six other 

structurally characterised [3H]XGO-ols were resolved by TLC (BAW; four 

ascents) and detected by fluorography. 

3.2.2. Preparation of non-native MXE substrate candidates 

In order to thoroughly probe the substrate specificity of the MXE enzyme, other 

[3H]-labelled oligosaccharides were produced. [3H]GXXGol was created by α-

xylosidase digestion of [3H]XXXGol followed by preparative paper chromatography 

purification. [3H]GGXXXGol was created by sequential MXE:lichenase treatments 

(see 3.3.1.). To test the purity of these candidate substrates, all resolved by TLC and 

detected by fluorography and thymol-staining (Fig. 15).  Most oligosaccharitol 

samples were largely if not completely radiochemically pure. All [3H]MLGO-ol 

samples were, as expected, composed of multiple bands. A minor amount of thymol-

stainable material was present in some samples, indicating either chemical impurity 

or low specific activity. At the time of writing, these purified 3H-labelled 

oligosaccharitols had yet to be tested as substrates. 
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Fig. 15. Purity of other 3H-labelled oligosaccharitols Moieties in solutions 

containing 0.5 kBq of 13 3H-labelled oligosaccharitols were resolved by TLC 

and detected by fluorography (a) and thymol staining (b).  

3.2.3. MXE donor substrate specificity analysis 

Purified E. arvense MLG as well as the commercial barley and Iceland moss MLGs 

were used to probe the donor substrate specificity of MXE from an E. fluviatile crude 

enzyme extract. With regard to maximum reaction rate, E. arvense MLG is clearly a 

far better substrate that BMLG, which was in turn far better than IMMLG. Because 

of the variation in tetramer content between the three MLGs 

(IMMLG<BMLG<EaMLG), this observation is consistent with the hypothesis of Fry 

et al. (2008a) that the tetrameric MLG subunit is the target structure for MXE, 

although Fry et al. (2008a) actually reported no activity against IMMLG. The 

affinity of MXE for BMLG (Km 3.1–3.4 mg ml-1) is consistent with the measurement 

of Fry et. al. (2008a), and the higher affinity (Km 2.0 mg ml-1) for EaMLG is again 

supportive of the hypothesis that the tetrameric MLG subunit is the target structure 

for MXE. However, the higher still affinity of MXE for IMMLG (Km 1.4 mg ml-1), 

which has the lowest tetramer content of all three, suggests this understanding of the 

target structure of MXE may be too simplistic. It is possible that the low solubility of 

IMMLG limited the reaction rates at high substrate concentrations. The result of this 

would be artificially low Vmax and Km values. Nonetheless, because the Vmax when 

IMMLG is used as the donor is so low (2.4 Bq h-1, compared to 14.0 and 19.2 for 
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BMLG and EaMLG respectively) increasing tetrameric content appears to play a 

positive role on MXE activity. 

 

 

 

 

 

 

Fig. 16. Reaction profiles and enzymological constants of MXE using three 

structurally distinct donor substrates Duplicate reaction mixtures (12 μl) 

containing 25% (v/v) E. fluviatile crude enzyme extract, 0.52 μM (0.5 kBq) 

[3H]XXXGol and 0–5.6 mg ml-1 MLG (E. arvense, barely or Iceland moss) 

were incubated at room temperature for 0 (acid added before enzyme), 1, 2 and 

4 hours. Thus data points are calculated from 8 readings ± standard error. 

Horizontal lines at far right, Vmax values; vertical lines from bottom, Km values. 

3.2.4. MXE acceptor substrate specificity analysis 

3.2.4.1. Equisetum MXE and XET acceptor substrate specificity toward 

[3H]EaXGO-ols 

In order to assess the acceptor substrate specificity of MXE toward Equisetum-

derived XGOs and to compare this specificity to that of XTHs from Equisetum, 

preparations of Equisetum MXE and XTHs needed to be created. An E. fluviatile 

crude enzyme extract was subjected to fractionation by isoelectric focusing  using pH 

3–5 ampholytes and fractions were assayed for MXE and XET activities in addition 

to measuring the pH (Fig. 17). As shown previously, MXE activity was found in 

fractions around pH 4 while XET activity cofractionated with MXE in fractions 

around pH 4 but was also found alone in neutral pH fractions (enzyme fraction C). 

However, during this fractionation experiment two distinct MXE- (and XET-) 
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containing peaks resolved, one peaked at ~pH 3.7 (fraction A), the other at pH 4.2 

(fraction B); I was unable to repeat the resolution of MXE activity (peaks A and B) 

in later experiments. Purified [3H]EaXGO-ols were used to probe MXE acceptor 

substrate specificities of fractions A and B as well as the XET acceptor substrate 

specificities of fractions A, B and C (Fig. 18). The acceptor substrate specificities 

exhibited toward [3H]EaXGO-ols by fractions A and B were almost identical and so 

results are shown cumulatively as fraction AB. MXE and XET activities have 

distinct patterns of substrate preference for different XGO-ols. MXE-containing 

fractions AB exhibited a distinct preference for those [3H]EaXGO-ols which 

migrated faster on TLC with decreasing preference to those with lower mobility. In 

contrast, with the exception of [3H]EaXGO-ol 9, fraction C, which contained XET 

activity alone, favoured oligosaccharides which migrated less on TLC, preferring 

[3H]EaXGO-ol 8 above all. Similar patterns were observed for the stock [3H]XGO-

ols where, but for [3H]XXFGol, fraction C’s activity was highest on the substrates 

which migrated slowest on TLC. Fractions A/B didn’t favour these. Based on the 

observations of Fry et al. (2008a) and the presumed identity of [3H]EaXGO-ol 3 as 

[3H]XXXGol, fraction A/B was expected to be more active when using [3H]XXXGol 

relative to others. The apparent low activity was the product of the use of a low 

specific activity sample of [3H]XXXGol. Interestingly the acceptor substrate 

specificity of fractions AB varied depending on whether MLG or xyloglucan was 

used as the donor substrate. For example, fraction AB’s preference for [3H]EaXGO-

ol 8 doubled when xyloglucan was used as the donor. This presumably indicates that 

the conformation of the acceptor binding portion of MXE’s active site is sensitive to 

the type of polysaccharide bound to MXE during the intermediate step of the two-

step transglycosylase reaction.  
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Fig. 17. Isoelectric fractionation of MXE- and XET- active enzymes from 

an E. fluviatile crude enzyme extract Reaction mixtures (12 μl) containing 

17% (v/v) rotofor fraction, 0.78 μM (0.75 kBq) [3H]XXXGol and 6.7 mg ml-1 

BMLG or TXG were incubated at room temperature for 3.5 hours. Data are 

corrected counts from single measurements ± counting error.   

 

 

 

 

 

 

Fig. 18. Relative rate of reaction for MXE activity and for XET activity 

from two sources Results shown are calculated from the average of triplicate 

measurements ± standard deviation. 0.1 kBq [3H]EaXGO-ols, 0.4 kBq other 

[3H]XGO-ols or ‘no acceptor’ controls were dried in vacuo. [3H]EaXGO-ols 

were redissolved in 32 μl 0.75% (w/v) BMLG 50% (v/v) enzyme solution. 

[3H]XGO-ols and ‘no acceptor’ controls were redissolved in 6 μl 0.2% (w/v) 

TXG, 50% (v/v) enzyme solution. Reaction mixtures were incubated at 25ºC for 

4 hours. Fraction A/B is the cumulative of the results yielded from enzymes 

fractions A and b in Fig. 17; Acceptor substrate 3–9 are Equisetum [3H]XGO-

ols as labelled in Fig. 13 and 14.  
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3.3. Identification of the nature and location of the bonds broken and formed 

during the MXE reaction. 

A better understanding of MXE’s site of attack of its substrates would further our 

understanding of its mode of recognition of its substrates and would allow further 

comparison of MXE with related enzymes (e.g. lichenases and XTHs) for with these 

details are understood. I sought here to investigate MXE’s site of attack. Site of 

attack was construed here both locally (the position of the cleavage site relative to 

the (1→3)(1→4) bond pattern) and globally ( the position of the cleavage suite 

relative to the termini). Both provide interesting insights into the enzymology of 

MXE and may prove crucial to indentifying its role in vivo. 

3.3.1. Identification of the local site of MLG cleavage during MXE activity 

MXE’s site of attack on MLG, like that of other MLG-cleaving enzymes (lichenase, 

Planas, 2000; cellulase, Grishutin et al., 2006), is likely to be sensitive to the local 

position of β-(1→3) bonds. However, MXE cannot be as specific to β-(1→3) bonds 

as lichenase is; because MXE can catalyse XET activity, it is evidently capable of 

accommodating β-(1→4) bonds between all subsites, lichenase, in contrast, will 

never cleave a β-(1→4)-D-glucan.  

Because the site of attack of lichenase on MLG is known (Planas, 2000), lichenase 

digestion of the MXE product should yield a radioactive product whose structure is 

diagnostic of the site of attack of MXE on MLG. To investigate MXE’s site of attack 

using this strategy, the MXE reaction product (created using [3H]XXXGol as the 

acceptor substrate and washed free of unincorporated acceptor) was subjected to 

lichenase digestion, before a single 75% (v/v) ethanol-soluble 3H-labelled product, 

which migrated behind [3H]XXXGol, was purified by preparative TLC. Graded β-D-

glucosidase treatment (Fig. 19) showed this radioactive moiety broke down via a 

single intermediate to [3H]XXXGol. This indicates that the radioactive moiety is 

composed of [3H]XXXGol with two β-D-Glc residues attached, most probably 

attached consecutively. As the exact manner in which these residues are bound was 

at this point still unknown, the nonasaccharide was termed [3H](Glc)2·XXXGol, 
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where ‘·’ is an unknown bond(s) linking the two Glc residues to any residue in 

[3H]XXXGol. 

XXXGol

Glcn–1•XXXGol

Glcn•XXXGol

origin
0      7.5      15      30      60     120    240
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Fig. 19. Determination of glucosyl tail length in [3H](Glc)n·XXXGol Graded 

digestion of [3H]Glc2·XXXGol by β-D-glucosidase via a single intermediate to 

[3H]XXXGol. Products resolved by TLC (BAW, 2 ascents) and detected by 

fluorography. [3H]Glc2·XXXGol created by incubating 0.5 μM (60 kBq) 

[3H]XXXGol, 0.4% (w/v) BMLG, 33% (v/v) E. fluviatile crude extract at room 

temperature for 17 h, before precipitating with 75% (v/v) ethanol and washing 

free of unincorporated [3H]XXXGol. The pellet was then redissolved and 

digested with lichenase and products purified by preparative TLC.  

To identify the nature of the unknown bond(s), [3H](Glc)2·XXXGol was digested 

with three β-(1→4)-D-glucan endohydrolases: cellobiohydrolase and two cellulases, 

one capable (cellb) and one incapable (cella) of digesting xyloglucan (Fig. 20). Both 

cellobiohydrolase and cellb were able to digest [3H](Glc)2·XXXGol to [3H]XXXGol. 

Graded digestion of [3H](Glc)2·XXXGol with cellb showed breakdown of 

[3H](Glc)2·XXXGol to [3H]XXXGol occurred without intermediate, confirming that 

the two Glc residues are removed, and thus linked, together (Fig. not shown). 

Because of the known substrate specificity of the three enzymes capable of 

degrading [3H](Glc)2·XXXGol to [3H]XXXGol, the most fitting structure of 

[3H](Glc)2·XXXGol is:  
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                D-Xyl-α     D-Xyl-α   D-Xyl-α 
                  A           B       (1→6)       (1→6)            (1→6) 
D-Glc-β-(1→4)-D-Glc-β-(1→4)-D-Glc-β-(1→4)-D-Glc-β-(1→4)-D-Glc-β-(1→4)-D-Glcol 

hence [3H]GGXXXGol. To test the hypothesised nature of the bond labelled A, a 

cellb digest of (Glc)2·XXXGol was spiked with disaccharides and analysed by 

HPAEC. Spiking allowed unambiguous distinction between cellobiose and 

gentiobiose, indicating (Glc)2·XXXGol broke down to XXXGol and cellobiose (Fig. 

21). This confirmed that the bond marked A is indeed a β-(1→4)-bond; thus 

[3H](Glc)2·XXXGol could be termed [3H]GG·XXXGol. For this product to be 

yielded from sequential MXE : lichenase treatments, MXE must have cleaved its 

donor MLG substrate three bonds following (in reducing terminal direction from) a 

β-(1→3) bond and, as such, the β-(1→3) bond must have linked the residues 

occupying subsites -4 and -3 of MXE’s active site (Fig. 22).  
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Fig. 20. Endo-cleavage of glucosyl tail from [3H](Glc)2·XXXGol by the use 

of three β-(1→4)-D-glucan endohydrolases Endohydrolase products resolved 

by TLC (BAW, two ascents) and detected by fluorography and thymol staining. 

Abbreviations used: NE, no enzyme; cbh, a cellobiohydrolase (from T. 

longibrachiatum); cella, a cellulase incapable of digesting xyloglucan (from A. 

niger); cellb, a cellulase capable of digesting xyloglucan (from T. 
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longibrachiatum); cell4, cellotetraose; MLG, mixed-linkage glucan; XyG, 

tamarind xyloglucan.  
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Fig. 21. HPAEC analysis of products of cellb digestion of 

[3H](Glc)2·XXXGol [3H](Glc)2·XXXGol was analysed alone (a), following 

cellb treatment (b) and following cellb treatment with cellobiose (c) and 

gentiobose (d). Five markers were also separately applied (e). Large batch MXE 

product was created by incubating 1.5% (w/v) BMLG, 0.25% (w/v) 

chlorobutanol, 50% (v/v) E. fluviatile crude extract, 100 μg (2 kBq) XXXGol in 

7.5 ml for 6 days at 25°C with constant agitation. There was 63.5% 

incorporation of radioactivity into 75% (v/v) ethanol-insoluble material. After 

lichenase digestion of this pellet, 75% (v/v) ethanol-soluble lichenase products 

were purified by SEC (Biogel P-2 column 3), preparative TLC and preparative 

HPLC. 
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Fig. 22. Identification of the bond initially cleaved by MXE activity 

Identification of the bond cleaved by MXE given that sequential 

MXE:lichenase treatments yield [3H]GG·XXXGol. Numbers and braces in grey 

indicate MXE subsite occupant identities required for MXE cleavage at the 

specific point; arrows indicate site of cleavage. 

However, it was unclear at this point whether this apparent specificity is inherent to 

MXE in general or a combined product of MXE’s preferred site of attack and of the 

structure of barley MLG. To test this, MXE products were created using E. arvense, 

barley and Iceland moss MLGs and all three products were washed free of 

unincorporated acceptor substrate and subjected to lichenase digestion (Fig. 23). 

Digestion of all MXE products yielded [3H]GG·XXXGol, no other radioactive 

moieties were detected. The sole production of [3H]GG·XXXGol from MXE 

products using such structurally distinct MLGs indicates that it is a requirement for 

MXE activity that a β-(1→3) bond links residues occupying subsites -4 and -3, and 

β-(1→4) bonds linking residues occupying other negative subsites. This specificity 

distinguishes MXE from its GH16b subfamily co-member (Strohmeier et al., 2004) 

lichenase which requires that a β-(1→3) bond links residues occupying subsites -2 

and -1. If, as substrate specificity work suggests (Fig. 16), MXE targets cellotetraose 

units specifically, it must also require that a β-(1→3) bond links residues occupying 

subsites +1 and +2 Surprisingly then, MXE may, with regard to site of attack, be 

more similar to the cellulase characterised by Grishutin et al. (2006) – which requires 

a β-(1→3) bond between subsites +1 and +2 – than to lichenase. Finally, despite 

MXE’s observed specificity to the linkages constituting the backbone of its glucan 
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substrate, because this single enzyme can catalyse both MXE and XET activity, 

many of its active site’s subsites must also be capable of accommodating 

substitutions to this backbone, which MLG lacks but xyloglucan exhibits. 
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Fig. 23. Identification of the site of MXE cleavage of structurally dissimilar 

MLGs MXE products created by incubation of reaction mixtures (20 μl) 

containing 5, 10 and 15 kBq [3H]XXXGol (84 MBq μmol-1) with 0.3% (w/v) E. 

arvense (E), barley (B) and Iceland moss (IM) MLG respectively and 50% (v/v) 

E. fluviatile crude extract for 16 h at 25ºC. 75% (v/v) ethanol-insoluble products 

were then digested with lichenase; lichenase products were resolved by TLC 

(BAW, two ascents) and detected by fluorography (a) and thymol-staining (b).   

3.3.2. Testing the nature of the bond created by MXE 

To test the hypothesised nature of the bond created during the MXE reaction (bond 

B) – a β-(1→4) bond to the non-reducing terminal Glc residue in XXXGol – I 

exploited the fact that, regardless of the length of a xyloglucan, the only free O-4 

Group is at the non-reducing terminus. To exploit this, the reductively tritiated 
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xyloglucan ‘subunit dimer’ [3H]XXXGXXXGol ([3H]DP14ol; specific activity 1.6 

MBq µmol-1) was used as an acceptor substrate for MXE activity. Polymeric MXE 

product was then digested by lichenase before a single radioactive product was 

purified by SEC (Biogel P-2 column 2). XEG digestion of both the recovered 

radioactive product (presumed to be [3H]GG·XXXGXXXGol; [3H]DP16ol) and 

[3H]DP14ol yielded a single radioactive moiety which migrated with [3H]XXXGol 

(Fig. 24a). This indicates that MXE attached MLG to the non-reducing terminal 

heptasaccharide subunit alone (Fig. 24b), which provides further support for its 

hypothesised β-(1→4) nature.  

 

Fig. 24. Determination of which of the two subunits of XXXGXXXGol 

MLG is attached to during MXE activity a) [3H]GG·XXXGXXXGol 

(DP16ol), [3H]XXXGXXXGol (DP14ol) and tamarind xyloglucan (TXyG) 

before (-) and after (+) XEG treatment. Reaction mixtures (1 ml) containing 15 

kBq [3H]DP14ol, 0.75% (w/v) BMLG and 50% (v/v) E. fluviatile crude extract 

was incubated at 25ºC for 72 h after which 46% of radioactivity was shown to 

be incorporated into 75% (v/v) ethanol-insoluble material. This product was 

redissolved and digested with lichenase. The single radioactive moiety created 

was purified by SEC Products resolved by TLC (BAW, two ascents); the 

portion containing the radioactive oligosaccharides was fluorographed while the 

portion containing the unlabelled TXyG digestion was thymol-stained. b) 
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Schematic representation of the experimental strategy indicating products that 

would be formed during successive enzymatic treatments for attachment of 

MLG to either of the two subunits of XXXGXXXGol. Dashed boxes surround 

radioactive moieties; radioactive symbol behind radioactive residue; TXyG, 

tamarind xyloglucan; +/-, without and without XEG digestion; M, starch marker 

ladder. 

3.3.3. Identification of the global site of MLG cleavage during MXE activity 

As well as exhibiting specificity for the site of MLG cleavage within the local repeat 

unit structure of MLG subunits, it is also possible that MXE might exhibit specificity 

or preference for the site of MLG cleavage construed globally – i.e. MXE may prefer 

to cleave MLG a defined distance from either of the termini. Alternatively, MXE 

may cleave MLG stochastically when construed globally. Differences in MLG site of 

attack construed globally would have dramatic effects on the role of MXE in vivo, 

and would produce diagnostic ranges of product sizes which could be resolved by 

SEC (as done with XETs by Steele et al., 2001) and thereby be assessed. To test this, 

a size-homogenous sample of barley mixed-linkage glucan (termed HBMLG) was 

created by SEC (CL-6B; Fig. 25) and used as a substrate for MXE activity. MXE 

reaction products were fractionated by SEC (CL-6B) and fractions were assayed for 

hexose and radioactive content (Fig. 26). The donor substrate profiles were 

unchanged during the incubation, indicating the absence of any contaminating 

endohydrolases which might otherwise complicate the discussion. As expected, the 

amount of radioactive product increased from 0–8 h. The fact that the size range of 

radioactive product encompasses sizes equal to the maximum size of the donor 

substrate and is a far greater range than the range of the donor substrates indicates 

that MXE does not exhibit a preferred site of attack at any defined distance from 

either MLG termini. At this point, the donor substrate profile (detected by use of the 

anthrone assay: total hexose) is currently a mass profile and the product profile 

(detected by tritium labelling, with one label per molecule) is a molar profile. To 

allow a direct comparison between the two, the mass profiles of the donor substrates 

were (converted) into molar profiles (Fig. 26) as described previously (Steele et al., 

2001). 
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Fig. 25. Column calibration and creation of a size-homogenous BMLG 

fraction (HBMLG) using SEC (Sephadex CL-6B) (a) Calibration of a 

Sephadex CL-6B column using dextran and 3H2O, indicating void (Kav 0) and 

total included (Kav 1) volumes of the column respectively. (b) Elution spectra of 

a commercial barley MLG sample (BMLG) and a partially size-homogenised 

barley MLG sample (HBMLG’). Three 10 ml 0.625% (w/v) barley MLG 

solutions (BMLG) were fractionated by SEC and fractions within the region Kav 

0.2–0.3 (fractions 33-37) were pooled for all three and re-run through the 

column (HBMLG’). Fractions in the region Kav 0.2–0.3 were again pooled and 

were named ‘size homogenous barley mixed-linkage glucan’ (HBMLG, not 

shown here). HBMLG had an anthrone Glc equivalent hexose mass of 16.0 mg.  
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Fig. 26. Sepharose CL-6B chromatography of substrate and products of 

MXE using size-homogeneous mixed-linkage glucan as the donor substrate 

Analysis of 3H-labelled transglycosylation products formed by the action of 

semi-purified MXE from E. fluviatile on size-homogenous BMLG (HBMLG). 

E. fluviatile crude extract was fractionated in 10% (w/v) ammonium sulphate 

‘cuts’. Reaction mixtures (250 µl) containing 1.5 µM (37.5 kBq) [3H]XXXGol, 

0.8% (w/v) HBMLG and 17.6% (v/v) ammonium sulphate precipitated MXE 

were incubated for 0 (acid added before enzyme), 2, 4 and 8 h at 20°C.  Hexose 

reading data (Hex 0–480, grey lines) are the average of quadruplicate 

measurements; radioactive data (RA 0–480, black lines) are the average of 

duplicate measurements. The small amount of radioactive product created at 0 h 

must have been catalysed during incubation after the addition of acetic acid. 

The molar profile of the non-radioactive, size-homogeneous BMLG (HBMLG) 

is shown for comparison on an arbitrary scale. 

To aid analysis of the size ranges of the MXE substrates and products data were 

plotted cumulatively (Fig. 27). To avoid confusion of MXE products with 

unincorporated acceptor substrate ([3H]XXXGol), only fractions 23–53 were include 

in this cumulation. This method shows the median substrate size to be ~200 kDa 

while the median product size was ~100 kDa. This, coupled with the fact that the size 

range of products is greater than the size range of the substrates, indicates that, when 
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site of cleavage is construed globally, MXE cleaves its substrate stochastically. In 

this respect MXE appears to operate an identical mechanism to the majority of XTHs 

(Nishitani & Tominaga, 1992; Steele et al., 2001), though some XTHs are able to 

‘measure’ the length of their donor substrates and discriminate accordingly (Tabuchi 

et al., 1997).  

To further investigate the mechanism of MXE attack, two hypotheses were 

envisaged (described in Steele et al., 2001): (1) MXE selects its substrates by size (a 

200 kDa MLG is twice as likely to be selected as a 100 kDa MLG, if both are 

equimolar); (2) MXE selects its substrates by molarity (a 200 kDa MLG is equally 

likely to be selected as a 100 kDa MLG, if both are equimolar). Models of expected 

cumulative product size distributions were computed and plotted with the observed 

cumulative substrate/product size distributions to enable comparison. When this 

methodology was performed on XTHs, Steele et al. (2001) showed that the profile of 

XET reaction products fitted best with the first model. Curiously, the profile of MXE 

reaction products shown here fits best with the second model; it is difficult however, 

to conceive of how MXE might stochastically select its substrate with regard to 

molarity and yet stochastically cleave its substrate with regard to size. 

 

Fig. 27. Mr distribution of 3H-labelled products formed by MXE The curves 

are calculated from the data in Fig. 26. Red lines represent the products formed 
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after 2, 4 and 8 h incubations (product profiles); each consists of 63 data points 

joined by straight lines. The black line shows the mean molar profile of the non-

radioactive MLG donor substrates (donor profile). The two predicted 

distributions, ‘molar prediction’ and ‘mass prediction’, are Mr distribution 

predictions were MXE to select its substrate with regard to molarity or total 

mass as described in test. Data for the x-axis were calculated from the Kav 

values in Figure 25 using the calibration curve shown in Steele et al. (2001). 

Observed MXE product sizes are expected to diverge from predicted ones at 

lower Mr values because only fractions 23–53 from Fig. 26 were incorporated 

into the cumulation. 
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3.4. Presence of MXE in other species and tissues 

While MXE has been found to appreciable extents in lateral shoot crude extracts of 

Equisetum alone, its presence in different Equisetum tissues had yet to be assessed. 

Similarly, while MXE activity is undetectable in crude extracts from athoer species, 

the possibility that inextractible MXE is a constituent of the cell walls of other 

species had also not been investigated. To assess this, crude enzyme extracts from E. 

arvense strobili were prepared for standard endotransglycosylase assays and, 

separately, a novel assay to assess endotransglycostylase action in vivo (cf. activity in 

vitro) was developed.  

3.4.1. Presence of extractible MXE activity in E. arvense strobili crude extracts 

To test whether MXE was an appreciable constituent Equisetum strobili 

(reproductive organ) tissue, crude extracts of late season E. fluviatile lateral shoots, 

E. arvense strobili and E. arvense strobili lateral stalk were assayed for MXE and 

XET activities (Fig. 28). Neither strobili nor strobili stalks contained appreciable 

MXE activity, though both contained XET activity. E. fluviatile lateral shoots, as 

expected contained both MXE and XET activities, with the latter predominating. A 

confounding factor in the assessment of E. arvense strobilus enzyme constitution is 

the fact that the tissue rapidly becomes dry. As such, the assessment of the enzyme 

constitution may be hindered by protein degradation during this drying process. 

Nonetheless, any such degradation would be expected to occur similarly to XET- and 

MXE-active enzymes and thus MXE must still be a relatively minor component of 

strobili. 
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Fig. 28. Extractable endotransglucosylase activities from E. arvense 

vegetative and reproductive tissues Total extracts from mature E. arvense 

vegetative shoot, strobilus and strobilus stalk were assayed for MXE and XET 

activities with four time points (0–4 h). 

3.4.2. Presence of MXE action in various barley tissues 

To investigate the hypotheses that barley might contain inextractible MXE-active 

enzymes and/or enzymes which only catalyse MXE to a significant extent in situ, an 

assay which is able to assess MXE reaction in vivo – i.e. MXE action (cf. MXE 

activity in vitro) – was devised. Freshly cut pieces of tissue from 13 different barley 

organ samples (Fig. 29) were thinly sliced and incubated in aqueous [3H]XXLGol 

before endogenous hemicelluloses were extracted and either digested with lichenase 

or XEG, or left undigested. 75% (v/v) ethanol-soluble products were analysed by 

duplicate TLCs: one was cut and assayed for radioactivity (Fig. 30), the other was 

thymol-stained to show total oligosaccharides produced from endogenous 

polysaccharides (Fig. 31). By this method, both MXE and XET action were assayed 

concurrently under natural conditions, and without the potential shortfalls of an in 

vitro assay, such as glycosylation differences (heterologously expressed proteins) or 

artificially-buffered pH. Also, because both MXE and XET actions are assayed 

simultaneously, they are directly comparable within an individual sample, 

eliminating biological variability.  

While XEG was able to release 3H-labelled oligosaccharides from the hemicelluloses 

of all barley organs tested, it released significantly more from the younger ones. This 
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corroborates with previous understandings that, though XET is ubiquitous 

throughout the plant, it is more prevalent in younger tissues (Fig. 30). As lichenase 

was unable to release appreciable amounts of 3H-labelled oligosaccharides from any 

organs, MXE action was shown to be negligible (Fig. 31); this is consistent with the 

absence of MXE activity in barley extracts (Fry et al., 2008a), and refutes the 

hypothesis of Hrmova et al. (2007) that the low amount of MXE activity catalysed 

by some Poaceaen XTHs in vitro could produce physiologically significant MXE 

action in vivo.  

Lichenase released oligosaccharides from all barley organs tested, indicating the 

presence of endogenous MLG (Fig. 31). The highest yield was found in leaves and 

seedling roots, but moderate abundances were present in seedling coleoptiles and in 

the young leaves of 12-week-old plants. It was lowest, though nonetheless 

detectable, in the old leaves of the 12-week-old plants. As expected, the major 

MLGO in all barley organs tested was the trisaccharide, with a smaller proportion of 

tetrasaccharide. XEG released a range of oligosaccharides from all organs tested, 

demonstrating the ubiquity of xyloglucan throughout the plant. The unusual 

composition of Poaceaen xyloglucan (Sims et al., 2000) is demonstrated by the fact 

that the pattern and identities of these oligosaccharides differed strongly from that 

obtained by similar a methodology with non-poalean plants (Xue and Fry, 2012). 
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Fig. 29 Morphology of representative barley organ parts tested for MXE 

and XET action in vivo and for MLG and xyloglucan content (a) An ‘older 

seedling’, (b) 2nd leaf of a 12-week-old plant. Scale bar = 10 mm. 
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Fig. 30. In vivo assessment of MXE and XET action in 13 barley organs. 

Tissue slices from twelve barley organs (identified in Fig. 29) were incubated 

with [3H]XXLGol before extracted hemicelluloses were digested with XEG or 

lichenase; low-Mr products alone were analysed by TLC, revealing 

[3H]oligosaccharitols diagnostic of endotransglycosylase action. Four 

representative profiles are shown (a–d), as well as the profile of the authentic 

[3H]XXLGol (e). A malto-oligosaccharide marker mixture was run alongside 

the samples (f). The oligosaccharide zone, defined as in (a-d), was quantified 
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for each tissue tested (g). All data are corrected for background and are given ± 

counting error (95% confidence limits).  

M  X L X L X L X L X L X L M  M  X L X L X L X L X L X L X L X L M 

Le
af

 ti
p

Le
af

 b
as

e

C
ol

eo
pt

ile

R
oo

t

U
ho

le
En

zy
m

e-
on

ly
 

co
nt

ro
ls

Le
af

 ti
p

Le
af

 b
as

e

C
ol

eo
pt

ile

R
oo

t

La
m

in
a 

tip

La
m

in
a 

ba
se

U
pp

er
 sh

ea
th

Lo
w

er
 s

he
at

h

MLG3

Young seedling Older seedling 2nd leaf of 12-week 
plant

MLG4

Glc

2

3

4

5th leaf of 
12-week 

plant

5
6
7
8
9
10
11

M
al

to
-o

lig
os

ac
ch

ar
id

es
 

(D
P)

 

Fig. 31. Endogenous MLG and xyloglucan constitution of barley tissues. 

Duplicate TLCs of the samples illustrated in Fig. 30, digested with XEG (‘X’) 

or lichenase (‘L’), were stained with thymol, indicating oligosaccharides 

originating from endogenous barley xyloglucan and MLG. 

Any in vivo approach (or in vitro approach using unpurified enzymes) potentially 

risks being compromised by hydrolysis of acceptor substrates by exogenous 

glycosidases (Simmons, 2013). For example, endogenous apoplastic α-xylosidases 

and β-glucosidases, commonly found in plants (Koyama et al., 1983; Franková & 

Fry, 2011), might together hydrolyse [3H]XXXGol or [3H]XXLGol, to products too 

small to serve as endotransglucosylase acceptor substrates. Any such hypothetical 

degradation could not be responsible for the lack of detectable MXE action in barley 

tissues or for the lack of detectable MXE activity in Equisetum strobilus extracts, 

because XET action and/or activity was readily detected in parallel experiments. 

Further, as we found detectable MLG in all barley organ samples tested (Fig. 31), the 

absence of detectable MXE action was also not merely the product of the absence of 

the donor substrate. Indeed, in most cases, lichenase-released MLG-oligosaccharides 

exceeded XEG-released xyloglucan-oligosaccharides, indicating that barley cell 

walls were richer in MLG than xyloglucan. Despite this, XET action was readily 
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detectable in all barley organs tested. All this provides evidence against the 

hypothesis of Hrmova et al. (2007) that the very low MXE activities of barley XTHs 

(e.g. HvXET6), detected in vitro, could exert significant MXE action in vivo. 

Nonetheless, I cannot discount the possibility of extremely low levels of MXE 

action, similar to the rates of MXE activity observed with HvXET6 (Hrmova et al., 

2007) and Holcus lanatus extracts (Fry et al., 2008a), in barley tissues, but the 

physiological significance of this is circumspect. 
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3.5. Analysis of cellulose : xyloglucan endotransglucosylase (CXE) activity 

Prior to this work, crude extracts of E. fluviatile lateral shoots had been shown to 

contain three related endotransglycosylase activities: MXE, XET and CXE. This 

section sought to test the hypothesis that the enzyme responsible for MXE, already 

known to catalyse XET activity as well, is also responsible for CXE.  

An early season E. fluviatile lateral shoot crude extract was fractionated by 

isoelectric focusing and the fractions produced were assayed for MXE, XET and 

CXE activities (Fig. 32). Having already confirmed that the enzyme responsible for 

MXE is also able to catalyse XET activity, these two activities were expected to 

collocate around pH 4. Here, fractions around pH 4 were capable of catalyzing all 

three reactions. The co-occurrence of a peak of CXE activity at this pH is highly 

suggestive of a single uniquely promiscuous acidic enzyme which is capable of 

catalysing all three reactions. There was a further, far less prominent XET activity 

that was found around the neutral pH range. Fractions here were incapable of 

catalysing MXE or CXE activity; this is consistent with previous findings of 

conventional XTHs and confirms conventional XTHs are not the source of CXE.  
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Fig. 32. MXE, XET and CXE reactions following isoelectric focusing 

fractionation of E. fluviatile crude extract MXE and XET reaction conditions: 

0.75 kBq XXXGol, 2 μl rotofor enzyme fraction, 8 μl Na:citrate buffer pH 6.1 

and 10 μl 1% (w/v) donor substrate, incubated for 4 hours, detected using the 
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standard method. Results are single reading for MXE and XET and the average 

of duplicate readings for CXE and are shown ± counting errors. 

The actual carbohydrate structure recognised by CXE is probably those cellulose 

glucan chains exposed singly rather than those incorporated into the crystalline 

structure of a microfibril. Given this, while it is highly unusual for such promiscuity 

to be displayed by a single endotransglycosylase, this phenomena can be reconciled 

by the similarity of the three reactions (XET, MXE and CXE): all use [3H]XXXGol 

as an acceptor substrate and a glucan-based polymer as an acceptor. Indeed, given 

our prior knowledge of the enzyme’s ability to utilise both MLG and xyloglucan as 

donor substrates, it is highly conceivable that it might also be able to utilise cellulose 

glucan chains: MLG and xyloglucan are both variations of cellulose’s β-(1→4)-D-

Glcp backbone, the former containing backbone linkage variation without 

substitution, the latter containing no backbone linkage variation but significant 

branched substitutions (Fig. 33). 
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Fig. 33. Structure of three endotransglycosylase donor substrates Both 

xyloglucan and mixed-linkage glucan are variations of the cellulose chain, 

containing either xylosyl substitutions or backbone linkage variation 

respectively. Reducing termini on right; blue circles, D-Glc residues; orange 

stars, D-Xyl residues; α6, α-(1→6)-linkage, β3, β-(1→3)-linkage (highlighted in 

orange); β4, β-(1→4)-linkage. Following the carbohydrate symbol scheme 

described by Varki et al. (2009). 
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3.6. An unexpectedly lichenase-stable hexasaccharide yields new information on 

MLG subunit composition and distribution  

MLGs are typically structurally characterised by digestion with a lichenase from B. 

subtilis, however, much of the structural information (i.e. the linkages broken) is lost 

during this digestion. This lichenase is a GH16b subfamily member which exhibits 

specificity to BMLG and cleaves (1→4) bonds following (1→3) bonds. 

To further our understanding of how lichenase is able to confer specificity to BMLG 

and to define the site of attack as they do, and concurrently investigate whether this 

information can yield further knowledge about the structure of intact (i.e. non-

digested) MLGs, I here characterised the products of lichenase digestion of three 

MLGs in detail. 

3.6.1. Lichenase digestion of MLGs from three widely divergent taxa yield an 
unexpected oligosaccharide 
Because of our current understanding of lichenase’s site of attack and of MLG’s 

structure, the oligosaccharide products of lichenase digestion were expected to be a 

homologous series of standard MLGOs, who differ from each other only in the 

length of the (1→4)-linked β-D-Glcp non-reducing terminal region (See 1.2.2.1.). 

These oligosaccharides would migrate in a regular pattern on chromatographic 

techniques. However, TLC analysis of digests of MLGs from E. arvense, barley 

(Hordeum vulgare) and Iceland moss (Cetraria islandica) revealed a spot (named 

‘6x’) which migrated between MLG5 and MLG6 (Fig. 34a), a characteristic 

inconsistent with it being a standard MLGO. After purification by preparative TLC, 

6x was shown to have a retention time of ~20.5 min on HPLC (Fig. 34b–h), eluting 

in the zone expected of MLG9 (Wang et al., 2003; Wood et al., 2003; Tosh et al., 

2004a; Tosh et al., 2004b; Fry, 2008). The divergence of 6x on HPLC relative to the 

other MLGOs who, relative to each other, migrate consistently in both 

chromatographic techniques further highlights 6x’s novelty. This presence of such a 

novel oligosaccharide as a lichenase digestion product indicates that the substrate 

specificity of the enzyme is not as previously thought. 
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Fig. 34. Chromatographic analysis of the lichenase digestion products of 

three MLGs (a) TLC analysis of the crude lichenase digests of three MLGs 

(‘total’), of their respective 6x’s, and of a putative DP9 MLGO (MLG9) from 

barley MLG after purification by preparative HPLC and preparative TLC. 

Abbreviation used: M, malto-oligosaccharide marker ladder. The slight 

retardation of the oligosaccharides in the EaMLG lane is probably a product of 

the large amount of tetrasaccharide there. (b–h) HPLC analysis of crude digests 

of Equisetum (b), barley (d) and Iceland moss (g) MLGs, their respective ‘6x’s 

(c, e and h), and the putative barley MLG9 (f). Blue lines/arrows, standard 

MLGOs (DP2–9); red lines/arrows, 6x; pink arrows, candidates for other 

members of the x series; red/blue dotted arrows, 6x and MLG9; pink line, 

unknown band. 

The unusual retention time of 6x on HPLC was exploited to purify it from all three 

MLGs. The ~20.5 min retention time peaks were purified by preparative HPLC 

followed by preparative TLC. While the TLC purification step showed only a single 

major band in the ~20.5 min peak from both E. arvense and Iceland moss MLGs – a 

result consistent with only/largely 6x eluting in this period – two distinct bands (one 

migrating with 6x, the other somewhat slower) were present in the same HPLC peak 

when purified from barley MLG. Once eluted from the preparative TLCs, all four 

purified oligosaccharides (6x from three MLGs and the slower migrating 

oligosaccharide from barley MLG alone), as well as total lichenase digests of the 
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polysaccharides from which they originated, were analysed both by TLC (Fig. 34a) 

and HPLC (Fig. 34b–h). Results show that 6x is a constituent of lichenase digests of 

all three types of MLG and that it and the slower migrating oligosaccharide purified 

from digested barley MLG both migrate at ~20.5 min retention time peak on 

HPAEC. Thus, in previous HPLC work, the co-eluting 6x and MLG9 would have 

been lumped together as MLG9. 

3.6.2. Stability of 6x during prolonged lichenase digestion 
To test whether 6x was merely a product of incomplete digestion or a side reaction 

such as transglycosylation, I digested EaMLG with lichenase for various time 

periods (Fig. 35). The maximum yield of the standard MLGOs with DP 2–7 and of 

6x, was obtained by 30 min. Following this, no breakdown, or further production, of 

these oligosaccharides occurred. This indicates that 6x is neither a product of 

incomplete lichenase activity nor a by-product of a side-reaction. In contrast, three 

oligosaccharides which eluted slightly later than 6x were found at their maximum 

yield between 2 and 5 min incubation and declined thereafter; these are deduced to 

be intermediary products of partial hydrolysis, e.g. G4G3G4G4G4G3G (i.e., MLG3-

MLG4), G4G4G3G4G4G3G (i.e., MLG4-MLG3) and G4G4G3G4G4G4G3G 

(MLG4-MLG4). 
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Fig. 35. Sequential lichenase digestion of E. arvense MLG (a) HPLC traces 

of  lichenase digestion products at representative time-points. Equisetum gave 

no detectable conventional MLG9, which would co-elute with 6x.  (b) Time-
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course of relative yields of each peak seen in (a). ‘100%’ on the y-axis 

represents the maximum yield of the peak in question. Blue arrows/lines, 

conventional MLGOs; red arrows/line, 6x; green arrows/lines, proposed 

intermediary digestion products. 

3.6.3. Partial characterisation of 6x by acid hydrolysis and enzymic dissection 
Because 6x is a non-standard MLGO, it must either be composed of residue(s) other 

than β-D-Glcp, include linkages other than (1→3) and (1→4), or comprise a different 

arrangement of (1→3) and (1→4)-linkages than do the standard MLGOs. Acid 

hydrolysis of TLC-purified 6x from E. arvense yielded only glucose (Fig. 36), 

showing it to be an oligosaccharide comprised solely of glucose. 6x was digested 

with β-D-glucosidase, which progressively releases β-D-Glcp residues, singly, from 

the non-reducing end(s); the intermediary products were analysed by HPLC (Fig. 

37). The first products were glucose plus ‘standard’ MLG5 [arrows on Fig. 37(a)], 

indicating that 6x differs from MLG5 only in possessing a single additional β-D-Glc 

residue. Thereafter, MLG5 broke down as expected, via MLG4, MLG3 etc., to 

glucose (Fig. 37a). This indicates that 6x is G-(G4G4G4G3G), very probably with 

the additional G residue attached at the non-reducing end of MLG5 (i.e., as 

G∙G4G4G4G3G, where ‘∙’ is an unknown linkage) because otherwise two potential 

different oligosaccharides products of β-D-glucosidase digestion would probably be 

formed after the removal of a single β-D-Glc residue; only one is observed. 

Consistent with the bond ‘∙’ in G∙G4G4G4G3G being unusual, digestion kinetics 

indicated that cleavage of this bond (6x + H2O → MLG5 + Glc) was rate-limiting, 

with the subsequent steps (e.g. MLG5 + H2O → MLG4 + Glc) occurring very 

rapidly and with little accumulation of the intermediary products.  
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Fig. 36. Acid hydrolysis of 6x Purified 6x from Equisetum (b) and a ‘blank’ 

control (c) were separately subjected to TFA hydrolysis and were analysed by 

HPLC. Each was compared to a monosaccharide marker mixture (a). 
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Fig. 37. Sequential β-glucosidase digestion of 6x (a) HPLC traces showing 

progressive β-glucosidase-mediated hydrolysis of 6x, via MLG5, to glucose; (b) 

MLG oligosaccharide marker mixture (a lichenase digest of EaMLG); (c) focus 

on 64-min digestion shown of (a) highlighting intermediary breakdown 

products. 
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3.6.4. Determination of the structure of the reduced hexasaccharide, 6x-ol, by 
NMR spectroscopy 
A bulk preparation of 6x was prepared by SEC on Bio-Gel P-2 (column 1; 

PyAW/CB) of a lichenase digest of Equisetum hemicellulose. 6x-containing 

fractions, identified by TLC, were reduced with NaBH4, and the product (6x-ol) was 

purified by preparative HPLC.  

The structure of 6x-ol was deduced from a series of one-dimensional (1D) and two-

dimensional (2D) NMR spectra obtained at 18.4 T. The 1D proton spectrum (800 

MHz) showed considerable overlap of signals. The 2D and highly selective 1D 

chemical-shift-selective (CSSF)–TOCSY (Robinson et al. 2003) spectra identified 

seven proton spin systems (Fig. 21/Ha). Together with the DQF–COSY spectrum 

and the 1H–13C HSQC proton–carbon correlation spectrum, it was possible to 

identify and to assign all the proton resonances. The corresponding carbon 

resonances were assigned from a 2D 1H–13C HSQC correlation spectrum and from a 

2D 1H–13C HSQC–TOCSY spectrum (which, in addition to the usual HSQC cross 

peaks, showed signals at the same 13C chemical shift for neighbouring JHH coupled 

protons 2–3 bonds away; Table 3). 

From the chemical shifts of the proton resonances and the magnitude of the proton–

proton coupling constants it was clear that the sub-spectra corresponding to 

monosaccharides a–e arose from five glucose residues with β-anomeric linkages. 

Sub-spectra labelled Glcol(1–3) and Glcol(4–6) (Fig. 38a) showed no anomeric 

protons but a clear correlation between the protons at 3.63 ppm and 4.04 ppm in the 

DQF–COSY spectrum and thus these sub-spectra represented  a single spin system 

of a terminal glucitol (Glcol) group. 

The sequence of the residues and the positions of the linkages were deduced from a 

series of highly selective 1D 1H–1H CSSF–NOESY (Robinson et al., 2003) spectra 

(Fig. 38b) and their comparison with the 1D CSSF–TOCSY spectra.  Analysis of 

these high-resolution spectra showed that the d→c, c→b and b→a glycosidic 

linkages were 1→4, while the e→d linkage was 1→3 (Fig. 38c). This was further 

confirmed by the 1H–13C HMBC spectrum which showed two three-bond proton–

carbon correlations across the glycosidic linkages for each residue. 
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The linkage between residue a and the glucitol group was confirmed as a 1→3 

linkage by comparison of the 13C chemical shifts of the glucitol group with the 13C 

chemical shifts of three glucitol-containing disaccharides: lactitol (4-O-β-D-

galactopyranosyl-D-glucitol), laminoaribiitol (3-O-β-D-glucosyl-D-glucitol) and 

maltitol (4-O-β-D-glucopyranosyl-D-glucitol) [http://sdbs.riodb.aist.go.jp/sdbs/cgi-

bin/cre_index.cgi?lang=eng]. Good agreement (< 0.6 ppm) was obtained for carbons 

C1 to C6 with those for laminaribiitol, whereas there are differences of up to 1.8 ppm 

for lactitol and up to 4.4 ppm for maltitol. 

Thus the deduced structure of the reduced hexasaccharide 6x-ol is β-D-Glcp-(1→3)-

β-D-Glcp-(1→4)-β-D-Glcp-(1→4)-β-D-Glcp-(1→4)-β-D-Glcp-(1→3)-D-Glc-ol (Fig. 

38c), where Glcp is either β-D-glucopyranose or, theoretically, α-L-glucopyranose; 

β-D-glucosidase digestion confirms the former. The new hexasaccharide, 6x, which 

can be represented as G3G4G4G4G3G, is thus a sequence of two contiguous known 

subunits, MLG2-MLG4. 

 

Residue  (H-1) H-1 H-2 H-3 H-4 H-5 H-6a H-6b 
   [C-1] [C-2] [C-3] [C-4] [C-5] [C-6]  
6 A  4.739 3.339 3.509 3.393 3.468 3.709 3.907 
   [102.7] [73.4] [75.5] [69.6] [76.0] [60.6]  
2 B  4.661 3.417 3.661 3.649 3.614 3.805 3.989 
   [103.0] [73.2] [74.1] [78.5] [74.6] [60.0]  
5 C  4.528 3.51 3.75 3.51 3.49 3.74 3.910 
   [102.3] [73.0] [83.8] [75.5] [67.9] [60.5]  
4 D  4.521 3.346 3.637 3.671 3.606 3.816 3.971 
   [102.3] [72.9] [73.9] [78.5] [74.8] [59.8]  
3 E  4.510 3.345 3.638 3.670 3.605 3.818 3.969 
   [102.3] [72.9] [73.9] [78.5] [74.8] [59.8]  
1 P+Q* 3.774 3.660 4.009 4.043 3.639 3.895 3.638 3.845 
   [61.9] [72.8] [78.4] [70.1] [70.7] [62.7]  
      
         

Table 3. Chemical shifts of all protons and carbons on 6x-ol Data defined by 

the 1D 1H, 2D and 1D 1H TOCSY, 1H DQF-COSY, and 1H-13C HSQC and 

HMBC (all at 800 MHz). * reduction of this residue makes distinction between 

H-1 & H-6, H2 & H-5 and H-3 & H-4 impossible. Data in this figure was 

collected and analysed by Prof. Ian Sadler, Dr. Dušan Uhrín and Dr. Lorna 

Murray. 
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e d c b a

(a)

(b)

(c)  
Fig. 38. Determination of the structure of the reduced novel 

hexasaccharide, 6x-ol, by NMR spectroscopy (a) Selective 1D CSSF-TOCSY 

spectra of the reduced hexasaccharide 6x-ol showing individual residue sub-

spectra. Anomeric protons were selectively excited for residues a–e, while H3 

and H5 were excited for the fragments Glcol(1–3) and Glcol(4–6), respectively 

(indicated by arrows).  160 ms mixing time was used. (b) Selective 1D CSSF-

NOESY spectra (200 ms mixing time) of the reduced hexasaccharide 6x-ol, 

showing through space correlation of anomeric protons of rings a–e (indicated 

by arrows). (c) reduced hexasaccharide structure showing the residue 

nomenclature used. Data in this figure was collected and analysed by Prof. Ian 

Sadler, Dr. Dušan Uhrín and Dr. Lorna Murray. 

3.6.5. Quantification of 6x (G3G4G4G4G3G) content of MLG  

Lichenase digests of the three MLGs were size-fractionated by SEC (column 1; 

PyAW/CB), and the fractions were analysed by HPLC (Fig. 39). From barley and 

Iceland moss MLGs, a ~20.5-min HPLC peak was found in two distinct size-classes, 

judged by GPC to be a hexasaccharide (6x) and a nonasaccharide. However, from 

Equisetum MLG, the ~20.5-min peak was found only in the hexasaccharide size-

class. The nonasaccharide, judged by its behaviour on TLC (Fig. 24), HPLC and 

SEC, is probably MLG9 (G4G4G4G4G4G4G4G3G), as labelled previously (Wang 

et al., 2003; Wood et al., 2003; Tosh et al., 2004a; Tosh et al., 2004b; Fry et al., 
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2008). The yields of 6x and each of the conventional MLGOs are listed in Table 4. 

Further, this methodology indicated candidates for other members of the ‘x’ series 

(4x, 5x, 7x and 8x) based on their SEC elution volumes and HPLC retention times. It 

was notable that no appreciable amount of oligosaccharide eluted from SEC after the 

nonasaccharide. 
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Fig. 39. Size profiles of each HPLC-resolved oligosaccharide Lichenase 

digests of three MLGs (a, c, barley; b, Equisetum; d, Iceland moss) were 

fractionated by SEC on Bio-Gel P-2 (column 1; PyAW/CB). Fractions were 

then applied to HPLC for further resolution and quantification of the 

oligosaccharides. (a) HPLC traces for barley MLG size fractions. Arrows 

indicate a given compound’s maximum peak area; solid blue arrows, standard 

MLGOs; red arrow, 6x; pink arrows, candidate 5x, 7x and 8x; grey arrowheads, 

unknown peaks; asterisk, candidate MLG2-MLG2-MLG3 peak. (b–d) Peak 

quantifications for MLG2–9 and 6x shown as percentage of each peak’s 

maximum area. Kav is defined as elution volume relative to those of dextran 

(Kav = 0) and glucose (Kav = 1). 
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MLGO Mol-% 

composition of 

MLG without 

knowledge of 6x 

Mol-% 

composition of 

MLG with 6x with 

knowledge of 6x 

Mol-% 

composition of 

MLG with 6x 

taken as MLG2 + 

MLG4 

Mol-% 

composition of 

MLG with 4x to 8x 

Mol-% 

composition of 

MLG with 4x to 8x 

taken as MLG2 + 

MLG2 to MLG6 

Ea Bar IM Ea Bar IM Ea Bar IM Ea Bar IM Ea Bar IM 

MLG2 17.86 0.09 0.97 18.01 0.09 0.97 21.95 1.86 2.67 17.89 0.09 0.96 19.58 2.93 3.36 

MLG3 14.64 66.16 75.11 14.76 66.35 75.32 14.05 65.17 74.03 14.66 65.59 74.75 15.55 63.74 73.35 

MLG4 54.77 24.52 4.77 55.22 24.60 4.78 57.38 25.93 6.41 54.86 24.31 4.74 57.36 25.35 6.32 

MLG5 4.02 3.82 9.91 4.05 3.84 9.94 3.86 3.77 9.76 4.03 3.79 9.86 4.44 4.67 9.90 

MLG6 1.55 1.93 3.37 1.57 1.94 3.38 1.49 1.90 3.33 1.56 1.92 3.36 1.68 1.97 3.32 

MLG7 1.26 0.16 1.99 1.27 0.16 2.00 1.21 0.16 1.96 1.26 0.16 1.98 1.32 0.15 1.93 

MLG8 0.07 0.20 1.69 0.07 0.20 1.69 0.06 0.19 1.66 0.07 0.19 1.68 0.07 0.19 1.64 

MLG9 5.82 3.12 2.20 <0.01 1.03 0.18 <0.01 1.01 0.18 <0.01 1.02 0.18 <0.01 0.99 0.17 

4x? - - - - - - - - - 0.18 <0.01 <0.01 
- - - 

5x? - - - - - - - - - 0.21 0.02 0.42 - - - 

6x - - - 5.06 1.80 1.74 - - - 5.02 1.78 1.73 - - - 

7x? - - - - - - - - - 0.21 1.02 0.29 
- - - 

8x? - - - - - - - - - 0.05 0.11 0.05 - - - 

 
Table 4. Relative molarities of MLGOs from three structural dissimilar 

MLGs MLGO molarities were quantified from the HPLC response, which was 

calibrated using a range of malto-oligosaccharides. For “Relative molarities w/o 

knowledge of 6x” the ~20.5 min peak is assumed to be MLG9 alone; for 

“Relative molarities with knowledge of 6x” the 20.5 min peak was divided into 

6x and MLG9 by ratios determined from Fig. 39; for “Relative Molarities with 

6x as MLG2 and MLG4” the amount of 6x identified was then converted into 

MLG2 and MLG4. <0.01 means no peak of the correct retention time was 

detectable; - means n/a here. 

3.6.6. Implications of 6x’s discovery for MLG subunit composition 

The discovery of 6x indicates that many previous quantifications of MLG subunit 

composition were flawed. Specifically, the MLG9 content has been characterised too 
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high while the MLG4 and MLG2 content had been characterised too low. The latter 

case is particularly evident for poalean and Iceland moss MLG, for which no or 

negligible MLG2 has often been reported (Wood et al., 1994; Izydorczyk et al., 

1998; Wood et al., 2003; Lazaridou et al., 2004; Tosh et al., 2004; Vaikousia et al., 

2004; Papageorgiou et al., 2005; Liu & White, 2010). The results from Fig. 39 

suggest the presence of more members of the ‘x series’: 4x (MLG2-MLG2; 

G3G4G3G), 5x (MLG2-MLG3; G3G4G4G3G), 7x (MLG2-MLG5; 

G3G4G4G4G4G3G) and 8x (MLG2-MLG6; G3G4G4G4G4G4G3G). If correct, 

previous quantifications of MLG subunit compositions – particularly the MLG2 

content – are further undermined.  

Furthermore, our experiments (Fig. 39) indicate that there was no appreciable 

amount of high-Mr (DP > 9) lichenase products in the HPLC trace, contradicting 

some previous reports of their quantification (Izydorczyk et al., 1998; Papageorgiou 

et al., 2005). Indeed, peaks previously mis-identified as MLG10 and MLG11 are 

shown here to be candidates for 7x and 8x. I cannot, of course, rule out the 

possibility that our digests contained standard MLGOs with DP > 9 [G(4G)n3G, 

where n > 7] that were insoluble in water, as suggested by Wood et al. (1994). One 

of the unidentified peaks, which eluted at Kav 0.32 from the digestion of barley MLG 

(starred grey arrowhead; Fig. 39a), might, based on GPC and HPLC retention, be 

MLG2-MLG2-MLG3 (G3G4G3G4G4G3G), a further novel heptasaccharide whose 

resistance to lichenase might be expected given 6x’s resistance.  

3.6.7. Implications for lichenase activity  

This work disproves the previous assumption that lichenase cleaves at every (1→4) 

bond immediately following a (1→3) bond, i.e. at the (1→4) bond in the ···G3G4G··· 

motif.  If this were the rule, lichenase would hydrolyse 6x (G3G4G4G4G3G + H2O 

→ G3G + G4G4G3G). The production of lichenase-resistant candidates for ‘4x’ to 

‘8x’, i.e. G3G(4G)n3G where n is 1–5, suggests that the presence of the MLG2 

subunit at the non-reducing terminus of an MLGO is the sole determinant of 

lichenase resistance.  

The unexpected resistance of the ‘x’ series oligosaccharides could be rationalised if 

non-reducing terminal MLG2 units impart unfavourable enzyme–substrate 
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interactions at the negative subsites of lichenase’s catalytic centre (Fig. 38). Since 

lichenase is only known to cleave the (1→4) bond in a ···G3G4G··· motif, catalytic 

activity requires a (1→4) bond between subsites +1 and −1 and a (1→3) bond 

between subsites −1 and −2. The resistance of 6x (MLG2-MLG4) to lichenase, 

despite the lability of MLG3-MLG4, implies that hydrolysis requires subsite −3 also 

to be occupied; and since contiguous (1→3)-bonds are unknown in MLG (Peat et al., 

1957; Parish et al., 1960), the bond between subsites −2 and −3 will always be 

(1→4) (Fig. 40).  

β3β4β4β3 β4

-2 -1 +1 +2-3-4

6x (MLG2-MLG4)       Lichenase resistant

β3β4β4β3 β4β4 6x (MLG3-MLG4)       Lichenase labile

Lichenase subsites

β3β4 β4 β3β4 6x (MLG4-MLG2)       Lichenase labile
 

Fig. 40. Schematic representation of the residues occupying lichenase 

subsites during lichenase cleavage of different MLGOs The -3 and -4 

subsites of GH16 lichenase are shown to be empty during the positioning that is 

necessary for cleavage of 6x’s unexpectedly stable bond. In contrast, for 

cleavage of the labile bond in the heptasaccharide MLG3-MLG4, the -3 subsite 

is occupied. Likewise, for cleavage of the labile bond in the heptasaccharide 

MLG3-MLG4 both the -3 and -4 subsites are occupied. The presence of a β-

(1→3) bond between subsites +1 and +2 in the latter case apparently has no 

limiting effect on lichenase activity. Blue circles, D-Glc; cellulosyl regions 

underlined. 

However, any simple rule proposing that lichenase never cleaves to the reducing side 

of an MLG2 unit would be untenable. It is evident, especially from Equisetum MLG 

digests, that lichenase is capable of producing large amounts of MLG2 (G3G; Fig. 24 

and Xue and Fry, 2012), and even barley and Iceland moss MLG yield some free 

MLG2. This implies that certain MLG2–MLGO bonds can be cleaved — 

presumably when (as in MLGO´–MLG2–MLGO) the MLG2 unit is not a non-
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reducing terminus. The MLGO´–MLG2 produced would then be hydrolysable to 

release free MLG2 (provided MLGO´ is not itself MLG2).  
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3.7. The mode of recognition and site of attack of xyloglucan-cleaving enzymes 

Xyloglucan-cleaving enzymes are crucial to plant development and have been the 

target of many biotechnological efforts. Elucidation of the site of attack of 

xyloglucan-cleaving enzymes might enable a better understanding of their function 

as well as of their enzymological properties. Here a novel strategy was employed 

utilising sequential treatments of XET (using a radioactive acceptor oligosaccharide) 

and a hydrolase. Wherever the initial acceptor substrate is regenerated from such 

sequential XET : hydrolase treatments, both enzymes must have cleaved the 

xyloglucan at the same position. In contrast, wherever larger products are yielded, 

the hydrolase must have cleaved the XET product tailwards (i.e. in the non-reducing 

terminal direction) the site of attack of the XET. 

3.7.1. Identification and structural characterisation of novel 3H-labelled 

products of XET:XEG sequential treatments 

The XET acceptor substrate [3H]XXLGol was allowed to permeate the cell walls of 

4-day old barley seedling leaf tips and the resultant radioactive polymeric products 

were extracted by the use of alkali and digested with XEG. XEG products were 

resolved by TLC and detected by fluorography. The three detectable 

oligosaccharides (A, B and C; Fig. 41a) were, after elution, further purified by 

preparative TLC (Fig. 41b). Products A, B and C, as well as [3H]XXLGol, were 

subjected to graded β-D-glucosidase treatment (Fig. 41c). As expected, [3H]XXLGol 

was resistant to β-D-glucosidase. A, which migrated with [3H]XXLGol, was mostly 

resistant to digestion, though some product of greater mobility was formed. A is 

probably constituted mostly of [3H]XXLGol with a small amount of [3H]GXLGol, 

probably produced by the action of endogenous barley α-D-xylosidases. B migrated 

slower than [3H]XXLGol and was broken down directly to a product that migrated 

with [3H]XXLGol after  β-D-glucosidase treatment; B is thus most probably 

[3H]GXXLGol. β-D-Glucosidase was likewise able to digest C to a product that 

migrated with [3H]XXLGol, though via an intermediate that migrated with B; thus C 

is most probably [3H]GGXXLGol. These oligosaccharides, in which the initial 

acceptor (here [3H]XXLGol) has a β-D-glucosyl tail of differing lengths attached are 

collectively referred to throughout as [3H]GnXXLGols/[3H]GnXXXGols (when 
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[3H]XXLGol and [3H]XXXGol are used as the acceptor substrate respectively). The 

β-D-glucosyl tails must originate from the initial xyloglucan donor substrate and are 

therefore are most probably (1→4)-linked; hence [3H]GnXXLGols. The identities of 

the products yielded from this experiment indicates that XET and XEG had some 

propensity to cleave xyloglucan at the same point (where [3H]XXLGol was yielded), 

and yet there was some propensity for XEG to cleave before (i.e. in the non-reducing 

terminal direction) of XET (where [3H]GnXXLGols were yielded). 

[3H]XEG products              A     B     C

[3 H
]X

X
LG

ol

A
B
C

(a) (b)

0      3     16 0     0.75  1.5    3    16 0    16 0    16
C                               B                           A          XXLGol

(c)

 

Fig. 41. Purification and characterisation of three [3H]XGO-ol derivatives 

produced by XEG digestion of an XET product created in vivo from barley 

In vivo XET action was performed as described in material & methods, except 

that 25 mg 4-day-old barley seedling leaf tips were incubated with 125 kBq (12 

µM) [3H]XXLGol in 125 µl; 7.75 kBq (6.2%) incorporation was achieved. 

Hemicelluloses were extracted using 6 M NaOH and digested with XEG; (a) 

three bands (A, B and C) were purified from 75% (v/v) ethanol-soluble material 

by preparative TLC (BAW, one ascent) with fluorography; (b) the three visible 

oligosaccharides (A, B and C) were, after elution, further purified by 

preparative TLC (PNW, one ascent) with fluorography; (c) TLC (BAW, two 

ascents) fluorogram showing the effect of graded β-D-glucosidase treatment on 

A, B, C and XXLGol. 



Thomas J. Simmons        GH16 enzymes 

 99 

3.7.2. [3H]GnXXLGols are formed when Poaceaen, but not when tamarind, 

xyloglucan is used as the XET donor substrate 

To test which factors affect the production of the [3H]GnXXLGols, different enzymes 

and substrate combinations were tested. Maize (Zea mays) suspension culture 

sloughed extracellular polysaccharides (SEPs) – shown previously to contain maize 

xyloglucan (Kerr & Fry, 2003; Kerr & Fry, 2004) – were purified and one half was 

deacetylated by the use of alkali. On Poaceaen xyloglucan acetylation naturally 

occurs at the O-6 position of backbone Glc residues. These two maize xyloglucan-

containing samples, as well as commercial tamarind xyloglucan, were used as donor 

substrates for XET activity, after which 75% (v/v) ethanol-insoluble material was 

subjected to endohydrolysis by XEG (GH12) or cellulase (cellb; GH7) (Fig. 42). The 

75% (v/v) ethanol-soluble XET reaction unincorporated oligosaccharides and, 

following endohydrolysis, 75% (v/v) ethanol-soluble hydrolysate products were 

resolved by TLC, analysed by fluorography and thymol-staining (Fig. 43) and 

quantified by use of a radioisotope plate reader (Table 5). In addition to the initial 

acceptor substrate [3H]XXLGol, up to three [3H]GnXXLGols, which migrated 

slower, were present in all reaction mixtures where either of the maize SEPs samples 

(containing xyloglucan composed mainly of XXGG and XXGGG ‘base units’)  had 

acted as the XET donor. When tamarind xyloglucan (mainly XXXG ‘base units’) had 

been used, only [3H]XXLGol was present. The absence of [3H]GnXXLGols in the 

unincorporated oligosaccharides from the XET incubation confirms that 

[3H]GnXXLGols are created by sequential XET : hydrolase treatment, and not by an 

unrelated (e.g. transferase) side-reaction. The fact that [3H]GnXXLGols occur 

whenever maize (Fig. 42; Fig. 43; Fig. 46; Fig. 47) or barley (Fig. 30; Fig. 49) 

xyloglucans are used, but never when tamarind xyloglucan (Fig. 43; Fig AQ) or 

Equisetum xyloglucans (Mohler et al., 2013) are used, suggests that they are a 

product of a structural feature which distinguishes monocot xyloglucans from 

tamarind and Equisetum xyloglucans. However, because [3H]XXLGol was yielded 

(to varying degrees) in all reactions, this structural feature must vary in Poaceaen 

xyloglucan, sometimes being a shared feature of all xyloglucans tested. The best 

candidate for this hypothesised structural feature is xyloglucan subunit length: 

tamarind and Equisetum xyloglucan are composed almost solely of Glc4-based 
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subunits (XXXG), while Poaceaen xyloglucan is composed mainly of Glc4- and 

Glc5-based subunits (XXGG and XXGGG).  
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Fig. 42. Quantification of products formed during XTH-catalysed 

incorporation and subsequent hydrolase digestion Both sloughed-

extracellular polysaccharide (SEP) samples and a 0.3% (w/v) solution of 

tamarind xyloglucan (20 µl) were incubated with 5 µl of three different XET-

containing crude enzyme extracts and 5 kBq (0.3 μM) [3H]XXLGol for 18 h at 

room temperature. 75% (v/v) ethanol-insoluble material was redissolved in 

water and split into halves; one half was subjected to XEG treatment, the other 

to cellulase (capable of digesting xyloglucan; cellb) treatment. 75% (v/v) 

ethanol-insoluble XET products were separated from soluble material and each 

was assayed for 3H by scintillation counting. SN, supernatant (75% (v/v) 

ethanol solubilised material); grass, Holcus lanatus crude extract; 383, 

recombinantly expressed E. fluviatile XTH; Mung, Vigna radiate crude extract. 

The identity of the high Mr material in the unincorporated material following 

383 reaction incubations is unknown. 
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Fig. 43. Products of sequential in vitro XET : hydrolase treatments Products 

of in vitro XET activity (acceptor substrate was [3H]XXLGol, donor substrate 

was one of three xyloglucan-containing samples, XET was from one of three 

enzyme sources) were digested by one of two hydrolases and 0.5 kBq of the 

products of each was resolved by TLC and detected by fluorography (a) and 

thymol staining (b). X, XEG; C, xyloglucan-capable cellulase; mung, Vigna 

radiate crude extract; 383, recombinant E. fluviatile XTH; grass, Holcus lanatus 

crude extract; tamarind, commercial tamarind xyloglucan; Ac-SEPs, (naturally) 

acetylated SEPs; NaOH-treated SEPs, deacetylated SEPs; U, unincorporated 

oligosaccharides remaining after the XET reaction period. Arrowheads indicate 

the [3H]GnXXLGols: GXXLGol, GGXXLGol and GGGXXLGol. 
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Hydrolase [3H]GXXLGol: [3H]XXLGol ratio for different donor substrates 
Tamarind xyloglucan Ac-SEPs NaOH-SEPs 

Average - 0.11 0.40 
Post cellulase digestion - 0.06 0.28 
Post XEG digestion - 0.17 0.52 

Table 5. Quantification of [3H]GXXLGol: [3H]XXLGol ratios for TLCs in 

Fig. 43 Data obtained by quantifying the radioactivity on the TLC from Fig. 43, 

by use of a radioisotope plate reader. No [3H]GXXLGol was detected when 

tamarind xyloglucan was used as a donor. 

But while xyloglucan donor substrate structure was the sole qualitative determinant 

of [3H]GnXXLGol presence, other factors did affect the amount of [3H]GnXXLGol 

produced, as evidenced by variations in the [3H]GXXLGol : [3H]XXLGol ratio (Fig. 

43a; Table 5). The ratio was highest when de-acetylated (rather than acetylated) 

SEPs were used and when XEG (rather than cellulase) was used. Despite the latter 

difference between XEG and cellulase, given that GH families 7 and 16 constitute 

GH clan-b, it is perhaps surprising that the mode of recognition of the XEG (GH12 

family member) and cellulase (GH7) used here – with no significant relationship – 

appear both to differ from the mode of recognition of XET (GH16) so similarly. 

However, while acetylation reduced the [3H]GXXLGol : [3H]XXLGol ratio 

regardless of the hydrolase used the effect was more pronounced (the relative amount 

with which the [3H]GXXLGol:XXLGol ratio was lowered, was greater) when 

cellulase was the hydrolase used. This suggests a) a distinction between the ability of 

these two hydrolases to accommodate acetylated Glc and thus their proclivity to be 

directed by acetylation, and b) that therefore the fact that xyloglucan acetylation 

affects the [3H]GXXLGol:XXLGol ratio is a product of the direction of the 

hydrolases; we have no evidence here to rule out the possibility that XETs are also 

directed by acetylation. Nonetheless, XET source was the only variable within the 

experiment that had no apparent effect on the [3H]GXXLGol:XXLGol ratio. This 

indicates that there was no significant discrepancy in regard to site of attack between 

the different XET sources used here, and suggests that XETs all recognise the same, 

or highly similar, xyloglucan motifs.  

Thymol-stainable cellulase and XEG products also showed distinctions between the 

hydrolases and polysaccharides used (Fig. 43b). The standard products of tamarind 
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xyloglucan hydrolysis (XXXG, XXLG/XLXG, XLLG) were formed both by XEG 

and cellulase. Hydrolysis of de-acetylated SEPs yielded distinct oligosaccharides, 

consistent with the structural distinction between maize and tamarind xyloglucans. 

But, in addition, the products of XEG and cellulase hydrolysis of de-acetylated SEPs 

were distinct from each other, with the range of oligosaccharides produced by XEG 

migrating less far on TLC than those produced by cellulase. This observation mirrors 

the greater [3H]GXXLGol : [3H]XXLGol ratio produced by XEG than by the 

cellulase. In addition, some oligomers exhibiting disaccharide-like mobility were 

produced by the cellulase, suggesting intra-subunit hydrolysis which, given the fact 

that Poaceaen xyloglucan contains stretched of non-xylosylated glucose residues, 

would not be wholly unexpected for a cellulase. The thymol-stainable products of 

Ac-SEPs digestions were both streaked (possibly because of semi-random 

acetylation) and faint and were therefore difficult to assess (Fig. 43b). 

3.7.3. Interpretation of the presence of [3H]GnXXLGols for enzymic sites of 

attack  

Because the source of the glucosyl tails of [3H]GnXXLGols must be the backbone of 

the donor xyloglucan, the presence of the [3H]GnXXLGols must be explicable with 

reference to the sites of attack of the xyloglucan-cleaving enzymes used in this study. 

Of the 7 subsites present in the active sites of XTHs (-4, -3, -2, -1, +1, +2, +3), 

Fanutti et al. (1993; 1996) claimed that a β-D-glucan need only be xylosylated at 

positions -3 and +2 to function as a substrate, and that position -1 must be 

unsubstituted. This however, appeared to contradict the conclusions of Fry et al. 

(1992) and Lorences & Fry (1993) that XXG was the smallest structure capable of 

acting as an acceptor substrate – under the conclusions of these two papers, 

xylosylation in subsite +1 and +2 is a prerequisite for XET activity. The thorough 

probing of XTH substrate specificity by Saura-Valls et al. (2008) corroborated the 

conclusion of Fanutti et al. (1993; 1996) that the Glc residue at subsite -1 must be 

unsubstituted for activity to occur. Interestingly, they observed that where multiple 

unsubstituted Glc residues are found in the XET donor substrate, cleavage can occur 

at multiple sites. This indicates that cleavage doesn’t require xylosylation at subsite 

+1 (xylosylation here may however still be beneficial). Despite this, Saura-Valls et 
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al. (2008) observed that donor substrate binding is dominated by the high affinity for 

xyloglucan structures of the positive subsites (this is consistent with observations that 

cello-oligosaccharides are poor XET donor or acceptors; Nishitani & Tominaga, 

1992; Fry et al., 1992; Fanutti et al., 1993; Lorences & Fry, 1993; Mohand & Farkaš, 

2006; Baumann et al., 2007; Hrmova et al., 2007); the negative subsites showed far 

less affinity for such structures and were capable of transferring unsubstituted 

glucans alone, provided they were at least 2 Glc in size. Consistent with the findings 

of Fry et al. (1992) and Lorences & Fry (1993) and in contrast to those of Fanutti et 

al. (1993; 1996), Saura-Valls et al. (2008) suggest that XXG is the minimal required 

structure for the acceptor binding subsites for activity to occur, with a significant 

affinity resulting from an X moiety in subsite +2. Xylosylation in subsite +3 and a 

glucose at a possible position +4 produced a moderate increase in substrate affinity. 

One surprising conclusion from this is that xylosylation in subsite +1 is required for 

acceptor substrates but not for donor substrates. 

 

While XET activity favours substitutions of the residues in its positive subsites and is 

relatively promiscuous regarding the substitution of those in its negative subsites, 

something approaching the opposite appears true of XEG, which requires a 

substituted Glc in its negative subsites but can accommodate unsubstituted residues 

in its positive subsites. By digesting the structurally unusual xyloglucans of tomato 

and identifying those bonds resistant to hydrolysis and those merely slowly broken, 

Jia et al. (2003) were able to identify minimum and preferred substitution patterns 

for xyloglucan cleavage by the GH12 XEG. They identified an unbranched Glc 

residue at the –1 subsite and a side chain-bearing Glc residue at the −3 subsite as 

requisite for XEG cleavage. They further identify side chain-bearing Glc residues in 

the −4 and +2 subsites as significantly increasing the chances of productive binding 

and cleavage. A corollary of this is that, like XET activity, where stretches of 

unsubstituted Glc residues occur in a xyloglucan, XEG can cleave xyloglucan in 

more than one position.  

Therefore, although both XTH and the XEG used can cleave at multiple positions 

where stretches of unsubstitutes backbone residues exist in a xyloglucan, because 

XTH and XEG require substituted backbone residues to occupy positive and negative 
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subsites respectively, as stretches of unsubstituted backbones residues increase in 

size, the probable sites of attack of these two enzymes diverge (Fig. 44). Tamarind 

xyloglucan’s repeating XXXG ‘base units’ – which contain only a single 

unsubstituted Glc – guarantee each enzyme cleaves at the same point. Because the 

difference in subunit lengths in Poaceaen xyloglucan almost solely regard the length 

of stretches of unsubstituted Glc residues the [3H]GXXLGol : XXLGol ratio is an 

indicator of the ratio of Glc5 (e.g. XXGGG): Glc4 (e.g. XXGG) subunits in the donor 

polysaccharide. The fact that the GH7 cellulase produced [3H]GnXXLGols indicates 

that it also differs in mode of recognition and site of attack compared to XET; it 

appear to exhibit a similar mode of recognition to that of XEG, with enzyme : 

substrate affinities being dictated more by substitutions at negative subsites than 

XET. However, the fact that cellulase exhibited a decreased propensity to produce 

[3H]GnXXLGols (as evidenced by the lower [3H]GXXLGol : XXLGol ratios in Fig. 

43 and Table 5), indicates that the positive subsites of cellulase exhibit a greater 

affinity for substituted xyloglucan background residues than those of XEG. 

  

Fig. 44. Proposed model of XET and hydrolase sites of recognition and 

attack of xyloglucan. The left column shows models of enzymes active site 

subsites showing xyloglucan moieties observed to be required/highly beneficial 

for activity to occur; xylosylated glucose here refers to substituted glucose in 

general i.e. additional substitutions may be required/highly beneficial as well. 
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Middle and right columns show proposed preferred sights of attack of two 

enzyme types during sequential XET:hydrolase treatments on two dicot-type 

XXXG-based subunit xyloglucan (middle column) and Poaceaen-like XXGGG-

based subunit xyloglucan (right column). Green dotted line indicates XET site 

of cleavage, red dotted line indicates hydrolase site of cleavage. 

3.7.4. XEG digestion of maize xyloglucan is directed by xyloglucan acetylation 
To investigate the effect of acetylation on the digestion of maize SEPs by XEG, I 

digested acetylated and de-acetylated SEPs using XEG and then either subjected 

75% (v/v) ethanol-soluble products to alkali-treatment (which would de-acetylate 

acetylated products) or left them untreated. Samples were resolved by TLC and 

detected by thymol-staining (Fig. 45). As expected, digestion of acetylated SEP 

xyloglucan produced XGOs which, owing to acetylation, migrated faster than de-

acetylated oligosaccharides on TLC. The profile of XGOs produced by XEG 

digestion of acetylated SEPs followed by NaOH-treatment differed slightly from the 

profile produced by XEG digestion of already de-acetylated SEPs. The most obvious 

example of this distinction is in the oligosaccharides that migrate between 

maltopentaose and maltohexaose, in which there are two major bands when de-

acetylated SEPs were digested but only one when the xyloglucan was initially 

digested while still acetylated. As no corresponding change occurred in the NaOH 

treatment of the XGOs from the already deacetylated xyloglucan (lane 5, as 

compared with lane 4), these changes must be the product of the effect of acetylation 

on enzyme attack, not, for example, the presence of sodium acetate on TLC mobility. 
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Fig. 45. Effect of maize xyloglucan acetylation on XEG-site of attack 

Acetylated and de-acetylated SEPs solutions (10 µl) were digested with XEG. 

75% (v/v) ethanol-soluble material was then either incubated in 3 µl 100 mM 

NaOH for 1 h before being slightly acidified, or left untreated. Samples were 

resolved by TLC (BAW, two ascents) and detected by thymol-staining. 

Arrowheads denote example oligosaccharides that differ between treatments 

and indicate discrepancies in site of attack caused by acetylation. 

Jia et al. (2003) reported that XEG requires an unsubstituted Glc in subsite -1 and 

that acetylation can direct hydrolysis away from the cleavage of bonds from residues 

that are acetylated. Consistent with this, XEG digestion of acetylated Poaceaen 

xyloglucan has been shown to yield almost solely oligosaccharides with the general 

structure XnG’mG, where n and m are integers and G’ is a Glc residue which may or 

may not be acetylated (Gibeaut et al., 2005; Hsieh & Harris 2009).  

The Poaceaen xyloglucan oligosaccharides that migrate between maltopentaose and 

maltohexaose are, based on their mobility, probably XXGG-like structures. Where 

XXGG subunits are found naturally acetylated in a maize xyloglucan polysaccharide 

(---XXGGXXGG---, where G is an acetylated Glc residue), XEG would presumably 

produce XXGG alone, as acetylation would ensure only a single free Glc residue 

could be targeted for cleavage. Thus the most probable identity of the single arrowed 

oligosaccharide in lane 2 of Fig. 45 (XEG digestion of acetylated xyloglucan 
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followed by deacetylation) is XXXG. In contrast, where XXGG subunits are found 

in a deacetylated maize xyloglucan polysaccharide (---XXGGXXGG---), XEG 

would be able to cleave two bonds because of the presence of two unsubstituted Glc 

residues. Thus the most probable identities of the two arrowed oligosaccharides in 

lanes 4 and 5 (XEG digestion of de-acetylated xyloglucan) are GXXG and XXGG. 

The corollary of this – that deacetylation of Poaceaen xyloglucans prior to XEG 

treatment increases the propensity for (or perhaps even just allows) XGOs with non-

reducing terminal glucosyl tails to be formed – is consistent with the increase in the 

[3H]GXXLGol: XXLGol ratio following deacetylation observed in Fig. 43 and Table 

5. This together provides further evidence that acetylation directs the site of attack of 

XEG.  

3.7.5. Xyloglucan from maize cell culture SEPs and walls appear structurally 

identical 

While [3H]XXLGol was consistently the major product of the in vitro XET : 

hydrolase sequential treatments where maize xyloglucan acted as the substrate (Fig. 

43a), [3H]GXXLGol was the major product of the in vivo XET : XEG sequential 

treatments where barley xyloglucan acted as the substrate (Fig. 41). To investigate 

the possibility that this is the product of structural dissimilarity between cell wall-

bound xyloglucan and sloughed extracellular xyloglucans, samples of maize cell 

culture SEPs and wall-bound hemicelluloses were used as donor substrates for XET : 

XEG sequential treatments. Following the production of AIR from maize cultured 

cells and maize culture SEPs, hemicellulose was extracted/redissolved from each by 

the use of alkali. Both were used as the donor substrate for XET activity and 75% 

(v/v) ethanol-insoluble products were digested with XEG (Fig. 46). Again, 

[3H]GnXXLGols (at least three) were produced when either of these xyloglucan 

sources acted as the XET donor substrate. The ratio [3H]GXXLGol : [3H]XXLGol 

was similar (0.44–0.55) when either xyloglucan source acted as the substrate. The 

range of thymol-stainable oligosaccharides produced by XEG hydrolysis of the two 

polysaccharides was indistinguishable. The shared [3H]GXXLGol : [3H]XXLGol 

ratio and thymol-stainable oligosaccharide range produced by digestion of SEPs and 

AIR xyloglucans indicates that cell wall and SEP xyloglucan exhibit no structural 



Thomas J. Simmons        GH16 enzymes 

 109 

distinction and further supports the contention that xyloglucan structure define the 

amount of [3H]GnXXLGols yielded. Further, this suggests that the difference in the 

[3H]GXXLGol: [3H]XXLGol ratios observed in the previous experiments is a 

manifestation of the distinct structures of the different xyloglucans and not of the 

distinct environments in which the reactions occurred; specifically, this suggests that 

maize xyloglucan has a lower XXGGG:XXGG subunit ratio than barley xyloglucan.  
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Fig. 46. TLC analysis of products of XEG digestion of XET activity 

products using maize cell culture xyloglucans from cell walls and from 

SEPs  Cell wall and SEP AIRs (20 µl) were incubated with either 5 µl grass or 

mung bean extract and 2.5 μM XXLGol (5 kBq) at 25°C for 24 h. 75% (v/v) 

ethanol-insoluble XET products were digested with XEG. 75% (v/v) ethanol-

soluble XEG products were resolved by TLC (BAW, two ascents) and analysed 

by fluorography (a) and thymol-staining (b). X, XEG digestion; U, 

unincorporated oligosaccharides from XET incubation; CW, cell wall-bound 

hemicellulose; SEPs, sloughed extracellular polysaccharide; grass, Holcus 

lanatus crude extract; mung, Vigna radiate crude extract. Arrows indicate 

[3H]GnXXLGols. 

3.7.6. The XEH-active enzyme AtXTH31 exhibits a distinct site of attack from 

XET activities 

The difference in the site of attack of XET and the two hydrolases used thus far 

could be the product of the difference between transglycanase and glycanase 
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activities, or alternatively of the differences in substrate recognition by different GH 

families. To investigate this, I analysed the site of attack of AtXTH31, a xyloglucan 

endohydrolase (glycanase) from GH16, the same GH family that XET activity is 

found in. I created XET products using a mung bean crude extract and three donor 

substrates (de-acetylated SEPs, maize cell culture cell wall hemicellulose and 

tamarind xyloglucan) and the MXE product using an E. fluviatile crude extract and 

barley MLG as the donor. In addition, I separately created all these products using 

[3H]XXLGol and [3H]XXXGol. All eight transglycanase products were then 

subjected to hydrolysis by XEG, cellulase and AtXTH31. Following hydrolysis, 75% 

(v/v) ethanol-soluble products were resolved by TLC and analysed by fluorography 

(Fig. 47).  

Radioactive products were essentially identical (allowing for the presence of an 

additional galactose group in one) regardless of acceptor substrate used, indicating 

that the galactosyl moiety in XXLGol played no detectable role in determining 

hydrolase site of attack. All hydrolases released the initial acceptor substrate alone 

([3H]XXLGol or [3H]XXXGol) from the tamarind xyloglucan XET product. The 

MXE product was not digested appreciably by XEG, though a small amount of the 

initial acceptor substrate was produced; this is consistent with its previously observed 

requirement of substitutions in its negative subsites. In contrast, cellulase efficiently 

hydrolysed the MXE product to the initial acceptor substrate. Because of this, and 

cellulase’s ability to produce the acceptor substrate with 3 Glc residue attached 

([3H]GGGXXLGol or [3H]GGGXXXGol)  from XET products (Fig. 43), cellulase 

appears capable of accommodating both substituted and non-substituted glucan 

backbone residues in all of its subsites. This is unsurprising given cellulase’s primary 

celluloytic activity. However, the fact that cellulase produced the acceptor substrate 

alone from the MXE product but was capable of producing [3H]GnXXLGols from 

XET products (Fig. 43; Fig. 47), indicates that cellulase does more than merely 

accommodate substitutions in its negative subsites; substitutions at these position 

must produce some increased affinity. GH7 and GH16 enzymes belong to GH clan-B 

and thus might be expected to exhibit similar characteristics. The fact that cellulase 

(GH7) recognises and cleaves xyloglucan in a manner far closer to XEG (GH12) 

than XET (GH16) is perhaps surprising. AtXTH31 digestion of the MXE reaction 
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product yielded a range of oligosaccharides of which the most predominant appeared 

to be the acceptor substrate with two Glc residues attached ([3H]GGXXLGol or 

[3H]GGXXXGol; this is particularly clear on 47b in which this moiety co-migrated 

with a structurally characterised [3H]GGXXXGol marker) with decreasing amounts 

of oligosaccharides ranging from the acceptor substrate alone to the acceptor 

substrate with three Glc residues attached ([3H]GGGXXLGol or [3H]GGGXXXGol). 

The products observed following AtXTH31 digestion of the MXE product are 

schematised in Fig. 48. The promiscuity regarding substrate selection that this range 

of products indicates is highly surprising. To produce all cleavage products shown, 

AtXTH31 must: be capable of accommodating both xylosylated and non-xylosylated 

residues within its positive subsites; be able to accommodate a β-(1→3) bond 

between residues in any of its subsites except between +2/+3; and be capable of 

cleaving both β-(1→3) and β-(1→4) bonds. Moreover, because [3H]GGXXLGol or 

[3H]GGXXXGol was the major product of AtXTH31 digestion of the MXE product, 

AtXTH31 must favour having a β-(1→3) bond between residues in subsites -2/-1 

over other possible positions. These are all surprising findings and serve to 

distinguish AtXTH31 from other XTHs. XEG and cellulase digestion of SEP- and 

cell wall hemicellulose-XET products in Fig. 47 yielded the familiar pattern of the 

acceptor substrate with a ladder of [3H]GnXXLGols below it. AtXTH31 digestion of 

these polymers yielded the acceptor substrate as the major product and the acceptor 

substrate with two Glc residues attached as the second most prevalent. This latter 

finding runs counter to the initial hypothesis that AtXTH31 would, because of its 

shared GH16 family (and XTH subfamily) membership, cleave xyloglucan at the 

same point as XET activity did and therefore produce the initial acceptor substrate 

alone.  
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Fig. 47. Digestion of four transglycanase products using three glycanases 

XET products created by incubating 15 kBq [3H]XXXGol (a) or [3H]XXLGol 

(b) with 20 µl donor polysaccharide and 5 µl enzyme source. 75% (v/v) ethanol-

soluble hydrolase products were resolved by TLC (BAW, two ascents) and 

detected by fluorography. The presence of non-mobile radioactivity at the origin 

indicates ethanol soluble polymeric material. X, XEG; C, cellulase; XEH, 

AtXTH31 
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Fig. 48. Schematic showing sites of attack for cleavage of the MXE reaction 

product by AtXTH31 Each oligosaccharide product created indicates a distinct 

site of attack. The scheme shows an MXE product created by use of XXXGol as 
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the acceptor substrate, but the same would apply for one created by use of 

XXLGol. 

3.7.7. Cell wall identity dramatically influences the [3H]GXXLGol : 

[3H]XXLGol ratio when XET acts in barley in situ 

To investigate the possibility that the products of sequential XET:XEG treatments 

might vary in different organs, products of in vivo XET action from 13 barley organs 

(3.4.2.) were digested with XEG and resolved by TLC (Fig. 49). Again, as well as 

the initial acceptor substrate [3H]XXLGol, at least three [3H]GnXXLGols were 

formed in all barley organs tested; this again supports the contention that 

[3H]GnXXLGols will be formed whenever Poaceaen xyloglucan acted as the donor 

substrate. While the [3H]GXXLGol : XXLGol ratio varied somewhat between all 

organs, two trends in the ratio between different organ identities were evident from 

the results (Fig. 49c). Firstly, the ratio was lower in older tissues, as evidenced by 

comparison of older seedling tissues with younger seedling tissues and 2nd mature 

leaf tissues with 5th mature leaf tissues. Secondly, the ratio was lower in more basal 

tissues, as evidenced by comparison of seedling root tissues with seedling shoot 

tissues and of 2nd mature leaf lamina and 5th mature leaf (which was largely lamina) 

with 2nd mature leaf tissues. The comparison of seedling roots with shoots was 

particularly stark, with a greater than two-fold excess of [3H]GXXLGol in roots, 

despite [3H]XXLGol being at least as prevalent as [3H]GXXLGol in shoots. These 

tissue-specific patterns in the [3H]GXXLGol:XXLGol ratio could feasibly be a 

product of differing xyloglucan structures in the different tissues, differing levels or 

patterns of acetylation, differences in the way that xyloglucans are accessible by 

XTHs within the cell walls of these different tissues (cell wall ultrastructure), or 

some other factor(s). As all XET sources used previously yielded identical 

[3H]GXXLGol:XXLGol ratios (Fig. 43), it is perhaps unlikely that differences in the 

endogenous XTHs expressed in different tissues caused the differences observed. 
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Fig. 49. XEG digestion of thirteen XET products formed in different barley 

organs Products of in vivo XET action were extracted with alkali (as in Fig. 

30), digested with XEG and resolved by TLC. Oligosaccharides on that TLC 

were detected by thymol-staining (a) and fluorography (b). Radioactive 

oligosaccharides were also quantified by use of a radioisotope plate reader (c); 

the scale on the histogram is logarithmic. 

Analysis of the thymol-stainable oligosaccharides released by XEG would aid 

assessment of the contribution of xyloglucan structural discrepancies to the 

differences in the [3H]GXXLGol:XXLGol ratio. However, the unexpectedly large 

amount of thymol-stainable products following XEG treatment (Fig. 49a) suggests 

that XEG digested MLG and/or mannans in addition to xyloglucans; this confounds 

direct comparisons of cold xyloglucan oligosaccharides. It is evident however from 

Fig. 31 that the XGOs released from older seedling root xyloglucan differ from those 

released from other older seedling organs. Thus, it seems feasible that this difference 

in xyloglucan structure is a contributing factor to the differences in the 



Thomas J. Simmons        GH16 enzymes 

 115 

[3H]GXXLGol:XXLGol ratio. The decrease in the GXXLGol : XXLGol ratio with 

age of barley seedlings is consistent with the report in Gibeaut et al. (2005) that the 

Glc5(XXGGG):Glc4(XXGG) subunit content of barley coleoptile xyloglucan 

decreases with seedling age. From this it can be deduced that older and more basal 

barley tissues have lower Glc5:Glc4 subunit ratios, with that of seedling shoots being 

particularly low. The physiological significance of this structural distinction is 

unknown. 

 

 



Thomas J. Simmons        GH16 enzymes 

 116 

4. CONCLUSION 

4.1. MXE conclusion 

4.1.1. MXE is a highly acidic XTH homolog  

MXE’s identification as an XTH homolog was unsurprising. Indeed, Fry et al. 

(2008a) speculated that MXE would probably belong to the GH16 enzyme family 

because of the co-occurrence of XET and lichenase activities – the reactions of 

which MXE is an intermediary between (for similarity between XET, MXE and 

lichenase see Fig. 3) – in this group. But despite MXE’s identity vindicating this 

hypothesis, MXE exhibits characteristics which distinguish it from these orthologs. 

For example, though both lichenase and MXE are capable of cleaving MLG 

polysaccharides, they recognise MLG motifs in distinct ways (See 3.3.1.).  

Further, unlike both XTHs and lichenases, MXE is highly acidic. The physiological 

significance of this remains, at this point, conjectural. The fact that this acidity can 

readily distinguish MXE from other more conventional XTHs in E. fluviatile crude 

extracts (Fig. 17) suggests that it may be related to the presumed distinct functions of 

MXE and XET, including MXE’s proposed role in growth cessation (in contrast to 

the commonly perceived role of XTHs in growth promotion). Further, the acidity of 

the protein would cause it to be highly negatively charged at apoplastic pH ranges 

(typically pH 5–6). This would attract the MXE enzyme to any positively charged 

material in the cell wall and, perhaps more significantly, would repel the MXE 

protein from other negatively charged molecules, such as non-methyl-esterified 

pectic polysaccharides. MXE will, for example, presumably be repelled from pectin-

rich regions such as the middle lamella. Consistent with this, Leroux et al. (2011) 

report that in the strengthening tissues of E. ramosissimum – where MLG 

predominates, and where the effects of growth-cessating factors (the role of MXE 

hypothesised by Fry et al. 2008a) might feasibly be expected to act – MLG is 

restricted to the inner cell wall region. Such hypotheses could be tested by the use of 

immunological approaches. 
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4.1.2. The role of MXE in planta 

The proposed role in wall strengthening of MXE made by Fry et al. (2008a) was 

based on the correlation of MXE activity with Equisetum tissue age. The fact that 

MXE is far weaker in reproductive tissue than in vegetative ones (Fig. 28) is 

commensurate with this, because vegetative tissues are needed to have a greater 

longevity than reproductive ones which, particularly in E. arvense, are very short-

lived. It remains conjectural whether the other novel activity of the MXE enzyme – 

CXE – is a physiologically significant reaction or merely an artefact/side reaction 

which only occurs to a significant extent in vitro. In light of their rarity in the plant 

kingdom, the co-occurrence of MLG and MXE in Equisetum, suggests, at the very 

least, that catalysing the MXE reaction is probably the main function of this enzyme. 

4.1.3. Implications for the roles of XTHs and MLG in poalean cell walls 
The lack of detectable MXE activity and action in barley suggests that the role 

played by MLG in the cell wall of Equisetum and cereals is, at least in some crucial 

respects, different, a conclusion also indicated by the different spatio-temporal 

localisation of the MLGs in Equisetum and cereal cell walls and their markedly 

different carbohydrate composition. In addition, the observed lack of MXE action in 

barley cell wall should inspire further investigation into the role of poalean XTHs. 

The evolution of the unique Type II wall architecture of the Poaceae – which 

contains a distinctively low xyloglucan complement – appears to have proceeded 

without a corresponding change in the number of poalean XTH genes; perhaps 

counter intuitively, enzyme extracts from young grass and cereal tissues often 

actually have higher XET activity than those from young dicot tissues (Fry et al., 

1992). While these results indicate MXE does not play an appreciable role in barley 

cell wall physiology, they do not rule out the possibility of other novel 

endotransglycosylase activities/actions in barley. The suggestion that Poaceaen 

XTHs might act mainly on the other, more prevalent, polysaccharides (Yokoyama et 

al., 2004; Fincher, 2009) should now be directed toward activities other than MXE.  

Such actions might have produced the endotransglucosylase product which was 

indigestible with XEG in the time allotted. A novel hetero-endotransglycosylase 

which uses xyloglucan as an acceptor but not as a donor would create a polymeric 
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product which would probably not be susceptible to XEG digestion. However, I was 

unable to produce TLC-mobile oligosaccharides by digestion with various hydrolases 

(lichenase, endo-β-mannanase, β-xylanase and endopolygalacturonase), and was 

therefore unable to provide positive evidence for such hypothetical hetero-

endotransglycosylases (data not shown). An alternative explanation for the XEG-

indigestible material is that it was a standard XET product which became 

incompletely soluble and thus partly indigestible after the drying step. This 

possibility is made more likely because the lower levels of xylosyl substitution on 

Poaceaen xyloglucan when compared to that of tamarind or Equisetum xyloglucan 

would make it less soluble; the O-acetylation present in native Poaceaen xyloglucan 

would have been lost during the NaOH extraction procedure.   
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4.2. Novel hexasaccharide conclusion 

4.2.1. Highlighted importance of use of multiple chromatographic techniques 

The discovery of 6x (G3G4G4G4G3G), a novel hexasaccharide which is the major 

constituent of a peak previously mis-identified in the literature as solely MLG9 

(Wood et al., 1994; Izydorczyk et al., 1998; Wang et al., 2003; Wood et al., 2003; 

Lazaridou et al., 2004; Tosh et al., 2004a; Tosh et al., 2004b; Fry et al., 2008), 

highlights the importance of not relying solely on any single analytical technique. 

HPLC alone would have mis-identified 6x as MLG9, while GPC alone would have 

mis-identified it as MLG6. Their combined use as well as the use of TLC 

conclusively revealed 6x as a novel hexasaccharide. 

The fact that 6x is resistant to lichenase has implications for our understanding of the 

mode of attack of lichenase and for both the subunit composition of, and subunit 

distribution within, the MLGs from the three phylogenetic lineages investigated here. 

4.2.2. It remains conjectural whether other lichenases would produce 6x 

It remains to be investigated whether the inability to cleave 6x, and potentially other 

members of the ‘x’ series, is general to lichenases or a specific feature of the GH16 

Bacillus subtilis enzyme widely used for analytical purposes. This is particularly 

conjectural for plant lichenases which, owing to their GH17 family membership, are 

unrelated to the B. subtilis enzyme. 

4.2.3. MLG2 units are found disproportionately at the non-reducing end of 

MLG4 units 

Many details of the spatial distribution of MLG subunits within the intact 

polysaccharides are lost during lichenase digestion. Indeed, despite the stability of 

free 6x in the presence of lichenase, our lack of knowledge of the 6x sequence’s 

lability when found within the intact polysaccharide means that significant aspects of 

any model which sought to infer subunit spatial distribution from 6x’s presence 

would necessarily be somewhat speculative.  

However, the ratios of the MLGOs produced by lichenase digestion of barley and 

Iceland moss MLGs (Table 4) show that MLG2 units cannot be randomly distributed 

in these polysaccharides.  In barley for example, since MLG3 is by far the most 



Thomas J. Simmons        GH16 enzymes 

 120 

abundant repeat-unit, if a random distribution of subunits was assumed, MLG2s 

would occur mainly adjacent to MLG3s. However, the ratios of MLGOs in my 

digests indicate the maximum possible molar proportion of the barley polysaccharide 

that could be contributed by MLG2s within MLG2-MLG3 runs is 0.11%, comprising 

0.09% (the proportion released as free MLG2; this could theoretically all have 

originated from MLG2-MLG3 sequences, if they are, to some degree, labile within 

the polysaccharide) plus 0.02% (the proportion of the lichenase-resistant 

oligosaccharide we tentatively identify as 5x: MLG2-MLG3). But the molar 

contribution of MLG2 within MLG2-MLG4 sequences, must have been much 

higher: at least 1.78% (the yield of 6x). Therefore, MLG2-MLG4 sequences 

outnumbered MLG2-MLG3 at least 16-fold (= 1.78 / 0.11), even though total 

MLG3s outnumbered total MLG4s 2.5-fold. This shows that barley MLG cannot be 

a randomly constructed polysaccharide, but has at least a 40-fold preference (= 16 × 

2.5) for MLG2-MLG4 over MLG2-MLG3.  

By similar reasoning, Iceland moss MLG has at least a 15-fold preference for 

MLG2-MLG4 over MLG2-MLG3. In contrast to this, Equisetum MLG gave a high 

yield of free MLG2 (18%) and a relatively low yield of MLG2-MLG4 (5%; relative 

to the amount of MLG2). Interpretation of this observation is more complicated, 

depending on assumptions about lichenase’s ability to cleave 6x within the intact 

polysaccharide as well as the tendency of mid-chain segments of the polysaccharide 

to sit in the active site with an MLG2 or MLG4 in the positive and negative subsites. 

Any models of cereal or lichen MLG synthesis must be able to explain the non-

random distribution of MLG2 subunits I have observed. 
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4.3. Synoptic conclusion 

The GH16 family of enzymes are found in all taxonomic kingdoms where they play 

crucial roles in carbohydrate metabolism. The distinct research directions presented 

here together serve to illuminate our understanding of the interactions between GH16 

enzymes and their substrates in general. Because of the focus of the work on 

enzymes which cleave plant hemicelluloses the findings here will be most pertinent 

to those interested in this field. This is especially true for identification and 

understanding of the enzymic features which confer xyloglucan specificity on 

enzymes; this will prove useful for the understanding of plant metabolism, the role/s 

of different XTHs, the breakdown of pant cell wall material and may prove of use to 

those wishing to exploit the technological characteristics of xyloglucan.  
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5. FUTURE WORK 

5.1. Further probing of the substrate specificity of MXE 

To further investigate the role(s) and enzymology of MXE different substrates should 

be used to probe its substrate specificity. Of particular importance is the assessment 

of the ability of MXE to utilise MLG oligosaccharides (MLGOs) as acceptor 

substrates. Given that MXE favours MLG as a donor substrate over xyloglucan it is 

possible that its favoured activity might be MLG : MLG endotransglycosylation. 

This would drastically alter our understanding of the role of MXE. Such a discovery 

would not have been possible prior to the purification and/or recombinant expression 

of MXE due to the problems that contaminating β-glucosidase enzymes would cause 

when using MLGOs as acceptors. It will also be important to assess substrate 

specificity using MLGOs yielded by digestion of MLG with different endo-

hydrolases (Simmons, 2013).  

5.2. Investigation of potential roles and applications of CXE/MXE in vivo via 

gain-of-function mutants 

Gain-of-function mutants would provide insights into the role of MXE/CXE which 

would be particularly pertinent given that the expertise to enable knock-out mutants 

in Equisetum has not yet been developed. Gain of function mutants would however 

be thwarted by the dissimilarities between the cell wall of Equisetum and those of 

other species. To assess the role of MXE, for example, a monocot species would be 

the most sensible example, owing to their possession of MLG. However, in the 

Poaceae, the developmental timing of MLG synthesis is unlike that of Equisetum and 

the unique anatomy of Equisetum tissues might render comparison of the phenotype 

of such mutant Poaceae with Equisetum morphology challenging at best. To assess 

the role of CXE in planta, A. thaliana would be the most probable initial candidate, 

owing to its ease of transformation. However, the same limitations due to cell wall 

dissimilarities would pose a similar problem in the application of knowledge yielded 

from the transformant back to Equisetum.  

Nonetheless, even if the creation of such a gain-of-function mutant proved unable to 

provide information about the role of MXE/CXE in Equisetum, it could yield useful 
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information about the biotechnological applications of MXE e.g. by conferring on 

plants improved mechanical properties (as speculated by Fry et al., 2008a). For such 

biotech applications crop and/or tree species might prove most useful transformants.      

5.3. Identification of the features of MXE which confer on it its novel substrate 

specificity 

MXE is unique within the XTH family in exhibiting a preference for a non-

xyloglucan donor substrate. As such, the active site residues which confer on MXE 

its substrate specificity must differ from those of other XTHs significantly. However, 

it is not obvious from analysing sequence information which residues are 

responsible. For example, because MXE is such an acidic protein (pI ~ 4), while 

other XTHs are commonly neutral, it also differs from other XTHs in ways 

presumably unrelated to its substrate specificity. Site-directed mutagenesis would 

enable discrimination between those residues relevant to determining MXE’s 

substrate specificity and those unrelated. Such a study might comprise the insertion 

of mutations to both a common XTH and to MXE in an attempt to confer on them 

MLG and xyloglucan specificity respectively. The work of Baumann et al. (2007) 

which showed that the truncation of an unstructured loop was sufficient to direct a 

predominantly XET-active XTH toward hydrolysis, could be extended to MXE in an 

attempt both to test their thesis on a distantly related enzyme, but also to create an 

MLG-hydrolase from MXE. By catalysing MLG-cleavage, such an enzyme would 

provide further knowledge on the site of attack of MXE. 
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