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Abstract 
 
Recent advances in sequencing technology and computing power mean that we are in 

an unprecedented position to analyse large viral sequence datasets using state-of-the-

art methods, with the aim of better understanding pathogen evolution and 

epidemiology.  This thesis concerns the evolutionary analysis of rapidly evolving 

RNA viruses, with a focus on avian influenza and the use of Bayesian methodologies 

which account for uncertainty in the evolutionary process.  As avian influenza 

viruses present an epidemiological and economic threat on a global scale, knowledge 

of how they are circulating and evolving is of substantial public health importance.  

In the first part of this thesis I consider avian influenza viruses of haemagglutinin 

(HA) subtype H7 which, along with H5, is the only subtype for which highly 

pathogenic influenza has been found.  I conduct a comprehensive phylogenetic 

analysis of available H7 HA sequences to reveal global evolutionary relationships, 

which can help to target influenza surveillance in birds and facilitate the early 

detection of potential pandemic strains.  I provide evidence for the continued 

distinction between American and Eurasian sequences, and suggest that the most 

likely route for the introduction of highly pathogenic H5N1 avian influenza to North 

America would be through the smuggling of caged birds.   

 

I proceed to apply novel methods to better understand the evolution of avian 

influenza.  Firstly, I use an extension of stochastic mutational mapping methods to 

estimate the dN/dS ratio of H7 HA on different neuraminidase (NA) subtype 

backgrounds.  I find dN/dS to be higher on the N2 NA background than on N1, N3 or 

N7 NA backgrounds, due to differences in selective pressure.  Secondly, I investigate 

reassortment, which generates novel influenza strains and precedes human influenza 

pandemics.  The rate at which reassortment occurs has been difficult to assess, and I 

take a novel approach to quantifying reassortment across phylogenies using discrete 

trait mapping methods.  I also use discrete trait mapping to investigate inter-subtype 

recombination in early HIV-1 in Kinshasa, the epicentre of the HIV-1 group M 

epidemic.  In the final section of the thesis, I describe a method whereby 

epidemiological parameters may be inferred from viral sequence data isolated from 

different infected individuals in a population.  To conclude, I discuss the findings of 

this thesis in the context of other evolutionary and epidemiological studies, suggest 

future directions for avian influenza research and highlight scenarios in which the 

methods described in this thesis might find further application. 
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1 Introduction to avian influenza 

 

In this chapter, an overview of the influenza virus is provided.  In particular, the focus is 

on avian influenza viruses, their molecular and evolutionary genetics and the threat posed 

by their transmission to humans and animals. 

  

 

1.1 Background to influenza 

 

Influenza is a single stranded, negative-sense RNA virus belonging to the 

Orthomyxoviridae family (Smith et al. 1933; Palese and Shaw 2007).  Type A 

influenza viruses are associated with much higher levels of diversity, infection and 

pathogenicity than type B and C influenza viruses and will be the subject of this 

investigation.  In the twentieth century, the influenza A pandemics of 1918, 1957 and 

1968 resulted in significant human mortality.  Introduction of genetic material from 

avian influenza viruses led to the 1957 and 1968 pandemics, and has also been 

implicated in the origin of the 1918 pandemic virus.  The 2009 H1N1 ‘swine ’flu’ 

pandemic highlighted the constant threat that human populations are under from the 

emerging influenza strains.   The large reservoir of avian influenza viruses currently 

circulating, coupled with the previous periodic emergence of pandemic strains of 

avian origin, has led to concern that an avian influenza virus could give rise to 

another pandemic (Webby and Webster 2003).   

 

Given their role in past pandemics, it is important to understand how avian influenza 

viruses are circulating and evolving in birds, in order to target surveillance studies 

and pre-empt the emergence of pandemic strains.  It is unclear which geographical 

region a new pandemic influenza virus will come from, and what subtype it will be.  

Indeed, the 2009 H1N1 swine-origin pandemic strain (H1N1-2009) was not 

identified as a threat until it had caused widespread human infection which could not 

be contained (Fraser et al. 2009; Smith et al. 2009).  In addition to the 
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epidemiological and economic consequences of human infection, influenza viruses 

are associated with profound economic losses to the poultry industry as a single 

avian influenza outbreak can lead to the slaughter of several million birds.  

Understanding the genetic factors underlying the emergence of avian influenza 

viruses which cause particularly severe infection in humans, other mammals and 

birds could facilitate the early identification of strains with the potential to cause 

widespread or severe disease and influence strategies for their control. 

 

 

1.2 Structure and function of influenza viruses 

 

The genome of the influenza A virus is organised into eight RNA segments (Palese 

1977), numbered from 1 to 8, from which a total of eleven proteins are transcribed 

(Chen et al. 2001).  An influenza virion must contain a copy of each of the eight 

RNA segments to be fully infectious (Palese and Shaw 2007).  The names and 

functions of the avian influenza virus proteins, as well as the number of the RNA 

segment encoding the protein, are listed in Table 1.1.  Figure 1.1 is a cross-sectional 

representation of an influenza virion.  The glycoproteins haemagglutinin (HA) and 

neuraminidase (NA) may be observed protruding in spikes at the viral surface.  The 

structural matrix protein layer is found below the surface layer of the virion.  At the 

core of the virion lies the helical nucleoprotein-RNA-polymerase complex, which 

contains copies of the eight RNA segments, the polymerase proteins required for 

viral RNA synthesis, the nucleoprotein, which has structural and regulatory roles, 

and the non-structural proteins required for viral replication (Webster et al. 1992).   
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Protein Name 
Number of RNA 

segment encoding 
protein 

Function 

Haemagglutinin (HA) 4 Attachment to host cell 

Neuraminidase (NA) 6 
Release of viral progeny from 
host cell 

Nonstructural NS1 
8 

Viral replication; NS1inhibits 
host innate immune response Nonstructural NS2 

PB1 Polymerase 2 

Viral RNA synthesis 
PB1(F2) Polymerase 2 

PB2 Polymerase 1 

PA Polymerase 3 

Nucleoprotein (NP) 5 Structural and regulatory 

M1 Matrix  
7 Virus structure 

M2 Matrix 

 

Table 1.1 
Avian influenza A virus proteins.  11 proteins are coded for by a total of 8 RNA segments 
(numbered 1-8, in order of length, with 1 being the largest) in the influenza A virus genome.  
The main function of the protein, and the number of the RNA segment encoding it, are listed 
(information from Webster et al. 1992; PB1-F2 from Chen et al. 2001)  
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Figure 1.1 
Cross-sectional representation of an influenza virion.  The surface glycoproteins HA and 
NA are responsible for entry into and release from host cells respectively, and protrude in 
spikes at the virion surface.  Beneath the surface layer lies the matrix layer, which gives 
structure to the virion.  The helical nucleoprotein-RNA-polymerase complex, which contains 
copies of the viral RNA, can be seen at the core of the virion. 
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HA binds to sialic acid receptors in the host and mediates entry into the host cell; for 

review see Wiley and Skehel (1987).  HA is the major antigenic influenza protein 

(Skehel and Wiley 2000) and current influenza vaccines primarily target the HA 

protein to elicit a protective antibody response (Eckert and Kay 2010).  Post-

translational cleavage of the HA precursor protein HA0 into subunits HA1 and HA2 

is necessary for viral infectivity; for review see Steinhauer (1999).  The globular 

head of the HA protein (Figure 1.2) is encoded by the HA1 subunit and is the main 

antigenic domain of the influenza HA.  Five antigenic epitopes have been identified 

for H1 (Gerhard et al. 1981) and H3 HA (Webster and Laver 1980; Wiley et al. 

1981), denoted A to E for H3 and Ca1, Ca2, Cb, Sa and Sb for H1 (see below for 

information on the biological meaning of HA subtypes H1 and H3).  The amino acid 

sites corresponding to these epitopes have been recorded.  The receptor binding site, 

which binds to sialic acid receptors in host cells, is also encoded by the HA1 sub-

unit.  Most of the molecular variation in influenza HA is found in the HA1 region, 

whilst HA2, which along with short regions of the HA1 encodes the stalk of the 

protein, has been shown to be relatively conserved (Krystal et al. 1982).   

 

NA also binds to sialic acid receptors, facilitating the release of progeny virions from 

host cells (Seto and Rott 1966) and preventing aggregation below the cell surface 

(Palese et al. 1974).  NA has a major antigenic role for the influenza virus, second in 

importance only to the HA, and at least two antigenic sites have been identified for 

NA (Colman et al. 1983; Air et al. 1985).  Neuraminidase-inhibiting drugs (NAIs), 

which block the enzyme activity of NA and curb the spread of virus in the host by 

preventing the release of progeny virions from infected cells, are used in the 

treatment of influenza in humans.  NAIs include the orally administered oseltamivir 

(Tamiflu), which was widely used during the 2009 H1N1 pandemic, and zanamivir, 

which is inhaled orally or nasally.  The other major class of anti-influenza agents is 

the adamantanes (rimantadine and amantadine), which interfere with the M2 matrix 

protein ion channel (Wang et al. 1993; Pinto and Lamb 1995).  Widespread 

amantadine resistance has arisen amongst seasonal influenza strains (Deyde et al. 

2007) and all pandemic H1N1-2009 viruses were amantadine resistant (Dawood et 

al. 2009).   Although mutations exist which are known to confer resistance to NAIs 
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(note, for example, the recent global spread of oseltamivir–resistant seasonal H1N1 

amongst humans (Moscona 2009)), NAIs remain the most effective treatment for 

influenza infection.  

 

 

 
Figure 1.2 
Three-dimensional structure of an influenza haemagglutinin (HA) molecule.  The 
globular head is encoded by the HA1 subunit and contains the main epitopes and the 
receptor binding site of the protein.  The stalk region is largely encoded by the more 
conserved HA2 subunit and mediates entry of the virus into host cells. 
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The HA and NA proteins are grouped into subtypes which are not serologically 

cross-reactive (WHO 1980).  There are currently 16 known HA subtypes (H1 – H16) 

and 9 known subtypes of NA (N1 – N9) circulating in avian populations (Webster et 

al. 1992; Fouchier et al. 2005).  Protein coding sequences for the HA1 sub-unit have 

been shown to vary by at least 30% between different HA subtypes (Webster et al. 

1992).  Phylogenetically, the HA subtypes form two distinct clades: group 1, 

consisting of subtypes H1, H2, H5, H6, H8, H9, H11, H12, H13 and H16 and group 

2, comprising subtypes H3, H4, H7, H10, H14 and H15 (Air 1981; Chen and Holmes 

2006).  Similar observations have been made for NA, with the N1, N4, N5 and N8 

subtypes forming a distinct phylogenetic cluster (denoted group 1) and N2, N3, N6, 

N7 and N9 clustering together (denoted group 2) (Fouchier et al. 2005).  X-ray 

crystallography has revealed that the two groups of NA subtypes are structurally 

distinct (Russell et al. 2006). 

 

The failure of neutralising antibodies to cross-react with subtypes from different 

clades, whilst providing some protection against subtypes from the same group, 

provides support for serological and structural differences between the two HA 

subtype groups  (Okuno et al. 1993; Kashyap et al. 2008; Ekiert et al. 2009; Sui et al. 

2009).  Further division of HA subtypes into four clades, each represented by one of 

subtypes H3, H5, H7 or H9, has been supported phylogenetically (Nobusawa et al. 

1991) and evidence has been provided for structural differences between the HA 

subtypes belonging to the four clades (Ha et al. 2002; Russell et al. 2004).   

   

 

1.3 Influenza virus nomenclature 

 

Influenza A viruses are classified by their HA and NA subtypes, so that a virus of 

HA subtype H5 and NA subtype N1 would be referred to as being of the H5N1 

serotype.  The standard nomenclature for influenza viruses is to include the type of 

virus (A, B or C), the host of origin (except for human influenza viruses, where this 

is omitted), the geographic site of sampling, the strain number and the year of 

sampling, followed by the subtype in parentheses (Wright et al. 2007).  Thus, 
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A/goose/Guangdong/1/96(H5N1) would indicate the first strain of a type A virus of 

H5N1 subtype to have been isolated from a goose in the Guangdong province of 

China in 1996.   

 

 

1.4 Birds as the natural hosts of the influenza A virus 

 

Wild aquatic birds of orders Anseriformes (e.g. ducks, geese and swans) and 

Charadriiformes (e.g. gulls, terns, surfbirds and sandpipers) have been established as 

the natural reservoir for type A influenza viruses (Wright et al. 2007).  All known 

HA and NA subtypes have been found to exist in waterfowl (Webster et al. 2007), 

although the most prevalent subtypes of influenza virus isolated from gulls and 

shorebirds differ from those which predominate in ducks (Webster et al. 1992; 

Krauss et al. 2004).  The influenza virus is enteric in avian species and is shed in 

high quantities in the faeces of avian hosts (Webster et al. 1978).  Faecal shedding in 

lakes is a major mechanism for the transmission of influenza viruses amongst wild 

waterfowl (Webster et al. 1992).  Although influenza infection is largely 

asymptomatic in ducks, sporadic occurrences of pathogenic infections have been 

reported in these hosts (Sturm-Ramirez et al. 2004), particularly associated with 

recent H5N1 viruses (Chen et al. 2005; Liu et al. 2005) (see Section 1.6).  Avian 

influenza viruses which are virulent in Charadriiformes have occasionally been 

reported (Becker 1966).   

 

    Annual peaks in influenza virus infections amongst wild waterfowl have been shown 

to occur after the breeding season and are accounted for by high levels of infection 

amongst juvenile birds, which are immunologically naïve (Hinshaw et al. 1980).  It 

is not known exactly how influenza viruses persist in their natural host populations at 

times of the year when infection levels are very low.  Two main mechanisms have 

been put forward for the perpetuation of influenza viruses in wild migratory birds 

(Stallknecht et al. 1990) and evidence for both exists.  Firstly, influenza viruses may 

become frozen in the waters at the breeding grounds of avian species and be able to 

re-infect when they thaw the next year (Ito et al. 1995).  Secondly, influenza viruses 
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could be maintained at low levels in flocks of migratory birds over the winter 

(Krauss et al. 2004).  In addition, it is possible that influenza viruses could circulate 

continuously amongst Anseriformes and Charadriiformes in subtropical and tropical 

regions (Webster et al. 1992); indeed, a tropical epicentre has also been suggested for 

human influenza viruses (Rambaut et al. 2008).   

 

Influenza viruses from wild birds separate into phylogenetically distinct clades of 

Eurasian and American viruses (Olsen et al. 2006) and the opportunity for 

transatlantic genetic exchange along migratory flyways is thought to be limited 

(Figure 1.3).  Indeed, despite the prevalence of the highly pathogenic H5N1 virus 

amongst poultry in Asia, Africa and Europe, this strain has not been detected in 

North or South America.  Although transfer between viruses in the Eurasian and 

American clades has been documented for certain segments (Schafer et al. 1993; 

Makarova et al. 1999; Widjaja et al. 2004), phylogenetic evidence suggests that such 

events occur at a low frequency (Olsen et al. 2006; Webster et al. 2007).   

 

 

 

Figure 1.3 
Migratory flyways of wild birds.  Three major global flyways of wild migratory birds have 
been identified: the Americas flyway (shown in blue), the African-Eurasian flyway (yellow) 
and the East Asian-Australasian flyway (red).  Image obtained, with permission, from 
http://www.birdlife.org.  Examination of these flyways suggests the possibility for exchange of 
avian influenza viruses between Europe and Asia, whilst exchange of virus between the 
Americas and Eurasia is thought to be more limited. 
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1.5 Influenza in poultry 

 

Influenza viruses have been found to infect various types of domestic poultry, such 

as chickens, turkeys, ducks and geese.  Outbreaks of avian influenza in poultry, 

whether of the low pathogenic or highly pathogenic form (see Section 1.6), can result 

in economic loss and disruption to the poultry industry through attempts to contain or 

eradicate the virus by culling or vaccination, as well as the implementation of local 

and international trade restrictions (Davison et al. 1999; Pearson 2003).  Most 

influenza viruses infecting domestic poultry are thought to have been transmitted 

directly from wild birds, although evidence exists for the transmission of influenza 

viruses from pigs to turkeys (Hinshaw et al. 1983; Choi et al. 2004). 

 

Influenza viruses have been isolated sporadically from passerine birds, and starlings 

and sparrows have been implicated in the spread of H7N7 amongst poultry in 

Australia (Nestorowicz et al. 1987).  Evidence for the repeated introduction of avian 

influenza viruses from wild birds into domestic poultry populations has been 

provided by phylogenetic analyses, which have found that sequences isolated from 

wild birds and domestic outbreaks do not form distinct clades.  For example, Banks 

et al. showed that early sequences from the 1999 H7N1 poultry outbreak in Italy 

clustered most closely with a wild bird sequence from Taiwan, rather than with 

contemporaneous Eurasian poultry isolates (Banks et al. 2001).   

  

Avian influenza viruses may be transmitted between poultry flocks as a result of poor 

biosecurity measures during the movement of poultry between live bird markets, farms 

and slaughterhouses (McQuiston et al. 2005).  Surveillance has indicated that influenza 

viruses are endemic in certain poultry populations, such as in the live bird markets of 

South-East Asia (Liu et al. 2003) and North America (Senne et al. 2003b; Suarez et al. 

2003).  Live bird markets, in which multiple influenza subtypes circulate and where the 

virus can persist and replicate in poultry for extended periods of time, are thought to be an 

ideal environment for the emergence of virulent avian influenza viruses (Senne et al. 
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2003a; Webster 2004; Cardona et al. 2009).  Examples of avian influenza outbreaks in 

poultry for which the live bird markets have been implicated as the source include the 

1983-1984 H5N2 outbreak in North-East America (Suarez and Senne 2000) and multiple 

outbreaks of H7N2 in the United States during the 1990s (Akey 2003; Davison et al. 2003; 

Dunn et al. 2003). 

 

  

1.6 Highly pathogenic avian influenza (HPAI) 

 

Avian influenza viruses are classified as being of high pathogenicity (HPAI or HP) 

or low pathogenicity (LPAI or LP) according to their effects in chickens, with HPAI 

viruses being highly virulent and associated with considerably more severe 

symptoms than LPAI.  The following are the recognised guidelines regarding the 

conditions under which avian influenza virus should be classified as HPAI 

(Alexander 2000):   

 

(a) Any influenza virus that is lethal for six, seven or eight of eight 4-6 week old susceptible 

chickens within 10 days following intravenous inoculation with 0.2ml of a 1/10 dilution 

of a bacteria-free, infective allantoic fluid  

 

(b) The following additional test is required if the isolate kills from one to five chickens, but 

is not of the H5 or H7 subtype: growth of the virus in cell culture with cytopathic effect 

or plaque formation in the absence of trypsin.  If no growth is observed, the isolate is not 

considered to be a HPAI isolate 

 

(c) For all H5 and H7 viruses of low pathogenicity and for other influenza viruses, if growth 

is observed in cell culture without trypsin, the amino acid sequence of the connecting 

peptide of the haemagglutinin must be determined.  If the sequence is similar to that 

observed for other HPAI isolates, the isolate being tested will be considered to be highly 

pathogenic.  

 

Early twentieth century isolates of HPAI were termed ‘fowl plague virus’ (FPV) 

until they were identified as influenza viruses by Schafer (1955).  Avian influenza 

viruses not designated HPAI are classified as LPAI and are typically associated with 

symptoms such as mild respiratory disease and a decrease in egg production rather 

than mortality.   
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Viruses of HA subtypes H5 and H7 have been associated with all major recorded 

outbreaks of HPAI, and the overwhelming majority of recorded outbreaks of HPAI 

have occurred in poultry (Wright et al. 2007).  Table 1.2 lists all documented 

outbreaks of HPAI as of 31
st
 December, 2010 and gives the subtype, location and 

year of each outbreak; this illustrates the continuing potential for virulent avian 

influenza viruses of different subtypes to infect poultry in diverse geographic 

regions.  Reports of H5N1 HPAI since 2003 are too numerous to include in the table, 

but comprise over 5,000 outbreaks in Asia, Africa and Europe (WAHID 2011).  

Outbreaks of HPAI viruses lead to the deaths of millions of birds every year as a 

result of infection and control measures.  In addition, HPAI viruses present a global 

epidemiological threat should they become established in the human population 

(Peiris et al. 2007), although this has not happened to date, with known human 

pandemics restricted to the H1, H2 and H3 HA subtypes (Webster et al. 1992; WHO 

2010).   
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Year of start of outbreak Subtype Location 
Additional 

details 

    1959 H5N1 Scotland 
 1961 H5N3 South Africa 
 1963 H7N3 England 
 1966 H5N9 Ontario 
 1976 H7N7 Victoria 
 1979 H7N7 Germany 
 1979 H7N7 England 
 1983 H5N2 Pennsylvania 
 1983 H5N8 Ireland 
 1985 H7N7 Australia (Victoria) 
 1991 H5N1 England 
 1992 H7N3 Australia (Victoria) 
 1995 H5N2 Puebla 
 1995 H7N3 Australia (Queensland) 
 1995 H7N3 Pakistan 
 1997 H5N1 Hong Kong 
 1997 H7N4 New South Wales 
 1997 H5N2 Italy 
 1999 H7N1 Italy 
 2002 H7N3 Chile 
 2002 H5N1 Hong Kong  Wild birds 

2003 H7N7 Netherlands 
 2004 H7N3 Canada 
 2004 H5N2 South Africa 
 2004 H5N2 Chinese Taipei 
 2005 H7N7 Korea (Dem. People's Rep.) 
 2005 H5N2 Zimbabwe 
 2006 H5N2 South Africa 
 2007 H7N3 Canada 
 2008 H7N7 United Kingdom 
 2009 H7N7 Spain 
  

Table 1.2   
Recorded outbreaks of highly pathogenic avian influenza.  Data are adapted from 
Wright et al. (2007) for outbreaks prior to 2004, and the World Animal Health Information 
Database Interface (WAHID) (accessed 19

th
 January, 2011) for data from 2004 onwards.  

H5N1 outbreaks since 2003 are too numerous to record in the table and the strain is now 
endemic in regions of South East Asia and North Africa.  Over 5,000 outbreaks of HPAI 
H5N1 were reported to the WAHID between 2003 and February 2001. 
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LPAI viruses can mutate into HPAI viruses in poultry, as was documented for 

outbreaks of H5N2 in Pennsylvania in 1983 (Bean et al. 1985; Suarez et al. 2004) 

and H7N1 in Italy in 1999 (Banks et al. 2001).  Molecular changes resulting in a 

shift in virulence have also been documented in laboratory experiments involving 

serial passage in chicken embryo cells (Horimoto and Kawaoka 1995).  Most HPAI 

viruses contain multiple basic amino acids (histidine (H), lysine (K) or arginine (R)) 

at the HA cleavage site (Perdue et al. 1997; Steinhauer 1999) and a minimum motif 

of B-X-X-B-R, where B denotes arginine or lysine and X denotes a non-basic amino 

acid, has been proposed (Wood et al. 1993; Senne et al. 1996).  It is thought that 

these molecular changes allow the HA0 precursor protein to be cleaved into HA1 and 

HA2 in tissues throughout the body, rather than just in the respiratory and 

gastrointestinal tracts, leading to systemic infection and the neurological symptoms 

associated with HPAI infection (Horimoto and Kawaoka 2001).     

 

Reverse genetics studies have provided direct evidence for the link between HA 

cleavability and virulence of avian influenza viruses (Horimoto and Kawaoka 1994).  

Recent evidence suggests that mutations in the regions adjacent to the HA cleavage 

site also play a part in determining the pathogenicity of avian influenza viruses 

(Gohrbandt et al. 2011).  Whilst ubiquitous HA cleavability is a necessary condition, 

pathogenicity of influenza viruses in chickens is thought to be a polygenic trait (Rott 

et al. 1976), determined at least by the genes involved in viral RNA synthesis in 

addition to the HA; for example, see Rott (Rott 1980).  Experimental evidence 

suggests that virulence of avian influenza viruses in mammals is also determined by 

a number of genes (see Section 1.8). 

 

HPAI influenza viruses of the H5N1 subtype have come to prominence in the 

scientific community and the media as a result of their sporadic transmission to 

humans with high mortality rates (WHO 2005).  During an H5N1 outbreak in Hong 

Kong in 1997, which was controlled by culling all poultry on the island, the first fatal 

direct transmission of the virus from chicken to human was recorded (Claas et al. 

1998; Subbarao et al. 1998).  A total of 306 fatalities out of 518 laboratory-
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confirmed human infections with HPAI H5N1 have been reported to the World 

Health Organisation (WHO) as of 20
th

 January 2011 (WHO 2011a).  The H5N1 

HPAI outbreak at Qinghai Lake in China in 2005 resulted in the deaths of over 6000 

migratory waterfowl (Chen et al. 2005) and demonstrated that some highly 

pathogenic influenza viruses could establish outbreaks in populations of wild birds 

(Liu et al. 2005).  The virulence of HPAI H5N1 has been found to vary in aquatic 

waterfowl and it has been suggested that ducks in which infection is associated with 

less severe symptoms may propagate the HPAI H5N1 virus (Hulse-Post et al. 2005).  

Experimental studies have shown that susceptibility to HPAI H5N1, clinical disease 

and viral shedding may differ between species of wild birds (Brown et al. 2006; 

Brown et al. 2008).  Surveillance studies have indicated that highly virulent H5N1 

viruses are endemic in poultry in southern China and will be difficult to eradicate (Li 

et al. 2004).  Endemic HPAI H5N1 infection has also been declared in Egypt, 

Bangladesh, Indonesia and Viet Nam (WHO 2011b). 

 

Despite the endemic nature of HPAI H5N1 in many regions, and the high levels of 

mortality associated with human infection, this subtype must not be considered the 

only avian influenza strain with pandemic potential.  Indeed, the next human 

pandemic virus of avian origin need not be highly pathogenic in birds and such 

strains are more likely to go unnoticed by surveillance studies (Peiris et al. 2007).  

The avian influenza viruses which contributed segments to the 1957 and 1968 

pandemic viruses were not highly pathogenic in poultry.  Furthermore, the H1N1-

2009 virus was only associated with moderate symptoms in humans, yet possessed 

the ability to efficiently transmit between humans and cause a global influenza 

outbreak.  Avian H9N2 viruses have been identified as pandemic candidates due to 

their widespread presence in poultry in Asia (Matrosovich et al. 2001), their gradual 

spread westwards (Alexander 2003) and the continued reassortment in the matrix and 

NP genes of certain strains (Choi et al. 2005).  Also, H9N2 viruses isolated from 

poultry in Hong Kong have been found to exhibit human-like receptor-binding 

preferences whilst maintaining the ability to infect other avian species (Matrosovich 

et al. 2001).   
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1.7 Influenza viruses in non-avian species  

 

Influenza viruses infect a variety of non-avian species, including humans, swine, 

horses and other mammals.  Seasonal epidemics of H1N1 and H3N2 influenza in 

humans typically take place during the winter months and result in mortality amongst 

the elderly and infirm, coupled with economic loss due to workforce absence.  In 

addition to seasonal influenza epidemics, human populations are susceptible to 

pandemic influenza viruses which arise sporadically and spread to cause high levels 

of infection globally.  In addition to the three pandemics of the twentieth century, 

and the 2009 pandemic, influenza pandemics were described in the nineteenth 

century with the latest being in 1890 (Taubenberger and Morens 2006).  

 

Viruses of subtype H1N1 were responsible for the 1918 influenza pandemic (Reid et 

al. 1999), which led to an estimated 50 million deaths worldwide (Johnson and 

Mueller 2002).  Whilst avian viruses have been suggested as the causative agents of 

the 1918 H1N1 pandemic strain, the origin and genetic basis of this virus are yet to 

be fully understood (Reid and Taubenberger 2003).  The H2N2 virus responsible for 

the 1957 influenza pandemic is thought to contain HA and NA genes of avian origin 

(Scholtissek et al. 1978) on a genetic background from the H1N1 strain.  By 1968, 

the H2N2 viruses had been replaced by H3N2 viruses with an avian H3 HA segment 

(Scholtissek et al. 1978; Nakajima et al. 1982).  The PB1 segment of the 1957 

pandemic strain, and that which replaced it in 1968, were both found to be of avian 

origin (Kawaoka et al. 1989).  These findings highlight the potential of avian 

influenza viruses to contribute genetic material to a future pandemic strain.   

 

Influenza viruses of subtypes H1N1 and H3N2 have become established in swine 

and phylogenetic studies have shown that they form a sister group to human 

influenza viruses (Webster et al. 1992).  Prior to the 2009 H1N1 pandemic, porcine 

influenza viruses were known to be transmissible to humans and had been shown to 

occasionally lead to respiratory symptoms in humans (Dasco et al. 1984).  
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Phylogenetic analysis indicated that the H1N1-2009 pandemic strain possessed 

genetic components from multiple swine lineages; the HA, NP, NS and polymerase 

genes were contributed by a ‘triple reassortment’ lineage which was circulating in 

swine and was itself derived from human, avian and classical swine viruses (Smith et 

al. 2009).  The progenitor H1N1-2009 virus was not detected by swine surveillance 

programmes and it is thought that the initial movement of the virus from pigs to 

humans could have taken place several months before the outbreak was reported 

(Smith et al. 2009).  

 

Although associated with less severe symptoms than the 1918 H1N1 pandemic 

strain, the H1N1-2009 virus caused approximately 18,000 recorded human deaths 

within a year of the pandemic being announced (WHO 2010).  Children and young 

adults accounted for the highest proportion of symptomatic infections, whilst those in 

the over 55 age group displayed remarkably low levels of symptomatic infection and 

the highest levels of antibody response, suggesting previously acquired immunity 

(Hancock et al. 2009).  The pandemic H1N1-2009 virus was the most widely 

circulating strain during the seasonal peak in influenza infections in the late part of 

2010; as with the first wave of the pandemic in 2009, young adults and children were 

most likely to be affected (Ellis et al. 2011).  Speculation remains as to whether the 

continued circulation of H1N1-2009 will be prevented by high levels of pre-existing 

and vaccine-induced immunity and what part it will play in future seasonal 

epidemics (Morens et al. 2010), although surveillance has revealed that it is co-

circulating with H3N2 in the 2012 season, with H3N2 variants containing a matrix 

segment from the H1N1 pandemic virus having also been detected (CDC 2012). 

 

H3N8 and H7N7 influenza viruses are thought to have persisted in equine 

populations for several hundred years (Wright et al. 2007).  Equine influenza viruses 

continue to be isolated to this day, with a recent example being the finding of H7N7 

amongst polo horses in Nigeria (Olusa et al. 2010).  Phylogenetic analyses suggest 

that modern-day equine populations are at risk from novel influenza viruses entering 

the population from the avian reservoir.  For example, a distinct virus of avian origin 

was responsible for the Chinese equine influenza outbreak in 1989 (Guo et al. 1992).  
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Other documented mammalian influenza infections with non-H5N1 influenza in the 

natural world include that of seals along the west coast of North America with H7N7 

viruses in 1979-1980 (Geraci et al. 1982) and, more recently, H3N8 infection in 

North American dogs (Crawford et al. 2005). 

 

 

1.8 Virulence of HPAI in mammals 

 

HPAI isolates are, by definition, virulent in chickens (see Section 1.6).  However, 

their effects have been found to vary in mammals, with some strains causing only 

mild symptoms in these hosts (Katz et al. 2000; Govorkova et al. 2005).  

Experimental studies have investigated the virulence of H5N1 HPAI in mammals, 

particularly as this subtype has been associated with high mortality in humans.  

Evidence suggests that virulence of influenza viruses in mammals is a polygenic 

trait, involving at least the non-structural (Zamarin et al. 2006; Conenello et al. 

2007) and polymerase proteins (Hale et al. 2008; Jackson et al. 2008) as well as the 

HA.  Specific mutations have been found to contribute to virulence, for example a 

mutation to lysine at site 627 in PB2 has been shown to confer virulence in reverse 

genetics studies on mice (Hatta et al. 2001, 2007).  However, such studies are 

resource-intensive and have typically been conducted on a small scale.  The genetic 

basis of virulence of HPAI H5N1 and HPAI viruses of other subtypes is thus yet to 

be fully explained.   

 

In order to investigate the molecular determinants of H5N1 HPAI virulence in 

mammals, Lycett et al. (2009) (see Chapter 11) performed a meta-analysis of data 

from studies where virulence in mammals had been determined experimentally 

(predominantly in ferrets and mice).  Bayesian Graphical Models (BGMs) were used 

to investigate associations between amino acid site mutations and whether the virus 

was virulent in mammals.  BGMs also highlight dependencies between mutations at 

different amino acid sites.  This permits the identification of genetic constellations 

putatively related to virulence.  BGMs represent a set of variables as nodes (in the 

Lycett et al. (2009) study, nodes represented amino acid sites, or the binary trait 
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variable of ‘virulent’ or ‘non-virulent’) and dependencies between variables as 

directed edges in a directed acyclic graph (Pearl 1986).  The aim of a BGM analysis 

is to distinguish true dependencies between variables from observed ‘correlations’ 

resulting from dependence on an intermediate node. 

 

The directed acyclic graph obtained by Lycett et al. (2009) in analysing the genetic 

determinants of HPAI H5N1 virulence in mammals is shown in Figure 1.4.  Three 

nodes were identified as being directly associated with virulence:  those representing 

amino acid sites PB1-317/PB2-355, NS1-92/NS1-228 and HA-102/NS1-195 (note 

that for each of these three variables there are two sites for which the association is 

identified – these cannot be distinguished as the same pattern of mutations across the 

sequences was observed for these pairs of sites).  Amino acid changes at site 92 in 

the NS1 protein have previously been implicated as a determinant of H5N1 virulence 

in mammals.  Specifically, the mutation D92E in NS1 is thought to enable the virus 

to resist the host immune response (Seo et al. 2002; Li and Wang 2007).  In addition, 

mutations at PB1-317 and PB2-355 had previously been identified experimentally as 

being correlated with H5N1 virulence in mice (Katz et al. 2000).  

 

A further five amino acid sites (three in HA and two in PB2), as well as the 

presence/absence of a deletion in the stalk region of NA, were identified by Lycett et 

al. (2009) as being associated with one or more of the three nodes directly linked to 

virulence.  One such site was PB2-627; the presence of a lysine at this site is thought 

to increase the ability of the virus to replicate in mammalian cells (Subbarao et al. 

1993).  The finding of strong associations between mutations in the HA and a 

deletion in the NA stalk region is not surprising, given existing evidence for 

concomitant changes in these proteins and their interacting functional roles (see 

Chapter 4, Section 4.3 for further discussion).  Association between an NA stalk 

deletion and changes conferring additional glycosylation sites in the HA are also 

thought to play a role in the adaptation to domestic poultry of influenza viruses from 

wild aquatic birds (Matrosovich et al. 1999). 
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Figure 1.4 
Bayesian graphical model (BGM) for the virulence of highly pathogenic H5N1 avian 
influenza viruses in mammals (Lycett et al. 2009).  The nodes represent amino acid sites 
or the phenotype of ‘virulent or avirulent in mammals’ (node denoted Vir).  Links indicate a 
probabilistic dependence between nodes and are labelled by their probabilities, inferred 
using 10-fold cross-validation.  Three sites were found to be directly associated with 
virulence in mammals: PB1-317/PB2-355, NS1-92/NS1-228 and HA-102/NS1-19 (where 
more than one site is listed for each node, the same pattern of variation from the consensus 
sequences was observed for these pairs of sites).   
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1.9 Transmission of influenza viruses between host species  

 

Despite the vast genetic diversity of avian viruses, only a few influenza subtypes 

have become established in human populations over the last century.  The 

mechanisms by which influenza viruses infect and are maintained in different host 

species has been the subject of continued research.  Three interacting processes have 

been identified as potential barriers between the infection of a novel (recipient) 

species with an influenza virus from a (donor) host in which the virus is already 

endemic (Kuiken et al. 2006): (i) interactions between the donor and recipient host 

species; (ii) virus-host interactions in the recipient species and (iii) host-host 

interactions within the recipient species.  It is thus possible to identify high-risk 

interactions for the emergence of influenza viruses with the potential to cause human 

outbreaks.  For example, the pattern of ‘backyard’ poultry-rearing or close contact 

between humans and poultry in live bird markets may facilitate the transmission of 

avian influenza viruses to humans.  Furthermore, regular oral contact between 

humans and birds is known to occur in certain communities, for example during 

poultry feeding in Egypt or the rearing of fighting cocks in Thailand (ISID 2004); 

these are clearly high-risk interactions for influenza virus transmission from birds to 

humans.   

 

Research into virus-host interactions has indicated that differences in receptor 

binding preference of the HA protein provide a transmission barrier between host 

species.  Avian influenza viruses preferentially bind to α-2,3 linked sialic acid 

receptors in the host, whereas human influenza viruses preferentially bind to α-2,6 

linked sialic acid receptors (Rogers and Paulson 1983; Matrosovich et al. 1997).  

Preference for α-2,6 linked receptors is thought to be important for efficient 

transmission of influenza between humans, a thesis which is supported by the 

findings that the 1957 and 1968 pandemic viruses share this preference, despite 

possessing HA segments of avian origin (Matrosovich et al. 2000).  However, 

human-to-human transmission of H5N1 influenza remains limited, despite these 

viruses showing an affinity for α-2,6 linked receptors (Yamada et al. 2006).  Thus, 

additional viral changes may be required for efficient transmission between humans.  
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For example, an amino acid substitution from glutamic acid to lysine at PB2 site 627 

has been suggested to increase viral excretion via coughing and sneezing, thus 

helping the virus to spread from human to human (Hatta et al. 2007).   

 

For many years before the H1N1-2009 pandemic, swine were highlighted as 

potential vessels in which a pandemic virus of avian origin could emerge in a form 

which is transmissible between humans (Scholtissek et al. 1985).  This is due to the 

finding that porcine epithelial cells contain both α-2,3 and α-2,6 linked receptors (Ito 

et al. 1998).  It has been shown that pigs can become infected with avian influenza 

viruses and that even avian viruses which are unable to replicate in pigs could 

contribute gene segments to viable reassortant viruses (Kida et al. 1994).  The threat 

of the pig as an intermediate vessel for the emergence a future pandemic virus with 

an avian component is heightened by the finding that H3N2 viruses of human origin 

are co-circulating with avian influenza viruses in pigs in southern China (Peiris et al. 

2001).  The reported direct transmission of equine H3N8 viruses to greyhounds via 

feeding on horsemeat has even led to speculation that domestic dogs might provide a 

route for influenza viruses into the human population (Crawford et al. 2005).   

 
 

1.10    Evolution of avian influenza viruses 

 

Three main mechanisms exist by which influenza viruses may evolve: reassortment, 

intragenic recombination and the accumulation of single amino acid mutations.  The 

segmented nature of the influenza genome means that, when a host is co-infected 

with two or more strains of the influenza virus, novel combinations of gene segments 

may be created during viral replication.  Progeny viruses may be produced whose 

sets of eight RNA segments are derived from more than one ‘parent’ virus, resulting 

in a virus that is different than either of the original infecting strains.  This process is 

referred to as reassortment.  The evolution of influenza viruses by reassortment in the 

HA or NA segments is termed antigenic shift, whereas evolution via amino acid 

mutations is termed antigenic drift, to reflect the gradual nature of the latter 

compared to the former (Webster et al. 1982).  Note that antigenic drift should not be 
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confused with random genetic drift, as antigenic drift is driven by selective pressure 

from the host’s immune system. 

 

Reassortment in the antigenic HA and NA segments produces novel influenza 

subtypes, to which the majority of a host population will be naïve.  High levels of 

reassortment in the HA and NA segments have been documented amongst avian 

influenza viruses isolated from wild birds (Dugan et al. 2008).  Acquisition of a 

novel HA segment could confer an advantage to the influenza virus by enabling it to 

evade the host immune response (Palese and Shaw 2007), as could a novel NA 

segment (Gong et al. 2007).  Reassortant viruses were responsible for the influenza 

pandemics of 1957 and 1968, with both pandemic viruses acquiring HA and PB1 

segments originating in wild waterfowl (Scholtissek et al. 1978; Kawaoka et al. 

1989).  Reassortment amongst seasonal H1N1 influenza viruses has been implicated 

in the unusually severe epidemics of this subtype in 1947 and 1951 (Nelson et al. 

2008).  As described in Section 1.7, reassortment between multiple lineages of 

influenza viruses circulating in swine occurred prior to the emergence of the H1N1-

2009 pandemic strain (Smith et al. 2009).  The ‘genotype Z’ form of HPAI H5N1 

which is circulating in Asian poultry also arose as a result of a number of 

reassortment events with other avian strains (Li et al. 2004).   

 

Recombination refers to the exchange of genetic material between segments of RNA.  

Thus, reassortment is essentially recombination between entire RNA segments and, 

as such, is sometimes called intergenic recombination.  In contrast, intragenic 

recombination refers to the exchange of genetic material between parts of gene 

segments and can be further subdivided into homologous (between RNA segments of 

the same type) or non-homologous (between different types of RNA segment).  Gene 

segments comprising genetic material from more than one parent virus are known as 

mosaics.  Purported cases of non-homologous intragenic recombination in influenza 

viruses in the natural world have been documented.  For example, Suarez et al. 

(2004) argued that recombination between the HA and nucleoprotein genes of an 

H7N3 virus, which resulted in a novel HA cleavage site motif, led to a shift in 

virulence in a flock of poultry in Chile.  Suarez et al. (2004) found that highly 
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pathogenic viruses from the Chilean H7N3 outbreak possessed a 10 amino-acid 

insertion at the HA cleavage site which did not conform to the usual HP sequence 

motifs (see Section 1.6), but shared 100% nucleotide sequence identity with a region 

of the nucleoprotein gene. 

 

Whilst homologous recombinant influenza viruses can be created in the laboratory, 

their existence in the natural world is a point of some controversy.  In a large-scale 

study, Obenauer et al. (2006) failed to detect homologous recombination in influenza 

viruses isolated from wild birds and speculated that, if it does exist, it constitutes a 

rare event.  Although some studies claim to have found mosaic influenza viruses in 

birds (e.g. He et al. (2008b)) and swine (e.g. He et al. (2008a)), it has been argued 

that the methods are detecting sequencing artefacts rather than genuine recombinants 

(Boni et al. 2008).  For example, Krasnitz et al. (2008) observed a substantial 

overlap between inferred recombinant sequences from the NCBI Influenza Virus 

Resource and sequences separated from another by a large period of time and an 

anomalously low rate of evolution.  Krasnitz et al. (2008) speculated that 

contamination of virus stock was the most likely cause of these phenomena, rather 

than a more complicated evolutionary explanation.  Homologous recombination is 

yet to be detected in human influenza viruses (Boni et al. 2008). 

 

In contrast to the rapid nature of the evolution driven by reassortment and intragenic 

recombination, influenza A viruses also evolve via the accumulation of single amino 

acid substitutions.  The nomenclature for amino acid mutations in avian influenza 

viruses is such that, for example, a mutation from glutamic acid (abbreviated to E) to 

lysine (K) in the PB2 protein would be written as ‘PB2-E627K’.  The purported lack 

of amino acid substitutions in wild aquatic fowl (Gorman et al. 1990a; Gorman et al. 

1990b), combined with the observation that influenza infection is rarely symptomatic 

in ducks, led some researchers to conclude that influenza viruses have reached an 

evolutionary stasis in such hosts and are fully adapted to their natural reservoir 

(Webster et al. 1992).  However, a comprehensive study of second codon position 

substitutions (all of which lead to a different amino acid being coded for) indicated 

that influenza viruses experience high rates of amino acid substitution across their 
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host range (Chen and Holmes 2006).  The evolutionary rate of influenza viruses has 

been found to accelerate after transmission to a new host species (Ludwig et al. 

1995; Suzuki and Nei 2002).   

 

 

1.11      Aims of study 

 

Despite the vast amount of research conducted on avian influenza viruses to date, 

many questions relating to their evolution remain unanswered.  Improved 

understanding of avian influenza virus evolution could help to minimise the 

economic impact of influenza outbreaks in poultry and other livestock, as well as the 

health threat posed to humans.  From a human health perspective, it is important to 

be aware of how avian influenza viruses are evolving in order to identify those which 

could give rise to a pandemic strain.  The need for surveillance studies and analysis 

of how influenza viruses are circulating in wild and domestic poultry, as well as in 

other animals, was reinforced by the unheralded emergence of H1N1-2009 (Fraser et 

al. 2009; Smith et al. 2009).   

 

The process of reassortment, which creates genetically novel viruses as described in 

Section 1.10, is well documented in avian influenza, but the rate at which it occurs 

remains to be quantified (Nelson and Holmes 2007).  Furthermore, although 

reassortment can produce viruses with novel combinations of gene segments, few 

studies have considered how the genetic interactions between different segments 

affect their evolution (Rambaut et al. 2008).  Elucidating genetic interactions, in 

particular between segments with known functional links, is therefore a key area for 

influenza research.  Formalising links between the evolutionary and epidemiological 

dynamics of influenza viruses, coupled with the use of intensively sampled outbreak 

data, may also yield significant benefits in terms of our ability to model and 

understand avian influenza outbreaks. 

 

This PhD uses phylogenetic and computational techniques to address questions 

relating to evolutionary change in avian influenza viruses.  Firstly, I perform a 
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phylogenetic analysis of all available H7 avian influenza HA sequences in the NCBI 

database to investigate global evolutionary relationships.  In subsequent chapters I 

perform more detailed molecular and phylogenetic analyses.  I investigate the use of 

stochastic mutational mapping to estimate selective pressures in parts of the H7 HA 

phylogeny corresponding to lineages associated with different NA subtypes and 

detect amino acid sites under putative positive selection.  I also use Bayesian 

ancestral state reconstruction methods to investigate patterns and rates of 

reassortment amongst H7 avian influenza viruses.  These methods can also be used 

to investigate rates of recombination more generally, and I apply them to investigate 

the history of recombination between different subtypes of HIV-1 group M in the 

Democratic Republic of the Congo.  Finally, I provide a detailed explanation of 

recent theoretical work on how viral sequence data sampled during an epidemic can 

be used to estimate epidemiological parameters such as the rate of disease 

transmission, and discuss the potential for application to avian influenza outbreak 

and HIV sequence data. 
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Methods for analysing viral evolution 
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2 Methods for analysing viral evolution 

 

This thesis focuses on the evolutionary analysis of viral sequence data, in particular 

from avian influenza viruses.  Many of the methods employed in the thesis are 

common to more than one chapter and are described here for reference.  An overview 

of frameworks for statistical inference is provided, as is a discussion of the range of 

methods available for modelling viral evolution and a description of the main 

software available for this purpose. 

 

 

2.1. Statistical frameworks 

 

Two main statistical frameworks exist for hypothesis testing, model construction and 

comparison.  This section describes the rationale and some technical details 

underlying the maximum likelihood and Bayesian paradigms, which are used for 

phylogenetic and other statistical inferences.  Detail is provided on how to interpret 

results of analyses carried out under these frameworks.  A description of the 

parsimony criterion for developing models and choosing between hypotheses is also 

presented.   

 

2.1.1 Maximum likelihood 

 

The maximum likelihood (ML) method assesses the compatibility of observed data 

with the hypothesis that a particular model fits that data.  For data D, the likelihood 

of the data given a model M with parameters θ is denoted f(D| θ,M), i.e. the 

probability of the data given the model and associated parameter values.  Maximum 

likelihood estimation refers to the process of finding the values of the parameters 

under which the probability of observing that data would be maximised for a 

particular model (i.e. under which the likelihood attains its maximum value).  Given 

independent and identically distributed observed data points x1,...,xN and a probability 
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density function f(x), maximum likelihood determines estimates ̂  of the parameter 

θ such that: 
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2.1.2 Bayesian inference 

 

Whilst frequentist methods such as maximum likelihood consider the parameter θ to 

be a fixed but unknown quantity, θ is considered to be a random variable in Bayesian 

statistics and will thus have a distribution.  Bayesian inference also considers a 

likelihood function analogous to that described in Section 2.1.1, but in addition 

incorporates existing beliefs about θ in the form of a prior distribution.  The prior 

distribution and the likelihood are combined to obtain a posterior distribution for θ; 

the quantities are related by the rule that the posterior is proportional to the product 

of the prior and the likelihood.  A non-informative prior, also known as a diffuse 

prior, may be used when there is no obvious candidate for a prior (see Hastie et al. 

2001).  The uniform distribution is an example of a non-informative prior. 

 

Bayes’ theorem states that, for events A and B:  
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In the above form, Bayes’ theorem can be used for calculating conditional 

probabilities.  For parameters θ, conditioned on a model M, with observed data D, 

one can write an expression involving density functions: 
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f(θ|D,M) is the posterior probability distribution for the parameters given the data and 

model, f(D|θ,M) is the likelihood of the data given the parameters and f(θ|M) is the 

prior distribution representing existing beliefs about the parameters.   

  

When Bayesian inference has been used to approximate a posterior distribution (e.g. 

using MCMC – see Section 2.4), uncertainty in parameter estimates can be reported 

using Bayesian credible intervals.  A 100*(1-α)% credible interval for a posterior 

distribution for θ  is any interval [a, b] in the domain of the distribution such that the 

posterior probability of θ lying between a and b is 1 – α.  The highest posterior 

density (HPD) interval is the narrowest such credible interval.  The upper and lower 

limits of HPD intervals are used in Bayesian hypothesis testing.  For example, non-

overlapping HPD intervals may be interpreted as associated with parameters which 

are significantly different in value.  In addition, if zero lies outside of an HPD 

interval then this may be interpreted as significant evidence that a parameter is non-

zero.  In practice, a 100*(1-α)% HPD interval can be calculated from observations 

sampled from a posterior distribution as the narrowest interval containing  

100*(1-α)% of the data.  It must be noted that HPD intervals are defined differently 

to the confidence intervals used in frequentist statistics such as maximum likelihood.  

A 100*(1-α) % confidence interval for a parameter is constructed such that, if the 

confidence interval was calculated in the same manner from multiple independent 

sets of observations from a distribution then the interval would contain the true value 

of the parameter 100*(1-α) % of the time.    

 

2.1.3 The parsimony criterion 

 

Although not a formal statistical technique, the parsimony criterion may be used to 

choose between models or evolutionary hypotheses.  Parsimony is based upon a 

preference for the simplest explanation which is compatible with the data.  For 

example, the preferred phylogenetic tree under parsimony is one which requires the 

minimum number of evolutionary changes to reconcile the sequences.  
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2.2 Model selection 

 

This section describes methods for choosing between different models which have 

been fitted to observed data.  

 

 

2.2.1 Likelihood ratio tests 

 

Models may differ in the number of parameters of which they comprise.  Where a 

simpler model may be obtained by collapsing a more complex model, the models are 

described as nested.  If one model is not simply a special case of the other then the 

models are said to be non-nested.  A likelihood ratio test (LRT) may be used to 

compare the fit of models which have different numbers of parameters.  The test 

statistic for a likelihood ratio test of model M2 model against a simpler (null) model 

M1 is given by:  

 

-2[ln(L(D|M1)) - ln(L(D|M2))]. 

 

Note that ‘L’ is the standard statistical notation for a likelihood in a non-Bayesian 

setting and is used here be consistent with the literature on test-statistics; the 

expression L(D|M) is equivalent to f(D|M) presented in previous and subsequent 

sections.   

 

For nested models, the likelihood ratio test statistic is distributed approximately chi-

squared, with number of degrees of freedom equal to the difference in the number of 

parameters between the two models.  If the models are non-nested then parametric 

bootstrapping can be used to assess the significance of the LRT (see Goldman 

(1993a); Goldman (1993b) and Huelsenbeck et al. (1996) for discussion).  

Parametric bootstrapping involves generating a null distribution for the LRT statistic 

by simulating a large number of datasets under the null model and observing where 

the LRT score for the original data falls in the null distribution for the LRT statistic.  
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Generally, if less than 5% of the simulated LRT scores are at least as extreme as the 

alternative LRT score then this is taken to be significant evidence for rejecting the 

null hypothesis. 

 

2.2.2 Bayes factor tests 

 
In a Bayesian analysis, models can be selected by comparing their marginal 

likelihoods.  The marginal likelihood for a model M is the probability of the observed 

data D, given the model M, averaged over the model parameters θ:   

 

  dMfMDfMDf )|(),|()|( . 

 

f(D|M) is the denominator in the Bayes theorem expression for parameters θ 

conditioned on a model M, with data D (see Section 2.1.2).  For models M1 and M2, 

the ratio of the marginal likelihoods of the two models, f(D|M1)/f(D|M2), known as 

the Bayes factor, can be used to make comparisons between the models.   

 

A Bayes factor which is deemed to be significantly greater than 1, i.e. for which  

f(D|M1) is significantly greater than f(D|M2), is interpreted as statistical support for 

choosing model M1 over M2.  Conversely, f(D|M2) significantly greater than f(D|M1) 

provides support for M2 over M1.  Although formal rules do not exist, guidelines 

have been suggested for the interpretation of Bayes factors, for example by Jeffreys 

(1961) and Kass and Raftery (1995).  Typically, a Bayes factor of greater than 20, or 

the natural logarithm of a Bayes factor being greater than 3, is taken as significant 

support for one model over another.  There is no requirement for models being 

compared using Bayes factor tests to be nested.   

 

In order to calculate Bayes factors, the marginal likelihoods of the models under 

comparison are evaluated using Bayesian MCMC (see Section 2.4) over both 

models, known as reversible jump MCMC.  The Tracer software (Drummond and 

Rambaut 2007) can be used to analyse Bayesian MCMC output from phylogenetics 
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software such as BEAST and MrBayes (see Section 2.6.3 for a discussion of these 

software).  As reversible jump MCMC was not implemented in BEAST at the time 

that the studies in this thesis were performed, the importance sampling method 

described by Newton et al. (1994) was used to approximate marginal likelihoods and 

calculate approximate Bayes factors by processing the BEAST output in Tracer. 

 
 

2.2.3 Akaike information criterion (AIC) 

 

Whilst LRTs and Bayes factor tests can only be used to test between pairs of 

hypotheses, information criteria can be used to compare multiple models M1,...,MN 

simultaneously.  The models under comparison can be nested or non-nested.  The 

Akaike information criterion (AIC) (Akaike 1974) is a penalised log-likelihood 

which addresses the trade-off between the fit of a model to the data and the 

complexity of the model by requiring that the addition of parameters improves the 

log-likelihood of the model by a certain amount.  The AIC score for a model Mi is 

given by: 

 

AIC(Mi) = -2ln(Li) + 2 Ni , 

 

Ni is the number of free parameters in model Mi.  The maximum likelihood score, Li, 

for the data under model Mi, can be computed and compared for models M1 to MN.  

The preferred model would be the one with the lowest AIC score. 

 

2.2.4 Bayesian information criterion (BIC) 

 

The Bayesian information criterion (BIC) can also be implemented when maximum 

likelihood is used to fit models to data.  BIC was developed by Schwartz (1979).  

The BIC score is given by: 

BIC(Mi) = -2ln(Li) + Ni ln(n) . 

 

BIC is thus similar to AIC, but in the penalty term the number of parameters is 

multiplied by ln(n) rather than 2.  This generally leads to BIC being more stringent in 
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terms of the number of parameters, and choosing simpler models than AIC.  The BIC 

score is related to the marginal likelihood f(D|M), which is calculated for each model 

in a Bayes factor comparison (see Ripley (1996)).  Choosing a model with the 

smallest BIC score is approximately equivalent to choosing the model with the 

highest posterior probability (for more details see Hastie et al. (2001)). 

 

2.3 Markov processes 

 

Markov processes are used in evolutionary biology to model transitions between 

discrete states.  For example, Markov processes are used to model substitution of 

nucleotides, amino acids and codons in genetic sequence data, as well as for 

Bayesian inference of ancestral states along phylogenies.  The set of possible states 

in a Markov process is known as the state space.  A Markov process is characterised 

by transition rates between pairs of states, usually denoted qij to refer to the rate of 

transition from state i to state j.  The matrix of transition rates is referred to as the Q-

matrix.  Markov processes are the continuous-time generalisations of Markov chains 

and are sometimes known as continuous-time Markov chains (CTMC). 

 

A Markov process satisfies the Markov property of being ‘memoryless’.  This means 

that the future state depends solely on the current state and is independent of the 

history of previous states.  For past times t1, t2, … ,tn, present time t and future time s, 

this can be formalised as p(xs|xt, xtn, ..., xt1) = p(xs|xt), where s > t > tn > … > t1.  In a 

Markov process, the waiting times between jumps are exponentially distributed.  

From state i, the waiting time until the first jump is exponentially distributed with 

rate parameter -qii.  A Markov process is said to be time-homogeneous if p(xs|xt) = 

p(xs+n|xt+n), i.e. if the transition probabilities are equal for time intervals (s – t) of the 

same length, anywhere in the process.   
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2.4 Markov chain Monte Carlo sampling 

 

The method of Markov chain Monte Carlo (MCMC) sampling is implemented in 

many packages for phylogenetic and other statistical inferences, and is used 

throughout this thesis.  MCMC is a technique for approximate-sampling from a 

target distribution, using a Markov chain constructed to have a stationary distribution 

(the distribution when the chain is at equilibrium) with the same properties as the 

target distribution from which one endeavours to sample.  After convergence to the 

stationary distribution, the proportion of time that the Markov chain spends in each 

state is proportional to the probability of that state in the target distribution.  MCMC 

is widely used in Bayesian inference, where the target distribution would be the 

posterior distribution for the parameter being estimated.  Algorithms such as 

Metropolis-Hastings (Metropolis et al. 1953; Hastings 1970) are used to obtain 

random samples from a distribution using MCMC, by proposing moves to different 

states and accepting them according to some probability.    

 

A burn-in period is usually required to obtain convergence to the stationary 

distribution using MCMC.  A diagnostic plot of the chain trace, which shows the 

likelihood of each model against the sample generation, is widely used to assess 

convergence.  After the burn-in period, sampling from the Markov chain is 

undertaken at periodic intervals as specified by the user.  The sampling interval 

should be sufficiently wide as to ensure that the samples are not autocorrelated.  The 

effective sample size (ESS) of a post-burn-in sample, which is given by the post-

burn-in chain length divided by the average number of states in the chain by which 

two samples must be separated for them to be uncorrelated, provides an estimate of 

the number effectively independent samples from the posterior distribution to which 

the MCMC is equivalent.  Comparing MCMC output from multiple independent runs 

can indicate whether chains are converging on the same distribution.   

 

Although MCMC aims to sample across a target distribution, in phylogenetic 

inference the distribution of trees may have multiple local peaks associated with 
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different topologies, which are difficult to move between.  Metropolis coupling 

(Geyer 1991) is used to improve the mixing of the chain in Bayesian phylogenetics 

software such as BEAST and MrBayes.  Metropolis coupling involves running 

several chains in parallel.  One chain, referred to as the cold chain, samples from the 

target distribution of interest.  The cold chain is coupled with multiple heated chains 

hi, whose stationary distributions are obtained by raising the stationary distribution of 

the cold chain to a power 1/ri (with ri >1 for all i).  This coupling results in ‘flatter’ 

distributions in which is it easier to move between the local peaks.  At regular 

intervals, swaps between the states of two randomly chosen chains are proposed and 

accepted in a probabilistic manner similar to that used in Metropolis-Hastings 

sampling.  Involvement of the cold chain in a swapping event can lead to jumps 

between local peaks and a more thorough exploration of the target distribution.  

Output from the heated chain is discarded at the end of the run, and only output from 

the cold chain is used.    

 
 

2.5 Modelling sequence evolution 

 

Modelling genetic sequence evolution is a prerequisite for computing genetic 

distances between sequences.  Amongst other things, genetic distances can be used in 

constructing phylogenetic trees from sequence alignments.  In this section, the 

framework for constructing nucleotide substitution models as a Markov process is 

outlined, along with examples of some of the widely used models for nucleotide, 

amino acid and protein evolution. 

 

2.5.1 Nucleotide substitution models 

 

Nucleotide substitution models are statistical models of the process of substitution of 

the bases A, C, T and G at sites in a nucleotide sequence.  Nucleotide substitution 

models are constructed as Markov processes; for a derivation, see Strimmer and von 

Haeseler (2009).  The Markov property is satisfied for nucleotide substitution models 

since, for each site, the rate of change from one base to another is assumed to depend 
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solely on the identity of the current nucleotide at that site and to be independent of all 

previous nucleotide identities at the site.   

 

A Markov chain with transition rate matrix Q={qij} and stationary distribution П is 

said to be time-reversible if and only if πiqij=πjqji for all i and j (with i ≠ j).  For 

mathematical convenience, most nucleotide substitution models are time-reversible.  

In the general time-reversible (GTR) model (Tavaré 1986), substitution rates are 

assumed to be constant over time and the relative frequencies of the bases A, C, G 

and T (denoted πA, πC, πG, and πT respectively, with πA + πC + πG + πT = 1) are at 

equilibrium.  Instantaneous rates of change between pairs of bases are given by the 

product of fij (the rate of substitution of the old base (i) for the new base (j) relative to 

all other substitutions) and the equilibrium frequency of the new base (πj).  For 

example, the instantaneous rate of change from A to C would be given by given by 

fAC* πC, where fAC is the relative rate parameter for substitution from A to C.  A rate 

matrix, known as the Q matrix, is constructed whose off-diagonal entries qij are 

given by fij* πj and whose diagonal entries qii are chosen so that the sum of each row 

is zero.  Under the conditions of time-reversibility, fij=fji in GTR model for all i and j 

(with i ≠ j).  

 

The entries of the matrix P(t) = exp(Qt) are finite-time transition probabilities, with 

pij(t) denoting the probability that a substitution from base i to base j takes place at a 

given site along a branch of length t.  The transition probabilities can be used to 

calculate genetic distances between pairs of sequences in an alignment and thus to 

construct a phylogenetic tree (see Section 2.6).  The notion of the expected distance 

between pairs of sequences enables the likelihood of a given topology to be 

calculated (Felsenstein 1981).   

 

The GTR model allows different equilibrium base frequencies for each nucleotide 

and different rates of transition between pairs of bases under the condition of time-

reversibility.  All time-reversible nucleotide substitution models are essentially 

special cases of the GTR model.  The simplest nucleotide substitution model was 

introduced by Jukes and Cantor (1969) and assumes equal base frequencies at 
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equilibrium and that each nucleotide is equally likely to replace another.  Later 

models extended the Jukes-Cantor model to allow for different rates of transition and 

transversion, for example the K2P model of Kimura (1980).  The HKY model of 

Hasegawa et al. (1985) also allowed for different rates of transition and transversion, 

at the same time as relaxing the assumption of equal base frequencies.  Rate 

heterogeneity across sites can be modelled by a gamma distribution with varying 

shape parameter, alpha (Yang 1994; Yang et al. 1994), and a proportion of invariant 

sites may also be included. 

 

Whilst more complex substitution models may provide a more accurate description 

of biological reality, they are also more computationally intensive.  For example, the 

Q-matrix for the HKY model may be exponentiated analytically, whereas the Q-

matrix for the GTR model cannot.  Furthermore, more complex models can lead to 

larger variances when branch lengths are being estimated from genetic distances 

between pairs of sequences, in particular when the sequences being compared are 

short (less than 1000 nucleotides) and the assumption that the number of sites being 

compared is infinite is clearly violated (Strimmer and Von Haeseler 2003).  The fit of 

different substitution models relative to the number of parameters in the model may 

be assessed using methods for model selection.  Software available for this purpose 

includes ModelTest (Posada and Crandall 1998) for nucleotide substitution model 

selection using LRT values computed using PAUP*, as well as model selection 

options for nucleotide, codon and amino acid data implemented in the HyPhy 

software (Kosakovsky Pond et al. 2005). 

 

2.5.2 Amino acid and codon substitution models 

 

Empirical models of amino-acid substitution (e.g. Dang et al. (2010) for influenza; 

Nickle et al. (2007) for HIV) and theoretical models of codon substitution (Goldman 

and Yang 1994; Muse and Gaut 1994) are also constructed as Markov processes.  By 

explicitly incorporating information about the genetic code, codon models may better 

reflect biological reality than models of nucleotide substitution; however, running 

full codon models is computationally intensive.  Shapiro et al. (2006) argued that 
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partitioning substitution rates into third codon position rates and combined first and 

second position substitution rates improved the fit of nucleotide models to protein 

coding data and was more computationally efficient than using full codon models.  

Partitioning substitution rates according to the SRD06 model of Shapiro et al. (2006) 

reflects the increased tendency for nucleotide changes at the first and second 

positions to change the amino acid coded for, compared to third position 

substitutions which are more likely to leave the amino acid unchanged.  The SRD06 

model employs the HKY model of nucleotide substitution, allowing base frequencies 

to be estimated from the data and gamma distributed rate heterogeneity across sites.  

Under the SRD06 model, substitution rates, the transition-transversion ratio and rate 

heterogeneity across sites may be unlinked between the third codon position and the 

first and second codon positions.    

 

 

 

2.6 Phylogenetic inference 

 
Phylogenetic trees are used to show evolutionary relationships between groups of 

molecular sequences.  More closely related sequences cluster together more closely 

in a tree than those which are less closely related.  This section provides a brief 

description of the main frameworks for inferring phylogenies.  Bayesian methods for 

phylogenetic reconstruction are considered, in particular those which incorporate 

sample date information to produce a tree with an explicit time-scale.  Such methods 

have found widespread application in the analysis of viral sequence data and are 

implemented extensively in this thesis.  

 
 

2.6.1 Constructing phylogenies 

 

Phylogenetic trees can be constructed under parsimony, maximum likelihood and 

Bayesian frameworks, as well as using distance-based methods.  Parsimony, ML and 

Bayesian methods infer phylogenies directly from the discrete character information 

in the sequences, whereas distance methods use scores between all pairs of sequences 
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based upon the number of substitutions inferred to have taken place under an 

evolutionary model.  ML and Bayesian methods use an explicit substitution model, 

whereas parsimony seeks to construct a topology based upon the minimum amount 

of evolutionary change necessary to reconcile the sequence data.  In this thesis, the 

MEGA software (Tamura et al. 2011) was used to conduct distance-based 

(neighbour-joining) phylogenetic analyses, and PHYML (Guindon et al. 2010) was 

used to construct ML trees.  MrBayes (Huelsenbeck and Ronquist 2001; Ronquist 

and Huelsenbeck 2003) and BEAST (Drummond and Rambaut 2007) were used for 

Bayesian inference of phylogenies. 

 

Phylogenetic inference methods can broadly be classified as criterion-based or 

algorithmic.  Algorithmic methods, such as neighbour-joining (NJ) (Saitou and Nei 

1987), cluster taxa according to a pre-defined set of rules, whereas criterion-based 

methods such as parsimony, ML, and certain distance-methods such as least squares, 

search for the best tree according to some criterion.  Algorithmic methods will return 

a single tree based upon a series of operations, whereas the search for an optimal tree 

in criterion-based methods means that multiple trees are considered and the ‘best’ 

tree is reported. 

 

Criterion-based methods are more computationally intensive than algorithms such as 

NJ.  The number of possible tree structures for n sequences increases super-

exponentially with n, thus it would be impossible to compare all possible tree 

structures for more than 10 taxa (Cavalli-Sforza and Edwards 1967).  Heuristic 

methods are therefore employed to search the space of possible trees, but are not 

guaranteed to find the best tree and may become stuck at a local optimum.  When a 

fast method for inferring relationships between taxa is required, NJ trees have been 

shown to provide a good approximation to the minimum evolution tree (the tree with 

the smallest least-squares measure of observed distances between sequences and the 

distances predicted by the tree), particularly for large datasets (Strimmer and von 

Haeseler 1996).  
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2.6.2 Maximum likelihood phylogenetics 

 

ML phylogenies are constructed by determining the topology, branch lengths and 

substitution model parameters which maximise the probability of observing the 

sequence data upon which the tree is being inferred.  This involves calculating ML 

estimates of branch lengths and parameters for different topologies, then selecting 

the phylogeny with the highest overall likelihood.  Felsenstein’s pruning algorithm 

(Felsenstein 1973; Felsenstein 1981) can be used to calculate the likelihood of a 

particular phylogeny for a given sequence alignment.  Branch lengths which 

maximise the likelihood can be calculated for each topology using numerical 

methods.  Parameters of the substitution model, such as the alpha parameter for rate 

heterogeneity across sites, may be estimated on an initial NJ tree prior to the ML tree 

search, rather than concomitantly with the tree which maximises the likelihood 

function.  Heuristic methods for tree-rearrangement which may be used to search 

over the space of phylogenies include nearest-neighbor interchange, sub-tree pruning 

and regrafting, and tree bisection and reconnection (see Felsenstein (2004) for more 

details).   

 

2.6.3 Bayesian phylogenetic inference 

 
Phylogenetic inference under the Bayesian framework involves computing the 

posterior distribution of evolutionary parameters, given aligned molecular sequence 

data.  The parameters being inferred include a topology and branch lengths, but could 

also include the parameters of a substitution model and, for genealogy-based 

inference using coalescent processes, population genetic parameters.  The MrBayes 

software focuses on phylogenetic inference under a Bayesian framework, whilst 

BEAST (Bayesian Evolutionary Analysis by Sampling Trees) provides a coalescent-

based framework for concomitant inference of phylogenetic and population genetic 

parameters.   
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Both MrBayes and BEAST use MCMC to sample from the posterior distribution of 

evolutionary parameters.  The collection of post-burn-in samples obtained after 

convergence to the stationary distribution is an approximation to the posterior 

distribution of the parameter under consideration.  Sampling in this manner 

accommodates uncertainty in topologies, branch lengths and the parameters of the 

substitution model, whereas NJ and ML respectively provide a single tree according 

to a set of rules or the ‘best’ tree under some criterion.  Indeed, maximum likelihood 

estimates of evolutionary parameters based upon a single tree have been criticised for 

having artificially low confidence intervals as they do not account for phylogenetic 

uncertainty (Nielsen 2002).  However, ML methods do have the advantage that they 

can be used to directly compare alternative hypotheses, for example in forensics 

(Holmes et al. 1993).  Posterior samples of phylogenies may be summarised in a 

variety of manners (see Section 2.9) and HPD intervals for parameters can be 

obtained to enable hypothesis testing. 

 
 

2.7 Relaxed clock phylogenetics 

 

The earliest phylogenetic methods assumed a constant rate of molecular evolution 

across all lineages, however diverse, and within each lineage over time.  The model 

of rate-constancy across the tree is known as the strict molecular clock (Zuckerkandl 

and Pauling 1965).  However, it is widely believed that the assumption of a strict 

clock can be violated in nature, for example due to changes in selective pressure 

(Kimura 1986) which may be particularly relevant to emerging viral diseases moving 

into different hosts, or subject to pressures such as vaccination or the use of anti-viral 

drugs.  The incorrect application of a strict clock can lead to error in assigning 

phylogenetic relationships and estimating divergence times (e.g. Ayala (1997); Ho 

and Jermiin (2004)).   

 

Felsenstein’s (1981) alternative to the strict molecular clock invokes the assumption 

that evolutionary rates are independent for each branch of the tree.  However, this 

model is unable to separate the effect of the substitution rate from evolutionary time 



2.7:  Relaxed clock phylogenetics 

53 

 

in causing observed differences between sequences, and an outgroup sequence or a 

non-reversible model of nucleotide substitution is required to root the tree and infer 

the direction of evolution.  It is not possible to estimate substitution rates in terms of 

an explicit timescale under the unrooted model.  Many of the major phylogenetic 

software packages, including MrBayes, PhyML and MEGA, provide a choice of only 

the strict molecular clock or Felsenstein’s unrooted model and are thus limited. 

 

Drummond et al. (2006) implemented a new class of phylogenetic models in the 

BEAST software, which used Bayesian MCMC to provide joint estimates of 

divergence dates and phylogenies.  These models are known as relaxed clock 

models, and provide an intermediate between the strict clock and Felsenstein’s 

unrooted model.  In relaxed clock phylogenetics, evolutionary rates along branches 

are sampled from a user-specified distribution (usually lognormal).  Relaxed 

phylogenetic models may be uncorrelated or autocorrelated.  In autocorrelated 

models, rates vary across the tree such that the rate along a given branch depends on 

the rate along the parental branch (the branch immediately preceding it towards the 

root of the tree).  For uncorrelated models the branch rate does not a priori depend 

on the rate of the parental branch.   

 

In BEAST, a Bayes factor test between relaxed and strict clock models can be used 

as evidence to reject the strict molecular clock.  Drummond et al. (2006) found that, 

whilst erroneously assuming a strict molecular clock in the presence of rate 

heterogeneity across a tree could confound phylogenetic inference, uncorrelated 

relaxed clock models still performed reasonably on clock-like data.  Drummond et 

al. (2006) found no evidence of autocorrelation between parent and child branches 

for viral datasets including influenza A, and the uncorrelated relaxed lognormal 

(ucln) clock model is currently implemented in BEAST as an alternative to the strict 

clock.  
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2.8 Incorporating sample date information 

 

Under both strict and relaxed molecular clock models, separation of substitution rate 

from evolutionary time is only possible in the presence of external calibration data 

(discussed by Drummond et al. 2006).  In BEAST, such information often comes 

from the sampling dates of sequences sampled over a sufficiently large time-span.  In 

the absence of adequate time-stamped data, a strong prior distribution for the 

substitution rate is required.  When no prior information for the substitution rate is 

available, the substation rate may be fixed to 1, so that the branch lengths of the tree 

are in units of substitutions per site, rather than units of years.   

 

Viruses such as HIV or influenza, which have a mutation rate so high that their 

evolutionary and ecological dynamics may be observed on the same timescale, are 

known as measurably evolving (Drummond et al. 2003).  Phylogenetic analysis of 

sequence data from measurably evolving populations which have been sampled at 

sufficiently diverse time-points can provide an insight into the evolutionary 

dynamics and demographic history of a population (Drummond et al. 2002).   

 

2.9 Summarising sets of phylogeny samples 

 

The method of bootstrapping has been applied in phylogenetics (Felsenstein 1985a) 

to allow uncertainty in phylogenetic reconstructions to be assessed.  Bootstrapping is 

a technique for approximating an unknown or analytically intractable statistical 

distribution by resampling from the original dataset (Efron and Gong 1983).  For an 

alignment of sequences where the rows represent different taxa and the columns are 

sites along the genome, columns of sites are randomly sampled with replacement to 

create a new alignment of the same size as the original.  New alignments sampled in 

this way are known as bootstrap samples.  The resampling process is carried out 

many times (typically 1000) and phylogenies (known as bootstrap trees) are 

constructed from the bootstrap samples.  The proportion of the bootstrap phylogenies 
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in which particular clades appear is then reported.  Theoretically, the bootstrap 

phylogeny samples should approximate the variance of a set of trees obtained using a 

set of alignments constructed using a set of new sites each time.  Bootstrapping is 

often performed on individual trees obtained using maximum likelihood or distance-

based methods. 

 

It is often desirable to summarise tree samples from a Bayesian phylogenetic analysis 

by reporting posterior probabilities of clades.  Post-MCMC analysis in the MrBayes 

software enables a 50% majority rule consensus tree (Margush and McMorris 1981) 

or a fully resolved majority rule consensus tree to be constructed.  A 50% majority 

rule consensus tree contains all clades appearing in at least half of the tree samples, 

whilst clades in a fully resolved majority rule consensus tree are chosen in order of 

decreasing posterior probability, excluding clades incompatible with previously 

selected clusters.   

 

Majority rule methods for summarising phylogenies have the disadvantage that the 

consensus tree may not actually have been sampled in the MCMC and thus may not 

best reflect biological reality.  An alternative is to choose a maximum a posteriori 

tree from the set of samples.  This could be the tree in which the sum of the posterior 

probabilities of clades is maximised (the maximum clade credibility, or MCC, tree), 

or the tree in which the product of the posterior probabilities of clades is maximised 

(the maximum credibility tree).  Alternatively, the smallest set of trees which account 

for at least x% of the total posterior probability in the sample under these criteria may 

be reported.  Such sets are known as x% credible sets. 

 

In this thesis, the TreeAnnotator software (http://beast.bio.ed.ac.uk/TreeAnnotator) 

was used to construct summary phylogenies from tree samples obtained through 

analysis with BEAST.  FigTree (http://tree.bio.ed.ac.uk/software/figtree) was used to 

visualise and manipulate the phylogenies presented.   
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2.10 Mapping discrete traits onto phylogenies 

 

It is often possible to reconstruct trait evolution which has occurred alongside 

sequence evolution in a measurably evolving population  (Holmes 2004).  For 

example, phylogeographic methods for the concomitant study of spatial diffusion and 

sequence divergence have been used to investigate the ancestral location and spread 

of highly pathogenic H5N1 avian influenza (Lemey et al. 2009) and other emerging 

viral diseases such as dengue (Raghwani et al. 2011).  Characters corresponding to 

multiple traits can be mapped concomitantly onto phylogenies, and correlations in 

the histories of different traits may be detected (e.g. Maddison (1990); Pagel and 

Meade (2006)).  Reconstruction of ancestral states along a phylogeny can be carried 

out under parsimony, maximum likelihood and Bayesian frameworks.   

 

2.10.1 Parsimony reconstruction of ancestral states 

 

Early attempts at ancestral state inference invoked the parsimony criterion, for 

example the two-pass parsimony algorithm (see Fitch (1971); Swofford and 

Maddison (1987)) which is implemented in the MacClade software (Maddison and 

Maddison 1992).  The two-pass parsimony algorithm involves firstly working from 

the tips of the tree towards the root (the downward pass) to determine the possible 

ancestral states for each node, then proceeding back from the root towards the tips of 

the tree (the upward pass) to optimise the assignment of ancestral states under the 

parsimony criterion.  The following rules are applied for the downward pass: if the 

intersection of the set of states at descendant nodes is non-empty, then the set of 

shared states is assigned to the ancestor; otherwise, the intersection of the sets of 

states at the descendent nodes is the empty set and the union of the states at these 

nodes is assigned to the ancestral node.  In the upward pass, if the state of the parent 

node is in the set of possible child nodes then the child node is chosen to have the 

same state as the parent.  In cases where more than one parsimonious explanation of 

the ancestral process exists, the upward pass stage can be performed multiple times 
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after the downward pass has been carried out, in order to enumerate all compatible 

parsimonious reconstructions. 

 

The parsimony approach to ancestral state inference has been criticised for a number 

of reasons.  For example, minimising the number of changes may not attain the most 

biologically relevant model for rapidly evolving organisms such as viruses 

(Cunningham et al. 1998).  In addition, the parsimony method does not account for 

uncertainty in the phylogenetic reconstruction or the process for which the ancestral 

states are being inferred (Nielsen 2001).   

 

2.10.2 Maximum likelihood ancestral state reconstruction 

 

Maximum likelihood approaches to reconstructing ancestral states for discrete 

characters, such as those of Pagel (1994) and Schluter et al. (1997), have modelled 

transition probabilities between states as a Markov process.  ML methods remove the 

need to exclude non-parsimonious mappings and, by using an explicit probabilistic 

framework, provide a more rigorous method than parsimony for testing evolutionary 

hypotheses about character evolution (Maddison 1995).  Unlike parsimony, ML 

methods account for branch lengths in calculating the probabilities of ancestral 

states, reflecting the higher probability of observing a change over a longer period of 

time compared to over a short period of time.   

 

2.10.3 Bayesian methods for ancestral state reconstruction 

 

Bayesian methods for ancestral state inference explicitly account for uncertainty in 

the phylogeny and the substitution model parameters by considering multiple 

MCMC samples (Nielsen 2001; Nielsen 2002).  Like the ML methods outlined 

above, Bayesian approaches also model trait evolution using continuous-time 

Markov chains and do not exclude non-parsimonious mappings.   
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The Bayesian stochastic mutational mapping method of Nielsen (2001) explicitly 

accounts for uncertainty in the mutational history, by sampling multiple mutational 

mappings for each phylogeny sample.  Originally, stochastic mutational mapping 

was developed for mapping nucleotide mutations onto phylogenies.  The method was 

extended by Huelsenbeck et al. (2003) for mapping morphological trait characters 

along phylogenies, and testing for correlations in the evolutionary history of such 

traits.  The process of constructing a stochastic mutational map under the method of 

Nielsen is outlined below.  The description is for nucleotide states, but an analogous 

process is used in the methods of Huelsenbeck et al. (2003) for mapping other 

discrete characters onto a phylogeny, where transitions between states can be 

modelled as a Markov process.  Stochastic mutational mapping and stochastic 

character mapping are implemented in the SIMMAP software (Bollback 2006).   

 

In Bayesian stochastic mutational mapping, mutational histories are sampled from 

the posterior distribution of mappings, given the observed nucleotide data.  

Mutational histories may be inferred for a given nucleotide site as follows.  Firstly, 

the fractional likelihoods for nucleotides A, C, T and G are calculated at each node in 

the rooted phylogeny using the method of Felsenstein (1981).  Next, the ancestral 

state at the root of the tree is simulated using the fractional likelihoods for 

nucleotides at the root.  Ancestral states of nodes further towards the tip of the tree 

may then be sampled recursively, conditioned on the data and the states at all 

previous nodes.  Finally, mutational histories are simulated for all lineages (between 

pairs of parent and child nodes) by modelling the substitution process from an 

ancestral node using a continuous-time Markov chain.  For a dataset D, an infinite 

number of possible mutational histories exist and each mapping A has an associated 

probability which can be evaluated as: 
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Mappings are then sampled in proportion to their posterior probability and nucleotide 

transitions may be visualised along the tree (see Chapter 4, Figure 4.1).  Stochastic 
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mutational mapping is implemented in Chapter 4, where an extension of the method 

of Nielsen (2001) is used to estimate selective pressure along lineagess. 

 

Another Bayesian ancestral trait mapping method was provided by Lemey et al. 

(2009) and is implemented in BEAST.  The method of Lemey et al. (2009) was 

originally developed as a spatial diffusion model for phylogeographic inference.  As 

with other probabilistic methods for ancestral state inference, such as stochastic 

mutational mapping (Nielsen 2001), Lemey et al. model transitions between states 

ancestral states as a Markov process.  The discrete trait mapping procedure of Lemey 

et al. (2009) reports posterior probabilities of the inferred discrete trait state at each 

node of the tree, as well as relative rates of transition between pairs of states (see 

Section 5.4.2 for more detail).  Lemey et al. (2009) also employ the technique of 

Bayesian stochastic search variable selection (BSSVS) to identify a parsimonious 

description of the diffusion process (i.e. the model with the least number non-zero of 

transition rates) for the data.  Under BSSVS, individual transition rates between pairs 

of states are switched off (set to zero) or switched on (non-zero) at different steps in 

the Markov chain.  The proportion of the time a rate is switched on or off in the 

MCMC chain is then considered in Bayes factor testing for significantly non-zero 

transition rates.  The method of Lemey et al. (2009) is used in Chapter 5, and is 

described in more detail in Section 5.4.2.   

 

Given a CTMC for discrete trait transition, Minin and Suchard (2008a) obtained a 

closed-form analytical solution for the moments of the discrete trait counting 

process, whereby transitions (‘Markov jumps’) are enumerated along a branch of a 

phylogeny.  The extension of Minin and Suchard (2008b) allowed the timings of the 

Markov jumps to be tracked, so that the length of time spent in each state along a 

branch (the ‘Markov rewards’) could be recorded.  Minin and Suchard (2008b) also 

extended their single-branch calculations to discrete trait transitions across the whole 

tree.   Since the method of Minin and Suchard is simulation-free (whereas the 

stochastic mutational mapping method of Nielsen (2001) requires character histories 

to be simulated, and discarded unless they are compatible with the data) it is more 

computationally efficient than simulation-based methods.  The method of Minin and 
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Suchard has been used for inferring synonymous and non-synonymous changes 

along phylogenies (O’Brien et al. 2009).  Markov jumps counting has been 

implemented in BEAST (Talbi et al. 2009), where it is used in conjunction with a 

CTMC inferred under the methods of Lemey et al. (2009) (without the use of 

BSSVS).  In this thesis, Markov jumps counting was used in Chapter 5 and Chapter 

6. 

 

The discrete trait mapping method of Lemey et al. (2009) has been extended to allow 

ancestral state mapping using continuous trait data, such as latitudes and longitudes, 

as has the Bayesian trait mapping software BayesTraits (Pagel 1999). The BaTS 

software (Parker et al. 2008) allows the user to assess the extent to which closely 

related taxa share a particular discrete trait state, for a set of Bayesian phylogeny 

samples.  BaTS can be used to perform a test for association between the phylogeny 

and the trait, by comparing the observed distribution of states at the tips with a null 

distribution under which states are randomly distributed across the tips of the tree. 

 

 

2.11     Estimating selective pressure 

 

2.11.1    dN, dS and detecting selection 

 

Because the genetic code is degenerate, many single nucleotide substitutions leave 

the amino acid coded for unaltered and are known as synonymous, or ‘silent’.  Single 

nucleotide changes which result in a different amino acid being coded for are 

referred to as non-synonymous.  By comparing the number of non-synonymous 

substitutions per non-synonymous site (dN) to the number of synonymous 

substitutions per synonymous site (dS) (Miyata and Yasunaga 1980), it is possible to 

make inferences about the nature of the selective forces acting upon a DNA 

sequence.  The scaling ‘per synonymous site’ or ‘per non-synonymous site’ in dN and 

dS accounts for the structure of the genetic code, specifically variation in the number 

of synonymous changes and non-synonymous changes from different codons. 
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Synonymous substitutions are often assumed to be selectively neutral, however this 

may not always be the case.  For example, codon usage bias (greater transcription 

efficiency for particular codons compared to others which code for the same amino 

acid) can lead to departure from neutrality for synonymous changes (for review, see 

Hershberg and Petrov (2008) or Sharp, Emery and Zeng (2010)).  In addition, the 

presence of an RNA secondary-structure may lead to suppression of synonymous 

codon changes (Simmonds and Smith 1999).  A potential RNA secondary structure 

across all eight influenza segments has recently been reported (Moss et al. 2011).  

Overlapping reading frames can also result in synonymous changes being non-

neutral, if they lead to non-synonymous changes in an alternative reading frame.  

Under selective neutrality, rates of non-synonymous and synonymous change would 

be expected to be equal, hence there would be an expectation that dN/dS=1.  

However, under selective pressure, non-synonymous changes may accumulate at a 

different rate to non-synonymous substitutions due to a change in fitness associated 

with a different amino acid.  Departures from selective neutrality may therefore be 

detected by a dN /dS ratio which is significantly different from 1.  Positive selection 

refers to the increase in frequency of beneficial mutations in a population towards 

fixation and is indicated by dN /dS >1.  Negative selection refers to the reduction in 

frequency of deleterious mutations towards extinction and has a signature of dN /dS < 

1.  In viruses such as influenza, regions of the gene associated with antigenicity and 

the evasion of host immune response have been found to be under positive selection 

(e.g. Suzuki and Gojobori (1999)).  The dN/dS ratio (also referred to in the literature 

as ω=α/β, or Ka/Ks) can be estimated across a gene, at specific amino sites in an 

alignment of protein coding sequences and along branches of a phylogeny.  Different 

approaches for calculating dN /dS are outlined below.   

 

2.11.2     Methods for calculating dN/dS along a gene 

 

The earliest methods for estimating dN /dS involved calculating substitution rates for 

a gene or a region of a gene, so that the dN /dS estimate was averaged over several 

amino acid sites.  These approaches can be divided into distance-based and 
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maximum likelihood methods.  Distance methods involve obtaining estimates of dS 

and dN for pairs of nucleotide sequences by dividing the respective numbers of 

synonymous and non-synonymous differences between the sequences by the 

numbers of synonymous and non-synonymous sites per sequence.  Many distance-

based methods exist for estimating dN /dS, for example those of Miyata and Yasunaga 

(1980), Perler et al. (1980), Li et al. (1985), Nei and Gojobori (1986) and Zhang et 

al. (1998). 

 

Methods for estimating dN and dS  have taken alternative approaches to estimating the 

number of synonymous and non-synonymous sites.  Early methods such as that of Li 

et al. (1985) used a matrix derived from large datasets to establish the likely paths 

between codons.  However, the method of Nei and Gojobori (1986) is now widely 

used for estimating dN and dS, and bases the estimate on the data analysed as follows.  

The Nei and Gojobori method involves first computing the number of synonymous 

(s) and non-synonymous (n) sites for each codon.  If fi is the fraction of synonymous 

changes at the i
th

 position of a given codon, then: 
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For a sequence of r codons, the total number of synonymous sites (S) and non-

synonymous sites (N) is given by: 
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where sj is the value of s at the j
th

 codon. 

 

To compare two homologous sequences, the averages of S and N for the two 

sequences are used.  The number of synonymous differences (sd) and the number of 

non-synonymous differences (nd) between the sequences are calculated at each codon 

in turn.  When more than one nucleotide difference exists between a pair of codons, 

there are multiple evolutionary paths between one codon and the other which may 

involve different numbers of synonymous or non-synonymous changes.  Under the 

method of Nei and Gojobori, all such evolutionary pathways are enumerated and are 
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assumed to have occurred with equal probability.  The quantities sd and nd are then 

averaged over all evolutionary paths.   

 

The total number of synonymous differences between the two sequences is given by: 
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The proportion of synonymous differences is then given by pS=Sd/S and the 

proportion of non-synonymous differences is given by pN=Nd/N, where S and N are 

the averaged values across the two sequences.  The formula of Jukes and Cantor 

(1969) is used to estimate the number of synonymous or non-synonymous 

substitutions per site (dS and dN respectively) as follows (Felsenstein 1985b): 
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Nei and Gojobori (1986) simplified of the method of Miyata and Yasunaga (1980) by 

assigning equal weights to evolutionary paths rather than preferentially weighting for 

synonymous substitutions over non-synonymous substitutions.  Nei and Gojobori 

(1986) showed that this simplifying assumption did not substantially increase error in 

dN /dS estimates, and that it made the method less computationally prohibitive to 

users.  The method of Zhang et al. (1998) extended that of Nei and Gojobori (1986), 

by allowing for a higher rate of transitions than transversions when calculating the 

number of synonymous and non-synonymous sites. 

 

Pairwise distance methods have been criticised for not incorporating phylogenetic 

relationships between sequences.  Failing to account for shared ancestry can lead to 

overestimates of the number of inferred substitutions, which may result from a single 

ancestral substitution rather than multiple independent changes (Felsenstein 1985b; 

Kosakovsky Pond et al. 2009).  Classes of methods which count the number of 

synonymous and non-synonymous substitutions along ancestral sequences based 

upon phylogenetic reconstructions have now been developed, for example the 
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parsimony-based method of Suzuki and Gojobori (1999), and the single likelihood 

ancestor counting methods of Kosakovsky Pond and Frost (2005). 

 

Maximum likelihood codon methods (Goldman and Yang 1994; Muse and Gaut 

1994), which employ an explicit probabilistic model of codon evolution, have also 

been developed for providing gene-wide dN /dS estimates.  Both the Goldman-Yang 

and Muse-Gaut methods model codon replacement as a Markov process, although 

the parameterisation differs between the models.  The Muse-Gaut model is 

parameterised in terms of synonymous and non-synonymous substitution rates, 

whilst the Goldman-Yang model fixes the rate of synonymous evolution to 1 and 

estimates the non-synonymous rate relative to this.  Under the ML framework, both 

methods can be used to formally test for an elevated level of non-synonymous 

change relative to the amount of synonymous change.   

 

 

2.11.3     Methods for calculating site-to-site dN/dS ratios 

 
Whilst methods for detecting positive selection across a gene can provide an overall 

indicator of selective pressure, they are thought to be conservative in terms of 

detecting positive selection since only a small number of positively selected sites 

may exist in a region of overall functional constraint (Yang and Bielawski 2000).  

Phylogenetic approaches for detecting individual amino acid sites under positive 

selection were first described by Nielsen and Yang (1998).  The method of Nielsen 

and Yang (1998) uses maximum-likelihood to calculate dN and dS along an 

alignment, with the ratio dN/dS allowed to vary across sites.  Likelihood ratio tests 

may be used to calculate the probability that a given site is a member of the class of 

positively selected sites, conditional upon information at the tips of the phylogeny for 

the sequences.   

 

The method of Nielsen and Yang (1998) was later extended to allow different 

distributions of dN/dS across amino acid sites (Yang et al. 2000).  A further 

development, known as an ‘empirical Bayes’ approach, allowed prior beliefs about 

the nature of the selective pressure acting upon particular sites to be incorporated 
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(Yang and Swanson 2002).  The development of a significance test for whether a 

particular site was under positive selection (Swanson et al. 2003) meant that 

individual amino acid sites with potential biological significance could be identified, 

rather than merely providing evidence for a class of positively selected sites.  A 

Bayesian method which reports the posterior probability of each amino acid site 

being under positive selection, and accounts for uncertainty in model parameters 

such as branch lengths and substitution parameters, has also been developed 

(Huelsenbeck and Dyer 2004).  This is known as a ‘hierarchical Bayes’ approach.   

 

Kosakovsky Pond and Frost (2005) identified three classes of methods for estimating 

dN and dS to study selection on a site-by-site basis.  ‘Counting methods’ involve 

reconstructing ancestral sequences and counting the number of synonymous and non-

synonymous changes throughout the evolutionary history of each codon.  For 

example, the stochastic mutational mapping method of Nielsen (2001, 2002) has 

been used to count numbers of synonymous and non-synonymous substitutions and 

detect positively selected sites (Nielsen and Huelsenbeck 2002).  A counting method 

known as single likelihood ancestor counting (SLAC) method has been developed by 

Kosakovsky Pond and Frost (2005).   

 

The second class of methods involves modelling synonymous and non-synonymous 

rates according to a predefined distribution, as implemented in the methods of 

Nielsen and Yang (1998), Yang et al. (2000) and Huelsenbeck and Dyer (2004).  

These methods are termed random effects likelihood (REL) methods.  Finally, fixed 

effects likelihood (FEL) methods estimate dN and dS directly for each site.  SLAC, 

REL, and FEL methods are all based upon an underlying phylogeny and a codon 

substitution model, and have been implemented in the HyPhy software.  Kosakovsky 

Pond et al. (2005) found similar levels of type I and type II errors, and consistent 

estimates of dN /dS, across all three methods during simulation studies and tests on 

sequence data.  A phylogenetic maximum likelihood test for accelerated substitution 

towards a particular amino acid (and the identity of that residue) at individual sites 

along a protein alignment (a method known as ‘DEPS’) has recently been developed 

(Kosakovsky Pond et al. 2008).  
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2.12     Viral phylogenies and effective population size 

 

A Wright-Fisher population is an idealised population with non-overlapping 

generations where each individual contributes an infinite number of gametes to a 

gene pool and all individuals are replaced in each generation (Fisher 1930; Wright 

1931).  The effective size (Ne) of a population is defined to be the size of a Wright-

Fisher population whose genetic diversity would change at the same rate as the 

census population size (see Rodrigo (2009)).  This leads to a coalescent-based 

interpretation of Ne, known as the coalescent effective population size, which is the 

value of Ne which provides the same distribution of coalescence times as would be 

obtained for the actual biological population under consideration.  The meaning of 

coalescent effective population size, and methods for its calculation, has been 

discussed in greater detail by Sjodin et al. (2005) and Wakeley and Sargsyan (2009).   

 

Nee et al. (1995) and Kuhner, Felsenstein et al. (Kuhner et al. 1995; Beerli and 

Felsenstein 1999) independently recognised that the coalescent theory could be used 

to make inferences about the history of a population.  Nee et al. (1995) achieved this 

by plotting the Number of Lineages in a phylogeny as a Function of Time (NLFT).  

The NLFT approach was later extended by Pybus, Rambaut and Harvey (2000) and 

Strimmer and Pybus (2001), who used the notion that the effective size of a 

population could change at coalescent events to generate plots of Ne over time, 

known as skyline plots, in a maximum likelihood framework.  These methods have 

been used to investigate the demographic history of a population directly from a 

sample of genetic sequences, without the requirement for a pre-specified 

demographic model.  Whereas the classic skyline plot of Pybus et al. (2000) forced a 

change in Ne at each coalescent event, the generalised skyline of Strimmer and Pybus 

(2001) provided smoothing by allowing contiguous coalescent events to be grouped 

together across a period of constant effective population size.   
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Skyline demographic inference in a Bayesian framework was introduced by 

Drummond et al. (2005) and Opgen-Rhein et al. (2005), who used MCMC to obtain 

posterior samples of Ne through time.  Unlike ML approaches, Bayesian methods can 

incorporate uncertainty in the phylogenetic and coalescent process.  One 

disadvantage of the methods of Drummond et al. (2005) and Opgen-Rhein et al. 

(2005) is the requirement to inform the number of change-points in effective 

population size over time a priori.  A Gaussian Markov random field (gmrf) prior 

with time-aware smoothing (penalising changes in Ne over short time intervals 

compared to over longer time intervals) was introduced by Minin et al. (2008) to 

resolve this problem.  This ‘Bayesian skyride’ method does not require strong prior 

decisions about the number of change-points in Ne, and still captures important 

changes in Ne over time (Minin et al. 2008).   See Chapter 7 (Section 7.4.5) for 

further discussion of coalescent-based inference of Ne, and how the coalescence rate 

can be related to epidemiological parameters such as incidence and prevalence. 

 

 

2.13     Detecting recombination 

 

Recombination can confound attempts to reconstruct phylogenies since recombinant 

sequences will cluster in different positions in phylogenies constructed on either side 

of a recombination breakpoint (Posada and Crandall 2002).  Failure to account for 

recombination can lead to an abundance of false positives when identifying 

positively selected sites, although gene-wide estimates are less affected (Anisimova 

et al. 2003; Shriner et al. 2003).  Estimates of divergence dates may also be affected 

by recombination (Schierup and Hein 2000; Worobey 2001; Schierup and Forsberg 

2003), or at least the variance of such estimates may be increased (Lemey et al. 

2004).  Although it is widely held that recombination between homologous influenza 

segments does not occur naturally in influenza viruses (e.g. Boni et al. (2008)), its 

presence was screened for in all of the datasets analysed in this thesis.   
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Several methods for detecting recombination from sequence alignments have been 

developed and their effectiveness has been compared via simulation studies (Posada 

and Crandall 2001).  A genetic algorithm method for recombination detection 

(GARD) has been developed, which explicitly models site-to-site rate variation and 

thus has a lower rate of false-positive breakpoints than other methods (Kosakovsky 

Pond et al. 2006a).  The special case where only one breakpoint is allowed in the 

alignment is known as a single breakpoint analysis (SBP), and is particularly useful 

where rapid screening is required to confirm that recombination is not present in a 

dataset.  Both GARD and SBP are implemented in the HyPhy software.   

 

Under the SBP algorithm, an initial Neighbor-Joining tree is constructed for the 

entire alignment and the small-sample AIC score
1
 (AICc) (Sugiura 1978) is 

computed, using maximum likelihood to calculate substitution rate parameters and 

branch lengths.  Substitution parameter estimates are then fixed for all subsequent 

inferences.  For all possible recombination breakpoints, neighbour-joining trees are 

constructed separately for the portions of the alignment on each side of the potential 

breakpoint.  The modified AICc score for the model fitting branch lengths to the 

portions of the alignment on either side of the breakpoint separately (the partitioned 

model) is compared with that for the whole alignment (the un-partitioned model).  A 

lower AICc score for the partitioned model than for the un-partitioned model 

provides evidence for recombination in the dataset, and the relative support for 

different positions for the breakpoint can be evaluated via Akaike weights (Akaike 

1983).  The Shimodaira and Hasegawa test (Shimodaira and Hasegawa 1999) is used 

to assess whether perceived differences in the trees are simply due to variation in 

branch lengths or if there is genuine topological incongruence.   

 

                                                 
1
 To obtain an AICc score, the penalty term of twice the number of free parameters from the 

usual AIC is multiplied by N/(N-p-1), where N is the number of columns in the alignment 

and p is the number of free parameters.  The use of AICc has been advocated when the 

number of alignment columns is less than 40 times the number of parameters in the model 

(Burnham and Anderson 2003).  The number of parameters in the model is the sum of the 

number of branches in the trees fitted to either side of the potential breakpoint and the 

number of parameters in the evolutionary model.   
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The ‘tree-order scan’ method for visualising phylogenetic relationships between taxa 

along the length of an alignment, which can be used to identify phylogenetic 

discordance, was developed by Simmonds and Midgley (2005) and is available in the 

SSE software (Simmonds 2012).  Bootstrapped, rooted neighbour-joining trees are 

constructed from overlapping sequence fragments using a sliding window approach 

(with the length of the fragment on which to construct the phylogeny, and the 

increment by which to shift the window, chosen by the user).  Changes in the 

phylogenetic position of sequences and/or clades with greater than a specified level 

of bootstrap support between consecutive fragments are reported.  A plot is then 

constructed to display the position of the sequences in the phylogeny against the 

genome position.  If the phylogenetic relationships did not change across the 

genome, the plot would contain a horizontal line for each sequence with no crossing 

over.  Phylogenetic discordance is detected as crossing over of lines and is indicative 

of recombination.   

 

 

2.14     Viral sequence data 

 

All of the influenza data analysed in this thesis were obtained from the NCBI 

Influenza Virus Resource (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) 

(Bao et al. 2008), a database of influenza genome sequences from GenBank and the 

NIAID Influenza Genome Sequencing project.  The database contained 

approximately 2,500 avian full genome sequences and over 6000 full-length protein 

coding avian HA sequences as at February 2011.  Sequences in the database are 

generally labelled by attributes such as virus subtype, location and host species of 

isolation and the date of sampling.   
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3 Phylogenetic analysis of H7 avian influenza virus HA 

 

3.1 Chapter Summary  

 

The only recorded highly pathogenic avian influenza viruses to date have been of HA 

subtype H5 or H7.  Avian influenza viruses of subtype H7 circulate globally in wild 

birds, cause disruption to the poultry industry and have the potential to cause 

infection in humans.  In this chapter, I conduct a molecular evolutionary analysis of 

all H7 avian HA sequences available on the NCBI database.  Maximum likelihood 

and time-scaled Bayesian phylogenetic analyses are performed to examine global 

evolutionary relationships.  Consistent with earlier studies, I demonstrate clustering 

of H7 avian influenza HA sequences into major geographical lineages (Eurasian and 

American).  I also provide evidence for the existence of distinct cleavage site motifs 

for the Eurasian and American lineages.  The phylogenies provide evidence for the 

repeated transfer of influenza virus from wild to domesticated birds, multiple 

independent emergences of highly pathogenic virus and frequent reassortment of 

different NA subtypes onto the H7 HA background. 

 

 

3.2 Chapter Aims 

 

 Investigate phylogeographic relationships between all available H7 HA avian 

influenza sequences in the NCBI database 

 Investigate the distribution of different NA subtype backgrounds across the H7 HA 

phylogenies, as well as the distribution of highly pathogenic sequences and 

sequences from wild or domestic birds 

 Summarise H7 HA cleavage site motifs – a marker for virus pathogenicity 

 Identify suitable subsets of the H7 sequence data for further evolutionary analysis 
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3.3 Introduction 

 

Low pathogenic (LP) avian influenza viruses have been documented for all 

haemagglutinin (HA) subtypes; however, to date the only known highly pathogenic 

(HP) viruses have been of the H5 or H7 subtype.  H7 avian influenza viruses have 

been associated with poultry outbreaks for many decades, with the earliest highly 

pathogenic fowl plague virus (FPV) sequences, of subtypes H7N1 and H7N7, 

originating from Europe between 1927 and 1945.  Outbreaks of HP H7 avian 

influenza in poultry have occurred in North and South America, Europe, Asia and 

Australia, causing substantial economic loss and disruption.   For example, the H7N1 

avian influenza outbreak in Northern Italy in 1999-2000, which was caused by a 

circulating LPAI virus mutating into a highly pathogenic form, resulted in the loss of 

16 million birds.  H7 avian influenza viruses of both low and high pathogenicity have 

been found to cause infection in humans (Kurtz et al. 1996; Fouchier et al. 2004), 

with one case of human fatality having been reported (Fouchier et al. 2004).   

 

The evolution and continued circulation of H5 avian influenza, in particular the 

antigenic HA segment, has been studied extensively due to concern over mortality in 

poultry, wild birds and humans infected with HP H5N1 (e.g. Li et al. (2004), 

Vijaykrishna et al. (2008a) and Vijaykrishna et al. (2008b)).  In contrast, at the time 

that this analysis was carried out, comprehensive and up-to-date phylogenetic 

analyses of H7 avian influenza were lacking, with the largest and most recent being a 

study of 53 HA1 sequences isolated between 1927 and 1999 (Banks et al. 2000).  

Recent evidence that H7N2 viruses circulating in North American poultry between 

1994 and 2006 acquired human-like receptor binding affinities (Belser et al. 2008) 

suggests that contemporary H7 viruses may be an epidemiological threat to humans, 

as well as an economic burden.  It is therefore important to reveal global 

evolutionary relationships between H7 avian influenza viruses, for example with 

respect to geographical location, host species or virus pathogenicity.  Such findings 

could help to target future surveillance studies, facilitating the early detection of a 

potential pandemic strain.   
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Routine surveillance of live bird markets in both North America and Asia, intensive 

sampling of viruses from influenza outbreaks in poultry and increased sampling of 

influenza viruses from wild birds means that information can now be combined to 

give a global picture of how avian influenza viruses are circulating, in addition to 

looking at their evolution in different demographic scenarios.  In this chapter, I 

perform a phylogenetic analysis of all unique full-length avian influenza H7 HA 

sequences available in the NCBI database.  In addition to maximum likelihood 

analysis, I use the BEAST software to construct time-scaled phylogenies by 

incorporating the date of sampling in the analysis.  Under the Bayesian methodology 

employed by BEAST, uncertainty in the phylogenetic process is accounted for by 

using MCMC to obtain a sample of trees and parameters from the posterior 

distribution.  I also attempt to resolve the phylogenetic position of the early European 

fowl plague virus isolates, which have puzzlingly been found to group with 

contemporary Australian sequences in previous phylogenetic analyses.  I examine the 

phylogenetic clustering of available H7 avian influenza virus HA sequences, in terms 

of NA subtype of the virus, as well as the geographical location and avian host from 

which the virus was isolated.  

 

 

 

3.4 Methods 

 

3.4.1 Dataset 

 

All available unique, full-length avian influenza HA protein-coding sequences of the 

H7 subtype were downloaded from the NCBI database.  In cases where the same 

virus (identified by the NBCI virus name) had been sequenced more than once, only 

one such sequence (the longest) was retained.  Sequences were aligned manually 

using BioEdit (Hall 1999).  The HA1/HA2 cleavage region (amino acids between the 

motif P**P at the 3´ end of the HA1 coding region - where ‘P’ is the standard 

abbreviation from proline and ‘*’ represents any other amino acid residue - and the 



3.4:  Methods 

74 

 

motif GLF at the start of the HA2 coding region) was removed for the phylogenetic 

analysis.  The length of the alignment to be analysed was 1671 nucleotides. 

 

Sequences were labelled according to the NA subtype of the virus, their avian host 

(where known, the species and whether the bird was wild or domestic), the 

geographical location from which the bird was sampled and the year of sampling.  

‘Domestic’ birds included farmed, caged and aviary birds.  Where possible, 

classification of the sequences into highly pathogenic (HP) or low pathogenic (LP) 

was made by searching the literature for studies confirming the pathogenic status of 

the virus using laboratory testing.  Where no record of the pathogenicity of an isolate 

could be found, sequences were classified as HP if they possessed a motif at the 

HA1/HA2 cleavage region which was the same as that of a previously confirmed HP 

virus, in accordance with the guidelines of Alexander (2000).  Sequences with a 

novel cleavage site motif which had not been previously documented as either HP or 

LP were not labelled by pathogenicity.   

 

 

3.4.2 Phylogenetic Analysis 

 

Phylogenetic analysis of the avian H7 HA sequences was performed using neighbor-

joining, maximum likelihood and Bayesian methodologies.  Neighbor-joining (NJ) 

trees were constructed using MEGA version 5.05, under the TN93 (Tamura and Nei 

1993) nucleotide substitution model, with gamma distributed rate heterogeneity 

across sites and allowing for heterogeneity across lineages.  Maximum likelihood 

(ML) phylogenies were constructed in PhyML version 3.0 (Guindon et al. 2010), 

with a general time reversible (GTR) model of nucleotide substitution (Tavaré 1986), 

gamma distributed rate heterogeneity across sites and four rate categories.  

Bootstrapped replicates of phylogenies were sampled to assess support for clades. 

 

Bayesian phylogenetic inference was performed using the BEAST software 

(Drummond and Rambaut 2007) and the year of sampling of the sequences was used 

to obtain trees with an explicit timescale.  Preliminary analysis using strict and 

relaxed uncorrelated lognormal (ucln) molecular clocks suggested that a relaxed 
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clock model provided the best fit to the data on the basis of Bayes factor testing, as 

has previously been found to be the case in evolutionary studies of avian influenza, 

for example by Vijaykrishna et al. (2008a).  Analyses were carried out under a 

relaxed demographic model: the gmrf Bayesian skyride with time-aware smoothing 

(Minin and Suchard 2008a). 

 

Posterior estimates of evolutionary parameters and phylogenies were obtained from 

sampling at intervals of at least 10,000 generations over a period of at least 100 

million generations for all BEAST runs.  For each combination of settings, 

convergence of the MCMC chain was assessed for multiple independent runs by 

manually inspecting the chain traces in the Tracer software.  The effective sample 

size (ESS) was greater than 200 for all parameters in all runs from which trees and 

evolutionary parameters are reported.  After removing the first 10% of samples for 

burnin, 9,000 posterior samples were available for each run.  The FigTree software 

was used to visualise summary phylogenies (maximum clade credibility trees from 

BEAST, or bootstrapped NJ or ML trees).  The tips of the trees were coloured or 

labelled by various factors, including the NA subtype of the virus and whether the 

viruses were HP or LP, or from wild or domestic avian hosts.    

 

Initial BEAST analyses were performed upon a subsampled version (206 sequences) 

of the full avian H7 HA dataset, in an attempt to assess clustering into major 

geographical lineages whilst overcoming computational constraints.  Sequences were 

subsampled to preserve diversity with respect to location, host, pathogenicity, NA 

subtype background and year of sampling. Analyses were performed both including 

and excluding the FPV sequences.  In addition, separate North American and 

Eurasian/African datasets were created for individual analysis with BEAST due to 

the high level of divergence between the geographical lineages identified in the NJ 

and ML analyses.  Subsampling of avian H7 HA sequences from the NCBI database 

was not performed upon the individual North American and Eurasian datasets.  Only 

sequences for which the pathogenicity, host origin and NA subtype of the virus were 

known were included in the BEAST analysis. 
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The Path-O-Gen software (http://tree.bio.ed.ac.uk/software/pathogen/) was used to 

investigate the temporal signal in the neighbour-joining and maximum likelihood 

trees, which had not been inferred under the assumption of a molecular clock.  Root-

to-tip divergence within individual geographical clades (North American, Eurasian 

and Australian) was investigated using individual NJ trees constructed for each 

geographical clade in order to obtain preliminary estimates of the rate of nucleotide 

substitution, to assess how clock-like the data was and to identify any outlying taxa.  

An outgroup was chosen from a different geographical clade for each dataset (e.g. a 

North American sequence for the Eurasian dataset) and the best fitting root of the 

tree was selected from which to calculate root-to-tip distances in Path-O-Gen.  In 

addition, the placing of the Eurasian fowl plague viruses relative to later European 

sequences was examined using a plot of the root-to-tip distance against the date of 

sampling, in order to consider whether their position in the tree was as would be 

expected under clock-like molecular evolution.  

 

 

3.5 Results 

 

3.5.1 Distribution of H7 avian influenza HA sequences 

 

After removing identical sequences, multiple sequencings of the same strain and 

sequences from viruses of unknown NA subtype, a total of 470 full-length avian H7 

HA protein coding sequences were available on the NCBI Influenza Resource.  Of 

these, 295 were from wild birds and 155 were from domestic birds, whilst no 

information as to whether the host was a wild or domestic bird was available for the 

remaining 19 sequences (labelled ‘duck’ or ‘softbill’ with no further reference to the 

host status available in the literature).  Domestic birds included farmed birds (e.g. 

chickens, farmed ducks and ostrich) as well as caged and aviary birds such as 

parakeets and macaws.  The taxonomic orders of the avian hosts from which the H7 

influenza viruses were isolated was recorded (Table 3.1 and Figure 3.1).   
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Taxonomic Order Examples in avian H7 HA dataset 

Anseriformes (Ans.) Duck, goose, swan, teal, widgeon, northern shoveler, 
garganey, northern pintail 

Galliformes (Gal.) Turkey, grouse, chicken, quail, pheasant, guinea-fowl, 
chukar 

Struthioniformes (Str.) Ostrich, emu 
Passeriformes (Pas.) Starling, fairy bluebird, common iora, pekin robin, magpie 
Psittaciformes (Psi.) Parrot, parakeet, conure, macaw 
Charadriiformes (Cha.) Gull, ruddy turnstone, shorebird/wader, red knot, tern, 

sanderling 
Rheiformes (Rhe.) Rhea 

 
Table 3.1 
Classification of birds by taxonomic order.  The names of all avian hosts for which 
sequence information was available were extracted from the H7 HA dataset.  The left-hand 
column contains the avian host order and its abbreviation, whilst the right-hand column lists 
the birds of that order for which an influenza HA sequence sampled from that host was 
present in the dataset. 

 

 

 

 

 
 

Figure 3.1  
Avian H7 HA influenza sequences by taxonomic order of host.  The number of 
sequences available in the NCBI influenza virus database, from avian hosts of different 
orders, is presented.  Some host orders represent only wild (e.g. Charadriiformes - Cha.) or 
domestic hosts (e.g. Galliformes - Gal.), whilst others (e.g. Anseriformes - Ans.) include both 
wild and domestic birds.  The full names and abbreviations used for taxonomic orders in the 
key are listed in Table 3.1. 
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22 sequences were from avian hosts whose order could not be determined from the 

sequence label or a search of the literature, and included sequences labelled ‘softbill’, 

‘non-psittacine’, ‘fowl’, ‘avian’ and ‘wild bird faeces’.  The most common bird order 

from which H7 HA sequences had been isolated (142 of the 470 samples) was 

Galliformes, which are terrestrial poultry such as chickens and turkeys.  The second 

most common avian host order corresponding to the avian influenza H7 HA 

sequences was Anseriformes, which includes ducks and geese.  106 of the sequences 

from Anseriformes were from wild birds and 40 were from domestic birds; it was not 

known whether the host was wild or domestic in 17 cases.  Other avian host orders 

from which viruses were sequenced included Charadriiformes (gulls and terns: 38 

sequences, all from wild birds), Passeriformes (8 sequences from wild birds), 

Psittaciformes (7 sequences from caged birds), Struthiformes (8 sequences from 

farmed ostriches and emus) and Rheiformes (1 sequence from a farmed rhea).   

 

The earliest H7 HA sequence available was sampled from a domestic bird in 1927, 

and isolates from domestic birds were present from each decade thereafter until the 

present day, except for the 1950s.  However, only a small number of sequences were 

available prior to 1990 (Figure 3.2).  The earliest avian H7 HA sequences from wild 

birds date from the 1970s, although just 19 pre-2000 sequences are available.  The 

large number of recent wild bird sequences (136 since 2000) is a result of increased 

surveillance for avian influenza, particularly following the emergence of highly 

pathogenic H5N1 avian influenza viruses.   

 

H7 avian influenza HA sequences from wild birds were available in the NCBI 

database for viruses of all NA subtypes (N1 – N9), although the subtypes differed 

greatly in abundance (Figure 3.3).  All but two H7 serotypes (H7N5 and H7N8 – 

which were only present once and four times respectively amongst the wild bird 

sequences) were present in domestic birds.  H7N3 and H7N7 were the most 

frequently occurring serotypes amongst avian H7 HA sequences from wild birds (70 

and 51 sequences respectively), with less than 10 sequences present for all other NA 

subtype backgrounds.  H7N2 was the most frequently sampled subtype amongst 
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domestic birds (131 sequences), followed by N3, N1 and N7, with less than 10 

sequences available for each of the remaining subtypes. 

 

.  

 
 

Figure 3.2 
Avian H7 HA influenza sequences by decade.  The number of sequences from wild and 
domestic (dom) birds available in the NCBI influenza virus database is shown for each 
decade from the 1920s (corresponding to the earliest available isolates) to the present day. 

  

 

 
 

Figure 3.3 
Avian H7 HA influenza sequences by NA subtype.  The number of sequences from wild 
and domestic (dom) birds available in the NCBI influenza virus database is shown for each 
NA subtype, N1-N9.   
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The continent of origin was also recorded for avian H7 HA sequences (Figure 3.4).  

51% of the available avian H7 HA sequences were from birds in North America 

(encompassing two sequences isolated from wild birds in Guatemala in Central 

America).  H7 viruses were found on all NA subtype backgrounds in North America.  

Notable groups of sequences from domestic birds in North America include low 

pathogenic H7N2 isolates sampled from live bird markets between 1994 and 2006, 

which were all of low pathogenicity.  The only HP isolates from North America 

corresponded to outbreaks of H7N3 in Canada: in British Columbia in 2004 and 

Saskatchewan in 2007.  From 2006 onwards, large numbers of sequences were 

obtained from wild birds of orders Anseriformes and Charadriiformes along the East 

and West coasts of America, with H7N3 being the most common subtype.  Just 2% 

of unique avian H7 HA sequences in the NCBI database were from South American 

birds.  These were from an outbreak of highly pathogenic H7N3 in domestic birds in 

Chile in 2002, and an H7N3 virus isolated from a wild duck in Bolivia in 2001. 

 

 

 

 
 

Figure 3.4 
Avian H7 HA influenza sequences by geographical region.  The number of sequences 
available in the NCBI influenza virus database, from major geographical regions, is 
presented.  Under the conventions for influenza virus sequence labelling, the location refers 
to the geographical region where the sample was taken from the bird (except for some of the 
early fowl plague virus isolates, e.g. A/fowl/Dobson/1927 and A/fowl/Weybridge, which 
appear to have been labelled by the location in which the sequencing took place). 
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28% of the avian H7 HA sequences in the NCBI database were sampled in Europe.  

Representative sequences were present for many outbreaks of avian influenza in 

domestic birds.  These outbreaks included highly pathogenic H7N7 isolated from 

geese and chickens in Germany in 1979, and sequences from H7N1 viruses of both 

low and high pathogenicity sampled during an avian influenza outbreak in Italy 

between 1999 and 2000.  Low pathogenic H7N3 sequences were also sampled from 

galliform birds in Italy in 2002.  Three sequences were available from the outbreak 

of highly pathogenic H7N7 which occurred on poultry farms in the Netherlands and 

Germany in 2003, leading to the death of a veterinarian (Fouchier et al. 2004).  

Fourteen low pathogenic H7N7 sequences from mallards in Sweden in 2002 were 

present; however, wild birds in Europe appear to have been sampled sporadically 

overall, in contrast to large number of sequences available from surveillance of wild 

birds in North America.    

 

After North America and Europe, the most common continent of origin for the avian 

H7 HA sequences was Asia, from which 14% of the sequences were sampled.  HP 

and LP H7N3 sequences were available from chickens in Pakistan between 1995 and 

2004, and LP H7N6 sequences isolated on quail farms in Japan in 2006 were also 

present.  In addition, LP sequences from wild anseriform birds in Japan and Korea 

were sampled from 2006 onwards, and the predominant subtype amongst these was 

H7N7 (in contrast to H7N3 in North America).  A small number of H7 HA 

sequences from Africa were also present in the NCBI database.  These were isolated 

from farmed ostriches in the 1990s, were low pathogenic and of subtypes H7N1 and 

H7N7. 

 

Available H7 HA sequences from Australasia were sampled in Australia, New 

Zealand and Tasmania and were from viruses with NA background subtypes N2, N3, 

N4, N6 and N7.  The sequences were sampled between 1976 and 2007.  3 out of the 

14 sequences were low pathogenic and were isolated from ducks, whilst 11 were 

highly pathogenic and were isolated from farmed chickens and emus (9 out of the 11 

HP sequences) or wild starlings (2 out of the 11 HP sequences).  It has previously 

been reported that the H7N7 viruses isolated from starlings in 1985 were closely 
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related to HP chicken viruses of the same subtype, also isolated in Victoria in 1985 

(Nestorowicz et al. 1987).   

 

 

3.5.2 Molecular analysis of the H7 HA cleavage site 

 

43 different motifs were observed at the HA cleavage site (Appendix A, Table A1).  

21 of these motifs corresponded to LP viruses, 20 to HP viruses, and 2 to viruses 

whose pathogenicity could not be determined from the literature.  Two motifs, 

PEIPKGR (observed 131 times) and PENPKTR (observed 130 times), were 

particularly dominant amongst the LP sequences and corresponded to 

Eurasian/African and North/South American sequences respectively.  These motifs 

were present in isolates from wild and domestic birds from the early 1970s until 

2009 (the latest sequences available), and were obtained from H7 avian influenza 

viruses on most NA subtype backgrounds (7 out of the 9 for the Eurasian motif, and 

8 out of 9 for the American motif).  The longstanding predominance of these motifs, 

without any crossover between the major geographical regions, is another indicator 

of the lack of transatlantic exchange of avian influenza viruses.  Excluding the 

softbill isolates from California, which may have been imported from Europe (see 

Section 3.5.4), there were no HA cleavage site motifs which were found in both 

Eurasian and American sequences. 

 

None of the LP isolates had amino acid insertions at the HA cleavage region, 

although motifs where replacement by basic amino acids (histidine (H), lysine (K) or 

arginine (R)) had taken place at the cleavage site were observed amongst the LP 

North American H7N2 isolates (see Section 4.6.4 for further discussion of North 

American H7N2).  All HP sequences possessed at least two basic amino acid 

insertions at the HA cleavage site, and many had basic amino acid substitutions at the 

cleavage site such that all except one HP motif (from the Italian H7N1 outbreak of 

1999-2000) contained at least 5 basic amino acids.  6 out of the 20 HP motifs also 

had insertions of non-basic amino acids at the cleavage site region.   
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3.5.3 Phylogenetic position of early European fowl plague virus sequences 

 
7 highly pathogenic H7 HA FPV sequences were present in the NCBI database.  

These were sampled between 1927 and 1945 and were of subtypes H7N1 and H7N7.  

All except one (A/fowl/Egypt/1945(H7N1)) were sampled in Europe.  It was not 

always possible to find information regarding the country of sampling or the host, 

although all sequences were obtained from domestic birds.  All FPV isolates had six 

basic amino acids (in the motif KKRRKR or KKRKKR) at the HA cleavage site.   

 

The European fowl plague viruses sampled between 1927 and 1945 clustered 

together with bootstrap values of greater or equal to 95% in the neighbour-joining 

and ML analyses.  The FPV sequences clustered most closely with the Australian 

sequences in the NJ tree (Appendix A, Figure A1), consistent with an earlier 

maximum likelihood analysis (Banks et al. 2000) and a recent study (Bulach et al. 

2010) which used the minimum evolution method to construct phylogenies.  

However, in the ML tree (Figure 3.5), the FPV sequences fell basal to the Eurasian 

and African sequences (bootstrap value = 51%), with the Australian sequences basal 

to both the FPV and Eurasian/African sequences (bootstrap value = 100%).  The low 

bootstrap value for the clustering of the FPV sequences with the Eurasian and 

African sequences, along with different clustering behaviour found by previous 

studies and the NJ analysis, suggest uncertainty regarding the phylogenetic position 

of the FPV sequences.   

 

It may be observed from the root-to-tip divergence plot for an NJ tree constructed 

from FPV and later Eurasian sequences (Appendix A, Figure A2) that the FPV 

sequences are further from the root of the tree than would be expected under a clock-

like model of evolution.  In fact, the FPV sequences are positioned a similar distance 

from the root to the Eurasian H7 HA sequences sampled more than 50 years later.  

One cannot exclude the possibility that the 1927-1945 sequences have been affected 

by extensive serial passage in eggs which was necessary as storage at -70°C was not 

available until the 1950s; such extensive passage could distort estimates of 

substitution rates or detection of positive selection.  The FPV sequences were 
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therefore excluded from subsequent analyses presented in this thesis and had 

previously been omitted from other studies of avian influenza evolution (e.g. Chen 

and Holmes (2006)) on the basis that they are highly cultured.   

 

 

 
Figure 3.5  
Maximum-likelihood phylogeny of Avian H7 HA influenza sequences.  The phylogeny 
was constructed in PHYML, using a GTR model of nucleotide substitution and gamma 
distributed rate heterogeneity across sites, with six rate categories.  The tree was rooted to 
an H15 HA outgroup sequence (removed from figure for visualisation purposes).  Clades 
corresponding to major geographical lineages were identified and collapsed so that their 
sizes were proportional to the number of sequences at the tips of the tree in each clade.  100 
bootstrap replicates were performed and bootstrap support values are reported as the 
proportion of the bootstrap replicates in which those sequences clustered together. 
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3.5.4 Clustering of avian influenza H7 HA into major geographical lineages 

 
Phylogenetic analysis of avian H7 HA sequences provided strong evidence of 

clustering into major geographical lineages.  In the ML phylogeny (Figure 3.5), it is 

possible to observe a split into two major clades: one corresponding to sequences 

from North and South America, with the other corresponding to sequences from 

Europe, Africa, Asia and Australasia, consistent with an earlier report for H7 HA 

(Banks et al. 2000) and a general pattern observed for avian influenza (e.g. Olsen et 

al. (2006)).  Both of these major geographical clades have a bootstrap support value 

of 100% in the Neighbor-joining and maximum likelihood trees.   

 

The American sequences cluster into separate North and South American sub-clades 

in the NJ, ML and BEAST trees (each having an NJ and ML bootstrap value of 

100%, or BEAST posterior probability of 1).  A phylogenetic split into separate 

North and South American lineages had been previously suggested by Spackman et 

al. (2006).  The two Central American wild bird sequences, A/blue-winged 

teal/Guatemala/CIP049-01/2008(H7N9) and A/blue-winged teal/Guatemala/CIP049-

02/2008(H7N9), clustered with wild bird isolates in the North American clade, with 

their HA sequences being most closely related to a Californian isolate, A/northern 

shoveler/California/HKWF1026/2007(H7N3), sampled in the previous year (98% 

nucleotide sequence identity from BLAST similarity search).   

 

Within the major clade consisting of Eurasian, African, Asian and Australian 

sequences, the Eurasian and African sequences (excluding the early FPV sequences) 

cluster together in the phylogenies with high support.  As recently suggested by 

Bulach et al. (2010), the Australian sequences form their own clade (NJ bootstrap = 

100%; ML bootstrap = 100%; BEAST posterior probability = 1).  The Australian 

clade includes the Tasmanian sequence A/duck/Tasmania/277/2007(H7N2).  

However, the New Zealand sequence A/mallard/New Zealand/1365-

355/2005(H7N7) does not cluster with the Australian sequences, falling immediately 

basal to the Eurasian/African clade in the NJ and ML analyses, although with low 

support in the NJ analysis (NJ bootstrap = 59%; ML bootstrap = 73%).   
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Individual root-to-tip divergence analyses of the North American and Australian 

datasets (Figure 3.6a and Figure 3.6b respectively) indicate a tendency for the 

distance between the root and the tips of the tree to increase with year of sampling.  

In the Australian dataset in particular, a strong temporal signal could be observed, 

with a Pearson product moment correlation coefficient of r = 0.896 in the linear 

regression of root-to-tip distance on sample date.  In the Eurasian dataset (Figure 

3.6c), tips corresponding to sequences sampled before 1990 appeared further from 

the root of the tree than would be expected under a strict molecular clock.   

 

 

 
Figure 3.6  
Root-to-tip distance plots for NJ phylogenies of Avian H7 HA influenza sequences 
from different regions.  For each tree tip, the distance between that tip and the root of the 
tree was calculated using Path-O-Gen and plotted against the year of sampling.  Plots (a), 
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(b) and (c) show the root-to-tip distances from NJ trees constructed from individual North 
American, Australian and Eurasian datasets respectively.  Plot (d) shows root-to-tip 
distances for NJ trees constructed using only sequences sampled in, or after, 1990.  Points 
are coloured corresponding to membership of major geographical clades: orange = North 
America; blue = Eurasia and Africa; purple = Australia. The Pearson product moment 
correlation coefficients are reported for each of the post-1990 analyses, as are the rates of 
nucleotide substitution calculated from the slope of the regression line of root-to-tip distance 
on date of sampling.  
 

 

Initial estimates of the rate of nucleotide substitution could be obtained from the 

slope of the regression line of root-to-tip distance on year of sampling.  Substitution 

rates were estimated from NJ trees constructed only from sequences sampled in, or 

after, 1990, following the root-to-tip analysis.  Estimates of the rate of nucleotide 

substitution were similar for the North American, Eurasian and Australian datasets, 

as can be observed from the slopes of the regression lines in Figure 3.6d.  These 

rates, of 3.17x10
-3

, 3.68x10
-3

 and 2.48x10
-3

 substitutions/site/year respectively, are 

consistent with previous estimates of the rate of avian influenza HA substitution such 

as those of Chen and Holmes (2006).  Note that the lack of temporal diversity 

amongst the South American sequences (data were only from two time-points: 2001 

and 2002) meant that it was not appropriate to perform a root-to-tip analysis for this 

continent.  

 

Although all other avian H7 HA sequences clustered within the major geographical 

clade (North/South America or Eurasia/Africa/Australasia) corresponding to their 

location of sampling, three sequences sampled in North America fell within the 

Eurasian clade in the NJ and ML analyses (NJ bootstrap = 96%; ML bootstrap = 

100%) and were not included in the BEAST analysis.  Two of these sequences, 

A/softbill/California/33445-136/1992(H7N1) and A/softbill/CA/33445-

158/1992(H7N1), clustered most closely with A/non-psittacine/England-

Q/1985/89(H7N7), obtained from a quarantined bird in England three years earlier.  

This relationship has not been reported by other phylogenetic studies, perhaps 

because the Californian sequences were not submitted to GenBank until 2009.  Since 

softbill birds such as the Pekin robin are Eurasian in origin and are frequently caged 

and transported for use as pets or in aviaries (Vince 1996), it is likely that 
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A/softbill/California was of Eurasian origin and entered North America by these 

means.   

 

The other H7 avian influenza sequence which was sampled in North America, but 

which fell within the Eurasian and African clade, was A/Pekin robin/California/ 

30412/1994(H7N1).  This sequence clustered, with high support, with 

contemporaneous Eurasian H7N1 sequences from caged birds.  A search of the 

literature confirmed that this bird was part of a shipment of birds into the United 

States, which were denied entry upon arrival) (Panigrahy and Senne 2003), again 

implicating the transportation of caged birds as a potential mechanism for the global 

transmission of avian influenza viruses.   

 

 

3.5.5 Time-scaled phylogenetic analysis 

 

The detailed BEAST summary phylogenies for the Eurasian/African and North 

American datasets (Figure 3.7 and Figure 3.8 respectively) show a strong tendency 

for H7 HA sequences from the same avian influenza outbreak to cluster together.  

Clustering of sequences from the same avian influenza outbreak was also observed in 

the NJ and ML trees.  Notable outbreaks of H7 avian influenza for which clusters of 

sequences may be observed in the Eurasian tree include the 1999-2000 Italian H7N1 

outbreak (posterior probability for clade = 1) and the 2002-2004 Italian H7N3 

outbreak (posterior probability for clade = 0.996), both of which took place in 

domestic poultry (predominantly turkeys).  The HA clades corresponding to the 

Italian H7N1 and H7N3 outbreaks fall in different parts of the tree.  The H7N3 

Italian outbreak sequences cluster with Italian H7N3 sequences sampled from wild 

birds in 2001.  This indicates that the H7N3 outbreak arose through a separate 

introduction of virus from wild to domestic birds as suggested by Campitelli et al. 

(2004), rather than through reassortment of the HA segment from the Italian H7N1 

outbreak onto an N3 genetic background.  Previous analysis has also shown the 

Italian H7N1 HA sequences to be most closely related to an HA sequence from a 

wild bird (Banks et al. 2000). 
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The H7N1 Italian HA clade contained both HP and LP viruses.  The HP viruses 

formed a monophyletic clade (posterior probability = 1) within the clade of Italian 

H7N1 sequences.  In contrast, for H7N3 isolated from domestic chickens in Pakistan 

between 1995 and 2004, two distinct lineages can be observed which fall in different 

parts of the tree and correspond to HP and LP viruses.  A previous analysis suggested 

that this was due to the maintenance of separate populations of HP and LP virus in 

Pakistan (Abbas et al. 2010).  However, preliminary NJ, ML and BEAST analysis 

revealed that the LP isolates, A/chicken/Chakwal/NARC-35/2001(H7N3) and 

A/chicken/Pakistan/34668/1995 (H7N3) clustered most closely with an earlier 

sequence,  A/parrot/Northern Ireland/VF7367/1973(H7N1) (Appendix A, Figure 

A3).  The 1995 and 2001 LP Pakistan isolates were almost identical to each other, 

and both shared 99% nucleotide sequence identity in a BLAST similarity search with 

the 1979 Northern Ireland sequence.  It is therefore likely that the LP Pakistan 

isolates are contaminants, a conclusion which was also recently reached in another 

study of H7 HA (Lebarbenchon and Stallknecht 2011).  

 

Only two HA sequences from the Netherlands H7N7 2003 outbreak (and one 

sequence from the spread of the outbreak to Germany) were available on the NCBI 

database at the time that this analysis was performed, although almost 200 HA, NA 

and PB2 sequences from this outbreak have recently been available on the GISAID 

website (http://platform.gisaid.org/epi3/frontend).  The Netherlands H7N7 HA 

sequences fell within a clade of sequences obtained from wild waterfowl in Europe 

and Mongolia between 2000 and 2002, from viruses of subtypes H7N1, H7N3, 

H7N7 and H7N9.  These sequences include an H7N3 isolate from a wild mallard in 

the Netherlands in 2002, and suggest that, like the Italian avian influenza outbreaks, 

the Netherlands H7N7 outbreak was caused by transmission of virus from wild to 

domestic birds, as had previously been suggested (Fouchier et al. 2004). 

 

Two other, phylogenetically distinct, clades containing wild bird sequences are 

present in the Eurasian phylogeny.  One clade consists of sequences sampled in East 

Asia between 2003 and 2009, from viruses of subtypes H7N2, H7N3, H7N7 and 

H7N9.  The other clade consists of avian influenza sequences from wild birds 
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isolated from European (Spanish, Portuguese, Hungarian, Slovenian and Ukranian) 

H7N1, H7N2, H7N3, H7N7, H7N8, H7N9 viruses between 2005 and 2009.  The fact 

that these clades are contemporaneous suggests the presence of multiple co-

circulating lineages of avian H7 HA in wild birds.  A small number of sequences 

sampled from domestic birds in England, Denmark and the Czech Republic also 

appear in the clade of European wild bird sequences, again demonstrating the close 

genetic relationship between viruses in wild and domestic birds.  Another notable 

clade which can be identified in the Eurasian BEAST MCC tree for avian H7 HA 

sequences contains LP H7N1 sequences isolated from caged and aviary birds (parrot, 

parakeet, conure, common iora and fairy bluebird) from Europe and Asia in 1994 and 

1995.  The size of the geographical region from which these genetically similar 

viruses were isolated (between England in the west and Hong Kong in the east) 

demonstrates the potential for the rapid spread of avian influenza through the 

transportation of domestic birds.   

 

The North American BEAST MCC tree of avian influenza H7 HA sequences 

separates into two main lineages after 1990.  One lineage consists of sequences 

isolated from domestic birds (from live bird markets and poultry farms) between 

1994 and 2006.  Except for two H7N3 sequences from 1994, all of the sequences in 

the clade were from viruses of subtype H7N2.  The other major clade sampled after 

1990 in the North American phylogeny consists mainly of sequence isolated from 

wild water fowl between 2001 and 2009, from viruses of subtypes H7N2, H7N3, 

H7N4, H7N6, H7N7 and H7N9.  This clade also contained one HP sequence from a 

domestic chicken in Canada (A/Chicken/SK/HR00011/2007(H7N3)).  Although 

there is evidence for geographical clustering by East and West coast within the clade 

of wild bird sequences, the separation is not complete and suggests that mixing does 

occur between these regions.  Sequences from the British Columbia H7N3 outbreak 

of 2004-2005 can be observed in the North American avian influenza H7 HA 

phylogeny, falling basal to the clade of wild bird sequences.   

 

Estimates of the rates of nucleotide substitution were obtained in BEAST for the 

North American dataset (4.44 x10
-3

 substitutions/site/year, 95% HPD = 3.79 x10
-3

, 
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5.07 x10
-3

) and the Eurasian/African dataset (4.54 x10
-3

 substitutions/site/year, 95% 

HPD = 3.51 x10
-3

, 5.64 x10
-3

).  Including the pre-1990 sequences in the BEAST 

analysis of Eurasian sequences led to a slightly lower, albeit overlapping, substitution 

rate estimate of 3.90 x10
-3 

substitutions/site/year (95% HPD = 3.15x10
-3

, 4.73x10
-3

), 

possibly resulting from the position of the pre-1990 sequences far from the root of 

the tree.  Overall, the substitution rate estimates are in line with the root-to-tip 

divergence plots, as well as previous estimates of the nucleotide substitution rate for 

avian influenza.  For example, Chen and Holmes (2006) obtained mean substitution 

rate estimates of between 2x10
-3

 and 6x10
-3

 for 12 out of 13 avian influenza HA 

datasets using BEAST.   

 

 

3.5.6 Clustering of H7 HA sequences with respect to host and virus properties 

 
In addition to background viral NA subtype (Figure 3.7 and Figure 3.8), the tips of 

the BEAST MCC trees were coloured according to whether sequences were sampled 

from a wild or domestic host (Figure 3.9) and whether the virus was of low or high 

pathogenicity (LP or HP respectively) (Figure 3.10).  In both the North American 

and Eurasian/African trees, it is possible to observe that avian H7 HA sequences do 

not cluster according to the background NA subtype of the virus.  Instead, H7 

sequences from viruses with different NA subtypes are distributed across the tree.  

Such a pattern is indicative of reassortment between influenza segments.  This 

behaviour is particularly noticeable amongst the North American wild bird sequences 

from 2006, where the predominant serotype is H7N3, but sequences of serotypes 

H7N2, H7N4 and H7N7 are interspersed across the clade.  Highly pathogenic viruses 

are distributed across the BEAST phylogenies and do not form a distinct 

phylogenetic lineage, consistent with previous reports (e.g. Rohm et al. (1995); 

Banks et al. (2000)).  In addition, isolates from wild and domestic birds cluster 

together in various parts of the trees, suggesting repeated introduction of avian 

influenza viruses from wild birds into domestic poultry populations.   
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Figure 3.7 
Time-scaled Bayesian phylogeny of Eurasian Avian H7 HA influenza sequences.  
Maximum clade credibility (MCC) tree constructed from posterior phylogeny samples 
obtained using the BEAST software.  Analysis was performed under an SRD06 model of 
nucleotide substitution with a relaxed uncorrelated lognormal molecular clock.  Branches at 
the tips of the phylogeny are coloured according to the background NA subtype of the virus 
for sequences at the tips of the tree (with basal branches in clades that are monophyletic 
with respect to subtype also coloured by subtype).  Major outbreaks and clades are labelled 
on the phylogeny.  Although the Pakistan LP isolates are included here, they were excluded 
from further BEAST analyses as discussed in Section 3.5.5.  
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Figure 3.8 
Time-scaled Bayesian phylogeny of North American Avian H7 HA influenza 
sequences.  Maximum clade credibility (MCC) tree constructed from posterior phylogeny 
samples obtained using the BEAST software.  Analysis was performed under an SRD06 
model of nucleotide substitution with a relaxed uncorrelated lognormal molecular clock.  
Branches at the tips of the phylogeny are coloured according to the background NA subtype 
of the virus for sequences at the tips of the tree (with basal branches in clades that are 
monophyletic with respect to subtype also coloured by subtype).  Major outbreaks and 
clades are labelled on the phylogeny. 
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Figure 3.9:  BEAST avian H7 HA phylogenies coloured by host type.  Maximum clade credibility (MCC) trees for (a) North American and (b)  
Eurasian sequences, constructed from posterior phylogeny samples obtained using the BEAST software.  Tips of the tree (and clades monophyletic 
with respect to host type) are coloured according to whether the host from which the virus was sampled was a wild or domestic bird.   
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Figure 3.10:  BEAST avian H7 HA phylogenies coloured by pathogenicity.  Maximum clade credibility (MCC) trees for (a) North American and  
(b) Eurasian sequences, constructed from posterior phylogeny samples obtained using the BEAST software.  Tips of the tree (and clades monophyletic  
with respect to pathogenicity) are coloured according to whether the virus was highly pathogenic (HP) or of low pathogenicity (LP). 



3.6:  Discussion 

96 

 

 

3.6 Discussion 

 

In this chapter, evolutionary analysis of full length H7 avian influenza HA sequences 

available from the NCBI Influenza Virus Resource was undertaken.  The distribution 

of available sequences was reported, in terms of location and year of sampling, 

taxonomic order of avian host and NA subtype and pathogenicity of the virus.  All 

observed cleavage site motifs were recorded, along with their frequency and the 

distribution of hosts and viruses in which they were found.  Phylogenies were 

obtained which showed global evolutionary relationships between H7 avian 

influenza HA viruses, and analysis with BEAST allowed visualisation of trees on an 

explicit timescale.  The distribution of different host or virus properties across the 

phylogenies was also considered. 

 

Overall, a large number of avian influenza virus sequences were available, 

representing many combinations of host, location, pathogenicity and NA subtypes.  

However, it is not clear to what extent variation in frequencies (such as the low 

number of South American and African sequences compared to those in North 

America and Eurasia) is a reflection of the true distribution of avian influenza viruses 

or an artefact of differences in levels of surveillance and sampling.  Substantial 

differences even exist between the numbers of sequences available for different 

outbreaks in domestic poultry in similar regions: for example, 40 HA sequences were 

available from the Italian H7N1 outbreak of 1999-2000, whereas only 3 HA 

sequences from the 2003 Netherlands H7N7 outbreak were available in the NBCI 

database.  Strategies for subsampling sequences should perhaps be considered in 

future evolutionary analyses, to reduce bias resulting from variation in the intensity 

of sampling in different regions or avian populations.   

 

Phylogenetic analyses using neighbour-joining and maximum likelihood methods, as 

well as Bayesian coalescent-based inference using BEAST, confirmed the existence 

of distinct North/South American and Eurasia/African/Australian lineages, with no 



3.6:  Discussion 

97 

 

evidence of transatlantic transmission of avian influenza viruses by wild birds in this 

dataset.  This reinforces the hypothesis that transmission of avian influenza viruses is 

closely related to the migratory routes of wild birds (Olsen et al. 2006).  The 

observation that three sequences sampled from caged birds in North America 

clustered with earlier or contemporaneous sequences from caged birds in the 

Eurasian/African clade indicates that transportation of caged birds could provide a 

mechanism for the global spread of influenza viruses.  Trade, especially the 

smuggling of cage-birds, has previously been implicated as a major risk for the 

introduction of Eurasian avian influenza viruses into North America, rather than 

transmission via wild birds (Webster et al. 2007).  For example, Webster et al. 

suggested that this is the most likely route through which HPAI H5N1 could enter 

North America from Eurasia. 

 

The finding that the Australian avian H7 HA sequences form their own distinct 

lineage within the Eurasian/African/Australasian clade has recently been highlighted 

by Bulach et al. (2010).  A strong positive correlation was observed between root-to-

tip distance and date of sampling for Australian H7 HA sequences associated with 

numerous NA backgrounds (N2, N3, N4, N6 and N7) (Figure 3.6).  This indicates 

the maintenance of an Australian avian influenza virus reservoir distinct from the 

Eurasian wild bird reservoir, with repeated reassortment within Australia, as 

suggested by Bulach et al. (2010).  Similarly, a distinct South American clade was 

observed within the major North/South American lineage.  The finding that HA 

sequences from the 2002 Chilean H7N3 outbreak in chickens clustered most closely 

with an H7N3 sequence from a wild Bolivian duck, A/cinnamon teal/Bolivia/ 

4537/2001(H7N3), suggests the possibility of a distinct avian influenza virus 

reservoir in this under-studied region, with the potential to cause outbreaks in 

domestic poultry.   

 

It is likely that the apparent genetic isolation of Australasian sequences within the 

Eurasian/African/Australasian lineage is a result of geographical isolation linked to 

the migratory flyways of wild birds (Olsen et al. 2006) (see Chapter 1, Figure 1.3).  

The divergence of the New Zealand sequence from those isolated in Australia and 
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Tasmania indicates the possibility of distinct separate avian influenza virus reservoirs 

within Australasia.  Although distinct North and South American clades may be 

observed in the avian H7 HA phylogenies, latitudinal migration of wild birds does 

take place between North and South America (Olsen et al. 2006).  However, without 

additional sequence information and analysis it is not possible to determine the 

extent to which mixing of H7 avian influenza viruses between North and South 

America takes place.  Increased global surveillance of avian influenza in wild birds 

could help to shed light on these matters.   

 

By surveying the available H7 avian influenza HA data, it was possible to provide a 

global picture of H7 avian influenza virus circulation over multiple decades and to 

identify subsets of sequences upon which further, more detailed, studies could be 

carried out.  For example, many sequences are available from the 1999-2000 H7N1 

Italian avian influenza outbreak in domestic poultry, where a low pathogenic virus 

mutated into a highly pathogenic form and was eradicated using culling and 

vaccination.  In addition, the long-term evolution of avian influenza viruses in 

domestic hosts could be analysed using sequences from the H7N2 virus which 

circulated in the live bird markets of North America between 1994 and 2006.  I also 

considered the distribution of different host or virus properties across the time-scaled 

avian influenza H7 HA phylogenies.  This provided the basis for other studies in this 

thesis, including investigating the selective pressure experienced by H7 HA on 

different NA subtype backgrounds (Chapter 4) and using discrete trait mapping 

methods to quantify reassortment from phylogenies (Chapter 5). 
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4 Evolutionary interactions between HA and NA in avian 

influenza  

 

4.1 Chapter Summary 

 

Reassortment between the RNA segments encoding haemagglutinin (HA) and 

neuraminidase (NA), the major antigenic influenza proteins, produces novel 

combinations of influenza subtypes and has preceded the emergence of pandemic 

influenza viruses.  HA and NA have interacting roles in the viral life cycle, and are 

responsible for binding of virions to host cells and release of progeny virions from 

host cells respectively.  It has been suggested that a balance between HA and NA 

activity is required for productive viral infection, and that genetic interactions 

between the segments encoding HA and NA could mediate this functional balance.  

In this chapter, I perform a Bayesian analysis to investigate how association with 

different NA subtypes influences the evolution of H7 HA, in terms of synonymous 

and non-synonymous substitution rates (dS and dN respectively) and their ratio 

(dN/dS).  I use stochastic mutational mapping to infer codon changes along different 

parts of the H7 HA phylogeny, corresponding to lineages of different NA subtype 

backgrounds.  This allows dN, dS and dN/dS to be calculated for H7 HA on each NA 

subtype background.  The findings indicate that the selective pressure experienced by 

H7 HA may vary substantially depending on the associated NA subtype of the virus.  

Although it is difficult to exclude all possible confounding factors amongst the 

available data, no substantial difference in dN/dS was detected between viruses of 

high and low pathogenicity, or between lineages corresponding to different 

taxonomic orders of avian host.   

 

 

 

 



4.3:  Introduction 

101 

 

4.2 Chapter Aims 

 

 Investigate how selective pressure (measured by the ratio dN/dS) varies in H7 HA on 

different NA subtype backgrounds, and consider patterns of sites under putative 

positive selection 

 Test for differences in selective pressure between HP and LP avian influenza viruses, 

as well as between viruses in ducks and chickens 

 

4.3 Introduction 

 

The main antigenic influenza proteins, the surface proteins haemagglutinin (HA) and 

neuraminidase (NA), are each encoded by a separate RNA segment and are classified 

into subtypes which do not cross-react serologically and are phylogenetically 

distinct.  Whilst all HA and NA subtypes circulate in wild waterfowl (Webster et al. 

2007), viruses with certain HA/NA combinations occur frequently in nature whereas 

others are rarely detected (Kaverin et al. 2000; Alexander 2003; Munster et al. 

2007).  This, combined with the failure of laboratory studies to produce viable 

reassortant viruses of particular subtype combinations, has led to the suggestion that 

there is a requirement for a functional match between the HA and NA subtypes 

(Wagner et al. 2002). 

 

The HA and NA proteins play complementary roles in the life cycle of the influenza 

virus.  Both HA and NA bind to host cell receptors containing sialic acid residues:  

HA to initiate viral entry into the host cell, and NA to permit the release of viral 

progeny from infected cells (see Chapter 1, Section 1.2).  Experimental studies have 

suggested that a fine balance between HA and NA activity must be achieved for 

productive viral infection (Wagner et al. 2000).  For example, if HA activity, and 

thus receptor-binding avidity, is high, then a high level of NA activity may also be 

required in order to prevent a reduction in virus yield resulting from the aggregation 

of progeny virions below the surface of host cells (Rudneva et al. 2003) (note that 

virus yield is measured by the number of progeny virions released by infected host 
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cells).  A balance between HA and NA activity may, in fact, be more important for 

viral fitness than high levels of activity per se.  For example, Kaverin et al. (1998) 

showed that, when artificially generated reassortant viruses of the N1 NA subtype 

were cultured, several (e.g. H3N1) only gave low yields.  However, when the low-

yield H3N1 culture was passaged, a number of changes occurred in the HA which 

reduced its receptor binding activity, apparently to match that of the NA in the 

reassortant virus rather than to return to the high levels of HA activity found in the 

H3N8 parent virus.  Adaptive post-reassortment changes in the receptor-binding 

region of the HA during serial passage have also been observed in other experimental 

studies using avian H2, H3, H4, H10 or H13 HA and low-activity human N1 NA 

(reviewed by Rudneva et al. (2003)). 

 

Both the HA and NA proteins are thought to determine the sensitivity of naturally-

occurring influenza viruses to neuraminidase-inhibiting drugs (NAIs) (Baigent et al. 

1999).  In vitro studies have investigated genetic interactions between HA and NA in 

terms of NAI resistance.  Evidence suggests that mutations in the HA which decrease 

receptor binding avidity may compensate for a decrease in NA activity resulting 

from treatment with NAIs, thus restoring the balance between HA and NA function 

(Gubareva et al. 1996; McKimmBreschkin et al. 1996; McKimm-Breschkin et al. 

1998; Wagner et al. 2002).  In addition, HA and NA mutations which individually 

confer low-level resistance to NAIs have been found to combine synergistically to 

confer resistance at a higher level (Blick et al. 1998).  Interdependence between the 

length of the NA stalk section and the number of HA glycosylation sites has been 

identified in laboratory strains (Wagner et al. 2000; Baigent and McCauley 2001) 

and may also have direct consequences for the transmission of influenza viruses to 

other host species.  For example, influenza A viruses which have become established 

in terrestrial poultry may possess additional HA glycosylation sites, accompanied by 

deletions in the stalk section of their NA (Matrosovich et al. 1999; Banks et al. 

2001).   

 

Reassortment – the exchange of genetic segments between co-infecting parental 

viruses during replication – leads to novel combinations of influenza HA, NA and 



4.3:  Introduction 

103 

 

other segments.  Reassortment has been implicated in the emergence of pandemic 

influenza viruses, including those of avian origin which were responsible for 

significant human mortality in the twentieth century (Scholtissek et al. 1978; 

Kawaoka et al. 1989) and the recent H1N1 pandemic strain (Smith et al. 2009).  

Naturally-occurring reassortment events could affect the functional balance between 

the HA and NA proteins (Wagner et al. 2002) and this could in turn affect their 

evolution.  Whilst previous studies, such as those of Suzuki and Nei (2002) and Chen 

and Holmes (2006), have investigated evolutionary rates of influenza, few have 

focused on how rates of evolution are affected by genetic interactions between 

segments (Rambaut et al. 2008).   

 

Evolution of protein coding sequences can be quantified in terms of rates of 

synonymous (dS) and non-synonymous substitution (dN) and their ratio, dN /dS, 

following the counting-based methods of Miyata and Yasunaga (1980), Li et al. 

(1985) and Nei and Gojobori (1986).  The dN /dS ratio can be used to make inferences 

about the nature of the selective pressure acting upon a gene or a particular group of 

sites.  Departures from selective neutrality can be detected when dN /dS differs from 

1, with dN /dS > 1 indicating positive selection and dN /dS < 1 being indicative of 

purifying selection (see Chapter 2, Section 2.11).  However, gene-wide estimates of 

dN/dS which show overall purifying selection may mask a small number of sites 

experiencing positive selection.  Whilst the overall rate of non-synonymous 

substitution is lower than the synonymous substitution rate across the influenza HA 

in humans and swine (e.g. Sugita et al. (1991)), as well as in birds (e.g. Chen and 

Holmes (2006)), evidence has been provided for positive selection at certain sites, 

particularly those of antigenic significance (e.g. Fitch et al. (1991), Ina and Gojobori 

(1994), Bush et al. (1999), Kosakovsky Pond et al. (2008)).   

 

In this chapter, a Bayesian stochastic mutational mapping approach (Nielsen 2001; 

Nielsen 2002) was used to investigate how the association with different NA 

subtypes influences the evolution of the HA-encoding segment of H7 avian 

influenza.  The method of Nielsen (2001, 2002) was extended by rescaling counts of 

synonymous and non-synonymous changes to calculate dN and dS.  Ancestral trait 
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mapping was used to construct a model that assigned background NA subtypes to 

branches across the tree, and dN/dS was averaged across all parts of the tree 

corresponding to a particular NA subtype.  The method accounts for a lack of 

monophyly across the tree with respect to NA subtype background, which arises 

through repeated exposure of H7 HA to different NA backgrounds via reassortment.  

This provides an advantage over studies such as that of Chen and Holmes (2006) 

who constructed separate datasets according to background NA subtype, despite the 

sequences being distributed across the avian H7 HA phylogeny.  In this chapter, 

significant differences are observed between HA1-wide dN/dS for H7 avian influenza 

on different NA subtype backgrounds, consistent with the hypothesis that the 

selective pressure experienced by HA can be affected by the genetic context in which 

the segment finds itself. 

 

 

 

4.4 Methods 

 

4.4.1 Dataset 

 

All available (as at April 2008) complete avian H7 nucleotide sequences for the HA 

coding region were downloaded from the NCBI database (www.ncbi.nlm.nih.gov) 

(Bao et al. 2008) and labelled according to the corresponding NA subtype of the 

virus.  Sequences were screened for identity and, when identical nucleotide 

sequences were present, only one of the sequences was included.  Only NA subtypes 

for which more than 20 sequences were available were analysed; these subtypes were 

N1 (62 sequences), N2 (75 sequences), N3 (69 sequences) and N7 (47 sequences).   

Standard names for the sequences used in this study are provided in Appendix B, 

Table B1.   

 

Alignment of sequences was performed manually, using BioEdit (Hall 1999).  The 

alignment of H7 HA sequences was split at the HA1/HA2 cleavage site (Perdue et al. 

1997).   The HA1 coding region, which is approximately two thirds of the length of 
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the whole HA and has the major antigenic role for the virus (Palese and Shaw 2007), 

and the signal peptide region (17 amino acids immediately preceding the start of the 

HA1), were analysed (hereafter known as the HA1 alignment).  After excluding sites 

at which there were gaps for a large proportion of sequences, the alignment was 987 

nucleotides (329 codons) in length.  A test for recombination using a single 

breakpoint analysis (Kosakovsky Pond et al. 2006a) in the HyPhy software 

(Kosakovsky Pond et al. 2005; Kosakovsky Pond et al. 2006b) found no evidence of 

recombination in the H7 HA alignment.   

 

Where possible, the avian H7 HA sequences were also classified according to the 

taxonomic order of the avian host from which the virus was isolated (see Chapter 3, 

Table 3.1), and whether the virus was highly pathogenic (HP) or low pathogenic 

(LP), on the basis of literature searches and examination of the HA cleavage site 

motif (see Appendix A, Table A1).  

 

 

4.4.2 MrBayes phylogenetic analysis 

 

MrBayes version 3.1.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 

2003) was used to obtain posterior samples of topologies, branch lengths and 

substitution model parameters for the H7 HA1 alignment.  An outgroup sequence 

(A/Australian shelduck/Western Australia/1756/1983(H15N2); GenBank accession 

no. ABB90704) was used to root the trees.   H15 has previously been shown to be the 

closest subtype phylogenetically to H7 HA (Chen and Holmes 2006).  A General 

Time Reversible (GTR) model of nucleotide substitution (Tavaré 1986) was selected, 

which allowed for unequal equilibrium base frequencies, different substitution rates 

between nucleotides and gamma-distributed rate variation across sites.   

 

Three independent MrBayes runs were conducted, with Markov Chain Monte Carlo 

(MCMC) searching over 2,000,000 generations in each run.  Trees and parameters 

were sampled every 1000 generations.  The Tracer software (Rambaut and 

Drummond 2007) was used to inspect the chain traces, which indicated that a burn-in 

period of 1,000,000 generations was required before the chains had converged.  The 
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chain traces were compared across the three runs, and similar post-burnin values 

were observed in all runs.  A post-burnin sample of 1000 posterior trees and sets of 

parameter estimates was obtained for further analysis.   

 

 

4.4.3 Inferring mutational histories 

 

Bayesian stochastic mutational mapping (Nielsen 2001; Nielsen 2002; Huelsenbeck 

et al. 2003) was used to infer mutational histories (maps), using the posterior 

phylogeny samples from MrBayes.  Mutational histories describe the nature and 

locations of molecular changes along the branches of phylogenies (Figure 4.1).  

Stochastic mutational mapping is a Bayesian approach under which mutational 

histories are sampled from the posterior distribution of mutational mappings, given 

the observed nucleotide data (see Chapter 2, Section 2.10.3 for a detailed account of 

the mutational mapping process).   

 

For each of the 1000 post-burnin MrBayes topology and substitution model samples, 

10 mutational mappings were sampled for each nucleotide site in the H7 HA1 

alignment; this accounted for phylogenetic uncertainty and the fact that there are 

multiple possible mutational paths along the tree.  Within each phylogeny sample 

and mutational mapping replicate, the mutational history of each codon in the 

alignment was reconstructed by combining the mutational maps for the first, second 

and third codon positions.  Branch lengths from the maps for codon positions 1 and 2 

were rescaled to the branch length at codon position 3.  This allowed codon 

substitutions to be identified (Figure 4.2).  The number of synonymous and non-

synonymous changes (Cs and Cn respectively) along different parts of the tree, and 

the timings of the changes, were recorded.  If a mutational history was sampled such 

that a stop codon would occur at some point along the mutational path, the nucleotide 

maps associated with this codon map were rejected and re-sampled until a map with 

no stop codons was obtained.   
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Figure 4.1 
Example nucleotide mutational maps.  The stochastic mutational mapping process is 
used to infer mutational histories for nucleotide sites, which report the nature and location of 
molecular changes along a phylogeny.  Multiple mutational mappings may be sampled for 
each site.  For example, maps (A) and (B) are both valid reconstructions for the observed 
pattern of variation.  Note that map (B), where there are three nucleotide changes, would not 
be permitted under the parsimony criterion, since the minimum number of changes required 
to fit the nucleotide data is two, as in map (A).   

 

 

 

 
 
Figure 4.2 
Example codon map obtained using stochastic mutational mapping.  For each codon 
site, the first and second codon position nucleotide maps for a site were rescaled to the 
branch lengths of the third position map and combined to produce a map at the amino-acid 
level.  Nucleotide changes could then be labelled as synonymous or non-synonymous for 
calculating dN, dS and dN/dS.  In this example there are three nucleotide changes, one of 
which is synonymous (CGT → CGA) and two of which are non-synonymous (CGT → GGT 
and CGA → GGA). 
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4.4.4 Scaling counts of non-synonymous and synonymous changes to calculate 

dN and dS 

 

The method employed in this chapter extends the stochastic mutational mapping 

approach of Nielsen (2001, 2002) by rescaling observed numbers of synonymous and 

non-synonymous changes to account for differences in the evolutionary potential for 

synonymous or non-synonymous change at each codon position (i.e., the number of 

synonymous and non-synonymous sites in a specific codon).  This is necessary 

because of the degeneracy of the genetic code.  For example, there are two possible 

synonymous single nucleotide changes from the leucine codon TTA (TTG and CTA 

also code for leucine), whereas there are four synonymous sites for another leucine 

codon, CTA (CTT, CTC, CTG and TTA).  The method also weights by the ‘dwell 

time’ – the time along the branch spent in each codon – to account for the fact that a 

higher number of changes would be expected over a longer period of evolutionary 

time than over a shorter period.  The rescalings detailed below provide an expected 

value of dN/dS =1 under selective neutrality.  Note that the assumption that 

synonymous changes are neutral, i.e. that there is no selective constraint from the 

RNA secondary structure, and no codon usage bias, is also being made here (see 

Chapter 2, Section 2.11.1), although both have been suggested to affect influenza 

virus evolution (Wong et al. 2010; Moss et al. 2011).  For each codon site in the 

alignment, estimates of the number of synonymous and non-synonymous sites were 

calculated for a given part of the tree as follows: 
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where  c =  number of codon intervals (distinct codon states) along a part of the 

tree.  A new interval occurs every time there is a nucleotide change, 

even if it is silent, since this alters the codon state 

 

             j = position of nucleotide site in the codon (1, 2 or 3) 
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sij = proportion of possible changes at the j
th

 codon position of the codon at 

interval i which are synonymous 

 

nij = proportion of possible changes at the j
th

 codon position of the codon at 

interval i which are non-synonymous 

 

vij = ‘mutational time interval’ or ‘dwell time’.  This is obtained by 

multiplying the substitution rate rj with the length along the branch 

spent in each codon state.  The parameter rj is drawn from a gamma 

distribution, whose parameters were sampled during the MrBayes 

analysis.  A value of rj is sampled for each codon position (j = 1, 2, or 

3) from its respective posterior distribution and the stochastic 

mutational map is then sampled under this rate  

 

VT = sum across all codon positions and over all codon intervals of the vijs, 
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Together with the vijs, this gives a time-weighted average which 

assigns more weight to codons with longer dwell times. 

 

 

Note that, for a single codon interval, if the dwell time information is not used (i.e., if 

it is assumed that vij =1 for all i and j) then the calculation of the number of 

synonymous and non-synonymous sites is the same as that of Nei and Gojobori 

(1986), since sij here is equivalent to their fi.  However, unlike the Nei and Gojobori 

approach, by using the dwell time weighting the method here accommodates 

variation in branch lengths.  Note also that Nei and Gojobori used the evolutionary 

distance formula of Jukes and Cantor (1969) to estimate the expected number of 

synonymous changes per synonymous site (or non-synonymous changes per non-

synonymous site) from the proportions of synonymous and non-synonymous 

differences between pairs of sequences.  However, the method employed in this 

chapter samples the full nucleotide state history across the phylogeny for each 

nucleotide site in the alignment, thus dN and dS may be estimated directly by counting 

synonymous and non-synonymous changes along branches and rescaling by numbers 

of synonymous and non-synonymous sites, and dwell times, as described above.  The 

rescalings described above have now been implemented in SIMMAP version 1.5 

(http://www.simmap.com/), released online in February 2010. 
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Values of Cs, Cn, Ss and Sn were used in calculating synonymous and non-

synonymous evolutionary rates (dS and dN respectively) along different parts of the 

phylogeny samples, corresponding to background NA subtypes N1, N2, N3 and N7.  

In order to calculate dN and dS for H7 HA1 on different NA subtype backgrounds, 

parsimony mapping was used to assign ancestral NA subtypes at internal nodes along 

the MrBayes phylogeny samples, based on assignments at the tips of the phylogeny 

(i.e., the NA subtypes corresponding to the H7 HA sequences in the dataset) (Figure 

4.3).  This allowed branches to be classified by NA subtype: N1, N2, N3 or N7.  

Branches where a subtype could not be unambiguously assigned from a single pass 

of the parsimony algorithm from the tips of the tree to the root were not used in the 

analysis.  This avoids the possible confounding factor of incorrect lineage 

classification which could arise from using methods which force ancestral states to 

be inferred for every branch, although the exclusion of ambiguous lineages 

potentially results in a loss of information.  Ss and Sn were calculated across all 

branches to which a particular NA subtype had been assigned, and numbers of 

synonymous and non-synonymous changes were counted along those parts of the 

tree. 

 

 

 

 

Figure 4.3 
Example parsimony reconstruction of background NA subtypes on a phylogeny of H7 
HA sequences.  Branches are coloured according to the inferred ancestral subtype of the 
node immediately preceding them towards the tips of the tree.  In the analysis performed in 
this chapter, a single-pass algorithm was implemented, which labels some branches as 
‘ambiguous’.  This avoids the problem associated with erroneous assignment of subtypes in 
the subsequent calculation of evolutionary rates along branches associated with a particular 
NA subtype. 
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The rate of synonymous (dS) change and the rate of non-synonymous (dN) change 

were calculated as: 
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Here, T was obtained by summing the branch lengths at all nucleotide positions in 

the codon, with branch lengths for the first and second codon positions rescaled to 

the third codon position lengths (i.e. 3* sum of the third position branch lengths), for 

all branches in the phylogeny to which a particular NA subtype had been assigned.  

Rescaling by the length of the portion of the tree corresponding to each background 

NA subtype allowed for a comparison of evolutionary rates between clades of 

different sizes.  This extended previous mutational mapping approaches of Nielsen 

and others (Nielsen 2001; Nielsen 2002; Huelsenbeck et al. 2003), including those 

implemented in the SIMMAP software (Bollback 2006).  By performing these 

calculations upon each of the 1000 MrBayes posterior phylogeny samples, 

approximations to the posterior distributions for dN and dS were obtained for each 

background NA subtype, at each codon site in the H7 HA1 alignment. 

 

 

4.4.5 Post-processing of mutational mapping output 

 

Python scripts were written to extract information from the raw mutational mapping 

output files and to average over the 10 mutational mapping replicates for each 

phylogeny sample.  Estimates of dN and dS, obtained at each codon site for each 

background NA subtype, were averaged over the 10 mutational mapping replicates.  

Average values of dN across the sites in the HA1 alignment were obtained for each 

background NA subtype by calculating the mean of the dN values across all codon 

sites in the alignment (and similarly for dS).  For all 1000 MrBayes phylogeny 
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samples, the average dN estimate across all sites for a given NA subtype was divided 

by the corresponding dS value for that subtype across all sites, to obtain an 

approximation to the posterior distribution for the H7 HA1 dN/dS for that subtype.  

 

Estimates of dN/dS at individual codon sites in the H7 HA1 alignment were also 

calculated for each NA background subtype.  For each site, dN and dS values were 

averaged over the 10 mutational mapping replicates for each tree, and then averaged 

over the 1000 MrBayes tree samples.  To calculate the dN/dS ratio on a site-by-site 

basis, dN for each site was divided by the average dS value across the 329 codons for 

that subtype.  The gene-wide dS was used to avoid inflation of dN/dS values as a result 

of unobserved synonymous change at individual sites.  Sites with an observed value 

of dN/(gene-wide dS) > 1 were identified as being under putative positive selection.  

Sites were converted from H7 to H3 numbering prior to being reported, as is the 

convention for influenza, and numbering was based upon the alignment of Nobusawa 

et al. (1991) (sites numbered -17 to -1 for the signal peptide region and 1 to 329 for 

the HA1 coding region).  The HA1 domain in which putatively positively selected 

sites were found was reported using the alignment of Yang et al. (2010), in which 

portions of the HA corresponding to the fusion domain, vestigial esterase domain and 

receptor binding domain were identified.   

 

 

4.4.6 Comparing posterior distributions of rates 

 

Posterior distributions of dN/dS and rates of synonymous and non-synonymous 

substitution of avian H7 HA1 could be compared across background NA subtypes by 

considering highest posterior density (HPD) intervals (see Chapter 2, Section 2.1.2).  

A custom R script was written for plotting HPD intervals in a format analogous to 

confidence interval boxplots.  After checking the distributions for unimodality, HPD 

intervals were calculated using the Chen and Shao algorithm (Chen and Shao 1999) 

in the boa R package for the analysis of Bayesian output (Smith 2007).  The size of 

the overlap of the HPD intervals can be used as an indicator of whether the means of 

the distributions are significantly different. 
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In order to assess size of the overlap between posterior distributions of evolutionary 

rates of H7 HA on different background NA subtypes, the following comparison was 

implemented using ‘distributions of differences’.  For rate distributions 

corresponding to arbitrary background NA subtypes A and B, multiple pairings of 

evolutionary rate estimates were drawn randomly from across the 1000 posterior 

samples, with one observation from subtype A and one from subtype B in each pair.  

The proportion of pairings for which the observed rate from subtype A was greater 

than the observed rate from B (and vice versa) was recorded.  For a null hypothesis 

that there is no difference between the distributions, the point of interest is where 

zero lies in the distribution of paired differences.  If the distributions for A and B 

were identical then the corresponding distribution of paired differences should be 

centred on zero, as one would expect A>B for half of the paired samples and A<B 

for the other half.  However, if the proportion of samples for which A>B is extremely 

skewed (e.g. less than 0.05 or greater than 0.95) then zero lies in the tail of the 

distribution of paired differences, providing evidence that the location of the 

distributions is different (Figure 4.4).  A total of 10
6
 random pairings were sampled 

for each comparison of evolutionary rate distributions between different NA 

backgrounds.  This yielded results which were identical to 2 significant figures to 

those obtained by systematically comparing each of the 1000 observations for one 

subtype with each of the 1000 observations for the other subtype.  The values 

reported in this chapter are from the randomized pairing approach.   
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Figure 4.4 
Testing for differences between posterior distributions of evolutionary rates for 
different NA background subtypes.  (A) When the locations of the distributions (examples 
shown here in blue and purple) are very similar, the distribution of differences of randomised 
pairings between them (shown in red) will be roughly centred on zero.  (B) When the 
distributions differ in their location, the distribution of differences between randomised 
pairings will be skewed, with zero at one of the tail ends.  The proportion of pairings lying to 
each side of zero thus provides a measure of the difference in location of the distributions.   

 

4.4.7 Assessing the effect of host type and pathogenicity 

 

In this study, avian H7 HA sequences were labelled according to the NA subtype of 

the virus and rates of evolution were calculated for lineages corresponding to 

different NA backgrounds.  In order to test whether a non-uniform distribution of 

host species or pathogenic viruses across different NA backgrounds could be 

confounding the ability to infer differences in dN/dS between subtypes, two further 

analyses were performed in an analogous manner to the NA subtype analysis.   These 

analyses involved labelling sequences and performing stochastic mutational mapping 

to calculate and compare dN/dS between (a) HP and LP viruses and (b) viruses from 

different avian host orders.  Bird orders compared were Galliformes (turkeys, 

chickens etc.) and Anseriformes (ducks, geese, etc.), with all other avian host orders 

combined (classified as ‘Other’) due to a paucity of sequences from these orders.  
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4.5 Results 

 

4.5.1 Descriptive analysis of dataset 

 

The dataset (Table 4.1 and Appendix B, Table B1) analysed in this chapter 

comprised 253 avian influenza H7 HA sequences from viruses with four different 

NA background subtypes: N1 (62 sequences), N2 (75 sequences), N3 (69 sequences) 

and N7 (47 sequences).  Sequences were also classified according to the 

pathogenicity of the virus and the taxonomic order of the avian host from which the 

virus was isolated.  Note this dataset of avian H7 HA sequences differed slightly 

from that described in Chapter 3 because it was an older download and rarer NA 

subtype backgrounds were excluded.  Overall, 71% of the sequences were known to 

have been isolated from terrestrial poultry and approximately 16% were from aquatic 

fowl.  Most of the sequences from Anseriformes were likely to have been isolated 

from farmed ducks (e.g. isolates labelled ‘duck’, with no additional information) 

although a small number were known to be from wild aquatic birds.  On all NA 

backgrounds, the majority (over 63%) of sequences were from Galliformes, although 

isolates from Anseriformes were present for all subtypes (6 sequences from 

Anseriformes for H7N1 and H7N2; 13 for H7N3 and H7N7).  Approximately two-

thirds of the sequences were from HP viruses, although numbers of HP and LP 

isolates were not distributed evenly across the subtypes.  Notably, H7N2 viruses 

have thus far only appeared in a low pathogenic form, whilst approximately half of 

the H7N1 isolates were from HP viruses. 

 

For each background NA subtype, the H7 HA sequences covered a time-span of at 

least 25 years.  There were roughly equal numbers of sequences from Eurasia and 

America (132 and 107 respectively), and isolates from Europe, Asia and North 

America were present for all four subtypes considered.  The geographic spread of 

viruses of different subtypes appeared to differ between continents.  For example, 

85% of the H7N1 sequences and 74 % of the H7N7 sequences were from Europe, 

whilst 88% of the H7N2 isolates were from North America.  As was observed in 

Chapter 3, H7N3 appeared to be the most ubiquitously sampled subtype, in terms of 
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geographical location, avian host order and pathogenicity.  Overall, geographic and 

temporal diversity appeared to be captured in all subtypes, although this information 

is not explicitly used in the phylogenetic analysis described in this chapter. 

 

 

 
 

 Subtype 

All subtypes (253) H7N1 (62) H7N2 (75) H7N3 (69) H7N7 (47) 

Host order 

Ans. (38) 
Gal. (173) 

 

Ans. (6) 
Gal. (39) 
 

HP (20) 
LP (42) 

 

Ans. (6) 
Gal. (60) 
 

HP (0) 
LP (75) 

 

Ans. (13) 
Gal. (52) 
 

HP (20) 
LP (49) 

 

Ans. (13) 
Gal. (22) 
 

HP (16) 
LP (29) 

Pathogenicity 

HP (56) 
LP (195) 

Time-span 1934-2001 
 
1978-2006 

 
1963-2006 

 
1927-2003 

Location 

Europe (118) 
Asia (14) 
Africa (4) 
Australia (10) 
N. America (99) 
S. America (8) 

 

Europe (53) 
Asia (4) 
Africa (3) 
Australia (0) 
N. America (2) 
S. America (0) 

 

Europe (5) 
Asia (4) 
Africa (0) 
Australia (0) 
N. America (66) 
S. America (0) 

 

Europe (25) 
Asia (3) 
Africa (0) 
Australia (4) 
N. America (29) 
S. America (8) 

 

Europe (35) 
Asia (3) 
Africa (1) 
Australia (6) 
N. America (2) 
S. America (0) 

 
Table 4.1 
Composition of avian H7 HA sequence dataset (background NA subtypes N1, N2, N3  
and N7 only).  Numbers of sequences from different avian host taxonomic orders (Anseriformes 
= Ans., Galliformes = Gal.) and viral pathogenicities are provided, in addition to the time-span 
over which the sequences were sampled and the location of sampling.  Numbers of sequences 
are given in brackets. Note that it was not possible to determine such information for all 
sequences. 

 

 

 

4.5.2 Phylogenetic analysis 

 
Consensus phylogenies obtained with MrBayes revealed similar patterns of 

clustering to the neighbour-joining, maximum likelihood and Bayesian (BEAST) 

analyses for avian H7 HA which were described in Chapter 3.  In particular, it was 

possible to observe that H7 HA sequences clustered into major geographic lineages 

(Eurasian, American etc.) rather than forming distinct lineages according to the NA 

subtype, host order or pathogenic status of the virus (Appendix B, Figure B1).  
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Within the Eurasian clade, the Australian sequences and early European fowl plague 

viruses (sampled in the 1920s-1940s and abbreviated as FPV) both formed sub-

lineages (each with posterior probability = 1) with long ancestral branches and 

appeared to be divergent from the later European, African and Asian sequences, as 

was observed in the ML and NJ analysis of Chapter 3.  The NJ analysis of Chapter 3 

also supported the phylogenetic position of FPV as a sister lineage to the Australian 

sequences, as has been observed in previous studies (Banks et al. 2000; Bulach et al. 

2010; Lebarbenchon and Stallknecht 2011).  The relatively low posterior probability 

(0.54) observed for the Eurasian clade could result from difficulty in placing the 

highly divergent FPV clade.  As in Chapter 3, the FPV sequences were excluded 

from the analysis of evolutionary rates, since they have been extensively cultured and 

may show artificially high rates of molecular change. 

 

On a smaller geographic scale, H7 HA sequences from within the same avian 

influenza outbreak clustered together in the MrBayes consensus trees.  In line with 

Chapter 3, avian H7 HA sequences did not form distinct clades according to the NA 

background of the virus in the MrBayes consensus trees, which is indicative of 

repeated reassortment between HA and NA.  Avian influenza H7 HA sequences also 

did not form distinct clades corresponding to HP or LP viruses, or the avian host 

orders from which they were sampled (Anseriformes, Galliformes or others).  

 

 

4.5.3 Comparing evolutionary rates for H7 avian influenza HA across different NA 

background subtypes 

 

The stochastic mutational mapping analysis yielded 1000 post-burnin posterior 

estimates of dN and dS for H7 avian influenza HA1 on each of background subtypes 

N1, N2, N3 and N7.  The collection of estimates provides an approximation to the 

posterior distribution of dN and ds for each subtype, and HPD plots for dN and ds 

allowed posterior distributions of evolutionary rates to be calculated and visualised 

for H7 viruses with different NA subtypes (Figure 4.5 and Table 4.2).  For each 

background NA subtype, the dN value for each tree sample was divided by the dS 

value for that tree sample to obtain approximations to the posterior distribution of 
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dN/dS.  HPD plots of dN/dS for H7 HA1 on N1, N2, N3 and N7 NA backgrounds are 

also shown in Figure 4.5.  The distributions of synonymous substitution rates (dS) 

were very similar for H7 HA1 across all NA backgrounds, whilst the rate of non-

synonymous substitution appeared to be higher for H7N2 than for H7N1, H7N3 or 

H7N7.  The elevated rate of non-synonymous substitution for H7N2, in the absence 

of differences in synonymous substitution rates between the subtypes, led to an 

increased dN/dS for H7N2 compared to H7N1, H7N3 and H7N7.  Although the mean 

of the H7N2 dN/dS samples lay outside of the 90% HPD intervals for the other 

subtypes, the lower limit of the H7N2 HPD interval overlapped slightly with the 

upper HPD limits of the other subtypes.  It may also be noted that the rate of 

synonymous substitution was substantially higher than the rate of non-synonymous 

substitution for all subtypes, with no overlap between any of the HPD intervals for dN 

and dS.  This resulted in gene-wide dN/dS estimates which were substantially less than 

one, indicating an overall pattern of purifying selection across the HA1.   

 

In order to quantify differences in evolutionary rates for H7 HA1 on different NA 

backgrounds, comparisons of paired samples from different background NA 

subtypes were performed as described in Section 4.4.6.  For subtypes A and B, the 

proportion (denoted p) of the paired samples for which the rate of subtype A was 

greater than for subtype B (the top value in each cell) or less than for subtype B (the 

bottom value in each cell) was reported.  A split at least as extreme as 0.05/0.95 in 

either direction was interpreted as a substantial difference in the location of the 

distributions for the two subtypes.  For all subtype comparisons, the distributions of 

paired differences for rates of synonymous substitution were roughly centred on zero 

(proportions approximately 0.5/0.5 greater than and less than zero), indicating no 

significant differences between the distributions, as suggested by the HPD plot.  

However, the pairwise difference comparisons indicated an elevated rate of non-

synonymous change in H7N2, leading to a substantially higher dN/dS for H7N2 than 

for the other subtypes (p = 0.021 against H7N1; p = 0.009 against H7N3; p = 0.038 

against H7N7) (Table 4.3).   
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Within MCMC tree samples, the relationship between dN and dS estimates was 

investigated for each subtype.  In Figure 4.6, the dN value for a tree sample was 

plotted against the dS value for that tree sample, for each of the 1000 posterior rate 

estimates for each subtype.  Within tree samples, a positive correlation between dN 

and dS was observed for all four subtypes using Pearson’s product-moment 

correlation coefficient (H7N1: r = 0.479, p < 0.001; H7N2: r = 0.579, p < 0.001; 

H7N3, r = 0.599 , p < 0.001; H7N7: r = 0.562, p < 0.001, with N=1000 points for 

each subtype
2
), indicating that a phylogeny sample with a higher rate of synonymous 

substitution would also have a higher rate of non-synonymous substitution, although 

the rate of synonymous substitution was not an exact predictor of the corresponding 

non-synonymous substitution rate.  Positive correlation between gene-wide dN and dS 

has previously been observed amongst MrBayes phylogeny samples for HIV 

(Andrew Leigh Brown and Gareth Hughes, personal communication).  In this study, 

such a correlation should not be due to a failure to correct for branch lengths, since 

these were explicitly incorporated into the rescaling of dN and dS values. 

 

 

 

 

 

 

  

                                                 
2
 The p-value from the Pearson product moment correlation coefficient corresponds to the null 

hypothesis that the correlation coefficient is zero.  Assuming that the data are normally distributed, the 

sampling distribution for the correlation coefficient approximately follows a t-distribution with N-2 

degrees of freedom (with N = number of pairs in the sample).  Observed and theoretical quantiles were 

compared using normal Q-Q plots and indicated that the data were approximately normally distributed 

(not shown).   
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Figure 4.5  
90% HPD plots for dN /dS, dN and dS for H7 HA1, split by NA subtype.  The boxes show 
the limits of the narrowest interval containing 90% of the estimates.  The horizontal lines 
inside the boxes indicate the location of the mean for each subtype.  Individual points shown 
outside the boxes are values which lie below the lower limit, or above the upper limit, of the 
HPD interval.  For each subtype, values for dS are the number of synonymous changes per 
synonymous site, scaled by the total branch lengths in the tree sample for lineages 
corresponding to that subtype.  Similarly, dN is given in terms of the number of non-
synonymous changes per non-synonymous site, scaled by the total branch lengths in the 
tree sample for lineages corresponding to that subtype.  
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Subtype Mean 

dN/dS 
Lower 90%  
HPD limit 

Upper 90% 
HPD limit 

H7N1 0.107 0.063 0.156 
H7N2 0.226 0.126 0.309 
H7N3 0.102 0.067 0.137 
H7N7 0.120 0.074 0.168 

 
Table 4.2 
Average dN/dS across the H7 avian influenza HA1 on different NA backgrounds.  For 
each background NA subtype, the average dN/dS across the HA1 coding region was obtained 
for each MCMC sample by first averaging over mutational mapping replicates on that tree, 
then calculating average values for dN and dS across all HA1 sites.  Within tree samples, the 
site-averaged dN was divided by the site-averaged dS for that NA subtype, to obtain 1000 
posterior estimates of the dN/dS ratio for each NA subtype background.  
 

 

 

 

 
Comparison dN/dS dN dS 

H7N1-H7N2 
0.021465 
0.978535 

0.048604 
0.951396 

0.577697 
0.422303 

H7N1-H7N3 
0.540547 
0.459453 

0.503311 
0.496689 

0.467995 
0.532005 

H7N1-H7N7 
0.373000 
0.627000 

0.356954 
0.643046 

0.468392 
0.531608 

H7N2-H7N3 
0.991065 
0.008935 

0.965327 
0.034673 

0.389154 
0.610846 

H7N2-H7N7 
0.962234 
0.037766 

0.907221 
0.092779 

0.390056 
0.610846 

H7N3-H7N7 
0.317627 
0.682733 

0.340218 
0.659782 

0.501494 
0.498506 

 
Table 4.3 
Comparing posterior distributions of evolutionary rates for avian influenza HA1 
across different background NA subtypes using randomised pairings.  The proportion 
of randomised pairings of posterior rate samples for which the value for the first subtype in 
the comparison, minus the value for the second subtype in the comparison, was greater than 
0 (top value in each cell) and less than 0 (bottom value in each cell) was reported.  Similar 
distributions would be indicated by the difference being greater than 0 (likewise less than 0) 
in approximately 50% of pairings.  Differences in the location of the distributions would be 
indicated by a more extreme split in one direction (cells highlighted in yellow indicate a split 
at least as extreme as 5%, and cells highlighted in orange indicate a split of between 5% and 
10%).  All comparisons involving H7N2 indicated that this subtype had a higher dN/dS ratio 
than the other subtypes.   
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Figure 4.6 
The rate of non-synonymous substitution (dN) plotted against the rate of synonymous 
substitution (dS) for avian influenza H7 HA1 from viruses with different background 
NA subtypes.  For each of the 1000 MCMC tree samples from MrBayes, the value of dN 
was plotted against the value of dS for H7N1, H7N2, H7N3 and H7N7, so that the rates for 
different subtypes could be directly compared.  It may be observed that, whilst the dS values 
were similar for all four subtypes, there was little overlap between the H7N2 dN values and 
those for the other subtypes. For each subtype, the linear regression line for the dN value for 
a tree sample against the dS value for the tree sample is shown.   
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4.5.4 Site-by-site analysis of H7 HA1 dN/dS on different NA subtype backgrounds 

 

Estimates of dN and dS at individual H7 HA1 codon sites were calculated separately 

for each NA background subtype in order to investigate the process driving 

differences in selective pressure between H7 HA1 on an N2 NA background, 

compared to on an N1, N2 or N3 background, and to identify sites under putative 

positive selection.  Of the 329 codon sites studied, the vast majority (more than 96% 

for all NA subtype backgrounds) had a dN/dS ratio of less than 1.  A small number of 

sites were identified as being under putative positive selection, i.e. having dN/dS  > 1, 

and such sites were distributed across the alignment length (Figure 4.7 and Table 

4.4).  The domain in which each site with dN/dS  > 1 was observed was recorded.  

Sites under putative positive selection were observed in all domains: the signal 

peptide region, which directs the HA protein to the virion surface; the fusion domain, 

which fuses the HA protein to the rest of the virion; the receptor binding domain, 

which binds to sialic acid receptors in host cells, and the vestigial esterase domain, 

whose metabolic role is redundant but which has been speculated to play some part 

in the membrane fusion activity of modern-day influenza viruses (Sun et al. 2012).   

 

The largest number of sites under putative positive selection was observed on the N2 

NA background (23 sites out of the 329 considered).  This was approximately twice 

the number of sites with dN/dS  > 1 on N1, N3 or N7 backgrounds (13, 9 and 8 sites 

respectively) (Table 4.4).  When the largest 50 dN/dS values across the HA1 codon 

sites were ordered by magnitude for each NA background subtype, the dN/dS value on 

the N2 background was higher than the dN/dS value of that rank on all other NA 

subtype backgrounds (Appendix B, Figure B2a).  The large dN/dS values observed at 

individual codon sites for H7 HA1 on the N2 NA background would have led to the 

elevated HA1-wide dN/dS observed on the N2 NA background; however, H7N2 also 

had many of the smallest dN/dS values out of the different subtypes at individual 

codon sites (Figure 4.8 and Appendix B, Figure B2b and Figure B3).  For all NA 

subtype backgrounds, sites with dN/dS >1 were observed in each of the fusion, 

vestigial esterase and receptor binding domains.   
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Although high dN/dS values were observed at two sites in the signal peptide region of 

H7 HA on NA backgrounds N2, N3 and N7, no sites with dN/dS >1 were observed for 

the H7 HA signal peptide region on the N1 NA background.  The signal peptide 

region has previously been included in gene-wide calculations of dN/dS for influenza 

HA (e.g. by Fitch et al. (1991) and Chen and Holmes (2006)), and the alignment-

wide dN/dS values across the alignment which are reported in Section 4.5.3 

encompass the signal peptide region and HA1 coding region.  Note that the same 

pattern of average dN/dS across sites was observed corresponding to the different NA 

background subtypes (i.e. a higher dN/dS when H7 HA was on an N2 NA background 

than on an N1, N3 or N7 NA background) when values were averaged over just the 

HA1 region (i.e. excluding the signal peptide region) as when the signal peptide 

region was included (Appendix B, Table B2 and Table B3).  However, the difference 

between the dN/dS and dN distributions was less extreme, particularly for the N1-N2 

comparison, when the signal peptide region was excluded than when it was included. 

 

Some commonality was observed between the H7 HA1 sites with dN/dS >1 on 

different NA subtype backgrounds.  One site (site 218 in H3 numbering) had dN/dS 

>1 on all four NA subtype backgrounds; 3 sites had dN/dS >1 on 3 out of the four NA 

subtype backgrounds and 10 sites had dN/dS > 1 in two out of the four background 

NA subtypes (Table 4.4).  Site 218 has been linked with receptor-binding specificity 

(Daniels et al. 1987; Connor et al. 1994; Skehel and Wiley 2000) and thus high 

levels of non-synonymous change at this site could signify a move towards viruses 

which are capable of infecting other host species. 
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Figure 4.7 
Distribution of dN/dS values across the avian influenza H7 HA1 subsegment, on 
different NA subtype backgrounds.  The dN value for each site was divided by the average 
dS across all sites for that subtype to obtain a dN/dS value for each site on each background 
NA subtype.  Sites with dN/dS > 1, i.e. under putative positive selection, are highlighted in 
red.  Sites under putative positive selection were distributed across the HA1 for all 
background NA subtypes.  Although there is some variation between NA backgrounds in 
terms of the sites under putative positive selection, there is also some commonality between 
the subtypes (see Table 4.4).  A coloured key is provided, which indicates the HA1 domain: 
fusion (pink), vestigial esterase (green) or receptor binding (blue).  The signal peptide region 
(17 amino acids preceding the HA1) is indicated in yellow. 
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H7 HA1 
Site (H3 

numbering) 
H7N1 H7N2 H7N3 H7N7 

-17  X   
-16  X X X 
-15   X X 
22 X    
27   X  
28  X   
30   X  
31   X  
56  X   
64 X    
69 X    
71  X  X 
77 X    
123 X X   
135 X X   
137  X  X 
151 X X   
184  X   
190  X   
193   X  
201 X    
203  X   
216  X  X 
218 X X X X 
242  X   
255 X X   
270  X X X 
277  X   
284  X  X 
290 X    
300 X X   
304 X X X  
308  X   
322  X   

 
 
Table 4.4 
H7 HA1 sites with dN/dS>1 in stochastic mutational analysis on different NA subtype 
backgrounds.  As is influenza convention, sites are numbered according to the H3 
numbering for HA1 (positive sites numbers) and the peptide signal region (negative site 
numbers).  Site numbers are coloured according to the domain: fusion (pink), vestigial 
esterase (green) or receptor binding (blue). 
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Figure 4.8 
Log(dN/dS) values across the avian influenza H7 HA1 subsegment for each NA subtype 
background.  The natural logarithm of the dN/dS values from Figure 4.7 was taken, so that 
sites with log(dN/dS) > 0 corresponded to dN/dS > 1, and sites with log(dN/dS) < 0 
corresponded to dN/dS < 1 (the value log(dN/dS) = 0, i.e. dN/dS =1, is shown as a dotted red 
line).  The dN/dS values for each site are colour coded according to the background NA 
subtype.  Codon sites correspond to the H3 numbering. 
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4.5.5 Mutational mapping analysis by virus pathogenicity and avian host 

 

The datasets for H7 HA sequences grouped by background NA subtype were not 

uniform in terms of their pathogenicity and host composition (Table 4.1).  For 

example, all of the H7N2 sequences were LP, whilst approximately half of the H7N7 

isolates were HP.  Also, 27% of H7N7 sequences were isolated from aquatic poultry, 

compared to just 10% for H7N2.  In order to assess the potential impact of 

differences in dataset composition as a confounding factor in making comparisons of 

evolutionary rates between subtypes, further mutational mapping analysis was 

conducted so that dN, dS and dN/dS could be compared for lineages corresponding to 

highly pathogenic (HP) and low pathogenic (LP) avian influenza viruses, and for 

viruses isolated from different avian hosts.  Figure 4.9 shows HPD plots for dN, dS 

and dN/dS for HP and LP lineages.  As may be observed from the HPD plots, the 

dN/dS mean and HPD intervals (Table 4.5) and the randomised pairs analysis (Table 

4.6), the distributions of dN, dS and dN/dS  did not differ significantly between HP and 

LP lineages.  Likewise, there was no substantial difference in the distributions of 

evolutionary rates between lineages corresponding to viruses sampled from avian 

host orders Anseriformes or Galliformes (Figure 4.10, Table 4.7 and Table 4.8). 
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Figure 4.9  
90% HPD plots for dN/dS, dN and dS for H7 HA1 along branches classified by virus 
pathogenicity.  The coloured boxes show the limits of the narrowest interval containing 90% 
of the posterior estimates.  The horizontal lines inside the boxes indicate the location of the 
mean for HP or LP viruses.  The similarity in evolutionary rates for HP and LP viruses can be 
observed from the overlap in the distributions and the location of the means of the 
distribution for HP viruses within the 90% HPD limits of the corresponding LP distribution and 
vice versa.  
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Virus 
pathogenicity 

Mean 
dN/dS 

Lower 90%  
HPD limit 
for dN/dS 

Upper 90% 
HPD limit 
for dN/dS 

HP 0.146 0.092 0.207 
LP 0.115 0.082 0.150 

 
Table 4.5  
Average dN/dS across the H7 avian influenza HA1 for viral lineages of different 
pathogenicities.  Means and 90% HPD limits of the posterior distributions for dN/dS were 
estimated along parts of the phylogeny samples corresponding to HP and LP viruses.  The 
average dN/dS across the HA1 coding region for HP and LP lineages was obtained for each 
MCMC tree sample by first averaging over mutational mapping replicates on that tree, then 
calculating average values for dN and dS across all HA1 sites.  The site-averaged dN was 
then divided by the site-averaged dS for the part of the tree corresponding to HP viruses (and 
similarly for LP viruses) to obtain 1000 posterior estimates of the dN/dS ratio.  

 

 

 

 

 
Comparison dN/dS dN dS 

HP-LP 
0.763821 
0.236179 

0.519682 
0.480318 

0.26037 
0.73963 

 
Table 4.6 
Randomised pairing analysis for H7 HA1 mutational mapping analysis split by 
pathogenicity.  Evolutionary rate estimates were compared for highly pathogenic (HP) and 
low pathogenic (LP) lineages.  The proportion of randomised pairings for which the LP value 
subtracted from the HP value was positive (top value in each cell) and negative (bottom 
value in each cell) was reported.  Under the paired differences analysis, the posterior 
distributions of rates did not appear to differ significantly between HP and LP viruses, since 
an extreme split between the number of positive and negative differences was not observed.   
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Figure 4.10 
90% HPD plots for dN/dS, dN and dS for H7 HA1, split by avian host order.  The means 
and HPD limits for dN/dS and rates of synonymous and non-synonymous substitution were 
similar for anseriform, galliform and other avian hosts.  This indicated that the taxonomic 
order of the avian host from which influenza viruses were isolated did not have a significant 
effect on evolutionary rates or selective pressure experienced by the virus. 
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Avian host 
order 

Mean 
dN/dS 

Lower 90%  
HPD limit 
for dN/dS 

Upper 90% 
HPD limit 
for dN/dS 

Anseriformes 0.113 0.065 0.158 
Galliformes 

Other 
0.135 
0.100 

0.091 
0.057 

0.177 
0.141 

 
Table 4.7 
Average dN/dS across the H7 avian influenza HA1 for viral lineages corresponding to 
different avian host orders.  Stochastic mutational mapping was used to calculate the 
dN/dS along lineages corresponding to viruses from different avian host orders (Anseriformes, 
Galliformes and others) for 1000 MCMC tree samples, in an analogous manner to that 
described for comparisons by background NA subtype and viruses of different pathogenicity.  
The means and HPD limits corresponding to different host orders were compared and 
indicate that was no substantial difference in average selective pressure across the HA1 
between viruses in different avian host orders.   

 

 

 

 
Comparison dN/dS dN dS 

Ans. - Gall. 
0.293355 
0.706645 

0.443505 
0.556495 

0.647044 
0.352956 

Ans. - other 
0.637318 
0.362682 

0.482577 
0.517423 

0.336128 
0.663872 

Gall. - other 
0.821002 
0.178998 

0.541115 
0.458885 

0.213498 
0.786502 

 
Table 4.8 
Randomised pairing analysis for H7 HA1 mutational mapping analysis split by avian 
host order.  Evolutionary rates were calculated along lineages corresponding to viruses 
from different avian hosts, and rate distributions corresponding to lineages from 
Anseriformes (Ans.) and Galliformes (Gal.) were compared.  The proportion of randomised 
pairings for which the difference between rate estimates for the first and second taxonomic 
order listed was greater than 0 (top value in each cell) and less than 0 (bottom value in each 
cell) was reported in the table.  The randomised pairing analysis indicated that the posterior 
distributions of rates did not differ substantially between anseriform and galliform hosts, or 
other avian host orders.   
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4.6 Discussion  

 

4.6.1 Study design 

 
Reassortment repeatedly exposes influenza segments to different genetic 

backgrounds.  The aim of this study was to investigate how evolutionary rates of H7 

avian influenza HA, and the selective pressure it experiences, are affected by the 

background NA subtype of the virus.  Comparing the evolution of H7 HA on 

separate datasets corresponding to different NA subtype backgrounds (as was 

performed by Chen and Holmes 2006) would have made the implicit assumption that 

sequences cluster perfectly according to the NA subtype of the virus in a tree of all 

H7 HA sequences.  The observed violation of this assumption has the potential to 

introduce error into estimates of evolutionary rates because evolution along ancestral 

lineages linking sequences of the same subtype from different parts of the tree would 

contribute to the rate estimate.    

 

The stochastic mutational mapping method employed in this chapter enabled dN and 

dS to be calculated along parts of the HA tree corresponding to different NA subtype 

backgrounds, so that H7 HA sequences from viruses of various NA subtypes could 

be analysed concomitantly without making prior assumptions about their 

evolutionary relationships.  The dN/dS ratio could be calculated simply by 

summarising the relevant lineages (to which the same NA subtype had been 

assigned), and did not require additional parameters to be introduced into the model.  

The rescalings also allowed dN and dS to be compared between clades of different 

sizes and divergence.  Overall, the results indicated that dN/dS was higher for H7 

HA1 on an N2 background than on an N1, N3 or N7 background.  Methods such as 

SLAC, REL, FEL (described in Chapter 2, Section 2.11) produce dN/dS estimates 

across the whole tree, so would only be applicable to individual clades of H7 HA 

corresponding to a particular NA background subtype for this study.  The mutational 

mapping method also provides more detailed evolutionary information than SLAC, 

REL and FEL, which do not provide detailed information about the timings and 

nature of changes along the tree at each site.  Although the DEPS method of 
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Kosakovsky Pond et al. (2008) can detect directional evolution towards particular 

residues, again this does not provide all of the information required for the rescalings 

used in this chapter. 

 

Chen and Holmes (2006) used single likelihood ancestor counting (SLAC) 

(Kosakovsky Pond and Frost 2005) to obtain point-estimates for dN/dS based upon a 

single neighbor-joining tree for datasets corresponding to each background NA 

subtype.  They found the H7N2 dN/dS estimate to be the highest (0.17, compared with 

0.11, 0.09 and 0.09 for H7N1, H7N3 and H7N7 respectively) (Chen and Holmes 

(2006), Supplementary Table), consistent with those obtained in the more 

evolutionarily and statistically robust stochastic mutational mapping study described 

in this chapter.  For each subtype, the SLAC point estimate of dN/dS obtained by 

Chen and Holmes fell within the 90% HPD limits from the mutational mapping 

analysis, despite the use of non-identical sets of sequences, different study designs 

and different methods of inference.  The error introduced by creating individual 

datasets corresponding to different NA backgrounds therefore did not appear to be 

large in this case.  This is perhaps because the amount of evolutionary time along the 

deeper part of the tree (in which error could be introduced in an analysis of separate 

datasets for each NA subtype) was small compared to the amount of evolutionary 

time encompassed by correctly labelled clades or lineages towards the tips of the 

tree.  

 

 

4.6.2 Advantages of stochastic mutational mapping for calculating dN/dS 

 

The Bayesian stochastic mutational mapping method employed in this chapter 

possesses many advantages for investigating selective pressure in avian influenza H7 

HA on different NA subtype backgrounds, in the presence of reassortment.  Bayesian 

methods for phylogenetic inference and mutational mapping provide an advantage 

over parsimony and maximum-likelihood methods since they naturally accommodate 

uncertainty in the phylogenetic reconstruction (by considering multiple tree and 

substitution model samples) and the mutational history (by sampling multiple 
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histories for each site in each phylogeny sample).  Failing to account for 

phylogenetic uncertainty can lead to artificially narrow confidence intervals when 

estimating substitution rates (Nielsen 2002).  Both Bayesian and ML methods share 

the advantage over parsimony that non-parsimonious maps are not automatically 

excluded.  Using parsimony to minimise the number of mutations required to 

produce the observed pattern in the data can lead substitution rates to be 

underestimated, perhaps by a factor of over 20% for influenza (Nielsen 2002).  

Parsimony inference can also bias dN/dS estimates by underestimating the number of 

synonymous changes in scenarios where synonymous mutations occur more 

frequently than non-synonymous mutations (Nielsen 2002).   

 

In addition to the ability to sample multiple mutational histories, the mutational 

mapping method possesses other advantages over the PAML maximum likelihood 

software (Yang 1997; Yang 2007).  Although PAML can be used to estimate dN/dS 

along the branches of a phylogeny (Yang 1998; Yang and Nielsen 1998), in this 

study there would have been a lack of power for statistical testing for positive 

selection using likelihood-ratio tests, since parameters are estimated for each branch 

in the tree (approximately 500 branches for the H7 HA dataset).  In addition, whilst 

the stochastic mutational mapping approach allows dN/dS to be estimated for each site 

along all individual branches of the tree, the branch-site models in PAML require 

branches with potentially positively selected sites to be pre-specified for testing. 

Mutational mapping also records the timings of mutations across the tree in the 

sampled mutational map, which can be used in calculating evolutionary rates, 

whereas existing maximum likelihood methods do not. 

 

By performing the rescalings described in Section 4.4.4, it was possible to extend 

existing mutational mapping methods to estimate rates of synonymous substitution 

(dS) and non-synonymous substitution (dN), rather than merely counting the number 

of synonymous or non-synonymous changes along branches (Nielsen 2001; Bollback 

2006).  Also, estimating dN and dS separately allowed differences in the dN/dS ratio to 

be attributed to underlying differences in the non-synonymous or synonymous rate, 

so that population genetic explanations for such differences could be considered (see 

Section 4.6.3).  Note that future studies could use similar rescalings in conjunction 
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with recently developed robust counting methods (O'Brien et al. 2009) to estimate dN 

and dS by analytically solving for the number of synonymous and non-synonymous 

changes rather than using the more time-consuming stochastic simulation methods. 

 

 

4.6.3 Evolutionary implications 

 

Mutational mapping analysis indicated that H7 avian influenza HA1 from viruses 

with an N2 NA subtype was subjected to substantially different selective pressures 

than when associated with an N1, N3 or N7 NA background.  The elevated dN/dS 

ratio for H7N2 lineages was attributed to an increase in the rate of non-synonymous 

substitution, whilst synonymous substitution rates remained constant across 

subtypes.  HA1-wide estimates of dN/dS were less than one for all background NA 

subtypes, consistent with earlier work which has suggested that the influenza HA is 

conserved overall (e.g. Fitch et al. (1991), Ina and Gojobori (1994), Bush et al. 

(1999)).    

 

Rates of synonymous and non-synonymous change can be affected by population 

genetic factors.  Under selective neutrality, the rate of substitution is independent of 

the effective size of the population and is equal to the mutation rate (Kimura 1968).  

Assuming that all synonymous changes are essentially neutral, dS is independent of 

the effective population size Ne and is simply the mutation rate.  The observation in 

this study that the posterior rate estimates of dS for H7 HA1 were constant across 

different NA subtype backgrounds suggested that the mutation rate was constant 

across subtypes.  There is no a priori reason why the mutation rate of H7 avian 

influenza HA1 should be affected by the NA subtype of the virus.  Rather, the 

mutation frequency for both the HA and NA segments is most likely to be influenced 

by changes in the genes involved in viral replication (Holland et al. 1982), for 

example those affecting the error-proneness of the polymerases.  Previous 

researchers have found synonymous rates to be generally more uniform than 

corresponding non-synonymous rates in other organisms, for example across 

mammalian genes encoding different proteins (Miyata 1984; Kimura 1986). 
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Under non-neutral models of evolution, differences in selective pressure could lead 

to differences between substitution rates (Kimura 1968).  Since non-synonymous 

changes in the HA1 coding region are likely to be non-neutral, the elevated dN 

observed for avian influenza H7 HA1 on an N2 NA subtype background, compared 

to on N1, N3 and N7 backgrounds, might be explained by a number of scenarios.  

Firstly, selection could be acting to fine-tune the functional HA-NA balance of H7 

HA on an N2 NA background following reassortment.  Secondly, a burst of positive 

selection could have occurred in the H7N2 lineages, which is not a consequence of 

the N2 NA background, but instead a consequence of an unrelated, covarying factor 

such as avian host, demographic scenario, or an interaction with another gene 

segment.  Thirdly, a relaxation of selective constraint could have taken place when 

H7 HA was exposed to the N2 NA background.  The results of this study do not 

definitively distinguish between such scenarios and causality cannot be inferred.  

However, whilst dN/dS >1was observed in a larger number of HA1 sites on the N2 

NA background than on N1, N3 or N7 backgrounds, at many sites the N2 viruses 

also had the lowest dN/dS values out of all NA subtype backgrounds and this is not 

indicative of an overall relaxation of selective constraint.  One explanation for the 

observed pattern of site-by-site dN/dS values could be a larger effective population 

size in HA for the H7N2 viruses, which would allow selection to act more effectively 

in removing deleterious mutations, leading to a reduction of variation at some sites.  

Another explanation could be a selective sweep which has resulted in a reduction of 

background variation in H7N2 HA. 

 

4.6.4 H7N2 avian influenza 

 

Of the 75 H7N2 HA1 sequences studied in this chapter, 66 were from viruses 

circulating in the North American live bird markets between 1994 and 2006, or from 

the many avian influenza outbreaks they seeded in commercial poultry in the 

Northeast United States during this period (Senne et al. 2003a; Spackman et al. 

2003).  Except for one isolate from 1999, which clustered with contemporaneous 

North American H7N3 sequences, the North American H7N2 isolates formed a 
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monophyletic clade in the HA1 MrBayes consensus tree (posterior probability 0.98).  

The nine Eurasian H7N2 isolates covered a large geographic area (Hong Kong - UK) 

and timespan (1978-2007) and did not cluster together, instead being distributed 

across the Eurasian clade.   

 

It may also be noted that 88% of the North American H7N2 sequences possessed a 

deletion of 8 amino acids at the HA receptor binding site, and a recent study has put 

forward the idea that non-synonymous changes might have occurred in the HA to 

maintain functionality (Yang et al. 2010).  This could be compatible with the 

observation that a large number of sites with dN/dS >1 in this study were found in the 

receptor binding domain for H7 HA on the N2 NA background.  It is possible that 

molecular changes at, or adjacent to, other sites in the receptor binding region (for 

example, the elevated dN/dS observed in H7N2 at HA1 sites 216 and 218) could be 

compensating for the 8 amino acid receptor binding site deletion.  Although this 

could indicate co-evolution within the HA, again this could be to restore HA activity 

levels to match those of the N2 NA.  Future studies might investigate the evolution 

of lineages associated with the receptor binding site deletion further by determining 

whether elevated levels of non-synonymous change only applied to these lineages. 

 

Mutational mapping analysis indicated that non-uniform dataset composition with 

respect to virus pathogenicity or proportion of viruses from anseriform or galliform 

hosts was not responsible for the elevated dN/dS observed in H7N2 avian influenza 

HA1, since no differences in dN/dS were observed between these groups.  However, 

other differences between the environments from which sequences were isolated may 

have influenced the selective pressure experienced.  It has been suggested that long 

term evolution in commercial poultry, which are not the natural reservoir of avian 

influenza, could lead to accelerated rates of evolution and the accumulation of point 

mutations in viruses in the live bird markets (Webster 1998; Senne et al. 2003b).  N2 

was the only background NA subtype for which a number of H7 HA sequences from 

the live bird markets were available, thus it would have been difficult to separate the 

effect of subtype and demography in testing for differences in dN/dS.  However, 41 

out of 62 (66%) of the H7N1 sequences were sampled during an outbreak of LP and 
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HP H7N1 avian influenza in poultry in Italy, and the elevated dN/dS did not extend to 

this subtype (although sequences were sampled over a period of less than two years, 

compared to over 12 years for H7N2 in the North American live bird markets).   

 

H7N2 was the most common avian influenza subtype isolated from North American 

live bird markets between 1994 and the mid-2000s (Panigrahy et al. 2002; Suarez et 

al. 2003), garnering attention as a potential source for a human pandemic virus 

(Belser et al. 2009).  Indeed, a pre-pandemic vaccine based upon the North American 

H7N2 HA has already been developed (Pappas et al. 2007).  North American H7N2 

viruses proved capable of causing human infection: respiratory illness and 

neutralising antibodies were reported for a worker in the live bird markets (CDC 

2004b) and hospital treatment was required for an immunocompromised patient from 

whom the H7N2 virus was isolated (CDC 2004a).  Although human infection with 

H7N2 avian influenza is rare, viruses isolated in North America between 2002 and 

2003 have been found to exhibit increased affinity towards human-like α-2,6-linked 

sialic acid receptors (Belser et al. 2008).  This could signify an increased risk of an 

H7N2 influenza virus becoming transmissible amongst human hosts.  H7N2 has so 

far only presented in a low pathogenic form, but molecular evidence suggests an 

accumulation of basic amino acids at the HA cleavage site which could result in the 

emergence of a highly pathogenic virus (Spackman et al. 2003).  The elevated dN for 

H7N2 avian influenza observed in this study may indicate a heightened risk of 

molecular changes occurring which could increase the pathogenicity of the virus, or 

its ability to infect new host species and become transmissible amongst humans.  

 

 

4.6.5 Future directions 

 

 

Future studies could investigate variation in dN/dS between different branches to 

which the same NA background subtype had been assigned, for example to 

determine whether the high level of non-synonymous change on the N2 NA 

background occurred only amongst the large clade of North American H7N2 

lineages, or whether it extended to the Eurasian H7N2 lineages.  In addition, dN/dS 
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estimates could be obtained for branches immediately following an event where the 

NA background subtype had changed (i.e. following a reassortment event), or after 

introduction to a new avian host species (Shackelton et al. 2005), to determine 

whether these branches exhibited an elevated rate of adaptive evolution.  The effect 

of continuous virus circulation in non-natural avian hosts in the live bird markets 

upon dN/dS could also be investigated in other datasets.  For example, further studies 

could compare the selective signatures of North American H7N2 with H5N1 viruses 

which are endemic in the live bird markets of East Asia (Li et al. 2004), or could 

compare dN/dS along lineages corresponding to wild or domestic hosts.  Furthermore, 

evolutionary rates along terminal and internal branches could be compared in future 

studies (or dN/dS could be compared on different NA subtype backgrounds using only 

internal branches) since elevated dN/dS ratios have previously been observed towards 

the tips of phylogenies (Sharp et al. 2001). 

 

The results of this study are consistent with the hypothesis that reassortment exposes 

HA to significant changes in selective forces via association with different NA 

subtypes.  Although it is not possible to establish a causal relationship between 

background NA subtype and differences in evolutionary rates of HA, one way in 

which more detailed investigations could be carried out is through the use of 

stochastic character trait mapping (Huelsenbeck et al. 2003).  Multiple traits could be 

mapped onto the trees simultaneously (e.g. NA subtype and host), which would 

allow correlations between traits to be formally assessed and would enable dN and dS 

to be calculated for different trait combinations (e.g. H7N7 from Anseriformes and 

H7N7 from Galliformes; H7N2 from North America and H7N2 from Eurasia).   

 

In this study, dN/dS was found to be elevated for H7 HA on an N2 background, 

compared to on N1, N3 or N7 NA backgrounds.  The HA protein, and in particular 

the part encoded by the HA1 subsegment, is of major antigenic significance for the 

influenza virus.  Along with NA and NS1, HA has been found to exhibit a higher 

dN/dS than other genes (Chen and Holmes 2006).  It is possible that, due to its close 

interaction with HA, the evolution of NA could be driven by the HA segment, so that 

viruses with a quickly evolving HA also have a fast-evolving NA.  Future analysis 
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could investigate whether the elevated dN/dS observed for H7N2 HA1 extends to the 

corresponding NA sequences for those viruses, compared to the NAs for the other 

subtypes.  Interactions with other influenza proteins, such as the matrix protein, with 

which the HA and NA both interact closely, could also be investigated.   

 

Previous researchers have tended to focus on human seasonal influenza (e.g. Bush et 

al. (1999), Suzuki (2006)), or viruses which have undergone transmission or 

adaptation to humans (e.g. Kongchanagul et al. (2008)), rather than sites under 

positive selection in avian influenza.  However, positive selection has been detected 

at particular sites for avian H5N1 sequences, especially in HA and NS1 (Kosakovsky 

Pond et al. 2008).  Although H7 avian influenza has been less studied than H5N1, 

limited evidence has been provided for positive selection at HA sites using the REL 

and FEL methods (Lebarbenchon and Stallknecht 2011).  In this study H7 HA sites 

under putative positive selection were identified for each of the NA background 

subtypes considered, based on an observed dN/dS value (the mean averaged over the 

1000 MrBayes samples) of greater than one.  However, under selective neutrality a 

distribution of dN/dS values would still be expected, some of which would be greater 

than one.  In order to obtain statistical support for sites being under positive 

selection, posterior predictive p-values could be generated, which describe the 

location of the observed statistic within a predictive (null) distribution and may be 

interpreted similarly to traditional frequentist p-values (Nielsen and Huelsenbeck 

2002).  Multiple testing corrections, such as the false discovery rate (Benjamini and 

Hochberg 1995), may also be applied when large numbers of codons are being 

considered.  HPD intervals for dN/dS for each site could also be considered, rather 

than the mean values over the MrBayes samples.  For example, one could consider 

only sites for which the lower 95% HPD limit exceeded 1 to be under putative 

positive selection; this would be a more stringent measure than using the mean dN/dS 

value for a site.  In the strictest case, one could generate posterior predictive p-values 

(see above) for the value of the lower 95% HPD limit of such sites and only consider 

statistical support for a site being under positive selection to have been attained when 

the p-value for the lower 95% HPD limit was significant (e.g. p<0.05). 
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After identifying H7 HA sites with statistical support for being under positive 

selection on a particular NA subtype background, the location of such sites upon the 

3D structure could be determined and visualised using software such as PyMol 

(www.pymol.org/).  The DEPS software (Kosakovsky Pond et al. 2008) could be 

used to look for evidence of directional selection towards particular residues at sites 

with dN/dS>1 in specific clades, in particular the North American H7N2 clade, and it 

is possible that the mutational mapping method could be adapted in to infer more 

detailed evolutionary behaviour in the future, for example to investigate variation in 

dN/dS over time.   

 

Finally, laboratory studies could be conducted to further investigate HA-NA 

interactions, and their results could be integrated with those from in silico studies 

such are reported in this chapter.  For example, the activity levels of different HA 

and NA strains and subtypes could be determined, to consider whether there is 

evidence for post-reassortment adaptation amongst the strains considered in this 

study.  It may also be fruitful to investigate whether there are systematic differences 

between receptor binding activity levels of particular HA or NA subtypes.  In 

addition, the precise nature of the genetic changes which take place when HA is 

placed in a novel NA background (or vice versa) could also be explored in the 

laboratory using reverse genetics experiments, to provide an insight into how the 

balance between HA and NA activity is regulated. 
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5 Mapping discrete trait evolution on avian influenza 

phylogenies 

 

 

5.1 Chapter Summary 

 

In Chapter 3, the distribution of viral NA subtypes across the tips of avian H7 HA 

phylogenies provided visual evidence for reassortment of different NA subtypes onto 

the H7 HA background.  The distributions of wild and domestic avian hosts, and 

viruses of low and high pathogenicity (LP and HP respectively), were also visualised 

at the tips of consensus phylogenies.  In Chapter 4, a parsimony algorithm was used 

to assign viral NA subtypes along ancestral branches, although the underlying 

transition process was not quantified.  In this chapter, I apply state-of-the-art discrete 

trait mapping methods in BEAST, which were originally developed for 

phylogeographic inference, to quantitatively analyse the distribution of discrete traits 

upon time-scaled avian H7 HA phylogenies.  I consider the distribution of viral NA 

subtypes across the trees, which is shaped by reassortment, and investigate whether 

there is evidence for higher rates of transition between particular subtypes.  I also 

analyse patterns of avian host transition (from wild to domestic birds, or vice versa) 

and viral pathogenicity (HP or LP) across the avian H7 HA phylogenies.  The extent 

to which discrete trait mapping methods can be used to test evolutionary hypotheses 

about avian H7 HA evolution is limited by the available data.  However, with 

sufficient sampling these techniques could prove a powerful framework for 

quantifying trait evolution across phylogenies, as I shall demonstrate in an 

investigation of inter-subtype recombination in HIV-1 group M in Chapter 6.  I also 

conduct a technical investigation of the use of different models and procedures for 

discrete trait mapping analyses in BEAST and discuss their relative merits and 

applicability in different scenarios.   
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5.2 Chapter Aims 

 

 Investigate the use of methods in BEAST for mapping non-geographic discrete traits 

onto phylogenies, in particular the subtype of another viral protein (here, NA subtype 

on an H7 HA phylogeny), avian host type (wild or domestic) and pathogenicity (LP 

or HP). 

 Use discrete trait mapping methods in BEAST to quantify how often H7 HA is 

exposed to different NA subtype backgrounds across the phylogeny as a result of 

reassortment, and determine whether transition rates are higher between particular 

pairs of NA subtypes. 

 Identify directionality in transitions between avian hosts, or in jumps between viral 

pathogenicity, i.e. determine whether there is evidence for higher rates of transition 

from wild to domestic birds than from domestic to wild birds and from LP to HP 

rather than from HP to LP. 

 Investigate the applicability and robustness of implementations in BEAST for testing 

evolutionary hypotheses about discrete trait transition across viral phylogenies.  

 
 
 
 

5.3 Introduction 

 
 
Avian influenza virus sequences can be labelled by properties of the virus itself, as 

well as the time, place and host from which it was sampled.  For example, avian 

influenza viruses may be labelled according to whether their avian host was wild or 

domestic, whether the virus was of high or low pathogenicity and the background 

NA subtype of the virus.  As demonstrated for H7 avian influenza HA sequences in 

Chapter 3, the distribution of discrete trait states for avian host, pathogenicity and 

NA subtype may be visualised on a phylogeny by colouring the tips or external 

branches of a tree.  The observed distribution of discrete trait states at the tips of the 

phylogeny results jointly from character state transitions and nucleotide substitution.   
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Discrete trait mapping methods such as those described in Section 2.10 allow 

ancestral character states to be inferred across phylogenetic trees.  Not only may the 

ancestral states be visualised along the branches, but also the dissemination of 

character states across the tree can be quantified.  This allows hypotheses about the 

distribution of trait states across the tree to be tested in a formal manner.  One of the 

most common applications of discrete trait mapping methods in infectious disease 

phylogenetics has been in phylogeographic inference, where information about the 

location (e.g. country or city) from which sequences were sampled is mapped onto 

phylogenies.  In particular, recent implementations in the BEAST software have 

allowed the spatio-temporal spread of viral epidemics to be examined on the same 

time-scale as the accumulation of genetic diversity for fast evolving pathogens 

(Lemey et al. 2009).  Methods for mapping discrete traits upon phylogenies have 

also been used to study disease transmission between different host species 

(Goldberg 2003; Chen and Holmes 2009; Weinert et al. 2012), and to investigate 

temporal clustering and geographic subdivision of influenza viruses in wild birds 

(Chen and Holmes 2009).   

 

In Chapter 3 and Chapter 4, the distribution of viral NA subtypes across the tips of 

avian H7 HA phylogenies as a result of reassortment was observed.  Traditionally, 

reassortment has been detected between influenza RNA segments by looking for 

phylogenetic discordance between trees constructed from different segments for the 

same set of taxa (e.g. Holmes et al. (2005), Macken et al. (2006), Nelson et al. 

(2008), Vijaykrishna et al. (2008a)), or in other viruses by comparing phylogenies 

for different regions of the genome (e.g. Robertson et al. (1995)).  Although 

algorithms have been developed to detect reassortment by comparing topologies 

from different influenza gene segments using graph-mining (for example, the GiRaF 

software of Nagarajan and Kingsford (2011)), such methods only detect incongruent 

taxa and do not provide a measure of the discordance between phylogenies which 

allows the amount of recombination to be quantified. 
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Reassortment which creates different combinations of influenza HA and NA 

subtypes can naturally be investigated using discrete trait mapping because the 

subtypes themselves can be mapped onto the phylogenies.  In this chapter I use 

recently-developed Bayesian discrete trait mapping methods in BEAST (Minin and 

Suchard 2008a; Minin and Suchard 2008b; Lemey et al. 2009; O'Brien et al. 2009; 

Talbi et al. 2009) to investigate reassortment of Eurasian avian H7 HA with viruses 

of different NA subtypes.  Such methods can be used to obtain estimates of the 

overall rate of trait transition across time-scaled phylogeny samples (e.g. NA subtype 

transition on the  H7 HA phylogeny, as a result of reassortment) and to calculate 

relative rates and numbers of transitions between particular subtypes.  Transitions 

between wild and domestic avian hosts, and between viruses of low and high 

pathogenicity, are also considered, allowing the processes observed in Chapter 3 and 

Chapter 4 to be quantified.  I consider technical aspects of the discrete trait mapping 

methods to determine the most appropriate manner in which to use them to 

investigate reassortment or recombination, and identify a dataset in which a more 

detailed and comprehensive analysis of joint HA and NA influenza subtypes could 

be performed in the future. 

 

 

5.4 Methods 

 

5.4.1 Dataset composition 

 
In Chapter 3 and Chapter 4, phylogenetic analysis revealed that avian H7 HA 

sequences clustered into two major clades: one corresponding to sequences from 

Eurasia, Africa and Australasia and the other corresponding to sequences from North 

and South America.  For the discrete ancestral trait mapping analyses in this chapter, 

a dataset consisting of Eurasian sequences was selected rather than using a global 

avian H7 HA dataset; this dataset was a subset of the sequences analysed in Chapter 

3 (Appendix C, Table C1).  The existence of distinct avian H7 HA populations in 

Eurasia and North America, and the observed difference in the distribution of 

background NA subtypes in these regions, suggested that each might require a 
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different discrete trait transition model (Appendix C, Figure C1).  Eurasia was 

chosen as the focus of this study rather than North America, due to better sampling 

of data; in particular, in Chapter 3 and Chapter 4 there appeared to be a sampling bias 

in North America towards LP H7N2 sequences from domestic birds.  Australasian 

sequences were not included in the Eurasian sequence dataset in this chapter due to 

the suggestion of the maintenance of a distinct Australasian H7 HA population 

(Chapter 3; Bulach et al. (2010)).  Only sequences sampled after 1990 were included 

because, in the analysis presented in Chapter 3, many sequences from before 1990 

did not lie in the expected position in a plot of root-to-tip divergence.  The dataset 

used in this chapter, henceforth referred to as the ‘Eurasian post-1990 dataset’, 

consisted of 159 sequences for which the viral NA subtype, the pathogenicity of the 

virus and the avian host status (wild or domestic) were known.  Subtypes N1, N3 and 

N7 each accounted for approximately one third of the dataset, whilst there were less 

than 6 sequences for each of the N2, N8 and N9 subtype backgrounds (Table 5.1).  

37% of the sequences were from wild avian hosts and 23% were from highly 

pathogenic viruses.   

 

 

 

Trait State Number of sequences Frequency 

Subtype H7N1 56 0.352 

 
H7N2 6 0.038 

 
H7N3 44 0.277 

 
H7N7 46 0.289 

 
H7N8 3 0.019 

  H7N9 4 0.025 

Host  wild 59 0.371 

  domestic 100 0.629 

Pathogenicity LP 122 0.767 

  HP 37 0.233 

 
Table 5.1 
Breakdown of Eurasian post-1990 avian H7 HA sequence dataset.  A total of 159 
Eurasian sequences were analysed, all of which were sampled after 1990.  Sequences were 
labelled according to the NA subtype of the virus, whether the avian host was wild or 
domestic and whether the virus was of low or high pathogenicity (LP or HP respectively), as 
described for the larger avian H7 HA dataset in Chapter 3.  Frequencies were also 
calculated for each state, to enable the relationship between reported transition rates and 
sample sizes to be assessed. 
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5.4.2 Discrete ancestral trait mapping analysis 

 

The dissemination of viral NA subtypes, avian host types (wild or domestic) and HP 

and LP viruses across the avian H7 HA phylogenies was investigated using discrete 

trait mapping methods in BEAST.  Two discrete trait mapping approaches were 

taken: firstly, using the methods developed and implemented in BEAST for discrete 

phylogeography by Lemey et al. (2009) and secondly using the ‘Markov jumps’ 

methods for counting discrete trait transitions across phylogenies (described in 

Section 2.10.3) (Minin and Suchard 2008a; Minin and Suchard 2008b; O'Brien et al. 

2009; Talbi et al. 2009).  Both methods model discrete trait transition across the tree 

as a continuous-time Markov chain (CTMC), and both symmetric and asymmetric 

(reversible and non-reversible, respectively) discrete trait transition models were 

implemented in this chapter.  In BEAST, the Markov jumps implementation uses the 

CTMC from the discrete trait mapping implementation of Lemey et al. (2009).   

 

The output from the discrete trait mapping implementation of Lemey et al. (2009) 

(see Section 2.10.3) can be used to construct a matrix, Λ, which is analogous to the 

Q matrix described in Section 2.5.1 for nucleotide substitution models.  A mean 

instantaneous transition rate, μ, is reported, which scales the transition rates to the 

same time units as the tree (e.g. ‘years’ if the branch lengths of the tree are measured 

in years).  Relative rate parameters sij are components of a matrix, S, and report the 

rate at which transition from one particular state to another occurs with respect to 

transitions between other pairs of states.  The matrix Λ can be obtained by 

multiplying μ, S and a diagonal matrix, П, containing the equilibrium frequencies of 

the states (which may be estimated from the state frequencies at the tips of the tree).  

By exponentiating Λ, the finite-time transition probabilities may be obtained. 

 

Bayesian stochastic search variable selection (BSSVS), as implemented for discrete 

phylogeographic analysis by Lemey et al. (2009), was used when mapping 

background NA subtypes onto the avian H7 HA phylogenies.  BSSVS aims to build 

a parsimonious model of the dissemination of discrete trait changes across the 

phylogeny, and its use in phylogeographic analyses was advocated by Lemey et al.  
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(2009) for reducing the complexity of models when a large number of distinct trait 

states were present at the tips of a phylogeny.  A total of n distinct trait states in a 

dataset yields n(n-1) transition rates between pairs of states for a fully specified 

asymmetric model.  Therefore, the potential number of rates in a model rapidly 

becomes large as the number of distinct states increases.  However, there may be few 

or no transitions between many pairs of states across the phylogeny, and the relative 

rates of transition between pairs of states are difficult to inform.  Such difficulties 

arise because the trait transition model is constructed from just one column of 

information (one observation for each sequence), rather than across the length of an 

alignment as would be the case for inference of nucleotide substitution models.   

 

In a BSSVS analysis, individual transitions between pairs of states are switched on 

(indicator value = 1) and off (indicator value = 0) at different points in the MCMC.  

This focus on sparse matrices is due to the aforementioned difficulties in informing 

the relative transition rates between pairs of states.  A prior distribution can be 

chosen to minimise the number of rates which are switched on at any step in the 

MCMC chain, and the proportion of the time that a rate is switched on across the 

chain is considered.  A Bayes factor test can be used to determine the extent to which 

a particular rate should be included in the diffusion model (i.e. whether it is 

‘significantly non-zero’).  The value of the Bayes factor for a particular rate being 

non-zero is given by the posterior odds that the rate is non-zero divided by the prior 

odds for the rate being non-zero, under a truncated Poisson prior with a mean of 

log(2) (Lemey et al. 2009).  For the mapping of background NA subtype on the H7 

HA phylogenies, there were a total of 6 distinct states (N1, N2, N3, N7, N8 and N8).  

The required indicator cut-offs (the proportion of the time the rate needed to be 

switched on across the MCMC chain) for rates to be included in the diffusion model 

with a Bayes factor of 3 (0.413 for the asymmetric transition model) were calculated 

by running the ‘RateIndicatorBF’, which is part of the BEAST distribution.  BSSVS 

was also implemented for the host and pathogenicity analyses.   

 

Whilst a non-BSSVS analysis reports relative pairwise transition rates directly, the 

BEAST output from a BSSVS analysis requires additional processing to account for 
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the potential for different rates to be switched on or off across the generations, 

because rates are still sampled (from the prior) even when the BSSVS indicator is 

switched off.  The indicator (1 or 0) must be multiplied by the relative rate at each 

sampled generation (http://beast.bio.ed.ac.uk/Discrete_Phylogeographic_Analysis), 

which has the effect of setting the rates which are switched off to zero at that point in 

the MCMC and leaving the rates which are switched on at that point unchanged.   

 

Relative pairwise transition rate parameters from a BSSVS analysis may be averaged 

over the MCMC in one of two ways.  Firstly, the relative rate parameters may be 

averaged only across the MCMC states where the rate is actually switched on (i.e. by 

dividing the sum of the non-zero relative rate parameters across the MCMC for a pair 

of states by the number of non-zero indicators for that pair of states), as was the 

approach taken by Lycett et al. (2012) for studying swine influenza reassortment 

using discrete trait mapping.  Alternatively, the non-zero rates between a particular 

pair of states (and in a particular direction, if an asymmetric transition model has 

been implemented) may be added together and divided by the total number of 

MCMC samples.  Averaging in this way provides a measure of the mean value of the 

relative rate across the MCMC, including the times when it is switched off and thus 

set to zero. 

 

The output of experiments where BSSVS was implemented was compared to those 

where BSSVS was not used, and also to the results of Markov jumps analyses for 

counting labelled state changes across phylogeny samples.  The Markov jumps 

analyses were implemented by manually editing the BEAST xml file to log the 

number and direction of discrete trait transitions between all pairs of states.  To 

check for consistency, the number of Markov jumps across the tree samples was 

compared to the expected number of transitions under the corresponding overall 

mean transition rate from the CTMC.  For each MCMC sample, the overall transition 

rate for a trait (e.g. NA subtype) from the CTMC was multiplied by the total length 

of the tree (the sum of the branch lengths) to obtain the expected number of changes 

across the tree under the inferred substitution model.   
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5.4.3 Generating empirical tree distributions 

 

Discrete trait mapping in BEAST can be carried out by simultaneously constructing 

topologies and performing the discrete trait analysis, in which case the discrete trait 

information may affect the clustering of sequences in the tree by acting as another 

alignment column.  Alternatively, a sample of phylogenies may first be inferred 

using the nucleotide alignment only, and the discrete trait mapping may be 

subsequently performed upon this ‘empirical sample of trees’ by manually editing 

the xml file (e.g. Raghwani et al. (2011), Lycett et al. (2012)).  Performing the 

analysis in two stages means that the discrete trait information will not have been 

considered when inferring the tree structure.  Using an empirical tree distribution has 

the considerable advantage of dramatically reducing computation times, since 

different discrete trait mapping analyses may be conducted on the same set of 

phylogenies.  In this chapter, an empirical distribution of trees was used for the 

majority of analyses.  However, since the effect of using an empirical tree 

distribution in discrete trait mapping analyses has not been reported in the literature, 

I also compared the effect of using empirical tree distributions or joint inference of 

phylogenies and discrete traits on the inferred number and rate of transitions.   

 

Empirical tree distributions were generated in BEAST under the SRD06 nucleotide 

substitution model, with a relaxed demographic prior (Bayesian skyride with time-

aware smoothing).  The MCMC was run over at least 100 million generations for 

each analysis, with sampling of trees and parameters every 10,000 generations.  At 

least 2 independent runs were conducted for each dataset and set of parameter 

choices.  Examination of the BEAST output files with Tracer indicated that a 10% 

burnin period was sufficient for convergence to have been achieved in all runs.  A 

subset of 1,000 post-burnin phylogeny samples was obtained for use as empirical tree 

samples, due to memory constraints.  To infer discrete ancestral states along the 

empirical tree samples, the MCMC was run over 50 million generations, with 

sampling every 5,000 generations.  When joint inference of phylogenies and discrete 



5.5:  Results 

153 

 

trait mapping was performed, the MCMC was conducted over 50 million 

generations, with sampling every 5,000 generations, for each independent run.  

 

 

5.4.4 Processing and interpretation of discrete trait mapping output 

 

Particular analyses were performed in this chapter to check that the discrete trait 

mapping methods behaved as expected, and to compare the output of the 

implementations of Lemey et al. (2009) with the Markov jumps methods of Minin 

and others (Minin and Suchard 2008b; Minin and Suchard 2008a; O'Brien et al. 

2009; Talbi et al. 2009).  Such comparisons have not been widely reported in the 

literature.  Custom R scripts were written to post-process the output of the discrete 

trait mapping analyses, for example to combine the relative rate and indicator 

information from runs in which BSSVS was implemented.  The Cytoscape software 

(Shannon et al. 2003) was used to visualise networks depicting the transition models 

for the dissemination of character state changes across the phylogenies.  Inferred 

ancestral viral NA subtypes, avian host types and viral pathogenicity were visualised 

along the branches of BEAST maximum clade credibility (MCC) trees for Eurasian 

avian H7 HA using FigTree.   

 
 
 
 

5.5 Results 

 

Unless explicitly stated otherwise, the results reported in this section are for discrete 

trait mapping analyses where empirical tree samples were used, and an asymmetric 

continuous time Markov chain was employed to model discrete trait transition.  

BSSVS should be assumed not to have been used unless otherwise stated.  

Comparisons of the output from different types of discrete trait mapping analysis are 

described in the text. 
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5.5.1 Visualising ancestral states upon summary phylogenies 

 

Eurasian avian H7 HA maximum clade credibility trees, onto which discrete 

ancestral traits had been mapped, were constructed with a posterior probability limit 

of zero.  Branches of the MCC tree were then coloured according to the viral NA 

subtype (Figure 5.1a), avian host (Figure 5.2a) and viral pathogenicity (Figure 5.3a) 

at the parental node.  Note that discrete trait transitions may have taken place at any 

point along the branches, but it is not possible to visualise the precise location of 

changes using currently available software such as FigTree.  Although transitions 

may be overlooked when there are multiple changes along a single branch, colouring 

the branches according to the node states still captures the discrete trait dissemination 

across the tree.  Similarity in the MCC colourings was observed across discrete trait 

mapping runs using empirical and non-empirical tree distributions, as well as using 

symmetric and asymmetric transition models.  The ancestral NA subtype at the root 

of the MCC tree was inferred to be N1 (posterior probability = 0.715) and an LP root 

was inferred (posterior probability = 0.995).  Although the avian host state at the root 

was inferred to be domestic birds (posterior probability = 0.953), this may be a 

sampling effect of predominance of earlier sequences from domestic birds and a lack 

of sampling and sequencing from wild birds until relatively recently.  Indeed, the 

inferred root state was the same as the most basal clade in a phylogeographic 

analysis of H5N1 viruses (see Figure 1 of Lemey et al. 2009).  The branch colourings 

of individual MCMC trees were compared with the inferred number of Markov 

jumps across the tree and a good concordance was observed. 
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Figure 5.1 
Discrete trait mapping of background viral NA subtypes on post-1990 avian Eurasian H7 HA phylogenies.  (a) Branches of the BEAST MCC tree 
were coloured according to inferred ancestral subtypes.  (b) Links in the network are significantly non-zero (Bayes factor > 3) rates from the BSSVS 
analysis, and are coloured according to the indicator value (proportion of time the rate was switched on in the MCMC).  Links are labelled by  
the mean number of transitions from one subtype to another in a Markov jumps analysis, and link widths are proportional to the number of transitions. 
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Figure 5.2: Discrete trait mapping of avian host types on post-1990 avian Eurasian H7 HA phylogenies.  (a) Branches of the BEAST MCC  
tree were coloured according to inferred ancestral hosts (wild or domestic birds).  (b) Links are labelled by the mean and 95% HPD limits for the number  
of transitions from one host type to another, and link widths are proportional to the number of transitions.  (c) Links are labelled by the mean (and 95%  
HPD limits) of the relative instantaneous transition rate from one host type to another, and link widths are proportional to the relative rates.  Both rates  
were switched on in all chain steps in the BSSVS analysis (indicator values of 1), hence the output was the same for BSSVS and non-BSSVS runs.  
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Figure 5.3: Discrete trait mapping of viral pathogenicity on post-1990 avian Eurasian H7 HA phylogenies.  (a) Branches of the BEAST MCC  
tree were coloured according to inferred pathogenicity (LP = low pathogenicity; HP = highly pathogenic).  (b) Links are labelled by the mean and 95%  
HPD limits for the number of transitions in pathogenicity, and link widths are proportional to the number of transitions.  (c) Links are labelled by the mean  
(and 95% HPD limits) of the relative instantaneous transition rates between LP and HP, and link widths are proportional to the relative rates.  Both rates  
were switched on in all chain steps in the BSSVS analysis (indicator values of 1), hence the output was the same for BSSVS and non-BSSVS runs.  
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5.5.2 Instantaneous rate and number of discrete trait transitions 

 

As well as overall rates of discrete trait transition (see Section 5.5.3 and Table 5.3), 

parameters describing the relative transition rates between particular pairs of states 

were calculated across the phylogeny samples (Figure 5.4).  In addition, the number 

of transitions (Markov jumps) was calculated between all pairs of states (Table 5.2).  

An average of 35.7 (95% HPD = 25, 49) transitions between viral NA subtypes were 

observed across the avian H7 HA phylogenies in the Markov jumps analysis.  Six 

distinct NA subtype states (N1, N2, N3, N7, N8 and N9) were observed at the tips of 

the phylogenies.  Therefore, a total of 5 transitions between NA subtypes would have 

been observed, even if the H7 HA sequences clustered perfectly according to NA 

subtype and there had been no reassortment between NA subtypes on the H7 HA 

background.  Any ‘extra’ NA subtype transitions required to map the NA subtypes 

onto the phylogeny reflect the way in which reassortment has shaped the distribution 

of NA subtypes at the tips.  Similarly, the number and nature of ‘excess’ discrete trait 

transitions in the host and pathogenicity analyses (where there are two traits in both, 

so a minimum of one transition would be required) reflects host-switching between 

wild and domestic birds, and between viruses of high and low pathogenicity, 

respectively.   

 

Although an overall clock rate for discrete trait transition may be estimated directly 

in BEAST, this does not allow for comparison of rates between traits where there are 

different numbers of states, because the minimum number of state changes (see 

above) is not accounted for.  The total number of discrete trait transitions for each 

trait, minus the minimum number of expected trait changes, was calculated; the 

number of excess transitions could then be compared between the NA subtype, avian 

host and pathogenicity analyses, as the discrete traits were being mapped onto the 

same phylogeny samples in each case.  The mean number of excess transitions was 

much higher for background NA subtype (30.65, 95% HPD = 20, 44) than for avian 

host (17.39, 95% HPD = 12, 24) or viral pathogenicity (3.28, 95% HPD = 3, 5).  This 

indicates that reassortment of different NA subtypes onto the H7 HA background has 
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occurred substantially more frequently than switches in avian host or viral 

pathogenicity over the evolutionary history of Eurasian avian H7 influenza, based 

upon this sample of sequences from post-1990.  95% HPD intervals for the number 

of excess trait transitions across the phylogeny samples were significantly non-zero 

for the viral NA subtype, host and pathogenicity-mapping analyses, confirming the 

presence of reassortment with NA, host-switching between wild and domestic birds 

and repeated emergence of viruses of different pathogenicity amongst avian H7 HA.  

 

Some similarity was observed in the pattern of relative instantaneous transition rate 

parameters between pairs of viral NA subtypes for the non-BSSVS analysis and the 

BSSVS runs analysed in two ways (including or excluding rates which were 

‘switched off’ in the MCMC) (Figure 5.4).  In the non-BSSVS and BSSVS analyses, 

the lower limit of the 95% HPD intervals lay towards zero for all rates except the rate 

of instantaneous transition from N7 to N3 in the non-BSSVS analysis (Figure 5.4a).  

However, differences in the upper 95% HPD limits were observed between the non-

BSSVS and BSSVS analyses.  Using BSSVS appeared to have the effect of pushing 

the rates with the lowest means and upper 95% HPD limits towards zero, thus 

allowing a higher degree of differentiation between the instantaneous pairwise 

transition rates (Figure 5.4b and Figure 5.4c).   
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Figure 5.4 
Relative instantaneous transition rate parameters between background NA subtypes.  
Plot (a) shows transition rates from a non-BSSVS analysis.  In (b), only the non-zero rates 
from the BSSVS analysis are analysed, whereas in (c) the distributions include zero and 
non-zero rates, obtained by multiplying the relative rate parameters by the indicator values.  
95% HPD intervals are shown as vertical lines, with red dots indicating the mean.  BSSVS 
rates which were significant under Bayes factor testing are labelled with asterisks.  
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Under the parameterisation described by Lemey et al. (2009), the relative transition 

rate parameters have a mean of one in the non-BSSVS analysis.  Although the raw 

relative rate parameters in a BSSVS analysis also have a mean of one, when they are 

post-processed by multiplying the relative rate parameters by the rate indicators (to 

account for rates being switched off at points along the MCMC chain) this is no 

longer the case.  As expected, the post-processed relative rate parameters were lower 

when averaged across the whole of the MCMC chain (including rates which were set 

to zero as they were switched off in the MCMC) compared to averaging only over 

non-zero rates.  When the relative rate parameters were multiplied by the 

corresponding overall clock rates in order to scale the pairwise transition rates to the 

same units as the phylogeny (i.e., years), the pattern of pairwise transition rates 

within an analysis (BSSVS or non-BSSVS) was the same as for the relative rate 

parameters (compare Figure 5.4 and Appendix C, Figure C2).  However, large 

differences in the overall clock rates from the BSSVS and non-BSSVS analyses led 

to substantially higher means and upper 95% HPD limits for the pairwise 

instantaneous transition rates in the BSSVS analysis than for the non-BSSVS 

analysis.  The higher mean and upper 95% HPD limit between the subtype transition 

clock rates for the BSSVS than the for non-BSSVS runs (non-BSSVS: mean = 0.184 

transitions/year, 95% HPD interval = [7.00x10
-2

, 0.334]; BSSVS: mean =1.176 

transitions/year, 95% HPD interval = [0.162, 2.562]) is surprising, given that an aim 

of BSSVS is to reduce noise in the model of character dissemination across the 

phylogeny.  The fact that the overall transition clock rate from the non-BSSVS 

analysis appeared consistent with the number of transitions across the tree in the 

Markov jumps analysis (see Section 5.5.3 below) suggests that it is the BSSVS 

output which might require additional processing or consideration in the future. 

  

In the BSSVS analysis, statistical support (Bayes factor > 3, following Lemey et al. 

(2009)) was found for including 12 directed pairwise transition rates in the model of 

NA subtype dissemination across the phylogeny samples.  All of the significant rates 

from the BSSVS analysis involved the three most rarely occurring NA subtypes (N2, 

N8 and N9) which between them only accounted for approximately 8% of the H7 
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HA sequence data.  The transition rate from NA subtype N7 to N3, which each 

accounted for almost one third of the sequences in the dataset, was not found to be 

significantly non-zero in the BSSVS analysis.  However, in the non-BSSVS analysis 

the relative instantaneous transition rate parameter from N7 to N3 was one of the 

highest, and was the only relative rate parameter with a lower 95% HPD limit which 

was substantially above zero (Figure 5.4a).  Furthermore, the highest number of 

transitions (6.513, 95% HPD interval 3,9) from the Markov jumps analysis was from 

subtype N7 to N3 (Table 5.2).  10 out of the 12 rates which were significant under 

BSSVS had high means and upper 95% HPD limits for their relative rate parameters, 

whereas only two significant rates (N3 to N2 and N7 to N9) had low means and 

upper 95% HPD limits (Figure 5.4).  It is also notable that all 10 significant rates 

with high means and upper 95% HPD limits involve transitions from subtypes which 

occurred rarely at the tips of the taxa (N2, N8 and N9; 6, 3 and 4 sequences 

respectively, out of 159), whilst only two significantly non-zero rates under BSSVS 

were transition rates from the more frequently occurring subtypes (N3 and N7; 44 

and 46 sequences respectively), and these had the lower relative instantaneous 

transition rate means and upper 95% HPD intervals under BSSVS.  These findings 

suggest that the rates which are found to be significantly non-zero under BSSVS 

could be highly influenced by the relative frequencies of trait states at the tips of the 

tree, and therefore also by sampling. 

 

For the avian host analysis, both the relative instantaneous transition rate and the 

overall number of transitions were higher from wild to domestic birds than from 

domestic birds to wild birds (Figure 5.2b-c; Table 5.2).  This is not surprising, given 

the role of wild birds as a reservoir population for avian influenza viruses (see 

Chapter 1, Section 1.4).  However, some transitions from domestic birds to wild 

birds were required to explain the distribution of sequences from different avian 

hosts at the tips of the phylogeny.  Some overlap in the HPD intervals for transition 

from wild to domestic hosts, and from domestic to wild hosts, was observed for both 

the relative rate parameters and number of Markov jumps.  Because the transition 

rates from wild to domestic birds and from domestic to wild birds were switched on 

in every MCMC state in the BSSVS analyses, the overall transition clock rates and 
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relative instantaneous transition rate parameters were the same for the asymmetric 

BSSVS and non-BSSVS analyses, and both transition rates were found to be 

significantly non-zero under BSSVS.   

  

The relative instantaneous transition rate from LP to HP viruses was higher than 

from HP to LP viruses (Figure 5.3c), although there was substantial overlap between 

the 95% HPD intervals for the two rates.  In the Markov jumps analysis, essentially 

all of the transitions were from LP to HP (4.107, 95% HPD interval 0,1) rather than 

from HP to LP (0.165, 95% HPD interval 0,1) (Figure 5.3b).  This is in line with the 

notion that highly pathogenic avian influenza viruses arise sporadically from low 

pathogenic forms, and the fact that a literature search yielded no documented 

evidence of highly pathogenic avian viruses becoming low pathogenic in vivo.   
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Mean number 
of jumps 

Lower 95% 
HPD limit 

Upper 95% 
HPD limit 

Significance 
under BSSVS 

wild - domestic 11.719 7 16 * 

domestic - wild 6.657 2 11 * 

LP - HP 4.107 4 5 * 

HP - LP 0.165 0 1 * 

H7N1 - H7N2 0.429 0 2 
 H7N1 - H7N3 0.862 0 3 
 H7N1 - H7N7 2.725 0 8 
 H7N1 - H7N8 0.659 0 2 
 H7N1 - H7N9 0.288 0 2 
 H7N2 - H7N1 1.482 0 4 * 

H7N2 - H7N3 0.333 0 2 
 H7N2 - H7N7 0.704 0 3 * 

H7N2 - H7N8 0.840 0 3 * 

H7N2 - H7N9 0.306 0 2 
 H7N3 - H7N1 0.749 0 3 
 H7N3 - H7N2 1.434 0 3 * 

H7N3 - H7N7 0.814 0 4 
 H7N3 - H7N8 0.285 0 1 
 H7N3 - H7N9 0.699 0 2 
 H7N7 - H7N1 3.325 0 7 
 H7N7 - H7N2 2.806 0 5 
 H7N7 - H7N3 6.513 3 9 
 H7N7 - H7N8 1.280 0 4 
 H7N7 - H7N9 3.303 1 6 * 

H7N8 - H7N1 0.742 0 3 * 

H7N8 - H7N2 0.534 0 2 * 

H7N8 - H7N3 0.236 0 1 
 H7N8 - H7N7 0.587 0 3 * 

H7N8 - H7N9 0.504 0 2 
 H7N9 - H7N1 0.446 0 2 
 H7N9 - H7N2 0.295 0 2 * 

H7N9 - H7N3 0.342 0 2 * 

H7N9 - H7N7 1.219 0 4 * 

H7N9 - H7N8 1.051 0 3 * 
 
Table 5.2 
Number of discrete trait transitions on Eurasian avian H7 HA phylogenies.  The mean 
and 95% highest posterior density (HPD) intervals of the number of transitions between 
different states (wild and domestic avian hosts, viruses of high and low pathogenicity and 
pairs of NA subtype backgrounds) are reported.  An asymmetric transition model was 
implemented so that direction could be inferred between pairs of states: for example, ‘wild-
dom’ refers to a transition along the tree from wild to domestic avian host, and ‘dom-wild’ 
refers to a transition from domestic to wild.  Rows marked with an asterisk (*) denote 
transition rates which were found to be significantly non-zero under a BSSVS analysis. 
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5.5.3 Technical investigation of discrete trait mapping methods in BEAST 

 

Concordance between the output from different BEAST discrete trait mapping 

analyses and models (Table 5.3) was investigated.  When asymmetric CTMC 

transition models were employed, the mean instantaneous substitution rates for each 

trait (NA subtype, host type and pathogenicity) were consistent across runs using 

empirical and non-empirical trees.  This suggested that there was no discernible 

difference in the inferred overall transition rate when phylogeny inference and 

discrete trait mapping were performed separately or jointly.  Individual BSSVS 

relative rate parameters between pairs of states were also consistent between 

empirical and non-empirical runs (not shown).  Although the mean transition rates 

appeared to be slightly different in the symmetric runs compared to the asymmetric 

runs, the substantial overlap between the HPD intervals indicated that such 

differences were not significant.  There also was a high level of agreement in the 

mean number of transitions (Markov jumps) between analyses using symmetric or 

asymmetric trait-transition models, as well as between using an empirical distribution 

of trees and concomitant inference of phylogenies and discrete ancestral traits.  The 

lower limits of the 95% HPD intervals for the number of Markov jumps across the 

tree samples was more consistent between analyses than the upper 95% HPD limit.  

Overall, these results indicate that the total number of Markov jumps is robust to 

different choices of model and analysis.   
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Trait Run 
Mean no.  
Markov 
jumps 

Lower 95% 
HPD limit 
(jumps) 

Upper 95% 
HPD limit 
(jumps) 

Mean 
transition 
clock rate 

Lower 95% 
HPD limit 

(rate) 

Upper 95% 
HPD limit 

(rate) 

NA subtype asymmetric empirical 35.7 25 49 0.183 7.15E-02 0.3257 

NA subtype asymmetric non-empirical 34.4 25 47 0.184 7.00E-02 0.3336 

NA subtype symmetric empirical 33.822 25 43 0.138 6.63E-02 0.2248 

Host  asymmetric empirical 18.32 13 25 7.63E-02 3.58E-02 0.1217 

Host  asymmetric non-empirical 17.77 13 23 7.67E-02 3.61E-02 0.1214 

Host  symmetric empirical 19.109 14 27 7.72E-02 3.77E-02 0.1245 

Pathogenicity  asymmetric empirical 4.28 4 6 1.83E-02 2.99E-03 2.92E-02 

Pathogenicity  asymmetric non-empirical 4.26 4 6 1.83E-02 2.83E-03 3.88E-02 

Pathogenicity  symmetric empirical 4.39 4 6 2.06E-02 5.05E-03 3.97E-02 

 
Table 5.3 
Number and rate of discrete trait transitions across Eurasian avian H7 HA phylogenies (non-BSSVS).  Discrete trait mapping of viral NA subtype 
(N1, N2, N3, N7, N8 or N9), avian host (wild or domestic) and viral pathogenicity (LP or HP) was performed upon Eurasian avian H7 HA phylogenies 
constructed from viral sequences sampled after 1990.  Bayesian stochastic search variable selection (BSSVS) was not implemented in these runs.  The 
mean instantaneous transition rate from the discrete trait mapping analysis was reported for the different analyses, employing symmetric and 
asymmetric continuous time Markov chain transition models and either using an empirical sample of trees or performing a joint inference of phylogenies 
and discrete ancestral traits.  The mean and upper and lower limits of the 95% HPD interval are reported.  After discrete trait mapping, a Markov jumps 
analysis was performed upon BEAST phylogeny samples to infer the number of NA subtype transitions across the trees.  The number of transitions 
reported across the tree was robust to the use of symmetric or asymmetric models, and to the joint inference of phylogenies and ancestral discrete traits 
or the use of an empirical set of phylogeny samples. 
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The expected total number of transitions across the phylogeny under the inferred 

overall instantaneous transition rate (calculated from the overall subtype clock rate 

multiplied by the tree length) was compared to the observed number of changes from 

the Markov jumps counting.  For the NA subtype, avian host and pathogenicity 

mapping analyses, an overall concordance was observed between the expected and 

observed numbers of substitutions (Appendix C, Table C3; Appendix C, Figure C3).  

For example, for the Eurasian post-1990 dataset under a symmetric transition model, 

the mean expected number of subtype transitions was 36.36 (95% HPD:  16.81, 

58.96) and the mean observed number of subtype transitions was 38.82 (95% HPD 

limits = 25, 43).  The most departure between the observed and expected number of 

transitions was for the NA subtype mapping analysis with an asymmetric transition 

model, which may be visualised as departure from the line y=x on the scatterplot of 

observed against expected numbers of jumps (Appendix C, Figure C3b).  It is 

possible that this has arisen from calculating the expected number of transitions 

using only the overall transition clock rate and tree length, rather than adding 

together ‘component-wise’ the expected numbers of jumps between pairs of states 

and accounting for differences in the time spent along the branches in each state.  

Nonetheless, the method for obtaining estimated number of transitions across the tree 

used here is a useful indicator that the overall transition clock rate is meaningful in 

terms of the number of transitions observed across the tree.  The HPD intervals were 

narrower for the Markov jumps counts than for the expected number of transitions 

calculated from the transition rate and tree length; it is likely that this arises from the 

way in which the Markov jumps analysis firstly infers the infinitesimal transition 

rates in a conventional manner, but also incorporates the empirical state frequencies 

from the dataset (O’Brien et al. (2009); Philippe Lemey, personal communication).   

 

The output from BSSVS, non-BSSVS and Markov jumps analyses was compared for 

discrete trait mapping of viral NA subtypes on Eurasian avian H7 HA phylogenies.  

No obvious relationship was observed between the number of transitions from one 

state to another and the corresponding instantaneous relative rate parameter for 

transition between these states (Appendix C, Figure C4a-c; Appendix C, Table C4).  
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This may be because the time spent along the tree in the state being moved from 

(equivalent to the ‘dwell times’ in Chapter 4) is not accounted for; with additional 

processing, such information may be obtained in the future from a ‘Markov rewards’ 

analysis (Minin and Suchard 2008b).  In general, pairwise transitions with a higher 

relative rate parameter were more likely to be switched on in the MCMC (and thus 

be significantly non-zero in the BSSVS analysis) (Appendix C, Figure C4d-f; 

Appendix C,  Table C4), although it may be observed that some transitions with a 

low relative rate parameter in fact have a high indicator value in the BSSVS analysis 

(Appendix C, Figure C4e-f).  Finally, relative rate parameters calculated from a 

BSSVS analysis were found to be positively correlated with the relative rate 

parameters from a non-BSSVS analysis, both over the whole MCMC chain and when 

only non-zero rates were considered (Appendix C, Figure C4g-h).  A strong positive 

relationship was observed between BSSVS relative rate parameters averaged over all 

states of the MCMC (with rates at which the indicator was 0 being set to zero) and 

the BSSVS relative rate parameters averaged over only the non-zero states 

(Appendix C, Figure C4i).  

 

 

 

5.6 Discussion 

 

In this chapter, discrete trait mapping methods which have traditionally been used for 

phylogeographic analysis were employed to investigate discrete trait transitions 

across H7 avian influenza HA phylogenies.  Starting from information at the tips of 

the phylogenies, viral NA subtypes were mapped onto the tree samples in BEAST to 

quantify reassortment between H7 HA and NA segments of different subtypes.  This 

is the first time that such an approach has been applied to avian influenza data.  

Transitions between wild and domestic hosts, and between viruses of different 

pathogenicities, were also considered.  Previous researchers performing discrete trait 

mapping in BEAST have compared relative instantaneous transition rate parameters 

between pairs of discrete states (e.g. Lycett et al. (2012)), whilst others have 

calculated numbers of transitions between pairs of states (e.g. Talbi et al. (2009)); 
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however, studies comparing the output of such analyses have not been performed.  

The results of this chapter imply that the total number of discrete trait transitions 

from a Markov jumps analysis is a robust measure of discrete trait transition across 

phylogenies, whereas the behaviour observed in this study indicates that the BSSVS 

output may require further consideration.  In contemplating the relative merits of 

different discrete trait mapping methods for quantifying reassortment from 

phylogenies, this work preceded the study described in Chapter 6.  Following this 

chapter, and given known difficulties in informing relative transition rates (Philippe 

Lemey, personal communication), a Markov jumps approach is taken in Chapter 6 

for investigating inter-subtype recombination in HIV-1 group M using the total 

number of subtype transitions across phylogenies from different ends of the genome. 

 

The discrete trait mapping analyses reported in this chapter revealed reassortment 

between H7 influenza HA and different NA subtypes to occur substantially more 

frequently than host-switching between wild and domestic birds, which in turn 

occurred more often than transitions between LP and HP viruses.  On average, 30.65 

(95% HPD interval = 20,44) NA subtype transitions occurred across the tree per year 

as a result of reassortment, compared to 17.39 (95% HPD interval = 12,24) host 

switches per year and 3.28 (95% HPD interval = 3,5) changes in viral pathogenicity, 

indicating reassortment to be a major evolutionary factor in generating avian 

influenza virus diversity.  This is the first time that reassortment between HA and a 

large number of NA subtypes has been quantified across avian influenza 

phylogenies.  Although there was not a large amount of variation in transition rates 

from one NA subtype to another in the non-BSSVS analysis, implementing BSSVS 

made it easier to distinguish between rates.  A notable observation from the BSSVS 

analysis for NA subtype mapping was that the transition from subtype N7 to N3, 

which was a relatively high, non-zero rate in the non-BSSVS analysis, and which 

accounted for the highest number of transitions in the Markov jumps analysis, was 

not found to be significantly non-zero under BSSVS.  Such findings indicate that 

some care may be required when interpreting the results of BSSVS analyses.   
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It is possible that the ‘significant’ rates of diffusion under BSSVS could be highly 

influenced by rare events or sampling effects, and that they should not be over-

interpreted biologically.  For example, if there is only one sequence of trait state A in 

a dataset and that taxon clusters with the sequences of state B with a high posterior 

probability, the transition rate between states A and B will necessarily be significant 

in order to explain the existence of state A at the tip of the tree.  In this study, all of 

the rates inferred to be significantly non-zero under BSSVS involved at least one of 

the rarest three background NA subtype states, and the most highly-connected nodes 

were those corresponding to the rarest three states (Figure 5.1).  In future, 

information about the number of taxa corresponding to each state (such as the 

number of sequences for the start and end states, or the product of the number of 

sequences corresponding to the start and end states) could be incorporated into a 

generalised linear model as predictor variables (Philippe Lemey and Nuno Faria, 

personal communication), as a method for investigating whether the discrete trait 

dispersal model is being unduly influenced by the number of sampled sequences in 

each state.  It must also be noted that the discrete trait transition models assume the 

state frequencies to be homogenous over the tree (i.e. over time).  This assumption 

may be violated in situations such as when the sampling strategy has changed over 

time.  In future, models which allow different transition rate matrices for different 

time-periods may be developed. 

 

A faster relative instantaneous transition rate was observed from wild birds to 

domestic birds than from domestic birds to wild birds.  Although this has been 

hypothesised before from avian influenza phylogenies, by Lebarbenchon and 

Stallknecht (2011), their analysis only involved colouring the tips of the phylogeny 

by host type and counting the number of times that wild and domestic sequences 

formed sister lineages.  In contrast, the quantitative analysis performed in this 

chapter allows the rate of host-swapping to be compared to the rate of dissemination 

of other characters across the phylogenies, and also for directionality and the relative 

rate or number of transitions from one host type to another to be inferred.  In the 

future, additional techniques for inferring patterns of pathogen transmission from 

mapping discrete traits upon phylogenies could allow formal hypothesis testing to be 
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performed.  For example, a null distribution for the expected number of transmission 

events between different avian host types could be generated by performing a large 

number of randomisations of the states at the tips of the phylogeny and then counting 

the number of each type of transition required to explain the distribution of states at 

the tips for each randomisation.  The observed number of transitions in the 

phylogenies with the non-randomised tips could then be compared to the null 

distribution, to test for departures from random transmission and identify higher- or 

lower-than-expected mixing (Goldberg 2003).  In principle, it is possible to perform 

a large number of randomisations of the tip states and produce an individual BEAST 

xml file for each randomisation, then to perform the Markov jumps transition 

counting for each xml file using an empirical distribution of trees.  However, there is 

not currently an in-built method for randomising tips and producing such a null 

distribution in BEAST.   

 

The finding of a non-zero transition rate from domestic to wild avian hosts in the 

BSSVS analysis could be a result of transmission of influenza viruses from poultry 

back into wild avian populations, as has been witnessed for H5N1 in Asia (Chen et 

al. 2005; Feare 2010).  However, it may also be an artefact of sampling, in particular 

under-sampling of influenza from wild birds.  Future investigations with well-

sampled sequence data from both wild and domestic hosts could consider the relative 

contribution of transmission from wild to domestic birds and spill-over back from 

domestic to wild birds.  In addition, joint discrete trait mapping of host and NA 

subtype could be performed to test for association between rates of reassortment and 

avian influenza in wild or domestic birds, for example to examine whether 

reassortment occurs more frequently in wild avian populations.  Furthermore, the rate 

of reassortment between different subtypes is likely to be related to the opportunity 

for reassortment between different subtypes.  Rates of transition across the 

phylogenies between particular pairs of subtypes could thus be reconciled with 

subtype prevalence in the population, if such data were available. 

  

Future applications of discrete trait mapping on influenza phylogenies could be used 

to formally test whether different HA and NA subtype combinations arise randomly 
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in the wild avian reservoir as a result of reassortment, or whether there is statistical 

evidence that certain HA/NA subtype combinations are preferred.  For example, 

separate discrete trait mapping analyses of HA subtypes and NA subtypes could be 

performed upon a set of BEAST phylogeny samples constructed from internal 

influenza gene segments (e.g. PB2 sequences from North American wild birds, see 

Figure 5.5).  This would lead to individual transition matrices for transition between 

different HA subtypes and between different NA subtypes which could then be used 

to simulate HA and NA subtypes along the phylogenies, starting from the inferred 

state at the root of the tree, under the assumption that the HA and NA subtypes have 

evolved independently.  The number of each HA/NA subtype combination at the tips 

of the tree may then be counted.  By performing such simulations many times, and 

across a distribution of phylogeny samples, a ‘null distribution’ for the number of 

each HA/NA subtype combination under independent reassortment could be 

obtained, against which the actual number of each HA/NA subtype combination in 

the avian influenza dataset could be compared.  The effect of sampling strategy, 

sample coverage and the method used to down-sample available sequence data (for 

computational reasons or to avoid bias from over-sampling) has not been formally 

addressed in majority of published phylogeographic or discrete trait analyses using 

BEAST, but should also be considered in the future.   

 

Although this chapter focused on reassortment between H7 HA and different NA 

subtypes, discrete trait mapping could also be used to assess the extent of 

reassortment between all influenza RNA segments.  Whilst no clear pattern of 

reassortment between segments has been found by visually comparing phylogenies 

for avian influenza viruses from wild birds (Dugan et al. 2008), visual evidence from 

phylogenies suggests that particular constellations of polymerase segments PB1, PB2 

and PA persist in swine influenza (Vincent et al. 2008), as well as in viruses such as 

H5N1 genotype B which are adapted to domestic poultry (Vijaykrishna et al. 2008a).  

Such hypotheses could be tested quantitatively using discrete trait mapping, by 

labelling the tips of the tree according to how they cluster in the tree for one segment, 

then calculating how many discrete state changes are required to map these same tip 

labels onto the tree for another segment.   
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Figure 5.5 
Global avian influenza PB2 phylogenies from wild birds, coloured by viral HA or NA subtype.  (a) A neighbour-joining phylogeny was constructed 
from avian influenza PB2 sequences from wild birds.  Tips of the tree were labelled by HA subtype and the tree was coloured according to HA subtype 
using parsimony mapping in FigTree.  In (b), the same PB2 phylogeny is shown, but instead it is coloured according to the NA subtype of the virus. 



 

174 

 

 

 

 

 

 

 

 

 

 

Chapter 6 
Quantifying inter-subtype recombination 

amongst early HIV-1 group M 

in Kinshasa 
  



6.2:  Chapter aims 

175 

 

 

6 Quantifying inter-subtype recombination amongst 

early HIV-1 group M in Kinshasa 

 

 

6.1 Chapter summary 

 

Western Central Africa has been suggested as the epicentre of the HIV-1 epidemic 

and contains the full spectrum of HIV-1 group M subtype diversity. Previous 

analyses of early HIV sequences from Kinshasa in the Democratic Republic of the 

Congo (DRC) have revealed that sequences from a number of patients fall in 

different phylogenetic positions in trees constructed using sequences from different 

ends of the genome. Such patterns have been attributed to recombination between 

viruses of different subtypes.  In this chapter I undertake a detailed phylogenetic 

analysis of HIV-1 isolates from Kinshasa in 1984 to investigate inter-subtype 

recombination. This is important for quantifying the ancestral contribution of 

recombination to HIV diversity, as well as for understanding the extent to which 

phylogenetic studies which do not account for recombination may be confounded by 

its presence.  I develop a statistic for measuring the amount of inter-subtype 

recombination detectable from phylogenies from different parts of the genome and 

consider how it may be rescaled to estimate the rate at which inter-subtype 

recombination events have arisen across the trees. 

 

6.2 Chapter aims 

 

 Perform phylogenetic analyses to investigate inter-subtype recombination in 

Kinshasa, using sequences from opposite ends of the HIV-1 genome (encoding the 

gag p17 and env gp41 regions) 

 Develop a statistic for quantifying inter-subtype recombination by comparing 

phylogenies for different parts of the genome 
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 Consider how to rescale the recombination statistic to obtain an estimate of the inter-

subtype recombination rate of HIV-1 group M in Kinshasa from across the 

phylogeny 

 

 

6.3 Introduction 

 

The human immunodeficiency virus (HIV) belongs to the family Retroviridae, 

within which it is a member of the lentivirus genus (Freed and Martin 2007).  HIV is 

a chronic infection which, in the long term, is associated with a significant decline in 

CD4
+
 lymphocytes and progression to the acquired immune deficiency syndrome 

(AIDS), resulting in death.  The AIDS epidemic came to prominence in 1981 and 

was first associated with a virus by Barré-Sinoussi et al. (1983).  HIV is closely 

related to the simian immunodeficiency virus (SIV).  HIV infections are caused by 

one of two immunologically distinct viruses, HIV type 1 (HIV-1) or type 2 (HIV-2).  

Phylogenetic studies have indicated that independent cross-species transmissions of 

SIV from chimpanzees in central Africa and sooty mangabeys in Western Africa 

were responsible for the emergence of HIV-1 and HIV-2 respectively (Gao et al. 

1992; Gao et al. 1999).   

 

HIV-1 isolates separate into four phylogenetically distinct groups: M, N and O, 

believed to represent three independent transmissions of SIV from chimpanzees to 

humans (Gao et al. 1999; Sharp et al. 2001) and group P, which is closely related to 

strains from gorillas (Plantier et al. 2009).  HIV-1 group M viruses are the most 

common and are distributed globally, being responsible for over 95% of HIV 

infections worldwide (Baird et al. 2006).  Within HIV-1 group M, a number of 

subtypes (A, B, C, D, F, G, H, J and K) have been identified, which cluster 

phylogenetically (Robertson et al. 2000) and which have approximately equal 

genetic distances between them (Rambaut et al. 2004).  Note that assigning subtypes 

on a purely phylogenetic basis is different to defining the influenza HA and NA 

subtypes, which are immunologically distinct. 
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The core of the HIV-1 virion is shaped by the capsid protein (CA), within which lie 

two copies of the single positive strand of RNA which encodes the HIV-1 genome.  

The HIV-1 genome is approximately 9.7 kilobases in length (Ratner et al. 1985) and 

there are three major genes, gag, pol and env (Figure 6.1).  The gag gene encodes the 

matrix (MA), capsid and nucleocapsid proteins.  The pol gene encodes the reverse 

transcriptase, protease and integrase enzymes required for viral replication.  The viral 

envelope gene, env, encodes the single gp160 protein which is cleaved into the gp120 

external surface protein (SU) and the gp41 trans-membrane protein (TM), embedded 

in a lipid membrane originating from an infected host cell.  The gp120 and gp41 

surface glycoproteins comprise the head and stem, respectively, of the trimeric spikes 

which protrude at the virion surface and attach to host cells during fusion.  The p17 

protein is a matrix protein, whose main function is structural. 

 

 

 

 
Figure 6.1 
Schematic diagram showing the structure of the HIV-1 genome.  The major gag, pol and 
env genes may be observed.  The p17 and gp41 proteins (sequences encoding for which 
are examined in this chapter) are encoded at the 5´ end of gag and at the 3´ end of env 
respectively.  The HIV-1 genome is approximately 9.7 kilobases long.   

 

 

 

HIV-1 is a rapidly-evolving pathogen, with a high mutation rate resulting from an 

error-prone replication cycle (Preston et al. 1988; Roberts et al. 1988) and short 

generation time (Perelson et al. 1996).  HIV-1 virions contain two copies of the 

single positive strand of RNA which encodes the HIV genome.  Viruses which are 

detectable as recombinants can arise though template-switching during reverse 

transcription, when more than one genetically distinct virus is harboured in an 
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infected cell at the same time (Hu and Temin 1990).  In vitro studies have estimated 

a minimum of 2.8 crossover events per genome per round of replication: an order of 

magnitude higher than the rate of mutation, which has been estimated at between 3 

x10
-5

 and 8x10
-5

 per nucleotide site (thus approximately 3x10
-1

 and 8x10
-1

 per 

genome per replication cycle for a virus with a 9.7kb genome) (Zhuang et al. 2002).  

Mutation and recombination can thus both play a significant role in generating HIV 

diversity (Rambaut et al. 2004; Onafuwa-Nuga and Telesnitsky 2009).    

 

Recombination in HIV-1 can occur between viruses of the same subtype (Liu et al. 

2002; Yang et al. 2005b) and between viruses of different subtypes (Robertson et al. 

1995).  Multiple-infection of individuals with viruses of different subtypes, a 

prerequisite for inter-subtype recombination, may result from a single transmission 

of genetically different viruses or a subsequent HIV infection acquired by an already 

infected individual.  Inter-subtype recombination was identified as a major 

mechanism for the generation of HIV-1 group M diversity by Robertson et al. 

(1995), who reported numerous individuals from whom sequences from the gag and 

env regions (i.e. from opposite ends of the genome) were of different subtypes based 

upon phylogenetic analysis.  Inter-subtype recombinant viruses with the same 

breakpoints which are known to have caused infection in three or more 

epidemiologically unlinked individuals are known as circulating recombinant forms 

(CRFs) (Robertson et al. 2000).  At least 50 CRFs have now been characterised (see 

www.hiv.lanl.gov) and inter-subtype recombinant viruses are thought to account for 

more than 20% of HIV cases worldwide (Gao et al. 2011).   

 

Western Central Africa contains the full spectrum of HIV subtype diversity (Vidal et 

al. 2000).  The oldest known HIV-1 sequence (the partial env sequence ZR59), 

identified by retrospective testing of stored samples, dates from 1959 in the 

Democratic Republic of the Congo (DRC) (Zhu et al. 1998).  Phylogenetic analyses 

which include ZR59 and a sequence from the DRC in 1960 (DRC60) have placed the 

most recent common ancestor of HIV-1 group M towards the start of the twentieth 

century (Worobey et al. 2008).  Worobey et al. indicated that a substantial amount of 

HIV-1 group M diversity was present in Western Central Africa by 1960, i.e. long 
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before the AIDS pandemic was recognised.  This is broadly in line with previous 

work which used root-to-tip divergence plots to date the TMRCA of HIV-1 group M 

to the 1930s (Korber et al. 2000).   

 

Evidence implicating Kinshasa, the capital of the DRC, as the origin of the HIV-1 

group M pandemic is outlined by Sharp and Hahn (Sharp and Hahn 2008; Sharp and 

Hahn 2011).  This evidence rests partly on the circulation of all HIV-1 group M 

subtypes (except subtype B, which is extremely rare in Africa) in Kinshasa, and the 

fact that a greater diversity of group M sequences has been observed in Kinshasa 

than in any other location (Vidal et al. 2000; Rambaut et al. 2001).  In addition, the 

oldest HIV-1 group M strains, ZR59 and DRC60, were sampled in Kinshasa.  Both 

census data and coalescent-based demographic analyses reveal a population 

expansion in western central Africa over the period of time in which the HIV-1 

group M virus came to prominence (Worobey et al. 2008).  Finally, Cameroon has 

been identified as the probable location for a cross-species transmission of SIV from 

chimpanzees to humans, and is connected to Kinshasa via the Congo River, which 

was traditionally used as a trade route between the two regions (Sharp and Hahn 

2008).    

 

Previous analyses of early HIV sequences from the DRC have revealed that isolates 

from a number of patients fall in different phylogenetic positions in trees constructed 

separately for sequences from the gag and env regions (Robertson et al. 1995; Vidal 

et al. 2000; Kalish et al. 2004; Yang et al. 2005a).  Vidal et al. (2000) analysed HIV-

1 group M sequences sampled in the DRC in 1997, finding discordant gag (p24) and 

env (V3-V5) subtypes in 29% of samples and providing evidence that most subtypes 

were involved in inter-subtype recombination.  Subsequently, Kalish et al. (2004) 

found over 25% of sampled infected hospital workers in Kinshasa in the mid-1980s 

to have discordant gag (p17) and env (gp41) subtypes.  A study of high-risk 

individuals in Kinshasa suggested that the proportion of individuals infected with 

inter-subtype recombinant viruses had not changed substantially between 1985 and 

2000 (Yang et al. 2005a).  However, whilst the prevalence of inter-subtype 

recombinant HIV viruses can be estimated from sequence alignments, little is known 
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about the frequency with which such viruses arise in vivo (Chin et al. 2005) and no 

estimates are available for the rate at which they contribute to HIV diversity at the 

inter-host (population) level.   

 

In Chapter 5, I investigated the use of discrete trait mapping methods for quantifying 

reassortment between different NA subtypes in H7 avian influenza.  This was the 

first time that ‘Markov jumps’ counting (see Section 2.10.3) had been used for such a 

purpose.  I showed that Markov jumps counting offered an alternative approach to 

that of Lycett et al. (2012), who used the methods of Lemey et al. (2009) to estimate 

relative instantaneous transition rates between HA and NA subtypes in order to study 

swine influenza reassortment.  In this chapter, I use Bayesian discrete ancestral trait 

mapping methods in BEAST to quantify inter-subtype recombination in population-

level phylogenies for HIV-1 group M, by comparing trees for protein-coding 

sequences at different ends of the HIV-1 genome.  I use Markov jumps counting to 

calculate the Number of Excess ancestral Subtype Transitions (NEST) required to 

map individuals’ viral subtypes for sequences from one end of the genome (gag p17 

region) onto the tree for the opposite end of the genome (env gp41 region).  This 

quantity can then be rescaled to estimate the rate at which such events have arisen 

across the phylogenies as a result of inter-subtype recombination.  The method is 

applied to the Kinshasa HIV-1 group M dataset of Kalish et al. (2004), which 

provides an unparalleled opportunity to investigate recombination in a population 

where multiple subtypes were freely mixing. 

 

 

6.4 Methods 

 

6.4.1 Data 

 

The HIV sequences used in this study were previously published and analysed by 

Kalish et al. (2004) (Appendix D, Table D1).  Serum samples were taken as part of a 

cross-sectional study of hospital workers at the Mama Yemo Hospital in Kinshasa 

during the Projet SIDA surveillance program, which operated in the DRC between 
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1984 and 1991.  HIV-1 sequences were obtained via consensus sequencing of PCR-

amplified RNA from serum, from samples where sufficient quantities of serum were 

available.  All sequences corresponded to samples obtained between 1984 and 1986. 

 

All HIV-1 sequences for the gag p17 and env gp41 regions published by Kalish et al. 

(2004) were downloaded from GenBank.  The p17 and gp41 sequences from the 

same individual could be matched by the patient identifier in the sequence label.  

Datasets were created containing only sequences from persons (a total of 57) for 

whom both a gp41 and p17 sequence was available.  The sequences were aligned 

manually using BioEdit (Hall 1999) and the alignments were 429 base pairs and 369 

base pairs in length for p17 and gp41 respectively.  In order to assign subtypes to the 

p17 and gp41 sequences, reference sequences from the Los Alamos HIV Database 

(www.hiv.lanl.gov) were downloaded for each subtype, as well as for CRFs 01 and 

02.  Chimpanzee (CPZ.CM.1998.CAM3.AF115393) gp41 and p17 sequences which 

fall basal to HIV groups M and N (Hahn et al. 2000), and reference sequences for 

group N and group O viruses (Ref.N.CM.95.YBF30.AJ006022 and 

Ref.O.BE.87.ANT70.L20587), were downloaded for use as outgroups in the 

preliminary (neighbor-joining and maximum likelihood) phylogenetic analysis.   

 

6.4.2 Subtyping and preliminary phylogenetic analysis 

 

Phylogenetic analyses were conducted to assign subtypes to the p17 and gp41 

sequences, since some uncertainty had been reported in the neighbor-joining analysis 

of Kalish et al. (2004).  Maximum likelihood phylogenetic trees for p17 and gp41 

were constructed in PhyML (Guindon et al. 2010), with 1000 bootstrap replicates 

(Appendix D, Figure D1 and Figure D2).  A general time reversible model (Tavaré 

1986) of nucleotide substitution was implemented, with gamma distributed rate 

heterogeneity across sites and four rate categories.  The effect of using different 

outgroups (group N, O or chimpanzee sequences), or a midpoint rooted tree, was 

considered.  Sequences were classified as a particular subtype if they belonged to a 

clade containing a reference sequence of that subtype, and no reference sequences of 
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any other subtype.  Sequences which were basal to clades containing two or more 

subtypes were labelled as ‘unclassified’.   

 

Preliminary Bayesian phylogenetic analysis was carried out using BEAST 

(Drummond and Rambaut 2007), to confirm the subtyping of sequences from the ML 

analysis and determine the molecular clock model providing the best fit to the data.  

A relaxed demographic prior (Bayesian skyline with 5 bins) (Drummond et al. 2005) 

was implemented, and the SRD06 nucleotide substitution model (Shapiro et al. 2006) 

was used.  Bayes factor testing indicated that an uncorrelated relaxed lognormal 

clock model was preferred to a strict molecular clock.  Since precise sample-date 

information was not available for the sequences, the mean substitution rate for the 

uncorrelated lognormal relaxed clock model was fixed to 1, returning branch lengths 

in units of substitutions per site.   

 

Markov chain Monte Carlo (MCMC) sampling took place every 10,000 generations 

over a period of 100 million generations in all BEAST runs, with a burnin period of 

10 million generations.  The chain traces were inspected in the Tracer software 

(Drummond and Rambaut 2007) (available from http://beast.bio.ed.ac.uk/Tracer) to 

indicate whether stationarity had been achieved, and multiple runs were compared 

for all analyses.  Effective sample sizes (ESS) were greater than 200 for all 

parameters estimated.  Bayesian skyline plots were constructed using the Tracer 

software in order to visualise changes in relative genetic diversity between the root 

and tips of the trees for both the p17 and gp41 datasets.    

 

 

6.4.3 Within-gene recombination analysis 

 

In order to investigate whether recombination had taken place within the gene 

fragments encoding the gp41 and p17 proteins, two different analyses were 

undertaken.  Firstly, a single breakpoint analysis (Kosakovsky Pond et al. 2006b; 

Kosakovsky Pond et al. 2006a) (Section 2.13) was performed on the individual p17 

and gp41 alignments, using an HKY model of nucleotide substitution and allowing 

gamma-distributed rate heterogeneity across sites with 4 rate classes.  These analyses 
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were carried out using HyPhy (Kosakovsky Pond et al. 2005) on the DataMonkey 

web-server (Delport et al. 2010) (www.datamonkey.org).  Secondly, a sliding 

window analysis was conducted upon the individual p17 and gp41 alignments, using 

the TreeOrderScan procedure in the SSE software (Simmonds 2012) (Section 2.13), 

to assess consistency in phylogenetic clustering along the length of the alignment.  

Neighbor-joining trees were constructed, with the chimpanzee SIV sequence 

CPZ.CM.1998.CAM3.AF115393 used as an outgroup.  Since this procedure requires 

the user to choose the length of fragments of the alignment upon which to construct 

phylogenies, as well as the intervals at which to construct phylogenies, different 

combinations of settings were investigated: alignment fragments of length 100 and 

150 nucleotides, at intervals of both 25 and 50 nucleotides.  In the visual output, 

sequences were coloured according to their assigned subtype from the ML analysis 

to enable any evidence of recombination to be classified as intra-subtype (seen as 

exchange of phylogenetic position between lines of the same colour) or inter-subtype 

(which would be observed as exchange of phylogenetic position between lines of 

different colours).   

 

 

6.4.4 Inter-subtype recombination analysis 

 

Sequences in the p17 and gp41 alignments were labelled according to both the p17 

and gp41 subtypes for that individual, and inter-subtype recombinant viruses were 

identified by a discrepancy between p17 and gp41 subtypes from an individual.  

Discrete ancestral trait mapping was performed in BEAST to infer ancestral subtypes 

along the posterior phylogeny samples, starting with the subtypes at the tips of the 

tree and modelling transitions between ancestral subtypes as an asymmetric 

continuous-time Markov process, using the implementation of Lemey et al. (2009).  

In order to quantify the amount of inter-subtype recombination between opposite 

ends of the genome, both the p17 and gp41 subtypes were independently mapped 

onto the p17 and gp41 phylogeny samples.  The same BEAST MCMC settings were 

used as described for the preliminary BEAST analysis.  The procedure for 

quantifying inter-subtype recombination is outlined in Figure 6.2. 
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The number of ancestral p17 and gp41 subtype transitions along each BEAST 

phylogeny sample was recorded by manually editing the BEAST xml file to employ 

the ‘Markov jumps’ method (Minin and Suchard 2008a; Minin and Suchard 2008b; 

O’Brien et al. 2009; Talbi et al. 2009) (see Section 2.10.3) for counting discrete trait 

transitions across the phylogeny samples.  Four sets of ancestral subtype transition 

counts were obtained from the Markov jumps analysis:  

 

(i) the number of p17 subtype transitions on the p17 trees (denoted p17_p17) 

(ii) the number of gp41 subtype transitions on the p17 trees (gp41_p17) 

(iii) the number of p17 subtype transitions on the gp41 trees (p17_gp41) 

(iv) the number of gp41 subtype transitions on the gp41 trees (gp41_gp41).  

 

An example visualisation of the number of transitions along p17 and gp41 

phylogenies is provided in Appendix D (Figure D3).  The Number of Excess 

ancestral Subtype Transitions (NEST) required to map subtypes onto the phylogeny 

for the wrong gene (p17_gp41 or gp41_p17) compared to onto the phylogeny for the 

correct gene (p17_p17 or gp41_gp41) was calculated for 9,000 randomly paired 

gp41 and p17 posterior phylogeny samples.  95% highest posterior density (HPD) 

intervals were calculated for the NEST across the paired phylogeny samples. 

 

In the absence of inter-subtype recombination, the number of ancestral subtype 

changes required to map individuals’ subtypes onto a phylogeny for the correct gene 

(e.g. p17_p17) should be equal to the number of ancestral subtype changes required 

to map the same subtypes onto the phylogeny for the other end of the genome (e.g. 

mapping patients’ p17 subtypes onto the gp41 tree).  This is because, with no inter-

subtype recombination, the structure of the gp41 and p17 trees with regard to 

branching into subtypes should be essentially the same, and in this case the NEST 

would be centred on zero.  The effect of inter-subtype recombination is to ‘shuffle’ 

the subtypes at the tips, meaning that in general more ancestral subtype transitions 

would take place along the tree when the subtypes from one end of the genome were 

mapped onto a phylogeny constructed for the other end of the genome, compared 
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with mapping subtypes onto the phylogeny for the correct gene.  Since inter-subtype 

recombination events create excess ancestral subtype transitions along phylogenies 

constructed from the opposite end of the genome, the NEST allows the amount of 

inter-subtype recombination which can be detected between phylogenies to be 

quantified.   

 

NEST estimates were obtained by mapping p17 subtypes onto the p17 and gp41 

phylogenies, as well as mapping gp41 subtypes onto gp41 and p17 phylogenies.  The 

NEST estimates were then rescaled to estimate the rate (per lineage, per year) at 

which excess subtype transitions, arising from inter-subtype recombination events, 

occurred.  For each pair of phylogeny samples, the NEST was divided by the sum of 

the branch lengths (in units of substitutions per site) of the tree from the opposite end 

of the genome to the subtypes being mapped (e.g. gp41 tree when mapping p17 

subtypes) then multiplied by an estimate of the rate of HIV-1 nucleotide substitution 

of 2.47x10
-3

 substitutions/site/year (Worobey et al. 2008).   

 

As reported from the maximum likelihood analysis, as well as by previous studies 

(Rambaut et al. 2001; Kalish et al. 2004), it is not always possible to unambiguously 

assign subtypes to HIV-1 group M sequences from the Democratic Republic of the 

Congo.  In particular, some sequences appear to fall basal to clades of more than one 

subtype.  The potential for difficulty in assigning subtypes to have introduced error 

into the analysis was investigated by repeating the analysis using the alternative 

subtype labellings for sequences which were difficult to classify (Appendix D, Table 

D1).   In addition, analyses were performed where sequences were labelled by the 

clade to which they belonged at a cut-off defined at the root of the subtype A clade in 

the maximum clade credibility (MCC) tree.  Defining a cut-off at the root of the 

subtype A clade resulted in 10 clades being defined on the gp41 tree, and 7 or 10 

clades on the p17 tree (Appendix D, Figure D4 and Figure D5) i.e. similar to the 

number of subtypes identified in the maximum likelihood analysis.  The excess 

number of transitions required to map the p17 labels onto the gp41 trees, compared 

to mapping them onto the p17 trees, was then compared in the same manner as using 

the subtype labels. 
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Figure 6.2 
Process for inferring the rate of excess ancestral subtype transitions resulting from 
inter-subtype recombination.  The number of excess of p17 or gp41 ancestral subtype 
transitions (NEST) required to map the subtype labels onto the phylogeny for the wrong 
gene compared to onto the phylogeny for the correct gene was calculated.  Rescaling by the 
length of the tree and a time-scaled rate of nucleotide substitution was then carried out to 
calculate the rate at which excess ancestral subtype transitions occurred, in order to provide 
a measure of the rate of inter-subtype recombination on an explicit timescale. 
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6.5 Results 

 

6.5.1 Dataset composition 

 

For each individual studied, the HIV-1 gp41 and p17 sequences were labelled in the 

form ‘p17 subtype_gp41 subtype_ two letter country code_patient ID number’.  

‘Potentially pure’ viruses, where an individual’s HIV-1 p17 and gp41 sequences 

were of the same subtype, were present in the Kinshasa dataset for all subtypes 

except H, which is globally rare, and B, which does not appear amongst African 

sequences from this time (Vermund and Leigh Brown 2011).  Discordant p17 and 

gp41subtypes were found in 26% of individuals (Figure 6.3), in line with previous 

analysis of this dataset (Kalish et al. 2004).  Nine different discordant p17 and gp41 

subtype combinations were present in the dataset (Table 6.1) and subtypes A, D, F, 

G, H and J were involved in inter-subtype recombination events.  Subtype A, which 

was the most frequently isolated pure subtype, was also the most commonly 

represented subtype amongst the recombinant viruses, with 11 out of the 15 (73%) 

recombinant viruses having a p17 or gp41 sequence of subtype A.  The most 

frequently occurring recombinant virus was of type A_G (3 out of 15, i.e. 20%, of 

the recombinant viruses), and there was also one G_A inter-subtype recombinant 

virus.  Additionally, three viruses were labelled as recombinants since their p17 

sequences were of subtype A whilst their gp41 sequences formed a clade of their 

own, clustering in the maximum likelihood trees with reference sequences of type 

CRF 01.   
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Figure 6.3  
Subtype distribution of HIV-1 group M in Kinshasa.  The gp41 and p17 regions of HIV-1 
group M were sequenced for 57 patients by Kalish et al. (2004).  The percentage of patients 
infected with ‘potentially pure’ viruses (i.e. with the same gp41 and p17 subtype) of a given 
subtype on the basis of maximum likelihood phylogenetic analysis is reported.  26% of the 
viruses were classified as recombinant (‘Rec.’) on the basis of different subtypes having 
been assigned to the p17 and gp41 regions. 

 
 
 
 
 

p17 subtype gp41 subtype Frequency 
A G 3 
A H 1 
A J 2 
A CRF01 3 
D F 2 
D G 1 
G A 1 
H A 1 
J U 1 

 
Table 6.1  
Frequency of recombinant types. The p17 and gp41 subtypes of discordant sequences, 
and their frequency of occurrence in the dataset, were reported.  Note that ‘U’ denotes an 
unclassifiable sequence and CRF01 denotes the circulating recombinant form previously 
known as subtype E, which forms a distinct clade in the gp41 region. 
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Ancestral trait mapping of p17 and gp41 subtypes was performed upon sets of 

BEAST phylogenies for the p17 and gp41 regions, and limited evidence for 

clustering of the recombinant viruses was observed in the maximum clade credibility 

(MCC) trees (Figure 6.4).  The two gp41 sequences from D_F viruses clustered 

together in the gp41 tree (posterior probability p = 0.902), and their p17 sequences 

were also sister lineages (p = 0.686).  In the p17 tree, two of the three A_CRF01 

viruses clustered together in the p17 tree (p = 0.917) and also clustered in the gp41 

tree (p = 0.998).  Since clustered HIV sequences are often considered to be 

epidemiologically linked (Lewis et al. 2008), these clusters may represent a single 

inter-subtype recombination event, followed by transmission of the recombinant 

virus.  Clusters of inter-subtype recombinant viruses arising from a single 

recombination event, followed by transmission of the recombinant virus, would only 

incur one additional ancestral subtype transition in our method for quantifying 

recombination, whereas multiple independent inter-subtype recombinations across 

the tree would require further additional transitions.  
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Figure 6.4 
Maximum clade credibility trees for Kinshasa 1984 dataset, coloured by ancestral 
subtype. Maximum clade credibility (MCC) trees were constructed using BEAST.  Branches 
were coloured according to inferred ancestral subtypes, mapping (A) patients’ p17 subtypes 
onto the p17 tree samples; (B) patients’ gp41 subtypes onto the gp41 trees; (C) gp41 
subtypes onto the gp41 trees and (D) gp41 subtypes onto the p17 trees.  The number of p17 
and gp41 subtype transitions (Markov jumps) across the tree was recorded for each 
posterior phylogeny sample.  Clustering of recombinant sequences can be observed in the 
MCC trees for two D_F patients (marked with circles; posterior probabilities of being sister 
lineages = 0.686 and 0.902 in the p17 and gp41 trees respectively) and two A_CRF01 
patients (marked with triangles; posterior probabilities of being sister lineages = 0.917 and 
0.998 in the p17 and gp41 trees respectively).  Branch lengths are in units of substitutions 
per site. 
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6.5.2 Within-gene recombination analysis 

 

No evidence of recombination was detected within the individual gp41 or p17 

alignments by the single breakpoint analysis under either the BIC or corrected AIC 

(AICc).  A sliding-window analysis using TreeOrderScan indicated that any 

exchange in phylogenetic position along the individual alignment occurred between 

sequences to which the same subtype had been assigned.  This could be observed in 

Figure 6.5a and Figure 6.6a, where the lines representing sequences were coloured 

according to subtype assigned from the ML analysis, and crossing-over only occurs 

between lines of the same colour.  Such patterns indicated that mosaic gp41 or p17 

sequences with sections belonging to more than one subtype were not present.  In the 

sliding window analysis of the gp41 alignment using fragments of length 150 

nucleotides at intervals of 50 nucleotides (Figure 6.5b and Figure 6.6b), the sequence 

which had been labelled ‘unclassified’ appeared to change phylogenetic position 

along the genome (although not when fragments of length 100 nucleotides were 

used), perhaps explaining the difficulties experiences with subtyping this sequence 

against the reference sequences.   
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Figure 6.5 
Retained sequence positions across the p17 region.  A TreeOrder Scan analysis was 
performed in the SSE software by constructing neighbour-joining trees upon fragments of (a) 
length 100 and (b) 150 nucleotides, at intervals of 50 nucleotides.  Any detectable change in 
phylogenetic position, based upon support for clades with a bootstrap value of greater than 
70%, occurred amongst sequences to which the same subtype had been assigned 
(represented by lines of the same colour).  There was therefore no evidence of inter-subtype 
recombination within the p17 gene.  Analyses were also performed on fragments of length 
100 and 150, at intervals of 25 nucleotides, and no crossing over between lines of different 
colours was observed (not shown). 
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Figure 6.6 
Retained sequence positions across the gp41 region.  A TreeOrder Scan analysis was 
performed in the SSE software by constructing neighbour-joining trees upon fragments of (a) 
length 100 and (b) 150 nucleotides, at intervals of 50 nucleotides.  In (a), detectable change 
in phylogenetic position occurred amongst sequences to which the same subtype had been 
assigned.  However, when fragments of length 150 nucleotides rather than 100 nucleotides 
were used, the sequence represented by the grey line at top left of plot appeared to change 
phylogenetic position across the gp41 region, perhaps explaining the difficulty in subtyping 
this sequence from the maximum likelihood trees containing reference sequences, which 
had led to it being labelled ‘unclassified’.  Similar patterns were observed when the analysis 
was re-run using intervals of 25 nucleotides in length (not shown).  
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6.5.3 Quantifying inter-subtype recombination 

 

Discrete trait mapping methods in BEAST (Lemey et al. 2009) have previously been 

used for phylogeographic analysis of viral sequence data (e.g. Raghwani et al. 

(2011)), but can also be used to infer other ancestral character traits onto 

phylogenies.  If there are k different states at the tips of a phylogeny, the minimum 

number of ancestral state transitions observed across the phylogeny would be k-1.  

When HIV-1 group M subtypes were mapped onto the BEAST phylogeny for the 

correct gene (i.e. p17 subtypes on the p17 tree, or gp41 subtypes on the gp41 tree), 

the number of ancestral subtype transitions across the tree lay towards this minimum 

number (Figure 6.7 and Figure 6.8) and phylogenetic uncertainty accounted for 

instances where more than the minimum number of transitions was required.  A 

greater number of ancestral subtype transitions were required to map patients’ gp41 

or p17 subtypes onto phylogeny samples for the other end of the genome (p17 

subtypes on the gp41 tree, or gp41 subtypes on the p17 tree), compared to the correct 

gene, as a result of inter-subtype recombination (Figure 6.7 and Figure 6.8).  Each 

additional ancestral subtype transition could be interpreted as arising from inter-

subtype recombination; hence, inter-subtype recombination is detectable from the 

phylogenies in this way.    

 

Results from the ancestral subtype mapping analyses are reported in Table 6.2.  The 

mean Number of Excess ancestral Subtype Transitions (NEST) required to map the 

p17 subtypes onto the gp41 phylogeny samples, compared to onto the p17 phylogeny 

samples, was 10.55 (95% HPD interval = 2, 18).  The mean NEST for mapping gp41 

subtypes onto p17 and gp41 phylogeny samples was 12.18 (95% HPD interval = 5, 

20).  When the NEST was re-scaled as described in Section 6.4.4 and Figure 6.2, the 

rate at which excess ancestral substitutions arose was estimated to be 6.93x10
-3

 per 

lineage per year (95% HPD interval = 2.39x10
-3

, 1.30x10
-2

) using p17 subtype labels, 

and 8.11x10
-3

 per lineage per year (95% HPD interval = 3.11x10
-3

, 1.41x10
-2

) using 

gp41 subtype labels.   
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Figure 6.7 
Number of inferred p17 ancestral subtype changes across phylogeny samples.  The 
number of ancestral subtype transitions across phylogeny samples was inferred using 
ancestral trait mapping in BEAST, mapping p17 subtypes onto the p17 and gp41 phylogeny 
samples.  The number of excess subtype transitions (NEST) required to map the ancestral 
p17 subtypes onto the phylogeny for the ‘wrong’ gene, compared to mapping them onto the 
correct phylogeny, was calculated across paired phylogeny samples.  The histograms 
represent the number of subtype transitions across 9,000 post-burnin samples of 
phylogenies. 
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Figure 6.8 
Number of inferred gp41 ancestral subtype changes across phylogeny samples.  The 
number of ancestral subtype transitions across phylogeny samples was inferred using 
ancestral trait mapping in BEAST, mapping gp41 subtypes onto the p17 and gp41 phylogeny 
samples.  The number of excess subtype transitions (NEST) required to map the ancestral 
gp41 subtypes onto the phylogeny for the ‘wrong’ gene, compared to mapping them onto the 
correct phylogeny, was calculated across paired phylogeny samples.  The histograms 
represent the number of jumps across 9,000 post-burnin samples of phylogenies. 
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Subtype labels 
Transitions on  

p17 tree 

Transitions on 

gp41 tree 
NEST Excess transitions per year 

gp41 24.44 (18, 31) 12.25 (10, 16) 12.18 (5, 20) 8.11x10
-3

 (3.11x10
-3

, 1.41x10
-2

) 

gp41_labels_i 22.59 (16, 29) 9.79 (8,13) 12.80 (5,20) 8.52x10
-3

 (3.48x10
-3

, 1.43x10
-2

) 

gp41_labels_ii 23.99 (17, 31) 11.10 (9, 14) 12.89 (5, 21) 8.60x10
-3

 (3.18x10
-3

, 1.46x10
-2

) 

gp41_rootA 23.10 (17, 29) 10.93 (9, 14) 12.17 (5, 19) 8.20x10
-3

 (3.22x10
-3

, 1.35x10
-2

) 

p17 9.50 (8, 12) 20.05 (13, 27) 10.55 (2, 18) 6.93x10
-3

 (2.39x10
-3

, 1.30x10
-2

) 

p17_labels_i 8.24 (7, 11) 18.86 (13, 26) 10.61 (3, 18) 7.02x10
-3

 (2.34x10
-3

, 1.28x10
-2

) 

p17_labels_ii 9.42 (8, 12) 20.11 (14, 27) 10.69 (4, 19) 7.07x10
-3

 (2.29x10
-3

, 1.29x10
-2

) 

p17_rootA_v1 7.02 (6, 9) 18.15 (13, 26) 11.13 (4, 19) 7.32x10
-3

 (2.80x10
-3

, 1.32x10
-2

) 

p17_rootA_v2 22.32 (15, 30) 10.81 (9, 14) 11.50 (3, 20) 7.56x10
-3

 (2.35x10
-3

, 1.39x10
-2

) 

 
Table 6.2 
Results from discrete ancestral trait mapping of subtypes onto p17 and gp41 trees.  
The number of ancestral subtype transitions required to map p17 and gp41 subtype labels 
onto BEAST phylogeny samples constructed from p17 and gp41 sequences was reported.  
The number of excess subtype transitions (NEST) required to map the subtypes onto the 
phylogeny for the correct gene, compared to onto the phylogeny from the other end of the 
genome, was rescaled by the sum of the branch lengths of the phylogeny and the rate of 
HIV-1 nucleotide substitution in order to obtain a rate on an explicit timescale.  Results are 
shown for alternative labellings of ambiguous sequences (‘labels_i and ii’).  Results for 
‘gp41_rootA’, ‘p17rootA_v1’ and ‘p17rootA_v2’ refer to the analyses where gp41 and p17 
labels were assigned from the root of the subtype A clade (see Figure D4 and Figure D5).  
Numbers in brackets are the 95% HPD limits. 
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The substantial overlap of the HPD intervals for the NEST, and for the excess 

subtype transition rate estimates, indicated that the estimates obtained using p17 and 

gp41 subtypes were not significantly different.   Slight differences may have arisen 

because different numbers of gp41 subtypes and p17 subtypes (9 and 11 

respectively) were present in the dataset.  HPD intervals were similar when alterative 

subtype labellings were used for sequences which were difficult to classify, and 

when clades were defined from a predetermined cut-off point along the tree, 

indicating that the estimates were robust to potential errors in subtyping of 

sequences. 

 

 

 

6.6 Discussion 

 

Understanding recombination as an ancestral process is important for unravelling the 

evolutionary history of HIV and explaining the pattern of HIV diversity (Abecasis et 

al. 2007).  In addition, recombination can confound phylogenetic analyses which 

assume that a single evolutionary tree applies to the whole of an alignment (Posada 

and Crandall 2002), leading to false positives when detecting sites under positive 

selection (Anisimova et al. 2003; Shriner et al. 2003) and affecting estimates of 

divergence dates (Schierup and Hein 2000; Worobey 2001), or at least increasing the 

variance of such estimates (Lemey et al. 2004).   

 

Although previous studies have investigated crossover rates in vitro, such studies do 

not measure the rate at which inter-subtype recombination contributes to HIV 

diversity at the inter-host phylogenetic level, which is a more complex, composite 

process.  For an inter-subtype recombination event to be detected from a population-

level phylogeny, an individual must firstly be infected with viruses of more than one 

subtype, an inter-subtype recombination must take place and the resulting 

recombinant virus must be viable and become the dominant strain within an 

individual.  Whilst procedures have been developed for detecting recombination on 

the basis of phylogenetic discordance (e.g. Posada and Crandall (2001)), methods for 

quantifying recombination across phylogenies are lacking (Philippe et al. 2005).  It 
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has therefore been difficult to compare the rate of recombination and other 

evolutionary processes, such as nucleotide substitution, which contribute to the 

observed diversity of HIV-1 group M at the population level.   

 

The purpose of this study was to quantify historical inter-subtype recombination 

events across HIV-1 group M phylogenies, instead of simply calculating the 

percentage of recombinant sequences in the dataset, as had previously been carried 

out for this, and other, datasets (e.g. Robertson et al. (1995), Vidal et al. (2000), 

Kalish et al. (2004), Yang et al. (2005a)).  By analysing viral sequence data from 

Kinshasa, where almost all HIV-1 group M subtypes co-circulate, the observed 

recombination events could reasonably be assumed to have occurred within this 

population.   

 

6.6.1 Interpretation of results 

 

The inter-subtype recombination rate estimate for the Kinshasa dataset of 6.93x10
-3

 

to 8.11x10
-3

 events per lineage per year was obtained by calculating the rate at which 

excess ancestral subtype transitions were observed from mapping individuals’ 

subtypes from one end of the genome onto phylogenies for the other end of the 

genome.  The rate estimate could be compared to other evolutionary processes, such 

as the HIV-1 nucleotide substitution rate, which has previously been estimated as 

2.47x10
-3

 substitutions per site, per year (Worobey et al. 2008).  The HIV-1 genome 

is 9,700 base pairs in length and thus approximately 24 (9,700 * 2.47x10
-3

) 

nucleotide substitutions would be expected to occur per year across a single genome.  

Although this study estimates the rate of inter-subtype recombination to be 

considerably lower than the per-genome nucleotide substitution rate, inter-subtype 

recombination has far greater potential for instantly generating highly novel HIV-1 

group M virus strains than the gradual accumulation of nucleotide substitutions, and 

poses a significant problem for vaccine design (Burke 1997).  Furthermore, it is 

precisely due to the combination of a rapid mutation rate and relatively infrequent 

recombination events between viruses of different subtypes that HIV-1 group M 

inter-subtype recombination may be detected (Awadalla 2003). 
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The Poisson distribution can be used with the NEST rate estimate to calculate the 

probability that a lineage evolving for a given period of time would have undergone 

at least one inter-subtype recombination event (e.g. 1 – exp[-6.93x10
-3

 * time-

period], or 1-exp[-8.11x10
-3

 * time-period]).  For example, 6.7-7.8% of lineages 

evolving for 10 years in the population studied would be expected to undergo inter-

subtype recombination, as would 18.8-21.6% of lineages evolving for 30 years.  

Future work could investigate different ways of scaling the number of excess 

ancestral subtype transitions, on both time-scaled and non-time-scaled phylogenies, 

to obtain different quantities which may be interpreted biologically.   

 

The amount of HIV-1 group M inter-subtype recombination observed amongst the 

Kinshasa sequence data in this chapter must be an under-estimate of the actual 

amount within the population, since the phylogeny represents only a small sample of 

the infected population.  However, the calculated rate of inter-subtype recombination 

does account for the total time along the phylogeny, by scaling by the sum of the 

branch lengths.  The use of just two sections of the genome for identifying 

recombinant viruses means that the inter-subtype recombination rate may be 

underestimated when multiple crossovers have occurred along the genome.  For 

example, viruses could be designated ‘potentially pure’ by having the same gp41 and 

p17 subtype, but in fact contain a section derived from a different parental subtype in 

another region.  In fact, viruses denoted either ‘potentially pure’ or inter-subtype 

recombinant may have complex mosaic genomes with sections derived from more 

than two parental subtypes, and this study cannot provide a measure of this without 

sequence data from other genomic regions.   

 

It must also be noted that the hospital workers studied may have been at a higher risk 

of multiple infection than the general Kinshasa population, due to lack of universal 

precautions to prevent blood-to-blood transmission through the course of their work.  

However, the HIV-1 group M prevalence estimate of 3.5% for hospital workers in 

Kinshasa in 1984 (Kalish et al. 2004) is in line with estimates for childbearing 

women (3.1%) and blood donors (3.1%) in Kinshasa from a study conducted in 
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1997, which suggested that sero-prevalence of HIV-1 had stabilised in Kinshasa 

since the 1980s (Mulanga-Kabeya et al. 1998).  These findings have not suggested 

that the hospital workers exhibited higher levels of HIV infection than the general 

population, although data on multiple-infection with different subtypes is not 

available for a direct comparison between risk groups. 

 

As in Chapter 5, it must be noted that the discrete trait transition models of Lemey et 

al. (2009) assume homogeneity of state frequencies over the tree.  Such an 

assumption may be invalid if the relative frequencies of the different subtypes have 

changed over the history of the sample.  Since the sequences used in this study are 

some of the earliest HIV-1 group M sequences available, it is not possible to further 

investigate the validity of the assumption by considering the relative frequency of 

subtypes at earlier time-points.  The prevalence of different subtypes over time may 

be particularly important for studies where the relative frequency of inter-subtype 

recombination between different pairs of subtypes was being considered (in contrast 

to this study, where the overall rate of inter-subtype recombination was of primary 

interest).   

 

6.6.2 NEST method in the context of phylogenetic and population genetic 

methods for investigating recombination 

 

Previous phylogenetic approaches for investigating recombination have focused on 

detecting phylogenetic incongruences  (e.g. Nagarajan and Kingsford (2011)) rather 

than quantifying the amount of recombination observed between phylogenies, or 

estimating population-level recombination rates.  In contrast, NEST is a phylogenetic 

method which allows recombination to be quantified by comparing phylogenies from 

different regions of the genome.  However, the rate of recombination has also been 

considered in the field of population genetics (reviewed by Stumpf and McVean 

(2003)), where one centimorgan (cM) in genetic distance between two loci indicates 

the probability of a recombination between them in one generation to be 0.01.  

Population-genetic studies, in particular those concerned with linking the human 
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genome sequence and its genetic map, have expressed recombination rate as a 

mapping function in units of centimorgans per megabase (cM/Mb).  

 

Future theoretical work and simulation studies could attempt to reconcile the inter-

subtype rate estimate obtained using NEST with coalescent models from population 

genetics which incorporate recombination.  The coalescent with recombination for a 

Wright-Fisher population is a birth-death process whereby lineages merge (coalesce) 

backwards in time at rate k(k-1)/2, where k is the number of lineages in the 

genealogy, and new lineages are created by recombination at rate kρ/2 (see Wakeley 

(2009), p207).  The parameter ρ is referred to as the population recombination rate, 

defined as ρ=2Ne r for haploids, where the per-site, per-generation recombination rate 

r is the probability of recombination occurring during a single round of replication.  

In models which also allow for mutation (with the population mutation rate defined 

as Θ=2Neμ, where μ is the probability of mutation per site, per generation), it is 

common to express the recombination rate relative to the mutation rate (r/m) to 

evaluate the relative frequencies of the two processes.  This has a similar rationale to 

comparing the NEST rate with the rate of nucleotide substitution, as was carried out 

in Section 6.6.1. 

 

The population recombination rate ρ explicitly depends on the effective population 

size (Ne), which could make analysis more complex in the presence of the HIV-1 

group M population expansion suggested by the Bayesian skyline plots for this data 

(Appendix D, Figure D6) (Carvajal-Rodriguez et al. 2007).  In order to relate ρ to the 

NEST method, datasets of sequences could be simulated under different values of ρ 

using available software such as RECODON (Arenas and Posada 2007).  A NEST 

analysis could then be performed on these datasets to determine which ρ values yield 

similar NEST rates to those reported for the Kinshasa dataset in this chapter.   

 

Under the basic Kingman coalescent (see Wakeley (2009)), the ancestry of a sample 

can be represented by a genealogy (Donnelly and Tavaré 1995).  More complex 

graphs, known as Ancestral Recombination Graphs (ARGs), are required to represent 

the ancestral history for a population in which recombination has occurred (Hudson 
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1983; Hudson and Kaplan 1988; Griffiths and Marjoram 1996) (Appendix D, Figure 

D7).  ARGs have been adopted by the phylogenetic networks community (see 

Bloomquist and Suchard (2010)) to infer recombination.  The number of inferred 

recombination events required to explain the history of the sample may be counted 

from the ARG.  The Bayesian method SMARTIE (see Bloomquist and Suchard 

(2010)) can be applied to phylogenetic data to infer a single most probable ARG for 

a sample of sequences.  However, current implementations of the ARG method in 

software such as BEAST may only be computed for a small number of sequences.  In 

contrast, the NEST method could be applied to datasets of several hundred 

sequences, since the procedures used are essentially those employed for large-scale 

phylogeographic analyses in BEAST. 

 

 

6.6.3 Future directions 

 

Experimental studies have investigated the molecular basis of inter-subtype 

recombination in HIV-1.  For example, Chin et al. (2005) compared in vitro rates of 

intra- and inter-subtype variation amongst subtype B and C viruses.  Whilst 

recombination rates within subtypes B and C were found to be similar, the seven-fold 

lower rate of recombination observed between subtype B and C viruses was 

attributed to a three-nucleotide difference in the dimerization initiation signal (DIS) 

region between the two subtypes.  The DIS region is involved in RNA packaging and 

it has been reported that HIV-1 group M subtypes split into two groups with respect 

to DIS sequence, with subtypes B and D having the motif GCGCGC and subtypes C, 

F, G, H and J possessing the motif GTGCAC (Sloth Andersen et al. 2003; Paillart et 

al. 2004).  After creating subtype B and C vectors with matching DIS motifs, the 

level of inter-subtype B/C recombination increased four-fold.  The observation that 

inter-subtype B/C recombination rates remained lower than the respective intra-

subtype B and C recombination rates, even when the DIS motifs were matched, 

suggested that other minor restrictions to inter-subtype recombination exist.  Having 

found that the frequency of template-switching was unaffected by whether or not the 

DIS motif was mismatched, Chin et al. (2005) suggested that coinfection with 
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subtypes with mismatched DIS motifs resulted in the production of fewer 

heterozygous virions.   

 

Based upon the results of the subtype B and C study, Chin et al. (2005) postulated 

that HIV-1 group M subtypes with different DIS motifs would exhibit lower inter-

subtype recombination rates than subtypes which had the same DIS motif.  In 

accordance with this hypothesis, experimental studies by Baird et al. (2006b) 

indicated that the frequency of recombination between subtype A and subtype D 

viruses, which belong to different DIS groups, was substantially lower than between 

two subtype A viruses.  Given additional data, the NEST method could be used to 

test this hypothesis from phylogenies.  For example, mixing between different 

subtypes could be assessed using counts of Markov jumps between particular pairs of 

subtypes, in a similar manner to the influenza NA subtype reassortment analysis of 

Chapter 5.   

 

It may be noted that viruses from two individuals in the Kinshasa dataset were of p17 

subtype D and gp41 subtype F, and one individual was infected with a virus of p17 

subtype D and gp41 subtype G.  This demonstrates the potential for inter-subtype 

recombination between subtypes from different groups in vivo.  Furthermore, 

subtype B/C recombinant viruses (the subtypes considered in the inter-subtype 

recombination study of Chin et al. (2005)) have emerged in other natural 

populations, for example in East Asia (Piyasirisilp et al. 2000).  In future, biological 

questions such as the level of multiple-infection which would be required in a 

population to have observed a given NEST rate (or recombination between particular 

subtypes) for a sample of sequences could also be investigated.  

 

The study presented in this chapter focused on estimating the population-level rate of 

inter-subtype recombination across a phylogeny, based upon discordant p17 and 

gp41 subtypes.  A novel method (NEST) which used discrete ancestral trait mapping 

on phylogenies to quantify the extent to which recombination has shaped the 

diversity of a sample of sequences was implemented.  Given sequence data from 

several regions of the HIV genome, NEST could be used in future studies to compare 
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the amount of inter-subtype recombination between different parts of the genome.  

The NEST method may also be used to quantify intra-subtype recombination in 

datasets of a single HIV-1 group M subtype, although intra-subtype recombination is 

more difficult to identify than inter-subtype recombination, due to a lack of 

distinguishing variation between parental and recombinant sequences (Salminen and 

Martin 2009).  The method for defining clades from a certain cut-off point along the 

phylogeny (Section 6.4.4) could be implemented to estimate rates of intra-subtype 

recombination, although further work would be required to determine how the choice 

of cut-off affected the estimated rate of excess subtype transitions or the amount of 

recombination detected.   
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7 Phylodynamics of viral epidemics 

 

7.1 Chapter Summary 

 

Reconstructions of genealogies from viral sequence data contain information about 

the transmission dynamics of epidemics.  In this section, a mathematical link is 

formulated between the coalescent theory of population genetics and standard 

epidemiological models.  This allows epidemiological and demographic parameters 

to be inferred directly from viral sequence data, rather than from counts of infected 

individuals over time.  It is shown that the coalescence rate for a viral phylogeny of 

sequences from different infected individuals is directly proportional to epidemic 

incidence, rather than the ‘effective number of infections’ assumed by previous 

researchers, of which it is a complex, non-linear function.  The method also provides 

expressions for the expected distribution of phylogenetic cluster sizes under an SIR 

model of infection dynamics.  In future the expected cluster size distribution may be 

used as a null distribution against which to detect departures from the assumptions of 

the SIR model, such as population structure or heterogeneity in transmission. 

 
 
 

7.2 Chapter Aims 

 

 Link viral sequence coalescence and epidemiological processes, so that SIR model 

parameters may be inferred from viral phylogenies (as presented by Volz et al. 2009 

– see Chapter 11) 

 Discuss how the method of Volz et al. (2009) compares to other methods for 

inferring epidemiological parameters from viral sequence data 

 Explain how results are derived for the expected distribution of viral phylogenetic 

cluster sizes under SIR infection dynamics  
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7.3 Introduction 

 

Phylogenetic trees describe evolutionary relationships between groups of molecular 

sequences.  Lineages are represented by branches, whose lengths are a function of 

evolutionary time, and the nodes of the tree are the points at which lineages merge, 

backwards in time, towards a common ancestor.  Divergence between lineages 

moving forwards in time results from the accumulation of genetic diversity due to 

nucleotide substitution.  Coalescent theory (Kingman 1982) links the divergence 

times of lineages within a population (i.e. the shape of the genealogy) with the 

demographic history (i.e. the size over time) of that population.  The coalescent 

effective population size for a Wright-Fisher population is defined as the value of Ne 

which provides the same distribution of coalescence times as would be obtained for 

the actual biological population under consideration (see Chapter 2, Section 2.12).  

 

The original coalescent theory of Kingman (1982) assumed a constant population 

size.  The requirement for the population size to be constant was relaxed to allow for 

deterministically varying population sizes by Griffiths and Tavaré (1994), using an 

integer-valued ancestor function A(t) equal to the number of distinct ancestors of a 

sample at a time t in the past.  Nee et al. (1995) also employed a lineage-counting 

approach in their use of the coalescent theory to infer past population dynamics.  

Later extensions of the approach of Nee et al. (1995) used the notion that the 

effective size of a population could change at coalescent events to introduce ‘skyline’ 

methods for visualizing changes in Ne as a function of time (Pybus et al. 2000; 

Strimmer and Pybus 2001) (see Chapter 2, Section 2.12).   

 

Although the ‘standard’ coalescent theory results of Kingman assumed a selective 

neutrality, much work has been carried out on incorporating selection in the 

coalescent, for example the ‘structured coalescent’ (Kaplan et al. 1988; Hudson and 

Kaplan 1988), which was later extended by Nordborg (1999), and the ancestral 

selection graphs of Krone and Neuhauser (Krone and Neuhauser 1997; Neuhauser 

and Krone 1997).  For a review of coalescent theory and selection, see Wakeley 

(2010).  Coalescent-based analysis of pathogen sequence data which is likely to be 
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under immune selection has been widely adopted, for example using the BEAST 

software of Drummond and Rambaut (2007).  

 

If super-infection is rare (i.e. if individuals are typically only infected with one strain 

of a virus) and the viral mutation rate is sufficiently high relative to the rate of 

epidemic spread, then each lineage of a population-level (as opposed to within-host) 

viral phylogeny corresponds to a single infected individual with its own unique viral 

population.  Genetic variability within the host may be addressed by sequencing 

multiple viral isolates and obtaining a consensus viral sequence for each sampled 

individual.  Branching events in the tree (coalescence events when looking 

backwards in time) represent reproduction events in which both offspring have 

descendants in the sample.  In the model, each coalescence event is closely 

associated with a transmission event (discussed in more detail by Volz (2012), 

although transmission is also occurring rapidly throughout the tree). 

 

The relationship between transmission and phylogenetic branching for rapidly 

evolving infectious agents implies that the shape of a phylogeny, or the sequence of 

coalescence times, contains information about the transmission dynamics and 

epidemiological history of the pathogen (Holmes et al. 1995; Nee et al. 1995) (e.g. 

Figure 7.1).  The study of the joint effect of evolutionary and epidemiological 

processes on shaping the diversity of genetic sequence data is known as 

phylodynamics (Grenfell et al. 2004).  Measurably evolving RNA viruses, such as 

influenza and HIV, have been the subject of the majority of phylodynamic studies, 

owing to their rapid evolutionary rates (Duffy et al. 2008).  
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(a) (b)

Constant population size Exponential growth

(a) (b)

Constant population size Exponential growth

 

Figure 7.1 
The shape of a viral phylogeny is affected by the underlying population dynamics.  
Trees are presented representing viral sequence data under two different models of 
population size: (a) constant population size and (b) an exponentially growing population.  
Coalescence times are pushed backwards under exponential population growth, compared 
to a constant population size.  Based upon a figure by Grenfell et al. (2004).   
 

 

Developments in phylodynamic inference are potentially of great public health 

importance, since estimating epidemiological parameters is crucial for informing 

strategies for disease prevention and control.  However, many phylodynamic 

developments have been qualitative and formal links between the fields of pathogen 

evolution and transmission dynamics remain to be developed (Grenfell et al. 2004; 

Wilson et al. 2005; Pybus and Rambaut 2009).  Many researchers have interpreted 

the coalescent effective population size from a viral phylogeny as the ‘effective 

number of infections’, a quantity assumed to be proportional to the size of the 

infected host population, without any formal links between these quantities having 

been derived (discussed by Frost and Volz (2010)). 

 

In the first part of this chapter, a mathematical link between coalescent theory and 

epidemiological modelling is described, representing a step towards the integration 

of epidemiological and population genetic approaches.  The method can be used to 

estimate the parameters of standard epidemiological models, such as SIR models, 

from the branching times for a phylogeny constructed from viral sequence data.  The 

method provides a rapid and inexpensive method for estimating epidemiological 
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parameters from genetic sequences taken from a small sample of an infected 

population early on in an epidemic, rather than relying on counts of the number of 

infected individuals over time.  The relationship between coalescence rates, the rate 

of transmission (incidence) and the size of the infected population (prevalence) is 

also formalised.  The second part of this chapter provides results for the expected 

distribution of phylogenetic cluster sizes. 

 

 

7.4 Fitting epidemic models to viral sequence data 

 

7.4.1 Introduction to epidemiological modeling 

 

Standard epidemiological models, such as SIR, SI and SIS models, describe the 

infectious disease dynamics of a host population in terms of ordinary differential 

equations (ODEs).  The entire host population of size N is divided into 

subpopulations, or compartments, into which individuals are classified according to 

their disease status.  For example, in an SIR model the population is split into 

compartments of susceptible, infected and recovered individuals whose respective 

sizes at time t are denoted NS(t), NI (t) and NR(t).  In this chapter, the situation with a 

constant overall population size is considered, i.e.  NS(t) + NI(t) + NR(t) = N for all t.   

Behaviour of the variables S = NS(t)/N, I = NI(t)/N and R = NR(t)/N  is modelled 

deterministically, forwards in time, in the limit N , under the condition that S, 

I, R >> 1/N (i.e. NS, NI, NR >> 1). 

 

Under the classical mass-action SIR model (Kermack and McKendrick 1927; Bailey 

1975), individuals move from the susceptible compartment to the infected 

compartment with rate ),()()( tItStfSI  and from being infected to recovered with 

rate )()( tItfIR  , with all other rates of movement between compartments set to 0 

(i.e. individuals cannot move from the recovered compartment to the infected or 

susceptible compartments, or from the infected compartment to the susceptible 

compartment).  The transmission rate (fSI) is proportional to the amount of contact 
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between the susceptible and infected compartments, which is assumed to be 

determined by the product of their sizes.  The SIR model may be written as: 

 

)()( tItS
dt

dS
S 


   

)()()( tItItS
dt

dI
I  


 

)(tI
dt

dR
R 


. 

 

The ‘dot’ notation denotes the rate of change of a parameter, forwards in time, with 

respect to t.   

 

The parameters of an SIR model can be estimated by fitting differential equations in 

the above form to counts of infected individuals (the ‘epidemic curve’) across a 

series of time-points (e.g. Wallinga and Teunis (2004a; 2004b), Lipsitch and 

Bergstrom (2004)).  Of profound epidemiological significance is the quantity R0=β/γ, 

known as the basic reproduction ratio, which is the expected number of infections 

caused by a single infected individual in a completely susceptible, immunologically 

naïve population (see Anderson and May (1991)).  The value of R0 determines 

whether an infectious disease outbreak has the potential to persist in a population: an 

outbreak cannot be sustained for R0 < 1, whilst an epidemic may ensue when R0 > 1.  

The estimated value of R0 may be used in evaluating which control measures are 

necessary to prevent an epidemic, or to eradicate a particular infectious disease from 

a population.   

 

Bringing R0 to below 1 was the rationale for culling within the 3km exclusion zone 

around infected farms in the UK foot and mouth disease outbreak of 2001 

(Woolhouse et al. 2001; Woolhouse and Donaldson 2001).  In human populations, 

the point of interest is often to determine the proportion of a population to vaccinate, 

quarantine or administer prophylactic treatment to in order to curtail an epidemic.  

For example, Yang et al. (2009) simulated different vaccination strategies under a 

variety of epidemic scenarios in order to determine conditions for mitigating the 
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2009 H1N1 influenza pandemic.  In practice, the ‘effective reproduction number’ Re, 

is estimated rather than a strict R0.  Re is the average number of secondary infections 

caused by an individual in a population which cannot be considered wholly 

susceptible due to previous exposure to the infectious agent, or past control measures 

(discussed by Amundsen et al. (2004) and Matthews and Woolhouse (2005)).  Since 

Re is directly proportional to S, strategies are often sought for reducing the size of the 

susceptible population in order to decrease R0.  Estimation of Re can be carried out 

using various demographic or contact-tracing methods (e.g. Haydon et al. (1997)).  

For the early stages of an outbreak of a newly emerging infectious disease (to which 

there is no prior immunity and before large-scale prevention or control measures 

have been implemented) it is may be reasonable to assume that R0 is being estimated.  

Note also that the SIR approach assumes no population structure and that mixing of 

individuals is homogeneous.   

 

 

7.4.2 Coalescence and disease transmission 

 
In this section, a formal link is developed between the coalescence rate of a sample 

of viral sequences and the rate of transmission of a virus under SIR dynamics.  This 

link is used in Section 7.4.3 to derive an ordinary differential equation (ODE) to 

describe the coalescent process, which sheds light on the relationship between 

incidence, prevalence and the coalescence rate of a sample of viral sequences from 

an infected population.  As outlined in Section 7.3, the coalescent theory of 

population genetics operates on a small sub-sample of a population of related 

individuals and models the merging of lineages backwards in time until a common 

ancestor has been reached.  The merging of two lineages is known as a coalescence 

event, and coalescence is a stochastic process.  In contrast, epidemiological 

compartment models such as SIR focus on the entire host population, operate 

forwards in time and, for the purposes of this chapter, are deterministic.   

 

Consider a sample of size n << N*I (= NI) genes taken from an infected population, 

of finite size NI, of haploid individuals at time t.  In a standard neutral Wright-Fisher 
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model, when there are k lineages the ‘per-generation’ coalescence rate is proportional 

to 









2

k .  (Note that the coalescence rate is 
IN

k 1
.

2




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

 per generation and some authors re-

scale time into units of NI generations, so that the coalescence rate is per NI 

generations.)  See Nordborg (2000) or Wakeley (2009) for derivations and more 

detailed discussion. 

 

In this chapter, the coalescence of lineages in a phylogeny constructed from viral 

sequence data will be considered under the assumptions that the sequences are 

consensus sequences from a small sample of individuals from the infected 

population, that super-infection is rare and that the mutation rate of the virus is fast 

relative to the transmission rate.  The viral sequences will be assumed to have been 

sampled contemporaneously during an SIR epidemic.  It is assumed that no 

recombination has taken place, so that the entire length of the genetic sequence has 

the same genealogical history and acts as a single locus.  Each lineage may represent 

traversal of the virus over multiple infected hosts and transmission may not always 

result in a coalescence event being observed amongst the sample.  This could be due 

to incomplete sampling of lineages, or because an individual has recovered, but 

failed to cause a subsequent infection before being sampled.  

 

Given that a coalescence event occurs amongst the NI infected individuals, the 

probability of observing the coalescence event amongst the sample of k observed 

lineages is given by the number of ways of choosing two lineages from the sample, 

divided by the number of ways of choosing two individuals from the entire infected 

population, i.e.: 
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By viewing coalescence and transmission as equivalent genealogical processes 

operating in different directions, the coalescence rate for a sample of sequences is 

given by the number of transmissions per unit time (fSI), multiplied by the probability 










2

k
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(pc) that a transmission results in a coalescent event being observed in the sample, 

i.e.: 

coalescence rate = fSI * pc.              (3)   

 

The above relationship is used in Section 7.4.3 to derive an ODE to describe the 

coalescence process in terms of viral transmission parameters and the number of 

lineages as a function of time.   

 

 

7.4.3 An ODE to describe the coalescent process 

 

Consider a sample of consensus viral sequences sampled from individuals in an 

infected population at time T (with T fixed for now).  Let the dimensionless variable 

V(t) be the proportion of the entire population of size N at an earlier time t (with t ≤ 

T) which has sampled progeny extant at time T.  Since N does not change over time 

in the epidemic model described in Section 7.4.1 (whilst NS, NI and NR are allowed to 

vary within the constraint that N = NS + NI + NR), V(t) is proportional to the number 

of ancestral lineages observed at time t.  The quantity V(t)*N is analogous to the 

integer-valued ancestor function A(t) defined by Griffiths and Tavaré (1994) as the 

number of distinct ancestors of the sample at time t in the past.  Note that the 

notation V(t) is used in this chapter (where A(t) is used for the same quantity in the 

manuscript of Volz et al. 2009) in order to distinguish between the quantity defined 

by Volz et al. (2009) and the ancestor function of Griffiths and Tavaré.   

 

The function V(t) (defined above) can be used to describe the coalescent process for 

a viral phylogeny as an ODE.  Since V(t) is proportional to the number of lineages in 

the phylogeny, the coalescence rate for the sample is given by the rate at which V(t) 

changes with respect to t, moving towards the root of the tree, which can be linked 

with the transmission rate, as in equation (3).  It is possible to use V(t) to derive an 

expression for pc(t), the probability of observing a coalescent event in the genealogy 

for the sampled sequences, given that a transmission event has occurred in the 

population.  This follows a similar argument to that outlined in Section 7.4.2, but 
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here the expression is time-dependent since both the number of ancestors in the 

genealogy (proportional to V(t)) and the size of the infected population will vary over 

time.  As the SIR model was defined in terms of a total population N in the limit as 

N→∞, the probability of observing a coalescent event in this limit is considered: 
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            (4) 

 

It must be noted that the above limit argument is an approximation, which requires 

that V >>1/N.  The approximation will perform less well when the number of 

lineages is modest (i.e. towards the root of the tree). 

 

From Section 7.4.2, the coalescence rate for the sample of sequences is equal to the 

rate at which individuals move from the susceptible to the infected population (the 

transmission rate, fSI), multiplied by the probability (pc) of observing a coalescent 

event in the sample, given that a transmission occurs.  This is the rate of change of V 

moving forwards in time towards the present day, whereas moving backwards in 

time (towards the common ancestor of the sample) the rate of change of V is the 

negative of this quantity (–fSI*pc).  The coalescence rate for the sample of sequence is 

analogous to the rate of change of V, backwards in time with respect to t, thus it is 

possible to write: 
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V(t) can be found by integrating the above ODE backwards in time from T.  Note that 

the ‘negative dot’ notation denotes the derivative of V moving backwards in time, 

which is simply the negative of the forward derivative.   

 

As previously mentioned, the above approach is approximate, since V is a random 

variable which is treated as deterministic in the integration.  Previous methods have 

been developed which allow the expectation of V (actually the ‘ancestor function’ 

VN) to be calculated as a function of time under a model of constant population size 

(Griffiths 1981; Tavaré 1984).  When the population size is constant, Equation 5 

appears to be a reasonable approximation for VN >1 (Appendix E, Figure E1) and 

should behave well under the more stringent assumption of Volz et al. (2009) that  

V >> 1/N.   

 

 

7.4.4 Finding maximum likelihood values of SIR parameters for known branching 

times 

 

In Section 7.4.3, an ODE (Equation 5) was derived to describe the coalescent process 

in terms of the rate of change of the number of ancestral lineages in a viral 

phylogeny, which explicitly incorporated the transmission rate from an SIR model.  

In this section, a method for fitting an SIR model using the branching times inferred 

from a phylogenetic tree for the viral sequence data is presented.  This allows 

estimates of epidemiological parameters to be obtained using maximum likelihood 

inference.  In order to do this, the marginal distribution of coalescence times when 

there are n tips in the tree (i.e. n = number of sampled sequences) is considered.  In 

addition to the assumptions made previously (i.e. that V >> 1/N and that V could be 

treated as deterministic for integration), the coalescence times here are assumed to be 

drawn independently and identically distributed from the density function. 

 

For a sample of n viral sequences, there will be a total of n-1branching (coalescence) 

events across the resulting phylogeny.  Denote the branching times t1,…, tn-1, ordered 

so that t1 is the time of the most recent branching event from the tips of the tree and 
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tn-1 is last branching event, i.e. the time at which the most recent common ancestor of 

the sample is reached.  By definition, the value of V at the time of sampling (T) will 

be n/N for a sample of n individuals, and V(tn-1) = 1/N.  The quantity V(T) – V(tn-1) is 

equal to (n-1)/N, i.e. proportional to the total number of coalescence events.  Let the 

variable x denote an arbitrary point in time between tn-1 and T (tn-1 ≤ x ≤ T).  Moving 

towards the root of the tree, the proportion of coalescent events that have taken place 

by time x is given by:   
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xF .                (6) 

 

The function F(x) takes values between 0 (when x=T) and 1 (when x=tn-1) and is 

analogous to a cumulative distribution function for the distribution of coalescence 

times (Figure 7.2).  Note that again the notation in this section differs slightly from 

that used by Volz et al. (2009).  Simulations under a model of constant population 

size indicate that Equation 6 performs well as an approximation to the cumulative 

distribution function for coalescence times (Appendix E, Figure E2). 

 

 

 

Figure 7.2 
Proportion of coalescent events which have occurred across a tree. (a) Moving from 
the time of sampling (T) towards the root (at time tM) of a tree constructed from n sequences, 
the number of coalescence events which have taken place changes incrementally from 0 (at 
time T) to n-1 (at time tM).  (b) Moving from the tips to the root of the tree, the number of 
coalescent events which have taken place as a proportion of the total number of 
coalescence events in the tree can be used to construct a density function for the distribution 
of coalescence times.  This can be used to infer maximum likelihood values of 
epidemiological parameters based upon observed branching times.  Note that the axes for 
figures (a) and (b) are in opposite temporal directions. 
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Differentiating F(x) with respect to x yields a probability density function for the 

coalescence times in the sample: 

            ))()(/()( 1



 ntVTVVxf .                       (7) 

 

The density function f(x) can be used in calculating maximum likelihood estimates of 

epidemiological parameters, given inferred branching times t1,…, tn-1 for a 

phylogeny.  Assuming that every coalescence time is drawn independently and 

identically distributed from the density f, the probability of observing a particular set 

of branching times will be proportional to the product of the density evaluated at 

each branching time.  Maximum likelihood estimates of SIR and demographic 

parameters θ may be obtained by maximising the following equation: 
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In practice, the maximization may be performed by taking natural logarithms of both 

sides: 
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7.4.5 Discussion of coalescence rate in relation to epidemiological parameters 

 

As described in Section 7.3, previous researchers have noted that pathogen 

transmission is related to coalescence, or the number of lineages as a function of 

time.  Despite this, phylodynamic studies have assumed that the coalescent effective 

population size (Ne) from a pathogen phylogeny is proportional to the disease 

prevalence, or ‘effective number of infections’, but have not explicitly investigated 

the relationship between coalescence rates and viral epidemiology.  However, 
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Equation 5 (Equation 2 of Volz et al. 2009) shows that the coalescence rate is 

directly proportional to the epidemic incidence (fSI) and inversely proportional to the 

square of the prevalence (I
-2

).  Frost and Volz (2010) thus argued that the generation 

of new lineages via transmission, rather than the number of infected individuals, 

largely determines the coalescence rate and has the major effect on shaping the 

phylogeny.  It has been suggested that prevalence only affects the shape of the 

phylogeny indirectly, through sampling effects.  For a fixed sample size, the level of 

sampling depends on the prevalence and sampling a higher proportion of the 

population causes a larger number of ‘shallow’ branching events to be observed 

(Volz et al. 2009; Frost and Volz 2010).  The consequences of Equation 5 are that 

coalescence rates will be highest when the incidence is high and the prevalence is 

low, such as in the early stages of an epidemic.   

 

Simulation and application to HIV sequence data has shown Equation 5 to accurately 

describe the dynamics of the number of lineages as a function of time.  The method 

can also be used to estimate epidemic prevalence during the exponential growth 

stage (Volz et al. 2009).  The method of Volz et al. (2009) has an advantage over 

skyline methods in that it does not rely on explicit estimates of the generation time τ, 

which is defined as the average length of time between an individual becoming 

infected and going on to infect another individual (Fine 2003).   Generation time 

estimates may not be available, or reliable, for all pathogens.  For a phylogenetic tree 

with branch lengths scaled in absolute time, the Bayesian skyline or skyride plot (see 

Chapter 2, Section 2.12) depicts the quantity eN  over time (Drummond et al. 

2005).  Although skyline methods may estimate the number of infectious individuals 

during exponential growth, when there is a linear relationship between transmission 

rate and prevalence (
3
), Frost and Volz (2010) assert that this relationship does not 

hold in general as τ changes over the course of an epidemic (for example, see Kenah 

et al. (2008)).   

 

                                                 
3
 During exponential growth, characterized by a population size at time t of N = ae

bt
, the rate of 

change of N with respect to t (i.e. the rate of becoming infectious) is bae
bt

 (=bN). 
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Although Volz et al. (2009) found that one might distinguish SI from SIR dynamics 

under the framework described above, the method cannot be used to estimate R0 

without a prior estimate of the recovery rate (or average length of an infection).  

Other approaches which have estimated R0 from the epidemic growth rate have also 

required independent estimates of an additional parameter: either the generation time 

(Wallinga and Lipsitch 2007; Grassly and Fraser 2008) or average duration of 

infectiousness (Pybus et al. 2001).  For example, following the work of Pybus et al. 

(2001) many researchers have produced R0 estimates for hepatitis C virus using the 

epidemic growth rate, r, and the average length of the infectious period, D, which are 

related by the equation R0 = 1 + rD.  Shortly after the 2009-H1N1 influenza outbreak 

was recognised, Fraser et al. (2009) obtained estimates of R0 using estimates of the 

epidemic growth rate and the mean and variance of the human influenza generation 

time interval (Ferguson et al. 2005; Wallinga and Lipsitch 2007).  Purely 

epidemiological methods also require estimates of the generation time in order to 

estimate R0 from the epidemic curve in the absence of contact tracing data (Wallinga 

and Teunis (2004a; 2004b), Lipsitch and Bergstrom (2004)).   

 

Non-coalescent methods have been developed for conducting epidemiological 

studies of viral sequence data, for example the birth-death approach of Stadler 

(Stadler 2009; Stadler 2010; Stadler et al. 2012).  Birth-death models explicitly 

model the rate at which individuals become infectious (the birth rate) and the rate at 

which individuals become non-infectious, due to death, treatment or behavioral 

changes (the death rate).  Transmission trees may be generated under this model.  

The sampling intensity ψ is explicitly accounted for in the model, as it is 

incorporated into the death rate.  Since the birth and death rates can be estimated 

independently, R0 can be estimated as the ratio of the birth rate to the death rate, 

directly from the viral sequence data, without a prior estimate of the recovery rate 

(Stadler et al. 2012).  This is an advantage over the coalescent-based approaches 

such as that of Volz et al. (2009).  A disadvantage of the birth-death approach 

compared to the coalescent is the assumption that the epidemic is undergoing 

exponential growth; birth-death models cannot fully describe dynamics across the 

course of an epidemic (Stadler et al. 2012), particularly towards the end of an 
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epidemic in a finite population (Volz 2012). Implementation of methods such as 

those of Volz et al. (2009) and Stadler et al. (2012) in software such as BEAST will 

facilitate the comparison of coalescent and birth-death approaches to estimating 

epidemiological parameters from viral sequence data in different scenarios. 

 

One scenario to which the method of Volz et al. (2009) could be applied is the early 

HIV-1 group M epidemic of West Central Africa, which was described in Chapter 6 

(Section 6.3).  A search of the literature did not find any previous estimates of R0 for 

this region and period, obtained using either epidemiological or sequence data.  

Bayesian skyline plots for a sequence dataset sampled in 1984 in Kinshasa, the 

capital of the Democratic Republic of the Congo (DRC) (Appendix D, Figure D6), 

reflect the pattern observed for a larger collection of sequences sampled in the DRC 

at different time-points until 2005 (Worobey et al. 2008) (Appendix E, Figure E4).  

The skyline plots of Worobey et al. (2008) suggest a low but stable level of relative 

genetic diversity between the early 1900s and the mid-1950s, followed by a rapid 

increase in genetic diversity until the early 1980s, after which the genetic diversity 

started to plateau.  It may be observed that there was an increase in the population 

size of the DRC (and of Kinshasa specifically) which was concomitant with the rise 

in the relative genetic diversity of HIV-1 group M between 1920 and 2000 

(Appendix E, Figure E4).  Compartment models may therefore need to account for 

changes in the overall human population size over time (e.g. Appendix E, Figure E5), 

when linking epidemiology with the coalescence of viral lineages in order to apply 

the methods of Volz et al. (2009).  The birth-death model of Stadler et al. (2012), 

which allows birth and death rates, and thus R0, to vary over time, may also be 

applied to the DRC HIV-1 sequence data.  Temporal changes in R0 could be 

visualized with a birth-death skyline plot (BEAST implementation in progress by 

Denise Kuhnert: http://code.google.com/p/bdssm-beast2/), and attempts could be 

made to explain such changes in terms of events such as urbanization and 

demographic expansion.   

 

Whilst the methods of Volz et al. (2009) and Stadler et al. (2012) for estimating 

epidemiological parameters from viral sequence data have so far been applied 
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predominantly to HIV, inference of parameters such as R0 from avian influenza 

outbreak sequence data is yet to appear in the literature.   Phylodynamic studies of 

avian influenza would require ‘consensus’ sequences for different infected farms (as 

were analysed in the H7N7 Netherlands outbreak by Bataille et al. (2011)) in order to 

calculate an inter-farm reproductive number (Rh).  Estimates of epidemiological 

parameters from phylodynamic studies could be compared to estimates of inter-farm 

reproductive numbers obtained from epidemiological studies of avian influenza 

outbreaks, for example for the Italian H7N1 outbreak (Mannelli et al. 2007), or the 

Netherlands H7N7 outbreak (Boender et al. 2007).  

 

Further to the results of Section 7.4, expressions for the coalescence rate over time 

could also be derived for SI and SIS models, as well as for more complex 

compartment models which portray infectious disease dynamics more realistically.  

For example, Volz et al. (2009) and Volz et al. (2012) (see Chapter 11) applied the 

method to a model which distinguishes between the transmission probabilities at 

early (acute) and later (chronic) stages of HIV transmission.  The method presented 

by Volz et al. (2009) can also be extended to allow for heterochronous samples (i.e. 

samples taken from different at different points in time).  This can be accomplished 

by performing a piece-wise integration of Equation 5 (Section 7.4.3) over intervals 

whose start- and end-points are given by consecutive ordered sample times.   

 

 

 

7.5 Distribution of cluster sizes 

 

In this section, expected properties of the distribution of phylogenetic cluster sizes 

under SIR dynamics are derived.  Consider a phylogenetic tree constructed from 

consensus viral sequences isolated from n infected individuals.  The n tips of the tree, 

which correspond to sampled individuals, can be grouped into clusters according to 

whether they are descended from a common lineage at some point t in the past.  A 

‘(t;T) cluster’ is defined as the set of lineages at a later time T (in this chapter, the 

time of sampling) which are descended from a common ancestor at time t.  The size 

of a (t;T) cluster is the number of progeny viral lineages at T of a lineage which 
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exists at time t (Figure 7.3).  Sequences belonging to the same phylogenetic cluster 

are often interpreted as representing epidemiologically linked individuals (e.g. Lewis 

et al. (2008) and Pilcher et al. (2008) for HIV).  The properties of the distribution of 

cluster sizes are therefore of interest since they contain information about the 

transmission dynamics of an epidemic. 

 

 

 

Figure 7.3 
Definition and size of (t;T) clusters.  There are a total of two (t;T) clusters (circled in red) 
for the values of t and T (indicated here by the dashed vertical lines).  The top cluster is of 
size 3, whilst the bottom cluster has two extant lineages at time T and is therefore of size 2.   
The number and size of clusters depends upon the values of t and T. 

 

 

 

7.5.1 Mean and variance of the distribution of cluster sizes 

 

Consider a viral lineage at time t.  Define );(1 TtX to be the number of progeny 

lineages of this lineage at the time of sampling, T, given that such progeny exist.  

Denote by x1(t;T) the expected size of a cluster at time T, for a lineage randomly 

selected at time t.  Let );(2 TtX be a random variable describing the size of a cluster 

when clusters are selected with probability proportional to the cluster size, and 

denote E(X2) by x2.  Selecting clusters with probability proportional to their size 

yields the same distribution of cluster sizes as if infected individuals were sampled at 

time T and the size of the (t;T) clusters to which they belonged were determined.  
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Below, ODEs are derived which may be integrated backwards in time (from the tips 

of the tree towards the root) to find E(X1) and E(X2).  Note that the assumptions and 

approximations made in Section 7.4 (i.e. V>>1/N and that the random variable V can 

be treated as deterministic for the integration) are also applied in this section, hence 

the expressions for the expected cluster sizes are themselves approximate.  When 

compared to the exact results of Tavaré (1984), the behaviour of the approximation 

for x1 (obtained using Equations 10 and 5 from this chapter) is seen to become less 

accurate towards the root of the tree, when the assumption that V>>1/N is violated 

(Appendix E, Figure E3). 

 

The number of clusters of progeny viral lineages at time T, from lineages at an earlier 

time t, is given by V(t;T)*N, since the number of clusters will simply be equal to the 

number of lineages at time t which have progeny lineages extant at T.  The number of 

lineages at T is V(T;T)*N.   Note that, if all individuals in the population were 

sampled (as is the situation considered by Volz et al. (2009)) then V(T;T) = I(T).  The 

number of sampled infected individuals at time T is distributed across the V(t;T)*N 

clusters, and the expected number of infected individuals per (t;T) cluster is obtained 

by dividing the number of infected individuals sampled at T  by the number of 

clusters from time t with progeny lineages extant at T: 
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Rearranging gives: 

);(/);();( 1 TtxTTVTtV       (10). 

 

Evaluating the derivative, backwards in time, with respect to t yields: 
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Using 

2

)(

);(












tI

TtV
fV SI from Section 7.4.3 combined with Equation (10) and 

rearranging, one obtains: 

   2

1 )(/);();( tITTVfTtx SI


. 

 

Now consider the size of a (t;T) cluster chosen with probability proportional to the 

size of the cluster, to which an individual at time T belongs.  The size of a cluster 

changes when one cluster merges with another as one moves backwards in time 

towards the root of the tree.  It is possible to derive an expression for the rate of 

change of x2 (where x2 is the expected size of a cluster selected with probability 

proportional to its size) as one progresses from the tips of the tree towards the root as 

follows:  (i) two clusters merge at each coalescent event, and the average amount by 

which the cluster size increases upon merging with another cluster is given by x1; (ii) 

since there are V(t;T)*N clusters from time t, the probability that a given individual is 

involved in a coalescent event is proportional to 2/V ;  (iii) from Section 7.4.2 and 

Section 7.4.3, the coalescence rate for the sample is SIc fp  .  Multiplying the three 

quantities yields: 

 

  12
2 x

V
pfx cSI



. 

 

Using the relations
2))(/);(( tITtVpc   and );(/)();( 1 TtxTITtV   and rearranging 

gives: 

 



 12 2 xx . 

 

The expressions for 


1x  and 


2x  can both be solved by integrating in reverse time 

with the initial conditions 1);(1 TTx  and 1);(2 TTx  respectively (as, by 

definition, each (T;T) cluster of individuals will always consist only of one lineage). 
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It is also possible to derive an expression for the variance of X1, by noting that 
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X2 is the size of a cluster whose probability of selection is proportional to its size, 

hence one can write: 
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7.5.2 Finding the nth moment of the cluster size distribution 

 

Let X1(t;T) be the random variable denoting the number of progeny at time T of a 

randomly chosen lineage at an earlier time t.  The first three moments of the 

distribution of cluster sizes are given as follows: 

 

0
th

 moment: M0 = E(X1
0
) = E(1) =1 

1
st
 moment: M1 = E(X1) = x1 by definition 

2
nd

 moment: M2 = E(X1
2
) = x1x2 (derived in Section 7.5.1). 
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In general, the n
th

 moment, Mn, of a random variable X is given by:  

 

 
i

nn

n iXPiXEM }{)( . 

 

In this section, a general expression is given which, when integrated backwards in 

time with appropriate initial conditions, means that it is possible to find any moment 

of the cluster size distribution.  This expression is derived by considering the 

expected change in the sizes of clusters as they merge towards the root of the tree.  It 

should be noted that the approximations and assumptions described previously in this 

chapter are also made in this section, hence the expression for the moments of the 

cluster size distribution is an approximation.  However, lineages are exchangeable 

under the neutral coalescent, thus the distribution of coalescence times is 

independent of the topology.  Therefore, a random topology may be generated, with 

coalescence times sampled afterwards from an exponential distribution for waiting 

times in order to obtain branch lengths.  This property could be exploited in the 

future to obtain an exact cluster size distribution, using results from the population 

genetics literature such as those of Tavaré (1984), for the probability of transition 

from k to K lineages between times t and T, and Donnelly (1986), for describing 

genealogical processes moving forwards in time from the root of the tree.  

 

Consider a cluster of size i.  Upon merging with a cluster of size j, the n
th

 power of 

the cluster size will increase from i
n
 to (i+j)

n
.  An expression is derived for the 

expected change in the n
th

 moment when a cluster of size i merges with a cluster of 

size j: 
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n
th

 moment for cluster of size (i+j) – n
th

 moment for cluster of size i 
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* Using the binomial expansion. 

 

The n
th

 moment of the cluster size distribution can be found by integrating the 

equation for the rate of change of Mn, which is the product of the coalescence rate 

fSI(V/I)
2
, the factor 1/V (

4
) and the expected change in the n

th
 moment when two 

clusters merge:  
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4
 The factor 1/V accounts for the probability that a given lineage takes part in a coalescence event  

(probability = 2/V from above), but is not the lineage that is lost at the coalescence event (probability 

= 1/2). 

 



7.5:  Distribution of cluster sizes 

230 

 

In performing the integration to find higher moments using this expression, the initial 

condition Mn(T) = 1 may be used, which uses the property that at the time of 

sampling all clusters will be of size 1. 

 

It may be noted that the problem addressed by Volz et al. (2009) could be interpreted 

as a more general coalescent scenario, rather than merely one of infectious disease 

dynamics, and may be compared to more traditional population genetics studies.  For 

example, Barton and Etheridge (2004), considered the effect of selection on 

genealogies for a linked, neutral locus and derived a generating function for pairwise 

coalescence times.  Whereas the population considered by Volz et al. (2009) (the 

number of individuals in the infected population) varied deterministically according 

to the SIR model, under the approach of Barton and Etheridge (2004) the population 

(reported in terms of allele frequencies rather than the number of infected 

individuals) varied stochastically according to a diffusion process.  However, the 

analytical complexity of the approach of Barton and Etheridge prohibited them from 

considering the distribution of cluster sizes or higher order moments.  In contrast, the 

recursive formula for the rate of change of an arbitrary moment of the cluster size 

distribution presented by Volz et al. (2009) is simple to solve computationally.  In 

the future, the work of Volz et al. (2009) could help to shed light on questions from 

outside the field of epidemiology, for example general colonisation problems.   

 

A potential application for the expressions for the moments of the cluster size 

distribution described in Section 7.5.1 and 7.5.2 would be in generating null 

distributions for phylogenetic cluster sizes under an SIR or other epidemic model.  

Developments could enable formal statistical testing for departure from the 

assumptions of the epidemiological model.  For example, the actual distribution of 

cluster sizes could be compared with the null distribution in order to detect marked 

transmission heterogeneity in terms of variance in the number of progeny lineages.    
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8 Thesis summary and discussion 

 

Avian influenza viruses present an epidemiological and economic threat on a global 

scale, being associated with substantial losses to the poultry industry, as well as 

having the potential for transmission to swine and humans.  However, many 

questions remain unanswered as to how avian influenza viruses evolve in their 

natural reservoir of wild aquatic fowl, and in non-natural avian hosts such as 

terrestrial poultry (Nelson and Holmes 2007).  Analysis of avian influenza RNA 

sequences, using phylogenetic methods in conjunction with high-performance 

computing, can help to shed light on important evolutionary questions and enhance 

our understanding of the pathogen and its behaviour.  The development of new 

techniques for analysing influenza virus evolution is also an important area for 

research, allowing a larger number of questions to be addressed and more complex 

hypotheses to be tested.  Novel methods may also find applications in the analysis of 

other rapidly evolving viruses associated with a large public-health burden, such as 

HIV.       

 

H7 and H5 are the only haemagglutinin (HA) subtypes which have been found to be 

highly pathogenic in chickens.  H7 viruses present an immediate threat to poultry, 

and potentially to humans if they are able to cause infection and become easily 

transmissible from person-to-person.  In this thesis, I focused on the analysis of avian 

influenza sequences from viruses of the H7 HA subtype, which has been under-

studied compared to H5.  In particular, I investigated the evolution of character traits 

along phylogenies.  I used an extension of the stochastic mutational mapping 

methods of Nielsen (Nielsen 2001; Nielsen 2002) to calculate the ratio of the rate of 

non-synonymous substitution to the rate of synonymous substitution (dN/dS) along 

different parts of a phylogeny associated with different character traits, such as viral 

NA subtype or avian host type.  I then investigated the use of Bayesian 

phylogeographic methods in the BEAST software (Lemey et al. 2009) for mapping 

discrete ancestral character traits, with the aim of quantifying reassortment across 

phylogenies, in particular the rate at which the HA of H7 avian influenza viruses is 
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exposed to different NA subtypes.  Discrete trait mapping methods and transition-

counting methods (Minin and Suchard 2008a; Minin and Suchard 2008b; O’Brien et 

al. 2009; Talbi et al. 2009) were then employed for quantifying inter-subtype 

recombination between opposite ends of the HIV-1 genome.  I also provided a 

detailed technical description of methods for estimating epidemiological parameters 

from genetic sequence data.  I discussed the applicability of these, and other methods 

with a similar aim, to avian and human influenza and other pathogens.  In the 

following paragraphs I will summarise the studies described in this thesis, and the 

main conclusions that I have drawn from them.  I will discuss how such findings 

reconcile with current knowledge of avian influenza, outline questions which remain 

unresolved and identify how the studies undertaken in this PhD could lead to future 

investigations. 

 

8.1 Thesis summary 

 

Chapter 1 of this thesis was an introduction to avian influenza viruses and their 

evolution.  In Chapter 2, I gave a detailed description of methods which can be 

applied to investigate the evolution of influenza and other viral pathogens, many of 

which were employed in the studies described in this thesis.   

 

In Chapter 3, I undertook a molecular evolutionary analysis of all available avian 

influenza H7 HA sequences in the NCBI database: a total of 470 sequences sampled 

between 1927 and 2009.  At the time that this analysis was performed, it was the 

most comprehensive dataset available in terms of number of sequences and span of 

sampling times, with the preceding study of avian H7 HA by Banks et al. (2000) 

having examined just 54 sequences which were all sampled in 1999 or earlier.  

Phylogenetic analysis of the avian H7 HA sequences revealed two main clades: the 

‘Eurasian’ clade (sequences from Eurasia, Africa, Australia and New Zealand) and 

the ‘American’ clade (North and South American sequences).  The lack of exchange 

of H7 HA between the Eurasian and American clades had been identified in the 

earlier dataset of Banks et al. (2000) and the results of this chapter indicate that the 
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pattern has persisted over time, and despite greater depth of sampling.  I also 

observed clustering into smaller geographical regions, for example the existence of a 

distinct Australian H7 HA clade within the Eurasian clade, and of distinct North and 

South American clades within the American clade, which has recently been 

confirmed for H7 HA by other researchers (Bulach et al. 2010; Lebarbenchon and 

Stallknecht 2011).  In addition, I provided strong phylogenetic evidence that the 

transport of caged birds might facilitate the global spread of avian influenza, 

identifying two independent instances in the 1990s where European-like viruses had 

been sampled from imported birds in North America.  These findings lend weight to 

the hypothesis that the transport of caged birds might be the most likely route for 

highly pathogenic H5N1 to enter America from Eurasia in the future (Webster et al. 

2007).  Further evidence of the geographical isolation between avian influenza 

viruses in the Americas and Eurasia, Africa and Australasia was provided by the 

finding of distinct sets of HA cleavage site motifs for the two major clades.   

 

In Chapter 4, I investigated the selective pressure experienced by avian influenza H7 

HA using an extension of the Bayesian stochastic mutational mapping methods of 

Nielsen (2001, 2002).  Rather than merely counting numbers of synonymous and 

non-synonymous changes along branches, the method used a rescaling to account for 

the degeneracy of the genetic code and the time spent in each codon state along the 

tree, enabling the ratio of the rates of non-synonymous and synonymous substitution 

(dN/dS) to be calculated.  In Chapter 3, I had shown that different background NA 

viral subtypes were distributed across the H7 HA phylogeny – a signature of 

reassortment – rather than forming distinct clades according to the NA subtype.  I 

also showed that sequences from wild and domestic hosts were intermixed across the 

phylogeny and, consistent with previous researchers, I observed that highly 

pathogenic (HP) sequences were distributed across the phylogeny rather than 

forming a separate HP lineage (Rohm et al. 1995; Banks et al. 2000).  By using 

parsimony mapping to infer ancestral viral NA subtypes on the H7 HA trees, I was 

able to compare dN/dS along parts of the phylogeny corresponding to lineages with 

different viral NA subtypes and investigate whether the selective pressure 
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experienced by avian influenza H7 HA varied between different NA subtype 

backgrounds.   

 

The results of the study of H7 HA selective pressure indicated that the average dN/dS 

across the HA1 functional region was higher on the N2 NA background (i.e. in 

H7N2 viruses) than on N1, N3 and N7 NA backgrounds.  No substantial difference 

in dN/dS was detected between HP and LP viruses, or between viruses from terrestrial 

or aquatic birds.  These results would be consistent with the hypothesis that genetic 

interactions between HA and NA can lead to a difference in the selective pressure 

experienced by H7 HA on different NA subtype backgrounds, possibly due to an 

experimentally confirmed requirement to evolve to achieve a functional balance 

between the activity levels of the proteins they encode.  However, the heterogeneity 

of the H7 HA dataset composition in terms of the demographic scenario from which 

the sequences were obtained means that it is difficult to attribute the higher dN/dS for 

H7N2 HA simply to the viral NA subtype background.  In particular, the majority of 

the H7N2 sequences were from the live bird markets, in which the nature of selection 

might differ from the settings in which sequences from the other NA background 

subtypes were sampled (for example where more sequences might be from wild 

birds).   

 

In Chapter 5, I further investigated reassortment between HA and NA in avian 

influenza H7 viruses, using the discrete trait mapping in BEAST.  I used the methods 

of Lemey et al. (2009) to map the NA subtype of the virus onto the H7 HA 

phylogeny and identified significantly non-zero rates of transition from one NA 

subtype to another using Bayesian stochastic search variable selection (BSSVS).  I 

also used ‘Markov jumps’ methods for counting labelled transitions (Minin and 

Suchard 2008a; Minin and Suchard 2008b; O'Brien et al. 2009; Talbi et al. 2009) to 

quantify discrete trait transition across the phylogeny samples.  I showed that 

reassortment events producing viruses with different NA subtype backgrounds 

occurred more frequently in H7 avian influenza than switching between wild and 

domestic avian hosts, or between low and high viral pathogenicity.  Although the 

majority of host-switching events were from wild to domestic birds, the analyses 
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provided quantitative evidence for spill-over back from poultry into wild birds, such 

as has been previously suggested for H5N1 (Chen et al. 2005; Feare 2010).  In 

contrast, transition between viruses of low and high pathogenicity was essentially 

unidirectional from LP to HP.  I also concluded that transition-counting might be the 

most appropriate method for quantifying processes such as reassortment across 

phylogenies, and on that basis used Markov jumps counting to investigate 

recombination in HIV-1 group M in Chapter 6. 

 

In Chapter 6, I used the discrete trait mapping methods of Lemey et al. (2009) with 

transition-counting methods (Minin and Suchard 2008a; Minin and Suchard 2008b; 

O'Brien et al. 2009; Talbi et al. 2009) to quantify inter-subtype recombination across 

HIV-1 group M phylogenies.  The method was applied to a previously published 

dataset from Kinshasa, the capital of the Democratic Republic of the Congo, in West 

Central Africa, which is believed to be the epicentre of the HIV-1 epidemic.  

Amongst a sample of gag p17 and env gp41 sequences from 57 patients, I found that 

on average 10.55-12.18 extra ancestral subtype transitions were required to map 

patients’ viral subtypes from one end of the genome onto the tree for the opposite 

end of the genome, compared to onto the tree for the correct end of the genome.  

Such events reflect the amount of inter-subtype recombination which has occurred in 

the population to shape the phylogenies for different regions of the genome.  By 

scaling the Number of Excess Subtype Transitions (NEST) to account for the time 

across the phylogeny, I obtained an estimate of the rate at which such events could 

be detected by comparing phylogenies for the p17 and gp41 regions, of 7x10
-3

 per 

lineage, per year.  NEST is a more sophisticated statistic for measuring inter-subtype 

recombination in a sample of sequences than simply calculating the proportion of 

individuals with discordant subtypes in different regions of the genome, of which 

many instances could represent infection with already recombinant viruses rather 

than independent inter-subtype recombination events.  I also discussed potential 

developments of the NEST method, including the possibility of reconciling it with 

population-genetic measures of recombination rates, and proposed further 

investigations which could be carried out using variants of the method.   
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In Chapter 7, I provided a detailed technical description of a method for linking 

epidemiological models with viral phylogenies under the coalescent theory.  The 

method allows viral transmission rates to be estimated directly from the branching 

times of a viral phylogeny for a small sample of infected individuals in a population.  

The advantage over traditional methods for fitting epidemiological models is that this 

method allows epidemiological parameters to be inferred rapidly and at relatively 

little logistical expense, compared to fitting an epidemiological model to counts of 

infections over time.  I discussed the relative merits of the approach of Volz et al. 

(2009) and other recent methods for inferring epidemiological parameters from 

sequence data for different pathogens, and described challenges which remain to be 

addressed.  I also made specific reference to the use of such methods for elucidating 

the early epidemiological behaviour of HIV-1 group M in West Central Africa, using 

the dataset studied in Chapter 6.  

 

 

8.2 Future directions    

 

As well as performing traditional molecular evolutionary analysis of genetic 

sequence data, in this thesis I have used novel methods for analysing viral evolution 

and contributed to their development.  For example, stochastic mutational mapping 

methods were extended to enable dN/dS to be estimated across different parts of a 

phylogeny in Chapter 4, and discrete phylogeography methods were applied to 

investigate reassortment and recombination in Chapters 5 and 6.  These 

developments may facilitate future exploration of the evolutionary dynamics of avian 

influenza and other rapidly evolving RNA viruses.  In the following section, I will 

discuss advances in statistical phylogenetics, computation and data availability which 

have taken place during the course of this PhD.  I will consider how the work 

presented in this thesis fits in with such developments and how the conclusions and 

limitations of the thesis highlight important areas for future work.   
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Bayesian phylogenetics has progressed rapidly since this PhD commenced.  Many 

additional analysis options have been implemented in the BEAST software; for 

example, simulation-free methods for calculating dN/dS from labelled transitions 

along phylogenies (O'Brien et al. 2009) (see Section 2.10.3) could now provide an 

alternative, and more computationally efficient, method to the stochastic mutational 

mapping employed in Chapter 4.  Alongside such methodological advances have 

come computational developments such as the use of graphics processing units 

(GPUs), whose highly parallel architecture, consisting of many processing cores, has 

been exploited to substantially accelerate statistical phylogenetic inference.  The 

high-performance BEAGLE library can efficiently perform the likelihood 

calculations that underpin much of statistical phylogenetics by making effective use 

of available computer hardware, including GPUs (Ayres et al. 2012).  The BEAGLE 

library was employed in the discrete trait mapping analyses performed towards the 

end of this PhD, and in the future the use of many-core algorithms could facilitate the 

routine use of more complex and biologically realistic models.  For example, GPUs 

could allow full-codon models to be implemented (Suchard and Rambaut 2009), 

which could be used to investigate selective pressure (Yang et al. 2000) as an 

alternative to nucleotide mapping carried out in Chapter 4. 

 

All avian influenza virus sequence data analysed in this thesis were obtained from 

the publically accessible NCBI database.  Whilst the NCBI database is a rich 

resource for influenza sequence data, it was noticed that many sequences, 

particularly the earlier sequences, were inconsistent in the way in which they were 

labelled.  This resulted in a loss of information when sequences had to be excluded 

from analyses.  For example, even after exhaustive literature-searching, which is 

time-consuming in itself, the taxonomic order and status (wild or domestic) of the 

avian host could not be ascertained for almost 10% of the avian H7 HA sequences 

examined in Chapter 3.  There is a risk of bias in studies which combine data from 

different sources, if all of the sequences submitted by a particular researcher or study 

must be omitted from an analysis due to inconsistent or inadequate labelling.   
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One of the most important recent advances in Bayesian phylogenetics has been the 

combined analysis of genetic sequences and associated discrete (or continuous) trait 

data.  Whilst discrete trait mapping was a major focus of this thesis, phylogeographic 

questions were not addressed; a barrier to such studies is the lack of systematically 

sampled avian influenza sequence data from different locations, which could lead to 

substantial biases (as suggested in Chapter 5, Section 5.5.2, in using Bayesian 

stochastic search variable selection to test whether rates of NA subtype transition 

were significantly non-zero).  With sufficient spatiotemporal coverage, 

phylogeographic methods such as those of Lemey et al. (2009, 2010) may be used to 

investigate disease transmission on different geographical scales (e.g. Raghwani et 

al. 2011).  Furthermore, Bayes factor testing between models using different 

spatially-informed prior distributions, incorporating distances and/or rates of 

movement between locations, and their population densities, can elucidate the role of 

migration in the spread of a disease (Gray et al. 2011; Allicock et al. 2012).  In 

future, the role of bird migration in the spread of avian influenza could be 

investigated by performing phylogeographic analyses with a spatial diffusion prior 

informed by known migratory flyways (see Chapter 1, Figure 1.3), perhaps using 

information from satellite tracking of wild birds (e.g. Gilbert et al. (2010)).  For 

example the relative contribution of longitudinal and latitudinal bird movement to 

influenza spread in North and South America could be investigated.  In Chapters 5 

and 6, discrete trait mapping methods were employed to study reassortment in 

influenza and inter-subtype recombination in HIV, demonstrating how techniques 

which have traditionally been used for phylogeographic analysis may be adapted to 

address novel evolutionary questions.  Other potential uses for discrete trait mapping 

would be to investigate the evolution of phenotypes such as antiviral drug resistance 

(in birds or humans) along phylogenies.  Traits such as drug resistance and 

adaptation of avian influenza viruses to domestic hosts could also be addressed by 

using Bayesian graphical models (e.g. Lycett et al. 2009 – see Chapter 11).   

 

Although the interface between evolutionary biology and epidemiology, discussed in 

Chapter 7, is a rapidly progressing field, little has been done to apply this theory to 

avian influenza outbreaks.  For example, during and after the Italian H7N1 outbreak, 
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sequence data (Banks et al. 2001) and epidemiological data (Mannelli et al. 2006; 

Mannelli et al. 2007) were reported separately by different researchers.  Since there 

was no link between the epidemiological and evolutionary data, and no information 

about the locations from which sequences were sampled, this prohibited a 

phylogeographic or combined evolutionary and epidemiological analysis.  Even if 

the conventions for influenza virus nomenclature (Chapter 1, Section 1.3) are 

adhered to, properties such viral pathogenicity, whether the avian host was wild or 

domestic, or the precise geographical sampling location, are not routinely reported in 

the sequence databases.  In order to facilitate large-scale analyses of avian influenza 

which combine genetic sequences and other information from numerous studies to 

test complex evolutionary and epidemiological hypotheses, it would be beneficial to 

have a protocol in place so that additional information was made available in the 

sequence database at the time of submission, and could be added to at a later date, for 

example following laboratory testing for pathogenicity.   

 

Recent studies have used the genetic relationships between sequences to infer inter-

farm transmission networks for avian influenza (Bataille et al. 2011) and foot-and-

mouth virus (Cottam et al. 2008).  Future work could involve the incorporation of 

poultry network information (e.g. Nickbakhsh et al. (2011)) into spatiotemporal 

genetic sequence analyses to examine the spread of avian influenza within a country 

or region.  However, the ability to perform such analyses and draw sound 

conclusions from them ultimately rests upon the quality of data in terms of the depth 

of sample coverage in space and time.  Previously, sufficient sequence data were not 

available in the publically available avian influenza databases to perform detailed 

evolutionary-epidemiological analyses on specific avian influenza outbreaks.  

However, some data from the 2003 H7N7 avian influenza outbreak in the 

Netherlands (Bataille et al. 2011; Jonges et al. 2011; Ypma et al. 2012) has recently 

been added to the GISAID database (http://gisaid.org).  Given the high level of 

coverage (sequences from 70-90% of infected farms), the Netherlands avian 

influenza outbreak data would be an excellent setting for phylogenetic network 

studies and for investigating the use of methods for inferring epidemiological 
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parameters from genetic sequence data, for example using the methods described in 

Chapter 7.   

 

At the same time as advances in statistical phylogenetic methods and computation 

have taken place, the amount of influenza sequence data available for analysis has 

increased dramatically.  The overall number of influenza sequences available from 

the NCBI Influenza Virus Resource has quadrupled since the start of this PhD (NCBI 

2012).  In the past, often only the HA has been sequenced, and HA evolution has 

thus been the focus of this thesis and other studies of avian influenza evolution (e.g. 

Banks et al. (2000), Lebarbenchon and Stallknecht (2011)).  The advent of next-

generation sequencing technologies means that today many more full-genomes are 

being sequenced.  Analysis of full-genome influenza sequence data has traditionally 

been complicated by the presence of reassortment, which means that different 

phylogenetic trees may be required for different segments and hence that the 

segments must be analysed separately (e.g. Vijaykrishna et al. (2008a)).  A class of 

models which could prove useful for analysing the growing amount of full-genome 

influenza sequence data are hierarchical phylogenetic models (HPMs), which have 

recently been implemented in BEAST.  HPMs may be used to analyse sequence data 

which has been partitioned into segments, and the precision of parameter estimates 

can be increased by pooling information across the partitions without requiring 

congruence between the phylogenetic trees for different segments (Suchard et al. 

2003).  Furthermore, the use of hierarchical prior models could allow influenza 

segments to be grouped into specific rate classes (Bloomquist and Suchard 2010), 

which could help to address the requirement to incorporate genetic interactions 

between segments identified in Chapter 4.  

 

Finally, through examining the distribution of avian influenza sequences in the NCBI 

database, I have identified geographical regions which are chronically under-sampled 

in both wild and domestic avian hosts: in particular South America, Central America 

and Africa.  Amongst the full-length avian influenza H7 HA dataset of over 400 

sequences described in Chapter 3, just 9 sequences were available from South 

America, along with 2 sequences from Central America and 5 from Africa.  The wild 
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bird influenza dataset described in Section 5.6 contained over 1,400 polymerase 

(PB2) sequences from North America, whereas only 11 sequences were available 

from Central America and South America.  Whilst the North and South American 

sequences formed distinct clades in the analysis of avian influenza H7 HA in Chapter 

3, the nine available South American sequences clustered with the North American 

sequences in three different clades across the wild bird PB2 phylogeny (not shown).  

Mixing of viruses between wild birds in North and South America would not be 

surprising given the potential for North-South spread of the virus along the Americas 

flyway (Chapter 1, Figure 1.3).   

 

The extent to which North and South American avian influenza sequences cluster 

phylogenetically, and the role of migration in the spread of avian influenza, cannot 

be formally assessed without additional sequence data from Central and South 

America.  Furthermore, the under-sampling and lack of sequencing of influenza 

viruses from both wild and domestic birds in Central and South America means that 

these are potential regions in which surveillance could reveal previously unobserved 

influenza virus diversity.  The recent discovery of a distinct influenza lineage 

(subtype H17 HA) amongst bats in Guatemala (Tong et al. 2012) highlights the 

importance of surveillance in wild mammalian populations, as well as in domestic 

mammals, as was demonstrated by the long period of un-sampled influenza diversity 

in swine which preceded the 2009 H1N1 pandemic (Smith et al. 2009).   

 

 

8.3 Concluding remarks 

 

In this thesis, I addressed issues such as epistasis and genetic interactions between 

influenza RNA segments, the ability to quantify reassortment or recombination from 

phylogenies and the inference of evolutionary parameters from genetic sequence 

data.  My results indicate that avian influenza H7 HA remains genetically distinct 

between the Americas and Eurasia, consistent with known migratory flyways, with 

further subdivision at the inter-continental level.  On smaller scales, reassortment 
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with different NA subtype backgrounds, switching between wild and domestic avian 

hosts and the emergence of highly pathogenic viruses from low pathogenic forms 

may be observed over the same timescale as the accumulation of nucleotide 

substitutions, with NA-subtype reassortment occurring most frequently.  At the RNA 

segment level, I obtained results consistent with the idea that evolution may be 

affected by the genetic background in which a segment finds itself.  In this chapter, I 

have discussed my findings in the context of recent developments in our 

understanding of, and ability to study, viral sequence evolution.  I outlined how the 

methods from this thesis could be applied to further studies of viral evolution and 

highlighted how particular studies are prohibited by a lack of appropriate data or 

systematic sampling.  It is hoped that, in the future, the results and ideas presented in 

this thesis may be used to further our knowledge of infectious diseases which present 

a significant threat to human and animal health. 
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Figure A1 
Neighbor-joining phylogeny of Avian H7 HA influenza sequences.  The phylogeny was 
constructed with the MEGA software, using the neighbour-joining method with a Tamura-Nei 93 
model of nucleotide substitution and gamma distributed rate heterogeneity across sites, allowing 
for rate heterogeneity across lineages.  The tree was rooted to an H15 HA outgroup sequence 
(removed from figure for visualisation purposes).  Clades were identified corresponding to major 
geographical lineages, and collapsed so that their sizes were proportional to the number of 
sequences at the tips of the tree in each clade.  1000 bootstrap replicates were performed and 
bootstrap support values are reported as the proportion of the 1000 replicates for which those 
sequences clustered together.  
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Figure A2 
Root-to-tip distance plots for NJ phylogeny of Eurasian/African H7 HA influenza and early 
fowl plague virus sequences.  For each tree tip, the distance between that tip and the root of the 
tree was calculated using Path-O-Gen and plotted against the year of sampling.  The red circles 
indicate fowl plague virus sequences (HPAI isolated between 1927 and 1945), whilst the blue 
points represent later H7 avian influenza HA sequences. 
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Figure A3 
Position of Pakistan H7N3 avian influenza HA sequences in (a) neighbor-joining phylogeny 
and (b) time-scaled BEAST phylogeny.  HP H7N3 Pakistan sequences are highlighted in the red 
boxes, LP H7N3 Pakistan sequences are highlighted in the blue boxes and the H7N1 Northern 
Ireland sequence with which the LP Pakistan isolates share 99% sequence homology is 
highlighted in the yellow box.  Bootstrap support values for the neighbour-joining tree, and 
posterior probability values for the BEAST tree, are reported for the HP Pakistan H7N3 clade and 
the clade containing the LP Pakistan and Northern Ireland sequences.  It is likely that the LP 
Pakistan isolates are laboratory contaminants, rather than representing the maintenance of 
separate LP and HP avian influenza virus lineages in Pakistan.
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Cleavage motif Freq. HP/LP Found in host species Years Locations NA subtypes 

PEIP----------KGR 131 LP 
Anseriformes, Galliformes, Passeriformes, 
Struthioniformes, Pstittaciformes 

1972-2009 Europe, S. Africa, Asia 
N1, N2, N3, N6, 
N7, N8, N9 

PENP----------KTR 130 LP Charadriiformes, Galliformes 1971-2009 
N. America, Central 
America 

N1, N2, N3, N4, 
N5, N6, N7, N9 

PEKP----------KPR 86 LP Anseriformes, Galliformes 1998-2006 N. America N2 

PENP----------KPR 24 LP Anseriformes, Galliformes 1995-2002 N. America N2 

PETP----------KGR 18 LP Anseriformes, Galliformes, Psittaciformes 1989-2008 Europe, Asia,  N. America*  N1, N3, N7 

PEKP----------KKR 16 LP Anseriformes, Galliformes 2002-2006 N. America N2 

PEVP----------KGR 9 LP Anseriformes, Galliformes 1999-2002 Europe, Asia N1, N7, N8 

PEKP----------KTR 7 LP Anseriformes, Galliformes, Charadriiformes 1995-2002 N. America, S. America N2, N3 

PEQP----------KRR 4 LP Galliformes 2009 Asia N6 

PEIP----------KGK 3 LP Anseriformes 2002 Europe N7 

PELP----------KGR 3 LP Anseriformes 2009 Europe N7, N9 

PENP----------KAR 3 LP Anseriformes 2004 N. America N3 

PEIP----------KKR 2 LP Anseriformes 1976-2008 Australasia, Europe N7 

PEIP----------KRR 2 LP Anseriformes, Galliformes 2005-2009 Asia, Europe N6, N7 

PEGP----------KER 1 LP Anseriformes 2005 Australasia N7 

PEIP----------KER 1 LP Anseriformes 1992 Asia N7 

PEIP----------RKR 1 LP Anseriformes 2007 Australasia N6 

PEIP----------XGR 1 LP Galliformes 2003 Europe N3 

PELP----------KRR 1 LP Galliformes 2009 Asia N6 

PESP----------KTR 1 LP Anseriformes 1987 N. America N8 

PGVP----------RKR 1 LP Anseriformes 2007 Australasia N2 

PEIP------KGSRVRR 18 HP Galliformes, Struthioniformes 1999-2000 Europe N1 

     Continued on next page  
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Table A1: Cleavage site motifs from avian H7 HA influenza sequences.   

All examples of cleavage site motif found amongst the avian H7 HA sequences in the NCBI influenza virus database are listed, and classified according to 
whether they are highly pathogenic (HP) or of low pathogenicity (LP).  The number of sequences in the database which possess this motif is given, along with 
the range of host orders, years, geographical regions and background NA subtypes from which sequences sharing a motif have been sampled.  * 
Corresponds to birds quarantined in N. America following transportation from Eurasia. 

PETP--------KRRKR 16 HP Galliformes 1995-2002 Asia N3 

PEIP-------KKREKR 7 HP Anseriformes, Galliformes, Passeriformes 1976-1993 Australasia, Asia N7 

PEIP--------KRRRR 4 HP Galliformes 2003 Europe N7 

PEKPKTCSPLSRCRETR 4 HP Galliformes 2002 S. America N3 

PEIP--------KKKKR 3 HP Galliformes 1979-1992 Australasia, Europe N3, N7 

PEIP--------RKRKR 3 HP Galliformes, Struthioniformes 1994-1997 Australasia N3, N4 

PEKPKTCSPLSRCRKTR 3 HP Galliformes 2003 S. America N3 

PELP-------KKRRKR 3 HP Galliformes 1927-1934 Europe N7 

PENP---KQAYRKRMTR 3 HP Galliformes 2004-2005 N. America N3 

PEPS-------KKRKKR 3 HP Galliformes 1934 Europe N1 

PETP--------KRRRR 3 HP Galliformes 1963 England N3 

PEIP--------KRKKR 2 HP Anseriformes, Galliformes 1979-2008 Europe N7 

PEIP--------RRRKR 2 HP Galliformes 1997 Australasia N4 

PETP-------KRKRKR 2 HP Galliformes 1995 Asia N3 

PEFS-------KKRRKR 1 HP Galliformes 1945 Africa N1 

PEIP-------KKRKKR 1 HP Anseriformes 1979 Europe N7 

PENP---KQAYQKRMTR 1 HP Galliformes 2004 N. America N3 

PENP----KTTKPRPRR 1 HP Galliformes 2007 N. America N3 

PETP------KKKKKKR 1 HP Anseriformes 1979 Europe N7 

PEIP---------KRRR 1 ?? Passeriformes  1994 N. America N1 

PENP---KQAYQKQMTR 1 ?? Galliformes 2004 N. America N3 
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10.2     Appendix B 

A/duck/mongolia/47/01(H7N1) A/chicken/nj/158149/99(H7N2) A/guineafowl/italy/266184/02(H7N3) 

A/afristar/engq/938/79(H7N1) A/chicken/nj/608/02(H7N2) A/mallard/italy/199/01(H7N3) 

A/commoniora/singapore/f89/95(H7N1) A/chicken/ny/1190557/01(H7N2) A/turkey/england/192328/79(H7N3) 

A/fairybluebird/singapore/f92/94(H7N1) A/chicken/ny/1192567/01(H7N2) A/turkey/oregon/1971(H7N3) 

A/africanstarling/englandq/983/79(H7N1) A/chicken/ny/13878/98(H7N2) A/turkey/oregon/1971(H7N3) 

A/ostrich/zimbabwe/222/96(H7N1) A/chicken/ny/215868/99(H7N2) A/widgeon/alb/284/1977(H7N3) 

A/chicken/england/71/82(H7N1) A/chicken/ny/224094/99(H7N2) A/blackduck/ohio/415/2001(H7N3) 

A/fpv/egypt/45(H7N1) A/chicken/ny/307493/00(H7N2) A/turkey/italy/4130/2004(H7N3) 

A/conure/england/1234/94(H7N1) A/chicken/pa/1490921/02(H7N2) A/chicken/pakistan/34669/1995(H7N3) 

A/parrot/england/1174/94(H7N1) A/chicken/va/32/02(H7N2) A/turkey/italy/5425/2007(H7N3) 

A/ostrich/southafrica/1069/91(H7N1) A/chicken/ny/1485812/99(H7N2) A/turkey/england/63(H7N3) 

A/conure/england/766/94(H7N1) A/guineafowl/ma/14808111/02(H7N2) A/chicken/chile/4977/02(H7N3) 

A/parakeet/netherlands/267497/94(H7N1) A/guineafowl/nj/132469/98(H7N2) A/turkey/chile/4418/02(H7N3) 

A/parrot/northernireland/vf7367/73(H7N1) A/turkey/nc/11165/02(H7N2) A/turkey/italy/2987/2003(H7N3) 

A/turkey/italy/12598/99(H7N1) A/turkey/va/55/02(H7N2) A/turkey/italy/3337/2004(H7N3) 

A/chicken/italy/13489/99(H7N1) A/turkey/va/66/02(H7N2) A/chicken/queensland/1994(H7N3) 

A/chicken/italy/267/00(H7N1) A/turkey/va/67/02(H7N2) A/chicken/newyork/1227311/1999(H7N3) 

A/turkey/italy/3889/99(H7N1) A/chicken/nj/17206/99(H7N2) A/mallard/italy/33/01(H7N3) 

A/turkey/italy/4169/99(H7N1) A/chicken/newjersey/20621/99(H7N2) A/chicken/britishcolumbia/04(H7N3) 

A/chicken/italy/4575/99(H7N1) A/chicken/ny/3572/98(H7N2) A/greenwingedteal/alb/228/1985(H7N3) 

A/turkey/italy/4602/99(H7N1) A/chicken/nj/15827/99(H7N2) A/mallardduck/alberta/435/1985(H7N3) 

A/turkey/italy/4603/99(H7N1) A/chicken/ny/13986/99(H7N2) A/turkey/italy/2685/2003(H7N3) 

A/turkey/italy/3775/99(H7N1) A/chicken/ny/341733/99(H7N2) A/turkey/italy/3477/2004(H7N3) 

A/chicken/italy/445/99(H7N1) A/chicken/ny/147142/1999(H7N2) A/turkey/oregon/1971(H7N3) 

A/chicken/italy/1067/99(H7N1) A/goose/newjersey/86003/98(H7N2) A/turkey/tennessee/1/79(H7N3) 

A/mallard/alberta/34/2001(H7N1) A/quail/ny/11430/99(H7N2) A/turkey/oregon/1971(H7N3) 

A/turkey/italy/4169/1999(H7N1) A/quail/pa/20304/98(H7N2) A/ruddyturnstone/nj/65/1985(H7N3) 

A/duck/nanchang/1904/1992(H7N1) A/avian/ny/730636/00(H7N2) A/chicken/england/4266/2006(H7N3) 

A/chicken/italy/1285/2000(H7N1) A/chicken/hebei/1/2002(H7N2) A/turkey/italy/251/2003(H7N3) 

A/turkey/italy/3675/1999(H7N1) A/chicken/de/hobo/2004(H7N2) A/chicken/chile/4322/02(H7N3) 

A/turkey/italy/1351/2001(H7N1) A/chicken/de/viva/2004(H7N2) A/chicken/britishcolumbia/gsc_human_b/04(H7N3) 

Continued on next page 
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A/turkey/italy/2984/2000(H7N1) A/chicken/md/minhma/2004(H7N2) A/mallard/alberta/24/01(H7N3) 

A/turkey/italy/4426/2000(H7N1) A/dk/hongkong/293/1978(H7N2) A/mallard/alberta/24/01(H7N3) 

A/chicken/italy/322/2001(H7N1) A/chicken/pennsylvania/143586/2002(H7N2) A/pheasant/minnesota/917/1980(H7N3) 

A/duck/italy/551/2000(H7N1) A/quail/italy/4610/2003(H7N2) A/chicken/victoria/224/1992(H7N3) 

A/guineafowl/italy/155/2000(H7N1) A/chukar/newyork/116531/2005(H7N2) A/chicken/italy/270638/02(H7N3) 

A/quail/italy/396/2000(H7N1) A/chicken/newyork/16330/2005(H7N2) A/duck/taiwan/33/1993(H7N7) 

A/chicken/italy/1082/1999(H7N1) A/chicken/newyork/212112/2005(H7N2) A/duck/taiwan/ya103/1993(H7N7) 

A/turkey/italy/977/1999(H7N1) A/duck/newyork/212116/2005(H7N2) A/turkey/ireland/pv74/1995(H7N7) 

A/chicken/italy/2335/2000(H7N1) A/chicken/newyork/212111/2005(H7N2) A/nonpsittacine/englandq/1985/89(H7N7) 

A/turkey/italy/1084/2000(H7N1) A/chukar/newyork/212117/2005(H7N2) A/turkey/northernireland/vf1545c5/98(H7N7) 

A/turkey/italy/4708/1999(H7N1) A/duck/newyork/1436465/2005(H7N2) A/turkey/england/647/77(H7N7) 

A/turkey/italy/4295/1999(H7N1) A/chicken/newyork/31815/2006(H7N2) A/macaw/england/626/80(H7N7) 

A/turkey/italy/3488/1999(H7N1) A/guineafowl/newyork/83911/2006(H7N2) A/ostrich/southafrica/m320/96(H7N7) 

A/pekinduck/italy/1848/2000(H7N1) A/chicken/newyork/83912/2006(H7N2) A/chicken/germany/r28/03(H7N7) 

A/turkey/italy/4644/1999(H7N1) A/guineafowl/newyork/195014/2006(H7N2) A/netherlands/127/03(H7N7) 

A/quail/italy/4992/1999(H7N1) A/chicken/newyork/290474/2006(H7N2) A/chicken/netherlands/1/03(H7N7) 

A/turkey/italy/4294/1999(H7N1) A/chicken/newyork/163264/2005(H7N2) A/netherlands/219/03(H7N7) 

A/turkey/italy/4617/1999(H7N1) A/chicken/ny/31815/06(H7N2) A/mallard/sweden/56/02(H7N7) 

A/turkey/italy/4301/1999(H7N1) A/guineafowl/ny/464918/2006(H7N2) A/mallard/sweden/82/02(H7N7) 

A/turkey/italy/3489/1999(H7N1) A/chicken/wales/1306/2007(H7N2) A/mallard/sweden/85/02(H7N7) 

A/turkey/italy/3560/1999(H7N1) A/duck/hongkong/293/78(H7N2) A/mallard/sweden/87/02(H7N7) 

A/turkey/italy/2715/1999(H7N1) A/chicken/newyork/147149/1999(H7N3) A/mallard/sweden/92/02(H7N7) 

A/turkey/italy/2732/1999(H7N1) A/turkey/england/1963(H7N3) A/mallard/sweden/93/02(H7N7) 

A/turkey/italy/1265/1999(H7N1) A/turkey/italy/8912/2002(H7N3) A/mallard/sweden/94/02(H7N7) 

A/duck/hongkong/301/72(H7N1) A/chicken/pakistan/447/95(H7N3) A/mallard/sweden/100/02(H7N7) 

A/ostrich/italy/2332/00(H7N1) A/chicken/victoria/1/92(H7N3) A/mallard/sweden/102/02(H7N7) 

A/ostrich/italy/984/00(H7N1) A/chicken/pakistan/cr2/95(H7N3) A/mallard/sweden/103/02(H7N7) 

A/rhea/northcarolina/39482/1993(H7N1) A/chicken/queensland/667/95(H7N3) A/mallard/sweden/104/02(H7N7) 

A/mallard/italy/250/02(H7N1) A/chicken/chile/4957/02(H7N3) A/mallard/sweden/105/02(H7N7) 

A/fpv/rostock/1934(H7N1) A/chicken/chile/4968/02(H7N3) A/mallard/sweden/106/02(H7N7) 

A/ts1/1/a/fpv/rostock/1934(H7N1) A/mallard/netherlands/12/2000(H7N3) A/mallard/sweden/107/02(H7N7) 

A/duck/hongkong/301/1978(H7N2) A/turkey/minnesota/1200/1980(H7N3) A/ruddyturnstone/de/2378/1988(H7N7) 

A/chicken/newyork/131425/94(H7N2) A/mallard/ohio/322/1998(H7N3) A/redknot/nj/325/1989(H7N7) 

  Continued on next page 
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A/turkey/newyork/44505/94(H7N2) A/bluewingedteal/ohio/658/2004(H7N3) A/fowl/dobson/1927(H7N7) 

A/chicken/newyork/138337/95(H7N2) A/turkey/england/63(H7N3) A/starling/victoria/1985(H7N7) 

A/chicken/newyork/80302/96(H7N2) A/turkey/italy/3620/2003(H7N3) A/chicken/victoria/1976(H7N7) 

A/chicken/pennsylvania/117671/97(H7N2) A/turkey/italy/1010/2003(H7N3) A/chicken/victoria/1/1985(H7N7) 

A/chicken/newyork/67773/97(H7N2) A/mallard/delaware/418/2005(H7N3) A/chicken/netherlands/03010132/03(H7N7) 

A/turkey/pennsylvania/7975/97(H7N2) A/turkey/utah/2472110/1995(H7N3) A/mallard/italy/299/05(H7N7) 

A/chicken/pennsylvania/135521/98(H7N2) A/chicken/britishcolumbia/cn7/2004(H7N3) A/duck/jiangxi/1742/03(H7N7) 

A/quail/newyork/1398951/98(H7N2) A/mallardduck/alb/279/1977(H7N3) A/fpv/weybridge(H7N7) 

A/turkey/israel/ramon/79(H7N2) A/shorebird/delaware/22/06(H7N3) A/goose/leipzig/137/8/1979(H7N7) 

A/psittacine/italy/1/91(H7N2) A/laughinggull/delaware/42/06(H7N3) A/goose/leipzig/187/7/1979(H7N7) 

A/gull/italy/6922/93(H7N2) A/turkey/italy/9742/2002(H7N3) A/goose/leipzig/192/7/1979(H7N7) 

A/avian/ny/1183531/2001(H7N2) A/turkey/italy/3829/2004(H7N3) A/chicken/victoria/1/1985(H7N7) 

A/avian/ny/7041112/00(H7N2) A/gsc_chicken_b/britishcolumbia/04(H7N3) A/starling/victoria/1/1985(H7N7) 

A/avian/ny/742112/00(H7N2) A/chicken/chile/1842404322/2002(H7N3) A/chicken/leipzig/79(H7N7) 

A/avian/ny/762473/00(H7N2) A/chicken/england/4054/2006(H7N3) A/duck/heinersdorf/s495/6/86(H7N7) 

A/avian/ny/817465/00(H7N2) A/turkey/italy/4479/2004(H7N3) A/chicken/jena/1816/87(H7N7) 

A/avian/ny/77296/00(H7N2) A/turkey/italy/4608/2003(H7N3) A/fpv/dutch/27(H7N7) 

A/chicken/fl/903484/01(H7N2) A/turkey/italy/2043/2003(H7N3) A/chicken/ireland/1733/89(H7N7) 

A/chicken/nj/1188785/01(H7N2) A/chicken/chile/176822/02(H7N3) A/chicken/victoria/75(H7N7) 

A/chicken/nj/1503837/02(H7N2) A/cinnamonteal/bolivia/4537/2001(H7N3) 
 

A/chicken/nj/15124418/02(H7N2) A/turkey/italy/8000/2002(H7N3) 

 
 

 
Table B1 
Names of H7 avian HA sequences analysed.  All full-length avian influenza H7 HA sequences were downloaded from the NCBI database in  
April 2008, and are listed here by their standard sequence names.  After identical nucleotide sequences were excluded, all remaining sequences were 
analysed in MrBayes, although further sequences (such as the old Eurasian Fowl Plague Virus sequences) were later excluded from the mutational  
mapping analysis. 
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Figure B1  
H7 HA1 MrBayes consensus phylogeny.  The tree was inferred under the GTR + Γ model 
of DNA substitution, with 6 rate categories, and constructed from 1000 post-burnin MCMC 
phylogeny samples from MrBayes.  Major geographical lineages are labelled in red and 
posterior probabilities of clades are labelled in blue.  An H15 sequence was used as an 
outgroup in the phylogenetic analysis, but removed in this figure for the purpose of 
presentation.  Lineages are coloured by the background NA subtype of the virus at the tips of 
the tree, and clades of sequences of the same subtype have been collapsed for the purpose 
of presentation (numbers of sequences in collapsed clades are given in brackets). Note: FPV 
= ‘fowl plague virus’, a term used to describe H7 avian influenza viruses isolated in the 
1920s-1940s. 
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Figure B2 
Site-by-site dN/dS values across the avian influenza H7 HA1, ranked by size.  For each 
NA background subtype, the dN value for each site was divided by the average dS across all 
sites for that subtype.  The site-by-site dN/dS values were ranked by size: (a) the largest 50 
values were plotted for each subtype and (b) the smallest 50 values were plotted for each 
subtype.  For all of the largest 50 dN/dS values, dN/dS on the N2 NA background was larger 
than the values of the same rank on the N1, N3 or N7 NA backgrounds. For all of the 
smallest 50 dN/dS values for the H7 HA1 sites, the value of dN/dS on the N2 NA background 
was smaller than the values of the same rank on the N1, N3 or N7 NA backgrounds. 
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Figure B3 
Histograms showing frequency of different log(dN/gene-wide dS) values across the H7 
HA1 alignment for H7N1, H7N2, H7N3 and H7N7 lineages.  Sites with log(dN/dS) > 0 
correspond to dN/dS > 1, and sites with log(dN/dS) < 0 correspond to dN/dS < 1.  H7N2 was the 
only subtype for which log(dN/dS) values less than -7, or greater than 2, was observed. 
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 Subtype Mean 

Lower 
90% 
HPD 
limit 

Upper 
90% 
HPD 
limit 

H7N1 0.107 0.060 0.154 

H7N2 0.189 0.108 0.253 

H7N3 0.092 0.057 0.122 

H7N7 0.105 0.057 0.144 

 
Table B2 
Comparing dN/dS for H7 HA1 (not including signal peptide region) avian influenza on 
different NA backgrounds.  Means and 90% HPD limits of the posterior distributions for 
dN/dS were averaged across sites in the alignment corresponding to the HA1 coding region 
only (not including the 17 amino acid signal peptide region).  The same ordering of dN/dS 
values between different NA backgrounds was observed whether the signal peptide region 
was included (Table 4.2) or excluded. 
 
 
 
 
 

Comparison dN/dS dN dS 

H7N1-H7N2 
0.058538 0.10496 0.565277 

0.941462 0.89504 0.434723 

H7N1-H7N3 
0.646575 0.619929 0.492532 

0.353425 0.380071 0.507468 

H7N1-H7N7 
0.514085 0.484746 0.470188 

0.485915 0.515254 0.529812 

H7N2-H7N3 
0.982999 0.953252 0.424874 

0.017001 0.046748 0.575126 

H7N2-H7N7 
0.950872 0.890585 0.404126 

0.049128 0.109415 0.595874 

H7N3-H7N7 
0.362081 0.365771 0.478662 

0.637919 0.634229 0.521338 

 
Table B3 
Comparing posterior distributions of evolutionary rates for avian influenza HA1 (not 
including signal peptide region) across different background NA subtypes.  The 
proportion of randomised pairings of posterior rate estimates for which the value for the first 
subtype in the comparison, minus the value for the second subtype in the comparison, was 
greater than 0 (top value in cell) and less than 0 (bottom value in cell) was reported (cells 
highlighted yellow indicate a split at least as extreme as 5%, and cells highlighted orange 
indicate a split of between 5% and 10%). Here, only sites in the HA1 coding region were 
included, whereas in Table 4.3 the results were averaged over the HA1 coding region and 
the 17 amino acid signal peptide region.  All comparisons involving the N2 NA background 
indicated that dN/dS was higher on the N2 background than on the N1, N3 or N7 background, 
as was the case when the signal peptide region was included.  However, the difference in 
the locations of the distributions for dN/dS and dN was slightly less pronounced when the 
signal peptide region was excluded. 
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10.3     Appendix C 

 

 

Figure C1 
Discrete trait mapping of background viral NA subtypes upon global avian H7 HA 
sequences (N1, N2, N3 and N7 NA only).  Analysis was performed upon the dataset 
described in Chapter 4 (with subsampling within large monophyletic clades of the same 
subtype).  Discrete trait mapping was carried out in BEAST and the branches of the 
maximum clade credibility tree were coloured according to the inferred viral NA subtype at 
the parental node of the branch.  The long divergence between the American and Eurasian 
lineages, and the different distribution of subtypes, suggests that discrete trait transition 
should be analysed separately in these regions.  
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H7N1_1995_A/commoniora/Singapore/F89/95_wild_LP 
 

H7N1_2000_A/chicken/Italy/2335/2000_dom_HP 

H7N1_1994_A/fairybluebird/Singapore/F92/94_wild_LP 
 

H7N1_2000_A/turkey/Italy/1084/2000_dom_HP 

H7N1_1996_A/ostrich/Zimbabwe/222/96_dom_LP 
 

H7N1_1999_A/turkey/Italy/4708/1999_dom_HP 

H7N1_1994_A/conure/England/1234/94_dom_LP 
 

H7N1_1999_A/turkey/Italy/4482/1999_dom_LP 

H7N1_1994_A/parrot/England/1174/94_dom_LP 
 

H7N1_1999_A/turkey/Italy/4295/1999_dom_LP 

H7N1_1991_A/ostrich/SouthAfrica/1069/91_dom_LP 
 

H7N1_1999_A/turkey/Italy/3185/1999_dom_LP 

H7N1_1994_A/conure/England/766/94_dom_LP 
 

H7N1_2000_A/pekinduck/Italy/1848/2000_dom_HP 

H7N1_1994_A/parakeet/Netherlands/267497/94_dom_LP 
 

H7N1_1999_A/quail/Italy/4992/1999_dom_HP 

H7N1_1999_A/turkey/Italy/12598/99_dom_HP 
 

H7N1_1999_A/turkey/Italy/4294/1999_dom_LP 

H7N1_1999_A/chicken/Italy/13489/99_dom_HP 
 

H7N1_1999_A/turkey/Italy/4301/1999_dom_LP 

H7N1_2000_A/chicken/Italy/267/0_dom_HP 
 

H7N1_1999_A/turkey/Italy/3489/1999_dom_LP 

H7N1_1999_A/turkey/Italy/3889/99_dom_LP 
 

H7N1_1999_A/turkey/Italy/3560/1999_dom_LP 

H7N1_1999_A/turkey/Italy/4073/99_dom_LP 
 

H7N1_1999_A/turkey/Italy/2715/1999_dom_LP 

H7N1_1999_A/turkey/Italy/4169/1999_dom_LP 
 

H7N1_1999_A/turkey/Italy/2732/1999_dom_LP 

H7N1_1999_A/chicken/Italy/4575/99_dom_LP 
 

H7N1_1999_A/turkey/Italy/1265/1999_dom_LP 

H7N1_1999_A/turkey/Italy/4602/99_dom_LP 
 

H7N1_2002_A/mallard/Italy/250/2_dom_LP 

H7N1_1999_A/turkey/Italy/4603/1999_dom_LP 
 

H7N1_2003_A/duck/Hokkaido/143/2003_wild_LP 

H7N1_1999_A/chicken/Italy/445/99_dom_HP 
 

H7N1_2008_A/duck/Denmark/531478/2008_dom_LP 

H7N1_1999_A/chicken/Italy/1067/1999_dom_LP 
 

H7N1_2007_A/mallard/Netherlands/22/2007_wild_LP 

H7N1_2000_A/chicken/Italy/1285/2000_dom_HP 
 

H7N1_1991_A/ostrich/SouthAfrica/1991/dom_LP_ 

H7N1_2000_A/ostrich/Italy/2332/0_dom_HP 
 

H7N1_1999_A/turkey/Italy/3283/1999_dom_LP 

H7N1_1999_A/turkey/Italy/4580/1999_dom_HP 
 

H7N1_1999_A/turkey/Italy/4426/1999_dom_LP 

H7N1_1999_A/turkey/Italy/3675/1999_dom_LP 
 

H7N1_2000_A/turkey/Italy/2379/2000_dom_LP 

H7N1_2001_A/turkey/Italy/1351/2001_dom_LP 
 

H7N2_2003_A/quail/Italy/4610/2003_dom_LP 

H7N1_2000_A/turkey/Italy/2984/2000_dom_HP 
 

H7N2_2007_A/chicken/Wales/1306/2007_dom_LP 

H7N1_2001_A/chicken/Italy/322/2001_dom_LP 
 

H7N2_2003_A/wildbirdfeces/Korea/HDR16/2003_wild_LP 

H7N1_2000_A/duck/Italy/551/2000_dom_HP 
 

H7N2_2004_A/wildbirdfeces/Nakdonggang/214/2004_wild_LP 

  Continued on next page 
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H7N1_2001_A/duck/Mongolia/47/2001_wild_LP 
 

H7N2_2003_A/wildbirdfeces/Hadoree/8/2003_wild_LP 

H7N1_2000_A/ostrich/Italy/1038/2000_dom_HP 
 

H7N2_2006_A/mallard/Netherlands/29/2006_wild_LP 

H7N1_2000_A/guineafowl/Italy/155/2000_dom_HP 
 

H7N3_1995_A/chicken/Pakistan/447/1995_dom_HP 

H7N1_2000_A/quail/Italy/396/2000_dom_HP 
 

H7N3_1995_A/chicken/Pakistan/CR2/95_dom_HP 

H7N1_1999_A/chicken/Italy/1082/99_dom_LP 
 

H7N3_2000_A/mallard/Netherlands/12/2000_wild_LP 

H7N1_1999_A/turkey/Italy/977/1999_dom_LP 
 

H7N3_2002_A/turkey/Italy/214845/2002_dom_LP 

H7N3_2001_A/mallard/Italy/43/2001_wild_LP 
 

H7N3_2008_A/Northernshoveler/Seongdong/175/2008_wild_LP 

H7N3_1995_A/chicken/Pakistan/34669/1995_dom_HP 
 

H7N3_2006_A/wildbirdfeces/Shihwa/21/2006_wild_LP 

H7N3_2006_A/chicken/England/4266/2006_dom_LP 
 

H7N3_1995_A/chicken/Murree/NARC01/1995_dom_HP 

H7N3_2006_A/chicken/England/4054/2006_dom_LP 
 

H7N3_2003_A/chicken/Karachi/NARC23/2003_dom_HP 

H7N3_2004_A/turkey/Italy/4479/2004_dom_LP 
 

H7N3_2004_A/chicken/Karachi/NARC100/2004_dom_HP 

H7N3_2003_A/turkey/Italy/251/2003_dom_LP 
 

H7N3_2004_A/chicken/Chakwal/NARC148/2004_dom_HP 

H7N3_2004_A/turkey/Italy/3807/2004_dom_LP 
 

H7N3_2006_A/tuftedduck/PT/13771/2006_wild_LP 

H7N3_2002_A/turkey/Italy/8912/2002_dom_LP 
 

H7N7_1995_A/turkey/Ireland/PV74/1995_dom_LP 

H7N3_2003_A/turkey/Italy/3620/2003_dom_LP 
 

H7N7_1998_A/turkey/NorthernIreland/VF1545C5/98_dom_LP 

H7N3_2003_A/turkey/Italy/1010/2003_dom_LP 
 

H7N7_1996_A/ostrich/SouthAfrica/M320/96_dom_LP 

H7N3_2003_A/turkey/Italy/4608/2003_dom_LP 
 

H7N7_2003_A/chicken/Germany/R28/3_dom_HP 

H7N3_2003_A/turkey/Italy/2987/2003_dom_LP 
 

H7N7_2002_A/mallard/Sweden/56/2002_wild_LP 

H7N3_2004_A/turkey/Italy/3337/2004_dom_LP 
 

H7N7_2002_A/mallard/Sweden/82/2_wild_LP 

H7N3_2003_A/turkey/Italy/2043/2003_dom_LP 
 

H7N7_2002_A/mallard/Sweden/85/2002_wild_LP 

H7N3_2002_A/turkey/Italy/8000/2002_dom_LP 
 

H7N7_2002_A/mallard/Sweden/87/2_wild_LP 

H7N3_2002_A/Guineafowl/Italy/266184/2_dom_LP 
 

H7N7_2002_A/mallard/Sweden/92/2_wild_LP 

H7N3_2001_A/mallard/Italy/199/1_wild_LP 
 

H7N7_2002_A/mallard/Sweden/93/2_wild_LP 

H7N3_2002_A/turkey/Italy/9742/2002_dom_LP 
 

H7N7_2002_A/mallard/Sweden/94/2_wild_LP 

H7N3_2003_A/turkey/Italy/2685/2003_dom_LP 
 

H7N7_2002_A/mallard/Sweden/100/2_wild_LP 

H7N3_2004_A/turkey/Italy/3829/2004_dom_LP 
 

H7N7_2002_A/mallard/Sweden/102/2_wild_LP 

H7N3_2004_A/turkey/Italy/4130/2004_dom_LP 
 

H7N7_2002_A/mallard/Sweden/103/2_wild_LP 
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H7N3_2007_A/turkey/Italy/5425/2007_dom_LP 
 

H7N7_2002_A/mallard/Sweden/104/2_wild_LP 

H7N3_2002_A/turkey/Italy/9739/2002_dom_LP 
 

H7N7_2002_A/mallard/Sweden/105/2002_wild_LP 

H7N3_2003_A/chicken/Italy/682/2003_dom_LP 
 

H7N7_2002_A/mallard/Sweden/106/2_wild_LP 

H7N3_2002_A/chicken/Rawalpindi/NARC68/2002_dom_HP 
 

H7N7_2002_A/mallard/Sweden/107/2_wild_LP 

H7N3_2004_A/chicken/Karachi/SPVC1/2004_dom_HP 
 

H7N7_2003_A/chicken/Netherlands/3010132/3_dom_HP 

H7N3_2004_A/chicken/Karachi/SPVC2/2004_dom_HP 
 

H7N7_2003_A/duck/Jiangxi/1742/3_dom_LP 

H7N3_2004_A/chicken/Karachi/SPVC3/2004_dom_HP 
 

H7N7_2005_A/mallard/Italy/299/5_wild_LP 

H7N3_2004_A/chicken/Karachi/SPVC4/2004_dom_HP 
 

H7N7_2003_A/chicken/Netherlands/2586/2003_dom_HP 

H7N3_2004_A/chicken/Karachi/SPVC5/2004_dom_HP 
 

H7N7_1999_A/duck/Taiwan/4201/99_wild_LP 

H7N3_2004_A/chicken/Karachi/SPVC6/2004_dom_HP 
 

H7N7_2008_A/chicken/England/115811406/2008_dom_HP 

H7N3_2004_A/chicken/Karachi/SPVC7/2004_dom_HP 
 

H7N7_2006_A/wildbirdfeces/Korea/HDR22/2006_wild_LP 

H7N3_1998_A/chicken/Pakistan/c1998/1998_dom_HP 
 

H7N7_2005_A/wildbirdfeces/Korea/ESD07/2005_wild_LP 

H7N7_2007_A/mallard/Korea/GH170/2007_wild_LP 
 

H7N7_2007_A/duck/Shiga/B149/2007_wild_LP 

H7N7_2007_A/mallard/Korea/GG2/2007_wild_LP 
 

H7N7_2007_A/duck/Tsukuba/30/2007_wild_LP 

H7N7_2007_A/magpie/Korea/YJD174/2007_wild_LP 
 

H7N7_2007_A/duck/Tsukuba/700/2007_wild_LP 

H7N7_2008_A/mallard/Sweden/100993/2008_wild_LP 
 

H7N7_2008_A/duck/Tsukuba/922/2008_wild_LP 

H7N7_2003_A/mallard/Sweden/S90735/2003_wild_LP 
 

H7N7_2009_A/duck/Chiba/20/2009_wild_LP 

H7N7_2005_A/mallard/Sweden/S90597/2005_wild_LP 
 

H7N7_2005_A/mallard/Netherlands/9/2005_wild_LP 

H7N7_2007_A/mallard/Geumgang/1/2007_wild_LP 
 

H7N8_1999_A/swan/Shimane/42/1999_wild_LP 

H7N7_2007_A/muteswan/Hungary/5973/2007_wild_LP 
 

H7N8_2006_A/mallard/Netherlands/33/2006_wild_LP 

H7N7_2008_A/northernpintail/Miyagi/674/2008_wild_LP 
 

H7N8_2008_A/garganey/Crimea/2027/2008_wild_LP 

H7N7_2008_A/northernpintail/Aomori/1001/2008_wild_LP 
 

H7N9_2002_A/mallard/Sweden/91/2_wild_LP 

H7N7_2008_A/northernpintail/Akita/1368/2008_wild_LP 
 

H7N9_2008_A/duck/Mongolia/119/2008_wild_LP 

H7N7_2008_A/northernpintail/Akita/1369/2008_wild_LP 
 

H7N9_2008_A/Anascrecca/Spain/1460/2008_wild_LP 

H7N7_2008_A/northernpintail/Akita/1370/2008_wild_LP 
 

H7N9_2009_A/goose/CzechRepublic/1848K9/2009_dom_LP 

H7N7_2009_A/swan/Slovenia/53/2009_wild_LP 
  

 

Table C1:  Sequences in avian H7 HA post-1990 Eurasian dataset.  Sequences are labelled in format “Serotype”_ “year of sampling”_ “NCBI sequence 
name”_ “avian host (wild or domestic)”_“viral pathogenicity (highly pathogenic = HP, low pathogenic = LP)”.  
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Trait transition model 
Joint phylogeny and discrete trait sampling, 

or use of empirical tree distribution 

Symmetric CTMC with BSSVS Empirical tree distribution 

Asymmetric CTMC with BSSVS Empirical tree distribution 

Asymmetric CTMC with BSSVS Joint phylogeny and discrete trait inference 

Symmetric CTMC with MJ counting Empirical tree distribution 

Asymmetric CTMC with MJ counting Empirical tree distribution 

Asymmetric CTMC with MJ counting Joint phylogeny and discrete trait inference 

 

Table C2 
Discrete ancestral trait mapping analyses performed on the Eurasian (post 1990) 
avian H7 HA dataset.  Discrete trait evolution across the BEAST phylogenies was modelled 
using both symmetric and asymmetric continuous time Markov chains (CTMC).  The discrete 
traits considered were viral NA subtype, avian host and viral pathogenicity.  In one set of 
runs, Bayesian stochastic search variable selection (BSSVS) was implemented to identify a 
parsimonious diffusion model for the dissemination of discrete traits across the phylogeny.  
In runs where BSSVS was not implemented, ‘Markov jumps’ (MJ) counting was used to 
record the number of transitions across the tree. 
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Figure C2: Instantaneous transitions rates between pairs of background NA subtypes.  
Rates were calculated by multiplying the overall transition clock rate for each MCMC sample by the 
corresponding relative instantaneous transition rate parameter from the non-BSSVS or BSSVS 
analyses, (a) excluding ‘switched-off’ transition rates with an indicator value of zero and (b) 
including ‘switched-off’ rates.  The much larger means and variances for the BSSVS runs led to 
higher means and upper 95% HPD limits for the BSSVS runs compared to the non-BSSVS runs.
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Run 
Number 
of states 

Number of 
possible 

rates 
Transition clock rate Clock rate * tree length 

Observed 
number of 

jumps 

Subtype sym 6 15 0.1385 (0.0663, 0.2248) 36.36 (16.81, 58.96) 33.82 (25, 43) 

Subtype asym 6 30 0.183 (0.0715, 0.3257) 48.12 (18.70, 86.51) 35.65 (25, 49) 

Host sym 2 1 0.0771 (0.0377, 0.1245) 20.25 (9.59, 32.64) 19.11 (14, 27) 

Host asym 2 2 0.0763 (0.0358, 0.1217) 20.08 (9.25, 31.92) 18.39 (13, 25) 

Path sym 2 1 0.02056 (0.00432, 0.03902) 5.3989 (1.20, 10.30) 4.395889 (4, 6) 

Path asym 2 2 0.0183 (0.00296, 0.0392) 4.839145 (0.868, 10.500) 4.283111 (4, 6) 

 
Table C3 
Relationship between expected and observed number of state transitions across tree samples.  The observed number of discrete trait transitions 
across the tree from a Markov jumps analysis was compared with the predicted number of transitions obtained by multiplying the overall transition clock 
rate by the corresponding tree length (also see Appendix C, Figure C3).  Means and 95% HPD intervals from across the MCMC are reported here. 
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Figure C3 
Comparing the expected number of discrete trait transitions with the number of 
Markov jumps across phylogenies.  For each phylogeny sample, an overall transition 
clock rate was calculated for transition between NA subtypes, avian hosts and viral 
pathogenicity.  The expected number of transitions across the tree was calculated by 
multiplying the transition clock rate by the total length of the tree.  This was plotted against 
the total number of discrete trait transitions from a Markov jumps analysis, in order to 
compare the methods.  Lines with the equation y = x are also plotted, to assist in assessing 
the concordance between the clock rates and Markov jump counts.  
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Figure C4 
Relationship between outputs of BEAST discrete trait mapping analyses.  For the 
mapping of viral NA subtype onto avian H7 HA phylogeny samples, no obvious relationship 
was found between the number of pair-wise NA subtype transitions and the relative rate 
parameters for those transitions (plots a-c; Appendix C, Table C4).  A positive correlation 
was observed between the relative instantaneous rate parameters (from BSSVS and non-
BSSVS analyses – see main text for details on calculation) and the indicator value 
describing the proportion of the time a particular rate was switched on (plots d-f; Appendix C, 
Table C4).  Positive correlations were also found between all different pairs of ways of 
calculating the relative rate parameters (plots g-i; Appendix C, Table C4).  The red vertical 
line in plots d-f indicates the required cut-off value for a rate to be ‘significantly non-zero’ 
(Bayes factor > 3).   
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Output 1 Output 2 
Spearman's 

rho 
p -value 

(uncorrected) 

Significance after 
Bonferroni correction 

(p <0.0056) 

Relative rate (non BSSVS) Number of transitions 0.2400 0.2006 
 Relative rate (BSSVS all) Number of transitions -0.0621 0.7439 
 Relative rate (BSSVS non-zero) Number of transitions -0.0714 0.7068 
 Indicator Relative rate (non BSSVS) 0.6716 7.32x10

-5
 * 

Indicator Relative rate (BSSVS non-zero) 0.7335 7.89x10
-6

 * 

Indicator Relative rate (BSSVS all) 0.8692 5.29x10
-7

 * 

Relative rate (non BSSVS) Relative rate (BSSVS all) 0.7944 1.35x10
-6

 * 

Relative rate (non BSSVS) Relative rate (BSSVS non-zero) 0.7900 1.45x10
-6

 * 

Relative rate (BSSVS all) Relative rate (BSSVS non-zero) 0.9511 < 2.2x10
-16

 * 

 
Table C4 
Relationship between BEAST discrete trait mapping outputs.  Spearman’s rank correlation was calculated between different parameters from 
the BEAST discrete trait mapping of viral NA subtypes onto H7 HA phylogeny samples (note that Pearson’s correlation was not appropriate due to 
the possibility of non-normality in the 30 data-points).  For an asymmetric model with 6 states, a total of 30 (=6*5) pairwise transition rates were 
considered.  The mean number of transitions from one state to another, the indicator (proportion of MCMC states at which the particular state was 
switched on) and the mean instantaneous relative rate parameter describing how often transition from a given state to another particular state occurs 
with respect to the other pairwise transitions were considered.  Relative rate parameters were calculated from a non-BSSVS analysis; in BSSVS 
analyses the relative rates were multiplied by the indicator values at each sampled MCMC state (‘BSSVS all’), and in some analyses only states with 
non-zero indicators were included (‘BSSVS non-zero’).  A Bonferroni correction was performed to determine the required p-value cut-off (0.05/9 = 
0.0056) given that 9 comparisons were being performed.  All previously significant correlations remained significant under the Bonferroni correction.
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10.4     Appendix D 

 

Sequence name p17 gp41 p17_labels_i gp41_lables_i p17_labels_ii gp41_labels_ii 

CD_31265_1984 A CRF01 A CRF01 A CRF01 

CD_31299_1984 A A A A A A 

CD_31331_1984 D D D D D D 

CD_31335_1984 A H A H A H 

CD_31496_1984 A A A A A A 

CD_31518_1984 A A A A A A 

CD_31533_1984 D D D D D D 

CD_31598_1984 A G A G A G 

CD_31602_1984 C C C C C C 

CD_31605_1984 D G D G D G 

CD_31653_1984 D D D D D D 

CD_31688_1984 D D D D D D 

CD_31748_1984 A A A A A A 

CD_31807_1984 A J A J A J 

CD_31821_1984 D F D F D F 

CD_31857_1984 F F F F F F 

CD_31873_1984 H A H A H A 

CD_31886_1984 A A A A A A 

CD_31899_1984 G G G G G G 

CD_31917_1984 J U1 J G J G 

CD_31978_1984 A A A A A A 

CD_32051_1984 A J A J A J 

CD_32128_1984 D D D D A A 

CD_32130_1984 D D D D A A 

CD_32154_1984 A CRF01 A CRF01 A CRF01 

CD_32170_1984 A A A A A A 

CD_32188_1984 D F1 D F D F 

CD_32290_1984 G G G G G G 

CD_30008_1984 G G G G G G 

CD_30084_1984 G G G G G G 

CD_30104_1984 A A A A A A 

CD_30105_1984 A A A A A A 

CD_30109_1984 A A A A A A 

CD_30146_1984 K K K K K K 

CD_30184_1984 D D D D D D 

CD_30280_1984 J J J J J J 

CD_30326_1984 C C C C C C 

CD_30407_1984 A A A A A A 

CD_30432_1984 D D D D D D 

CD_30487_1984 A CRF01 A CRF01 A CRF01 

CD_30506_1984 A G A G A G 

Continued on next page 
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CD_30509_1984 F F F F F F 

CD_30582_1984 G G G G G G 

CD_30750_1984 A G A G A G 

CD_30793_1984 F F F F F F 

CD_30871_1984 A A A A A A 

CD_30873_1984 G A G A G A 

CD_30884_1984 U2 U2 D D U U 

CD_31149_1984 G G G G G G 

CD_31166_1984 D D D D D D 

CD_31184_1984 K K K K K K 

CD_31194_1984 A A A A A A 

CD_31252_1984 D D D D D D 

 

Table D1 
Subtype labels assigned to HIV-1 group M sequences.  p17 and gp41 sequences were matched by 
the patient identifier from Kalish et al. (2004), and sequence names took the form “two letter country 
code_ patient identifier_year”.  The p17 and gp41 sequences were independently assigned subtypes, 
using maximum likelihood phylogenies which included reference sequences of different subtypes.  
Subtypes assigned for each region from each individual are reported in the table as “p17” and “gp41”.  
To investigate the possible confounding effect of misclassifying sequences which were difficult to 
subtype, the inter-subtype recombination rate analysis was repeated twice using alternative labellings 
(“labels_i” and “labels_ii”).  Highlighted rows indicate the sequences which are labelled differently 
between the original subtype labellings and “labels_i” and/or “labels_ii”. 
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Figure D1 
Maximum likelihood tree for HIV-1 group M p17 region.  A maximum likelihood phylogeny 
was constructed using PHYML, under a general time-reversible model of nucleotide 
substitution with gamma-distributed rate heterogeneity across sites (alpha parameter 
estimated from the data) and 6 rate categories.  The data comprised p17 sequences 
reported by Kalish et al. (2004) for which a corresponding gp41 sequence from that 
individual was available, as well as reference sequences for all HIV-1 group M subtypes, and 
CRFs 01 and 02, from the Los Alamos National Laboratory database.  1000 bootstrap 
replicates were performed (bootstrap values not shown).  The tree was rooted to a p17 
sequence from HIV-1 group N. 
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Figure D2 
Maximum likelihood tree for HIV-1 group M gp41 region.  A maximum likelihood 
phylogeny was constructed using PHYML, under a general time-reversible model of 
nucleotide substitution with gamma-distributed rate heterogeneity across sites (alpha 
parameter estimated from the data) and 6 rate categories.  The data comprised gp41 
sequences reported by Kalish et al. (2004) for which a corresponding p17 sequence from 
that individual was available, as well as reference sequences for all HIV-1 group M subtypes, 
and CRFs 01 and 02, from the Los Alamos National Laboratory database.  1000 bootstrap 
replicates were performed (bootstrap values not shown).  The tree was rooted to a gp41 
sequence from HIV-1 group N. 
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Figure D3 
Example of ancestral subtype transitions on the p17 and gp41 phylogeny samples.  On each of 
the example phylogeny samples (gp41 or p17), the branches are coloured according to the inferred 
p17 or gp41 subtype.  Transitions between inferred ancestral subtypes across the tree (observed as 
colour changes at nodes) are represented by yellow circles.  It may be observed that, in this example, 
a larger number of ancestral transitions were required to map subtypes onto the phylogeny for the 
correct gene (p17 subtypes onto the p17 tree, or gp41 subtypes onto the gp41 tree) compared to onto 
the phylogeny for the region at the opposite end of the genome (p17 subtypes onto the gp41 tree, or 
gp41 subtypes onto the p17 tree).   
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Figure D4 
p17 clade labels.  To mitigate any error introduced by attempting to classify sequences into subtypes 
according to the way in which they clustered with the Los Alamos reference sequences, analyses were 
repeated using clades defined at a specific point along the BEAST maximum clade consensus tree for 
p17.  Two different cut-off points (v1 and v2 respectively) near to the root of the subtype A clade were 
chosen, which led to the definition of 7 and 10 clades respectively, represented by the blue and orange 
blocks at the tips of the tree.  The scale bar is in units of substitutions per site. 
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Figure D5 
gp41 clade labels.  To mitigate any error introduced by attempting to classify sequences into subtypes 
according to the way in which they clustered with the Los Alamos reference sequences, analyses were 
repeated using clades defined at a specific point along the BEAST maximum clade consensus tree for 
gp41.  The root of the subtype A clade (represented by a red dot) was chosen as the cut-off.  This led 
to a total of 10 clades being defined (some of which only contained one lineage).  The cut-off point is 
marked on the phylogeny, and the green blocks at the tip of the tree illustrate clades defined in this 
manner.  The scale bar is in units of substitutions per site. 
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Figure D6 
Bayesian skyline plots for p17 and gp41.  Coalescent-based analysis was performed in 
BEAST under a flexible Bayesian skyline demographic model.  The plots show the change in 
viral genetic diversity between the root and tips of the tree, which can be scaled to estimate 
the effective size of the viral population (and, under certain conditions, the infected 
population – see Chapter 7). Black lines represent the mean and blue lines represent the 
95% HPD limits.  The shape of the curve is suggestive of exponential growth, as may be 
expected across the timescale in which the HIV-1 group M epidemic came to prominence.  
The apparent rapid increase in viral diversity could also represent underlying changes in the 
host population, for example demographic expansion, which is consistent with census data 
for Kinshasa (see Appendix E, Figure E4).   
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Figure D7 
Example ancestral recombination graph (ARG).  (a) The ARG shows the history of the 
sample, moving from the tips of the graph towards the MRCA.  In this example, a coalescent 
event occurs first, then a recombination event, followed by a further three coalescent events 
until the MRCA has been reached for all sites.  (b) The effect of recombination on creating 
different genealogies for sites on either side of the recombination breakpoint may be 
observed.  The blue lines represent the genealogy for sites on one side of the recombination 
breakpoint, and the red lines represent the genealogy on the other side.  This diagram was 
based upon Figure 1 of McVean (2001)

5
.  Note that the shape of the ARG will depend on the 

nature and timing of the recombination event in the evolutionary history, as well as the rate 
of nucleotide substitution, and that not all recombination events which take place will be 
detectable on an ARG. 

                                                 
5
 McVean, G. A. T. (2001). What do patterns of genetic variability reveal about mitochondrial 

recombination? Heredity 87: 613-620. 
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Figure E1 
Comparison of the expected number of ancestral lineages (VN) under Equation 5 of 

Chapter 7 and Griffiths (1981).  A model of constant population size (equivalent to an 

endemic model, i.e. fSI/I
2
(t)=Ne/2) was employed for comparison of the expected number of 

lineages under Equation 5 (red line), which is an approximation presented by Volz et al. 

(2009), and the exact calculation of the expectation as outlined by Griffiths (1981) and 

Tavaré (1994) (black line; see equation 6.7 of Tavaré 1984).  A sample size of n=20 (number 

of tips in the tree) was chosen.  Time moves from the present (t=0) to the past, towards the 

root of the tree, and is scaled in units of Ne generations.  Equation 5 appears to be a 

reasonable approximation under the assumption of Volz et al. (2009) that V >> 1/N.   
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Figure E2 
Comparison between Equation 6 and a simulated empirical cumulative distribution 
function for coalescence times.  A model of constant population size was assumed as in 
Figure E1.  For a given number of sampled sequences (here, n=20), the times of all n-1 
coalescence events were simulated randomly from an exponential distribution with rate 
kChoose2 when there were k lineages (see Section 7.4.2 for a discussion of coalescence 
rate).  The simulation was performed 10,000 times and an empirical cumulative distribution 
function for the coalescence times was generated and plotted (black line).  The empirical 
CDF could then be compared to the coalescence times under Equation 6 (red line), which 
appears to be a good approximation to the empirical CDF. 
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Figure E3 
Comparing the approximation for the expected cluster size, x1, (Chapter 7, Equation 10) with 
exact results from Tavaré (1984).  The expected number of progeny lineages, x1, at the tips of 
the tree (time T) of a lineage at an earlier time, t, was approximated as described in Equation 10 of 
Chapter 7, under a model of constant population size.  This approximation assumed that the 
number of lineages was much greater than 1 (i.e. that V >>1/N).  The approximation to x1 was 
plotted against an exact result (using Equations 6.1 and 6.2 of Tavaré (1984), which give the 
probability that there are k lineages at time t, given that there are a total of n tips in the tree).  The 
approximation appears to be good towards the tips of the tree.  However, it does not behave as it 
should towards the root of the tree (i.e. when the Volz et al. (2009) assumption that V >>1/N no 
longer holds).  Specifically, x1 should tend to n (the number of tips) towards the root of the tree, but 
the approximation to x1 carries on increasing beyond n. 
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Figure E4 
Increase in DRC population size and HIV-1 group M relative genetic diversity over 
time.  Census population size data (coloured circles) were plotted on a logarithmic scale for 
(a) the Democratic Republic of the Congo (DRC) and (b) Kinshasa, the capital of the DRC.  
Data were obtained from http://www.populstat.info.  The population size data has been 
superimposed onto Bayesian skyline plots obtained by Worobey et al. (2008) for HIV-1 group 
M sequence data from the DRC, which show a similar pattern of increase in relative genetic 
diversity to that observed for HIV-1 group M sequences from Kinshasa in Chapter 5 
(Appendix D, Figure D6).  A similar pattern of increase over time was observed between the 
relative genetic diversity and both the Kinshasa and DRC population sizes. 
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Figure E5 
Compartment model for the HIV-1 group M epidemic in Kinshasa/DRC.  A simple model 
is shown which captures infection dynamics and allows for a concomitant increase in 
population size, N.  The change in population size in Kinshasa, and the Democratic Republic 
of the Congo as a whole, may be observed from the plot of census data over time (Appendix 
E, Figure E4). 
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Highly pathogenic avian influenza (HPAI) virus H5N1 infects water and land fowl and can infect and cause
mortality in mammals, including humans. However, HPAI H5N1 strains are not equally virulent in mammals,
and some strains have been shown to cause only mild symptoms in experimental infections. Since most
experimental studies of the basis of virulence in mammals have been small in scale, we undertook a meta-
analysis of available experimental studies and used Bayesian graphical models (BGM) to increase the power
of inference. We applied text-mining techniques to identify 27 individual studies that experimentally deter-
mined pathogenicity in HPAI H5N1 strains comprising 69 complete genome sequences. Amino acid sequence
data in all 11 genes were coded as binary data for the presence or absence of mutations related to virulence in
mammals or nonconsensus residues. Sites previously implicated as virulence determinants were examined for
association with virulence in mammals in this data set, and the sites with the most significant association were
selected for further BGM analysis. The analyses show that virulence in mammals is a complex genetic trait
directly influenced by mutations in polymerase basic 1 (PB1) and PB2, nonstructural 1 (NS1), and hemag-
glutinin (HA) genes. Several intra- and intersegment correlations were also found, and we postulate that there
may be two separate virulence mechanisms involving particular combinations of polymerase and NS1 muta-
tions or of NS1 and HA mutations.

H5N1 avian influenza initially garnered widespread atten-
tion following the first human cases of infection recorded in
Hong Kong in 1997, after an outbreak in chickens (15, 72, 74),
which itself followed an earlier infection in water fowl (21, 84).
Since then the virus has spread across Asia to Russia, the
Middle East, Europe, and Africa, causing deaths in wild
aquatic birds (13, 58, 71, 81), domestic ducks and chickens (29,
39, 43), dogs and cats (2, 35, 36, 55, 76), and 254 of 405
confirmed human cases as of 5 February 2009 according to
the World Health Organization (http://www.who.int/csr/disease
/avian_influenza/).

Avian influenza virus strains are classified as highly patho-
genic or of low pathogenicity on the basis of their virulence in
chickens—highly pathogenic avian influenza (HPAI) virus can
cause significant mortality (75 to 100%) in unvaccinated flocks
(see reference 1), whereas low-pathogenicity strains cause only
mild or no symptoms. HPAI H5N1 strains possess multiple
basic amino acids in the hemagglutinin (HA) surface glyco-
protein (27) cleavage site, the characteristic of all HPAI (62,

63). A variety of substrains of HPAI H5N1 have appeared
during the last 10 years (82) and have probably become en-
demic in both wild birds and poultry (12, 43, 58). All strains of
HPAI H5N1 are highly pathogenic in chickens, but their viru-
lence varies in ducks (29) and mammals (see for example,
references 11, 20, and 34).

The influenza A virus has an eight-segment RNA genome
encoding 11 proteins, and the effects of point mutations or
allelic combinations on the virulence of HPAI H5N1 isolates in
mammals have been measured in mammals by reverse genetics
and reassortment studies. Virulence in mammals is thought to
be polygenic (10, 20), and several experimental studies have
shown that mutations in the genes encoding internal proteins
are important virulence determinants. For example, E627K in
PB2 was shown to be important for replication in mammalian
cells (73) and in the difference in virulence of two H5N1 Hong
Kong 1997 outbreak isolates (24), whereas D92E in NS1 was
found to increase resistance to tumor necrosis factor alpha and
gamma interferon host responses for another H5N1 Hong
Kong 1997 strain in vitro and in vivo in one study in swine (67).

Given the diversity of H5N1 viruses, their high rates of
mutation and reassortment (14, 21, 22, 68, 77), and the poly-
genic nature of their virulence in mammals, general conclu-
sions about virulence factors cannot be drawn with confidence
from individual studies of small numbers of closely related
sequences. However, systematically amalgamating the results
from several studies may allow a more comprehensive picture
to emerge. Such integration of results from many experiments
and assays to provide a more complete understanding of gene-
protein interactions has been carried out in Saccharomyces
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cerevisiae (32, 40, 65). Using multiple data sources reduces the
number of false-positive results and can reveal new patterns of
association (32, 40), provided data quality and content issues
are overcome (see for example, reference 56). Furthermore,
while assembly of a few large data sets into a form suitable for
meta-analysis can be done manually, experimental results from
many small individual studies can also be captured by text
mining published abstracts from online databases such as
PubMed at the National Center for Biotechnology Information
(NCBI) (51, 69).

The aim of the present study was to find a statistical model
to describe the amino acid sites important for virulence of
HPAI H5N1 in mammals and to indicate possible interactions
between the sites. We have text mined PubMed abstracts for
H5N1 isolates with experimentally determined virulence in
mammals and downloaded the corresponding full genome se-
quences from the NCBI Influenza Virus Resource (4). We
then fitted a Bayesian graphical model (BGM) to capture the
dependencies among mutations and between individual muta-
tions and the mammalian virulence phenotype. BGMs repre-
sent the probabilistic dependencies between random variables
as a network without self-references, i.e., a directed acyclic
graph (37, 59). They provide a convenient description of mul-
tivariate data because each link encodes a direct probabilistic
dependency between sampled variables (e.g., A � C), rather
than just a correlation (e.g., A � C, because A � B and B � C).
BGMs have been used in several biological contexts: to infer
gene expression networks from microarray data (18), to find
the genes involved in a complex trait using single nucleotide
polymorphism data (66), and to find coevolving sites in a rap-
idly variable region of a human immunodeficiency virus (HIV)
gene (61). In the present study the nodes (random variables) in
the network represent variable amino acid sites or the pheno-
type: links between nodes represent direct dependencies, i.e.,
links between amino acid sites represent putative functional
interactions, and links between amino acid sites and the phe-
notype of “virulence in mammals” represent direct association
of specific mutations and virulence.

MATERIALS AND METHODS

Text mining. A list of H5N1 HPAI isolates with experimentally determined
virulence in mammals was obtained by using a text-mining approach, followed by
manual curation. Initially, XML (Extensible Markup Language) records of all
abstracts containing “H5N1” and “virulence” keywords were obtained from
PubMed using Eutils queries (http://www.ncbi.nlm.nih.gov/entrez/query/static
/eutils_help.html) generated with R scripts (http://www.r-project.org). Each of
the 542 abstracts obtained on 5 March 08 were searched for isolate names (such
as A/Vietnam/1203/2004) using a “/(words)/(words)/” regular expression (i.e., at
least three “/”s). This yielded 185 isolate names in 97 abstracts. Next, a list was
compiled (using R scripts and manual editing) of unique isolate names, taking
into account synonyms (e.g., dk � duck) and recording the PubMed identifiers
(PMIDs) of papers that had mentioned the strain. Of the 94 unique isolate
names found, 64 were for H5N1 isolates with measured virulence in mammals
and full genome sequences deposited in the NCBI Flu database (4) (http://www
.ncbi.nlm.nih.gov/genomes/FLU/FLU.html).

The abstracts corresponding to the 64 H5N1 isolates were examined, and
detailed results from mice or ferret studies were manually extracted from the
corresponding studies. In some studies additional strains not mentioned in the
abstract had also been studied, and these strains were also added to the original
list, bringing the total to 69 strains from 27 individual studies. Table SA1 in the
supplemental material contains the references to the studies and the numbers of
strains from each study in the final data set. Each strain was manually classified
as either virulent or nonvirulent in mammals based upon the amalgamated

experimental evidence. Table SA2 in the supplemental material contains the
assigned classification and experimental evidence per strain.

Data preprocessing. Full genome nucleotide sequences of the 69 isolates with
experimental evidence for (or against) virulence in mammals were downloaded
from the NCBI Flu Database. The individual segments were initially aligned by
using CLUSTAL W in BioEdit, and then a final manual codon alignment was
performed in MEGA 4.0. The PB1-F2, M2, and NS2 coding sequences were
manually extracted from the aligned nucleotide files (not all strains were anno-
tated for these alternative coding sequences), and all 11 nucleotide coding
sequences were translated to protein sequences in MEGA 4.0.

To analyze the association of particular residues at amino acid sites and
virulence using BGMs, the protein sequences were converted into a binary
matrix where each row of the matrix represented an isolate genome (11 proteins
concatenated), and columns represented amino acid sites. An additional column
for the virulence phenotype was added. Zeros represented consensus amino acid
residues, ones represented any mutant (or the virulent phenotype). In particular,
the following procedure was used to determine the binary coding at each variable
site (via a custom R script). (i) If there are only two types of amino acids present
at a site (A or B), a 2�2 table was calculated, counting the number of A residues
in the virulent sequences, V(A); the number of A’s in nonvirulent sequences,
N(A); the number of B’s in virulent sequences, V(B); and the number of B’s in
nonvirulent sequences, N(B). (ii) To determine which to code as 1, A or B, the
determinant of the 2�2 table was calculated as V(A)N(B) – V(B)N(A). If the
determinant is positive, then amino acids of type A are coded as 1’s and the B’s
are coded as 0’s (and vice versa for negative determinants). Alternatively, if there
is evidence in the literature to indicate that a particular residue is related to
virulence (or nonvirulence), then this residue is coded as 1 (or 0). (iii) If there are
more than two types of residue at a site, then step 2 is repeated for all combi-
nations of amino acids partitioned into two groups, and the combination with the
smallest P value from the Fisher exact test on the 2�2 table is chosen.

The coding scheme used, corresponding 2�2 table entries and P value from
the Fisher exact test for sites of interest are reported in Table 1 (see Table SA3
in the supplemental material for information on all of the sites examined).

Multivariate analysis of variable amino acids. (i) BGMs. BGMs were inferred
by using HyPhy (60, 61) from sequence and phenotype data coded to a binary
matrix. HyPhy implements the methods of Cooper and Herskovits (16) and
Friedman and Koller (19) for BGM inference as follows. The probability for a
particular graph structure given the data can be calculated by using the K2
scoring metric (16). The K2 metric score for one node is a function of the number
of discrete states of the node and its parents (e.g., how many B � 1 when A �
1, etc.), and the total score for the graph is the product of the individual node
scores. When the number of nodes is nontrivial (typically greater than 5), eval-
uating all possible graph structures becomes prohibitive so the Monte Carlo
Markov chain (MCMC) method is used over families of ordered nodes to find a
set of probable graph structures to describe the data (19). The output of the
BGM inference is a consensus graph, where each link is assigned a probability of
existing according to how often it appears in the sampled MCMC results (i.e., the
marginal posterior probability � the expectation of posterior probabilities
weighted by the likelihoods of the node orderings in which the given link ap-
pears). Links with probability greater than or equal to 0.5 in the consensus graph
are used to create the final network.

For analysis of the 69 sequence data set (with 10 nodes), the HyPhy BGM
MCMC was run with 106 steps (after a burn-in of 105 steps) and sampled every
1,000 steps. These parameters were chosen so that the sampled likelihood values
were converged to a stationary distribution, and the individual samples were
independent (the autocorrelation of the sampled likelihood values was calcu-
lated in every run, and the values of the first lags were not significantly different
from zero). The maximum number of parents allowed per node was increased
until there was no significant change in network structure (i.e., no new links
where P � 0.5 occurred), and a maximum of five parents per node was found to
be sufficient for the present data set.

(ii) Model validation. The significance of the links in the BGM inferred from
the 69 � 10 binary data matrix was tested in two ways.

(a) The inferred BGM was compared to a set of null model BGMs. Null
models were generated by inferring BGMs from nonparametrically bootstrapped
data in which one site (or phenotype) was randomly permuted (i.e., a fixed
column in a matrix of observation was resampled without replacement) at a time
(leaving the other sites unchanged). Ten randomizations were performed per site
(i.e., one-hundred randomizations for the ten sites). Randomizing each site (or
the phenotype) independently of the others and inferring the BGM gives the
background probability of the links between that site and the others due to
random noise alone, conditional upon the joint probabilistic structure of the
remaining data. The unpermuted BGM link probabilities from the site of interest
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to or from the other sites were normalized by the mean and standard deviation
of the 10 permuted results to give a standard score per link.

(b) Cross-validation of structure was applied. To test the robustness of the
inferred BGM and mitigate any possible effects from isolate misclassification or
sequencing errors, 10 BGMs were calculated and averaged over different subsets
of the data. Each subset of data consisted of 65 sequences (i.e., training data),
and the 4 remaining sequences were kept as test sets. Since a different group of
strains (particularly the Z constellation) began to replace the early strains from
2002 onward (11, 22, 43), different patterns of mutations may occur after 2002;
hence, four sequences were excluded in each run, one from each of the pre-2002
(early) virulent, 2002� (late) virulent, pre-2002 nonvirulent, and 2002� nonviru-
lent sequences.

(iii) Conditional probability tables. Conditional probability tables describing
the probability that a strain is virulent (nonvirulent) given the presence or
absence of mutations at individual sites (identified in the BGM as directly
influencing virulence), or a combination of those sites, were calculated separately
for each of the 10 cross-validation training data sets using the observed frequency
of mutations. Certain combinations of mutations in the influencing sites were not
observed because of the correlation between the sites (e.g., there were no se-
quences in the 69 sequence set with PB1-317 � 1 and NS1-92 � 0 or vice versa).
For (hypothetical) strains with these unobserved combinations, we estimated the
probability of virulence from the probability of virulence of the individual sites,
assuming that the sites were independent as in equation 1 below.

P�Vir � 1�a1a2a3� � 1��
i�1

3

�1 � pi�ai�� (1)

where P(Vir � 1�a1a2a3) is the probability of virulence for a sequence with the
particular combination a1a2a3 of amino acids, and pi(ai) is the probability of
virulence when node i has amino acid i.

The performance of the model was examined by predicting the virulence of the
sequences in each of the 10 training and test data set pairs using the conditional
probability table derived from each training set, respectively. The numbers of
true positives (TP; virulent sequences predicted to be virulent by the model),
false negatives (FN; virulent sequences predicted as nonvirulent), false positives

(FP; nonvirulent sequences predicted as virulent), and true negatives (TN; non-
virulent sequences predicted as nonvirulent) were calculated along with the misclas-
sification (FP � FN), sensitivity [TP/(TP � FN)], and specificity [TN/(FP � TN)]
values.

RESULTS

Isolates with experimentally determined virulence in mam-
mals. A total of 69 H5N1 full-genome isolates from 27 studies
of virulence in mammals identified using a text-mining ap-
proach, followed by manual curation, were used in this analysis
(see Materials and Methods and Table SA1 in the supplemen-
tal material). The most frequently measured strain—A/Viet-
nam/1203/04—was the subject of seven virulence studies. Five
studies (11, 20, 34, 47, 50) contained measurements for at least
five sequences. Strains were classified as virulent (or nonviru-
lent) if infection studies showed a high mortality with a low
dose; sequences with 50% lethal dose of �103 50% egg infec-
tious doses were classified as virulent in mammals. Even
though the virulence results were obtained in different animals
and using different protocols, the results were generally con-
cordant: in 75% of cases (52 sequences), strains could be clas-
sified clearly either as highly pathogenic in mice or ferrets or
only caused mild or no symptoms. Furthermore, three studies
measured virulence in both mice and ferrets (28, 50, 64) in a
total of five strains. In these cases, the pathogenicity in ferrets
correlated with that in mice (highly pathogenic strains in fer-
rets were highly pathogenic in mice, low-pathogenicity strains
in ferrets showed low pathogenicity in mice). Although differ-
ences in the virulence of two H5N1 strains in mice and ferrets

TABLE 1. Amino acid site coding and P value for association with virulence using the Fisher exact testa

Site
Residue(s)

P Selected Reference(s) Additional detail(s)
Virulent Nonvirulent

PB2-318 K R 0.0027 * 10
PB2-355 K R, Q 0.0003 (PB1-317) 10, 34, 41
PB2-627 K E 0.0034 * 10, 11, 24, 41
PB2-627 or 701 K, N E, D 0.0003 (*) 17, 38, 70
PB1-317 I M, V 3.8E-05 * 10, 34, 41
PA-127 I V 0.0007 (PB2-318) 75
PA-336 M L 0.0006 (PB2-318) 75
HA-102 (86E) V A, I, P, S, T 0.0092 * 83
HA-140 (124B) S N, D 0.0431 83
HA-154 (138A) L, N Q, H, I 0.0391 83
HA-172 (156 glyco) T, S A 0.0010 * 8, 10, 83
HA-228 (212D) E, R K 0.0194 * 83
HA-279 (263E) T A 1.8E-05 * 83
NA-49:72 Any deletion No deletion 0.0003 * 5, 52 Stalk deletion
NS1-42 S A, P 0.0244 33 P attenuates pathogenicity
NS1-92 E D 0.0010 * 41, 67
NS1-92/97 E D 0.0504 48 D92E (no deletion) or D97E

(with deletion)
NS1-127 N T, D, R, V, A 0.0387 53 123-127 PKR region
NS1-189 N D, G 0.0006 (PB2-318) 75
NS1-195 T, Y S 0.0294 (HA-102) 7
NS1-228 P S 0.0027 (NS1-92) 31, 57 PDZ binding domain
NS2-31 I M 0.0006 (PB2-318) 75
NS2-56 Y H, L 0.0006 (PB2-318) 75

a For each sequence, sites containing the “virulent” residues (column 2) were coded as ones or zeros (column 3). The numbers of sequences classified as virulent
(nonvirulent) with virulent (nonvirulent) residues were calculated, and the P value from the Fisher exact test (uncorrected) is displayed in column 4. The nine sites with
the lowest P values selected for further analysis are indicated by an asterisk in column 5; sites with the same (or similar) pattern of mutations to selected sites are also
indicated in column 5. All site numbering is from the first methionine in the coding sequences. The numbers in parentheses for HA correspond to the mature H5 site
numbers, as in reference 83, and the letters correspond to the canonical antigenic site, or a glycosylation site (glyco). Abbreviations: PB, polymerase basic; NP,
nucleoprotein; NA, neuraminidase; M, matrix protein; NS, nonstructural protein.
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at high dose have been reported (86), we did not find signifi-
cant differences in the overall virulence of the strains in the
present data set when we used our binary classification scheme.
Details of the strain classification and associated experimental
evidence can be found in Table SA2 in the supplemental ma-
terial.

The final full data set consisted of 69 full genome sequences:
35 from water fowl, 17 from land fowl, and 17 from humans.
Totals of 20% (7) of the water fowl isolates, 24% (4) of the
land fowl isolates, and 65% (11) of the human sequences were
classified as virulent in mammals, making a total of 22 virulent
sequences. The distribution of the strains across isolation year
and place is shown in Fig. 1: this data set covers several out-
breaks, including the 1997 Hong Kong, 2000 to 2002 China,
and 2004 Viet Nam epidemics.

Site association with virulence. Across the whole genome,
1,235 of 4,582 (	27%) amino acid sites were variable (�1
alternative residue in the 69 sequences) with 969 of 1,235
(	78%) of these variable sites containing only 2 amino acid
residues. Furthermore, in the remaining 266 (22%) of variable
sites that coded for three or more alternative amino acids, the
average frequency of the next most abundant residue was only
4%. To facilitate analysis of the relationship between muta-
tions and virulence in mammals, the sequence data were coded
to a binary matrix, which therefore retained almost all of the
information contained in the sequence alignment.

All 1,235 polymorphic amino acid sites in the protein se-
quences of the 69 strains were examined, and the distribution
of the alternative residues among strains classified as virulent
or nonvirulent was recorded. A total of 227 amino acid sites
(19% of the variable sites) across the entire genome were
found to have an association with virulence at P � 0.05 (Fisher
exact test, uncorrected). However, there was a high degree of
association among sites, with mutations at 129 sites having an
identical distribution across the strains to at least one other
site. Of the 98 sites with a distribution that was unique in the
data set, only 53 differed by more than one mutation from any
other site. Of the 98 sites with a unique distribution, 12 have
been reported in the literature to have functional significance
for virulence (see Table SA3 in the supplemental material).

We next examined all amino acid sites or genomic features
(e.g., neuraminidase [NA] stalk deletion; PDZ binding domain
in NS1) previously reported in the literature as having func-
tional significance for virulence in H5N1 and found evidence

for 70 sites/features. Their distribution among virulent and
nonvirulent strains was tested as described above: the 23 that
were apparently associated with virulence in this data set are
shown in Table 1 (Fisher exact test P � 0.05, uncorrected; see
Table SA3 in the supplemental material for details of all 70
sites). All of the strains in this data set, including nonvirulent
ones, contained the HA-226(Q) and HA-228(G) (H3 number-
ing) residues for the avian sialic acid receptor binding site (23,
30) and the NS1-149(A) virulence determinant in chickens
(45); on the other hand, only one strain contained the patho-
genicity-associated proline at amino acid site 42 in NS1 (33).

Of the 23 sites, three in PB2 (sites 318, 355, and 627), one in
PB1 (site 317) and one in NS1 (site 92) which were apparently
associated with virulence (P 
 0.01; Table 1) had previously
been claimed to have a role in virulence determination (see the
Discussion). In addition, the presence of PB2-701N has been
suggested as an alternative virulence or adaptation marker in
mammals in place of PB2-627K (17, 38, 70), and combining
the PB2-627 and PB2-701 sites resulted in a more significant
P value (P � 0.0003) for association with virulence than PB2-
627 (P � 0.003) or PB2-701 (P � 0.08) alone. A further five
sites in polymerase acidic (PA), and nonstructural genes (NS1
and NS2) were also nominally significant; however, these sites
had very similar distributions across strains to PB2-318. Two
HA antigenic sites—HA-102(mature H5 site 86, part of canon-
ical antigenic site E) and HA-279(263E) and the glycosylation
site HA-172(156)—had a possible association with virulence
(P 
 0.01), and deletions in the NA stalk region appeared to be
quite strongly associated: 21 of the 22 virulent sequences
showed stalk deletion compared to about half of the nonviru-
lent sequences (P 
 0.001).

Site selection for BGM. The uncorrected associations are
not themselves evidence of causal dependencies but assist with
the selection of sites to be analyzed in the multivariate model.
Sites with the same (or only one mutation different) pattern
across the sequences were combined since the individual con-
tribution of these sites to virulence would not be distinguish-
able from this data set. The sites with common patterns are
shown in Table 2. Of the 23 sites and/or features with Fisher
exact test P values of �0.05, only 13 had distinct patterns. In
order to reduce the possibility of inferring false links, the total
number of variables included in the BGM analysis was re-
stricted as indicated by simulation studies based on sample
sizes of 60 to 70 strains (see the discussion of simulation analy-
sis in the supplemental material). Consequently, the nine

TABLE 2. Amino acid sites with similar patterns of mutationsa

Pattern Sites (virulent�nonvirulent)

1 ............................PB2-318(K�R), PA-127(I�V), PA-336(M�L),
NS1-189(N�DG), NS2-31(I�M), NS2-56(YL�H)

2 ............................PB2-355(K�RQ), PB1-317(I�MV)
3 ............................PB2-675(L�I), PB2-683(T�A), PB1-198(K�R),

NA-39(QH�K), NA-223(I�T)
4 ............................HA-102(V�AIPST), NS1-195(TY�S)
5 ............................NS1-92(E�D), NS1-228(P�S)
6 ............................M2-64(SAF�P), M2-69(P�L)

a The distributions of mutations across strains for sites identified in the liter-
ature (see Table 1 and Table SA3 in the supplemental material) were examined.
These groups of sites have more than one mutation and identical or nearly
identical distributions (�1 mutation difference).

FIG. 1. Distribution of full-genome isolates in text-mined data
across isolation year and region. The total number of isolates in the
data set per year is indicated by the height of the bars, and the
distribution by region is represented by the bar colors. The data covers
three major outbreaks: Hong Kong in 1997, Hong Kong/China in 2001,
Vietnam (plus others) in 2004 over a period of at least 10 years.
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uniquely patterned sites with the most significant P values for
association with virulence in mammals (ranging from P 
 10�4

to P � 0.019), together with the virulence phenotype, were
included in the multivariate analysis (Table 3). The selected
sites were: PB2-318, PB2-627, PB1-317 (' PB2-355), HA-102
(' NS1-195), HA-172, HA-228, HA-279, NA stalk deletion,
and NS1-92 (' NS1-228) (the final binary data used can be
found in Table SA4 in the supplemental material). Since there
is evidence in the literature to suggest that PB2-701N may
compensate for the lack of PB2-627K in the adaptation of the
virus to mammals (17, 38, 70), we also investigated the effect of
using the combined PB2-627 and PB2-701 site data in place
of PB2-627 alone.

BGM results. BGMs were inferred from the binary data of
the selected sites using: (i) all 69 sequences; (ii) 100 cases of
permuted binary data (null models) and; (iii) 10 cases of leav-
ing 4 sequences out each time (10� cross validation, see the
discussion of model validation in Materials and Methods).
Figure 2 shows the inferred network structure for significant
links, together with the average link probability from the 10�
cross validation and standard score from the comparison to the
null model networks. The model confirms that virulence in
mammals is a complex genetic trait affected directly by muta-
tions in the polymerase, NS1, and HA genes.

Very strong correlations among certain sites leave some
ambiguity over the precise nature of the molecular changes
since these sites could not be analyzed separately (Table 2).
Specifically, three distinct mutation patterns, representing two
sites each—PB1-317/PB2-355, NS1-92/NS1-228, and HA-102/
NS1-195—were directly associated with virulence in mammals
in the model. We did not detect a significant direct association
of PB2-627 alone with virulence in mammals in the model;
however, a strong direct association, with a probability of �0.8
(standard score � 3 to 4) was detected for the combined sites
PB2-627 and PB2-701 (data not shown).

Sites within the polymerase genes were strongly associated
with each other in the model: the pattern 1 sites (including
PB2-318, PA-127, and PA-336) were linked to PB1-317/PB2-
355 pattern 2 sites with a probability of �0.9 (standard score �
9 to 10). Strong intrasegment associations were also found in
both HA and NS, particularly between antigenic sites HA-102

and HA-279, HA-102 and the variable glycosylation site HA-
172, and NS1-92 and NS1-228 (pattern 5) and between NS1-
189, NS2-31, and NS2-56 (pattern 1). The most significant
intersegment association was between PB1-317/PB2-355 (pat-
tern 2) and NS1-92/228 (pattern 5). NS1 sites 92, 195, and 228
were also strongly associated with HA-279 (antigenic site), and
NS1-189 had the same pattern as the PB2-318, PA, and NS2
sites (pattern 1). Additionally, the previously reported interac-
tion between the HA-172(156) glycosylation site and the NA
stalk deletion (3) was detected in the BGM with a probability
of �0.8 (standard score � 9 to 10).

The model was tested by using cross-validation (see Mate-
rials and Methods). Table 4 and Table 5 show the conditional
probabilities for virulence in mammals averaged over each
training data case from the cross-validation data sets, calcu-
lated per single influencing node (Table 4) and per combina-
tion of influencing sites (Table 5). Where a particular combi-
nation of amino acids has not occurred in this data set (due to
the small data set size and interactions between the influencing
sites), the probability of virulence in Table 5 was estimated by
combining the individual probabilities in Table 4, assuming
independence among sites (see the discussion of conditional
probability tables in Materials and Methods).

Using the conditional probability tables from the 10 train-
ing data examples, virulence predictions were made for each
test data example (these were composed of the four ex-
cluded sequences from the training data: one of each early-

FIG. 2. Inferred BGM for virulence in mammals. The indicated
link probabilities from 10� cross validation and z-score from compar-
ison to null models (in parentheses) are rounded down, e.g., “0.8 (3)”
means a link probability of 0.8 to 0.9 and a z-score of 3 to 4. Note that
some nodes represent more than one site, as listed in Table 2. The sites
directly associated with virulence in mammals are PB1-317/PB2-355,
NS1-92/NS1-228, and HA-102/NS1-19.

TABLE 3. Sites selected for BGMa

Site (virulent�nonvirulent) Comment(s)

Vir “Virulent-in-mammals”
phenotype

PB2-318(K�R) �� Combined pattern 1, see Table 2
PB1-317(I�MV)/PB2-355(K�RQ) Combined pattern 2, see Table 2
PB2-627(K�E)
HA-102(V�AIPST)/NS1-195(TY�S) Combined pattern 4, see Table 2
HA-172(TS�A)
HA-228(ER�K)
HA-279(T�A)
NA-del NA stalk deletion (“1”) or no

deletion (“0”)
NS1-92(E�D)/NS1-228(P�S) Combined pattern 5, see Table 2

a The sites included in the BGM analysis were the nine sites with the most
significant P values for association with virulence in mammals, and the “virulent-
in-mammals” phenotype. Sites with the same distribution of mutations across the
strains are analyzed together as indicated.
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virulent, late-virulent, early-nonvirulent, and late-nonviru-
lent sequences, where early refers to a pre-2002 occurrence;
see the discussion of model validation in Materials and Meth-
ods for details). The average prediction performance over the
cross validation training and test data sets was calculated (Ta-
ble 6); for the test data, the sensitivity was 70%, and the
specificity was 95%.

DISCUSSION

This study combines results from previous experimental
studies based on strains isolated during 3 major HPAI H5N1
outbreaks in order to examine the genetic basis of virulence in
mammals. Extensive literature mining, followed by rigorous
quality control, identified 69 complete genome sequences with
experimentally determined virulence in mammals for use in
this analysis, a threefold increase from the number of se-
quences analyzed in the largest experimental study to date. We
have fitted for the first time a rigorous statistical model relating
mutations in multiple influenza viral segments to virulence in
mammals. Many authors have previously described virulence

in terms of a complex trait (10, 11, 20): the model presented
here confirms that virulence in mammals is affected by muta-
tions in at least four segments: PB1, PB2, HA, and NS1.

Univariate analyses. Three sites in PB2 (sites 318, 355, and
627), PB1-317 and NS1-92 that were apparently associated
with virulence in the univariate studies had been proposed in
earlier experimental studies (10, 11, 24, 34, 41, 50, 67). Recent
experimental evidence indicates that a PB2-701N mutation
may arise in mammals instead of PB2-627K (70); we found no
isolates containing both mutations in the 69-sequence data set,
and combining these two sites increases the association with
virulence. A further five sites in PA, NS1, and NS2 identified in
a study of the 1997 Hong Kong H5N1 human outbreak (75)
were also nominally significant; however, these sites had very
similar mutation patterns to PB2-318 and the “virulent” resi-
dues only appeared in the 1997 sequences. We did not detect
any significant association of NS1 deletions alone with viru-
lence in mammals in this data set (48). However, since NS1-
97E is a conserved residue (in the aligned sequences), the
5-amino-acid NS1-deletion also leads to an E at position 92 in
the protein (48), and NS1-92E (no deletion) or NS1-97E (with
deletion) with virulence in mammals was marginally significant
(P 	 0.05). The association of NS1-92E alone (aligned se-
quences) with virulence in mammals was more significant in
this data set (P 
 0.001). In addition, no significant associa-
tions between virulence in mammals and the Src homology 3
domain binding motifs or PDZ binding domains containing the
amino acid motif ESEV or EPEV in NS1 were found (26, 31,
57). However, proline at NS1-228 (part of the PDZ binding
domain) was associated with both virulence in mammals (P 

0.003) and strongly with E at NS1-92 (P 

 10�6).

Multivariate BGM models. The nine sites with the strongest
individual associations with virulence were included in the
BGM analysis, and three of them (PB1-317/PB2-355, NS1-92/
NS1-228 and HA-102/NS1-195) were found to have a direct
association with virulence.

The mutation patterns at PB1-317 and PB2-355 were very
similar to each other in the 69-sequence set and directly asso-
ciated with virulence in mammals. These mutations were first
identified by Katz et al. (34) as correlated with virulence in
mice in the 1997 Hong Kong outbreak. In this 69-sequence
data set, the PB1 (M,V)317I and PB2 (R,Q)355K “virulent”

TABLE 6. Average prediction performance over cross-validation
training and test data setsa

Data set
Avg performance (%)

Training Test

TP 13.6 (20.9) 1.4 (35)
FN 6.4 (9.8) 0.6 (15)
FP 2.9 (4.5) 0.1 (2.5)
TN 42.1 (64.7) 1.9 (47.5)
MC 9.3 (14.3) 0.7 (17.5)

a Each sequence in the training and test data sets was classified as virulent or
nonvirulent according to the combination of amino acids at PB1-317/PB2-355,
NS1-92/NS1-228, and HA-102/NS1-195 as in Table 5. The average numbers (or
percentages) of true positives (TP; virulent sequences classified as virulent), false
negatives (FN), false positives (FP), and true negatives (TN) from the 10 training
and test data sets, and the misclassification (MC) performance metrics are
indicated. The sensitivity and specificity values were 68% and 94%, respectively,
for the training data sets and 70% and 95%, respectively, for the test data sets.

TABLE 4. Conditional probabilities for “virulent-in-mammals”
sequences given individual sitesa

Node Sites Vir-AA Non-Vir AA P(virulence�
Vir-AA)

P(virulence�
non-Vir

AA)

1 PB1-317/PB2-355 I/K MV/RQ 1.00 0.22
2 NS1-92/NS1-228 E/P D/S 0.73 0.22
3 HA-102/NS1-195 V/TY AIPST/S 0.69 0.24

a Given that a sequence has a “virulent” type amino acid (Vir-AA) at a site (as
indicated in column 3), the probability of that sequence having a “virulent”
classification is indicated in column 5. If the sequence has a “nonvirulent” amino
acid (Non-Vir AA) at a site (column 4), the probability of that sequence still
having a “virulent” classification is indicated in column 6. For example, if the
sequence contains PB1-317I (and/or PB2-355K), the probability of that sequence
being virulent is 1; if the sequence does not have these mutations, then the
probability of virulence is 0.22. All probabilities were calculated by averaging
over the 10 training data examples and assuming independence between sites
(rows).

TABLE 5. Conditional probabilities for “virulent in mammals”
sequences for combinations of sitesa

Nodeb

P(virulence�state)c
Virulence
prediction
(P � 0.5)1 2 3

0 0 0 0.09 0
0 0 1 0.70 1
0 1 0 0.25 0
0 1 1 0.94* 1
1 0 0 1* 1
1 0 1 1* 1
1 1 0 1 1
1 1 1 1* 1

a A sequence with the combination of mutations �“virulent” (1)/“nonvirulent”
(0) amino acids� as indicated in columns 1 to 3 has a probability of virulence in
mammals as indicated in column 4. If the probability of virulence in mammals is
�0.5, then the sequence is classified as ‘virulent’.

b Node 1, PB1-317/PB2-355; node 2, NS1-92/NS1-228; node 3, HA-102/
NS1-195.

c The values marked with an asterisk indicate that this particular combination
of mutations was not observed in the training data sets (or 69 sequence data set),
so the probability of virulence in mammals was estimated from the individual
values in Table 4 (see Materials and Methods). All probabilities were calculated
by averaging over the 10 training data examples.
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mutations only appear in sequences from the 1997 Hong Kong
outbreak. In an alignment of 579 full-genome sequences (rep-
resenting all H5N1 unique sequences deposited in the NCBI
Influenza Virus Resource as of September 2008), 44 sequences
contained one and 12 contained both of the mutations. Apart
from the 1997 Hong Kong outbreak, PB1-317I and/or PB2-
355K mutations were also present in sequences from birds in
China and Viet Nam in 2005 and 2006; a civet (Viet Nam
2005); and four human sequences (Indonesia 2006, China 2006
and 2007).

Two mutations in NS1, D92E and S228P, which were
strongly associated in the data set were also directly associated
with virulence in mammals in the BGM. The NS1 D92E
change is thought to influence pathogenicity by making the
virus more resistant to host interferon and tumor necrosis
factor alpha responses (67), thus inducing a more severe cyto-
kine response in the host (46). NS1-228 is one of the C-termi-
nal residues and part of a region that could bind proteins
containing PDZ domains. NS1 proteins with avian ESEV or
EPEV PDZ domain ligand motifs were postulated to disrupt
human cell pathways by binding to proteins with PDZ domains
(57), and NS1 proteins with avian PDZ domain ligands have
been shown to cause increased virulence in mice (31). A total
of 51 of the 69 sequences examined here contained ESEV or
EPEV at positions 227 to 230: no significant association of
these motifs with mammalian virulence was found. However,
the point mutation S228P was significantly associated with vir-
ulence in mammals. The NS1-92 and NS1-228 mutations re-
main correlated in the 579 H5N1 full genome sequence set.
There are 17 sequences with both mutations, the majority were
from the 1997 Hong Kong outbreak, but 3 were from isolated
from water fowl in Viet Nam 2005. Five sequences (one from
swine in China 2003 and four from birds in Viet Nam and
Russia 2005) contained the S228P mutation only, but no se-
quences contained only the D92E mutation. The BGM in-
ferred from the 69-sequence data set showed a strong link
between PB1-317/PB2-355 and NS1-92/NS1-228, and this as-
sociation still holds in the 579 full-genome data set (P 

 10�6

for the Fisher Exact test with the Bonferroni correction for
multiple testing between any of the 2,312 variable sites, i.e.,
2.67 � 106 pairwise interactions). All 12 sequences with both
PB1-317 and PB2-355 mutations also contained both NS1-92
and NS1-228 mutations. Hence, the model and wider results
indicate that the particular polymerase and NS1 gene combi-
nation significantly affects HPAI H5N1 virulence in mammals
and that a mutation pattern associated with virulence in mam-
mals in the 1997 Hong Kong outbreak has reemerged among
human H5N1 cases in Indonesia and China in 2006 and 2007.

The other mutations directly associated with virulence in the
BGM are NS1-195T and HA-102V. These sites are not
strongly linked in the model to the PB1, PB2, and NS1 sites
discussed above and may represent a separate mechanism for
enhanced virulence in mammals. NS1 sites S195, T197, and
D92 are hydrogen bonded in the NS1 crystal structure (6) and
make a cleft. It has been proposed that mutation D92E could
alter the phosphorylation of this NS1 cleft and thus affect
virulence (6, 44). The BGM results indicate that NS1-195 mu-
tations also affect virulence, and it is postulated that this could
be due to NS1-195 mutations changing the phosphorylation
properties of NS1, although clearly more experimental work is

required to investigate this as a possible mechanism. Interest-
ingly, the pattern of HA-102(86) V residues were completely
correlated with the NS1-195 T in the 69 sequence data set.
HA-102(86) is part of antigenic site E (83), so it is conceivable
that a mutation here could reduce any cross-immunity that
mammals may have against the virus. The correlation between
NS1-195T and HA-102V is highly significant in the 579 full-
genome sequence set (P 

 10�6 for the Fisher Exact test with
the Bonferroni correction), and there are 83 sequences with
both mutations, recorded from 2004 onward, mostly in Thai-
land, Viet Nam, and Russia. HA-102 is a highly polymorphic
site, with six different residues present in the 69-sequence set.
Of these, V (present in 10 isolates) and A (present in 55
isolates) are associated with virulence and nonvirulence in
mammals, respectively. The remaining four residues (I, P, S,
and T) are present in one isolate each, making a virulence
assignment on the basis of the 69 sequence data set alone
difficult. In the 579-sequence data set, residues I, P, and S were
rare and only present in 13 avian isolates in total. HA-102T, on
the other hand, was present in 48 isolates: 44 of the 48 human
isolates from Indonesia; a cat isolate from Indonesia, and 3
avian isolates from China. In the BGM, HA-102V was directly
associated with virulence with a link probability of 0.6 to 0.7
(standard score � 3 to 4), and updating the binary coding
scheme for HA-102 to include T as a “virulent” residue in-
creases the link probability in the BGM to 0.8 to 0.9 (the
standard score remains 3 to 4). Consequently, HA-102 V or T
should be considered as a virulence marker.

At first sight, it is surprising that PB2-627 alone was not
found to be directly associated to virulence in mammals be-
cause this mutation is thought to be involved in adaptation to
mammalian hosts (73), has been previously reported as con-
tributing to virulence in the 1997 Hong Kong outbreak (10, 24,
25), and was shown to be important for efficient respiratory
tract growth in mammals (25). The sequence set used here
spanned more than the well-studied 1997 Hong Kong outbreak
and contained 6 PB2-627K virulent sequences (of 22 virulent
sequences), and 1 PB2-627K nonvirulent sequence (of 47). The
six virulent PB2-627K sequences were sampled in Hong Kong
in 1997 (2), Thailand and Viet Nam in 2004 (3), and Germany
in 2006 (1), whereas the single PB2-627K sequence classified as
nonvirulent was from A/Turkey/65596/2006 (a human case in
Turkey), which caused only mild symptoms in ferrets at a low
dose (85). In one of the cross-validation data sets, the PB2-
627K nonvirulent sequence was (randomly) excluded, and the
resulting BGM had a PB2-627-virulence link probability of 0.6.
However, using only sequences that were either very highly
pathogenic or nonpathogenic (75% of cases, 52 sequences), no
significant link was found between PB2-627K and virulence in
mammals. On the other hand, since it has been suggested that
a PB2-701D-to-N mutation may arise to compensate for a the
lack of the “virulent” PB2-627K residue in mammals (17, 38,
70), we combined the PB2-627 and PB2-701 sites, repeated the
analysis, and found a significant direct association between the
combined sites and virulence in mammals using BGMs (link
probability of �0.8, standard score � 3 to 4). Although the
relationship between PB2-627K alone and virulence in mam-
mals was not found to be significant in the 69 sequence data
set, these results suggest that PB2-627K and PB2-701N might
be directly associated with virulence, but more isolates with
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these mutations and experimentally measured virulence in
mammals would be required to detect the associations unam-
biguously. In addition, more isolates would allow the putative
negative association between PB2-627K and PB2-701N to be
evaluated.

Even though the uncorrected P value from the Fisher exact
test for the association of NA stalk deletion and virulence in
mammals was 	0.0003, the BGM results did not show a direct
association. However, strong direct associations of NA stalk
deletion with HA-172(156, glycosylation site) and HA-279
(263, antigenic site) were inferred. HA and NA have comple-
mentary functions in viral replication (see Wagner et al. [78]
for a review), and various studies have indicated that the effects
of mutations in one can be compensated by mutations in the
other (52, 54, 79); consequently, some HA-NA associations are
to be expected. In particular, the NA stalk deletion–HA-172
glycosylation intersegment association (3) was confirmed by
the BGM in the present study. Both the association of HA-172
and NA stalk deletion and the HA-279 and NA stalk deletion
were significant in the 579-genome sequence set (Bonferroni-
corrected Fisher exact test result of P 
 10�6 for each). Nei-
ther the BGM nor the large sequence set provided any evi-
dence that HA-172 and HA-279 were associated with each
other (the corrected P value for the Fisher exact test on the
large sequence set was 1), so we deduce that the NA stalk
deletion is independently associated with both HA mutations,
indicating a functional interaction between HA and NA.

An underlying issue with analysis of genetic determinants in
influenza is the general lack of recombination within segments
and consequent strong associations of amino acid variants over
evolutionary time. Among the 228 sites with P � 0.05 for
association with virulence in the 69-sequence data set, the high
degree of correlation in patterns of mutation is largely due to
identity by descent of the viral genome segments. Thus, 34 sites
have most or all of their “virulent” residues in the 11 sequences
isolated in the 1997 Hong Kong outbreak, 15 sites on segment
8 have mostly “virulent” residues except in the Goose/Guang-
dong/96 and 1999-2001 NS allele B sequences (9, 21, 49), and
7 sites have most or all of their “virulent” residues in the 10
sequences from the 2004 Vietnam/Thailand outbreak.

To mitigate the potential bias in the results introduced by
nonindependence, an alternative approach would be to code
each sequence for the presence or absence of mutations com-
pared to its immediate inferred ancestral sequence (using a
phylogenetic tree and model of sequence evolution). The
change in the viral phenotype from the ancestral sequences
would also have to be inferred. However, although this ap-
proach was successfully used to find mutations in the HIV
envelope protein (60, 61), it cannot be applied to a data set
where each segment has its own evolutionary history (22, 77,
80) since reassortment of the internal genes with other sub-
types means that no single tree is applicable to all eight seg-
ments. Recognizing the issue, we reduced potential biases in-
curred due to the relationships between the sequences by using
a relatively wide range of isolates (spanning more than 10
years) and selection of sites with dissimilar mutation patterns
across the strains.

We used several techniques to reduce other potential
sources of error in the model. First, backed by simulation
studies investigating the number of false-positive associations

as a function of data set size and number of sites, we limited
the number of sites in our analysis to those with prior evidence
from the literature and the strongest univariate associations to
virulence in mammals. Second, we used cross-validation to
reduce the effects of sequence misclassification (and sequence
errors): the model presented here is an average over 10 sub-
samples of the data. Third, we used permutation tests to vali-
date the significance of the associations against the null model
of association by chance.

Using the model, we estimated the probability of virulence
in mammals for strains containing different combinations of
influencing sites. To evaluate the prediction performance of
the model, we predicted each sequence in the cross-validation
test data sets as virulent or nonvirulent on the basis of the
combination of mutations it contained and compared the re-
sults to the original values. The high specificity (95%) indicates
the model yields few false positives, but the lower sensitivity
(70%) indicates that not all virulence determinants may have
been captured as a result of the small size of the data set. Noise
and experimental errors in the data are also expected to reduce
the classification performance. The performance of the model
compares well with other models relating viral mutations to
phenotype, e.g., sensitivity in the range 40 to 100% (70% was
typical) and a specificity of ca. 70% have been reported for
HIV drug resistance models (42).

In conclusion, we have collated experimental data about the
virulence of HPAI H5N1 strains in mammals and used it to
identify its genetic basis by inferring a BGM of whole-genome
mutations affecting the phenotype. We used data from strains
isolated over a period of at least 10 years and analyzed the
results obtained in 27 studies so our conclusions are general
rather than specific to a single experimental system. The re-
sulting statistical model reveals the polygenic nature of viru-
lence in mammals: mutations at PB1-317, PB2-355, NS1-92,
NS1-228, NS1-195 and HA-102(86) are directly associated with
the trait. These sites split into two semi-independent groups,
possibly indicating separate virulence mechanisms: PB1-317,
PB2-355, NS1-92, and NS1-228 mutations were strongly corre-
lated with each other, as were NS1-195 and HA-102(86). We
also found strong correlation patterns in the PB1, PB2, and PA
sites; the antigenic sites and a variable glycosylation site in HA;
and the HA and NS sites. The results highlight the importance
of the polymerase and nonstructural internal genes in addition
to HA in determining the virulence of HPAI H5N1 in mam-
mals and identify potential targets for intervention in mamma-
lian H5N1 infections.
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ABSTRACT

We present a formalism for unifying the inference of population size from genetic sequences and
mathematical models of infectious disease in populations. Virus phylogenies have been used in many
recent studies to infer properties of epidemics. These approaches rely on coalescent models that may not
be appropriate for infectious diseases. We account for phylogenetic patterns of viruses in susceptible–
infected (SI), susceptible–infected–susceptible (SIS), and susceptible–infected–recovered (SIR) models of
infectious disease, and our approach may be a viable alternative to demographic models used to
reconstruct epidemic dynamics. The method allows epidemiological parameters, such as the reproductive
number, to be estimated directly from viral sequence data. We also describe patterns of phylogenetic
clustering that are often construed as arising from a short chain of transmissions. Our model reproduces
the moments of the distribution of phylogenetic cluster sizes and may therefore serve as a null hypothesis
for cluster sizes under simple epidemiological models. We examine a small cross-sectional sample of
human immunodeficiency (HIV)-1 sequences collected in the United States and compare our results to
standard estimates of effective population size. Estimated prevalence is consistent with estimates of
effective population size and the known history of the HIV epidemic. While our model accurately
estimates prevalence during exponential growth, we find that periods of decline are harder to identify.

COALESCENT theory has found wide applications
for inference of viral phylogenies (Nee et al. 1996;

Rosenberg and Nordborg 2002; Drummond et al.
2005) and estimation of epidemic prevalence (Yusim

et al. 2001; Robbins et al. 2003; Wilson et al. 2005), yet
there have been few attempts to formally integrate
coalescent theory with standard epidemiological models
(Pybus et al. 2001; Goodreau 2006). While epidemi-
ological models such as susceptible–infected–recovered
(SIR) consider the dynamics of an entire population
going forward in time, the coalescent theory operates
on a small sample of an infected subpopulation and
models the merging of lineages backward in time until
a common ancestor has been reached. The original
coalescent theory was based on a population of con-
stant size with discrete generations (Kingman 1982a,b).
Numerous extensions have been made for populations
with overlapping generations in continuous time, expo-
nential or logistic growth (Griffiths and Tavare 1994),
and stochastically varying size (Kaj and Krone 2003).
However, infectious disease epidemics are a special case

of a variable size population, often characterized by
early explosive growth followed by decline that leads to
extinction or an endemic steady state.

If superinfection is rare and if mutation is fast relative
to epidemic growth, each lineage in a phylogenetic tree
corresponds to a single infected individual with its
own unique viral population. An infection event viewed
in reverse time is equivalent to the coalescence of two
lineages and every transmission of the virus between
hosts can generate a new branch in the phylogeny of
consensus viral isolates from infected individuals. Re-
cently diverged sequences should represent transmis-
sions in the recent past, and branches close to the root
of a tree should represent transmissions from long ago.
Consequently, branching patterns provide information
about the frequency of transmissions over time (Wilson

et al. 2005). The correspondence between transmission
and phylogenetic branching is easiest to detect for
viruses such as human immunodeficiency virus (HIV)
and hepatitis C virus that have a high mutation rate
relative to dispersal. Underlying SIR dynamics also apply
to other pathogens, although in some cases it may be
more difficult to reconstruct the transmission history.

We examined the properties of viral phylogenies
generated by the most common epidemiological mod-
els based on ordinary differential equations (ODEs).
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We are able to fit epidemiological models to a recon-
structed phylogeny for sampled viral sequence data and
make inferences regarding the size of the correspond-
ing infected population. Our solution takes the form of
an ODE analogous to those used to track epidemic
prevalence and thereby provides a convenient link be-
tween commonly used epidemiological models and
phylodynamics. Virtually all coalescent theory to date
has been expressed in terms of integer-valued stochastic
processes. Our motivation for using differential equa-
tions to describe the coalescent process is a desire to
formalize a link with standard epidemiological models
that are also expressed in terms of differential equations.

We use our method to calculate the distribution of
coalescent times for samples of viral sequences, fit
SIR models to a viral phylogeny, and calculate median
time to the most recent common ancestor (MRCA) of
the sample. Our method also provides equations that
describe the time evolution of the cluster size distribu-
tion (CSD)—the distribution of the number of descend-
ants of a lineage over time. Clusters of related virus
are often interpreted as epidemiologically linked. For
example, clusters of acute HIV infections may represent
short transmission chains between high-risk individuals
(Yerly et al. 2001; Hue et al. 2005; Pao et al. 2005;
Goodreau 2006; Brenner et al. 2007; Drumright and
Frost 2008; Lewis et al. 2008). Because our model
reproduces the moments of the cluster size distribution,
it can be used to predict the level of clustering as a
function of epidemiological conditions. The moments
could be directly compared to empirical values or they
could be used to reconstruct the entire CSD, where-
upon standard statistical tests could be used for com-
paring distributions.

Although our equations describe the macroscopic
properties of the population distribution of cluster sizes,
we generalize our method to the case of a small cross-
sectional sample of sequences. This allows us to develop
a likelihood-based approach to fitting SIR models to
observed sequences.

By considering variable degrees of incidence and the
size of the infected population, our solution sheds light
on the relationship between coalescent rates and epi-
demic dynamics. Coalescent rates are low near peak
prevalence, but higher when there is a large ratio of
incidence to prevalence. This can occur early on, when
the epidemic is entering its expansion phase, as well as
late if the epidemic has multiple periods of growth.

METHODS

Consider a population of size N comprising suscepti-
ble ðSÞ, infected ðIÞ, and recovered ðRÞ individuals.
The deterministic limiting behavior of S ¼ jSj=N ,
I ¼ jIj=N , and R ¼ jRj=N as N /‘ and with all
variables ?1=N is described by a set of coupled ordinary
differential equations, with time-dependent rates of

change from state X to state Y denoted as fXY(t). For
instance, the classical mass-action SIR model

_S ¼ �bSI ; _I ¼ bSI � gI ; _R ¼ gI ð1Þ

(Kermack and McKendrick 1927; Bailey 1975;
Anderson and May 1991) is obtained by setting
fSI(t) ¼ bS(t)I(t), fIR(t) ¼ gI(t), and all other rates to 0.
We omit the explicit dependence of terms on time when
it is unambiguous.

Classical coalescent inference operates on a small
subsample of the larger evolving population, taken at a
single time point, and infers properties of the popula-
tion at an earlier time point; e.g., What is the expected
number of lineages at a given time t? Here, we denote
the time of sampling by T and consider the evolution
of the population backward in time toward time t ¼ 0.
While this differs from the conventional temporal nota-
tion for coalescent theory (where the sampling, or pre-
sent, time is denoted 0, and as we move backward t
denotes the number of years before the present), it allows
us to develop a system of equations that link coalescent
inference with standard epidemiological models.

We apply the coalescent model to the population of
infecteds ðIÞ and draw upon the dynamical system to
provide parameters such as the rate of lineage coa-
lescence. The practical questions that we seek to address
include the following:

If n individuals are sampled at time T, how many
lineages exist at time t # T ?

How many lineages extant at time t have surviving
progeny at time T ? We define progeny of a viral lineage
extant from time t # T as those individuals infected
at time T whose virus can be traced back to that viral
lineage at time t. For instance, in Figure 1, from t¼ t1
the progeny of lineage 6 has four individuals (5, 6, 8,
and 9), but from t ¼ t2 the progeny of lineage 6
consists of only 5 and 6.

Can we describe the distribution of the number of
progeny from time t (a time t cluster), X(t), using its
distributional moments? For instance, in Figure 1, at
time t ¼ t2 this distribution is given by (2, 2, 2), while
for t ¼ t1 the distribution is (4, 2).

Note that a transmission does not always result in an
observable coalescent event depending on which line-
ages expire due to recovery or are not sampled (e.g., the
transmission from 7 to 10 in Figure 1), and a transmission
to an individual that recovers may still correspond to a
coalescent event if that person transmits prior to re-
covering (e.g., the transmission from 6 to 7 in Figure 1).

Coalescent model for SIR epidemics: In an SIR
epidemic, a branch in the tree corresponds to a trans-
mission event, and as a lineage is traced backward in
time, it traverses multiple infected hosts. A recovery
event before the sample time T does not alter the
number of lineages with progeny because no progeny
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of this individual can be sampled at a later time. In a
standard coalescent model, n lineages merge in reverse
time at a rate proportional to n

2

� �
. Given that a coalescent

event occurs among the individuals in I , the probability
of observing it among the n observed lineages is

n
2

� ��
jI j
2

� �
¼ nðn � 1Þ
jIj ðjI j � 1Þ :

We introduce the dimensionless variable A(t; T),
which is the fraction of the population at t with sampled
progeny extant at T. A(t; T) is proportional to the
number of ancestors of a sample of sequences and is
analogous to the integer-valued ancestor function used
in standard coalescent theory (Griffiths and Tavare

1994). We consider how A evolves as t moves into the
past, with T fixed.

If a fraction f of the infected population is sampled at
time T, then we observe a number n ¼ fjIðT Þj lineages.
Initially, t ¼ T, and A(T; T ) ¼ fI (the ancestor of each
sequence is itself). The sample fraction f is not always
known, but if f¼ 1, our solution will describe the evolution
of the fraction of extant lineages for the entire population.

Using the definition of A and assuming A?1=N , the
probability of a transmission event causing a coalescent
event to be observed in our sample is

pcðt; T Þ ¼ lim
N /‘

Aðt; T ÞN
2

� �
NI ðtÞ

2

� � ¼ Aðt; T Þ
I ðtÞ

� �2

:

The rate of coalescence for a sample of sequences is
analogous to the rate of change of the ancestor
function, A. We can write the coalescence rate for the

sample of sequences as the product of the number of
transmissions per unit time, fSI(t) and the probability
pc that a transmission results in a coalescence being
observed in our sample. The ancestor function A(t; T)
can be found by integrating the following backward
ordinary differential equation from time T:

� dA

dt
:¼ A

��
¼ �fSI pc ¼ �fSI

A

I

� �2

: ð2Þ

This equation works even when f ¼ 1, in which case A
represents the number of ancestors of the entire
population of infecteds observed at time T.

Cluster size distribution: Let X1(t ; T) denote the
number of progeny at T of a random infected host from
time t # T, given that such progeny exist. We denote the
expected value of X1 by x1(t; T) and interpret it as the
mean cluster size from time t. X2(t; T) [and x2¼ E(X2)] is a
random variable that describes the size of the cluster if it
is selected with probability proportional to the cluster’s
size. This is the same distribution of cluster sizes as if we
select an infected at time T and determine the size of
the cluster to which that infected belongs.

Below, we show that x1 and x2 can be found by inte-
grating the ordinary differential equations

x1
��ðt; T Þ ¼ fSI ðtÞI ðT Þ=I ðtÞ2; ð3Þ

x2
�� ¼ 2x1

�� ð4Þ

backward in time from T with initial prevalence I(T)
taken from the epidemic model. Also, initially (at t¼T),
all cluster sizes are unity, and x1(T; T) ¼ x2(T; T) ¼ 1.

The set of infecteds IðT Þ is distributed across a
number A(t; T)N clusters, and for any 0 # t # T, the

Figure 1.—An example of a phylogeny that
could be generated by an epidemic process.
The number of lineages at time t for a population
observed at time T is plotted below. A branch in
the tree corresponds to a transmission event, and
as a lineage is traced backward in time, it tra-
verses multiple infected hosts.
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average number of infecteds per time-t cluster is I(T)/
A(t; T). This implies

Aðt; T Þ ¼ I ðT Þ=x1ðt; T Þ: ð5Þ

Evaluating the backward derivative at t yields

A
�� ¼ �x1

��I ðT Þ=x2
1 : ð6Þ

Using Equation 6 in conjunction with Equations 2 and 5
yields Equation 3.

Dynamics of x2 can be found by directly quantifying the
mean field behavior of X2. Consider the size of a cluster
to which a focal individual, a sampled infected at time T,
belongs. As before, pc 3 fSI gives the rate of coalescence.
Two clusters merge at each coalescent event, so there is a
probability proportional to 2/A that a focal individual
belongs to a cluster that takes part in the event. And given
that the individual’s cluster coalesces, the average amount
by which the cluster increases is x1. Multiplying these
factors and probabilities together yields

x2
�� ¼ pcfSI

2

A
x1 ¼ 2x1

��
: ð7Þ

As with x1, this can be solved by integrating in reverse
time with initial conditions x2(T; T ) ¼ 1.

The variance of X1 can be found by noting that

EðX2
1Þ ¼

X
i

i2PrfX1 ¼ ig

¼
X

i

i PrfX1 ¼ ig
 ! P

i i2PrfX1 ¼ igP
i i PrfX1 ¼ ig

� �
: ð8Þ

Recall that X2 is the size of a cluster selected with
probability proportional to size, so

PrfX2 ¼ ig ¼ i PrfX1 ¼ ig=
X

j

j PrfX1 ¼ jg:

Combining the last two expressions with the definition
of x1 ¼

P
i i PrfX1 ¼ ig gives

EðX2
1Þ ¼ x1x2:

Then, the variance in cluster size is

VarðX1Þ ¼ EðX2
1Þ � ðEðX1ÞÞ2 ¼ x1x2 � x2

1 : ð9Þ

Higher moments can also be derived recursively from
earlier moments. We now show that the nth moment of
the CSD, Mn, can be found by solving the following
differential equation with initial conditions Mn(T ) ¼ 1,

Mn
�� ¼ fSI

A

I 2

Xn�1

i¼0

�
n
i

�
MiMn�i ; ð10Þ

where we define M0 :¼ 1 for convenience. Equations 3
and 4 could be derived using Equation 10 as a starting
point.

Equation 10 is obtained by multiplying the rate at
which a cluster merges with other clusters ( fSIA/I 2) and
the expected change in the nth moment when two

clusters merge. When a cluster of size i merges with a
cluster of size j, the nth moment to be considered will
change from that for a cluster of size i to that for a cluster
of size (i 1 j). To find the expected change in the nth
moment when two clusters merge, we sum over all
possible combinations of clusters of sizes i and j:

X
i

X
j

PrfX1 ¼ igPrfX1 ¼ jgði 1 jÞn � in

¼ �Mn 1
X

i

PrfX1 ¼ ig
X

j

PrfX1 ¼ jg
Xn

m¼0

�
n

m

�
in�mjm

¼ �Mn 1
X

i

PrfX1 ¼ ig
Xn

m¼0

�
n

m

�
in�m

X
j

PrfX1 ¼ jgjm

¼ �Mn 1
X

i

PrfX1 ¼ ig
Xn

m¼0

�
n

m

�
in�mMm

¼ �Mn 1
Xn

m¼0

�
n

m

�
Mn�mMm

¼
Xn�1

m¼0

�
n

m

�
Mn�mMm :

The product of the coalescent rate fSIA
2/I 2 and the

factor 1/A that accounts for the probability that a focal
lineage takes part in a coalescent event, along with the
expected size function, yields Equation 10. In support-
ing information, Figure S1, we compare solutions of this
equation to the second through fifth moments from
simulations.

Fitting epidemic models to sequence data: If we
know the branching times t1, t2, � � � , tn�1 for a phylogeny
constructed from n sequences, we can use Equation 2
to fit an SIR model. In practice, there is considerable
uncertainty about the exact genealogy and branching
times given a sample of sequences. The theory de-
veloped here is based on a fixed genealogy with no
uncertainty about branch lengths, but it should be
straightforward to generalize these results to cope with
error in the ti (Drummond et al. 2005).

The total number of coalescent events observed be-
tween times t and T is proportional to A(T; T) – A(t; T),
and at some time t , t , T, the fraction of the coalescent
events that have occurred is

F ðtÞ ¼ AðT ; T Þ � Aðt; T Þ
AðT ; T Þ � Aðt; T Þ : ð11Þ

This provides a cumulative distribution function for the
distribution of coalescent times. Differentiating with
respect to t yields the density

�A
��
=ðAðT ; T Þ � Aðt; T ÞÞ:

We make the approximation that when two lineages
coalesce, the rates at which other lineages coalesce
remain unchanged. Then each coalescent time will be
an i.i.d. random variable with the distribution (11). The
probability of observing a particular sequence of
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branching times will be proportional to the product of
the density evaluated at each branching time. Conse-
quently, we can construct the log-likelihood function
out of an A-trajectory

Lðt1; � � � ; tn�1 j uÞ

¼
Xn�1

i¼1

logð�A
��
ðtiÞ=ðAðT Þ � AðtÞÞÞ

¼ �ðn � 1ÞlogðAðT ; T Þ � Aðt; T ÞÞ1
Xn�1

i¼1

logð� A
��
ðti ; T ÞÞ;

ð12Þ
where u denotes the parameters of the SIR model, such
as transmission and recovery rates. In File S1 we also
present a fitting criterion based on the Kolmogorov–
Smirnov statistic for comparing distributions.

RESULTS

Equation 3 indicates some simple relationships that
govern coalescent rates in epidemics. Coalescent rates
are proportional to epidemic incidence ( fSI) and in-
versely proportional to square prevalence (I�2). Rates
will be highest when prevalence is low and incidence is
high, such as at the beginning of an epidemic, during the
expansion phase, or following a trough in prevalence.

Equation 9 implies that variance of the CSD asymp-
totically approaches the mean squared (Figure S4). This
is similar to what is seen in the offspring distribution of
forward time branching processes, such as the Galton–
Watson process (Athreya and Ney 2004).

The point in time where the ancestor function (5)
crosses the value 1/N is the point at which the phylogeny
of the virus has collapsed to a single lineage—the MRCA
of the sequences. Therefore, if we collect a sample of size
n at time T, and solve Equation 2 to time zero, with A(T )¼
n/N, the time t that satisfies A(t)¼ 1/N corresponds to
the time to the most recent common ancestor of the

sample. Although our differential equations should not
serve as an adequate description of the discrete valued
processes for values close to 1/N, we find that this
approximation works quite well. A demonstration with
comparison to simulations is provided in Figure S11.

Simulations: To assess the performance of our model,
we carried out stochastic simulations of SIR epidemics.
Simulations were individual based and in continuous time.
Transmission events and recovery events were queued us-
ing exponentially distributed lag times, similar to the Gil-
lespie algorithm. Each transmission event was recorded,
which allowed us to simulate viral phylogenies under
controlled conditions and to test the accuracy of Equations
3 and 9. The transmission data were then converted into
phylogenetic trees with known branching times.

Simulation code was independently written by S. D.
Frost and E. M. Volz in Python and C. Results from both
models were compared to ensure accuracy.

To assess the accuracy of the equations we have
derived, we developed a simulation experiment with
103 (1%) initially infected agents out of a population of
total size N ¼ 105 otherwise identical agents. Trans-
mission and recovery rates were such that R0 ¼ 10/3.
Figure 2 shows Equations 3 and 9 (lines) and the 90%
confidence intervals from simulations at 10 thresholds
(t values). The exact values of t and T are reported in
File S1. Each trajectory corresponds to a cross-sectional
census of the infected population at four time points (T
values) corresponding to maximum prevalence, as well
as 86, 68, and 22% of maximum prevalence after the
peak. As we go backward in time, all moments of the
CSD increase, until the entire census of infecteds falls
into a single cluster. Many of the trajectories intersect,
which demonstrates that the CSD is a complex function
of both t and T and could therefore not be reduced to a
simple forward-looking model.

Comparison with the generalized skyline: Further
simulations were developed to test the suitability of the

Figure 2.—The moments of the cluster size distribution over time as calculated by Equations 3 and 9 (lines, log scale). Four
trajectories of the cluster size moments were generated for 4 sample times T. And for each trajectory, simulated moments were
calculated for 10 threshold times t. Error bars show the 90% interval for 100 agent-based simulations [N¼ 105 and I(0)¼ 1%]. The
SIR model is _S ¼ �bSI ; _I ¼ bSI � gI ; _R ¼ gI . Epidemic prevalence (dotted line) is shown on the right axis. Transmission rate
b ¼ 1, and recovery rate m ¼ 0.3.
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model for estimating epidemiological parameters.
When the number of infecteds is small, epidemic
dynamics will be subject to large stochastic fluctuations.
To determine if Equation 12 can be used to fit SIR
models when the population size is small, we conducted
a set of simulations with only a single initial infected in a
population of 10,000 agents (Figure S5).

The simulations were also designed to determine if
SIR models that are fit via likelihood Equation 12 can
provide advantages beyond methods that are commonly
used to estimate effective population size (Ne). For
purposes of comparison, we used the generalized sky-
line model (Opgen-Rhein et al. 2005) (ape library in R)
and compared the estimated effective population size to
the best-fit SIR models and the known epidemic
prevalence from simulations. Details of the simulations
are provided in File S1.

We found that the accuracy of the best-fit SIR
models exceeded that of the generalized skyline by
8–30% as measured by the root mean square error
(RMSE) of estimated prevalence. It may seem surpris-
ing that the SIR model based on ODEs outperforms
the generalized skyline even in the presence of
stochasticity at small population sizes. This is due to
the fact that population dynamics converge to the
deterministic SIR model as the infected population
increases in size. Fluctuating incidence due to sto-

chastic effects when the number of infecteds is small
has the effect of shifting the distribution of coales-
cence times to the left or the right, but does not
fundamentally change the shape of the distribution.
This is easily accounted for by including a parameter
that varies the fraction initially infected in the de-
terministic SIR model.

Figure 3 shows the distribution of RMSE over 300
simulations. The mode of RMSE for the SIR model is
zero for all experiments, whereas the skyline is slightly
biased. Increasing sample size decreases RMSE for both
SIR and skyline. Taking the sample at a later time
(corresponding to 20% of peak prevalence) decreases
the accuracy of both SIR and skyline, although in
general the SIR models cope better with late sample
times than does the skyline. In Figure S10, we show
several representative SIR and skyline fits. It is usually
the case that the generalized skyline fails to detect a
decrease in prevalence and overestimates in the latter
stages of the epidemic.

The SIR models also provide a quite accurate estimate
of R0 [R0 ¼ 2, R̂0 ¼ 1:95 (95%: 1.71–2.17)].

The effect of a sample fraction: In the Kingman
coalescent, the fraction of the population that is
sampled is assumed to be small, such that the probability
that more than two individuals have the same parent in
the preceding generation is negligible. For example,

Figure 3.—Root mean square error of SIR and generalized skyline estimates of epidemic prevalence. Data are based on 300
simulated epidemics (R0 ¼ 2). RMSE is averaged over 100 time points.
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Kingman showed that the probability that n sampled
sequences will not have a common ancestor in the
preceding generation isY

i,n

ð1� i=N Þ

¼ 1�
X
i,n

i

N
1 OðN �2Þ ¼ 1�

�
n

2

�
=N 1 OðN �2Þ:

Kingman then made the approximation that the O(N�2)
terms are zero, which yields a minimum requirement
that n ,

ffiffiffiffiffiffiffi
2N
p

.
Analytical work has been carried out to investigate the

effect on coalescent processes of violating the assump-
tion of a small sample fraction (see, for example, Fu

2006), using discrete mathematics similar to the original
Kingman model. Such work has indicated that the
Kingman coalescent can be a surprisingly good approx-
imation even when the sample fraction is large.

Nevertheless, our model is not an approximation and
takes the sample fraction into account. This gives some
insight into how the fraction of the infected population
sampled affects the distribution of coalescent times and
thus the shape of the reconstructed phylogeny of viral
sequences.

Figure 4 shows the empirical distribution of coales-
cence times for 150 simulations (R0 ¼ 2) with samples
taken at peak prevalence. The sample fraction was varied
from 5 to 40%. When the sample fraction is small (5%),
the distribution is skewed left, meaning the phylogeny is
starlike, which is in agreement with conventional notions
for an exponentially growing population. However, as the
sample fraction is increased to 10, 20, and 40%, the shape
of the distribution changes until it is skewed right, which
means that most of the branches occur close to the tips.
These qualitatively antipodal distributions are generated
by the same underlying population dynamics, with only
the sample fraction being varied. This observation is of
practical as well as theoretical interest, since many
serological surveys for HIV may reach .20% of infected
individuals within a given locality (Lewis et al. 2008).

Equation 11 gives the analytical distribution of co-
alescence times and is shown in red in Figure 4. It also
provides some simple intuition for why most coales-
cence events will happen close to the sample time (T)
when the sample fraction is large. We use the initial
conditions A(T)¼ n/N, so that when n is large, the term
(A(T)/I(T))2 is also large, which is the probability that
two individuals in a transmission event represent sample
lineages. Conversely, if n and (A(T)/I(T))2 are small,
fewer coalescent events will occur until I converges to A,
which will occur early in the epidemic.

Estimating HIV prevalence: Equation 2 gives the rate
of coalescence at any time prior to the sample time (T)
and, by extension, the distribution of coalescence times.
This allowed us to derive the likelihood function (12),
which we used to fit a simple mass-action SIR model to
55 HIV-1 sequences of the pol gene collected as part of
the ACTG241 clinical trial (D’Aquila et al. 1996; Leigh

Brown et al. 1999). All sequences were collected from
men who have sex with men (MSM) over a short period
of time (May to July, 1993) within the United States.
Because the sequences were collected within a short
window of time, it is valid to make the approximation
that all sequences were sampled simultaneously. To
estimate a phylogeny, we used a general-time-reversible
model of nucleotide substitution (Tavare 1986) with
gamma-distributed variation in site-to-site substitution
rates. The root giving the most clocklike rates was
determined by maximum likelihood and the null hy-
pothesis of a molecular clock could not be rejected at
the 5% significance level.

The epidemiology of HIV has several factors that are
important to include in a model. Upon infection,
individuals progress through an acute phase lasting 1–
3 months and then progress to a chronic phase lasting
many years. The transmission probability per act is
much greater during the acute phase. Furthermore,
since we wish to model the epidemic over a period of
25 years, we must consider natural mortality and immi-
gration into the susceptible pool. All of these factors are
considered in the following model:

Figure 4.—The empirical distribution of coalescence times based on 150 simulated SIR epidemics. Transmission rate ¼ 2, re-
covery rate ¼ 1. The expected distribution based on Equation 11 is shown in red.
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_S ¼ �Saðb1I1 � b2I2Þ1 m� mS ð13Þ

_I1 ¼ Saðb1I1 1 b2I2Þ � g1I1 � mI1 ð14Þ

_I2 ¼ g1I1 � g2I2 � mI2: ð15Þ

I1 and I2 respectively represent the fractions of the
population that are at the acute and the chronic stages
of infection. Parameters we wish to estimate include the
following:

b1: The transmission rate of acute infecteds.
b2: The transmission rate of chronic infecteds.
m: The immigration rate into the susceptible population

and the natural mortality rate. We consider immigra-
tion to balance natural mortality.

a: A parameter that controls how incidence scales with
cumulative incidence.

e: The fraction of the population infected at the TMRCA
of the sample.

Many more parameters could be included in a model
for HIV among MSM, but since our purpose is to fit a
model to only 55 sequences, we choose to keep the
number of free parameters to a minimum. In addition,
we assumed an acute phase that lasts 2 months on
average (g1 ¼ 1/60) and a chronic phase that lasts 10
years on average [g2 ¼ 1/(10 3 365)].

Prior distributions are given in File S1.
Given n ¼ 55 sequences, we use the initial conditions

A(T ) ¼ 55/N, I1(0) ¼ e, and S(0) ¼ 1 – e. Since we are
including equations for two types of infecteds, we must
keep track of ancestor functions for both types. A1 and
A2 are the fractions of the population that are re-
spectively acute and chronic infected and that have
sampled progeny at time T. We have

A2
�� ¼ �g1I1ðA2=I2Þ1 b2I2SaðA1=I1ÞððI2 � A2Þ=I2Þ ð16Þ

A1
�� ¼ g1I1ðA2=I2Þ � b1I1SaðA1=I1Þ2 � b2I2SaðA1=I1Þ:

ð17Þ

For purposes of fitting the SIR model, we use A¼ A1 1 A2

and A
�� ¼ A1

��
1 A2
��

. A derivation is provided in File S1.

Fitting the model proceeded in two steps. First, we fit
a model using Equation 12 as described above. The
second step made use of sero-surveillance data of MSM
in the United States (Hall et al. 2008). These data
provided estimates of HIV incidence based on back
calculation for the period 1977–2006. To ameliorate
error from uncertainty in the chronological values of
phylogenetic branch lengths, we adjusted the timescale of
the epidemic and rescaled estimated rates to gain the
greatest fit with incidence data by a least-squares criterion.

Figure 5 shows the best-fit SIR model. The median
posterior estimates were as follows: acute transmission
rate, b̂1 ¼ 1 transmission per 47 days; chronic trans-
mission rate, b̂2 ¼: 1 transmission per 1207 days; immi-
gration rate to susceptible state, m̂ ¼ 1 per 19.5 years;
and incidence scaling parameter, â ¼ 9:77. Together,
these parameters imply an R0 value of 2.24 (see File S1).
They also imply that 41% of transmissions occur during
the acute stage.

For comparison with our SIR model, effective pop-
ulation size (Ne) was calculated using the skyline plot
(Pybus et al. 2000). Ne was rescaled so that min(Ne) ¼
min(I). Figure 5 shows the rescaled skyline and an SIR
trajectory that was integrated with parameters from the
median of the posterior distribution. Confidence inter-
vals are also given, which show the upper and lower
bounds within which 95% of posterior epidemic prev-
alence falls. Figure 5 also compares the best-fit SIR
model with the estimated cumulative incidence among
MSM in the United States based on sero-surveillance
data. The SIR model is in broad agreement with the data
from public health sources regarding the early rate of
growth and saturation in the early 1990s. The skyline
also reproduces the growth rate during the expansion
phase and the tapering of epidemic growth in the early
1990s. However, the skyline predicts a rise in Ne between
1980 and 1993, which probably overestimates the true
prevalence.

We have also compared the CSD mean and variance
from our best-fit SIR model to the empirical values from
the ACTG241 data (Figure 6). The SIR model success-
fully reproduces the mean cluster size throughout the

Figure 5.—Left: Estimated ep-
idemic prevalence (logarithmic
scale) of HIV among MSM in
the United States. A solution to
Equation 16 is compared to the
skyline plot, rescaled such that
minimum effective population
size equals minimum prevalence.
The thin lines show 95% confi-
dence intervals. Right: Estimated
cumulative incidence of HIV
among MSM vs. time (years prior
to 1993). A solution to Equation
16 is compared to estimates based
on sero-surveillance data (Hall

et al. 2008).
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course of the epidemic. However, there is substantial
deviation between the actual and the predicted variance
of cluster sizes. As the clustering threshold is increased,
all sampled infecteds eventually fall within a single
cluster, and in a finite population, variance converges
to zero (not shown).

DISCUSSION

The distribution of cluster sizes is a function of the
time T at which we observe a population, such as by
taking a sample of sequences, and t , T, which is a
clustering threshold (if the MRCA of two sequences
occurs after t, then those sequences are clustered). We
have derived differential equations that describe how
the moments of the CSD change as the threshold t
moves into the past. This could be used to calculate the
distribution of cluster sizes to arbitrary precision at any
time. It is straightforward to use the model to calculate
the probability that an infected host will have viral
progeny at a later time point and, conversely, the
expected number of ancestor lineages of a sample taken
at T. The model promises to serve as a null hypothesis
for clustering of infecteds under various epidemiolog-
ical scenarios and could possibly be used to detect
effects that may distort the CSD such as selection and
population structure.

The CSD is sensitive to details of the underlying
population dynamics. Most coalescent approaches take
into account only variable population size, such as
epidemic prevalence, but not variable birth rates, anal-
ogous to epidemic incidence. Such approaches can give
misleading results for epidemics. For example, in both
susceptible–infected (SI) models (no recovery) and

susceptible–infected–susceptible (SIS) models (recov-
ery into the susceptible state), prevalence rapidly
approaches an equilibrium. However, a naive coalescent
model based on constant population size would erro-
neously predict identical coalescent patterns in these
two cases. In fact, the SIS case is very similar to a standard
constant-population size coalescent, but the lineages in
an SI epidemic coalesce only during exponential
growth, not at equilibrium (Figure S2 and Figure S3).

We observed drastically less precision when estimat-
ing recovery rates than when estimating transmission
rates. Consequently, decline in prevalence is much
harder to detect than growth. This has been observed
previously (Lavery et al. 1996) in other biological
systems due to differences in the timescale of popula-
tion change and genetic variation. We nevertheless
found that our estimation procedure is robust to
misspecification of priors that include zero recovery,
and it is feasible to distinguish SI from SIR dynamics
(Figure S6, Figure S7, Figure S8, and Figure S9).

In conclusion, coalescent-based estimates of effective
population size, such as the generalized skyline, have
wide applicability and require minimal consideration of
underlying population dynamics. However, in the case
that the epidemic dynamics are well understood, the
potential is raised for a population genetic model that
takes into account the precise effects of transmission
and recovery, thereby predicting population dynamics
with greater accuracy. We have developed a model that
provides a step toward the formal integration of phylo-
dynamics and epidemiology and that can be used to
estimate epidemiological and demographic parameters
directly from viral sequence data.

Fitting population models to data requires biological
simplifications to make the model tractable, which
presents the danger of making the model useless for
real systems (Wilson et al. 2005). Pathogens require
successful reproduction both within and between hosts,
whereas we have focused entirely on transmission of
lineages to uninfected and immunologically naive hosts.
We have not considered biological nuances such as
superinfection and recombination or the possibility that
different strains will have different epidemiological
characteristics. Consequently, there are many ways that
our model could be extended and improved.

We have calculated coalescent rates and CSD mo-
ments only for the most simple mass-action SIR models.
But modern mathematical epidemiology has pro-
gressed in the direction of incorporating variable host
susceptibility, pathogen virulence, geographical hetero-
geneity, and host contact network structure. Reproduc-
ing our derivations for such models would be a difficult
but worthy enterprise.

While we have focused on variable population size in
epidemics, a second pillar of phylodynamics concerns
the effects of immune selection on viral phylogenies
(Grenfell et al. 2004). A major limitation of our

Figure 6.—The mean cluster size (dashes) and variance of
cluster sizes (dotted line) are calculated from the empirical
observations from the ACTG241 sequences (dashed lines)
and compared to our best-fit SIR model (solid lines). The hor-
izontal axis gives the clustering threshold as the year of the
MRCA of a cluster.
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approach is that we adopt the standard assumption of
selective neutrality. It is unknown how our method
would perform for genes under strong immune selec-
tion, such as influenza virus hemagglutinin.

We have made a first attempt at a method for fitting
arbitrary SIR models to cross-sectional samples of viral
sequences. Many challenges remain for increasing the
utility of the method. It may be possible to improve
estimation of model parameters when historical preva-
lence data are available. However, it is not known how
to discriminate between competing models when only
sequence data are available. The estimation theory
developed here is based on a fixed genealogy of virus
with no uncertainty about branch lengths; in reality
there can be a great deal of uncertainty about the
structure of the genealogy, and it should be straightfor-
ward to generalize the method to account for this
(Drummond et al. 2005). Finally, it should also be
possible to extend our solutions to heterochronous
samples—sequence data collected at multiple time
points over the course of an epidemic.

Irene Hall provided estimates of HIV incidence in MSM. The
authors acknowledge support from the National Institutes of Health
(T32 AI07384, R01 AI47745). S.D.W.F. is supported by a Royal Society
Wolfson Research Merit Award. M.J.W. is supported by the Bio-
technology and Biological Sciences Research Council.
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Abstract

Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics.
Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently
HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large
set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent
infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess
clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-
clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play
in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of
intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and
chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage
transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage
transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess
clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the
shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-
clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled.
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Introduction

Phylogenetic clusters of closely related virus such as HIV arise

from the epidemiological dynamics and transmission by infected

hosts. If virus is phylogenetically clustered, it is an indication that

the hosts are connected by a short chain of transmissions [1].

If super-infection is rare, and assuming an extreme bottleneck at

the point of transmission, each lineage in a phylogenetic tree

corresponds to a single infected individual with its own unique

viral population [2,3]. A transmission event between hosts causes

an extreme bottleneck in the population of virus in the new hosts.

For infections between MSM, it is estimated that infection is

initiated by one or several virions [4,5]. At the time of

transmission, the quasispecies of virus within the transmitting host

diverges and can thereby generate a new branch in the phylogeny

of consensus viral isolates from infected individuals [6]. Trans-

missions in the recent past should be reflected by recently diverged

lineages, and transmissions from long ago should reflect branches

close to the root of a tree. [7]. Viruses such as HIV which have a

high mutation rate relative to epidemiological spread can generate

epidemics such that the correspondence between transmission and

phylogenetic branching is most clear [2].

Given a phylogeny of virus reconstructed from n samples, the

phylogenetic clusters are a partition of the n sample units into

disjoint sets as a function of the tree topology. A cluster will consist

of all taxa of the tree that are descended from a given lineage on

the interior of the tree. There are many variations of this idea, and

there is no general agreement about how to choose interior

lineages for defining clusters. The most common algorithms

require strong statistical support for a monophyletic clade among

all taxa in a cluster [8–14]. These definitions may additionally

require all taxa in a cluster to be connected by short branches with

less than a threshold length [11], or similarly require that the

genetic sequences corresponding to each taxon be separated by a

genetic distance less than a given threshold [8,14]. Definitions of

clustering based on statistical support for monophyly are very

difficult to operationalize in a mathematical model, and in

particular, it is not clear how the statistical significance of internal

nodes relates to population dynamics. Consequently, we have

devised a conceptually similar definition of clusters that relies on

the estimated time to most recent common ancestor (TMRCA) of

a set of taxa [15]. A formal definition is provided below.

The sizes of the groupings that arise from a clustering algorithm

have been interpreted as a reflection of the heterogeneity of

epidemiological transmission. The distribution of cluster sizes of

HIV is often skewed right, and depending on the definition of

clustering used, can have a heavy tail [14,15]. This is consistent

with the prevailing view among modelers of sexually transmitted

infections that there is a skewed and in some cases power-law

distribution in the number of risky sexual contacts in the
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population, however it is not straightforward to make inferences

about sexual network properties from cluster size distributions

[16]. In the case of HIV, the distribution of branch lengths within

clusters may also reflect the disproportionate impact of early and

acute HIV infection on forward transmission, which is due to

higher viral loads in the early stages of infection, higher

transmissibility per act [17], and fluctuating risk behavior [18].

When the taxa of the phylogeny are labeled, such as with the

demographic, behavioral or clinical attributes of the the individ-

uals from whom the virus was sampled, one can further analyze

statistical properties of clustered taxa. Similar taxa, such as those

arising from acute infections, may cluster together (or co-cluster) at

greater rates. Patterns of co-clustering might be informative about

the fraction of transmissions that occur at different stages of

infection or between different demographic categories. HIV

phylogenies from men who have sex with men (MSM) have been

widely observed [12,13,19] to have individuals with early/acute

HIV infection that are much more likely to appear in a

phylogenetic cluster. And moreover, if early-stage individuals are

in a cluster, they are much more likely to be clustered with other

early infections. Both Lewis et al. and Brenner et al. [8,9] have

hypothesized that co-clustering of early infection is caused by

higher transmissibility per act during early infection. For example,

in phylogenies with time-scaled branch lengths, if a large fraction

of clusters have a maximum branch length of six months [8,15],

this suggests that at least that fraction of transmissions also occur

within six months. In this article we demonstrate that the

mechanisms that generate co-clustering of early infections are

complex, and involve many attributes of the epidemic in addition

to higher transmissibility per act [17]. To summarize, several

features of the phylogenetic structure of HIV in MSM have been

independently observed by several investigators:

N Many more early infections are phylogenetically clustered than

late infections. For future reference, we will refer to this as

excess clustering of early/acute infections.

N If an early infection is clustered, it is more likely to be co-

clustered with another early infection than expected by chance

alone. For future reference, we will refer to this as excess co-

clustering of early/acute infections.

N The distribution of phylogenetic cluster sizes is skewed to the

right and is potentially heavy-tailed.

Below, we illustrate these clustering patterns using 1235 HIV-1

subtype B pol sequences collected between 2004 and 2010 in

Detroit, Michigan, USA.

These common clustering features motivate several questions.

How informative are clustering patters about the underlying

epidemic? In particular, how does higher transmissibility per act

during early infection shape the phylogeny of virus ? To address

these questions, we have developed a simple mathematical

framework that demonstrates the connection between epidemio-

logical dynamics and the expected patterns of clustering from a

transmission tree and the corresponding phylogeny.

Our modeling work suggests that common features of HIV

phylogenies are not coincidences, but universal features of certain

viral phylogenies. We expect to see similar patterns for any disease

such that the natural history features an early period of intensified

transmission. High transmission rates during early infection may

be a consequence of higher transmissibility per act due to high

viral loads, but are also influenced by behavioral factors, such as

fluctuating risk behavior [18], concurrency [20], and a lack of

awareness of the infection. We do not explicitly model immuno-

logical or behavioral factors, but rather consider a compound

parameter that describes the rate of transmission during the early/

acute period. We find that while higher transmission rates increase

the frequency of early/acute clustering, virus collected from early/

acute patients clusters at a higher rate even when transmission

rates are uniform over the infectious period.

Materials and Methods

Ethics statement
This research was reviewed by the Institutional Review Board at

the University of Michigan. Data used in this research was

originally collected for HIV surveillance purposes. Data were

anonymized by staff at the Michigan Department of Community

Health before being provided to investigators. Because this

research falls under the original mandate for HIV surveillance, it

was not classified as human subjects research.

Phylogenetic clustering of Michigan HIV-1 sequences
Our analysis consists of an empirical component which

establishes clustering patterns for a geographically and temporally

delineated set of HIV sequences, and an analytical component

which establishes a possible mechanism that could generate the

observed patterns.

We examined the phylogenetic relationships of 1235 HIV-1

subtype B partial-pol sequences originally collected for drug-

resistance testing. All sequences were collected in the Detroit

metropolitan statistical area between 2004 and 2010. Sequences

were tested for quality and subtype using the LANL quality control

tool [21–23], and aligned against a subtype-B reference

(HXB2).Drug resistance sites [24] were treated as missing data.

A maximum clade credibility phylogeny was estimated with

BEAST 1.6.2 [25]. The phylogeny was estimated using a relaxed

molecular clock and and HKY85 model of nucleotide substitution

with Gamma rate variation between sites (4 categories). The

MCMC was run for 50 million iterations with sampling every 104

iterations. The first million iterations were discarded. The effective

sample size of all parameters exceeded 50.

The phylogeny was converted into a matrix of pairwise

distances between taxa expressed in units of calendar time. The

distance between a pair of taxa was the TMRCA estimated by

BEAST. Taxa were then classified into clusters using hierarchical

clustering algorithms. A pair of taxa were considered to be

clustered if the estimated TMRCA did not exceed a given

threshold, and a range of thresholds was examined, from 0.5% of

the maximum distance to the distance corresponding to the point

where 90% of taxa are clustered with at least one other taxon.

Co-clustering of early/acute infections was investigated using a

clinical variable (CD4 count) and a measure of genetic diversity of

the virus. Both CD4 and sequence diversity are imprecise

Author Summary

Diversity of viral genetic sequences depends on epidemi-
ological mechanisms and dynamics, however the exact
mechanisms responsible for patterns observed in phylog-
enies of HIV remain poorly understood. We observe that
virus taken from patients with early/acute HIV infection are
more likely to be closely related. By developing a
mathematical model of HIV transmission, we show how
these and other patterns arise as a simple consequence of
intensified transmission during the early/acute stage of
HIV infection, however observing these patterns is highly
dependent on sampling a significant fraction of prevalent
infections.
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indicators of stage of infection. Nevertheless, with a large

population-based sample, even noisy indicators of stage of

infection are useful for illustrating phylodynamic patterns.

In most cases, CD4 counts were assessed contemporaneously

with samples collected for sequencing. The CD4 cell counts can be

informative about disease progression and can be used as a noisy

predictor of the unknown date of infection [26]. Individuals with

very high cell counts are unlikely to represent late/chronic

infections, and we hypothesize that virus from these patients will

be more likely to be phylogenetically clustered. Clustering of

patients with high CD4 was previously observed by Pao et al. [10]

Recent work [27] has also highlighted the potential for sequence

diversity to be informative of the date of infection. The frequency

of ambiguous sites (FAS) in consensus sequences provides an

approximate measure of sequence diversity in the host. HIV

infection is initiated by one or a few founder lineages [4,5]; initially

the diversity of the viral population within the host is low, but

diversity increases steadily over the course of infection [28]. By

convention, consensus sequences report ambiguous sites as those

where the most frequent nucleotide is read with a frequency less

than 80%. We hypothesize that having few ambiguous sites is an

indicator of early/acute infection; sequences with fewer ambigu-

ous sites will be more likely to be in a phylogenetic cluster and to

be clustered with other sequences with few ambiguous sites.

A simple analysis was conducted to establish the existence of

excess clustering and co-clustering in the Michigan sequences.

This analysis is not designed to classify our sample into a early/

acute component or to estimate the date of infection for each unit.

To illustrate excess clustering of early/acute infections, we

calculated the mean CD4 cell count and FAS for each sample unit

in a phylogenetic cluster. Because all clustering thresholds are

arbitrary, we explored a large range of values, up to the point

where 90% of the sample was clustered with at least one other

unit. The standard error of the estimated mean was calculated

assuming simple random sampling. For small threshold distances,

very few taxa are clustered, and the standard error is large, but

decreases monotonically as the threshold is increased and more

taxa are clustered.

To illustrate excess co-clustering, we classified taxa into three

categories of CD4: those with CD4 v200, representing AIDS

cases; those with CD4 w800, and those with CD4 between 200

and 800. Taxa were also classified into quartiles by FAS. We then

counted the number of pairwise clusterings of taxa within and

between each category. These counts were arranged in a matrix.

Large counts along the diagonal (within categories) represent co-

clustering by stage of infection. To establish excess co-clustering,

we compared the counts to the expectation if clusters were being

formed at random, e.g. if two taxa were selected uniformly at

random without replacement.We denote the symmetric matrix of

co-clustering counts as M, so that Mij represents the number of

times that a taxon in category i is clustered with a taxon in

category j. The sum of counts in the i’th row of M will be denoted

mi. Following the methods described in [29], the expected value of

M under random pair formation is

SMijT~mimj=
X

ij

Mij :

Below, we illustrate the difference Mij{SMijT. We can also

calculate the assortativity coefficient [29], r, which describes the

total amount of co-clustering in the matrix. To construct the co-

clustering matrices, we selected the value of the distance threshold

which maximized the assortativity coefficient.

Mathematical model
Following the approach outlined in [6] and [30], we develop a

deterministic coalescent model derived from a compartmental

susceptible-infected-recovered (SIR) model. A system of several

ordinary differential equations describe the dynamics of preva-

lence of early and late HIV infection. Individuals pass from a

susceptible state, to an early/acute infection state, to a chronic

infection state followed by removal (treatment or death). S,I1,

and I2 will denote the numbers susceptible, acute, and chronically

infected respectively, and the population size will be denoted N.

For didactic purposes, we will suppose that treatment is

completely effective at preventing forward transmissions. The

HIV model is described by the following equations:

_SS~{
S

N
(b1I1zb2I2)h(t)zb(t){mS

_II1~
S

N
(b1I1zb2I2)h(t){c1I1{mI1 ð1Þ

_II2~c1I1{c2I2{mI2

In these equations, b1 and b2 are respectively the frequency-

dependent transmission rates for early and chronic infected

individuals. The average duration of early and chronic infection

are respectively 1=c1 and 1=c2. Natural mortality occurs at the

rate m and immigration into the susceptible state occurs at the

rate b(t)~m(SzI1zI2)zc2I2, which maintains a constant

population size N~104. h(t) is a term which modulates the

way incidence of infection scales with prevalence. For the results

presented below, we choose h(t)~e{a(I1zI2)=N . This term

corrects for observed patterns of decreasing incidence with

prevalence; this can occur as a result of population heterogene-

ities (including sexual network structure) or as the result of

decreasing risk behavior as knowledge of the epidemic spread.

Many more relevant details could be included in a model of the

HIV epidemic in MSM, however our purpose is to demonstrate

how these simple dynamics lead to observed phylogenetic

patterns.

In [6], a similar HIV model was presented along with a method

to fit such models to a sequence of phylogenetic divergence times

(the heights of nodes in a time-scaled phylogeny). Where possible,

we will use the parameter estimates from [6]. The parameters are

reported in table 1. Together, these parameters imply R0~2:24
and that 41% of transmissions occur during the acute stage.

Corresponding to an epidemic model of the form 1, we can

define a coalescent process [31,32] that describes the properties of

the transmission tree and by extension the phylogeny of virus.

The taxa descended from a lineage at time t in the past form a

clade, which we will also call a cluster. The number of taxa in a

randomly selected cluster will be a random variable. The cluster

size distribution (CSD) is a function of a threshold TMRCA t, and

describes the probability of having a size m cluster if a lineage (i.e.

branch) at time t is selected uniformly at random from the set of

all lineages at t and the size of the cluster descended from that

branch is counted. A schematic of how clusters and the CSD are

constructed given a tree and a threshold is shown in figure S5. In

[6] we derived differential equations that describe the moments of

the CSD.

Some of the properties of phylogenies that we seek to reproduce

with the model developed below are:
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N The number of lineages as a function of time (NLFT), also

known as the ancestor function.

N The fraction of sampled early/acute and chronic infections

which are clustered given a threshold TMRCA.

N Within a given cluster there will a number of early/acute taxa

and a number of chronic taxa. We will calculate the

correlation coefficient between these counts across all clusters

given a threshold TMRCA.

N The moments of the distribution of cluster sizes, including the

mean, variance, and skew of cluster sizes.

Figure 1 shows a simple genealogy that could be generated by

the HIV model. Four events can occur in this genealogy

representing coalescence or the changing stage of a lineage. By

quantifying the rate that these events occur using a coalescent

model, we can calculate the clustering properties of these

genealogies. These methods are described below and in detail in

supporting Text S1.

The ancestor function is strictly decreasing in reverse time and

converges to one (a single lineage) when the most recent common

ancestor of the sample is reached. The initial value of the ancestor

function (when the population is sampled) is equal to the sample

size n. For the purposes of modeling phylogenetic properties of

HIV, we will be interested in phylogenies such that the taxa are

labeled with the state of the sampled individual (e.g. the individual

will have early or late infection corresponding to the states in

equation 1). In this case, we will have two ancestor functions, since

a lineage may correspond to an infected individual with either

early or late infection.

The ancestor functions derived from equations 1, and which are

derived in the Text S1 are as follows:

d

dt
A1~c1I1

A2

I2
{b1S

I1

N

A1

I1

� �2

h

{b2S
I2

N

A1

I1

h

ð2Þ

d

dt
A2~{c1I1

A2

I2

zb2S
I2

N

A1

I1

I2{A2

I2

h:

In these equations, A1 is the number of lineages corresponding to

early infections and A2 is the number of lineages corresponding to

late infections. These equations provide a deterministic approx-

imation to the NLFT, which is A(t)~A1(t)zA2(t). Each term in

these equations accounts for loss or gain of lineages due to the

concurrent processes of transmission (at rates b1S
I1

N
h and

b2S
I2

N
h) and transition between states (at rates c1I1). This

approximation becomes exact in the limit of large sample and

population size. Note that since the model is continuous in both

time and state variables, the ancestor functions are not integers in

contrast to most coalescent frameworks based on discrete

mathematics.

Real epidemics in a finite population will have transmission trees

such that the number of lineages at any time is a random variable.

The mean-field model presented in equation 1 can be viewed as a

description of the dynamics of a stochastic system in the limit of

large population size. In this case, we can adapt the coalescent to

make approximate descriptions of the stochastic properties of the

transmission tree in large populations. The ancestor functions will

reflect the approximation of the actual (random) number of lineages.

Previous work has demonstrated that deterministic descriptions can

be excellent approximations for the number of lineages over time

[6,33]. In the following section, we compare our deterministic

coalescent to stochastic simulations, confirming that it is a good

approximation over a wide range of parameters.

Given a clustering threshold TMRCA t, the random variable

Xk(l; t) will be the number of stage-k taxa descended from a given

lineage l that is extant at time t in the past. As before, Ak(t) will be

the number of type k lineages at the time t in the past. In our model,

infected can be of two types (early/acute and chronic infected), so

there are only two types: k~1 corresponds to earl/acute and k~2
corresponds to chronic. We will denote the set of all lineages of type

k at time t in the past as S(k; t). Then we define the i and j’th
moment of cluster sizes descended from a type k lineage to be

Mi,j(k; t)~
1

Ak(t)

X
l[S(k;t)

X i
1(l; t)X

j
2(l; t): ð3Þ

Many summary statistics that are potentially informative about

transmission dynamics can be derived from these moments. The

moments are difficult to interpret, so in practice we use them to

calculate summary statistics such as variance and skew of the CSD.

Below, we examine 30 summary statistics derived from the first

three moments and multiple clustering thresholds.

For example, the variance of cluster sizes counting only type 1
taxa descended from type k lineages is

Var(X1; k)~M2,0(k){ M1,0(k)ð Þ2: ð4Þ

The total variance of cluster sizes counting only stage 1 taxa is

found with the weighted average over lineage types:

Var(X1)~
A1Var(X1; 1)zA2Var(X1; 2)

A1zA2
: ð5Þ

A similar set of equations can be developed for the cluster sizes

aggregated over taxon types, that is, for X1zX2. Detailed

derivations are provided in Text S1 for differential equations that

describe these moments as function of the threshold t.

Event-driven stochastic simulations were conducted to verify the

suitability of the deterministic approximations for inference.

Simulations implemented a variation on the Gillespie algorithm

[34]. Populations consisted of N~5|104 agents, and were

simulated for 15 or 30 years starting with one hundred initial

infections. At the end of each simulation, a sample of either 20%

Table 1. Epidemiological parameters.

Parameter Symbol Value

Transmission rate of early/acute b1 1 per 47 days

Transmission rate of chronic b2 1 per 1207 days

Mean duration of risk behavior 1=m 19.5 years

Mean duration of early/acute period 1=c1 180 days

Mean duration of chronic period 1=c2 10 years

doi:10.1371/journal.pcbi.1002552.t001
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or 100% of prevalent infections was taken and used to reconstruct

a transmission tree. Five hundred simulations were conducted for

each sample fraction and sample time. Corresponding to each

simulation, 10 transmission trees were generated based on a

random sampling of using distinct clustering thresholds. The CSDs

were then estimated from each tree and the moments of these

distributions were compared to the moment equations (3–5).

We have further conducted an investigation into the potential of

various summary statistics of the viral phylogeny for inference of

underlying epidemiological parameters. Of particular interest is

the fraction of transmissions that occur during early HIV infection.

As indicated above, it is possible that phylogenetic clustering of

early infections reflects elevated transmission during early/acute

HIV infection, which we will define as the infectious period from

zero to six months. The following simulation experiment was

carried out to identify informative statistics:

1. Parameters bl ,bh,N were sampled from a multivariate uniform

distribution. 1800 replicates were sampled.

2. For each set of parameters, the HIV ODE model was

integrated. The number of transmissions by early/acute and

chronic cases was recorded. The number of stage transitions

from acute to chronic was also recorded.

3. For each record of transmissions and stage transitions, a

coalescent tree was simulated using the method described in [35].

4. For each coalescent tree, summary statistics were calculated

and recorded. These statistics consisted of the following: The

number of lineages as a function of time before the most recent

sample; the correlation between between the number of early/

acute and chronic infections with threshold TMRCA; the

fraction of acute/recent taxa which remain unclustered (not

clustered with any other taxa); the fraction of chronic taxa

which remain unclustered; the mean number of taxa clustered

with a early/acute infection; the mean number of taxa

clustered with a chronic infection. Each of these statistics was

calculated using 5 threshold TMRCA uniformly distributed

between one year and 25 years before the most recent sample.

The coalescent tree was simulated such that the sample size

matched that of the Detroit MSM phylogeny, and the heteroch-

ronous sampling of that phylogeny was reproduced in the

coalescent tree. Furthermore, the number of early/acute versus

chronic taxa sampled was determined using the BED test for

recency of infection for each patient [36], and simulations were

also made to match the numbers of early/acute and chronic taxa

sampled. Virus from patients with early/acute infection accounted

for 24% of the samples.

Summary statistics were centralized around the mean and

rescaled by their standard deviation (
X{E½X �

s(X )
). The dependent

variable of interest is the fraction of transmissions attributable to the

acute stage at the beginning of the epidemic, which may be defined

t~R1
0=R0

~
b1=c1

b1=c1zb2=c2

,
ð6Þ

Figure 1. A simple gene genealogy that could be generated by
the HIV model. Dark branches with taxa labeled A correspond to
stage-1 (early/acute infected hosts). Light branches with taxa labeled C
correspond to stage-2 (chronic infections). Event 1 represents the
coalescence of two lineages corresponding to early/acute infection.
Event 2 represents coalescence of an early and a late infection. Event 3
represents the stage transition of an early infection to a late infection.

Event 4 represents the transmission by a late infection which is not
ancestral to the sample. Top: Includes an unsampled lineage (dashed).
Middle: The unsampled lineage has been pruned from the tree. The
point where the lineage is pruned corresponds to event 4. Bottom: The
number of lineages as a function of time (NLFT) which correspond to a
host with early/acute infection (black) or chronic infection (grey).
doi:10.1371/journal.pcbi.1002552.g001
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where R1
0 is the expected number of transmissions generated during

early/acute infection at the beginning of the epidemic, and R0 is the

expected number of transmissions over the entire infectious period.

Pearson correlation coefficients were calculated for each statistic

and t. To give a better indication which statistics would be useful for

estimating the ratio of acute to chronic transmission rates, we

conducted a partial least-squares (PLS) regression [37], which has

been used by other investigators when estimating parameters by

approximate Bayesian computation (ABC) methods [38]. Prediction

error was assessed with 10-fold cross validation. We controlled for

the sample fraction by including the prevalence of infection at the

time of the most recent sample as a covariate.

Results

The mean CD4 cell count and FAS for clustered taxa is shown

in figure 2. Consistent with our hypotheses, patients with higher

CD4 count are more likely to yield phylogenetically clustered

virus, and the mean CD4 count among clustered patients has an

inverse relationship with the threshold TMRCA for clustering.

Also consistent with our hypothesis, patients which yield virus with

lower FAS (less diverse virus) are more likely to be phylogenetically

clustered, and mean FAS has a positive relationship with the

threshold TMRCA for clustering. Patients were strongly co-

clustered within quantiles. Maximum assortativity values, which

measures the similarity of co-clustered taxa were 13% for CD4

and 4.5% for FAS. The maximum assortativity also occurs at low

threshold TMRCA for FAS and CD4 (1700 and 1467 days). Very

little clustering is observed between the first and last quantiles.

In general, the deterministic model offers an excellent approx-

imation to the stochastic system. All trajectories pass through or

close to the median of simulation predictions. Figure 3 illustrates

the prevalence of early/acute and chronic infections from a typical

simulation of the HIV model and the corresponding deterministic

approximations. This correspondence occurs despite large fluctu-

ations in prevalence when the number of infections is small. In [6]

it was shown that the correspondence between the stochastic and

deterministic systems can be very good even if the epidemic is

started from a single infection and the coalescent is fit to the

resulting transmission tree.

In figure 3, late infections outnumber early infections by

approximately 20 to 1. As a consequence, NLFT for late infections

are more stable due to larger sample sizes, and the NLFT are

more noisy for the sample of early infections. The prevalence of

infection plateaus prior to the 15 year sample time, so there is not

much difference in the phylogenetic features observed at 15 and

30 year sampling times.

Many summary statistics calculated from an HIV gene

genealogy can be informative about the fraction of transmissions

attributable to early/acute infection, t (equation 6). Figure 4 shows

the value of four statistics as t is varied. The dependancy of these

summary statistics on the sample fraction is also shown in figure

S4. r(X1,X2) (upper left) is the Pearson correlation coefficient

between the number of early/acute taxa and chronic taxa in a

cluster and is most sensitive to t. Also shown are the mean cluster

size, the number of extant lineages at the threshold TMRCA, and

the fraction of taxa in a phylogenetic cluster. As the fraction of

transmissions from the early/acute stage is varied, transmission

rates b1 and b2 are adjusted so that R0 remains constant. The

smallest value of t shown in figure 4 corresponds to the point

where b1~b2, such that there is no excess transmission in the

early/acute stage. The most recent sample is assumed to be at 35

Figure 2. Excess clustering and excess co-clustering of virus from patients with early/acute infections. Left: The mean CD4 cell count
(top) and frequency of ambiguous sites (bottom) versus the threshold TMRCA used to form clusters. Middle: The assortativity coefficient, a measure of
similarity of co-clustered taxa, versus the treshold TMRCA used to form clusters. Assortativity of CD4 is at top, and frequency of ambiguous sites is
bottom. Right: The size of each matrix element is proportional to number of co-clusterings between taxa categorized by CD4 (top,
x1v200vx2v800vx3) or quartile of frequency of ambiguous sites (bottom). The color represents the extent to which the count of co-clusterings
exceeds the expectation if clusters were forming at random. The color scale (far right) shows strong assortativity within quartiles. The vertical red bar
represents the threshold which was used to create clusters and the matrix derived from the set of clusters. This threshold corresponds to the
maximum of the assortativity coefficient for the derived matrix.
doi:10.1371/journal.pcbi.1002552.g002
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years following the initial infection. Epidemic prevalence after 35

years is approximately constant. The threshold TMRCA was five

years before the most recent sample. Sample size and distribution

of samples over time was matched to the Detroit MSM phylogeny.

Furthermore, the number of early/acute versus chronic taxa

sampled was made to match the Detroit data by use of the BED

test [36] for determining recency of infection.

The fraction of taxa which are phylogenetically clustered also

varies with t (figure 4, upper left). The fraction of early/acute taxa

clustered is more sensitive to t than the fraction from chronic taxa.

Early/acute taxa are always clustered at a greater rate than

chronic taxa, even when b1~b2 corresponding to the minimum

value of t. This is because virus from early/acute patients was

recently transmitted, making it much more likely that the lineage

will coalesce in the recent past regardless of the source of the

infection.

Using the mathematical model, we explored many parameters

including the threshold TMRCA for clustering, the sample

fraction, and the time relative to the beginning of the epidemic

at which sampling occurs. Figures S1, S2, S3 demonstrate that the

deterministic model is capable of reproducing many phylogenetic

signatures that have been associated with HIV epidemics in MSM.

For example, figure S5 shows the fraction of the sample (both early

and late infections) which remain unclustered with any other

sample unit. When the threshold TMRCA is zero (corresponding

to the far right of the time axis), the entire sample remains

unclustered. As the threshold TMRCA increases (moving left-

wards on the time axis), more sample units become clustered and

the fraction of taxa remaining unclustered decreases.

The time of sampling makes little absolute difference to the

qualitative nature of the tree statistics if sampling occurs after the

peak epidemic prevalence (around 15 years). However the sample

fraction (the fraction of prevalent infections sampled) has a large

effect on all tree statistics. When the sample fraction is large, the

fraction remaining unclustered drops much more precipitously

than when it is small as the threshold TMRCA increases. This

occurs because each transmission can cause a sample unit to

become clustered; a large sample size implies that transmissions

will have a greater probability of resulting in an observable

coalescent event (e.g. it results in a larger ratio Ai=Ii).

Early infections become clustered at a much greater rate than

late infections. This corresponds to the excess clustering of early/

acute infections observed in many phylogenies. By virtue of being

infected in the recent past, an acute infection inevitably has a very

recent common ancestor with another infection who transmitted

to that individual. Mathematically, this is reflected in transmission

terms of the form b1S(I1=N)(A1=I1)2 which appear in the

ancestor function for early, but not late infections.

When the sample fraction is non-negligible, the fraction of the

sample in a cluster levels off for intermediate thresholds. Similar

phenomena were noted by Lewis et al. [8] and Hughes et al. [14]

who observed that the fraction of the sample in a cluster did not

change substantially beyond a small threshold, though these

studies probably had high sample fractions. The plateau is due to

the bimodality of coalescence times induced by early infection

dynamics. Many coalesce events occurs at thresholds close to the

sampling time, which corresponds to lineages of early infection

coalescing.A larger group of coalescence times occurs close to the

beginning of the epidemic when the effective population size is

small. We hypothesize that the amount of excess clustering of early

infections can be informative for estimating the sample fraction

when it is not known.

Figure S2 shows the Pearson correlation coefficient for the

number of co-clustered early and chronic infections as a function

of the clustering threshold (r(X1(l),X2(l))). Given that a sample

unit is in a cluster, under certain circumstances, it is much more

likely to be clustered with another unit of the same type. This is

reflected by large negative correlation coefficients for the number

of co-clustered early and late infections for small threshold

TMRCA. But negative correlation between the number of early

and late infections is only observed for small sample fractions and

small threshold TMRCA. The region of negative correlation

appears very briefly for a 100% sample fraction; the region is

much longer for small samples. This implies that if a patient with

early infection is clustered, it is much more likely to be clustered

with another early infection than expected by chance alone.

The skewness of the CSD shows a similar trend (figure S3). The

skewness is always positive (to the right) and rapidly decreases as

the threshold TMRCA is increased reflecting greater probability

mass in the tail of the distribution. Skew is greatest for small

threshold TMRCA, when most clusters are of size 1. The

distribution remains positively skewed, though it quickly levels off

for intermediate threshold TMRCA. The mathematical model

shows that all moments of the CSD are finite and diverge to

infinity in the limit of large sample size and threshold TMRCA.

A practical consequence of having an intermediate to large

sample fraction is that chains of acute-stage transmission will

account for many of the clusters observed at low thresholds. If a

taxon is clustered with an early infection, then it is more likely that

the unit will be clustered with additional early infections since such

cases are highly infectious and have likely transmitted in the recent

past. This provides a justification for the theory expounded in

Lewis et al. [8] that high clustering of cases with recent MRCA’s

indicates episodic transmission; chains of transmission by early

infections are interrupted by occasional long intervals until a

transmission by late stage infections.

Corroborating figure 4 which shows that many statistics are

correlated with t, the PLS regression did not single out any

particular group of statistics as being informative of early/acute

stage transmission rates. The first component distinguishes

between statistics that describe co-clustering (correlation of the

number of acute and chronic taxa in a cluster) and statistics that

describe excess clustering (e.g. the fraction of early/acute taxa that

are not clustered with any other taxa). Four principal components

were required to explain 42% of the variance of the transmission

fraction with additional components only explaining an additional

2%. All statistics were well represented in the model with four

components.

Discussion

We have used coalescent models to characterize the phyloge-

netic patterns of a virus which produces an early stage of

intensified transmission followed by a long period of low

infectiousness. These patterns have been observed in multiple

phylogenies of HIV-1 from MSM and IDU, and our model

suggests that these should be general features for epidemics which

feature early and intense transmission. These patterns are not

necessarily a consequence of complex sexual network structure

[14]. Complex transmission dynamics driven by sexual networks

are undoubtedly taking place, but detecting the phylogenetic

signature of sexual network structure will require carefully-chosen

summary statistics [15]. We have characterized phylogenies using

the cluster size distribution (CSD) which is similar to commonly

used clustering methods based on strong support for monophyly

but is nevertheless tractable for mathematical modeling in a

dynamical systems framework. Moments of the CSD reflect a wide

range of tree topologies, such as the distribution of branch lengths
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and tree balance, and are potentially informative of a wide range

population genetic processes. For example, a highly unbalanced

tree would have produce very skewed CSD, and a very star-like

tree would have a CSD that is insensitive to changes in the

clustering threshold.

While there has been much discussion of how clustering of acute

infections is caused by the intensity of transmission during the

acute stage, the amount of excess clustering that will be observed is

also very sensitive to the sample fraction. And even if transmission

rates in the early/acute stage are equal to those in the late/chronic

stage, we would still observe excess clustering of early/acute

provided the sample fraction was large enough. This is a simple

consequence of early/acute infections being connected by short

branch lengths to the individual who transmitted infection. An

advantage of the coalescent framework used in this investigation is

that it is accurate even with large sample fractions [35].

Some of the statistics which are most informative of the

underlying epidemiological processes are those based on co-

clustering of labeled taxa, such as the correlation between the

number of early and late infections in a cluster. Such statistics tend

to be the most responsive to variation of the intensity of

transmission during early infection, and are therefore good

candidates for future estimation of the fraction of transmissions

that occur during the first few months of infection with HIV.

Knowing the frequency of early transmission is essential to

prevention efforts, since these transmissions are the most difficult

to prevent. Individuals with early and acute infection are usually

not aware of the infection, and are therefore not susceptible to

many interventions. Modeling to evaluate strategies such seek, test,

and treat (STT) [39,40] and pre-exposure prophylaxis(PrEP) [41] will

require good estimates for the frequency of early-stage transmis-

sion in diverse populations, and phylogenetic data promise to

refine these estimates.

Future work could focus on finding ways to use statistics derived

from the CSD for estimation of epidemiological parameters within

an approximate Bayesian framework [38,42,43]. Alternatively,

Figure 3. Two simulated epidemics and the deterministic approximations for the prevalent number of early and late infections and
the ancestor functions (the number of lineages over time). The x-axis gives the time since the beginning of the epidemic, or equivalently, the
threshold TMRCA used to calculate the number of lineages over time. Green describes the simulated number of late infections. Blue describes the
simulated number of early infections. Dots show the simulated ancestor function for the number of lineages that correspond to late infections. And
x’s show the simulated ancestor function for lineages in early infection. Dashed lines show the prediction of the deterministic coalescent. The top row
shows results for a sample taken at 15 years following the initial infections, and the bottom shows results for a sample at 30 years. The right column
shows results for a sample fractions of 20%, and the left column for a census of prevalent infections(100%).
doi:10.1371/journal.pcbi.1002552.g003
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advances [35] in coalescent theory may make it possible to

calculate the likelihood of a gene genealogy conditional on a

complex demographic history, such as those generated by the HIV

model discussed here. Current techniques are limited in the

amount of phylogenetic data that can be used for inference of

demographic and epidemiological parameters. Estimation of the

intensity of early stage transmission will likely require co-clustering

statistics similar to the moments derived from the CSD. In cases

where the simple compartmental models fail to reproduce

phylogenetic patterns, a more complex transmission system model

and its corresponding coalescent should be investigated which

might involve sexual networks or geographical [44] and risk

heterogeneity. We further conclude that care must be taken in

using phylogenetic clusters for epidemiological inference. Mech-

anisms that generates clustering are often complex and counter-

intuitive. We recommend that investigators shift from individual-

based inference using small clusters to model-based inference using

population-based surveys of sequence diversity.

Supporting Information

Figure S1 Two simulated epidemics and the determin-
istic approximations for the fraction of the sample

which remains un-clustered as a function of the
threshold TMRCA. The fraction un-clustered is shown for

sample units classified as early infections (solid lines) as well as

sample units that are late infections (dashed). The x-axis gives the

clustering threshold in units of days since the start of the epidemic.

All variables are illustrated for a sample at 30 years following the

initial infections and at two possible sample fractions (100% or

20%).

(EPS)

Figure S2 Simulated epidemics and the deterministic
approximations for the Pearson correlation coefficient
between the number of co-clustered early and late
infections. Variables are shown as a function of the threshold

TMRCA in units of days since the beginning of the epidemic. All of

these variables are illustrated for a sample at 30 years following the

initial infections and at two possible sample fractions (100% or 20%).

(EPS)

Figure S3 Two simulated epidemics and the determin-
istic approximations for the skewness of the cluster size
distribution (third central moment divided by the
standard deviation cubed). Variables are shown as a function

of the threshold TMRCA in units of days since the beginning of

Figure 4. Summary statistics from HIV gene genealogies versus the fraction of transmissions attributable to early/acute infection.
The threshold TMRCA was five years before the most recent sample. Sample size and distribution of samples over time was matched to the Detroit
MSM phylogeny.
doi:10.1371/journal.pcbi.1002552.g004
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the epidemic. All variables are illustrated for a sample at 30 years

following the initial infections and at two possible sample fractions

(100% or 20%).

(EPS)

Figure S4 Summary statistics from HIV gene genealo-
gies versus the fraction of infections sampled after 35
years. The threshold TMRCA was five years before the most

recent sample. Sampling was homochronous.

(EPS)

Figure S5 Construction of the cluster size distribution
(CSD). Given a tree and a threshold time to most recent common

ancestor, represented by red, green, and blue lines, the set of taxa

at the base of the tree are classified into disjoint sets or clusters. The

distribution of cluster sizes for each threshold is shown at right.

(EPS)

Text S1 Detailed derivations and simulation methods.
(PDF)
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23. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

24. Bennett D, Camacho R, Otelea D, Kuritzkes D, Fleury H, et al. (2009) Drug

resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009

update. PLoS One 4: e4724.

25. Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 7: 214.
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