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ENTROPY AND SOFTWARE SYSTEMS: TOWARDS AN INFORMATION-THEORETIC

FOUNDATION OF SOFTWARE TESTING

Abstract

by Linmin Yang, Ph.D.
Washington State University

May 2011

Chair: Zhe Dang and Thomas R. Fischer

In this dissertation, we introduce an information-theoretic framework for software testing and

integrate information theory into it. We first propose a syntax-independent coverage criterion for

software testing. We use entropy in information theory to measure the amount of uncertainty in a

software system, and we show how the amount of uncertainty decreases when we test the system.

We model the system under test as a random variable, whose sample space consists of all possible

behavior sets over a known interface. The entropy of the system is measured as the Shannon en-

tropy of the random variable. In our criterion, the coverage of a test set is measured as the expected

amount of entropy decrease, or the expected amount of information gained. Since our criterion is

syntax-independent, we study the notion of information-optimal software testing where a test set is

selected to gain the most information. Furthermore, we introduce the behaviorial complexity as a

novel complexity metric for labeled graphs (which can be interpreted as control flow graphs, design

specifications, etc.), which is also based on information theory. We also study how the behavioral

complexity changes when graphs are composed together, and we show that behavioral complexity

can increase when units are sequentially composed through loops, or composed in parallel through

synchronization. Our results can be very helpful for software developers: they can use the metric

to predict the complexity of the semantics of a software system to be built from their designs. Our

results also suggest that integration testing is necessary after units are tested.
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3.2 A labeled graph A and the graph Â converted from A. . . . . . . . . . . . . . . . . 73

3.3 The component graph G of a sequentially composed graph A composed of units

A1 and A2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 A sequentially composed graph and the unit component. . . . . . . . . . . . . . . 100

3.5 A concurrent graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 A nondeterministic component-based system A = A1 + · · ·+ Ak . . . . . . . . . . 110

3.7 A labeled graph A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



3.8 (1) The statechart of the unit displays. (2) The component graph of the component-

based graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



Dedication

To my dear husband Xiangjun Fan,

and our baby-on-the-way.

ix



CHAPTER 1

INTRODUCTION

Software testing (roughly speaking, evaluating software by running it) is still the most widely

accepted approach for quality assurance of software systems with nontrivial complexity. Why do

we need to test software systems? Essentially, we test a software system since there is uncertainty

in its actual behaviors. The uncertainty comes from the fact that behaviors of the software system

are too hard to be analytically analyzed (e.g., the software system is Turing-complete), or even

not available to analyze (e.g., the software system under test is a black-box). In other words,

the actual behaviors (i.e., semantics) of the software system are (at least partially) unknown. In

our opinion, software testing is an approach to resolve the uncertainty, and it gains knowledge of a

software system by running it, which resembles opening the box to learn the situation of the famous

Schrödinger’s cat [58], or more intuitively, the fact that opening a box of chocolates resolves the

uncertainty of what kinds of chocolates are in the box.

How is “uncertainty” defined in mathematics? Shannon entropy, or simply entropy, is specifi-

cally used to measure the amount of uncertainty in an object in information theory [59, 19], which

is a well-established mathematical theory underpinning all modern digital communications. Can

entropy in information theory be used to characterize the uncertainty in a software system? Our

answer is yes, but we have to deal with the following challenges first:

1. Information theory is a probability-based theory. People may argue that there are no prob-

abilities existing in software systems. In reality, people use probabilities to measure the

distribution of an object over a measurable space, and it is a useful way to handle the uncer-

tainty. In the aforementioned example Schrödinger’s cat, at any moment, the cat could be

either dead or alive, and the answer is deterministic. However, since we cannot open the box

and see the cat, we cannot give the answer directly. In this case, probabilities can be used to

model the state of the cat. The probability that the cat is dead or alive might be meaningless
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for one Schrödinger’s cat; however, it is statistically meaningful for a large number of cats.

Similarly, for software systems, though probabilities might not be meaningful for one partic-

ular system, they are useful for a class of software systems. Additionally, we do not need any

pre-assigned probabilities to calculate the entropy of a software system; instead, we always

consider the worst-case entropy, where we do not know any additional information about

the system except its specification, and we calculate probabilities that achieve the maximal

entropy.

2. In information theory, entropy is defined on a random variable with no internal structures

and also generalized to a sequence of random variables (i.e., a random process). However,

in computer science, the subjects of testing are software systems which are structural, e.g.,

software systems modeled as labeled graphs. Therefore, there is need to develop an infor-

mation theory on structural random variables and the procedure of how the uncertainty of

the structured random variables is resolved. Basically, in our approach, a software system is

modeled as either a structured random variable or a random process, which will be illustrated

in the following chapters.

What merits can this information-theoretic approach bring to software testing? The most de-

sirable property of Shannon entropy is that the Shannon entropy of a discrete random variable

remains unchanged after a one-to-one function is applied [19]. Such a characterization is of great

importance, since we find a way to describe a software system based on its internal meanings (i.e.,

semantics), instead of its appearance (i.e., syntax). We explore the usefulness of this information-

theoretic approach in two applications:

1. This information-theoretic approach provides a syntax-independent coverage criterion for

software testing. For instance, consider a component-based system which is a nondetermin-

istic choice C12C2 over two components C1 and C2. C1 is modeled using statecharts [31]

in standardized modeling language UML [1], while C2 is modeled using logical expressions
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such as LTL formulas [18]. Suppose that we use the branch-coverage [4] criterion and the

property-coverage criterion [64] as testing criteria for C1 and C2, respectively. We also have

a test set t which consists of two subsets t1 and t2, which are test sets for components C1 and

C2, respectively. It would be impossible to obtain a coverage that the test set t achieves on

the whole system, even if we already have the branch coverage that t1 achieves on C1 and

the predicate coverage that t2 achieves on C2. On the contrary, our information-theoretic

approach can overcome this problem, since our approach is syntactic independent, and it

does not care whether a system is modeled as a graph or a formula, as long as its semantics

remains the same. Moreover, this information-theoretic approach can help us develop opti-

mal testing strategies in choosing test cases. For a syntax-based test adequacy criterion, if it

returns the same adequacy degree for two test sets, then the two test sets are indistinguish-

able. For instance, every branch is born equal in branch coverage criterion. However, this

is not intuitively true. In our information-theoretic approach, we choose the branch that can

reduce the entropy most.

2. This information-theoretic approach provides a novel software complexity metric that is

semantics-based, independent of the syntactic appearance of the software system. We have

noticed that almost all of the existing software complexity metrics are syntax-dependent. In

other words, the metrics are measured on the syntactic appearance of the software system

instead of its semantics (i.e., meanings). For instance, two control graphs with the same

topology but with different initial nodes might have dramatically different behaviors. A

syntax-dependent metric (e.g., the McCabe Metric [45]) would give the same complexity

measure to the two control graphs, which is obviously not sufficient. Our syntax-independent

complexity metric would provide a better way to interpret software systems. Furthermore,

our complexity metric measures a system from the perspective of software testing: it intends

to asymptotically measure the cost of exhaustive testing of the system. Though exhaustive
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testing usually is not possible, the asymptotical cost is naturally a good indicator of the

complexity of software systems. We also show that how the complexity of a component-

based software system changes when units are composed together. This approach provides a

guidance on grading the importance of units in a component-based system – it is natural that

we consider units containing more information of greater importance. Such a criterion can be

very useful, for example, when we distribute cost in testing units within a component-based

system.

There are two totally different views in modeling a software system: the branching time view

and the linear time view. The two views are first introduced in [54], and then widely used in model

checking [18]. In the branching time view, a system is modeled as a tree, where at one time,

there are many possible futures. This branching time view is adopted in the computation-tree logic

(CTL) [18] in model checking. In the linear time view, a system is modeled as a set of sequences,

where at one time, there is only one future. This linear time view is adopted in the linear-time logic

(LTL) [18] in model checking. Notice that the two views are incomparable with each other: in the

branching time view, the system is modeled as a tree automaton, while in the linear time view, the

system is actually modeled as a Büchi automaton. In our work, we model software systems from

the above two views, which correspond to the two aforementioned applications, respectively. Our

work is outlined as follows.

In Chapter 2, we propose a syntax-independent coverage criterion for software testing. We

treat the system under test in as a black-box [8, 48, 4], about which we only know its input-output

interface. We model the specification of the system as a tree, and the actual behaviors (with respect

to the specification) of the system as a subtree of the specification. Before testing, we do not know

the actual behaviors of the system. Therefore, we model the system under test as a random variable,

whose sample space consists of all possible behavior sets with respect to the specification over the

known interface. The entropy of the system is measured as the entropy of the random variable.
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The purpose of testing is to find out the set of actual behaviors of the system, which is a sample in

that sample space. By running more test cases, we know more about the actual behaviors, which

means that we gain more information about the system. In our criterion, the coverage of a test set

is measured as the expected amount of entropy decrease (i.e., the expected amount of information

gained) once the test set is run. Since our criterion is syntax-independent, we study the notion

of information-optimal software testing where, within a given constraint, a test set is selected to

gain the most information. We also develop efficient algorithms to select optimal test cases under

different circumstances.

In Chapter 3, we propose a syntax-independent complexity metric for labeled graphs, which

serve as specifications for software systems. The expected behaviors of a software system is then

the set of labeled sequences collected from the graph that models the specification of the system.

We introduce behavioral complexity as a novel complexity metric for labeled graphs. We define

the behavioral complexity as

lim
n→∞

logN(n)

n
,

where N(n) is the number of sequences of length n in the graph. For every labeled graph, there

is a Markov chain corresponding to it. We mathematically prove that the behavioral complexity

of a graph is actually the upper limit of the entropy rate that the corresponding Markov chain can

achieve. Notice that some classic work, e.g., [17], [19], also mention that there is some relationship

between lim
n→∞

logN(n)
n

and the limit-form entropy rate of a Markov chain. We are almost confident

that the limit-form entropy rate does not work for all Markov chains. The work [11] mentions the

upper-limit form, but only with a very intuitive explanation and does not dig further into it. Our

work provides a solid mathematical foundation for it, which is a contribution to information theory.

We also study how the behavioral complexity changes when graphs are composed together, and we

show that behavioral complexity can increase when units are sequentially composed through loops,

or composed in parallel through synchronization. Our results can be very helpful for software
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developers: they can use the metric to predict the complexity of the semantics of a software system

to be built from their designs. Our results also suggest that integration testing is necessary (after

units are tested).

Chapter 4 concludes this dissertation and also proposes some future work.
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CHAPTER 2

INFORMATION GAIN OF BLACK-BOX TESTING

2.1 Overview

Software testing is critical to ensure the quality of a software system. A textbook testing procedure

is shown in Figure 2.1 [4]. A test case is the input data fed to the system under test. When a test

case is selected, the system can then be executed with the test case. In consequence, the tester

decides whether the result of the execution is as expected or not (e.g., comparing the result with

the system’s specification). After a set of test cases are run, an error (the system does not meet

its specification) is possibly identified. However, when there is no error found, one usually cannot

conclude that the system does meet its specification. This is because, for a nontrivial system, there

are potentially infinitely many test cases and a tester can only run finitely many of them. On the

other hand, a test case is selected before the test case is run and an error can only be identified

after a test case is run. This raises a great challenge in software testing: How should test cases be

selected?

Test cases are typically generated according to a pre-given test data adequacy criterion [28],

which associates a degree of adequacy with the test set (i.e., the set of generated test cases) to

indicate the coverage of the test set with respect to a system specification [81]. Formally, a test

data adequacy criterion C is a function that maps a triple of a system under test, a specification and

a test set to an (adequacy) degree in [0, 1] [80]. In particular,

C(Sys, Spec, t) = r (2.1)

indicates that, under the criterion C, the adequacy of the test set t on the system Sys with respect

to the specification Spec is of degree r. Naturally, as we mentioned earlier, a test data adequacy

criterion, besides judging the test quality of an existing test set, is also a guideline of a test case
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Figure 2.1: A textbook testing procedure.

generator [81]. In this chapter, we treat the system Sys in (2.1) as a black-box [8, 48, 4]. This

is typical when the source code of the system is usually unavailable (e.g., commercial off-the-

shelf (COTS) systems) or is too complex to analyze. In this case, even though the implementation

details of the Sys are not clear, some attributes Attr of it could be known; e.g., whether Sys is

deterministic or nondeterministic, how many states the Sys has, what constitutes the input-output

interface of the Sys, etc. Consequently, we can rewrite (2.1) into

C(Attr, Spec, t) = r. (2.2)

Sometimes, we just omit the parameter Attr when it is clearly given in the context. We shall em-

phasize that, since the system under test is a black-box and the test set is selected before the testing,

the degree r in (2.2) is independent of the specific system Sys under test and also independent of

the results of executing the test set t.

Note that in (2.2), when the criterion C and the system attributes Attr are given, the test set t is

essentially generated from the system specification Spec for each given r. Examples of formalisms

8



used for the system specification are logical expressions (such as Boolean formulas and temporal

logic formulas [54]) which describe the system’s behaviors as a mathematical statement, C-like

code (such as PROMELA [36]), tables (such as SCR [35]), and graphs (such as data flow graphs,

control flow graphs and statecharts [31]) which describe how a system is intended to operate.

One might have already noticed that a system can be described using different formalisms. Even

within one formalism, one can specify the same system in different ways such that the resulting

specifications share the same semantics. For instance, suppose that Boolean formulas A ∨ B and

(A ∧B) are specifications for a Boolean circuit. These two specifications have the same semantics,

though their syntactic appearances are different.

Common testing criteria give the adequacy degree of a test set based on the syntactic appear-

ance of the system specification. Hence, those criteria are syntax-based. This causes problems.

For instance, a slight change to a specification’s syntactic appearance, even if the specification still

keeps its semantics, might result in a dramatically different adequacy degree for the same test set.

Additionally, if a syntax-based test data adequacy criterion returns the same adequacy degree for

two test sets, then the two test sets are indistinguishable with respect to the criterion. For instance,

suppose that two distinct test sets are selected from a graph modeling the system’s control flow,

both with 75%, say, branch coverage. The adequacy degree does not differentiate the two sets. Or,

in other words, each branch is born equal. This is not intuitively true. A similar problem exists for

Clause Coverage [5] for ground formulas (i.e., without quantifiers) in first order logic and testing

criteria for temporal logic formulas [64]; the criteria could not tell the difference between two test

sets that achieve the same coverage.

An ideal test set will always identify an error whenever the system under test has an error. It

is widely agreed that one direct measurement of the effectiveness of a test set is its fault-detecting

ability [25, 68, 81]. However, it is also understood that there are simply no such computable and

ideal criteria to generate effective test sets [81]. In our opinion, fault-detecting in a black-box

system is closely related to our knowledge about the system. This is particularly true considering
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the fact that faults are often not easy to find. We summarize our opinion into the following two

intuitive statements:

• the more we test, the more we know about the system under test;

• the more we know about the system under test, the more likely faults can be found.

From these statements, it is desirable to have a way to measure the amount of information of

the black-box system Sys (about which we only know its attributes Attr) we gain with respect to

the specification Spec once the tests t (selected according to (2.2) using a given adequacy degree

r) are run. Therefore, the measure concerns the system’s semantics instead of its syntax. This

naturally leads us to use Shannon entropy [59, 19] to measure the information gain and, because

of its syntax-independence, we can now cross-compare the information gains of two test sets t1

and t2 of the same black-box system; even though t1 and t2 are generated from different criteria

C, different specifications Spec, and/or different degrees r. As will be shown in the chapter, the

information gain is calculated before tests are run. Therefore, the information gain also serves as

a syntax-independent coverage measure once no faults are found after a test set is run (which is

often the case). The rest of the chapter is outlined as follows.

We model the system under test as a reactive labeled transition system Sys whose observable

behaviors are sequences of input-output pairs. We also assume that the system under test is deter-

ministic. In some software testing literature [13], an observable behavior is called a trace. In this

context, the objective of software testing is to test whether the observable behaviors of a black-

box software system conform with a set of sequences of input-output pairs. The set is called a

trace-specification, which specifies the observable behaviors that the system under test is intended

to have. Let P be a set of sequences of input-output pairs, which is a trace-specification that the

system under test is intended to conform with. This P is the whole or part of the system speci-

fication. Since in practice, we can only test finitely many test cases, here we assume that P is a

finite (but could be huge) set. We use a tree T , called the trace-specification tree, to represent the
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trace-specification, where each edge is labeled with an input-output pair. Clearly, it is possible that

not every path (from the root of T to some node in T ) is an observable behavior of the Sys; it is

testing that tells which path is and which path is not. When, through testing, a path is indeed an

observable behavior of the Sys, we mark each edge on the path as “connected”. When, however,

the path is not an observable behavior of the Sys, the test result shows the longest prefix of the

path such that the prefix is an observable behavior of the Sys. In this case, we mark every edge (if

any) in the prefix as “connected” and the remaining edges on the path as “disconnected”. Hence,

an edge is marked connected (resp. disconnected) when the path from the root of T to the edge

itself (included) is (resp. is not) an observable behavior. Notice that observable behaviors of the

Sys are prefix-closed and hence, when an edge is marked disconnected, all its offspring edges are

also disconnected. Therefore, running tests is a procedure of marking the edges of T .

Before any tests are performed, we do not know whether, for each edge in T , it is connected

or disconnected. (It is the tests that tell which is the case for each edge.) After testing a sufficient

number of test cases, every edge in T is marked either connected or disconnected. At this moment,

the system tree is the maximal subtree of T such that every edge of the system tree is marked

connected. The system tree represents all the observable behaviors of the Sys with respect to the

trace-specification P . Hence, before any tests are run, there is uncertainty in what the system tree

would be. Adopting the idea of entropy in information theory, we model the system tree (which

we do not clearly know before the testing) as a random variable XT , whose sample space is the

set of all subtrees that share the same root with the tree T . The entropy , written H(T ), of the

system is measured as the entropy of the random variable XT . In order to calculate H(T ), we need

probabilities of edges being connected or not. Those probabilities could be pre-assigned. However,

usually probabilities of edges are simply unknown. In that case, we can calculate the probabilities

of edges such that H(T ) reaches the maximum (i.e., we do not have any additional information).

After a set t of test cases is executed, we know a little more about the system tree from

the execution results. In consequence, the entropy of the system decreases from H(T ) to

11



H(T |after testing t), the conditional entropy given the tests. That is, the information gain of

running tests t is

G(t) = H(T )−H(T |after testing t).

This gain is calculated before the testing begins, and hence we can use the gain as a guideline

to develop information-optimal testing strategies that achieve the most gain. In other words, we

can pick the test set t that can achieve maxG(t) subject to some constraint (e.g., the size of t is

bounded by a certain number).

Notice that the aforementioned information gain G(t) is syntax-independent; i.e., it is indepen-

dent of the formalism that is used to describe the behaviors in P . This is because the entropy of

a discrete random variable remains unchanged after a one-to-one function is applied [19]. More

intuitively, the amount of Shannon information in an object is the same no matter whether one

describes it in English or in French.

Shannon entropy has been used in various areas in Computer Science. For instance, in data

mining, a neural network-like classification network with hidden layers is constructed in analyzing

a software system’s input-output relation through a training set [42]. The algorithm in constructing

the network stops when further adding new layers would not make the entropy of the network sig-

nificantly decrease. The resulting classification network is then used to help select “non-redundant”

test cases. Note that our work is completely different from [42], as we study “information-optimal”

testing processes, and our information-optimal test strategy is pre-computed without running any

training set. Also, our work emphasizes the semantic dependency between test cases, whereas

in many cases, researchers in testing treat test cases as a set (all members are born equal) [26].

Reference [49] studies optimal testing strategies for nondeterministic systems, while using a game

theory approach.

The concept of Shannon entropy, in some historical literature [41, 40], is closely related to the

second law of thermodynamics in physics. This law requires that the process that brings down

12
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Figure 2.2: A system put in a heat reservoir.

the entropy of a thermal system causes a positive heat flow from the system to its environment

(Figure 2.2 [40]). Landauer’s principle [41] states a similar principle in the digital world. That is,

in a computational device, the erasure of the Shannon information is accompanied by a generation

of heat. In our approach, while running the test cases, the Shannon entropy of the system under

test is decreasing. From Landauer’s principle, there should be a heat flow from the system under

test to the environment during the software testing process. Hence, the software system is cooling

down during a software testing process. From this point of view, software testing is a cooling-

down process, and software testing using our criterion is called cooling-down software testing and,

intuitively, our optimal software testing approach cools down the system under test fastest.

The rest of the chapter is organized as follows. We formally give our definitions and termi-

nologies on languages, trees, transition systems, and finite automata in Section 2.2, together with

an array selection algorithm that will be used throughout this chapter. In Section 2.3, we formal-

ly define the entropy of a trace-specification represented as a tree and the information-optimality

of a testing strategy, and develop algorithms to calculate information-optimal testing strategies of

the system under test. In section 2.4, we study information-optimal testing strategies when the

trace-specification is represented as a finite automaton. We summarize our study in Section 2.5.

The main part of this chapter is summarized in paper [71].
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2.2 Preparations

In this section, we provide definitions and terminologies on languages, finite automata, trees, la-

beled transition systems, and an algorithm, called MAX-SELECT, on selecting certain numbers

from arrays, which will be used later in the chapter.

2.2.1 Languages and Finite Automata

Let Σ be an alphabet. A language L is a set of words on the alphabet; i.e., L ⊆ Σ∗. For two words

ω and ω′, we use ω′ ≺ ω to denote the fact that ω′ is a (not necessarily proper) prefix of ω. L is

prefix-free if, for any ω ∈ L and any ω′ ≺ ω, we have

ω′ ∈ L implies ω = ω′.

L is prefix-closed if, for any ω and any ω′ ≺ ω, we have

ω ∈ L implies ω′ ∈ L.

Let A = ⟨S, sinit, F,Σ, R⟩ be a deterministic finite automaton (DFA), where S is the set of states

with sinit being the initial state, F is the set of accepting states, Σ = {a1, · · · , ak} is the alphabet,

and R ⊆ S × Σ × S is the set of state transitions, satisfying that from a state and a symbol, one

can at most reach one state (formally, ∀s ∈ S, a ∈ Σ, there is at most one s′ with (s, a, s′) ∈ R).

A word ω = x1 · · · xi in Σ∗ is accepted by A if there is a sequence of states s0s1 · · · si, such that

s0 = sinit, si ∈ F , and (sj−1, xj, sj) ∈ R for 1 ≤ j ≤ i. The language L(A) that A accepts is the

set of words accepted by A. Without loss of generality, we assume that A is cleaned up. That is,

every state in A is reachable from the initial state, and can reach an accepting state.

When a language is finite, a tree can also be employed to represent it, as in below.
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2.2.2 Trees

Let L ⊆ Σ∗ be a finite language and L̂ be its maximal prefix-free subset. Naturally, one can use a

tree T to represent L. Every edge in T is labeled with a symbol in Σ, and any two distinct child

edges (a child edge of a node N is the edge from N to a child node of N ) of the same node cannot

have the same label. Furthermore, T has |L̂| leaves, and for each leaf, the sequence of the labels

on the path from the root to the leaf is a word in L̂. We use the following terminologies for the tree

T :

• an edge from a node N to its child node N ′ is denoted by ⟨N,N ′⟩ where N is the source of

⟨N,N ′⟩ and N ′ is the a-child of N when the edge is labeled with a ∈ Σ;

• the parent edge of an edge ⟨N,N ′⟩ (N is not the root) is the edge from the parent node of N

to N itself;

• a sibling edge of edge e is an edge that shares the same source with e;

• t is a subtree of T if t is a tree, and every node and every edge in t is a node and an edge,

respectively, in T ;

• the root path of node N is the path (of edges) from the root of T all the way down to N itself.

When we collect the labels of the edges on the path, a word in Σ∗ is obtained. Sometimes,

we simply use the word to (uniquely) identify the path;

• the root path of subtree t is the root path of the root of the subtree t in T ;

• an empty tree is one that contains exactly one node.We use ∅ to denote an empty tree when

the node in the tree is clear from the context;

• we use t ≺ T to denote that t is a subtree of T and shares the same root with T . Intuitively,

when t ≺ T , then t can be obtained by dropping some leaves repeatedly from T ;
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Figure 2.3: A tree representation of a language.

• a subtree at node N is a subtree of T with root N . We use the maximal subtree at N to

denote the maximal such subtree at N ;

• a subtree under edge ⟨N,N ′⟩ is a subtree at node N ′;

• the child-tree under edge ⟨N,N ′⟩ is the maximal subtree at node N ′;

• a child-tree of node N is the child-tree under edge ⟨N,N ′⟩ for some N ′. In this case, the

child-tree is also called the a-child-tree of N , when N ′ is the a-child of N , for some a ∈ Σ;

Example 1. Figure 2.3 gives a tree T representing L = {a1, a2, a2a2, a2a3} over the alphabet

Σ = {a1, a2, a3}. The subtree with the set of edges {e1, e2} is a subtree t ≺ T . The a2-child-tree

of the root of T is the one with the set of edges {e3, e4}; the a1-child-tree with the set of node(s)

{N1} is simply an empty tree. ⊓⊔

2.2.3 Transition Systems

Let Sys be the software system under test. Here we modify the formal model in [70]. A similar

model can be found in a later paper [65]. Sys is a transition system that changes from one state to

another while executing a transition labeled by a symbol. Formally,

Sys = ⟨S, sinit,∇, R⟩
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is a (labeled) transition system, where S is the set of states with sinit ∈ S being the initial state, ∇ is

a finite set of symbols, and R will be explained in a moment. More specifically, ∇ = Π∪Γ, where

Π and Γ are two disjoint subsets, and Π is the set of input symbols, while Γ is the set of output

symbols. In particular, we call Π × Γ the set of observable (input-output) pairs (sometimes, we

also call such pairs as observable events), and (Π,Γ) is the interface of Sys. R ⊆ S× (Π×Γ)×S

is the set of state transitions. An executable sequence of Sys, ω = x1 · · · xi for some i, is a word

on alphabet (Π × Γ), such that there is a sequence of states, say, s0 · · · si, with (sj−1, xj, sj) ∈ R

for 1 ≤ j ≤ i, and s0 is the initial state sinit. We call such a word ω an (observable input-output)

behavior of the system. Note that a general form of executable sequence (i.e., a sequence of input,

output and internal symbols) can be modeled as ours, if one has at most a fixed number of inputs,

followed by an output. For instance, we can encode the sequence, say, input1, · · · , inputi, output,

as one pair ⟨(input1, · · · , inputi), output⟩ in an expanded input alphabet. Our system here is

actually a reactive system [32], and the theoretical root of our model is Mealy machines [37] and

I/O automata [43]. Note that the labeled transition system is universal since the number of states

could be infinite. Also note that behaviors of Sys are prefix-closed. In our work, Sys is a black-box

system (i.e., we assume that we only know its input-output interface).

In our context, software testing is to test whether the (black-box) software system Sys con-

forms with a trace-specification. No matter what formalism is used, the trace-specification, se-

mantically, is commonly a set of sequences in (Π × Γ)∗. This set is a language that specifies the

(observable) behaviors that the system under test is intended to have. The trace-specification, de-

noted as Poriginal ⊆ (Π×Γ)∗, could be an infinite language. For instance, when testing a TV remote

control, theoretically, there are an infinite number of button combination sequences to test. How-

ever, in the real world, we can only test up to a given bound d on the length of the input sequence.

The trace-specification, denoted as P , that in practice we plan to test against, is a “truncation” of

the original trace-specification Poriginal. That is, P = {ω : ∃ω′ ∈ Poriginal, ω ≺ ω′ and |ω| ≤ d}.

In other words, P is the set of all prefixes, up to the given length d, of words in Poriginal. Hence, P
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is simply a prefix-closed finite language.

In practice, this Poriginal (as well as P ) can be the whole or part of the system specification that

describes the expected behaviors of the system under test. Such a specification can be drawn from,

for instance, the design documents and requirement documents of the system Sys under test. How

to derive such a Poriginal and P is out of the scope of this work; the reader is referred to [13] for,

e.g., model-based software testing. In our work, we simply assume that the Poriginal and the P are

given.

The transition system Sys defined earlier is in general output-nondeterministic. That is, it is

possible that, for some observable behavior ω ∈ (Π × Γ)∗ and some input symbol b ∈ Π, there

are more than one output symbol c ∈ Γ such that ω(b, c) (i.e., the concatenation of the string ω

and the symbol (b, c)) is also an observable behavior of the Sys. In other words, one can possibly

observe more than one output from an input symbol. The source of output-nondeterminism comes

from such things as a highly nondeterministic implementation (such as a concurrent program) of

the Sys under test, or a partial specification of the interface. It is still an on-going research issue

how to test an output-nondeterministic system Sys [49, 66, 53].

On the other hand, output-deterministic systems constitute a most important and most com-

mon class of software systems in practice; this is particularly true when such a system is used in a

safety-critical application in which nondeterministic outputs are intended to be avoided. Formal-

ly, the transition system Sys is output-deterministic if for each ω ∈ (Π × Γ)∗ and input symbol

b ∈ Π, there is at most one output symbol c ∈ Γ such that ω(b, c) is an observable behavior

of Sys. Implicitly, we have an option of “crash” after applying an input, which makes our ap-

proach more general than other models. For instance, suppose that, for a traffic light system with

sensors, when a car is approaching at midnight (so no other cars are around), it is desirable that

the light turns yellow or turns red. In here, we use ayellow and ared to represent the input-output

pairs (approaching, yellow) and (approaching, red), respectively. When the system is not as-

sumed output-deterministic, a test shows that ayellow is actually observable does not necessarily
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conclude that ared is not actually observable. However, when we assume that the system is output-

deterministic, this additional knowledge will conclude exactly one of the following three scenarios:

when the car is approaching,

(i) the light turns yellow;

(ii) the light turns red;

(iii) neither (i) or (ii); e.g. the light system crashes.

Hence, the positive test result of, say, (i), immediately implies that outcomes like (ii) and (iii) are

not possible.

In our work, we focus on output-deterministic systems. Actually, if a test execution engine

can be built for output-nondeterministic systems, we can see that testing output-nondeterministic

systems is a special case of testing output-deterministic systems, which will be discussed later in

this chapter.

2.2.4 A Technical Algorithm MAX-SELECT

We now present an algorithm to solve the following selection problem, which will be used in

several algorithms later in the chapter.

Let k be a number. Suppose that we are given q arrays of numbers, Y1, · · · , Yq, each of which

has k + 1 entries. Each array Yj is nondecreasing, i.e., Yj[index] ≤ Yj[index+ 1], 0 ≤ index ≤

k − 1, and the first entry Yj[0] is 0. Let I ≤ k be a number. We would like to select indices

index1, · · · , indexq, satisfying
∑

1≤j≤q

indexj = I , of the arrays Y1, · · · , Yq, respectively, such that

the sum ∑
1≤j≤q

Yj[indexj] (2.3)

is maximal. The instance of the problem is written as MAX-SELECT over ({Y1, · · · , Yq}, I). The

result includes the desired indices and the sum in (2.3).

We use SUM({Y1, · · · , Yq}, I) to denote the maximal sum reached in (2.3) for the problem

instance. Suppose that the set Y = {Y1, · · · , Yq} is partitioned into two nonempty subsets Y ′ and
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Y ′′. One can show

SUM(Y , I) = max
0≤i≤I

(SUM(Y ′, i) + SUM(Y ′′, I − i)). (2.4)

The algorithm MAX-SELECT that solves the problem is as follows. We first build, in linear

time, a balanced binary tree t with q leaves, leaf1, · · · , leafq, and with roughly 2q nodes. Each leafj

corresponds to the array Yj , 1 ≤ j ≤ q. In the sequel, we simply use a set of arrays to denote a

set of leaves. Let N be a node in t. We associate it with a table of k + 1 entries. The ith entry,

0 ≤ i ≤ k, contains a number SUMN [i] and a set INDN [i] of pairs: each pair is a number 1 ≤ j ≤ q

and an index to the array Yj . Initially, SUMN [i] = 0 and INDN [i] = ∅, for all i. When N is a leaf Yj ,

we further initialize SUMN [i] = Yj[i] and INDN [i] = {(j, i)}, for all 0 ≤ i ≤ k. We now explain the

meaning of the table. Let N be a nonleaf node in t. We use YN to denote the set of leaf nodes of

which N is an ancestor. After the algorithm is run, SUMN [i] is the value SUM(YN , i), and INDN [i]

records the desired indices for the MAX-SELECT instance over (YN , i). That is,

SUMN [i] =
∑

(j,indexj)∈INDN [i]

Yj[indexj].

Let N1 and N2 be the two child nodes of N (every nonleaf node in a balanced binary tree has

exactly two children). From (2.4), SUMN [i] = max
0≤l≤i

(SUMN1 [l]+SUMN2 [i− l]), which provides a way

to calculate SUMN [·] and INDN [·] presented in the following algorithm:

MAX-SELECT({Y1, · · · , Yq}, I):

//To find solutions to MAX-SELECT problem instances over

//({Y1, · · · , Yq}, i), for all i ≤ I, and return the solution for i = I.

//Suppose that the balanced binary tree t is already built with

//the arrays Y1, · · ·Yq being the leaves. Each node N is
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//associated with SUMN [·] and INDN [·] that are already

//initialized as described earlier in the subsection.

1. For level := 1 to (height of t)

//a node of level (height of t) is the root

2. For each nonleaf node N of level level

//suppose that N1 and N2 are the two child nodes of N

3. For i := 0 to I

4. SUMN [i] := max
0≤l≤I

(SUMN1 [l] + SUMN2 [i− l]);

5. Assume that 1 ≤ l∗ ≤ I reaches maximum in line 4;

6. INDN [i] := INDN [l
∗] ∪ INDN [i− l∗];

7. Return SUMroot[I] and index1, · · · , indexq.

//root is the root of T

//SUMroot[I] is the value SUM({Y1, · · · , Yq}, I)

//INDroot[I] is a set of pairs (j, indexj), for each 1 ≤ j ≤ q

Clearly, the algorithm runs in worst-case time O(k2q), recalling that k+1 is the size of each of the

arrays Y1, · · · , Yq.

2.3 Information Gain of Tests and Information-Optimal Testing Strategies

In this section, we assume that the system Sys under test is a black-box transition system with its

interface known. Recall that Π and Γ are the input symbols and output symbols of Sys, respec-

tively. Throughout this section, the system Sys under test is assumed to be output-deterministic.

Before we develop algorithms for information-optimal testing of such systems, we need definitions

on the test oracle.

As explained before, we use Poriginal ⊆ (Π × Γ)∗ to denote a set of intended input-output

behaviors of the Sys under test. The trace-specification P ⊆ Poriginal is a finite set that we will
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Figure 2.4: A trace-specification tree and the corresponding input testing tree.

actually test against, which is the set of all prefixes (up to length of a given number d) of sequences

in Poriginal. In the sequel and without loss of generality, we simply assume that P is a finite set

⊆ (Π × Γ)∗. We use a tree T , i.e., the trace-specification tree, to represent P , where every edge

on T is labeled with a pair of input and output symbols. When we drop output symbols from

every sequence in P , we obtain a set PΠ ⊆ Π∗ of input symbol sequences; i.e., PΠ = {b1 · · · bn :

(b1, c1) · · · (bn, cn) ∈ P, for some n and each ci ∈ Γ}. The tree TΠ that represents PΠ is called the

input testing tree.

Example 2. In Figure 2.4 (1), we show the trace-specification tree T representing the

trace-specification P = {(b1, c1), (b2, c2), (b2, c4), (b2, c2)(b3, c3), (b2, c4)(b3, c5), (b2, c4)(b4, c6),

(b2, c4)(b4, c7)}. The trace-specification P specifies that the system under test (which is output-

deterministic) is expected to have the following behaviors:

• Initially, when button b1 is pressed, color c1 is shown.

• Initially, when button b2 is pressed, either color c2 or color c4 is shown.

• when color c2 is shown, further pressing button b3 will show color c3.

• when color c4 is shown, we can further press button b3 or b4.
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• when pressing button b3, color c5 is shown.

• when pressing button b4, either color c6 or c7 is shown.

From P , we can obtain the set PΠ = {b1, b2, b2b3, b2b4}, and the corresponding input testing tree is

shown in Figure 2.4 (2). ⊓⊔

We further assume that Sys is sequentially testable; that is, there is a test execution engine

oracle such that, if we send an input sequence π = b1 · · · bn on Π to the oracle, it will “read”

symbols in π, one by one, from b1 up to bn while running the black-box Sys (this is a common

assumption for black-box testing [52]). As a result, the oracle returns an output symbol right after

each input symbol read. The run stops when the Sys crashes on some input, or, the last symbol in

the sequence is read and the corresponding output symbol is returned. Formally, a test case π is a

word in Π∗. The oracle is equipped with a deterministic program Test that runs on Sys and π and

always halts with an output Test(Sys, π). The run is said to be testing π. The oracle, as usual,

honestly relays the outputs from the Sys. That is, for all n and b1 · · · bn ∈ Π∗,

• Test(Sys, b1 · · · bn) = c1 · · · cn if (b1, c1) · · · (bn, cn) is an observable behavior of Sys;

• Test(Sys, b1 · · · bn) = c1 · · · ci⊥, for some i < n, if (b1, c1) · · · (bi, ci) is an observable

behavior of Sys, and (b1, c1) · · · (bi, ci)(bi+1, c) is not an observable behavior of Sys, for any

c ∈ Γ. The symbol ⊥ /∈ Γ indicates “Sys crashes”.

Notice that, for empty string ϵ, Test(Sys, ϵ) = ϵ by definition. Since Sys is output-deterministic,

Test(Sys, π) is unique.

We say that the Sys conforms with P if, for every input symbol sequence b1 · · · bn ∈ PΠ, for

some n, we have Test(Sys, b1 · · · bn) = c1 · · · cn ∈ Γ∗ and (b1, c1) · · · (bn, cn) ∈ P (in some liter-

ature, this is called ≤iot-correct with respect to P [13]). That is, in terms of the trace-specification

tree, for each path from the root in the input testing tree TΠ, suppose that the sequence of labels on

the path is b1 · · · bn, one can find a path in the trace-specification tree T such that the label sequence
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on the latter path is (b1, c1) · · · (bn, cn) for some c1, · · · , cn satisfying that (b1, c1) · · · (bn, cn) is an

observable behavior of Sys.

Running a test case can be considered as a process of marking on the trace-specification tree T

as follows. An edge in T is marked with “connected” if the sequence of the input-output labels on

the path from the root to the edge (included) is an observable behavior of Sys; it is marked with

“disconnected” if otherwise. Let the edge e be labeled with (b, c) ∈ Π× Γ. One can observe that:

(1) once e is marked disconnected, every edge in the child-tree under edge e must be

also marked disconnected (this is because the set of observable behaviors of Sys is

prefix-closed);

(2) once e is marked connected, then every sibling edge e that is labeled with (b, c′)

for some c′ ∈ Γ must be marked disconnected (this is because Sys is output-

deterministic), and hence edges in the child-trees under such sibling edges must also

be marked disconnected.

Therefore, once e is marked, we implicitly assume that markings are already propagated further

to its siblings (that share the same input symbol with e) and the offspring edges of itself and the

siblings, using the above observation. Now, suppose that we run Test(Sys, b1 · · · bn) and obtain

c1 · · · cn ∈ Γ∗ as the result. Clearly by definition, the edges on the path (from the root of T ) labeled

with (b1, c1) · · · (bn, cn) are all marked connected. When Test(Sys, b1 · · · bn) results in c1 · · · ci⊥

for some i < n, the edges on the path (from the root of T ) labeled with (b1, c1) · · · (bi, ci) are all

marked connected but all the edges in the child-tree under the last edge on the path are marked

disconnected.

Initially, none of the edges in T is marked. As we test more and more test cases in PΠ, more

and more edges in T are marked. Clearly, when all test cases in PΠ are tested, every edge in T is

marked. Notice that, in this case, the system tree is the maximal subtree t of T such that t ≺ T

and every edge in t is marked connected. The system tree exactly characterizes all the observable
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behaviors of Sys for all input sequences in PΠ. Consider a subtree t of T . We say that t is output-

deterministic if, for any edge e with some label (b, c) ∈ Π×Γ, e does not have a sibling edge with

label (b, c′) for any c′ ∈ Γ. Observe that the system tree must be an output-deterministic subtree

t ≺ T .

2.3.1 Entropy of a Trace-specification Tree

Before any testing is performed, we do not know exactly what the system tree is except that it is

an output-deterministic subtree t ≺ T . We now treat the system tree as a random variable XT and

first study the algorithm in calculating its entropy.

Consider a path (labeled by) (b1, c1) · · · (bn, cn) in the trace-specification tree T , and the set E

of the child edges of the last edge (bn, cn) on the path. Suppose that e1, · · · , el for some l, are

all the edges in E that are labeled by (b, c1), · · · , (b, cl), respectively, for some b ∈ Π and some

c1, · · · cl ∈ Γ. We use Eb to denote {e1, · · · , el}. Let p(ei) be the probability that edge ei is marked

connected when all its ancestor edges are marked connected, and all other edges in Eb are marked

disconnected. That is, p(ei) is the probability that (b1, c1) · · · (bn, cn)(b, ci) is the only observable

input-output behavior of the Sys (with (b1, c1) · · · (bn, cn) as prefix and with length n + 1) given

that (b1, c1) · · · (bn, cn) is an observable behavior of the Sys. Probabilities p(ei) could be pre-

assigned (e.g., obtained from usage study [6]). However, usually probabilities of edges are simply

unknown. In that case, we can calculate the probabilities of edges such that H(T ) reaches the

maximum (i.e., we do not have any additional information), which will be discussed later. Since

Sys is output-deterministic, the p(·) must obviously satisfy the following additional constraint, for

each b, ∑
ei∈Eb

p(ei) ≤ 1.

We use p(t, T ) to denote the probability of t being the system tree (that shares the same root
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with T ; i.e., t ≺ T ). Clearly, p(t, T ) = 0 when t is not output-deterministic. Observe that

∑
t≺T and

t is output−deterministic

p(t, T ) = 1

and hence p(·, T ) is a distribution. Now, the entropy of XT , simply written H(T ), is

H(T ) = −
∑

t≺T and
t is output−deterministic

p(t, T ) log p(t, T ).

Similarly, we can also define H(t) for a subtree t (while keeping the probability assignments of

the edges) of T as:

H(t) = −
∑

t′≺t and
t′ is output−deterministic

p(t′, t) log p(t′, t). (2.5)

Note that throughout this chapter, the base of the logarithm is 2. In other words, we measure

entropy in bits. By definition, the entropy of a empty tree ∅ is H(∅) = 0, since for the empty tree ∅,

the system tree has only one choice that is the empty tree itself. Before we show how to calculate

H(T ), some more definitions are needed. Let b ∈ Π and E be the set of child edges of T ’s root.

The (b, ·)-component tree Tb of T exactly consists of each edge e in E that is labeled with (b, c) for

some c and the child-tree under the edge e. We use C < T to denote that C is a (b, ·)-component

tree of T for some b ∈ Π.

Example 3. For the trace-specification tree T shown in Figure 2.4, the edge (b1, c1) forms the

(b1, ·)-component tree of T ; edges (b2, c2) and (b2, c4), together with the child-trees under them,

form the (b2.·)-component tree of T . ⊓⊔

One can show the following proposition,

Proposition 1.

H(T ) =
∑
C<T

H(C).
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That is, the entropy of T is the summation of the entropy of each (b, ·)-component trees, b ∈ Π.

Proof. we use {C1, · · · , Cz}, for some z, to denote all C < T . For a output-deterministic subtree

t ≺ T , we use tCi
to denote the subtree obtained from intersecting Ci with t. Since p(t, T ) =∏

1≤i≤z

p(tCi
, Ci), we have,

H(T ) = −
∑

t≺T and
t is output−deterministic

p(t, T ) log p(t, T ))

= −
∑

t≺T and
t is output−deterministic

(
∏

1≤i≤z

p(tCi
, Ci)) log(

∏
1≤i≤z

p(tCi
, Ci))

= −
∑

t≺T and
t is output−deterministic

∑
1≤i≤z

(
∏

1≤j≤z

p(tCj
, Cj)) log p(tCi

, Ci)

= −
∑

t≺T and
t is output−deterministic

∑
1≤i≤z

p(tCi
, Ci) log p(tCi

, Ci)(
∏

j ̸=i,1≤j≤z

p(tCj
, Cj))

= −
∑
1≤i≤z

∑
t≺T and

t is output−deterministic

p(tCi
, Ci) log p(tCi

, Ci)(
∏

j ̸=i,1≤j≤z

p(tCj
, Cj))

= −
∑
1≤i≤z

∑
t≺Ci and

t is output−deterministic

p(t, Ci) log p(t, Ci)

=
∑
C<T

H(C).

⊓⊔

For a (b, ·)-component tree C = Tb, suppose that it consists of child trees T1, · · · , Tl for

some l, and edges e1, · · · el with labels (b, c1), · · · , (b, cl) from the root of T to the root of

T1, · · · , Tl, respectively (see Figure 2.5). We use p1, · · · , pl to denote the probability assignments

p(e1), · · · , p(el), respectively. One can show,
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Figure 2.5: A (b, ·)-component tree Tb of T .

Proposition 2. For the (b, ·)-component tree C = Tb shown in Figure 2.5,

H(C) = H(Tb) =
∑
1≤i≤l

piH(Ti)−
∑
1≤i≤l

pi log pi − (1−
∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi).

Proof. For the notational convenience, in the following proof, subtrees t and t′ are already assumed
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to be output-deterministic. By definition,

H(Tb) = −
∑
t≺Tb

p(t, Tb) log p(t, Tb)

= −
( ∑

t≺Tb,t=∅

p(t, Tb) log p(t, Tb) +
∑

t≺Tb,t̸=∅

p(t, Tb) log p(t, Tb)

)
= −

(
(1−

∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi) +
∑
1≤i≤l

∑
t′≺Ti

pi · p(t′, Ti) log(pi · p(t′, Ti))

)
= −

(
(1−

∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi)

+
∑
1≤i≤l

(pi log pi
∑
t′≺Ti

p(t′, Ti) + pi
∑
t′≺Ti

p(t′, Ti) log p(t
′, Ti))

)
= −

(
(1−

∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi)

+
∑
1≤i≤l

(pi log pi + pi
∑
t′≺Ti

p(t′, Ti) log(p(t
′, Ti)))

)
=

∑
1≤i≤l

piH(Ti)−
∑
1≤i≤l

pi log pi − (1−
∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi).

⊓⊔

The entropy H(Tb), according to Proposition 2, is the “average” entropy of H(Ti)’s, together

with the uncertainty introduced by output-determinism: among edges (b, c1), · · · , (b, cl), at most

one of them is contained in the system tree since at most one of c1, · · · , cl can be the output from

the input b. This additional entropy,

−
∑
1≤i≤l

pi log pi − (1−
∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi),

is exactly the entropy of a random variable with (l+1) outcomes, and each outcome with probabili-

ty assignments p1, · · · , pl, 1−
∑

1≤i≤l

pi, respectively. From the two propositions above, an algorithm
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that calculates the entropy of an output-deterministic trace-specification tree T is immediately giv-

en as follows, with time complexity O(n), where n is the size of T (i.e., the number of edges in

T ).

ALG-entropy-tree(T):

//To calculate the entropy H(T ) of the trace-specification

//tree T with given probability assignments p(·) for

//an output-deterministic system.

//The return value of this algorithm is the entropy H(T ).

1. If T = ∅

2. H(T ) := 0;

3. Return H(T );

4. If T only has one (b, ·)-component tree

//T now is in the form of a (b, ·)-component tree for some b,

//shown in Figure 2.5, consists of l edges (b, c1), · · · , (b, cl)

//along with child-trees Ti under edges (b, ci) (1 ≤ i ≤ l);

//each edge (b, ci) with probability assignment pi

5. H(Ti) := ALG-entropy-tree(Ti);

6. H(T ) :=
∑

1≤i≤l

piH(Ti)−
∑

1≤i≤l

pi log pi − (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi);

7. Return H(T );

8. H(T ) :=
∑
C<T

ALG-entropy-tree(C);

9. Return H(T ).

Before we proceed further, we need more notations. Given a trace-specification tree T and

its corresponding input testing tree TΠ, for a path (labeled by) ω = (b1, c1) · · · (bi, ci) in T , by

definition, we have a path ωΠ = b1 · · · bi in TΠ; in this case, we write ω ∼ ωΠ. Similarly, for a node
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N in T , suppose that the path from the root to N is ω. Correspondingly, in TΠ, we have a path ωΠ

from the root to some node NΠ, such that ω ∼ ωΠ; in this case, we say N ∼ NΠ. For a subtree t

of T , we can find a minimal subtree tΠ of TΠ, such that for each node N in t, there is some node

NΠ in tΠ such that N ∼ NΠ; in this case, we say t ∼ tΠ. For a subtree tΠ of TΠ, let t be a maximal

subtree t of T such that t ∼ tΠ; in this case, we say t ≃ tΠ (note that there could be more than one

such t, depending on the location of the root of t in T ). Intuitively, a subtree t that satisfies t ≃ tΠ

is a maximal subtree of T , such that once every edge in tΠ is tested, every edge in t will be marked.

Example 4. For the trace-specification tree T and its corresponding input testing tree TΠ

shown in Figure 2.4, considering the subtree t of T that consists of nodes N4, N5, N6 and N7, and

the subtree t′ of TΠ that consists of nodes N ′
2, N

′
3 and N ′

4, we have t ≃ t′. For the subtree t′′ of T

that consists of nodes N2 and N3, we also have t′′ ≃ t′. ⊓⊔

Now, consider an edge e in TΠ. In the following, we will define the entropy “gain” G(e) after

the edge e is tested. To do this, consider all those subtrees t of T that satisfy t ≃ e (here e is treated

as the subtree of TΠ that only has the edge e). Recall that the t’s are those t’s that are marked after

e is tested.

Example 5. Consider the trace-specification tree T and its corresponding input testing tree

TΠ shown in Figure 2.4. For the edge e = ⟨N ′
2, N

′
3⟩ in TΠ, we have t1 ≃ e and t2 ≃ e, where

t1 consists of nodes N2 and N3, and t2 consists of nodes N4 and N5 in T . Similarly, for the edge

e′ = ⟨N ′
2, N

′
4⟩, the only subtree t′ of T such that t′ ≃ e′ is the one consisting of nodes N4, N6 and

N7. ⊓⊔

For a subtree t of T with t ≃ e, we use ωt = e1 · · · ej , for some j, to denote the root path of

t in the trace-specification tree T . Also, we define p(ωt) = p(e1) · · · p(ej) when ωt is not empty,

and when ωt is an empty path, p(ωt) = 1. Since t ≃ e, it is clear that t must be in the form of a

subtree only containing a number edges, say, e1, · · · , el, for some l, that share the same source (the

root of t), shown in Figure 2.6. By definition in (2.5), we have H(t) = −(
∑

1≤i≤l

pi log pi + (1 −
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Figure 2.6: A subtree t of T such that t ≃ e for some edge e in TΠ.

∑
1≤i≤l

pi) log(1−
∑

1≤i≤l

pi)). Now, we define the entropy gain of the edge e in TΠ as

G(e) =
∑
t≃e

p(ωt)H(t). (2.6)

One can show, using Propositions 1 and 2, that the entropy H(T ) of the trace-specification tree

T can be expressed as the summation of the entropy gains of the edges in the input testing tree TΠ:

Proposition 3.

H(T ) =
∑

e in TΠ

G(e).

That is, once all the edges in the input testing tree are tested, the total gain is exactly the

uncertainty H(T ) of the trace-specification tree; i.e., no uncertainty is left.

Example 6. Consider the trace-specification tree T and its corresponding input testing tree

TΠ shown in Figure 2.4. Suppose that the probability assignments of edges in T are as follows:

p(⟨N0, N1⟩) = p(⟨N2, N3⟩) = p(⟨N4, N5⟩) = 1/2, p(⟨N0, N2⟩) = 2/9, p(⟨N0, N4⟩) = 2/3,

and p(⟨N4, N6⟩) = p(⟨N4, N7⟩) = 1/3. We have H(T ) = log 18 bits by applying the algorithm

ALG-entropy-tree(T). We can also calculate H(T ) using Proposition 3. For the edge e =

⟨N ′
2, N

′
3⟩ in TΠ, we have t1 ≃ e and t2 ≃ e, where t1 consists of nodes N2 and N3, and t2

consists of nodes N4 and N5 in T . By definition, H(t1) = H(t2) = 1. By (2.6), we have

G(e) = p(⟨N0, N2⟩)H(t1) + p(⟨N0, N4⟩)H(t2) = 2/9 + 2/3 = 8/9. Similarly, for all other edges

in TΠ, we have G(⟨N ′
0, N

′
1⟩) = 1, G(⟨N ′

0, N
′
2⟩) = 4/3 log 3 − 8/9, and G(⟨N ′

2, N
′
4⟩) = 2/3 log 3.
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From Proposition 3, we have H(T ) = 1 + 2 log 3 = log 18, which coincides with the results

obtained from ALG-entropy-tree(T). ⊓⊔

2.3.2 Testing Strategies and Gain

By running test cases in PΠ, one can check whether a software system Sys conforms with the

given trace-specification P , which is a set of intended observable behaviors that Sys is supposed

to have. Let T be the trace-specification tree that represents P . Recall that, running test cases using

the oracle resembles the process of marking some edges in T . Since the gain of information on the

initially unknown system tree of T after running a number of test cases in PΠ corresponds to the

reduction of entropy of the testing tree by marking edges in T , a strategy that specifies the ordering

of marking edges also represents the process of gaining the information while running tests.

A testing strategy C is a sequence of edges in the input testing tree TΠ, in the form of

eC(1), · · · , eC(g),

for some g ≤ m (m is the number of edges in TΠ), satisfying the constraint that parent edges

should precede their child edges in C. That is, for any 1 ≤ i ≤ g, if e is the parent edge of eC(i),

then there is a j with 1 ≤ j < i ≤ g such that e = eC(j). Naturally, the strategy gives the ordering

that test cases (i.e., input symbol sequences) should be run.

Let α be a prefix of C, which corresponds to a subtree tα (i.e., tα exactly contains all the edges

in α) of the input testing tree TΠ with tα ≺ TΠ. Let Tα ≺ T be the maximal subtree of the

trace-specification tree T such that, for each path (b1, c1) · · · (bi, ci), for some i, in Tα, we have

that b1 · · · bi is a path in the aforementioned subtree tα of TΠ that represents α; i.e., Tα ≃ tα. That

is, after α is tested (i.e., every test case represented in tα is tested), the uncertainty in Tα is gone

completely, since, in this case, every edge in Tα is marked already using the test results. We use

G(α) to denote the expected entropy reduction of T after α is tested, which is also the information

gained on the system tree of T . The gain G(α) is defined as H(Tα). From Proposition 3 (taking
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Tα as T and tα as TΠ), we have

G(α) =
∑

e in tα

G(e), (2.7)

and naturally, G(α) = H(T ) when α is the entire strategy C when g = m (that is, C covers all the

edges in TΠ). When all the edges in TΠ are tested, the entropy gain is H(T ); i.e., no uncertainty

is left. Let PreC(k) be the prefix of C of length k. One can easily show that G(PreC(k1)) ≤

G(PreC(k2)), for any k1 ≤ k2. That is, as we test more edges in the input testing tree, more

information is gained. Sometimes, we abuse the notation G and use

G(tα) = G(α) (2.8)

to denote the gain of the subtree tα of TΠ. In fact, (2.8) already gives the information gain of a test

set tests as follows. Recall that the set can be represented as a subtree t of TΠ; the gain of tests is

defined as

G(tests) = G(t). (2.9)

In later sections, we will show how to select test cases that achieve the maximal amount of infor-

mation gain under certain constraints.

2.3.3 Information-Optimal Testing Strategies with Pre-given Probability Assignments

In this subsection, unless stated otherwise, we assume that a testing strategy C covers all the edges

in TΠ. An information-optimal testing strategy, as explained before, tries to make a maximal

reduction of entropy in the testing tree. Formally,

Definition 1. Let T be a trace-specification tree and TΠ be the corresponding input testing tree

with m edges. C∗ is a global information-optimal testing strategy if, for any

testing strategy C, G(PreC∗(k)) ≥ G(PreC(k)), for each 0 ≤ k ≤ m.

That is, for any given length of prefix, a global information-optimal testing strategy reduces more

uncertainty than any other strategy. Note that a global information-optimal testing strategy may
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Figure 2.7: A trace-specification tree and its corresponding input testing tree.

not necessarily exist.

Example 7. Consider the trace-specification tree T in Figure 2.7 (1) with Π = {b1, · · · , b7}

and Γ = {true}. Its input testing tree is shown in Figure 2.7 (2). Let ei be the edge in T labeled

with (bi, true), and e′i be the edge in TΠ labeled with bi, 1 ≤ i ≤ 7. The probability assignments

of edges are as follows: p(e1) = 8/9, p(e2) = p(e3) = p(e4) = p(e7) = 1/2, p(e5) = 3/4

and p(e6) = 2/3. The input testing tree TΠ does not have a global information-optimal testing

strategy, since one can easily check that, assuming that C∗ were a global information-optimal

testing strategy, PreC∗(1) = e′5, while PreC∗(3) = e′1, e
′
2, e

′
3, which leads to a contradiction. ⊓⊔

Now, we define a weaker form of information-optimality, when we are only allowed to test for

k edges, and we try to maximize the entropy reduction after testing the k test cases.

Definition 2. Let T be a trace-specification tree, TΠ be the corresponding input testing

tree with m edges and k be a number ≤ m. C∗ is a k-information-optimal testing

strategy if, for any testing strategy C, G(PreC∗(k)) ≥ G(PreC(k)).

Note that the testing ordering within the first k edges would not matter (of course, parents

should be tested before their children) when the k edges are given, since the gain is always the

entropy of the subtree consisting of those k edges. Hence, finding a k-information-optimal testing
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strategy is equivalent to picking the first k edges to test in TΠ. Those k edges form a k-information-

optimal subtree of TΠ, which is a subtree sharing the same root with TΠ that has the maximal gain

among all the subtrees (sharing the same root with TΠ) which have k edges. Clearly, enumerating

all possible subtrees t ≺ TΠ with k edges and picking the one with the maximal gain will result

in an exponential time algorithm in k. In below, we will present an efficient algorithm that finds a

k-information-optimal testing strategy C∗ for a given number k.

We associate each node N in TΠ with a table of k+1 entries. The ith entry, 0 ≤ i ≤ k, contains

a number GN [i] and a set OPTN [i] of edges, where GN [i] is the gain of the i-information-optimal

subtree at node N , and OPTN [i] records the set of edges in that i-information-optimal subtree at

node N . Suppose that N has q child nodes N ′
1, · · · , N ′

q, for some q ≥ 1. GN(i) can be calculated

from GN ′
1
[index1], · · · , GN ′

q
[indexq], for some index1, · · · , indexq < i. We define another array

Yj[·] for each N ′
j . Each Yj[i+ 1] records the gain of the (i+ 1)-information-optimal subtree of the

component tree TN ′
j
, which consists of the edge ⟨N,N ′

j⟩ together with the child-tree under the edge.

Clearly, the (i+1)-information-optimal subtree of TN ′
j

exactly contains the edge ⟨N,N ′
j⟩, together

with the i-information-optimal subtree at node N ′
j . From (2.7), we have Yj[i+1] = G(e)+GN ′

j
[i],

where e = ⟨N,N ′
j⟩. One can observe that the i-information-optimal subtree at node N must be,

for some index1, · · · , indexq, the union of indexj-information-optimal subtrees of TN ′
j
, for all

1 ≤ j ≤ q. Therefore, we have GN [i] =
∑

1≤j≤q

Yj[indexj]. The selection of index1, · · · , indexq

is left to the algorithm MAX-SELECT. The algorithm ALG-opt(T, TΠ, k) that calculates the

k-information-optimal subtree of TΠ is given as follows, where GN [·] and OPTN [·] are global

variables. If N is a leaf node, then we initialize GN [i] = 0 and OPTN [i] = ∅ for each 0 ≤ i ≤ k.

ALG-opt(T, TΠ, k):

//To find a k-information-optimal subtree of a given input

//testing tree TΠ with pre-given probability assignment p(e)

//for every edge e in the trace-specification tree T.
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//The return value has two parts: the entropy Hroot[k] and the

//set of edges OPTroot[k] of the k-information-optimal subtree,

//where root is the root of TΠ. GN [·] and OPTN [·] in below

//are global variables and are initialized as described above.

1. If k = 0

2. For each node N in TΠ

3. GN [k] := 0 and OPTN [k] := ∅;

4. Return;

5. Run ALG-opt-tree(T, TΠ, k − 1);

6. For level := 1 to (height of TΠ)

//a node of level (height of TΠ) is the root

7. For each nonleaf node N of level level

//suppose that N ′
1, · · · , N ′

q, for some q ≥ 1,

//are all the child nodes of N

8. For each 1 ≤ j ≤ q

9. Yj[0] := 0;

10. G(e) :=
∑
t≃e

p(ωt)(−(
∑

1≤i≤l

pi log pi + (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi)));

//e = ⟨N,N ′
j⟩; in the RHS of line 10, e is treated

//as the subtree of TΠ that only has the edge e;

//ωt = a1 · · · ai is the root path of t,

//p(ωt) = p(a1) · · · p(ai); p(ωt) = 1 if ωt = ∅;

//suppose that t exactly contains l edges,

//say e1, · · · , el that share the same source,

//and each edge el has probability assignment pi

11. For 0 ≤ i ≤ k − 1

12. Yj[i+ 1] := G(e) +GN ′
j
(i);
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//Yj[i+ 1] stores the entropy of the

//(i+ 1)-information-optimal subtree of the

//component tree TN ′
j
mentioned earlier

13. Run MAX-SELECT({Y1, · · · , Yq}, k);

//MAX-SELECT({Y1, · · · , Yq}, k) returns

//a sequence index1, · · · , indexq

14. GN [k] :=
∑

j:indexj ̸=0

Yj[indexj];

15. OPTN [k] :=
∪

j:indexj ̸=0

OPTN ′
j
[indexj − 1] ∪ {⟨N,N ′

j⟩};

16. Return Groot[k] and OPTroot[k].

In line 13, the (worst-case) time of running the algorithm MAX-SELECT({Y1, · · · , Yq}, k) is

O(k2q), as pointed out in Section 2.2.4, MAX-SELECT is called every time when calculating an

entry of HN [·] and an entry OPTN [·] of node N . Since there are k + 1 entries for N , the time

of finishing calculating all the entries of N is O(k3q). Notice that q is the branching factor of

N (see line 7), that is the number of child nodes of N , and the summation of all such branching

factors for all nodes is m, which is the size of T . Hence the (worst-case) time complexity of

ALG-opt(T, TΠ, k) is O(mk3), given that in line 10, all the t’s satisfying t ≃ e are preprocessed

and already stored in a data structure at e. The preprocessing can be done in time O(n + m),

where n is the size of T . Therefore, the (worst-case) time complexity of ALG-opt(T, TΠ, k) is

O(n+mk3).

As mentioned earlier, a global information-optimal testing strategy might not exist for cer-

tain trace-specification trees. We can use the algorithm ALG-opt(T, TΠ, k) for computing k-

information-optimal testing strategies to determine the existence of a global information-optimal

testing strategy by setting k all the way from 1 to m. However, this is not practically efficient when

m is large. It is interesting to see whether there are efficient algorithms in deciding the existence

of a global information-optimal testing strategy by looking at the tree’s structure.
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We now consider the following greedy information-optimal testing strategy, which aims to

reduce the entropy most at each step.

Definition 3. Let T be a trace-specification tree and TΠ be the corresponding input testing tree

with m edges. C∗ is a greedy information-optimal testing strategy if, for any

testing strategy C with k − 1, for some k, being the length of the longest common prefix between

C∗ and C, G(PreC∗(k)) ≥ G(PreC(k)).

From the definition, we can have the following observation. Consider two testing strategies C

and C ′ of TΠ with the longest common prefix between them of length k − 1. Suppose that eC(k) is

e and eC′(k) is e′. We have

G(PreC(k)) ≥ G(PreC′(k)), if and only if, G(e) ≥ G(e′). (2.10)

To construct the greedy information-optimal testing strategy, we first introduce the concept of

available set. Let E be a set of edges in TΠ. We define the available set of E, written AS(E), to

be the set of edges e in TΠ such that e is either a child edge or a sibling edge of some edge in E.

Intuitively, if edges in E form a subtree t ≺ TΠ, when adding one or more edges in AS(E) to t,

we can obtain a new subtree t′, such that t′ ≺ TΠ and t ≺ t′. By definition, eC(k) must be selected

from AS({eC(1), · · · , eC(k−1)}). By (2.10), at each step we pick the edge (from the available set)

that can achieve the maximal gain. The gain of an edge e, G(e), is calculated in the same way as

in ALG-opt(T, TΠ, k).

ALG-greedy-opt(T, TΠ):

//To find a greedy information-optimal testing strategy of the

//input testing tree TΠ, with pre-given probability assignment

//p(e) for each edge e in the trace-specification tree T.

//The return value is a greedy information-optimal testing
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//strategy C∗ of TΠ.

1. AS[1] := {e : e is an edge originating from TΠ’s root}.

2. For each 1 ≤ i ≤ m

3. For each e ∈ AS[i]

4. G(e) :=
∑
t≃e

p(ωt)(−(
∑

1≤i≤l

pi log pi + (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi)));

//in the RHS of line 4, e is treated as a subtree

//of TΠ that only has the edge e; ωt = a1 · · · ai is the

//root path of subtree t in T, p(ωt) = p(a1) · · · p(ai);

//p(ωt) = 1 if ωt = ∅; suppose that

//t exactly contains l edges, say e1, · · · , el

//that share the same source, and each edge el has

//probability assignment pi in T

5. Suppose that e∗ ∈ AS[i] achieves max
e∈AS[i]

G(e);

6. eC(i) := e∗;

7. AS[i+ 1] := (AS[i]− {eC(i)}) ∪ CHILDREN(eC(i));

//AS[i+ 1] now records AS({eC(1), · · · , eC(i)})

8. Return C∗ = eC(1), · · · , eC(i), · · · , eC(m).

The (worst-case) time complexity of ALG-greedy-opt(T, TΠ) is O(n+m2), with n being the

size of T and m being the size of TΠ.

By definition, a greedy information-optimal testing strategy always selects the edge that can

reduce the entropy most at each step. Of course, this greedy strategy does not necessarily lead

to the information-optimal testing strategies as given in Definition 1 and 2. For example, for the

trace-specification tree and the input testing tree in Figure 2.7 with probability assignments given

in Example 7., the prefix of length 3 of a 3-information-optimal testing strategy is e′1, e
′
2, e

′
3, while

in a greedy information-optimal testing strategy, the prefix of length 3 is e′5, e
′
6, e

′
1. However, the
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greedy information-optimal testing strategy fits the situation that the testing procedure may be

stopped at any time, and hence each time, we only aim to maximally reduce the entropy for each

individual step.

2.3.4 Entropy and Information-Optimal Test Strategies of a Trace-specification Tree with

Probability Assignments in the Worst Case

The aforementioned algorithms for information-optimal testing strategies rely on the probability

assignments of edges, p(·), in the trace-specification tree T . When the assignment p(·) is explicitly

given, we write H(T, p(·)) to denote the entropy of T under p(·), which is calculated using algo-

rithm ALG-entropy-tree(T). However, in practice, we usually do not know what the p(·) is.

That is, we do not know the probability of whether an edge will be connected or disconnected with

respect to the system under test. We now consider the worst case that we know the least amount

of information on the system (i.e., the system under test is a truly black-box). We will give the

result in the worst case, where the uncertainty H(T, p(·)) achieves the maximum for some p(·).

Unless stated otherwise, from now on in this section, we use H(T ) to denote the maximal entropy

of the testing tree T in the worst case; i,e., H(T ) = sup
p(·)

{H(T, p(·))}. We use p∗(·) to denote the

worst-case probability assignments on which the maximum is achieved.

Because of Proposition 1, it suffices for us to consider the case when T is a (b, ·)-component

tree shown in Figure 2.5. In this case,

H(T ) =
∑
1≤i≤l

piH(Ti)−
∑
1≤i≤l

pi log pi − (1−
∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi). (2.11)

Suppose that, for the child-trees T1, · · · , Tl, we have already obtained the worst-case probability

assignments and each H(Ti) in (2.11) is already the worst-case entropy. We now calculate the

pi = p∗i , i = 1, · · · , l, in (2.11) that make the RHS maximal. Notice that H(T ) in (2.11) is a
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concave function over p1, · · · , pl, since the second-order partial derivatives

∂2H(T )

∂pi∂pj
< 0, for all 1 ≤ i, j ≤ l.

Therefore, let partial derivatives

∂H(T )

∂pi
= 0, i = 1, · · · l.

We have,

H(Ti)− log p∗i + log(1−
∑
1≤j≤l

p∗j) = 0, i = 1, · · · l.

Solving the above equations for the p∗1, · · · , p∗l , we obtain the solutions

p∗i =
2H(Ti)

1 +
∑

1≤j≤l

2H(Tj)
, i = 1, · · · l. (2.12)

This already gives an algorithm to calculate the p∗(·) as follows.

ALG-p∗(T):

//To calculate the probability assignments p∗(·) of edges

//in the trace-specification tree T in the worst case.

//The return value is the probability assignments p∗(·).

1. For each leaf node N in T

2. H(tN) := 0;

//tN is the child-tree under edge e = ⟨N ′, N⟩ for some N ′

3. For level := 1 to (height of T)

//a node of level (height of T) is the root

4. For each nonleaf node N of level level
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//suppose that the component trees of N are

//(b1, ·)-component tree, · · ·, (bq, ·)-component tree for some q

5. For 1 ≤ h ≤ q

//let th be the (bh, ·)-component tree that consists

//of edges e1, · · · , el labeled with (bh, c
1), · · · , (bh, cl)

//respectively, together with the child-trees Ti’s

//under the edges, and the entropy H(Ti) is

//already calculated in the previous level;

//suppose the probability assignment of ei

//labeled with (bj, c
i) is p∗i

6. p∗i :=
2H(Ti)

1+
∑

1≤j≤l

2H(Tj)
, i = 1, · · · , l;

7. H(th) :=
∑

1≤i≤l

p∗iH(Ti)−
∑

1≤i≤l

p∗i log p
∗
i−(1−

∑
1≤i≤l

p∗i ) log(1−
∑

1≤i≤l

p∗i );

8. H(tN) :=
∑

1≤h≤q

H(th);

//tN is the child-tree under the edge e = ⟨N ′, N⟩

//for some N ′

9. Return p∗(·).

The time complexity of ALG-p∗(T) is O(n), where n is the size of T .

Example 8. Consider the trace-specification tree T shown in Figure 2.4 (1). Now we calculate

the probability assignments of edges in the worst case. For the node N4, it has a (b3, ·)-component

tree and a (b4, ·)-component tree. For the (b3, ·)-component tree, the child-tree under the edge

⟨N4, N5⟩ is empty and with entropy 0; hence p∗(⟨N4, N5⟩) = 20

1+20
= 1

2
. For the (b4, ·)-component

tree, the child-trees T1 and T2 under the edges ⟨N4, N6⟩ and ⟨N4, N7⟩, respectively, are also empty;

hence p∗(⟨N4, N6⟩) = p∗(⟨N4, N7⟩) = 20

1+(20+20)
= 1

3
. Similarly, we have p∗(⟨N2, N3⟩) = 1

2
,

p∗(⟨N0, N1⟩) = 1
2
, p∗(⟨N0, N2⟩) = 2

9
, and p∗(⟨N0, N4⟩) = 6

9
. Also, the entropy of T in the worst

case is H(T ) = log 18 bits. ⊓⊔

43



Now, one can find the k-information-optimal testing strategy and the greedy information-

optimal testing strategy of an input testing tree in the worst case using the algorithms

ALG-opt(T, TΠ, k) and ALG-greedy-opt(T, TΠ), respectively, by running the algorithm

ALG-p∗(T) first to give the probability assignments of edges in the worst case. Note that, as

before, the global information-optimal testing strategy may or may not exist.

Example 9. Consider the trace-specification tree T in Figure 2.4 (1) and its corresponding in-

put testing tree TΠ in Figure 2.4 (2). In the worst case that the entropy H(T ) reaches the maximum,

let k = 3. Then a k-information-optimal testing strategy of TΠ is ⟨N ′
0, N

′
2⟩, ⟨N ′

2, N
′
4⟩, ⟨N ′

0, N
′
1⟩.

The greedy information-optimal strategy is ⟨N ′
0, N

′
2⟩, ⟨N ′

2, N
′
4⟩, ⟨N ′

0, N
′
1⟩, ⟨N ′

2, N
′
3⟩. Note that

in this example, the global information-optimal testing strategy exists, which is (in this order)

⟨N ′
0, N

′
2⟩, ⟨N ′

2, N
′
4⟩, ⟨N ′

0, N
′
1⟩, ⟨N ′

2, N
′
3⟩. ⊓⊔

2.3.5 Entropy and Information-Optimal Test Strategies of a Trace-specification Tree with

Probability Assignments in the Worst Case with Lower Bounds

In the previous section, we develop optimal testing strategies on input testing trees with the prob-

ability assignments in the worst case, where the entropy of the trace-specification tree reaches the

maximum. That is, the system has the maximal amount of uncertainty. In practice, we could have

additional information about the system under test. For instance, when testing a software system

that has already been well tested, or when testing a mature software system, we could assume that

an edge e in the trace-specification tree T is connected with a probability that has a lower bound;

i.e., for each edge e, we assume that p(e) ≥ δ(e) for some given number δ(e), which is the lower

bound of p(e).

We now consider probability assignments p∗δ(·) on the trace-specification tree T in the worst

case with lower bounds δ(·) such that the entropy H(T ) reaches the maximum. In this section, we

require that, when e is labeled with some (b, c) ∈ Π×Γ, there is at most one e′ ∈ Eb with δ(e′) > 0

(all other e′′ ∈ Eb are with δ(e′′) = 0), where Eb is the set containing e and all its siblings with
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label (b, c′) for some c′ ∈ Γ. That is, the lower bound is only applied to at most one output symbol

per input symbol, at each node of T . Because of Proposition 1, it suffices for us to consider the

case when T is a (b, ·)-component tree shown in Figure 2.5, where

H(T ) =
∑
1≤i≤l

piH(Ti)−
∑
1≤i≤l

pi log pi − (1−
∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi). (2.13)

Suppose that each H(Ti) is already the worst-case entropy of Ti with lower bound δ(·). Now we

compute the worst-case entropy H(T ) in (2.13) subject to the lower bound constraint. Let e1, · · · el

be the edges (with labels (b, c1), · · · , (b, cl) and probability assignments p1 = p(e1), · · · , pl =

p(el), respectively) originating from the root of T , as shown in Figure 2.5. We use p∗1 =

p∗δ(e1), · · · , p∗l = p∗δ(el) to denote the probabilities p1, · · · , pl, respectively, that make H(T ) in

(2.13) maximal subject to the lower bound constraint. Suppose that edge ej0 , for some 1 ≤ j0 ≤ l,

is with δj0 = δ(ej0), 0 < δj0 ≤ 1. By definition, the probability pj0 in (2.13) must satisfy pj0 ≥ δj0

and there is no constraint for other probabilities pi with i ̸= j0, except
∑

1≤i≤l

pi ≤ 1. That is, we are

to maximize H(T ) in (2.13) subject to pj0 ≥ δj0 and
∑

1≤i≤l

pi ≤ 1, for some given j0 and δj0 . For

instance, in the traffic light example in Section 2.2.3, we can designate the case (ii) that the light

turns red with probability ≥ 0.9, which is meaningful in practice. Recall that H(T ) in (2.13) is a

concave function over p1, · · · , pl. We can show (using the concavity)

p∗j0 = max{ 2H(Tj0
)

1 +
∑

1≤i≤l

2H(Ti)
, δj0}.

If δj0 ≤ 2
H(Tj0

)

1+
∑

1≤i≤l

2H(Ti)
, then p∗j0 = 2

H(Tj0
)

1+
∑

1≤i≤l

2H(Ti)
, and therefore other p∗i ’s (i ̸= j0) still take the

probability assignments in the form of (2.12), which make H(T ) achieve the maximum. If δj0 >
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2
H(Tj0

)

1+
∑

1≤i≤l

2H(Ti)
, then p∗j0 = δj0 . In the latter case, let

∂H(T )

∂pi
= 0, i = 1, · · · l, i ̸= j0.

We have,

H(Ti)− log p∗i + log(1− δj0 −
∑

1≤j≤l,j ̸=j0

p∗j) = 0, i = 1, · · · l, i ̸= j0.

Solving the equations for the p∗i ’s, i ̸= j0, we obtain the solutions

p∗i =
(1− δj0)2

H(Ti)

1 +
∑

1≤j≤l,j ̸=j0

2H(Tj)
, i = 1, · · · l, i ̸= j0. (2.14)

Now, we have the following algorithm to calculate the probability p∗δ(·) using (2.14).

ALG-p∗δ-low(T, δ(·)):

//To calculate the probability assignments p∗δ(·) of edges

//in the trace-specification tree T in the worst case with

//lower bounds δ(·). The return value is the

//probability assignments p∗δ(·).

1. For each leaf node N in T

2. H(tN) := 0;

//tN is the child-tree under edge e = ⟨N ′, N⟩ for some N ′

3. For level := 1 to (height of T)

//a node of level (height of T) is the root

4. For each nonleaf node N of level level

//suppose that the component trees of N are
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//(b1, ·)-component tree, · · ·, (bq, ·)-component tree for some q

5. For 1 ≤ h ≤ q

//let th be the (bh, ·)-component tree that consists of

//edges e1, · · · , el labeled with (bh, c
1), · · · (bh, cl)

//respectively, together with the child-trees Ti’s

//under those edges, and the entropy H(Ti) is already

//calculated in the previous level; suppose that the

//probability assignment of ei is p∗δ(ei); we require

//that p∗δ(ej0) ≥ δ(ej0) for a designated j0 and δ(ej0) > 0

6. If δ(ej0) ≤ 2
H(Tj0

)

1+
∑

1≤i≤l

2H(Ti)

7. p∗δ(ei) :=
2H(Ti)

1+
∑

1≤j≤l

2H(Tj)
, for all 1 ≤ i ≤ l;

8. Else

9. p∗δ(ej0) := δ(ej0);

10. p∗δ(ei) :=
(1−δ(ej0 ))2

H(Ti)

1+
∑

1≤j≤l,j ̸=j0

2H(Tj)
, i = 1, · · · l, i ̸= j0;

11. H(th) :=
∑

1≤i≤l

p∗δ(ei)H(Ti)−
∑

1≤i≤l

p∗δ(ei) log p
∗
δ(ei)

−(1−
∑

1≤i≤l

p∗δ(ei)) log(1−
∑

1≤i≤l

p∗δ(ei));

12. H(tN) :=
∑

1≤h≤q

H(th);

//tN is the child-tree under edge e = ⟨N ′, N⟩ for some N ′

13.Return p∗δ(·).

The time complexity of ALG-p∗δ-low(T, δ(·)) is O(n), where n is the size of T . Similarly

as in Section 2.3.4, one can find the k-optimal testing strategy and the greedy optimal testing

strategy of an input testing tree in the worst case with lower bounds still using the algorithms

ALG-opt(T, TΠ, k) and ALG-greedy-opt(T, TΠ), respectively, by running the algorithm

ALG-p∗δ-low(T, δ(·)) first to obtain probability assignments.
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Note that lower bounds can be given in various forms. For instance, we can require that for

some edges (b, c1), · · · , (b, ci) in a (b, ·)-component tree shown in Figure 2.5 , the summation of

their probability assignments must be larger than some given number. Currently we have not found

polynomial-time algorithms to solve the above problem (which turns out to be a quite complex

nonlinear optimization problem).

2.4 Information-Optimal Testing Strategies on Automata Used as Tree

Representations

Throughout this section, the system Sys under test is assumed to be output-deterministic. Addi-

tionally, we assume that a trace-specification tree is tight; i.e., at each node, each input symbol

has at most one output symbol. Formally, T is tight if, for each node N in T and each input

symbol b ∈ Π, there is at most one edge from node N with label (b, c), for some c ∈ Γ. In this

case, a trace-specification tree and its input testing tree have exactly the same topological appear-

ance (see Figure 2.7 for an example). Since T is tight, for a test case ω = b1 · · · bl (for some l)

in the input testing tree TΠ, there is a unique path in T with labels (b1, c1) · · · (bl, cl), for some

c1, · · · , cl ∈ Γ. That is, the expected output c1 · · · cl is unique and already specified in T for the

test case ω = b1 · · · bl. Therefore, we do not distinguish the two trees, and simply treat the trace-

specification tree T as the testing tree. Because of this, in this section, we also call the input-output

sequence (b1, c1) · · · (bl, cl) as a test case. Let Σ = Π × Γ. Hence, the testing tree T is simply a

tree with labels in Σ.

Recall that, the original trace-specification, Poriginal, could be an infinite set of words over the

interface Σ; the trace-specification P we actually plan to test is the set of words where each word

is a prefix (of length ≤ d) of some word in Poriginal. In other words, P can be specified by Poriginal

together with d. One can often use a (deterministic finite) automaton A to represent Poriginal (when

it is regular), since it is practically a more succinct model compared with the tree representation of

the trace-specification P . For instance, for the original trace-specification Poriginal = (a1 + a2)
∗,
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Figure 2.8: A DFA A with the accepting language (a1 + a2)
∗.

the trace-specification we actually test is P = (a1 + a2)
≤d. The testing tree T representing P is a

complete binary tree, whose size is exponential in d. On the other hand, if we use an automaton

A in Figure 2.8 to accept the language (a1 + a2)
∗ (i.e., Poriginal), the automaton only has one state

and two transitions. Therefore, the trace-specification P we actually test can be specified by two

parameters: an automaton A representing Poriginal, and the longest length d we could test for each

sequence in Poriginal. Suppose that P is given as an automaton A and a length d. If we calculate the

entropy of the testing tree T representing P by building T (using ALG-entropy-tree(T)),

the time complexity would be exponential in the size of the automaton A and the length d. In the

following, we discuss how to efficiently calculate the worst-case entropy of the testing tree T , and

develop information-optimal testing strategies directly on the automaton A, without building T .

Let A = ⟨S, sinit, F,Σ, R⟩ be a DFA specified in Section 2.2.1. We further define A(s) =

⟨S, s, F,Σ, R⟩ as the finite automaton that keeps all the parameters in A except that it changes the

initial state sinit to s ∈ S. Let L(A, s, d) be the set of words such that each word is a prefix (of

length ≤ d) of some word in L(A(s)).

Let T be the testing tree that represents P . Recall that P is truncated from Poriginal = L(A)

up to length d; i.e., P = L(A, sinit, d). Now we develop algorithms to calculate the entropy of

T in the worst case (i.e., the entropy H(T ) reaches the maximum). The algorithms are based on

Proposition 1 and 2. Note that since T is tight, a (b, ·)-component tree Tb, with b ∈ Π, in Figure 2.5

now exactly consists of one edge e originating from the root and a child-tree t′ under e, as shown
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Figure 2.9: The tree Tb consists of a child-tree t′ and an edge e.

in Figure 2.9; hence the formula in Proposition 2,

H(Tb) =
∑
1≤i≤l

piH(Ti)−
∑
1≤i≤l

pi log pi − (1−
∑
1≤i≤l

pi) log(1−
∑
1≤i≤l

pi),

now can be written as

H(Tb) = HBinary(p(e)) + p(e)H(t′),

where HBinary(·) is the binary entropy function, HBinary(p(e)) = −p(e) log p(e)−(1−p(e)) log(1−

p(e)). Therefore,

H(T ) =
∑
i

(HBinary(p(ei)) + p(ei)H(Ti)), (2.15)

where ei is an edge that directly originates from the root of T , and Ti is the child-tree under ei. In

the worst case, from (2.12), we have p∗(ei) =
2H(Ti)

1+2H(Ti)
, and therefore (2.15) can be written as

H(T ) =
∑
i

log(1 + 2H(Ti)). (2.16)

Recall that the tree T is represented by a given automaton A. To use (2.16) to calculate the

worst-case entropy H(T ) directly on the automaton A, we build an array hs[0 · · · d] with d + 1

entries for each state s in the automaton A, and the levelth (0 ≤ level ≤ d) entry hs[level] equals
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H(A, s, level), where H(A, s, level) is the (worst case) entropy of the testing tree that represents

L(A, s, level). Clearly, for the testing tree that represents L(A, s, level), each of its child-trees

represents L(A, s′, level− 1), for each direct successor s′ of s (i.e., (s, a, s′) ∈ R for some a ∈ Σ),

respectively. From (2.16), we have

hs[level] =
∑

s′∈SUCC(s)

log(1 + 2hs′ [level−1]),

where SUCC(s) is the set of direct successors of s. Note that SUCC(s) could be a multiset; i.e., if

there are multiple transitions from s to s′, then s′ should be counted multiple times in SUCC(s). In

particular, hs[0] = 0 for each state s, which means that, the testing tree representing L(A, s, 0) is

an empty tree, therefore, H(A, s, 0) = 0. The algorithm ALG-entropy-DFA-worst(A, d) is

given as follows.

ALG-entropy-DFA-worst(A, d):

//To calculate the entropy of the testing tree representing

//P = L(A, sinit, d) in the worst case. The return value is the

//entropy hs[level] of the testing tree representing L(A, s, level),

//for each state s in A, and 0 ≤ level ≤ d.

1. For each s ∈ S and for 0 < level ≤ d

2. hs[level] := null;

3. hs[0] := 0;

4. level := 1;

5. Repeat

6. For each state s

7. hs[level] :=
∑

s′∈SUCC(s)
log(1 + 2hs′ [level−1]);

8. level := level + 1;
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9. Until level ≥ d+ 1;

10.Return hs[0 · · · d] for each state s.

The time complexity of the algorithm ALG-entropy-DFA-worst(A, d) is O(dn), where

n is the number of transitions in A (also called the size of A). When we finish running the above

algorithm on A, we will get an array for each state s, and the value hs[level] equals H(A, s, level).

Therefore, hsinit
[d] is the entropy of the testing tree T representing L(A, sinit, d), which is the

trace-specification P that we actually test, as mentioned earlier.

In the following, we show an example of running the algorithm

ALG-entropy-DFA-worst(A, d) on an automaton A with d = 3.

Example 10. An automaton A is given in Figure 2.10, with s1 being the initial state, and

s5 being the accepting state. Recall that a, b, c, d, e, f in Figure 2.10 are in Σ = Π × Γ. Assume

that we can only test up to d = 3 steps for each string in L(A); i.e., the trace-specification P

we actually test is L(A, s1, 3). Figure 2.10 (1) ∼ (4) shows how the arrays of states evolve

while ALG-entropy-DFA-worst(A, d) is running on A (blank entries denotes for null).

At the beginning, lines 1 ∼ 3 initialize the entries as in Figure 2.10 (1), which corresponds to

H(A, s, 0) = 0 for every s ∈ S, since the set of strings originating from s of length 0 is empty. For

each state s ∈ S, we gradually update its entries according to lines 6 ∼ 8 as shown in Figure 2.10

(2) ∼ (4). Finally, hs1 [3] = log 16 implies that H(A, s1, 3) = log 16 = 4 bits. That is, the entropy

of the testing tree T representing P = L(A, s1, d) is 4 bits. We can check the result with the tree

T in Figure 2.11. In the worst case, H(T ) = 4 bits, which coincides with hs1 [3]. ⊓⊔

Note that, the number d is usually pre-given. However, if A is a directed acyclic graph (DAG),

we could set d to the length of the longest string in L(A) (which could be found using depth-first-

search) such that the trace-specification we actually test is L(A); i.e., P = Poriginal.

Example 11. In the DFA A in Figure 2.10, the longest string in L(A) is of length 4. There-

52



s
1
 s
2


s
3


s
4


s
5


0
 0


1


2


3


0
 0


1


2


3


a


b


d


c


f


e


0
 0


1


2


3


0
 0


1


2


3


0
 0


1


2


3


s
1
 s
2


s
3


s
4


s
5


0
 0


1
 0


2


3


0
 0


1
 l
o
g
2


2


3


a


b


d


c


f


e


0
 0


1
 l
o
g
4


2


3


0
 0


1
 l
o
g
4


2


3


0
 0


1
 l
o
g
2


2


3


(
1
)
 (
2
)


s
1
 s
2


s
3


s
4


s
5


0
 0


1
 0


2
 0


3


0
 0


1
 l
o
g
2


2
 l
o
g
2


3


a


b


d


c


f


e


0
 0


1
 l
o
g
4


2
 l
o
g
6


3


0
 0


1
 l
o
g
4


2
 l
o
g
1
5


3


0
 0


1
 l
o
g
2


2
 l
o
g
5


3


(
3
)


s
1
 s
2


s
3


s
4


s
5


0
 0


1
 0


2
 0


3
 0


0
 0


1
 l
o
g
2


2
 l
o
g
2


3
 l
o
g
2


a


b


d


c


f


e


0
 0


1
 l
o
g
4


2
 l
o
g
6


3
 l
o
g
6


0
 0


1
 l
o
g
4


2
 l
o
g
1
5


3
 l
o
g
2
1


0
 0


1
 l
o
g
2


2
 l
o
g
5


3
 l
o
g
1
6


(
4
)


h
s
1
[
.
]


h
s
2
[
.
]


h
s
3
[
.
]


h
s
4
[
.
]


h
s
5
[
.
]


h
s
1
[
.
]


h
s
1
[
.
]
 h
s
1
[
.
]


h
s
3
[
.
]


h
s
3
[
.
]
 h
s
3
[
.
]


h
s
2
[
.
]


h
s
2
[
.
]
 h
s
2
[
.
]


h
s
5
[
.
]


h
s
5
[
.
]
 h
s
5
[
.
]


h
s
4
[
.
]


h
s
4
[
.
]
 h
s
4
[
.
]


Figure 2.10: Run ALG-entropy-DFA-worst(A, d).
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Figure 2.11: The testing tree representing P = L(A, s1, 3).
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Figure 2.12: Run ALG-entropy-DFA-worst(A, d).

fore, we set d to 4, and run ALG-entropy-DFA-worst(A, d) on A. In this case, the trace-

specification P is L(A). The result is shown in Figure 2.12. Since hs1 [4] = log 22, the entropy of

the testing tree T that represents P = L(A) is log 22. ⊓⊔

Next, we study information-optimal testing strategies of the trace-specification P in the worst

case directly on the finite automaton A. Recall that in the testing tree T that represents P , an edge

e is labeled with some symbol a ∈ Σ = Π × Γ. p(e) denotes the probability that e is connected;

i.e., the symbol a succeeds (in fact, p(e) is the probability that a succeeds, given that the symbols

labeling the parent of e succeeds. In the sequel, we simply say that p(e) is the probability that a

succeeds, when the context is clear). Correspondingly, we also have the probability that symbol a

succeeds in the automata representation. Let r = (s, a, s′) be a transition in the finite automaton

A. We define p(r(level)) as the probability that, in the testing tree representing L(A, s, level), the

symbol a (that is labeled on an edge originating from the root of the testing tree) succeeds, for each

1 ≤ level ≤ d. Recall that in the worst case, the probability of an edge e is p∗(e) = 2H(t′)

1+2H(t′) , where

t′ is the child-tree under e. In the DFA A, after running ALG-entropy-DFA-worst(A, d) on
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A, hs[level] is the entropy of the testing tree t that represents L(A, s, level), and hs′ [level − 1] is

the entropy of the testing tree t′ that represents L(A, s′, level − 1). Clearly, t′ is a child-tree of

t. Therefore, in the worst case, p(r(level)) = p∗(r(level)) = 2hs′ [level−1]

1+2hs′ [level−1] . The algorithm that

calculates probability assignments in the worst case for transitions in the DFA A, p∗(·), is given as

follows.

ALG-p∗-DFA-worst(A, d):

//To calculate the probability assignments p∗(·) in the worst

//case in a DFA A when only testing sequences of length

//up to d. The return value is the probability p∗(r(level))

//for each transition r in A, 1 ≤ level ≤ d.

1. Run ALG-entropy-DFA-worst(A, d) on A;

//This will return hs[0 · · · d] for each state s.

2. For each transition r = (s, a, s′) in A

3. For each 1 ≤ level ≤ d

4. p∗(r(level)) := 2hs′ [level−1]

1+2hs′ [level−1];

5. Return p∗(·).

The time complexity of ALG-p∗-DFA-worst(A, d) is actually the time complexity of

ALG-entropy-DFA-worst(A, d), which is O(dn). (From now on, when the context is clear,

we simply use a to denote a transition (s, a, s′)).

Example 12. Now we calculate the probability assignments p∗(·) in the DFA A shown in

Figure 2.12. After running ALG-p∗-DFA-worst(A, d), p∗(a(4)) = 21/22, p∗(b(4)) = 2/3,

p∗(d(4)) = 6/7, p∗(e(4)) = 2/3, p∗(c(4)) = 1/2, and p∗(f(4)) = 1/2. The complete probability

assignments p∗(r(level)) for each transition r and 1 ≤ level ≤ 4 are illustrated in Figure 2.13. ⊓⊔

Remember that a finite automaton is just another form of a testing tree. A testing strategy C
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Figure 2.13: Run ALG-p∗-DFA-worst(A, d).

of a finite automaton A, which resembles a testing strategy of a testing tree, specifies an ordering

in which we test sequences in the trace-specification P = L(A, sinit, d). Now that we have ways

to calculate probability assignments on DFA A, we can develop algorithms to calculate testing

strategies of A. Before giving the formal definition of a testing strategy on a DFA, we first introduce

some notation. Let α be a string and L be a language. We say α ≺ L, if α is a prefix of some word

in L. We use α = β ◦ κ to denote the string α that is a concatenation of β and κ, where each of

β and κ can either be a symbol or a string. Sometimes, we simply write α = βκ. Suppose that

α = ωa ≺ L(A, sinit, d). When A runs on α, we use s(α) to denote the state of A right after the

last symbol a in α = ωa is read. In particular, for an empty string ϵ, we define s(ϵ) = sinit. A

testing strategy C of a DFA A with respect to a given length d is in the form of

C = αC(1), · · · , αC(i), αC(i+1), · · · , αC(g),

for some g > 0, where each string αC(i) = ωa ≺ L(A, sinit, d) for some ω and a. Sometimes,

we just call C a testing strategy of L(A, sinit, d). By testing αC(i) = ωa in the testing strategy C,

we mean to test the rightmost symbol a in αC(i), and symbols in ω have already been tested. In

this way, the testing strategy C actually specifies a testing strategy in the corresponding testing
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tree T that represents L(A, sinit, d). Therefore, a prefix of C corresponds to a subtree t ≺ T that

represents the strings in the prefix. We simply call the entropy of that subtree t as the gain of that

prefix of the testing strategy C. The number g is pre-given. In fact, in order to make the strategy

C be an exhaustive testing strategy of L(A, sinit, d), the g, in worst case, can be exponential in n

(the number of transitions in A). In practice, such a long strategy may not be exhaustively tested

anyway. Therefore, one can expect that the given length g of the strategy is not unreasonably large.

For the k-information-optimal testing strategy (with worst-case entropy) of a DFA A, the idea

to calculate it is similar to ALG-opt(T, k). We first run ALG-p∗-DFA-worst(A, d) to ob-

tain the worst-case probability assignments p∗(·). We associate each state s in A with two arrays

Hs[·, ·] and OPTs[·, ·]. The meanings of the two arrays are explained as follows. Let T be the

testing tree representing P = L(A, sinit, d). For a state s in A and a number 0 ≤ level ≤ d,

consider the subtree T (s, level) of T that represents L(A, s, level), which keeps the probabili-

ty assignments of edges in T . Hs[level, i] and OPTs[level, i] record the entropy and the set of

root paths (i.e., the k-information-optimal testing strategy) of the i-information-optimal subtree of

T (s, level), for each 0 ≤ level ≤ d and 0 ≤ i ≤ k, respectively. We initialize Hs[level, i] = 0 and

OPTs[level, i] = ∅ for each 0 ≤ level ≤ d and 0 ≤ i ≤ k. For each state s in A, suppose that

r1, · · · , rq are all the transitions from s, and rj = (s, aj, s
′
j) for some aj and s′j , for all 1 ≤ j ≤ q.

Note that the s′1, · · · , s′q are not necessarily distinct. From the i-information-optimal subtree of

T (s′j, level) (whose entropy is stored in Hs′j
[level, i]), we can calculate the (i + 1)-information-

optimal subtree of the component tree Ts′j
which consists of an edge labeled with aj together

with T (s′j, level) under the edge. Similar to the algorithm ALG-opt(T, k), we define another

array Yj[·] to record the entropy of that (i + 1)-information-optimal subtree of Ts′j
in Yj[i + 1].

In this way, we obtain arrays Y1[·], · · · , Yq[·]. The problem of calculating the entropy of the i-

information-optimal subtree of T (s, level + 1) (i.e., Hs(level + 1, i)) now becomes selecting in-

dices index1, · · · , indexq, satisfying
∑

1≤j≤q

indexj = i, for Y1, · · · , Yq, such that
∑

1≤j≤q

Yj[indexj]
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achieves the maximum, which, again, can be solved by the algorithm MAX-SELECT. The algo-

rithm ALG-opt-DFA-worst(A, d, k) that calculates the k-information-optimal subtree of the

testing tree representing L(A, sinit, d) is given as follows, where Hs[·, ·] and OPTs[·, ·] are global

variables, which are already initialized in above.

ALG-opt-DFA-worst(A, d, k):

//To calculate the k-information-optimal subtree of the tree

//representing L(A, sinit, d). Assume that probability assignments

//in the worst case p∗(·) are pre-calculated using

//ALG-p∗-DFA-worst(A, d). The return values has two parts:

//the entropy Hsinit
[d, k] and the set of root paths (i.e.,

//the k-information-optimal testing strategy) OPTsinit
[d, k].

//Hs[·, ·] and OPTs[·, ·] are global variables.

1. If k = 0

2. For each state s and each 0 ≤ level ≤ d

3. Hs[level, k] := 0 and OPTs[level, k] := ∅;

4. Return;

5. Run ALG-opt-DFA-worst(A, d, k − 1);

6. For each state s that has at least one successor

7. For level := 1 to d

//suppose that r1, · · · , rq, for some q ≥ 1, are all the

//transitions from state s. We use s′1, · · · , s′q to denote

//the target-states in the transitions

//(s′1, · · · , s′q are not necessarily distinct).

8. For each 1 ≤ j ≤ q

9. Yj[0] := 0;
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10. For 0 ≤ i ≤ k − 1

11. Yj[i+ 1] := p∗(rj(level)) ·Hs′j
[level − 1, i] +H(p∗(rj(level)));

12. Run MAX-SELECT({Y1, · · · , Yq}, k);

13. Hs[level, k] :=
∑

j:indexj ̸=0

Yj[indexj];

14. OPTs[level, k] :=
∪

j:indexj ̸=0

{aj} ∪ {aj ◦ ω : ω ∈ OPTs′j
[indexj − 1]};

//aj is the symbol on transition rj

15. Return Hsinit
[d, k] and OPTsinit

[d, k].

Following the analysis of algorithm ALG-opt(T, k), we can obtain that the (worst-case) time

complexity of ALG-opt-DFA-worst(A, d, k) is O(ndk3), where n is the number of transitions

in A.

For the greedy information-optimal testing strategy, similarly as in the case for the testing tree,

we also have the available set of {αC(1), · · · , αC(i−1)}, denoted as AS({αC(1), · · · , αC(i−1)}), to rep-

resent the set of strings that are qualified to be αC(i). Formally, for a set of strings L, we define

AS(L) = {ωa : ω ∈ L and s(ω, a, s′) ∈ R for some state s′}. That is, the AS(L) is the set of string

ωa that are extended from a string ω in L, with an additional symbol a such that the automaton A

will not crash after reading through ωa. Notice that, when strings in {αC(1), · · · , αC(i−1)} form a

subtree t ≺ T (in here, each string in t is a path), we can show that, strings in {αC(1), · · · , αC(i)}

also form a subtree t′ ≺ t′ with t ≺ t′ ≺ T , whenever αC(i) ∈ AS({αC(1), · · · , αC(i−1)}). Now

consider αC(i) = ωa, for some ω and a. Suppose that, when running A on the word ωa, the last

transition fired is r = (s, a, s′) for some s, s′. When one tests the last symbol a in the ωa (so, in

this case, all symbols in ω are already tested), the probability that a succeeds in the worst case, as

show in ALG-p∗-DFA-worst(A, d), is p∗(r(d− |ω|)) = p∗(r(d− |αC(i)|+ 1)). Modifying the

algorithm ALG-greedy-opt(T) that calculates the greedy information-optimal testing strate-

gy of a testing tree, we have the following algorithm, ALG-greedy-DFA-worst(A, d), that

calculates the greedy information-optimal testing strategy of a DFA A in the worst case.
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ALG-greedy-DFA-worst(A, d):

//To calculate the greedy information-optimal testing strategy

//of a DFA A, when only testing sequences of length up to d.

//The return value is the greedy information-optimal testing

//strategy C∗ of A.

1. run ALG-p∗-DFA-worst(A, d) on A;

//This gives probability assignment p∗(r(level)) for all

//transitions r ∈ R in A and 1 ≤ level ≤ d.

2. AS[1] := {a : r = (sinit, a, s
′) ∈ R for some s′};

3. For each 1 ≤ i ≤ g

4. If AS[i] = ∅

5. Return C∗ = αC(1), · · · , αC(i−1);

6. Else

7. For each α ∈ AS[i]

8. If |α| = 1

9. ∆(α) := H(p∗(r(d)));

//α = a, and r = (sinit, a, s
′) for some s′.

10. Else

11. ∆(α) := (
∏

1≤j≤|α|−1

p(rj(d− j + 1)))H(p∗(r|α|(d− |α|+ 1)));

//α = a1 · · · aj · · · a|α|−1aα, and rj = (s, aj, s
′)

//for some s and s′.

12. Suppose that α∗ ∈ AS[i] achieves max
α∈AS(αC(i))

∆(α);

13. αC(i) := α∗;

14. AS[i+ 1] := (AS[i]− {αC(i)}) ∪ {αC(i) ◦ a : (s(αC(i)), a, s
′) ∈ R for some s′};

//Now, AS[i+ 1] = AS({αC(1), · · · , αC(i)})
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15.Return C∗ = αC(1), · · · , αC(g).

Let bs be the number of transitions starting from a state s, and in worst case, bs = O(n),

where n is the number of transitions in A. We assume that g > d. The time complexity of

ALG-greedy-DFA-worst(A, d) is O(dn) + O(gbs log bs) = O(gn log n), where O(dn) is

time of running ALG-p∗-DFA-worst(A, d), and O(gn log n) is time of running lines 7 ∼ 14

for maximally g times.

Example 13. Following ALG-greedy-DFA-worst(A, d), we calculate the greedy

information-optimal testing strategy C∗ for the DFA A in Figure 2.12, where d = 4. We set

g to a relatively large number such that the testing strategy obtained is the exhaustive testing

of P = L(A, sinit, d). At the beginning, from line 2 in ALG-greedy-DFA-worst(A, d),

AS[1] = {a}; therefore, αC(1) = a, and AS[2] = {ab, ad} according to line 9. Since the probability

that the symbol b in ab succeeds is p∗(b(4 − |ab| + 1)) = p(b(3)) = 2/3, and the probability that

the symbol d in ad succeeds is p∗(d(3)) = 6/7. We have ∆(ab) = p∗(a(4))H(p∗(b(3))) = 0.88,

and ∆(ad) = p∗(a(4))H(p∗(d(3))) = 0.56; from lines 12 and 13, we have αC(2) = ab and

AS[3] = {ad, abc}. Keep doing so, until AS[i] = ∅ for some i, and finally we obtain the greedy

information-optimal testing strategy C∗ = a, ab, abc, ad, adf, ade, adec (in this order). ⊓⊔

Now, we finish developing algorithms to calculate greedy optimal strategies and k-optimal

strategies on a DFA in the worst case where the entropy reaches the maximum. The algorithms

can be easily generalized to the worst case with lower bounds δ (here we only discuss the case

where each transition is assigned with the same lower bound δ), by noticing that in the worst case

with lower bounds, p(e) = p∗δ(e) = max{ 2H(t′)

1+2H(t′) , δ}, instead of p(e) = p∗(e) = 2H(t′)

1+2H(t′) in the

worst case, where t′ is the child-tree under the edge e in the testing tree. Hence, the algorithm

ALG-p∗δ-DFA-worst(A, d) that calculates probability assignments in the worst case with lower

bounds δ can be obtained from ALG-p∗-DFA-worst(A, d) by adopting slight modifications.

ALG-p∗δ-DFA-worst(A, d) is given as follows:
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ALG-p∗δ-DFA-worst(A, d):

//To calculate the probability assignment p∗δ(·) in the worst

//case with lower bounds δ in a DFA A, when only

//testing sequences of length up to d. The return value is

//the probability p∗δ(r(i)) for each r in A, 1 ≤ i ≤ d.

1. Run ALG-entropy-DFA-worst-δ(A, d) on A;

2. For each transition r = (s, a, s′) in A

3. For each 1 ≤ i ≤ d

4. p∗δ(r(i)) = max{ 2s
′(i−1)

1+2s
′(i−1) , δ};

5. Return p∗δ(·).

Correspondingly, it is easy to obtain the algorithm ALG-opt-DFA-worst-δ(A, d, k)

(resp. ALG-greedy-DFA-worst-δ(A, d)) that calculates the k-optimal (re-

sp. greedy optimal) testing strategy in the worst case with lower bounds δ from

ALG-opt-DFA-worst(A, d, k)) (resp. ALG-greedy-DFA-worst(A, d)) by first running

the algorithm ALG-p∗δ-DFA-worst(A, d) instead of running ALG-p∗-DFA-worst(A, d).

Currently, we are unable to obtain polynomial time algorithms for calculating k-optimal and

greedy optimal testing strategies in the worst case with non-uniform lower bounds δ(·) (i.e.,

different edges have different designated lower bounds). Part of the problem is the difficulty in

specifying the nonuniform bounds δ(·) on the automaton A.

Finally, we show that a test set that achieves 100% branch coverage could still reveal very little

information of a software system. Consider the finite automaton A (which can be interpreted as

a software design) shown in Figure 2.14. Let a test set t consist of a1 · · · an, b1 · · · bn, c1 · · · cn,

d1 · · · dn and together with all their prefixes. Clearly, t achieves 100% branch coverage in A.

However, one can show that, under worst-case probability assignments of edges, the ratio of t’s
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Figure 2.14: An example finite automaton A.

information gain to the entropy of the automaton approaches 0 as n → ∞. On the other hand, two

test sets sharing the same branch coverage may gain dramatically different amount of information.

For instance, consider the two test sets

• t1 consisting of a1 · · · an, b1 · · · bn, and together with all their prefixes,

• t2 consisting of c1 · · · cn, d1 · · · dn, and together with all their prefixes.

Clearly, t1 and t2 both achieve 50% branch coverage. One can show that under worst-case prob-

ability assignments of edges, the ratio of the information gain of t1 to the information gain of

t2 approaches to ∞ as n → ∞. Similarly, our conclusions remain for path coverage. This ex-

ample implies that the path a1 · · · an is “more important” (i.e., contains much more information)

than the path c1 · · · cn as n becomes large. Notice that, under path coverage, these two paths are

not distinguishable since they have the same path coverage. As the information gain criterion is

syntax-independent, it provides a way to compare test sets that are not differentiable under other

traditional testing criteria and helps us select a set that achieves maximal information gain using

algorithms presented earlier.
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2.5 Summary

In our understanding, software testing is a cooling-down process, during which the entropy (or

uncertainty) of the system under test decreases. In this chapter, we have studied information-

optimal software testing where test cases are selected to gain the most information (i.e., cools down

the system under test fastest). More specifically, we represent a trace-specification (a finite set of

input-output sequences) as a tree, that the black-box transition system under test is intended to

conform with. When the tree is associated with pre-given probability assignments on the edges, we

have developed polynomial-time algorithms calculating the entropy of the trace-specification and

computing k-information-optimal and greedy information-optimal testing strategies. When the tree

is not pre-given with probability assignments on the edges, we have studied efficient algorithms

calculating the assignments that make the trace-specification tree be with maximal entropy (i.e.,

the worst case that we know the least amount of information about the system under test). In this

latter case, we have also provided polynomial-time algorithms computing k-information-optimal

and greedy information-optimal testing strategies. We also study the case where the entropy of

the trace-specification tree reaches the maximum while lower bounds of probability assignments

are imposed on the tree. Finally, we have generalized our algorithms to find information-optimal

testing strategies to the case when the trace-specification is tight and when the trace-specification

is, often succinctly, represented as a finite automaton. We shall emphasize that the information-

optimal testing strategies are calculated before any testing is performed.

We now briefly discuss testing an output-nondeterministic system Sys. We assume that there

is an oracle O (i.e., a test engine) to consume a test case (which is a sequence of input-output

pairs) and provide a sequence of Boolean values to tell whether the prefixes of a test case are the

observable behaviors of Sys. Logically, we can treat the Sys as an output-deterministic system

Sys′ where an input-output pair in Sys is an input symbol in Sys′ and the output symbols in Sys′
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are simply Booleans. However, this does not confirm the following statement: testing output-

nondeterministic systems is special case of testing output-deterministic ones. A precise conclusion

should be, once the oracle O for testing output-nondeterministic system is built, the statement is

true. However, as we have mentioned earlier, the oracle is difficult to build in practice, which

makes testing nondeterministic systems hard.
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CHAPTER 3

AN INFORMATION-THEORETIC COMPLEXITY METRIC

3.1 Overview

Complexity of software systems is an indicator on how difficult it is to understand, test, and/or

maintain the software systems. There are various metrics used to measure software complexi-

ty. The simplest and most straightforward way measures the physical size of a software system

(e.g., the number of lines of code), which is obviously insufficient. Some of the more sophisti-

cated metrics are graph-theoretic and measure the complexity of a graph specifying the software

system. One such metric that has been widely used is the McCabe metric [45], which employs

the cyclomatic complexity (that is E + N − 2P , with E, N and P being the numbers of edges,

nodes and connected components, respectively) in traditional graph theory to measure the control

flow graph of a software system. Basically, the McCabe metric counts the number of linearly in-

dependent paths (which constitute the minimal set of paths such that all paths can be generated

as a combination of paths in that set) in the control flow graph [45]. Some other approaches are

language-theoretic; i.e., treating a software system as a language expression written in a program

language and measuring the complexity of the expression. One such metric is Halstead’s met-

ric [29] that measures a software system by counting the number of operators and operands in

its language expression. A more recent approach, which is neither graph-theoretic nor language-

theoretic, is the Dounce-Layzell-Buckley spatial complexity [24, 15, 16]. It analyzes the distance

of components in a software system, where the distance is the number of lines of code between

components (e.g., when components are functions, the distance is the number of lines of code

between two function declarations). Wang’s cognitive complexity metric [61] measures the com-

plexity of a system from its units: if units are linearly composed, their complexities are added up;

when units are composed as layers, their complexities are multiplied together. There are also other
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studies, e.g., [30, 33, 39, 50, 55, 63, 69] on the complexity metrics in the literature.

There have been some experimental investigations [79] on comparing various metrics. Not

surprisingly, some metrics work well on some software systems, but not all. Reference [44] al-

so points out that some of the aforementioned metrics have inherent problems. Indeed, as been

widely accepted, there is simply no perfect and ideal metric for software complexity. We have

noticed that almost all of the existing software complexity metrics are syntax-dependent. In other

words, the metrics are measured on the syntactic appearances of the software system instead of its

semantics (i.e., meanings). For instance, although two control graphs with the same topology, but

with different initial nodes, might have dramatically different behaviors, the semantic difference

is not reflected in the McCabe metric. Halstead’s metric and the spatial complexity can change

when some dummy code is inserted into the program being measured. Reference [33] proposes

a complexity metric that is entropy-based; however, it measures the entropy of a random variable

whose sample space is the set of operators in the source code, with the frequency of each operator

in the source code being its probability. Therefore, we consider it as a variant of Halstead’s metric,

and the entropy would change if the syntax of the system changes.

In summary, when one intends to measure the complexity of the semantics (instead of the

syntactic appearance) of a software system, to our best knowledge, there is no existing syntax-

independent metric studied in the literature. A goal of our research work is to propose such a

metric, with the following two fundamental questions in mind:

• what is a mathematical interpretation of the complexity of the behaviors (i.e., semantics) of

a software system? The traditional Turing computability theory has already answered the

question. However, the answer does not lead to a useful complexity metric. This is because

computing models for nontrivial software systems can easily be Turing-complete (e.g., pro-

grams with two integer variables are already Turing-complete (see Minsky machines[47])),

and therefore, there is not much difference between the Turing computing powers of the
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models. In this chapter, we seek an answer in Shannon’s information theory, which is a well-

established mathematical theory underpinning all modern digital communications. This is a

natural choice since Shannon’s entropy describes the amount of information in the meaning

(instead of the appearance) of an object. This is because the entropy of a random variable

remains unchanged after a one-to-one function is applied [19].

• what makes the behaviors (i.e., semantics) of a software system complex? Again, traditional

automata theory has answered the question (e.g., a queue is much more powerful than a stack,

etc.). However, the answer does not lead to a practical metric. In this chapter, we are particu-

larly interested in answering questions like the following. Suppose that a software system is

composed (such as using sequential composition) from a number of individual components.

What is the relationship between the complexity of the component-based system and the

complexities of its constituent components? Our intuition tells us that a component-based

system could be strictly more complex than the components that are used in building the

component-based system. The intuition is also consistent with numerous common facts in

science: relatively simple cells can build a functionally more complex organ; individual ants

can form a functionally more complex colony; etc. Turning back to software engineering,

studies in model-checking [18] already confirm the intuition through the well-known state-

explosion problem. However, the confirmation is syntax-dependent: the state number is only

an indirect indicator of the complexity of the meaning of a finite-state transition diagram. In

this chapter, we will seek a confirmation using Shannon’s information theory.

Our work introduces a novel software complexity metric that is semantics-based, independent

of the syntactic appearance of the software system. Basically, we measure the complexity of the

behaviors of the software system. Our approach is outlined as follows. Inspired by the McCabe

metric, we also model the software system as a labeled graph. Each edge in the graph is labeled

with a symbol, where the symbol can be interpreted as a code statement (when, e.g., the graph is
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a control flow graph) or an I/O event (when, e.g., the graph is a design specification of a reactive

system). We further define the behavior set of the labeled graph as the set of label sequences

collected on all paths (a path may contain loops) in the graph. Instead of measuring the complexity

of the graph based on its syntactic appearance, we measure the complexity of the behavior set. In

other words, we are measuring the behavioral complexity, since the behavior set can be interpreted

as the set of behaviors of the software system. Here, we count the number of behaviors N(n) of a

given length n in the behavior set, and define the behavioral complexity as

lim
n→∞

logN(n)

n
.

Note that throughout this chapter, the base of the logarithm is 2. We use the behavioral complex-

ity as the complexity of the labeled graph as well as the software system that the labeled graph

specifies. The behavioral complexity is syntax-independent, since by definition, for two graphs

that share the same behavior set, the complexity is the same. The mathematical foundation of this

metric will be explained in Section 3.3.

Our complexity metric measures a system from the perspective of software testing (so now, the

labeled graph serves as the system’s specification): it intends to asymptotically measure the cost

of exhaustive testing of the system [7, 4]. Though exhaustive testing usually is not possible, the

asymptotical cost is naturally a good indicator of the complexity of software systems. (Hence, our

complexity does not measure the structural complexity (such as the McCabe metric) of software

systems; instead, it measures the behavioral complexity as it is named. We shall point out that a

structurally complex system may have a low behavioral complexity and vice versa. Indeed, we

have not found direct relations between the two complexities.)

McCabe also states that the total number of paths in a graph is a good indicator of complexity;

however, McCabe said that counting the total number of paths was impractical [45]. We success-

fully and efficiently calculate the number of paths asymptotically by using the eigen decomposition
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Figure 3.1: A labeled graph and a path on it.

of matrices. More importantly, we also show why the behavioral complexity of a labeled graph

specifying a software system is a good indicator of software complexity: the behavioral complexity

is exactly the maximal entropy rate of the Markov chain induced by the labeled graph. The entropy

rate, widely used in information theory, is the number of bits that one needs to encode each sample

in a stochastic process; the higher the rate is, the more resource needed to describe the process,

and therefore, the behavioral complexity is a suitable metric of software complexity. For instance,

Figure 3.1 (1) illustrates a labeled graph A whose behavior set is L(A) = (a + b)∗. Our results

show that the behavioral complexity of the graph is 1 bit. A behavior ω = abab · · · ab ∈ L(A)

(which is also a path in A) is shown in Figure 3.1 (2). When A is generating ω, at each step, it has

2 choices: a and b. We need log 2 = 1 bit (e.g, we use 0 and 1 to represent a and b, respectively)

in order to encode the choice at each step. Notice that 1 bit is fairly large for entropy rate, con-

sidering that the alphabet is of size 2. The labeled graph A in Figure 3.1 seems to be simple from

its appearance. However, our result shows that the semantics of A is relatively complex. Suppose

that A is the design for a software system. The actual behaviors of the system may not conform

with the behaviors specified in A. Hence, if we test the behaviors of the system, we have to test

the paths (i.e., sequences of edges) in A, and the number of paths can exponentially blow up when

the length of paths grows.

We also study how the complexity changes when individual components (units) are composed
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together. We prove that the complexity can increase in the two following situations:

1. units are composed through loops. This reveals the fact that loops can make a graph strictly

more complex;

2. units are composed through synchronization with zero pre-test knowledge (see section 3.4.2).

This reveals the fact that (nontrivial) concurrency can also make a graph strictly more com-

plex. 1

The conclusion is quite meaningful for software designers when they try to predict the complexity

of software systems built from a number of existing components. Finally, for software testers,

we also point out a fundamental reason why integration testing is necessary even if unit testing is

already done.

The main part of this chapter is summarized in paper [72].

3.2 Preparations

3.2.1 Labeled Graphs

Let

A = ⟨S, sinit,Σ, E⟩

be a labeled graph, where S is the set of nodes with sinit being the initial node, Σ = {a1, · · · , ak}

is the set of symbols, and E ⊆ S × Σ× S is the set of labeled edges, where (s, a, s′) ∈ E means

there is an edge from node s to s′, labeled with a. We further require that two edges originating

from the same node cannot be labeled with the same symbol. A behavior ω = a1 · · · ai ∈ Σ∗ of A

is a concatenation of labels on a path in A, i.e., there is a sequence of nodes s0s1 · · · si, such that

s0 = sinit, and (sj−1, aj, sj) ∈ E for 1 ≤ j ≤ i. The behavior set L(A) is the set of behaviors of

1Notice that the complexity’s increment is not necessarily happening for all such loops and concurrency; the
increment depends on the actual behavioral set of the composed graph.
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A. Note that a labeled graph here is actually a deterministic finite automaton (where every node is

an accepting state).

For notational convenience, given a labeled graph A = ⟨S, sinit,Σ, E⟩, we can uniquely convert

it to an unlabeled graph

Â = ⟨Ŝ, ŝinit, Ê⟩

(by building labels in A into nodes in Â), where Ŝ and Ê are the set of nodes and edges, respec-

tively, and ŝinit ∈ Ŝ is the initial node in Â that every (node) path in Â begins with. A and Â

are equivalent in the sense of path traversal, and there is a one-to-one mapping between a traversal

of edges in A and a traversal of nodes in Â. A simple procedure that converts a labeled to an

unlabeled graph is shown as follows. Note that throughout this chapter, we use s → s′ to denote

an edge from the node s to s′ in an (unlabeled) graph.

convert(A):

//A = ⟨S, sinit,Σ, E⟩ is a labeled graph

1. Build a graph Â with the set of nodes Ŝ = (S × Σ) ∪ {(sinit,Λ)}

where Λ /∈ Σ;

2. For each edge (s, a, s′) in E

3. For each ai ∈ Σ

4. Add an edge (s, ai) → (s′, a) to Â;

5. For each edge (sinit, a, s) ∈ E for some s ∈ S

6. Add an edge (sinit,Λ) → (s, a) to Â;

7. Designate the node (sinit,Λ) as the initial node ŝinit;

8. Return Â.

A path of Â is a sequence of nodes x1x2 · · · xn for some n > 0, such that x1 = (sinit,Λ) (Λ /∈ Σ)

72



s


a
1


a
2


s
,
a
1
 s
,
a
2


s
,


(
1
)
 (
2
)


V


Figure 3.2: A labeled graph A and the graph Â converted from A.

and xi → xi+1 is an edge in Â for i = 1, 2, · · · , n−1. Given a path of Â, u = x1x2 · · · xn, suppose

that xi = (si, ai), si ∈ S and ai ∈ Σ for i = 2, · · · , n, the projection of u on Σ is defined as a

sequence u↓Σ that only keeps symbols in Σ from u, while preserving their relative orderings (in

this case, u↓Σ = a2 · · · an). We can easily check that for every path u in Â, there is a behavior

ω ∈ L(A), such that u↓Σ = ω, and vice versa.

Example 14. Figure 3.2 (1) gives a labeled graph A = ⟨S, sinit,Σ, E⟩, where S = {s},

sinit = s, Σ = {a1, a2}, and the set of edges is E = {(s, a1, s), (s, a2, s)}. The behavior set of

A is L(A) = (a1 + a2)
∗, and the corresponding graph Â is shown in Figure 3.2 (2). Â is built in

the following way. The set of nodes is Ŝ = {(s, a1), (s, a1), (s,Λ)}, where Λ /∈ Σ. For the edge

(s, a1, a) ∈ E, we have edges (s, a1) → (s, a1) and (s, a2) → (s, a1) in Â; for the edge (s, a2, a),

we have edges (s, a1) → (s, a2) and (s, a2) → (s, a2) in Â; since s is the initial node of A, we also

have (s,Λ) → (s, a1) and (s,Λ) → (s, a2). The initial node of Â is (s,Λ). From Figure 3.2, we

can see clearly that each traversal of edges in A corresponds to a traversal of nodes in Â, and vice

versa. ⊓⊔

We now define the branching factor of a graph A with the set of nodes S. For each node s ∈ S,

the branching factor ρ(s) of s is the number of edges with s being the source, and the branching
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factor ρ(A) of the graph is defined as the maximal branching factor of the nodes, i.e.,

ρ(A) = max
s∈S

ρ(s).

3.2.2 Markov Chains

A Markov chain is a random process (i.e., a sequence of random variables) where each ran-

dom variable only depends on the one that immediately precedes it [19]. Formally, let X =

{x1, · · · , xm} be a set of states. A Markov chain (or a Markov process) M is a discrete stochastic

process X1, X2, · · · , Xn, · · · , where Xn is the state at time n, and we have conditional probability

satisfying

Pr(Xn = xn|Xn−1 = xn−1, · · · , X1 = x1)

= Pr(Xn = xn|Xn−1 = xn−1),

for all xn, · · · , x1 ∈ X . Together with the initial distribution Pr(X1 = x), for all x ∈ X , we can

calculate the probability of a particular sequence π = x1x2 · · · xn ∈ X n for some n > 1,

Pr(π) = Pr(X1 = x1)Pr(X2 = x2|X1 = x1) · · ·

Pr(Xn = xn|Xn−1 = xn−1).

A valid sequence is a sequence π with Pr(π) > 0. The set of valid sequences that are generated

by M is defined as S(M). Unless otherwise stated, all the sequences we mention in this chapter

are valid. We can build a matrix W = [Wij], 1 ≤ i, j ≤ m, called the probability transition matrix,

where each entry Wij denotes the transition probability Pr(Xn+1 = xj|Xn = xi) from state xi to

xj for all n ≥ 1 (hence, Markov chains in our work are time-invariant). A Markov chain M can

be represented as a graph (also denoted by M ), where each node represents a state (we also use
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xi to denote the node that represents the state xi). For any two states xi and xj , if Wij > 0, we

have a directed edge from node xi to node xj (denoted by xi → xj) in M , labeled with weight

w(xi → xj) = Wij; otherwise there is no edge from xi to xj . Clearly, a sequence now is simply

a path in the graph-represented Markov chain, and its probability is the product of the weights of

the edges on the path.

In information theory, entropy rate is used to depict the growth rate of the entropy of sequences

generated by a Markov chain. Formally, the entropy rate of a stochastic process {Xi}, where each

sample in the process is drawn from the sample space X , is defined as

H(X ) = lim
n→∞

H(X1, X2, · · ·Xn)

n
,

where H(X1, X2, · · · , Xn) is the joint entropy2 of random variables X1, X2, · · ·Xn. In traditional

information theory, usually the entropy rate is studied only if the above limit exists (e.g., when the

stochastic process is stationary [19]. However, in general, the limit may not exist.). Here, when

the above limit does not exist, we treat the entropy rate as the upper limit, i.e.,

H(X ) = lim
n→∞

H(X1, X2, · · ·Xn)

n
. (3.1)

The upper limit always exists (since the size of the sample space of each Xi is finite), and indicates,

asymptotically, a sufficient number of bits needed to encode a sample in the process.

3.2.3 Matrices

We first number the diagonals of an m×m matrix K = [Ki,j]. The kth (k = 1, · · · ,m) diagonal

of K consisting of elements Ki,i+k−1, for i = 1, · · · ,m− k + 1. We say K is a k-diagonal matrix

if its kth diagonal is filled with 1’s, while other elements are all 0’s. For instance, the following K

2The joint entropy of random variables X1, · · · , Xn with joint distribution Pr(X1 = x1, · · · , Xn = xn),
x1 · · ·xn ∈ Xn is defined by Shannon as

∑
x1···xn∈Xn

−Pr(X1 = x1, · · · , Xn = xn) logPr(X1 = x1, · · · , Xn =

xn).
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is a 3-diagonal matrix:

K =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


.

A matrix B of size m×m can be written into the following form [10]

B = V DV −1

using Jordan decomposition, where V and D are m×m matrixes. Each column in V is an eigen-

vector or a generalized eigenvector, and D is a block diagonal matrix in the form of

D =


J1 0 · · · · · ·

0 J2 0 · · ·
...

... . . . ...

 ,

where each Ji is a Jordan block associated with a corresponding eigenvector Vi , which is a matrix

composed of entries 0, except that its 1st diagonal is filled with a fixed value (here it is the eigen-

value λi corresponding to Vi), and its superdiagonal (i.e., the 2nd diagonal) is filled with 1’s. There

might be complex numbers involved in eigenvectors and eigenvalues. The norm of a complex

number z = a+ bi is defined as ||z|| =
√
a2 + b2, and the norm of a real number z is ||z|| = |z|.

3.3 Efficient Computation of Behavioral Complexity

From a given graph Â that is converted from a labeled graph A, we can calculate the number of

paths of length n in Â. Suppose that there are m nodes x1, · · · , xm in Â. Let Zi(n) be the number
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of paths of length n ending at the node xi, and

Z(n) = [Z1(n) Z2(n) · · · Zm(n)]
T

be an m-dimensional vector. Let B = [Bij] be an m×m matrix, called the counting matrix of Â,

defined in the following way: if there is an edge xj → xi in Â, then Bij = 1, otherwise Bij = 0.

Let λ1, · · ·λm be the m (not necessarily distinct) eigenvalues of B. We have the following lemma:

Lemma 4. Z(n) can be written into the following form:

Z(n) = g1(n− 1)λn−1
1 Y1 + · · ·+ gm(n− 1)λn−1

m Ym, (3.2)

where Yi’s are m-dimensional vectors with all their elements being constant (not depending on n),

and gi(n)’s are polynomial functions on n and gi(n) > 0 for almost all n.

Proof. Without loss of generality, we assume that x1 is the initial node in Â. Since all paths begin

with x1, the number of paths of length 1 is 1, i.e., the path u = x1. Therefore, Z(1) = [1 0 · · · 0]T .

Observe that Zi(n) =
∑

xj→xi

Zj(n− 1). From the above observation, we have Z(n) = BZ(n− 1),

and therefore Z(n) = Bn−1Z(1), with Z(1) being the initial condition. Let λ1, · · · , λm be the

(not necessarily distinct) m eigenvalues of B. If an eigenvalue is repeated k times, the number of

eigenvectors associated with this eigenvalue may be j = 1, · · · , k. If j ̸= k, we say this eigenvalue

is defective. Without loss of generality, we assume that the eigenvalue λ1 is repeated more than

once. The following is a standard technique in Matrix Theory [56]. Now we are to solve the
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following equations:

BV1 = λ1V1

BV11 = λ1V11 + V1

BV12 = λ1V11 + V11

· · ·

until the above equations cannot be continued (i.e. BV1i = BV1(i−1) + V1(i−1) does not have a so-

lution for V1i). In these equations, V1 is an eigenvector associated with λ1, while V1i (i = 1, 2 · · · )

are generalized eigenvectors of V1. Notice that if λ1 is not defective, it only has eigenvector(s),

and no generalized ones. Here, for our notational convenience, we simply assume that V1 has two

generalized eigenvectors, V11 and V12. We have,

B

[
V1 V11 V12

... V2 · · ·
]

= [λ1V1 λ1V11 + V1 λ1V12 + V11
... λ2V2 · · · ]

=

[
V1 V11 V12

... V2 · · ·
]
·




λ1 1 0

0 λ1 1

0 0 λ1

 0 · · · · · ·

0 λ2 0 · · ·
...

... . . . · · ·


,

where V2 is an eigenvector associated with λ2. Thus, the matrix B can be written as B = V DV −1,

where V is an m×m matrix and each column is an eigenvector or generalized eigenvector, and D
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is a block diagonal matrix in the form of

D =


J1 0 · · · · · ·

0 J2 0 · · ·
...

... . . . ...

 ,

where each Ji is a Jordan block associated with an eigenvalue λi , which is a matrix composed of

zero-valued elements, except that its diagonal is filled with a fixed value (here it is the eigenvalue

λi), and its superdiagonal is filled with 1’s. Let Vi be an eigenvector of λi, and Vi1i , · · · , Vili be the

li generalized eigenvectors of Vi. The size of Ji is (1 + li)× (1 + li). For instance, a Jordan block

of the aforementioned λ1 is in the form of


λ1 1 0

0 λ1 1

0 0 λ1

 .

Notice that there are j Jordan blocks associated with an eigenvalue that has j distinct eigenvectors.

Since

Dn =


Jn
1 0 · · · · · ·

0 Jn
2 0 · · ·

...
... . . . ...

 ,
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we have

Z(n) = Bn−1Z(1)

= (V DV −1)(V DV −1) · · · (V DV −1)Z(1)

= V Dn−1V −1Z(1)

= V


Jn−1
1 0 · · · · · ·

0 Jn−1
2 0 · · ·

...
... . . . ...

V −1Z(1).

For a Jordan block J , we have

Jk =



λ 1 0 · · ·

0 λ 1 · · ·
...

... . . . ...

0 0 0 λ



k

=



λk kλk−1 k(k−1)
2

λk−2 · · ·

0 λk kλk−1 · · ·
...

... . . . ...

0 0 0 λk


,
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and therefore

Z(n) = λn−1
1 V



1 0 0 · · ·

0 1 0 · · ·
...

... . . . ...

0 0 0 0


V −1Z(1) + (n− 1)λn−2

1 V



0 1 0 · · ·

0 0 1 · · ·
...

... . . . ...

0 0 0 0


V −1Z(1)

+ · · ·+

 n− 1

l1

λn−l1
1 V



0 0 · · · 1 · · ·

0 0 0 · · ·
...

... . . . ...

0 0 0 0


V −1Z(1)

+λn−1
2 V



0 0 0 · · ·

0 0 0 · · ·
...

... 1
...

0 0 0 0


V −1Z(1) + · · · ,

= λn−1
1 Y1 + (n− 1)λn−1

1 Y2 + · · ·+

 n− 1

l1

λn−1
1 Yl1 + λn−1

2 Yl1+1 + · · · , (3.3)

where (l1 + 1) ≥ 1 is the dimension of the Jordan block J1, and does not depend on n; Yi’s

are m-dimensional vectors and also do not depend on n. For instance, Y2 in (3.3) is defined as

Y2 = 1
λ1
V KV −1Z(1), where K is the matrix obtained after we replace J1 with a 2-diagonal

matrix in D, and all other elements in D are set to zero. Clearly, (3.3) is exactly in the form of

(3.2). ⊓⊔

Let N(n) be the number of behaviors of length n in the behavior set L(A) of the labeled graph A.
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As mentioned earlier, we define the behavioral complexity of A as

C(A) = lim
n→∞

logN(n)

n
.

Notice that the C(A) is essentially defined on L(A); hence it is syntax-independent (i.e., as we

mentioned earlier, C(A) = C(A′) whenever L(A) = L(A′).). In (3.2), let λmax be the eigenvalue

λi with the largest norm and the elements in Yi are not all 0’s, called the counting eigenvalue of the

counting matrix B. Formally,

||λmax|| = max{||λi|| : Yi ̸= 0},

where 0 is a vector with its elements all 0. We have,

Theorem 5. Given a labeled graph A, let B be the counting matrix of Â. The behavioral complex-

ity of A is

C(A) = lim
n→∞

logN(n)

n
= log ||λmax||,

where λmax is the counting eigenvalue of B.

Proof. Let Z = [z1 · · · zm] be an m-dimensional vector. We define Z =
∑

1≤i≤m

zi as the sum of the

elements in Z, and let Z[j] be the jth element in the vector Z. Note that a word of length n in L(A)

corresponds to a path of length n+1 in the graph Â. Therefore, N(n) =
∑
i

Zi(n+1) = Z(n+ 1).

From (3.2), we have

Z(n+ 1) = g1(n)λ
n
1Y1 + g2(n)λ

n
2Y2 + · · ·+ gm(n)λ

n
mYm, (3.4)

where Yi’s are constants. Without loss of generality, we assume that λmax = λ1 is the counting

eigenvalue, and thus Y1 ̸= 0.

In the following, we have two cases to discuss: one case is that λ1 is a real number, another
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case is that λ1 is a complex number.

Case 1: λ1 is a real number.

Clearly, in this case, all elements in Y1 are real numbers. We now prove that there is no negative

element in Y1. From the definition of the counting eigenvalue, we know that if there is some

eigenvalue, say λi, such that ||λi|| > ||λ1||, then all the elements in Yi should be zero. Therefore,

gi(n)λ
n
i Yi[j] is 0 for each j = 1, · · · ,m and contributes nothing to Zj(n+1) (which is the number

of paths of length n + 1 ending at node xj). Hence, if some element in Y1, say Y1[j], is negative,

then Zj(n) is dominated by the term g1(n)λ
n
1Y1[j] < 0 (when n is even), which is a contradiction

to the fact that the number of paths is always a nonnegative number. Therefore, Y1 does not have

negative elements, and Y1 > 0. Similarly, λ1 should also be positive. Then the dominant term in

(3.4) is g1(n)λn
1Y1. We have,

lim
n→∞

logN(n)

n
= lim

n→∞

logZ(n+ 1)

n

= lim
n→∞

log g1(n)λ
n
1Y1

n

= lim
n→∞

log g1(n) + log λn
1 + log Y1

n

= log λ1.

Case 2: λ1 is a complex number.

Without loss of generality, we assume λ1 = a + bi. There must be a conjugate of λ1 which

is also an eigenvalue of B, say, λ2 = a − bi, and g1(n) and g2(n) are exactly the same functions

(we simply say g1(n) = g2(n) = g(n)). Notice that λ2 is also a counting eigenvalue of B, since

||λ1|| = ||λ2||. Additionally, if there is a complex number in Y1, say Y1[j] = c + di, then Y2[j]

must be a conjugate complex number of Y1[j], i.e., Y2[j] = c − di for any j. We can write the

complex numbers in their polar forms. Let δ =
√
a2 + b2 and τ =

√
c2 + d2 be the norms of

λ1 and Y1[j], respectively. Then λ1 = δ(cos θ + i sin θ) and Y1[j] = τ(cos β + i sin β), where θ
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and β are the phases of λ1 and Y1[j], respectively. Since λ2 (resp. Y2[j]) is the conjugate of λ1

(resp. Y1[j]), we have λ2 = δ(cos θ − i sin θ) (resp. Y1[j] = τ(cos β − i sin β)). Consider the term

tj = g1(n)λ
n
1Y1[j] + g2(n)λ

n
2Y2[j] . It is not hard to verify that

tj = g(n)λn
1Y1[j] + g(n)λn

1Y1[j]

= g(n)δnτ(cosnθ + i sinnθ)(cos β + i sin β)

+g(n)δnτ(cosnθ + i sinnθ)(cos β + i sin β)

= 2g(n)δnτ cos(nθ + β).

As in Case 1, we can easily show that the coefficient 2g(n)τ cos(nθ + β) of δn is not negative,

since otherwise tj < 0 and it would dominate Zj(n + 1), which is a contradiction to the fact that

Zj(n+ 1) ≥ 0. Therefore,

lim
n→∞

logN(n)

n
= lim

n→∞

logZ(n+ 1)

n

= lim
n→∞

log(t1 + · · ·+ tm)

n

= lim
n→∞

log(Cg(n)δn)

n

= lim
n→∞

log g(n) + log δn + logC

n

= log δ,

where C is constant, and δ is the norm of λ1.

This completes our proof. ⊓⊔

A similar result of Theorem 5 can actually be found in early work [17] in automata theory,

which is the source of the well-known fact that the count of words with length n in a regular

language grows either polynomially or exponentially. In here, we provide a more detailed proof

than the one in [17] by using Jordan decomposition to provide an analytical form of the Yi’s in
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(3.2) which are needed in the algorithm below.

Theorem 5 points out that computing the behavioral complexity of a labeled graph A is es-

sentially calculating the counting eigenvector of the counting matrix of Â. How to compute the

behavioral complexity of A is presented in the following algorithm:

complexity(A):

//To compute the behavioral complexity of a labeled graph A

1. ||λmax|| := 0;

2. Build a graph Â = convert(A), and let m be the number of

nodes in Â;

3. Build the counting matrix B of Â;

4. Let Z(1) = [1 0 · · · 0] be an m-dimensional vector;

5. Find all the eigenvalues λ1, · · · , λm of A;

6. Find all the k distinct eigenvectors V1, · · · , Vk (k ≤ m);

7. For i := 1 to k

8. Find the li ≥ 0 generalized eigenvectors of Vi;

9. Build the Jordan block Ji of size (li + 1)× (li + 1) for each

Vi;

10.Do Jordan Decomposition of B = V DV −1;

//the form of D is given in Section 3.2.3;

11.For i := 1 to k

12. For j := 1 to (l1 + 1)

13. Replace the Jordan block Ji with the j-diagonal matrix

in D, set all other elements in D to be 0, and name

theobtained matrix K;
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14. h :=
∑

1≤z≤i−1

(1 + lz) + j;

15. Yh := 1

λj−1
i

V KV −1Z(1);

16. If Yh ̸= 0

17. If ||λh|| > ||λmax||

//λh is the eigenvalue corresponding to Vi

18. ||λmax|| := ||λh||;

19.Return log ||λmax||.

Since Jordan decomposition of a matrix can be done efficiently (both in theory [14] using existing

numerical algorithms and in practice using some numerical computing tools, e.g., Mathematica [2]

and Matlab [3]), the above algorithm complexity(A) is also efficient.

Next we discuss the information theory underlying the definition of the behavioral complexity.

Notice that the graph Â can be interpreted as a graph-represented Markov chain MÂ = {Xi}

(i = 1, 2, · · · ). Suppose that the set of states of MÂ is X = {x1, · · · , xm}, which is actually the

set of nodes in Â. Without loss of generality, we assume that x1 is the initial node in Â, and then

we specify that the initial distribution of MÂ is Pr(X1 = x1) = 1 and Pr(X1 = x) = 0 for other

x ∈ X ; i.e., x1 serves as the initial state of MÂ. The weights on edges w(·) in MÂ (i.e., transition

probabilities) are unspecified. Since we designate the initial state, the probability of a sequence

π = x1x2 · · · xn ∈ X n now is

Pr(π) = Pr(X2 = x2|X1 = x1) · · ·Pr(Xn = xn|Xn−1 = xn−1),

which only depends on the transition probabilities. Therefore, the entropy rate H(X ) in (3.1) is

also a function only depending on w(·). We define H(A) as the maximal achievable entropy rate,

i.e.,

H(A) = max
w(·)

H(X ) = max
w(·)

lim
n→∞

H(X1, X2, · · · , Xn)

n
.
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The following theorem states that there is a Markov chain X1, · · · , Xn, · · · that achieves the rate.

Theorem 6. The behavioral complexity of a labeled graph A is the maximal achievable entropy

rate of the Markov chain MÂ. That is,

C(A) = H(A).

Proof. Our proof is hinted at by the solution of Exercise 4.16 in [19]. We first briefly introduce

the concept first order type [20]. Let X = {x1, · · · , xm} be a set of states. The type Pπ of a

sequence π ∈ X n is an m-dimensional vector, and the ith element in Pπ is defined as #πxi

n
, where

#πxi is the number of times that xi occurs in π. Clearly, different sequences can share the same

type. Let Pn be the set of types with denominator n. From [19], we know that the size of Pn,

|Pn| ≤ (n + 1)m, which is a polynomial function of n. For each type P ∈ Pn, we define the

type class T (P ) = {π ∈ X n : Pπ = P}, which is a set of sequences that share the same type

P . Clearly, all the type classes form a partition of all the possible sequences drawn from X n.

Additionally, a type P ∈ Pn naturally defines a probability distribution on X , since the summation

of all elements in P is 1.

A second order type [20] concerns the frequencies of pairs of symbols (instead of single sym-

bols in the first order type) in a sequence generated by a Markov chain. Formally, the second order

type P (2)
π = [P

(2)
π (i, j)] (1 ≤ i, j ≤ m) of a sequence π = a1a2 · · · an generated by a Markov chain

M = {Xi} with the set of states X = {x1, · · · , xm} is an m×m matrix, where each entry in P
(2)
π

is defined as

P (2)
π (i, j) =

1

n− 1
|{k : ak = xi, ak+1 = xj}|,

that is, the entry P
(2)
π (i, j) records the frequency of the pair of two consecutive symbols xixj in

π. Let P (2)
n be the set of second order types with denominator (n − 1) (which means that the

sequences involved here are of length n) that satisfy state constraints of M (i.e., if there is no edge
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xi → xj , the entry P
(2)
π (i, j) in the type P

(2)
π should be 0). Similar to the case of the first order

type, the size of P (2)
n is polynomial in n; without loss of generality, we say |P (2)

n | = g(n), where

g(n) is a polynomial function of n. For each second order type F ∈ P
(2)
n , we define the type

class T (F ) = {π ∈ X n : P
(2)
π = F}, and all the type classes form a partition of all the possible

sequences drawn from X n. Each second order type F ∈ P
(2)
n can be treated as a joint distribution

over two random variables, and both variables are with the sample space X ; F also implicitly

defines a probability transition matrix W , where

Wij =
F (i, j)∑

1≤k≤m

F (i, k)
. (3.5)

It is known that sequences falling into the same type class and with the same initial state are of

equiprobability. Since we are dealing with Markov chains that are converted from labeled graphs

and sequences only have one possible initial state, we simply say that if sequences are in the same

type class, they are of equiprobability.

Given a Markov chain M = {Xi} with the set of states X = {x1, · · · , xm}, consider its

generated sequences of length n. The stochastic process X1, · · · , Xn can be treated as a joint

random variable (X1, · · · , Xn), and suppose that there are R(n) instances in its sample space (i.e.,

there are R(n) sequences of length n). It is well known [19] that the joint entropy

H(X1, · · · , Xn) ≤ logR(n) (3.6)

for any n > 0. Therefore, for the entropy rate H(X ) in (3.1), we have,

H(X ) = lim
n→∞

H(X1, X2, · · ·Xn)

n
(3.7)

≤ lim
n→∞

logR(n)

n
,
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for any transition matrix W applied on M . On the other hand, we know that the number of second

order types is g(n), which is a polynomial function in n. Let F ∗
n ∈ P

(2)
n be the second order type

that has the largest type class (i.e., |T (F ∗
n)| ≥ |T (Fn)|, for any second order type Fn ∈ P

(2)
n ).

Then, the size of the type class T (F ∗
n) should be no smaller than the average size of the types; that

is, |T (F ∗
n)| ≥ 1

g(n)
R(n).

Let F 1
n , F

2
n be two second order types in P

(2)
n . Suppose that the Markov chain M has probability

transition matrix W that is derived from F 1
n using (3.5). We define PF 1

n
(F 2

n) as the probability that

a sequence generated by M of length n is in the type T (F 2
n); that is,

PF 1
n
(F 2

n) =
∑

π∈S(M), |π|=n, π∈T (F 2
n)

Pr(π).

(Recall that S(M) is the set of valid sequences of the Markov chain M .)

We use W ∗
n to denote the transition matrix deduced from F ∗

n . Notice that the two sequences

{F ∗
n} and {W ∗

n} are bounded. From the Bolzano-Weierstrass theorem, there is a convergent (con-

verging pointwise) subsequence {F ∗
nt
} of {F ∗

n}, and a convergent (converging pointwise) sub-

sequence {W ∗
nt
} of {W ∗

n}; let F ∗
∞ and W ∗

∞ be the limit of the subsequences {F ∗
nt
} and {W ∗

nt
},

respectively. We use K to denote the set of nt’s. Note that F ∗
n defines a joint distribution of two

dummy random variables, say, X and Y . We use H∗
n to denote H(Y |X). Similarly, we can define

H∗
∞ (from F ∗

∞) and Hn (from Fn). Let ϵ > 0. Clearly, for all n ∈ K large enough, we have

|H∗
∞ −H∗

n| < ϵ, (3.8)

where H∗
∞ and H∗

n are the conditional entropy deduced from the joint distribution F ∗
∞ and F ∗

n ,

respectively. We further use the notation

D(P ||W ) =
∑
x,y

P (x, y) log
P (y|x)
W (y|x)
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introduced in [21], which denotes the Kullback-Leibler information divergence of a joint distri-

bution P and a Markov transition matrix W . When D(Fn||W ∗
∞) < ϵ, one can find a ϵ′, such

that

|Hn −H∗
∞| < ϵ′ (3.9)

for all n large enough. This ϵ′ → 0 as ϵ → 0. Therefore, from (3.8) and (3.9), we can find a ϵ′′,

such that

|Hn −H∗
n| < ϵ′′

for all n large enough and satisfying D(Fn||W ∗
∞) < ϵ. Notice that ϵ′′ can be chosen such that

ϵ′′ → 0 as ϵ → 0. Therefore, using formula (VII.3) in [20], for large enough n which satisfies

D(Fn||W ∗
∞) < ϵ, we have ∣∣ log |T (Fn)| − log |T (F ∗

n)|
∣∣ < nϵ′′. (3.10)

We still need one more result before we continue with our proof. We use F<ϵ
∞ to denote the set

{Fn ∈ P (2)
n : D(Fn||W ∗

∞) < ϵ}.

Similarly, we can also define F≥ϵ
∞ = {Fn ∈ P

(2)
n : D(Fn||W ∗

∞) ≥ ϵ}. Using (VII.4) in [20] and

Theorem 3.1 in [12], we have

∑
Fn∈F≥ϵ

∞

PF ∗
∞(Fn) → 0 as n → ∞.

Therefore, ∑
Fn∈F<ϵ

∞

PF ∗
∞(Fn) → 1 as n → ∞. (3.11)

Now, the entropy rate of M = X1, · · · , Xn, · · · with its transition matrix derived W ∗
∞ from
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F ∗
∞:

H(X ) = lim
n→∞

H(X1, X2, · · ·Xn)

n
(3.12)

≥ lim
n→∞

∑
Fn∈F<ϵ

∞

∑
π∈S(M),π∈T (Fn)

−Pr(π) logPr(π)

n

= lim
n→∞

∑
Fn∈F<ϵ

∞

−PF ∗
∞(Fn) log

(
PF ∗

∞(Fn)/|T (Fn)|
)

n

= lim
n→∞

∑
Fn∈F<ϵ

∞

(−PF ∗
∞(Fn) logPF ∗

∞(Fn) + PF ∗
∞(Fn) log |T (Fn)|)

n

≥ lim
n→∞

∑
Fn∈F<ϵ

∞

PF ∗
∞(Fn) log |T (Fn)|

n

using(3.10),

≥ lim
n→∞

∑
Fn∈F<ϵ

∞

PF ∗
∞(Fn)(log |T (F ∗

n)| − nϵ′′)

n

using(3.11),

≥ lim
n→∞

log |T (F ∗
n)| − nϵ′′

n
.

Recall that |T (F ∗
n)| ≥ 1

g(n)
R(n), where R(n) is the total number of sequences of length n, g(n) is

a polynomial function in n. (3.12) can be written as

H(X ) ≥ lim
n→∞

log(R(n)/g(n))− nϵ′′

n
= lim

n→∞

logR(n)

n
, (3.13)

by taking ϵ (and hence ϵ′′) small. From (3.7) and (3.13), we known that the maximal entropy rate

lim
n→∞

logR(n)
n

is achievable, when the transition matrix of M is W ∗
∞ derived from F ∗

∞.

Given a labeled graph A, we can converted it to an (unlabeled) graph Â, which can be inter-

preted as a Markov chain MÂ. From the above analysis, we know that the maximal achievable
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entropy rate of MÂ is H(A) = lim
n→∞

logR(n)
n

, where R(n) is the number of sequences of length n in

MÂ. Let N(n) be the number of behaviors of length n in A. Notice that a sequence of length n is

actually a behavior of length n− 1 in A, and thus R(n) = N(n− 1). We have

H(A) = lim
n→∞

logR(n)

n
= lim

n→∞

logN(n− 1)

n
= lim

n→∞

logN(n− 1)

n− 1
= C(A),

which completes our proof. ⊓⊔

In information theory, the entropy rate is used to indicate how many bits one needs to losslessly

encode each sample in a stochastic process. Intuitively, a high entropy rate implies that the Markov

chain has a high complexity, since one needs more resource (encoding rate) to faithfully describe

the process. Since there is a one-to-one mapping between a behavior of A and a sequence generated

by the Markov chain MÂ (i.e., a path in Â), the entropy rate of MÂ, intuitively, is a good indicator

of the complexity of the labeled graph A. Recall that a labeled graph can be interpreted as a

software specification, and therefore it can be used to generate test cases for the software system.

Since the actual behaviors of the software system may not conform with the specification, it is not

sufficient for us to only test edges in the graph; instead, we need to test the sequences of edges (i.e.,

paths) in the graph. The behavior complexity can be used to indicate, asymptotically, the number

of choices that a test case (i.e. a path) has in each step, and therefore it is also a measure of the

difficulty of software testing and understanding.

Furthermore, the Markov chain MÂ obtained in Theorem 6 has been used in a forthcoming

paper [22] of our research group, which establishes an AEP (Asymptotic Equipartition Property)

[19] for the paths of a graph. That is, using Theorem 6, one can effectively compute “typical”

paths of the graph A and prove that

(1) those typical paths carry almost all the information of the Markov chain,

(2) those typical paths take probability 1, asymptotically.
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Notice that the number of typical paths can be exponentially smaller than the number (N(n)) of all

paths. This will help testers run tests only on typical paths if the goal is to reveal nontrivial amount

of information from the black-box under test.

3.4 Component-based Graphs

In practice, almost all large software systems consist of multiple units. How the complexity of

a component-based system changes is always of great interest for researchers (i.e., predicting the

complexity of the system through the complexities of the constituent units). We are interested in

the three common ways of composing a system [46, 9]:

• Sequential composition. In a component-based system, a sequencing operator specifies an

ordering on executions of two units.

• Parallel composition. Two units in a component-based system can be executed in parallel.

• Nondeterministic choice.

We will study sequential composition and parallel composition in Section 3.4.1 and Section

3.4.2, respectively. We briefly discuss nondeterministic choice in Section 3.4.3.

3.4.1 Sequentially Composed Graphs

A sequentially composed graph

A = ⟨Ac,Φ, G⟩

consists of a set of unit components Ac = {A1, · · · , Ak} for some k ≥ 1, where each unit

Ai = ⟨Si, s
i
init,Σi, Ei⟩

is a labeled graph (without loss of generality, we assume that the alphabets Σi’s and the sets of

nodes Si’s are disjoint.); Φ is the set of transition symbols that is disjoint with Σi’s, and will be
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explained in a moment; the component graph G of A specifies the ordering on executions of units.

Each unit Ai is represented as a node Ai in G; there is an edge from node Ai to Aj in G if and only

if the unit Aj would be executed immediately after a unit Ai. The edge Ai → Aj is labeled with

a transition symbol t ∈ Φ, and the labeled edge is denoted by Ai
t→Aj . Notice that there could be

multiple edges from Ai to Aj , and they are labeled with different transition symbols. We also have

the initial node in G to indicate the first unit to be executed in A. Without loss of generality, we

assume the initial node is A1. A behavior ω of A is a walk on the component graph G, i.e.,

ω = ω1t12ω2 · · ·ωjtj(j+1)ωj+1 · · ·ωi

for some j ≥ 1, where ωj ∈ L(Aj) and Aj

tj(j+1)→ Aj+1 is an edge in G for each j. The behavior

set L(A) of A is the set of all behaviors of A.

Recall that a unit (labeled graph)

Ai = ⟨Si, s
i
init,Σi, Ei⟩

can be uniquely converted to an (unlabeled) graph Âi, and there is a one-to-one mapping between a

behavior of Ai and a path of Âi. Similarly, we can also uniquely convert the sequentially composed

graph A (which can be viewed as a labeled graph) to an (unlabeled) graph Â by the following

simple procedure:

convert-sequential(A):

//A = ⟨Ac,Φ, G⟩ is a sequentially composed graph

1. Build a (unlabeled) graph Â := NULL;

2. For each Ai = ⟨Si, s
i
init,Σi, Ei⟩ ∈ Ac

3. Âi := convert(Ai);
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4. Add Âi to Â;

5. For each edge Ai
t→ Aj in G

6. Add a node (sjinit, t) to Â;

7. Add an edge (sjinit, t) → (sjinit,Λ) to Â;

8. For each node si ∈ Si, ai ∈ Σi

9. Add an edge (si, ai) → (sjinit, t) to Â;

10.Designate the node (s1init,Λ) in Â1 as the initial node of Â;

11.Return Â.

We can easily check that for each path u = x1 · · · xn in Â, there is a behavior ω ∈ L(A), such that

u↓(Σ∪Φ) = ω, where Σ = ∪iΣi, and vice versa. Next we will study how the behavioral complexity

of the composed-based graph changes when the units are composed in various ways.

First, we study a relative simple form of sequential composition, where in the sequentially

composed graph A, units A1, · · · , Ak are sequentially composed without loops; i.e., the component

graph G of A is a directed acyclic graph (DAG). Let C(Ai) (i = 1, · · · , k) and C(A) be the

behavioral complexity of the unit Ai and the sequentially composed graph A, respectively. We

have the following theorem:

Theorem 7. For a sequentially composed graph

A = ⟨Ac,Φ, G⟩

where Ac = {A1, · · · , Ak} and the component graph G is a DAG, the behavioral complexity is

C(A) = max
1≤i≤k

C(Ai).

Proof. Without loss of generality, we assume that there are only two units, A1 and A2 in A, and
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Figure 3.3: The component graph G of a sequentially composed graph A composed of units A1

and A2.

A2 must be executed after A1. The component graph G of A is illustrated in Figure 3.3. Let Âi

(i = 1, 2) be the (unlabeled) graph converted from Ai. Let N(n) be the number of behaviors of

length n in A, and the behavioral complexity

C(A) = lim
n→∞

logN(n)

n
.

Let Ni(ti) (i = 1, 2) be the number of behaviors of length ti in Ai, and λi be the counting eigen-

value of the counting matrix of Âi. Let ||λmax|| = max{||λ1||, ||λ2||}. From Theorem 5, we have

Ni(ti) ≤ gi(ti)(||λi||)ti ≤ gi(ti)(||λmax||)ti , where gi(ti) is a polynomial function on ti. We have,

N(n) =
∑

t1+t2=n−1

N1(t1) ·N2(t2)

≤
∑

t1+t2=n−1

g1(t1)(||λ1||)t1 · g2(t2)(||λ2||)t2

≤
∑

t1+t2=n−1

g1(t1)g2(t2)(||λmax||)n−1

≤ ng1(n)g2(n)(||λmax||)n.
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Therefore,

C(A) = lim
n→∞

logN(n)

n
(3.14)

≤ lim
n→∞

log ng1(n)g2(n)(||λmax||)n

n

= log ||λmax||

= max
i

C(Ai).

On the other hand, N(n) ≥ N1(n− 1), and therefore

C(A) = lim
n→∞

logN(n)

n
≥ lim

n→∞

logN1(n− 1)

n
= log ||λ1|| = C(A1). (3.15)

Similarly, we have

C(A) ≥ C(A2). (3.16)

From (3.14), (3.15) and (3.16), we have C(A) = max
i

C(Ai). The conclusion remains when there

are more than two units in A, as long as the component graph of A is a DAG. ⊓⊔

Theorem 7 reveals the fact that when units are sequentially composed without loops, the be-

havioral complexity of the sequentially composed graph will not increase.

Next we discuss the case where the component graph G of A (consisting of units A1, · · · , Ak)

is not necessarily a DAG; i.e., loops are introduced when units are composed. On the one hand, we

still can calculate the behavioral complexity of A from the counting matrix of the converted graph

Â; on the other hand, it would be difficult to analyze the relation between the behavioral complexity

of A and the behavioral complexity of the units only from the counting matrix. Currently, we can

not give a precise representation of C(A) in the form of C(Ai); instead, we give the upper and

lower bounds of C(A), and both bounds are tight.

Notice that the component graph G itself can be treated as a labeled graph when we treat each
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unit Ai as a single node, and we can also calculate the behavioral complexity C(G) of G. We have

the following theorem,

Theorem 8. For a sequentially composed graph A = ⟨Ac,Φ, G⟩ where Ac = {A1, · · · , Ak}, we

have

max
1≤i≤k

C(Ai) ≤ C(A) ≤ log ρ+ C(G) + 1,

where ρ = max
i

ρ(Ai) is the maximal branch factor (see Section 3.2.1 for definition) of the units.

Proof. The proof of the lower bound part is straightforward and one can refer to the proof of

Theorem 7. Now we prove the upper bound part of this theorem.

For our notational convenience, we first define ρi = ρ(Ai), and thus ρ = max{ρi}. Let Ni(ti)

be the number of behaviors of length ti in Ai. Obviously, Ni(ti) ≤ ρtii . Let N(n) be the number

of behaviors of length n in A. For a behavior ω of length n in A, we can cut it into l (1 ≤ l ≤ n)

segments, and each segment represents a behavior in some unit Ai, which is a node in G. Let

N(n, l) be the number of behaviors of lengths n in A, while the corresponding behaviors traverses

l nodes in G. Clearly, N(n) =
∑

1≤l≤n

N(n, l). For a behavior ω in A that traverses l nodes in G, let

d(l) be the path in G that traverses those l nodes. Suppose that the behavior ωi in Ai is of length ti

and it is a segment of ω, then t1 + · · · tl = n − (l − 1), where (l − 1) is the number of transition

symbols in d(l). We have,

N(n, l) =
∑
d(l)

∑
t1+···tl=n−(l−1)

∏
1≤i≤l

Ni(ti)

≤
∑
d(l)

∑
t1+···tl=n−(l−1)

∏
1≤i≤l

ρtii

≤
∑
d(l)

∑
t1+···tl=n−(l−1)

ρn−(l−1)

≤
∑
d(l)

 n

l

 ρn
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Suppose that we treat G as a labeled graph, and we can also convert G to a (unlabeled) graph Ĝ.

Let λG be the counting eigenvalue of the counting matrix of Ĝ. The number of paths of length l in

G is |{d(l)}| ≤ g(l)(||λG||)l, where g(l) is a polynomial function on l. Therefore,

N(n, l) ≤ g(l)(||λG||)l

 n

l

 (ρ)n.

The total number of behaviors of length n in A is

N(n) =
∑
1≤l≤n

N(n, l)

≤
∑
1≤l≤n

g(l)(||λG||)l

 n

l

 ρn

≤ g(n)ρn
∑
1≤l≤n

(||λG||)l

 n

l


≤ g(n)ρn(1 + ||λG||)n

≤ g(n)ρn(2||λG||)n

The behavioral complexity of A is

C(A) = lim
n→∞

logN(n)

n

≤ lim
n→∞

log g(n)ρn(2||λG||)n

n

= log ρ+ log ||λG||+ 1

= log ρ+ C(G) + 1,

which completes our proof. ⊓⊔
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Figure 3.4: A sequentially composed graph and the unit component.

Clearly, the lower bound in Theorem 8 is tight according to Theorem 7; the upper bound in Theo-

rem 8 is also tight, shown in the following example.

Example 15. Figure 3.4 (1) shows a sequentially composed graph A which only has a unit A1,

and A1 is composed with itself. The unit component (which is also a labeled graph) is shown in

Figure 3.4 (2). The branching factor of A1 is ρ = 1. It is not hard to compute that the behavioral

complexity of G is C(G) = 0. However, the behavioral complexity of A is C(A) = 1 bit, which is

log ρ+ C(G) + 1. ⊓⊔

Theorem 7 and 8 reveal the fundamental science behind our intuition: it is loops that make

sequentially composed graphs more complex. Theorem 8 also shows why integration testing is

necessary (by looking at the tight upper bound): since it is always true that

log ρ ≥ max
i

C(Ai),

in order to understand a sequentially composed system (specified by A), the term log ρ implies that

we need to understand the units (specified by Ai’s) with more effort than

max
i

C(Ai),
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and the term C(G) implies that we need to understand the high-level design of the sequentially

composed system; however, that is not enough: we still need an extra 1-bit effort (which is fairly

large since we are referring to the 1-bit rate here), which in our understanding, is the additional

effort of integration testing, to understand the composed system.

3.4.2 Concurrent Graphs

In Section 3.4.1, we studied the behavioral complexity of a component-based graph where units

are sequentially composed, and we showed that behavioral complexity can only increase when

units are composed through loops. In this section, we further study how the behavioral complexity

changes when units are composed in parallel in a component-based graph.

A component-based graph where units are composed in parallel is called a concurrent graph.

In this chapter, we only discuss the simplest form of concurrency – synchronization over a finite

set of events. A concurrent graph

A = ⟨As,∆⟩

consists of a set of unit components As = {A1, · · · , Ak} for some k > 1, where each unit Ai =

⟨Si, s
i
init,Σi, Ei⟩ is a labeled graph; ∆ is the set of synchronous (event) symbols, which will be

explained in a moment. For any two units Ai and Aj (1 ≤ i ̸= j ≤ k), the intersection of the two

alphabets Σi ∩ Σj = ∆. Sometimes, we simply denote A by A = A1||∆A2||∆ · · · ||∆Ak.

Let ωi = ω1
i a

1
iω

2
i a

2
i · · ·ωm−1

i am−1
i ωm

i for some m, and ωj = ω1
ja

1
jω

2
ja

2
j · · ·ωn−1

j an−1
j ωn

j for

some n be two behaviors of Ai and Aj , respectively, where ωp
i ∈ (Σi−∆)∗ for each p = 1, · · · ,m,

ωq
j ∈ (Σj − ∆)∗ for each q = 1, · · · , n, agi and atj ∈ ∆ for each g = 1, · · · ,m − 1 and t =

1, · · · , n − 1. The two behaviors can synchronize with each other if and only if they have the

same number of synchronous symbols, i.e., m = n, and ali = alj for each l = 1, · · · ,m − 1. A

synchronous behavior of ωi and ωj is

ωij = ωi||ωj = ω1
ija

1
iω

2
ija

2
i · · ·ωm−1

ij am−1
i ωm

ij , (3.17)
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where ωl
ij is a shuffle3 of ωl

i and ωl
j , l = 1, . . . ,m. Similarly, we can also define a syn-

chronous behavior ω of units A1, A2, · · · , Ak as ω = ω1||ω2|| · · · ||ωk, where ωi ∈ L(Ai) for

i = 1, · · · , k, and every two behaviors ωi and ωj can synchronize with each other. That is, recur-

sively, ω1||ω2|| · · · ||ωk = (ω1||ω2|| · · · ||ωk−1)||ωk. A behavior ω of A is a synchronous behavior

of A1, · · · , Ak. The behavior set L(A) is the set of behaviors of A. In below, without loss of

generality, we study the concurrent graph A that only has two units A1 and A2, and simply write

A as A = A1||∆A2. This is because, a general case of A1||∆A2||∆ · · · ||∆Ak can be considered as,

recursively, (A1||∆A2||∆ · · · ||∆Ak−1)||∆Ak.

In the following, we build a labeled graph ASync = ⟨S, sinit,Σ, E⟩ with its behavior set

L(ASync) = L(A), where A = A1||∆A2 is a concurrent graph. The labeled graph ASync can

be obtained as follows.

Sync(A)

//A = A1||∆A2 is a concurrent graph, where

//A1 = ⟨S1, s
1
init,Σ1, E1⟩ and A2 = ⟨S2, s

2
init,Σ2, E2⟩.

1. S := S1 × S2 = {(s1, s2)|s1 ∈ S1, s2 ∈ S2};

2. sinit := (s1init, s
2
init);

3. Σ := Σ1 ∪ Σ2;

4. E := ∅;

5. For each edge (s1, b1, s
′
1) ∈ A1, b1 /∈ ∆

6. For each node s ∈ S2

7. Add edge ((s1, s), b1, (s
′
1, s)) to E;

8. For each edge (s2, b2, s
′
2) ∈ A2, b2 /∈ ∆

9. For each node s ∈ S1

3A sequence ω is a shuffle of a sequence ω1 and a sequence ω2 if ω1 is a subsequence of ω, and after dropping the
subsequence from ω, we obtain ω2. For instance, ω = bcdcdabc is a shuffle of ω1 = ccdbc (the subsequence in ω is
underlined) and ω2 = bda.
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Figure 3.5: A concurrent graph.

10. Add edge ((s, s2), b2, (s, s
′
2)) to E;

11. For each edge (s1, a, s
′
1) ∈ A1 and (s2, a, s

′
2) ∈ A2, a ∈ ∆

12. Add edge ((s1, s2), a, (s
′
1, s

′
2)) to E;

13. Return ASync := ⟨S, sinit,Σ, E⟩.

Notice that the size of the resulting ASync is |A1| × |A2|, where |Ai| is the size of Ai for i = 1, 2.

We can easily check that there is a one-one mapping between the two behavior sets L(ASync) and

L(A); therefore, C(ASync) = C(A). The behavioral complexity C(ASync) of ASync is efficient

to compute (using the complexity() algorithm in before), and then C(ASync) can be used to

asymptotically measure the cost of exhaustive testing of the system specified by A. Next we will

give a tight lower bound and a tight upper bound of C(A) when A is a concurrent graph.

Theorem 9. For a concurrent graph A = ⟨As,∆⟩ where As = {A1, · · · , Ak} (k > 1), we have

0 ≤ C(A) ≤ max
i

C(Ai) + log k.

Proof. We first prove the case for k = 2. The proof of the lower bound part is given by an example.

Consider the concurrent graph A = A1||∆A2 shown in Figure 3.5, where the set of synchronous

symbols is ∆ = {a1, a2, a3}. Both units A1 and A2 have behavioral complexity 1 bit. However,
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after synchronization, the behavior set becomes L(A) = {a1}, which implies that C(A) = 0. This

example shows that it is possible that synchronization rules out most behaviors of units, and makes

the behaviors of the concurrent graph extremely simple.

Now we turn to the upper bound part. Let N(n) be the number of behaviors of length n in A,

Ni(ti) (i = 1, 2) be the number of behaviors of length ti in Ai, and λi be the counting eigenvalue

of the counting matrix of Âi. Let ||λmax|| = max{||λ1||, ||λ2||}. From Theorem 5, we have

Ni(ti) ≤ gi(ti)(||λi||)ti ≤ gi(ti)(||λmax||)ti , where gi(ti) is a polynomial function on ti. Clearly,

N(n) reaches the maximum when there is no synchronization between units; i.e., each behavior of

A is a pure shuffle of behaviors of its units. Note that given two sequences ω1 of length t1 and ω2

of length t2, there are

 t1 + t2

t1

 shuffles of ω1 and ω2. We have

N(n) ≤
∑

t1+t2=n

N1(t1) ·N2(t2) ·

 n

t1


≤

∑
t1+t2=n

g1(t1)(||λ1||)t1 · g2(t2)(||λ2||)t2 ·

 n

t1


≤

∑
t1+t2=n

g1(t1)g2(t2)(||λmax||)n ·

 n

t1


≤ g1(n)g2(n)(||λmax||)n

∑
t1+t2=n

 n

t1


= g1(n)g2(n)(2||λmax||)n
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Therefore,

C(A) = lim
n→∞

logN(n)

n
(3.18)

≤ lim
n→∞

log g1(n)g2(n)(2||λmax||)n

n

= log ||λmax||+ 1

= max
i

C(Ai) + 1.

The proof can be directly generalized to a concurrent graph with k > 2 units. In that case, C(A) =

max
i

C(Ai) + log k. This result can be interpreted as follows. For a synchronous behavior ω =

ω1||ω2|| · · · ||ωk, we can assume that that there is a controller to generate it in the following way.

Each time, the controller picks some Ai to generate a symbol in ω. The bit rate caused by Ai is

max
i

C(Ai) at most. Since there are k such Ai’s, the extra bit rate that the controller causes is at

most log k. ⊓⊔

Clearly the lower bound in Theorem 9 is tight according to the proof; the upper bound is also

tight. Consider the concurrent graph A = A1||∆A2 with L(A1) = a∗, L(A2) = b∗ and ∆ = ∅. The

behavior set of A is L(A) = (a + b)∗. Clearly, C(A1) = C(A2) = 0 bit, and C(A) = 1 bit, which

is max
i

C(Ai) + 1.

Recall that the behavioral complexity C(A) intends to asymptotically measure the cost of ex-

haustive testing of the system Sys specified by A. Suppose that before testing the concurrent

system Sys specified by A = A1||∆A2, we know nothing about the system except the desired

behavior set L(A); i.e., we have zero pre-test knowledge about the system. There might be some

hidden communications among units other than synchronizations over the known interface ∆. For

instance, suppose that a unit system Sys1 specified by A1 and a unit system Sys2 specified by A2

synchronize over ∆ = {a}, and Sys1 has observable events in Σ1 = {b, a}, Sys2 has observable
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events in Σ2 = {c, a}. Sys1 and Sys2 may communicate through some unobservable commu-

nication channel and such that “bca is observed in Sys” does not necessarily imply “cba is also

observed in Sys”. Such hidden communications can be an unobservable access control to a critical

region to ensure that event b in Sys1 must happen before event c in Sys2. Therefore, in order to

verify that the system is implemented as designed, we have to verify each behavior in the behavior

set L(A) and then decide whether the behavior is an actual behavior of the system or not. In that

case, C(A) is used to asymptotically measures the cost of exhaustive testing of the system.

However, sometimes, before the testing, we do have some knowledge about Sys, and with that

pre-test knowledge, we could avoid exhaustive testing and the cost of testing Sys could be reduced.

A simple form of such pre-test knowledge studied here is called communication pre-test knowl-

edge. Suppose that before testing the concurrent system Sys specified by A = A1||∆A2, we know

for sure that:

If there is any communication between Sys1 (specified by A1) and Sys2 (specified by

A2), then the communication must be synchronizations over ∆.

In that case, we can impose pre-order on synchronous behaviors. The pre-ordered synchronous

behavior of ωi = ω1
i a

1
iω

2
i a

2
i · · ·ωm−1

i am−1
i ωm

i and ωj = ω1
ja

1
jω

2
ja

2
j · · ·ωm−1

j am−1
j ωm

j in (3.17) is

defined as

ω∗
ij = ω1

i ω
1
ja

1
iω

2
i ω

2
ja

2
i · · ·ωm−1

i ωm−1
j am−1

i ωm
i ω

m
j . (3.19)

With the communication pre-test knowledge, we can safely say that, any synchronous behavior

wij of ωi and ωj , in the form of (3.17), is an actual behavior of Sys if and only if the pre-ordered

synchronous behavior ω∗
ij of ωi and ωj is an actual behavior of Sys. Therefore, we can build a new

behavior set L∗(A) consisting of pre-ordered synchronous behaviors, such that a synchronous be-

havior in L(A) is an actual behavior of A if and only if the corresponding pre-ordered synchronous

behaviors in L∗(A) is an actual behavior of Sys. In this way, the cost of exhaustive testing on

106



L(A) can be reduced to exhaustive testing on L∗(A), and we use

C∗(A) = lim
n→∞

logN∗(n)

n

to denote the cost of testing Sys with communication pre-test knowledge, where N∗(n) is number

of sequences of length n in L∗(A).

In the following, we build a labeled graph APre = ⟨S, sinit,Σ, E⟩ with its behavior set

L(APre) = L∗(A), where A = A1||∆A2 is a concurrent graph. The idea of building APre is

that we use two phases ϕ1 and ϕ2 to control the ordering of A1 and A2. The labeled graph APre

can be obtained as follows.

Pre-Ordered(A)

//A = A1||∆A2 is a concurrent graph, where

//A1 = ⟨S1, s
1
init,Σ1, E1⟩ and A2 = ⟨S2, s

2
init,Σ2, E2⟩.

1. S := S1 × S2 × {ϕ1, ϕ2} = {(s1, s2, ϕ)|s1 ∈ S1, s2 ∈ S2, ϕ ∈ {ϕ1, ϕ2}};

2. sinit := (s1init, s
2
init, ϕ1);

3. Σ := Σ1 ∪ Σ2;

4. E := ∅;

5. For each edge (s1, b1, s
′
1) ∈ A1, b1 /∈ ∆

6. For each node s ∈ S2

7. Add edge ((s1, s, ϕ1), b1, (s
′
1, s, ϕ1)) to E;

8. For each edge (s2, b2, s
′
2) ∈ A2, b2 /∈ ∆

9. For each node s ∈ S1

10. Add edge ((s, s2, ϕ1), b2, (s, s
′
2, ϕ2)) to E;

11. Add edge ((s, s2, ϕ2), b2, (s, s
′
2, ϕ2)) to E;

12. For each edge (s1, a, s
′
1) ∈ A1 and (s2, a, s

′
2) ∈ A2, a ∈ ∆
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13. Add edge ((s1, s2, ϕ1), a, (s
′
1, s

′
2, ϕ1)) to E;

14. Add edge ((s1, s2, ϕ2), a, (s
′
1, s

′
2, ϕ1)) to E;

15. Return APre := ⟨S, sinit,Σ, E⟩.

The size of the resulting APre is |A1| × |A2|, where |Ai| is the size of Ai for i = 1, 2. Also

we can use the algorithm complexity() to compute the behavioral complexity C(APre). The

construction can be generalized to A1||∆A2||∆ · · · ||∆Ak. In below, we give a tight lower bound

and a tight upper bound of C∗(A) when A is a concurrent graph.

Theorem 10. For a concurrent graph A = ⟨As,∆⟩ where As = {A1, · · · , Ak} (k > 1), we have

0 ≤ C∗(A) ≤ max
i

C(Ai).

Proof. Without loss of generality, we only show the case for k = 2. The proof of the lower bound

is similar to the proof of Theorem 9.

The proof of the upper bound is very similar to the proof of Theorem 7. Let N∗(n) be the

number of behaviors of length n in L∗(A), Ni(ti) (i = 1, 2) be the number of behaviors of

length ti in Ai, and λi be the counting eigenvalue of the counting matrix of Âi. Let ||λmax|| =

max{||λ1||, ||λ2||}. From Theorem 5, we have Ni(ti) ≤ gi(ti)(||λi||)ti ≤ gi(ti)(||λmax||)ti , where

gi(ti) is a polynomial function on ti. Clearly, N∗(n) reaches the maximum when there is no syn-

chronization between units. We have,

N∗(n) ≤
∑

t1+t2=n

N1(t1) ·N2(t2)

≤
∑

t1+t2=n

g1(t1)(||λ1||)t1 · g2(t2)(||λ2||)t2

≤
∑

t1+t2=n

g1(t1)g2(t2)(||λmax||)n

≤ ng1(n)g2(n)(||λmax||)n.
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Therefore,

C∗(A) = lim
n→∞

logN∗(n)

n
(3.20)

≤ lim
n→∞

log ng1(n)g2(n)(||λmax||)n

n

= log ||λmax||

= max
i

C(Ai),

which completes our proof. ⊓⊔

Both the lower bound and upper bound in Theorem 10 are tight. Consider the concurrent graph

A = A1||∆A2 with L(A1) = a∗, L(A2) = b∗ and ∆ = ∅. The (pre-ordered) behavior set is

L∗(A) = a∗b∗. Clearly, C(A1) = C(A2) = C∗(A) = 0 bit, which shows that both the lower bound

and upper bound in Theorem 10 are tight.

In [70], we show a result that under certain conditions, when a system is concurrently com-

posed from a number of blackboxes, integration testing of the system is not necessary: it can be

implemented through a “cascade” sequence of unit blackbox testing. This is verified by Theorem

10: the behavioral complexity of a current system will not increase as long as we know for sure

that communications among units are only achieved by synchronization over a known interface.

However, Theorem 9 also reveals that, if there are other hidden communications, we do need extra

effort to understand the concurrent system.

3.4.3 Nondeterministic Choice

A component-based graph A consisting of units A1, · · · , Ak (k ≥ 1) where nondeterminis-

tic choice is involved is called a nondeterministic component-based graph, where each unit

Ai = ⟨Si, s
i
init,Σi, Ei⟩ is a labeled graph, and A is denoted by

A = A1 + · · ·+ Ak.
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Figure 3.6: A nondeterministic component-based system A = A1 + · · ·+ Ak

Nondeterministic choice states that, suppose that a component-based software system Sys is

specified by A, and there are k unit systems Sys1, · · · , Sysk specified by A1, · · · , Ak, respectively.

Sys can nondeterministically pick one unit Sysi (1 ≤ i ≤ k) to execute. Clearly, the behavioral

set of A is the set of all its constituent units’ behaviors. A can be represented by a labeled graph

A = ⟨S, sinit,Σ, E⟩ shown in Figure 3.6, where S = {sinit}
∪
i

Si, sinit is the initial state of A,

Σ = {ε}
∪
i

Σi with ε being the empty symbol, and E =
∪
i

Ei ∪ {(sinit, ε, siinit)}. Notice that

the labeled graph shown in Figure 3.6 is actually a nondeterministic finite automaton. we can

simply use a standard textbook algorithm (e.g., [62]) to convert the nondeterministic automaton

to a deterministic one, which is trivial. Note that units Ai’s themselves are deterministic systems,

therefore the algorithm of converting the nondeterministic automaton to a deterministic one can be

done in polynomial time. It is straightforward that the behavioral complexity of A is

C(A) = max
i

C(Ai),

which implies that nondeterministic choice will not make the composed system more complex.

3.5 Discussions

Unlike the McCabe metric, the behavior complexity of a labeled graph is not necessarily strictly

monotonic in the number of nodes and edges in the graph. However, similar to as the McCabe

metric, the behavioral complexity is related to the strongly connected components (SCC) in the
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Figure 3.7: A labeled graph A.

graph. From Theorem 7, we can calculate the behavioral complexity of a labeled graph A in

the following way. We first decompose (in linear time using Tarjan’s algorithm) A into SCC’s

A1, · · · , Ak, and for each SCC Ai, we calculate the behavioral complexity C(Ai), and then the

behavioral complexity of A is

C(A) = max
i

C(Ai).

This is because A becomes a DAG when each SCC is treated as a node. In other words, one can

identify a “key portion” of A that “concentrates” the entire complexity of A.

Furthermore, we can define the concept of critical edges. Let e be an edge in a labeled graph A.

We define A−e as the resulting graph after dropping the edge e from A. Clearly, C(A−e) ≤ C(A).

We say that e is critical if

C(A−e) < C(A).

That is, after dropping e, the complexity becomes smaller. For instance, in the labeled graph given

in Figure 3.7, one can show that the edges e2, e3 and e4 are critical edges, but not e1. This can also

be generalized to the case of a “critical portion” of a graph A. If we drop a subgraph A′ from A

and the behavioral complexity of the resulting graph becomes smaller, we say that A′ is a critical

portion of A. For the labeled graph A given in Figure 3.7, the subgraph consisting of the node

s2, the edge e3 and the edge e4 is the critical portion of A. Similarly, we can also decide whether

an update applied to a labeled graph makes the graph more complex or not. Suppose that we are
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going to replace a subgraph A′ of A with A′′. Clearly, the behavioral complexity of the updated

graph can be computed and can also be compared with the behavioral complexity of the original

graph A before the replacement. This gives us a way to predict whether an update would make a

system harder to understand or not.

The result of Theorem 6 (essentially relating the number of paths in a graph with the maximal

entropy rate of a Markov chain represented by the graph) has already been hinted at in some

classical work, dated back in Shannon’s paper in 1949 (Theorem 8 in [60]), and Chomsky and

Miller’s work [17] in 1958, and even the Exercise 4.16 in the classical textbook on Information

Theory [19]. Reference [11] also uses lim
n→∞

logN(n)
n

to define the capacity of a discrete noiseless

channel with an intuitive explanation. However, we have found a mathematically strict proof only

for a special form of graphs to make a Markov chain stationary. In our work, we proved the

general case, by removing the condition of ergodicity, but replacing the entropy rate of a Markov

chain from the limit-form to the upper-limit-form (noticing that the upper-limit entropy rate always

exists for any Markov chain). Our proof is quite involved, using the method of type.

In our work, the semantics of a labeled graph is defined as the set of sequences of labels col-

lected from the paths (from the initial node) of the labeled graph. This is because, semantically,

the graph is understood as a machine that sequentially executes along the directed edges. Our be-

havioral complexity returns the same result for graphs sharing the same behavioral sets. However,

similar to the McCabe metric, we do not further decipher the meaning of each label (i.e., each label

is atomic); doing this would involve undecidability of checking whether the deciphered semantic-

s are preserved or not. For instance, two arithmetic C programs that have different control flow

graphs may actually compute the same function. These two graphs may have different behavioral

complexities. In other words, if one does come up with a new definition of behavioral complex-

ity such that the aforementioned two graphs have the same complexity under the new behavioral

complexity, then, we can easily show that the new behavioral complexity is simply not computable

in general. Nevertheless, our results suggest that, in theory, the C program with lower behavioral
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Figure 3.8: (1) The statechart of the unit displays. (2) The component graph of the component-
based graph.

complexity is easier to understand. However, similar to the McCabe metric, whether this is also the

case in practice relies on a work like [79] to further validate by experimental software engineering

researchers.

3.6 A Case Study on Statecharts Design

Statecharts [31] is a useful tool for modeling system designs, and it has become part of the stan-

dardized modeling language UML [1]. In a statechart, a state is not necessarily atomic, and it can

specify a unit in a component-based system. Throughout the original paper [31] of Statecharts, the

design of a Citizen Quartz Multi-Alarm III wristwatch is used to illustrate how to build statecharts

to illustrate the design of a system. In this section, we will also adopt this example to show the

behavioral complexity of the design.

Figure 3.8 (1) is the statechart A1 of the unit displays (Figure 9 in [31]), and it shows how

the unit displays of the watch transits its states. A labeled edge in A1 denotes a state transition,

and the label denotes some event. For instance, the edge time d→datemeans that when the button

d is pressed, displays would transit from the state time to date. Clearly, A1 can be treated as

a labeled graph, and it is not hard to calculate the behavioral complexity, which is C(A1) = 0.5973
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bit. After dropping the edge date d→time, the behavioral complexity decreases to 0.3063 bit,

which implies that date d→time is a critical edge in A1, and the semantics would change if we

drop this edge.

The unit displays is sequentially composed with other units in the component-based graph

A. Figure 3.8 (2) (modified from Figure 8 in [31]) actually gives the component graph G of A.

If we treat every state in G as a single node, we can also calculate the behavioral complexity of

the labeled graph G (which can be interpreted as the high-level design) and C(G) = 1.2925 bits.

Notice that 1.2925 is a relatively large number, which implies that units in the component-based

graph are composed in a complicated way.

Now we are to calculate the behavioral complexity C(A) of the component-based graph. We

do not, as in the paper [31], further decompose the nodes alarm 1 beeps, alarm 2 beeps

and both beep in G, and simply treat them as units only with one state. Clearly the behavioral

complexity of the three units are all 0. We can easily calculate that C(A) = 1.0839 bits. If we drop

the unit alarm 1 beeps from A, we can check that the behavioral complexity of A decreases to

1.0087 bits, which implies that dropping the unit alarm 1 beeps would change the semantics

of A.

The behavioral complexities of units in A is not that large (0.5973 bit for displays and 0 bit

for the other three units). However, the behavioral complexity of A is 1.0839 bits, which implies

that, even simple units can make fairly complex component-based graphs. It is also interesting to

find that the behavioral complexity of A (1.0839 bits) does not exceed the behavioral complexity

of its component graph G (1.2925 bits). Notice that the component graph can be interpreted as the

high-level design of a component-based system. This indicates that, even if units are composed in

a complicated way, the behaviors of the component-based graph could be semantically simple.

We write a script in Matlab, from a graph, to compute the behavioral complexity through Jordan

decomposition and running times of the experiments in this section are all negligible on a ThinkPad

T400 laptop.
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3.7 Summary

In this chapter, we introduce a novel complexity metric for labeled graphs named behavioral com-

plexity, and we provide an information-theoretic foundation for it. We also study how the behav-

ioral complexity changes when graphs are composed sequentially and in parallel, and we show

that behavioral complexity can increase when units are sequentially composed through loops, or

composed in parallel through synchronization with zero pre-test knowledge. Since labeled graphs

can be interpreted as control flow graphs, design specifications, etc., our complexity metric can

also be used to measure the complexity of software systems. We show the usefulness of the metric

through a statecharts design example. Our results could be very helpful for software developers:

the metric can be used to predict the complexity of the semantics of a software system to be built.

Our results also suggest that integration testing is necessary (after units are tested).
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CHAPTER 4

CONCLUSIONS AND DISCUSSIONS

In this dissertation, we propose an information-theoretic framework of software testing. Our work

mainly consists of two parts: the first part provides a syntax-independent coverage criterion for

software testing, which can be used for information-optimal test case selection (the process of

information-optimal test case selection is called a cooling-down testing approach); the second part

introduces a novel complexity metric for software systems which asymptotically measures the

cost of exhaustive testing. Both theories have solid information-theoretic foundations, which, we

think, is of great importance in the area of software testing (which, in our opinion, still lacks a

mathematical foundation) as well as model-based design for safety-critical systems and network

intrusion detection systems [73].

In the future, we plan to compare our cooling-down testing approaches with existing struc-

tural testing techniques and see if our approaches can be combined with the existing techniques to

improve their effectiveness. We will also study an information-theoretic approach in optimal test

case selection for concurrent systems. Testing a concurrent system is an extremely difficult and

error-prone task [27, 34]. In Chapter 3, we have developed algorithms to calculate the behavioral

complexity of concurrent systems; in other words, we have a way to tell whether a concurrent

system is complex or not. However, in order to apply our cooling-down testing approach, we still

need to calculate the entropy of a concurrent system. In our opinion, the entropy of a concurrent

system is difficult (even in theory) to calculate because of the communications between compo-

nents. We plan to study algorithms for general concurrent system models and determine how the

communications between components affect the optimal testing over the entire system.

In a highly concurrent system, a massive number of objects are involved in computations. For

instance, a network system can be viewed as programs running on top of a large number of de-

vices, such as cellular phones, laptops, PDAs and sensors. How to design, implement and test such
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systems has become a central research topic in areas like pervasive computing [57, 67], a proposal

of building distributed software systems from a massive number of devices that are pervasively

hidden in the environment. P system [51], is an emerging unconventional computing model mo-

tivated from natural phenomena of cell evolutions and chemical reactions, which can be used to

characterize such systems. There has been a flurry of research activities in the area of membrane

computing (a branch of molecular computing) initiated several years ago by Gheorghe Paun [51].

Membrane computing identifies an unconventional computing model, namely a P system, from

natural phenomena of cell evolutions and chemical reactions. It abstracts from the way living cells

process chemical compounds in their compartmental structures. Thus, regions defined by a mem-

brane structure contain objects that evolve according to given rules. The objects can be described

by symbols or strings of symbols, in such a way that multisets of objects are placed in regions of

the membrane structure. The membranes themselves are organized as a Venn diagram or a tree

structure where one membrane may contain other membranes. By using the rules in a nonde-

terministic and maximally parallel manner, transitions between the system configurations can be

obtained. A sequence of transitions shows how the system is evolving. At a high-level, a P system

has the following key features:

• Objects are typed but addressless (i.e., without individual identifiers),

• Object transferring rules are in (either maximally or locally) parallel, and

• The system is stateless [75].

The above three features make P systems be suitable to model a highly concurrently system.

First, objects in P systems are typed but addressless (i.e., the objects do not have individual iden-

tifiers), which is an attractive property for modeling concurrent systems. In other words, unique

identifiers such as IP addresses for network devices are left for the implementation level. For in-

stance, in a fire truck scheduling system, a fire emergency calls for one or more trucks that are
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currently available. In this scenario, exactly which truck is dispatched is not so important as long

as the truck is available. Second, in a P system, there are a huge number (the number could be

unspecified) of objects running in a highly concurrent manner, which exactly is the way that ob-

jects in a concurrent system behave (e.g., in a cellular phone network, there are a huge number

of cellular phone being active and interacting with each other). Finally, it is almost impossible to

maintain a global state of a highly concurrent system that involves a massive number of objects;

thus P systems, which are naturally stateless, are a good model for such concurrent systems.

In [74, 75, 38, 77, 76, 78], we introduced computing models called Bond Computing Systems

and service automata, which are variations of P systems. Testing of such systems remains a great

challenge. Currently, software testing is to “Find a graph and cover it [7].” However, in a stateless

system, such a graph does not even exist. Some research work [23] has been done on the model-

checking (i.e., algorithmically check whether behaviors of a system conform with its specification)

of a P system. However, this model-based approach faces either the state explosion problem or

the undecidability problem. Usually we can not find efficient algorithms and could not finish

checking all the possible behaviors since the number of the states in the system is exponential

in the number of components or the components are simply Turing-complete. Using the cooling-

down idea, how to select behaviors of the system in order to check the specification most efficiently

becomes possible. Moreover, model-checking is traditionally used to check whether (behaviors in)

the design of a system conforms with its requirement. It is the software testing that tests the

system’s implementation. From this point of view, an optimal testing strategy is desired to test a

stateless system. We believe that our idea of cooling-down testing is a good approach to develop

such optimal strategies. Furthermore, We can also apply the behavioral complexity metric on a

stateless system, which can indicate how difficult it is to test a specific stateless system.

Information theory has been considered as a mathematical foundation for digital and analog

communications as well as data compression, image processing, etc., which are among the most

studied areas in Electrical Engineering. However, the information theory has not been shown its
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equal importance in Computer Science; e.g, providing a mathematical foundation for an important

area like Software Testing. The reasons, in our opinion, are the fact that in computer science,

discrete structures (trees, graphs, automata, logic formulas, code, etc.), instead of quantitative vari-

ables, are often the subjects of study, while traditional information theory, with its history of more

than 50 years, does not usually provide a mathematical tool to handle “information on discrete

structures”. This dissertation, also as a contribution to information theory, provides a way to cal-

culate entropy for trees and graphs (drawn from finite automata), together with a syntax-based

complexity metric for software systems. In the future, one could further study information theo-

ry on more complex structures like programs and more powerful automata. This work makes us

strongly believe that Shannon’s information theory could be a mathematical foundation for Soft-

ware Testing. The theory contains a rich body of deep and foundational results in, for instance,

channel communications and optimal coding. With this belief in mind, one would naturally seek

applications of some of the results in Software Testing. For example, is there an inherent relation

between optimal testing of a software system and optimal coding of a signal transmitted through

a channel? Notice that optimal coding, roughly speaking, is to catch most amount of information

using shortest bits, while our optimal testing is to identify most of the system under test using

a smallest amount of testing cost. Testing a large software system is often considered as a team

work: testers communicate with the system under test while running test cases, and, testers com-

municate among themselves to discuss the test results. Those communications can be considered

as a network of channels: tester-system channels and tester-tester channels. This dissertation work

only considers optimal strategies when only one tester-system channel is present. For future work,

one need study an “optimal testing strategy” over the entire network of channels and the optimality

is not only for an individual tester but also for the entire team. We believe that this is related to

the area of “network information theory” (roughly speaking, it is about efficient information com-

munication over a network of channels) [19], which is considered a very difficult and deep part of

modern information theory.
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