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Abstract
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Chair: Ananth Kalyanaraman

Developing high performance computing solutions for modern day biological

problems present a unique set of challenges. The field is experiencing a data rev-

olution due to a rapid introduction of several disruptive experimental technologies.

Consequently, computational methods that analyze biological data are currently be-

ing put to the test in their capability to scale to massive data sizes. Added to this

data-intensiveness, is the brand of computation that is quite different in flavor to that

in other, perhaps more traditional scientific computing fields. The problems are dom-

inated by integer arithmetic, string matching, combinatorial space exploration, and

graph-theoretic formulations that introduce irregularity in computation and commu-

nication patterns.
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In this dissertation, we report on our efforts to bridge the gap between biologi-

cal data processing and high performance computing solutions. Specifically, we focus

on the problem of clustering very large collections of amino acid sequences on dis-

tributed memory supercomputers. Given a set of amino acid sequences we reduce the

problem to one of constructing sequence homology graph and subsequently detect-

ing arbitrarily-sized dense subgraphs. Our approach efficiently parallelizes this task

on a distributed memory machine through a combination of divide-and-conquer and

combinatorial pattern matching heuristic techniques. The major algorithm/software

contributions of this dissertation are: (1) pGraph: for parallel construction of sequence

homology graph; and (2) pClust: for graph-based sequence clustering. Preliminary

tests on an arbitrary collection of ∼2 million amino acid sequences from the Global

Ocean Sampling project database reveal that our new approach is able to improve sen-

sitivity, recruit more sequences, while considerably reducing the time to solution and

memory requirement. The algorithmic techniques developed as part of this research

have a wider applicability to other applications in computational biology wherever

the need for conducting large-scale sequence analysis is the primary bottleneck.
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CHAPTER 1. INTRODUCTION

Whatever you can do, or dream you can, begin it. Boldness has genius, power,

magic in it.

— Goethe

Metagenomics (also called community genomics or environmental genomics) [Han-

delsman et al., 1998] is the field resulting from the application of modern genomics

techniques to study environmental microorganisms directly in their natural environ-

ments. In traditional microbiology, microbes are isolated from their natural envi-

ronment and subsequently cultured in laboratory for further studies. However such

cultivable microbes only account for a very small fraction (< 1%) of the microbes

inhabiting in the natural environments; other microbes that inhabit environments

(e.g. the deep sea vent, soil, human intestine, and hot springs) live as a commu-

nity and cannot be cultured individually under laboratory settings. Such microbial

communities from environmental habits play a vital role in their environments. For

example, microbes in the soil help plants to absorb nitrogen and minerals; microbes

in the human gut help us to break down toxin and digest food; microbes in the ocean

help to clean up the pollutants. Metagenomics aims to study such microbial commu-
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nities living in various environmental habitats. Among several applications, metage-

nomics is expected to create high impact on bioenergy, environmental biotechnology,

pharmaceuticals and agriculture [Handelsman, 2004]. Recent advances in genomics

technologies are beginning to enable the study of these environmental microbes, and

provide both structural and functional insights into the microbial communities that

inhabit these environments.

Metagenomics sequencing starts with deoxyribonucleic acid (DNA) extraction

from a target environment, and the DNAs are cloned into vectors subsequently. These

clones are then transformed into a host bacterium, and subsequently sequenced using

a random shotgun strategy. In this strategy, the genomes are cut into fragments at

random sites, and each fragment is subsequently fed into a DNA sequencing machine

in order to determine the composition of the sequence. Thereafter, the sequences frag-

ments (reads) are computationally assembled into contig sequences. Once sequenced

and assembled, the data can help us answer two fundamental questions about the

target environmental microbial community: “who all are out there?” and “what are

they doing?” While assembling can partially help in answering the first question,

the second question poses more interesting challenges and will be the focal point of

this dissertation. More specifically, our goal is to develop computational methods to

characterize the proteins represented in metagenomics communities.

Proteins are molecules responsible for performing most of the cellular functions
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in an organism. Proteins that are evolutionarily- (and thereby functionally-) related

are said to belong to the same “family”. Identifying protein families is of fundamental

importance to document the diversity of the known protein universe. It also provides

a means to determine the functional roles of newly discovered protein sequences. This

latter cause has become highly significant of late because numerous genome projects

have been completed and as a result there is a sudden expansion of the protein

universe. The most dominant contributor to this information revolution has been the

projects in metagenomics.

Over the last couple of years, numerous metagenomics projects have been ini-

tiated – [Gill et al., 2006, Noguchi et al., 2006, Rusch et al., 2007, Schleper et al.,

2005, Tyson et al., 2004, Venter et al., 2004, Yooseph et al., 2007] to name a few.

A continued analysis of their DNA pool is leading to collections of millions of new

amino acid sequences (called Open Reading Frames – ORFs)1 with a potential to be

functional proteins. Therefore, if the ORF data can be organized into functionally

related groups then it would shed vital insights into community functions. Here,

two types of inferences can be made. If a newly derived ORF can be mapped to

known protein family, then its functional role can be determined based on the known

1Henceforth, we use the terms “ORFs” and “amino acid sequences” interchangeably thereafter
in this dissertation.
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protein family. Otherwise, groups of ORFs that share similarity with one another

but not with any sequences in known protein families can lead to the inference of de

novo protein families. Either way, the resulting inferences can significantly enrich our

understanding of the protein universe represented in the underlying metagenomics

communities.

1.1 Challenges in metagenomics data analysis

In bioinformatics, and particularly in metagenomics, the development of com-

putational algorithms and tools has been unable to keep up with the fast growing

data. Given the number of past and ongoing metagenomics projects, thousands

of new sequences are produced on a daily basis. As of 2007, the Global Ocean

Sampling (GOS) project [Yooseph et al., 2007] alone deposited ∼17 million new se-

quences, which exceeded the number of all known microbial proteins in public repos-

itories, such as the NCBI GenBank [The national center for biotechnology infor-

mation., 2011], UniprotKB/Swiss-Prot [Swiss institute of bioinformatics., 2011], and

IMG/M [Markowitz et al., 2008]). This explosive expansion renders the existing suite

of algorithms and tools inefficient to be adopted into practice.

Current approaches for detecting protein families operate by computing all-

versus-all pairwise sequence similarity, and subsequently using heuristic techniques to
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deduce family relationships from pairwise similarities. There are two key limitations

to this approach: (1) Computing all-versus-all pairwise similarities could become

computationally prohibitive even for hundreds of thousands of sequences because

for n sequences the run-time complexity is Ω(n2). This high complexity is often

times offset by compromising the quality of the output; and (2) The algorithms to

deduce family relationships from pairwise similarities store all pairwise results making

the space complexity Θ(n2). While such high complexity in time and space should

make the problem an ideal candidate to benefit from parallel computing, there are

hardly any parallel approaches. Even those that deploy parallelism resort to brute-

force allocation of tasks across multiple computers and to using specialized large-

memory high-end platforms for tackling the space problem. For example, a recent

analysis [Yooseph et al., 2007] of ∼28.6 million ORFs took an aggregate 106 CPU

hours. The task was parallelized using 125 dual processors systems and 128 16-

processor nodes each containing between 16GB-64GB of RAM.

In addition to the large data size, there are other computational challenges to

contend with in metagenomics sequence analysis.

1. Data intensiveness: Current approaches use fast, heuristic methods (e.g.

BLAST [Altschul et al., 1990]) to detect sequence homology. For better accu-

racy, optimality guaranteeing dynamic programming methods need to be used.

However, running such methods for billions of sequence pairs could become run-
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time prohibitive if executed inefficiently. In our experiments, an all-against-all

pairwise sequence comparison of 20K sequences using dynamic programming

runs for at least 40 CPU hours.

2. Data locality: A second issue is data locality (ensuring data availability dur-

ing computation) becomes a serious problem for parallel processing with the

rapidly growing sequence inputs, because of the limited memory available on

an individual machine.

3. Irregularity: A third challenge is specific to amino acid sequence inputs from

metagenomics data. Compared to DNA sequences, the length distribution of

amino acid sequences in metagenomics datasets is nonuniform, leading to ir-

regular processing time for each pair of sequences. As a concrete example, an

all-against-all comparison analysis of 28 million human DNA sequences in the

2001 Human genome project [Venter et al., 2001] consumed 104 CPU hours;

whereas 106 CPU hours were required to process roughly the same number of

metagenomics ORFs in 2007 [Yooseph et al., 2007] despite the obvious use of

much faster machines.
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1.2 Contributions

In this dissertation, we present the design and development of parallel algo-

rithms and software for characterizing large-scale data sets of amino acid sequences

derived from environmental microbial communities. More specifically, we treat the

problem of protein family characterization as one of graph-theoretic clustering and

propose algorithmic and software solutions that can exploit the aggregate memory

and compute power of massively parallel distributed memory supercomputers.

The major contributions in this dissertation are as follows:

1. pGraph: First, we present a scalable algorithm to detect pairwise amino acid

sequence homology on large-scale distributed memory supercomputers. The

input is a set of amino acid sequences and the output is a sequence homology

graph. Our approach is unique in two ways: (1) It adequately addresses the

inherent irregularities that originate during parallel computation of the sequence

homology graph; and (2) It makes the computation of the large graphs using the

more sensitive optimality-guaranteeing dynamic programming methods feasible

in practice. Experimental results shows that our method scales linearly up to

thousands of processors on large metagenomics collections.

2. pClust: Next, we present an algorithmic heuristic to compute the core of se-
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quence clusters using the graph constructed at the first stage. More specifically,

we treat the problem as one of finding densely connected subgraphs within

large-scale graphs. Our method is different from other existing methods in that

it uses a more accurate heuristic that was originally developed for web com-

munity detection on internet data. By transforming this heuristic to work for

amino acid sequence clustering, we show that it is possible to achieve significant

improvements in the quality of the output. Furthermore, we developed several

algorithmic techniques that result in significant performance improvements as

well.

Extensive experimental evaluation of the algorithms was conducted on state-of-

the-art supercomputers, and the results demonstrate the overall effectiveness of our

approach in its ability to scale to millions of sequences on thousands of processors,

while producing outputs that are qualitatively better than those produced by other

methods. All implementations have been made available as open source.

It is to be noted that the ideas originating in this dissertation can be applied to a

broader segment of applications outside protein family characterization. The tool for

graph clustering, pClust, is a generic dense subgraph detection tool that can work on

arbitrary graphs. Similarly, while our implementation of pGraph is specific to building

amino acid sequence homology detection, the main ideas in parallelization can be

carried forward to other data-intensive scientific applications where irregularities in
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computation patterns pose challenges for scalability.

1.3 Dissertation organization

The dissertation is organized as follows. Chapter 2 presents the basic biological

background and computational tools used in this dissertation. Chapter 3 presents

the design and development of our scalable parallel algorithm (pGraph) for sequence

homology detection, alongside performance studies on large-scale supercomputers. In

Chapter 4, we transform the problem of sequence clustering into one of dense sub-

graph detection problem; following which, our solution called (pClust) was evaluated

extensively on real world data sets with performance and qualitative studies. Chap-

ter 5 concludes the dissertation with a discussion on prospective research directions.
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CHAPTER 2. BACKGROUND

Nothing great was ever achieved without enthusiasm.

— Emerson.

2.1 Biological background

DNA and Genome: Deoxyribonucleic acid (DNA) is a double stranded molecule

that constitutes the genetic material for most living organisms. Each DNA is made

up of a sequence of smaller molecules called “nucleotides”. There are four different

types of nucleotide bases - Adenine (abbreviated A), Cytosine (C), Guanine (G) and

Thymine (T). The sequences in the two strands of a DNA are related through a

“base complementary” rule which is defined as follows: “A” pairing with “T”, “C”

pairing with “G”. By convention only one strand of the DNA sequence is listed as

the representative of the two strands, as the other strand can be deduced using the

complementary pairing rule. Also every DNA sequence is associated with a direction

which starts from 5’ to 3’ end. The set of all DNA in any cell of a living organism is

defined as the organism’s genome.
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RNA, Protein, Gene, and ORF: Similar to the DNA, an RNA is also a

chain of nucleotides. The only exceptions are: (1) instead of Thymine (T), Uracil

(U) is found; and (2) an RNA is a single stranded molecule. For a protein sequence,

the basic construction units are “amino acids”, so it is also called an “amino acid

sequence”. There are 20 known amino acids; they are connected to each other through

peptide bonds. Genes are subsequences in a DNA molecule that code for an RNA

molecule (a process known as transcription). An RNA molecule can then be translated

into a corresponding protein product based on the genetic code (a process known

as translation). In eukaryotic cells, only parts (called “exons”) of each gene are

transcended into RNA molecule; the remaining parts are referred to as “introns”

(no-coding regions), and this process is known as “splicing”. In prokaryotic cells,

however a gene does not contain intronic regions; for the translation, every three

consecutive nucleotides (called a “codon” are translated into an amino acid according

to the genetic code. Given an RNA sequence without the location information of the

stop codon, there are six possible ways to translate the sequences, and each translation

produces what is known as an Open Reading Frame or ORF. The ORFs represent

putative candidates of the real protein sequences.

DNA Sequencing and Assembly: DNA sequencing is a process of deter-

mining the nucleotide composition of a DNA molecule. Most popular technologies

include the traditional Sanger sequencing [Sanger et al., 1977], and a plethora of next-
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generation technologies such as 454 [454 life scientces., 2011], Illumina (Solexa) [Schus-

ter, 2008], and SOLiD [Abi solid sequencing., 2011]. Nevertheless, they can only be

directly applied to small fragment of sequences. Therefore to determine the DNA

composition of a long sequence, shotgun sequencing is employed in recent sequenc-

ing projects. In the shotgun sequencing process, the parent DNA is first randomly

cut into small fragments; then each fragment is fed into a sequencer to have its se-

quence determined. Finally, the sequenced fragments are pieced together to assemble

the sequence of the parent DNA through a computational process called “genome

assembly”.

2.2 Computational tools

Pairwise sequence alignment: The most effective way to study the evolu-

tionary relationship between a pair of sequences is by examining their sequence ho-

mology. Two sequences are said to be “homologous” if they show a “sufficiently” high

degree of sequence similarity. There exists several standard dynamic programming

algorithms [Gotoh, 1982, Needleman and Wunsch, 1970, Smith and Waterman, 1981]

to find the optimal similarity between two sequences. For example, the Needleman-

Wunsch algorithm is used for computing optimal global alignment and the Smith-

Waterman algorithm for optimal local alignment. All these dynamic programming
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based algorithms run in time proportional to the product of the lengths of the two

sequences, i.e. Θ(mn) for two sequences of length m and n. Despite the optimality

of dynamic programming, it can be prohibitive slow when comparing billions of pairs

of sequences. For instance, if we need to search a sequence against a database, which

is represented by concatenating all the sequences in it, then the run-time will be pro-

hibitively expensive as the time complexity of dynamic programming is the product

of the total sequence lengths in database and the length of the query sequence

BLAST (basic local alignment search tool): To speed up this process,

a heuristic method, called “Basic Local Alignment Search Tool” [Altschul et al.,

1990] (BLAST) is widely used by the bioinformatics community despite its relative

low sensitivity [Shpaer et al., 1996]. BLAST can perform sequence comparison for

both amino acid (protein) sequence and nucleotide (DNA) sequence. The main idea

behind BLAST is “seed-and-extend”: First, fixed-length short matches, called “k-

mers” from both sequences are partitioned into corresponding buckets based on their

similarity score; thereafter the short regions with high similarity score are identified

as “seeds”. During the “extend” phrase, the matched regions are extended in both

directions while accounting for mismatches or gaps until their alignment scores drop

below a predefined cutoff. Finally, the extended regions are chained diagonally, and

each individual chained region is reported as a “hit” in the final alignment output.

Comparing to the dynamic programming approaches, the final alignment output by
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BLAST is not guaranteed to be optimal.

Parallel versions of BLAST: Despite the high efficiency of the BLAST al-

gorithm, performance could still become an issue for large databases. For instance,

an all-against-all comparison of 20K sequences using BLAST consumes over 15 CPU

hours on a state-of-the-art computer. In order to keep up with the explosive sequence

growth, two parallel versions of BLAST, scalaBLAST from [Oehmen and Nieplocha,

2006] and mpiBLAST from [Darling et al., 2003] are available. Fundamentally, the

serial version of BLAST serves as the cornerstone in these parallel approaches, and

performance is their primary motivation. Nevertheless, sensitivity is becoming a sig-

nificant concern of late, especially when dealing with highly fragmented metagenomics

data. It is more desirable to use the dynamic programming algorithms to compute

the homology between a pair of sequences.

Suffix tree: Suffix tree [Weiner, 1973] is a compacted trie of all suffixes in a

given string. The edges in the suffix tree are labeled with substrings of the input

string, such that each suffix is expressed by a path starting from the root to a leaf

in the tree. Figure 2.1 shows a suffix tree example for string banana. The con-

struction of the suffix tree for a string can be achieved in a linear time and space

complexity [McCreight, 1976, Ukkonen, 1995, Weiner, 1973]. Suffix trees have direct

applications in a number of matching problems. Examples of such applications in-

clude pattern matching, finding the longest repeated substring, finding the longest
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Figure 2.1: A suffix tree example for string banana. A delimiter $ is appended to the

end of each suffix.

common substring, and finding the longest palindrome in a string. A suffix tree is

called a Generalized Suffix Tree (GST) if it is constructed for a set of sequences. For

each leaf in GST, a sequence identification information is contained accordingly to

differentiate the suffixes coming from different sequences. To keep up with the rapid

data expansion, a couple of parallel algorithms have been developed [Kalyanaraman

et al., 2007, Ghoting and Makarychev., 2009].
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CHAPTER 3. SEQUENCE HOMOLOGY DETECTION

Those are my principles. If you don’t like them, I have others.

— Groucho Marx

3.1 Introduction

Protein sequence homology detection is a fundamental problem in computa-

tional molecular biology. Given a set of protein sequences, the goal is to identify all

pairs of homologous sequences, where similarity constraints are typically defined by

user-specified parameters under an alignment model (e.g., [Needleman and Wunsch,

1970, Smith and Waterman, 1981]). In graph-theoretic terms, the protein sequence

homology detection problem is one of constructing an undirected graph G(V,E),

where V is the set of input protein sequences and E is the set of edges (vi, vj) such

that the sequences corresponding to vi and vj are highly similar.

Most algorithms in bioinformatics that process sequence homology graphs as-

sume that the graph can be easily built or is readily available as input. However,

modern-day use-cases suggest otherwise. Large-scale projects generate millions of

new sequences that need to be matched against themselves and against sequences al-
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ready available and consolidated from previous sequencing projects. For example, the

ocean metagenomics project generated more than 17 million new sequences and this

set was analyzed alongside 11 million sequences in public protein sequence databanks

(for a total of 28.6 million sequences). Consequently, the most time consuming step

during analysis was homology detection, which alone accounted for 106 CPU hours

despite the use of faster approximation heuristics such as BLAST [Altschul et al.,

1990] to determine homology. Ideally, dynamic programming algorithms [Needleman

and Wunsch, 1970, Smith and Waterman, 1981] that guarantee alignment optimality

should be the method of choice as they are generally more sensitive but the associated

high cost of computation coupled with a lack of support in software for coarse-level

parallelism have impeded their application under large-scale settings.

In this chapter, we address the problem of parallelizing homology graph con-

struction on massive protein sequence data sets, and one that will enable the deploy-

ment of the optimality-guaranteeing dynamic programming algorithms as the basis

for pairwise homology detection (or equivalently, edge detection). Although at the

offset the problem may appear embarrassingly parallel (because the evaluation of each

edge is an independent task), several practical considerations and our own experience

[Wu and Kalyanaraman., 2008] suggest it is a non-trivial problem.

Firstly, the problem is data-intensive, even more so than its DNA counterpart.

While the known protein universe is relatively small, modern use-cases particularly in
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metagenomics, in an attempt to find new proteins and families, generate millions of

DNA sequences first and then convert them into amino acid sequences corresponding

to all six open reading frames as protein candidates for evaluation, resulting in a 6×

increase in data volume for analysis2. Tens of millions of such amino acid sequences

are already available from public microbial repositories (e.g., CAMERA [CAMERA,

2011], IMG/M [Markowitz et al., 2008]), and further accumulation is expected. Large

data size creates two complications.

1. A brute-force all-against-all sequence comparison strategy to detect the presence

of edges becomes practically unfeasible due to the quadratic explosion in the

number of alignment computations. Instead, a filtering based strategy, one that

short-lists a smaller subset of sequence pairs based on their potential to pass

the alignment criteria prior to actually computing the alignments, needs to be

used. In practice, exact matching filters that deploy string data structures such

as suffix trees [Weiner, 1973] are highly effective in reducing alignment work

without compromising on quality [Kalyanaraman et al., 2003b, 2007]. While

the time consumed by these advanced filters for pair generation is relatively

less when compared to alignment computation, it is certainly not negligible.

2Henceforth for simplicity of exposition, we will use the terms “amino acid sequences”, “protein
sequences” and “ORFs” interchangeably; although in practice an amino acid sequence need not
represent a complete or real protein sequence.
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From a parallel implementation standpoint, this means that we could not use

a standard work distribution tool — instead, work generation also needs to be

parallelized dynamically alongside work processing, in order to take advantage

of these sophisticated filters.

2. A large data size also means that the local availability of sequences during align-

ment processing cannot be guaranteed under the distributed memory machine

setting. Alternatively, moving computation to data is also virtually impossible

because a pair identified for alignment work could involve arbitrary sequences

and could appear in an arbitrary order during generation, both of which are

totally data-dependent.

A second major challenge in protein sequence homology detection is that the

handling of amino acid sequence data gives rise to some unique irregularity issues

that need to be contended with during parallelization.

1. Assuming “work” refers to a pair of sequences designated for alignment com-

putation, the time to process each unit of work could be highly variable. This is

because the time for aligning two sequences using dynamic programming takes

time proportional to the product of the lengths of the two sequences [Needleman

and Wunsch, 1970, Smith and Waterman, 1981]. And, amino acid sequences

tend to have a substantial variability in their lengths, as we will also shown in
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Section 4.4.

2. For amino acid data, the rate at which work is generated could also be non-

uniform. For instance, similar sized portions of the suffix tree index could yield

drastically different number of sequence pairs, as the composition of the index

is data dependent. A priori stocking of pairs that require alignment is simply

not an option because of a worst-case quadratic requirement.

Note that these challenges do not typically arise when dealing with DNA. For

instance, in genome sequencing projects the lengths of raw DNA sequences derived

from modern day DNA sequencers are typically uniform. This coupled with the nature

of sampling typically leads to predictable workload during generation and processing.

In case of metagenomics protein data, the higher variability in sequence lengths is a

result of the translation done on the assembled products of DNA assembly (i.e., not

raw DNA sequences). Because of this variability, analysis of protein data tends to

take longer time and more difficult to parallelize. For example, in the human genome

assembly project [Venter et al., 2001], the all-against-all sequence homology detection

of roughly 28 million DNA sequences consumed only 104 CPU hours. Contrast this

with the 106 CPU hours observed for analyzing roughly the same number of protein

sequences in the ocean metagenomic project despite the use of much faster hardware

[Yooseph et al., 2007].
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The rest of this chapter is organized as follows. Section 4.2 presents the current

state of art for parallel sequence homology detection. Section 4.3 presents our pro-

posed method and implementation details. Experimental results are presented and

discussed in Section 4.4, and Section 3.5 concludes this chapter.

3.2 Related work

Sequence homology between two biomolecular sequences can be evaluated either

using rigorous optimal alignment algorithms in time proportional to product of the

sequence lengths [Needleman andWunsch, 1970, Smith andWaterman, 1981], or using

faster, approximation heuristic methods such as BLAST [Altschul et al., 1990] and

FASTA [Pearson and Lipman., 1988]. Detecting the presence or absence of pairwise

homology for a set of protein/amino acid sequences, which is the subject of this

chapter, can be modeled as a homology graph construction problem with numerous

applications (e.g., [Apweiler et al., 2004, Bateman et al., 2004, Enright et al., 2002,

Kriventseva et al., 2001, Olman et al., 2007]). The rapid adoption of cost-effective,

high throughput sequencing technologies is contributing millions of new sequences into

sequence repositories [CAMERA, 2011, Markowitz et al., 2008, The national center

for biotechnology information., 2011]. As a result, detection of pairwise homology

over these large data sets is becoming a daunting computational task.
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An indirect option for implementing homology detection is to use the NCBI

BLAST program [Altschul et al., 1990], which is a method originally designed for

performing sequence database search (query vs. database). This can be done by

setting both the query and database sets to the input set of sequences. For instance,

the ocean metagenomics survey project [Yooseph et al., 2007] used BLAST to per-

form all-against-all sequence comparison. This took 106 CPU hours — a task that

was parallelized, albeit in an ad hoc manner, by manually partitioning across 125

dual processors systems and 128 16-processor nodes each containing between 16GB-

64GB of RAM. Several mature parallel tools are available for BLAST — the most

notable tools being mpiBLAST [Darling et al., 2003] and ScalaBLAST [Oehmen and

Nieplocha, 2006]. These methods run the serial version of NCBI BLAST at their

cores, while offering a high degree of coarse-level parallelism and have demonstrated

scaling to high-end parallel machines. In addition to being relatively quicker, BLAST

also provides a statistical score of significance for comparing a query sequence against

a database of sequences.

The use of BLAST based techniques however comes with reduced sensitivity

[Pearson., 1991, Shpaer et al., 1996], as the underlying algorithm is really an approx-

imation heuristic for computing alignments. Comparatively, the dynamic program-

ming algorithms offer alignment optimality but are generally a couple of orders of

magnitude slower. Nevertheless, sensitivity is becoming a significant concern of late,
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especially when dealing with metagenomics data processing because of its highly

fragmented nature of sampling. Another less desirable side effect of using BLAST for

protein sequence data is that it uses the lookup table data structure which is limited

to detection of only short, fixed-length matches between pairs of sequences. This

could result in more pairs to be evaluated. Other string data structures such as suffix

trees provide more specificity when it comes to the choice of pairs to evaluate due to

their ability to detect longer, variable-length matches.

Due to the advantages in using dynamic programming, there has been a flurry

of efforts for implementing hardware-level acceleration for optimal pairwise sequence

alignment computation on different architectures (reviewed in [Sarkar et al., 2010]).

However, there is a dearth in research that has targeted at achieving coarse-level

parallelism for carrying out millions of such alignment computations. There have

been a few efforts for DNA sequence analysis [Kalyanaraman et al., 2003a, 2007],

but carrying out protein sequence homology detection at a large-scale has not been

addressed to the best of our knowledge.

3.3 Algorithms

Notation: Let S = {s1, s2, . . . , sn} denote the set of n input protein sequences. As-

suming |s| denotes the length of sequence s and m = Σn
i=1
|si| denotes the total length
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of all sequences in S. Let τ be the predefined redundant sequence similarity cutoff.

Let G = (V,E) denote a graph defined as V = S and E = {(si, sj) | si and sj are

“similar”, defined as per pre-defined alignment cutoffs.}. We use the term “pair” to

refer to an arbitrary pair of sequences (si, sj).

3.3.1 Suffix tree indexing

A brute-force approach to detect the presence of an edge is to enumerate all pos-

sible (
(

n
2

)

) pairs of sequences and retain only those as edges which pass the alignment

test. Alternatively, since alignments represent approximate matching, the presence

of long exact matches can be used as a necessary but not sufficient condition. This

approach can filter out a significant fraction of poor quality pairs and thereby reduce

the number of pairs to be aligned significantly. Suffix tree based filters provide one

of the best filters — for instance, anywhere between 67% to over 99% savings for our

experiments shown later in the results section (Table 3.2).

To implement exact matching using suffix trees, we use the optimal pair gener-

ation algorithm described in [Kalyanaraman et al., 2003a], which detects and reports

all pairs that share a maximal match of a minimum length ψ. The algorithm first

builds a Generalized Suffix Tree (GST) data structure as a string index for the strings



25

in S and then traverses the tree in a bottom-up fashion to generate pairs from different

nodes. Suffix tree construction is a well studied problem in both serial and parallel,

and any of the standard, serial linear-time construction methods [McCreight, 1976,

Ukkonen., 1990, Weiner, 1973] can be used, or efficient distributed memory codes can

be used for parallelism [Kalyanaraman et al., 2007, Ghoting and Makarychev., 2009].

Either way, the tree index can be generated in one preprocessing step and stored in

the disk3.

For our purpose, we generate the tree index as a forest of disjoint subtrees

emerging at a specified depth ≤ ψ, so that the individual subtrees can be indepen-

dently traversed in parallel to generate pairs. Given that the value of ψ is typically a

small user-specified constant, the choice for the cutting depth is restricted too. This

implies that the size distribution of the resulting subtrees can be nonuniform and is

input dependent. It is also to be noted that, even though the pair generation algo-

rithm runs in time bound by the number of output pairs, the process of generation

itself could also be nonuniform — in that, subtrees of similar size could produce dif-

ferent number of pairs and/or at different rates, and the behavior is input-dependent.

3Note that there are other, more space-efficient alternatives to suffix trees such as suffix arrays
and enhanced suffix arrays, which can also be equivalently used to generate these pairs with some
appropriate changes to the pair generation code. That said the type of challenges dealt with the
tree during parallel pair generation and the solutions proposed would still carry over to these other
representations.
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For instance, if a section of subtree receives a highly repetitive fraction of the input

sequences then it is bound to generate a disproportionately large number of pairs.

Encouragingly, a small value for the cutting depth is not a limiting factor when it

comes to the number of subtrees and is sufficient to support a high degree of paral-

lelism. This is because the number of subtrees is expected to grow exponentially with

the cutting depth; for instance, a cutting depth as small as 4 on a tree built out of

protein sequences (alphabet size 20) could produce around 160K trees (as shown in

experimental results).

3.3.2 Graph construction

Problem 1 Given a set S of n protein sequences and p processors, the protein se-

quence graph construction problem is to detect and output the edges of G = (V,E) in

parallel.

We present here an efficient parallel algorithm to construct the homology graph

G using the suffix tree index constructed in the previous step and the input sequence

set S. The inputs include the sequence set S and the tree index T . The tree index is

available as a forest of k subtrees, which we denote as T = {t1, t2, . . . tk}. The output

of pGraph should be the set of all edges of the form (si, sj) s.t., the sequences si and sj



27

stat
us

..
.

..
.

Consumers

Master
Consumers

Master

compute alignmentSubgroup1

pair generation

Producers

Producers

..
.

..
.

.
.
.

Supermaster

re
qu
es
t t
re
es
,

re
di
st
rib
ut
e p

ai
rs

tre
es

pair
s

pairs

pairs

output edges

to file

output edges

to file

pair
s

..
.

Subgroupi

Figure 3.1: The overall system architecture for pGraph.

pass the alignment test based on user-defined cutoffs. There are two major operations

that need to be performed in parallel: i) generate pairs from the tree index; and ii)

compute sequence alignments and output edges if they pass the predefined cutoffs.

Our method uses a hybrid variant between the hierarchical multiple-master/worker

model and producer-consumer model to counter the challenges posed by the irreg-

ularities in pair generation and alignment rates. The overall system architecture is

illustrated in Figure 3.1.

Given p processors and a small number q ≥ 3, the parallel system is partitioned

as follows: i) one processor is designated to act as the supermaster for the entire

system; and ii) the remaining p − 1 processors are partitioned into subgroups of
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size q processors each4. Furthermore, each subgroup is internally organized with r

processors designated to the role of producers, one processor to the role of a master,

and c processors to the role of consumers, where c = q − r − 1.

At a high level, the producers are responsible for pair generation, the masters

for distributing the alignment workload within their respective subgroups, and the

consumers for computing alignments. The supermaster plays a supervisory role to

ensure load is distributed evenly among subgroups. Unlike traditional models, the

overall data flow is from supermaster to the subgroups and also back (for redistribu-

tion). In what follows, we describe the various design factors and present algorithms

and protocols for each component in the system.

Let:

Pbuf ← a fixed sized pair buffer at the producer;

Mbuf ← a fixed sized pair buffer at the master;

Cbuf ← a fixed sized pair buffer at the consumer;

Sbuf ← a fixed sized pair buffer at the supermaster;

b1 ← batch size (for pairs) from producer or supermaster to master;

b2 ← batch size (for pairs) from master to consumer;

4With the possible exception of the last subgroup which may obtain less than q processors if
(p− 1)%q 6= 0.
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Producer: the primary responsibility of a producer is to load a subset of

subtrees in T and generate pairs using the maximal matching algorithm in [Kalya-

naraman et al., 2003a]. The main challenge here is that trees allocated at a producer

could result in generation of pairs at a variable rate, although this generation rate is

virtually guaranteed to be faster than the rate of consumption (alignment). This is

because the pair generation is a simple cross product of sets at any given tree node.

To tackle an overactive producer, we maintain a fixed-size pair buffer at each producer

(∼ 80MB in our current implementation) and pause the generation process when the

buffer is full. This is possible because the pair generation algorithm in [Kalyanaraman

et al., 2003a] is an on-demand method. Furthermore, the tree allocation is left to the

supermaster and pair allocation from the producer is left to the local master in our

design.

More specifically, we follow the algorithm shown in Algorithm 1. Initially, a

producer fetches a batch of subtrees (available as a single file) from the supermaster.

The producer then starts to generate and enqueue pairs into Pbuf . Subsequently,

the producer dequeues and sends b1 pairs to the master. This is implemented using

a nonblocking send so that when the master is not yet ready to accept pairs, the

producer can continue to generate pairs, thereby allowing masking of communica-

tion. After processing the current batch of subtrees, the producer repeats the process
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by requesting another batch of subtrees from the supermaster. Once there are no

more subtrees available, the producers dispatch the rest of pairs to both master and

supermaster, depending on whoever is responsive to their nonblocking sends. This

strategy gives the producer an option of redistributing its pairs to other subgroups

(via supermaster) if the local group is busy. We show in the experimental section

that this strategy of using the supermaster route pays off significantly and ensures

the system is load balanced.

Master: the primary responsibility of a master is to ensure all consumers in its

subgroup are always busy with alignment computation. Given that pairs could take

varying time for alignment, it is more desirable to have the local consumers request for

pairs from the local master, than have the master push pairs to its local consumers.

Furthermore, to prevent work starvation at the consumers, it is important the master

responds in a timely fashion to consumer requests. The hierarchical strategy of main-

taining small subgroups helps alleviate this to a certain extent. Another challenge

for the master is to accommodate the irregular rate at which its local producers are

supplying new pairs. A fast supply rate could overrun the local pair buffer. Ideally,

we could store as many pairs as can be stored at the fixed size Mbuf at the master;

however, assuming a protocol where the pairs stored on a local master cannot be

redistributed to other subgroups, pushing all pairs into a master node may introduce

parallel bottlenecks during the ending stages. The above challenges are overcome as
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Algorithm 1 Producer

1. Request a batch of subtrees from supermaster
2. while true do
3. Ti ← received subtrees from supermaster
4. if Ti = ∅ then
5. break while loop
6. else
7. repeat
8. if Pbuf is not FULL then
9. Generate at most b1 pairs from Ti
10. Insert new pairs into Pbuf

11. end if
12. if sendP→M completed then
13. Extract at most b1 pairs from Pbuf

14. sendP→M ← Isend extracted pairs to master
15. end if
16. until Ti = ∅
17. Request a batch of subtrees from supermaster
18. end if
19. end while
20. /* Flush remaining pairs */
21. while Pbuf 6= ∅ do
22. Extract at most b1 pairs from Pbuf

23. if sendP→M completed then
24. sendP→M ← Isend extracted pairs to master
25. end if
26. if sendP→S completed then
27. sendP→S ← Isend extracted pairs to supermaster
28. end if
29. end while
30. Send an END signal to Supermaster
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follows (see Algorithm 2).

Initially, to ensure that there is a steady supply and dispatch of pairs, the

master listens for messages from both its producers and consumers. However, once

|Mbuf | reaches a preset limit called τ , the master realizes that its suppliers (could be

producers or supermaster) have been overactive, and therefore shuts off listening to

its suppliers, while only dispatching pairs to its consumers until |Mbuf | ≤ τ . This

way, priority is given to consumer response as long as there are sufficient pairs inMbuf

for distribution, while at the same time, preventing buffer overruns from happening

due to an aggressive producer.

On the other hand, when the local set of producers cannot provide pairs in a

timely fashion, which could happen at the ending stages when the subtree list has

been exhausted, the supermaster could help provide pairs from other subgroups. To

allow for this feature, the master opens its listening port to the supermaster as well,

whenever it does it to the local producers.

As for serving consumers, the master maintains a priority queue, which keeps

track of the states of the work buffers at its consumers based on the latter’s most

recent status report. The priority represents the criticality of the requests sent from

consumers, and is defined based on the number of the pairs left at the consumers’

Cbuf . Accordingly the master dispatches work to the consumers. This implies that

the master, instead of pushing pairs on to consumers, waits for consumers to take
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the initiative in requesting pairs, while reacting in the order of their current workload

status.

While frequent updates from consumers could help the master to better assess

the situation on each consumer, such a scheme will also increase communication

overhead. As a tradeoff, we implement a priority queue by maintaining three levels

of priority depending on the Cbuf size: 1

2
-empty, 3

4
-empty, and completely empty, in

increasing order of priority.

Consumer: the primary responsibility of a consumer is to compute optimal

alignments using the Smith-Waterman algorithm [Smith and Waterman, 1981] for the

pairs allocated to it by its master and output edges for pairs that succeed the align-

ment test. One of the main challenges in consumer design to ensure the availability

of sequences for which alignment is being performed, as the entire sequence set S

cannot be expected to fit in local memory for large inputs. To fetch sequences not

available in local memory, we considered two options: one is to use I/O (assuming

all consumers have access to a shared file system with the sequence file); and the

second option is to fetch them over the network intraconnect from other processors

that have them. Intuitively, the strategy of using I/O to fetch unavailable sequences

can be expected to incur large latency because the batch of sequences to be aligned at

any given time could be arbitrary, thereby implying random I/O calls. Unless there

is access to a efficient parallel I/O system, such a strategy is not likely to scale to
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Algorithm 2 Master

1. τ : predetermined cutoff for the size of Mbuf

2. Q: priority queue for consumers
3. while true do
4. /* Recv messages */
5. if |Mbuf | > τ then
6. msg ← post Recv for consumers
7. else
8. msg ← post open Recv
9. if msg ≡ pairs then
10. Insert pairs into Mbuf

11. if msg ≡ END signal from supermaster then
12. break while loop
13. end if
14. else if msg ≡ request from consumer then
15. Place consumer in the appropriate priority queue
16. end if
17. end if
18. /* Process consumer requests */
19. while |Mbuf | > 0 and |Q| > 0 do
20. Extract a highest priority consumer, and send appropriate amount of pairs
21. end while
22. end while
23. /* Flush remaining pairs to consumers */
24. while |Mbuf | > 0 do
25. if |Q| > 0 then
26. Extract a highest priority consumer, and send appropriate amount of pairs
27. else
28. Waiting consumer requests
29. end if
30. end while
31. Send END signals to all consumers
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larger system sizes. On the other hand, using the intraconnect network could also

potentially introduce network latencies, although the associated magnitude of such

latencies can be expected to be much less when compared to I/O latencies in prac-

tice. In addition, if implemented carefully network related latencies can be effectively

masked out in practice (as will be shown in the experimental results).

To test and compare these two models, we implemented both two versions:

pGraphnb that uses nonblocking communication calls and pGraphI/O that uses I/O

to do sequence fetches. As a third alternative option one can also think of using

MPI one-sided communications (instead of nonblocking calls), particularly since the

sequence fetches are read-only operations and therefore it becomes unnecessary to

involve the remote processor during fetch. However, with one-sided communications,

the problem lies in arranging these calls. Performing a separate one-sided call for every

sequence that needs to be fetched at any given time is not a scalable option because

that would mean that the number of calls is proportional to the number of pairs

aligned in the worst case. On the other hand, aggregating the sequence requests by

their source remote processor and issuing a single one-sided call to each such processor

runs the disadvantage of fetching more sequence information than necessary. This is

because one-sided calls can only fetch in windows of contiguously placed sequences

and will therefore bring in unwanted sequences that could be between two required

sequences. Due to these constraints, we did not implement a one-sided version. In
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what follows, we present the consumer algorithm that uses network for sequence

fetching. The details for the I/O version should immediate follow from the description

for pGraphnb and are omitted.

The consumer for pGraphnb follows Algorithm 3. Each consumer maintains a

fixed size pair buffer Cbuf and a sequence cache Sc. The sequence cache (Sc) is divided

into two parts: (i) a static sequence cache Ss
c of size O(m

c
) (preloaded from I/O); and

(2) a fixed-size dynamic sequence cache Sd
c — a transient buffer to store dynamically

fetched sequences from other consumers. During initialization, the consumers within

each subgroup load the input sequence set S into their respective Ss
c in a distributed

manner such that each consumer gets a unique contiguous O(m
c
) fraction of input

bytes. The assumption that the collective memory of all the c consumers in a sub-

group is sufficient to load S is without loss of generality because the subgroup size

can always be increased to fit the input size if necessary. The characteristic of this

application in practice is that thousands of processors are needed to serve the purpose

of computation, while the memory on tens of processors are typically sufficient to fit

the input sequence data. The strategy of storing the entire sequence set within each

subgroup also has the advantage that communications related to sequence fetches can

be kept local to a subgroup, thereby reducing hotspot occurrences.

When a consumer receives a batch of new pairs from its master, it first identifies

the sequences which are not present in Ss
c and S

d
c , and subsequently sends out sequence
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requests to those consumers in the same subgroup that contains those sequences.

When a consumer receives a batch of requests from another consumer, it packs the

related sequences and dispatch them using a nonblocking send. When the remote

sequences arrive, the receiving consumer unpacks the sequences into Sd
c . A separate

counter is maintained with each sequence entry in Sd
c to keep track of the number of

pairs in Cbuf requiring that sequence at any time. If the counter becomes zero at any

stage, then the memory allocated for the sequence is released. The dynamic cache is

intended to serve as a virtual window of sequences required in the recent past, and

could help reduce the net communication volume. In fact we observed that about

60% savings (as will be shown in the results section). Furthermore, the worst-case

dynamic sequence cache size is proportional to 2× |Cbuf |.

The consumer also sends reports of its Cbuf size to its local master in a timely

fashion. The states are 1

2
-empty, 3

4
-empty, and completely empty. Once a status is

sent, the consumer continues to process the remaining pairs in Cbuf .

If Cbuf becomes empty, the consumer sends an empty message to inform master

that it is starving and waits for the master to reply.

Supermaster: the primary responsibility of the supermaster is to ensure that

both the pair generation workload and pair alignment workload are balanced across

subgroups. To achieve this, the supermaster follows Algorithm 4. At any given iter-

ation, the supermaster is either serving a producer or a master. For managing the
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Algorithm 3 Consumer

1. ∆ = {0, 1
4
, 1
2
}|Cbuf |: empty, quarter, half buffer status

2. ns: number of sequences to be cached statically
3. Ss

c : static sequence cache
4. Sd

c : dynamic sequence cache
5. recv ←post nonblocking receive
6. Ss

c ← load ns sequences from I/O
7. while true do
8. if recv completed then
9. if Sequence request from consumer ck then
10. Pack sequences and send them out to ck
11. recv ←post nonblocking receive
12. else if Sequences from other consumer then
13. Sd

c ← unpack received sequences
14. recv ←post nonblocking receive
15. else if Pairs from master then
16. Insert pairs into Cbuf

17. Identify sequences to fetch from others
18. Send sequence requests to other consumers
19. recv ←post nonblocking receive
20. end if
21. else
22. if |Cbuf | > 0 then
23. Extract next pair (i, j) from Cbuf

24. if si, sj ∈ S
s
c ∪ S

d
c then

25. Align sequences si and sj
26. Output edges (si, sj) if they pass cutoffs
27. else
28. Append pair (i, j) at the end of the Cbuf

29. end if
30. if |Cbuf | ∈ ∆ then
31. Report |Cbuf | status to master
32. end if
33. end if
34. end if
35. end while
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pair generation workload, the supermaster assumes the responsibility of distributing

subtrees (in fixed size batches) to individual producers. The supermaster, instead

of pushing subtree batches to producers, waits for producers to request for the next

batch. This approach guarantees that the run-time of the producers (and not neces-

sarily the number of subtrees processed) is balanced at program completion.

The second task of the supermaster is to serve as a conduit for pairs to be re-

distributed across subgroup boundaries. To achieve this, the supermaster maintains

a local buffer, Sbuf . Producers can choose to send pairs to supermaster if their re-

spective subgroups are saturated with alignment work. The supermaster then decides

to redirect the pairs (in batches of size b1) to masters of other subgroups, depending

on their respective response rate (dictated by their current workload). This func-

tionality is expected to be brought into effect at the ending stages of producers’ pair

generation, when there could be a few producers that are still churning out pairs in

numbers while other producers have completed generating pairs. As a further step

toward ensuring load balanced distribution at the producers’ ending stages, the su-

permaster sends out batches of a reduced size, b1
2
, in order to compensate for the

deficiency in pair supply. Correspondingly, the masters also reduce their batch sizes

proportionately at this stage. As shown in the experimental section, the supermaster

plays a key role in load balancing of the entire system.
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Algorithm 4 Supermaster

1. Let P = {p1, p2, ...} be the set of active producers
2. recvS←P ← Post a nonblocking receive for producers
3. while |P | 6= 0 do
4. /* Serve the masters*/
5. if |Sbuf | > 0 then
6. mi ← Select master for pairs allocation
7. Extract and Isend b1 pairs to mi

8. end if
9. /* Serve the producers*/
10. if recvS←P completed then
11. if msg ≡ subtree request then
12. Send a batch of subtrees (Ti) to corresponding producer
13. else if msg ≡ pairs then
14. Insert pairs in Sbuf

15. end if
16. recvS←P ← Post a nonblocking receive for producers
17. end if
18. end while
19. Distribute remaining pairs to all masters in a round-robin way
20. Send END signals to all masters
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3.3.3 Redundant sequence removal

In microbial environments, some organisms are more abundant than others. To

interpret this abundance in sequence level, some sequences are expected to be over

represented. These over-represented (“redundant”) sequences do not provide any

additional information during homology detection or for clustering. So it is better

to eliminate them before the subsequent analysis. For a sequence to be treated as

“redundant” regarding to another sequence, the criteria are defined as: (1) at least

98% of matched regions should be included in the alignment; (2) 95% of the shorter

sequence should participate in the alignment; and (3) alignment score is greater than

95% of the optimal self-score of the shorter sequence. If two sequences, say s1 and s2

satisfy this criteria, we denoted it as τ(s1, s2) = 1; otherwise τ(s1, s2) = 0. Based on

this redundant criteria, the redundant sequence problem can be formally defined as

follows:

Problem 2 Given a set S = {s1, s2, · · · , sn} of n sequences and a predefined redun-

dant criteria τ , the redundancy removal problem is to find a subset S ′ of S, such that

∀si, sj ∈ S
′, i 6= j, τ(si, sj) = 0.

Ideally we would expect to remove these redundant sequences before the se-

quence homology detection (graph construction) step; however to identify these re-
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dundant sequences, we have to perform a similar operation like “graph construc-

tion” only with more stringent criteria. This identification process will be as time-

consuming as the graph construction itself. A careful observation will find out that

if one sequence is treated as redundant comparing to another, then an “edge” must

also be preserved between the two sequences. In that case, we could integrate the

redundant removal step into the graph construction process. The basic idea is as

follows: if two sequences pass the predefined “edge” criteria, then it is more likely

for them to meet the redundant criteria (the “edge” criteria is a necessary but not

sufficient condition to confirm a sequence as redundant); if not, no redundancy check

is required at all. If two sequences pass the predefined redundancy cutoffs, then in our

case the shorter sequence is marked down as redundant. After the graph construction

process, all the marked sequences are removed thereafter for subsequent analysis.

As indicated in graph construction part, each sequence is directed mapped into

a vertex in graph G = (V,E). In order to remove these redundant sequences (vertices

in G), we basically enumerate all the constructed edges in graph G, and if either

vertex of the edges overlap with the marked vertices, then the edge and associated

vertices are eliminated from the graph G.
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3.4 Experiments

3.4.1 Implementation

The pGraph code was implemented in C/MPI, and the “redundant sequence

removal” step was implemented as post-processing in Perl. the All parameters de-

scribed in the algorithm section were set to values based on preliminary empirical

tests. The default settings are as follows: b1 =30,000; b2 =2,000; |Pbuf | = 1 × 107;

|Mbuf | = 6 × 104; |Cbuf | = 6 × 103; |Sbuf | = 4 × 106. Two sequences are said to be

“homologous”, if they share a local alignment with a minimum 40% identity and if

the alignment covers at least 80% of the longer sequence.

The software and related documentation is freely available as open source and

can be obtained through link: http://code.google.com/p/psgraph/.

3.4.2 Experimental setup

Input data: The pGraph implementations were tested using an arbitrary collec-

tion of 2.56× 106 (n) amino acid sequences representing an ocean metagenomic data

set available at the CAMERA metagenomics data archive [CAMERA, 2011]. The

sum of the length of the sequences (m) in this set is 390,345,218, and the mean±σ

is 152.48 ± 167.25; the smallest sequence has 1 residue and longest 32,794 residues.

http://code.google.com/p/psgraph/
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Smaller size subsets containing 20K, 40K, 80K, . . ., 1.28× 106 were derived and used

for scalability tests.

Experimental platform: All tests were performed on the Chinook supercomputer

at the EMSL facility in Pacific Northwest National Laboratory. This is a 160 TF

supercomputer running Red Hat Linux and consists of 2,310 HP DL185 nodes with

dual socket, 64-bit, Quad-core AMD 2.2 GHz Opteron processors with an upper limit

of 4 GB RAM per core. The network interconnect is Infiniband. A global 297 TB

distributed LUSTRE file system is available to all nodes.

pGraph-specific settings: Even though 4 GB RAM is available at each core, for all

runs we set a strict memory upper limit for usage to O(m
c
) per MPI process, where c is

the number of consumers in a subgroup. This was done to emulate a generic use-case

on any distributed memory machine including those with limited memory per core.

At the start of execution, all consumers in a subgroup load the input sequences in a

distributed even fashion such that each consumer receives a unique O(m
c
) fraction of

the input. The locally available set of sequences is referred to as the “static sequence

cache”. Any additional sequence that is temporarily fetched into local memory during

alignments is treated as part of a fixed size “dynamic sequence cache”.

To generate the suffix tree index required for all input sets, a construction

code from one of our earlier developments [Kalyanaraman et al., 2007] was used.

The suffix tree index for each input is generated as a forest of subtrees, one for
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each unique k − mer in the input. We used k = 4 for all trees. The tree index

statistics for the different input sets are shown in Table 3.1. A single CPU was used

to generate the trees for all our experiments because the tree construction is quick

and expected to scale linearly with input size, as shown in the table. For larger

inputs, any of the already available parallel implementations can be used [Ghoting

and Makarychev., 2009, Kalyanaraman et al., 2007]. Table 3.1 also shows the number

of subtrees generated for each input set. As k was used, the total for all our runs, we

assume that the tree index is already built using any method of choice and stored in

the disk.

For all the performance results presented in Section 3.4.4, we set the subgroup

size to 16 and the number of producers per subgroup to 2 (to approximate a pro-

ducer:consumer ratio of 1:7 within each subgroup). The effect of changing these

parameters are later studied in Section 3.4.3.

3.4.3 Parametric studies

We studied the effect of subgroup size on pGraphnb’s performance by varying

the subgroup sizes from 8, 16, 32, . . . to 512, and keeping the total processor size

fixed at 1,024 on the 640K input. In all our experiments, a producer:consumer ratio
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No. input Total sequence No. subtrees No. tree Construction time
sequences length in the forest nodes (in secs; single CPU)

20K 3,852,622 133,639 5,721,111 3
40K 8,251,063 149,501 12,318,567 6
80K 20,600,384 158,207 30,952,989 26
160K 43,480,130 159,596 66,272,332 56
320K 86,281,743 159,991 128,766,176 108
640K 160,393,750 160,000 237,865,379 205
1,280K 222,785,671 160,000 306,132,294 300
2,560K 392,905,218 160,000 533,746,500 520

Table 3.1: Sequence and suffix tree index statistics for different input sets.

of 1:7 ratio was approximately maintained within each subgroup to reflect the average

pair generation to alignment cost ratio. For example, a subgroup with 8 processors

will contain 1 producer, 1 master and 6 consumers; whereas a subgroup with 512

processors will contain 64 producers, 1 master and 447 consumers. Note that a larger

group size implies less number of subgroups to manage for the supermaster and also

more importantly, more number of consumers to contribute to alignment computa-

tion. However, as the number of consumers per subgroup increase, the overheads

associated with the local master response time and for sequence fetches from other

consumers also increase. Therefore, it is increasingly possible that a consumer spends

more time waiting (or idle) for data. Figure 3.2 shows the parallel run-time and the

portion of it that an average consumer spends idle waiting either for pairs from the
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Figure 3.2: Chart showing the effect of changing the group size on performance. All

runs were performed on the 640K input, keeping the total number of processors fixed

at 1,024.

local master or for sequences from other consumers. As expected, we find that the

total time reduces initially due to faster alignment computation, before starting to

increase again due to increased consumer idle time. The figure also shows an empiri-

cally optimal run-time is achieved when the subgroup size is between 16 and 32. Even

though this optimal breakeven point is data dependent, the general trend should hold

for other inputs as well.
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3.4.4 Performance evaluation

Comparative evaluation: pGraphI/O vs. pGraphnb: at first, we compare the two

versions of our software, pGraphI/O and pGraphnb, which use I/O and non-blocking

communication, respectively, for fetching sequences not in either of the local sequence

caches during alignment at consumers. Figure 3.3 shows the runtime breakdown of

an average consumer under each implementation, on varying number of processors

for the 640K input. Both implementations scale linearly with increasing processor

size. However, in pGraphI/O, alignment time accounted only for ∼ 80% of the total

run-time, and the remaining 20% of the time is dominated primarily by I/O, for all

processor sizes. In contrast, for pGraphnb nearly all of the run-time was spent per-

forming alignments leaving the overhead associated with non-blocking communication

negligible. Notably, the non-blocking version is 20% faster than the I/O version. The

trends observed hold for other data sets tested as well (data not shown). The results

show the effectiveness of the masking strategies used in the non-blocking implemen-

tation and more importantly, its ability to effectively eliminate overheads associated

with dynamic sequence fetches through the network. This coupled with the linear

scaling behavior observed for pGraphnb makes it the implementation of choice.

Note that the linear scaling behavior of pGraphI/O can be primarily attributed

to the availability of a fast, parallel I/O system such as Lustre. Such scaling cannot
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Figure 3.3: Comparison of the I/O and non-blocking communication versions of

pGraph. Shown are the runtime breakdown for an average consumer between the

two versions. All runs were performed on the 640K input sequence set. The re-

sults show the effectiveness of the non-blocking communication version in eliminating

sequence fetch overhead.

be expected for systems that do not have a parallel I/O system in place. In what

follows, we present all of our performance evaluation using only pGraphnb as our

default implementation.

Performance evaluation for pGraphnb:



50

Input Number of processors (p) #pairs

#seqs. (n) 16 32 64 128 256 512 1,024 2048 (in millions)

20K 398 192 94 49 26 14 9 - 6.5
40K 1,217 583 286 143 73 37 20 - 16.9
80K 19,421 9,260 4,481 2,243 1,146 616 373 - 48.5
160K - - 7,666 3,837 1,978 1,011 574 356 125.6
320K - - 16,283 8,056 4,061 2,082 1,060 623 365.7
640K - - 23,102 11,481 5,739 2,942 1,561 893 590.1
1,280K - - - 32,113 16,042 8,014 4,031 2,066 2,410.4
2,560K - - - 124,884 62,222 31,103 15,639 7,975 5,258.3

Table 3.2: The run-time (in seconds) for pGraphnb on various input and processor
sizes. An entry ‘-’ means that the corresponding run was not performed. The last
column shows the number of pairs aligned (in millions) for each input as a measure
of work.

Table 3.2 shows the total parallel runtime for a range of input sizes (20K . . .

2,560K) and processor sizes (16 . . . 2,048). The large input sizes scale linearly up to

2,048 processors and more notably, inputs even as small as 20K scale linearly up to

512 processors. The speedup chart is shown in Figure 3.4. All speedups are calculated

relative to the least processor size run corresponding to that input. The smallest run

had 16 processors because it is the subgroup size. The highest speedup (2, 004×)

was achieved for the 2,560K data on 2,048 processors. Figure 3.5 shows the parallel

efficiency of the system. As shown, the system is able to maintain an efficiency above

90% for most inputs. Also note that for several inputs, parallel efficiency slightly

increases with processor size for smaller number of processors (e.g., 80K on p : 32→
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Figure 3.4: Speedup of pGraph. The speedup computed are relative, and because the

code was not run on smaller processor sizes for larger inputs, the reference speedups

at the beginning processor size were assumed at linear rate — e.g., a relative speedup

of 64 was assumed for 160K on 64 processors. This assumption is consistent with the

linear speedup trends observed at that processor size for smaller inputs.

64). This super-linear behavior can be attributed to the minor increase in the number

of consumers (relative to the whole system size) — i.e., owing to the way in which

the processor space is partitioned, the number of consumers more than doubles when

the whole system size is doubled (e.g., when p increases from 16 to 32, the number of
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Figure 3.5: Parallel efficiency of pGraph. The parallel efficiency are also relatively

computed based on the smallest run on that dataset.

consumers increases from 12 to 25). And this increased availability contributes more

significantly for smaller system sizes — e.g., when p increases from 16 to 32, the one

extra consumer adds 4% more consumer power to the system. The effect however

diminishes for larger system sizes.

Table 3.2 also shows run-time increase as a function of input number of se-

quences. Although this function cannot be analytically determined because of its

input-dependency, the number of alignments needed to be performed can serve as a
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good indicator. However, Table 3.2 shows that in some cases the run-time increase

is not necessarily proportional to the number of pairs aligned — e.g., note that a 3×

increase in alignment load results in as much as a 16× increase in run-time, when n

increases from 40K to 80K. Upon further investigation, we found the cause to be the

difference in the sequence lengths between both these data sets — both mean and

standard deviation of the sequence lengths increased from 205±118 for the 40K input

to 256±273 for the 80K input, thereby implying an increased cost for computing an

average unit of alignment.

To better understand the overall system’s linear scaling behavior and identify

potential improvements, we conducted a thorough system-wide study. All runs were

performing using n = 640K as the case study.

Consumer behavior: At any given point of time, a consumer in pGraphnb is in

one of the following states: i) (align) compute sequence alignment; or ii) (comm)

communicate to fetch sequences or serve other consumers, or send pair request to

master; or iii) (idle) wait for master to allocate pairs. As shown in Figure 3.3, an

average consumer in pGraphnb spends well over 98% of the total time computing

alignments. This desired behavior can be attributed to the combined effectiveness

of our masking strategies, communication protocols and the local sequence cache

management strategy. The fact that the idle time is negligible demonstrates the merits

of sending timely requests to the master depending on the state of the local pair buffer.
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Despite the fact that sequence requests are random and are done asynchronously, the

contribution due to communication is negligible both at the senders and receivers.

Keeping a small subgroup size (16 in our experiments) is also a notable contributor to

the reason why the overhead due to sequence fetches is negligible. For larger subgroup

sizes, this asynchronous wait times can increase (see Section 3.4.3).

The local sequence management strategy also plays an important role. Note

that each consumer only stores O(m
c
) characters of the input in the static cache. Fig-

ure 3.6 shows the statistics relating to sequence fetches carried out at every step as

the algorithm proceeds at an arbitrarily chosen consumer. As the top chart shows,

the probability of finding a sequence in the local static cache is generally low, thereby

implying that most of the sequences required for alignment computation needed to

be fetched over network. While the middle chart confirms this high volume of com-

munication, it can be noted that the peaks and valleys in this chart do not necessarily

correspond to that of the top chart. This is because of the temporary availability of

sequences in the fixed size dynamic sequence cache (bottom chart), which serves to

reduce the overall number of sequences fetched from other consumers by about 60%.

Master behavior: The master within any subgroup is in one of the following states

at any given point of execution: i) (idle) waiting for consumer requests or new pairs

from the local producer(s) or the supermaster; or ii) (comm) sending pairs to a

consumer; or iii) (comp) performing local operations to manage subgroup. Figure 3.7
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shows that the master is available (i.e., idle) to serve its local subgroup nearly all of

its time. This shows the merit of maintaining small subgroups in our design. The

effectiveness of the master to provide pairs in a timely fashion to its consumers is also

important. Figure 3.8 shows the status of a master’s pair buffer during the course

of the program’s execution. As can be seen, the master is able to maintain the size

of its pair buffer steadily despite the non-uniformity between the rates at which the

pairs are generated at producers and processed in consumers. The sawtooth pattern

is because of the master’s receiving protocol which is to listen to only its consumers

when the buffer size exceeds a fixed threshold.

Producer behavior: The primary responsibility of producers is to keep the system

saturated with work by generating sequence pairs from trees and sending them to

the local master (or the supermaster) in fixed size batches. Figure 3.9 shows the

run-time and number of pairs generated at each producer. As can be observed, there

is considerable variability in the number of pairs supplied by each producer, although

all producers finish roughly at the same time. This confirms the irregular behavior

of the pair generation phase, which is a result of the irregular overheads associated

with tree processing. The results also shows the effectiveness of the dynamic tree

distribution strategy deployed by the supermaster.

Note that, even with two producers per subgroup, the pair generation time for

all producers is ∼400s, which is roughly about 25% of the total execution time for the
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640K input. For larger data sets, pair generation could consume a substantial part of

the run-time and therefore keeping the roles of the master and producers separate is

essential for scalability. Also, the increased memory capacity through using multiple

producers to stock pairs that are pending alignment computation further supports a

decoupled design.

Supermaster behavior: At any given point of time, the system’s supermaster is in

one of the following states: i) (producer polling) checking for messages from producers,

to either receive tree request or pairs for redistribution; ii) (master polling) checking

status of masters to redistribute pairs. Figure 3.10 shows that the supermaster spends

roughly about 25% of its time the polling the producers and the remainder of the time

polling the masters. This is consistent with our empirical observations, as producers

finish roughly in the first 25% of the program’s execution time, and the remainder is

spent on simply distributing and computing the alignment workload.

Does the supermaster’s role of redistributing pairs for alignment across sub-

groups help? To answer this question, we implemented a modified version — one that

uses supermaster only for distributing trees to producers but not for redistributing

pairs generated across groups. This modified implementation was compared against

the default implementation, and the results are shown in Figure 3.11. As is evident,

the scheme without pair redistribution creates skewed run-times across subgroups

and introduces bottleneck subgroups that slow down the system by up to 40%. This
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is expected because a subgroup without support for redistributing its pairs may get

overloaded with more pairs and/or pairs that need more alignment time, and this

combined variability could easily generate nonuniform workload. This shows that

the supermaster is a necessary intermediary among subgroups for maintaining overall

balance in both pair generation and alignment.

3.5 Conclusion

In this chapter, we presented a novel parallel algorithm and implementation

to efficiently parallelize the construction of sequence homology graphs on large-scale

protein sequence data sets using distributed memory computers. Coarse-level paral-

lelism for this problem has been lacking in practice. The proposed parallel design is

a hybrid of multiple-master/worker and producer-consumer models, which effectively

addresses the unique set of irregular computation issues and input data availability

issues. The new implementation demonstrates linear scaling on up to 2,048 processors

that were tested, for a wide range of input sets tested up to 2.56×106 metagenomic

amino acid sequences. A thorough system-wide study by its components further con-

firms that the trends observed are likely to hold for larger data sets and for larger

processor sizes. A key significance of our new implementation is that it enables users

to evaluate large collections of protein sequences using the highly sensitive alignment
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computation algorithms.

To put these results in perspective, consider the following comparison with

the ocean metagenomics results [Yooseph et al., 2007], which is the largest exercise

in protein sequence homology detection to date. The pGraphnb implementation took

7,795 s on 2,048 processors for analyzing a 2.56×106 sequence subset of the ocean data

set. Based on this, even assuming an absolute worst-case of quadratic explosion of

work to 28.6×106, we conservatively estimate that pGraphnb would take 566,260 CPU

hours. Compare this to the 106 CPU hours consumed in [Yooseph et al., 2007] despite

the use of the faster albeit less-sensitive BLAST heuristic for evaluating homology.
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Figure 3.6: Statistics of sequence use (and fetch) on an average consumer (n =

640K, p = 1, 024). The topmost chart shows the percentage of sequences successfully

found locally in the static cache during any iteration. The next two charts show the

corresponding percentages of sequences that needed to be fetched (communicated)

from other consumers, and found locally in the dynamic cache, respectively.
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CHAPTER 4. SEQUENCE CLUSTERING

I was gratified to be able to answer promptly. I said I don’t know.

— Mark Twain

4.1 Introduction

After constructing the sequence homology graph, it is nature to ask which group

of sequences are closely related? In order to answer this question, we need to develop a

grouping functionality that clusters sequences together such that in each group every

sequence is connected to most of the other sequences in the same group, and the

connections among sequences in different groups are sparse. As the sequences in the

same group are supposed to be evolutionarily- (or functional-) related, thus functions

of a sequence can be deduced from the functions of the other sequences in the same

group. For the protein sequences we are addressing here, if two protein sequences have

a high sequence similarity, then their structure and functions are very close to each

other. So if we could cluster protein sequences based on their sequence similarity,

then we could easily deduce the functions for the sequences in the same clusters.

More specially, we have a set of known protein sequences (from public repositories)
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and a set of unknown protein sequences (from GOS project); after clustering these

sequences together, two types of inferences can be made. If a newly derived sequence

can be mapped to a group of known sequences (known protein family), then its

functional role can be determined based on the known protein family. Otherwise,

group of unknown sequences that share similarity with one another but not with

any sequences in known protein families can lead to the inference of de novo protein

families. Either way, the resulting inferences significantly enrich our understanding

of the protein universe represented in the underly metagenomic communities.

In graph theoretic domain, the sequence clustering problem can be mapped

to dense subgraph detection problem. A dense subgraph is an arbitrary sized induced

subgraph such that “most” pair of the vertices in the subgraph are connected by edges

in the subgraph. If there are “fewer” edges connecting the vertices in the subgraph,

then the subgraph is called sparse subgraph. In extreme case, the dense subgraph is

a clique which is defined as a graph such that each pair of its vertices are connected.

Given the above, the “dense subgraph detection problem” can be defined as follows:

Definition 1 Given graph G = (V,E), dense subgraph detection problem is defined

as finding a set of disjoint subsets of V , such that each subset represents a maximal

dense subgraph in G.

In this chapter, we present a heuristic clustering approach, called pClust to solve
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this challenging problem under the context of the protein family identification. There

are two ways to group sequences together: one is to group them into disjoint subsets;

and the other is to allow overlaps between subsets (e.g. multi-domain sequences).

In this chapter we are primarily focusing on disjoint sequence clustering problem. In

order to tackle this sequence clustering problem in large-scale, couple of computational

challenges need to be addressed:

1. Space: A sequence homology graph of millions of sequences can occupy tens

of gigabytes, thereby making it impractical to assume that they will fit in local

memory. Whereas, most current graph clustering methods [] assume the input

graph fits in the local memory.

2. Time: Even if the graph can fit into the memory, how to solve this clustering

problem efficiently is another challenge. As we noted above, quadratic efficient

algorithms would be prohibitive slow when it comes to millions of sequences in

our case.

In what follows, Section 4.2 presents the current state of art for sequence clus-

tering. Section 4.3 presents the heuristic algorithms used to solve this problem. Ex-

perimental results are presented in Section 4.4. Finally, Section 4.5 concludes this

chapter with future works.
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4.2 Related work

Finding a subgraph with the maximum average degree (densest subgraph) can

be solved polynomially using flow techniques [Lawler, 2001]; the fastest algorithm

used to detect densest subgraph runs in time O(|E| · |V | log(|V |2/|E|)) [Gallo et al.,

1989], which is prohibitive slow in practice given millions of vertices as input. Another

related problem is to find the k-densest subgraph: find a subgraph with k vertices

such that the average degree of the subgraph induced by the k vertices is maximum.

Different from densest subgraph problem, the k-densest subgraph problem is a NP-

hard problem (reduction from clique problem). Although finding the densest subgraph

problem can be solved in polynomial time, finding all dense subgraphs can be achieved

through applying the densest subgraph (DS) detection algorithm iteratively. However

the required space and time complexity restrict its application in practice.

To speed up this clustering process, several other approximation algorithms [Ap-

weiler et al., 2004, Bateman et al., 2004, Enright et al., 2002, Kriventseva et al., 2001,

Olman et al., 2007] are proposed. Although these proposed algorithms are targeting

at the arbitrarily sized input graph, they typically can only identify relatively small

subgraphs. Another assumption of these algorithms is that the input graph are rela-

tively small and can all fit into the memory, which is not the case in our application.

As more and more sequences are produced on a daily basis, the large data size of
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the sequences are posing more challenges on the development of sequence clustering

algorithms. It is imperative to design a space and time efficient approach to solve

this challenging sequence clustering problem.

4.3 Algorithms

Notation: Let G = (V,E) denote the constructed sequence homology graph.

Let CC = {C1, C2, . . . , Ct} be the set of all the connected components presented in

G. Let Γ(vi) = {u|(vi, u) ∈ E} denote all the vertices which are connected to vi; this

set is also called the outlinks or neighbors of vertex vi. d(v) is used to denote the

degree of vertex v, and it is defined as the number of vertices adjacent to v.

4.3.1 Connected Components Detection

For a dense subgraph, each vertex contained inside is expected to be connected

to most of the other vertices in the same dense subgraph. Therefore, there should be

at least a path between any two vertices in a detected dense subgraph. It also implies

that all dense subgraphs must occur within a connected component.

Observation 1 Given a graph G, no dense subgraph in G can span across multiple

connected components in G.
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Following this observation, the problem of finding dense subgraphs can be re-

duced to the problem of first enumerating all connected components and then search-

ing each connected component independently for dense subgraphs. In this way, the

large problem instance could be broken down into subproblems of much smaller size,

and space challenge could be eliminated thereafter. Theoretically, there could be

a worst case that all sequences belong to the same connected component, while in

practice this possibility was ruled out. Before getting into the details of the dense sub-

graph detection algorithm, we first focusing on how to detect connected components

in a given large graph.

Definition 2 A connected component Ci of graph G is defined as a maximal subgraph

where each vertex has at least one path to every other vetices within the same subgraph.

The primary goal of this task is to report all connected components CC =

{C1, C2, . . . , Ct} from previously constructed homology graph G = (V,E). This task

can be directly achieved through an union-find (disjoint-set) data structure [Tarjan,

1975]. Initially, all vertices v ∈ V forms an individual connected component by them-

selves. If there is an edge connecting any two vertices in two different connected com-

ponents, then the connected components are collapsed together into one connected

component. This collapsing step continues until all the edges in graph G are enumer-

ated. Finally, the resultant connected components are reported as CC. Moreover, to
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facilitate the subsequent “dense subgraph” detection step, the edges constructed in

graph G are also associated with the vertices in each reported connected components.

A detailed description of the algorithm is shown in Algorithm 5.

Algorithm 5 Connect component detection (G(V,E))

1. let ζ = {v|v ∈ V } be the initial set of connected components.
2. /* find connected components */
3. for all e = (i, j) ∈ E do
4. if find(i) 6= find(j) then
5. union(i, j)
6. end if
7. end for
8. ζ ← {C1, C2, . . . , Ct}
9. /* reconstruct the edges in Ci */
10. for all Ci ∈ CC do
11. for all e = (i, j) ∈ E do
12. if i ∈ V (Ci) and j ∈ V (Ci) then
13. E(Ci) =

⋃

{(i, j)}
14. end if
15. end for
16. end for
17. ζ ← {C1, C2, . . . , Ct}

As shown in the algorithm, this union-find based connected components algo-

rithm runs in O(|E|), and the space complexity of this algorithm is O(|V |). The linear

space and time complexity make this algorithm an ideal candidate for large-scale data

input. As only vertices are needed to be maintained in memory, and the edges can be

enumerated in a streamed way. The linear feature of this algorithm makes it easily

to scale to billions of input sequences.
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4.3.2 k-core decomposition

As small clusters (size < 2) are typically of no practice, the input graph can be

pre-pruned to remove the vertices which can only fall into the small dense subgraphs.

In other words, if a vertex has a degree less than our predefined cutoff, say k, then it

cannot fall into any dense subgraph of size at least k. Basically our goal is to prune

the input graph such that the degrees of all remaining vertices are greater or equal to

k. In this way, some unnecessary work could be eliminated to speed up the subsequent

processing. However, note that the removal of a low degree vertex could introduce

new low degree to other vertices. Formally, this problem is called k-core [Bollobas,

1984] decomposition problem.

Definition 3 The k-core of a graph G = (V,E) is defined as an induced subgraph

G′ = (V ′, E ′) such that the degree (d(v)) of every vertex in V ′ is greater or equal to

k.

To find the k-core of a graph, one intuitive way is to remove all vertices with

degree less than k in a recursive way. However one challenge is that graph is dy-

namically changing during the pruning process. A vertex with degree greater than

k could become one with degree less than k after pruning of the other vertices, and

the graph-pruning stage are dynamically changing the graph. In order to remove the
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vertices with degree less than k, we implement a binary-heap based algorithm. Basi-

cally all the vertices are stored in a binary min-heap based on their degrees. In this

way, the root always maintains the vertex with the minimal degree. If at some point

the vertex contained at the root node has a degree greater or equal to k, then the

pruning process could be terminated. After removing a vertex in a root node, degree

adjustments are required for all the vertices adjacent on that vertex. At the end, the

subgraph induced by the remaining vertices in the binary heap forms the k-core of

the input graph G. The time complexity of this algorithm is O(|V |+2|E|lg|V |), and

space complexity is O(3|V | + |E|). The above algorithm removes all and only those

vertices that cannot be part of any output dense subgraphs of minimal size k.

4.3.3 Dense subgraph detection

As shown above, no dense subgraph will span across two different connected

components. It suffices to detect dense subgraphs in each individual connected com-

ponents separately. As for finding dense subgraphs from a given connected compo-

nent, we present a Shingling [Gibson et al., 2005] based heuristic approach which

was originally used for detecting web communities. This Shingling-based approach

can handle large input size and it is also intended for detecting dense subgraphs of

arbitrarily size in practice. The basic idea behind this Shingling approach is: In a
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dense subgraph, each vertex is supposed to be connected to most of the other vertices

in the same dense subgraph; thus any two vertices in the same dense subgraph are

supposed to share most of neighbors (outlinks). The heuristic we are using is that if

two vertices have a high overlap of their outlinks, then most likely they belong to the

same dense subgraph. It is a necessary but not sufficient condition to group vertices

into the same dense subgraph, and some post-processing check is required to make

sure the grouped vertices forms a dense subgraph. In this heuristic approach, the set

comparison becomes the kernel problem. Although several optimal algorithms can be

applied to perform this comparison, they cannot be scaled to large input size as the

required computation is relatively expensive.

For each connected component, we first note that any connected component

within G is after all an instance of another undirected graph Ci(VCi
, ECi

). And any

such Ci can be transformed into an equivalent undirected bipartite graphBd(V1, V2, E
′)

such that V1 = V2 = Vc and E
′ = {(i, j), (j, i) | (si, sj) ∈ Ec}. The problem of finding

dense subgraphs in Ci is equivalent of finding subset pairs A ⊆ V1 and B ⊆ V2 such

that A and B are “well” connected to one another and |A∩B|
|A∪B|

≥ τ for some cutoff

0 << τ ≤ 1. The ratio check is sometimes referred to as the Jaccard index and here

it is primarily used to ensure that A ≈ B. Reducing the problem into a bipartite

graph problem has a couple of distinct advantages:

1. The problem of finding dense subgraphs in bipartite graphs has been addressed
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in the context of finding web communities, and practically efficient approxi-

mation strategies exist [Flake et al., 2000, Gibson et al., 2005]. The subtle

difference is that for web communities a dense subgraph is a pair of subsets A

and B such that the each vertex (or website) in B is pointed by a majority of

vertices in A, without necessitating A ≈ B. In other words, a dense subgraph

in Bd as per our definition can be expected to be detected by an algorithm that

solves the corresponding web community dense subgraph problem. But not ev-

ery dense subgraph reported by the latter may satisfy our A ≈ B criterion. But

this is an added constraint that can be easily tested in a post-processing step.

2. It is possible to generalize the notion of finding dense subgraphs in bipartite

graphs and implement other variations of the problem in the context of pro-

tein family detection. For example, instead of duplicating Vc on both sides of

the bipartite graph, we can copy it to V2 and assign V1 to a set of conserved

fixed-length words shared by two or more sequences in V2. Now, finding dense

subgraphs in this new bipartite graph (without the Jaccard index check) could

lead to the partitioning of protein sequences in V2 into groups based on multi-

ple conserved domains or motifs. While more variants are possible, we do not

consider such variants in this work.

Our algorithm is based on the bipartite graph problem reduction described
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above. We first transform each connected component ci into an equivalent undirected

bipartite graph Bd. The next step is to distribute the bipartite graphs among mul-

tiple processors in a loading balanced manner, and apply bipartite dense subgraph

detection algorithms individually on each connected component. We implemented

the Shingling algorithm by [Gibson et al., 2005] as it is suited for very large inputs.

Before getting down to the detailed algorithm, couple of more notations are given as

follows:

Notation: Given a vertex v in an undirected bipartite graph Bd = (V1, V2, E
′),

Γ(v) denotes the set of its out-links and is given by {u | (v, u) ∈ E ′}. Given param-

eters (s, c), a “shingle” [Broder et al., 1997] of a vertex v is an arbitrary s−element

subset of Γ(v), and an “(s, c)−shingle set” of v is a set of c randomly picked shingles

of v.

As shown above, the kernel part of the dense subgraph detection problem is set

comparison problem. A brute-force implementation is to compute the set intersection

of the two input sets of outlinks. However this could take O(|Γ(vi)| × |Γ(vj)|); this

could be reduced to O(|Γ(vi)| + |Γ(vj)|) by mapping vertices to unique integers. A

third, and faster alternative is to perform random “sampling”. This is what is done

in the “Shingling” method. More specifically, we sample out s-element subset (called

“shingle”) from the two sets, and if the two sets are similar to each other, then it

is more likely that the two sampled shingles are equivalent. A formal theory, called
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min-wise independent permutations [Broder et al., 2000] proves that if the two sets

being compared intersect to a high degree, then it is very likely to find two identical

shingles. However, if two “shingles” are not identical, it does not necessarily imply

that the two sets where the two “shingles” are extracted are totally different. To

compensate for such misses, the random sampling procedure can be run multiple

times. Based on this idea, set comparisons can be efficiently performed on large-scale

input without requiring brute-force comparisons. To implement this idea for dense

subgraph detection, the outlinks of each vertex is sampled into a set of “shingles”.

Later these “shingles” serve as the connecting points to group these corresponding

vertices together.

Algorithm 6 Shingle (vi, s, c)

1. P : a 64 bit large primer number
2. A[1..c], B[1..c]: random numbers in [1..P ]
3. H : hash function from a string to a integer
4. Γ(vi) = (o1, o2, . . . , om)
5. for j = 0 to m do
6. x[i]← oi
7. end for
8. for j = 1 to c do
9. for i = 1 to m do
10. yi ← (A[j]× x[i] +B[j]) mod P
11. end for
12. Y ←

⋃m
i=1
{yi}

13. (y′
1
, y′

2
, . . . , y′s)← minimum s elements from Y = {y1, y2, . . . , ym}

14. sj(vi)← H(“y′
1
◦ y′

2
◦ . . . ◦ y′s”)

15. end for
16. S(vi) =

⋃c
j=1
{<vi, sj(vi)>}
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Algorithm 6 presents the details to sample out a set of “shingles” for a vertex.

The detailed dense subgraph algorithm can be illustrated in Figure 4.1, and it operates

in two-passes:

...... ... ... ... ...

shingles

shingles

Pass I Pass II Report Dense Subgraphs

B

A

... ......... ... ...

shingles

V1

V2

V1

V2

V1

V2

S1S1

S2

Figure 4.1: Illustration of the two-pass Shingling algorithm. Dotted boxes represent

shingles.

i) Pass I: An (s, c)-shingle set (denoted by S(vi)) is generated for each vertex

vi ∈ V1. For ease of implementation, each shingle is mapped to an integer

using a string to integer hash function. The results are recorded as a 2-tuple

< s(vi), vi >, where s(vi) ∈ S(vi). Let S1 denote the set of all shingles generated

in this pass. Next, vertices sharing the same shingle are grouped. This is achieved

by sorting the tuples based on shingle values. The resulting tuple list is input to

the second pass.

ii) Pass II: The algorithm reverses direction and generates an (s, c)-shingle set for

each first level shingle s(vi). The result is a set of second level shingles S2,

representing vertices from V1.
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In the final reporting step, all connected components, as defined by S2 shingle

to S1 shingle edges, are enumerated and their constituent vertices recorded. We

implemented this grouping using the union-find data structure [Tarjan, 1975]. Finally,

the two vertices subsets that are covered by this connected component are reported

as dense subgraphs (provided they satisfy the Jaccard index test as well). For a

connected component with |Vc| nodes, our implementation of the Shingling algorithm

takes O( |Vc|×c3

s2
) time and O( |Vc|×c2

s
) space complexities in the worst-case. In practice,

the observed costs could be significantly lower and is data dependent.

4.4 Experiments

4.4.1 Implementation

The pClust code was implemented in C/MPI, and MPI is primarily used to

write the wrapper to distribute the connected components among computation nodes.

The default setting for Shingling algorithm is: s = 2, and c = 200. These default

parameters for (s, c) should change based on the size of the dense subgraphs we are

expecting.
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4.4.2 Experimental setup

Input Data: For our experiments, we downloaded an arbitrary subset of pre-

dicted protein families from the GOS project such that the sum of the number of

sequences in all these families was roughly 2 million. Of these, 755,441 sequences

were “redundant” — i.e., reported to be contained in at least one other sequence in

the set with 98% identity [Yooseph et al., 2007]. Only the remaining ∼1.24 million

non-redundant sequences are used in our experiments. The statistics for the 2M data

are shown in Table 4.1.

# Total # Non-redun. Total Mean. seq.
seqs. (nr) seqs residues (nr) length±σ (in res.)

2,004,241 1,248,800 308,432,812 247±173

Table 4.1: Input sequence statistics for ∼2M sequences extracted from the GOS
project database.

Experimental Platform: Due to the randomness and large prime number

requirements in Shingling algorithms, all tests were performed on a 24-node Linux

commodity cluster with a gigabit ethernet interconnect and each node containing 8

2.33GHz Xeon CPUs and an 8GB RAM.
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4.4.3 Parametric studies

Parametric study of shingling algorithm: We conducted experiments to evaluate

the fluctuations in quality of the output dense subgraphs due to the parameters (s, c)

in the Shingling algorithm. The 20K data (representing 18 predicted families in GOS

approach) was used in parametric study for pClust approach. First the sequences

are passed through pGraph code to construct the sequence graph, then all connected

components are enumerated as the input for Shingling algorithm. Several (s, c) com-

binations: s = [1, . . . , 10] and c = [20, . . . , 200] were used in our experiments. In the

end, the resulting dense subgraphs were compared against the corresponding “bench-

mark” (predicted 18 protein families in GOS). The results are plotted in figure 4.2.

As all the combinations yielded a specificity of 100% against the benchmark, only

changes in sensitivity were recorded and shown in the plot.

The larger the value of s, the lesser the probability that two vertices will share

a shingle. Alternatively, a smaller value of s is better suited to enhance the chance

of detecting not-so-dense subgraphs. The parameter c is intended to create the op-

posite effect, because it represents the number of random trials performed to test the

similarities between two sets of outlinks. Also, it is not computationally practical to

exhaustively compare all shingles of each pair of vertices, and the parameter c offers
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Figure 4.2: Parametric study of the (s, c) parameters on the sensitivity of the Shin-

gling algorithm.

an alternative to restrict this computation space. This is achieved by using the min-

wise independent permutation property [Broder et al., 2000]. Even if two vertices

share a modest number of out-links, the randomness in this property can be used to

increase the probability that such vertex pairs are found. This will be particularly

helpful for detecting larger dense subgraphs, as they are expected to be less dense.

These parametric controls make the Shingling algorithm an ideal choice for large-scale

metagenomic data.
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Effect of parameter s: We observed that as s is increased, the sensitivity reduces

(for any fixed c), which is consistent with the expectation. s determines the size of

a shingle (an s-element subset of out-links of a given node), and if two vertices u

and v share a shingle at random they are likely to be contained in the same dense

subgraph. Therefore it is natural to expect the sensitivity to reduce as the size of the

shingles grows. On the other hand, a low value for s may lead to merging of weakly

related sequences and therefore could adversely affect specificity. We however did not

observe this adverse effect for the 20K data.

Effect of parameter c: The parameter c is intended to have the opposite ef-

fect relative to s — i.e., a larger value of c means more number of trials to find a

shared shingle between any two vertices. The Shingling algorithm uses c randomly

picked shingles for comparison using the min-wise independent permutation princi-

ple. Figure 4.2 confirms this trend although from c values 60 through 200 the rate of

improvement in sensitivity is very marginal, implying that for this data a change of

c beyond 60 has negligible effect on improving sensitivity. However, for larger data

sizes, it may still be preferable to use larger values of c if run-time is still affordable.
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4.4.4 Qualitative assessment

First, we devised an experiment to verify the correctness of our sequence homol-

ogy detection (pGraph) code. The expectation is as follows: under identical alignment

settings, the homology graph generated by the pGraph should match the homology

graph generated by a brute-force implementation that performs all-against-all se-

quence comparison using the Smith-Waterman algorithm. However, the pGraph code

has a parameter (exact match filter) ψ which is intended to filter out poor quality

pairs destined to failed alignment test. Considering the wide variance in the sequence

lengths in metagenomic data ([28· · ·5,920] in our input) and the low similarity cutoff

requirements (e.g. η =40%), it is unlikely but still possible that there are pairs that

do not satisfy the ψ exact match criteria for larger values of ψ but succeed in align-

ment test. To compute the loss in such information, we implemented a brute-force

all-against-all sequence comparison code and matched the resulting the homology

graph with the homology graph constructed by our pGraph. We found that at ψ = 3,

the homology graph resulted from pGraph is over 99.99% identical to the brute-force

sequential implementation.

Comparative Evaluation against GOS Predicted Families: Next, we com-

pare our results against the clusters (intermediate results) and the predicted families

(final results) generated in the GOS project [Yooseph et al., 2007]. The experiments
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were implemented as comparisons of different partitions of the same input ORF data,

as schematically illustrated in Figure 4.3. The dense subgraphs reported by pClust

represents a partition of the n sequences5, and we call it the “pClust partition”.

The clusters generated in the GOS approach were downloaded from the CAMERA

database and are collectively labeled the “GOS partition”. Finally, the set of pre-

dicted families generated by the GOS approach by subsequent expansion of clusters

using profile-profile matching represents the third partition. While a true protein fam-

ily benchmark for this metagenomic data is not yet available, the rigorously followed

procedures during cluster expansion and validation makes the set of predicted families

output by the GOS team a reasonable benchmark for comparison here. We labeled

this set as the “Benchmark partition” and compared the other two test partitions

against it as described below.

Let si and sj be any two sequences in S. Let gp(i) denote the group that owns

si in partition p. To compare a test partition (“t”) against the benchmark partition

(“b”), we classified every such pair (si, sj) into one of the four classes:

i) True Positive (TP): If gt(i) = gt(j) and gb(i) = gb(j);

ii) False Positive (FP): If gt(i) = gt(j) and gb(i) 6= gb(j);

5Singleton sequences that do not get reported as part of any dense subgraph are treated as dense
subgaphs with size 1.
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iii) False Negative (FN): If gt(i) 6= gt(j) and gb(i) = gb(j);

iv) True Negative (TN): If gt(i) 6= gt(j) and gb(i) 6= gb(j).

Using the above measures, we derived the following:

Specificity (SP) =
TP

TP+FP
(4.1)

Sensitivity (SE) =
TP

TP+FN
(4.2)

Overlap Quality (OQ) =
TP

TP+FP+FN
(4.3)

Correlation Coefficient (CC) =

TP×TN-FP×FN
√

(TP+FP)×(TN+FN)×(TP+FN)×(TN+FP)
(4.4)

Ideally, SP=SE=OQ=CC=100%.

Approach SP SE OQ CC # Aligned pairs Run-time

pClust, ψ=10 100.00% 20.87% 20.87% 43.58% 1,107,299 12 min
pClust, ψ=8 100.00% 24.30% 24.30% 47.12% 1,774,780 20 min
pClust, ψ=6 100.00% 33.37% 33.37% 55.51% 3,420,653 40 min
pClust, ψ=4 100.00% 40.68% 40.68% 61.55% 13,338,957 3 hr

GOS 100.00% 21.43% 21.43% 44.18% X 15 hr

Table 4.2: Qualitative comparison of the pClust and GOS partitions against the
benchmark for the 20K data. ‘X’ denotes data not applicable because the GOS
approach uses BLAST.
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Figure 4.3: An illustration of our strategy for qualitatively comparing the three
partitions — pClust dense subgraphs, GOS clusters and GOS predicted families.

Experiments on 20K ORFs: We extracted an arbitrary subset containing 20,000

ORFs (representing 18 predicted families) for initial analysis. To enable a direct

comparison, the alignment parameters of the GOS cluster creation phase in [Yooseph

et al., 2007] were replicated under pClust. The parameters for the Shingling algorithm

in pClust were defaulted to s = 2 and c = 200 throughout our experiments (after
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preliminary parametric studies). Table 4.2 shows the results of comparing the two test

partitions against the benchmark. Rows 1 through 4 show the results of pClust under

different ψ parameter settings. As ψ is decreased from 10 to 4, significantly more

pairs of ORFs become eligible for alignment computation, explaining the gradual

improvement in sensitivity. At ψ=4, the sensitivity of pClust is roughly 1.9X-fold

better than the sensitivity of the GOS partition. At ψ = 10, the sensitivities of the two

partitions become comparable. This implies that it is safe to increase ψ as large as 8 or

10 (in the interest of performance) without degrading quality. The higher sensitivity

achieved by the pClust approach is a result of two factors: i) the optimal alignment-

based evaluation of sequence pairs; and ii) the better approximation achieved by the

Shingling algorithm.

On specificity, both partitions generate no false positives. For the GOS partition

this is clearly expected because the predicted families are after all direct expansions

of the clusters. As for the pClust partition, the Shingling algorithm is a different

heuristic than the k−neighbor heuristic used in the GOS approach. Therefore it

could potentially lead to a different grouping. Despite this difference in the underlying

methodologies, we observed that pClust is able to achieve 100% specificity for this

data set.

Table 4.2 also demonstrates the quality-to-performance trade-off. The number

of pairwise alignments computed significantly increases even with a little decrease in



89

# Partition # Groups Seqs. Largest Avg.
included size size

Benchmark 18 20,000 1,111 3,869
GOS 129 12,094 2,469 94
pClust 360 16,288 3,033, 45

Table 4.3: The statistics of different partations of the 20,000 ORFs data set. The
“Groups” column corresponds the number of i) predicted protein families in the
benchmark; ii) clusters reported by GOS; and iii) dense subgraphs with at least
20 ORFs reported by pClust

the value of ψ. However, this significant rise in computation does not necessarily

translate to a proportional improvement in quality. This is only expected because

more random pairs are likely to share a short exact match by chance, but most such

pairs would subsequently fail the alignment test. Furthermore, the dense subgraphs

in pClust includes 16,288 sequences, which is almost 35% more than that recruited

in the GOS clusters (see Table reftab20Kstudy). Recruiting more sequences without

affecting the specificity is a significant result.

Experiments on 1.24 million non-redundant ORFs: Next, we present the re-

sults of our qualitative assessment on the 1.24 million non-redundant ORFs. The

benchmark partition includes all the redundant sequences, and therefore to enable

direct comparison of the two partitions (pClust and GOS) against the benchmark we
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added the redundant sequences back into both partitions — i.e., into the correspond-

ing group of its non-redundant container sequence.

Table 4.4 shows the specificity and sensitivity for both test partitions against

the benchmark (rows 1-2). At ψ = 8, the pClust partition achieves a sensitivity of

17.76%, which is a 1.3X-fold improvement over the GOS partition. For ψ = 10, the

sensitivities become near identical, consistent with our observations on the 20K data.

For ψ < 8, the sensitivity is expected to further improve although at the expense of

running time. The specificity of pClust relative to the benchmark, however, dropped

to 97%, and this is due to the differences in the underlying heuristic methodologies

used for dense subgraph detection.

To better understand these differences, we also conducted a direct comparison

between pClust and GOS, treating the pClust partition as the “test” and the GOS

partition as the “truth” (see rows 3-4 in Table 4.4). We found that the two partitions

overlap in only ∼60% of their membership. The results help to quantify the differ-

ences introduced by the underlying methodologies: computing alignments differently

(dynamic programming vs. BLAST), and using two different heuristics for dense sub-

graph detection (Shingling vs. k-neighbor). The higher sensitivity (∼86%) suggests

that pClust’s Shingling heuristic preserves a majority of the cluster memberships. The

lower specificity (∼65%) can be attributed to two reasons: i) The pClust approach

includes significantly more number of sequences than in the GOS clusters (as shown



91

Approach SP SE OQ CC

pClust vs. Benchmark 97.17% 17.85% 17.76% 41.56%
GOS vs. Benchmark 100.00% 13.92% 13.92% 37.23%

pClust (size≥ 2) vs. GOS 65.56% 86.53% 59.49% 75.29%
pClust (size≥ 20) vs. GOS 65.60% 86.48% 59.50% 75.28%

Table 4.4: Qualitative comparison of the pClust partition (at ψ = 8) and the GOS
partition against the benchmark for the 1.24 million ORFs. Also shown is a direct
comparison of the pClust partition against the GOS partition (as the “truth”).

in Table 4.5). Therefore, any pair that has at least one ORF that is excluded in the

GOS partition will count as a “false positive” in pClust; and ii) The GOS approach

reports clusters that contain a minimum of 20 members, whereas the corresponding

cutoff in pClust is 2. This implies that most of the ORF pairs originating from dense

subgraphs of size < 20 are likely to be marked as a “false positive” relative to the

GOS clusters.

Table 4.5 also shows the differences in the number of sequences recruited by

both methods. It can be observed that pClust is able to recruit 26% more sequences

than GOS for this data set.

In Figure 4.4a we compare the group size distribution in the pClust and GOS
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Partition # Groups # Seqs. Group size

included Largest Average

Benchmark 813 2,004,241 56,266 2,465±4,372
GOS 6,152 1,236,712 20,027 201±650

pClust (size ≥ 20) 6,646 1,414,952 19,066 213±721
pClust (2 ≤size< 20) 22,552 148,032 19 7±4

Table 4.5: Table showing the statistics of different partitions for the 1.24 million
ORFs, after adding back the redundant sequences.

partitions. As can be observed, both partitions show roughly the same distribution.

The pClust partition also contains ∼22K “small” dense subgraphs that contain less

than 20 ORFs (not shown in plot). Figure 4.5b shows how the sequences included in

the individual partitions are distributed among different group size bins. Overall, the

pClust dense subgraphs cover 871K non-redundant sequences, which is 30.9% more

than the number of sequences covered by GOS clusters.

4.4.5 Performance analysis

Table 4.6 shows a summary of the pClust run. The connected components

detection (CCD) phase partitioned the set of 1.24 million ORFs into 65K connected
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Figure 4.4: Distribution of the dense subgraphs and clusters by their size in the

pClust and GOS partitions respectively.

components — more than sufficient for a load-balanced distribution among multiple

processors for dense subgraph detection. Furthermore, the parallel run-time and

memory complexities of the subsequent dense subgraph detection (DSD) phase are

directly a function of the size of the largest connected component. The dense subgraph

detection (DSD) phase reported 6,646 dense subgraphs of size ≥ 20, and the total

number of dense subgraphs of size ≥ 2 is 29,198; also the largest dense subgraph
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GOS partitions. The plot also shows the breakdown between non-redundant (“NR”)

and redundant (“R”) sequences.

reported is of size 19,066. As shown, the largest connected component contained only

10K ORFs, which is less than 1% of the original input and small enough to easily

fit inside a single processor’s local memory. This allowed us to partition the set of

connected components and thereby efficiently parallelize the computation of dense

subgraphs as well.
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# Input seqs. Connected Component Detection phase (NR)

(nr) # CC # Seqs included in CC # Singlets Avg. CC size Largest CC size

1,248,800 65,583 973,707 275,093 15 10,707

Table 4.6: Statistics of the connected components (CC) and dense subgraphs (DS)
generated by pClust.

For exact match length ψ = 4 on 2 million ORF sequences, the pGraph code

finishes in ∼10,000 CPU hours; while for ∼2000 CPU hours are required with ψ = 8.

In the ∼ 2 million sequence, 1.24 million sequences were reported as non-redundant

ORFs. A subsequent CCD phase reported 65K connected components, and all these

connected components were distributed among 128 Xeon CPUs of the Linux cluster

in parallel and were collectively screened for dense subgraphs in ∼30 minutes.

4.5 Conclusion

With the completion of every new metagenomics sequencing project there is

a wealth of new genetic information being added to public repositories. Detecting

protein families from these sequence data can provide a preview into the functional

space of environmental microbial colonies. However, the rate of data accumulation is

fast outstripping our ability to analyze them, and therefore it is imperative to present
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scalable software solutions to tackle this challenging problem. In this chapter, the

sequence clustering problem is transformed into one of the connected component de-

tection and dense subgraph detection problem. For the connected component step,

its main task is to break down the large problem instance into subproblems of much

smaller size. In this way, the space limitation challenge could be addressed accord-

ingly. Also to efficiently identify dense subgraph on large-scale input graph, we pre-

sented a “Shingling” based clustering algorithm. This “Shingling” approach solves

the time complexity challenges when applying to large-scale input. To evaluate the

effectiveness and accuracy of our approach, we extracted ∼2 million sequence from

CAMERA portal, and extensive experiments confirmed that our approach is able to

improve sensitivity, recruit more sequences, while considerably reducing the time to

solution and memory requirements.
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CHAPTER 5. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

Metagenomics is an emerging area that is changing the way people are looking

at the microbial world, and it is having a profound impact on bioenergy, environ-

mental biotechnology, medicine and agriculture. With the rapid advancement of the

high-throughput sequencing technologies, millions of new sequences are produced at

an unprecedented rate. Among other interesting computational problems, protein

family identification plays the most important role in understanding the structural

and functional roles of these new discovered proteins. Although protein family detec-

tion problem has been an active research area for the last decade, none of the existing

approach can efficiently handle the large volume of data produced in metagenomics.

Even those that deploy parallelism resort to brute-force allocation of tasks across

multiple computers and to using specialized large-memory high-end platforms for

tackling the space problem. It is our strong belief that high performance computing

could play a significant role in overcoming this challenge.

In this dissertation, we presented parallel approaches for protein sequence char-

acterization in large-scale metagenomic data sets. Our approaches exploit the ag-

gregate memory and compute power of massively parallel distributed memory su-
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percomputers. There are primary two contributions: i) sequence homology graph

construction; and ii) protein sequence clustering. In the sequence homology graph

construction part, we eliminate the need to do the traditional used all-against-all

comparison through an exact-match based filtering technique that uses suffix tree.

Experimental results confirmed that 96%-99% workload could be eliminated without

compromising the quality of the final result. In sequence clustering part, we trans-

form the sequence clustering problem into one of the connected component detection

and subsequent dense subgraph detection problem; the dense subgraph problem is

efficiently solved using a “shingling” based heuristic approach, and extensive qualita-

tive analysis demonstrates the fine quality of our clustering approach. Our approach

is developed as an open source project, and is available to all communities. Along

the line of this dissertation, couple of more research could be explored:

1. pGraph: The performance of our current implementation can be further en-

hanced by augmenting fine-grain parallelism to compute the individual align-

ments. This can be achieved by substituting the serial alignment code with

hardware accelerated alignment computation kernels based on the accelerating

platform available at disposal. Such an extension would make the alignment

computation much faster and the effect of that along with the possibility of

accelerating the pair generation routine needs to be studied in tandem.
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The techniques proposed in this chapter could also be extended to other data-

intensive scientific applications which are posed with similar challenges in the

work generation and work processing. The functions for pair generation at the

producer and sequence alignment at the consumer could in principle be sub-

stituted with application-specific work generation and processing code (similar

to specifying mapper() and reducer() functions in Map Reduce). We plan to

incorporate this feature and make it available as a generic parallel library that

can be plugged into any other data-intensive scientific computing applications.

2. pClust: While run-time is not likely to be an issue for our current dense

subgraph detection phase, the peak space requirement O( |V |×c
2

s
) (s and c are

parameters) has the potential risk to affect the scalability of our clustering

stage. In order to overcome this space challenge, some parallelization effort

is required for future larger applications. We also noticed that Map/Reduce

paradigm could be directly applied to solve this memory challenge. Basically,

the mappers are going to emit shingle tuples and the shingles merging process

can be achieved through reducers; later the same mapper-and-reducer scheme

can be applied again on the previous generated shingle results.
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