

ADAPTIVE SCIENTIFIC WORKFLOWS

By

ARZU GOSNEY

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Computer Science

DECEMBER 2011

© Copyright by ARZU GOSNEY, 2011
All Rights Reserved

 - ii -

To the Faculty of the Washington State University:

 The members of the Committee appointed to examine the dissertation of ARZU
GOSNEY find it satisfactory and recommend that it be accepted.

 __

 __

 __

 __

John H. Miller, Ph.D., Chair

Christopher Oehmen, Ph.D.

Li Tan, Ph.D.

Carl Hauser, Ph.D.

 - iii -

ACKNOWLEDGEMENTS

Words cannot express how grateful and forever appreciative I am for the guidance, the

motivation and the inspiration that each person has provided during the course of this

dissertation. Nevertheless I make a sincere attempt to thank everyone who played a part in the

completion of this dissertation.

First, I would like to thank both Dr. Christopher Oehmen and Dr. John Miller. It is to

them that I owe an awful lot. They both have played a major role, did more than just

explaining things to me, and as busy as they are, they both made themselves available when I

needed their time the most. Dr. Miller not only explained the steps in what it would take to

complete of my degree, but he also followed along with my progress and provided his years of

experience and supervision over my research work. If it wasn’t Dr. Miller’s direction I would

have given up in the middle of my research work. Dr. Christopher Oehmen on the other hand

is an amazing mentor. He is not only a great scientist full of ideas to improve and present

research, but he also sincerely cares about his students’ work. He expects the best out of his

students and is willing to dedicate his time to improve their research work as well as their

conference presentations, papers, etc. If it wasn’t for Dr. Oehmen’s support at Pacific

Northwest National Laboratory, I would not have the funding and the resources to complete

my research. Next on the list is Dr. Ian Gorton, who introduced me to the field of high

performance data intensive computing and scientific workflows. My discussions with Dr.

Gorton on software engineering and software architecture principles as well as scientific

workflows gave insight into my research.

My acknowledgement section can never be complete without the mention of my

husband, Greg Gosney, who had a major role to play in this dissertation. It was him who

 - iv -

believed in me when I did not. It was his never ending, unconditional support which got me

through the hardest days. Lastly I acknowledge the support of my family members, my dad,

Mehmet Kurtulus and my mom, Emine Kurtulus, who have constantly help us in the most

loving way when we needed their help to take care of our beautiful children.

I would also like to acknowledge my funding source. This research was performed and

partially funded by Laboratory Directed Research and Development (LDRD) Funds at Pacific

Northwest National Laboratory.

 - v -

ADAPTIVE SCIENTIFIC WORKFLOWS

Abstract

by Arzu Gosney, Ph.D.

Washington State University
December 2011

Chair: John H. Miller

Large computing systems including clusters, clouds, and grids, provide high-

performance capabilities that can be utilized for scientific applications. As the ubiquity of

these systems increases and the scope of analysis performed on them expand, there is a

growing need for applications that do not require users to learn the details of high-performance

computing (HPC), and are flexible and adaptive to accommodate the best time-to-solution. In

this dissertation we introduce a new adaptive capability for the MeDICi middleware and

describe the applicability of this design to a scientific workflow application for biology. This

adaptive framework provides a programming model for implementing a scientific workflow

using high-performance systems and choosing configuration options at run-time, automatically

reacting to HPC load fluctuations.

In production multi-user high-performance (HPC) batch computing environments, wait

times for scheduled jobs are highly dynamic. For scientific users, the primary measure of

efficiency is wall clock time-to-solution. In high throughput applications, such as many kinds

of biological analysis, the computational work to be done can be flexibly scheduled taking a

longer time on a small number of processors or a shorter time on a large number of processors.

Therefore the capability to choose a platform at run-time based on both processing capabilities

and availability (lowest wait time) would be attractive. The goal of our work was to create an

 - vi -

adaptive interface to HPC systems that dynamically reschedules high-throughput calculations

in response to fluctuating load, optimizing for time-to-solution. This was done by

implementing middleware functionality to (1) monitor the resource load on a given compute

cluster, (2) generate a plan, checking on the applicability of the plan with the defined goals

and (3) adaptively choosing the optimal job dimensions (number of processors and wall-clock

time) to provide the best time-to-solution results.

 - vii -

ABBREVIATIONS

HPC High Performance Computing

MeDICi Middleware for Data Intensive Computing

MIF MeDICi Integration Framework

PNNL Pacific Northwest National Laboratory

BPEL Business Process Execution Language

ASF Adaptive Server Framework

JEE Java Platform Enterprise Edition

MAPE Monitoring, Analysis, Planning and Execution

SPA Sense Plan Act

QoS Quality of Service

SLA Service Level Agreement

NCBI National Center for Biotechnology Information

 - viii -

TABLE OF CONTENTS

ABSTRACT ... V

ABBREVIATIONS ... VII

LIST OF TABLES .. XI

LIST OF FIGURES ... XII

DEDICATION ... XIII

CHAPTER ONE ... 2

1. INTRODUCTION .. 2

2. MOTIVATION ... 4

3. OBJECTIVES AND CONTRIBUTIONS .. 5

4. RELATED WORK ... 6

4.1. SOFTWARE LANGUAGES FOR ADAPTIVITY ... 8

4.2. SOFTWARE ARCHITECTURES FOR ADAPTIVITY... 8

4.3. SCIENTIFIC WORKFLOW APPLICATIONS FOR ADAPTIVITY .. 9

CHAPTER TWO .. 10

2. HIGH PERFORMANCE COMPUTING ... 10

2.1. MOAB POLICY ENGINE .. 11

2.2. MOAB SCHEDULER ... 11

2.3. MOAB LIMITATION ON ADAPTIVE HPC .. 12

 - ix -

CHAPTER THREE .. 13

3. MIF AND ADAPTIVE MIF FRAMEWORK COMPONENTS.. 13

3.1. MIF ARCHITECTURE ... 13

3.2. ADAPTIVE MIF FRAMEWORK COMPONENTS ... 14

3.2.1. Control Component ... 19

3.2.2. Planner .. 20

3.2.3. Goal Manager .. 25

CHAPTER FOUR ... 28

4. RUNNING THE ADAPTIVE MIF PIPELINE .. 28

4.1. SETTING UP THE DIRECTORY STRUCTURE ... 29

4.2. SETTING UP THE ADAPTIVE MEDICI PIPELINE .. 29

4.2.1. Setting up the input file ... 30

4.2.2. Programming the adaptive MeDICi pipeline .. 31

4.3. SETTING UP THE CONTROL COMPONENTS ... 33

4.3.1. Running the Sense Control Component .. 34

4.3.2. Running the Act Control Component ... 35

CHAPTER FIVE .. 37

5. SCALABLAST: AN ADAPTIVE SCIENTIFIC WORKFLOW ... 37

5.1. RESULTS WITH ADAPTIVE SCALABLAST ... 38

5.2. RUN-TIME RESULTS WITH LARGE DATASETS .. 38

5.3. RESULTS WITH SMALL TO MEDIUM DATASETS BATCH RUNS ... 42

5.4. RESULTS COMPARISONS.. 42

 - x -

CHAPTER SIX ... 47

6. CONCLUSIONS AND FUTURE WORK ... 47

6.1. CONCLUSIONS ... 47

6.2. FUTURE WORK .. 49

REFERENCES .. 51

APPENDIX .. 53

A. SAMPLE QUEUE OUTPUT FILE .. 53

B. STATIC SCALABLAST BATCH JOB RUN TIME RESULTS 58

C. DYNAMIC SCALABLAST BATCH JOB RUN TIME RESULTS 59

D. UML COMPONENT DIAGRAM FOR ADAPTIVE MIF .. 60

E. SOURCE CODE ... 61

 - xi -

LIST OF TABLES

Table 1. A Simplified Queue Status File .. 21

Table 2. An Example Queue Status .. 22

Table 3. Static vs. Dynamic ScalaBLAST Batch Run Comparison ... 44

 - xii -

LIST OF FIGURES

Figure 1. Moab(R) Architecture Diagram .. 10

Figure 2. The MeDICi Integration Framework (An Example MeDICi Pipeline) 14

Figure 3. MIF Adaptive Architecture ... 15

Figure 4. MIF Pipeline Design (Without Adaptivity) ... 16

Figure 5. Adaptive MIF Pipeline .. 17

Figure 6. Adaptive MIF Framework UML Sequence Diagram .. 18

Figure 7. Adaptive Scheduling Given Example Queue Status in Table 2 23

Figure 8. Adaptive Scheduling Given the Changed Queue Status ... 24

Figure 9. Goal Manager Adjustable Decisions ... 27

Figure 10. The Three Step Adaptive MIF pipeline Setup ... 28

Figure 11. Adaptive Framework Input File (adaptive.properties) .. 31

Figure 12. Adding Adaptive Capabilities to a MIF Pipeline .. 32

Figure 13. A Sample run-time output from Adaptive ScalaBLAST .. 33

Figure 14. An Example Output of the Sense Control Component ... 35

Figure 15. An Example Output of the Act Control Component ... 36

Figure 16. Adaptively Changing Node Count .. 39

Figure 17. Adaptively Changing Node Count Affects on Run Times 40

Figure 18. Adaptive Scheduling Impact on Remaining Wait Times .. 41

Figure 19. Adaptive Scheduling Impact on Remaining Total-Time-To-Solution 42

Figure 20. Static vs. Dynamic ScalaBLAST Batch Run Comparison 43

Figure 21. Dynamic vs. Static ScalaBLAST Batch Run Comparison Graph 46

Figure 22. Adaptive Decision Process with Backfill Windows .. 48

 - xiii -

Dedication

This dissertation is dedicated to my daughter

Melisa Nur Sencer

and my son

Burak Parker Gosney.

Our children are the future to many generations to come.

- 2 -

CHAPTER ONE

1. INTRODUCTION

Promoting collaboration in the business world has been an ongoing activity that has led

to the establishment of widely used tools for social and knowledge networks. Bringing a

similar level of collaborative working environments to scientists is crucial for numerous

research areas as well. However, this new way of sharing and managing information to

electronically capture end-to-end science processes and to share them for future reference and

reuse, creates many challenges and numerous research areas as scientific data analysis

processes massive data volume and requires high- performance computing. Scientific users are

increasingly dependent on large-scale HPC (High Performance Computing) architectures for

analysis and calculations due to the exponential growth in data generation and the resulting

data sets. However, the steep learning curve for utilizing these systems has prohibited many

potential users from deriving the greatest value of HPC platforms (1) (2).

In multi-user batch HPC systems, users submit jobs to a central resource manager that

keeps track of which jobs are currently running, what resources they are utilizing (usually

compute nodes), and the expected run-time of these jobs. On oversubscribed systems, typical

of medium- to large-scale HPC installations, there is a process that manages a job queue to

enforce usage policies. For instance, if a user’s job is still running when the user’s requested

wall-clock time has elapsed, it may be forcibly terminated to ensure that users do not abuse the

resources allotted to them. Running jobs may fail, due to programmer errors, input data errors

such as failure to have all the correct input files available at run time, or because of hardware

faults. The job queue manager may also watch for node failures and “kill” the remainder of a

- 3 -

job if one of the nodes fails. To make matters more complex, the queue manager process also

tracks the priority of jobs awaiting execution. The scheduler can manage reservations in

advance and keep track of short time queue for quick running jobs (3).

For these reasons, jobs of any size may terminate significantly before their intended

end time, potentially changing the availability of nodes for other jobs in a dramatic way. As a

result, there is a constantly evolving estimate of when each job in a queue is likely to run

given the current distribution of available and reserved nodes, the current profile of pending

jobs, and the potential for failure of running jobs. This provides a rich opportunity for

adaptively changing job run-time requirements so that a given task may run as early as

possible (3).

To address this challenge, we aim to simplify the details of utilizing HPC platforms

while at the same time improving a user’s time to solution for a given computational task. We

achieve this by creating an adaptive middleware solution that is based upon the MeDICi

(Middleware for Data Intensive Computing) Integration Framework (4) that has been designed

to address the challenges of building high- performance, distributed data intensive

applications. MeDICi Integration Framework (MIF) integrates component-based and service-

oriented approaches to provide a flexible development and deployment environment for

scientific workflows (5).

The remainder of this dissertation presents an implementation of a novel capability for

flexible job submission to a dynamic HPC queuing environment based upon MIF, but

augmented with adaptive capabilities. We also analyze and quantify the benefits in

performance that are achieved by using this adaptive framework.

- 4 -

2. MOTIVATION

Middleware is computer software that connects software components or applications,

providing a set of services or interfaces that allow multiple processes running on one or more

machines to interact. Previously, researchers at Pacific Northwest National Laboratory

(PNNL) implemented MeDICi to address the challenges of building high- performance, data

intensive applications. MeDICi integrates component-based and service-oriented approaches

to provide a flexible development and deployment environment for scientific workflows (6).

Though MeDICi enables one to construct pipelines using a combination of computing

and data management components, these pipelines are static in nature, and therefore unable to

easily accommodate dynamic computing environments. The concept of adaptivity is therefore

critical for building flexible MeDICi applications that can react to changing user load, system

failure, and system availability. Adaptive workflows adjust at runtime usually due to an

unexpected event, such as a hardware failure of a node. This is in contrast to static pipelines in

which exceptions force a process to fail rather than adjust to change. According to The

Workflow Management Coalition (7), the requirements of dynamic adaptive workflows

include, 1) contingency management and handoff, which provide mechanisms for dealing with

and recovering from expected and unexpected divergence from the intended process; 2) partial

execution, which supports creating and executing processes and process fragments (modules)

as they are needed, rather than requiring the entire process be rigidly specified ahead of time;

3) dynamic behavior in terms of both execution model and object behaviors provides

flexibility to modify workflow paths and executed behaviors at run-time independent of object

data and, 4) reflexivity, which allows a workflow component to programmatically examine,

- 5 -

analyze, create and manipulate its own process and data as part of automatable tasks during

execution (8).

In this dissertation, an adaptive design was proposed for MIF as a next generation

scientific workflow. Our design approach takes the Gat’s three-layer architecture design and

breaks it into a layered implementation making it modular and introduces the adaptivity as a

separate framework within MIF. Our architecture with distinct layers is more suitable for

integrating with software architectures implemented as frameworks such as MIF. We

proposed, designed and implemented an adaptive middleware framework and show the run-

time results in a production HPC environment. Furthermore, we also analyze and quantify the

benefits in performance that are achieved by using our adaptive MIF framework.

3. OBJECTIVES AND CONTRIBUTIONS

In multi-user batch HPC systems compute jobs are scheduled on non-overlapping

resources so that each job is unimpeded by other jobs running at the same time. When a user

submits a new job to the resource manager, or scheduler, the user specifies what resources

they need (e.g. how many processors), and estimates how long these resources will be utilized.

The most straightforward form of priority is first come, first serve. In this approach,

the top job in the queue “reserves” resources until they are available, then it runs. Other jobs

that can run with leftover resources concurrently with the top priority job may also be allowed

to run. At this point, the next job that was submitted to the queue would start reserving

resources, and when its required resources are available, it would begin execution. This

combination of reservation for the top priority job and “backfilling” for the lower priority jobs

often achieves good utilization of the compute resources (3).

- 6 -

However, on many specialized systems, more sophisticated queue policies are used.

For instance, some large-scale computing centers prioritize jobs that require a large number of

processors. In this policy, a job that has the top priority in the queue can be “skipped” by a

more recently submitted job that requires more processors, creating a highly dynamic situation

for lower priority jobs (3).

To make matters more complex, running jobs often fail—either because of

programmer error such as segmentation fault; input error such as failure to have all the correct

input files available at run time; or because of hardware fault. In any case, jobs of any size

may terminate significantly before their intended end-time potentially changing the

availability of nodes for other jobs in a dramatic way. As a result, there is a constantly

evolving estimate of when each job in a queue is likely to run given the current distribution of

available and reserved nodes, the current profile of pending jobs, and the potential for failure

of running jobs. This provides a rich opportunity for adaptively re-sizing jobs with flexible

run-time requirements so that they can run as early as possible given a shifting distribution of

available and pending nodes (3).

In this dissertation, adaptive capabilities developed for use with MeDICi to address the

need for dynamically scheduling high-throughput scientific calculations on multi-user batch

systems are presented and it is shown that this approach can correctly optimize wall clock

time-to-solution on a multiuser system using real load data from a large-scale system.

4. RELATED WORK

As the complexity of current software systems and uncertainty in their environmnet is

increasing, sofware engineering community is looking for inspiration in diverse related fields

- 7 -

(e.g., robotics, artificial intelligence, control theory, etc.) for new ways to design and manage

systems and services that are "self-adaptive" (9). As self-adaptation is becoming one of the

most promising research direction, the "self" prefix indicates that the system decides how to

react to changes at run-time without or with minimal interference (9).

Self adaptive systems can be categorized by their operating principles or multiple

dimenstions of properties, such as centralized or de-centralized, top-down or bottom-up

approach, environment uncertainty (low/high dynamics of the current environment), etc. A

top-down self adaptive system is ofen centralized and operates with the guidance of a central

controller or a policy maker, assesses its own behavior in the current surrondings, and adapts

itself if the monitoring and analysis warrants it. Such a system operates with an explicit

representation of its environment and its global goals. By anaylizing the components of the

global goals once can predict the adaptation behavior of the self adaptive system (9).

In contrast, a self adaptive system that is designed with bottom-up principles alone

usually employs decentralized components that interact locally with simple rules without a

central authority. It is often difficult to analyze the global properties of such self adaptive

systems by examining the local interactions of its components (9).

Most engineered self adaptive systems fall somewhere between these two extreme

cases of self adaptive system types. There are several software languages, architectures, and

scientific workflow applications that try to address adaptivity at some level in their usage,

design, and implementations.

- 8 -

4.1. Software languages for adaptivity

BPEL, short for Business Process Execution Language, is an executable language for

specifying interactions with web services. BPEL uses generic XML data types to provide

flexibility with optional value selections, therefore providing dynamic selection of services at

runtime for adaptivity (7).

The ASF (Adaptive Server Framework) is implemented on top of JEE (Java Platform

Enterprise Edition) application servers, and uses components to enable MAPE (Monitoring,

Analysis, Planning and Execution) based adaptive behavior for JEE based applications (10)

(11). ASF provides an extensible framework in which components can monitor and sense the

change within a process, analyze the change and decide whether or not to adapt to the change.

ASF is a module layered on JEE servers, and importantly provides an approach that is non-

intrusive to the application code itself that is being augmented with adaptive behavior.

4.2. Software architectures for adaptivity

The autonomic computing community proposed an architecture known as MAPE,

which provides a structure and methodology for developing adaptive systems (12). The MAPE

model creates execution plans and revises application behavior in response to external changes

in the application’s environment.

Dynamic embedding is another adaptation technique utilizing frames and templates to

separate control-flow from data-flow. A frame wraps a collection of possible actor

implementations and a template specifies a sub-workflow with “holes” that can be filled in at

design time or run time with actors or other templates. Dynamic embedding takes the frames

and templates approach one step further by allowing actors and control-flow behavior to be

selected at workflow runtime.

- 9 -

An alternative adaptive software architecture was proposed by Kramer and Magee

(13). They based their proposal for self-managed systems on Gat’s three-layer model (14).

Gat’s paper took the early robotics, SPA (sense-plan-act) approach and proposed a three-layer

control-sequence-deliberation model that formed the foundation of Kramer and Magee’s three-

layer adaptive architecture. The three- layer conceptual model for self-management introduced

by Kramer and Magee provides generality to a range of application domain adaptations, and is

the basis for the design of our Adaptive MIF technology described in this dissertation. A more

detailed description of the theory of the adaptive capabilities used in this application was

presented in (3) and the prototype of our design was demonstrated in (15).

4.3. Scientific workflow applications for adaptivity

Pegasus is a scientific workflow application which employs an adaptive workflow

model based on the MAPE architecture utilizing loosely coupled, reusable components (12).

The e-HTPX project, a scientific workflow application for high-throughput protein

crystallography utilizes the standardized workflow language BPEL for adaptation (8). The

generic data type “any” in BPEL is used to wrap arbitrary XML fragments that can be linked

to implementations. Although this technique provides flexibility to run different code

implementations, it puts a greater work load on the web service which must examine the

different messages to react appropriately. Furthermore, there is little flexibility with reruns of

the wrapped object.

By contrast, adaptivity in KEPLER, another scientific workflow technology, uses

dynamic embedding to discover suitable actors within frames and templates (16) (17). In this

approach, frames and templates are introduced to separate control-flow from data-flow.

- 10 -

CHAPTER TWO

2. HIGH PERFORMANCE COMPUTING

HPC uses supercomputers and compute clusters to solve advanced computation

problems. Scheduling in HPC systems is becoming an increasingly important and difficult

task. As an HPC system can have as many as 105 multi-threaded processors it is desirable to

operate such systems as efficiently as possible.

HPC system at PNNL is based on the Moab® scheduler. Moab® dynamically adapts

HPC resources on demand to match workload needs, an essential capability for delivering

HPC as a service and HPC cloud (18) (19). Moab® is a complete solution to manage HPC

environment with complete support for workload management, job scheduling, and an

adaptive OS switcher for Linux & Windows workloads all rolled into one. The diagram below

shows the Moab® architecture diagram (18).

Figure 1. Moab(R) Architecture Diagram

- 11 -

2.1. Moab Policy Engine

Moab® is designed to run thousands of jobs per hour across thousands of nodes

supporting various configurations to serve the needs of a typical HPC environment. Moab®

enables a system level adaptive HPC environment by allowing the changing needs and failed

systems to be automatically fixed or replaced. Moab® applies site policies and extensive

optimizations to orchestrate jobs, services, and other workload across the ideal combination of

network, compute and storage resources (20). Moab® by itself increases system resource

availability, offers extensive cluster diagnostics, delivers powerful QoS/SLA (Quality of

Service/Service Level Agreement) features, and provides rich visualization of cluster

performance through advanced statistics, reports, and charts (20).

Moab® has a full set of features for job prioritization. It supports priorities based on

credentials, resources, usage, and job attributes. Priorities of jobs can be changed while the job

is queued and user priorities can be provided at runtime (20). Moab® automatically increases

the priorities of jobs based on their queue time to avoid starvation (20). Moab® also provides

advanced capabilities for reserving HPC resources for any period of time. It guarantees the

availability of the reserved resources when a reservation is started. The advanced reservations

enable Moab® to backfill jobs, provide deadline based scheduling, and QoS support. All the

flexibility Moab® policy engine brings creates a highly dynamic and unpredictable HPC

queue environment.

2.2. Moab Scheduler

Moab® can schedule, monitor, and manage jobs using existing scheduler and resource

management technologies deployed to HPC as well as provide a single view to

Administrators. While Moab makes the scheduling and allocation decisions, the Resource

- 12 -

Managers provide Moab® with input on current resource availability, but the Resource

Manager itself is in charge of orchestrating the actual job staging and job execution.

Moab® supports the specification of various resource parameters during job

submission: nodes, memory, cpu, generic resources, wall time, node features, start time, etc.

Moab® supports options for passing in runtime parameters to jobs. Moab® provides all the

basic job management functions such as start, stop, cancel, hold, restart, suspend/resume. It

can also provide the user with the exit status. Moab has an extensive set of scheduling

algorithms. It can schedule batch jobs, parallel jobs, and service workload. Extensive user

tutorial on how to submit jobs and to use Moab® is outlined in (21).

2.3. Moab Limitation on Adaptive HPC

There is continuing research on the optimization of HPC local storage space and the

scheduling algorithms as nodes in HPC clusters usually have processor heterogeneity, load

variation and dynamic availability (22). HPC systems can have multiple jobs with different

execution priorities and need to address dynamic environment changes such as subsequent

workload and system changes (23). Moab is a highly advanced scheduling and management

system designed for clusters, grids, and on-demand computing systems. HPC optimal

scheduling policy algorithms try to address the cluster wide need to use as many nodes as

possible at a time dynamically. However, scientists who have applications that can run on as

many parallel nodes as possible need a way to dynamically adjust their run-time parameters

based on the availability of HPC cluster nodes to obtain optimal run times. Therefore, a

second tier adaptivity within a scientific workflow middleware is needed to help address the

challenges of HPC cluster optimization problem (3).

- 13 -

CHAPTER THREE

3. MIF and ADAPTIVE MIF FRAMEWORK COMPONENTS

MIF (Middleware for Data Intensive Computing Integration Framework) allows

researchers to build scientific workflows or “pipelines” of heterogeneous software

components, each of which performs some analysis of the incoming data and passes on its

results to the next software component in the pipeline. As MIF was designed to address the

challenges of building high- performance, distributed data intensive applications, today MIF is

being used in several data intensive computing software applications such as cyber analytics,

proteomics, and text analysis (5) (24). MIF is open source and freely downloadable from

http://medici.pnl.gov.

3.1. MIF Architecture

As illustrated in Figure 2, MIF architecture leverages open source middleware

technologies and imposes a component-based programming model on the virtual machine

provided by the underlying platform. The resulting MIF architecture is described in (15).

http://medici.pnl.gov/

- 14 -

Figure 2. The MeDICi Integration Framework (An Example MeDICi Pipeline)

MIF components are constructed using a Java API that supports inter-component

communication using asynchronous messaging. Local components execute inside the MIF

container. Remote components support the same programmatic API, and utilize additional

MIF facilities to execute component code outside the MIF container. Remote components are

used to create distributed solutions and to integrate with non-Java codes (4) (25).

MIF also provides a BPEL-based design and execution environment that integrates

with MIF components to provide workflow definition tools and a standards-based recoverable

workflow execution engine.

3.2. Adaptive MIF Framework Components

In our work, MIF was enhanced to incorporate adaptivity based on Kramer and

Magee’s model reported earlier (13). In this model, the bottom component layer (Figure 3)

comprising independent control components reports the current status of the monitored

- 15 -

application environment to the higher levels in the architecture. If necessary, the component

layer also adjusts the operating parameters of the environment. The middle change

management layer is responsible for analyzing changes that are reported from the controls

below or from the new objectives that are reported from the layer above. Once there is a

change of action, meaning an adaptation response, this layer communicates with the control

components and directs the actions to be taken. The upper goal management layer defines the

high-level goal and introduces a plan to achieve it.

Figure 3. MIF Adaptive Architecture

As the driving use case for our work on introducing adaptivity into MIF, we describe

the adaptive MIF design based on a pipeline to efficiently schedule batch jobs on a HPC

platform and address the problem described in Chapter 1. The adaptive MIF pipeline is

- 16 -

designed to optimize time-to-solution for high-throughput computations such as biological

analysis of sequence data, where computing can be a rate limiting step. For such applications,

total processing time is directly related to the number of processors used for a calculation. In

(26) it was shown that our test application scales linearly to thousands of processors on HPC.

Test application that was used for the basis of our runtime results will be discussed in further

detail in chapter five. There is flexibility in choosing the number of processors so that a small

processor pool can be utilized if this means the queue wait time is significantly reduced. Using

MIF components, a pipeline for high-throughput data-intensive analysis was constructed. The

initial pipeline design, as shown in Figure 4, includes no adaptivity and simply moves the

necessary input files to the HPC execution platform and schedules a batch job on the compute

cluster. The pipeline then waits for the job to complete. Once the batch job completes the

pipeline generates the batch run output file and moves it back to the remote resource location.

Figure 4. MIF Pipeline Design (Without Adaptivity)

Although this pipeline automates the manual tasks undertaken by the user when

submitting jobs to a HPC platform, job execution is still completely controlled by the platform

job scheduler, which may not provide a sufficiently rapid turnaround time to obtain results if

the job queues are long. Therefore, we augmented the simple MIF pipeline with an adaptive

- 17 -

capability to optimize the execution of scheduling the batch job on the compute cluster. Figure

5 depicts the adaptive MIF design, with the new components shown in yellow.

Figure 5. Adaptive MIF Pipeline

As can be seen from Figure 5, the adaptive MIF framework has three layers; the

Control component layer, the Planner layer, and the Goal manager layer. These layers

communicate with each other via asynchronous messaging.

As described earlier, a system is adaptive if it is able to adjust its behavior in response

to its perception of the environment and the system itself (27). The question then becomes

how an adaptive system will make adaptation decisions based on these observations. A single

iteration of the adaptive MIF framework is shown in the UML sequence diagram in Figure 6.

A UML component diagram for adaptive MIF framework can also be found in Appendix D.

- 18 -

Figure 6. Adaptive MIF Framework UML Sequence Diagram

In our use case, the MIF adaptive framework continuously monitors the status of the

cluster queues. The control component layer of our pipeline senses the queue status every 20

seconds and outputs the queue status into a file. It then moves this file to a location for the

upper adaptive layer, the planner, to examine. The control component layer is also responsible

for receiving messages from the planner and acting on these messages via setting the input

parameters for a batch job.

The adaptive planner layer communicates with both the upper goal manager layer, and

the lower control components. The planner in an adaptive middleware application

encapsulates the core of the specific adaptive strategy. In our pipeline, the planner looks at the

compute cluster queue status and makes the decision to pick which queue slot our batch job

can best fit into, and notifies the goal manager.

The Goal manager examines the new plan and if the new plan will give better time-to-

solution given the constraints of users’ goals for the job, it notifies the planner to change the

batch run input parameters, number of processors and wall-clock times. The planner then

- 19 -

notifies the control component to take action on the cluster queue based on the new plan. The

Goal Manager Layer is responsible for directing the overall actions, the goals of the planner

and responding to changes in the environment when communicated by the planner. The MIF

adaptive pipeline framework continues to monitor the queues as long as the batch job is

waiting and terminates once the job is running. Each layer of MIF adaptive architecture will be

examined in more detail during the rest of this chapter.

3.2.1. Control Component

The control component layer of our pipeline senses the queue status every 20 seconds

and outputs the queue status into a file. It then moves this file to a location for the upper

adaptive layer to examine. The control component layer is also responsible for receiving

messages from the planner and acting on these messages via setting the input parameters for

our batch job. The control component essentially utilizes MIF components to act and sense

change. The summary of the control component sensing process is as follows:

Wake up every 20 seconds

Run the queue status script

Write output to a file

Move the output file to a temporary remote location for the planner to examine

The summary of the control component queue manipulation process is:

- 20 -

Wake up every 20 seconds

If the batch job is already scheduled but not running and there is a change in the plan

Cancel the scheduled batch job due to change in plan

Rerun the preprocessing batch job

Schedule the batch job using the new parameters

3.2.2. Planner

The adaptive planner layer communicates with both the upper; goal manager layer, and

the lower; control component layer as depicted in Figure 3. The planner in adaptive

middleware usually encapsulates the core of the specific adaptive strategy. In our pipeline, the

planner looks at the compute cluster queue status and makes the decision to pick which queue

slot our batch job can best fit into, notifies the goal manager. The Goal manager examines the

new plan and if the new plan is giving better time-to-solution results, it notifies the planner to

change the batch run input parameters, number of processors and wall-clock times. The

planner then notifies the control component to take action on the cluster queue based on the

new plan.

In the pipeline, the planner gets queue status information from the control component

in a text file format. A (shortened) example file from a compute cluster is shown in Table 1.

Appendix A shows an example output of a production HPC queue status file.

- 21 -

Table 1. A Simplified Queue Status File

Total Number of Jobs: 6
4 running, 2 pending

Time State Job
Nodes

Required
Nodes

Available
10:00 NOW - 499 500
10:00 START A -400 100
10:00 START B -50 50
10:00 START C -20 30
10:00 START D -29 1
10:30 *FINI D 29 30
10:30 START E -29 1
11:40 *FINI E 29 30
10:40 START F 30 0
11:42 *FINI F 30 30
11:00 *FINI C 20 50
11:30 *FINI B 50 100
12:00 *FINI A 400 500

As it can be seen from Table 1, currently there are a total of 6 batch jobs in HPC, 4 of

which are running and 2 out of 6 are pending, waiting in the HPC queue to run. Current time is

10:00 and job A is going to start at time 10:00, right away, reserving 400 nodes out of 500 in

the cluster. At time 12:00, job A finishes, giving it a 2 hour estimated run time, resulting with

a 2 hour total time to completion as there is no wait time. Job B also runs right away at time

10:00, reserving 50 nodes and finishes at time 11:30, with a total time to solution of 1.5 hours

with no wait times. Job C starts at time 10:00 with no wait time as well. Job C reserves 20

nodes with a total time to solution of 1 hour, ending at time 11:00. Job D also runs right away

- 22 -

reserving 29 nodes, with a total run time of 30 minutes; on 29 nodes. Job E on the other hand

starts at time 10:30 with a wait time of 30 minutes. The run time to run Job E on 29 nodes is

10 minutes. Therefore the total time to solution for Job E is 40 minutes; 30 minutes of wait

time plus the 10 minutes of run time. Job F is highlighted in this table since it is the job that

was scheduled dynamically. The scheduling of Job F will be discussed with the graphs below.

Given, the output in Table 1, which shows how many compute cluster nodes are

available at what day and time, the objective of the planner is to find the best possible gap for

our batch job run to fit. Table 2 is a different representation of Table 1 and it shows the same

example queue of running jobs as in Table 1 on the compute cluster at the given time.

Table 2. An Example Queue Status

Job Nodes
RunTime
(minutes)

WaitTime
(minutes)

TotalTime
(minutes)

A 400 120 0 120
B 50 90 0 90
C 20 60 0 60
D 29 30 0 30
E 29 10 30 40
F 30 2 40 42

The total number of nodes in this cluster is assumed to be 500. Job A is utilizing 400

nodes and will be running for the next two hours. Job B is using 50 nodes and will be running

for 1.5 hours. Job C is using 20 nodes and will be running for 1 hour. Job D is using 29 nodes

and will be running half an hour. Job E is waiting in the queue reserving 29 nodes and will run

for 10 minutes.

As an example, assume the planner knows that our batch job will run for 1 hour on 1

node, and scales linearly with the addition of compute nodes. The planner algorithm examines

the queue status as illustrated in Figure 6, and evaluates alternative schedule options. It

- 23 -

determines that it can reserve 1 node that is available immediately on the compute cluster.

However, a better alternative is to reserve 30 nodes after the completion of Job E, since our

job will only take 2 minutes to run on 30 nodes. This will give a total runtime of 42 minutes

(40 minutes wait time in the queue, 2 minutes runtime), hence the planner takes this action.

Even after the planner schedules a batch job on a highly utilized, dynamic computer

cluster, the queue status can change based on several factors. For instance, a job can finish

early or another job submitted after ours can be “skipped” by a very large job with high

priority altering the node availability timeline. Since the framework keeps checking

periodically for change in the compute cluster queue status, it can detect such changes, re-

evaluate options and re-submit the job with different run-time parameters to achieve optimal

time-to-solution in the updated queue if better options exist.

Figure 7. Adaptive Scheduling Given Example Queue Status in Table 2

Further illustrating the need for adaptivity, if Job B fails or finishes earlier than

expected, see Figure 7 for option 1 where when there is no adaptivity, the pending jobs simply

move ahead in the queue. This scenario gives our batch job a run time total of 12 minutes (10

minutes waiting in the queue, and 2 minutes run time). However, a better alternative is to

- 24 -

adaptively adjust the runtime parameters so the batch job runs on 22 nodes which are

immediately available, see option 2, therefore, reducing the total job time down to 2.72

minutes.

Figure 8. Adaptive Scheduling Given the Changed Queue Status

The summary of the planner process in our adaptive middleware is:

- 25 -

Get the currently selected goal from the Goal Manager

Loop through the queue status file reading each line

If (available nodes exist)

Look ahead in the status file for how long nodes are available (gaps)

If (# of available nodes * batchruntimepernode<= howlongnodesareavailable)

AND

If (the new configuration is within the user’s goals that are set previously)

AND

If (batchruntimepernode / # of available nodes + waitTime < currentScheduledTotalTime)

 Propose the new queue-slot (gap) to the Goal Manager

Send an act message to the control component

3.2.3. Goal Manager

The Goal Manager Layer is responsible for directing the overall actions of the planner,

and responding to changes in the environment when communicated by the planner. Whittle, et

al. describes scenarios wherein human input is required in the form of natural language (either

speech or text), as a way to trigger adaptations that otherwise could not be achieved (28). In

our example, Goal Manager decisions in MIF Adaptive Framework are based on an input file

that specifies several options, see Figure 6 below. In the example, there are four types of

different possible goals for the application that a user can specify:

1. NODECOUNT: NODECOUNT is used if the user wishes to specify only the number

of cluster nodes to be used for processing the request. For example, there may be

- 26 -

specific design patterns which may have been implemented in the application that

benefit from specifying the number of nodes.

2. TIME: Specifying a goal of TIME indicates that the user wishes the job to be

completed within a certain amount of “wall time”. The adaptive framework calculates

the best plan to achieve the time goal.

3. COST: There is a cost to executing on HPC nodes. If a goal of COST is specified, the

adaptive framework attempts to calculate a plan which will not exceed the cost

specified. Although at first glance this option may be similar to the TIME goal, a

different cost function may be necessary in some cases to validate the applicability of a

separate COST goal. HPC environments are getting much more focused on power

utilization. While goal of TIME has a simple relationship between wall clock time and

number of cores, the power utilization may be much more complex. If the cost of using

each node is A + Bt + Cct where A is a startup cost per node, B is the cost per unit time

of running on a node, and C is the constant cost of running each core per unit time. In

this case “t” is the time and “c” is the number of cores. This cost functionwould favor

running longer runs using as many cores as possible on as few nodes as possible and

therefore, will provide a different goal than the TIME goal for the scientist.

4. BALANCE: If the BALANCE goal is specified, the user allows the framework to

calculate the best balance between NODECOUNT, TIME, and COST. Balancing

TIME with COST goals would be ideal for such HPC environments that may constrain

usage by complex memory resource “cost”. In such data centers, users use more

- 27 -

memory when they use more nodes and more cores. Goal BALANCE selection for the

use in such systems would favor towards longer runs on smaller node sets.

Figure 9. Goal Manager Adjustable Decisions

Once the plan is received from the user, the Planner first verifies that the plan can be

achieved. The details of the Planner algorithm were discussed in the previous section.

- 28 -

CHAPTER FOUR

4. RUNNING THE ADAPTIVE MIF PIPELINE

Running an Adaptive MIF pipeline is a three step process shown in Figure 10. This

three step process of running an adaptive MIF pipeline is generic and may be applicable to any

scientific application. Furthermore, running each of the components of a MIF adaptive

pipeline steps alone is possible. However, no adaptive scheduling will be performed if the

components run individually and are not synchronized.

Figure 10. The Three Step Adaptive MIF pipeline Setup

- 29 -

4.1. Setting up the Directory Structure

For the adaptive MIF pipeline to schedule any type of adaptive job on an HPC cluster

the initial communication channels must be established and all of the components of the

adaptive MIF architecture must be running. The communication between the Adaptive MIF

planner and the control components is done through a shared file location accessible by the

user, the MIF planner and the control component. A user account must be established and

given access to the network file share. The various components in the adaptive framework

communicate via files as follows:

• The ‘act’ folder structure is used to keep data files that are going to be used by the

Control Component. This folder is also used to keep the log files for the decision

process that adaptive MIF takes during an adaptively scheduled run.

• The “data” folder structure is used to transfer files needed to run the batch job. The

transfer of the data files can be done separately ahead of time.

• The “process” folder structure is used to keep files related to runtime activities, such

as, start time of adaptive MIF run, end time of adaptive MIF run, wait time of the

currently scheduled adaptive job.

• The “sense” folder structure is used to keep the HPC queue status files gathered by the

sense control component

4.2. Setting up the Adaptive MeDICi Pipeline

Setting up the adaptive MeDICi pipeline requires input file setup as well as adding the

adaptive module as a component of the MeDICi pipeline to move it from being a static

pipeline to adaptivity aware one.

- 30 -

4.2.1. Setting up the input file

The adaptive MIF pipeline interacts with a configuration file that is named

“adaptive.properties”. This file must include

• MIF’s Adaptive Planner Network file share - the file share used for this job

• HPC cluster host specific information, such as ssh directory, user name, cost per node,

etc.

• The batch job specific information, in this example scalaBLAST specific information

is provided, to calculate correct runtimes, and

• Goal information – Used by the adaptive framework to schedule adaptive jobs, if

possible, according to the goals established by the user. A configuration of input file

setup example, adaptive.properties file, is shown in Figure 11 in addition to Figure 9.

- 31 -

Figure 11. Adaptive Framework Input File (adaptive.properties)

4.2.2. Programming the adaptive MeDICi pipeline

Augmenting MIF with adaptive capabilities requires adding the AdaptiveModule to the

pipeline. MIF pipeline supports adding MIF Modules that are user defined and can run

enhancements or application specific code within the pipeline. As shown in Figure 12,

scientists can add the AdaptiveModule constructor for MIF to their scientific workflows by

calling the addMifModule function.

- 32 -

Figure 12. Adding Adaptive Capabilities to a MIF Pipeline

Once adaptiveModule is added to the MIF pipeline, it instantiates and initializes the

Goal Manager, Planner, and Control Component. Then, it verifies that the job has not been

started by checking the files that were setup on the communication channel during step 1. If

the batch job is not running, it launches Planner to evaluate current environment, which will

be constantly changing. Planner, as described above, gets the user’s current goals from the

Goal Manager, and it then gets the current queue stats from the Control Component. Once the

planner has a picture of the current environment, it evaluates the best run-time parameters as

described by the pseudo-code outlined in chapter 3.

Figure 13 shows an example output from a running adaptive MIF pipeline. As you can

see in the output, a queue status file is being traversed for the next best gap that will

outperform the current configuration by total run times. As you can see in the example output,

the second scan through the queue status there were no better plans found, therefore no new

plan was executed.

- 33 -

Figure 13. A Sample run-time output from Adaptive ScalaBLAST

4.3. Setting up the Control Components

The Control Components of adaptive MIF must be deployed on the HPC environment.

The sensor control component script is called sense.csh and the actor control component script

is called act.csh. The scripts are where the generic adaptive control component logic resides.

- 34 -

There are also two scripts deployed in addition to sense.csh and act.csh which parameterize

the running of the control component scripts with system specific information.

4.3.1. Running the Sense Control Component

The parameterized run of the sense control component is called run_sense.csh. The

run_sense.csh script launches the sense control component with the parameters as follows:

• File share server location - Used for communication with the adaptive MIF planner.

• The top level folder name - This top level folder contains the specific directory

structure for adaptive MIF communications.

• Host Name - This parameter could be obtained from the operating system but due to

differences in operating systems, currently the host name is parameterized.

Once started, the sense script polls the queue status every 20 seconds until the job starts to

run. It gets the output of the current HPC queue and moves the output file to the shared

location specified. If the file is locked, the Planner is evaluating the plan, and it should not be

changed until the Planner has completed this process. The sense control component uses

hostnames to identify which HPC cluster the information belongs to in case MIF adaptive

framework is utilizing more than one HPC cluster. An example run of sense.csh is given

below:

- 35 -

Figure 14. An Example Output of the Sense Control Component

4.3.2. Running the Act Control Component

The parameterized run of an act control component is called run_act.csh. The

run_act.csh script launches the act control component with the parameters as follows:

• The server directory to be used for communication with the adaptive MIF planner.

• The directory path that contains the specific directory structure for adaptive MIF

communications.

• Host Name. This parameter could be obtained from the operating system but due to

differences in operating systems, currently the host name is a parameter.

• The script that will be used to reset the run-time HPC batch job parameters if/when the

adaptive MIF changes the number of nodes to be used during an adaptive run.

Once run_act.csh runs, it starts to make decisions based on MIF adaptive planner

directives. If a job must be canceled, it cancels that job. If a new job must be scheduled, it

- 36 -

schedules that job. It also pushes queue wait time information related to the adaptively

scheduled job to the file share for the MIF adaptive planner to access. The Act control

component iterates every 20 seconds just like the sense control component. An example run of

sense.csh is shown below:

Figure 15. An Example Output of the Act Control Component

- 37 -

CHAPTER FIVE

5. ScalaBLAST: AN ADAPTIVE SCIENTIFIC WORKFLOW

ScalaBLAST was the test subject for the comparative results of adaptive MeDICi

framework on HPC. ScalaBLAST is implemented using the MPI parallel programming

libraries and the Global Array software for shared memory management (26). Amongst its

other techniques, ScalaBLAST employs distributed memory management, latency hiding

through pre-fetching database sequences, parallel I/O and multi-level parallelism to achieve

higher performance and scalability (26). ScalaBLAST has been shown to scale linearly with

respect to the number of processors. ScalaBLAST has high-performance data management

capabilities. ScalaBLAST has been built and executed on many different platforms, and is an

ideal application for handling large-scale bioinformatics calculations.

Ideally, ScalaBLAST would be run on smaller platforms when the compute tasks

required by a given annotation task was small in size, and it would run on a larger platform

when the compute task is larger in size. There are several reasons for carefully managing

where ScalaBLAST is running. Larger systems tend to have longer queue wait times, so for

smaller runs, it does not always pay off to submit them to larger batch systems. Likewise,

sending a very large task to a small cluster could overwhelm that resource preventing other

users from running on it. Additionally, different compute resources have their own user loads.

Multiple users on a system can compete for limited resources (like global file system

bandwidth or capacity, or interconnect bandwidth), so the optimal platform for a given

sequence analysis task may vary in time as the loads of candidate systems fluctuate. The

adaptive MIF workflow model is therefore ideal for developing a flexible ScalaBLAST

- 38 -

workflow that dispatches compute tasks in response to new task requests from the adaptive

MIF pipeline on the resource that is optimal for the task.

5.1. Results with Adaptive ScalaBLAST

The behavior of our adaptive MIF pipeline for ScalaBLAST jobs was observed over

several runs over a two month period on a production HPC system at PNNL. These

ScalaBLAST jobs were aligning a set of queries against sequences from databases of varying

sizes, and the adaptive MIF pipeline was performing protein comparisons for ScalaBLAST

using large dataset sizes. The ScalaBLAST job is considered large if the dataset query size

was above 10,000,000 dataset queries, medium size if the database query size was above

1,000,000 but below 10,000,000 and small size ScalaBLAST jobs had over 100,000 but less

than 1,000,000 dataset queries. For each ScalaBLAST job, all queries were compared to a

public NIH database maintained by The National Center for Biotechnology Information

(NCBI), (http://www.ncbi.nlm.nih.gov/) (29) containing a collection of all known sequenced

proteins with redundant entries removed. This dataset is known as the nonredundant protein

database, or ‘nr’ for short. The version of nr that we utilized in this study contained 10 million

protein sequences.

5.2. Run-time Results with Large Datasets

In this section, one example of a large dataset (including over 10,000,000 dataset

queries) based adaptive run will be examined. Summary statistics for multiple runs are

presented in later sections. An individual analysis of all the adaptive runs is available for

interested readers and the summary stats tables are included in the Appendix B-C.

http://www.ncbi.nlm.nih.gov/

- 39 -

The number of times different HPC nodes were selected over the course of this large

dataset based adaptive run is a total of 6 (see Figure 16). Therefore, over the course of this

adaptive run, the MIF adaptive planner made decisions based on the changes it sensed in HPC

queues and made 6 different adaptive scheduling attempts, which resulted in dynamically

selecting a large number of compute nodes that suddenly became available while the original

submission was waiting to run.

Figure 16. Adaptively Changing Node Count

In Figure 16, we inserted a new timeline constructed from colored rectangles that

indicates the adaptive decision making baseline and carried this timeline to the figures related

to this adaptive batch run in order to give the reader a better understanding of what is

adaptively happening inside the run and how the rest of runtime parameters are being affected

by adaptive changes.

- 40 -

Due to the highly dynamic nature of HPC queues, there is a risk that another job gets

scheduled ahead of the adaptive run. Bumps in time-to-completion (Figure 17) come from new

jobs coming in ahead of adaptive batch job and not because of adaptive decisions. Adaptive

MIF planner decision changes always reduce the total time to solution results.

Since the runtimes of the batch job will be different based on the dynamic selection of

the number of nodes, Figure 17 below has 6 different runtimes during the course of the

adaptive scheduling. Comparing Figure 17 with the adaptive timeline, notice that total runtime

changes are directly related to adaptive node count selections. When adaptive MIF reserves

more HPC nodes, the runtime of our batch job becomes smaller since there are more

processing power of parallel runs over the nodes and vice versa, when fewer nodes get

selected to run a batch job, total runtime of the batch job takes longer.

Figure 17. Adaptively Changing Node Count Affects on Run Times

Figure 18 below shows the wait times in the HPC queues for our ScalaBlast batch job.

As can be seen from the graph below, even though the number of nodes reserved changes

during the adaptive run, the wait times are reducing, which leads to reduced total time-to-

0

50

100

150

200

250

300

350

400

450

0 21

42

62

83

10
5

12
6

14
7

16
8

18
9

21
0

23
1

25
2

27
3

29
4

31
6

33
6

35
7

37
8

39
8

42
0

Ru
n

Ti
m

e

(m
in

ut
es

)

Time
(minutes)

- 41 -

completion results. Comparing Figure 18 to the adaptive time line, first adaptive decision

leads to a big drop on the reamining wait time. Although there is no adaptive decision is being

made during the second adaptive timeline, please note that wait times are changing

dramatically, which is an indication of PNNL’s highly dynamic HPC environment. The

adaptive timeline adaptation only makes a new configuration change when this change results

in a new more optiomal run-time as well as wait-time solution.

Figure 18. Adaptive Scheduling Impact on Remaining Wait Times

When examining total time-to-completion results (see Figure 19), note that the total

time-to-completion results are reducing during adaptive job runs. Due to the highly dynamic

nature of HPC queues, there is a risk that another job gets scheduled ahead of the adaptive

run. Bumps in the wait times come from new jobs coming in ahead of adaptive batch job due

to highly dynamic HPC queue and not because of adaptive decisions. Adaptive MIF planner

decision changes always reduces the total time to solution results.

0

200

400

600

800

1000

1200

1400

1600

1800

0 21

42

62

83

10
5

12
6

14
7

16
8

18
9

21
0

23
1

25
2

27
3

29
4

31
6

33
6

35
7

37
8

39
8

42
0

Re
m

ai
ni

ng
 W

ai
t

Ti
m

es

(m
in

ut
es

)

Time
(minutes)

- 42 -

Figure 19. Adaptive Scheduling Impact on Remaining Total-Time-To-Solution

5.3. Results with Small to Medium Datasets Batch Runs

We ran several adaptive batch run jobs with using small to medium datasets. Since

small to medium dataset batch run jobs do not require big number of HPC nodes, they get

scheduled in the short time queue of HPC. Therefore, adaptive jobs run before they can be

rescheduled again adaptively to prove the efficiency of adaptive MeDICi architecture.

Nevertheless, adaptive MeDICi takes the guess work out of users’ hands and schedules the

small batch run jobs with the optimal parameters without having the users adjust the run-time

parameters. That alone could save hours of scientist work saving the company soft cost dollars

where the scientist can perform their science work and not worry about the implementation

details of HPC batch runs.

5.4. Results Comparisons

In order to evaluate that our solution gives better throughput than staticly scheduled

jobs in HPC queues, we created a race scenario of adaptive vs. static batch job. Starting the

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 21

42

62

83

10
5

12
6

14
7

16
8

18
9

21
0

23
1

25
2

27
3

29
4

31
6

33
6

35
7

37
8

39
8

42
0

Re
m

ai
ni

ng
 T

ot
al

-T
im

e-
To

-S
ol

ut
io

n
(m

in
ut

es
)

Time
(minutes)

- 43 -

static batch job first with adaptively picked configuration gave our static job priority as well as

the best spot in the queue. After scheduling our adaptive batch job, we compared the job

submission times, start times, and completion times for both jobs. The comparison between

the static and dynamic jobs are based on estimated times (run time, wait time, and total time)

at the time of job submission versus the actual times (run time, wait time, and total times).

Figure 20 shows one sample result comparing the statically scheduled ScalaBLAST job with

the dynamic one, demonstrating the adaptive MIF solution reduces the total time to

completion by 409 minutes, a %41 improvement.

Figure 20. Static vs. Dynamic ScalaBLAST Batch Run Comparison

When MIF adaptive scheduling is started, job parameters (number of nodes and wait

times) are optimally selected given the HPC queue status and user goals (see the job parameter

selection algorithm in section 3.2.2.). There is no quarantee that there will be gaps and/or

changes in the HPC queue status that will enable better total time-to-solution results.

Obviously if the adaptive job does not reschedule itself, the static job that has given initial

priority will run ahead of our dynamicly scheduled job. Table 3 shows that adaptation

98

732

270

1002

167

433

160

593

0

200

400

600

800

1000

1200

node count at
run time

wait time
(minutes)

run time
(minutes)

total time
(minutes)

Static

Dynamic

- 44 -

produces significant improvement in total time to completion in 5 out of 20 cases and

marginal improvement in 4 additional jobs.

Table 3. Static vs. Dynamic ScalaBLAST Batch Run Comparison

Job
Run

%
improvement
on total time

with
dynamic

Scheduling

%
improvement
on total time
with Static
Scheduling

%
Improvement

Difference
1 68.25 46.36 21.90*
2 73.66 44.42 29.24*
3 86.55 88.83 -2.29#
4 79.90 80.04 -0.14@
5 84.89 85.03 -0.14@
6 87.98 82.71 5.27#
7 78.42 76.18 2.24#
8 96.69 85.72 10.97*
9 64.34 45.92 18.41*
10 75.59 75.63 -0.04@
11 92.67 88.36 4.31#
12 77.59 77.59 0.00@
13 61.67 61.74 -0.07@
14 83.74 84.53 -0.79@
15 90.89 90.93 -0.04@
16 86.03 86.03 0.00@
17 48.73 41.21 7.52#
18 25.28 25.73 -0.45@
19 90.38 90.78 -0.40@
20 60.62 -13.97 74.59*
* Significant (>10%) – all improvements
Moderate (1% to 10%) – all but one are improvements
@ Insignificant (<1%)

In Table 3, % improvement on total time to completion is the percentage of the

difference between the actual total-time-to-completion and estimated total-time-to-completion

- 45 -

at the time of first submission therefore includes the wait time as well as the run times.

Significant improvement is defined as % improvement difference between a static and a

dynamic batch job being above 10% and moderate improvement is defined as % improvement

difference between static and dynamic job being between %1 to %10 and insignificant

improvement is %improvement being below 1%. These results clearly show that adaptive

scheduling enables a good chance for significantly improving the total job run times on HPC.

Over 20 runs, the jobs scheduled adaptively had 16% better time-to-completion that

the equivalent statically scheduled jobs. As seen in Figure 21,there are a few results where the

dynamic job resulted in a longer time to solution. In the instances that the dynamic job

couldn’t perform better runtime results, the adaptive planner was not able to reschedule the

batch job, meaning, there were no better spot in the queue and since the priority was given to

the static job from the first time scheduling, the static batch job simply ran ahead of the

dynamic job as the dynamic job did not get a chance to be rescheduled. Adaptive MIF job

scheduling has several advantages even if the rescheduling doesn’t happen. First of all, users

never need to figure out what the best parameters are to run their jobs given the current status

of the queues. This step alone saves a scientist considerable preparation time. In addition

adaptive scheduling gives a scientist a way to interact and change the limits of run time

parameters for the batch job while the adaptive job is waiting in HPC queues. Furthermore,

initially both the static and dynamic jobs pick the perfect parameters given the synapses of the

queue, therefore, if the queue synapses do not change, dynamic job will not get a chance to get

ahead of the static job but yet will still run with the best runtime parameters at a given time on

the HPC queue.

- 46 -

Figure 21. Dynamic vs. Static ScalaBLAST Batch Run Comparison Graph

Considering that the static job got the initial priority, or favoritism, of the HPC job

scheduler, as a result of the historic runs shown in the results section, researchers can expect to

see a 25% significant improvement on total time to completion of their jobs using the adaptive

MIF framework running on an HPC system. We ran several adaptive batch run jobs with using

small to medium datasets. Since small to medium datasets do not require a large number of

HPC nodes, they were scheduled after a short wait in the queue. In fact, adaptive jobs were

often run before the MIF planner had time to inspect the queue status. Nevertheless, the

adaptive MIF technology alleviates the user from estimating job size to request when

submitting the job. This simplifies their work load, enabling them to focus on their science and

ignore the implementation details of HPC batch runs.

21.90
29.24

-2.29
-0.14 -0.14

5.27 2.24
10.97 18.41

-0.04
4.31 0.00

-0.07 -0.79 -0.04
0.00

7.52

-0.45 -0.40

74.59

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 Im

pr
ov

em
en

t

Job Runs

Dynamic ScalaBLAST

Static ScalaBLAST

Difference on % Improvement

- 47 -

CHAPTER SIX

6. CONCLUSIONS and FUTURE WORK

6.1. Conclusions

In this dissertation, the software design and architecture of the MIF adaptive

middleware framework for scientific workflows is presented. The MIF adaptive middleware

framework was inspired by Kramer and Magee’s proposed adaptive software architecture

model. The MIF adaptive middleware framework was demonstrated to be successful in

adapting the scheduling of large batch jobs on a highly dynamic HPC queue environment.

Furthermore, the proposed software design and architecture was put to use and the benefits of

using the adaptive middleware framework for scheduling jobs on a production HPC system

was experimentally evaluated. Using this framework, often one can realize a substantial

improvement in wall-clock time to solution on large-scale multi-user systems over static job

scheduling because the adaptive scheduler aggressively takes advantage of volatility in the job

queue.

When dealing with clusters, fully loaded machines are desirable because it leads to

better and more efficient use of HPC resources. Adaptive MIF architecture maximizes cluster

utilization and throughput by allowing dynamic jobs lower in the queue to run ahead of a job

waiting at the top of the queue, as long as the job at the top is not delayed as a result.

Revisiting adaptive decision process presented in Figure 8, a small modification to this figure

showing the resource utilization is illustrated in Figure 22. The figure below shows the

important concept of backfill windows of batch HPC environment with four running jobs and

a reservation of a fifth dynamic job. The present time is represented by the leftmost end of the

- 48 -

box with the future moving to the right. The light gray boxes represent currently idle nodes

that are eligible for backfilling but cannot be backfilled by the HPC scheduling backfill

algorithm alone. The dynamic scheduling utilizes the idle nodes in the backfill window that

gives the best time to solution results. With only a single adaptive client, this can increase

system utilization and improve throughput of large-scale calculations.

Figure 22. Adaptive Decision Process with Backfill Windows

In conjunction with MIF adaptive middleware framework, scientific workflows and the

high-performance BLAST implementation, ScalaBLAST, this dissertation shows the software

architecture to fill in the gap of achieving best run time solutions on a given HPC system

eliminating the scientists having to learn the implementation details.

- 49 -

6.2. Future Work

Several areas of future work are being considered based on this research:

1. Further investigation of the proposed model to

a. Study the behavior and performance when there is more than one

adaptive job scheduled in a given HPC queue. If an HPC system

starts promoting the adaptive scheduling to many users, adaptively

scheduled jobs could start competing with each other. This scenario

would be another research topic of an improvement on the current

adaptive architecture.

b. Study the performance when applied to other scientific workflow

applications that are computationally intense, such as NWChem.

c. Study other approaches for managing the communication with

control components and MIF adaptive planner. Although the current

communication method of file input/output and file locking

mechanism works well to support different software language

integrations for future work, using a queue or database to manage

communication could provide a more robust and scalable solution.

2. Expansion of the proposed model to support the utilization of multiple HPC sites.

Only one target HPC system was used throughout this project. However our adaptive

MIF architecture is generic and the components could be extended to adaptively schedule jobs

on multiple HPC systems. By selecting amongst multiple potential execution sites, it may be

possible to provide substantially better times-to-completion for jobs on HPC platforms.

- 50 -

3. Application of MIF adaptive framework (Kramer and Magee model) to other

adaptivity problems where adaptive middleware is needed.

Different adaptation scenarios can be grouped into mapping and scheduling

adaptations. In this dissertation, MIF adaptive framework was applied to a particular

scheduling adaptation problem where increasing/decreasing the level of parallelism of a

service was the main concern to achieve best total-time-to-solution results. The adaptation

scenarios can be expanded to move services between different execution sites (different HPC

queues), possibly located in different states or possibly changing the ScalaBLAST processing

steps based on the changes in the queue, etc.

4. Applying different software architecture models to MIF adaptive framework based

on applicability.

MIF adaptive framework model could be expanded to select different adaptive

architecture (see section 4.2) models as needed based on changes in environment and/or the

selection of a particular scientific workflow application that is being the subject of adaptivity.

5. Considerations on a graphical user interface.

Furthermore, writing a graphic user interface for the adaptive MeDICi framework

should be a research topic. Interaction with the goal manager and users, setting up MeDICi

parameters and showing the progress graphically may improve the user experience.

- 51 -

REFERENCES

1. A roadmap towards sustainable self-aware service systems. Schahram Dustdar, Luciano Baresi, Giacomo
Cabri, Cesare Pautasso, Franco Zambonelli. New York, NY, USA : s.n., 2010. SEAMS '10: Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems. pp. 10-19.

2. Design patterns for developing dynamically adaptive systems. Andres J. Ramirez, Betty H.C. Cheng. New
York, NY, USA : s.n., 2010. SEAMS '10: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems. pp. 49-58.

3. An Adaptive Middleware Framework for Optimal Scheduling on Large Scale Compute Clusters. Arzu
Gosney, John H. Miller, Ian Gorton, Christopher Oehmen. 2011. 2011 Eighth International Conference on
Information Technology: New Generations. pp. 713-718.

4. Components in the Pipeline. Ian Gorton, Adam Wynne, Yan Liu, Jian Yin. 3, s.l. : IEEE Software,
May/June 2011, Vol. 28.

5. A Flexible, High Performance Service-Oriented Architecture for Detecting Cyber Attacks. Adam Wynne, Ian
Gorton, Justin Almquist, Jack Chatterton, Dave Thurman. Los Alamitos, California : IEEE Computer
Society, 2008. Proceedings of the 41st Annual Hawaiian International Conference on Systems Sciences (HICSS
2008). p. 263.

6. The MeDICi Integration Framework: A Platform for High Performance Data Streaming Applications". Ian
Gorton, Adam Wynne, Justin Almquist, Jack Chatterton. Vancouver, Canada : s.n., 2008. Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008). pp. 95-104.

7. The Workflow Management Coalition. [Online] http://www.wfmc.org.

8. Evaluation of BPEL to Scientific Workflows. Asif Akram, David Meredith, Rob Allan. 2006. Proceedings of
the Sixth IEEE International Symposium on Cluster Computing and the Grid. pp. 269-274.

9. Engineering Self-Adaptive Systems through Feedback Loops. Yuriy Brun, Giovanna Di Marzo Serugendo,
Cristina Gacek, Holger Giese, Holger Kienle, Marin Litoiu, Hausi Muller, Mauro Pezze, Mary Shaw. 2009,
Self-Adaptive Systems, LNCS 5525, pp. 48-70.

10. Enabling adaptation of J2EE applications using components, web services and aspects. Liu, Yan. s.l. : ACM
Press, New York, NY, 2006. Proceedings of the 5th Workshop on Adaptive and Reflective Middleware (ARM
'06) Melbourne, Australia. Vol. 190.

11. Implementing Adaptive Performance Management in Server Applications. Yan Liu, Ian Gorton. 2007.
Proceedings of the 2007 International Workshop ion Software Engineering for Adaptive and Self-Managing
Systems (SEAMS07) IEEE Computer Society Press. p. 12.

12. Adaptive Workflow Processing and Execution in Pegasus. Kevin Lee, Norman W. Paton, Rizos
Sakellariou, Ewa Deelman, Alvaro A.A. Fernandes, Gaurang Mehta. 2009. Concurrency and Computation:
Practice and Experience. Vol. 21, pp. 1965-1981.

13. Self-Managed Systems: An Architectural Challenge. Jeff Kramer, Jeff Magee. 2007. Future of Software
Engineering, International Conference on Software Engineering. pp. 259–268.

14. "Three-layer Architectures”, Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot
Systems. Erann Gat. s.l. : MIT Press, 1998.

- 52 -

15. An adaptive middleware framework for Scientific Computing at extreme scales. Arzu Gosney, Christopher
Oehmen, Adam Wynne, Justin Almquist. Las Vegas, NV : s.n., 2010. Information Reuse and Integration (IRI),
2010 IEEE International Conference on Information Reuse and Integration. pp. 232 - 238 .

16. Flexible Scientific Workflow Modeling Using Frames, Templates, and Dynamic Embedding. Anne H. Ngu,
Shawn Bowers, Nicholas Haasch, Timothy Mcphillips, Terence Critchlow. 2008. Scientific and Statistical
Database Management, 20th International Conference, SSDBM 2008, Hong Kong, China. pp. 566-572.

17. Kepler: an extensible system for design and execution of scientific workflows. Ilkay Altintas, Chad Berkley,
Efrat Jaeger, Matthew Jones, Bertram Ludascher, Steve Mock. 2004. 16th International Conference on
Scientific and Statistical Database Management. pp. 423-424.

18. Adaptive Computing. Moab Adaptive HPC Suite. [Online]
http://www.adaptivecomputing.com/products/moab-adaptive-hpc-suite.php.

19. Adaptive Computing. [Online] http://www.adaptivecomputing.com.

20. Review of Moab HPC Suite. [Online] http://rnirmal.com/review-of-moab-hpc-suite.

21. Using Moab. [Online] https://computing.llnl.gov/tutorials/moab/.

22. An efficient adaptive scheduling policy for high performance computing. Jemal H Abawajy. 2009, Future
Generation Computer Systems, Vol. 25, pp. 364-370.

23. Adaptive data-aware utility-based scheduling in resource-constrained systems. David Vengerov, Lykomidis
Mastroleon, Declan Murphy, Nick Bambos. 9, 2010, Journal of Parallel and Distributed Computing, Vol. 70.

24. Services + Components = Data Intensive Scientific Workflow Application with MeDICi. Ian Gorton, Jared
Chase, Adam Wynne, Justin Almquist, Alan Chappell. 2009, Lecture Notes in Computer Science, Vol. 5582,
pp. 227-241.

25. Model-Driven Application Development for the MeDICi Integration Framework: An Experience Report. Ian
Gorton, Adam Wynne, Justin Almquist, Jack Chatterton. s.l. : Conference on Component-Based Software
Engineering, 2008.

26. ScalaBLAST: A scalable implementation of BLAST for High Performance Data-Intensive Bioinformatics
Analysis. Christopher Oehmen, Jarek Nieplocha. 2006, IEEE Trans. Parallel. Dist. Sys., Vol. 17, pp. 740-749.

27. Software Engineering for Self-Adaptive Systems: A Research Roadmap. Betty H.C. Cheng, Rogerio de
Lemos, Holger Giese, Paola Inverardi, Jeff Magee. 2009, Software Engineering for Self-Adaptive Systems,
pp. 1-26.

28. On the role of the user in monitoring the environment in self-adaptive systems: a position paper. Jon
Whittle, Will Simm, Maria-Angela Ferrario. New York, NY, USA : s.n., 2010. SEAMS '10: Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems. pp. 69-74.

29. National Center for Biotechnology Information. [Online] 8.18.2011. http://www.ncbi.nlm.nih.gov/.

- 53 -

APPENDIX

A. SAMPLE QUEUE OUTPUT FILE

The HPC user specific information, such as userid is non-disclosed.

num_jobs = 140
104 running jobs
32 pending jobs
4 deferred jobs
Year Mo. dt Hr mn Day State Job No Userid Sn An Sa

Aa

2011 Jun 8 9:52 Wed NOW 0 all 8 23 > 8 23
2011 Jun 8 9:52 Wed START 1560892 ### 0 -8 > 8 15
2011 Jun 8 9:52 Wed START 1560893 ### 0 -8 > 8 7
2011 Jun 8 10:21 Wed *FINI 1560943 ### 0 1 > 8 8
2011 Jun 8 10:21 Wed START 1560894 ### 0 -8 > 8 0
2011 Jun 8 11:26 Wed *FINI 1560877 ### 0 32 > 8 32
2011 Jun 8 11:26 Wed *FINI 1560756 ### 0 6 > 8 38
2011 Jun 8 11:26 Wed START 1560896 ### 0 -16 > 8 22
2011 Jun 8 11:26 Wed START 1560897 ### 0 -8 > 8 14
2011 Jun 8 11:26 Wed START 1560900 ### 0 -8 > 8 6
2011 Jun 8 11:38 Wed *FINI 1560813 ### 0 24 > 8 30
2011 Jun 8 11:38 Wed START 1560898 ### 0 -16 > 8 14
2011 Jun 8 11:38 Wed START 1560899 ### 0 -8 > 8 6
2011 Jun 8 12:13 Wed *FINI 1560882 ### 0 191 > 8 197
2011 Jun 8 12:13 Wed START 1560902 ### 0 -8 > 8 189
2011 Jun 8 12:13 Wed START 1560905 ### 0 -16 > 8 173
2011 Jun 8 12:13 Wed START 1560923 ### 0 -32 > 8 141
2011 Jun 8 12:13 Wed START 1560925 ### 0 -8 > 8 133
2011 Jun 8 12:13 Wed START 1560924 ### 0 -8 > 8 125
2011 Jun 8 12:13 Wed START 1560929 ### 0 -8 > 8 117
2011 Jun 8 12:13 Wed START 1560928 ### 0 -8 > 8 109
2011 Jun 8 12:13 Wed START 1560927 ### 0 -8 > 8 101
2011 Jun 8 12:13 Wed START 1560926 ### 0 -8 > 8 93
2011 Jun 8 12:13 Wed START 1560930 ### 0 -8 > 8 85
2011 Jun 8 12:13 Wed START 1560944 ### 0 -8 > 8 77
2011 Jun 8 12:13 Wed START 1560895 ### 0 -50 > 8 27
2011 Jun 8 12:40 Wed *FINI 1560828 ### 0 16 > 8 43
2011 Jun 8 12:40 Wed START 1560885 ### 0 -32 > 8 11
2011 Jun 8 12:50 Wed *FINI 1560297 ### 0 8 > 8 19
2011 Jun 8 12:50 Wed START 1560904 ### 0 -16 > 8 3
2011 Jun 8 13:16 Wed *FINI 1560875 ### 0 64 > 8 67
2011 Jun 8 13:16 Wed START 1560888 ### 0 -32 > 8 35

- 54 -

2011 Jun 8 13:17 Wed *FINI 1560757 ### 0 6 > 8 41
2011 Jun 8 13:18 Wed *FINI 1560456 ### 0 8 > 8 49
2011 Jun 8 13:20 Wed *FINI 1560457 ### 0 8 > 8 57
2011 Jun 8 14:14 Wed FINIS 1560944 ### 0 8 > 8 65
2011 Jun 8 14:48 Wed *FINI 1560174 ### 0 16 > 8 81
2011 Jun 8 15:32 Wed *FINI 1560871 ### 0 16 > 8 97
2011 Jun 8 15:42 Wed FINIS 1560894 ### 0 8 > 8 105
2011 Jun 8 15:45 Wed *FINI 1560870 ### 0 16 > 8 121
2011 Jun 8 16:06 Wed *FINI 1560791 ### 0 6 > 8 127
2011 Jun 8 16:15 Wed *FINI 1560383 ### 0 16 > 8 143
2011 Jun 8 16:15 Wed *FINI 1560384 ### 0 16 > 8 159
2011 Jun 8 16:15 Wed *FINI 1560385 ### 0 16 > 8 175
2011 Jun 8 17:27 Wed FINIS 1560900 ### 0 8 > 8 183
2011 Jun 8 17:39 Wed FINIS 1560899 ### 0 8 > 8 191
2011 Jun 8 17:53 Wed FINIS 1560892 ### 0 8 > 8 199
2011 Jun 8 17:53 Wed FINIS 1560893 ### 0 8 > 8 207
2011 Jun 8 18:00 Wed SHRTP 0 released -8 8 > 0 215
2011 Jun 8 18:14 Wed FINIS 1560902 ### 0 8 > 0 223
2011 Jun 8 18:19 Wed *FINI 1560794 ### 0 6 > 0 229
2011 Jun 8 18:34 Wed *FINI 1560845 ### 0 5 > 0 234
2011 Jun 8 18:34 Wed *FINI 1560843 ### 0 5 > 0 239
2011 Jun 8 18:34 Wed *FINI 1560844 ### 0 5 > 0 244
2011 Jun 8 18:34 Wed *FINI 1560846 ### 0 5 > 0 249
2011 Jun 8 18:34 Wed *FINI 1560849 ### 0 5 > 0 254
2011 Jun 8 18:34 Wed *FINI 1560848 ### 0 5 > 0 259
2011 Jun 8 18:34 Wed *FINI 1560847 ### 0 5 > 0 264
2011 Jun 8 18:46 Wed *FINI 1560850 ### 0 5 > 0 269
2011 Jun 8 18:47 Wed *FINI 1560528 ### 0 4 > 0 273
2011 Jun 8 18:55 Wed *FINI 1559996 ### 0 8 > 0 281
2011 Jun 8 19:03 Wed *FINI 1560880 ### 0 49 > 0 330
2011 Jun 8 19:10 Wed *FINI 1560851 ### 0 5 > 0 335
2011 Jun 8 19:10 Wed *FINI 1560852 ### 0 5 > 0 340
2011 Jun 8 20:14 Wed FINIS 1560923 ### 0 32 > 0 372
2011 Jun 8 20:33 Wed *FINI 1560771 ### 0 40 > 0 412
2011 Jun 8 20:38 Wed *FINI 1559999 ### 0 8 > 0 420
2011 Jun 8 20:43 Wed *FINI 1560000 ### 0 8 > 0 428
2011 Jun 8 20:53 Wed *FINI 1560278 ### 0 16 > 0 444
2011 Jun 8 20:53 Wed START 1560931 ### 0 -8 > 0 436
2011 Jun 8 20:54 Wed *FINI 1560805 ### 0 8 > 0 444
2011 Jun 8 21:20 Wed *FINI 1560002 ### 0 8 > 0 452
2011 Jun 8 21:28 Wed *FINI 1560430 ### 0 16 > 0 468
2011 Jun 8 21:46 Wed *FINI 1560337 ### 0 2 > 0 470
2011 Jun 8 21:46 Wed *FINI 1560335 ### 0 2 > 0 472

- 55 -

2011 Jun 8 21:54 Wed *FINI 1560279 ### 0 16 > 0 488
2011 Jun 8 21:54 Wed START 1560932 ### 0 -8 > 0 480
2011 Jun 8 22:26 Wed *FINI 1560789 ### 0 32 > 0 512
2011 Jun 8 22:42 Wed *FINI 1560687 ### 0 50 > 0 562
2011 Jun 8 22:42 Wed *FINI 1560003 ### 0 8 > 0 570
2011 Jun 8 22:50 Wed *FINI 1560004 ### 0 8 > 0 578
2011 Jun 8 23:05 Wed *FINI 1560005 ### 0 8 > 0 586
2011 Jun 8 23:23 Wed *FINI 1559988 ### 0 255 > 0 841
2011 Jun 8 23:46 Wed *FINI 1560006 ### 0 8 > 0 849
2011 Jun 9 0:06 Thu *FINI 1560007 ### 0 8 > 0 857
2011 Jun 9 0:14 Thu *FINI 1560008 ### 0 8 > 0 865
2011 Jun 9 0:20 Thu *FINI 1560009 ### 0 8 > 0 873
2011 Jun 9 0:37 Thu *FINI 1560800 ### 0 8 > 0 881
2011 Jun 9 0:41 Thu *FINI 1560567 ### 0 16 > 0 897
2011 Jun 9 0:41 Thu *FINI 1560604 ### 0 16 > 0 913
2011 Jun 9 0:41 Thu *FINI 1560010 ### 0 8 > 0 921
2011 Jun 9 0:42 Thu *FINI 1560615 ### 0 16 > 0 937
2011 Jun 9 1:04 Thu *FINI 1560861 ### 0 8 > 0 945
2011 Jun 9 1:39 Thu FINIS 1560898 ### 0 16 > 0 961
2011 Jun 9 2:33 Thu *FINI 1560011 ### 0 8 > 0 969
2011 Jun 9 4:51 Thu FINIS 1560904 ### 0 16 > 0 985
2011 Jun 9 5:43 Thu *FINI 1560170 ### 0 32 > 0 1017
2011 Jun 9 5:54 Thu *FINI 1560386 ### 0 16 > 0 1033
2011 Jun 9 6:12 Thu *FINI 1560350 ### 0 2 > 0 1035
2011 Jun 9 6:12 Thu *FINI 1560352 ### 0 2 > 0 1037
2011 Jun 9 6:13 Thu *FINI 1560353 ### 0 2 > 0 1039
2011 Jun 9 6:14 Thu *FINI 1560255 ### 0 32 > 0 1071
2011 Jun 9 6:14 Thu *FINI 1560256 ### 0 32 > 0 1103
2011 Jun 9 7:00 Thu SHRTP 0 activate 8 -8 > 8 1095
2011 Jun 9 7:05 Thu *FINI 1560012 ### 0 8 > 8 1103
2011 Jun 9 7:05 Thu *FINI 1560013 ### 0 8 > 8 1111
2011 Jun 9 7:05 Thu *FINI 1560014 ### 0 8 > 8 1119
2011 Jun 9 7:05 Thu *FINI 1560015 ### 0 8 > 8 1127
2011 Jun 9 7:05 Thu *FINI 1560016 ### 0 8 > 8 1135
2011 Jun 9 7:14 Thu *FINI 1560865 ### 0 16 > 8 1151
2011 Jun 9 7:19 Thu *FINI 1560866 ### 0 16 > 8 1167
2011 Jun 9 7:38 Thu *FINI 1560867 ### 0 16 > 8 1183
2011 Jun 9 7:47 Thu *FINI 1560868 ### 0 16 > 8 1199
2011 Jun 9 11:14 Thu FINIS 1560905 ### 0 16 > 8 1215
2011 Jun 9 11:46 Thu *FINI 1560462 ### 0 128 > 8 1343
2011 Jun 9 12:14 Thu FINIS 1560925 ### 0 8 > 8 1351
2011 Jun 9 12:14 Thu FINIS 1560924 ### 0 8 > 8 1359
2011 Jun 9 12:14 Thu FINIS 1560929 ### 0 8 > 8 1367

- 56 -

2011 Jun 9 12:14 Thu FINIS 1560928 ### 0 8 > 8 1375
2011 Jun 9 12:14 Thu FINIS 1560927 ### 0 8 > 8 1383
2011 Jun 9 12:14 Thu FINIS 1560926 ### 0 8 > 8 1391
2011 Jun 9 12:14 Thu FINIS 1560930 ### 0 8 > 8 1399
2011 Jun 9 12:14 Thu FINIS 1560895 ### 0 50 > 8 1449
2011 Jun 9 12:14 Thu START 1560937 ### 0 -8 > 8 1441
2011 Jun 9 12:14 Thu START 1560935 ### 0 -8 > 8 1433
2011 Jun 9 12:14 Thu START 1560938 ### 0 -8 > 8 1425
2011 Jun 9 12:14 Thu START 1560936 ### 0 -8 > 8 1417
2011 Jun 9 12:14 Thu START 1560939 ### 0 -8 > 8 1409
2011 Jun 9 12:14 Thu START 1560940 ### 0 -8 > 8 1401
2011 Jun 9 12:14 Thu START 1560942 ### 0 -8 > 8 1393
2011 Jun 9 13:11 Thu FINIS 1560885 ### 0 32 > 8 1425
2011 Jun 9 14:18 Thu *FINI 1560316 ### 0 16 > 8 1441
2011 Jun 9 15:22 Thu *FINI 1560573 ### 0 8 > 8 1449
2011 Jun 9 15:55 Thu *FINI 1560638 ### 0 4 > 8 1453
2011 Jun 9 15:55 Thu *FINI 1560628 ### 0 4 > 8 1457
2011 Jun 9 18:00 Thu SHRTP 0 released -8 8 > 0 1465
2011 Jun 9 18:15 Thu FINIS 1560942 ### 0 8 > 0 1473
2011 Jun 9 18:20 Thu *FINI 1560314 ### 0 32 > 0 1505
2011 Jun 9 18:20 Thu *FINI 1560317 ### 0 16 > 0 1521
2011 Jun 9 18:24 Thu *FINI 1560569 ### 0 255 > 0 1776
2011 Jun 9 18:24 Thu *FINI 1560643 ### 0 4 > 0 1780
2011 Jun 9 18:49 Thu *FINI 1560605 ### 0 64 > 0 1844
2011 Jun 9 18:50 Thu *FINI 1560631 ### 0 64 > 0 1908
2011 Jun 9 18:50 Thu *FINI 1560632 ### 0 8 > 0 1916
2011 Jun 9 18:50 Thu *FINI 1560655 ### 0 32 > 0 1948
2011 Jun 9 20:54 Thu FINIS 1560931 ### 0 8 > 0 1956
2011 Jun 9 21:24 Thu *FINI 1560578 ### 0 32 > 0 1988
2011 Jun 9 21:24 Thu *FINI 1560606 ### 0 32 > 0 2020
2011 Jun 9 21:54 Thu *FINI 1560785 ### 0 32 > 0 2052
2011 Jun 9 21:55 Thu FINIS 1560932 ### 0 8 > 0 2060
2011 Jun 9 22:49 Thu *FINI 1560564 ### 0 27 > 0 2087
2011 Jun 9 23:42 Thu *FINI 1560797 ### 0 4 > 0 2091
2011 Jun 10 2:31 Fri *FINI 1560811 ### 0 8 > 0 2099
2011 Jun 10 4:27 Fri *FINI 1560821 ### 0 32 > 0 2131
2011 Jun 10 5:12 Fri *FINI 1560839 ### 0 8 > 0 2139
2011 Jun 10 7:00 Fri SHRTP 0 activate 8 -8 > 8 2131
2011 Jun 10 7:10 Fri *FINI 1560862 ### 0 32 > 8 2163
2011 Jun 10 7:10 Fri *FINI 1560863 ### 0 6 > 8 2169
2011 Jun 10 8:13 Fri *FINI 1559977 ### 0 2 > 8 2171
2011 Jun 10 11:27 Fri FINIS 1560896 ### 0 16 > 8 2187
2011 Jun 10 11:27 Fri FINIS 1560897 ### 0 8 > 8 2195

- 57 -

2011 Jun 10 12:15 Fri FINIS 1560937 ### 0 8 > 8 2203
2011 Jun 10 12:15 Fri FINIS 1560935 ### 0 8 > 8 2211
2011 Jun 10 12:15 Fri FINIS 1560938 ### 0 8 > 8 2219
2011 Jun 10 12:15 Fri FINIS 1560936 ### 0 8 > 8 2227
2011 Jun 10 12:15 Fri FINIS 1560939 ### 0 8 > 8 2235
2011 Jun 10 12:15 Fri FINIS 1560940 ### 0 8 > 8 2243
2011 Jun 10 13:17 Fri FINIS 1560888 ### 0 32 > 8 2275
2011 Jun 10 18:00 Fri SHRTP 0 released -8 8 > 0 2283
2011 Jun 11 0:27 Sat *FINI 1560263 ### 0 8 > 0 2291
2011 Jun 11 7:00 Sat SHRTP 0 activate 8 -8 > 8 2283
2011 Jun 11 18:00 Sat SHRTP 0 released -8 8 > 0 2291

- 58 -

B. STATIC SCALABLAST BATCH JOB RUN TIME RESULTS

Job
Run source date

start job
id

end job
id

node
count at
runtime

total run
time

submission
time job start time job end time

total time to
completion

1 kbase_7275 5/5/2011 1546022 1546022 98 4:30:00 8:37:13 AM 8:49:34 PM 1:19:34 AM 16:42:21
2 kbase_2832 5/9/2011 1547950 1547950 110 4:00:00 10:44:21 AM 9:26:54 PM 1:26:54 AM 14:42:33
3 kbase_5455 5/9/2011 1548090 1548090 227 2:00:00 2:40:28 PM 5:34:04 PM 7:34:04 PM 4:53:36
4 kbase_5417 5/10/2011 1548482 1548482 268 1:40:00 2:25:50 AM 5:37:02 PM 7:17:02 PM 16:51:12
5 kbase_4288 5/11/2011 1548859 1548859 186 2:30:00 1:07:20 PM 2:07:49 PM 4:37:49 PM 3:30:29
6 kbase_7070 5/11/2011 1548922 1548922 176 2:30:00 2:58:57 PM 4:58:42 PM 7:28:42 PM 4:29:45
7 kbase_2865 5/19/2011 1552496 1552496 321 1:30:00 3:24:55 PM 9:43:42 PM 11:13:42 PM 7:48:47
8 kbase_1382 5/20/2011 1552767 1552767 60 7:30:00 11:18:56 AM 2:37:09 PM 10:07:09 PM 10:48:13
9 kbase_4944 5/23/2011 1553579 1553579 220 2:00:00 8:06:09 AM 9:58:35 AM 11:58:35 AM 3:52:26

10 kbase_6672 5/24/2011 1554603 1554603 175 2:40:00 8:28:55 AM 3:07:23 PM 5:47:23 PM 9:18:28
11 kbase_2161 6/1/2011 1557692 1557692 345 1:20:00 9:23:14 AM 3:34:23 PM 4:54:23 PM 7:31:09
12 kbase_6457 6/1/2011 1557736 1557736 169 2:40:00 10:41:10 AM 10:29:43 PM 1:09:43 AM 14:28:33
13 kbase_1447 6/2/2011 1558252 1558252 191 2:20:00 12:12:13 PM 7:01:13 PM 9:21:13 PM 9:09:00
14 kbase_3737 6/3/2011 1558756 1558756 450 1:00:00 9:06:18 AM 12:40:56 PM 1:40:56 PM 4:34:38
15 kbase_9048 6/3/2011 1559021 1559021 148 3:00:00 1:03:23 PM 2:14:36 PM 5:14:36 PM 4:11:13
16 kbase_1737 6/3/2011 1559109 1559109 132 3:20:00 3:23:31 PM 7:06:57 PM 10:26:57 PM 7:03:26
17 kbase_5188 6/6/2011 1560060 1560060 145 3:10:00 10:13:34 AM 7:03:04 PM 10:13:04 PM 11:59:30
18 kbase_6571 6/7/2011 1560445 1560445 318 1:30:00 8:25:20 AM 12:27:38 PM 1:57:38 PM 5:32:18
19 kbase_6584 6/7/2011 1560669 1560669 440 1:00:00 4:15:39 PM 6:21:36 PM 7:21:36 PM 3:05:57
20 kbase_7078 6/8/2011 1560880 1560880 49 9:10:00 8:34:05 AM 9:52:12 AM 7:02:12 PM 10:28:07

STATIC

- 59 -

C. DYNAMIC SCALABLAST BATCH JOB RUN TIME RESULTS

Job Run source
start job
id

end job
id

node count
at runtime

total run
time

submission
time job start time job end time

to
completio
n

1 kbase_727 1546023 1546099 167 2:40:00 8:37:16 AM 3:50:39 PM 6:30:39 PM 9:53:23
2 kbase_283 1547951 1547952 190 3:10:00 10:44:22 AM 2:33:17 PM 5:43:17 PM 6:58:55
3 kbase_545 1548091 1548103 151 3:00:00 2:40:29 PM 5:34:04 PM 8:34:04 PM 5:53:35
4 kbase_541 1548483 1548483 268 1:40:00 2:25:51 PM 5:38:57 PM 7:18:57 PM 4:53:06
5 kbase_428 1548860 1548860 186 2:30:00 1:07:21 PM 2:09:33 PM 4:39:33 PM 3:32:12
6 kbase_707 1548923 1548947 384 1:10:00 2:58:58 PM 4:56:46 PM 6:06:46 PM 3:07:48
7 kbase_286 1552497 1552565 212 3:32:00 3:24:56 PM 6:57:03 PM 10:29:03 PM 7:04:07
8 kbase_138 1552768 1552778 269 1:40:00 11:18:58 AM 12:09:04 PM 1:49:04 PM 2:30:06
9 kbase_494 1553580 1553619 312 1:30:00 8:56:10 AM 9:59:30 AM 11:29:30 AM 2:33:20

10 kbase_667 1554604 1554604 175 2:40:00 8:29:01 AM 3:08:54 PM 5:48:54 PM 9:19:53
11 kbase_216 1557693 1557725 123 3:40:00 9:23:15 AM 10:27:36 AM 2:07:36 PM 4:44:21
12 kbase_645 1557737 1557737 169 2:40:00 10:41:11 AM 10:29:44 PM 1:09:44 AM 14:28:33
13 kbase_144 1558253 1558253 191 2:20:00 12:12:34 PM 7:02:51 PM 9:22:51 PM 9:10:17
14 kbase_373 1558982 1558982 338 1:20:00 9:06:19 AM 12:34:58 PM 1:54:58 PM 4:48:39
15 kbase_904 1559022 1559022 148 3:00:00 1:03:24 PM 2:16:20 PM 5:16:20 PM 4:12:56
16 kbase_173 1559110 1559110 132 3:20:00 3:23:32 PM 7:06:58 PM 10:26:58 PM 7:03:26
17 kbase_518 1560061 1560298 273 1:40:00 10:13:35 AM 7:01:18 PM 8:41:18 PM 10:27:43
18 kbase_657 1560446 1560446 318 1:30:00 8:25:21 AM 12:29:22 PM 1:59:22 PM 5:34:01
19 kbase_658 1560670 1560675 149 3:00:00 4:15:40 PM 4:28:49 PM 7:28:49 PM 3:13:09
20 kbase_707 1560881 1560882 191 2:20:00 8:34:06 AM 9:51:32 AM 12:11:32 PM 3:37:26

DYNAMIC

- 60 -

D. UML COMPONENT DIAGRAM FOR ADAPTIVE MIF

MeDICi Scientific Workflow
“Pipeline”

Sensor

PlanData HostDataGoalData

Goal Manager
Initialize

AdaptiveModule

Planner Control Components

Actor

QueueStatus

Initialize

CurrentPlan

ScheduleJobs

GoalData

Initialize

PlanData

AddModule

HostData

- 61 -

E. SOURCE CODE

The source code attached in this appendix is for future reference only and future

documentation and refinement is reserved.

SENSE.CSH

#!/bin/csh -f
#$1 = server share //xyz.pnl.gov/xxx
#$2 = server folder
#$3 = host name
set JOB_FILE=$3.job
set BLAST_OUT_FILE=blast.out
set BLAST_END_FILE=blast.end
set SENSE_FILE=$3.sense.real
set SENSE_ADAPT_FILE=$3.sense.adapt

if (-e done.txt) then
 rm done.txt
endif

while (1)
 putsense:
 rm $3.lock
 rm $SENSE_ADAPT_FILE
 ./qtime.pl > $SENSE_FILE
 if (-e $JOB_FILE) then
 set jobLine = `cat $JOB_FILE`
 set jobHostName = `echo $jobLine | awk '{split($0,a,":"); print a[1]}'`
 set jobid = `echo $jobLine | awk '{split($0,a,":"); print a[2]}'`
 set jobNumNode = `echo $jobLine | awk '{split($0,a,":"); print a[3]}'`
 set jobCalDuration = `echo $jobLine | awk '{split($0,a,":"); print a[4]}'`
 set jobWaitTime = `echo $jobLine | awk '{split($0,a,":"); print a[5]}'`
 set nchar = `echo $jobid | awk '{print length($0)}'`
 if ($nchar != 0) then
 set process = `cat $3.sense.real | grep " $jobid " | grep " START " | grep -v grep`
 set nchar = `echo $process | awk '{print length($0)}'`
 #waiting in the queue to run
 if ($3 == $jobHostName && ! -e $BLAST_OUT_FILE && ! -e $BLAST_END_FILE && $nchar !=
0) then
 ./qtime.pl $jobid > $SENSE_ADAPT_FILE
 endif
 endif
 endif

 if (! -e $SENSE_ADAPT_FILE) then
 cp $SENSE_FILE $SENSE_ADAPT_FILE
 endif

 smbclient $1 -A .smbclient -c "cd $2/sense; get $3.lock; exit;"
 if (-e $3.lock) then
 sleep 5 #sleep for 5 seconds
 goto putsense
 endif
 touch $3.lock
 smbclient $1 -A .smbclient -c "cd $2/sense; put $3.lock; put $SENSE_FILE; put
$SENSE_ADAPT_FILE; rm $3.lock; cd ../; cd process; get done.txt; exit;"
 if (-e done.txt) then
 break
 endif
 echo "sleeping for 20 seconds..."
 sleep 20 #sleep for 20 seconds
end

echo "exiting sense.csh gracefully..."
exit 0

- 62 -

ACT.CSH

#!/bin/csh -f
#$1 = Server file share //xyz.pnl.gov/xxx
#$2 = server folder
#$3 = hostname
#$4 = job to run pre_process_blast.csh
#$5 = userid

#module purge
#module load precision/i4
#module load intel/10.1.015
#module load hpmpi/2.3.1
module load moab

set ACT_FILE=act.txt
set JOB_FILE=$3.job
set BLAST_OUT_FILE=blast.out
set BLAST_END_FILE=blast.end
set BLAST_RUNNING_FILE=$3.running
set BLAST_WAITTIME_FILE=$3.wait
set BLAST_ERROR_FILE=$3.error
set userid = $5
set raceBit=1

rm -f $BLAST_OUT_FILE
rm -f $BLAST_END_FILE
rm -f $BLAST_RUNNING_FILE
rm -f $BLAST_ERROR_FILE

while (1)
getact:
 rm -f $ACT_FILE
 rm -f $JOB_FILE
 rm -f act.lock
 smbclient $1 -A .smbclient -c "prompt; cd $2/act; get act.lock; get $ACT_FILE; get
$JOB_FILE; exit;"
 if (-e act.lock) then
 sleep 5 #sleep for 5 seconds
 goto getact
 endif
 if (! -e $ACT_FILE) then
 if (-e $JOB_FILE) then
 set line = `cat $JOB_FILE`
 set hostname = `echo $line | awk '{split($0,a,":"); print a[1]}'`
 set jobid = `echo $line | awk '{split($0,a,":"); print a[2]}'`
 set numNode = `echo $line | awk '{split($0,a,":"); print a[3]}'`
 set calDuration = `echo $line | awk '{split($0,a,":"); print a[4]}'`
 set waitTime = `echo $line | awk '{split($0,a,":"); print a[5]}'`
 if ($hostname == $3) then
 set process = `./qtime.pl | grep " $jobid " | grep " $userid " | grep -v grep`
 set nchar = `echo $process | awk '{print length($0)}'`
 if ($nchar != 0) then
 canceljob $jobid
 endif
jobFileSense1:
 rm $JOB_FILE.lock
 smbclient $1 -A .smbclient -c "prompt; cd $2/act; get $JOB_FILE.lock; exit;"
 if (-e $JOB_FILE.lock) then
 sleep 5
 goto jobFileSense1
 endif
 smbclient $1 -A .smbclient -c "cd $2/act; rm $JOB_FILE; exit;"
 endif
 endif

 else

 set actLine = `cat $ACT_FILE`
 set actHostName = `echo $actLine | awk '{split($0,a,":"); print a[1]}'`
 set actNumNode = `echo $actLine | awk '{split($0,a,":"); print a[2]}'`

- 63 -

 set actCalDuration = `echo $actLine | awk '{split($0,a,":"); print a[3]}'`
 set actWaitTime = `echo $actLine | awk '{split($0,a,":"); print a[4]}'`
 set qFile = `echo $actLine | awk '{split($0,a,":"); print a[5]}'`
 set dbFile = `echo $actLine | awk '{split($0,a,":"); print a[6]}'`
 set paramsFile = `echo $actLine | awk '{split($0,a,":"); print a[7]}'`
 set cancelJobID = 0

 if (-e $JOB_FILE) then
 set jobLine = `cat $JOB_FILE`
 set jobHostName = `echo $jobLine | awk '{split($0,a,":"); print a[1]}'`
 set jobid = `echo $jobLine | awk '{split($0,a,":"); print a[2]}'`
 set jobNumNode = `echo $jobLine | awk '{split($0,a,":"); print a[3]}'`
 set jobCalDuration = `echo $jobLine | awk '{split($0,a,":"); print a[4]}'`
 set jobWaitTime = `echo $jobLine | awk '{split($0,a,":"); print a[5]}'`

 #act action is the same as the job action for THIS host AND
 #the job is actually scheduled and running
 set process = `./qtime.pl | grep " $jobid " | grep " $userid " | grep " START " |
grep -v grep`
 set nchar = `echo $process | awk '{print length($0)}'`

 #waiting in the queue to run
 if (($actHostName == $jobHostName && $actNumNode == $jobNumNode && $nchar != 0))
then
 set process = `showstart $jobid`
 set wMinStr = `echo $process | awk '{split($0,a,":"); print a[4]}'`
 @ wMin = $wMinStr
 set wHStr = `echo $process | awk '{split($0,a,":"); print a[3]}'`
 set wHStrLen = `echo $wHStr | awk '{print length($0)}'`
 @ wHSubStr = $wHStrLen - 1
 if ($wHSubStr >= 32) then
 set wHourStr = `echo $wHStr | awk '{print substr($0,32,2)}'`
 set wHStrLen = `echo $wHourStr | awk '{print length($0)}'`
 if ($wHStrLen > 2) then
 sleep 5 #sleep for 5 seconds
 goto getact
 endif
 @ wHour = $wHourStr
 echo "hour=$wHour"
 @ waitTime = $wMin + ($wHour * 60)
 else
 @ waitTime = $wMin
 endif

 echo $waitTime > $BLAST_WAITTIME_FILE
 smbclient $1 -A .smbclient -c "prompt; cd $2/process; put $BLAST_WAITTIME_FILE;
exit;"
 echo "$jobid is in schedule... sleeping for 20seconds"
 sleep 20
 goto getact
 endif

 set process = `./qtime.pl | grep " $jobid " | grep " $userid " | grep " FINIS " |
grep -v grep`
 set nchar = `echo $process | awk '{print length($0)}'`
 echo "not in queue anymore... nchar=$nchar"

 #running...
 if ($actHostName == $jobHostName && $actNumNode == $jobNumNode && $nchar != 0) then
 echo "$jobid is running... sleeping for 5 minutes"
 echo "$jobid is running" > $BLAST_RUNNING_FILE
 smbclient $1 -A .smbclient -c "prompt; cd $2/process; put $BLAST_RUNNING_FILE;
exit;"
 sleep 300 #wait for 5 minutes
 goto getact
 endif

 #ran successfully
 if (($actHostName == $jobHostName && $actNumNode == $jobNumNode && $nchar == 0))
then
 echo "$jobid completed successfully."

- 64 -

 smbclient $1 -A .smbclient -c "prompt; cd $2/process; put $BLAST_OUT_FILE; put
$BLAST_END_FILE; exit;"
 break
 endif

 #ran with errors
 if ($actHostName == $jobHostName && $nchar == 0 && -e $BLAST_OUT_FILE && ! -e
$BLAST_END_FILE) then
 #our job ran but didn't finish all the way, there was an error, so quit.
 echo "$jobid ran with errors -- reporting" > $BLAST_ERROR_FILE
 smbclient $1 -A .smbclient -c "prompt; cd $2/process; put $BLAST_ERROR_FILE;
exit;"
 break
 endif

 #different host is picked or
 #different runtime parameters are picked
 #cancel the job
 if ($actHostName != $jobHostName || ($actHostName == $jobHostName && $actNumNode
!= $jobNumNode)) then
 set process = `./qtime.pl | grep " $jobid " | grep " $userid " | grep -v grep`
 set nchar = `echo $process | awk '{print length($0)}'`
 echo "$jobid needs to be canceled"
 if ($nchar != 0) then
 #canceljob after schedule
 set cancelJobID = $jobid
 endif
jobFileSense2:
 rm $JOB_FILE.lock
 smbclient $1 -A .smbclient -c "prompt; cd $2/act; get $JOB_FILE.lock; exit;"
 if (-e $JOB_FILE.lock) then
 sleep 5
 goto jobFileSense2
 endif
 smbclient $1 -A .smbclient -c "cd $2/act; rm $JOB_FILE; exit;"
 endif

 endif #if jobfile exists.

 #if this host is still adaptivehost picked
 #schedule the job
 if ($actHostName == $3) then
 #run pre_process_blast.csh
 ./$4 $qFile $dbFile $paramsFile $actNumNode $actCalDuration
 echo $qFile.msub
 if (-e $qFile.msub) then
 #schedule the static job before the dynamic one.
 if ($raceBit == 1) then
 msub ./$qFile.msub >& raceBit.out
 set raceBit = 0
 endif

 #get the jobid from the run
 msub ./$qFile.msub >& j.out
 #canceljob after scheduling the new one
 if ($cancelJobID != 0) then
 ./qtime.pl > beforecancel_qtime.out
 showq > beforecancel_showq.out
 sinfo > beforecancel_sinfo.out
 showres > beforecancel_showres.out
 showres -f > beforecancel_showresf.out
 canceljob $cancelJobID
 ./qtime.pl > aftercancel_qtime.out
 showq > aftercancel_showq.out
 sinfo > aftercancel_sinfo.out
 showres > aftercancel_showres.out
 showres -f > aftercancel_showresf.out
 endif
 set working_variable=`cat j.out | sed -e '/^$/d'`
 echo "Step 1: set the working_variable to $working_variable"

- 65 -

 rm j.out

 set filtered_variable=`echo $working_variable | grep -E '^[0-9]+$'`
 echo "Step 2: set filtered_variable to $filtered_variable"

 if ($working_variable != $filtered_variable) then
 echo "** ERROR ** working_variable is not just an integer"
 else
 set jobid = $working_variable
 echo "$jobid is the NEW job scheduled."

 #rewrite jobfile
 echo "$actHostName" > $JOB_FILE
 echo ":" >> $JOB_FILE
 echo "$jobid" >> $JOB_FILE
 echo ":" >> $JOB_FILE
 echo "$actNumNode" >> $JOB_FILE
 echo ":" >> $JOB_FILE
 echo "$actCalDuration" >> $JOB_FILE
 echo ":" >> $JOB_FILE
 echo "$actWaitTime" >> $JOB_FILE
 #put the jobfile on the file share
jobFileSense3:
 rm $JOB_FILE.lock
 smbclient $1 -A .smbclient -c "prompt; cd $2/act; get $JOB_FILE.lock; exit;"
 if (-e $JOB_FILE.lock) then
 sleep 5
 goto jobFileSense3
 endif
 smbclient $1 -A .smbclient -c "prompt; cd $2/act; put $JOB_FILE; put
raceBit.out; exit;"
 endif
 endif
 endif #if schedule is necessary.
 endif #if act.txt file exists

 echo "sleeping for 20 seconds..."
 sleep 20 #sleep for 20 seconds.
end
echo "exiting act.csh gracefully..."
exit 0

- 66 -

PRE_PROCESS_BLAST.CSH

#!/bin/csh -f
#$1 = queryFile
#$2 = DBFile
#$3 = ParamsFile
#$4 = numberOfNodes
#$5 = totalTime

set FILE='/dtemp/xxx'

@ n = (4 * $4)
@ tgs = $n - 1

@ hours = $5 / 60
@ minutes = $5 % 60
set wallTime = "${hours}:${minutes}:00"
rm -f ${FILE}/$1*out*
rm -f ${FILE}/$1*log*
rm -f $1.blast
rm -f done.end

while (! -e $FILE/$1)
 sleep 1
end

while (! -e $FILE/$2)
 sleep 1
end

echo "files are copied"

#*****************************
#create the sb_params.in file
#*****************************

touch ${FILE}/sb_params.in
echo "LOCAL_DIR ${FILE}/" > ${FILE}/sb_params.in
echo "GLOBAL_DIR ./" >> ${FILE}/sb_params.in
echo "MAX_FASTA_CHUNKS 64" >> ${FILE}/sb_params.in
echo "MAX_FASTA_LINE_LENGTH 1000000" >> ${FILE}/sb_params.in
echo "REF_BUFF_SIZE 671088640" >> ${FILE}/sb_params.in
echo "REF_META_SIZE 33554432" >> ${FILE}/sb_params.in
echo "QUERY_BUFF_SIZE 4194304" >> ${FILE}/sb_params.in
echo "QUERY_META_SIZE 524288" >> ${FILE}/sb_params.in
echo "MAX_NUM_QUERIES 11000000" >> ${FILE}/sb_params.in
echo "DISK_GROUP_SIZE $n" >> ${FILE}/sb_params.in
echo "TASK_GROUP_SIZE $tgs" >> ${FILE}/sb_params.in
echo "FIRST_SUBMANAGER 1" >> ${FILE}/sb_params.in
echo "SEQ_PER_QUIT_CHECK 1" >> ${FILE}/sb_params.in

echo "created the parameters file ${FILE}/sb_params.in file!"
chmod a+r ${FILE}/sb_params.in

#******************************
#create the msub file
#******************************

touch ${FILE}/$1.msub
chmod a+w ${FILE}/$1.msub
echo "${FILE}/$1.msub"
echo '#\!/bin/csh' > ${FILE}/$1.msub
echo '#MSUB -A gc35595' >> ${FILE}/$1.msub
echo "#MSUB -l nodes=${4}:ppn=8,walltime=$wallTime,nodesetdelay=0" >> ${FILE}/$1.msub
echo "#MSUB -o $FILE/%j.out" >> ${FILE}/$1.msub
echo "#MSUB -e $FILE/%j.err" >> ${FILE}/$1.msub
echo "#MSUB -N $1" >> ${FILE}/$1.msub
echo '#MSUB -V' >> ${FILE}/$1.msub
echo 'module purge' >> ${FILE}/$1.msub
echo 'module load precision/i4' >> ${FILE}/$1.msub
echo 'module load intel/10.1.015' >> ${FILE}/$1.msub

- 67 -

echo 'module load hpmpi/2.3.1' >> ${FILE}/$1.msub
echo 'module load moab' >> ${FILE}/$1.msub

echo 'setenv OMP_NUM_THREADS 1' >> ${FILE}/$1.msub
echo 'setenv ACML_NUM_THREADS 1' >> ${FILE}/$1.msub
echo 'limit' >> ${FILE}/$1.msub
echo "cd $FILE/" >> ${FILE}/$1.msub
echo "touch ${FILE}/blast.out" >> ${FILE}/$1.msub
echo "mpirun -srun -n $n -N $4 /dtemp/oehmen/bin/Scalablastall.ak -p blastp -d $FILE/$2 -i
$FILE/$1 -o $FILE/$1.out" >> ${FILE}/$1.msub
echo "touch ${FILE}/blast.end" >> ${FILE}/$1.msub

echo "foreach item ($1.out.*)" >> ${FILE}/$1.msub
set str = 'cat $item'
echo "$str >> blast.out" >> ${FILE}/$1.msub
echo "end" >> ${FILE}/$1.msub

echo "created the msub ${FILE}/$1.msub file!"

chmod a+x ${FILE}/$1.msub

exit 0

- 68 -

PlanData.java

package adaptive;

public class PlanData {
 private GoalData selectedGoal;
 private String selectedHost;
 private Integer planJobID;
 private Integer waitTime;
 private Integer numberOfNodes;
 private Integer runtime;
 private Integer totalRunTime;
 private Integer totalCost;

 public void setPlanJobID(Integer planJobID) {
 this.planJobID = planJobID;
 }
 public Integer getPlanJobID() {
 return planJobID;
 }
 public Integer getTotalCost() {
 return totalCost;
 }
 public void setTotalCost(Integer totalCost) {
 this.totalCost = totalCost;
 }
 public GoalData getSelectedGoal() {
 return selectedGoal;
 }
 public void setSelectedGoal(GoalData selectedGoal) {
 this.selectedGoal = selectedGoal;
 }
 public String getSelectedHost() {
 return selectedHost;
 }
 public void setSelectedHost(String selectedHost) {
 this.selectedHost = selectedHost;
 }
 public Integer getWaitTime() {
 return waitTime;
 }
 public void setWaitTime(Integer waitTime) {
 this.waitTime = waitTime;
 }
 public Integer getNumberOfNodes() {
 return numberOfNodes;
 }
 public void setNumberOfNodes(Integer numberOfNodes) {
 this.numberOfNodes = numberOfNodes;
 }
 public Integer getRuntime() {
 return runtime;
 }
 public void setRuntime(Integer runtime) {
 this.runtime = runtime;
 }
 public Integer getTotalRunTime() {
 return totalRunTime;
 }
 public void setTotalRunTime(Integer totalRunTime) {
 this.totalRunTime = totalRunTime;
 }

}

- 69 -

GoalData.java

package adaptive;

public class GoalData {
 private String id;
 private Integer minNodes;
 private Integer maxNodes;
 private Integer duration;
 private Integer minCost;
 private Integer maxCost;
 private String qFile;
 private Integer qFileSize;
 private String dbFile;
 private Integer dbFileSize;
 private String paramsFile;
 private String jobName;

 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }
 public Integer getMinNodes() {
 return minNodes;
 }
 public void setMinNodes(Integer minNodes) {
 this.minNodes = minNodes;
 }
 public Integer getMaxNodes() {
 return maxNodes;
 }
 public void setMaxNodes(Integer maxNodes) {
 this.maxNodes = maxNodes;
 }
 public Integer getDuration() {
 return duration;
 }
 public void setDuration(Integer duration) {
 this.duration = duration;
 }
 public Integer getMinCost() {
 return minCost;
 }
 public void setMinCost(Integer minCost) {
 this.minCost = minCost;
 }
 public Integer getMaxCost() {
 return maxCost;
 }
 public void setMaxCost(Integer maxCost) {
 this.maxCost = maxCost;
 }
 public String getqFile() {
 return qFile;
 }
 public void setqFile(String qFile) {
 this.qFile = qFile;
 }
 public String getDbFile() {
 return dbFile;
 }
 public void setDbFile(String dbFile) {
 this.dbFile = dbFile;
 }
 public String getParamsFile() {
 return paramsFile;
 }

 public void setParamsFile(String paramsFile) {

- 70 -

 this.paramsFile = paramsFile;
 }
 public void setqFileSize(Integer qFileSize) {
 this.qFileSize = qFileSize;
 }
 public Integer getqFileSize() {
 return qFileSize;
 }
 public void setDbFileSize(Integer dbFileSize) {
 this.dbFileSize = dbFileSize;
 }
 public Integer getDbFileSize() {
 return dbFileSize;
 }
 public void setJobName(String jobName) {
 this.jobName = jobName;
 }
 public String getJobName() {
 return jobName;
 }
}

- 71 -

HostData.java

package adaptive;

public class HostData {
 private String hostName;
 private String homeDir;
 private String userName;
 private String sshDir;
 private String senseCmd;
 private String actCmd;
 private Integer costPerNode;
 private Integer jobRunTimePerNode;
 private Integer numCores;
 private Boolean metGoal;

 public Boolean getMetGoal() {
 return metGoal;
 }
 public void setMetGoal(Boolean metGoal) {
 this.metGoal = metGoal;
 }
 public Integer getJobRunTimePerNode() {
 return this.jobRunTimePerNode;
 }
 public void setJobRunTimePerNode(Integer jobRunTimePerNode) {
 this.jobRunTimePerNode = jobRunTimePerNode;
 }
 public Integer getCostPerNode() {
 return this.costPerNode;
 }
 public void setCostPerNode(Integer costPerNode) {
 this.costPerNode = costPerNode;
 }
 public String getHostName() {
 return hostName;
 }
 public void setHostName(String hostName) {
 this.hostName = hostName;
 }
 public String getHomeDir() {
 return homeDir;
 }
 public void setHomeDir(String homeDir) {
 this.homeDir = homeDir;
 }
 public String getUserName() {
 return userName;
 }
 public void setUserName(String userName) {
 this.userName = userName;
 }
 public String getSshDir() {
 return sshDir;
 }
 public void setSshDir(String sshDir) {
 this.sshDir = sshDir;
 }
 public String getSenseCmd() {
 return senseCmd;
 }
 public void setSenseCmd(String senseCmd) {
 this.senseCmd = senseCmd;
 }
 public String getActCmd() {
 return actCmd;
 }
 public void setActCmd(String actCmd) {
 this.actCmd = actCmd;
 }
 public void setNumCores(Integer numCores) {

- 72 -

 this.numCores = numCores;
 }
 public Integer getNumCores() {
 return numCores;
 }
}

- 73 -

TestAdaptiveDriver.java (MeDICi Adaptive Scientific Workflow - Pipeline)

package adaptive;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import gov.pnnl.mif.MifException;
import gov.pnnl.mif.MifPipeline;
import org.apache.log4j.Logger;

public class TestAdaptiveDriver {
 static Logger log = Logger.getLogger(TestAdaptiveDriver.class);
 protected static String tmpDir = System.getProperty("java.io.tmpdir");
 protected static String sep = System.getProperty("file.separator");
 public static void main(String args[]) throws MifException, IOException
 {
 //Aim of this pipeline is to test ONLY the adaptive component.
 //run the act.csh and sense.csh scripts manually on the hosts
 //that provides the best time to solution results.
 Map<String,Object> props = new HashMap<String,Object>();
 System.out.println(System.getProperty("user.dir"));

 Properties global = new Properties();
 HashMap<String, HostData> hosts = new HashMap<String, HostData>();
 Integer hostCount;

 try {
 File aFile = new File("adaptive.properties");
 System.out.println(aFile.getAbsolutePath());
 global.load(new FileInputStream("adaptive.properties"));
 props.put("fromURI", global.getProperty("from.uri").toString());
 props.put("toURI", global.getProperty("to.uri").toString());
 props.put("postCmd", global.getProperty("postprocess.command").toString());
 props.put("QFile", global.getProperty("QFile").toString());
 props.put("QFileSize", global.getProperty("QFileSize").toString());
 props.put("DBFile", global.getProperty("DBFile").toString());
 props.put("DBFileSize", global.getProperty("DBFileSize").toString());
 props.put("ParamsFile", global.getProperty("ParamsFile").toString());
 props.put("OutputFile", global.getProperty("OutputFile").toString());
 props.put("senseCmd", global.getProperty("sense.command").toString());
 props.put("senseDir", global.getProperty("unc.sense.dir").toString());
 props.put("actCmd", global.getProperty("act.command").toString());
 props.put("actDir", global.getProperty("unc.act.dir").toString());
 props.put("jobDir", global.getProperty("unc.process.dir").toString());
 hostCount = Integer.parseInt(global.getProperty("host.count").trim());

 for(int i=1; i <= hostCount; i++)
 {
 HostData aHostData = new HostData();
 aHostData.setHostName(global.getProperty("host" + Integer.toString(i) + ".name"));
 aHostData.setHomeDir(global.getProperty("host" + Integer.toString(i) +
".homeDir"));
 aHostData.setSshDir(global.getProperty("host" + Integer.toString(i) + ".sshDir"));
 aHostData.setUserName(global.getProperty("host" + Integer.toString(i) +
".userName"));
 aHostData.setCostPerNode(Integer.parseInt(global.getProperty("host" +
Integer.toString(i) + ".costPerNode").trim()));
 aHostData.setJobRunTimePerNode(Integer.parseInt(global.getProperty("host" +
Integer.toString(i) + ".jobRunTimePerNode").trim()));
 aHostData.setNumCores(Integer.parseInt(global.getProperty("host" +
Integer.toString(i) + ".numberOfCores").trim()));
 String cmd;
 cmd = global.getProperty("sense.command");
 aHostData.setSenseCmd(cmd);
 cmd = global.getProperty("act.command");
 aHostData.setActCmd(cmd);

- 74 -

 aHostData.setMetGoal(false);
 hosts.put(aHostData.getHostName(), aHostData);
 } //end of for
 } catch (IOException e) {
 System.out.println("Cannot Read the adaptive.properties file");
 throw e;
 }

 if ((props.get("DBFile").toString().isEmpty() ||
props.get("QFile").toString().isEmpty()) || props.get("ParamsFile").toString().isEmpty())
 {
 System.out.println("Please specify a database or a query file to run blast on...
Quit...");
 throw new IOException("Please specify a database or a query file to run blast on...
Quit...");
 }

 MifPipeline pipeline = new MifPipeline();
 /*
 * this is for the AdaptiveComponent.
 *
 */
 pipeline.addMifModule(AdaptiveModule.class, "stdio://in?promptMessage=press return",
"stdio://stdout");
 pipeline.start();
 }
}

- 75 -

AdaptiveModule.java

package adaptive;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.RandomAccessFile;
import gov.pnnl.mif.user.MifProcessor;
import java.io.Serializable;
import java.text.DateFormat;
import java.util.Locale;
import java.util.Scanner;
import java.util.Date;

public class AdaptiveModule implements MifProcessor {
 private String adaptiveHost;
 protected static String sep = System.getProperty("file.separator");

 void copy(File src, File dst) throws IOException {
 InputStream in = new FileInputStream(src);
 OutputStream out = new FileOutputStream(dst);
 // Transfer bytes from in to out
 byte[] buf = new byte[1024];
 int len;
 while ((len = in.read(buf)) > 0) {
 out.write(buf, 0, len);
 }
 in.close();
 out.close();
 }

 @Override
 public Serializable listen(Serializable name) {
 System.out.println("in AdaptiveProcessorComponent");
 GoalManager aGoalManager = new GoalManager();
 Planner aPlanner = new Planner();
 ControlComponent aControlComponent = new ControlComponent();
 aGoalManager.initialize();
 aPlanner.initialize(aGoalManager);
 aControlComponent.initialize();

 Integer i = 1;

 String actFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_act_share() + "act.txt";
 File actFile = new File(actFileStr);
 if (actFile.exists()) actFile.delete();
 String lFile = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_act_share() + "act.log";
 File logFile = new File(lFile);
 if (logFile.exists()) logFile.delete();

 String jobFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_act_share() + aPlanner.getSelectedPlan().getSelectedHost() + ".job";
 File jobFile = new File(jobFileStr);
 String errFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + aPlanner.getSelectedPlan().getSelectedHost() +
".error";
 File errFile = new File(errFileStr);
 String runFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + aPlanner.getSelectedPlan().getSelectedHost() +
".running";
 File runFile = new File(runFileStr);
 String waitFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + aPlanner.getSelectedPlan().getSelectedHost() +
".wait";

- 76 -

 File waitFile = new File(waitFileStr);
 String outFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + "blast.out";
 File outFile = new File(outFileStr);
 if (outFile.exists()) outFile.delete();
 String endFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + "blast.end";
 File endFile = new File(endFileStr);
 if (endFile.exists()) endFile.delete();
 String doneFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + "done.txt";
 File doneFile = new File(doneFileStr);
 if (doneFile.exists()) doneFile.delete();
 String startFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + "start.txt";
 File startFile = new File(startFileStr);
 if (startFile.exists()) startFile.delete();
 try {
 startFile.createNewFile();
 } catch (IOException e) {
 e.printStackTrace();
 }

 Boolean canAchieveGoal = false;
 while (true)
 {
 if (errFile.exists() || runFile.exists() || outFile.exists())
 {
 doneFile = new File(doneFileStr);
 try {
 doneFile.createNewFile();
 } catch (IOException e) {
 e.printStackTrace();
 }
 break;
 }

 if (jobFile.exists())
 {
 Scanner s = null;
 String aJobLockFile = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_act_share() + jobFile.getName() + ".lock";
 File jobLockFile = new File(aJobLockFile);
 try {
 s = new Scanner(jobFile);
 jobLockFile.createNewFile();
 StringBuilder line = new StringBuilder();
 if
(jobFile.getName().contains(aPlanner.getSelectedPlan().getSelectedHost()))
 {
 while (s.hasNextLine())
 {
 line.append(s.nextLine());
 }
 }
 if (line.length() > 0)
 {
 String[] jobid;
 jobid = line.toString().split(":");

aPlanner.getSelectedPlan().setPlanJobID(Integer.parseInt(jobid[1].trim()));
 }
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 finally{
 if (!s.equals(null))

- 77 -

 s.close();
 if (jobLockFile.exists())
 jobLockFile.delete();
 }
 }
 else {
 aPlanner.getSelectedPlan().setPlanJobID(-1);
 }

 if (waitFile.exists())
 {
 //it used to get the waittime from showstart comment.
 //the current direction is to use qtime.pl output to update the waittime.
 //therefore the code to get the showstart output is now commented out but
 //waitFile is still used to indicate that our job is still waiting in the
queue.

 String senseLockFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_sense_share() + Planner.getSelectedPlan().getSelectedHost() +
".lock";
 File senseLockFile = new File(senseLockFileStr);
 try {
 while (senseLockFile.exists())
 {
 Thread.sleep(5000); //5 seconds.
 senseLockFile = new File(senseLockFileStr);
 }
 try {
 senseLockFile.createNewFile();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 String sFile = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_sense_share() + aPlanner.getSelectedPlan().getSelectedHost() +
".sense.real";
 File senseFile = new File(sFile);
 String copyFile = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_sense_share() + aPlanner.getSelectedPlan().getSelectedHost() +
".sense.real.copy";
 File aCopySenseFile = new File(copyFile);
 if (senseFile.exists())
 {
 try {
 copy(senseFile, aCopySenseFile);
 } catch (IOException e2) {
 // TODO Auto-generated catch block
 e2.printStackTrace();
 }
 try {
 //src = new Scanner(new FileReader(aFile));
 String line;
 String month;
 String nowMonth;
 Integer day = 0;
 Integer nowDay = 0;
 Integer hour = 0;
 Integer nowHour = 0;
 Integer minute = 0;
 Integer nowMinute = 0;
 String monthChanged = "";
 Integer addMonths = 0;
 Integer prevDay = 31;
 Integer jobno = -1;
 RandomAccessFile raf = new RandomAccessFile(copyFile, "r");

- 78 -

 try {
 i = 0;
 while (raf.getFilePointer() < raf.length())
 {
 line = raf.readLine();
 if (line.contains(">") && !line.contains("Reservation"))
 {
 month = line.substring(6, 9);
 day = Integer.parseInt(line.substring(10, 12).trim());
 hour = Integer.parseInt(line.substring(13, 15).trim());
 minute = Integer.parseInt(line.substring(16, 18).trim());
 if (i.equals(0))
 {
 nowMonth = month;
 monthChanged = month;
 nowDay = day;
 nowHour = hour;
 nowMinute = minute;
 i = 1;
 }
 //16 characters for the jobno.
 try {
 jobno = Integer.parseInt(line.substring(28,
46).trim());
 if
(jobno.equals(aPlanner.getSelectedPlan().getPlanJobID()) && line.contains("START"))
 {
 // update waittime according to the latest qtime
and quit
 if (!month.equalsIgnoreCase(monthChanged))
 {
 addMonths = addMonths + prevDay;
 monthChanged = month;
 }
 prevDay = day;
 Integer waitTime;
 waitTime = ((((addMonths + day - nowDay) * 24 +
hour) - nowHour) * 60) + (minute - nowMinute);
 aPlanner.getSelectedPlan().setWaitTime(waitTime);
 aPlanner.getSelectedPlan().setTotalRunTime(
aPlanner.getSelectedPlan().getRuntime() + waitTime);
 raf.seek(raf.length());
 }
 } catch (NumberFormatException e) {
 // TODO Auto-generated catch block
 }
 } //if line contains '>'
 } //end of while
 }
 catch (IOException e1) {
 // TODO Auto-generated catch block
 } //end of while for file row iteration

 try {
 raf.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 System.out.println("Cannot open source file, first run " + copyFile);
 //e.printStackTrace();
 } //end try for openning randomaccessfile.
 }//if sensefile exists.
 senseLockFile.delete(); //read from the sense file is done, release the
resource.
 }

 try {

- 79 -

 canAchieveGoal = aPlanner.evaluateGoal(aGoalManager, aControlComponent, i);
 } catch (IOException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 }
 System.out.println("selectedPlan Host: " +
aPlanner.getSelectedPlan().getSelectedHost());
 System.out.println("selectedPlan numberOfNodes: " +
aPlanner.getSelectedPlan().getNumberOfNodes().toString());
 System.out.println("selectedPlan runTime: " +
aPlanner.getSelectedPlan().getRuntime().toString());
 System.out.println("selectedPlan waitTime: " +
aPlanner.getSelectedPlan().getWaitTime().toString());
 System.out.println("selectedPlan totalRunTime: " +
aPlanner.getSelectedPlan().getTotalRunTime().toString());
 System.out.println("selectedPlan totalCost: " +
aPlanner.getSelectedPlan().getTotalCost().toString());

 this.adaptiveHost = aPlanner.getSelectedPlan().getSelectedHost();
 if (!canAchieveGoal)
 aGoalManager.updateGoal(canAchieveGoal);

 errFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + this.adaptiveHost + ".error";
 errFile = new File(errFileStr);
 runFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + this.adaptiveHost + ".running";
 runFile = new File(runFileStr);
 jobFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_act_share() + this.adaptiveHost + ".job";
 jobFile = new File(jobFileStr);
 waitFileStr = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_process_share() + this.adaptiveHost + ".wait";
 waitFile = new File(waitFileStr);
 outFile = new File(outFileStr);

 try {
 Thread.sleep(60000); //sleep for one minute.
 aGoalManager.updateGoal(true);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 String str = "Adaptive Module Exiting Gracefully...";
 if (logFile.exists())
 {
 try {
 File f =
File.createTempFile(aGoalManager.getGoals().get(aGoalManager.getSelectedGoalID()).getJobName()
+ "_",".log");
 String filename = f.getName();
 f.delete();

 String aLogFile = aControlComponent.getUnc_file_share() +
aControlComponent.getUnc_act_share() + filename;
 File storeFile = new File(aLogFile);
 FileInputStream l_in = new FileInputStream(logFile);
 FileOutputStream f_out = new FileOutputStream(storeFile, true);

 byte[] buf = new byte[1024];
 int len;

 while ((len = l_in.read(buf)) > 0){
 f_out.write(buf, 0, len);
 }
 l_in.close();
 f_out.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block

- 80 -

 e.printStackTrace();
 }
 }

 return str;
 }

 public void setAdaptiveHost(String adaptiveHost) {
 this.adaptiveHost = adaptiveHost;
 }

 public String getAdaptiveHost() {
 return adaptiveHost;
 }
}

- 81 -

Planner.java

package adaptive;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.RandomAccessFile;
import java.text.DateFormat;
import java.util.Date;
import java.util.Locale;

public class Planner {
 protected static String tmpDir = System.getProperty("java.io.tmpdir");
 private PlanData selectedPlan;
 public PlanData getSelectedPlan() {
 return selectedPlan;
 }
 public void setSelectedPlan(PlanData selectedPlan) {
 this.selectedPlan = selectedPlan;
 }
 public void initialize(GoalManager aGoalMgr) {
 selectedPlan = new PlanData();
 selectedPlan.setSelectedGoal(aGoalMgr.getSelectedGoal(aGoalMgr.getSelectedGoalID()));
 selectedPlan.setSelectedHost("xxx");
 selectedPlan.setPlanJobID(-1);
 selectedPlan.setNumberOfNodes(0);
 selectedPlan.setRuntime(500000);
 selectedPlan.setWaitTime(500000);
 selectedPlan.setTotalRunTime(selectedPlan.getRuntime() + selectedPlan.getWaitTime());
 selectedPlan.setTotalCost(2000000);
 }

 public Integer getHowLongNodesAreAvailable(RandomAccessFile r, String month, Integer d,
Integer h, Integer m, Integer availNodes)
 {
 Integer howLongNodesAreAvail = 0;
 Integer tempAvailNodes;
 Integer tempDay = d;
 Integer prevDay = 0;
 Integer tempHour = h;
 Integer tempMin = m;
 String tempMonth;
 String monthChanged = month;
 Integer addMonths = 0;
 String line;
 try {
 while (r.getFilePointer() < r.length())
 {
 line = r.readLine();
 if (line.length() < 19)
 return 0;
 tempMonth = line.substring(6, 9).trim();
 tempDay = Integer.parseInt(line.substring(10, 12).trim());
 if (!tempMonth.equalsIgnoreCase(monthChanged))
 {
 addMonths = addMonths + prevDay;
 monthChanged = tempMonth;
 }
 prevDay = tempDay;
 tempHour = Integer.parseInt(line.substring(13, 15).trim());
 tempMin = Integer.parseInt(line.substring(16, 18).trim());
 tempAvailNodes = Integer.parseInt(line.substring(line.length()-4,
line.length()).trim());
 if (tempAvailNodes < availNodes)
 {

- 82 -

 //that many nodes are no longer available
 //quit and return the howlongNodesAreAvail
 break;
 }
 }
 } catch (NumberFormatException e) {
 // TODO Auto-generated catch block
 System.out.println("*****returned a numberformatexception in get duration ***");
//e.printStackTrace());
 return -1;
 } catch (IOException e) {
 // TODO Auto-generated catch block
 System.out.println("*****returned an IOException in get duration ***");
//e.printStackTrace();
 return -1;
 }

 if (addMonths != 0)
 howLongNodesAreAvail = ((((addMonths + tempDay - d) * 24 + tempHour) - h) * 60) +
(tempMin - m);
 else
 howLongNodesAreAvail = ((((tempDay - d) * 24 + tempHour) - h) * 60) + (tempMin -
m);
 return howLongNodesAreAvail;
 }

 public Integer getJobRunTime(Integer jobRunTimePerNode, Integer availNodes, Integer
nCores, Integer qSize, Integer dbSize)
 {
 Integer jobRunTime = 0;
 if (jobRunTimePerNode != 0)
 {
 jobRunTime = jobRunTimePerNode / availNodes;
 }
 else
 {
 Integer workerCores = (availNodes * nCores) - 2;
 //6 queries (qfilesize), per million items (dbfileSize), for 1 core, takes 1
minute.
 jobRunTime = 10 * (((qSize / 6) * (dbSize / 1000000)) / workerCores) + 10;
 //if jobRunTime is smaller than 10 minutes, set it to 10, cause it won't run
eitherwise.
 if (workerCores <= 32 && jobRunTime >= 30)
 jobRunTime = 0;
 if (jobRunTime < 10)
 jobRunTime = 10;
 }
 return jobRunTime;
 }

 void copy(File src, File dst) throws IOException {
 InputStream in = new FileInputStream(src);
 OutputStream out = new FileOutputStream(dst);

 // Transfer bytes from in to out
 byte[] buf = new byte[1024];
 int len;
 while ((len = in.read(buf)) > 0) {
 out.write(buf, 0, len);
 }
 in.close();
 out.close();
 }

 public Boolean evaluateGoal(GoalManager aGM, ControlComponent aCC, Integer j) throws
IOException {
 selectedPlan.setSelectedGoal(aGM.getSelectedGoal(aGM.getSelectedGoalID()));
 //check if there is a current selected plan
 //if there is a current selected plan, does it still meet the goal
 //if so, do nothing.
 //if the current selected goal does no longer meet the goal, reset it.

- 83 -

 Boolean recyclePlan = false;
 if (!selectedPlan.getSelectedHost().equalsIgnoreCase("xxx"))
 {
 if (selectedPlan.getSelectedGoal().getId().equals("nodecount") ||
selectedPlan.getSelectedGoal().getId().equals("x.nodecount"))
 {
 if (selectedPlan.getNumberOfNodes() <
selectedPlan.getSelectedGoal().getMinNodes() ||
 selectedPlan.getNumberOfNodes() >
selectedPlan.getSelectedGoal().getMaxNodes()
)
 recyclePlan = true;
 }
 else if (selectedPlan.getSelectedGoal().getId().equals("time") ||
selectedPlan.getSelectedGoal().getId().equals("x.time"))
 {
 if (selectedPlan.getTotalRunTime() >
selectedPlan.getSelectedGoal().getDuration())
 recyclePlan = true;
 }
 else if (selectedPlan.getSelectedGoal().getId().equals("cost") ||
selectedPlan.getSelectedGoal().getId().equals("x.cost"))
 {
 if (aCC.getHosts().get(selectedPlan.getSelectedHost()).getCostPerNode() *
selectedPlan.getNumberOfNodes() < selectedPlan.getSelectedGoal().getMinCost() ||
 aCC.getHosts().get(selectedPlan.getSelectedHost()).getCostPerNode() *
selectedPlan.getNumberOfNodes() > selectedPlan.getSelectedGoal().getMaxCost()
)
 recyclePlan = true;
 }
 if (selectedPlan.getSelectedGoal().getId().equals("balance") ||
selectedPlan.getSelectedGoal().getId().equals("x.balance"))
 {
 if (selectedPlan.getTotalRunTime() >
selectedPlan.getSelectedGoal().getDuration() ||
 selectedPlan.getNumberOfNodes() <
selectedPlan.getSelectedGoal().getMinNodes() ||
 selectedPlan.getNumberOfNodes() >
selectedPlan.getSelectedGoal().getMaxNodes() ||
 aCC.getHosts().get(selectedPlan.getSelectedHost()).getCostPerNode() *
selectedPlan.getNumberOfNodes() < selectedPlan.getSelectedGoal().getMinCost() ||
 aCC.getHosts().get(selectedPlan.getSelectedHost()).getCostPerNode() *
selectedPlan.getNumberOfNodes() > selectedPlan.getSelectedGoal().getMaxCost()
)
 recyclePlan = true;
 }
 }

 if (recyclePlan)
 {
 System.out.println("Recycling the plan, it no longer meets the goal...");
 selectedPlan = new PlanData();
 selectedPlan.setSelectedGoal(aGM.getSelectedGoal(aGM.getSelectedGoalID()));
 selectedPlan.setSelectedHost("xxx");
 selectedPlan.setPlanJobID(-1);
 selectedPlan.setNumberOfNodes(0);
 selectedPlan.setRuntime(500000);
 selectedPlan.setWaitTime(500000);
 selectedPlan.setTotalRunTime(selectedPlan.getRuntime() +
selectedPlan.getWaitTime());
 selectedPlan.setTotalCost(2000000);
 }

 for (String aHost : aCC.getHosts().keySet()) {
 String senseLockFileStr = aCC.getUnc_file_share() + aCC.getUnc_sense_share() +
aHost + ".lock";
 File senseLockFile = new File(senseLockFileStr);
 try {
 while (senseLockFile.exists())
 {
 Thread.sleep(5000); //5 seconds.

- 84 -

 senseLockFile = new File(senseLockFileStr);
 }
 senseLockFile.createNewFile();
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 String aFile = aCC.getUnc_file_share() + aCC.getUnc_sense_share() + aHost +
".sense.adapt";
 File aSenseFile = new File(aFile);
 String copyFile = aCC.getUnc_file_share() + aCC.getUnc_sense_share() + aHost +
".sense.adapt.copy";
 File aCopySenseFile = new File(copyFile);
 if (aSenseFile.exists())
 {
 copy(aSenseFile, aCopySenseFile);
 aCC.getHosts().get(aHost).setMetGoal(false);
 Boolean betterGoal = false;
 try {
 RandomAccessFile raf = new RandomAccessFile(copyFile, "r");
 String month;
 String nowMonth;
 Integer day = 0;
 Integer nowDay = 0;
 Integer hour = 0;
 Integer nowHour = 0;
 Integer minute = 0;
 Integer nowMinute = 0;
 Integer availNodes = 0;
 Integer jobno = -1;
 Integer i = 0;
 Integer totalRunTime;
 Integer totalCost = 2000000;
 String monthChanged = "";
 Integer addMonths = 0;
 Integer prevDay = 31;
 String line;
 Long filePos;
 totalRunTime = selectedPlan.getRuntime() + selectedPlan.getWaitTime();
 try {
 while (raf.getFilePointer() < raf.length())
 {
 line = raf.readLine();
 if (line.contains(">") && !line.contains("Reservation"))
 {
 month = line.substring(6, 9);
 day = Integer.parseInt(line.substring(10, 12).trim());
 hour = Integer.parseInt(line.substring(13, 15).trim());
 minute = Integer.parseInt(line.substring(16, 18).trim());
 if (i == 0)
 {
 nowMonth = month;
 monthChanged = month;
 nowDay = day;
 nowHour = hour;
 nowMinute = minute;
 i = 1;
 }
 availNodes = Integer.parseInt(line.substring(line.length()-4,
line.length()).trim());
 //still need to look forward to see a better gap with possibly
more nodes
 //but keep track of how long the wait is according to qtime...
 //never schedule a job on one node
 //always schedule five nodes less than what is available to
secure your spot cause
 //there are nodes that are reserved for short jobs and won't
be picked up...

 if (availNodes > 2 &&

- 85 -

 (selectedPlan.getSelectedGoal().getId().equals("nodecount") ||
selectedPlan.getSelectedGoal().getId().equals("x.nodecount") ||
 selectedPlan.getSelectedGoal().getId().equals("balance")
|| selectedPlan.getSelectedGoal().getId().equals("x.balance")) &&
 availNodes >= selectedPlan.getSelectedGoal().getMinNodes()
&& availNodes <= selectedPlan.getSelectedGoal().getMaxNodes()
)
 {
 availNodes = availNodes - 5;
 filePos = raf.getFilePointer();
 Integer howLongNodesAreAvailable;
 //always think there is 5 minute less time than what is
shown in qtime
 //the reason is it takes a while for moab to pick up the
new job
 //and by the time it picks up the new job, 2-5 minutes
passed already..
 //I am setting this to 10 minutes to be safe at this time.
 howLongNodesAreAvailable =
getHowLongNodesAreAvailable(raf, month, day, hour, minute, availNodes) - 10;
raf.seek(filePos);
 if (!month.equalsIgnoreCase(monthChanged))
 {
 addMonths = addMonths + prevDay;
 monthChanged = month;
 }
 prevDay = day;
 Integer waitTime;
 waitTime = ((((addMonths + day - nowDay) * 24 + hour) -
nowHour) * 60) + (minute - nowMinute);
 //can we run our job within this timeframe with the
availNodes?
 betterGoal = false;
 Integer myJobRunTime = 0;
 myJobRunTime =
getJobRunTime(aCC.getHosts().get(aHost).getJobRunTimePerNode().intValue(), availNodes,
aCC.getHosts().get(aHost).getNumCores(), selectedPlan.getSelectedGoal().getqFileSize(),
selectedPlan.getSelectedGoal().getDbFileSize());
 if (availNodes != 0 && myJobRunTime <=
howLongNodesAreAvailable && myJobRunTime != 0)
 {
 if
(selectedPlan.getSelectedGoal().getId().equals("nodecount") ||
selectedPlan.getSelectedGoal().getId().equals("x.nodecount"))
 {
 if (availNodes >=
selectedPlan.getSelectedGoal().getMinNodes() && availNodes <=
selectedPlan.getSelectedGoal().getMaxNodes())
 {
 aCC.getHosts().get(aHost).setMetGoal(true);
 if (myJobRunTime + waitTime <
selectedPlan.getTotalRunTime())
 betterGoal = true;
 }
 }
 else if
(selectedPlan.getSelectedGoal().getId().equals("time") ||
selectedPlan.getSelectedGoal().getId().equals("x.time"))
 {
 if (myJobRunTime + waitTime <=
selectedPlan.getSelectedGoal().getDuration())
 {
 aCC.getHosts().get(aHost).setMetGoal(true);
 if (myJobRunTime + waitTime <
selectedPlan.getTotalRunTime()) betterGoal = true;
 }
 }
 else if
(selectedPlan.getSelectedGoal().getId().equals("cost") ||
selectedPlan.getSelectedGoal().getId().equals("x.cost"))
 {

- 86 -

 if (aCC.getHosts().get(aHost).getCostPerNode() *
availNodes >= selectedPlan.getSelectedGoal().getMinCost() &&
aCC.getHosts().get(aHost).getCostPerNode() * availNodes <=
selectedPlan.getSelectedGoal().getMaxCost())
 {
 aCC.getHosts().get(aHost).setMetGoal(true);
 if (aCC.getHosts().get(aHost).getCostPerNode()
* availNodes < selectedPlan.getTotalCost())
 betterGoal = true;
 }
 }
 if
(selectedPlan.getSelectedGoal().getId().equals("balance") ||
selectedPlan.getSelectedGoal().getId().equals("x.balance"))
 {
 if (myJobRunTime + waitTime <=
selectedPlan.getSelectedGoal().getDuration() &&
 availNodes >=
selectedPlan.getSelectedGoal().getMinNodes() && availNodes <=
selectedPlan.getSelectedGoal().getMaxNodes() &&
 aCC.getHosts().get(aHost).getCostPerNode() *
availNodes >= selectedPlan.getSelectedGoal().getMinCost() &&
aCC.getHosts().get(aHost).getCostPerNode() * availNodes <=
selectedPlan.getSelectedGoal().getMaxCost()
)
 {
 aCC.getHosts().get(aHost).setMetGoal(true);
 if (myJobRunTime + waitTime <
selectedPlan.getTotalRunTime())
 betterGoal = true;
 }
 }
 }

 //plan changes for the better
 //however if i have 5 minutes or less to run, do not
change the selected plans.
 if (betterGoal && selectedPlan.getWaitTime() > 5)
 {
 System.out.println("found better plan: " + line);
 System.out.println("host:" + aHost);
 System.out.println("waitTime:" + waitTime);
 System.out.println("availNodes:" + availNodes);
 System.out.println("howLongNodesAreAvailable:" +
howLongNodesAreAvailable);
 Integer arzu = myJobRunTime + waitTime;
 System.out.println("totalRunTime:" + arzu);
 System.out.println("PreviousTotalRunTime:" +
totalRunTime);

 selectedPlan.setSelectedHost(aHost);
 selectedPlan.setWaitTime(waitTime);
 selectedPlan.setNumberOfNodes(availNodes);
 selectedPlan.setRuntime(myJobRunTime);
 totalRunTime = selectedPlan.getRuntime() +
selectedPlan.getWaitTime();
 selectedPlan.setTotalRunTime(totalRunTime);
 totalCost = availNodes *
aCC.getHosts().get(aHost).getCostPerNode();
 selectedPlan.setTotalCost(totalCost);
 //this.selectedPlanChanged = true;
 }
 /*
 day = tempDay;
 hour = tempHour;
 minute = tempMinute;
 availNodes = tempAvailNodes;
 */
 } //if availNodes is bigger than 1.
 } //if line contains '>'

- 87 -

 } //end of while raf.getFilePointer() < raf.length()
 } catch (NumberFormatException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 } catch (IOException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 } //end of while for file row iteration

 //src.close();
 try {
 raf.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 System.out.println("Cannot open source file, first run " + copyFile);
 //e.printStackTrace();
 } //end try for openning randomaccessfile.
 } //if sense file exists;
 senseLockFile.delete(); //read from the sense file is done, release the resource.
 } //for each host loop

 String actFileStr = aCC.getUnc_file_share() + aCC.getUnc_act_share() + "act.txt";
 File actFile = new File(actFileStr);

 if (selectedPlan.getSelectedHost().equalsIgnoreCase("xxx"))
 {
 if (actFile.exists())
 actFile.delete();
 return false;
 }
 String aLockFile = aCC.getUnc_file_share() + aCC.getUnc_act_share() + "act.lock";
 File actLockFile = new File(aLockFile);
 actLockFile.createNewFile();

 if (actFile.exists())
 {
 String lFile = aCC.getUnc_file_share() + aCC.getUnc_act_share() + "act.log";
 File logFile = new File(lFile);
 FileInputStream in = new FileInputStream(actFile);
 FileOutputStream out = new FileOutputStream(logFile, true);

 int c;
 while ((c=in.read()) != -1)
 out.write(c);

 out.write('\n');
 in.close();
 out.close();
 actFile.delete();
 }

 Locale locale = Locale.US;
 Date date = new Date();

 FileWriter actWriter = new FileWriter(actFileStr);
 String jobLine;
 jobLine = selectedPlan.getSelectedHost() + ":" +
 selectedPlan.getNumberOfNodes() + ":" +
 selectedPlan.getRuntime() + ":" +
 selectedPlan.getWaitTime() + ":" +
 aGM.getGoals().get(aGM.getSelectedGoalID()).getqFile() + ":" +
 aGM.getGoals().get(aGM.getSelectedGoalID()).getDbFile() + ":" +
 aGM.getGoals().get(aGM.getSelectedGoalID()).getParamsFile() + ":" +
 "jobid=" + selectedPlan.getPlanJobID() + ":" +
 "gID=" + selectedPlan.getSelectedGoal().getId() + ":" +
 "gMinNode=" + selectedPlan.getSelectedGoal().getMinNodes() + ":" +
 "gMaxNode=" + selectedPlan.getSelectedGoal().getMaxNodes() + ":" +

- 88 -

 "gMinCost=" + selectedPlan.getSelectedGoal().getMinCost() + ":" +
 "gMaxCost=" + selectedPlan.getSelectedGoal().getMaxCost() + ":" +
 "gDuration=" + selectedPlan.getSelectedGoal().getDuration() + ":" +
 DateFormat.getDateInstance(DateFormat.SHORT, locale).format(date) + ":" +
 DateFormat.getTimeInstance(DateFormat.DEFAULT, locale).format(date);
 actWriter.write(jobLine);
 actWriter.close();
 actLockFile.delete();
 if (selectedPlan.getWaitTime() > 0)
 selectedPlan.setWaitTime(selectedPlan.getWaitTime() - 1);
 else
 selectedPlan.setWaitTime(selectedPlan.getWaitTime());

 selectedPlan.setTotalRunTime(selectedPlan.getRuntime() + selectedPlan.getWaitTime());
 return true;

 } //end of evaluatePlan function

} //end of class

- 89 -

GoalManager.java

package adaptive;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.HashMap;
import java.util.Properties;

public class GoalManager {
 private HashMap<String, GoalData> goals = new HashMap<String, GoalData>();
 private String selectedGoal;
 public HashMap<String, GoalData> getGoals() {
 return goals;
 }
 public void setGoals(HashMap<String, GoalData> goals) {
 this.goals = goals;
 }
 public String getSelectedGoalID() {
 return this.selectedGoal;
 }
 public void setSelectedGoalID(String selectedGoal) {
 this.selectedGoal = selectedGoal;
 }
 public GoalData getSelectedGoal(String selectedGoal) {
 return this.goals.get(selectedGoal);
 }
 public Boolean updateGoal(Boolean canAchieveGoal)
 {
 Properties global = new Properties();
 try {
 FileInputStream fin = new FileInputStream("adaptive.properties");
 global.load(fin);
 fin.close();
 if (canAchieveGoal)
 {
 goals.clear();
 int goalCount = Integer.parseInt(global.getProperty("goal.count").trim());
 int i = 0;
 for(i=1; i <= goalCount; i++)
 {
 GoalData aGoalData = new GoalData();
 aGoalData.setId(global.getProperty("goal" + Integer.toString(i) + ".id"));
 aGoalData.setDuration(Integer.parseInt(global.getProperty("goal" +
Integer.toString(i) + ".duration").trim()));
 aGoalData.setMinCost(Integer.parseInt(global.getProperty("goal" +
Integer.toString(i) + ".cost.min").trim()));
 aGoalData.setMaxCost(Integer.parseInt(global.getProperty("goal" +
Integer.toString(i) + ".cost.max").trim()));
 aGoalData.setMinNodes(Integer.parseInt(global.getProperty("goal" +
Integer.toString(i) + ".nodes.min").trim()));
 aGoalData.setMaxNodes(Integer.parseInt(global.getProperty("goal" +
Integer.toString(i) + ".nodes.max").trim()));
 aGoalData.setqFile(global.getProperty("QFile").toString().trim());
 aGoalData.setqFileSize(Integer.parseInt(global.getProperty("QFileSize").trim())
);
 aGoalData.setDbFile(global.getProperty("DBFile").toString().trim());
 aGoalData.setDbFileSize(Integer.parseInt(
global.getProperty("DBFileSize").trim()));
 aGoalData.setParamsFile(global.getProperty("ParamsFile").toString().trim());

 aGoalData.setJobName(global.getProperty("jobName").toString().trim());
 goals.put(aGoalData.getId(), aGoalData);
 }

 String selectedID;
 if (global.getProperty("goal.selected.id").startsWith("x"))
 selectedID = global.getProperty("goal.selected.id").toString().replace("x.",
"");
 else

- 90 -

 selectedID = global.getProperty("goal.selected.id").toString();

 setSelectedGoalID(selectedID);
 }
 else
 {
 if (!this.selectedGoal.startsWith("x"))
 {
 this.selectedGoal = "x." + this.selectedGoal;
 global.setProperty("goal.selected.id", this.selectedGoal);
 FileOutputStream fout = new FileOutputStream("adaptive.properties");
 global.store(fout, null);
 fout.close();
 }
 }

 } catch (IOException e) {
 System.out.println("Cannot Read/Write the adaptive.properties file");
 }
 return true;
 }

 public Boolean changeGoal(String kbaseHost, Integer kbaseWaitTime, Integer
kbaseNumberOfNodes, Integer kbaseRunTime) {
 updateGoal(false);
 return true;
 }
 public void initialize() {
 updateGoal(true);
 }
}

	1. INTRODUCTION
	2. MOTIVATION
	3. OBJECTIVES AND CONTRIBUTIONS
	4. RELATED WORK
	4.1. Software languages for adaptivity
	4.2. Software architectures for adaptivity
	4.3. Scientific workflow applications for adaptivity

	2. HIGH PERFORMANCE COMPUTING
	2.1. Moab Policy Engine
	2.2. Moab Scheduler
	2.3. Moab Limitation on Adaptive HPC

	3. MIF and ADAPTIVE MIF FRAMEWORK COMPONENTS
	3.1. MIF Architecture
	3.2. Adaptive MIF Framework Components
	3.2.1. Control Component
	3.2.2. Planner
	3.2.3. Goal Manager

	4. RUNNING THE ADAPTIVE MIF PIPELINE
	4.1. Setting up the Directory Structure
	4.2. Setting up the Adaptive MeDICi Pipeline
	4.2.1. Setting up the input file
	4.2.2. Programming the adaptive MeDICi pipeline

	4.3. Setting up the Control Components
	4.3.1. Running the Sense Control Component
	4.3.2. Running the Act Control Component

	5. ScalaBLAST: AN ADAPTIVE SCIENTIFIC WORKFLOW
	5.1. Results with Adaptive ScalaBLAST
	5.2. Run-time Results with Large Datasets
	5.3. Results with Small to Medium Datasets Batch Runs
	5.4. Results Comparisons

	6. CONCLUSIONS and FUTURE WORK
	6.1. Conclusions
	6.2. Future Work
	A. SAMPLE QUEUE OUTPUT FILE
	B. STATIC SCALABLAST BATCH JOB RUN TIME RESULTS
	C. DYNAMIC SCALABLAST BATCH JOB RUN TIME RESULTS
	D. UML COMPONENT DIAGRAM FOR ADAPTIVE MIF
	E. SOURCE CODE

